
Geophysical Monograph Series 

Including 

IUGG Volumes 
Maurice Ewing Volumes 

Mineral Physics Volumes 



Geophysical Monograph Series 

93 Cross-Scale Coupling in Space Plasmas James L 
Horowitz, Nagendra Singh, and James L. Burch (Eds.) 

94 Double-Diffusive Convection Alan Brandt and H. J. S. 
Fernando (Eds.) 

95 Earth Processes: Reading the Isotopic Code Asish Basu 
and Stan Hart (Eds.) 

96 Subduction Top to Bottom Gray E. Bebout, David 
Scholl, Stephen Kirby, and John Piatt (Eds.) 

97 Radiation Belts: Models and Standards J. F. Lemaire, D. 
Heynderickx, and D. N. Baker (Eds.) 

98 Magnetic Storms Bruce T. Tsurutani, Walter D. 
Gonzalez, Yohsuke Kamide, and John K. Arballo (Eds.) 

99 Coronal Mass Ejections Nancy Crooker, Jo Ann Joselyn, 
and Joan Feynman (Eds.) 

100 Large Igneous Provinces John J. Mahoney and Millard 
F. Coffin (Eds.) 

101 Properties of Earth and Planetary Materials at High 
Pressure and Temperature Murli Manghnani and 
Takehiki Yagi (Eds.) 

102 Measurement Techniques in Space Plasmas: Particles 
Robert F. Pfaff, Joseph E. Borovsky, and David T. Young 
(Eds.) 

103 Measurement Techniques in Space Plasmas: Fields 
Robert F. Pfaff, Joseph E. Borovsky, and David T. Young 
(Eds.) 

104 Geospace Mass and Energy Flow: Results From the 
International Solar-Terrestrial Physics Program James L. 
Horwitz, Dennis L. Gallagher, and William K. Peterson 
(Eds.) 

105 New Perspectives on the Earth's Magnetotail A. 
Nishida, D. N. Baker, and S. W H. Cowley (Eds.) 

106 Faulting and Magmatism at Mid-Ocean Ridges W. 
Roger Buck, Paul T. Delaney Jeffrey A. Karson, and Yves 
Lagabrielle (Eds.) 

107 Rivers Over Rock: Fluvial Processes in Bedrock 
Channels Keith J. Tinkler and Ellen E. Wohl (Eds.) 

108 Assessment of Non-Point Source Pollution in the 
Vadose Zone Dennis L Corwin, Keith Loague, and 
Timothy R. Ellsworth (Eds.) 

109 Sun-Earth Plasma Interactions J. L. Burch, R. L. 
Carovillano, and S. K. Antiochos (Eds.) 

110 The Controlled Flood in Grand Canyon Robert H. 
Webb, John C. Schmidt, G. Richard Marzolf, and 
Richard A. Valdez (Eds.) 

111 Magnetic Helicity in Space and Laboratory Plasmas 
Michael R. Brown, Richard C. Canfield, and Alexei A. 
Pevtsov (Eds.) 

112 Mechanisms of Global Climate Change at Millennial 
Time Scales Peter U. Clark, Robert S. Webb, and Lloyd 
D. Keigwin (Eds.) 

113 Faults and Subsurface Fluid Flow in the Shallow Crust 
William C. Haneberg Peter S. Mozley, J. Casey Moore, 
and Laurel B. Goodwin (Eds.) 

114 Inverse Methods in Global Biogeochemical Cycles 
Prasad Kasibhatla, Martin Heimann, Peter Rayner, 
Natalie Mahowald, Ronald G. Prinn, and Dana E. 
Hartley (Eds.) 

115 Atlantic Rifts and Continental Margins Webster 
Mohriak and Manik Taiwan! (Eds.) 

116 Remote Sensing of Active Volcanism Peter J. Mouginis-
Mark, Joy A. Crisp, and Jonathan H. Fink (Eds.) 

117 Earth's Deep Interior: Mineral Physics and 
Tomography From the Atomic to the Global Scale 
Shun-ichiro Karato, Alessandro Forte, Robert 
Liebermann, Guy Masters, Lars Stixrude (Eds.) 

118 Magnetospheric Current Systems Shin-ichi Ohtani, 
Ryoichi Fujii, Michael Hesse, and Robert L. Lysak (Eds.) 

119 Radio Astronomy at Long Wavelengths Robert G. 
Stone, Kurt W. Weiler, Melvyn L. Goldstein, and Jean-
Louis Bougeret (Eds.) 

120 GeoComplexity and the Physics of Earthquakes John 
B. Rundle, Donald L. Turcotte, and William Klein 
(Eds.) 

121 The History and Dynamics of Global Plate Motions 
Mark A. Richards, Richard G. Gordon, Rob D. van der 
Hi 1st (Eds.) 

122 Dynamics of Fluids in Fractured Rock Boris 
Faybishenko, Paul A. Witherspoon, and Sally M. 
Benson (Eds.) 

123 Atmospheric Science Across the Stratopause David E. 
Siskind, Stephen D. Eckerman, and Michael E. 
Summers (Eds.) 

124 Natural Gas Hydrates: Occurrence, Distribution, and 
Detection Charles K. Paul! and Willam P. Dillon (Eds.) 

125 Space Weather Paul Song, Howard J. Singer, George L. 
Siscoe (Eds.) 

126 The Oceans and Rapid Climate Change: Past, Present, 
and Future Dan Seidov, Bernd J. Haupt, and Mark 
Maslin (Eds.) 

127 Gas Transfer at Water Surfaces M. A. Donelan, W. M. 
Drennan, E. S. Saltzman, and R. Wanninkhof (Eds.) 

128 Hawaiian Volcanoes: Deep Underwater Perspectives 
Eiichi Takahashi, Peter W. Lipman, Michael O. Garcia, 
Jiro Naka, and Shigeo Aramaki (Eds.) 



Geophysical Monograph 129 

Environmental Mechanics 
Water, Mass and Energy Transfer 

in the Biosphere 

The Philip Volume 

Peter A. C. Raats 
David Smiles 

Arthur W. Warrick 
Editors 

88 American Geophysical Union 
Washington, DC 

<§) Published in cooperation with CSIRO, 
Australia 



Published under the aegis of the AGU Books Board 

John E. Costa, Chair; Gray E. Bebout, David Bercovici, Carl T. Friedrichs, James L. Horwitz, Lisa A. 
Levin, W. Berry Lyons, Kenneth R. Minschwaner, Darrell Strobel, and William R. Young, members. 

Library of Congress Cataloging-in-Publication Data 
Environmental mechanics : water, mass, and energy transfer in biosphere / Peter A. C. Raats, 
David Smiles, Arthur W. Warrick, editors. 

p. cm. - (Geophysical monograph ; 129) 
"The Philip Volume." 
Includes bibliographical references. 
ISBN 0-87590-988-4 

1. Soil moisture. 2. Soil absorption and adsorption. 3. Groundwater flow. I. Raats, P. A. C. II. 
Smiles, David., 1936- III. Warrick, Arthur W. IV. Series. 

S594 .E58 2002 
631 .4'32-dc21 2002025428 

ISSN 0065-8448 
ISBN 0-87590-988-4 

Copyright 2002 by the American Geophysical Union 
2000 Florida Avenue, N. W. 
Washington, DC 20009 

Cover image: Thunderstorm over irrigated vineyards near Griffith, New South Wales, Australia. 
Photo by Greg Heath, CSIRO Land and Water. 

Figures, tables, and short excerpts may be reprinted in scientific books and journals if the source 
is properly cited. 

Authorization to photocopy items for internal or personal use, or the internal or personal use of 
specific clients, is granted by the American Geophysical Union for libraries and other users reg
istered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided 
that the base fee of $1.50 per copy plus $0.35 per page is paid directly to CCC, 222 Rosewood 
Dr., Danvers, MA 01923. 0065-8448/02/$01.50+0.35. 

This consent does not extend to other kinds of copying, such as copying for creating new collec
tive works or for resale. The reproduction of multiple copies and the use of full articles or the use 
of extracts, including figures and tables, for commercial purposes requires permission from the 
American Geophysical Union. 

Printed in the United States of America. 



CONTENTS 
Dedication to John Robert Philip AO FAA FRS 
The Editors v i i 

Preface 

The Editors ix 

Introduction 

Contributions to Environmental Mechanics: Introduction 

P. A. C. Raats, D. E. Smiles, and A. W Warrick . 1 

John Philip 

A Convergence of Paths That Culminated in John Philip's 1995 Video Recorded History of Hydrology Interview 
Stephen J. Burges 2 9 
Simplification Plus Rigorous Analysis: The Modus Operandi of John Philip 

James C. I. Dooge 35 

Infiltration Theory 

Infiltration Under Constant Head and Falling Head Conditions 
D. E. Elrick, R. Angulo-Jaramillo, D. J. Fallow, W. D. Reynolds, and C . W Parkin 4 7 
Capillary Rise of Water Into Soil as Described by a Solution of Burgers' Equation 
D. Swartzendruber 55 

Effect of Gravity and Model Characteristics on Steady Infiltration From Spheroids 
A. W. Warrick and Dani Or 65 

The Seepage Exclusion Problem for Tunnel Cavities in the Saturated Capillary Fringe 
£ G. Youngs 71 

Column Flow in Stratified Soils and Fingers in Hele-Shaw Cells: A Review 
J.-Yves Parlange, Tammo S. Steenhuis, Ling Li, D. A. Barry, and Frank Stagnitti 79 

Wetting Front Evolution in Randomly Heterogeneous Soils 

Alexandre M. Tartakovsky Shlomo P. Neuman, and Daniel M. Tartakovsky 87 

Swelling Soils and Solute Transport 

On Hydrostatics and Matristatics of Swelling Soils 
C D. Grant, P. H. Groenevelt, and G. H. Bolt 95 

Water and Solute Transfer in Porous Media 
David E. Smiles 107 

Equilibrium Moisture Profiles in Consolidating, Sulfidic, Coastal Clay Soils 
Ian White 121 

Solute Transport in Infiltration-Redistribution Cycles in Heterogeneous Soils 
5. C. Lessoff, P. Indelman, and G Dagan 133 



CONTENTS 

Analytical Solutions for Two-Dimensional Solute Transport With Velocity-Dependent Dispersion 
Philip Broadbridge, R. Joel Moitsheki, and Maureen P. Edwards 145 

Stability Criteria for the Vertical Boundary Layer Formed by Throughflow Near the Surface of a Porous Medium 
C. J. van Duijn, G. J. M. Pieters, R. A. Wooding, and A. van der Ploeg 155 

Injection of Dilute Brine and Crude Oil/Brine/Rock Interactions 

Guoqing Tang and Norman R. Morrow 171 

General Aspects of Water Flow in Soils 

Multidimensional Flow of Water in Unsaturated Soils 
P. A. C. Raats 181 

Effect of Temperature on Capillary Pressure 
Steven A. Grant and Jorg Bachmann 199 

Soil Water Hysteresis Prediction Model Based on Theory and Geometr ic Scaling 
Randel Haverkamp, Paolo Reggiani, Peter J. Ross, and Jean-Yves Parlange 213 

How Useful are Small-Scale Soil Hydraulic Property Measurements for Large-Scale Vadose Zone Modeling? 
Jan W. Hopmans, Don R. Nielsen, and Keith L Bristow 2 4 7 

The Role of Estimation Error in Probability Density Function of Soil Hydraulic Parameters: Pedotop Scale 
Miroslav Kutflek, Miroslav Krejca, and Jana Kupcova-Vlasimska 2 5 9 

Searching Below Thresholds: Tracing the Origins of Preferential Flow Within Undisturbed Soil Samples 
Milena Cfslerova, TomasVogel, Jana Votrubova, and Alice Robovska 2 6 5 

Effect of Forced Convection on Soil Water Content Measurement With the Dual-Probe Heat-Pulse Method 

Gerard J. Kluitenberg and Joshua L. Heitman 2 7 5 

Micrometeorology 

Momentum Transfer to Complex Terrain 
John Finnigan 2 8 5 

Diffusion of Heavy Particles in a Turbulent Flow 
M. R. Raupach 301 

A Simple One-Dimensional Model of Coherent Turbulent Transfer in Canopies 
Michael D. Novak 317 

The Concept of the Soil-Plant-Atmosphere Continuum and Applications 
M. B. Kirkham 327 

Rootzone Processes, Tree Water-Use and the Equitable Allocation of Irrigation Water to Olives 
Steve Green, Brent Clothier, Horst Caspar!, and Sue Neal 337 



John Robert Philip AO FAA FRS 

John Philip was Australia's most distinguished environ
mental physicist; his pioneering study of movement of 
water, energy, and gases in the natural environment is inter
nationally acclaimed. On Saturday 26 June 1999, he was 
tragically struck by a car and killed in Amsterdam during a 
visit to the Centre for Mathematics and Information 
Science. The present volume is dedicated to John Philip and 
the scientific work he accomplished. 

John Philip displayed prodigious mathematical talent at 
an early age and won an open scholarship to Scotch College 
in Melbourne. There his intellectual world expanded enor
mously, he developed his work ethic, and his English 
teacher encouraged him to write poetry, which remained a 
lifetime avocation. John matriculated at 13, and spent a fur
ther 2 years at school before he could enter Queens College 
in the University of Melbourne. He took a Bachelor of Civil 
Engineering degree at 19. 

On graduation, he was appointed to the CSIRO Irrigation 
Research Station in Griffith to work on the hydraulics of 
furrow irrigation. With his acute mathematical and physical 
insights he quickly identified an array of scientific problems 
about water movement in the soil-plant-atmosphere envi
ronment. He remarked, "I blundered into a vocation that 
turned out, over the past 50 years, to be more fun than 
work." 

He then joined the Queensland Water Supply 
Commission as a design engineer responsible for the Bur-
dekin and Mareeba Irrigation Schemes. He alsx> developed 
strong links with Brisbane bohemia, which gave him further 
entree to the world of art and ideas and, throughout his life, 
he remained a catholic reader, a published poet and a con
noisseur of architecture. 

He was appointed to the Deniliquin laboratories of the 
CSIRO Division of Plant Industry in 1951. His boss, Sir 
Otto Frankel, strongly supported scientific freedom to get 
on with important tasks, but he was ill at ease with John's 
mathematical and physical approach to environmental prob
lems. This approach owed much to insights and attitudes of 
L.A. Richards, which were exemplified in the Richards and 
Wadleigh paper in Soil Physical Conditions and Plant 
Growth. Philip's early paper on the use of mathematics as 
both a language and a logic reveals his need then to justify 
his position. Fortunately, Professors Pat Moran and John 
Jaeger at the Australian National University reassured Otto 
Frankel, and John Philip followed his scientific instincts. 

John's Deniliquin work brought unity to the very compli
cated field of water and heat flow in unsaturated soils and 

the wonderful synergy of innovative mathematics and phys
ical insights in the resulting papers culminated in a 
Doctorate in Science from the University of Melbourne. 

Otto Frankel moved John to Canberra in 1959 to establish 
the Agricultural Physics Section, within Plant Industry and, 
broadly, to relate findings obtained in the laboratory to the 
"real" world and to develop mathematical descriptions of 
environmental processes. The Section represented each of 
the three components of the S oil-Plant-Atmosphere-
Thermodynamic Continuum, a concept conceived by 
Gradmann and van der Honert, as the "seamless web" con
necting these elements of the physical environment. It also 
included a fourth group, led by John Wmself. This group 
was named Applied Mechanics and it provided a framework 
in theoretical mechanics for the more experimental groups. 
The Agricultural Physics Section became the CSIRO 
Division of Environmental Mechanics in 1970. 

John's rigorous pursuit of scientific quality ensured that 
Environmental Mechanics was recognised internationally, if 
not always within CSIRO, as a centre of excellence and, 
except for a 5-year period as Director of the CSIRO Institute 
of Physical Sciences, he was Chief until his retirement. 

Distinctions between "basic" and "applied" research and 
the needs of "stakeholders" were cornerstones of John's phi
losophy before these ideas became fashionable. He argued 
that research should be "applicable", and his often-stated 
motivation was "to improve engineering practice" with 
mathematical models based on sound physics and a firm 
focus on Occam's Razor. He encouraged this philosophy 
within his Division, and sought to provide an environment 
conducive to creative research. The Pye laboratory, which 
John and his wife Frances conceived, is an elegant and func
tional building, cleverly planned to promote interaction 
between the occupants. 

John Philip attached great importance to maintaining a 
preeminent personal role in research while he was a manag
er. His papers are skillfully crafted models of brevity and 
precision and remain among the most frequently cited in 
environmental science. At the same time he was personally 
difficult, mischievous and often outrageous. In science he 
was uncompromising, unforgiving, competitive and petu
lant. His acknowledgments were parsimonious. He disliked 
computers and for much of his career relied on a mechani
cal Monroe calculator he called Marilyn but later accepted 
an electronic one. He performed calculations lying on the 
floor, and drew graphs by hand. His "retirement" saw no 
diminution in the flood of ideas and original, incisive analy-

vii 



sis, and he maintained close liaison with scientists round the 
world. 

This complicated man was a Fellow of the Royal Society 
of London, a Fellow of the Australian Academy of Science, 
a Fellow of the American Geophysical Union, a Foreign 
Member of the All-Union (later Russian) Academy of 
Agricultural Sciences, and only the second Australian 
Foreign Associate of the U.S. National Academy of 

Engineering. He was the first non-American recipient of the 
Robert E Horton Medal, the highest award for hydrology of 
the American Geophysical Union. He was made Officer of 
the Order of Australia in 1998 for "services to the science of 
hydrology." 

The Editors 
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PREFACE 

Modern theories of mass and heat transfer in the biosphere, 
based on notions of a soil-plant-atmosphere thermodynamic 
continuum focused on water, were generally formulated by the 
mid-20th century. They tended to be reductionist and flow 
equations combined macroscopic laws of flow and of material 
and energy balance. They were difficult to solve because mate
rial transfer properties tend to be strongly related to the local 
concentration of an entity of concern, to the location, or to both. 
The architecture of the soil and the plant canopy also compli
cated their formulation, the scale of their application and their 
test. 

Despite the complicated nature of the equations describing 
transfer processes, since the early 1950s solutions to a large 
number of problems have been developed. For the earliest solu
tions, Arnold Klute and John Philip used mixed analytical-
numerical methods. Following this, analytical and numerical 
methods initially developed rather independently, but more 
recent studies often exploit the synergy of the two types. For 
nearly 50 years, John Philip played a dominant role among the 
small, worldwide group seeking analytical solutions. He pur
sued a wide variety of methods: similarity solutions, asymptot
ic time invariant travelling waves, linearization by appropriate 
specialization and/or transformation. As a result we now have 
good understanding of some key aspects of the hydrological 
cycle, a sound basis for design and interpretation of experi
ments seeking the physical properties of soils, and benchmarks 
against which numerical procedures may be tested. 

John Philip was also very actively involved in extending the 
theory of soil water in numerous new directions, the most 
important being multiphase flow, simultaneous transport of 
water and heat, flow of water in soils subject to swelling and 
shrinkage, transport of solutes in unsaturated soils, and coping 
with flow and transport at a range of spatial and temporal 
scales. Furthermore, he made key contributions to two aspects 
of micrometeorology and physical ecology: two-dimensional 
transfer associated with advection and transfer of water in the 
soil-plant-atmosphere continuum. 

This monograph assembles papers from across environmen
tal fields influenced by John Philip and where integration of 
existing and essentially complementary approaches and their 
application are becoming key issues. A wide-ranging 
Introduction surveys the current state of water and solute trans
port in soils and other porous materials. It draws attention to the 
fundamental change in approach to flow equations and their 
solutions that has accompanied the development of, and wide 

access to, computers. It also briefly comments on some current 
issues in micrometeorology and physical ecology. Some areas 
where research is required are identified. 

Subsequent sections of the monograph explore topical areas 
of current study and application. The focus of contributions is 
eclectic and authoritative. They include: 
• a variety of analytical and numerical methods used to 

analyse flow of water in rigid soils: capillary rise and infil
tration in uniform and heterogeneous soils, stability analy
sis of wetting fronts, and two- and three-dimensional flow 
associated with cavities in soils are illustrated; 

• some aspects of equilibrium and flow of water in swelling 
systems and of solute transport during water flow in rigid 
and swelling, and saturated and unsaturated soils; 

• stability bounds for a saline layer formed during upward 
flow induced by evaporation at a horizontal surface, analy
sis of velocity dependent two-dimensional dispersion, and 
immiscible liquid interactions in porous materials; 

• general aspects of liquid flow and the effects of hysteresis 
and of temperature on equilibrium and flow, relations 
between behaviour at the Darcy scale and that at larger and 
smaller scales, and some aspects of water content meas
urement using heat pulse methods; 

• current issues of concern relating to energy and water 
transfer in the lower atmosphere and in vegetation, and an 
example of application of theory and technology to water 
management in irrigated horticulture. 

Most papers provide extensive literature reviews and most 
acknowledge John Philip's influence in their area of focus. 
Following the Introduction, the monograph leads with two 
sketches of John Philip's views on science and its application in 
the natural environment. The attached CD-ROM records his 
1995 interview with Steve Burges on behalf of the American 
Geophysical Union. The CD-ROM also includes a recent 
address-in-print that reinforces the views expressed in the inter
view, and a bibliography of his work. 

We gratefully acknowledge the encouragement of Rien van 
Genuchten, who initiated the project and inspired an AGU sem
inar in San Francisco in December 2000, where many of the 
papers of the monograph received their initial airing. We are 
also thankful for the enthusiasm of the authors and for the help 
of the reviewers who guided them and the Editors, thereby con
tributing to the quality of the monograph. 

The Editors 
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Contributions to Environmental Mechanics: Introduction 

P e t e r A . C. R a a t s 

Wageningen University and Research Centre, Wageningen, The Netherlands 

David E . Smiles 

CSIRO Land and Water, Canberra, Australia 

A r t h u r W . War r ick 

Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 

In t h e second half of t h e 2 0 t h cen tury , e n v i r o n m e n t a l mechan ics deve loped 
from a collection of loosely connec ted pr inciples a n d t echn iques t o a coher
en t q u a n t i t a t i v e t r e a t m e n t of flow a n d t r a n s p o r t in t h e so i l - p l an t - a tmosphe re 
c o n t i n u u m . J o h n Ph i l ip was in m a n y respec t s t h e life a n d soul of t h i s adven
t u r e . He c o n t r i b u t e d foremos t t o t h e physics of w a t e r in u n s a t u r a t e d soils, 
b u t also t o mic rometeo ro logy a n d physical ecology. In th i s i n t r o d u c t o r y c h a p 
te r we briefly review how his con t r i bu t i ons influenced a n d a re r e l a t ed t o t h e 
ac t iv i t ies of his col leagues a n d prov ide a n overview of t h e p re sen t s t a t u s of 
t h e o r y of soil w a t e r m o v e m e n t . We also ind ica te how t h e va r ious con t r i bu 
t ions t o th i s vo lume fit in th i s c o n t e x t . We s t a r t w i th a discussion of t h e 
n a t u r e , f ounda t ion , a n d app l ica t ion of t h e R ich a rds equa t ion , w i t h e m p h a s i s 
on t h e d o m i n a n t role of J o h n Phi l ip in finding ana ly t ica l so lu t ions of t h i s 
e q u a t i o n . T h i s is followed by a discussion of var ious deve lopmen t s b e y o n d 
t h e R icha rds e q u a t i o n : m u l t i p h a s e flow, s i m u l t a n e o u s t r a n s p o r t of w a t e r a n d 
h e a t , flow of w a t e r in soils sub jec t t o swel l ing-shr inkage, t r a n s p o r t of so lu tes 
in u n s a t u r a t e d soils, a n d flow a n d t r a n s p o r t processes a t var ious scales in 
space a n d t i m e . T h e var ied c o n t r i b u t i o n s of J o h n Phi l ip t o mic rome teo ro l 
ogy a n d physical ecology a re also reviewed briefly. In t h e conc lud ing sec t ion , 
some chal lenges for e n v i r o n m e n t a l mechan ics a re ind ica ted . 

1. INTRODUCTION 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM01 

Modern theories of heat and mass transfer in the bio
sphere, based on notions of a soil-plant-atmosphere thermo
dynamic continuum focused on water, were generally for
mulated by the mid-20th century. They tended to be reduc-

1 



2 INTRODUCTION 

tionist and flow equations combined macroscopic laws of 
material and energy balance and of flow. These equations 
were difficult to solve because material transfer properties 
tend to be strongly related to the local concentration of an 
entity of concern, to the location, or to both. The architec
ture of the soil and the plant canopy also complicated their 
formulation, the scale of their application, and their test. 

John Philip and a relatively modest group of interna
tional colleagues were challenged to solve these equations 
for practically important conditions and, particularly, to in
tegrate existing and essentially complementary approaches 
to permit a more holistic approach to vegetative production 
and management in the natural environment. Originally, the 
principal practical focus related to irrigation management, 
often in an environment where energy was advected from 
neighbouring deserts. The integrating principle was the no
tion of a thermodynamic continuum that specifically aimed 
to quantify the passage of water from its arrival at the sur
face of the soil as rain or irrigation, into the soil, and then 
back to the atmosphere. Return to the atmosphere might 
be direct as evaporation through the soil surface or as tran
spiration through the root, stem and leaves of plants. With 
computers in their infancy, these environmental physicists 
established a framework of analysis. The original vision of a 
comprehensive, integrated environmental model still evades 
us. Nevertheless, well focussed though more modest models 
of the biosphere and the advent of much more powerful and 
accessible computational procedures have greatly enhanced 
our ability to describe and more sustainably manage our re
sources. 

This introductory chapter briefly examines the scientific 
context of John Philip's work and identifies how his early 
ideas have influenced developments in the second half of 
the 20th century. It also identifies areas where his approach 
might still resolve problems that prejudice management of 
land and water in the biosphere. Theory of soil water rela
tions is central to his contributions and we deal with this in 
some detail. His somewhat lesser contributions in physical 
ecology and some of their consequences are also surveyed. 
Throughout, we indicate where the contributions to this vol
ume fit in the wider context of the general physics and, to a 
lesser extent, the chemistry of the natural environment. 

The organization of this introduction is as follows. Sec
tion 2 deals with the origin of the Richards equation, the 
identification of classes of soils based on different mathe
matical functions approximating the physical properties, and 
the measurement of soil physical properties and monitoring 
of processes in the field. Section 3 deals with solutions of 
the Richards equation, both analytical and numerical, with 
emphasis on the former. In Section 4 some developments 

beyond the classical Richards equation for homogeneous, 
unstructured, isothermal, rigid soils are reviewed, including 
multiphase flow, simultaneous transport of water and heat, 
and flow of water in soils subject to swelling and shrink
age. Some issues related to transport of solutes in unsat
urated soils and to flow and transport at various scales in 
space and time are also discussed. Section 5 deals with two 
aspects of micrometeorology and physical ecology, two di
mensional transfer associated with advection and transfer of 
water in the soil-plant-atmosphere continuum. Finally, in 
Section 6 some challenges for environmental mechanics are 
identified. 

2. THE RICHARDS EQUATION 

2.1. Formulation of the Theory 

About 70 years ago, Lorenzo A. Richards formulated a 
general, macroscopic theory for movement of water in unsat
urated soils [Richards, 1928, 1931]. Richards' theory com
bines the simplest possible balances of mass, expressed in 
the equation of continuity, and of momentum, expressed in 
Darcy's law. Assuming the density p of the soil water to be 
constant, the balance of mass can be expressed as a volumet
ric balance equation: 

__ = _ V . ( 0 v ) - A , (2.1) 

where t denotes the time, 6 the volumetric water content, 
v the velocity of the water, and A the volumetric rate of 
uptake of water by plant roots. Further V = \xd/dx + 
iyd/dy + \zd/dz denotes the vector differential operator, 
where i^, i y , iz are unit vectors in the orthogonal x, y, z di
rections. Given the constancy of the density p of the soil 
water, Darcy's law can be written as: 

Ov = -kVh + kVz, (2.2) 

where k is the hydraulic conductivity, z the vertical coor
dinate taken positive downward, and the capillary pressure 
head h is defined by: 

Here p and pa are the pressures of the aqueous and gaseous 
phases, pc is the capillary pressure, and g is the gravitational 
constant. The capillary pressure head and the hydraulic con
ductivity are nonlinear functions of the volumetric water 
content 9. Moreover, the relationship h(9) is hysteretic. 

Richards' theory consolidated the efforts of previous gen
erations, notably from Franklin H. King, Charles S. Slichter, 
Lyman J. Briggs, Edgar Buckingham, Willard Gardner, and 
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W.B. Haines (see Philip [1974a]; Gardner [1986]). At the 
urging of King, Slichter [1899] used the mass balance and 
Darcy's law to describe flow of water in saturated soils. He 
also calculated the hydraulic conductivity for a packing of 
spheres based on a model of tubes with variable triangular 
cross section, thus hitting upon the quadratic dependence 
of the hydraulic conductivity upon the particle size. Briggs 
[1897] applied the Young-Laplace equation to unsaturated 
soils, thus discovering in essence the inverse dependence of 
the capillary pressure head upon the particle size. Bucking
ham [1907] described the hydrostatic vertical equilibrium, 
the principle of mass balance, and the extension of Darcy's 
law to unsaturated soils. Gardner [1919] was the first to 
actually write the one-dimensional form of the mass balance 
equation. Gardner and Widtsoe [1921] came particularly 
close to the modern interpretation of Darcy's law as a macro
scopic force balance, when they wrote 

We may therefore say that for the chosen ele
ment [of liquid] there exists a force acting ver
tically downward proportional to the mass, a 
pressure on each of the six sides, and a fric-
tional drag due to the relative slipping of the el
ement, which may be zero for any or all of the 
six sides, depending upon the relative velocity 
at each side. 

Haines [1930] applied the Young-Laplace equation to ideal 
soils, i.e., packings of monodisperse spheres, to calculate 
water retention, including the hysteresis effect, and the co
hesion. 

The foundation of the Richards equation on the basis of 
the principles of surface tension and viscous flow was treated 
comprehensively by Miller and Miller [1956]. They related 
the water retention and hydraulic conductivity characteris
tics of geometrically similar soils, each characterized by a 
length scale. They established that, for geometrically sim
ilar soils at the same volumetric water content, the Young-
Laplace equation implies that the capillary pressure is in
versely proportional to a characteristic length scale and the 
linearized Navier-Stokes equation implies that the hydraulic 
conductivity is proportional to its square. 

In his studies of flow and transport in porous media, John 
Philip's primary interest was in the analysis of processes 
at the macroscopic (Darcian) scale. However, to establish 
a solid foundation for the macroscopic equations, he also 
made numerous studies of processes at the pore scale. Like 
the Miller brothers, he sought the foundation of the exten
sion of Darcy's law to unsaturated soils in the linearity of the 
Navier-Stokes equation in the limit of zero Reynolds num

ber, i.e. slow viscous flow sometimes referred to as Stokes 
or creeping flow, and sufficient homogeneity to allow aver
aging [Philip, 1970, 1973]. He early recognized the prob
lem posed by the boundary condition at the fluid-fluid inter
faces in pores [Philip, 1957c]. Later he explored justifica
tion for treating such interfaces as if they were rigid [Philip, 
1972a, 1972b, 1973], thus putting speculations by Bucking
ham [1907], Richards [1931], and Miller and Miller [1956] 
(see also Raats andKlute [1968b]) on a firmer footing. 

More recently, some further effort has gone into found
ing Richards' theory on the basis of the principles of sur
face tension and viscous flow at the pore scale, using the 
method of volume averaging [Whitaker, 1986]. The theory 
also fits in the framework of the modern continuum theory 
of mixtures, provided that one recognizes from the outset the 
existence of the separate solid, liquid, and gaseous phases 
(for review see Raats [1984a, 1998b]). The wide accep
tance of the Richards equation is perhaps reflected by the 
fact that none of the contributions in this book seek to derive 
it. However, several of the papers deal with aspects such as 
swelling soils [Smiles, Grant et al, White, all this volume], 
general implications of the Richards equation [Raats, this 
volume], extension to non-isothermal systems [Grant and 
Bachmann, this volume], hysteretic water retention charac
teristics [Haverkamp et al, this volume], and complications 
arising from soil structure and spatial variability [Hopmans 
et al, Kutilek et al, Cislerova et al, all this volume]. 

2.2. Classes of Soils 

In the context of Richards equation, the relationships 
among the volumetric water content 9, pressure head h, and 
hydraulic conductivity k define the hydraulic properties of a 
soil. John Philip advocated that the soil physical characteris
tics preferably be measured, as they generally cannot be pre
dicted. Nevertheless, many solutions of Richards equation 
hinge upon mathematical functions that match the physical 
characteristics in a reasonable way. Different classes of soils 
have been identified with different functions approximating 
the physical properties. We distinguish two groups of para
metric expressions describing the hydraulic properties: 

1. A group yielding flow equations that can be solved an
alytically, in most cases as a result of linearization following 
one or more transformations; 

2. A group that is favored in numerical studies and to a 
large extent shares flexibility with a rather sound basis in 
Poiseuillean flow in networks of capillaries. 

To the first group belong the classes of: i) linear soils; 
ii) Green and Ampt or delta function soils; iii) Brooks and 
Corey or power function soils; iv) Gardner soils; and v) ver-
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satile nonlinear soils, including the subclass of Knight soils. 
For these particular classes of soils, definitions as well as so
lutions and applications of the corresponding special forms 
of the Richards equation are discussed in Subsections 3.1, 
3.2, 3.5, 3.6, and 3.7. 

In the second group of relationships among 9, h and k, the 
hydraulic conductivity is calculated from the water retention 
characteristic and certain assumptions concerning the geom
etry of the pore system (see Raats [1992] for a review). 
The procedure in essence links physico-mathematical mod
els at the Darcy and Navier-Stokes scales. By introducing a 
very general equation for the water retention characteristic, 
various well-known classes of soils can be regarded as sub
classes of one and the same superclass, thus summarizing 
a widely scattered literature [Raats, 1990a, 1990b, 1992]. 
The water retention characteristic of this superclass of soils 
is given by: 

Xh = 
l - 5 f e l 

Sb2 

(2.4) 

where A is the inverse characteristic length of the soil, S is 
the reduced water content, and 61, b2, and 63 are empirical 
parameters. The reduced water content is defined by: 

- 0 r S = (2.5) 

where 9r is the residual water content and 6S is the water 
content at saturation. The following table shows values of 
the indices 61, 6 2 , 63 in equation (2.4) for four important sub
classes of this superclass of soils: 

Equation (2.4) 61 62 b3 

61 h b3 

1 62 63 
00 b2 63 

1 1 b3 

Van Genuchten [1980] 
Visser [1968], Su and Brooks [1975] 
Brooks and Corey [1964,1966] 
Brutsaert [1966,1967], and 

Ahuja and Swartzendruber [1972] 
Note that the popular subclass of Van Genuchten [1980] 
is included as a special case, as is the Brooks and Corey 
[1964,1966] or power function class of the first group. 

A rather general predictive model for the relative hy
draulic conductivity is given by: 

krel — $ (2.6) 

where ci , c 2 and c 3 are constants. Introducing the retention 
curve (2.4) for the superclass of soils in (2.6) gives: 

krel = 5 C 1 ( / 5

6 l [ ( c 2 6 2 &3 + 1) (1 - c 2 6 3 ) ] ) C 3 , (2.7) 

where T^f-, *] * s m e incomplete beta function. Important 
special cases of (2.6) and (2.7) are the Burdine [1953] model 
with 

d = n + mi - 1, c 2 = 2 + ra2, c 3 = 1, (2.8) 

and the Mualem [1976] model with 

ci = n + mi — 2, c 2 = 1 + m 2 , C3 (2.9) 

where n is the connectivity parameter with 1 < n < 2, 
and mi and m 2 are tortuosity parameters. Numerical solu
tions using models implied by (2.4) and (2.6) are discussed 
in Subsection (3.8). 

The description of hysteretic water retention characteris
tics on the basis of the independent domain model was pio
neered by Collis-George [1955], Poulovassilis [1962] and 
Philip [1964]. Hysteretic water retention characteristics can 
now be described by various models, such as the modified 
dependent-domain model [Mualem, 1984] and a generaliza
tion of the Van Genuchten model [Dirksen et al, 1993]. 
An alternative generalization of the Van Genuchten model, 
based on the extrapolation theory of Parlange [1976] and 
supported by a detailed comparison with experimental data, 
is described by Haverkamp et al. [this volume]. 

The U.S. Salinity Laboratory and the University of Cal
ifornia at Riverside organized two major conferences on 
physical characterization in 1989 and 1997 [Van Genuchten 
et al, 1992, 1999a]. The models representing the physical 
properties are now routinely used to handle field data. For 
example, Vereecken [1995] used 11 prediction models to 
analyze 44 measured curves, arriving at some specific con
clusions regarding the importance of particular parameters. 
With increasing experience, soil survey data can be used to 
infer physical characteristics using so-called pedo-transfer 
functions. 

2.3. Characterization of Soils and Monitoring of Processes 

Experimental methods in soil physics are treated in sev
eral books [Klute, 1986; Dirksen, 2000; Smith and Mullins, 
2000]. In soil physics research and application, key material 
properties are measurable in the field and in the laboratory, 
but generally highly specialized instrumentation is needed. 
Besides papers, conferences and books, companies initiated 
and sometimes run by soil physicists, are playing a key role, 
especially in the USA. The close connections between the 
research groups and scientific instrument companies have 
stimulated rapid commercial development and widespread 
use of new methods. Improvement of already existing meth
ods is of course also strongly stimulated by advances in other 
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sectors of physics and engineering, particularly in electron
ics and data collection systems. 

Thirty-five years ago methods for measuring the water 
content and the water potential and its components were al
ready available (see e.g. Rijtema and Wassink [1969]). The 
water content was measured not only gravimetrically, but 
also methods based on scattering of neutrons and adsorption 
of gamma rays were widely used. The major instrumental 
development of the last 25 years has been in the realm of di
electric methods, which allow one to infer not only the water 
content, but also the electrolyte concentration. Tensiometry 
has changed from mainly water or mercury filled U-tubes or 
vacuum gauges to electrical transducers, allowing also the 
development of rapid response micro-tensiometers. 

Thus far no routine methods are available for the measure
ment of the water status in the drier range and of the flux 
of water. An osmotic tensiometer, intended to cover a wider 
range than the conventional tensiometer was conceived more 
than thirty years ago [Peck andRabbidge, 1966,1969], but a 
recent paper [Biesheuvel, 1999] shows that a practical design 
is still to be delivered. Direct measurement of the flux of wa
ter was pioneered by Richards in the 30s, and by Cary and 
Dirksen in the late 60s and early 70s (see Dirksen [1972] 
for a brief review). An improved version was developed by 
Van Grinsven et al. [1988] in the context of a study of wa
ter balance and chemical budgets of the unsaturated zone. 
Recently Brye et al. [1999, 2000] successfully used equi
librium tension lysimeters to measure and compare drainage 
from prairie, fertilized no-tillage, and fertilized chisel plow 
systems. 

Inverse methods to determine the physical properties of 
soils on the basis of equilibrium and steady flow date back 
to the beginnings of modern soil physics by Buckingham 
and Richards. The solutions of the Richards equation in the 
1950s became the basis for the next generation of methods. 
An early example is the Boltzmann-Matano method for de
termining the diffusivity from horizontal absorption exper
iments [Bruce and Klute, 1956; see Subsection 3.3]. This 
method has been widely used not only for rigid soils, but also 
for swelling soils and in studies of hydrodynamic disper
sion (Smiles, this volume; see also Subsections 4.3 and 4.4). 
Another early example is the outflow method introduced by 
Gardner [1956]. This method was originally based on the 
linearized theory (see Subsection 3.1), but data are now gen
erally analyzed using numerical solutions of the nonlinear 
Richards equation for a particular class of soils, such as the 
Van Genuchten - Mualem class of soils, combined with a 
procedure for parameter optimization. The evaluation of the 
parameters in the Green and Ampt model from the solution 
of infiltration problems and corresponding experiments by 

Elrick et al. [this volume] nicely illustrates the tradition of 
using solutions of a flow equation inversely. In the last quar
ter century there was much progress with experimental de
sign, both for use in the laboratory and in the field. The 
combination of analytical or numerical solutions with opti
mization algorithms led to a wide variety of new methods, 
while the shortcomings with regard to non-uniqueness were 
identified and repaired. Several examples of such applica
tions of analytical and numerical solutions will be indicated 
later. The two Riverside conferences on physical character
ization mentioned earlier provide much further details [Van 
Genuchten et al, 1992,1999a]. 

3. SOLUTIONS OF THE RICHARDS EQUATION AND 
THEIR APPLICATION 

3.1. Linear Soils 

Both for rigid soils and non-rigid soils (see Subsection 
4.3), the earliest solutions were for linearized equations 
(Childs [1936]; Terzaghi [1923]). The linear diffusion equa
tion was also used initially by Gardner [1956] for his out
flow method for estimating D (see Subsection 2.3). For the 
class of linear soils, the diffusivity D = kdh/dO is constant 
and the hydraulic conductivity k is linear in 6. This leads to 
a linear Fokker-Planck equation, which can be solved rel
atively easily. At a 1966 landmark symposium on water 
in the unsaturated zone [Rijtema and Wassink, 1969], three 
of the seven papers on solutions of the Richards equation 
were presented by Philip [1969a, 1969b, 1969d]. The cen
tral idea in these papers is a linearization technique based on 
matching sorptivities associated with the one-dimensional 
linear and nonlinear diffusion equations. The linearization 
was boldly generalized to one-dimensional infiltration and 
capillary rise and to adsorption and infiltration in two- and 
three-dimensional systems, based on the philosophy that in 
all these problems the short time cumulative uptake results 
from one-dimensional diffusion [Philip, 1969c]. The inte
gral mass balance is exact for the sorption problem and quite 
accurate for the other problems. However, the resulting dis
tribution of the water content is very inaccurate. The paper 
by Swartzendruber [this volume] appears to be the first an
alytical solution for capillary rise based on a nonlinear form 
of the Richards equation. 

3.2. Green and Ampt or Delta Function Soils 

The early work oiGreen and Ampt [1911] was put on 
a modern footing by Philip [1954]. Later Philip [1957i] 
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showed that this work is consistent with Richards equation 
for the class of Green and Ampt or delta function soils with 
the diffusivity given by D = 1/2S2 (#i - 0 O ) - 1 & {h - 9). 
This class implies discontinuities of the water content at wet
ting fronts, but gives reasonable results for one-dimensional, 
vertical infiltration and absorption [Philip, 1969e, 1990]. It 
also yields very useful results for integral aspects of the wa
ter balance, but fails to give any details of the distribution of 
the water content. 

Four contributions to this volume show that the Green and 
Ampt model remains remarkably vital. Elrick et al. [this 
volume] derive infiltration equations based on only sorption 
as well as based on sorption and gravity, in both cases for 
several boundary conditions: constant head, falling head, se
quential constant head 1 / constant head 2, and sequential 
constant head / falling head. Youngs [this volume] analyzes 
flow around tunnel cavities in the capillary fringe on the ba
sis of the Laplace equation for the total head. He notes that 
this corresponds to using the Green and Ampt model. Sev
eral of the studies on stability of soil water flow reviewed by 
Parlange et al. [this volume] use the Green and Ampt model. 
Examples are the somewhat simplistic analysis by Raats and 
a subsequent more rigorous analysis by Philip, both using 
the hydraulic conductivity as a known function of depth. 
In a generalization of John Philip's analysis, Tartakovsky et 
al. [this volume] consider three-dimensional randomly het
erogeneous soils. They derive analytical results for wetting 
front evolution and complement these with numerical Monte 
Carlo simulations. 

3.3. Early Solutions 

It was early realized that the scope of the linear and Green 
and Ampt models was limited and soon the need to tackle 
the nonlinear equations was faced up to, for rigid soils start
ing in the early fifties and for non-rigid soils starting in the 
late sixties. Most early solutions of the nonlinear Richards 
equation are of the form [Raats, 1988): 

z = C»(<M), z = Ch{h,t). (3.1) 

Examples of this are (i) solutions for steady upward and 
downward flows, (ii) the Boltzmann solution with t1/2 pro
portionality for horizontal absorption, (iii) Philip's series ex
pansion in t 1 / 2 for vertical infiltration, and (iv) solutions in 
the form of traveling, time-invariant waves. 

Steady, one-dimensional upward or downward flows have 
received a lot of attention in locations with shallow water 
tables in humid regions and irrigation agriculture (see Raats 
and Gardner [1974] for a review). 

The Boltzmann solution was first applied by Klute [1952; 
see also Philip, 1955a, 1957b, f], following the formula
tion of the gravity-free form of the Richards equation as a 
nonlinear diffusion equation by Childs and George [1948]. 
It is well-suited to validate the theory and to establish the 
physical characteristics of a particular soil [Bruce and Klute, 
1956]. In his calculations, Klute [1952] used the data of 
Moore [1939] for Yolo Light Clay. These same data became 
the favorite of John Philip, starting with the first paper in his 
series of papers on infiltration [Philip, 1957f] and ending 
with his paper on redistribution and air diffusion [Philip and 
vanDuijn, 1999]. Constant! [1987] gives interesting histor
ical background on R.E. Moore and the benchmark soil that 
resulted from his PhD thesis. 

The series expansion in t1/2 for vertical infiltration pro
vides a good description for short term infiltration (Philip 
[1957f]; see the reviews by Philip [1969e, 1974b, 1988]. 
Traveling, time-invariant waves are often good approxima
tions of long term water content distributions near wetting 
fronts [Philip, 1957g, h] and regions above both rising and 
falling water tables [Childs and Poulovassilis, 1962; Raats 
and Gardner, 1974]. Dooge [this volume] evaluates John 
Philip's research strategy on the basis of the theory of in
filtration. Burges [this volume] describes the impact of the 
two term infiltration equation of Philip [1957i] on watershed 
modelling. 

3.4. Approximate Methods Involving Integral Constraints 

The first of the two functional relationships expressed in 
(3.1) is consistent with the water content 9 and the time t 
being the independent variables, while the position z and 
the flux 9v are the dependent variables. With these choices 
of variables, the volumetric mass balance is expressed as 

(!).-(£).- <"> 
Integration of (3.2) between 9^ and 9 gives 

d rd 

9v-9O0vO0 = - zd9. (3.3) 

This ^-integrated mass balance equation is the common 
starting point of two approximate, iterative methods that 
were first introduced in the early 1970s, respectively, by Par
lange and by Philip and Knight. The two methods use dif
ferent constraints in the iterative procedures. Integration of 
(3.3) with respect to position z gives 
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- J ztf-O^dz. (3.4) 

Considering a plot of z 2 / 2 versus 0, it is clear that the sec
ond and third integrals appearing in (3.4) are equal. This 
integral moment balance is the constraint used by Parlange 
in an initial series of 10 papers published in Soil Science in 
the period 1971-1975, and in numerous later papers (for a 
review see Parlange, [1980]). Alternatively, integration of 
(3.3) with respect to time t gives 

ft p0o[t] 
/ {9ovo[t]-0oovoo)dt= / z[0,t]&9, (3.5) 

JO JOoo 

where the subscript 0 denotes values at the soil surface. 
This integral mass balance is the constraint used in the flux-
concentration method developed by Philip and Knight in re
sponse to the work by Parlange (for a review see Philip, 
[1988]). 

The approximate, iterative methods using either one of 
these two integral constraints have yielded solutions of hori
zontal absorption and vertical infiltration with a given water 
content or flux at the soil surface and without or with a sur
face crust, including soils subject to swelling and shrinkage 
(see Subsection 4.3). Some of these solutions involve inter
esting scaling rules. For constant flux, horizontal adsorption 
and short time constant flux vertical infiltration, the surface 
flux #o^o enters the solution only via the reduced position 
^f luxb.c. and time T f l u x b . c . defined by [Smiles, 1978; White 
etal, 1919;Perwux etal, 1981]: 

t f luxb.c . = ( M o ) z, Tfluxb.c. = {Oov0)2t. (3.6) 

For horizontal adsorption and small time vertical infiltration 
with constant potential boundary conditions via a crust, a 
constant crust conductance enters the solution only via the 
reduced position Z C rustxb.c . and time T c r u s t b . c . defined by 
Smiles etal. [1982]: 

^crustb .c . — 1%) ^crustb.c. — 1 t- (^»7) 

Prior to this, flux and crust boundary conditions were mainly 
dealt with using numerical models. Flux boundary condi
tions are appropriate in dealing with non-ponding infiltration 
from rainfall or sprinkling, especially also for establishing 
the ponding time, i.e. the instant at which ponding starts. 
Surface crusts have a strong influence on the ponding time 
and on the subsequent infiltration under ponded conditions. 
Excellent reviews of physical and chemical aspects of sur
face crusts are given in the Proceedings of The First Inter
national Symposium on Soil Crusting [Sumner and Stewart, 
1992). Crust formation plays an important role in soil struc

ture deterioration. Perforation of crusts by soil biota may 
alleviate the problem. 

3.5. Solutions for the Class of Brooks and Corey or Power 
Function Soils 

This class has turned up in recent years regularly as re
sulting from fractal models of pore structure (Crawford et 
al. [1999]; the Preface to this Special Issue of Geoderma 
gives an eloquent vision of the fractal approach to problems 
in soil science). 

The class of Brooks-Corey power function soils plays 
a key role in the mathematical literature on the so-called 
porous medium equation, i.e. the nonlinear diffusion equa
tion with the diffusivity a power function of the volumet
ric water content, and on the corresponding special case of 
the Richards equation. The main interest has been in so-
called similarity solutions. The roots lie in the 1950's in 
the work of two mathematicians, the Russian Barenblatt and 
the Englishman Pattle. Anyone interested in some of the 
contributions by mathematicians in this area should read the 
review paper by Gilding [1991] on qualitative mathemati
cal analysis of the Richards equation. There one can learn 
about aspects like generalized solutions, existence, unique
ness, regularity, boundedness in the sense of distributions, 
wetting fronts / free surfaces / interfaces, comparison the
orems for generalized supersolutions and subsolutions. In
terestingly, the two integral constraints playing key roles in 
approximate solutions of the Richards equation, namely the 
integral moment balance constraint in the work of Parlange 
and the integral mass balance constraint in the work of Philip 
and Knight (see Subsection 3.4), also figure prominently in 
the work of the mathematicians. Further attempts to bridge 
the gap between the quantitative results sought by soil physi
cists and the qualitative results of mathematicians appears 
worthwhile. 

An important feature of some of these similarity solutions 
is the appearance of free surfaces. These were considered 
initially by Philip [1957h] in the third paper of his series of 
seven papers on the theory of infiltration, where he discussed 
the special case with the diffusivity corresponding to the ini
tial water content vanishing. He showed that for this case 
there is a sharp boundary between theTegion in which flow 
and wetting occurs and the region in which the initial condi
tion prevails. Nevertheless, Philip [1990] felt that in many 
cases the consideration of free surfaces should and could be 
avoided. 

Ignoring the role of hysteresis, Philip [1992a] and Philip 
and Knight [1991] developed similarity solutions for redis
tribution of finite slugs of soil water applied from instanta
neous plane, line, and point sources near the soil surface, in-
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eluding illuminating pictures and examples of practical cal
culations. Although the results apply to the restricted class 
of Brooks-Corey power function soils, they could serve as a 
benchmark for related numerical studies. 

Lessoff et al. [this volume] consider purely gravitational 
infiltration and redistribution in a Brooks and Corey soil. 
Purely gravitational flows are governed by the kinematic 
wave equation [Raats, 1983]. It can be shown that for purely 
gravitational drainage of deep profiles in Brooks and Corey 
soils and in Gardner soils (see subsection 3.6) the average 
water content above a particular depth is linearly related to 
the water content at that depth. Such a linear relationship 
was actually observed in the University of California (Davis) 
field data that generated the intense interest ever since from 
soil physicists in spatial variability [Simmons et al., 1979; 
Libardiet al, 1980]. 

3.6. Solutions for the Class of Gardner Soils: Quasilinear 
Analysis of Multi-dimensional Steady Flows 

The class of Gardner soils is defined by k = fc0exp 
a (h — ho), where a is an inverse characteristic length of the 
soil [Gardner, 1958]. For this class, the steady flow equation 
reduces to the linear equation: 

V2(j> = ad<t)/dz, (3.8) 

where the matric flux potential <j> is defined by 

h e 

<f>-<f>0 = j kdh = j D&O. (3.9) 

ho 6q 

The transformation from h and 9 to <t> is often referred to 
as the Kirchhoff transformation. This linearization was first 
noted by Gardner [1958] and the first solutions were given 
by Philip [1968b] and Wooding [1968] . Philip [1988, 
1989; see also Raats [1988]] and Pullan [1990] gave com
prehensive reviews, including the scattering analog solu
tions of Waechter and Philip and the boundary element so
lutions of Pullan. Numerous further problems have been 
solved in the last decade. Basha [1994, 1999] used the 
Green's function method to solve problems with rather com
plicated boundary conditions and root uptake forcing func
tions. Quasilinear analysis of steady flows can be used for 
a wide variety of problems: flow from surface and subsur
face drip irrigation sources of various geometries; flows to 
sinks, of interest in connection with the operation of porous 
cup samplers and suction lysimeters; flows involving speci
fied extraction patterns by plant root systems [Raats, 1974, 

1982b]; flows around obstructions in the form of solid ob
jects or air filled cavities, especially the unique properties of 
parabolic barriers (see e.g. Philip et al [1989,1998d]; War
rick and Fennemore [1995]); flows from surface disc and 
bore-hole permeameters (see next paragraph); steady infil
tration and seepage flows with sloping boundaries; analysis 
of steady air-sparging [Philip, 1998a]. 

Infiltration from a shallow circular pond is both truly chal
lenging and of great practical importance. Using a Hankel 
transform, Wooding [1968] solved this problem with the 
mixed boundary condition of an equipotential surface rep
resenting the pond and a stream surface representing the re
mainder of the soil surface. For the steady, integral flux into 
the soil, Wooding found the simple, approximate expression: 

Q = ( T T R 2 + 4R/a) k0 = 

7rR2k0 + 2TTR (2/tt) (k0/a), (3.10) 

where R is the radius of the pond. On the right hand side 
of (3.10), the first term represents the contribution from the 
gravitational force and the second term represents the con
tribution from capillarity. Later this solution was improved 
by Weir [1987] and recently an alternative derivation was 
given by Basha [1994], The expression for Q given by 
(3.10) is the original basis for disc-permeametry [Scotter 
et al, 1982], a method particularly suited for determining 
hydraulic properties in the field. Simunek et al. [1999] 
compared three estimates of the hydraulic properties of a 
crusted soil based, respectively, on a numerical solution, 
Wooding's analytical solution, and a neural network model 
requiring textural input information. All three methods gave 
in essence the same result. White and Sully [1987] recast 
(3.10) in the form 

Q = TTR2 (* 0 - kn) + ARbS2 (2/tt) (0q - 0n), (3.11) 

where the subscripts 0 and n refer to values at the soil surface 
and initially in the soil, S is the sorptivity, and the constant 
6 = 0.55 for field soils. Small time disc permeameter data 

can be used to estimate the sorptivity [Minasny andMcBrat-
ney, 2000]. 

Warrick and Or [this volume] review the contributions of 
John Philip to steady flow from spheroidal sources, without 
and with the influence of gravity. They also compare the 
analytical solutions for Gardner soils with numerical solu
tions for Van Genuchten-Mualem soils. To further explore 
the limitations of the linearization implied in the Gardner 
soil model, more such comparisons should be made. 
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3.7. The Class of Versatile Nonlinear Soils, Including the 
Subclass of Knight Soils 

Philip [1973] noted that assuming the diffusivity to be 
constant and the hydraulic conductivity to be a quadratic 
function of the water content leads to the Burgers equation. 
This equation can be linearized with the Hopf-Cole trans
formation. John Knight obtained solutions of this Burgers 
equation for infiltration with constant water content and with 
constant flux at the soil surface (see Philip [1974b]) and for 
a periodic surface boundary condition (personal communi
cation in 1974). Clothier et al. [1981] used the solution 
for constant flux vertical infiltration to interpret a set of field 
data. Philip [1987b] used the solution for infiltration with 
constant potential boundary condition to fill the gap between 
the series expansion in t1/2 for small/intermediate time and 
the traveling, time-invariant wave for large time. 

Swartzendruber [this volume] uses the Burgers equation 
to analyze capillary rise. Motivated by the results of Philip 
[1987b] for infiltration, he hoped the solution would cover 
the whole range from small time sorption proportional to 
t 1 / 2 to the large time equilibrium distribution. However the 
approach to the static equilibrium solution is not clear-cut: 
the cumulative water uptake is found to be proportional to 
the natural logarithm of the square root of time and thus in
creases without limit. Further study of this problem for other 
classes of soils seems appropriate. 

Knight [1973] also showed that for gravity free flows and 
a diffusivity of the form D = a\ (0* — 9)~ , where a\ and 
9* are constants, the flow equation can be linearized by the 
so-called Storm transformation. Based on this, Knight and 
Philip [1974] gave solutions for an instantaneous source 
and for redistribution in a finite region. More recently 
this work and work in related fields [Fokas and Yortsos, 
1982; Rosen, 1982; Rogers et al., 1983] became the foun
dation for several studies of the class of versatile nonlin
ear soils defined by Knight's D — a\ (0* — 9)~2 and by 
k = a 2 + a 3 (9* — 9) + a 4 / (9* — 9), where a 2 , a3, and 
ct4 are constants [Broadbridge and White, 1988; White and 
Broadbridge, 1988; see also Sander et al, 1988]. For these 
hydraulic properties the Richards equation can be trans
formed into the Burgers equation by successively applying 

the Kirchhoff transformation and the Storm transformation. 
The Burgers equation can in turn be transformed into the 
linear diffusion equation by applying the Hopf-Cole trans
formation. Broadbridge and White give physical arguments 
to reduce the dependence upon the five parameters a i ? 9*, 
a2, a3, and a 4 to dependence upon the single parameter C 
and some easily determined physical properties. It turns out 

that the parameter C ranges from unity for Green and Ampt 
soils to infinity for so-called Knight soils. 

3.8. Numerical Solutions of Flow Problems 

In the 1950s it was already clear that most flow problems 
in the unsaturated zone require numerical solutions [Klute, 
1952; Philip, 1955a, 1957b]. Yet at the 1966 IASH/AIHS-
UNESCO symposium on "Water in the unsaturated zone", 
Philip made a plea to seek analytical solutions of problems 
less amenable to analysis than the one-dimensional infiltra
tion problem [Philip, 1969a]: 

High-speed computer techniques can, of course, 
be used to secure solutions to these more in
tractable problems. One drawback of computer 
solutions is that, although a large body of nu
merical results may be obtained, it still remains 
for the investigator to organize the results and 
discern a pattern in them. It, therefore, seems at 
least of equal importance to explore such prob
lems, so far as possible, by analytical means. 

These days the interdependence of analytical and numeri
cal techniques often arises when partial and/or approximate 
analytical results require a complementary numerical analy
sis. Examples in this volume are i) numerical Monte Carlo 
simulations complementing the analytical results for wet
ting front evolution in randomly heterogeneous soils by Tar-
takovsky et al. [this volume]; ii) numerical experiments veri
fying theoretical stability bounds for a saline boundary layer 
formed by evaporation induced upward throughflow at a hor
izontal surface by Van Duijn et al. [this volume]; and iii) 
use of the program DYMSYM in the symmetry analysis of 
the two-dimensional solute transport equation with velocity-
dependent dispersion by Broadbridge et al. [this volume]. 

In the detailed review by [Braester et al, 1971] most 
studies concerned one-dimensional flow, including compli
cations arising from hysteresis, ponding and moving water 
tables. Raats [this volume] briefly reviews the development 
of numerical solutions of multi-dimensional problems, start
ing in 1968 with the alternating direction implicit method 
and rapidly advancing in the 1970s with the introduction of 
finite element and control volume methods. These methods, 
and the fast computers that are now available, have made it 
possible to efficiently solve transient flow problems involv
ing complications such as (i) multi-dimensional regions that 
are partly and variably saturated; (ii) spatial variation of soil 
physical properties; (iii) hysteresis of water retention; and 
(iv) uptake by plant roots. The popular HYDRUS-2D soft-
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ware package [Simunek et al, 1996] exemplifies the state of 
the art. Warrick and Or [this volume] use it in an analysis 
of steady infiltration from spheroidal sources. In a review 
of the usefulness of small-scale hydraulic property measure
ments for large scale vadose zone modeling, Hopmans et al. 
[this volume] mention the use of HYDRUS-2D, both in lab
oratory and field studies. 

The numerical methods for solution of the Richards equa
tion now seem to have evolved to a satisfactory state and at
tention of model builders has shifted to post-Richards factors 
such as multi-phase flow [White et al., 1995; Lenhard et al, 
1995], simultaneous transport of water and heat [Pruess], 
1991], flow in structured media involving local non- equilib
rium [Selim and Ma, 1998; Vogel et al, 2000], flow in soils 
subject to swelling and shrinkage [Gamier et al, 1997a], 
and water uptake by plant roots [Feddes and Van Dam, 1999; 
Heinen, 1997; Heinen and de Willigen, 1998], and to link
age with other processes such as solute transport, aeration, 
chemical and biochemical reactions, and activity of plant 
roots. The next section reviews some of the concepts in
volved in the post-Richards factors. 

4. DEVELOPMENTS BEYOND THE CLASSICAL 
RICHARDS EQUATION 

4.1. Multiphase Flow 

Traditionally, multiphase flow has been studied intensely 
in petroleum engineering. Tang and Morrow [this volume] 
present data related to the effect of brine composition upon 
the recovery of crude oil from sandstones containing clay. 
Currently, multiphase models are used often to study the 
flow of liquid contaminants in aquifers and of air injected 
below the groundwater table for remediation purposes, so-
called air-sparging (see e.g., Philip [1998a]). In fact, drawn 
by funding opportunities, recently some mutually beneficial 
cross-fertilization between soil physicists and petroleum en
gineers studying these problems has occurred (see several 
papers in Van Genuchten et al, [1992,1999a]). 

Following Richards' lead, in soil physics the air pressure 
is traditionally assumed to be atmospheric everywhere and at 
any time. Yet, field and laboratory evidence that the gaseous 
phase is not always at atmospheric pressure date at least from 
the 1920s. Within the framework of the continuum theory 
of mixtures it is therefore natural to relax the assumption 
of atmospheric air pressure and derive expressions for the 
fluxes of both the water and the air in an unsaturated soil 
(cf., Raats, [1984a, 1998b]): 

( @wvw \ I kww kaw \ I V p w Twg \ 
QaVa J ~ \ k w a k a a J \ Vpa - 7 a g ) ' 

(4.1) 

In this equation each of the fluxes depends on both pres
sure gradients. Whitaker [1986] derived this equation on 
the basis of volume averaging the force balance equations 
in two fluid phases at the pore scale. In its full general
ity, equation (4.1) has rarely been applied. However, since 
the 1930s related expressions, with the off-diagonal terms 
in the conductivity matrix set equal to zero, have been used 
in petroleum engineering. Naturally, in soil physics a full-
fledged two-phase approach to unsaturated soils has been 
advocated primarily by people influenced by experience 
in petroleum engineering (for reviews see Morel-Seytoux 
[1983]; McWhorter and Marinelli [2000]). Effects arising 
from restricted access of air have often been observed in the 
field and the laboratory. These effects include retarded infil
tration and unstable wetting fronts. Particularly interesting 
effects occur if locally one of the two phases completely fills 
the pores [Philip and van Duijn, 1999]. This was the subject 
of John Philip's last lecture, on June 24, 1999 at the Centre 
for Mathematics and Information Science at Amsterdam. It 
concluded a series of high spirited debates between John and 
his host Hans van Duijn about the boundary condition for 
two-phase flow at the interface between two different soils. 

4.2. Simultaneous Transport of Water and Heat 

Simultaneous flow of water in the liquid phase and diffu
sion of water vapor in the gaseous phase attracted the early 
attention of Philip [1955b, 1957a]. He estimated the com
ponents of the soil water diffusivity function in the liquid 
and vapor phases for isothermal conditions, using soil hy
draulic properties of Moore [1939], which he extrapolated 
to low water contents, and the method of Childs and George 
[1950] to calculate the hydraulic conductivity. The resulting 
total diffusivity shows a minimum in the region of transition 
from predominant movement in the vapor phase to predom
inant movement in the liquid phase. This characteristic fea
ture has since then been verified experimentally for a wide 
variety of soils and other porous media [Jackson, 1964a, b, 
c; Scotter, 1976]. Combining these experiences with those 
of Dan de Vries in heat conduction and gas diffusion, even
tually resulted in their celebrated theory for simultaneous 
transport of heat and moisture (Philip and de Vries [1957]; 
see also Philip [1998c] and references giving there). This 
theory included the role of liquid islands at the pore scale in 
enhancing transport of heat and moisture. Water condenses 
at the upstream side of such islands and evaporates at the 
downstream side. Grant and Bachmann [this volume] crit-
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ically examine the effect of temperature on capillary pres
sure. 

An alternative approach, based on the theoretical frame
work of thermodynamics of irreversible processes, was for
mulated a few years later by Taylor and Cary in the USA 
and by Mikov and Mikhailov in Russia. In the 1970s these 
two theories were reconciled as follows (for details see Raats 
[1975] and references given there, especially the PhD thesis 
by Jury and the papers by Groenevelt and Kay): 

1. Balances of mass for the water in n distinct phases and 
a balance of heat for the medium as a whole are formulated. 

2. Following Philip and de Vries, it is assumed that the 
flux of water in each of the phases is proportional to the gra
dient of the pressure in that phase and that the diffusive com
ponent of the flux of heat is proportional to the gradient of 
the temperature. 

3. Clapeyron equations are used to express the gradient 
of the pressure in any phase in terms of the gradient of the 
pressure in some reference state and at the same temperature. 
The reference state may be the water in one of the phases or 
the water in some measuring device such as a tensiometer or 
a psychrometer. It then turns out that the resulting expres
sions, for the total flux of water and for the diffusive flux 
of heat plus the convective flux of heat associated with the 
conversion from any phase to the reference state, satisfy the 
Onsager reciprocal relations. 

4. A theorem due to Meixner can be used to delineate the 
class of transformed fluxes and forces that preserves these 
relations. Using this theorem, it can be shown in particular 
that if one follows Philip and de Vries and chooses the gradi
ents of water content and temperature as the driving forces, 
the Onsager relations are no longer satisfied. But this is no 
cause for alarm: the expressions for the fluxes, with the gra
dients of water content and temperature as the driving forces 
as formulated by Philip and de Vries, remain valid just the 
same. These expressions merely do not fit in the framework 
of thermodynamics of irreversible processes. 

Using essentially the same approach, Ten Berge and Bolt 
[1988] generalised the theory to include interaction of the 
liquid phase with the surface of the solid phase. To analyze 
temperature gradient induced transport in a lyophilic matrix, 
they considered an idealized capillary model. With a thermal 
gradient along such a capillary, the surface tension governed 
flow is from the warm side to the cool side and the thermo-
osmosis is in the opposite direction. An uptake of heat is 
associated with the desorption of water at the warm side. 
The heat is carried as sensible heat to the cool side, where 
with the adsorption of water is associated a release of heat. 
Ten Berge and Bolt show that, for particular choices of the 

fluxes and driving forces, the Onsager reciprocal relations 
turn out again to be satisfied. 

For further discussion of the alternative mechanistic and 
irreversible thermodynamic theories, interested readers are 
referred to the papers of Jury and Miller [1974], Jury and 
Letey [1979], Milly [1982], and Chu et al [1983]. 

4.3. Flow of Water in Soils Subject to Swelling-Shrinkage 

Volume change associated with water flow characterizes 
very large areas of low lying, often organic rich, soils as 
well as soils with high contents of clay, especially mont-
morillonite clay. In agriculture, these soils are generally 
chemically fertile but physically very difficult to deal with 
because they tend to be sticky when they are wet and very 
hard and strong when they dry. In addition, many low ly
ing soils with high water and organic matter contents close 
to the sea have acid properties that are activated when the 
soil is drained. Understanding of water flow and accom
panying volume change is central to management of these 
soils. Volume change has also been of great historical con
cern to civil engineers and the first coherent approach seems 
to have been that of Terzaghi [1923], who perceived that in 
saturated swelling soils consolidation associated with load
ing could be considered to result from the escape of water. 
Terzaghi then formulated a linear, one-dimensional theory 
of consolidation based on material continuity and Darcy's 
law. There has been a good deal of controversy in engineer
ing literature about what his formulation really entailed. It 
seems that he assumed the deformation to be so small that 
it produced no significant geometrical change of the region 
occupied by the solid phase of the soil and his material coor
dinates then reduced to a coordinate system attached to the 
solid phase but moving rigidly in space (see Raats and Klute 
[1968a]). 

The adaptation of the theory of Richards for rigid soils 
to non-rigid soils was not accomplished till the 1960s and 
early 1970s. It involved almost simultaneous contributions 
from civil engineers (e.g.Gibson et al. [1967]), chemical 
engineers (e.g. Atsumi et al [1973]), and soil scientists 
(for reviews see Philip [1992b, 1995]; Philip and Smiles 
[1982]; Raats [1984a, 1987a, b, 1998b, 2001,2002]; Smiles 
[1986, 2000a]; Smiles [this volume]). This adaptation in
volves the following ideas: 

1. The composition is described in terms of the void ratio 
and the liquid phase ratio. 

2. The solid phase is used as reference continuum: the 
spatial coordinates are transformed to the material coordi
nates of the solid phase. 
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3. Darcy's law is written for the flux of water relative to 
the solid phase, making it independent of the movement of 
the observer. 

4. The dependence of the capillary pressure head, defined 
by (2.3), upon the volumetric water content is generalized 
to a dependence upon the liquid phase ratio and the load, 
leading to a decomposition of the capillary pressure in a ma-
tric component representing the capillary pressure of the un
loaded soil and an overburden component representing the 
effect of the external load. 

Compared with the theory of Richards for rigid soils, the 
additional physical characteristic is the shrinkage curve, i.e., 
the relationship between the void ratio and the liquid ra
tio with the load as a parameter. Generally empirical re
lationships are used to represent the shrinkage characteris
tics of particular soils. Grant et al. [this volume] discuss 
the shrinkage curves in detail, including the application of 
the empirical relationship proposed by Groenevelt and Bolt 
to represent such curves. Interestingly, the energetic dis
cussions surrounding the concept of overburden potential 
around 1970 still reverberate in their paper. Most avail
able experimental data are restricted to the special case of 
zero-load. For shrinkage curves at various loads the paper 
by Talsma [1977] still remains the most important source 
[Grant et al, this volume]. 

For 1-dimensional flows, the volumetric flux of the water 
relative to the solid phase is given by (for a detailed deriva
tion see e.g. Raats [2002]): 

,(._«.,=_.(*_,)= 
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in which h is the pressure head defined by (2.3) and mea
sured by a tensiometer, hu is the unloaded capillary pressure 
head, 7 is the wet specific gravity of the soil, and ( is a 
factor that reflects the way the overburden load is communi
cated to the soil water. The second equality illustrates how 
the pressure head h measured by a tensiometer is related to 
the unloaded capillary pressure head hu and the overburden. 
It also reveals the basic analogy with flow in a non-swelling 
soil. In a saturated soil ( = 1, in a unsaturated swelling soil 
C < 1, and in a non-swelling soil C = 0. Initially, John Philip 
equated C with the slope of the shrinkage curve. Bolt and 
Groenevelt formally corrected that approximation, but their 
amended formulation introduces numerical and experimen
tal problems that have yet to be resolved and, operationally 

the Philip approximation persists. The issue is revisited by 
Grant etal. [this volume]. 

Gravity components of the pressure head are reflected in 
the (1 - C7) term of (4.2), with the second term representing 
the effort required to raise the wet soil in the gravitational 
field. Explicitly, 

< ' - « = ( L - C ^ ) , (4.3) 

where 7^ is the specific gravity of the solid phase, the void 
ratio e is the ratio of the porosity and the volume fraction 
of the solid phase, and the water ratio is the ratio of 
the volume fractions of the aqueous and solid phases. For 
mineral soils, where the solid specific gravity 7 S = 2.6, 
this term reduces the net effect of gravity. So, for a satu
rated potentially acid sulfate soil [White, this volume], where 
0 = 0.8 (e = d = 4) and C = 1, (1 - Cl) = -0 .32 and the 
overburden effect reverses the effect of gravity. When the 
soil is unsaturated with £ = 0.3, and 7 ^ , then (1 — £ 7 ) = 0 . 7 
and the effect of gravity is much reduced compared with a 
non-swelling soil. John Philip [1995] was much taken with 
what he called this "bouleversement" and he explores it in 
detail. Thus in non-rigid soils, infiltration may be analogous 
to capillary rise in rigid soils, and long time, traveling waves 
in non-rigid soils arise when the water moves upward rela
tive to the solid phase. Sedimentation of suspensions is an 
example of the latter. 

The nonlinear, one-dimensional theory has been widely 
applied. The combination of solutions of boundary value 
problems with experiments has been used by Smiles et al. 
for slurries, transferring ideas from soil physics to tech
nological applications (see Smiles et al. [1982]; Philip 
and Smiles [1982]; Smiles [1986, 2000a]; Smiles [this 
volume]). In many cases the flux-concentration method 
of Philip and Knight was used (see Subsection 3.4), using 
analogs of either equations (3.4) or (3.5) as integral con
straints. The resulting data amply validate the approach for 
these materials. Smiles and Harvey [1973] derived an ex
pression for the diffusivity in terms of the sorptivity. Kirby 
and Smiles [1988] used the same method to determine the 
influence of solution salt concentration upon the physical 
properties of bentonite suspensions. They found that both 
the dependencies of the unloaded capillary pressure head 
and the hydraulic conductivity upon the liquid ratio are af
fected by the solution salt concentration, but that the capil
lary pressure/conductivity relationship is not. In a study of 
consolidation of soft sulfidic coastal clay soils, White [this 
volume] shows that the chemical composition has significant 
practical consequences. 



RAATS E T A L . 13 

John Philip made key contributions to flow of water in 
non-rigid soils, mostly in cooperation with David Smiles. 
It is important to note that these developments have been 
almost entirely focussed on one-dimensional flow and ma
terial characteristics are defined per unit area of cross sec
tion of the system. On several occasions John Philip ex
pressed his surprise that experts in mechanics, soil mechan
ics in particular, were paying little attention to unsaturated 
soils Philip [1973,1974a]. In a discussion with him at Ams
terdam on June 24,1999, two days before his fatal accident, 
he strongly expressed his opinion that the area of multidi
mensional, nonlinear problems for soils subject to swelling 
and shrinkage was one of the challenges some of us should 
take up next. Clearly, John still planned to participate in that 
venture. The limited progress with multi-dimensional prob
lems is reviewed briefly below (see Raats [2001, 2002] for 
more details). 

Drying of a non-rigid soil may start as a combination of 
purely one-dimensional flow of the aqueous phase and de
formation of the solid phase. This changes when cracks ap
pear. Most attempts to cope with such systems describe them 
in terms of one-dimensional flow of the aqueous phase and 
transversely isotropic deformation of the solid phase. The 
deformation gradient tensor of the solid phase 
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where X s = (X,,Y,,Zt) are the material coordinates of 
parcels of the solid phase, is then given by: 
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where 

- n = 1 for purely axial deformation; 

- n = 1/2 for balanced axial and lateral deformation; 

- n — 1/3 for isotropic deformation; 

- n = 0 for purely lateral deformation. 

From (4.4) and (4.5) it follows that for transversely isotropic 
deformation: 
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From (4.6) and from Euler's equation for the mass density 
and the definition of the void ratio as the ratio of the porosity 
and the volume fraction of the solid phase, it follows that: 
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Introducing (4.7) in (4.5) gives: 
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The expression (4.8) for the deformation gradient for the 
class of transversely isotropic deformations in terms of the 
mass density was introduced in 1969 in an analysis of ax
ial fluid flow in swelling and shrinking rods (see Raats 
[1969,1984b]). The equivalent expression (4.9) for the de
formation gradient for the class of transversely isotropic de
formations in terms of the void ratio is due to Gamier et 
al [1997a, b]. The rs-factor, introduced by Rijniersce 
[1983,1984] in a study of physical changes in the soils of the 
IJsselmeerpolders following reclamation, is the reciprocal of 
the parameter n introduced above. More recently, this rs = 
n - 1 - f ac to r has been used extensively to characterize the 
kinematics of swelling and shrinkage in clay soils (see e.g. 
Bronswijk [1990]; Bronswijk and Evers-Vermeer [1990]; 
Gamier et al [1997a, b]; Kim et al [1999]). According to 
(4.6), the rs = n'1 -factor relates one-dimensional vertical 
deformation measured by dz j dZs to the three-dimensional 
volume change measured by the Jacobian Js of the deforma
tion gradient tensor, with rs = n~1 = 3 for isotropic shrink
age with cracking and rs = n - 1 = 1 for one-dimensional 
subsidence without cracking. 
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Drainage of mudflats and peatlands generally leads to sub
sidence. If the subsidence is the result of compaction of sed
iments then, for a given drainage system, the situation may 
stabilize eventually. On the other hand, if the subsidence is 
in part the result of decomposition of organic material, then 
the intended land use may lead to successive lowerings of 
the water table, until eventually most organic material has 
disappeared. The material coordinate approach can be ex
tended to such situations, by using either markers or the non-
reactive mineral fraction as the frame of reference [Raats, 
1998a, 2001]. Subsidence resulting from decomposition of 
peat is a major factor in coastal areas in the Netherlands, the 
Fens in England, and the Everglades in the USA. 

4.4. Transport of Solutes in Unsaturated Soils 

Stimulated by the success of using material coordinates of 
the solid phase in dealing with swelling soils, around 1975 
interest arose in using material coordinates of the soil wa
ter as a framework to analyze the transport and reactivity 
of solutes (see Raats [this volume]; Smiles [this volume]). 
John Philip was involved in the earliest studies of hydrody-
namic dispersion in unsaturated soil at the Pye Laboratory. 
These studies showed, theoretically as well as experimen
tally, that during absorption of a water and a non-reactive 
solute the water content and the solute concentration both 
preserve similarity in terms of the Boltzmann variable, i.e., 
distance divided by the square root of time (Smiles et al. 
[1978]; Smiles and Philip [1978]). 

Smiles et al. [1981] showed that, for one-dimensional 
movement of soil water and solute, the solute concentration 
c satisfies a diffusion equation of the form: 

(!),.-(£"£).• <-°> 
where Xw is the material coordinate of the water defined by 
the distribution of the water, 9 is the local water content, and 
D the diffusion/dispersion coefficient of the solute in wa
ter. Convective transport and dispersion during constant rate 
absorption was analyzed in detail by Smiles et al. [1981], 
using the flux-concentration method described in subsection 
3.4 to solve the Richards equation for horizontal flow and 
(4.10) to describe the solute transport. 

Some details of the early history of the use of material co
ordinates of the water to describe transport and dispersion 
of solutes in unsaturated soils are given by Raats [1982a]. 
Equation (4.10) can be generalized to multi-dimensional 
flow and transport, possibly including the influence of ad
sorption and exchange and uptake of water and solute by 
plant roots [Raats, 1987a, b, 2001]. 

The early papers were the basis for an active program on 
solute transport and reactivity at Canberra throughout the 
1980s, first at the Pye Laboratory and later at the CSIRO Di
vision of Soils (for a summary, see e.g. Bond et al. [1990]). 
Recently the approach has been extended by Smiles [2000b, 
this volume] to hydrodynamic dispersion and chemical reac
tion in swelling systems where the solid, the water and the 
solute are all in motion relative to an external observer. 

In addition to the paper by (Smiles, this volume), five more 
papers in this volume deal with some aspects of solute trans
port. White [this volume] and Tang and Morrow [this vol
ume] consider the influence of the chemical composition 
upon the hydraulic properties. Lessoff et al. [this volume] 
analyze solute transport in infiltration-redistribution cycles 
in heterogeneous soils on the basis of three mechanisms: i) 
advection by gravitational flow of water in a Brooks and 
Corey soil, regarding the hydraulic conductivity at satura
tion a random value; ii) linear-equilibrium sorption; and 
iii) linear decay. This paper is part of a vast body of the
ory dealing with flow and transport in heterogeneous soils 
waiting to be applied in the field. Van Duijn et al. [this 
volume] analyze gravitational stability of a saline boundary 
layer formed by evaporation induced by upward flow at the 
horizontal surface of a porous medium. Stability criteria are 
derived, using both the energy method and the method of 
linearized stability. The results are relevant for evaporating 
salt lakes (Wooding et al, 1991%, b). This paper deserves 
attention from soil physicists, since thus far they have rarely 
considered the possibility of soil solution density driven in
stability. Broadbridge et al [this volume] discuss ana
lytical solutions for two-dimensional solute transport with 
velocity-dependent dispersion. Using symmetry analysis, 
they find new solutions for non-radial solute transport on a 
background of radial water flow. This Lie group approach 
is akin to earlier studies for the Richards equation leading to 
solutions for the class of versatile nonlinear soils, including 
the subclass of Knight soils, as discussed in sub-section (3.7) 
(cf., Sposito, 1990). 

4.5. Flow and Transport Processes at Various Scales in 
Space and Time 

We need information about water movement and solute 
transport in soils at the local, field and regional scales. For 
each scale appropriate models are needed, with ample at
tention for the determination of the parameters in the mod
els. Studies of processes at a particular scale should prefer
ably also pay attention to the related processes at adjoin
ing smaller and larger scales. Researchers increasingly try 
to come to terms with the dilemma that processes are un
derstood best at small spatial and short temporal scales and 
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that answers are needed to societal questions at large spa
tial and long temporal scales (see e.g., Hopmans et al. [this 
volume]). However, Philip [1975, 1991b] warned that the 
problems posed may be trans-scientific and he challenged us 
to provide the best possible judgments based on deep un
derstanding at the small scales. It is perhaps not surpris
ing that the contributions to this book, in line with John 
Philip's work, concentrate on the scientifically safe, small 
scales and have, by and large, stayed away from the poten
tially trans-scientific large scales. Following is a brief review 
of progress at the various scales in space and time. 

4.5.1 The local scale The local scale refers to several 
scales: the micro-scale of solid particles and pores, the 
meso-scale of soil structural elements and of individual roots 
and associated volumes of soil, and the macro-scale of the 
soil profile and of individual plants. Uptake of water by 
plant roots is discussed in Section 5 on micrometeorology 
and physical ecology. 

In the older literature, two mechanisms were already in
voked to account for water retention at the pore scale: the 
surface tension at air-water interfaces and the diffuse double 
layer at solid-water interfaces [Bolt and Miller, 1958]. Yet 
it remained difficult to deal in a quantitative fashion with 
soils in which both mechanisms operate side by side, until 
Philip [1977a, b, 1978, 1979] initiated a new approach to 
the interplay of adsorption and capillary condensation. This 
approach has been pursued vigorously in recent years by Or 
et al. (cf., Or and Tuller [1999]; Tuller et al. [1999]; Tuller 
and Or [2000]), yielding not only water retention charac
teristics, but also hydraulic conductivity characteristics in
corporating physico-chemical influences of the solid phase 
upon the water. 

Meso-scale related information is needed whenever repre
sentative elementary volumes at the macro-scale lack inter
nal equilibrium. John Philip made an early, detailed analysis 
of absorption of water in aggregated media [Philip, 1968a, 
c]. For the meso-scale geometries he considered, the charac
teristic times associated with local equilibration turned out to 
be small and he concluded that lack of local equilibrium was 
not a threat to the validity of analyses based on the Richards 
equation. 

Despite this early conclusion, lack of internal equilibrium 
was suggested regularly by laboratory experiments in the 
1960s and early 1970s (see e.g. Smiles et al. [1971]) and 
it received considerable attention in the following decades. 
The current consensus is that layering, aggregates, cracks, 
and channels left behind by penetrating roots and burrowing 
animals often have a large influence on movement of wa
ter and transport of solutes in soils. Many models for flow 
and transport in such soils distinguish a mobile and a stag

nant phase, roughly corresponding to networks of large and 
small pores. Important further ingredients in these models 
are the mechanisms of transport in the mobile phase and the 
nature of the storage capacities of the phases and the asso
ciated exchange between the phases. Such models are of
ten referred to as dual-porosity models. For linear systems 
these models lead to linear partial integro-differential equa
tions [Raats, 1981b; Van Genuchten andDalton, 1986]. For 
slow motion these equations can be converted into partial 
differential equations in which appear derivatives of all or
ders with respect to time. The derivation involves the use 
of Laplace transforms and is similar to a procedure long fa
miliar in visco-elasticity. Commonly used models, involv
ing an equivalent film resistance between the phases, or an 
effective dispersion coefficient, or equilibrium between the 
phases, correspond to successive approximations of these 
partial differential equations. The results can also be cast in 
the form of linear systems dynamics, yielding expressions 
for the transfer functions and the associated moments of the 
residence time distributions. The theory can be worked out 
explicitly for various geometries of the stagnant phase, e.g. 
the slabs considered by Skopp and Warrick [1974]. 

In a wide ranging review paper, Van Genuchten et al. 
[1999b] show that now root water uptake, multicomponent 
transport, and preferential flow can be dealt with. More com
plete overviews of flow and transport in structured soils and 
related image analysis are given in two special issues of the 
journal Geoderma [Van Genuchten et al, 1990; Mermut and 
Norton, 1992] and a recent book [Selim and Ma, 1998]. Un
fortunately, effects arising from genuine lack of local equi
librium are difficult to distinguish from effects arising from 
unstable flows described in the review paper by Parlange et 
al. [this volume]. 

For the micro- and meso-scales nondestructive techniques, 
typically adapted from medical technology, are now used 
to map the pore space and the fluids filling it (see e.g., 
Cislerova [this volume]). There is also an increased interest 
in flow and transport at the pore scale, using network mod
elling and percolation theory. Available funding for such 
studies these days often serves technological interests, such 
as multiphase flow in petroleum and environmental engi
neering, and moisture and heat transfer in building materials. 
With few exceptions, most studies related to agriculture or 
the natural environment take the macroscopic scale as their 
starting point, although often using some guidance from the 
underlying micro- and meso-scales and aiming at extrapola
tion to the field and regional scales. 

4.5.2. The field scale The field-scale is the scale of farm 
management, especially of soil structure, water, nutrients, 
pesticides, and herbicides. There is an inherent potential 
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conflict of interest between the farming community and so
ciety at large. On the one hand, the farmers' first priority 
is to economically optimise the yield and the quality of a 
crop by satisfying the demand of the crop for water, nutri
ents, proper aeration and trafficability conditions, and min
imum interference from plant diseases and weeds. On the 
other hand, with regard to the use of fertilizers and plant 
protection chemicals, society increasingly insists on produc
tion methods that minimize input, and avoid accumulation 
in the soil and emission to groundwater, surface water and 
the atmosphere. With respect to plant nutrients, traditional 
field plot research served the farmers interest simply by re
lating the amount of nutrients supplied at the beginning, and 
perhaps during the growing season, to crop yield and qual
ity, without paying much attention to emissions. But the 
current wider interests are better served by in-depth exper
imental studies of soil structure and of accumulation, up
take, transformation, accumulation, and leaching processes 
in the soil-plant-atmosphere system. Field-scale implemen
tations of local-scale models, such as the two-dimensional 
HYDRUS-2D are the proper basis for the design and inter
pretation of detailed field experiments and for extrapolation 
from the limited number of experiments one can afford to 
carry out. Jarvis [1999] shows that preferential flow models 
also have reached the stage of being applicable for manage
ment purposes. Such models are particularly needed for the 
evaluation of the impact of temporal variations in soil struc
ture by farm management practices and natural processes. 
Field data and models are also becoming key elements in 
site specific farming technology. 

The main bottleneck in field scale studies is determin
ing the parameters in the models. Sometimes systems ap
proaches can be used, directly linking inputs and outputs of 
the system by means of transfer functions. This is gener
ally possible if all transport and reaction processes are lin
ear. Linearization has also been dominant in stochastic ap
proaches to flow in heterogeneous media. Going beyond 
this, recent papers by Severino and Santini [1999] on non-
linearly reactive transport by means of temporal moments 
and by Attinger and Kinzelbach [1999] deriving effective 
transport parameters for non-linear transport in heteroge
neous porous media represent important advances. These 
advances critically depend on the large time structure of so
lutions of nonlinear transport equations worked out by math
ematicians [Dawson et al, 1996; Van Duijn et al, 1997]. 
These advances also illustrate the synergy of mathematical 
and computational efforts. 

4.5.3. The regional scale. The regional scale is the 
scale of greatest interest to policy makers. It is the scale 
at which pollution of ground and surface waters and dam

age to biotopes become most evident. Developing and im
plementing models at the regional scale remains a big chal
lenge. It appears that at the regional scale the concept of 
a single model with effective parameters generally becomes 
untenable and that regional models by necessity are aggre
gates of representative elements (fields). Carrera and Med
ina [1999] give an excellent review of calibration of regional 
groundwater models. They stress the proper selection of pro
cesses consistent with the grid size, the importance of time 
variability, the role of geology in defining spatial variabil
ity, the treatment of areal recharge and river-aquifer interac
tions, and the use and role of concentration and temperature 
data. The overall impression is a severe shortage of suf
ficiently detailed data, resulting in correspondingly severe 
nonuniqueness in calibration exercises. 

5. MICROMETEOROLOGY AND PHYSICAL 
ECOLOGY 

John Philip is best known for his research in soil physics 
and hydrology, but he also made benchmark contributions 
in micrometeorology, in plant water relations, and in physi
cal aspects of ecology. Much of this work originated in the 
semi-arid irrigation area of Deniliquin, where John was lo
cated at the Regional Pastoral Laboratory of the CSIRO Di
vision of Plant Industry in the period 1951-1958, during the 
last three years of this period together with Dan de Vries. 
That association led both independently to explore advection 
[De Vries 1959, Philip 1959], the classic example of which 
is an irrigation area in the middle of a desert, and the way 
in which soil and atmosphere interact to control evaporation 
from soils and wilting in plants. 

John Philip's influence in the physics of the biosphere 
was different in style from that in soil water physics, where 
he contributed aggressively to the science for more than 40 
years. In micrometeorology his role, after some incisive ap
plications of his considerable knowledge of diffusion the
ory, was that of influential critic and patron of studies that 
he perceived to be central to the hydrological cycle. Under 
his aegis systematic measurement of heat and mass trans
fer and theoretical development were enthusiastically sup
ported and he encouraged his people to see beyond what 
he called "flat-earth micrometeorology" with the focus on 
vertical flux-gradient relationships in a homogeneous, semi-
infinite plain. Rather, he encouraged study of the complexi
ties arising from surface heterogeneity that are characteristic 
of practical applications of micrometeorology. As he put it 
in his 1959 paper on local advection, "In this real world, irri
gated fields adjoin deserts, reservoirs are of finite extent, dry 
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lands exist beside seas, and cornfields beside close-grazed 
pasture". 

Environmental physics is a wide field that includes soil 
physics and we do not attempt its survey here. Rather we 
focus on two related areas that John Philip influenced and 
which are the subject of papers here. The first dealt with 
the physical nature of heat and matter transfer in the bio
sphere and lower atmosphere and here he focussed on two-
dimensional transfer associated with advection. The second 
major area of Philip's concern was the soil-plant-atmosphere 
continuum (SPAC) of Gradmann and van den Honert (see 
Kirkham [this volume]), where he saw an energetically uni
fying structure within which, particularly, water transfer 
might be considered. In both areas he made important the
oretical contributions where existing methods of measure
ment prejudiced critical test of theory. 

John Philip's unique contribution to basic micrometeorol
ogy was to derive quasi-analytical solutions of 2-dimensional, 
steady convection-diffusion equations of the form 

dx dz dz' 
(5.1) 

which were believed to describe transfer of heat and matter 
in the air flow above surfaces representing sources and sinks 
for the entity of concern [Philip, 1959]. In this equation, 
x and z are the horizontal and vertical directions, u is the 
mean wind speed, K is the vertical component of the eddy 
diffusivity, and tp is the concentration of the entity, such as 
heat or water vapor, that concerns us; windward diffusion 
is neglected. The form of (5.1) is the same as that of the 
one-dimensional diffusion equation with time replaced by 
the horizontal coordinate x. He sought simultaneous solu
tions for humidity and heat that also satisfied the surface en
ergy balance. As he later [Philip, 1987a] pointed out, the 
use of an eddy diffusivity to represent turbulent transport 
is demonstrably inexact, but he sought justification in its < 
merit of providing a simple analysis of a complicated pro
cess. Novak [this volume] also argues this view. Both Philip 
[1959] and De Vries [1959], who attacked the same prob
lem at the same time, used power law profiles for the verti
cal profiles of u. Only Philip, however, apparently following 
Timofeev [1954], took advantage of a power law for the K 
profile to solve (5.1). His solutions, for the first time, pro
vided concentration fields downwind of a change in surface 
type for radiation, concentration, and flux boundary condi
tions. Companion papers covered direct experimental tests 
of the theory in landmark experiments conducted by col
leagues, downwind of the junction between tarmac and grass 
at Canberra airport (see for example, Rider et al. [1963]). 
Some difficulties in Philip's original analysis were examined 

in later studies, where he showed, for example, that effects 
of surface resistance associated with soils, water bodies and 
leaves could strongly reduce advection close to the leading 
edge, but less so at larger distances downwind. In recent 
years, he also explored development of the boundary layer 
and blending heights for checkerboard patterns, where the 
wind blows across many alternating surfaces with different 
properties [Philip, 1996a, b, 1997a, c]. 

Three related papers in this volume exemplify aspects of 
the scientific issues that remain of concern. Raupach [this 
volume] explores the transfer of finely divided and non-
buoyant solids in a turbulent air flow. The problem is central 
to wind erosion and transport of soil and the approach also 
applies to the movement and fate of spray and other droplets 
in the air. Finnigan [this volume] discusses the effect of to
pography on the wind flow and momentum transfer to the 
terrain and offers an entree to air movement in complex ter
rain. Novak [this volume] follows the Philip reasoning that 
one might use gradient based eddy facilitated diffusion cau
tiously, knowing it to be incorrect, when the scale of tur
bulence approximates that of the diffusive mean flow. The 
approach is justified by its working reasonably well. 

John Philip was also concerned with the effect of the 
structure of plant stands and included interactions between 
canopy geometry and source-sink distributions for heat, wa
ter vapor and CO2 within the canopy [Philip, 1966]. He 
also raised concerns about John Monteith's pragmatic pro
posal that an overall "crop resistance" might deal with these 
complexities. Philip argued that the neglect of canopy geom
etry and the simplification of two-dimensional canopy ex
change processes inherent in Monteith's one-dimensional, 
"big l ea f model were unrealistic and possibly misleading 
and that the zero-plane could not have the physiological sig
nificance claimed for it. Monteith later still maintains \Mon-
teith and Unsworth 1990] that effects of crop resistance can 
be inferred from micrometeorological measurements of the 
heat and water vapor fluxes above the canopy and profiles of 
temperature and humidity extrapolated to a zero-plane en
dowed with the physiological significance of a leaf. The 
model forms a firm foundation for the approach of Green 
et al. [this volume] to water management in olives as well as 
to other horticultural crops. 

As first enunciated, the SPAC concept recognized that wa
ter in the soil, the plant and the atmosphere forms a contin
uum on a thermodynamic basis. Water passes from one do
main to the next along gradients of water potential. To get 
some insight in the acquisition of water from the soil, both 
Philip [1957d] and Gardner [1960] considered uptake of 
water by a plant root with radius ro surrounded by a hollow 
cylinder of soil with radius r\. They assumed the plant roots 
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to be relatively thin and the spatial distribution of the roots to 
be relatively sparse. Then r 0 < < r\, so that the geometrical 
number po — r o / r i —>• 0 and the volume fraction of the soil 
occupied by the roots is negligible. The solution for a line 
sink embedded in a soil of infinite extent is an appropriate 
approximation [Carslaw and Jeager, 1959]: 

oo 

ADt 

where E i ( . . , ) is the exponential integral. For small values 
of r\ j (ADt), and thus for large values of t, this solution can 
be approximated by: 

<«> 
This two-term approximation was used by Gardner [1960] 
to calculate the water depletion pattern around an individual 
root. Earlier Philip [1957d] used this solution to evaluate the 
time dependence of the water content at the soil-root inter
face. Philip was particularly interested in the instant t = t w 

at which the water content 0 = 0o at the soil-root interface 
reaches the value 0Ow at which the plant wilts. From equa
tion (5.3) at that instant: 

* < - f f o . « ^ ( l n ^ - 7 ) . (5.4) 

The overall water balance implies that at time t = t w the 
total volume Xtw taken up is equal to the average depletion 
(Oi — 0W), so that 

tw = (±ZM. ( 5 . 5 ) 

Introducing (5.5) in (5.4) and solving for the average water 
content 0 at wilting gives: 

, . e^r0

2A ,4D(0i-0Ow, 
w = " ~ 4 D ~ 6 X p ( ^ ( ^ 

The older literature of plant physiology and soil science re
garded the water content at which a plant wilted to be a soil 
property, called the wilting point of a soil. Philip [1957d] 
used (5.6) to demonstrate that the average water content at 
wilting does not only depend on the soil properties 0ow and 
D, but also on the geometrical parameters of the plant root 
system, i.e. the radii ro and r\, and the water demand A. He 
concluded that 'uncritical use of the "wilting point" as an 

invariant index of the lower limit of the availability of soil 
moisture to plants can be very misleading'. Despite this pi
oneering study, Philip in later years became rather skeptical 
about models at the scale of individual roots. In fact, when 
he returned to the problem of uptake of water by plants in 
recent years [Philip, 1991a, 1997b], he introduced the root 
extraction rate directly as a sink term in the flow equation, 
recognizing, of course, that it depends on the water status of 
the soil, the characteristics of the soil and the root system, 
and the meteorological conditions. 

Gardner [1960] used the two-term approximation (5.3) 
has a point of departure for a simpler model in which the up
take is treated as a series of steady state flows in cylindrical 
shells of soil surrounding the roots with the soil-root inter
face at the inner edge and the water coming from the outer 
edge. This model has been a benchmark for more compli
cated models involving geometrical complications and up-
scaling (see Raats, 1990a). 

The analysis by Philip and Gardner predicted that water 
was not equally available to plants in the range between field 
capacity and the permanent wilting point. It also anticipated 
that transpiration could be restricted and plants could wilt 
over a wide range of soil moisture contents, depending on 
root density, the soil hydraulic properties and the evapora
tive demand of the atmosphere. Denmead and Shaw [1962] 
verified these predictions. These early studies provided a 
point of departure for many current models of evaporation 
and soil water balance and set the scene for a dynamic ap
proach to plant water relations, which prevailed for many 
years. More recent research indicates that other factors such 
as the rate of CO2 assimilation, atmospheric humidity, soil 
water status and soil strength also influence stomatal closure. 
Uptake of water is complicated by factors such as poor con
tact between roots and soil and influences from solutes (for 
discussion of such aspects see Gardner [1991] and Raats 
[1990a]). Feddes and Van Dam [1999] evaluate in detail the 
influence of soil water and salinity status on water uptake. 
The challenge now is to marry both physical and physiolog
ical influences into a coherent framework of plant water re
lations. At the same time, the paper by Green et al. [this vol
ume] shows how application of the current relatively simple 
concepts, together with careful measurement of plant phys
iological processes, can already be used to better manage 
water in an orange plantation. 

Finally, John Philip offered analyses of processes and 
measurements required by a thoroughgoing theory of heat 
and mass transfer in the biosphere. Examples include his 
treatment of evaporation from bare soil as a constant rate 
phase in which the evaporation rate is that from a saturated 
surface and is determined only by atmospheric conditions, 
and a falling rate phase in which the evaporation rate de-
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pends only on the hydraulic properties of the soil [Philip, 
1957d]. This simple, but elegant, either/or description of the 
evaporation behavior of drying soils allows relatively easy 
parameterization of the time course of soil evaporation from 
field experiments and, as in the case of the SPAC, the sub
sequent development of models of soil evaporation and soil 
water balance. He also developed a theory of heat flux mea
surement needed to close the surface energy balance based 
on eddy correlation measurements of sensible and latent heat 
fluxes. In support of experimental techniques, he analyzed 
the damping of turbulent fluctuations in atmospheric scalar 
concentrations imposed by drawing air through a tube for 
remote measurement [Philip, 1963]. The work illustrates 
his extraordinary ability to perceive the essential physics in 
many measurement problems. His theoretical analysis is ap
plied in modern closed-path gas analyzers for purposes of 
eddy correlation to reconstruct from the measured damped 
concentration fluctuation of CO2 and water vapor the sam
pled turbulent fluctuations [Leuning and King, 1992]. 

6. CHALLENGES FOR ENVIRONMENTAL 
MECHANICS 

John Philip frequently asserted that the point of his sci
ence was its practical application. In general, soil physics is 
a relatively mature discipline that is becoming the basis for 
engineering technology that can be routinely applied across 
a number of fields. Examples are found in areas such as in
tensive horticulture, and the use of land to ameliorate poor 
quality water and to use nutrient rich effluents of urban or 
agricultural origins. In the case of intensive horticulture, 
relatively uniform porous media and an engineered environ
ment permit highly efficient and productive use of scarce re
sources. These developments presuppose that we understand 
the whole-plant physiology in the context of such a managed 
environment. The challenge is attaining a product of desired 
quality by matching the physiological needs of the plant to 
the engineered properties of the environment. For example, 
partial root zone drying, where the root system of grapes is 
divided so that the different halves are alternately stressed 
and irrigated out of phase, is an interesting technique of ir
rigation and water stress manipulation to optimize water use 
and enhance product quality. 

In the natural environment, issues are not so clear and dis
criminating application of existing knowledge is as uncer
tain as is the application of good science to influence land 
managers and people who set public policy. It remains im
portant however to attempt to optimise both biological and 
environmental outcomes. Field measurement is costly but 
important. Models are often pretty persuasive, but it remains 
important that models are systematically tested in the field. 

This challenge to ensure that conventional and well-tried 
science is used to advantage remains restricted by some sig
nificant conceptual, as opposed to implementation, prob
lems. They tend to focus on water, which, increasingly is 
becoming a critically important commodity to be used ad
visedly and carefully. The problems include: 

6.1. Issues of scale and heterogeneity. We still have 
difficulties dealing with the issues of scale and heterogene
ity. They range from problems of preferred pathway flow in 
an otherwise homogeneous or deterministically variable pro
file to problems that limit extension of deterministic models 
derived at the Darcy scale to wider areas of the landscape, 
such as a catchment or a region. Approaches to these prob
lems are explored in recent workshop proceedings edited by 
FeyenandWiyo [1999] and Van Genuchten et al [1999a]. 
An approach based on so-called pedo-transfer functions, that 
purport to relate hydraulic characteristics to soil types, re
mains most promising where geomorphological variation is 
limited. Empirical models may remain the only recourse at 
a regional scale. 

This issue extends to transfer of water and heat in plant 
canopies. It relates to the consequences of the distribution 
and orientation of leaves and assemblages of leaves and to 
the physiological variation across plants and populations of 
plants that effect, for example, stomatal transfer of gases and 
water vapor. Tensions between the empirical usefulness of 
Monteith's extended leaf model as a practical way to deal 
with small-scale heterogeneity within the canopy and the 
uncertain physical and physiological bases remain to be re
solved. This also applies to tensions exemplified by Novak 
[this volume] between a diffusion model based on eddy dif
fusivity, that is demonstrably inexact physically but practi
cally expedient, and more 'correct' but much more compli
cated statistical approaches. 

6.2. Swelling soils. Soils that change volume with wa
ter content also present a significant challenge. They repre
sent some of the most productive lands, with large areas in 
Eastern Europe, North America, India, and Australia. Water 
management lies at the core of their sustainable and produc
tive use but the consequences of volume change including 
cracking present challenges that have yet to be dealt with. 
Philip and Smiles presumed that generally flow in these soils 
is best treated as 1-dimensional vertical. This sensible pre
sumption brings with it problems of 3-dimensional aggre
gate volume change within the profile, the appearance of 
cracks as the profile dries out, and local disequilibrium of 
water content and pressure head within and between aggre
gates. Systematic measurement of water content is a prob
lem, as is the scale at which the key profile properties of wa
ter content and bulk density should be expressed. Practical 
models of flow in these systems have been formulated but 
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basic issues of theory remain to be accepted. In particular, 
the use of mass based coordinates, that ensure that material 
continuity is respected, are rarely used, although the conse
quences in terms of the water balance are significant. There 
is a need for comprehensive field studies of swelling soils. In 
such studies the focus on the overburden and unloaded wa
ter potentials should be reconsidered in favor of Ed Miller's 
suggestion that we focus on things we can measure like 
the manometric pressure [Miller, 1975]. And finally, John 
Philip's challenge that we study multi-dimensional problems 
more fully should be faced up to. 

6.3. Water extraction by plant roots. These problems 
are analogous to those in cracked soils. Plant root systems 
impose meso-scale distributions of water content and pres
sure head, determined by evaporative demand, root distri
bution, and local hydraulic properties. Upscaling from the 
meso-scale to the more practical macro-scale remains diffi
cult. Thus far the consequences of the root distribution seem 
not to offer much better estimates than Wilford Gardner's 
model of 40 years ago. Gardner [1991] is probably correct 

in asserting that further progress requires incorporation of 
the influence of solutes on water uptake. 

6.4. Processes in the rhizosphere. Although this volume 
does not deal with it, the nature and function of the rhizo
sphere seems an area where the laws of transfer at a Darcy 
scale have uncertain application and where the dynamics of 
interacting populations in a managed or natural physical en
vironment are important for land management. The rehabil
itation of denuded sites, such as mined areas, demands the 
re-establishment of an ecosystem rather than the mere appli
cation of seed and fertilizer. 

Much of environmental science touched on in this mono
graph emanated from the application of reductionist scien
tific principles to environmental processes. The origins of 
this work lie early in the last century and developed greatly 
during John Philip's most creative decades from 1955 to 
1985. Integration of these basic notions in well-defined sit
uations has also been successful so that in many areas, en
vironmental science now forms a sound basis for environ
mental engineering. At the same time issues of scale and 
heterogeneity, swelling and shrinkage of soils, and uptake 
of water by plant roots present conceptual problems and re
course to quite basic but well founded theory often offers 
useful if only semi-quantitative guidance as well as test of 
black box models, which may be the only other approach. 
It is therefore important not to forget where we have been 
and the bases of the science. Application is also affected 
by the social prejudice against science [Smiles et al, 2000], 
that Medawar [1985] calls 'postural anti-scientism', which 

interferes with application of important insights, particularly 
in the area of public policy. 
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A Convergence of Paths That Culminated in John Philip's 1995 
Video Recorded History of Hydrology Interview 

Stephen J. Burges 

Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 

INTRODUCTION 

John Philip influenced me in many ways. His influence 
started when I first read some of his work on infiltration 
and later after I read some of his ideas about hydrologic 
science. His greatest impact, however, was made in the mid 
1980s when I had the good fortune to have my first long 
talk with him. I detail here a series of events that led 
ultimately to my interviewing him in July 1995 for the 
American Geophysical Union video recorded History of 
Hydrology series. 

I first became aware of John's work when I was a 
Graduate Student at Stanford University (autumn 1967 to 
summer 1970). I was working with Ray Linsley on stor
age reservoir water supply reliability, but was trying to 
read as much as I could in the field of hydrology and 
water resources. Professor Ven te Chow's annual review 
series "Advances in Hydroscience", published by Aca
demic Press, appeared to me to be an effective way for a 
novice to be introduced to developments in diverse fields 
of research in hydroscience, and John's review paper in 
Advances in Hydroscience [Philip, 1969] was my intro
duction to his scholarship. This excellent paper provided 
me with the background to his justly famous series solu
tion for infiltration rate and cumulative infiltration into 
the soil, which I had only seen previously in summary. I 
am not sure that I appreciated John's commitment to pre
cise scholarship, but that sharpness of scholarship influ
enced how I prepared for our July 1995 interview. I have 
chosen material from Philip (1969) to illustrate his com
mitment to the precise conduct of and reporting of sci
ence. 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM02 

GETTING IT RIGHT 

John used the English language precisely and was an 
absolute stickler for getting things right. On page 275 of 
Philip (1969) he wrote: 

"Philip [33, 84] suggested the two-parameter infiltration 
equations 

i - S t 1 / 2 + At 

v 0 = l / 2 S f 1 / 2 + A (195) 

for use in applied hydrology when t is not too large. 
Clearly the relation 

v 0 = K! (196) also Eq. (109)] 

holds in the limit as t oo. 

It has been suggested recently [19] that this implies 
that A must be K r . However, the coefficients of corre
sponding terms in a series expansion with limited radius 
of convergence and in an asymptotic (large argument) 
expansion of the same function are not necessarily equal. 
We have, in fact, from Eqs. (193) that A = K^/3, 2 K^/3, 
and 0.38 Ki for the linearized model, the delta-function 
model, and for our nonlinear example." 

There are no hints in this paper of John's working en
vironment at the time he developed his solutions to Ri
chards' equation. During his interview with me in July 
1995 he explains why he brought quantitative tools to 
bear on what he considered the dominant problems of hy
drology. He also sought to solve Richards' equation nu
merically, but soon realized the impossibility of that with 
the primitive computers of that era. He was forced to ob
tain analytical solutions. A slight hint for his lifelong in
terest in the vadose zone is given in the opening para
graph [Philip, 1969, p 216]. 

29 
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"A very large fraction of water falling as rain on the 
land surfaces of the earth moves through unsaturated soil 
during the subsequent processes of infiltration, evapora
tion, and the absorption of soil-water by plant roots. Hy-
drologists and their text books and handbooks, have 
tended, nevertheless, to pay relatively little attention to 
the phenomenon of water movement in unsaturated soil. 
Most research on this topic has been done by soil physi
cists, concerned ultimately with agronomic or ecological 
aspects of hydrology; but their colleagues in engineering 
hydrology have exhibited an increasing interest in this 
field in recent years." 

JOHN PHILIP'S LITTLE KNOWN INFLUENCE 
ON HSPF 

There were many reasons for my paying more atten
tion to John's theory of infiltration rather than to that of 
any others working in that field when I was a Graduate 
Student. Norman Crawford and Ray Linsley started to 
work on a new version of the Stanford Watershed Model 
[Crawford and Linsley, 1966] about the time I arrived at 
Stanford in the autumn of 1967. All of us who were 
working with Ray were influenced by what he and Norm 
were doing with the Stanford Model, no matter what we 
were working on ourselves. The model was being rewrit
ten from Burroughs Algol ~ BALGOL - (both the Bur
roughs Corporation and the ALGOL language are long 
since defunct) and with some different algorithms into the 
new IBM supported language, PL1, a language that "was 
destined to be the language of the future". PL1 has disap
peared as well. 

There are two brilliant conceptual representations of 
hydrologic process spatial variation in this "lumped 
model". One of them treats infiltration as a uniform spa
tial probability distribution across the catchment or sub-
catchment that is being modeled. The other treats evapo
ration as a different spatial probability distribution that is 
uncorrelated with infiltration. These two representations 
capture, relatively simply, much of what later model 
builders have attempted to do using far more complicated 
spatial model representations. 

One component of the model required coupling the 
rate of infiltration to the accumulated amount of infiltra
tion. Ray and Norm took a bit of liberty with John's se
ries solution - eq. 195 in [Philip, 1969] - by assuming that 
A was small, yielding iv0 = S or a constant. Ray and 
Norm were well aware that John's solution was for 
ponded infiltration. They used his work largely as an in
dex to infiltration. The model is based on continuous ac
counting of moisture, so this approach provided a means 
for estimating the infiltration rate as a function of current 
conceptual modeled soil water storage. This rate was set 
equal to the basin median infiltration rate, with infiltra
tion rate varying uniformly from zero to a maximum. The 

new form for handling infiltration was first included in 
the "Hydrocomp Simulation Program" (HSP). That pro
gram was later rewritten and coded efficiently in Fortran 
(Fortran is still with us!) and made part of a major soft
ware package, now widely available from the US Envi
ronmental Protection Agency, known as HSPF. Details 
are given in Johanson et al (1984). John's work certainly 
influenced Ray Linsley. Ray Linsley had a profound in
fluence on me. Ray was a brilliant man with many inter
ests. Little did I know how much I would be influenced in 
later years by John Philip. Ray and John are two of few I 
have been privileged to know who were close to being, if 
not, Renaissance men. 

A YOUNG EDITOR MEETS A GIANT 

I first met John in Philadelphia at the reception that 
followed the Honors ceremony at the AGU Spring An
nual Meeting on Tuesday, June 1, 1982. The Honors 
ceremony was held in the Ballroom of the Philadelphia 
Centre Hotel. John was resplendent in a tuxedo and had 
just received the Horton Medal, the highest recognition 
for a hydrologist within AGU. John was the third recipi
ent of the medal and the first of only two from outside 
North America. In his acceptance speech, John reminded 
us of the excellent work published in the early issues of 
the Transactions of AGU and singled out Horton's (1931) 
paper, the first published in the Transactions by the newly 
formed Hydrology Section, for our attention. I chatted 
with him briefly at the reception and he commented that 
he thought that the beverage that he was holding was not 
of the highest class. My sense was that he was a shy man 
who was not overly comfortable in such social settings. I 
was at the time serving my second year as editor (for 
physical sciences) of WRR. Soon after our meeting I re
ceived the first of what became a steady stream of his pa
pers. We corresponded frequently about his papers and it 
appears that John was comfortable with the way the WRR 
community handled them. 

In December 1983, at the end of my third year as edi
tor of WRR, I consulted a group of senior colleagues 
about a special issue of WRR. My objective was to pro
vide an opportunity for some of the leaders of the profes
sion to write about directions of our science and practice. 
It was with considerable trepidation that I sent out invita
tion letters early in July 1984. The response was more 
than heartening. Almost all agreed to participate, but all 
wanted some time to think about what subject matter they 
would cover. The scope of what we attempted is given in 
the introduction to the August 1986 supplemental issue of 
WRR (Burges, 1986). I had invited John to participate, 
hoping that he would be comfortable writing a deeply 
thoughtful paper along similar lines to his paper in the 
1975 book "Prediction in Catchment Hydrology", edited 
by Tom Chapman and Frank Dunin [Philip, 1975]. He 
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pondered my request for a long time, but had to decline. 
He did not feel he had something fresh to contribute. My 
failure to recruit him for that issue was a major loss. 

VISITS TO SEATTLE 

John wrote me on April 4, 1985 and arranged to call 
in to visit me at the University of Washington. He in
sisted on "singing for his supper" - translation: he 
wished to present a seminar or two and talk with col
leagues while he was here in Seattle. John arrived on June 
15 and gave a seminar on June 17 titled "The quasilinear 
analysis of soil-water movement; basic theory and appli
cation". This was the first of a series of visits on an ap
proximately two-year schedule. John and I worked in 
completely different areas, but had many long and, for me 
at least, enormously beneficial discussions about the 
whole gamut of hydrologic science and science and engi
neering in general as well as the humanities. My wife, 
Sylvia, and I looked forward to our dinner time chats with 
him at our home. We covered a large range of subject 
matter with him and the evenings always ended too soon. 
We were fortunate that his wife, Frances (Fay to all who 
know her), could accompany him on his visit in Septem
ber 1989. During this visit John presented a seminar 
"Pollution plumes from hydrocarbon leaks beneath the 
water table". He also explored informally with our group 
some of his ideas that ultimately were incorporated into a 
UNESCO/IAHS committee report on education in hy
drology [Nash et al, 1990]. 

John presented seminars each time he visited. Three 
that were particularly notable reflect his wide interests. 
He presented what he referred to as a travelogue on No
vember 20, 1992. This was his "Desperately seeking 
Darcy in Dijon", Philip (1995). He absolutely captivated 
the audience with this presentation and reminded us that 
"fame is fleeting". John finished with: 

"Let me conclude with this sad reflection: 134 years 
after the whole town of Dijon mourned the death of 
Darcy, nobody in Dijon knows who he was, and nobody 
cares. So much for the 'imperishable right to the remem
brance of his native town' that the Municipal Council be
lieved was his due." 

John presented his work on "blending heights" 
[Philip, 1996a, b] on October 4 1996. This was timely 
because several of our doctoral student colleagues were 
in the early stages of planning major field measurement 
programs. John was particularly impressed with our 
younger colleagues on that occasion. He came back from 
a chat with three of them and announced quite cheerfully 
that they had "healthy scepticism". That, indeed was 
praise, and he was genuinely delighted to have spent time 
with them. John's last visit was in 1998. On July 10 he 

presented his 1997 "Priestley Lecture", reproduced in this 
volume. It was in this lecture that most of us had a chance 
to track the many facets of his work. It is as close as we 
will get to a written personal summary of how he saw his 
work. 

SCIENCE AND TRANS-SCIENCE 

John's 1975 paper "Some remarks on science and 
catchment prediction" introduced me to Alvin Wein
berg's concept of trans-science, "questions which can be 
asked of science and yet cannot be answered by science". 
I had read some of Weinberg's work previously, but that 
was largely in the context of the prospects for a nuclear 
energy based world economy. John challenged us in his 
paper to think about how could we prepare rigorous tests 
of hydrologic conceptualizations. John's final paragraph 
provided much food for though and influenced the 
thinking that led me to propose a scheme for testing hy
drologic models [Burges, 1985]. The ideas that I first 
outlined in 1984 [Burges, 1985] were developed by my 
doctoral colleague, Thian Yew Gan and our findings were 
published by Gan and Burges, (1990a, b). I presented 
some early thoughts on the planned work at a seminar at 
the Pye Laboratory, CSIRO, Canberra, in May 1986. 
John presided over the seminar and was a most gracious 
host. I think he was genuinely pleased to know that we 
were attempting less than ideal, but rigorous tests for 
models. I repeat here the final paragraph from Philip 
(1975): 

"All this may seem pessimistic, defeatist even. What, 
you may ask, is the point of scientific hydrology if the 
problems it seeks to solve are ultimately trans-scientific? 
In my opinion, the answer is that it remains our obligation 
to ensure that our methods are as scientific and objective 
as possible. Let us at least work towards a situation where 
the trans-scientific judgements which practical hydrolo-
gists are forced to make are informed and sustained by a 
truly scientific hydrology: a sceptical science with a co
herent intellectual content firmly based on the real phe
nomena. Finally, let me repeat the text of my sermon, 
'The most science can do is to inject some intellectual 
discipline into the republic of trans-science.'" 

The last sentence is "vintage John Philip." 

1995 AGU HISTORY OF HYDROLOGY INTERVIEW 

I was president of the Hydrology Section of AGU 
between July 1994 and June 1996 and I worked closely 
with David Dawdy, chairman of or committee on the 
"History of Hydrology", to make video taped interviews 
with the senior leaders of our field. We made our first 
major effort in 1995. David and Marshall Moss (a former 
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Figure 1. A Proposed Section of Hydrology. Exact From Report to CSIRO Executive, 1953 
(Figure 2 from "Physics, Mathematics and the Environment: the 1997 Priestley Lecture," by J. R. 
Philip). 

hydrology section president and then generalsecretary of 
AGU) recommended that we should invite John to par
ticipate. Marshall approached him and asked him to indi
cate with whom he would prefer to do the interview. John 
called me late one evening at home and mentioned that 
Marshall had approached him. He asked me to be the in
terviewer. There was only one answer I could give him. 
We planned to conduct the interview at the University of 
Colorado at Boulder where we would all be assembling in 
early July 1995 for the XXI Assembly of the International 
Union of Geodesy and Geophysics. What most concerned 
me when I was preparing for the interview was how I 
could capture something of the breadth and depth of in
terests of this remarkable man. I had seen first hand the 
architectural success of the Pye laboratory and his home, 
knew of his deep interest in art and architecture, and had 
read some of his poetry. We have included a CD version 
of the interview [Surges, 1995] with this publication be
cause in it we learn much about the time and place of his 
work. This interview sheds light on aspects of his work 
that his immediate colleagues, John Knight, Ian White, 
and David Smiles, did not know until they viewed it in 
June 2000. 

During the interview, John comments on his early 
schooling and the influence of an exceptional mathemat

ics teacher at Scotch College. John completed high school 
at age thirteen, but had to wait until age sixteen before he 
could enter university. He spent the intervening years in 
detailed additional studies at Scotch, the best private 
school in Victoria at the time. 

John developed a passion for research during a one-
year appointment as a research assistant at the CSIR Irri
gation research Station, Griffith starting in February 
1947. He rejoined the then renamed CSIRO Division of 
Plant Industry at Deniliquin, New South Wales in 1951. It 
was at Deniliquin that he taught himself the needed 
physics and mathematics to tackle his famous solution to 
Richards' equation for infiltration. John mentions that it 
was a publication by Richards and Wadleigh (1952) that 
gave him a basis for his vision for how hydrologic re
search ought to be done. Richards and Wadleigh were 
working at the USDA Salinity Laboratory at Riverside, 
California at the time. (I had not read the particular work 
until December 2000. It is an extraordinarily thoughtful 
book chapter and I regret that I had not read it decades 
ago). I did not know how extensive was John's vision and 
plan until I received a copy of John's 1997 Priestley 
Lecture, presented at CSIRO. Figure 1, which is Figure 2 
from his lecture, is provided here because it details his 
1953 vision for a CSIRO "Section of Hydrology". This 
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figure helps explain John's approach to his science and 
his acute awareness of how that science should be di
rected to the needs of society. 

John comments on the influence of colleagues from 
his days at Deniliquin on his work and how they shaped 
some of his activities for decades into the future. Few, if 
any, could match his grasp of the interdisciplinary nature 
and needs of hydrologic research. Towards the latter part 
of the interview, John comments on serendipity in science 
and the multiple benefits of analogies. His work on the 
"scattering analog" drew heavily on the extensive body of 
work that had been developed for magneto-
hydrodynamics. Some would view this serendipitous oc
casion as the result of a chance encounter. It was, how
ever, John's trained mind that recognized opportunity. 
There is considerable food for thought for all in this in
terview. 

SUMMARY OBSERVATIONS 

John Philip was exceptional in many ways. He cared 
deeply about science and the nurturing of young scien
tists. He wrote about scientific needs and challenges at 
various times during his career. His paper "Future Prob
lems of Soil Water Research" [Philip, 1972] remains 
fresh and relevant today. On one of his visits to Seattle, I 
asked if he had considered writing a book that would 
cover his range of scientific interests. He replied that he 
did not anticipate writing a book but had attempted over 
the years to write appropriate summary and review papers 
to achieve comparable ends. Philip (1969) definitely met 
the bill. His short 1988 paper "Infiltration of Water into 
Soil" is on the recommended reading list for my Graduate 
Student colleagues as is Philip (1975). John had a deep 
interest in the history of science. His paper "Fifty Years 
of Progress in Soil Physics" [Philip, 1974] demonstrates 
skill at placing work into historical context and assessing 
contributions to and impediments to progress. His "Des
perately Seeking Darcy in Dijon" tells us much about 
John as well as Darcy's "fleeting fame". The research 
community can learn much from his published work, 
particularly the gems that record parts of his vision and 
scientific philosophy. His work is replete with rich in
sights that are often only gleaned after multiple readings. 
(His complete bibliography is included in the enclosed 
CD). We learn much more about this polymath from the 
enclosed 1995 interview. 
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Simplification Plus Rigorous Analysis: The Modus Operandi of John Philip 

James C. I. Dooge 

Centre for Water Resources Research, University College Dublin 

The legacy of John Philip to scientific research consists of (a) a large volume of 
research output in relation to the soil-plant-atmosphere continuum, (b) a wide 
impact on subsequent research in a number of areas in environmental physics, and 
(c) the example of a consistent application of a reliable research strategy. This 
research strategy is identified and outlined in relation to the various problems which 
he tackled. It consisted essentially of a three stage process: (1) careful formulation 
of the appropriate physical equations and their possible simplifications, (2) rigorous 
analysis of these simplified equations and (3) thorough review of the analysis. In 
order to exemplify it in more detail, his application of this research strategy to the 
problem of infiltration is presented in more detail. This more detailed description 
includes both the solutions for the initial simplified cases and an outline of the 
gradual extension of these solutions to more complex cases. 

1. INTRODUCTION 

The legacy of John Philip to environmental physics and 
to the natural sciences generally is characterized by three 
particular features. First, one notices the volume of pub
lished work which is available to us in the text and publica
tion list in Smiles(2001) which lists 307 papers of high 
quality in a wide variety of journals. Secondly, there is the 
huge impact of many of these publications on developments 
in the study of diverse water-related problems in environ
mental physics. Thirdly, there is his remarkable consistency 
and success in following a single research strategy based 
on: (a) a physically sound formulation of the problem of 
interest, (b) an intuitive simplification of this complex 
problem, and (c) the rigorous analysis of the resulting sim
plified equations. The third component of this legacy is the 
main concern of the following contribution which deals 
both with his general research strategy and its application to 
the process of infiltration. 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
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In order to concentrate on the approaches, concepts and 
techniques, rather than on the resulting formulae, an attempt 
is made to avoid the use of formulae. For most of those al
ready acquainted with the work of John Philip, this should 
create no real difficulty. Any reader who does find some 
difficulty in this treatment is advised to refer to the fuller 
treatment in John's review chapter in the 1969 volume of 
Advances in Hydroscience (Philip 1969e) or to his last re
view paper on infiltration published as a contribution to the 
Encyclopaedia of Hydrology and Water Resources (Philip 
1998a). Equally the number of references cited has been 
curtailed so as not to obscure the account of John Philip's 
research strategy. 

2. THE TRIPLE LEGACY OF JOHN PHILIP 

2.1. The Scope of his Research 

The scope of the research work of John Philip is not 
merely a matter of his large volume of output in the field of 
soil physics and allied topics. It is also characterized by a 
broad field of interest in environmental physics generally 
which is evident from his earliest works and throughout his 
career. As early as 1957 he was emphasizing separately to 
both irrigation engineers and to plant experts the importance 
of considering water in relation to the whole soil-plant-
atmosphere continuum. In an invited contribution to the 
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Annals of Plant Physiology he stressed (Philip 1966, page 
246): 

"Because water is generally free to move across the 
plant-soil, soil-atmosphere and plant-atmosphere inter
faces, it is necessary and desirable to view the water 
transfer systems in the three domains of soil, plant and 
atmosphere as a whole ". 

He addressed the same message in greater detail to hydrolo-
gists three years later in a contribution wholly devoted to 
this broad continuum concept (Philip 1969d). 

His interest in the atmospheric part of the continuum 
also began early and continued throughout his career. A pa
per on local advection published in 1959 broke new ground 
in providing a quasi-analytical solution of the two dimen
sional equation for atmospheric diffusion. In this area also, 
he continued to develop his theories incorporating the effect 
of surface resistance and later on introduced the concept of 
blending heights in an important series of three papers in the 
Journal of Boundary Layer Meteorology. 

2.2. The Impact of his Research 

There is little need to emphasize to readers of this 
monograph the immense impact of the work of John Philip 
in the field of environmental physics. However, it is inter
esting to note in passing that a search under the citation in
dex for the period 1974 to 2000 reveals a total of over five 
thousand citations including twelve publications each with 
over a hundred citations. The three highest figures were 237 
citations for the first paper of the ground-breaking series of 
seven papers in 1957 on "The infiltration equation and its 
solution" (Philip 1957b), 301 citations for the fourth paper 
in the same series on "Sorptivity and algebraic infiltration 
equations" (Philip 1957d), and 594 citations for the com
prehensive article on the Theory of Infiltration published in 
the 1969 volume of Advances in Hydroscience (Philip 
1969e). 

John's legacy of revolutionizing the approach to a num
ber of problems in soil physics was widely appreciated 
throughout his career. The importance of his related insights 
into key problems in the remaining parts of the soil-plant-
atmosphere continuum have recently been acknowledged 
after some decades of relative neglect. 

The third part of his legacy in the form of his research 
strategy has received much less attention and consequently 
has had less influence. His manner of reaching his important 
results, as well as the results themselves can, provide a vital 
input into the continuing endeavour of research in environ
mental physics. 

2.3. His Approach to Research 

Attention is concentrated in this contribution on the ap
proach of John Philip to a number of research problems in 

environmental physics. It is based on the careful reading of 
a large number of his published papers. When reading pa
pers in the field of mathematical physics, we tend to con
centrate on the succession of equations rather than on the 
explanatory prose that links them. Concentration on the 
equations in this way enables us to connect with our exist
ing knowledge and to evaluate the advance that has been 
made in this particular publication. If we want to follow the 
thought processes of an author, as is the case here, it is nec
essary to concentrate on the textual material in which these 
thought processes are revealed. Accordingly, in what fol
lows the use of equations will be avoided in order to con
centrate on the research strategies, and the concepts and as
sumptions that lie behind them. As indicated by the title of 
this contribution, the key features of his strategy were sim
plification followed by rigorous analysis. 

3. THE STRATEGY OF SIMPLIFICATION 

3.1. The Simplification Tradition 

The search for progress by initial simplification, fol
lowed by subsequent study of the solution obtained for this 
simplified case as a preliminary to extending it to more re
alistic cases, has an honoured place in the history of human 
thought and of scientific research. Though used before his 
time in philosophical writings, the principle of parsimony 
was first used systematically in the writings of William of 
Ockham (1285-1349). Typical of his statements was: 

"Pluralitas non estponenda sine necessita" 

which may be translated as "plurality should not be as
sumed without necessity". John Philip followed this princi
ple in his work and would have sympathized with the mod
ern paraphrase which applies this principle to hydrologic 
modeling by saying that the number of parameters requiring 
calibration should not be increased beyond what is abso
lutely necessary for the problem in hand. 

In mathematics, this approach has been well described 
by George Polya both in his eminently readable work enti
tled "How to solve it" (Polya 1945) which is a perennial 
best seller and in his more formal work on "Mathematics 
and Plausible Reasoning" (Polya 1954). In the former he 
writes: 

"If you cannot solve the proposed problem do not let 
that failure afflict you too much but try to find consola
tion with some easier success, try to solve first some re
lated problem; then you may find courage to attack your 
original problem again." 

In geophysics, Joseph Pedlosky (1987) has characterized 
this approach as follows: 

"One of the key features of geophysical fluid dynamics is 
the need to combine approximate forms of the basic 
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fluid-dynamical equations of motion with careful and 
precise analysis. The approximations are required to 
make any progress possible, while precision is de
manded to make the progress meaningful " 

This, in the opinion of the present writer, is a succinct de
scription of the modus operandi of John Philip. 

There are many types of simplification from which to 
choose. The most common approaches are: (a) to simplify 
the equation itself by concentrating on the most significant 
physical forces involved; (b) to simplify the solution space 
by reducing the number of independent variables; (c) to re
duce the state space by reducing the number of dependent 
variables; and (d) to simplify the characterization of the 
physical parameters involved in the problem. All of these 
and others were used by John Philip. The process of simpli
fication is far from trivial. Physical knowledge is necessary 
to formulate the complex problem adequately and physical 
intuition is equally necessary in order to choose the most 
appropriate type of simplification. 

3.2. John Philip's use of Simplification 

A reading of John's papers throughout his career reveals 
a constant adherence to the strategy of simplification as a 
starting point for deeper analysis. This attitude is clear in all 
of his landmark papers. It is interesting that in his later pa
pers he does not omit the preliminary steps of simplification 
in his exposition. Even when reviewing the development of 
the more advanced forms of his analysis, he repeats the 
simplified problem and its solution as the original starting 
point which leads to the subsequent development being de
scribed in more detail. 

In his first paper on the topic of infiltration (Philip 1954, 
pi56) , he wrote: 

"It is emphasized that the analysis developed here is for 
a homogeneous soil of stable structure. This simple case 
must, of course, be studied before progress is likely on 
those of greater complexity. " 

This approach to the infiltration problem and its solution is 
used later in this presentation as an illustration of his re
search strategy. 

Twelve years later in his review paper to the Annals of 
Plant Physiology in 1966, John Philip tackles problems of 
plant physiology in the same fashion by first presenting the 
problem in the daunting complexity of its physical formula
tion and then seeking its simplification as a way forward. In 
that paper he says (Philip 1966, page 253): 

"After presenting this alarmingly complicated formalism 
and going on to point out some of it limitations, I am un
der some obligation to examine the possibility of simpli
fying our model of soil-plant- atmosphere continuum to 
the point where it might be tractable. " 

This strategy is also employed in his comprehensive treat
ment of the theory of infiltration in (Philip 1969e, page 
230), where he writes in relation to the absorption equation 
in which gravity is neglected: 

"This then is the equation describing absorption, i.e. in
filtration into horizontal systems, or into fine textured 
soils in which the influence of the moisture gradients is 
much more important than that of gravity. As we shall 
see, absorption solutions have the additional theoretical 
importance they yield the limiting small-time behaviour 
of transient infiltration processes even when gravity 
cannot be neglected, and so provide a basic point of de
parture for the solution of the (more complicated) infil
tration equations." 

The extension of the basic solutions to more complex prob
lems in infiltration is also the subject of a later section of 
this contribution. 

John Philip was prepared to use numerical methods to 
derive solutions based on soil moisture characteristics from 
the real world of field measurements, but was keenly aware 
of their dangers. He criticized the approach based on the use 
of parameter fitting to complicated models based on an in
adequate physical foundation. John was also aware of the 
dangers of over-reliance on analysis. He states this explic
itly in one of his papers which explores the relationship 
between science, transcience and society (Philip 1991, page 
93): 

"On the other hand, preoccupation with soluble prob
lems must not become an excuse for timidity on the part 
of scientists." 

In his own work he always followed up the solution of the 
simplified problem by a broader attack on the original com
plex problem based on the physical insight gained by that 
preliminary solution. In his last review paper on the topic of 
infiltration he is explicit along the same lines (Philip 1998a, 
page 419): 

"The foregoing is the simplest transient solution of the 
unsaturated flow equation. As we shall see it plays a 
central role in the study of more difficult problems in
volving the effect of gravity and/or geometrical consid
erations. " 

However, he was also a great exemplar of the use of rigor
ous analysis of these simplified equations which is equally 
important. 

3.3. Rigorous Analysis and Review 

It is significant that the title of one of his early papers 
(Philip 1957e) is "The role of mathematics in soil physics". 
The opening sentences of the summary of that paper are 
well exemplified by his work throughout his career: 
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"Mathematics performs a dual role of language and 
logic, and in a concentrated form which makes possible 
manipulations which would be otherwise unmanageable. 
Mathematical operations can be applied to the phe
nomenon of the real world only by means of the process 
of abstraction. This involves conserving in the problem 
only those factors with appropriate entities which have a 
bearing on the answer we seek, and then identifying 
these factors with appropriate entities which are amena
ble to mathematical treatment. Obviously, successful use 
of mathematics in science requires insight into the phe
nomena as well as mathematical competence. " 

His own use of mathematics was exemplary. John Philip 
also adopted the second half of the precept quoted above 
from Pedlosky to the effect that for meaningful progress the 
analysis of the simplified equations must be rigorous. Thus 
in his comprehensive treatment of the theory of infiltration, 
having simplified from the total potential to the capillary 
potential, he stresses (Philip 1969e, pp 223-224), both (a) 
the need to proceed to the form of the equation which al
lows for gravity potential as well as capillary potential in 
the terms of the basic dynamic equation and (b) the need to 
allow for the inherent non-linearity of the soil-moisture 
characteristics typical of real soils. In that paper, there fol
lows a section of six pages on the question of "limits to ap
plicability of approach" (Philip 1969e, pages 224-229). It is 
abundantly clear that John used simplification of the basic 
equation not as a device to avoid difficult problems but 
rather as an efficient first step towards their eventual solu
tion. 

At the end of his career he shows the same concern with 
these problems of the successive relaxation of simplifying 
constraints. In the Encyclopaedia of Hydrology and Water 
Resources, his articles on "Infiltration" (Philip 1998a), and 
on "Water movement in unsaturated soils" (Philip 1998b), 
devote what many would consider a disproportionate 
amount of space to the complications of physical behaviour 
not allowed for even in the extended analysis. 

4. THE SIMPLIFIED INFILTRATION PROBLEM 

4.1. The Position Before 1955 

In order to appreciate the revolution in thinking on the 
infiltration problem brought about by the work of John 
Philip in the 1950s, it is important to reflect for a moment 
on the restricted body of knowledge readily available to hy-
drologists and engineers prior to 1950. This is best done by 
consulting such standard works as the Hydrology Handbook 
of the American Society of Civil Engineers (ASCE 1949) or 
the comprehensive pioneer text on Applied Hydrology by 
Linsley, Kohler and Paulhus (1949). 

John's early papers in 1954 and 1955 reflect two impor
tant additions to that background in the form of (a) the two 

papers by Klute (1952a, 1952b) on the application of the 
non-linear diffusion equation to the problem of ponded in
filtration under capillary action alone and (b) the substantial 
review of "Soil physical conditions and plant growth" by 
Richards and Wadleigh (1952). Klute had arrived at the so
lution whereby the depth of penetration for any particular 
moisture content varied with the moisture content but was 
always proportional to the square root of the elapsed time. 

In regard to the latter review by Richards and Wadleigh, 
John Philip twenty years later wrote (Philip 1972: p 295): 

"The 1952 paper by Richards and Wadleigh came as a 
breath of fresh air. It was a definitive review of the rela
tions between soil water and plant growth. But it was no 
routine review. The authors brought to the task their 
personal insights in soil physics and plant physiology, 
and they creatively explored and explained the interac
tions between the two." 

He went on to comment how timely this encounter was for 
his own development: 

"I was, at that time, struggling to find my way in this 
field and the Richards and Wadleigh article became my 
Bible and my bedtime reading. The directions of most re
search on the soil-plant-atmosphere continuum over the 
next twenty years lie implicit in 'Soil water and plant 
growth'." 

A sabbatical with E. C. Childs at Cambridge in 1954 
brought John Philip into still closer contact with the whole 
tradition of soil physics. The progress made in soil physics 
up to that time has been well reviewed by Gardner (1986). 

By 1955, John Philip had the mastery of mathematical 
techniques and the physical insights which enabled him to 
formulate the basic infiltration problem in a satisfactory 
physical form and to control the simplification of the equa
tion. This led rapidly to the derivation of his classical series 
solution for one-dimensional infiltration under ponding 
conditions as proposed in 1957 (Philip 1957b), which was 
refined and extended in his later expositions (Philip 1969e; 
Philip 1998a). In these and other papers, John at all times 
acknowledged the contribution of the early pioneers in the 
analytical formulation of flow in porous media. The intro
ductory section of his papers were models of how to com
bine a literature review, an acknowledgement of key contri
butions in the past, and an appropriate context for the work 
being described in the current paper. 

4.2. Simplifying the Infiltration Problem 

The first step in the physical formulation of the problem 
was the use of Darcy's Law promulgated in 1856 for satu
rated flow, assumed as applicable to unsaturated flow by 
Richards in 1931, and subsequently confirmed experimen-



DOOGE 39 

tally for such flows by Childs and Collis-George in 1950. 
The first two steps in the simplification by John Philip of 
Richard's equation were (a) reducing the original general 4-
dimensional solution space to the 2-dimensional solution 
space representing unsteady vertical flow in a soil column; 
and (b) restricting the total potential to the two elements of 
capillary potential and gravity potential. These two restric
tions reduce the general Richard's equation to 

which gives the shape of the infiltrating moisture profile at 
any elapsed time in terms of the coefficient (|)i(6) which is 
the solution of that ordinary differential equation. Integra
tion of equation (5b) over the range from the initial moisture 
content to the surface moisture content gives the excess of 
the cumulative surface infiltration over the bottom drainage 
at any given time t so that the cumulative infiltration can be 
written as: 

d0_ 
dt 

d (' 
dz dz 

dK 
dz 0 ) 

where t is the elapsed time and z the depth below the sur
face, 6(z,t) is the moisture content, (0) is the moisture 
potential and K(0) is the unsaturated conductivity. If hys
teresis is neglected, the 2-dimensional state space (0, *F) can 
be reduced to a 1-dimensional solution space in terms of 
either moisture content (0) or moisture potential *F by 
means of the concept of moisture diffusivity (Buckingham 
1907, Childs 1936, Childs and Collis-George 1950, Philip 
1955) which is defined by 

F(t) = S. t / 2 + K 0.t (6) 

where the coefficient S is known as the sorptivity and K 0 is 
the conductivity at the initial constant moisture content. 

4.3. General Asymptotic Solutions 

The next step taken by John Philip led to a remarkable 
breakthrough. Taking the solution of the simplified equa
tion, which treated gravity as negligible compared with 
capillarity, he solved for the perturbation from this result 
when the full form of equation (3) allowing for gravity is 
used. Applying a Boltzmann-like transformation 

D = K 
d*¥ 
~d6 

(2) 

In the former case equation (1) reduces to 

d0_ 
dt 

d ( Dd0) dKd6 
dz V dz d6 dz 

(3) 

which is the basic equation for vertical infiltration into a 
stable homogeneous soil in the absence of hysteresis. 

The next step in the simplification procedure was to ne
glect the second term on the right hand side due to gravity 
and draw on existing solutions from other fields in physics 
of the resulting equation of non-linear diffusion. The use of 
the Boltzmann similarity transformation 

= zt - 0.5 (4) 

then reduces the latter partial differential to an ordinary dif
ferential equation in the single variable (|)i(0). For the case 
of infiltration into a semi-infinite column at constant initial 
moisture content, the boundary conditions are compatible 
with such a transformation and the solution of the trans
formed equation takes the form 

f (0)=z(0,t) XA 

or z(0,t) =fa(Q) XA 

(5a) 

(5b) 

* 2 = z.f] (7) 

to this perturbation, and again solving the resulting ordinary 
differential equation numerically, a first order correction is 
obtained. The procedure is then repeated by substituting the 
resulting two term solution in equation (3) to obtain a sec
ond order perturbation. This process is repeated thus ob
taining a solution for the depth of penetration z in terms of a 
power series in tA whose coefficients are function only of 0 
(Philip 1957b, p 351): 

z(0, t) = S.t1/2 + a (0).t + b (0).t 3 / 2 + (8) 

By applying the basic continuity equation to the soil profile, 
the cumulative inflow at the upper surface F(t) can be 
equated to the outflow at the bottom of the semi-infinite soil 
column (K 0.t) and the increase in the volume of the soil 
moisture in the column which can be obtained by integrat
ing each term in equation (8) from the initial moisture con
tent (0O) to the surface moisture content (0j). This results in 
the expression: 

F(t) = S.t'/2 + (A +K 0 ) . t + B.t 3 / 2 + C.t2 +. (9) 

where A, B, C etc. are the result of such integration from 0 O 

to 0! of a(0), b(0), c(0)etc. respectively. 
The basic series solution of equation (9) for the infiltra

tion problem allowing for both capillarity and gravity can 
be solved numerically for any set of empirical data de
scribing the variation of the diffusivity D and unsaturated 
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conductivity K as functions of the moisture content 9. 
Variations in these soil moisture characteristics will inevita
bly produce differences in the shape and movement of the 
soil moisture profile and in the resulting values for cumula
tive infiltration F(t) and the corresponding rate of infiltra
tion f(t). 

Checking on the convergence properties of the series 
represented by equation (9), revealed that the series, while 
not convergent for very long values of the elapsed time, did 
converge rapidly for smaller and intermediate values of time 
in the case of real soils (Philip 1957b, Philip 1969e). The 
limit of applicability of the above series solution was taken 
as equal to the elapsed time t g at which the effect of gravity 
becomes equal to the effect of capillarity. For the case of 
Yolo light clay (Moore 1939) the range of convergence was 
estimated as 10 6 seconds (i.e. about 12 days). This soil with 
its distinctive non-linear properties became the one most 
commonly used in the soil physics literature as an example 
because of its use by Klute, Philip, and de Vries (Constanz 
1987). 

For longer time periods, the profile proved to be as
ymptotic to a stable profile (Philip 1957c). In a number of 
subsequent papers John Philip presented successively more 
rigorous and more insightful results for the joining of the se
ries solution with the large t solution of the stable profile, 
either using 2 terms or 4 terms in equation (8). 

Forty years after John's initial presentation of the series 
solution, Salvucci (1996) achieved sufficient improvement 
in convergence to obviate need for a joining technique by 
replacing the-series in t / 2 by a similar series in terms of the 
transformed variable t' defined by 

t' = _ t _ (10) 
t + a 

which has the effect of replacing the original infinite range 
from zero to infinity by a finite range from zero to one. In 
his paper, Salvucci used a value of the parameter a equal to 
one half of the characteristic time (t g) defined by John Philip 
as the time when the effect of the gravity and capillary 
forces became equal and used by him as an estimate of the 
limit of applicability of the series solution (Philip 1969c 
pp250-251) 

4.4. Special Analytical Solutions 

In order to gain insight into the range of variation in pro
file shapes and infiltration rates, it is desirable to seek ana
lytical solutions which will reveal the extent to which the 
differences in soil characteristics materially effect the soil 
moisture movement in the unsaturated zone. The first at
tempt at an analytical solution was that by Green and Ampt 
(1911), based on a physical analogy with the capillary rise 
in narrow cylindrical tubes. John Philip in an early paper 

pointed out that the abrupt wetting front of the Green and 
Ampt model, with its rectangular moisture profile, could be 
generalized to deal with the case o f similar moisture profiles 
through a small modification of the original equation (Philip 
1954, pp 155-156). He pointed out later (Philip 1957d, 
p.260), that the physical feature of an abrupt wetting front 
was equivalent to the mathematical discontinuity of a delta-
function form in the diffusivity function D (9) . Thus, 
throughout his subsequent work one will find references to 
the similarity solution and to the delta-function solution, 
both of which correspond essentially to the modified Green 
and Ampt approach. 

In 1966 John presented to the Wagingenen Conference 
on Water in the Unsaturated Zone a paper entitled "The 
linearization technique for the study of infiltration" (Philip 
1969a). This was concerned with a mathematical simplifi
cation of the basic infiltration equation accounting for both 
capillarity and gravity through the assumption of a constant 
diffusivity D and linear variation between unsaturated con
ductivity K and moisture content 9. This particular model 
gives an analytical solution involving the complementary 
error function which became a matter of fascination for him 
for some years. In this Wagingenen paper (Philip 1969a), 
John Philip plotted in dimensionless form the decline in in
filtration for three particular cases (a) the non-linear series 
solution for Yolo light clay (Moore 1939) with four terms of 
the series used; (b) the equivalent similarity or delta-
function solution derived from Green Ampt; and (c) the 
equivalent solution of the linear equation obtained by taking 
diffusivity D as a constant and the unsaturated conductivity 
K as a linear function of the moisture content. In spite of the 
markedly different shapes for the moisture profiles, the di
mensionless curves for the variation of infiltration with time 
did not differ greatly. Even though the dimensionless curves 
of declining infiltration rate plotted closely together, the 
non-linear series solution plotted outside and below the re
gion bounded by the two linear solutions with their con
trasting assumptions of isolated delta function diffusivity 
and uniform constant diffusivity. (Philip 1969a p476, Philip 
1969e p274) 

In a paper published a few years later, John Philip pre
sented another interesting comparison of the limiting cases 
of delta-function diffusivity and constant diffusivity, com
bined with linear conductivity (Philip 1973). The compari
son was made by plotting a dimensionless flux against a 
dimensionless moisture content (Philip 1973 p333). The 
delta-function model produced a lower limit and the linear 
ca$e an upper limit with a small sub-area of the possible 
variation in between. Real soils have a D (9) relationship 
between these two models and this carries over into the 
flux-concentration relationship. This was exemplified by in
cluding the result of the numerical solution for Yolo light 
clay which (Moore 1939) plots approximately half-way 
between the two limiting analytical solutions. 
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Later, John Philip used another special solution based on 
the Fujita-Knight soil which can be solved analytically in 
the form of Burgers equation (Fujita 1952; Philip 1974; 
Philip and Knight 1974; Knight and Philip 1974). This so
lution proved useful in the joining of the two asymptotic 
solutions because it provides the best available estimate for 
the approach to the traveling wave solution which is the as
ymptotic solution for large values of elapsed time t (Philip 
1987, Philip 1990). 

5. EXTENDING THE BASIC SOLUTION 

5.7. Thermal Effects 

At the same time that John Philip was studying the basic 
problem of one-dimensional downward infiltration in a ho
mogeneous stable medium, he was also working on prob
lems arising in the extension of this basic solution to prob
lems such as thermal transport and capillary rise, the exten
sion beyond one dimensional solutions, and extension to 
non-homogeneous and to unstable soils. 

John Philip's work in relation to thermal transport was 
largely carried out as a result of his close research partner
ship with Daniel de Vries in the three year period from 1956 
to 1958. This work was stimulated by the discrepancy be
tween the measured and predicted values for vapour diffu
sion in porous media. The results of this collaboration were 
published in a notable series of papers which made a land
mark breakthrough in the study of this problem (Philip 
1957a, Philip and de Vries 1957, de Vries 1958). The dis
crepancy between theory and measurement was resolved by 
a complex analysis which revealed that the water isolated 
around the points of contact of the soil particles were re
gions of enhanced transport rather than barriers to water 
transport. In 1960, John Philip wrote two further papers 
giving theoretical reasons why the thermal effects on un
saturated flow due to heat of wetting were quite unimpor
tant. This conclusion was later verified by experimental 
studies. 

During the thirty years following the publication of 
these papers much research both experimental and theoreti
cal was carried out by others on this particular topic but the 
revolutionary nature of the breakthrough by Philip and de 
Vries was confirmed rather than replaced by this work (de 
Vries 1987). 

It was typical of John Philip's interest in the whole envi
ronmental water continuum that this analysis was applied to 
the problem of evaporation from bare soil across the bound
ary of the soil-atmosphere continuum. John returned to the 
question of thermal effects in water transport some 40 years 
later when he studied the effect of heterogeneiety on this 
problem (Philip and Kluitenberg 1999). 

5.2. Capillary Rise 

The basic infiltration problem, as discussed in section 4 
above, was concerned with the semi-infinite profile of ho
mogeneous stable soil with an initial moisture content less 
than saturation, combined with the imposition of an upper 
boundary condition of a higher moisture content at the ini
tial time t = 0. The corresponding problem of a uniform 
semi-infinite column of homogeneous stable soil with an 
initial moisture content less than saturation and a boundary 
condition at the lower boundary of moisture content greater 
than this initial condition was also tackled by John (Philip 
1969c). His discussion of this capillary-rise problem paral
leled the development of the theory of infiltration in his se
ries of seven papers on the theory of infiltration in 1957 but 
differences and difficulties soon appeared. 

The solution for the case of absorption (i.e. for very 
small values of elapsed time t) paralleled the solution for the 
basic infiltration case (Philip 1957b, page 349), and thus 
provided a similar starting point (Philip 1969c, p 560). For 
the capillary rise case at intermediate values of elapsed 
times, the terms in the series solution were alternating in 
sign but with the same absolute value of the co-efficients as 
in the basic case for downward infiltration. The limit for an 
intermediate limiting value of t can be calculated for the 
capillary rise case in the same way as for the downward in
filtration case and an expression can also be found for the 
equilibrium profile in terms of the diffusivity function D(0) 
and the conductivity function K(6). 

However, the solution which is represented in the 
downward infiltration case by the large t asymptotic solu
tion (Philip 1957c) is not readily applicable and the gap is 
more serious between (a) the profile given for small values 
of elapsed time t by the series solution in its convergent 
range and (b) the solution at infinity. This was illustrated for 
the case of Yolo light clay with the following result (Philip 
1969c, p. 562). The infiltration rate for the case of down
ward flow reaches over 90% of its final quasi-equilibrium 
value after an elapsed time t 9 =10 6 seconds (i.e. about 12 
days). For the case of capillary rise after the same lapse of 
time the total moisture content of the column is only about 
20% of the value at final equilibrium. John filled this gap by 
use of linearisation using the special soil of constant diffu
sivity (D) and linear conductivity K=k.6 (Philip 1969a), 
discussed in the section 4.4. 

5.3. Two- and Three-Dimensional Problems 

Extending the basic problem of one-dimensional infil
tration to 2 and 3 dimensions naturally created difficulties in 
analysis. The strategy of simplifying from the infiltration 
problem (involving both capillarity and gravity), to the ab
sorption problem (involving only capillarity), again proved 
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to be a useful starting pojnt. Such a solution would be appli
cable to a very fine-grained soil and to other soils for small 
values of elapsed time. The analysis (Philip 1969b;Philip 
1969e), was first conducted for the two-dimensional case of 
a semi-circular furrow and the three dimensional case of a 
hemispherical cavity, both of which are of practical signifi
cance being related respectively to furrow infiltration and 
infiltration from a shallow ring infiltrometer. In each case, 
there is now an added parameter of significance in the shape 
of the radius r 0 of the semi-circle or of the hemisphere. For 
the case of capillarity alone (and the allied case of the solu
tion for small values of the elapsed time), the single term 
solution for one-dimensional absorption is replaced by a se
ries solution in terms of the square root of the elapsed time 
and the reciprocal of the radius r 0. The solution for large 
values of the elapsed time t indicates that for the case of 
three-dimensional absorption, there exists a steady phase of 
infiltration even in the absence of gravity. 

For the full infiltration equation, including both gravity 
and capillarity, the situation is necessarily still more com
plex and turns out to be even more difficult to resolve. The 
steady state form of the equation can be analysed by taking 
the unsaturated conductivity as an exponential function of 
the moisture potential and thus reducing the steady state 
equation to linear form. For the full equation in its unsteady 
form the situation is more complicated still. In this case, 
progress can only be made by retaining the exponential re
lationship between unsaturated conductivity K and soil 
moisture potential *F and adding the further simplification 
that (a) the diffusivity is constant or (b) the unsaturated 
conductivity K varies linearly with the moisture content 0. 
These are equivalent since each of which implies the other 
in the case of the K-^F relationship being exponential. 

5.4. Non-Homogenous Stable Soils 

The assumption of a stable homogenous soil in the basic 
solution described in section 4.3 above was relaxed in fur
ther studies dealing with heterogeneous soils, aggregated 
soils, and layered soils. Because the profiles of capillary 
potential preserve similarity under geometrical scaling, 
whereas the moisture profiles do not, the analysis is per
formed with the potential *F rather than the moisture content 
0 as the single dependent variable. The solution for the in
filtration case consists of a series in powers of t / 2 where the 
leading term refers to the absorption case which applies 
strictly only at very small values of t. In moving beyond 
these gravity free solutions, John Philip chose three special 
forms of homogeneiety for further study. These were (a) 
scale heterogeneous media (Philip 1967), (b) aggregated 
media (Philip 1968), and (c) crusted soils (Philip 1998). 

In his first paper on the subject (Philip 1967), John de
scribed his simplification of the type of heterogeneiety as 
follows: 

"We propose to study a limited class of heterogeneiety 
that we shall call scale-heterogeneiety.. We shall mean by 
a scale^heterogeneous medium one in which the internal 
geometry is everywhere geometrically similar but in 
which the characteristic internal length scale is free to 
vary spatially." 

In order to advance the analysis beyond the simple absorp
tion case, John made the simplifying assumption that, when 
scaled according to the characteristic lengtrh scale, the cap
illary potential (VJ / ) decreases exponentially with the mois
ture content (0) and the unsaturated conductivity (K) is in
versely proportional to the square of the capillary potential 
(i|/). These combine according to equation (2) in section 4.2 
above to give diffusivity (D) as an exponential function of 
the moisture content. The subsequent analysis shows that 
(a) the history of the profile of capillary potential is inde
pendent of the spatially varying length scale (k), (b) the 
potential profiles preserve similarity at all times, and (c) the 
cumulative infiltration is given by an equation identical to 
equation (6) in section 4.2. John draws attention to the con
sequence of (c) that the observation of a sorption rate in
versely proportional to the square root of the elapsed time 
does not necessarily indicate homogeneiety of the porous 
medium. 

In his second paper dealing with non-homogeneous me
dia, John Philip deals with what he calls an aggregated me
dium. He writes (Philip 1968 p.2): 

"We here regard an aggregated medium as one in which 
the pore space is made up of two distinct types of poros
ity, macroporosity and microporosity^_77ze macropore 
space consists of a continuous, but multiply connected, 
part of the pore space characterised by large pore di
mensions. The micropore space consists of the remaining 
pore space, characterized by small pore dimensions and 
the tendency to occur in a large number of small and 
isolated regions of the total pore space ". 

The analysis makes the following basic assumptions (Philip 
1968 p.3): 

"(1) Water transfer on the Darcy scale (i.e. over dis
tances large compared with a characteristic macropore 
dimension) is assumed to be via the macroporosity only, 
and the process of transfer is taken to be similar to that 
in a classical porous medium. (2) The exchange of water 
between the macroporosity and the microporosity is de-
scribable as a distributed sink (or source), the strength 
of which is a function of y/j and y/2, the local capillary 
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potentials in the macroporosity and the microporosity 
respectively. " 

Absorption in the region was first studied for the two limit
ing cases of (a) the delta-function solution and (b) the linear 
case of constant D and linear conductivity K. The region 
bounded by these two cases was found to be small and the 
further analysis was based on the former approach which is 
the easier one. 

A particular form of heterogeneity occurs in natural soils 
which are frequently layered and sometimes crusted. Previ
ous attempts to deal with layered soils were based on the 
Green-Ampt approach or on the zero gravity simplification 
or a combination of both. Philip (1998c) wrote two separate 
equations for the crust and for the main soil profile and de
rived solutions for both small values and for large values of 
the elapsed time t. For very small values of t, the infiltration 
was confined to the crust and the absorption similarity solu
tion with a single term in if2 can be applied. For large values 
of t, the solution for a homogeneous soil carries over into 
the crusted soil case with only minor modifications. The 
solution for the infiltration rate at intermediate times is 
based on the flux-concentration relationship (Philip 1973). 

5.5. Unstable Homogeneous Soils 

In the same year that John Philip published his 82-page 
comprehensive review of the theory of infiltration (Philip 
1969e), there appeared two important papers from his group 
on the problems arising in extending the classical solution 
of the basic problem to the case of soils subject to colloidal 
swelling (Philip and Smiles 1969; Philip 1969f). These pa
pers were concerned with analyzing the equilibrium condi
tions of such soils in which the total potential includes an 
overburden potential as a third element in addition to the 
moisture potential and the gravity potential dealt with in the 
basic analysis. In order to allow for the overburden potential 
in the total potential it was necessary to add to the two 
original soil properties of moisture potential OF) and con
ductivity (K) the new property of the void ratio (e) and to 
express it as a function either of the moisture content (0) or 
of the moisture potential (VP). It is also necessary to express 
the equation in terms of material co-ordinates relative to the 
soil particles rather than to the original fixed natural co
ordinates. 

In this important extension of his classical work on un
saturated vertical flow, John Philip followed his customary 
pattern of proceeding from a known result for a simple case 
to the analysis of the more complex problem. This is made 
clear in one of the earlier papers on the topic (Philip and 
Smiles 1969 p.3) which states: 

"We limit consideration here to systems in which gravity 
is unimportant i.e. to horizontal systems and other sys
tems in which differences in gravitational potential is 
unimportant i.e. to horizontal systems and other systems 
in which differences in gravitational potential are negli
gible in comparison with differences in moisture poten
tial (e.g. the early stages of sorption in vertical col
umns). " 

In another paper published in the same year (Philip 1969h 
p. 1071), John writes: 

"Mathematical methods developed in connection with 
the classic 'diffusion analysis' (Philip 1969e) thus either 
apply directly or provide a useful point of departure. " 

When this approach was applied to the problem of absorp
tion in the absence of gravity, the derived equation for the 
profile in terms of material coordinates was of the same 
form as the original equation for a stable soil, i.e. the depth 
of penetration was proportional to the square root of the 
elapsed time. However, on conversion of this result back 
into natural co-ordinates, the coefficient function (|)(0) 
which varied with the moisture content (0) was not of such 
form that would allow for a solution through inversion as in 
the basic case. 

Subsequent papers published in the next three years 
(Philip 1969g, Philip 1970, Philip 1971)include analyses 
and illustrated examples revealing a number of surprising 
results in regard to the moisture profiles. The effect of in
cluding the overburden potential and the void ratio is to re
duce the effect of gravity. Under certain conditions this can 
result in an upward flow against the moisture gradient. This 
analysis synthesizing aspects of both classical infiltration 
theory and classical soil mechanics comes as a shock to the 
hydrologist who has also to come to terms with a new no
menclature involving such items as the pycnotatic point 
which separates the hydric range of reverse flow from the 
xeric range of classical infiltration or capillary rise flow. 
The above anomalous behaviour for a downward moisture 
gradient has an interesting analogy with the classical solu
tion for capillary rise. John Philip continued to work on this 
problem and still published papers in this connection in the 
1990s (Philip 1992, Philip 1995). 

6. CONCLUDING REMARKS 

The above attempt to describe John Philip's research 
strategy is of necessity broad and limited in detail. The em
phasis is on the nature of the strategy and on the continuity 
of his approach over a period of 50 years of research activ
ity. Though the single topic of infiltration was chosen to il-
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lustrate the general points put forward, the same combina
tion of insightful simplification, rigorous analysis, and thor
ough post-hoc review is evident in John Philip's approach 
to other problems. His success in a number of research areas 
should encourage the rising generation of young researchers 
to appreciate the place of analysis in science and to realise 
that key advancements in knowledge do not depend on re
placing the pursuit of insight through analysis by still more 
complex models, extra parameters to be calibrated, and 
larger computers to crunch out numbers. 
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Infiltration Under Constant Head and Falling Head Conditions 

D.E Elr ick 1 , R. Angulo-Jaramil lo 2 , D.J. Fal low 3 , W.D. Reyno lds 4 , and G.W. Park in 5 

Prediction of the infiltration of water into field soils requires knowledge of the 
field-saturated hydraulic conductivity and a second parameter , such as the matr ic 
flux potential (corresponding to field saturation), or the Green and Ampt wet t ing-
front pressure head, or the alpha parameter. Analyt ical solutions of 1-D 
infiltration under both constant and falling-head condit ions are reviewed and 
several new solutions are developed based on the Green and Ampt assumptions. 
A laboratory experiment using the falling head technique is analyzed using 
several approximate analytical solutions. 

1. MEMORIES OF JOHN PHILIP 

John Philip was the keynote speaker at the "Conference 
on Advances in Infiltration", sponsored by the American 
Society of Agricultural Engineers, Chicago, 1983. Here are 
some selected quotes [Philip, 1983]. "I am uncomfortably 
aware that it is now 30 years since I did the basic work on 
solving the infiltration equation [present authors- now 
more than 45 years] . . . " and "Over the last decade much 
attention has been given to what is commonly called the 
Green-Ampt model of infiltration. I wonder how many of 
you have gone back to the original paper of Green and 
Ampt [1911]. If you have you may have noticed that W. 
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Heber Green was "Lecturer and Demonstrator" in 
Chemistry at the University of Melbourne, and that G.A. 
Ampt was a graduate "Research Scholar". Thirty two years 
later when I did freshman chemistry at that same 
University of Melbourne, Gussy Ampt (as he was known) 
still lurked in the Chemistry school". John relished his 
historical digressions. Perhaps his best known digression 
from an announced talk was at a Retirement Symposium 
for him in 1992, sponsored by the Soil Science Society of 
America in Minneapolis. Rather than "Capillarity, Gravity 
and Geometry interact to shape Unsaturated Flow", his talk 
was entitled "Desperately Seeking Darcy in Dijon". It was 
a remarkable performance, based on his recent trip to 
Dijon, and a welcome relief from his seminar 
performances, where he studiously read from his notes and 
then terrified the audience by not tolerating uninformed 
questions. Indeed he was, at times, a "curmudgeon", as he 
often referred to himself. 

For many of us John Philip was best known for his work 
on infiltration. Here we take another look at infiltration 
under both constant head and falling-head conditions, areas 
where John Philip published extensively, and we offer 
some new insights using the Green-Ampt model. 

2. INTRODUCTION 

Measurements of both field-saturated hydraulic 
conductivity, K f s (L/T) and a second parameter 
characterizing the unsaturated flow properties, such as the 
field-saturated matric flux potential, § m (L 2/T), the Green 
and Ampt wetting-front pressure head v|/f (L) or the alpha 
parameter a* ( L 1 ) are required for the description and 
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prediction of ponded infiltration into unsaturated soil. Most 
field procedures for measuring K f s and <|>M, V | / F or a* use 
rings (single or double) and measure the flow under 
constant head conditions until the flow has reached steady 
state. Elrick et al [1995)] pointed out that a difficulty with 
this approach is that insufficient information is obtained 
from the measurement of the steady flow rate under a 
single constant head to evaluate both K f s and <|>m, \ j / f or a*. 
Furthermore, waiting for steady flow using either single or 
double ring infiltrometers may take very long periods of 
time, particularly in slowly permeable soils. However, 
measurements under falling head conditions, or a 
combination of a constant head followed by a falling head, 
can provide sufficient information from which both KfS and 
4>m, v|/f or a* can be obtained with reasonable accuracy. 
Early time transient flow measurements in slowly 
permeable soils can reduce the measurement times from 
days to hours, relative to steady flow rate measurements. 
The expressions presented by Elrick and Reynolds, [1992] 
and Elrick et al [1995] and Fallow et al [1994] are re
examined and alternative, and possibly more accurate 
solutions are presented. 

3. INFILTRATION EQUATIONS: 
BASED ONLY ON SORPTION 

Sorption is the term used when gravitational effects 
during infiltration into unsaturated soil can be considered 
to be negligible. Sorption applies directly to horizontal 
infiltration, as well as to the early time period of vertical 
infiltration. We also assume that the early time period of 
vertical infiltration is restricted to one-dimensional flow. 
The three-dimensional aspects of ring infiltration in the 
field can be ignored during this early time. 

3.1 Constant Head 

S H . The first term in (2) gives the sorptivity, S 0 , for H = 0 
and the second term gives the increase in sorptivity due to 
the positive (ponded) head H. 

In the Green and Ampt [1911] (G&A) approach the soil 
is assumed to be saturated down to a presumed sharp 
wetting front, Xf [L]. We use Xf for distance when 
infiltration is based only on sorption. In section 4, we use z 
for distance when infiltration is based on both sorption and 
gravity. The wetting front forms a boundary between the 
field-saturated and the initially unsaturated soil where the 
soil water pressure head at the wetting front is \|/ f (L), with 
v|/f negative. The hydraulic conductivity in the field-
saturated zone is given by K f s . The water flux density or 
infiltration rate, q (LT 1 ) , is thus given by the following 
form of Darcy's law: 

q = -
K f s ( v | / f - H ) 

(3) 

From continuity q is also given by: 

(4) 

Equating (3) and (4), carrying out the integration and 
noting that the cumulative infiltration is given by 

I - ( A 0 ) x f (5) 

gives (1) with S H given by [Philip, 1958]: 

S H =[2K f s (AeXH -v | / f f (6) 

Eq. (2) and (6) represent two different approximations of 
S H . Note that <|>m and v|/f are related by: 

Philip [1957,1958] showed that early time one-
dimensional infiltration can be described by: 

K0 = s H t , / 2 (1) 

where S H (L/T / j) is the soil sorptivity at the ponded head H 
(L) and I (L) is the cumulative infiltration. White and Sully 
[1987] developed an approximate equation for S H : 

• » = - K 6 V f (7) 

Substituting (7) into (6) shows that the only difference 
between (2) and (6) is in the estimation of b. In theory, b = 
0.5 for G&A soils and b = 0.785 for Linear soils [White 
and Sully, 1987]. In addition, White and Sully [1987] have 
shown that b = 0.55 is a good approximation for ponded 
infiltration into most soils. 

S H = { ^ + 2(Ae)K f sH} , / 2 (2) 

where (A0) is the difference between the field-saturated 
water content, 0 f s (L 3 /L 3 ) , and the initial water content, 0j 
(L 3 /L 3). Setting b - 0.55 gives an error of less than 10% in 

3.2 Falling Head 

For the falling head condition, replace H by H(t) in (3). 
If H(0) = H h the cumulative infiltration I can then be 
obtained experimentally from: 

I(t) = R[H, -H( t ) ] (8) 
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Square Root of Time (s 1 / 2 ) 

Figure 1. Cumulative infiltration under constant head [Eq. (1)] 
and falling head conditions [Eq. (11) and (13)]. Equation (1) uses 
(6) for SH. Gravity effects were assumed to be negligible relative 
to sorption. 

where R = a/A is the ratio of the cross sectional area of the 
falling head reservoir, a, to the cross-sectional area of the 
infiltrating surface, A. For the falling head with H replaced 
by H(t) in (3), use of (4), (5) and (8) and rearrangement 
gives: 

X f d x f_ _ 
x f - B 

K f tdt 
R 

(9) 

G&A falling head expression, (11), falls off with time as 
expected with a falling head. We have also plotted an 
approximate solution based on substituting H(t) from (8) 
into (1) and using (6), as suggested by Fallow et. al. 
(1994), to obtain: 

t = I 2 ( 0 
2(A0)C f H, 

R 

(13) 

Fallow et al (1994) expressed I(t) in (13) in terms of H(t) 
[from (8)] when fitting for the hydraulic parameters: 

t = 
R 2 [ H , - H ( t f 

2(A0 )C f s [H(t ) -vt / f ] 
(14) 

Note that (11) and (13) in Figure 1 are similar at early 
times but deviate as time increases. Both expressions are 
approximations. However, (11) is a true solution under 
G&A falling head conditions, whereas (14) is an 
approximation based on a succession of constant head 
solutions. Due to the use of the sorptivity expressions 
which assume negligible gravity effects, it is expected that 
more accurate estimates of K f s and \j/f will be obtained 
when (11) or (13) are fitted to only early-time I vs. t or H 
vs. t data. 

where the constant B is given by: 

B - R f H j - i [ / f ) / A 0 (10) 

Integrating (9) assuming that x f = 0 at t = 0 gives the 
following implicit equation in I: 

3.3 Sequential Constant Head 1/Constant Head 2 

Here we assume a constant head, H b for 0 < t < tc and a 
different constant head, H 2 , for t > t c. The solution can be 
obtained using a similar approach to that used in Section 
3.1, with the exception that the solution uses the initial 
condition that for t = tc, x f = S^t/VA© - I c/A0: 

t = -
R 

K f s ( A 0 ) 
I(t) + (A0)Bln 1 - I(t) 

(A0)B 
(11) 

Equation (11) is a newly developed expression and is 
valid until the falling head drops to zero, given by: 

0 < I < RH (12) 

Figure 1 is a plot of the cumulative Infiltration, I, vs. 
square root of time, tA, for a typical slowly permeable soil 
such as clay liner material. Here K f s = 10"8ms_ 1, \|/ f = -
0.25m, H! = lm and A0 = 0.25. The constant head 
expression [(1) with (6)] is linear with tA, whereas the 

I = ^(Ae^feCH, - y f ) t c + 2 ( A e ) t f s ( H 2 . - V f ) ( t - t c ) ] * 

t > t c (15) 

Note that I is not linear with iA in (15). Equation (15), a 
newly developed expression, is not linear because the 
initial condition that 0 be constant with depth no longer 
holds as a result of the initial infiltration period up to tc. 
Thus sorptivity can only be measured using I oc tA during 
the initial constant head period 

Figure 2 (using the same parameter values as in Figure 
1) illustrates (15) for Hj > H 2 . Note that (15) starts at t = tc, 
falls off with time, and asymptotically approaches the 
straight line for the second constant head H2. 
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3.4 Sequential Constant Head/Falling Head 

Here we assume a constant head for 0 < t < ^ and a 
falling head for t > t̂  The G & A solution can be obtained 
using a similar approach to that used in Section 3.2 with 
the exception that the solution uses the initial condition 
that for t = tc, x f = SHit c

, / 2/AB: 

4. INFILTRATION EQUATIONS: 
BASED ON SORPTION AND GRAVITY 

For G&A infiltration (3) is replaced by: 

_ K f s ( y f - H ) 
- + K f 

z f 
(19) 

T = TR KFS(AE) I(T)-IC + (A9)BLN B Kt) 

W) ( A T - P ) J J 

(16) 

where t > tc. In (16), a newly developed expression, I c = 
Smt/ 2 and tc is set arbitrarily or determined experimentally. 
An experimental advantage of using (16) where t c is known 
is that Hi is also known and does not have to be fitted in a 
non-linear least squares program. B is given by (10) where 
Hi = H(t c). Note that (16) reduces to (11) for t c = I c = 0. 
An alternative approximate solution based on the 
assumption that H 2 is a function of time can be obtained by 
substituting H(t) from (8) into H 2 in (15) giving: 

I 2 ( t ) " I c 2 

2(A9>Cf H , - I(0 
R 

(17) 

Elrick et al. [1995] expressed (17) in terms of H(t) when 
fitting for the hydraulic parameters. However, (13) in 
Elrick et al. (1995) is not correct as written and should be 
replaced by: 

t = t r + 
2(A9)K f s [H( t ) -v | / f ] 

(18) 

where U{ = H(t c) and H(t) is defined by (8). 
Note that (16) and (17) are similar at early times in 

Figure 2, but like the comparable curves in Figure 1, 
deviate as time increases. As in section 3.2 both 
expressions are approximations; however, (16) is a true 
solution for the G&A assumptions whereas (17) is an 
approximation based on a succession of constant head 
solutions. As with (11) and (13), it is expected that more 
accurate estimates of Kfs and v|/f would be obtained if (16) 
and (17) were fitted to only early -time I vs. t data, which 
are less affected by gravity. 

where z f is distance and defined as positive vertically 
downwards. Note that (19) includes both sorption and 
gravity in the hydraulic gradient, whereas (3) includes only 
sorption. With the use of (19) and following similar 
procedures as for sorption the following expressions can be 
obtained. 

4.1 Constant Head 

CK f s 

where 

l(t) (H-ij/f) 
A0 

In 

C = 1. 

1 + 
CI(t) 

(A0XH-y f )J 
(20) 

(21) 

An equation, similar in form to (20), was derived by Green 
and Ampt (1911). 

0.012 

0 20 40 60 80 100 120 140 160 

Square Root of Time (s1/2) 

Figure 2. Cumulative infiltration under sequential constant head 
1 / constant head2 [Eq. (15)] and constant head / falling head 
[Eq. (16) and (17)] conditions. Also shown are cumulative 
infiltration under continuous constant head conditions Hj [ Eq. 
(1)] and constant head conditions H 2 [ Eq. (1)] where H 2 < H }. 
Note that Eq. (1) plots as a straight line vs. t 7\ Gravity effects 
were assumed to be negligible relative to sorption. 
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4.2 Falling Head 

The G&A solution for a falling head was derived by 
Philip [1992] and is identical to (20) but with 

C=1-(A0)/R 0 < I < RH 0 

4.3 Sequential Constant Head 1'/Constant Head 2 

(22) 

Here we assume a constant head, H 1 ? for 0 < t < ^ and a 
different constant head, H 2 , for t > t c. The solution can be 
obtained using a similar approach to that used in Section 
4.1 with the exception that the solution uses the initial 
condition that for t = tc , z f = [S Hit/ 2+(K f st c)/3]/A0 = I c/A0: 

CKf< 

I - I c ( H 2 - y f ) l n | 
A0 C 

(H 2 -vj/ f )+CI/A9 ^ 
( H 2 - i | / f ) + C I c / A 9 , 

(23) 

and C = 1. In (23), which is a newly developed expression, 
Ic = SHitc2+(KfStc)/3, where the second term takes into 
account the effect of gravity. If t c is small, as it generally 
is, the contribution of the gravity term in the above Ic 
expression is negligible. The Philip two-term equation (a 
truncation of Philip's series solution and therefore an 
approximation (Philip, 1957)) was used to calculate ^ 
rather than (20), as (20) is not explicit in I (or z f). 

4.4 Sequential Constant Head/Falling Head 

The G&A solution for a falling head (t > t^) is identical 
to (23) but with C given by (22) and H 2 = Hj. 

4.5 Other Approximate Falling Head Solutions 

In Section (3) we approximated the falling head solution 
by inserting H(t) into the constant head solution. We can 
use the same approach for solutions based on both sorption 
and gravity by using the Philip two-term infiltration 
equation: 

I(t) = S H t / 2 + A t (24) 

where A can be approximated by a constant with a value 
given approximately by A = K f s /3 . More exact infiltration 
equations have been derived and reviewed by Parlange et 
al. (1999) but it is likely that only the crude approximation 
given by (24) is necessary, especially given errors of 
observation in field data. 

Plots of the infiltration equations are similar in form to 
those for sorption (Figures 1 and 2) with the exception that 
the gravity effect during infiltration becomes more 

dominant with time and increases the amount of 
infiltration. 

5. LABORATORY TESTS 

Fallow et al. [1994] report on a laboratory experiment 
using a falling head technique on a compacted clay soil. 
They compacted air-dried, sieved clay in a Proctor Density 
Apparatus to a bulk density of approximately 1.6 Mg/m 3 . A 
1.5m long vertical tube was connected to the soil surface, 
filled with water, and falling head readings, H(t), collected. 
The first reading was at 30s and readings continued for 7 
min at which time the water level in the vertical tube was 
approximately at the soil surface. The difference in water 
content, A0, was determined to be 0.32. The data were 
plotted as H vs. t'/2. 

Equations (11) and (14) with (8) and (10) inserted, and 
(20) with (8) and (22) inserted, were fitted to the H vs. tA 

data using nonlinear least squares procedures to obtain 
estimates of K f s , (|)m, and H at t = 0 (Hi). The number of 
data points used to obtain the fits was limited to 20. 

Note that the plots of (11) and (20) in Figure 3 are 
indistinguishable, indicating the negligible influence of 
gravity at this very early stage of infiltration. The Fallow et 
al. [1994] approximation, based on (14), differs only at 
early times and in the approximation of Hi. 

From Fig. 1 it appears that (14) [which is equivalent to 
(13)] and (11) are very similar at early times but they 
diverge progressively as time increases. This suggests that 
the fitting of the K f s and § m parameters should give 
comparable results at early times, but progressively 
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1.4 

1.2 

1.0 
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(14) 

• - ( 1 1 ) 
- \ • • • (20) with (22) 

• a data 

V * (11) and (20) are 

-
indistinguishable 

1 l I l 

Square Root of Time (s 1 / 2) 

Figure 3. H vs. t'/2 data from Fallow et al. (1994) plus fits of Eq. 
(11), (14) and (20) as described in the text. Note that all these 
equations produce similar fits to the data, and (11) and (20) are 
indistinguishable. 
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Figure 4. (a) Calculated hydraulic conductivity values (K fs) and 
(b) calculated alpha* (a*) values, both as a function of the 
number of data points used in the least squares analysis. Note that 
the smaller the number of data points, the earlier the time. 

divergent results as time increases. To test this possibility, 
we conducted a series of 10 fits by progressively restricting 
the data to earlier times through sequential elimination of 
the two largest time data points. Consequently, the first fit 
used all 20 data points, the second fit used only the first 18 
data points, and so on until the tenth fit was reached which 
only used the first two data points. The results for K f s and 
a* are shown in Fig. (4a) and (4b), respectively. Note that 

a* = Kfs/<t)m = -vj/f1 (25) 

We chose to plot a* as it is the most sensitive parameter to 
the fitting procedure, being the ratio of the two hydraulic 

parameters. The a* parameter can also be interpreted as the 
slope parameter in [Gardner, 1958]: 

K : : K f s e a ^ (26) 

Fig. 4a shows that the calculated K f s values are 
essentially identical for (11) and (20) using both early 
times (small number of data points) and later times (large 
number of data points). Equation (14) gives K f s values that 
are very close to the above calculated values between n= 2 
and n = 8 (early times), a maximum difference at n = 14 
(intermediate time) and then values that converge again as 
n increases to 20 (later time). Unfortunately, this 
experiment does not give a good test of the early time 
period because of a combination of the small value of R (R 
= l.lxlO" 3) and the large K f s value. R is the ratio of the 
cross-sectional area of the falling head reservoir to the 
cross-sectional area of the infiltrating surface. At n = 2 
(early time), the head had already fallen by approximately 
40%. We have no explanation of why the results tend to 
converge for n > 14, other than the sensitivity of the 
equations and the errors in reading the falling head. 
However, from a practical point-of-view, the maximum 
change in K f s of approximately 50% is not important given 
that K f s ranges over a factor of about 10 5 from 
sandy/structured material to tightly packed clayey material. 

Figure 4b shows a* vs. number of data points and 
echoes the comments made above for K f s values. A 
negative value was obtained for a* at n = 4, which 
indicates an invalid result and is not plotted. An invalid or 
negative result for a* can be a result of inhomogeneous 
soil properties and/or observational errors. Note that a* 
values obtained using (11) or (20) are consistently larger 
than those calculated using (14) by a factor of about 3. 
Although a factor of 3 is large, an a* value of 4 ± 2m"1 

encompasses most of the values for n > 8. 

6. CONCLUDING REMARKS 

Analytical solutions of infiltration under both constant 
head and falling head conditions have been reviewed and 
several new solutions have been developed based on the 
Green and Ampt assumptions. An analysis of some 
laboratory data indicated that if only early-time data were 
collected, it made little difference in the calculation of Kr 

fs 

and (j)m (or V | / f or a * ) if gravity was, or was not, included in 
the infiltration equation. 
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Capillary Rise of Water Into Soil as Described by a Solution of 
Burgers' Equation 

D. Swartzendruber 

Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 
Lincoln, Nebraska 

An exact mathematical solution for vertically upward capillary rise of water, into 
initially unsaturated, uniform soil or porous medium, was found by solving the 
applicable form of Burgers ' equation subject to the appropriate initial and boundary 
conditions. From the classic Richards equation for unsaturated flow of soil water, 
Burgers ' equation was obtained by imposing a constant soil water diffusivity and a 
parabolic concave-upward hydraulic conductivity as a function of the volumetric 
water content. J. R. Philip was the first to point out the possibility of using Burgers ' 
equation for the opposite case of vertically downward infiltration of water into soil. 
One impetus for seeking the capillary-rise solution was to obtain an improved 
quantitative description of the time course by which the quantity of water taken up by 
the soil would approach a finite, fixed value as time increased without limit. This 
exact solution, however, did not produce such a finite value. Instead, for large values 
of time, the quantity of water uptake was found to be proportional to the natural 
logarithm of the square root of time, and was thus predicted to increase without limit 
as time increased without limit. Therefore, in this respect, the new Burgers-equation 
solution was less satisfactory physically than an earlier solution of the linearized 
Richards equation. Remaining to be assessed is whether early time ranges of the new 
solution would have utility in describing experimental capillary-rise data. 

INTRODUCTION 

The one-dimensional upward movement of water into an 
initially unsaturated soil or porous medium is commonly 
known as capillary rise. This phenomenon has not received 
nearly as much research attention as its counterparts in the 
horizontal and vertically-downward directions, termed absorp
tion and infiltration, respectively, by Philip [1958, pp. 279, 
280; 1969a, pp. 230, 231].The absorption case is mathemati
cally the simpler, and also serves as the starting point for either 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM05 

infiltration or capillary rise. The infiltration case has been 
studied extensively because of its relevance for the process by 
which the water present in the soil is renewed and augmented, 
whether by rainfall or surface irrigation. Capillary rise, of 
course, could have relevance for some types of subsurface 
irrigation, for example, as in the so-called flooded bench 
fertigation system [Otten etal, 1999]. 

In the classic works of Klute [1952] and Philip [1955], 
solution of the absorption problem (gravity effect absent) 
disclosed a dependence on the square root of time. As ex
tended by Philip [1957a] for infiltration, the solution com
prised an infinite series in the square root of time, but the 
commonly used four-term truncated series held only for small 
to moderate times. Philip [1957c] also developed an asymp
totic infinite-time infiltration solution, but joining it with the 
truncated series solution was not without some difficulty of its 

55 
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own, particularly if a single-form infiltration equation were 
desired. Alternative relief was sought, first by linearizing the 
governing differential equation before solving it [Philip, 
1969b], and then by employing the minimally nonlinear gov
erning differential equation of Burgers [1948] as solved by 
Knight [Philip, 1974, p. 261] in follow-up of the earliest sug
gestion [Philip, 1973] for such use of Burgers' equation. 
Further efforts with Burgers-equation solutions have been 
carried out [Clothier et al, 1981; Knight, 1983; Hills and 
Warrick, 1993], but with focus mainly on constant surface-
flux infiltration. 

Applying his series-solution approach to the case of capil
lary rise, Philip [1969c] found the solution to be a square-root-
of-time series counterpart of the infiltration case, but with the 
series being alternating in sign. A counterpart asymptotic 
infinite-time solution, being the equilibrium water-content 
profile, was also obtained, but with the expressly stated cau
tion that the problem of bridging the gap between the square-
root-of-time series solution and the infinite-time solution 
would appear to be more serious than the corresponding prob
lem for infiltration. Once again, the governing differential 
equation was linearized and a solution found. 

For the case of infiltration, Philip [1974] viewed the Knight 
solution of Burgers' equation to be more informative and more 
accurate than simple linearization, apparently because the 
Burgers-equation solution gives appropriate limits at infinite 
time, whereas the linearized solution does not. It would there
fore appear worthwhile to investigate whether this might also 
be the case for capillary rise. If so, further and more accurate 
description might be provided on how the final equilibrium of 
water intake during capillary rise is approached at large and 
infinite times, for which only approximations are now avail-
able-the Green-Ampt approach [Green and Ampt, 1911], and 
the simple linearization of Philip [1969c]. Therefore, we shall 
here seek a solution to Burgers' equation for capillary rise. 

MATHEMATICAL ANALYSIS 

The Problem 

Consider one-dimensional upward rise of water into an 
infinitely long, uniform, rigid soil column of constant bulk 
cross-sectional area. We shall begin with the governing partial 
differential equation of Richards [1931] written in the form 
[Philip, 1957b, p. 349; Swartzendruber, 1969, p. 222] 

positive-upward position coordinate z. D = D(9) and K = K(0) 
are the soil water diffusivity and hydraulic conductivity func
tions, respectively. Because K = K(0), then 

dK/dz = ( d K / d 9 ) ( d 8 / a z ) . (2) 

To facilitate solution of (1), we next introduce two assump
tions, the first being that dK/d0 is linear in 0, or 

d K / d 0 = A 0 + B , (3) 

where A and B are constants. The second assumption is to 
take D as constant, notwithstanding its general variation over 
at least three or four orders of magnitude as 0 changes from 
near zero to its water-saturated value. We thus follow not only 
Knight [Philip, 1974], whose use of constant D for infiltration 
seemed to work reasonably well [Philip, 1987] in several 
respects, but Philip [1969b,c] as well. Combining (3), (2) and 
(1), along with D constant (from here on), gives 

8 0 
at 

a 2 0 a o D ^ 1 + ( A 0 + B ) — , 
a z 2 a z 

(4) 

which is the minimally nonlinear Burgers equation already 
mentioned in the introduction. Note that (4) embodies im
provement over the earlier and more drastic linearizations 
[Philip, 1969b] of also taking A = 0, so that the integration of 
(3) led to K(0) being linear with 0. For A > 0, the integration 
of (3) thus yields a parabolic dependence of K on 0, which 
would seem distinctly better than only a linear dependence. 
Nonetheless, we cannot evade or gainsay the somewhat 
ruthless-appearing assumption of taking D to be constant. 
Admittedly, K(0) now has a much stronger dependence on 0 
than does the constant D, but it also would have been even 
more satisfying if D could somehow have been invested with 
more than a zero dependence on 0. Finally, to complete the 
statement of the problem, we take (4) subject to 

a o 
a t 

_a_ 
a z 

D a© 
a z 

a K 
a z 

( i ) 
0 = 0 n , z > 0, t = 0, (5) 

where 0 = 0(z,t) is the volumetric water content at time t and 0 = 0 o , z = 0, t > 0, (6) 
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where (5) and (6) are the initial and boundary conditions, 
respectively, 0 n is the initial constant volumetric water content 
throughout the uniform soil column, and 9 0 is the constant 
higher (9 0 > 0n) water content applied instantaneously at the 
bottom end of the soil column (z = 0) and maintained for all 
time (t > 0). 

If the order of differentiation is immaterial, the mixed second 
derivative on the right-hand side of (9) becomes 

The Solution 

The governing differential equation solved for infiltration by 
Knight [Philip, 1974] is of the same form as (4) except that a 
minus sign appears in front of (AG + B). Therefore, we here 
write the Hopf-Cole transformation [Hopf, 1950; Cole, 1951] 
without a minus sign also, namely 

Substituting (7), (9), (10), (11), and (12) into (4), canceling 
and combining terms, and rearranging, yields ultimately 

_a_ 
dz 

a v 
at 

D a 2 v 

a z 2 

I a v 
v a z 

a v 
a t 

D a 2 v 

a z ^ 
(13) 

A 0 + B = 2 D a ( l n V > = l P J X t 

a z v a z 

(7) 

with V = V(z,t) considered to be a solution of the heat equa
tion 

a v 
a t 

D a 2 v 

a z 2 
(8) 

Because the bracket terms of (13) are zero by virtue of (8), 
(13) reduces to 0 = 0, and thus the 0 of (7) is indeed the solu
tion of (4) given that V(z,t) is a solution of (8). Hence, it now 
remains to find a V(z,t) that satisfies (8) such that the resulting 
9(z,t) will also meet conditions (5) and (6). 

After extensive trial-and-error efforts of seeking insights 
from the Knight solution [Philip, 1974] for infiltration, the 
following trial form was devised, 

V = a erf v + a (exp x) erfc w + (3, (14) 

with D constant, of course, as already noted. We examine 
whether the specification of 0 by (7) and (8) is consistent with 
(4). Solving (7) for 0, we find the partial derivatives of 9 with 
respect to z and t to be 

where a and P are constants, erf v is the error function of v 
defined by 

a o 
at 

2 D 
A 

i a 2 v 
v a t a z 

I (dv) a v 

a e _ 
a z 

a 2 o 

a z 2 

2D I a 3 v 
A v a z 3 

2 D 
A 

i a 2 v j _ 

v 2 V dz2 
K dz 

V 2 , dz , 

(9) 

(10) 

(11) 

erf v = I e w d co, 
7 U 1 / 2 J 

and co is the dummy variable of integration. Also, erfc w = 
1 - erf w in (14) is the complementary error function of w, 
while v, w, and x are defined by 

v = z / 2 D 1 / z t , / 2 , 

w = ( z / 2 D 1 / 2 t 1 / 2 ) + k t 1 / 2 / D 

x = k (z + k t ) / D , 

1/2 

(15) 

(16) 

(17) 
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where k is a constant that will be examined in more detail 
later. Since v, w, and x are all functions of z and t, then V of 
(14) is also ultimately a function of z and t. Note also that 
(15), (16), and (17) can be combined to give 

but from (18) we observe that x - w 2 = -v 2 so that the first term 
on the right-hand side of (21) vanishes, leaving dW/dz to be 
given solely by the second term. Using this result in (7), along 
with the V of (14), yields 

2 2 W = V + X . (18) 
A 9 + B = 2 a k ( e x p x ) ( e r f c w) 

a[erf v + (exp x)(erfc w)] + P 
(22) 

Since the term a erf v is recognizable as a solution of (8), it 
suffices to determine whether the two remaining terms of (14) 
will satisfy (8). If so, then we know that (14) is also a solu
tion, because a sum of solutions of the heat equation is like
wise a solution. The partial time derivative of 
[a (expx)e r fc w + 0] is, after obtaining the necessary partial 
time derivatives of v, w, and x, 

a z exp(x - w 2 ) _ a k exp(x - w 2 ) 

2 ( t c D ) 1/2 f 3/2 OcD) 1/2 t 1/2 

a k 2 (exp x)(erfc w) 
+ D 

(19) 

as the expression for 9 as a solution of the Burgers equation 
(4). This solution still must be specialized to satisfy the initial 
and boundary conditions. 

To examine whether (22) will accommodate the initial con
dition, first employ (5) in (22). For z > 0, t - 0 gives: v - °° 
so erf v - 1; w - °° so erf w - 1 and erfc w - 0; and x = kz/D 
so exp x = exp(kz/D) remains finite. Putting these quantities 
into (22) along with 9 = 9 n yields 

A 9 + B 

2 a k [ e x p ( k z / D ) ] ( 0 ) 
a { l + [ e x p ( k z / D ) ] ( 0 ) } + p 

(23) 
= 0 , 

Similarly, the partial derivative of [a(exp x)erfc w + p] with 
respect to z is 

a [ e x p ( x - w 2 ) ] + ak (exp x)(erfc w) 

(TcDt) 1 D 

from which B = -A9 n. 
To determine whether (22) will accommodate the boundary 

condition, next employ (6) in (22). For t > 0, z = 0 gives: v = 
0 so erf v = 0; w = k/(Dt) , / 2 so erfc[k/(Dt)'/2] remains finite; and 

(20) x = k2t / D so exp(k2t / D) remains finite. Putting these quanti
ties into (22) along with 9 = 9 0 and B = -A9 n yields 

Taking the partial derivative with respect to z of the expression 
in (20) gives the second partial derivative of 
[a(exp x)erfc w + p] with respect to z, and multiplying this 
second derivative by D gives exactly the expression in (19). 
This means that [ a (exp x) erfc w + p] is indeed a solution of 
(8), and therefore that the V of (14) satisfies (8) as well. We 
hence use the V of (14) to evaluate the far right-hand side of 
(7), where then 

d V = a [ exp( - v 2 ) - exp(x - w 2 ) ] 

( 7 i D t ) , / 2 

ak(exp x)(erfc w) 
+ D ' 

(21) 

A ( e 0 - 9 n ) = 

2 a k [ e x p ( k 2 t / D ) ] { e r f c [ k / ( D t ) 1 / 2 ] } 

0 + a [ e x p ( k 2 t / D ) ] { e r f c [k / (D t ) 1 / 2 ] } + p 

(24) 

If finite P > 0, then the right-hand side of (24) would vary with 
time t, in contradiction of A(9 ( ) - 9n) required to be constant. 
Selecting p = 0 will produce cancellations in (24) to yield 
acceptably that 

A ( 9 0 - 9 n ) = 2 k . (25) 

Setting p = 0, B = -A9 n, and substituting 2k from (25) into (22) 
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will cause a and A to cancel out so that (22) after rearrange
ment becomes 

8 - 9 . . 
1 + g 

(26) 

as the solution of the problem, where 

g = [exp( - x ) ] ( e r f v)/erfc w . (27) 

Whereas the form of (26) is essentially that of Knight [Philip, 
1974], the function g of (27) and its arguments v of (15), w of 
(16) and x of (17) differ from their respective Knight counter-' 
parts. Lastly, we note that if the constant coefficient a of (exp 
x)erfc w in (14) were replaced by a different constant, say, y, 
then the resulting modification of (14) would still satisfy (8), 
but to meet initial condition (5) would require taking y = a. 

Further evaluation of the constant k can be made by separat
ing the variables in (3) and integrating to obtain 

K = A ( 0 2 / 2 ) + B0 + c , (28) 

where c is the constant of integration. Using the conditions 
K = K„ for 0 = 0 n and K = Ko for 0 = 0 ( ) successively in (28), 
along with B = -A0 n and A evaluated from (25), form the 
difference - K„ and rearrange to obtain 

thus verifying that the solution (26) satisfies the boundary 
condition (6). As z - » for fixed t, then v - « from (15), 
w - oo from (16), and x -> °° from (17); putting these quantities 
into (27), the resulting indeterminate form requires use of 
1'Hospital's rule to find ultimately 

(31) 

thus verifying that the solution (26) implies for x - °° that the 
water content retains its initial value 0 n for all t. 

As a final check on the validity of the function g in the 
solution 0 of (26), we examine a condition sometimes stated in 
problems of this kind. That is, at any given fixed t > 0, there 
should be no change in 0 with respect to z at great distances z 
at and beyond the point at which the initial water content 0 n 

has not yet been altered by the application of free water at the 
inlet end (z = 0) of the soil column. Analytically, 

8 0 / a z = 0 , z - o o , t > 0 . (32) 

Partial differentiation of 0 of (26) with respect to z, and mak
ing use of (27) both directly and in the modified form 
[exp(-x)](erf v) = g(erfc w), enables writing the still general 
form 

a© = ( e 0 - e B ) 

az ( i + g ) 2 

(1 + g ) [ e x p ( - w 2 ) ] kg 

(7iDt) 1 / 2 (erfc w) D 
(33) 

k = ( K o - K n ) / ( 0 o - 0 n ) . (29) 

In the infiltration setting, k is the constant downward velocity 
of the asymptotic large-time, fixed-shape water-content profile 
[Philip, 1957c]. 

The behavior of the function g of (27) at extreme values of 
z is examined first for z = 0 at any positive fixed t. So, for 
z = 0 at fixed t: v = 0 from (15) so erf v = 0; w = k t , / 2 /D , / 2 

from (16) so erfc w = 1 - erf(kt 1 / 2/D 1 / 2); and x = k2t/E> from 
(17) so exp(-x) = exp(-k 2t/d). Putting these quantities into 
(27) yields 

Next, substitute for (erfc w) in (33) its equivalent erfc w = 
[exp(-x)](erf v)/g from (27), along with the exponential argu
ment x - w 2 = -v 2 as obtained from (18), and multiply the de
nominator (1 + g) 2 through the large-bracket terms in (33), to 
provide 

ae 
az 

[ e x p ( - v 2 ) ] g kg 
(7 iDt ) 1 / 2 ( e r f v ) ( l + g ) D ( l + g ) 2 

(34) 

go 
_ [ e x p ( - k 2 t / D ) ] ( 0 ) = Q 

[1 - e r f ( k t 1 / 2 / D 1 / 2 ) ] 
(30) For fixed t > 0, letting z - °° in (15) and (31) will produce 

v - oo ? erf v = erf oo = 1 5 exp(-v2) = exp(-°°) = 0, and g - °° in 
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(34) so that both terms in the large bracket become zero, and 
30/dz vanishes, so condition (32) is indeed satisfied. 

Quantity of Water Intake 

The Buckingham-Darcy flux equation [Swartzendruber, 
1969, p. 219], written for only the vertically upward direction, 
is applied at the bottom end of the soil column, z = 0, in the 
form of the upward flux q 0 

y = - [ D ( 0 0 - 0 n ) / k ] l n [ l - erf (k t /D )] - K Q t , (40) 

after also having employed the condition y = 0 at t = 0 that 
eliminates the constant of integration. 

DISCUSSION AND APPLICATION OF SOLUTION 

To simplify the argument of the error function in (40), we 
set C = k/D 1 / 2 , from which 

D = k 2 / C 2 . (41) 

The first term on the right-hand side of (35) is the upward 
water-flux tendency, and is countered by the second term, -Ko, 
which expresses the downward influence of gravity-induced 
unit hydraulic gradient at the hydraulic conductivity existing at 
the inlet-end water content 0(). To evaluate d0/dz of (33) at 
z = 0, we set z = 0, which from (16) produces w 2 = k 2t / D 
along with g = gj, = 0 from (30) which we substitute into (33), 
and then multiply by D to get from (35) that 

Putting (41) into the D(0 ( ) - 0n)/k of (40), with k expressed by 
(29), yields 

D ( 0 n - 0 n ) / k 

( k 2 / C 2 ) ( 0 0 - O n ) / k = ( K 0 - K n ) / C : 

(42) 

% = -rr 
dy _ D ( 0 o - 0 n ) e x p ( - k 2 t / D ) 

dt ( 7 i D t ) 1 / 2 [ l - e r f ( k t 1 / 2 ) / D 1 / 2 ) ] 
~ K 0 . (36) and using (42) and (41) in (40) then gives the three-parameter 

form (in Ko, K„, and C) 

Here y is the total volume of water, per unit bulk cross-sec
tional area of soil column, that has moved upward past the 
inlet end of the column at z = 0. Make the substitution 

( K o " K n ) 
l n [ l - e r f ( C t 1 / 2 ) ] - K Q t . (43) 

W = 1 - e r f ( k t 1 / 2 / D 1 / 2 ) , (37) 

from which we find 

dW = - { k [ e x p ( - k 2 t / D ) ] d t } / ( 7 c D t ) 1 / 2 . (38) 

After separating variables in (36) and combining (37) and (38) 
with (36) the result is 

dy = - [ D ( 0 0 - 0 n ) / k ] ( d W / W ) - K 0 d t . (39) 

This integrates to provide, after back substitution of W from 
(37), 

Also, using standard series expansions in (40) for very small t 
gives 

y = 2 ( 0 0 - 0 n ) ( D / 7 r ) 1 / 2 t 1 / 2 , (44) 

which is the square-root-of-time expression for the case of 
absorption as mentioned in the introduction. This enables the 
coefficient of t 1 / 2 in (44) to be identified as the constant 
sorptivity S of Philip [1957d], namely 2(0O - 0n)(D/7i)' / 2 = S, 
which when solved for D yields 

D = ; r S 2 / 4 ( 8 0 - 8 n ) 2 . (45) 

This expresses D in terms of S and matches the small-time 
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behavior of (40) with horizontal absorption. The relationship 
between D and S of (45) for infiltration has also been found by 
Philip [1969b] and by Knight [Philip, 1974], and for Philip's 
[1969c] case of linearized capillary rise. That (45) also ap
pears in the present capillary-rise solution therefore fits in well 
with previous work, and reflects again the sense in which the 
solution for absorption is a starting point for vertical flow at 
very small times, whether for infiltration or capillary rise. 

In considering capillary-rise behavior at large times t - «>, 
we first follow Philip [1974] by neglecting K„ in comparison 
with Ko but not necessarily requiring 9 n = 0. Although doing 
this will restrict our scope to soils initially in the drier ranges, 
it is nonetheless such conditions that are most likely to be 
subjected to experimental scrutiny and assessment. Moreover, 
once K,, is sensibly above zero, it will become more difficult 
experimentally to sustain a vertical soil column at a satisfacto
rily constant 9 n under the influence of gravity. Setting 1^ = 0 
in (43) gives the two-parameter form (in IQ, and C) 

y = - ( K 0 / C 2 ) l n [ l - e r f ( C t , / 2 ) ] - K 0 t . (46) 

For t - «>, the right-hand side of (46) would require resolution 
of the indeterminate form °° - °°, but, as an easier and more 
instructive exercise, we shall employ the first two terms of the 
infinite series expansion of the error function for large t to 
write 

e r f ( C t 1 / 2 ) = 1 - [ e x p ( - C 2 t ) ] / C ( 7 i t ) , / 2 . (47) 

Substituting (47) into (46) yields 

y = - ( K 0 / C 2 ) { l n [ e x p ( - C 2 t ) ] 

(48) 

- l n [ C ( 7 i t ) 1 / 2 ] } - K 0 t , 

which after further cancellations and manipulation gives 

y = ( K 0 / C 2 ) l n [ C ( 7 t t ) 1 / 2 ] (49) 

as the large-time asymptotic relationship of y versus t. 
From (49) it is clear that, as t - <» y also increases without 

limit rather than approaching a fixed, finite value. It is there

fore pertinent to make sure of how the time rate of change in y 
behaves as t -> «>. Taking the ordinary time derivative of y in 
(46), and then letting t -> °° in the resulting time function, we 
will encounter an indeterminate form (0/0) that multiplies the 
coefficient (-K</C2). Applying 1'Hospital's rule, and again 
taking t - °°, will multiply (-K«/C2) by (-C2) to yield (dy/dt) t, „ 
= KQ - K ( ) = 0. This same result is also found by differentiating 
(49) with respect to t and letting t - °°. Thus, even though 
t - oo will cause dy/dt to approach zero, its manner of approach 
seems not strong enough to cause y to approach a fixed, finite 
value. It is, of course, physically very unrealistic for (49) to 
predict that the quantity of water drawn up by the soil column 
against gravity would increase indefinitely. Surely it is re
quired that the upward attraction of the soil for water would 
ultimately somehow be balanced by the downward attraction 
of gravity all along the column at every water content between 
9 n and 9(). In the sense of a flux balance, (35) and its outwork
ing via (36) through (49) admittedly does achieve dy/dt -* 0 for 
t - oo as just shown, but this has not been sufficient to ensure 
a finite y at infinite t. 

In terms of original objectives of the present work, we have, 
of course, succeeded in the major thrust of finding the exact 
solution to Burgers' equation for the problem of capillary rise-
the counterpart to Knight's [Philip, 1974] solution for infiltra
tion. Notwithstanding this success, however, our secondary, 
corollary expectation has not been realized. That is, our exact 
solution has not provided a physically acceptable description 
of how the quantity of water intake into the soil during capil
lary rise would attain equilibrium with time. Whereas for 
infiltration the Burgers-equation solution of Knight provided a 
distinct improvement over both simple linearization [Philip, 
1969b, 1974] and the Green-Ampt [Green and Ampt, 1911] 
step profile, a corresponding improvement has not accrued 
from our present Burgers-equation solution. In contrast with 
Philip's [1969c] reporting of a qualitatively reasonable time 
course of capillary rise toward an ultimate (t - <*>) finite quan
tity of water intake, for both simple linearization and the 
Green-Ampt analysis, the hoped-for quantitative improvement 
from our present solution is belied by the less-than-satisf actory 
nature of (49) as t - oo. This might well be underscoring 
Philip's [1969c] express caution that bridging the gap between 
his moderate- and infinite-time solutions would appear more 
difficult for capillary rise than for infiltration. He later [Philip, 
1987] strongly advocated Knight's solution for a more accu
rate bridging of the gap in the case of infiltration. 

Even so, the present author finds it disappointing that the 
Burgers-equation solution for capillary rise has not provided 
the improvement originally sought and expected. Admittedly, 
in the case of infiltration, the improvement over simple 
linearization stems from the Knight solution in its provision of 
the so-called traveling-wave feature [Philip, 1987], which 
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qualitatively accommodates the fixed-shape profile as it trans
lates linearly downward at infinite time. Such a feature is not 
present or needed for capillary rise, and may well be the under
lying reason that the parabolic K(0), while more realistic than 
a linear function, nonetheless offers no improvement for capil
lary rise, and, in the foregoing light, might even possibly be a 
drawback. 

In an effort to utilize some possible benefit from the present 
solution for capillary rise, we note that there are classic experi
mental data [Loughridge, 1892-1894] which suggest that the 
time approach to capillary-rise equilibrium is extremely slow. 
It might therefore be of interest to examine (43), (46), and 
possibly even (49) in relation to these and any other available 
data, to determine whether any of these equations would be 
applicable for descriptive or fitting purposes. In doing this, 
special care would be needed to determine a suitable upper 
limit of time, above which no experimental data points would 
be allowed in the fitting process. This would not, however, be 
an attempt to gainsay or ignore the very real limitations in (49), 
(46), and (43) that have already been pointed out and 
discussed. 

Further understanding, and possible insight regarding modi
fication and improvement, might be afforded by a graphical 
examination of the 0 solution embodied in (26), (27), (15), 
(16), and (17). Dimensionless curves of water-content profiles 
at a progression of dimensionless times could be prepared, and 
then compared with similar curves from Philip's [1969c] 
solutions, linearized and otherwise, and possibly also with any 
experimental data if such can be found. Moreover, it may be 
of interest to determine whether (43) or (46) would have any 
useful ranges of applicability for fitting to experimental data 
points, provided that time t is not too large. Assuming an 
ample supply of data points, such efforts could proceed by 
using nonlinear least-squares fitting, by first including all 
points. The fitting exercises could then be repeated by succes
sive deletion of data points, starting with the point at the larg
est time value, and continuing until some measure such as the 
root-mean-square error would no longer decrease. If such 
error remained essentially constant over the whole time range, 
it would be concluded that the fitted equation was applicable 
over the complete time range of the experimental points. 
Analyses of the types here mentioned are currently under 
consideration and study. 

CLOSING REMARKS 

In reflecting upon the monumental and prolific legacy of 
accomplishment in soil hydrology and soil physics bequeathed 
us by John R. Philip, let us direct particular attention to the 
now-classic seven-paper series entitled "The theory of infiltra
tion" published in Soil Science in 1957-58. The reader can 

observe that four of these papers [Philip, 1957 b,c,d; 1958] 
have been cited in the present work. It can also be noted that 
the manuscripts of the first four installments of the series were 
received during a four-month period in 1956 (three of the 
manuscripts on the same day!). On the premise that editorial 
and reviewer anonymity serve no useful purpose after a span 
of 45 years, it therefore seems permissible to disclose that 
Editor-in-Chief Firman E. Bear assigned the processing of 
these manuscripts to Consulting Editor Don Kirkham, who in 
turn requested my involvement as a referee. We found, of 
course, that the manuscripts were very worthy of publication, 
although Dr. Bear did express a bit of reticence about accept
ing what he considered to be so many contributions in one fell 
swoop from a single author. It is probably doubtful, however, 
that any of us foresaw the lofty place eventually to be attained 
by this seven-paper series. It is perhaps fortunate that Dr. 
Philip completed this crucial work before the onset of perva
sive computer technology and software. He was therefore 
motivated to pursue analytical mathematical solutions to the 
utmost; then, when he did turn to numerical evaluation, he 
developed simple and rapidly converging procedures capable 
of use even on an ordinary desk calculator. This persistence in 
seeking analytical solutions became almost a leitmotif of his 
career, and he reiterated it explicitly in his writing. His in
volvement with Burgers' equation can thus be viewed as an 
expression of his predilection and preference for closed-form 
analytical solutions. 
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J. R. Phil ip contributions to flow analysis from spheroidal sources include steady-
state solutions for absorption, small- t ime solutions for spheres with and wi thout 
gravity, and steady-state solutions for infiltration. W e review some of Phi l ip ' s 
contr ibutions in these areas. Three types of calculations and compar isons are then 
performed. In the first example , the pressure distributions are computed for 
absorption from spheres using a Gardner hydraulic conductivi ty function (K 
exponential ly related to pressure head h) and using van Genuchten functions. In the 
second example , Phi l ip ' s analytical expressions are used to show the effects of 
gravity and spheroidal shape on infiltration rate. Compar isons of spheroids wi th 
different shapes were made relative to spheres which have either equal absorption 
rates or which have an equal source area. Finally, infiltration results us ing a 
numer ica l solution with van Genuchten functions are compared to the analytical 
Gardner calculations to gain information on whether the simpler analytical results 
can be used to predict infiltration rates for other functions. The infiltration 
compar isons were compared by matching the capillary lengths. Analyt ical results 
are compared to numerical computat ions and agree within about 5 percent. The 
abil i ty to use the simple algebraic forms of Philip to make predict ions wi thin 5 
percent is deemed a positive result and suggestive that application to a wider range 
of soils and hydraulic functions exists. 

1. INTRODUCTION 

J. R. Philip (1985,1986) developed solutions describing 
the potential and steady-flow rates from spheroids. Spher
oids are ellipsoids formed by rotating an ellipse around one 
of the axes. A prolate spheroid is formed by rotation about 
the major axis and results in an elongated object (Figure 
1A). With o> the ratio of the length of the axis used for 
rotation to the other, the prolate case is defined with o> > 1. 
The opposite case is the oblate spheroid (Figure 1C) for 
which o) is less that 1. For the sphere, the value of G> is one 
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the Biosphere 
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(Figure 1 A). The sorption rate (without gravity) Q s o r p (L 3T _ 1) 
is 

Q = 4 < K - K TA. r ) (1) 
^ s o r p v wet dry c 0 ; V A / 

with r 0 defined in Figure 1. 
The conductivities K W E T and K D R Y correspond to the supply 

surface and the background pressure potentials, respec
tively. The shape factor x is 1 for a sphere. For the prolate 
case (a) > 1), x is 

(OJ 2 - 1 ) 1 / 2 

T = (2) 
ln[o)+ ( O J 2 - 1 ) 1 / 2 ] 

65 
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z 

A. Sphere B. Prolate spheroid 

z 

H - 2 r 0 - > | 

C. Oblate spheroid 

Figure 1. Sphere, prolate spheroid (o> > 1) and oblate spheroid (Q 
< ! ) • 

and for the oblate case (G> < 1), it is 

( l - <3)m 

* = - f - (3) 
COS CO 

The capillary length Xc is 

hdry 

with the integral of the hydraulic conductivity K(h) evalu
ated between the background pressure head (h d r y < 0) and 
the pressure at the spheroid surface. 

The solution (1) is equivalent to earlier work for flow 
from auger holes and wells. For example, Maasland (1957) 
gives solutions for flow from spheroids based on earlier 
work by Smythe (1939), and similar to results of Kirkham 
(1945) and Hvorslev (1951). 

When gravity is included, the further assumption is 
made of a Gardner soil (Gardner, 1958): 

K(h) = K exp(ah) ( 5 ) 

with A(co) from 

A(G>)= — ( 2 . 5 X 2 - 0.9961531 9 ( C J T ) 2 / 3 - l) (7) 

where s = 0.5 arD is assumed less than x"1 (an alternative 
form is provided for larger s). 

2. CALCULATIONS AND EXAMPLES 

2.1. Pressure Head Distributions for Absorption 

Absorption rates from spheroids are independent of the 
hydraulic function provided capillary length Xc and hydrau
lic conductivities do not change. The pressure head distribu
tions away from the source, however, will necessarily be 
different. Here we will compare the effects of using the 
Gardner function for hydraulic conductivity (Eq. 5) vs. the 
van Genuchten functions (1980) 

K = K S e

0 5 [ l - ( l - S e

1 / m ) m ] 2 (8) 

0 - 0 
S = (1 + |a h | y m = - ^ (9) 

In (8) and (9), K s is the saturated hydraulic conductivity, S e 

the reduced water content, 0S the saturated water content and 
0 r the residual water content. 

For the comparison, values of the Vinton fine sand will 
be chosen with K s = 152 cm d 1 , m = 0.522, n = l /( l-m), 0S 

= 0.419, 6 r = 0.031 and a v g = 0.0331 cm"1 for which kc = 
13.0 cm for h w e t = 0 and h d r y = -~ (Or et al., 2000). 
Gardner's a is taken as 1/13.0 cm"1 which will give an 
identical sorption rate. A sphere with radius of 5 cm is 
considered. 

For all forms of K, the matric potential 4> is defined by 

h 

(J) = K(h)dh (10) 

Philip (1986) derived relationships for Q with gravity for a n d i s r d a t e d i n v e r s e J t o r 

the Gardner soil. The results can be expressed m terms of 
the ratio of Q to Q s o r p : 

n Afoiis 2 

= l + T S + ^ ! _ ( 6 ) $=-L-L± (11) Q 
^sorp 
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Figure 2. Pressure head comparison for absorption in Vinton fine 
sand. Contour values are given in cm. 

For any particular value of r, $ can be found and then h 
can be found from (10) . The comparison between pressure 
head distributions for the two functions is given by Figure 
2. At the spherical source (r 0 = 5 cm), both distributions cor
respond to h = 0. At larger distance, Gardner's function 
gives larger suctions than the van Genuchten function. 
Before making general conclusions, however, note Figure 
3. For h of about -60 cm, the pressure heads are approxi
mately equal, beyond which the earlier trend reverses. 

2.2. Shape Effects on Infiltration Using the Gardner 
Function 

The effect of shapes can be compared by looking at the 
"error" introduced compared to a sphere. Two cases are 
considered by comparing flow from spheroids to that of a 
sphere with an equal sorption rate and to that of a sphere of 
equal area. The "error" is defined by 

2.3. Comparison of Infiltration With Two Hydraulic 
Functions 

For comparisons of infiltration with alternate hydraulic 
functions, van Genuchten (1980) and Gardner (1958) 
functions are again chosen. For results with the van 
Genuchten functions it is necessary to use a numerical 
solution. This was done using "HYDRUS-2D" (Simunek et 
al, 1999). A cylindrical domain of radius 100 cm and 
length 200 cm was chosen with boundaries z = -100 cm 
above and z = 100 cm below the source at z = 0. No-flow 
boundaries were chosen at the top and for r = 100 cm. A 
unit hydraulic gradient was taken at the lower boundary. 

Results are compared for two soils, the Vinton fine 
sand and the Millville silt loam, and two spherical radii r 0 = 
2.5 and 5 cm.. The parameter values for the Vinton are the 
same as used above for comparing absorptions. The 
Millville values for the van Genuchten parameters are K s = 
50.4 cm d 1 , m = 0.300, n = 1/(1-m), 6 S = 0.434, 6 r = 0.045 

1 for which Xc = 11.6 cm for 0 w e t = 0 s a t 

(Or et al, 2000). Gardner's K s is taken the 
same and a is taken as 1/11.6 which will give an identical 
sorption rate. 

Values for absorption, infiltration (with gravity) with 
the Gardner function and infiltration with the van 
Genuchten function are given in Table 2. The results with 
gravity are larger than without gravity as expected with a 
smaller difference for the 2.5 radius than for the larger 
5.0 radius. In the case of the Vinton the calculated 
infiltration rates are larger than for the Gardner function, 
but by less than 5 percent. The rates for the Millville 
showed similar behavior, except that the calculated van 
Genuchten rates were smaller than for infiltration using 
the Gardner function. Times to reach a limiting value 
were about 2 days for Vinton and 100 d for the Millville. 
The steady-state pressure head distributions are compared 

and a v g = 0.0166 cm 
and 0 d r y = 6, 

Error = 
(Q, sphere spheroid' 

^ sphere 

For the first case Q s o r p from (1) is matched by setting T r 0 

equal for the sphere and spheroid. The shape factor x gives 
a corresponding value of o> through (2) or (3). Results are 
compared in Figure 4A for two values of s = 0.5 a rG = 0.1 
and 1. For the smaller value of s = 0 . 1 , the error is very 
small and the effects of gravity are nil. For the larger value 
of s = 1, the effects of gravity are underestimated for the 
oblate case (co < 1) and overestimated for the prolate case (a) 
> 1) as expected intuitively. The overestimation for the 
prolate case is about 15 percent at o> = 10. 

For absorption based on equal areas, Table 1 is used and 
the results are compared for s = 0.5 a r 0 = 0 .01 , 0.1 and 1. 
The errors are reasonably small, except for the smallest 
value of s and larger values of G> for which the error 
approaches 2 0 percent. Differences are less than 10 percent, 
however, if a> is within the range of 0.25 to 4. 

r v g " r g 

-50 
20 40 60 

-h (cm) 
80 

Figure 3. Pressure head related to difference of radii for chosen 
van Genuchten and Gardner functions. 
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CO CO 

Figure 4. Fractional error when assume flow from spheroid is the same as a sphere of equal sorption (A) or of equal area 
(B). In both cases, rQ is the radius of the sphere. 

in Figure 5 for the Vinton fine sand. The results from the 
numerical model (Figure 5A) show some effects of the 
finite radial boundary in that the pressure heads are 
orthogonal to the boundary. The results for the Gardner 
function (Figure 5B) are based on the point solution, 
which is a reasonable approximation in that the pressure 
head near the source is very nearly spherical. In 
comparing Parts A and B of Figure 5, the pressure heads 
show nearly the same behavior, except for the boundary 
effects in Part A. 

The effects of shape were compared with o> = 0.25 
(oblate), 1 (sphere) and 4 (prolate) and all of an area of a 
sphere of radius 2.5 cm. Steady values of flow rate are 
given in Table 2. There is an increase in the rates in 
agreement with Figure 4B for increasing values of o>. 
However, the differences between the Gardner and van 

Genuchten functions remain on the order of 5 percent for 
any given shape. The pressure head distributions are 
given in Figure 6 for the Millville soil. Very little effect 
of the shape persists beyond a distance equal to a few 
radii; the most noticeable effect is that the equal areas 
gave a wetter condition as the value of o> increased (from 
0.25 to 1 to 4). A comparison with s = 0.5 a r 0 in Figure 
4B reveals the maximum "error" for 0.25 < o> < 4 should 
not exceed 4 per cent. This is verified numerically in 
Table 2. 

3 . SUMMARY AND CONCLUSIONS 

For absorption, pressure head distributions have been 
compared for the Gardner (1958) and van Genuchten 
(1980) hydraulic functions. The rates are the same in both 

Table 1. Values of T and r e q/rQ for spherical, prolate and oblate spheroids of equal volumes. 
Axes of spheroids are r e q and e is the eccentricity of the corresponding ellipse. 

1. Spherical 
0 ) = 1 
(c = 0) 

r Ix 
1 eq' 1 o 

2. Prolate 
o > > 1 
( e 2 = l - o ) - 2 ) 

to[u(l + e)] 
\ -0.5 

1 + 

3. Oblate 
o > < 1 
( e 2 = l - o 2 ) cos 2°-5,l + 

oo2[(l + e ) / ( l - e ) ] - 0 5 
2e 1 
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cases (and for all other functions) by matching values of 
capillary length Ac and hydraulic conductivity range of 
K w e t - K d r y . The pressure head was found to drop off faster 
for the van Genuchten function than for Gardner's close 
to the source and then reverse at larger distances (beyond 
about 60 cm for the chosen example). The methods used 
apply to all hydraulic functions. 

For infiltration, the effects of shape were considered 
based on two alternative criteria. The first criterion 

compared flow from spheroids to spheres which had 
equal absorption values. This worked well for s = 0.5 a r 0 

of 0.1 or smaller for all values of o>; however, for s = 1 
differences approached 20 percent for a> = 1. The second 
criterion used was for spheres which had equal surface 
areas. In this case the values agreed within about 10 per
cent for all 0.1 < Q < 10. 

Infiltration rates as affected by hydraulic function 
were compared as well as the resulting pressure 

Table 2. Comparison of spheroidal flow rates (rG is given in cm and all rates are divided by 
10 4 and are c m 3 ^ 1 ) . 

Vinton Millville 

Spheres rG = 2.5 r o = 5.0 rG = 2.5 r o = 5.0 

No gravity 6.23 12.5 1.84 3.67 

Gravity (Gardner) 6.82 14.8 2.03 4.41 

Gravity (van Genuchten) 7.19 

Vinton 

15.4 2.00 

Millville 

4.05 

Spheroids 
[Area = 4it(2.5) 2 cm 2] Oblate Sphere Prolate Oblate Sphere Prolate 

No gravity 6.08 6.23 6.51 1.79 1.84 1.92 

Gravity (Gardner) 6.65 6.82 7.15 1.98 2.03 2.13 

Gravity 6.97 7.19 9.09 1.91 2.00 2.48 
(van Genuchten) 
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distribution around the sources. This required a numerical 
solution in the case of the van Genuchten functions which 
were compared to the results for the Gardner functions. 

Philip's predictions for the infiltration rate from spheres 
were within about 5% for van Genuchten parameters with 
matching ^ c for the two soils considered (Vinton fine sand 
and Millville silt loam). Pressure distributions had the same 
general pattern, although there was a numerical artifact for 
the radial boundary for the van Genuchten results as a 
consequence of choosing a finite-sized domain. 
Effects of the shapes of the spheroids on the pressure-head 
distribution were compared for three different shapes (w = 
0.25, 1 and 4) for the van Genuchten function only. As 
expected, the shapes were similar beyond distances of a few 
radii from the source. The results were based on equal areas 
of the sources and there was a larger effect due to 
differences in flow rates than the shapes for points remote 
from the sources. 

It is encouraging that the infiltration rates using Philip's 
(1986) algebraic results are reasonable approximations to 
those for the van Genuchten (1980) functions which were 
much more difficult to evaluate. The methods and results 
are believed to be generally applicable for all soils and 
hydraulic functions. 

Acknowledgment. Contribution from Western Regional Project W-
188. 
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The Seepage Exclusion Problem for Tunnel Cavities in the 
Saturated Capillary Fringe 

E.G. Youngs 

Institute of Water and Environment, Cranfield University, Silsoe, Bedfordshire, England 

Vertical downward flow of water through the tension-saturated capillary fringe 
above a water table is perturbed by the presence of cavities that may exclude or 
al low water entry over different parts of their surface, with some critical shape 
that jus t excludes water entry over their whole surface. The analysis by Philip 
and his colleagues of the seepage exclusion problem was for a soil with an expo
nential hydraulic conductivity function that does not show a tension-saturated 
capillary fringe and was for an infinite flow field. The analysis given here is for 
the critical condition of water exclusion from two-dimensional tunnel cavities 
located above a water table in the saturated capillary fringe with a horizontal up
per boundary where the soil-water pressure is the air-entry value for the soil. 
Conformal mapping, used to solve Laplace ' s equation with these boundary con
ditions, gives the critical shape of the tunnel cavity and also the flux density dis
tribution through the upper boundary of given height. The shape of the cavity 
near its top can be approximated by a parabola that over-estimates the width of 
the cavity at depth below the apex. This is in contrast to the exact parabolic 
shape obtained for soils with an exponential hydraulic conductivity. Upper and 
lower bounds for a uniform flux density that raises the top of the saturated re
gion in the vicinity above the cavity are obtained for the calculated critical 
shape. 

1. INTRODUCTION 

Philip et al. [1989a] recall Charles and Philippe de la 
Hire's unsuccessful attempt in 1690 to intercept downward 
percolation through unsaturated soil by means of a buried 
vessel. They provide a clear account of the physics of the 
perturbation of downward flows due to the presence of 
cavities that explains the exclusion of water from the de la 
Hire's buried vessel. The physical basis for water entry 
into cavities connected to the atmosphere is that the soil-
Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM07 

water pressure at any point on the cavity wall must be at 
least atmospheric. The analysis given in a series of papers 
by Philip and his colleagues [Philip, 1989a, b; 1990; Philip 
et al, 1989a, b; Knight et al, 1989] considers the effect of 
cavity shape, hydraulic soil properties and flow velocity on 
water entry and exclusion. It illuminates the role of macro-
pores in unsaturated flow, as well as having engineering 
applications concerning the design of underground reposi
tories for nuclear waste and the design and performance of 
interceptor drains for unsaturated seepage, while giving an 
insight into the emergence and growth of stalactites in 
caves. 

The analysis of the seepage exclusion problem given by 
Philip and his colleagues [loc. cit.] assumes an exponential 
relationship between the hydraulic conductivity and the 
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soil-water pressure. This relationship was suggested by 
Gardner [1958] and allows analytical solutions of Ri
chards' equation to many two- and three-dimensional soil-
water problems. The progress that Philip made into the 
understanding of two- and three-dimensional situations 
generally was for soils showing this relationship, soils that 
have been termed "Gardner" soils by Youngs et al. [1993]. 
A comprehensive insight into the way cavities of various 
shapes affect the soil-water regime was provided through 
the use of this relationship. It gave the critical shape of 
cavities when the soil-water pressure at any point on the 
cavity wall is just less than atmospheric thus excluding 
water entry, and showed the occurrence of retarded regions 
of flow and shadow regions of reduced water content. 

The critical shape is shown to be parabolic cylindrical for 
two-dimensional tunnel cavities and paraboloidal for three-
dimensional cavities [Philip et al, 1989b] for Gardner 
soils, assumed to be infinite in extent, and depends on the 
downward flow velocity. An increase in the flow velocity 
towards a cavity of critical shape will initiate leakage over 
its whole surface. Cavities with an apically blunter shape 
(for example, a circular cylinder or sphere) will start leak
ing at their apices, whereas apically sharper ones (for ex
ample, a wedge, cone, hyperbolic cylinder, hyperboloid) 
will start leaking at some point below the apices at distance 
of order of the sorptive length above the cavity floor. 

Many soils show a finite air-entry value of soil-water 
pressure above which the soil is tension-saturated with a 
constant value of hydraulic conductivity of the saturated 
soil. "Green and Ampt" soils [Youngs at al, 1993] are a 
special case where the hydraulic conductivity at soil-water 
pressures less than the air-entry value is zero. No discus
sion of this class of soils was given by Phdip (1989a, b; 
1990), Philip et al. [1989a, b] and Knight et al [1989] con
cerning the seepage around cavities. However, they argued 
that " multidimensional flows and critical and supercritical 
seepage flows are determined primarily by the (hydraulic 
conductivity) function for small values of (the soil-water 
pressure)". The implication is that the seepage behavior 
and the critical shape of the cavities in soils having a ten
sion-saturated region of soil-water pressure would be dif
ferent from that shown by Gardner soils. 

In a tension-saturated region (not shown by a Gardner 
soil) Richards' equation for soil-water flow reduces to 
Laplace's equation Thus we can use methods of analysis 
to investigate problems of seepage in this zone that are em
ployed in the analysis of groundwater problems, such as 
electric analogue methods and well established finite dif
ference and finite element numerical methods of solution. 
For two-dimensional flows we can apply conformal map
ping techniques that have also been used by Kacimov and 

Obnosov [2000] in their study of water flow around para
bolic cavities and through parabolic inclusions. This 
method of analysis is used here to determine the critical 
shape of tunnel cavities located above a drained gravel sub
stratum in the tension-saturated capillary fringe of such 
soils. Unlike the analysis with a Gardner soil that considers 
infinite flow fields, the present analysis is for finite depths 
of saturated soil between the top of the capillary fringe and 
the gravel substratum. 

2. VERTICAL FLOW TO A WATER TABLE 

With steady infiltration over a large area to a horizontal 
freely draining gravel substratum that acts as a water table, 
the moisture profile can be calculated from [Youngs, 1957] 

z = -[-^r- ( i ) 
Jl-q/K 
0 

where p is the soil-water pressure head (that is negative in 
the flow region being considered) and K the hydraulic con
ductivity, generally a function of p, at height z above the 
water table at the interface of the gravel substratum and 
soil, and q is the steady vertical downward flow through 
the soil profile. In soils showing a distinct value of p for 
air entry when p = P, above which the soil is tension-
saturated, (1) gives the height of the capillary fringe H as 

-P 
H = r~ (2) 

\-q/K 

where K is now the hydraulic conductivity of the saturated 
soil. A cavity introduced into the saturated capillary fringe 
has the effect, not only of disturbing the vertical flow oc
curring without the presence of such a cavity, but also of 
increasing the height of the capillary fringe in the vicinity 
above. This is illustrated in Figure 1 for a uniform flux 
density through the surface forming the top of the capillary 
fringe. This corresponds to the case for precipitation on to 
the surface of a Green and Ampt soil. It is also a very good 
approximation for real soils that are tension-saturated over 
a finite soil-water pressure range, since, as argued by 
Childs [1945] concerning the flow to land drains, the de
crease of water content with decreasing soil-water pressure 
less than the air entry value ensures almost vertical flow 
with uniform precipitation on the soil surface until it 
reaches the saturated soil where it then diverges towards 
the lower sinks. 
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saturated 

datum cavity 
level 

Figure 1. The saturated capillary fringe above a well-drained 
gravel substratum. 

The soil-water pressure head pc over the surface of the 
cavity is determined by its shape, its height above the water 
table and the flow velocity. No water will enter a cavity 
connected to the atmosphere so long as the soil-water pres
sure on its walls is less than atmospheric. With a cavity of 
critical shape, the soil-water pressure is just less than zero 
(Pc 0) everywhere on its surface so that the hy
draulic head h is just less than the height above the given 
datum where h = 0. Also, the walls of the cavity are a 
stream surface. In the tension-saturated soil between the 
top of the capillary fringe and the gravel substratum, the 
hydraulic head is given by Laplace's equation subject to 
the imposed boundary conditions. Two-dimensional flows 
can then be analyzed by conformal mapping [see, for ex
ample, Aravin and Numerov, 1965; Harr, 1962: Poluhari-
nova-Kochina, 1962] which is used here to calculate the 
critical shape of tunnel cavities located above the gravel 
substratum. 

3. FORMULATION OF THE PROBLEM 

With a uniform downward flow to a water table, the po
sition of the top of the capillary fringe is raised in the vi
cinity above any cavity as illustrated in Figure 1. The ex
tent of the saturated soil emerges as part of the solution to 
the problem. The conformal mapping of the problem is 
simplified if the top of the capillary fringe is assumed hori
zontal. The flux density distribution along the top of the 
capillary fringe to allow this emerges in the solution as well 
as the critical shape of the two-dimensional cavity for wa
ter exclusion when the soil-water pressure head pc on it is 
zero so that the hydraulic head on it is h = pQ+y> = y. 

Conclusions can then be reached concerning the shape for 
water exclusion with a uniform flux density. 

4. CONFORMAL MAPPING SOLUTION 

Assuming the capillary fringe is bounded by an upper 
horizontal boundary, the complex position plane z = x + iy 
is shown by ABCDE in Figure 2a. With the gravel bound
ary as the datum level, the soil-water pressure head there is 
zero and the hydraulic head h is also zero. On the cavity 
wall, in the critical condition p = -e (s —> 0) so that 

1 
-1 

t = cos[roo/K(H+P)] 

(d) 

E 

(e) 

C D E 
T 

-1 1 

T = cos[7rO/K(-P)] 

Figure 2. Conformal mapping of the flow problem. 
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h = y- s « y. The cavity wall is also a streamline. At the 
top of the capillary fringe y = H and h = H + P where P is 
the air-entry value of the soil-water pressure head. The 
complex potential plane co =<p + itf> where y is the seepage 
velocity potential equal to -Kh and tp is the stream func
tion, is shown in Figure 2b. 

Introducing the Zhukovsky function 

Along the cavity wall where GO = -Ky and 6 = -iKx 

cosh 

2 cos 
< -ny ^ 

H + P 

1 + f i 
(9) 

0 = 6X + id2 = co - iKz = (<p + Ky) + i(tp - Ax) 

we obtain the 6 -plane shown in Figure 2c. 
The transformation 

r 
t = COS 

K(H + P) 
(3) 

gives the ^-half-plane shown in Figure 2d with the value of 
t at the top of the cavity, where z = iL and co = -KL , given 
by 

tL = cosl 
H + P 

(4) 

The 0 -plane is transformed into the r-half-plane shown in 
Figure 2e by 

T = cos 
TT6 

Coincidence of the t- and z -planes is achieved if 

2t + (\-tL) 
z = 

\+t, 

(5) 

(6) 

Thus the solution of the problem giving the potential and 
stream function is 

Equation (9) gives the critical shape of the cavity that just 
excludes water entry. The position D is where co = 0 so 
that the half-width xm of the cavity at its base where it is 
widest, is given by 

cosh" 
\ + tT 

(10) 

Along the top of the capillary fringe where y = H so that 
co = -K(H + P) + itj) , 6 = K(-P) + i(tp - x), which gives 

cosh 
Kx)} 

= 1 + 2 
/ 

cosh 

-n J V 

7C1J) 

K(H + P) 

(11) 

Differentiating this we obtain the flux density q along this 
boundary: 

dip 
dx x,y=H 

A^sinh 
'nbp-Kxj^ 

K(-P) 

sinh 
2 ( - F ) n{il>-Kx) 

K{-P) ) (H + P)(\ + tL) 
- sinh 

7ltp 

K(H + P) 

(12) 

cos K(-P) 

2 cos 
K(H + P) + 0 - ^ ) 

1 + ^ 7 

or 

<p + iy (-P) 
y-ix = - L — - + -

K 

COS 

2 cos 
n{ip + itp ) 

K(H + P) 

1^7 
+ 0 - ^ ) 

(7) 

(8) 

The flux density q0 on the upper boundary at x = 0 is 
obtained by taking limits as x -> 0 and tp 0 that leads 
to 

?0 
dtp 
dx 

K 

0,y=H u (-P) I 2 
(H + P)\(\ + tL) 

(13) 

For large x ( x -> OO ) the flux density at ^ = H is 
from (2) 

K(H + P) (14) 
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Figure 3. The critical shape of tunnel cavities for L/\P\ = 2 for (a) H/\P\ = 10, q0 = 0.S9K, = 0.9K; (b) H/\P\ = 5, 
q0 = 0.7AK, q^ = 0.8£; and (c) H/\P\ = 4, q0 = 0.60K, q^ = 0.75K. The dots are values given by (15). 

5. CRITICAL SHAPES OF CAVITIES 

The critical shapes of cavities with a height L = 2|P| for a 
range of values of the height of the top boundary H calcu
lated from (9) are shown in Figure 3. These have the gen
eral appearance of the parabolic cylindrical shapes obtained 
in the studies of Philip et al [1989b], approximating near 
the apex to the parabolas 

TT(H + P) l + tL 

(15) 

which are also shown in Figure 3. However, it is seen that 
(9) predicts that the cavity width increases with depth at a 
slower rate than that predicted by (15). The non-parabolic 
form of (9) compared to the parabolic cavity shape found 
by Philip et al [1989 b] results from assuming a Green and 
Ampt soil instead of a Gardner soil and from considering a 
finite, instead of an infinite, flow region. 

6. STREAMLINE PATTERN 

The streamline pattern calculated from (8) is shown in 
Figure 4 for the case of L/\P\ =2 and H/\P\ = 4. It is seen 
that the streamlines become almost vertical at a distance 
x/\P\ = 3 . If we identify the exponential exponent in the 
Gardner relationship for hydraulic conductivity with the re
ciprocal of the air entry value \P\ of Green and Ampt soils, 
then this agrees with the conclusions reached in the analy
sis used by Philip and his colleagues concerning the extent 
of the region of influence of a cavity. 

7. FLUX DENSITY ON UPPER BOUNDARY 

In Figure 5 is shown the flux density across the upper 
boundary y = H of the capillary fringe, calculated from 
(12) with given by (11), for L/\P\ = 2 and for a range of 
values of H/\P\. These show that the flux density variation 
is smallest when H/\P\ is large, corresponding to high flow 
rates. It is also noted that the value of q approaches q^ 
rapidly as x increases. For example, for L/\P\ = 2 and 
H/\P\ = 4 for which the lowest value of q at JC = 0 is q$ = 
0.6K and its maximum value qo0 = 0.15K, the value of q is 
0 . 9 7 2 ^ a tx / |P | = 2 and 0 . 9 9 4 ^ a tx / |P | = 3. It can be 
argued that if the flux density were uniformly q0, then the 
cavity would not allow water entry over any part of its sur
face if constructed with the calculated shape for that value. 
However, it would drip over some parts of its surface if the 
flux density were uniformly at the greater value q^. 

8. MAXIMUM WIDTH OF CAVITY 

The height of the cavity L for a flux density q0 at JC = 0 
for a maximum cavity half-width x m is obtained from (4), 
(10) and (13): 

ic l-q0/K' 

3 - cosh 

cos 
- l 

r 7LXn ^ 

(-P)J 

1 + cosh 
^ KXyy ^ 

V 

cosh 
\ 2 ( - / > ) . 

(16) 
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L for a flux density at x -> oo is obtained from (4), (10) are reasonably close. It is interesting to note that (20) lies 
and (14): 

L = (-P) ^/K 
7i l-qao/K 

cos 

3 - cosh 
{ TLX ^ Jfl 

V (-P) 

1 + cosh 
(rP) 

(17) 

The uniform flux density q for a given cavity height L 
and a given cavity width 2 x m that would just exclude water 
everywhere, lies between q0 and q^ . Thus (16) and (17) 
provide bounds for L. These are shown in Fig.6 in which 
L, expressed as a fraction of is plotted against the flux 
density q, expressed as a fraction of K, for values of 2 x m = 
2.0, 1.0 and 0.2. Alternatively bounds for the dimensionless 
maximum width of cavity 2x m / |P | at a given value of L/\P\ 
can be plotted against q/K, as shown in Fig.7. It is seen 
that the bounds become closer the smaller the cavity width, 
practically coalescing for x m < 0.2. 

For small values of L/\P\ and large values of H/\P\ (cor
responding to large values of q/K) for which x m / |P | is 
small, we can write 

cosh 
7TXn 

(-P) 

7TX„ 

(-P) 
(18) 

and 

^ = l + 2 t a n 2 

2(H + P) 
« l + 2 

TlL 

2(H + P) 
(19) 

Since for these conditions 

K(H + P) 

H 

using (18) and (19) in (10) we obtain 

L 

l-q/K 

q/K 
(20) 

In Figure 8, 2x m /Z given by (20) is plotted against q/K 
and compared with the calculated values of the bounds for 
different values of L/\P\. The agreement is good for all 
values of L/\P\ near q/K = 1. The range of values of q/K 
for which (20) is a good approximation is better for small 
values of L/\P\ when the maximum and minimum bounds 

between all the calculated maximum and minimum bounds, 
so it would appear that this simple equation is a good guide 
to the maximum width of the cavity for water exclusion. 

4 -r 

Figure 4. The streamline pattern for flow around a critical tun
nel cavity for L/\P\ = 2 and H/\P\ = 4. The numbers by the lines 
are values of y//K. 

Figure 5. The flux density across y : 

by the lines are values of H/\P\. 
H for L/\P\ =2. Numbers 
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Figure 6. The bounds given by (16) (thick upper lines) and (17) 
(thin lower lines) for the relationship between the dimensionless 
cavity height L/\P\ and dimensionless flux density q/K for values 
of the dimensionless critical cavity widths 2xm/ |P| shown by the 
curves. 

9. DISCUSSION 

Elegant analytical solutions of Richards' equation to 
two- and three-dimensional soil-water flow problems are 
possible when soils are assumed to behave as Gardner soils 
with hydraulic conductivity assumed to be an exponential 
function of the soil-water pressure. A concern of analytical 
work based on this assumption that Philip accepted so 
readily since it could produce such elegant analytical solu
tions, is that real soils often show a tension-saturated re
gion. While analyses of Gardner soils cannot take this into 
account, it is the essence of analyses of Green and Ampt 
soils that Philip often dismissed as being too unlike real 
soils. By considering results obtained for both types of 
soil, a more complete understanding of soil-water behavior 
is obtained. Generally, solutions applicable to real soils are 
possible with numerical methods employing hydraulic 
conductivity functions given in numerical form that Philip 
[1956, 1957] used to make his early important advances in 
infiltration theory but thereafter abandoned in favor of 
analytical studies that he considered gave a better insight 
into the physical mechanisms although they used hypo
thetical soil hydraulic properties. It is surprising that today, 
when computers can more easily handle such data, analyti
cal hydraulic functions seem universally accepted (often 
without validation) even in numerical studies of Richards' 
equation. 

This paper considers the seepage exclusion from tunnel 
cavities of critical shape located in the saturated capillary 
fringe, employing the method of conformal mapping to 
solve the simpler Laplace's equation, made possible by the 
uniform hydraulic conductivity, instead of Richards' equa
tion. The critical shape of tunnel cavities calculated for 
this situation is approximately parabolic, similar to that 
obtained for a Gardner soil by Philip et al. [1989b]. Fur
thermore, a similar conclusion can be reached concerning 
the extent of the region of influence of a cavity. Thus, this 
is another example where results from the two analyses are 
in fair agreement, as is the case for two- and three-
dimensional infiltration discussed by Youngs [1988]. 

Philip et al. [1989a, b] discuss the application of their 
work on seepage exclusion from underground cavities in 
infinite Gardner soils, particularly to the design of reposito
ries for nuclear waste. The analysis given here considers 
the critical shape of cavities for water exclusion when they 
are located in a finite saturated capillary fringe (not pro
duced in Gardner soils). Besides the application to the de
sign of underground repositories, the analyses also identify 
the size and shape of tunnels that can be constructed in 
soils to maintain soil-water pressures below atmospheric 
and thus minimize collapse in such circumstances. They 
are also relevant to activities connected with the collection 
and sampling of water flowing through industrial waste 
heaps as well as to agricultural drains. 

0.4 0.6 0.8 1 

q/K 

Figure 7. The bounds given by the analysis (shown by the thick 
and thin lines) for the relationship between the dimensionless 
critical cavity width 2xml\P\ and dimensionless flux density q/K 
for values of the dimensionless cavity height L/\P\ shown by the 
curves. 
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0.5 0.6 0.7 0.8 0.9 1 

q/K 

Figure 8. The relationship between the dimensionless critical 
cavity width 2xm/L and dimensionless precipitation q/K. The 
thick lower lines are values for the bounds given by (16) and the 
thin upper lines are values for the bounds given by (17). Num
bers by the curves are values of L/\P\. The dots are values given 
by (20). 

Philip et.al. [1989b] give design criteria for water exclu
sion calculated for cavities in Yolo light clay soil whose 
hydraulic conductivity function does not exhibit a tension-
saturated region. The results shown in Figures 6, 7 and 8 
and approximated by equation (20) provide the maximum 
width of tunnel cavities for water exclusion for a given 
vertical flow rate when they are located in the saturated 
capillary fringe of a given soil. Thus, with a percolation 
rate equal \o§.5K for a tunnel height of 5m, the maximum 
width of the base is 10m, but with a rate equal to 0.15K it is 
3.33 m and only 1.11 m for a rate equal to 0.9K 

While this paper has discussed the two extremes of a 
Gardner and of a Green and Ampt soil in the context of 
water exclusion from cavities, generally more progress 
needs to be done to investigate soil-water behavior for soils 
having other soil hydraulic functions. For example, the 
hydraulic conductivity function of many soils would be 
better represented by a region of tension-saturation down to 
a soil-water pressure of P below which the hydraulic con
ductivity is an exponential function of the soil-water pres
sure. Recent work by this author has used a finite differ
ence method to consider two- and three-dimensional infil
tration into soils showing such a hydraulic conductivity re
lationship, adding to the confidence in adopting results 
from more idealized soil hydraulic functions that John 
Philip's prolific publications provided. 
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Column Flow in Stratified Soils and 
Fingers in Hele-Shaw Cells: A Review 

J.-Yves Parlange, T a m m o S. Steenhuis, Ling Li, 
D. A. Barry, and Frank Stagnitti 

W e examine the development of instability studies in the oil industry and in soil 
physics . The former being far more advanced has tended to mo ld the latter. This 
had some unfortunate consequences as oil studies tended to rely heavi ly on Hele-
Shaw cells which provide a poor mode l for soils. In soil physics creation of co lumn 
flow in soils has serious implicat ions for infiltration and the transport of pol lutants . 
It is to John Phi l ip ' s credit that he recognized fairly early the practical impor tance 
of instability in soils. 

INTRODUCTION 

In his 1972 review [Philip, 1972] on "future problems of 
soil water research", John Philip listed "Stability of soil 
water flows" as the first in a list of five topics. He stated "till 
now almost all analyses of water movement in unsaturated 
soils have contained the implicit assumption that solutions of 
the flow equation are stable for flows in homogeneous soils. 
This appears to be very reasonable since the diffusion 
character of the equation suggests that disturbances will be 
damped and not magnified; but it remains an open and 
interesting question whether the possibility of capillary 
hysteresis affects flow stability in homogeneous soils. Hill 
and Parlange have performed elegant experiments on 
instability (fingering) during infiltration into a soil with a 
fine-textured layer over a coarser-textured one....contact 
angle problems in a surface layer may well be explained as 
the expression of instability....This work is certain to stimu
late further studies of stability..." 

This long quote covers much of what is discussed in the 
following. Although Hill and Parlange [1972] was in press 
at the time, Philip was aware of the study as the second 
author of that paper was on sabbatical at the Pye Laboratory. 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM08 

Even at that early stage, John Philip recognized the important 
implications of the work in modeling infiltration in the field 
as subsequently documented by Starr et al. [1978]. His 
statement on hysteresis was remarkably accurate as hyster
esis is ubiquitous in fingering even though that recognition 
has been slow to develop. The interaction between contact 
angle problems and fingering remains a fundamental ques
tion and his suggestion that further studies would follow 
proved quite prophetic. Indeed shortly afterwards Raats 
[1973] and Bridge and Collis-George [1973] were the first 
to refer to Hill and Parlange in their respectively theoretical 
and experimental studies. 

Philip [1972] also mentioned the earlier papers of 
Saffman and Taylor [1958] and Wooding [1969] which 
provide some theoretical background to fingering in strati
fied porous media as will be discussed later. In his important 
paper on fingering, Raats [1973] points out that "in almost 
all studies it has been tacitly assumed that small perturba
tions in flow patterns will tend to disappear. In other words, 
it is usually assumed that the flows are stable. Recent 
experiments by Hill and Parlange [1972] involving infiltra
tion into layered soils suggest that this assumption is not 
always justified." 

EARLY WORK 

It is curious that the practical importance of instability in 
stratified soils was not recognized prior to 1972. As stated 

79 
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by Baker and Hillel [1990], "the phenomenon of fingering 
during infiltration into layered soils has attracted increasing 
interest since the work of Hill and Parlange [1972], who 
were among the first to demonstrate that fingering can occur 
in a fine-over coarse-textured profile". Most likely the 
earlier "demonstrations" had not obvious enough connection 
to infiltration in stratified soils, e.g. Horton and Rogers 
[1945]; Lapwood [1948]; Heller [1966]; Elder [1968]; and 
Bachmat and Elrick [1970] as they were concerned with 
instabilities caused by gradients of temperature or solute 
concentration in miscible liquids. Others were difficult to 
discover [Engelberts and Klinkenberg, 1951; DeRoo, 1952; 
and Tabuchi, 1961]. Tabuchi [1961] in particular drew a 
rough sketch of an embryonic finger starting to form in a 
layer of coarse glass beads underneath a layer of fine glass 
beads and obtained a necessary stability condition independ
ently of Saffman and Taylor [1958]. Smith [1967] came 
close to our present understanding of fingering with "infil
tration when the rate of rainfall is less than the infiltration 
capacity of the sand...For example, if a succession of drops 
from a burette falls upon a sand for several hours, it will be 
observed that these drops pass downwards in a filament 
which when established, does not spread. The balance of the 
sand is either dry or in an unsaturated condition...The 
problem arises largely in very light rainfall." The question 
of fingering in very light rainfall will be discussed briefly 
later on. Although not entirely clear, Crosby et al. [1968] 
referred to Smith's "ribbons" and possibly observed them in 
the case of a fine material overlying a coarse material..." and 
"this mechanism is the apparent explanation of the dry 
conditions found beneath the drain field in the Spokane 
Valley." An earlier paper by Miller and Gardner [1962] 
made similar points, but more emphasis was placed on the 
important point that "when most of the pores in a layer were 
larger than those in the surrounding soil, infiltration was 
temporarily inhibited...water must accumulate at a layer-soil 
interface until it is at a tension low enough to allow it to 
move into pores in the layer." Then "as the water passes 
through an initially dry sand layer, it characteristically wets 
the sand in only a few places and the remainder of the sand 
remains dry. Liquid movement through the sand is restricted 
to the water-filled channels." However the sand layers were 
only half a centimeter thick and eventually became uni
formly wet. 

Other papers put more emphasis on the presence of rib
bons/tongues/fingers/columns, but as they were clearly 
caused by water repellency or air compressibility presumably 
these effects were seen as being of limited importance. For 
instance Bond [1964] states "rain penetrates into water 
repellent sands through narrow tongues, leaving the interven

ing soil quite dry" and those "dry zones tend to persist". 
Bond also gave clear sketches of those tongues (looking 
more like columns). Peck [1965] also observed tongues in 
sand due to air compressibility and mentioned them briefly 
in two places: "After a short initial period of wetting it was 
observed that tongues developed in bounded columns of the 
sand and that in the long columns the tongues grew to be the 
dominant feature of each profile. This is an example of a 
density instability with analogies with that discussed by 
Saffman and Taylor". In the second mention the tongues are 
somewhat dismissed, i.e. "moisture profiles in bounded 
columns of the sand are not shown here because the profiles 
were dominated by the tongues, and the mean moisture 
contact.. .is not considered useful information" and no sketch 
of the tongues was presented. 

In all those papers, with the exception of Tabuchi [1961] 
and Bond [1964] the formation of tongues was not central to 
the papers and thus were more easily missed. Indeed all 
those early papers are being "rediscovered" since the early 
70's when the importance of fingering as a fundamental 
process for the analysis of infiltration of water in stratified 
soils was finally appreciated [Philip, 1972; and Hill and 
Parlange, 1972]. As mentioned by Hill and Parlange [1972] 
in the US alone "there are about 350 series in family group
ings with fine or coarse silty, fine or coarse loamy layers 
over sandy or sandy-skeletal textures. In those soils, the 
wetting fronts following rains or irrigation should be 
unstable". The increasing concern about pollution of aquifers 
and the obvious mechanism provided by fingering, also 
mentioned by Hill and Parlange [1972], made it harder to 
ignore this important process. Undoubtedly as time passes 
more of those early papers will be rediscovered. 

The early awareness of fingering in petroleum engineer
ing noticed in several papers, e.g. Hillel and Baker [1988]; 
and White et al. [1976], had no parallel in soil physics, in 
part because of reference to oil and Hele-Shaw cells 
[Saffman and Taylor, 1958; Chuoke et al, 1959; and 
Wooding, 1969]. Compounding the difficulty even further 
is that oil being viscous, viscosity became a dominant 
feature, or as Saffman and Taylor [1958] begin their paper: 
"when a viscous fluid filling the voids in a porous medium 
is driven forwards by the pressure of another driving fluid, 
the interface between them is liable to be unstable if the 
driving fluid is the less viscous of the two. This condition 
occurs in oil fields", then in their Hele-Shaw cell experiment 
they displaced glycerine by compressed air, not an obvious 
analogue to water displacing air in a stratified medium. In 
fact in the latter case viscosity is largely irrelevant as will 
become clear later on (although the term "viscous fingering" 
is sometimes still used incorrectly to describe the phe-
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nomenon). Of course this does not mean that some of the 
equations in Saffman and Taylor [1958] and the similar ones 
in Chuoke etal. [1959] cannot be properly reinterpreted. For 
instance the general necessary condition for instability, for 
water and air, neglecting both viscosity and density of air 
becomes 

K>Q (1) 

where Q is the water flux imposed by the upper layer of fine 
material, and K is some conductivity of water in the coarse 
layer underneath. Note that since conductivity is an increas
ing function of the water content, it is certainly necessary 
that 

K s > 8 (2) 

where Ks has its maximum value at saturation. Clearly with 
a Hele-Shaw cell saturation is always imposed and there is 
no ambiguity as to the value of K. Hill and Parlange [1972] 
also assumed that the fingers were saturated and thus took 
condition (2). Condition (2) is an obvious necessary condi
tion since if Q was greater than Ks the whole area would have 
to be saturated to carry the water and no finger would be 
present. It is a fundamental contribution of Hillel [1987], 
Hillel and Baker [1988], and Baker and Hillel [1990] to have 
noticed that condition (2) is not constraining enough and 
condition (1) with (usually) a lower K must be satisfied. 
They associate this value with a "water entry" value for the 
water to penetrate the coarse layer. This condition provides 
a mechanism to explain the constriction of the water flow. 
Those points of entry were clearly observed by Glass et al. 
[1989]. Hillel and Baker [1988] further suggest that upon 
rewetting the water entry suction will be higher, resulting in 
drier fingers which was also observed by Glass et al [1989] 
leading to interesting hysteresis phenomena [Liu etal, 1995; 
and Raats, 1973]. For instance hysteresis is crucial by 
limiting lateral capillary diffusion of water which would 
otherwise remove the presence of fingers. 

Glass et al [1989] further observed that there were too 
many points of entry for all of them to become fingers. 
Then, merger takes place until only a few fingers with an 
optimal size, remain. These mergers took place just below 
the interface of the layers in the original experiments of Hill 
and Parlange [1972] and could not be observed. Because of 
a more homogeneous packing the merger in Glass et al 
[1989] took place over a greater distance and could be 
clearly observed. The region where mergers take place is 
called the induction zone [Hill and Parlange, 1972]. 

Saffman and Taylor [1958] predicted the optimal width 
of the fingers in a Hele-Shaw cell by balancing the destabi

lizing effects of gravity and the stabilizing effect of surface 
tension. The same formula was then "extended" by Chuoke 
et al [1959] for a porous medium replacing the surface 
tension which loses its meaning for a diffuse wetting front by 
an "effective" surface tension. Well aware of this limitation, 
Raats [1973] and Philip [1975a] limited themselves to 
"Green and Ampt soils" with discontinuous wetting fronts 
and extended condition (1) for other situations, e.g. with 
nonwetting soils and compression of the air below the 
invading water. 

It is interesting that Raats [1973] suggests that instability 
will take place for nonponding rainfall and a homogeneous, 
i.e. not stratified, soil, whereas Philip [1975a] does not. 
Raats [1973] states "infiltration of nonponding rainfall is 
very similar to infiltration of ponded water through a fine 
layer or crust as observed by Hill and Parlange [1972]". 
Indeed following this similarity one must look for some 
equivalent mechanism resulting in the concentration of flow 
provided by the points of entry in layered soils. One might 
speculate that when a large raindrop (large compared to the 
pore size) hits the soil surface with a positive pressure it will 
enter primarily through the largest pores and passages and if 
enough raindrops fall in the same neighborhood they might 
merge fast enough to form a finger? This could possibly 
explain why at low rainfall rates when raindrops are less 
likely to merge, fingers become rapidly wider and eventually 
the instability disappears [Yao and Hendrickx, 1996]. 
Another possible mechanism might be linked to some 
wettability effects. However, Selker et al [1992a,b,c] and 
Yao and Hendrickx [1996] observed fingers under nonpond
ing rainfall and wetting sand, although wetting problems 
may well have affected field and laboratory observations, 
e.g. Hendrickx and Yao [1996] and Selker and Schroth 
[1998]. As discussed by Bond [1964] we expect water 
repellent soils to exhibit fingering, see also Bauters et al 
[1998, 2000]. Note that oil displaced by water will tend to 
leave some oily residue on the sand grains leading to contact 
angle problems [Rimmer et al, 1996] which may well affect 
the oil flow [DiCarlo et al, 1997, 2000; Darnault et al, 
1998; Rimmer et al, 1998; and Chao et al, 2000]. Thus, as 
suggested by Philip [1972] contact angle effects should 
always be considered at least as a contributing factor in the 
formation of fingers, especially for homogeneous soils. 

Philip [1975a,b] was well aware that the limitations of a 
Green and Ampt soil "cast some doubt on the relevance of 
the model" but it "has the great advantage of being amenable 
to stability analysis. Unfortunately, formulations based on 
the Richards equation... are less so". Indeed he refers properly 
to the model as a "generalized Hele-Shaw cell" and sug
gested "stability studies of appropriate forms of the Richards 
equation", although "a general attack promises to be very 
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difficult". Philip [1975b] then provided an estimate of the 
finger width, corrected later by White et al [1976], who also 
presented some experimental results, again mostly with a 
Hele-Shaw cell, because "it satisfies the criteria of the delta-
function model precisely, whereas a soil water system can at 
best approximate them". They also observed fingering with 
a coarse sand by increasing the air pressure ahead of the 
wetting front. They concluded the study with further doubt 
on the delta-function model and the need of more "work on 
the stability of actual diffuse fronts", as done by Parlange 
and Hill [1976]. 

ANALYSIS 

Parlange and Hill [1976] derived an expression for the 
finger width, d, based on the analysis of Richards equation, 
i.e. a diffuse front, yielding 

d = 71 (3) 

where S is the sorptivity given by 

s2 = [ D \6+~d-26. 
e. 

de, (4) 

where D is the soil-water diffusivity and 0{ is the initial water 
content, assumed small enough that the soil-water conductiv
ity K at 0t is negligible compared to its value at 0. The 
coefficient n is obtained for a two-dimensional finger as 
often observed in the laboratory, in the field where fingers 
are axisymmetric (more or less) the coefficient n should be 
replaced by 4.8 [Glass et al, 1991]. 

Initially Parlange and Hill [1976] assumed that 0 m Eq. 
(3) corresponds to saturation. However fingers are rarely 
saturated in soils (as they are in a Hele-Shaw cell). In fact 
their water content varies with depth. It was shown by 
Selker et al [1992a,b] that Ovaries with depth (measured 
from the interface between layers) according to the equation 

Ddd 

K-v (5) 

where v is the constant downward speed of the fingers 
obtained after a short time, i.e. after all mergers have taken 
place and the fingers have reached a steady configuration. 

0O is the value of 0 at z = 0 and if we assume, following 
Hillel and Baker [1988], that the maximum value of # corre
sponds to a water entry value 0e, then, Eq. (5) gives 

vt = 
Dd0 

e M ' - 4 ) 
(6) 

which gives 0o(t) when v and 0e are known. In particular 
when t -> oo 0o approaches an asymptotic value 0oao with 

K[0 = 0 ) =v[0 -0). 
\ o°°J \ o°° if (7) 

Note that between 0e and 0O all properties are measured on 
a drying curve of the matric potential. However, as the 
finger moves downwards within the sand there is a very 
narrow zone at the finger tip where the water content 
increases rapidly, thus operating on a wetting curve but 
reliable matric potential data are impossible to get in that 
region [Liu et al, 1995; and Selker et al, 1992a,b]. 

Going back to Eq. (3) it is not entirely clear which value 
of 0 should be used to determine S and K As noted by Hillel 
and Baker [1988], in agreement with Eqs. (1) and (3), we 
require 1 > Q/K or the total soil cross-section would be 
required to carry the water. This is true whenever 0O < 0 < 
0e is used. Indeed for steady state conditions the wetted 
fraction of soil is F„ = Q/KQ „. This might suggest using 0 = 
0OOO in Eq. (3) however the fingers reach their thickness d 
when 0O is somewhat above 0OOO but certainly less than 0e. 
When 0O - 0e as already mentioned the fingers are very 
narrow and mergers are required before d is obtained. Call 
ffQ this (unknown) value of 0O to use in Eq. (3) and K*0 the 
corresponding value of KQ. 

First if F* = Q/K*Q is much less than one, Q/K can be 
neglected in Eq. (3). Glass etal [1991] looked at the impact 
of [1 - Q/K]'1 on the value of d. By the time this is signifi
cant so many fingers are present that the impact of fingering, 
i.e. the fact that the flow bypasses most of the soil is lost. 
Thus for fingering to be important in practice, we require 
that Q/K be negligible in Eq. (3). Then we obtain a simpler 
equation for d, 

d* = 7i S*2IK*[0*-0\ 
O O \ O If 

(8) 

Note that both S*Q

 2 and K*0 are inversely proportional to the 
viscosity, thus d* is independent of viscosity. The influence 
of viscosity can be felt only through [1 - Q/K*J and thus is 
irrelevant when fingering is important and F* is small. 

We are now going to show that d* has only a very small 
dependence on ffQ. For coarse sands and as long as 0 is not 
too close to zero and to 0e, Parlange and Hogarth [1985] 
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showed that the description of the soil-water conductivity of 
Gardner [1958] is realistic: 

K =K;expa\h-h;) (9) 

where a is more or less constant and h is the matric potential. 
Then Eq. (4) shows that for a coarse sand 

S*2 - 2 (8* -0 / ) i T / a (10) 

Hence we find the remarkably simple result, 

d* - 2nla, (11) 

i.e. the dependence on ffQ and 0t has disappeared. This ex
plains why as soon as 6Q is somewhat less than 6e, d is 
essentially constant in time and space and is inversely 
proportional to Gardner's a. It must be remembered that Eq. 
(11) is a crude approximation. In particular it requires that 
F*«l. Under low flow rates, Yao and Hendrickx [1996] 
observed widening fingers and Eq. (3) should be used until 
F* = 1 and the instability disappears. 

DISCUSSION 

We have limited ourselves so far to estimating d when 
only a liquid, e.g. water or oil, and a gas, e.g. air are present. 
It would be certainly important to extend the formula to the 
case of oil and water or even with three fluids, e.g. oil, water 
and air. One such extension, for oil and water, is based on a 
fundamentally wrong derivation. As the error was also 
somewhat easy to make, we shall briefly look at its cause; 
more details can be found in Chandler et al [1998]. If, for 
instance water displaces oil, we consider the region where no 
oil is present and we call the lower boundary of this region, 
the "front". Ahead of the front there is a narrow zone where 
both oil and water are present and finally there is only oil. 
To solve the instability problem it is necessary to obtain the 
dependence of the front velocity on its curvature. If that 
dependence is neglected all wave lengths are found to be 
unstable, the smaller ones growing faster and only condition 
(1) is obtained [Saffinan and Taylor, 1958]. The curvature 
effect stabilizes the small wave lengths and an estimate of d 
is obtained [Parlange and Hill, 1976]. To obtain the 
dependence of the front velocity on curvature, the flow in the 
narrow diffuse region, ahead of it, must be analyzed and to 
do so we must know the flow further ahead (here the pure 
oil). In the case of a gas [Parlange and Hill, 1976] this 
presented no problem as it was assumed that the air could 
move freely ahead and did not affect the flow of water. 
Usually this will not be the case when oil is displaced by 

water, although it represents a limiting case [Chandler et al, 
1998]. Glass et al [1991] instead impose that the diffuse 
front has zero thickness which is in fundamental contradic
tion with the existence of a diffuse front in a soil! Conse
quently the result must be seen as pure speculation for a soil 
(although it would hold for a Hele-Shaw cell). It is clear that 
any constraint on the oil flow will widen the fingers and 
hence assuming that the oil is free to move [Chandler et al, 
1998] provides the minimum estimate for finger size. 

We have pointed out in several places that Hele-Shaw 
cells are not a very good analogue to a soil for finger 
analysis. In addition since fingers can only be saturated in a 
Hele-Shaw cell, there is no diffuse front and surface tension 
is affected by the curvature of the finger, rather than the 
curvature of meniscii between grains. There is another even 
more fundamental reason not to use the Hele-Shaw cells as 
a substitute for soils. All the experiments with Hele-Shaw 
cells show fingers connected with each other at their base 
[Saffman and Taylor, 1958; Chuoke, 1959; Wooding, 1969; 
White et al, 1976, 1977; and Tamai et al, 1987] and that 
base tends to move with the flow, i.e. the fingers are often 
very short. On the other hand with fingering in stratified 
soils, the fingers are separated below the induction region 
and hence their base does not move. Also the width of the 
fingers is constant whereas in Hele-Shaw cells, they tend to 
grow in width until they join at their base, indeed looking 
much like fingers in a hand, whereas in stratified soils they 
look more like "columns". It is unfortunate that following 
the influence of Saffman and Taylor [1958], Hill and 
Parlange [1972] kept the word "finger" and it is to be hoped 
that in the future the words "column flow" be adopted as 
more descriptive for stratified soils. We also believe that the 
differences in appearance are based on a fundamental 
physical difference in the flows. When the columns are 
formed in the stratified soil we expect some lateral diffusion, 
and drier sand between the columns can be sustained only 
because of hysteresis: to diffuse in the drier sand the columns 
are on a drying curve and on a wetting curve in between, so 
for the same potential differences in water content can be 
maintained [DiCarlo, 1999]. Certainly no hysteresis should 
normally be present in a Hele-Shaw cell when water and air 
are the two fluids so the fingers should become thicker until 
they finally merge. Raats [1973] also pointed out that 
whereas the tip is on a wetting curve the remainder of the 
column flow is on a drying curve. 

CONCLUSION 

In this short review we have tried to connect the histories 
of flow instability in porous media as they developed in 
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petroleum studies and in soil physics. That connection was 
strongly influenced through the Hele-Shaw cell analogue, 
which turns out to have been at least misleading, both 
theoretically and experimentally, as fingers in the cells and 
column flow in stratified soils have very different properties 
and appearances. The presence of a fine textured layer over 
a coarse textured layer readily explains the appearance of 
points of entry at their interface resulting in column flow. In 
the case of a homogeneous soil the reasons for the 
concentration of flow are more speculative. 
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Philip [1975] was the first to investigate the stability of a wett ing front in a 
stratified soil using rigorous hydrodynamic arguments . He based his analysis 
on the Green and Ampt [1911] model and treated permeabil i ty as a known 
function of depth. W e adopt the same model to develop integro-differential 
equations for leading statistical moments of wett ing front propagat ion in a 
three-dimensional, randomly heterogeneous soil. W e solve these equat ions 
analytically for mean front posit ion and mean pressure head gradient in one 
spatial dimension, to second order in the standard deviat ion of log conduct iv
ity. W e do the same for second moments of front posi t ions and pressure head 
gradient, which serve as measures of predictive uncertainty. T o verify the ac
curacy of our solution, we compare it with the results of numerical Mon te 
Carlo simulations. 

INTRODUCTION 

Unstable wetting fronts have been reported in many field 
tests and laboratory experiments, [e.g. Chen et al., 1995]. 
The onset of instability can be understood in general terms 
within the context of linear theories developed for the im
miscible displacement of one fluid by another in a 
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Hele-Shaw cell [Saffman and Taylor, 1958] and in a mac-
roscopically uniform porous medium [Chuoke et al., 1959]; 
see Neuman and Chen [1996] for a recent extension. 

In natural soils and rocks the phenomenon is strongly 
colored by systematic and random spatial variations in 
macroscopic medium properties. It has become common to 
treat medium properties as random fields [e.g. Warrick et 
al., 1986; Dagan and Neuman, 1997]. A stochastic analysis 
of wetting front instability in randomly stratified soils has 
been published by Chen and Neuman [1996]. Their work is 
closely related to earlier deterministic analyses by Raats 
[1973] and especially Philip [1975]. Both Raats and Philip 
considered a simple one-dimensional model of a horizontal 
wetting front due to Green and Ampt [1911]. In this model, 
the wetting front forms a sharp interface between a uni-

87 
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formly wet region above, and a relatively dry region of uni
form volumetric water content below. Philip studied the ef
fect of vertical permeability trends on the instability of a 
Green and Ampt front. He found that the front is unstable 
when pressure head immediately above it increases down
ward, but is stable otherwise. A continuous or sudden in
crease in permeability with depth across the wetting front 
tends to destabilize it. 

Chen and Neuman [1996] derived a probabilistic crite
rion for the onset of wetting front instability during infil
tration into a randomly stratified soil. They took the wet
ting front to form a sharp boundary and treated the natural 
log hydraulic conductivity, Y = In K , as a random multi
variate Gaussian function of space. Whereas the mean, 
(Y), of this function may exhibit a spatial drift, its fluctua
tions Y' = Y — (Y^ about the mean are statistically homo
geneous with zero mean, (Y'} = 0, constant variance, G\ , 

and spatial correlation scale, lY. The authors obtained 
closed-form expressions for the probability of instability 
and for the mean critical wave number, both directly and 
via a first-order reliability method. They then used Monte 
Carlo simulations to verify their analytical solutions and to 
determine the mean maximum rate of incipient finger 
growth and corresponding mean wave number. Chen and 
Neuman found that random fluctuations in soil permeability 
may have either a stabilizing or a destabilizing effect on a 
wetting front, depending on the spatial trend, variance and 
spatial correlation scale of log hydraulic conductivity. 

Shariati and Yortsos [2001] have addressed the effect of 
nonrandom stratification on the stability of miscible fronts 
without dispersion. Readers interested in additional refer
ences to unstable fronts in random and nonrandom hetero
geneous media should consult their paper and that of Chen 
and Neuman [1996]. 

In this paper, we adopt the Green and Ampt model to de
velop integro-differential equations for leading statistical 
moments of wetting front propagation in a three-
dimensional, randomly heterogeneous soil. We solve these 
equations analytically for the mean and variance of front 
depth and pressure head gradient in one spatial dimension, 
to second order in the standard deviation, aY, of log con
ductivity. This renders our solution nominally valid for 
mildly heterogeneous soils with oY« 1. Our analytical 

solution requires no assumptions about the statistical distri
bution of Y. To verify its accuracy, we compare it with the 
results of numerical Monte Carlo simulations. The com
parison shows that the solution "works" for both mildly and 
moderately heterogeneous soils with oY at least as large as 
1. 

PROBLEM DEFINITION 

Consider a three-dimensional flow domain Q r enclosing 
a randomly heterogeneous soil (Fig. 1). Constant hydraulic 
head H is maintained at the soil surface, which acts as a 
Dirichlet boundary TD at elevation z = 0 . It causes a 

sharp wetting front y to propagate downward, separating a 
wetted region Q ( Q c Q r ) above the front from a non-
wetted region below it. The wetted region is at constant 
volumetric water content Qx and the non-wetted region at 
constant residual water content G2. No flow takes place 
across the vertical Neumann boundaries TN. Capillary 
pressure, pc(xy), at any point xy on the front is equal to an 
effective entry pressure, pe, of water into the unsaturated 
soil. Methods to determine pe on the basis of moisture re
tention and relative conductivity characteristics of uniform 
and heterogeneous soils have been reviewed by Chen and 
Neuman [1996]. These authors found that, in a randomly 
stratified soil, variations in effective entry pressure have a 
negligible effect on the onset of wetting front instability. 
We therefore take pe to be a deterministic constant. 

As water content behind the front is constant, transient 
flow in Q is governed by 

V q ( x , 0 = 0 x e Q , f > 0 (1) 

coupled with Darcy's law 

q(x,f) = -K(x)Vh(x,t) xe Q , t > 0 (2) 

and subject to Dirichlet and Neumann boundary conditions 

h(x9t) = H xeVD (3) 

^ = 0 x e r „ (4) 
dxx 

where q is flux, x = (xx,yx,zx) is a system of Cartesian 
coordinates with zx defined to be positive downward, t is 
time, K is hydraulic conductivity, and h = pwl pwg - zx is 
hydraulic head, pw being pressure and pw the density of 
water. The front y , whose position is defined uniquely by 
a depth function £(xx,yxJt) = zx \ xe y , is initially at the 
soil surface so that 

Z(xx,yx,0)=!;0(xx,y%) = 0 t = 0 (5) 
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Figure l . Flow domain Q (wetted region). Green's function 
defined on Q,T that consists of wetted region and unwetted 

region, separated by front y . Dirichlet boundary TD with 
prescribed constant hydraulic head h=H.. No-flow 
Neumann boundary TN. 

At the front, 

h(x,t) = a-£(xx,yx,t) zx=£(xx,yx,t)), t>0 (6) 

n (x , f ) -q (x ,O = 0V n(x,f) zx =Z(xx,yx,t) J>0 (7) 

where a = (p0+ pe)lpwg , p0 is water pressure at the 

front due to excess air pressure (relative to atmospheric), 
g is acceleration due to gravity, 6 =6l-60, n i s a unit 

normal pointing out of Q,, and Vn is the normal velocity of 

y (positive when directed outward). The latter is defined 

as 

y j X ) 0 = fc^„z(v) zx=£(xx,yx,t)j>0 (8) 

where D£ / Dt is the Lagrangian velocity of a fixed point on 

the front and nz is the vertical component of n . 

We treat # ( x ) a s a random field with mean (K(x)), 

variance a2

K(x) and spatial covariance function CK(x,y). 

We assume that the mean, variance and covariance of 

Y = In K can be estimated from, and conditioned on, field 
measurements of Y by geostatistical methods [e.g. Neuman, 
1984]. Spatial drift and/or conditioning may render Y(x), 

and therefore K(x), statistically nonhomogeneous. As K is 

random, (1) - (8) are stochastic and their solution is un
certain. Our aim is to solve them in terms of leading mo
ments of h(x,t), its gradient and %(xx,yx,t). For this, we 

represent all random quantities as the sum of their mean 
(designated by triangular brackets) and a zero-mean pertur
bation (designated by prime) about the mean. 

MOMENT EQUATIONS 

Integro-differential representation 

Equations (1) - (8) are nonlinear due to the presence of a 
moving boundary, y. To overcome this we introduce a 
deterministic Green function, defined as the solution of 

V y { ( ^ ( y ) ) V y G ( y ; x ) ] + 5 ( y - x ) = 0 y ,xe QT (9) 

subject to homogeneous Dirichlet and Neumann boundary 
conditions 

G(y;x) = 0 y e f D 

V y G(y ; x ) . n (y ) = 0 y e r „ 

(10) 

(11) 

As G(y;x) is defined on the entire domain £lT includ
ing the wetted and nonwetted regions, it does not depend 
on front position. This idea was used by Tartakovsky and 
Winter [2001] to solve stochastic free surface problems 
without gravity. It allows writing an explicit, integro-
differential expression for head, 

h(xa) = - \ AT / (y)V y G(y;x)-V y My^Vy 

- / / J ( / : ( y ) ) V y G ( y ; x ) - n ( y ) ^ y 

- j 6Vn(yj)G(y;x)dy 
no 

• J ( ^ ( y ) ) [ f l - ^ ( ^ V ^ V , 0 ] v y G ( y ; x ) . n ( y , / W y (12) 
yd) 
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Figure 2. Dimensionless mean front positions, obtained 
analytically (AN) and with Monte Carlo simulations (MC) 
vs. Dimensionless time for different values of a~Y (var(Y)). 
(H-a)/lY=4. 

Perturbation analysis 

We expand K and all quantities that depend on it in pow
ers of GY, the standard deviation of Y = In K . Taking the 
ensemble mean of (12) yields, to leading orders of ap
proximation, 

hm(x,t) = -HKG J V yG ( 0 )(y;x) . n ( y ) ^ 

- \ ev!;0\y,t)G(0\y;x)dy 
Y ( 0 )(O 

-KG J [ a - ^ ( 0 ) ( j c y , y y , 0 ] V y G ( 0 ) ( y ; x ) . n ( y , ^ ( 1 3 ) 
Y < 0 )(/) 

(h(x,t)f] = KG \ r [ 2 1 ( y , 0 - V y G ( 0 ) ( y ; x W y 
n(/)(0) 

-HKG J V y G ( 0 ) ( y ; x ) n ( y W y 

-*o J Cl !

j

l (yfu r .^ ,»v , / , l "(yf ,rt-V,G«'(yr-,x)dy 

<r«»12 

( K ( y ^ ) ) m - f v „ ( y , r r G ( 0 )(y;x)dy 

- * c J [ f l - ( { (^ .y , . r t ) , 2 , lv f G < 0 > (y ;x ) - i i (y ,rWy (14) 

where superscripts (j) denote quantities that contain strictly 
i-th order terms, superscripts [i] denote quantities that con
tain terms up to order /, KG =exp(y) is the geometric 

mean of K, and are fronts corresponding to £ 0 ) 

a n d ^ ' . y f = [xy,yy,zy = ?0) (xy, yy ,t)J , 
r(x) = -(y'(x)V/i'(x)) is a "residual" flux" given by 

r[2\x) = KG J C* r

2 ,(x;y)V Jfc< 0 )(y,,)-V JV1G ( 0 )(y;x)dy 
Q ( 0 ) </) 

+ J 0C^(xu y ,y,,r)V xG ( O >(y;x)rfy 

-K0 J C#(x; V;y,,r)V,V,G ( 0 )(y;x)-ii(y)dy (15) 

and Q ( x , y ) = (K'(x)K'(y)), 

C , ? ( x ; * , y , . O - ( l ^ , , W { ( , , U . y , . 0 ) 

= tfc J cJ.2 1(x;z)V I/, ( 0 ,(z) 
O ( 0 ) ( . ) 

•v,Gw[z;xy,yy,!;((>){xy,yy,t)]dz 

+ J 0 C ^ ( x , z ) G < O ) [ z ; ^ , > - v , r o , ( ^ , 3 ' , , O ] ^ 
r ( 0 ) 0) 

-ATG J Cl

r\\x;xzyz,t)n(z) 

•VtGm[z;xy,yy^0){xy,yy,t)]dz (16) 
C ^ x u , , ^ , / ) = (Y'(x)V?\x,,y,,t)) 

_dCl

Y]](x;Xyyy,t) 

dt 
n,(xy,yy,t) (17) 

From (6) it follows that 

( M x , / ) ) " ' = a - ( £ ( ; w „ f ) f Z X = ( « ( x . , > „ 0 > 1 " (18) 

where ( / i ( x , f J)1'1 is given to zero and second order by (13) 

and (14), respectively. According to (8), 

(V.(x.t)r = D { * { ™ ' ' t ) r n W (19) 
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The covariance 

C\2](xx,yx,t\xy,yy,s) = (£'(xx,yx,t)£'(xy,yy,j))m of 

front positions is obtained on the basis of (8) and (18) with 
the aid of (11), (13) and (14), 

Cj 2 1 {xx>yx>t\xy,yy,s) = 

I < ! ( x y ^ y , W ^ z , / ) G ( 0 ) [ z ; x x J ^ ( 0 ) ( x x J x , ^ z 
Y ( 0 ) ( 0 

-KG { Cl2](xy,yy,s\xz,yz,t) 

V Z G ( 0 ) [z; xx, yx £(0) (x x , y x , 0 ] ' *(* >dz 

+ KG \ Cl

Y]](z;xy,yy,s)Vzh(0)(z) 
a(0)<n 

• V , G ( O ) [ I ; ^ , y ] | f 5 ( O ) U , y . . 0 > (20) 

where 

10 

D'mena'onless time 

Figure 3. Dimensionless front variance obtained 
analytically (AN) and with Monte Carlo simulations (MC) 
vs. Dimensionless time for different values of aY (var(Y)). 
(H-a)/lY=4. 

dCf\xy,yy,s\xz,yz,t) 

dt 
Clvn(xy9yy,s\xz,yzj) = nAz) (21) 

The variance crj2 1 of front positions corresponds to the 

limit of (20) as (xy, yy, s) —> (x x , yx , r ) . Similar expressions 

can be obtained for the covariance and variance of hydrau
lic head and its gradient. 

Both the zero- and second-order problems are nonlinear 
in mean head and front position. Tartakovsky and Winter 
[2001] analyzed a gravity-free version of a similar problem 
by using a somewhat different perturbation approximation. 
Among others, their expression for second-order mean 
head does not include a term containing as does the 

third integral in our (14). The authors found that this 
caused their second-order solution to overpredict the mean 
position of the front. 

Analytical solution in one dimension 

We solve the above moment equations for front depth 
^(t) within a vertical depth interval xe (0,/) where 

/ > c; . For this we take F(x) to have a constant mean, 

( y ) , and an exponential covariance, 

C K ( | x - y | ) = CJ2 exp \*-y\ (22) 

where lY is the spatial autocorrelation scale of Y. The 

auxiliary function GK (x, y) = (K)G(X, y) satisfies 

d2G*(^y)+8(x-y) = 0 0 < x , y < / (23) 
ox 

subject to boundary conditions 

GK(x,y) = 0 
GK(x,y) = 0 

x = 0 (24) 

x = l (25) 

It is given by 

l-y 
GK (x, y) = - ( x - y)H(x - y) + —± x (26) 

where H i s the Heaviside function. Substituting (26) into 
(12) and evaluating at x = £ yields 

0 = e^m^K)[a-m-(K}H+JK\y)^-dy 
dt o dy 

(27) 
Expanding the integral in Taylor series around (£) gives 
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Figure 4. Dimensionless mean pressure head calculated 
analytically vs. Dimensionless time for different values of 
a; (var(Y)). (H-a)/lY=4. 

^ e ^ ^ { K ) [ a - m - { K ) H 

^ K \ y ) ^ d y ^ \ t ) K \ y ) ^ 
% dy dy 

(28) 

+ ... 
HO 

The mean of (28) is, to leading orders of approximation, 

6 d^\t) t H-a 
KG dt 

• = 1 + -
R\t) 

(29) 

solved. As a prerequisite for solving (30) and (31), one 
must first solve an ordinary differential equation for C^ 1 , 

( 0 ) d c £ W ) 
dt dt 

(32) 

1 + 
H-a 

) C?\xyy)dy 

subject to CKL(X,0) = 0 . Also required is the residual flux 

r [ 2 W ) = 
, „ „ 2 dhm(x,t) 

KG dt " 1 dx 

Zero- and second-order mean head gradients are ob
tained from one-dimensional versions of (13) and (14), re
spectively, as 

dhm(x,t)_ | ( 0 ) ( r ) + ff-a 
dx |(0)(/) 

d(h(x,t))m _ ^\t) + H-ad{^t)f 

dx £m(t) d£m(t) 

^al^t) + H-^a^rl2]{x,t) 

(34) 

(35) 

Expressions (29) - (31) are ordinary differential equa
tions subject to zero initial conditions that are easily 

Figure 5. Dimensionless mean pressure head calculated 
analytically vs. dimensionless time for different values of 
(H-a)/lY. a;=l. 
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and the second-order approximation of hydraulic head 
variance, 

dh(0)(x,t) 
dx 

_e_d_ 
KG dt 

2] \ | 

dx dt 

(36) 

)\x=^ 

Results and Comparison with Monte Carlo Simulations 

To test our moment equations, we compare their solu
tions to sample moments obtained from 4000 Monte Carlo 
solution of (1) - (5). Figure 2 shows how dimensionless 
mean front depth L = £/lY increases with dimensionless 

time KGtldlY as a function of c\ when (H - a)/l Y = 4. The 
zero order moment solution is independent of variance and 
consistently overestimates the depth of the front. The sec
ond order moment solution is much closer to that obtained 
from Monte Carlo simulations and therefore more accurate. 
Accuracy is high for a2

Y - 0.25 but deteriorates as o\ in
creases. Mean front depth and its rate of advance diminish 
with increasing variance. 

Figure 3 depicts dimensionless front variance a\ fly as a 

function of dimensionless time KGt I61Y for various values 

of G\ when (H - a)/l Y = 4. The moment solution compares 

favorably with Monte Carlo results when a] < 0.5 but de-

ao8 

c 

CO 

3 </) CO 0 

C 
CD 

-aoB 
40 60 
MaBnfncrtdtfjlli 

Figure 6. Mean pressure head calculated analytically vs. 
mean front depth for different lY. (H-a)/lY =0.1, aY = 0.5 . 

2 3 4 
Dm h m u Jesstirre 

Figure 7. Dimensionless mean pressure head variance 
calculated analyticaly vs Dimensionless time for different 
values of 07 (var(Y)). (H-a)/lY=4 

teriorates as oY increases. Dimensionless front variance 
grows in a near-linear fashion with dimensionless time, at a 
rate that increases with al. 

According to Philip [1975], a front is stable when the 
gradient of pressure head immediately above it is negative, 
and unstable if this gradient is positive. For instabilities to 
develop, the front must undergo some slight initial pertur
bation. In the case of randomly heterogeneous media, such 
perturbations are introduced (among other causes) by ran
dom variations in soil properties. Figure 4 shows how mean 
pressure head gradient varies with dimensionless time for 
various crY when (H - a)/l Y = 4. In a homogeneous soil 

with o\ = 0 , represented by the zero-order solution, the 
mean front in our example remains stable. Heterogeneity is 
seen to destabilize it at a dimensionless time that increases 
as of goes down. Theory and the figure indicate that the 
gradient of mean pressure head tends asymptotically to 
zero with time. Figure 5 depicts the influence of (H - a)/l Y 

on the gradient of mean pressure head, and the onset of in
stability, when al = 1. For the mean front to be stable, (H -
a)/l Y must be sufficiently large. Otherwise the smaller is (H 
- a)/l Y , the earlier does instability set in. An increase in the 
correlation scale 1Y has a destabilizing effect on the front 
when al = 1 and (H - a)/l Y = 0.1 (Figure 6). 

Uncertainty in the prediction of mean pressure head gra
dient is largest at time zero, diminishes steeply at early time 
and more slowly at later time toward an asymptote that in
creases with ai. 
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SUMMARY 

We proposed a new conditional moment approach to the 
analysis of wetting front propagation in randomly hetero
geneous soils. We solved our moment equations analyti
cally and found the result to be accurate for both mildly 
and moderately heterogeneous soils. Our analytical solution 
allows one to investigate the effect that the variance and 
spatial correlation scale of log hydraulic conductivity have 
on front behavior under the action of various forcing terms. 
This is of both theoretical and practical importance because 
in most soils, hydraulic conductivity behaves as a corre
lated random field. 
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We review and re-examine the development of the hydrostatics of swelling 
soils, starting with the pioneering work of John R. Philip. His early attempts to 
formulate the overburden potential of the soil water as an additional component 
to the pressure and gravitational potentials did cause some confusion, until it 
became clear that there is no additional component and that the actual pressure 
potential can be split into two parts: the (non-actual) pressure potential the soil 
water would have if the system were unloaded, and a remaining part, which may 
be called the overburden potential. Using fundamental thermodynamics it is 
then shown how the overburden potential can be calculated from the slopes of 
the bundle of load-pressure-dependent shrinkage curves. A set of experimental 
data published by Talsma is used to test the Groenevelt-Bolt equation of state for 
the bundle of shrinkage curves and for the numerical values of the overburden 
potentials for Talsma's clay paste. Subsequently, the Groenevelt-Bolt equation 
is used to interpret the physical significance of the extremes of residual 
shrinkage curves, for which shrinkage data from the literature are used. The 
description of the static behavior of the matrix of swelling soils is termed 
"matristatics". 

1. INTRODUCTION 

When John R. Philip first turned his attention to 
swell/shrink media [Philip, 1968], primed by the kinetic 
experiments that were carried out and shown to him by 
Smiles and Rosenthal [1968], he entered this "muddy" 
scientific field of non-rigid porous media as a 
hydrodynamicist. He formulated the flux densities and the 
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rates of volume change in clay-colloid pastes. Together 
with Smiles [Philip and Smiles, 1969], he continued his 
pioneering work, concentrating on the dynamics in non-
rigid porous media. It was only after those two major 
contributions that Philip started to pay attention to the 
hydrostatics in swelling soils [Philip, 1969a,b,c, 1970a,b,c, 
1971, 1972a,b,c], for which he received much inspiration 
from the pioneering work by Croney and Coleman (1961). 
Even in the early stages [Philip, 1969c], however, he 
preferred to deal with the hydrodynamics in swelling soils 
well before he arrived at the hydrostatics in swelling soils. 
He thus subdivided this field of science into "statics" and 
"dynamics". Indeed, the difficulties involved in the 
behavior of swelling (and shrinking) soils, in particular the 
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behavior of water in such media, are so complex that a 
subdivision of the subject into these two sub-disciplines is 
even more urgent than it is for the subject of the behavior 
of water in rigid soils, and, of course, one should enter the 
field on the side of hydrostatics. 

Similarly, when studying the volume change as a 
function of water content and load (overburden pressure, or 
envelope pressure), the starting point should be the 
description of the static (equilibrium) relationship between 
void ratio, e, and moisture ratio, S, followed by the 
description of the rate of volume change. 

The early emphasis on the dynamic behavior of water in 
non-rigid media caused some confusion [Youngs and 
Towner, 1970], which was manifest in Philip's [1969a] 
early definition of the "overburden potential". He 
mistakenly suggested that the water in non-rigid soils had 
an additional component potential over and above the 
gravitational and pressure potentials, which he termed the 
"overburden potential". This is not so, and of course, in the 
early formulation of Darcy's Law in a material coordinate 
system [Philip and Smiles, 1969], the overburden potential 
does not appear. 

In this paper we restrict ourselves to the statics of 
swelling media. The objective of this paper is to exploit the 
theory of Groenevelt and Bolt [1972] to analyze several 
sets of shrinkage data, provided in the literature, to obtain 
values of the overburden potential and to divide shrinkage 
curves into regions of 'structural' shrinkage, 'unsaturated 
proportional' shrinkage, and 'zero' shrinkage. We will first 
deal with the liquid phase, the hydrostatics, and 
subsequently with the solid phase, for which we now coin 
the term "matristatics". 

2. HYDROSTATICS 

2.1 The Water Retention Curves 

The relation between the pressure (matric) potential of 
the soil water and the water content in swelling/shrinking 
soils is more complicated than in rigid soils. Leaving 
hysteresis (also more complicated in non-rigid soils) out of 
the picture, we will focus on the equilibrium relation 
between pressure potential and water content during a 
process of desorption, starting from a completely swollen 
state. In the case of a clay suspension such a 'completely 
swollen' state may not exist, because the system will tend 
to swell indefinitely in trying to bring the matric potential 
to zero. For practical cases in soil science, however, a 
completely swollen state does exist, and the pressure 
potential will find a zero value, such that, upon further 
addition of water, ponding will occur, and the pressure 
potential will turn positive. In such a completely swollen 
state, the system is located somewhere on the 1:1 line in a 
diagram of void ratio versus moisture ratio. 

We characterize the system in the e-Q diagram, where e 
is the void ratio (volume of void or pore space per unit 
volume of solid space) and $ is the moisture ratio (volume 
of liquid-filled space per unit volume of solid space). We 
consider the liquid phase essentially free of salt, such that 
the extent of the electrical double layers is not influenced 
by the properties of the liquid phase. On the 1:1 line in the 
e-S diagram the system is saturated. 

We start with the system free of external constraint, free 
of an external pressure (load pressure or envelope 
pressure). The system then, when brought into contact with 
free water, will suck up water and swell on its way to our 
starting point, the completely swollen state. As long as the 
system sucks up water, it has a swelling pressure, IT, which 
is equal to the load pressure, P, that must be applied to the 
system in order for it to stop sucking up or releasing water. 
When the system finally stops sucking up water, and is thus 
in equilibrium with free water, the pressure potential of the 
soil water, p, is zero, and the system no longer swells. The 
swelling pressure is then also zero. 

From this point, we start the desorption process by 
extracting water, e.g. by lowering the pressure potential, p, 
which then becomes negative. Water will leave the system 
and it will shrink. The swelling pressure, n, will rise above 
zero. As long as the (shrinking) system stays saturated and 
thus on the 1:1 line, the pressure potential of the soil water 
and the swelling pressure will balance each other exactly. 
Thus: 

°p + II = 0 , (1) 

where °p is the pressure potential of the water at zero load 
pressure (P = 0). 

The system will continue to shrink along the 1:1 line 
until air enters the system at e = °e*. This process of 
shrinking along the 1:1 line is often called 'normal' 
shrinkage, but we will refer to it as 'proportional' 
shrinkage. All along the saturated stretch of drying, the 
water content of the system decreases as the pressure 
potential decreases. This part of the desorption curve is an 
important ingredient in the study of the kinetics of 
desorption in clay pastes. The remaining part of the 
desorption curve of an unloaded shrinking soil (that part 
beyond air-entry where the relation is known as 
'residual' shrinkage) most resembles the familiar water 
retention (or water release) curve in rigid soils. The only 
difference between the water retention curves is that the 
matrix-configuration of non-rigid soils continues to decline 
to varying degrees in response to the decreasing pressure 
potential in the liquid phase. The two parts of the 
desorption curve have to be determined by experiment. 
Good examples of such measurements of the unloaded 
desorption curve can be found in Reeve and Hall [1978] 
and in Bronswijk and Evers-Vermeer [1990]. These 
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Figure 1. Water retention curve for Bronswijk and Evers-
Vermeer's [1990] Schermerhorn horizon C21g (52-77 cm), with 
the circle indicating the calculated point of air-entry. 

authors did not plot the water retention curves - instead, 
they plotted the shrinkage curves (which we will focus on 
mainly). They did, however, indicate some values of the 
water potential along their shrinkage curves, and these 
provide the opportunity to construct their water retention 
curves. 

When plotting (Fig. 1) the two parts of the desorption 
curve, °p(&) (e.g. for Bronswijk and Evers-Vermeer's 
[1990] C21g horizon of their Schermerhorn soil), there are 
indications that at the air-entry point, the pressure potential, 
°p , does not seem to show a discontinuity, while the slope 
of the shrinkage curve, e($), does show a discontinuity at 
air entry. 

When the above-described desorption process is carried 
out while the system is under a constant load (envelope or 
overburden) pressure, P, the starting point, where p = 0, 
always occurs at a lower value of e (and thus at a value of 
II greater than zero) compared to the unloaded state, and 
the value of IT will be equal to P. The desorption process 
will again lead the system down the 1:1 line, until air enters 
the system at e = e*(P), smaller than V . All along this 
saturated stretch of (loaded) proportional shrinkage before 
air-entry we have [Groenevelt and Kay, 1981]: 

P + YI = P , (2) 

which is essentially the equation of Terzaghi [1925]. 
Again, along the stretch of proportional shrinkage, the 

water content decreases with the decreasing water potential. 
Beyond the air-entry point the water content keeps 
dropping with the water potential. This part of the water 
release curve is completely unknown in classical soil 
physics because, for rigid soils, the water retention curve is 
independent of the load pressure. 

The desorption curve for a shrinking medium under 
constant load pressure, P, has to be determined by 
experiment, and differs from the desorption curve at P = 0. 
Thus, each swelling soil has to be characterized by a bundle 
of water retention curves, each curve belonging to a 
particular value of P and which cannot cross over the 
curves for other pressures. No such bundle of measured 
water retention curves for real soils is available in the 
literature, although a few individual points of such a 
bundle, measured in the field, are provided by Talsma 
[1977a]. 

2.1.1 Examples of water retention curves for swelling soils. 
In contrast to rigid soils, water retention curves of swelling 
soils consist of two parts: a saturated part and an 
unsaturated part. For studies concerning the structural 
stability of swelling soils, it is of interest to know whether 
the slope of the retention curve at the transition point 
between the two parts (i.e. at the air-entry point) changes 
abruptly or not. To provide a preliminary answer to this 
question we examine two of the thirty-one shrinkage curves 
provided in the literature for different soil clods from 
different soil horizons by Bronswijk and Evers-Vermeer 
[1990]. They identified on their e-& (shrinkage) curves, the 
values of S at which the pressure potentials reached 0, 10, 
100, 1000, and 16000 cm of water tension. They did not, 
however, measure the pressure potential of the water at 
precisely the point of air-entry, °p*. To make such an 
observation during the shrinkage process, of course, 
requires constant, long-term 'baby-sitting'. All thirty-one 
shrinkage curves presented by Bronswijk and Evers-
Vermeer concern 'real' soils and each of them has a value 
of S for which the pressure potential reaches zero, 
representing the completely swollen state. 

The soil clods tested by Bronswijk and Evers-Vermeer 
where taken at specified depths in the soil profile. In situ, 
they existed under an overburden (load) pressure, P, but 
this was removed when they were brought into the 
laboratory. We assume the samples were exposed to free 
water in the laboratory for long enough to swell to 
equilibrium and thus represent the unloaded (P = 0) state. 
To answer the question about continuity of the differential 
water capacity at air-entry, we choose two of the thirty-one 
shrinkage curves, such that two of the five points of the 
water retention curve occupy the saturated part and two fall 
in the unsaturated part. The first water retention curve is 
shown in Fig. 1 for the Schermerhorn horizon C21g (52-77 
cm). The best estimate of the moisture ratio at air entry, 
°$ , from the shrinkage curve is 1.12, indicated by the 
circle in Fig. 1. This then leads to °p* = -350 cm, so that at 
air-entry the water is at 350 cm suction. The water 
retention curve in Fig. 1 suggests that, for the present soil, 
the slopes of the saturated part (left of the circle) and the 
unsaturated part (right of the circle) do not change abruptly. 
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Figure 2. Water retention curve for Bronswijk and Evers-
Vermeer''s [1990] Oosterend horizon All(0-22cm), with the 
circle indicating the calculated point of air-entry. 

The second shrinkage curve we inspect here is the 
Oosterend soil horizon Al l(0-22cm) shown in (Fig. 2). The 
best estimate of the moisture ratio at air-entry, from the 
shrinkage curve is 1.09, indicated by the circle in Fig. 2. 
This then leads to the pressure potential at air-entry being 
°p* = -189 cm. Again, Fig. 2 suggests that, for this soil, the 
slopes of the saturated part (left of circle) and the 
unsaturated part (right of circle) do not change abruptly. 
The implications of this in terms of soil structural stability 
have not yet been investigated, and should be. 

2.2 The Overburden Potential 

As indicated earlier, the overburden potential is not an 
additional component potential to be added to the pressure 
(or matric) and gravitational component potentials (and the 
osmotic, electrical and thermal component potentials). 
There is no 'additional' form of energy 'carried' by the 
water that, in some way, emanates from the overburden. 
We make these introductory statements in view of the 
enormous impact J.R. Philip's work has had, and will 
continue to have, on the discipline of Soil Physics. Works, 
in which a statement such as: "This approach was used 
recently [Philip 1969a] to establish that O, the total 
potential governing vertical equilibrium and movement of 
water in a swelling soil, is made up of three components, 
the moisture (or matric) potential, *F, the gravitational 
potential, -z, and the overburden potential, Q, so that O = 
V P - z + Q" [Philip, 1970a, p.294] have caused much 
confusion. As argued by Youngs and Towner [1970], this 
statement is incorrect. 

In the previous section we dealt with the water retention 
curve of a non-loaded (P = 0), non-rigid soil. When the 
soil is under a constant load (overburden) pressure, it has a 

different water retention curve. At the starting point (p = 0), 
in the fully swollen state, the value of 0 is smaller than 
when P = 0, increasingly so, when P increases. At the air-
entry point, the value of 0 (i.e. 9*), is smaller than 
increasingly so with greater P. From the above, it can be 
expected that this will result in a bundle of water retention 
curves that cannot cross over and are more or less parallel. 

As indicated above, the shrinkage curves for different 
load pressures cannot cross over, but at the same time they 
cannot be constructed from the unloaded water retention 
curve. Direct measurements must be taken with the system 
under a load. These measurements, however, do not 
necessarily have to involve the observation of the pressure 
potential (tension) of the water. This is courtesy of a 
thermodynamic relationship involving the differentials of 
two intensive variables (p and P) and two extensive 
variables (e and &). The relationship follows strictly from 
basic thermodynamics (Gibbs equation) and a fundamental 
law of calculus (Maxwell relation). A precise derivation of 
this thermodynamic relation was presented by Groenevelt 
and Bolt [1972, Eqns (6) and (12)], and reads: 

(op/oP)z = (de/6&)PXPa (3) 

On the left-hand side of this equation one finds the 
differential behavior of the pressure potential (at constant 
moisture ratio) with changing load pressure. On the right-
hand side of Eqn (3) one finds the slope of the shrinkage 
curve at constant load pressure (which should be measured 
at constant temperature and air pressure, pa). This opens 
the possibility to calculate, from a bundle of measured 
shrinkage curves, the value of the pressure potential, 
p(P,&#), when the system is under a load, P, at a certain 
moisture ratio, 0 # , if the value of the pressure potential is 
known at that moisture ratio in the unloaded state, °p(0 #). 
The original condition on the left-hand side was that the 
ratio of the densities of the water and solid phases (p w /p s ) 
remains constant. Together with the assumption that water 
and mineral matter are incompressible, this condition is 
equivalent to constant 0 but is not equivalent to the 
condition of constant volumetric water content, 0. Thus, 
when the value of °p(&) is known, the value of p(&,P) can 
be calculated from: 

P P 
\(dp/dP)dP= l(de/dS)dP (4) 
0 0 

Each of the above partial differentials has the same 
conditions as in Eqn (3). The numerical value of these 
definite integrals is by definition the overburden potential, 
Q. Thus, 

p(P£) = °p(S) + n , (5) 
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Table 1. Moisture ratios and void ratios from Talsma's [1977b] 
three shrinkage curves. 

UkPa P = 6.3kPa P=11.2kPa 
e e a e 

0.25 1.30 0.20 1.16 U.2U 1.04 
0.41 1.32 0.25 1.17 0.25 1.05 
0.57 1.40 0.33 1.17 0.33 1.05 
0.65 1.45 0.43 1.21 0.49 1.11 
0.73 1.45 0.61 1.28 0.67 1.18 
0.79 1.49 0.68 1.31 0.87 1.28 
0.87 1.54 0.86 1.40 1.05 1.35 
1.14 1.61 1.03 1.44 1.17 1.39 
1.22 1.63 1.17 1.49 1.49 1.49 
1.30 1.65 1.26 1.51 
1.37 1.68 1.54 1.61 
1.45 1.75 1.64 1.64 
1.63 1.80 
1.75 1.85 
1.91 1.92 

where p(P,&) is the in situ pressure potential of the water 
while the system sits under the overburden, and °p(S) is the 
pressure potential that same system would attain (after 
equilibration) if the overburden (load) were removed while 
maintaining the mass ratio of water and solid material. 

Only one useful bundle of shrinkage curves could be 
found in the literature, and it consists of only three curves. 
Furthermore, it is not for a natural soil - but a remoulded 
clay, and no information whatsoever is provided about 
pressure potentials. It was published in 1977b by T. 
Talsma, a close associate of J.R. Philip. Because of its 
rarity and its high quality, we will analyze Talsmds data set 
in detail. In particular, we will scrutinize the calculated 
overburden potential curves. 

2.2.1 Talsma 's Data 
We present in Table 1 the complete set of data reported 

in a single graph by Talsma in his 'Note' published in 
1977b. Strictly speaking the unloaded shrinkage line is 
represented by two data sets under small loads (0.02 kPa 
and 0.14 kPa). These loads were necessary for technical 
reasons but there is quite a bit of 'wobble' in the data, 
indicating that the experimental difficulties were 
considerable. For this reason we ignore here the data for 
0.14 kPa and adopt the data for the smaller load, 0.02 kPa, 
as the 'unloaded' shrinkage curve. We extracted the 
numerical values of the data points from Talsma's graph 
with the greatest possible precision. There were three 
curves for the void ratio versus moisture ratio, each 
applicable to a different load pressure: P = 0 kPa, P = 6.3 
kPa, and P = 11.2 kPa. At a wet bulk density in the field of 
1.5 Mg/m 3, these overburden pressures would occur 
respectively, at the soil surface, at 42 cm below the soil 
surface, and at 75 cm below the soil surface. These 
locations could be said to represent the top, the middle and 
the bottom of a 'typical' horticultural root zone. There was 

a total of 36 data points: 15 for the unloaded curve (P = 0), 
12 for the load pressure of 6.3 kPa, and 9 for the load 
pressure of 11.2 kPa (Table 1). Each curve had one point 
on the 1:1 line. All 36 points were fitted to Groenevelt and 
Bolt's [1972] single constitutive equation, which consists of 
several sub-models and reads as follows: 

0(e)=[k 2 (e , , />-k 1 )[k 2 P+ln[(e-8)k 3 " 1 +exp(-k 1 k 2 8- N )]]" 1 ] 1 / n (6) 

where e and P are defined above, e is the void ratio at 
air-entry, and k l 5 k 2 , k 3, n are curve-fitting parameters. 

The curve-fitting of Eqn (6) to all 36 points in Table 1 
(using a 'solve block' in Mathcad [Mathsoft 1998] to 
produce the least sum of squared errors) provides an 
excellent fit for the three shrinkage curves. For 
convenience, however, we use here the rounded values for 
the four fitting parameters, viz. ki= 1 bar, k 2 = 2 bar"1, k 3 = 2 
and n = 0.7. This produces a result (Fig. 3), which is 
sufficiently accurate for the calculation of the Q($) curve, 
relating the overburden potential to the moisture ratio. Of 
course, all variables and parameters that have the 
dimension of pressure, P9 p, FT, kY and (k2)"* are expressed 
in the same units (here we use bar). 
Equation (6) shows the moisture ratio as the explicit 
variable and the void ratio as the implicit variable - it is not 
a trivial matter to make the void ratio the explicit variable. 
We therefore proceed to differentiate &(e) at constant P and 
subsequently invert the result to obtain the desired slope of 
the shrinkage curves, a^e\ at constant P. These slopes are 
plotted in Fig.4a and can be seen to be of very similar 
shape. In fact, by shifting the cto(e) curve to the left by 0.16 
units of e, and by shifting the a^e) to the right by 0.11 
units of e, the three curves nearly coincide (Fig.4b). 

0.0 0.5 1.0 1.5 2.0 

Moisture ratio 

Figure 3. Talsma's [1977b] shrinkage curves for the three load 
pressures: P=0 (circles), P=63 kPa (diamonds) and P=\\.2 kPa 
(squares) fitted to Eqn (6). 
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Figure 4a. Slopes of Talsma's three shrinkage curves as a 
function of the void ratio (dotted line = Unloaded; dashed line = 
6.3 kPa; solid line =11.2 kPa). 
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Figure 4b. Talsmds 3 slope curves with a0(e) and a 1 1 2 ( e ) 
shifted to coincide with a63(e). 

This similarity shows that the curves are near to parallel, 
which means that (6e/53)/> at a fixed value of $ is nearly 
independent of P. Thus at constant 

— dP =a0P 
J 5 3 

(7) 

is approximately correct. Thus it can be said (again 
approximately) that: 

p(P,$) = 0p($) + a0P (8) 

The relation in Eqn (8) was first proposed by Croney and 
Coleman [1961]. For Talsma1 s clay paste the largest value 
of oc0 is 0.4. Thus, at the highest value of P, 11.2 kPa, the 
highest value of the overburden potential that occurred 

during Talsma1 s experiments was Q= 0.4 x 11.2 = 4.48 kPa, 
or approximately 45 cm water pressure. 

2.3 The Groenevelt-Bolt Equation of State 

In the 1972 special issue of Soil Science dedicated to 
L.A. Richards, Groenevelt and Bolt published an equation 
of state (Eqn 6, above) for a hypothetical bundle of 
shrinkage curves relating the void ratio to the moisture ratio 
at different load pressures. At that time, however, there 
were no reliable experimental data available to test the 
model. In 1974 Groenevelt and Parlange presented a 
thermodynamic theory to describe the transition from the 
saturated to the unsaturated part of the shrinkage curve at 
the point of air entry. In their analysis of the unloaded 
shrinkage curve for an Australian clay soil they wrote 
[Groenevelt and Parlange 1974]: 

"We note that at the air entry point the experimental 
data suggest that the e-S curve is not tangent to the 
line e = S. It is important to know whether a 
discontinuity in de/dS at the air entry point is 
physically acceptable, or whether this apparent 
discontinuity must be regarded as an experimental 
error. We show here that the discontinuity is 
perfectly acceptable from a thermodynamic point of 
view and can be associated with a second order phase 
transition in the sense of Ehrenfest." 

In 1976 Sposito and Giraldez confirmed the above: 
"Following a heuristic suggestion by Groenevelt and 
Parlange, a thermodynamic description is given of a 
postulated order-disorder transformation in a swelling 
soil. This transformation is shown to correspond to a 
phase transition of the second order at the air entry 
point, wherein the onset of a microscopic ordering 
process among the clay crystals in the soil occurs and 
there is a consequent discontinuity in the slope of the 
swelling curve". 

In 1977, Talsma published his one but last paper as 
member of the staff of CSIRO Division of Environmental 
Mechanics, Canberra, in the form of a short Note. His data 
show undeniable and very pronounced discontinuities in 
the slopes of the 3 shrinkage curves at air entry; their 
magnitudes being 0.267, 0.292 and 0.310 respectively - all 
well below unity. Of course, these low values are partly a 
consequence of the boundary conditions (acrylic containing 
rings) imposed by Talsma [1977b]. 

In 1981 Groenevelt and Kay published an extensive 
analysis of Talsmds data examining the different sub
models of the Groenevelt-Bolt equation, and attempting to 
calculate the effective stress and the x factor of Bishop and 
Blight [1963]. In 1983, Giraldez and Sposito attempted to 
apply the same equation to Talsmds data "by minimizing 
the sum of squares of differences between calculated and 
measured values with the Rosenbrock algorithm". They 
commented that "the fitting of the model required 
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Figure 5. Overburden potential as a function of moisture ratio 
for Talsma's clay paste at load pressure P=0.112 bar from Eqn 
(12). 

considerable computational effort", which is of course no 
longer a problem now that high-speed optimization sub
routines are readily available for personal computers. Their 
more serious complaint was that "on physical grounds, the 
model parameters, k 1 ? k 2, k 3 and n, should remain constant 
as the pressure changes in a given soil". Of course these 
parameters should remain constant, and they do, when the 
optimization is carried out for the entire bundle of 
shrinkage curves at once (not individually), or for the sub
models first, followed by the application of the derived 
values for the parameters to the entire bundle [c.f. 
Groenevelt and Kay 1981]. 

It is indeed opportune to analyze the different sub
models. For example, from the first sub-model of 
Groenevelt and Bolt [1972, Eqn.(16)] combined with their 
Eqn. ( 3 ) , one can calculate the pressure potential of the 
water, p , at the air entry point: 

p = P - k , e * (9) 

Thus, even though Talsma did not provide any information 
whatsoever about pressure potentials in the water, it can be 
calculated (from Eqn 9, above) that at Talsma's three air 
entry points, the pressure potentials of the water were -648, 
-644, and -644 cm water pressure, respectively. These 
values are considerably lower than those we found for the 
two soils of Bronswijk and Evers-Vermeer [1990] 
identified in Figs 1 and 2 . This, of course, is due to the 
different boundary conditions. Talsma used soil cores, 
whereas Broenswijk and Evers-Vermeer used soil clods. 
The boundary conditions, together with the initial 
conditions (such as the size of the sample), have a large 
influence on the location and the shape of the shrinkage 
curves. 

It should be noted from the above calculations that the 
pressure potential in the water at the air entry point appears 
to be independent of the load pressure, P. The sub-models 

proposed by Groenevelt and Bolt in 1 9 7 2 were first 
attempts to formulate the basic physical phenomena - these 
of course are open to refinement and adaptation. 

Finally, returning one more time to the overburden 
potential, by accepting the value of belb§ at fixed 9 to be 
independent of the load pressure P, we can write: 

n = P(de/d&)<> ( 1 0 ) 

We now concentrate on the unloaded shrinkage curve. 
For ^ = 0 the Groenevelt-Bolt equation of state can be 
written with the void ratio as the explicit variable: 

e(S) = e + k3[exp(-ko/Sn) - exp(-ko/en)] ( 1 1 ) 

where ko = kjk 2 and e = °s. The overburden potential can 
thus be expressed in terms of the moisture ratio (Fig. 5 ) : 

Q = P[k3 ( V B N ) (n/») exp(-ko/Sn)] (bar), ( 1 2 ) 

At values of 0 > 1.49, which is the air-entry point of the 
curve for P = 0 . 1 1 2 (bar), the situation is slightly different. 
For a value of 9 on the 1:1 line (say S#) upon unloading, 
the value of p will first change in proportion to the change 
in P, according to Eqn ( 2 ) . This continues as long as the 
system stays saturated (or as long as the system stays on the 
line where the slope of the e-& curve is unity). Upon 
further unloading, when p reaches p# (i.e. value of pressure 
potential at air entry for the system under load, P\ all 
further change in p follows Eqn ( 1 0 ) , as shown here: 

Q ( 3 # ) = (P-P#) + P # (5e/53) # ( 1 3 ) 

Equations (6) to ( 1 3 ) have a bearing on the following 
analysis of some British swelling soils (with structural 
shrinkage) and some Norwegian swelling soils (without 
structural shrinkage). 

3 . MATRISTATICS 

We turn our attention now to the 'matristatics' of 
swelling media, which we define here as the interpretation 
of solid-phase behavior from the standard shrinkage curve. 
By differentiating Eqn ( 1 1 ) one obtains the slope of the 
shrinkage curve as a function of the moisture ratio, CT(S): 

o(S) = nkok3[3-<n + 1 ) exp(-ko/3n)] ( 1 4 ) 

This slope function, G($), usually has two inflection 
points, the locations of which can be identified by 
differentiating Eqn (14) to produce the curvature function: 

K (S)= nkok3exp(-koOn) [(-3" nn - 8* + nko3 _ 2 n) / 3 2 ] , ( 1 5 ) 
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Table 2. Moisture ratios and void ratios for two soils of contrasting 
soil structure [after Reeve and Hall 1978]. 

EaulkbourneBw 
(Excellent soil structure) (Very poor soil structure) 

e 9 e 
0.837 0.837 0.825 0.825 
0.690 0.784 0.760 0.776 
0.659 0.774 0.641 0.666 
0.549 0.727 0.580 0.612 
0.430 0.610 0.546 0.575 
0.348 0.549 0.485 0.517 
0.267 0.491 0.450 0.490 
0.183 0.476 0.419 0.456 
0.152 0.478 0.357 0.405 

0.319 0.387 
0.287 0.382 
0.267 0.368 
0.247 0.368 
0.229 0.368 

and finding its extremes. These extremes can be used to 
distinguish regions of the unsaturated shrinkage curve, and 
give them physical significance (examples shown below). 

While there is a paucity of published data suitable for this 
sort of analysis, the results of Reeve and Hall [1978] and 
Olsen and Haugen [1998] provide a good starting point. 
We present briefly here an evaluation of the slopes and 
curvatures at both the wet and dry ends of their shrinkage 
curves. For the wet end we use data from undisturbed soil 
cores and clods published by Reeve and Hall [1978], and 
for the dry end we use data from natural soil clods 
published by Olsen and Haugen [1998]. 

3.1 Wet end of Shrinkage Curves 

We present in Table 2 the shrinkage data for two soils of 
contrasting structure as scored in the field by Reeve and 
Hall [1978]. The Faulkbourne soil (high structure-score) 
exhibits 'structural' shrinkage, while the Ragdale soil (low 
structure-score) does not. 

An examination of the curvatures for these two soils 
using Eqn (15) enables the separation of'structural' versus 
'normal' shrinkage [Groenevelt and Grant 2001a]. The 
point of maximum curvature marks the end of structural 
shrinkage and the beginning of normal shrinkage (Fig. 
6a,b). The magnitude of structural shrinkage can thus be 
calculated unambiguously as the difference between the 
void ratio at air-entry and the void ratio at the point of 
maximum curvature. Groenevelt and Grant [2001a], in 
their analysis of the data presented by Reeve and Hall 
[1978], showed that at this point the calculated volumetric 
air content is a good indicator of the relative quality of soil 
structure in the field (as scored by Reeve and Hall). 

3.2 Dry end of Shrinkage Curves 

For this analysis, we examine two shrinkage curves 
published by Olsen and Haugen [1998] for a topsoil and a 
subsoil, the data for which are shown in Table 3 . The 
curves were fitted to Eqn (11), differentiated to obtain the 
slopes using Eqn (14), and subsequently differentiated to 
obtain the curvatures using Eqn (15). 

The point of maximum curvature (inflection point) at the 
dry end of the shrinkage line can be used to unambiguously 
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Figure 6a. Void ratio (dashed curve), slope (solid curve) and 
curvature (dotted curve) for shrinkage data (circles) of Reeve 
and Hall [1978] for their Faulkbourne Bw soil. The vertical 
broken line indicates the moisture ratio at air entry during 
shrinkage. 
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Figure 6b. Void ratio (dashed curve), slope .(solid curve) and 
curvature (dotted curve) for shrinkage data (circles) of Reeve 
and Hall [1978] for their Ragdale soil. The vertical broken line 
indicates the moisture ratio at air entry during shrinkage. 
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Table 3. Moisture ratios and void ratios for Olsen and Haugen's 
[1998] topsoil and subsoil. 

Topsoil Subsoil 
S e 0 e 

0.78 0.98 0.89 0.96 
0.73 0.94 0.83 0.90 
0.66 0.90 0.75 0.83 
0.49 0.85 0.51 0.73 
0.47 0.84 0.30 0.71 
0.43 0.84 0.20 0.70 
0.40 0.84 0.13 0.69 
0.32 0.83 0.00 0.68 
0.27 0.83 
0.23 0.82 
0.19 0.82 
0.15 0.81 

identify the shrinkage limit, which historically has been a 
rather coarse, manual procedure. Shrinkage limits 
calculated by this procedure are compared in Table 4 with 
values measured by Olsen and Haugen [1998]. Further 
analysis of the data presented by Olsen and Haugen shows 
that the maximum curvature (inflection point) at the wet 
end represents the lower plastic limit quite well. Lower 
plastic limits calculated by this procedure are compared in 
Table 4 with Olsen and Haugen's measured values. 

3.3 Matristatics of Talsma's Clay Paste 

Finally, we wish to analyze Talsma's shrinkage curves 
from the point of view of the behavior of the matrix. 
Applying Eqn (14) one finds the slope values of Talsma's 
unloaded shrinkage curve as given in Fig. 7a, using ko = 2, 
k 3 = 2, and n = 0.7. From this figure, or from Eqn (15), one 
then finds the maximum slope ( a m a x « 0.40) occurs at $ « 
0.76 (where the curvature, K($)=0) as presented in Fig. 7b. 
Thus, according to Eqn (7), & « 0.76 is the moisture ratio 
where, for a given load pressure, P, the overburden 
potential is maximal. At this point, the percentage of the 
load pressure, P, carried by the matrix is minimal. 

By differentiating Eqn (15) and setting the differential 
equal to zero one finds the two extremes at: 

0 2 = (2nko) 1 / n [3(n+l)-[9(n+l) 2- 4 (n+ l ) (n+2) ] 0 5 ] 1 / n (17). 

The first extreme, S\ « 0.23, is the inflection point at the 
dry end and is an unbiased estimate of the 'shrinkage limit' 
[Groenevelt and Grant 2001b]. The second extreme, 0 2 « 
1.30, is the inflection point at the wet end, and separates the 
region of 'structural' shrinkage from that of 'unsaturated, 
proportional' shrinkage (ibid). In the middle between these 
two extremes, where the curvature is zero at $ « 0.76, the 

o.o 0.4 0.8 1.2 

Moisture ratio 

2.0 

Figure 7a. Slope values for Talsma's unloaded shrinkage curve 
as a function of the moisture ratio. 

0.5 1.0 1.5 

Moisture ratio 

2.0 

9!= (2nko) 1 / n [3(n+l)+[9(n+l) 2 •4(n+l ) (n+2)] 0 5 ] 1 / n (16) 
Figure 7b. Curvature values for Talsma's unloaded shrinkage 
curve as a function of the moisture ratio. 

Table 4. Comparison of measured and predicted consistency limits for Olsen and Haugen's [1998] data. 

GravirrctricAfrkter Contents (kgftg) 
Shrinkage limits Shrinkage linits Lower plastic limits Lower plastic limits 

Soil calculated from measured by CXsenSc calculated from measured by 
maxirnum curvatures Haugen iraxirrum curvatures Haugen 

at dry end at wet end 
Topsoil 0.21 0.20 0.28 0.29 
Subsoil 0.21 0.20 0.29 0.27 
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matrix carries the smallest percentage of the total load or 
overburden. 

4. CONCLUSIONS 

Hydrostatics in swelling soils, as pioneered by JR Philip, 
is extended here to calculate the water potential in soils 
under loaded conditions. This has significant implications 
for understanding subsoil constraints to root growth in 
heavy-textured and texture-contrast soils where horizons 
change volume with wetting and drying [Groenevelt et al. 
2001]. Our analysis and interpretation of shrinkage lines 
using their maximum curvatures (inflection points), provide 
a powerful tool to separate the different stages of the 
shrinkage process. This tool works equally well for data 
obtained from soil cores as for data obtained from soil 
clods. It is expected that this tool will be useful in soil 
physics and soil mechanics. 

List of Symbols 
C Differential water capacity (bar 1) 
e Void ratio (dimensionless) 
°e Void ratio with zero load pressure at air entry 

(dimensionless) 
e (P) Void ratio with load pressure, P, at air entry 

(dimensionless) 
k! Fitting parameter (bar) 
k 2 Fitting parameter (bar-1) 
k3 Fitting parameter (dimensionless) 
n Fitting parameter (dimensionless) 
p Pressure potential of soil water (bar, negative) 
p* Pressure potential at air entry (bar, negative) 
°p Pressure potential at P = 0 (bar, negative) 
°p Pressure potential with zero load pressure at air entry 
pa Pressure potential of soil air (bar) 
P Load pressure, overburden pressure, or envelope 

pressure (bar, positive) 
T Temperature 
z Gravitational potential (bar) 
ap(e) Slope of shrinkage curve with moisture ratio as 

explicit variable and void ratio as implicit variable, 
3(e), at constant load pressure, P. 

e Void ratio on shrinkage line at air entry (dimensionless) 
°8 Void ratio on unloaded shrinkage line at air entry 

(dimensionless) 
0 Volumetric water content (dimensionless) 
O Total water potential (bar) 
4* Matric potential (bar, or cm in Figs 1 and 2, negative) 
8 Moisture ratio (dimensionless) 
8 # Moisture ratio linking loaded and unloaded states 

(dimensionless) 
^8'Moisture ratio, zero load at air entry (dimensionless) 
p w , p s Density of water, density of particles (g cm"3) 
n Swelling pressure (bar) 

a Differential overburden potential (dimensionless) 
Q Overburden potential (bar) 
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Water and Solute Transfer in Porous Media 

David E. Smiles 

CSIRO Land and Water, Canberra, Australia 

John Phi l ip ' s classical approach to environmental problems was based on a 
flux equation whose elements permit measurement , and material continuity. This 
approach identifies a small set of material properties that are necessary and sufficient 
for analysis and can be measured at the scale of application. Phil ip warned, on a 
number of occasions, against quantitative prediction of material propert ies at one 
scale using insights developed at another. At the same t ime he encouraged simplifi
cat ions where observation permitted them and he strongly objected to unnecessary 
complicat ion when these insights are applied to practical problems. He was disap
pointed when simplifications and insights, revealed in some of his quasi-analytical 
solutions to flow equations, were not incorporated in computer models . This paper 
illustrates some of these issues in relation to 1-dimensional flow of liquid in swell ing 
systems and, specifically, to approximations that simplify analysis of some chemical 
engineering unit processes. It also illustrates approaches to hydrodynamic dispersion 
that derive from early insights of Philip. In particular, it draws attention to benefits 
of solid- and water-based space-like coordinates in analysing hydrodynamic disper
sion and reaction during unsteady flow in unsaturated soils and some benefits in field 
management . 

1. INTRODUCTION 

John Philip's approach to environmental processes was 
based on classical continuum mechanics and, in the case of 
water, on the equation of Richards [1931] who combined 
Darcy's law and insights of Buckingham [1907], among 
others, with a continuity equation for the water. This ap
proach identifies material properties necessary and suffi
cient to solve problems to which the equation applies. 
These, together with appropriate initial and boundary con
ditions reveal behaviour, through the logic of the mathe
matics, that permits test of theory or even behaviour that 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
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may be inaccessible to experiment [Philip, 1957a]. He em
phasized the importance of matching the scale of analysis to 
that of application and insisted on identifying the key mate
rial properties at that scale. Examples in his Advances in 
Hydroscience classic [Philip, 1969], which follows the 
general structure of texts such as Carslaw and Jaeger 
[1959] and Crank [1975], illustrate the power of the ap
proach. 

The approach provided a guide to test theory and to 
measure material properties; it provided a basis for practi
cal analysis; it provided a useful set of simplifications and 
approximations to theory; and it underpins the test of more 
complicated "trans-scientific" excursions [Philip, 1980]. It 
also provided a recipe to formulate a new but analogous 
theory of 1-dimensional flow in swelling materials. 

John Philip supported William of Ockham's thesis that 
the simplest explanation of a phenomenon must be the most 
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attractive, despite the assertion [Bronowski, 1979] that it 
represents no more than an aesthetic pleasure akin to sacri
ficing your queen to permit a knight to mate. He worried, 
too, about models that overlooked the efficiencies and 
physical insights that simplified and illuminated his analy
ses and also about modeling that was not frequently and 
searchingly tested experimentally [Philip, 1991]. 

This paper first illustrates some of these issues in rela
tion to water flow in swelling materials and then explores 
an approach to hydrodynamic dispersion and chemical re
action in soils, which was encouraged by Philip's insights. 

2. FLOW IN SWELLING MATERIAL 

[Zaslavsky, 1965] in response to a space gradient of hy
draulic head (manometric pressure head plus gravitational 
head). The solid flux times the water content (per unit 
amount of solid) defines the component of the total flux ad-
vected with the moving particles. Because both the solid 
and the liquid move during non-steady flow, material bal
ance equations are necessary for both. Substitution of the 
equation for the solid in that for the water, however, leads 
to a balance equation for the water expressed in a coordi
nate, m, based on the distribution of the solid. A flow 
equation (1) analogous to that of Richards [1931] then 
emerges when Darcy's law is combined with the material 
balance equation expressed in the solid based coordinates. 

Origins of theory of water flow in non-swelling soils are 
described well by Philip [1969, 1974]. Extension of the 
approach to swelling systems was precipitated by analyses 
of Raats and Klute [1968a, b] and experiments of Smiles 
and Rosenthal [1968]. John Philip's interest in this area il
lustrates his style and is worth recalling. Margaret Rosenthal 
and I performed a series of experiments where we measured 
the evolving water content profiles following imposition of a 
step change in water content at the outflow end of an initially 
uniform column of clay in a pressure membrane cell. Our 
analysis was formulated in rudimentary solid-based space
like coordinates and applied mathematicians at Sydney Uni
versity recommended we approach John for advice. Within a 
week of our discussing the work with him, he had produced 
an analysis but in physical space and time [Philip, 1968]. 
Margaret and I were astonished at the precision of his ap
proach but more irritated at the facility with which he ana
lyzed issues that we had battled over for months. Character
istically, he expressed his "considerable debt to Dr Smiles 
and Miss Rosenthal for interesting me in this topic"; he also 
assured us that there was no future in using material coordi
nates for this class of problem. He then produced the flurry 
of papers on vertical equilibrium and flow in swelling materi
als cited in Philip [1970]. Within three months, however, he 
recognized the significance of papers arising from Peter Ra
ats' doctoral thesis [Raats and Klute, 1968a, b] and, in retro
spect, that of McNabb [1960], and revised his opinion of the 
use of material coordinates. He also realized that a solid-
based space-like coordinate resulted in an equation of exactly 
the same form as Richards' equation. This made much of the 
analysis in his 1969 review paper on theory of infiltration ac
cessible to flow in swelling material. 

Principal features of the analysis are set out in Philip 
[1970], and papers he cited there. Briefly, 1-dimensional 
water flow in swelling soils requires that we recognise that 
water flows with, and relative to, the solid particles. 
Darcy's law describes flux of water relative to the particles 

d$ _ d 
dt dm dm 3 m 

In (1), # is the moisture ratio (volume of water per unit 
volume of solid), t is time, km is hydraulic conductivity in 
the m-coordinate, y/ is the water potential, and km*(&) is a 
conductivity like term that encapsulates km(ty, overburden 
and gravity [Kim et al, 1992, Philip, 1969; Smiles, 2000a]. 
The hydraulic conductivities km(&) and &(0W) in 'material' 
and 'physical' space are related by 

kmW) = k(djes 
(2) 

with 0W the volume fraction of the water and 0S the volume 
fraction of the solid. In the saturated system discussed be
low, 

k-mw)=(i-P)kmm, (3) 

with p the specific gravity of the solid. 
Gravity enters the analysis both because it contributes 

explicitly to the hydraulic head and implicitly to the 
manometric pressure, pw, defined by 

P„ =\jf{d) + a^ydz, ( 4 ) 

where the first term on the right is the unloaded moisture po
tential and the second term is the overburden potential, cal
culated as the integral of y, the wet specific gravity of the soil, 
from the point of elevation, z, to the soil surface at T, [Groe
nevelt and Bolt, 1972; Philip, 1970]. The overburden term 
incorporates the consequences of vertical displacement of the 
profile as water content changes [Philip, 1969]. The a term 
moderates the effect of the total load (including any surface 
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load) according to an average of the slope of the e(&, p) rela
tionship which describes the volume/ water content/ pres
sure properties of the material. [Croney et al, 1958; 
Croney and Coleman, 1961; Groenevelt and Bolt, 1972] in 
which the void ratio, e, parameterizes the volume, # param
eterizes the water content, and p is the load. 

Solutions of Richards' equation, and hence equation (1), 
are well-known and advection of water associated with 
solid movement is implicitly dealt with in the solid-based 
coordinate; Phdip [1968] exemplifies mathematical com
plications if the advection term remains an explicit compo
nent of the flow equation. 

In common with non-swelling soil theory, use of this 
equation requires that the km(&) and y/(&) characteristics of 
the material be well-defined. But, in addition, swelling soil 
theory requires the solid specific gravity, p , and the e(&, p) 
relationship These characteristics are readily measured 
although they do not generally permit prediction from 
properties at other scales. Smiles [2000a] identifies most of 
the workers who have used the approach in soil science 
since 1970 

Analogous problems are also encountered in civil engi
neering where studies date back to those of Terzaghi [1923] 
and in chemical engineering where analogous theory was 
formulated, particularly in Japan and the United States [see 
for example, Atsumi et al., 1973; Gibson et al., 1967; Leu, 
1986; Shirato et al, 1986]. 

Engineering provides useful insights into theory and ex
perimental techniques that would be very useful in soil sci
ence but are not often applied and vice versa. 

Two topical examples illustrate Philip's contentions that 
the simplest approach to a phenomenon that is fully conso
nant with observation is best. One of these examples deals 
with basic issues of flow; the other illustrates economies that 
arise from insights that Philip [1969] offers into solutions of 
Richards' equation. 

2.1. Flow Laws in Swelling Materials 

In the analysis of water flow giving rise to equation (1), 
transfer of the solid is linked by continuity with the flux of the 
water and Darcy's law describes the flux of water relative to 
the solid. But an approach based on Darcy's law and 
continuity is not unique; a school of thought has focussed on 
the flux law for the solid in swelling systems [eg Landman 
and Russel, 1993; Nakano et al., 1986]. This approach has 
been aired recently in the soils literature {Angulo-Jaramillo 
et at., 1997]. It derives from Stokes' flow and the notion 
that the settling of independent particles might be integrated 
to describe the settling of an interacting particle swarm. 

There is also an analogy with diffusion consequent on 
Brownian motion of dispersed colloid particles. 
Regrettably, neither a Stokes' flow model nor Brownian 
motion applies easily across the range of materials from a 
diffuse colloidal suspension to an unsaturated non-swelling 
soil. Darcy's law, however, explicitly describes the 
"inverse" process of water flow relative to the solid and we 
can measure both yA^fi) and &m($) across almost this entire 
range. Furthermore, the complementary material balance 
equations for the solid and the liquid make Darcy's law 
sufficient to describe fully the transfer of both components 
in the system so a flux law for the solid is unnecessary 
[Kirby and Smiles, 1999]. 

Tests of this approach initially used the analysis of Bruce 
and Klute [1956] and focussed on non-steady flow resulting 
from constant potential boundary conditions. A rapidly 
converging iterative method, based on an approach of Par
lange [1972], then permitted approximate but accurate 
ways to solve and test the water flow equation for a wide 
range of other important initial and boundary conditions. 
Smiles [1986] summarised a set of these tests. Further ex
perimental series such as Smiles et al. [1985] and Kirby and 
Smiles [1989] tested flows on slurries over ranges of solu
tion salt concentration and temperature under transient and 
steady state flow conditions. They found no reason to re
ject the basic premises at least for smectites. For example, 
steady state measurements of km( -&) corresponded well with 
values calculated from the diffusivity, Dm(&) measured us
ing the method of Bruce and Klute [1956] and \f/(&) [Kirby 
and Smiles, 1989] using the definition of diffusivity, which 
is often used for non-hysteretic flow. 

Dmm=kmv)%. ( 5 ) 
dv 

The measurements also corresponded well with estima
tions calculated by differentiating measured sorptiv-
ity/pressure functions [Philip, 1957b; Smiles and Harvey, 
1974]. 

Other experiments explored effects of temperature and 
found flow to be consistent with the temperature depend
ence of the kinematic viscosity of water, within limits of 
experimental measurement. These experiments put to rest 
concerns about curious effects related to water structure 
close to clay mineral surfaces in clay slurries in the ranges 4 
< # <40 and 277<T/K<302. Furthermore, there was no sta
tistically significant temperature dependence in y/(&) of 
these clays. It is important to note, however, that in the 
range of suctions imposed, the clay remained saturated and 
surface tension effects would not have been evident. Con-
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cerns about the temperature dependence of flow in unsatu
rated soils and clays [see for example, Stoffregen et al, 
1997] remain unanswered. 

Steady- and non-steady state, and static equilibrium ex
periments also explored effects of solution salt concentra
tions. For example, measured y/(&) functions were qualita
tively consistent with double layer theory but that theory 
failed to predict quantitative changes in y/(&) accompany
ing changes in the equilibrium NaCl solution concentration 
in the concentration range 0-0.1M. This prompted Philip 
and Smiles [1982] to reiterate the difficulties of trying to 
transcend scales of discourse even in materials as structur
ally simple as clay slurries. At the same time, measure
ments of y/(#) and km(&) are unambiguous and are suffi
cient to fully describe flow under many circumstances at 
that scale. Furthermore, we can remain quite agnostic 
about the origins or details of the interactions that give rise 
to them. It is sufficient that these characteristics exist and 
are measurable. 

These studies also demonstrated a hitherto unobserved 
unique relation between k and y/ over 3 orders-of-
magnitude of solution salt concentration [Smiles, 1986]. 
The numerical benefits of this relation are evident but its 
basis in theory has yet to be elucidated. 

Confusion may arise in test of theory and experimental 
artifacts may prejudice interpretation of results. For 
example, volume change requires that experimental 
constraints be considered carefully and experiments that fail 
to recognize their importance will be misleading. The 
macroscopic theory originally proposed by Philip and 
Smiles [1969] envisaged essentially 1-dimensional 
(vertical) volume change. It recognized 3-dimensional 
cracking but considered that only the vertical component 
would affect energetics of flow. Experiments therefore 
sought to ensure lateral constraint but free vertical 
movement. Bridge et al. [1970] and Collis-George and 
Bridge [1973] describe experiments and strategies to deal 
with these requirements. Smiles and Colombera [1975] 
used another simple technique with success in a limited 
range of overburden constraint. Spurious results emerge if 
these conditions are not met and full development of theory 
will almost certainly have to appeal to methods of soil 
mechanics where the triaxial cell has been designed to deal 
with such problems [Kirby and Smiles, 1999]. 

Analysis of steady state experiments must also recognise 
that flow must be related in a non-linear way to the imposed 
water pressure difference. The phenomenon was used by 
Kirby and Smiles [1989] to measure km(y/) 'directly'. 

2.2. Physically Based Simplifications of Theory 

In John Philip's series solutions to the Richards' equation 
in one-dimension and multi-dimensional absorption, the 
leading term in each case is exactly the solution for one-
dimensional absorption. This reveals the importance of the 
1-dimensional diffusion solution during early stages of flow. 
It is also consistent with his truncated 2-parameter infiltration 
equation 

i(t) = Stl,2+At, (6) 

in which i(t) is the cumulative infiltration and he defined the 
sorptivity, S [Philip, 1957b]. S is the fundamental integral 
property of the first term of the series solution. Philip 
recognised the inconsistencies between A in equation (6) and 
the second and subsequent terms in his series solution; he 
returned to this issue in Philip [1987]. Despite these 
theoretical difficulties, the importance of the first term in the 
series solution and in equation (6) led him to identify t^ as 
the time before which one does not need to consider the 
effect of gravity in infiltration. Similarly, in 2- and 3-
dimensional axisymmetric flow, he identified fgeom as the time 
after which geometry needs to be considered. Both and 
^geom are estimated by comparing S with the second coefficient 
in the series (or A in the case of equation (6)), which is 
related to the hydraulic conductivity. The better than order-
of-magnitude estimate proves very useful in non-swelling 
water flow theory; it is also helpful in analysis of flow in 
swelling materials. 

The effect of gravity 

The effect of gravity in swelling systems much exercised 
John Philip. Among other things, he recognised that where 
the solid specific gravity is greater than one, infiltration into 
saturated swelling systems results in an increase in the 
gravitational potential energy of the system. This contrasts 
with a decrease in potential energy that accompanies 
infiltration in non-swelling soil. Thus, vertical infiltration in 
these materials is analogous to capillary rise in non-swelling 
ones. The mathematical expression of this effect is seen for 
the saturated system in equation (3), where the (1-p) term 
changes the sign of £ m * ( # ) - An average slope of the e(fy p) 
relationship moderates this effect in unsaturated swelling 
soils but Philip [1995] continued to argue for a practical 
approximate approach that sets a as the slope of the unloaded 
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e(&, p) relationship despite early criticism of this 
approximation by Youngs and others. Experiments by 
Smiles [1974] exemplify the issue during infiltration of water 
into a saturated clay and reasonable limits to t&aLV for that 
system were calculated. A limited set by of experiments of 
Smiles and Colombera [1975] in the laboratory and Perroux 
and Zegelin [1984] in the field, offer support. 

The hydraulic properties of a potentially acid sulfate soil 
provide a recent example. The material was recovered 
from a depth of about 1.5m to provide preliminary 
hydraulic conductivity and potential measurements needed 
to predict consequences of loading and drainage. Pressure 
membrane cell equilibrium and outflow were used to 
measure y/ity (Figure 1) and y/(S) (Figure 2) on this 
material. 

The linear relationships observed in Figures 1 and 2 
have previously been observed for much wetter materials. 
There is no reason, in principle, that they should be so but 
the observation facilitates calculations of Dm(D) (Figure 3) 
and then km(-&) (Figure 4) using equations (7) and (5) 
[Smiles and Harvey [1974]: 

Dmm= 
i 

2(# 0 - t ? ; ) 
rS1 dS2 

(7) 

In (7) the subscripts refer to initial (j) and boundary (o) val
ues of 1? and r is the power of the flux concentration rela
tion [Philip, 1972] expressed in the form, 

0 . - 0 , 
(8) 

with 0 < r < 1 depending on the flow regime. 
Dm{&) shown in Figure 3 is a decreasing function of 

This is quite different from the non-swelling soil experience 
but consistent with other swelling material data as application 
of the analysis of Bruce and Klute [1956] to the data of 
Figure 9 reveals. The phenomenon makes desorption from 
swelling systems similar to absorption by a non-swelling soil 
and, because cumulative outflow tends to be proportional to 
t m for relatively long times, desorptivity is measured 
accurately. 

Figure 4 shows that, compared to k(6w) in rigid soils, 
£ m (#) is a comparatively weakly increasing function. This 
is a common observation. In addition, km(&) is not matched 
well using material analogues of equations, such as that of 

Kozeny/Carman/Hatch discussed by Dallavalle [1948] (his 
equations 13.32 et seq.), which seek to relate k to 0W. 

These data permit us to estimate the time during which 
gravity might be neglected during vertical flow that might 
follow the imposition of a surface load. An example relates 
to the time during which gravity free flow controls 
consolidation of a road or other pavement laid on such a 
material. Using the approach based on equation (6) and 
setting A = (l-p)(km(&0)- km(^))/2 [Smiles 1974], it emerges 
that t m behavior will be 10 times greater than that due to 
gravity for more than 17 years. This is in accord with 
observations of a road base on a similar soil where settlement 

0.5 1.0 1.5 2.0 
Ln (-WmH 2 0) 

3.0 

Figure 1. Water content, water potential, y/, characteristic of an 
acid sulfate soil 

0 0.5 1.0 1.5 2.0 2.5 3.0 

Ln (-W/mH20) 

Figure 2. Sorptivity-water potential, S(y/) function for an acid 
sulfate soil. 
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Figure 3. Moisture diffusivity-water content function, D m (# ) , de
rived from data shown in Figures 1 and 2 using equation (7) and 
setting r = 0.5 [Parlange, 1975]. 

was still proceeding linearly with respect to t m after more 
than 2 years [Smiles 1973]. 

The effect of geometry 

The notion of tgeom has been applied to centrifugal 
filtration. This process is energetically advantageous because 
both the water and the solid potential energies diminish in the 
centripetal force field and equilibrium water contents in the 
filter cake are much less than they would be, for example, in a 
ponded sediment in the same force field [Smiles, 1976]. But 
analyses have been complicated [Bear et al, 1984] or 
seriously simplified [Tiller and Hysung, 1993]. An early 
time approach to both the axi-symmetric cylindrical aspects 
and the gravity effect, however, reduces the analysis to 1-
dimension and, for the case of wet clays, to a simply analysed 
diffusion form [Smiles, 1999]. The approach derives directly 
from that of Philip [1969] and provides reliable estimates of 
the time for which the approximation is valid. It also 
provides a simple bridge to constant pressure filtration 
methods that can be used to model the centrifugal problem 
and again to estimate the period of time for which a 
simplified approach is valid. 

2.3. General Comments 

The use of the hydraulic head 

John Philip's approach to the components of the water 
potential in a vertical swelling system was mechanistic and 
classical. It identified (equation 4) the manometric pres
sure, pw, as the sum of the overburden potential and the 
unloaded water potential, iff (or effective stress). Only the 

total stress and pw permit direct measurement in the field, 
however, and the unloaded water potential remains an in
ferred property. In this sense Philip was not as pragmatic 
as Miller [1975] who argued for the use of pw rather than 
the inferred unloaded water potential, y/, as a basis from 
which to define material properties and flow. Miller's point 
derived from the notion and use of the hydraulic head as the 
driving force for all water flow, with manometric pressure 
and gravity the two measurable components. Smiles 
[2000a] identifies examples where this issue is not recog
nised. Among other things, it results in a SSSA [1997] 
Glossary definition of y/ that is incorrect for swelling soils 
and is generally inapplicable. 

Effects of cracking 

These were considered early by Raats [1969, 1984] and 
Philip and Smiles [1969] who recognized that definition and 
measurement of a mass based space-like coordinate is not 
prejudiced by cracks. All that is required is that the 
cumulative mass of solid be defined in terms of a unit area of 
cross section that includes cracks. Relations between 
aggregate and profile volume change, however, have 
confused and complicated analysis. It is easy to measure 
the volume change of aggregates but the consequence of 
this swelling on the profile is less obvious. The thesis of 
Bronswijk [1990] provides an exhaustive set of data and a 
clear distinction between the effect of aggregate volume 
change on vertical profile displacement. The results of 
cracking on flow remain a problem yet to be dealt with. 

A classical approach based on material balance and 
Darcy's law remains the most useful first approach to water 
flow in swelling soils. The approach has been well-tested 

1 X 1 0 - 1 0 i , 1 , , , 1 
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1X10 1 1 1 ' ' ' ' ' 1 
1.4 1.6 1.8 2 .0 2 .2 2 . 4 2 .6 

Figure 4. Material conductivity-water content function, &m(#), de
rived from Figures 3 and 1 using equation (3). 
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in saturated systems such as clay suspension, mine tailings 
and sediments and many of its elements are systematically 
used in civil and chemical engineering. It is not widely 
used in soil science however, and papers still offer need
lessly complicated explanations and inept experiments. 
Furthermore, definitions in standard texts are incorrect. 
The Glossary of Soil Science Terms [SSSA 1997], for ex
ample, has no definition of overburden that draws attention 
to its effect on the water potential. In addition, the defini
tions on page 103 of that Glossary totally ignore the conse
quences of swelling and the notion of effective stress that 
have been of operational concern in civil engineering for 
more than 60 years [Terzaghi 1943]. 

3. HYDRODYNAMIC DISPERSION 

In the mid-1970s John Philip, David Elrick, John Knight 
and I realised that absorption experiments like those of 
Bruce and Klute [1956] provided a systematic way to study 
hydrodynamic dispersion in soil during unsteady unsatu
rated. Explicitly, it emerged [Smiles et al., 1978] that both 
the water and the soil solution concentrations preserved 
similarity in terms of distance divided by the square root of 
time during absorption of a solution by a relatively dry soil. 
This approach for the first time, permitted systematic explo
ration of dispersion during unsaturated soil water flow. It 
was developed in the context described in subsection 4.3.1 
of Raats [2002] and it provided a flexible alternative to the 
Danckwerts/Saffman/Taylor focus on capillary flow that 
underpins the 'breakthrough' experiments on which previ
ous examination of the phenomenon in soils was based. 
This is because material coordinates based on the distribu
tion of the water improve description of the advection of 
the solutes in a setting of water contents that may vary in 
space and time. 

For example, it put in context the significance of the 
water content and the pore water velocity dependence of the 
dispersion coefficient and showed that then current ap
proaches to dispersion might be simplified. In particular it 
put realistic constraints on the conditions of flow that are of 
concern in soil science and thence to the relevance of the 
velocity dependence of the dispersion coefficient during 
'natural' flow of water in soil. The analysis was subse
quently extended to flux boundary conditions and Smiles et 
al. [1981], contemporaneously with Wilson and Gelhar 
[1981], showed how the approach is simplified by using 
space-like water based coordinates. For absorption, this 
approach identifies the origin of the coordinate system as 
the notional piston front that would exist if the absorbed 
water completely displaced the water originally present. 
Bond's and co-workers' studies in the 1980s extended the 

approach to chemical reaction. A set of papers in 1990 
summarizes insights arising from the approach [Bond and 
Phillips, 1990a, b, c]. 

The approach is not extensively applied although recent 
studies illustrate its versatility and power in critical analy
ses. We focus on two of these. 

3.1. Dispersion and Reaction During Soil Water 
Absorption 

Selection of a low-level radioactive waste repository in 
central Australia requires that we identify regolith materials 
that restrict the movement of radionuclides that might be 
released inadvertently. The task is complicated because 
material is sampled using reverse cycle impact drilling. 
This procedure destroys field structure although the clay 
mineral content appears unchanged. On the presumption 
that clay content provides a useful first estimate of the 
chemical activity, we examined effects of clay content and 
its variation between samples on the retardation properties 
of the material. In principle, retardation of the nuclide 
relative to the water can be predicted from the slope of the 
adsorption isotherm measured in "batch experiments" [Bolt, 
1976; Bond and Phillips, 1990c, Freeze and Cherry, 1980; 
Hashimoto et al., 1964], Lai and Jutinak, 1972] but ab
sorption experiments actually measure that retardation. 
Smiles [2001] describes such experiments, where a uniform, 
relatively dry, horizontal column of soil absorbed aqueous 
solution containing radionuclides from a source at constant 
water potential. Experiments were terminated after differ
ent specified times and the columns sectioned. Water solu
ble salts, tritium and Co-60 concentrations were measured 
in each section and graphed as a function of distance from 
the inflow surface divided by the square root of time at 
which the profiles are measured. 

Figure 5 shows the mass fraction of water, 0g, graphed as 
a function of M = mtm. Here, m is the cumulative mass of 
soil solid (per unit area of column cross section) measured 
from the inlet end of the column and t is the time at which 
the column was sectioned. The self-similar water content 
profiles revealed in this figure indicate that Darcy's Law is 
observed, that the column is uniform with initially uniform 
water content, and that the step-function water potential 
boundary condition is realized. The hatched areas are equal 
and the vertical line near 9x10 2 g/cm 2 s 1 / 2 is a "front" that 
would exist if absorbed water displaced water originally 
present in its entirety. It is important to note that our use of 
the "piston front" here and later does not imply physical 
piston displacement but simply that during Darcy flow in 
soil the hydrodynamics and physical chemistry of the proc
ess result in something that resembles a "front". 
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Figure 5. Water content (0 g) vs M (= mtm) profiles measured 
during absorption by a relatively dry soil, m is a mass-based 
space-like coordinate. Experiments were terminated at the times 
shown in the figure. 

Figure 6 shows concentrations of Co-60, water soluble 
salts and H-3 as functions of M. These data also preserve 
similarity consistent with step changes at t - 0 in each of 
these sets. Similarity also implies that chemical equilibrium 
effectively exists in the columns. Within experimental eror, 
the H-3 and soluble salt 'fronts' coincide at M ~ 9 x 1 0 2 

g/cm2.s 1 / 2 . The Co-60 'front' is at M< lxlO" 2 g/cm2.s v \ It 
is retarded relative to the other tracers because the Co-60 is 
adsorbed (principally by the clay) and in an environment 
dominated by the absorbed solution rather than that origi
nally present, and which is characterized by concentrations 
shown in M>lx l0" 1 g/cm2.s v \ 

It is interesting to consider these data in a space that is 
defined by the distribution of the water and satisfies its 
material balance. This coordinate is defined, for this case, 
by 

M Bt(0) 

G(m9t) = J6gdM- \Md0g (9) 
0 0g(i) 

with 0g(i) and 0g(O) the initial and boundary water contents 
of Figure 1. The second integral on the right hand side is 
Philip's sorptivity, S. The origin of this coordinate system 
(G = 0) is the notional piston front between the solution 
originally present and the invading one [Smiles et al, 
1981]. 

Figure 7 relates M to G using the data of Figure 5 and 
equation (9). G = 0 when M « 9xl0" 2 g/cm 2 .s 1 / 2 . 

Figure 8 shows Co-60, soluble salts and concentrations 
of H-3 presented in this water-based coordinate system. 
The advancing "front" for H-3 and the retreating "front" for 
water soluble salts coincide with G = 0 and with the piston 

front identified in Figure 5. They are distributed about it 
because of diffusion relative to the water. This indicates 
that the anions, in this case, do not react with the soil, and 
the tritiated water behaves like water. The delay of the Co-
60 profile, relative to G = 0, is related to the retardation 
factor of Hashimoto et al. [1964]. It reflects the average 
slope, /3, of the adsorption isotherm for Co-60 in the chemi
cal environment of the soil during this process. In this sys
tem, the distribution coefficient, /3, equals the ratio of the 
location of the Co "front" in water space (shown in Figure 
4) to its location in mass based space (Figure 2) [Smiles, 
2001]. Note that j8 is the same as the Kd of Freeze and 
Cherry [1980] but its units reflect the molal convention we 
use. Here, /3 « 1.6 g w a t e r / g s o i i d -

The water-based coordinate is revealing and useful for 
anions and for H-3. When cation solution concentrations 
are small relative to the amount on the exchange capacity, 
as is the case with the Co-60, then the soil-solid based co
ordinate may be more illuminating. A subsequent experi
mental set where acid washed sand was added to the soil 
demonstrated this. These experiments are described by 
Smiles [2001] also. The addition of sand increased the 
sorptivity of the soil but decreased local adsorption of Co-
60 associated with the clay mineral. The increase in S to
gether with reduced local adsorption resulted in a greater 
penetration of solutes into the columns; increased S also in
creased the total amount of each solute in the column. 
These effects were virtually eliminated by using a space
like coordinate defined by the cumulative mass of clay 
(rather than soil solid as in Figure 6) and expressing the Co-
60 (and other concentrations per unit mass of clay; and by 
'normalizing' that space with regard to S. The latter device 
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Figure 6. Normalized concentrations of soluble salts, tritium and 
Co-60, corresponding to the water content profiles of Figure 5, 
and graphed vs M 
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Figure 7. Relation between M, the solid-based coordinate of Fig
ure 5, and G, a water based coordinate calculated by applying 
equation (9) to the data of Figure 5. 

involves dividing equation (9) throughout by the sorptivity 
integral on the right hand side. 

The use of a clay-based coordinate was foreshadowed by 
Raats [1997] and by Smiles [1997]. The qualitative effi
cacy of such an approach is not surprising, and we routinely 
estimate, for example, gypsum requirement on the basis of 
the cumulative exchange capacity of some arbitrary depth 
of topsoil. This analysis quantifies that approach. 

Different clay minerals will behave differently but for 
the experiments of Smiles [2001], extension to a coordinate 
based on cumulative cation exchange capacity or surface 
charge density offers no further insights. The use of these 
approaches to predict behaviour systematically and quanti
tatively across clay mineral types and concentrations would 
seem a profitable area for study. 

It is not necessary that both the water and solute invasion 
be associated with step-function, or constant-flux, boundary 
conditions. A water-based coordinate can be similarly used 
in the field where redistribution of water or water extraction 
by plant roots occurs as Raats [1975] and Wilson and Gel-
har [1981] describe. 

In conclusion, this procedure determines the fate of a nu
clide during non-steady invasion of solution containing that 
nuclide into a particular soil. It provides a check on esti
mates based on "batch " (in vitro) exchange isotherms but it 
is more realistic because the measurement is made in-vivo 
and in association with the cation and anion suite in the 
neighbourhood of the chemical reaction during the 'chro
matographic' process. It makes no presumption about the 
exchange environment required for an in vitro measure
ment. A corollary of the procedure is that it permits deter
mination of actual isotherms involving all cations and ani

ons in the displacement process, should that be required. 
This latter determination requires measurement of the prin
cipal soluble and exchangeable cations throughout the col
umn. Each point on the Co-60 curve in Figures 6 and 8 
then represents one point on an exchange isotherm [Bond 
and Phillips, 1990c] in the presence of the other soil ca
tions at that point. 

Solute profiles, such as those shown in Figure 6, are 
generally presented in physical space but their presentation 
in a solid based Af-space is a trivial extension where the 
bulk densities of the columns remain constant. They are 
potentially more general than those presented in physical 
space, however, because they are strain-independent [Raats 
and Klute, 1968a; Smiles and Rosenthal, 1968]. The next 
example illustrates this versatility. 

3.2. Dispersion and Reaction During Desorption From 
Clay 

In the process of slip casting, a porous mould absorbs 
water from wet clay to produce a cast that is subsequently 
air dried and kiln-fired to make a ceramic object. Prelimi
nary experiments using a plaster-of-Paris mould were con
sistent with theory of flow between different porous media 
but the structure of the sodic clay used as the slip was 
changed by penetration of Ca into the clay from the mould. 
We then conducted constant pressure filtration experiments 
that sectioned the clay "cast" and showed that Ca moved 
from a gypsum 'membrane' at the outflow surface into the 
clay against the flow of the water. This is different from 
conventional breakthrough and absorption experiments 
where both the water and the solute tend to go in the same 
direction. Experimental detail for the sequence is provided 
in Smiles [2000b] and the papers cited there. 

t 

• Cobalt at 43 min. 
• Cobalt at 180 min. 
A Cobalt at 414 min. 
x Salts at 43 min. 
• Salts at 180 min. 
• Salts at 414 min. 
+ Tritium at 43 min. 
O Tritium at 180 min. 
a Tritium at 414 min, 
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Figure 8. Profiles of soluble salts, tritium and Co-60 shown in 
Figure 6, regraphed in terms of G shown in Figure 7. 
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Figure 9 . Water content, (0 g) vs M (= mtm) profiles measured 
during desorption of wet clay under constant pressure. Experi
ments were terminated at the times shown in the figure. 

Figures 9-12 are analogues of Figures 5-8 for this sys
tem. Figure 9 shows Q%(M) for experiments terminated after 
approximately 24, 50 and 80 hours. These profiles are self-
similar in M = mtm but note that the system is water satu
rated (ie 0 g = p e) so the (one-dimensional) volume change 
is exactly equal to the sorptivity, S. Changes in structure in 
the clay consequent on the change in solution type and con
centration also preserve similarity in terms of M. Smiles et 
al.,[1996] argued that this observation is consistent with the 
requirement that the potential and conductivity characteris
tics of the material follow unique paths across a surface that 
takes into account the changing physical-chemistry of the 
clay. It also requires that chemical equilibration and conse
quent structural response are rapid compared with the rate 
of movement of the water. 

At the same time the change in structure was not as great 
as we would have expected had the clay been laid down, de 
novo, in equilibrium with the cation suite shown in Figure 
10. Explicitly, # at M = 0 was more than twice as great as 
would then have been the case. 

Figure 10 shows profiles of total (water soluble plus ex
changeable) Ca and Na concentrations in M-space with 
similarity again observed in the Ca and (displaced) Na pro
files. Cation exchange capacity (CEC) is also shown. 

Because the cation exchange capacity in this system is 
great, additional cation in solution exceeds it by only about 
10%. At the same time, because the total amount of cation 
is presented, part of the decrease in Na is the result of the 
water content decrease in the system in M < 8x10~4 g/cm 2 

s 1 / 2 . This also affects the total amount of Ca in M-space. 
Figure 11 shows the relation between M and the water 

based G-coordinate defined by equation (9). Because S is 
now negative, the origin of the coordinate lies in the 'free' 
solution expressed from the clay column and at a material 
distance equal to S from it. 

Figure 12 shows the data of Figure 10 graphed in G-
space. The concentrations are expressed here per unit mass 
of water to facilitate material balance calculations. 

The cation exchange capacity reflects the distribution of 
clay in the space-like water based G-coordinate. Consider, 
for example, the total concentration of the Ca at G = -5 (re
call that S is negative here) where M = 0. The vertical 
dashed line in Figure 12 indicates this plane. The Ca con
centration here greatly exceeds the concentration of C a S 0 4 

at G < S (27 mmols/L) shown to the left of this line. The 
Ca concentration in the solution just inside the column must 
approximate that just outside, however, so that the 'excess' 
(=0.25-0.027 mmol/g w a t e r ) is adsorbed on the clay. The ap
proximately constant value of Na in G-space close to G = S 
arises because the accumulation of clay 'compensates' for 
the decreasing exchangeable Na associated with it at M = 0. 
Smiles et al. [1996] and Smiles [2000b] present more detail. 
Further analysis of this type of data awaits a good way to 
discriminate between the water soluble and adsorbed phases 
in "stiff clay. At the same time the methods offer an ap
proach to dispersion, chemical reaction and structural 
change in clay liners which is of great importance in reten
tion ponds used to contain noxious industrial and mining 
wastes. The approach also provides a way to explore the 
significance of surface diffusion relative to diffusion in the 
liquid phase in colloidal systems and clay soils and of ca
tion exchange on the physical properties of clay systems. 

4. CONCLUDING REMARKS 

The paper is both eclectic and parochial and focuses on 
experiments and analysis based in insight and influence of 
John Philip. For this reason, perhaps insufficient attention 
is paid to thermodynamic approaches to the hydrostatics of 
swelling soils exemplified by Groenevelt and Bolt [1972] 
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Figure 10. Profiles, in M-space, of total concentrations 
(mmols/gciay) of calcium and sodium corresponding to the water 
content profiles of Figure 9 
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Figure 11. Relation between the solid based M-coordinate of Fig
ure 9 and G, a water based space-like coordinate calculated using 
equation (7) with Figure 9 data. 

and Sposito [1975],and its extension to flow, which is re
viewed to some extent by Giraldez and Sposito, [1985]. It 
also passes over consequences of cracking in relation to hy-
drodynamic dispersion and flow. 

The paper exemplifies John Philip's strong view that the 
ultimate aim of environmental science is field understand
ing and management. In view of its scale and complexity, 
however, the natural environment is generally too compli
cated to permit application of deterministic theory and 
modeling may be the only way to provide insights for sound 
planning. At the same time, sensible and physically based 
simplifications of theory provide practical and economical 
bases from which to design and to check the more empiri
cally based approaches that are often our only recourse for 
prediction at the scale and complexity of the environment 
[Philip, 1980]. The theory should not be needlessly com
plicated. Soundly based physical simplifications often pro
vide powerful and economical methods to explore likely 
outcomes of more expensive field engineering. The ap
proach does not seek to exclude design based or more for
mal modeling of systems in the large, but it complements 
that modeling. 

Water flow in swelling systems provides examples that 
identify unnecessarily complicated analyses and the care 
required to ensure that artifacts arising from a failure to 
recognize basic premises of theory do not corrupt experi
ments. Swelling systems also illustrate practical and eco
nomical benefits of physically based simplifications that de
rive from Philip's approach to infiltration. Thus, the ap
proach exemplified in Figures 1-4 has been used in this 
laboratory for industrial and mining materials as different as 
piggery effluents, phosphate slimes and peanut butter. 

Analysis of hydrodynamic dispersion during unsteady, 
unsaturated flow, precipitated by Philip, illustrates the way 
a novel but rational approach provides information to assist 

in field design. Thus the nuclide experiments provide reli
able material characterization to help rank field sites for re
pository selection at modest cost when only structurally 
disturbed samples are available. Study of dispersion and 
reaction during desorption from clays provides entirely new 
insights into processes that occur during slip casting as well 
as in clay barriers used to line retention ponds. These are 
critical guides to field behavior and to subsequent and more 
costly fieldwork. The study also offers new methods to ex
plore basic issues of transfer in soils and similar materials. 

NOTATION 

a weighting factor for the overburden potential 

Y wet specific gravity of soil system 

0g water mass fraction 
0s solid volume fraction 

water volume fraction 
volume of water per unit volume of solid 

P solid specific gravity 
¥ matric potential 
A coefficient in the Philip infiltration equation 

soil water diffusivity defined in material space 
g water based space-like coordinate 
G water based space-like coordinate divided by t 
i cumulative infiltration 
km hydraulic conductivity in space 

hydraulic conductivity in material space 
m solid based space-like coordinate 
M m/tm 

pw 
manometric pressure 

S sorptivity 
z vertical coordinate positive upwards 
t time 

0 5 10 15 20 
103G (g /cm 2 s 1 / 2 ) 

Figure 12. Profiles of total concentrations (mmols/g w ater) of cal
cium and sodium regraphed in terms of the G-space illustrated in 
Figure 11. 
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Equilibrium Moisture Profiles in Consolidating, Sulfidic, Coastal Clay Soils 
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Large areas of soft sulfidic coastal clay soils are being developed around the world. 
These soils can be up to 40m deep, have shallow watertables and volumetr ic water 
contents approaching 80%. They pose significant problems and frequently require 
costly consolidation. Swelling soil theory, developed for industrial slurries ' is di
rectly applicable to these soils. Here , simple analytic expressions for equil ibrium 
moisture contents in consolidating soils are derived using an analytic mois ture 
characteristic that is consistent with both diffuse double layer theory and measure
ments on coastal clay soils. Consolidation from applied surface loads, falling wa
tertables and increases in the soil solution electrolyte concentrat ion are considered. 
The total buoyant specific solid vo lume per unit surface area is identified as an im
portant scaling parameter . Effective consolidation requires that applied surface 
loads exceed this parameter. Predictions of chemical consolidation are based on the 
untested assumption that relative results for clay slurries are directly applicable to 
these soils. The predictions show that modes t increases in electrolyte concentra
t ions can produce significant consolidation, in some cases comparable wi th that 
produced by an applied surface load of 40 tonnes /m 2 . Increasing the charge of the 
electrolytes has a dramatic impact on consolidation. These predictions remain to be 
tested. 

1. INTRODUCTION 

John Philip was unhappy with the macroscopic, phe-
nomenological theory of water in swelling soils and had 
planned to revisit the topic in his "retirement". His early 
foray into swelling soils was marked by uncharacteristic 
flaws in his otherwise impeccable physical intuition. Like 
so many of his works, this foray was catalysed by intriguing 
experimental results, in this case the perceptive observa
tions and analysis of Smiles and Rosenthal [1968] on clay 
slurries. Philip's [1968] first paper on swelling materials, 
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however, eschewed their use of Lagrangean, material coor
dinate systems. Instead, he used the needlessly confusing 
and mathematically more complex Eulerian physical space 
coordinates. It took Raats and Klute [1968] to finally con
vince him to abandon this cumbersome coordinate system 
[Smiles, 1995]. 

In a subsequent flurry of papers on the hydrostatics and 
hydrodynamics of swelling soils [Philip, 1969a; 1969b; 
1969c], Philip assumed a unique relation between void ratio 
and moisture ratio of swelling soils, independent of over
burden pressure. This led him to conclude, at static equilib
rium, that air at atmospheric pressure could exist well be
low the water table. Youngs and Towner [1970] pointed out 
that this is not physically possible and Philip [1970a] ac
knowledged his error. Despite these flaws, John Philip's 
early papers on swelling materials illustrate many of their 
unique properties. 
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Shortcomings in the macroscopic theory of the hydrology 
of swelling soils have been clearly identified by Smiles 
[2000]. These principally occur when swelling systems 
contain air at atmospheric pressure. It is generally agreed 
that the Darcian theory works well for water-saturated, slur
ries encountered in industrial and mining processes. There 
is, however, a perception that real soils do not behave like 
saturated clay materials [Youngs, 1995]. This perception 
appears mistaken. There are about 10 8 ha of soils around 
the world, partly used for agricultural production and de
velopment, for which saturated swelling soil theory appears 
appropriate [Kim et al., 1992; Smiles, 1997; White et al, 
2001a]. These soils are deposits of marine- or estuarine-
origin, sulfidic, clay soils [commonly called acid sulfate 
soils] laid down mostly during the last sea level rise, from 
about 11000 years ago [Pons, 1978]. They have watertables 
at or near the surface, contain up to 80% by volume of wa
ter, and exist in deposits up to 40 m thick [White et al., 
1997]. Techniques and theory developed for slurries work 
equally well for these soils [White et al., 2001a]. 

Major developments on these very soft coastal soils usu
ally require consolidation, which is a critical, time-
consuming and expensive procedure. Failures, particularly 
in roadway embankments, can cause costly problems. In 
some coastal areas, roadways have settled by as much as 
4m over 40 years. Their rate of consolidation is consistent 
with swelling soil theory [Smiles, 1973]. Frequently the ul
timate possible consolidation is unknown. In this work, we 
will explore the prediction of equilibrium moisture profiles 
in soft, sulfidic, coastal clay soils consolidated one-
dimensionally by applied surface loads or by falling water 
tables or by changes in soil solution electrolytes. 

Terzaghi [1923] introduced material coordinates and rec
ognised that consolidation requires water flow through the 
soil. Croney [1952], concerned with road construction in 
soft soils, developed an iterative scheme for estimating 
moisture profiles in soft soils under surface loads using the 
soils' measured moisture characteristics. Croney and Cole
man [1961] derived the conditions for thermodynamic 
equilibrium in soils under applied surface loads and self-
weight [see also Groenevelt and Bolt, 1972; Sposito, 1975a; 
1975b]. 

Philip [1970b] treated the hydrostatics of dilute slurries 
as an equilibrium between sedimentation and Brownian 
motion. Smiles and coworkers have explored extensively 
both the statics and dynamics of consolidating clay suspen
sions and industrial slurries under a range of conditions in
cluding centrifugation [see Smiles, 2000]. This body of 
work has demonstrated that the macroscopic, Darcian the
ory was valid for these 'difficult materials [Smiles, 1976a]. 
Smiles predicted equilibrium profiles during both sedi
mentation, when water accumulated above the slurry, and 
filtration, with drained from beneath the slurry, for red 
mud slurries generateg in the processing of bauxite. Talsma 

[1974; 1977a; 1977b] and Talsma and van der Lelij [1976] 
measured moisture profiles and the impact of overburden 
loads on swelling clays, in both the laboratory and the field. 
Talsma concluded that moisture and solid profiles of un
saturated clay soils in the field may be consistent with 
equilibrium theory, but the contribution of overburden to 
the total soil water potential was not very large. Stroosni-
jder [1976] also measured the impact of overburden on 
shrinkage and Kim et al. [1992] considered the contribution 
of overburden to water movement in marine-origin clay 
soil. 

'Quick clays' exhibit dramatic changes in their volume 
and rheological properties on the addition of electrolytes to 
the clays [Rosenqvist, 1952; 1966; Mitchell, 1986]. Smiles 
et al. [1985] and Smiles [1995] examined the impacts of 
additions of NaCl and saturated C a S 0 4 solutions on the 
moisture characteristic of bentonite slurries. The large sys
tematic changes they measured were not quantitatively pre
dictable by double layer theory. Their work suggests that 
increasing the soil solution electrolyte concentration may be 
an effective way of aiding consolidation. 

This work follows that of Smiles [1976b] but considers 
the impact of applied surface loads. An analytic form of the 
moisture characteristic will be used to derive simple ex
pressions for consolidating soil profiles under a range of 
loads. The contribution of soil solution electrolyte concen
tration to equilibrium moisture content profiles and con
solidation of sulfidic clay soils is also investigated. 

2. EQUILIBRIUM MOISTURE PROFILES IN SWELING 
SOILS 

2.1 Matric Potential Profiles 

Water potentials here are expressed in work per unit 
weight of water so that the unit of potential will be metres 
of water. The total potential, O, (hydraulic head) for water 
in soil is the sum of the gravitational potential, z, (the ele
vation relative to an arbitrary datum, here defined positive 
upwards) and the 'manometric pressure' of water in the 
soil, pw (the pressure a tensiometer measures). 

<t> = z + pw (1) 

This relationship holds for both swelling and non-
swelling soils and the watertable is defined as the surface 
where pw = 0 [Croney, 1952; Philip, 1969a; b]. In non-
swelling soils pw =I/J , with ip the matric potential. In 
swelling soils the weight of the overlying soil, together with 
any applied surface load, PT, is carried partly by the solid 
structure and partly by the liquid phase of the soil. Both 
loads together make up the mechanical load, P(z) [or the 
total normal stress, cr] at position z [here the arbitrary datum 
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will be taken as the base of the swelling soil deposit]. The 
component of potential in the water phase due to P(z), the 
overburden potential, Q, must be included in the total po
tential [Croney, 1952; Croney and Coleman, 1961; Philip, 
1969a; b; Youngs and Towner, 1970; Groenevelt and Bolt, 
1972; Sposito, 1975a]. 

0 = z +ip + Q = z + pw (2) 

In swelling soils, in (2) is the unloaded matric potential 
[Smiles 2000]. In engineering terms, ip = -a', with a' the 
effective interparticle stress. The manometric pressure of 
water relative to atmospheric pressure in swelling systems 
is pw = ip + Q and the position of the watertable is the sur
face where pw = 0 or ip = -Q . 

We will be concerned here with saturated swelling sys
tems and therefore avoid complications with the partition
ing of the overburden between the water and solid phases 
that occur in three-phase systems [Smiles, 2000]. For satu
rated, swelling soils in the normal shrinkage region at or 
beneath the watertable, Q = p(Z) , and, at equilibrium, 

0> = z + P(z) 

= z + ip{&) + PT+fy{#9P(z'))dz' 
(3) 

Here # i s the moisture ratio [ratio of volume of soil water to 
volume of solid], ZT, represents the position of the soil sur
face and Zw, a constant, is the position of the watertable. 
The wet specific gravity of the soil, y is: 

(4) 

with ysthe specific gravity of the solid and 6W, ds\h& 
volume fractions of the solid and water phases. 

If the watertable is shallow, such that the capillary fringe 
extends to the soil surface and the soil lies within the nor
mal shrinkage range, as often happens in coastal, sulfidic 
clay soils, then (3) is valid for the whole depth of the pro
file. Croney [1952] suggested that equilibrium moisture 
profiles ti(z) could be found from (3) by an iterative pro
cedure in which a constant consistent with field observa
tion, is chosen for all depths as an initial estimate. The pro
file of P(z) is then calculated for this initial moisture distri
bution, and a first estimate of the unloaded matric potential 
profile is found from (3). The measured moisture charac
teristic is then used to determine the next estimate of 

&(z) and the process is repeated. Usually one or two itera
tions are sufficient. If, however, the moisture characteristic 

is known, then direct solution is possible [Philip, 1969c; 
Smiles, 1976b]. 

Consolidation of soft soil profiles usually involves the 
application of surface loads and the removal of excess wa
ter at the surface, often via vertical wick drains. As the soil 
consolidates it is more appropriate and convenient to work 
in a material coordinate system m(z,{j) [Smiles, 1974; 
Smiles, 1976a; Smiles, 2000] which conserves the solid 
volume per unit area in the soil profile: 

ro(z,#)= J[l/(l + &)]dz' =f0sdz' (5) 

The physical space coordinate is recovered from fi(m) pro
files using: 

z=j{l + &)dm'=J(l/0s)dm' (6) 

In this material coordinate system, the equilibrium equa
tion (3) becomes [Smiles, 1974; 1976b]: 

V{m)--[W + PT +(ys -\){mT -«)] (7) 

Here mT is the total volume of solid material per unit area 

in the soil profile and W = ZT - Zw is the depth to the 
watertable from the consolidating soil surface. Equation (7) 
can be rewritten as: 

m, 

PT +W 

m. 
1 - m 

m, 

PT +W + 1 - m 
m7 

(8) 

with 

and P*T+W* ={PT+w)X{ys-\)mT]. 

The total 'buoyant' specific volume of solid per unit area 
in the deposit, (ys - l)mT in (8), provides a scaling length 
for both unloaded matric potential and the applied load and 
watertable depth. It also follows from (7) and (8) that wa
tertable depth and surface load act in concert and are inter
changeable. Since during consolidation, watertables are 
frequently at the soil surface, we shall set W = 0 and only 
consider consolidation brought about by imposed surface 
loads. It will be recognised, however, that the impact of ap
plied surface loads PT is identical to that of lowering the 
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Table 1. Parameters in the moisture characteristic (10) parame
ters for two saturated coastal clay soils together with the specific 
gravity of their solid phase [White et al, 2001a]. 

Soil A B Ys S o i l 

Solution 

Netherlands; ma- 3.24 0.25 2.57 seawater 
rine-origin 

Eastern Australian 2.34 0.30 2.55 4% seawater 
estuarine-origin [22 M/m 3 CI"] 

position of the watertable, W (the specific influence of W is 
treated in Smiles [1976b] and White et al, [ 2001b]). 

2.2 Moisture Content Profiles in Material Space 

In order to use the equilibrium matric potential profiles to 
predict equilibrium moisture content profiles, knowledge of 
the soil's moisture characteristic, * s required. For 
dilute clay suspensions in which double layer interactions 
are negligible, the balance between sedimentation and 
Brownian motion requires [Philip, 1970b]: 

The form of the moisture characteristic (10) imposes a 
problem at the surface of unloaded soils with watertable at 
the surface where (11) has a physically unrealistic singular
ity. 

In order to use (11), the parameters in the moisture char
acteristic must be known. Table 1 lists the parameters for 
two soils, one a marine-origin clay soil from the Nether
lands [Kim et al, 1992], the other an estuarine soil from 
eastern Australia [White et al, 2001a], whose moisture 
characteristics have been fitted to (10) as shown in Figure 
1. We shall use these soils for illustrative calculations. 

Equation (11) can be rewritten as: 

(&-&T)/B = \n[p*/(p* +l-m/mT)\ (12) 

with &T = A - B\n(PT) the moisture ratio at the soil sur
face. Moisture profiles, parameterised in this way, depend 
only on the relative position in the soil profile in material 

space and on the normalised surface loading P r * . 
The normalised moisture ratio difference Bis 

plotted in Figure 2 as a function of the normalised material 
coordinate, m/mT , for selected, dimensionless applied sur
face loads, Pj normalised using (ys - \)mr as in (8). 

&+\ = h/ys (9) 

where h is a constant at a fixed temperature. It seems un
likely in coastal clay soils, with d < 4 , that double-layer 
interactions can be ignored. Simple double layer theory 
suggests that the moisture characteristic for swelling clays 
should be of the form [Sposito, 1984; Smiles et al, 1985]: 

&=A-B]n\ip\ (10) 

A and B are constants for a given clay matrix, soil solution 
electrolyte concentration and temperature. The moisture 
characteristics of clay and industrial slurries [Smiles and 
Harvey, 1973; Smiles, 1975; 1976a; 1995] and soft clay 
soils of estuarine or marine origin [White et al, 2001a] in 
the normal shrinkage range are much better described by 
(10) than (9). The actual magnitudes of the dependencies of 
A and B on soil solution concentration, however, are not 
given quantitatively by double layer theory [Smiles et al, 
1985], and (10) must be regarded as semi-empirical. 

The moisture profile in material space follows from (7) 
and (10). 

&=A-B\n[PT +(ys -\){mT - m)] (11) 

4.0 

1.0 \ 

+ Kim et al (1992c) 

• This work original sample 

• This work diluted sample 

0 = 3.24 - 0.25ln|\p0| 

0 = 2.32 
r2 = 

- 0.30ln|op0| 
0.90 j 

+ \ 

S3 

0.01 0.10 1.00 10.00 100.00 

M (mH 2 0) 

Figure 1. Moisture characteristics for then eastern Australian es
tuarine sulfidic clay soil and results estimated from Kim et al 
[1992] for a Netherlands marine-origin clay soil both fitted to 
equation (10) [White et al, 2001a]. 
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i— 

E 

Figure 2. Reduced moisture ratio profiles in reduced material 
space for a range of normalised surface loads. The dashed curves 
show the impact of increasing the soil 1:1 electrolyte concentra
tion three-fold. 

It is obvious from (12) and Figure 2 that when Pj « 1 0 
the moisture ratio at all depths approaches that at the soil 
surface and an approximately constant moisture content is 
reached at all depths. It is also apparent from (12) that, in 
order to produce a uniform consolidation in an embankment 
traversing a landscape with variable soft soil depths, the 
applied surface loading must be proportional to the total 
"buoyant" specific volume of solid per unit area, 
(ys - l)mT, at any location. 

The moisture ratio difference on the left hand side of (12) 
can also be normalised with regard to the moisture ratio dif
ference between the soil surface and its base, 
( ^ 0 - ^ r ) / 5 = i n [ ( p ; + i ) / p ; j . The resultant normalised 

moisture ratio ( # - # ^ ) / ( # 0 -ftp) depends only on and 

m/mT : 

& - & T ln [Pj +1 - m/mT )[Pj 

#o - # r i n [ ( p ; + i ) / p ; j 
(13) 

While (13) is independent of the parameters of the mois
ture characteristic (10), its functional form is determined by 
that of (10). Figure 3 shows the plot of profiles of the nor
malised moisture ratio (13) in relative material space as a 
function of normalised applied surface loading. It can be 

seen at applied surface loads, Pj* > 1, the moisture ratio 

profile approaches {&- & T ) / (# 0 - & T ) = 1 - m/mT . 

2.3 Consolidation and the Relation between Physical and 
Material Coordinates 

The relation between the material and space coordinates 
can be found by substituting for # from (11) in (6): 

z = m{l + A-Bk{(ys-l)mT} 

+ BmT 

[ ( / > ; + i ) i n ( / > ; + i ) + — 

n * 1
 m 11 I n * 1 m 

PT +1 In PT +1 
mT ) \ mT ) 

(14) 

- Bm7 

m7 

The relation between the position of the surface of the 
swelling soil (relative to its base), which is the thickness of 
the swelling soil deposit under any surface load, ZT (P^ ) , 
and the total 'buoyant' volume of solid per unit area in the 
entire soil profile follows from (14) when m = mT: 

ZT(Pj*)-ZT{o) 

-mTd$pT +l)ln(p r* IniV*] 
(15a) 

0 0.2 0.4 0.6 0.8 1 

(fr-0r)/(do-ttT) 

Figure 3. Normalised moisture ratio profiles in reduced material 
space for a range of normalised surface loads. 
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50 
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( Y s -1)m T (m) 

Figure 4. Dependence of the thickness of the two soils in Table 1 
on the total 'buoyant' specific volume of solid per unit area. 

where ZT (0) is the position of the soil surface with no im
posed surface load: 

The relative consolidation, ZT(o)-ZT[Pj*) normalised 
by mTB, depends only on the normalised applied surface 
load. For large surface loads the right hand side of (16) ap
proaches \n[Pj* + l ) . 

Figure 6 shows the normalised, relative consolidation as a 
function of the normalised surface load. The logarithmic 
dependence of relative consolidation on applied load is ap
parent. The most rapid changes in consolidation occur for 

Pj* < 10. Note that the applicability of the moisture char
acteristic (10) may be limited to the normal shrinkage 
range, probably to # s> 1. 

2.4 Moisture Content Profiles in Physical Space 

In order to predict equilibrium moisture profiles in physi
cal space, the total volume of solid per unit surface area, 
mT, for in a given depth of an unloaded swelling soil de
posit is calculated iteratively from (15b). The moisture pro
file in material space is then calculated from (11) and the 
corresponding position in physical space is determined 
from (14) for any applied surface load. Figure 7 shows the 
predicted moisture profiles in physical space for an initially 
10m thick deposit of the eastern Australian soil, for an un
loaded profile and for Pj* of 1 and 10. Here, to remove the 

ZT (0) = mT [l + A - b{\R[{ys -\)mT]-1}] (15b) 

The rate of compression of the soil surface in (15a) with 
normalised surface load is 

a ZT [Pj*)/ d Pj = -mTB ln(l + \JP*T ), and shows a di
minishing consolidation with increasing surface loads. 

Figure 4 shows the relation (15b) between the thickness 
of the unloaded swelling soil layer and the volume of solid 
contained in the profile for the two soils in Table 1. The 
marine-origin Netherlands soil clearly has thicker deposits 
than the estuarine soil for the same volume of solid per unit 
area. This is consistent with values of the A parameter in 
Table 1 

Figure 5 shows an example of the consolidation of an 
initially 10 m thick deposit by applied surface loads (or 
watertable depths) for the eastern Australian clay soil. The 
practical limit of applied loads is usually less than 10m and 
watertables less than 3 m. 

It follows from (15) that the change in position of the soil 
surface under any applied surface load relative to the un
loaded soil surface is: 

12 

6 

Eastern Australian Soil zT(0) =10m 

C/C0 

C/Co=1,NaCI 

C/Co>1, NaCI 

C/Co=0.68, sat. gypsum 

>v 
\ 3 0 v < ; . . 

* - ^ """" >v 
\ 3 0 v < ; . . 

i i i 

0 10 20 30 40 50 

P T(m) 

Figure 5. Consolidation of an eastern Australian soil deposit ini
tially 10 m thick as a function of applied surface load. Also shown 
is the impact of increasing the NaCI concentration and using satu
rated gypsum. 
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singularity at the surface for unloaded soil we have taken 
the watertable depth as 0.1 m. 

The significant consolidation of the soil surface and the 
dewatering of the profile brought about by applied surface 
loads is apparent in Figure 7. A normalised surface load of 
1 in Figure 7. corresponds to a surface load of 4.9 ton-
nes/m 2. 

3. ELECTROLYTE CONSOLIDATION OF SWELLING 
SOILS 

It has been recognised for more than 50 years that the 
volume rheological properties of "quick" clay soils can be 
dramatically altered by the addition of electrolytes to the 
soil water [Rosenqvist, 1952; 1966; Mitchell, 1986]. Here 
we will examine, in an approximate sense, the dependence 
of equilibrium water content profiles in soft swelling soils 
on soil solution electrolyte concentration, C. This approach 
is based on the recognition that the parameters A and B in 
the moisture characteristic (11) are functions of soil solu
tion electrolyte concentration [Smiles et al, 1985; Smiles, 
1995] so that (10) becomes: 

ti{C,y)=A{c)-B{c)\n\p\ (17) 

In (19), A0 and B0 are values of A and B at an arbitrary 

reference 1:1 electrolyte concentration, C 0 . From (18), it 

would appear that using a reference concentration to nor
malise parameters removes any specific soil dependence 
from the B parameter term and most of that from the A 
term. 

Smiles et al. [1985] measured the concentration depend
ence of A and B for dilute bentonite slurries when the elec
trolyte was predominantly NaCl. They increased the elec
trolyte concentration 36-fold and found only qualitative 
agreement with simple diffuse double layer theory. Instead, 
it can be shown that their data fit remarkable well: 

^ L ^ L i - o W ^ ) ( 2 0 ) 

The fact that both the A and B parameters have the same 
relative dependence suggests that any specific soil depend
ence has been removed. We will assume here, for illustra
tive calculations, that the relationship (20) also holds for 
estuarine-origin soil in Table 1. With this assumption, the 
relative moisture profile in material space given by (12) be
comes: 

Double layer theory for parallel clay platelets [Sposito, 
1984; Smiles et al, 1985] suggests: 

/ 
A(C) = B(C)\n aZf^Ci 

(18) 

5 ( C ) = - bS 
,1/2 

In (18) a and b are constants for a given soil at a fixed 
temperature, Z, and C, are the valency and concentration 

of the rth electrolyte species and S is the specific surface 
area of the soil. The constant a incorporates the surface 
electric potential on the charged surfaces. For one-to-one 
electrolytes, Smiles et al. [1985] showed that (18) can be 
rewritten as: 

A{c) B{C) ln(aC) 

B(C) 
Bn 

B0 

c 

(19) 
1/2 

Q. 

c \ 
1_0.12| In +1 - m/mj. (21) 

C/C 0 

--

3 _ 

* * " 1 0 — 

/* ' , ' * 

tt »* 

-1 1 1 — 1 1 

10 20 30 

P T / ( Y s -1)m T 

40 50 

Figure 6. Dependence of reduced relative consolidation on the 
normalised surface load for four soil solution concentrations of 1:1 
electrolytes. 
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Figure 2 also shows the effect on the relative moisture 
profile of a three-fold increase the 1:1 electrolyte concen
tration in the soil solution for a range of applied normalised 
surface loads. It can be seen that the added electrolyte pro
duces a larger relative change in the moisture ratio of the 
profile at lower applied pressures. The normalised moisture 
ratio & T ) / (# 0 - & T ) in (13) is independent of moisture 
characteristic parameters and therefore independent of 
electrolyte concentration. 

The effect of electrolytes on the position of the soil sur
face follows directly by substitution for A and B from (20) 
into (15). Figure 5 also shows the impact of increasing the 
one-to-one electrolyte concentration on the position of the 
soil surface for the eastern Australian soil for up to a 30-
fold increase in soil solution concentration. It can be seen 
that a 30-fold increase in soil solution concentration (to 
about seawater) produces approximately the same consoli
dation as a very large applied surface load of 40 m (40 ton-
nes/m 2). 

The change in depth of the unloaded soil profile at elec
trolyte concentration C, zT(c,o), relative to that at concen
tration C 0 , zT (C 0 ,0) follows from (15b) and (20): 

z r ( c 0 , 0 ) - z r ( C , 0 ) 
mTB0 

- o W ^ f l + A . ^ . , ) ^ 
[C0){ B0 ) 

(22) 

The estimated impact of increasing soil electrolyte con
centration on the relative change in position of the unloaded 
soil surface for the eastern Australian estuarine soil is 
shown in Figure 8. Here the reference concentration is 
taken as the ambient solution concentration in Table 1 and 
the reference values of A and B are therefore those in Table 
1. It can be seen in Figure 8 that substantial consolidation 
can be achieved by even relatively modest increases in soil 
electrolyte concentration. 

The change in soil water content profiles with both im
posed surface loading and a three-fold increase in soil one-
to-one electrolyte concentration are also shown in Figure 7 
for a 10m thick deposit of the eastern Australian soil. Again 
the effectiveness of a relatively modest increase in soil so
lution concentration on consolidation and dewatering is 
evident. 

Thus far we have considered the impact of added 1:1 
electrolytes. Diffuse double layer theory suggests that ions 
with higher charge should have a much greater impact on 
consolidation than 1:1 electrolytes [see (18)]. Smiles [1995] 
compared the moisture characteristic for bentonite slurries 
in saturated gypsum solutions with those in NaCI solutions. 

The comparison shows the 2:2 electrolyte has a dramatic 
impact on the moisture characteristic. The results can be 
summarised as: 

A(C,Z) B(C,Z) 

A0 " B0 

= l - 0 . 1 2 Z l n 
Co 

(23) 

Here, Z is the valency of the 2:2 electrolyte, C0 is the ref
erence concentration of the 1:1 electrolyte and A0 and B0 

are the parameter values at that concentration. The depend
ence shown in (23) is even greater than that expected from 
(20). 

If it is assumed that this dependence is also applicable to 
other soils then we can use (23) to predict the impact of 
substituting the soil water solution with a 2:2 electrolyte, 
such as CaS0 4 . Figure 5 shows the consolidation that is 
predicted to occur with a saturated gypsum solution. With 
4% seawater initially present in the pore water under field 
conditions, the value of C / C 0 on substitution with satu
rated gypsum is only 0.68. None-the-less, Figure 5 suggest 
that the gypsum solution can bring about consolidations 
equivalent to 1:1 electrolytes with C / C 0 «10 at low applied 
surface loads and C / C 0 « 30 at high surface loads. 

0 1 2 3 

Moisture Ration, $ 

Figure 7. Consolidation and dewatering of a 10 m deep soil pro
file of the eastern Australian soil with watertable at a depth of 0.1 
m. The impact of three applied surface loads as well as three-fold 
increase in the soil solution 1:1 electrolyte concentration from its 
ambient concentration, C0. 
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Eastern Australian Soil 

C/Co = 2 
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Figure 8. Change in the height of the eastern Australian soil rela
tive to the height for the unloaded soil with the ambient solution 
concentration in Table 1 at three increased soil solution 
concentrations for a 1:1 electrolyte. 

4. DISCUSSION AND CONCLUSIONS 

There are large regions of soft, sulfidic coastal soil with 
very shallow watertables to which the macroscopic theory 
of water equilibrium and movement, developed for two-
phase, liquid-solid swelling systems, is applicable. Infra
structure development on these soils normally requires con
solidation. The application of equilibrium swelling soil the
ory to them helps identify critical processes in their con
solidation and can be used to predict their ultimate consoli
dation. Here, simple analytical expressions have been de
rived for equilibrium moisture profiles in profiles subject to 
surface loads, based on a form for the moisture characteris
tic for swelling clay systems, # = 4̂ - 2?ln|#/|, which is 

consistent with simple, diffuse double layer theory [Smiles 
et al, 1985]. It is expected that the validity of this form 
may be restricted to the normal shrinkage range and ex
perimental examination of its applicability to other soils 
and other moisture ratios is warranted. 

Here the total 'buoyant' specific volume of solid per unit 
area in the deposit, (ys -l)mT, is identified as an appropri
ate scaling length for both unloaded matric potential, the 
applied surface load and watertable depth. Simple forms for 
normalised equilibrium moisture profiles in material space 
were produced that are independent of the particular soil 
parameters of the moisture characteristic. These again dem

onstrate the great conceptual simplicity of the use of mate
rial coordinates. Both depth to watertable and surface loads 
are additive and interchangeable in the analysis. For nor
malised applied surface loads Pj* > 1, these profiles ap
proach a simple linear form in normalised material space. 
When the normalised applied surface loads, / £ > 1 0 , 

moisture contents are almost constant with depth in the soil 
profile. 

In order to achieve uniform consolidation under struc
tures, such as road embankments, traversing swelling soil 
deposits whose depths vary across the landscape, as occur 
in old backswamp areas in estuarine areas in eastern Aus
tralia, the applied surface loads should be proportional to 
(ys - l)mT. The analysis shows that there is diminishing 
consolidation with increased surface loads. For the soils 
considered here, the appropriate range of normalised sur
face load is in the range 1 to 10. This appears to impose 
practical limits on the depth of saturated swelling soil de
posits over which structures can be built using only surface 
applied loads. With the soils considered here that depth ap
pears to be about 15 m. 

The impact of soil solution electrolyte concentration on 
equilibrium moisture profiles and consolidation was also 
investigated. There is little information on which to base an 
analysis. Speculative predictions here have been based on 
the dependence of the measured moisture characteristics of 
bentonite slurries on solution concentration and composi
tion [Smiles et al, 1985; Smiles, 1995]. We have suggested 
here that, from double layer theory and because 

o , we may have removed the soil de
pendence completely by using a reference concentration. 
Unfortunately, the concentration dependence of ^4(c)/^40 

and b(c)/B0 are not that expected from simple, diffuse 
double layer theory. This requires additional research. 

Predictions of equilibrium profiles, based on the assump
tion that a(c)/A0 and b(c)/B0 for the coastal soils have 
the same dependencies as bentonite slurries, show signifi
cant dewatering and consolidation produced by relatively 
modest increases in the soil solution concentration of 1:1 
electrolytes. The consolidation, for example, produced by a 
thirty-fold increase in solution concentration of 1:1 elec
trolyte in the eastern Australian soil (to approximately sea
water) is equivalent to a massive surface load of about 40 
m. For 2:2 electrolytes (for which there is less data) dra
matic consolidations are predicted at small concentrations. 

These predictions suggests that methods to alter the soil 
solution concentration could greatly assist consolidation in 
coastal, sulfidic soils, provided methods of injecting elec
trolytes are developed. When the sulfides in these coastal 
sulfidic soils oxidise they produce high concentrations of 
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dissolved aluminium and iron in acidic pore water solutions 
[Kittrick et al, 1986]. The 'ripening' of these soils by the 
presence of these ions and their exchange with the clay 
complex results in considerable consolidation. One method 
of increasing consolidation could be to be promote oxida
tion at depth in the profile through vertical wick drains. 
However, the impact of acid exported from oxidised pro
files can be devastating for estuarine ecosystems [Sammut 
et al., 1996] and extreme care would be needed if this pro
cedure was adopted. 

This work has dealt with the ultimate consolidation and 
moisture profiles at equilibrium in coastal clay soils. The 
rate at which that equilibrium is approached is also ex
tremely important. Practical experience suggests that the 
settling of embankments on coastal soils occurs over dec
ades [Smiles and Poulos, 1973; White et al, 2001a]. The 
substantial increases observed in the rate of dewatering of 
clays caused by adding electrolytes [Smiles et al, 1985; 
Smiles, 1995] suggests that consolidation can be speeded 
up significantly. This remains to be tested both in the labo
ratory and the field. 

Predictions in this work on the impact of soil solution 
electrolytes on consolidation at equilibrium are admittedly 
highly speculative. They depend on the transferability of re
sults for bentonite slurries to coastal clay soils. Experimen
tal testing of both the assumptions and the predictions is re
quired. 

John Philip hoped that a macroscopic theory of swelling 
soils could be constructed from a rigorous, three-
dimensional theory of colloids [Philip, 1970d]. The work 
presented here would not have pleased him. It is speculative 
and empirically-based. Simple representations of colloid 
theory do not appear to describe the behaviour of even 
bentonite slurries. There is still much to be done in this 
area. 
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A n ana ly t i c m o d e l of t r a n s i e n t u n s a t u r a t e d inf i l t ra t ion is p r e s e n t e d . T h e 
m o d e l is b a s e d on t h e c o l u m n concep tua l i za t i on of flow a n d t r a n s p o r t in u n 
s a t u r a t e d soil which is e x p a n d e d he re t o i n c o r p o r a t e r e p e a t e d inf i l t ra t ion a n d 
r e d i s t r i b u t i o n s tages . T h e t r a n s p o r t of reac t ive so lu te is m o d e l e d by a s s u m 
ing t h r e e mechan i sms : advec t ion by g r a v i t a t i o n a l w a t e r flow, equ i l i b r i um 
s o r p t i o n a n d l inear decay. Solu t ions of t h e flow a n d t r a n s p o r t e q u a t i o n s a re 
der ived for mul t ip l e in f i l t r a t ion- red i s t r ibu t ion cycles a n d for D i r ac a n d finite 
pu l se so lu te app l ica t ions . Express ions a re der ived for average m o i s t u r e con
t e n t a n d for average c o n c e n t r a t i o n r ega rd ing t h e soil s a t u r a t e d c o n d u c t i v i t y 
a r a n d o m value . 

1. I N T R O D U C T I O N 

Flow and t ranspor t in the unsaturated zone has long 
been a field of active research, yet practical engineering 
and agricultural applications still rely on painstaking 
calibration of empirical models. This is because the 
nonlinear inter-relationships between unsaturated flow 
properties crucially complicate the solution of practi
cal problems. Lacking analytic solutions, the charac
terization of important processes becomes difficult or 
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the Biosphere 
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unfeasible. Significant efforts have been undertaken 
to solve analytically the flow equations for homoge
neous soils. Most of the results tha t have been ob
tained are for one-dimensional vertical flow under dif
ferent simplified assumptions. These solutions are avail
able in many publications [e.g., Philip, 1969; Gardner, 
1958; VanGenuchten, 1980]. Additionally, the govern
ing equations were solved numerically for one- two- and 
three-dimensional flows. Although many interesting 
and important solutions have been achieved, these stud
ies clearly show how much efforts should be undertaken 
to arrive at results relevant to practical applications. 

Natural soils reveal spatial heterogeneity in their prop
erties (primarily conductivity) and this heterogeneity 
may significantly change the nature of flow and trans
port . Therefore, t reat ing soil properties as randomly 
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distributed has gained wide acceptance. Modeling flow 
and t ranspor t with random soil properties requires con
sidering the flow equations as stochastic ones. Obvi
ously, taking into account spatial heterogeneity renders 
flow problems in unsaturated soils even more compli
cated with infinitesimal hopes for analytical general 
solutions. Two main avenues have been suggested in 
the l i terature for characterizing flow and transport in 
stochastic unsatura ted domains: numerical simulation 
and stochastic-analytical solution of the flow and trans
port equations under simplifying assumptions. The 
present work addresses the second analytic approach. 

The advantage of the numerical approach is tha t gen
eral problems can be simulated. Many computer codes 
have been developed and successfully applied to both 
theoretical studies and field test data. Heterogeneity 
is often simulated using a Monte-Carlo approach. Re
cently numerical solutions have been sought to stochas
tic transformations of the equations of flow and trans
port [e.g., Zhang and Winter, 1998; Osnes, 1998]. The 
review of the numerical approach is out of scope of 
this paper and can be found in many publications [e.g., 
Russo, 1993; Burr et al, 1994]. 

Many analytical studies derive expressions for the 
statistical moments of pressure head in unsaturated 
media using a per turbat ion approach similar to tha t 
originally developed for saturated uniform flows [e.g., 
Dagan, 1989]. For example solutions have been de
rived by Andersson and Shapiro [1983] characterizing 
one-dimensional steady flow, by Yeh et al. [1985a, b] 
characterizing three-dimensional steady-state flow and 
by Mantoglou and Gelhar [1983] characterizing three-
dimensional transient flow. Perturbat ion solutions re
quire the assumption tha t changes in the mean head oc
cur on a spatial scale tha t is large in comparison to the 
characteristic scale of random head variability. How
ever, this assumption is not generally valid for unsatu
rated flows [Indelman et al, 1993]. 

An approach free of the assumption of stationary 
mean head was suggested by Dagan and Bresler [1979] 
and Bresler and Dagan [1979]. Their column model 
represents shallow three-dimensional infiltration by one-
dimensional flow in a random collection of homoge
neous columns. For various problems of solute trans
port with constant uniform moisture content, analytical 
solutions were obtained by solving a one-dimensional 
convective-diffusion equation in each column and av
eraging over the columns [Warrick and Nielsen, 1980; 
Bresler and Dagan, 1981; Dagan and Bresler, 1988; 
Destouni and Cvetkovic, 1991; Dagan, 1993]. Recently, 
Indelman et al. [1998] applied the column model to two 

cycle unsteady, unsatura ted flow and this paper extends 
their developments to multiple cycles, arbitrary initial 
solute location, and a finite initial solute pulse. 

In this paper we develop simple analytical expressions 
characterizing flow and t ransport under conditions typ
ical to agricultural fields and field experiments. The 
typical field conditions to which we refer are as fol
lows. Conservative or reactive substances are t rans
ported downward into the soil by water applied at the 
soil surfaces. Flow and t ransport occur by repeated two 
stage infiltration redistribution cycles. 

The first stage of the cycle, infiltration, occurs when 
water is applied to the dry soil. We neglect the temporal 
variability of water flux during wetting events. This as
sumption is appropriate when the variability of the wa
ter application ra te occurs on time scales much smaller 
than the t ime scale of soil drainage [Rodriguez-Iturbe 
et al, 1999]. The durat ion of the infiltration stage is 
determined by the t ime of water application and the 
time required for all of the applied water to infiltrate 
into the soil. 

The second stage of the cycle, redistribution, occurs 
during prolonged dry periods. Redistribution is charac
terized by a no flux conditions at the soil surface. 

The plan of the paper is as follows. The first introduc
tory section outlines the problem, method of solution 
and structure of the paper. The second section presents 
the solution to flow in a homogeneous column for the 
two aforementioned stages of infiltration and redistri
bution. In the third section, conservative and reactive 
solute t ransport is solved in a single column for instan
taneous and finite pulse sources, for an arbitrary initial 
solute depth and for multiple infiltration-redistribution 
cycles. In the fourth section we solve the average mois
ture content and the average concentration in a random 
collection of columns representing a heterogeneous field. 
Finally in the fifth section we summarize the limitations 
and capabilities of the model presented. 

2. F L O W M O D E L 

Application of the column model characterize trans
port in unsaturated soils was first suggested by Dagan 
and Bresler [1979] and developed in series of publica
tions [e.g., Bresler and Dagan, 1983a, b; Dagan and 
Bresler, 1983; Destouni and Cvetkovic, 1991; Cvetkovic 
and Destouni,1989]. The applicability of the model was 
investigated by Protopapas and Bras, [1991] and Or and 
Rubin, [1993], who compared results based on the col
umn model with two-dimensional solutions. According 
to the column model, the three-dimensional flow do-
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main is regarded as a random series of vertical columns. 
In each column the one-dimensional flow equation for 
moisture content 6 is given by 

d6_ dq 
dt + dz 

with the infiltration flux 

-K,Kr{9) 

0 

dz 
1 

(1) 

(2) 

In (2) Ks and Kr are soil saturated and relative con
ductivities, respectively, \£ is the pressure head and the 
axis z is directed vertically downward with the origin 
at the soil surface. Combining (2) with functional de
pendence of 9 on \£ produces a nonlinear system which, 
in general, can not be solved analytically. 

As is seen from (2) the flow of water into the soil is 
driven by the two terms in the right-hand-side, namely, 
the pressure gradient and gravity. For long periods of 
irrigation the pressure gradient can be neglected as com
pared to gravity, [Or and Rubin, 1993; Green and Ampt, 
1911] i.e. flow is gravitational. We may then simplify 
the flow equations by combining (1) with (2) to get 

(3) 

where S = (9 — 8r)/A is the soil saturation, 9S and 9R 

are the saturated and residual moisture contents of the 
soil, respectively and A = 9S—6R. Relative conductivity 
is characterized by a power dependence on saturation 

Kr{0) = S1^ (4) 

where /? = const. 
Following the approach of Indelman et al [1998], we 

consider the water flow as consisting of two stages: an 
infiltration stage during which a volume of water per 
unit surface area W is imbibed through the soil surface 
and a redistribution stage during which no water is im
bibed through the soil surface. To simplify calculations 
we assume tha t the initial moisture content of the soil 
is at residual 9(z,0) = 9R. Note tha t the approach de
veloped below is applicable to soils with initial water 
content between residual 9R and field capacity # c , i.e. 
0(z,0) = 90 with 0R < 0Q < 9C} under the assumption 
tha t Kr(6o) ~ 0. The soil is assumed heterogeneous in 
horizontal plane only by regarding Ks as independent 
of z and a random stationary function of ( x , y). Vertical 
random variability of Ks can be taken into account us
ing the approach developed by Indelman et al. [1993]. 

However, the derivations become too complicated for 
the present objective. 

The exact solution of (1) and (2) would yield a water 
content distribution in which 9 grows steeply down from 
the soil surface to a 'plateau' and then steeply decreases 
to the initial value at depth [Bresler, 1973]. We solve (3) 
to characterize the 'plateau' s tructure following Dagan 
and Bresler [1979], i.e. the solution is sought in the 
form 

S(z,t) = S{(t)H [zt(t) - z] (5) 

where H is the Heaviside step function, z? (t) is the lo
cation of the wett ing front and Sf is the saturat ion at 
the wetting front. 

2.1. Infiltration Stage 

For simplicity we assume tha t , during the infiltration 
stage, water is applied uniformly over the soil surface of 
each column at the constant ra te r (L /T) such tha t the 
t ime of irrigation is equal to t i r = W/r. It is convenient 
to introduce the dimensionless conductivity Ks = Ks/r 
and the parameter 7 

H i ' * if r < Ks 

if r > Ks 

(6) 

The surface boundary condition accounting for ponding 
is as follows 

and 

q(z,r)\z=0 = l if r<Ks 

9\2=0 = 9S otherwise 

(7) 

where q = g / r , r = tr/W, and z = z/W are non-
dimensional flux, t ime and depth respectively. The so
lution of (3) for (7) is given by the step function (5) 
where Zf = qfr/(SfA) with qt and Sf being the infiltra
tion flux and saturat ion at the wetting front location 
respectively. The moisture content during infiltration 
is shown schematically in Figure la . From (3)-(7) we 
get tha t during infiltration: 

(8) 

The infiltration flux q(z) is now determined from (1), 
(4) and (8) as follows 

<i(z, r) = qfH ( r ) - z] (9) 

where if is the location of the wetting front which moves 
linearly in t ime 

%(r) = « r / ( 5 f A) = ^KsT/A (10) 
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e / . e . e . where 

y<l 
t=U 

(A) ( B ) 
F i g u r e 1. A schematic i l lustrat ion of the soil mois ture con
ten t dur ing infiltration in two columns with different values 
of Ks (a) and redis t r ibut ion in a column at 3 t imes (b). 

The durat ion of the infiltration stage r-mf depends on 
the ra te of infiltration and the column conductivity and 
is defined by rln{ — 1/ (^Ks). The depth of water infil
t ra t ion at the end of the stage is z-xnf = 7""^ /A. 

2.2. Redistribution Stage 

During redistribution, the initial and boundary con
ditions are 

S(z,rin{) = ^H(zin{-z), « ( 0 , T ) | T > T W = 0 (11) 

The water flux and velocity of the wetting front is de
termined by (2) for gravitational flow (q = KsKr), (4) 
and by water mass conservation at the front location 
[(0 f - er)dzf/dt = qt) 

qf(r) = ksS^(r); f = (12) 

Substi tuting the global water mass balance during re
distribution if = (Sf A ) - 1 into (12) yields a differential 
equation for the moisture content at the wetting front 
location 

1//3-1 (r) (13) 

The moisture content during redistribution is shown 
schematically in Figure l b . The solution of (13) which 
satisfies the initial condition 5f(r i nf) = 7 ^ is given by 

S((T) = ^Q~P{T) (14) 

0 ( r ) = 1 + 1 i^ksr - l ) 
0 

The wett ing front location is 

Z F ( T ) = 
1 

5f(r)A -E"(r) 

(15) 

(16) 

The location of the water front for one set of parameters 
is illustrated in Figure 2. The water flux q(z, r ) results 
from (1), (5), (12) and (14) for r > r i n f 

q(z,r) = KszA 
O(r) 

/ H i 

H[ZI{T)-Z] (17) 

Summarizing, the moisture content distribution, as 
depicted in Figure 1, is determined by 

with 

S(Z,T) = S{(T)H \Z{(T)-Z} 

I E-"(r) r > l / ( 7 ^ ) 

and 

M r ) 
W 7 1 - ^ s r T<l/(<yka) 
A I [ 0 ( r ) / 7 f T>1/{1Ks) 

(18) 

(19) 

(20) 

The reader is reminded tha t 7 (6) contains a switch 
discriminating between ponded and unsaturated con
ditions, r = tr/W is non-dimensional t ime, rin{ = 
1/(jKs) = rj (jKs) is the time at the end of the in
filtration stage, © is given by (15). 

F i g u r e 2 . T h e location of the front over t ime for the water 
and solute (conservative and reactive). In all cases Qr = 
0.05, A = 0.35, Ks = 3, and p = 1/3 
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3. T R A N S P O R T IN A S I N G L E C O L U M N 

Neglecting pore-scale dispersion, advective transport 
of a conservative solute in a column is described by the 
equation 

where C is the solute concentration (mass solute per 
mass soil solids) and u = q/9. Equation (21) assumes 
tha t mass transfer into immobile water is much faster 
than large scale advection. 

The characteristics of equation (21) are defined by 
the equation: 

dzc(t) 
dt 

= u(z,t) (22) 

where zc (t) is the location of a solute concentration 
characteristic. Note tha t the concentration along the 
characteristics is not constant but satisfies the equation 

dC „du , ^ x 

- = - c Y z (t > U ) (23) 

For u = q/0, combining (23) with (1) shows tha t 
C/0 = const, on the characteristics. The general so
lution for concentration at any time is 

C[zc («),«] = Co [2b] 
A M * ) , * ] 

0n 
(24) 

where Co and 0$ a r e the concentration and water con
tent at depth z$ at t ime t0 and zc (t) is the solution of 
(22) for the initial condition zc (to) = z$. The propor
tionality of moisture content (mass water per mass soil 
solids) to concentration (24) results from the definition 
of concentration as dissolved solute per mass soil solids. 
As stated above, due to the non-linearity of (1) and (2), 
it is not possible to solve (22) in the general case. 

3.1. Solution to Gravitational Transport 

For gravitational flow q = KsKr and dry initial con
ditions 6 (zj 0) = 0r, we determine u = q/0 in (22) from 
(9) and (17)-(20), as follows: 

D U R I N G T H E I N F I L T R A T I O N S T A G E ( R < T I N F ) , A N D 

(25) 

u { z ' T ) = g r e g ( T ) + 7 / »A H [ z i i T ) ~ z ] ( 2 6 ) 

during redistribution stage ( r > T I N F ) . 
With U(Z,T) given by (25) and (26), equation (22) 

is solved (Appendix A) for the initial solute location 
*c(0) = z0 giving 

zc(r) = z0H(z0 - zf) + 

1 + Mr 

jKsT + zo0r 

9r + ^ A 
H(rini - T) 

+ ̂ + 7 ^ 6 - ^ ( 7 ) 
# ( R - T I N F ) H(z{-z0) (27) 

It can be seen tha t until the wetting front reaches the 
solute location (i.e. Z F ( r ) < io), the second term on the 
right hand side of (27) is zero and zc ( r ) = z0. After the 
wetting front reaches the solute location, the first term 
on the right hand side in (27) becomes zero. Then, 
the first term inside the square brackets in (27) con
trols during infiltration (if the wetting front reaches the 
solute location during the infiltration period) and the 
second term describes advection during redistribution. 

Solutions (20) and (27) show the principal difference 
between water flow and conservative solute t ransport 
in the unsaturated zone. It is seen (Figure 2) tha t the 
solute moves slower t han the wetting front. Indeed, in 
its propagation, the water fills the pore space deter
mined by the front water content Sf ( r )A (19), whereas 
the solute occupies additionally the pore space of the 
residual water 0r. If the duration of the infiltration 
stage was not limited, the solute would propagate be
hind the water front unboundedly downward. For lim
ited volume of applied water, during the redistribution 
stage bo th the water flux and the water content de
crease for fixed z. This leads to the finite depth of so
lute propagation. Indeed, it follows from (20) and (27) 
tha t the water front propagates unboundedly downward 
limT-^oo Zf ( T ) = oo , whereas the solute front reaches the 
finite depth l im T _>oo z(r) = l/0r + provided 0r ^ 0. 
Thus, the maximum depth of penetrat ion of a solute 
pulse s tar t ing at the surface is shown on the far right in 
Figure 2, whereas there is no maximum depth of water 
penetrat ion. 

3.2. Finite Pulse 

To illustrate the t ranspor t of a finite solute pulse let 
us assume tha t an initially dry column [#(£,0) = 0r] 
has mass per unit surface area M of solute initially dis
t r ibuted over a th in layer of depth IQ (IQ <C W/0s) i.e. 

C(z,0) 
M/(Pbl0) 

0 
z < lo 
Z>10 

(28) 

where pb is the bulk density of the soil. For lo = IQ/W, 
and after the wetting front has passed the initial loca
tion of the plume (zf > IQ) we can derive expressions for 
the depth to the top z_ ( r ) and bot tom limits z+ ( r ) of 
the solute pulse as follows 



138 TRANSIENT UNSATURATED COLUMN MODEL 

- / x lKsr . >yKsT + loOr 

Z - ( T ) = ^ T ^ A ' Z + ( T ) = 9r + ^A ( 2 9 ) 

during infiltration ( r < ri n f) , and 

8_(r) = 
1 

6»r + 7 / 3 0 - ' 3 ( i ) A 
1 + l09r 

(30) 
during redistribution ( r > r i n f ) . 

We define a spreading coefficient £ ( r ) as the current 
length of the plume divided by its initial length. For 
the initial conditions (28), after the wetting front has 
passed the plume (if > Z0)> £ 1 S given by 

z+ ( T ) - z_ ( T ) 

to 
9r 

Hr) 
(31) 

The meaning of £ can be bet ter understood by consid
ering the compression spreading cycle of a plume during 
a single wetting-drying cycle. When the wetting front 
reaches the top of the plume, Zf = z_, combining (9) or 
(17) for infiltration and redistribution respectively with 
(22) shows tha t the top of the plume begins to move 
downward while the bo t tom of the plume remains sta
tionary. This compresses the plume. Simultaneously, 
the average moisture content between z_ and z + in
creases. Because the concentration per unit mass soil 
is proportional to the moisture content (24), the aver
age concentration increases while the plume contracts 
preserving the solute mass. Equations (20) and (22) re
quire t ha t the water front moves faster than the top of 
the plume dzf/dt > dz^/dt. Therefore, the top of the 
plume lags behind the water front. When the water 
front reaches the bot tom of the plume z_ < Zf = 2 + , 
and if the flow is still in the infiltration stage, then (25) 
requires t ha t u is independent of depth. Therefore z + 

and z_ move at the same rate and the plume extent 
remains fixed. Later, during the redistribution stage, 
u increases with depth (26). Therefore the bot tom of 
the plume descends into the soils faster than the top 
of the plume dz^/dt < dz+jdt and the plume expands. 
While the plume is expanding, the soil moisture content 
is reduced thus reducing the concentration per soil mass 
(24) and preserving the solute mass balance. Asymptot
ically as the soil dries (9 ( r ) —> 9r as r —• 00) the plume 
extent re turns to lo and the concentration returns to 
Co- Note tha t the spreading described here is a func
tion of the mass balance only and does not include the 
effects of local dispersion. In a heterogeneous collection 
of columns there will also be stochastic spreading of the 
mean plume as is discussed in the sequel. 

3.3. Reactive Solute 
Transport with equilibrium sorption and first order 

decay obeys the mass balance equation 

DC d{urC) 
dt + dz 

-XC (32) 

where ur is the retarded advection velocity of the re
active solute and A is the first order decay rate . For 
linear-equilibrium sorption, ur = q/9 where 9 = 9 + 
is the solute capacity of the soil, K% = Kdpb with Kd 
the part i t ion coefficient. 

Assuming independent of z and given the initial 
moisture profile 9(z,0) = 9r and the initial condition 
C (2,0) = Co (z), the solution of (32) by the method of 
characteristics gives 

C[zr{t),t] = C0[zo]e-xte[Zr®'t] (33) 

where zr (t) is the solution of the equation of the char
acteristic for the initial condition zr (to) = z0 and 
9o = 9o + K*d. 

For the two cycle gravitational infiltration redistribu
tion flow described by (18)-(20) we compute ur = q/9 
from (9) and (17). Defining zr = zr/W, we get the ex
pression for zr ( r ) by replacing 9r in (27) with 9r. The 
behavior of zr ( r ) is illustrated for a few values of K% in 
Figure 2. The spreading coefficient for a reactive plume 
is given by £ ( r ) = 9r/9(r) which is larger than £ for 
conservative plumes. 

Thus, we have derived approximate solutions of the 
problems of water flow and of transport of conservative 
and reactive solutes in an unsaturated soil column for 
both infiltration and redistribution. For soils of finite 
residual water content, the maximum depth of contam
inant penetrat ion is bounded by W/9r. This is in con
trast to the water infiltration front which propagates 
unboundedly with t ime (Figure 2). 

3.4.. Multiple Cycles 

Typically the above infiltration redistribution cycle 
is repeated either at regular intervals (e.g., sprinkler 
irrigation) or at irregular intervals (e.g., due to rain
fall). When the t ime interval between consecutive wet
ting events is much shorter than the characteristic t ime 
of redistribution, the wetting events can be t reated as 
one event with the application rate averaged over the 
entire t ime [Rodriguez-Iturbe et al, 1999]. 

If the t ime interval between consecutive wetting events 
is much longer t han the characteristic t ime of redistri
bution, we can assume tha t t ransport due to previous 
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events has essentially reached its asymptotic maximum 
depth and therefore, t ransport at any given time is es
sentially due only to the latest wetting event. In this 
case, fluid flow is given by (18)-(20) with the surface 
fluid flux condition (W, r) of the current wetting event, 
while t ranspor t is given by (33) with the initial condi
tion corresponding to the asymptotic long time state of 
the previous wetting event. 

For example consider an infinitely thin initial layer of 
solute CQ(Z) = MS(z)/pb where 5 is the Dirac function. 
The solute undergoes homogeneous linear-equilibrium 
sorption and first-order decay. Starting from the sur
face, the plume is t ransported by N wetting events 
where the applied fluid volume of each event is W. Af
ter the wetting front from the Nth wetting event passes 
the plume, the concentration profile will be 

M /[z-zr{TN)}6 
E X P ( ^ T ) F ( 3 4 ) 

where TN is the time since the beginning of the Nth 

wetting event and ZT(TN) is given by (27) with 6r and 
ZQ replaced by 6r and z$N^ respectively with 

(N-i)/er (35) 

4. A V E R A G I N G O F F L O W A N D T R A N S P O R T 

In non-dimensional form, the model developed above 
contains the following input parameters: (i) three soil 
parameters affecting flow (the saturated conductivity 
Ks, the mobile moisture capacity of the soil A and 
the power constant (3) (ii) an additional parameter to 
describe conservative t ransport (the residual moisture 
content of the soil 6r) and (hi) two additional parame
ters characterizing reactions in the soil (rate of losses A 
and the effective distribution coefficient ). Although 
each of these parameters may be considered as uncer
tain, Ks is generally regarded as varying over a few 
orders of magnitude. Due to this great magnitude of 
variability we t reat Ks as the single heterogeneous pa
rameter and model it as a random function of horizontal 
coordinate x and y whose probability density function 
(p.d.f.) and cumulative probability function (c.d.f.) are 
p(Ks) and P(K8) respectively. We limit the study pri
marily to deriving ensemble means of flow and transport 
variables only. The mean value of any chosen variable 
A(z, t; Ks) is defined by 

(A(z,t)) f 
Jo 

dK8p{K8)A(z,t-Ka) (36) 

4-1. Mean Water Content 

The mean water content is given by 

(9(z,T))=er + (S(z,T))A (37) 

where (S) is determined by substi tut ing (18)-(20) into 
(36). We define the functions resulting from (15) for 
7 = 1 and 7 < 1 respectively 

e(T;K,) = l+(kaT-l)/0 

e 1 ( r ) = l + ( r - l ) / / 3 
(38) 

The calculations show (Appendix B) tha t (S) is ex
pressed in terms of the following three functions 

P{x) 

P{x) 

P(x) 

fx dkaP{ks) 

Jo 
fx dksp{ks)Q-p{T-ks) Jo 
poo • * 

/ dksP(ka) 

J X 

(39) 

Wi th these definitions the expression of (S) is given 
by 

(S(Z,T)) = P 
T 

1/0' 

P ( l ) - P ( ^ ) + P ( l ) 

H (zA -T)+ (40) 

H ( T - ZA) 

(41) 

for r < 1, and 

(S(Z,T)) = h(i-ZA) [erV)P(i)_ 
+P ( r " 1 ) - P {ZA/T) + P ( l ) - P ( r " 1 ) ] 

+H(zA-l)H[z ( r ) -z] 

{p(l)-P[ks(r)}+e^(r)P(l)} 

+H [z - z(t)] e-"(T, 1 ) ^ \{zA)1/p / 0 ! ( r ) ] 

for r > 1 where 

£ s ( r ) = {l+0 [{zA)1"3 - l ] } IT- I ( r ) = 6 ? ( t ) / A 

(42) 

We see in (39) t ha t the calculation of the mean water 
content requires a one-dimensional integration. 

Figure 3 shows the mean saturat ion profile for an er-
godic set of flow tubes (a) at the end of water applica
tion ( r = 1) and (b) after the end of water application 
( r = 1.6). Both times are near the time tha t infiltration 
would have stopped for a profile with homogenous Ks 
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F i g u r e 3. T h e average mois ture content profile (a) at the 
end of water applicat ion ( r = 1); and (b) after the end of 
water appl icat ion ( r = 1.6). In b o t h cases the field pa ram
eters are (Ka) = 1, (3 = 1/3, and A = 0.35. 

equal to the distribution mean. Therefore for the field 
with low Ks variance, almost all of the applied water 
has infiltrated. On the other hand, in the field with the 
high Ks variance, not all of the applied water has infil
t ra ted because a large port ion of flow tubes have Ks sig
nificantly lower than the population mean. Therefore, 
the total infiltrated water volume is less for the high 
variability field. As expected, in the field with greater 
conductivity variability, the wetting front is more dis
persed. 

4-2. Transport of an Instantaneous Pulse 

For simultaneous instantaneous solute injection with 
initial condition Co (z) = M/(Wpb)8 (2), the mean so
lute concentration ( C ( i , r ) ) results from (34) and (36) 
as follows 

(C(Z,T)) 
PbW f 

Jo 
dKsp{Ks) (43) 

S {[z - zr (rN)} 0 (r, Ks) /6r) 0(r, Ks)/6r 

Substi tut ing (33) into (43) leads to the following ex
pressions of the mean solute concentrations (see Ap
pendix C) 

(C{Z,T)) = 
Me - A T 

PbW 

+-^p(Ks2)H(6sz - T)H(T - 6rz) 

for r < 1 and 

(C(Z,T)) = 
Me - A T 

PbW H(i - esZ) 

+^p(Ksl)H(9sz - 1)H [ZP(T) - z] 

+^p(ks3)H [z - ZP(T)] HQ. - 9rz) 

for T > 1. Here ZP(T) = 9T + A 6 ^ ( T ) 

(45) 

and 

Ksi = -
T 

1 + " l T 3 T i 

K s2 
zA 

T - 6 r 

1 
s3 

zA 
9 i ( r ) VI - M 

(46) 

i /0 

The behavior of the mean concentration is illustrated 
in Figure 4. At the end of infiltration ( r = 1) the mean 
concentration profile is bimodal. The first peak in the 
r = 1 curve near the top of the profile is due to the 
large number of columns with low conductivity. In all 
of these columns, the velocity is exceedingly slow and 
solute remains near the top of the profile. The sec
ond peak represents t ransport for Ks near the mean 
Ks value of 1. During redistribution, the solute in the 
low conductivity columns is strongly detained at low S. 
This causes the large spreading of the plume in Figure 
4 at r = 10. At large times ( r = 1000) the plume again 
becomes concentrated because in all of the columns so
lute approaches the maximum infiltration depth (W/Sr) 
which is not affected by the heterogeneity of Ks. Fig
ure 5 shows the effect the variance of Ks on transport 
at r = 20. As the variance of Ks increases, the plume 
becomes more dispersed. When the variability of con
ductivity is very high (a = 6), the concentration profile 
becomes bimodal. As above (Figure 4), the two peaks 
represent a large number of tubes with disparate low 
values of Ks whose solute all remain near the top of the 
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0 . 8 T = 100(f) 

0 2 4 6 8 10 

F i g u r e 4. The average concentrat ion profile for a conser
vative solute a t t h e end of water application ( r = 1) and 
at two t imes after water applicat ion stops ( r > 1). In all 
cases t he field pa ramete r s are (Ka) = 1, cr^ = 1 . 0 , / ? = 1/3, 
A = O . 3 5 a n d 0 r = O.l. 

profile and a large number of columns whose conduc
tivity is near the mean value of Ks = 1. 

(SfA + 0r)zr = W'. As the soil dries, S goes to 0. For 
a finite volume of applied water (W is finite), the wet
ting front descends unboundedly while the solute front 
assymptotically approaches the depth W/6r. 

The model presented here may also be valuable for 
explaining the t ime behavior of moisture content and 
solute in the root zone. This is of significant value be
cause the root zone is the most active zone of biological 
activity in the subsurface. Due to the simplicity of the 
analytical solution derived, the model presented here 
may be used to predict the effect of transient flow cou
pled to spatially variable processes. For example, we use 
model to derive analytical expressions for ergo die t rans
port in a heterogeneous field with random heterogeneity 
of hydraulic conductivity transverse to the direction of 
flow. 

A P P E N D I X A: D E R I V A T I O N O F z{r) F O R 
C O N S E R V A T I V E S O L U T E 

We define the solute capacity above the front as: 

5. S U M M A R Y 

We present an analytic model of transient flow and 
t ranspor t in unsaturated soil. The basic simplification 
of the model is the assumption tha t flow is essentially 
vertical which is most appropriate for shallow domains 
whose vertical extent is much less than the horizontal 
scale of heterogeneity or whose vertical extent is much 
less t han their horizontal extent. We assume gravita
tional flow. The analytic solution to flow derived here 
applies to homogeneous columns. Care must be taken 
in applying the model to real soils with heterogeneity 
of hydraulic and t ransport parameters along the flow 
path . The model neglects the effects of local dispersion 
which implies advection dominated transport . We as
sume tha t the mass transfer ra te between mobile and 
immobile phases is fast in relation to the rate of trans
port so tha t there is local equilibrium. 

Using simple analytical expressions, the infiltration 
redistribution model succeeds in explaining the often 
observed phenomenon tha t , when water and solute are 
simultaneously applied to an unsaturated column, the 
water drains through the column, but the solute is re
tained. Water draining through the column only sam
ples the mobile porosity of the soil. On the other hand, 
solute mixes through all of the soil water. Therefore, 
at any time, the mobile water content above the water 
front equals the applied water SfAzf = W. Similarly, 
at any time, the total soil solute capacity above the so
lute front equals the solute capacity of the applied water 

[ZC.(t) 
Q(T)= / Q{r,z)dz ( A l ) 

Jo 

To derive (27) we find a differential form for Q as 
follows: 

= 0 [r, zc(r)} u(r, zc{r)) - ^ ^ d z 

= 1 iT> * C ( T ) ] - q [r, ZC(T)] + q [r, 0] = q [T, 0] 

1 2 3 4 5 6 7 8 

z 

F i g u r e 5. T h e average concentra t ion profile of a conser
vative solute for three values of t he variance of Ks. In all 
cases t h e field pa ramete r s are (Ks) = 1, 0r = 0 .1 , /3 = 1/3, 
A = 0.35 and r = 20. 
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due to our assumption of a square wetting front (5), 

zc(T) = Q(r)/ef(r) (A3) 

Combining the initial condition Q ( r = 0) = zq9t with 
(A2) and (A3) gives (27). 

A P P E N D I X B : D E R I V A T I O N O F T H E M E A N 
W A T E R C O N T E N T 

The mean saturat ion (5) (18)-(20) can be represented 
as a sum (5) = (Si) + (52) where 

fa) = I' dkap(ka)S{{T)H(Zf(T)-2) (Bl) 
Jo 

dkap{kt)St{T)H(zt(T)-z) (B2) 

We calculate the two means (Bl) and (B2) separately. 
For (Bl ) 7 = 1, hence substi tuting for if yields 

(5i> = Jo1 dKs p(Ks) {H(l - Ksr)H ( | f - l ) 

zA l ]}(B3) + Q-P(T;ks)H(ksT-l)H 

For times r < 1 the system is definitely in the infiltra
tion stage and (B3) becomes 

(S1) = [P ( l ) - P(zA/t)} H(t - zA) (B4) 

where P(x) is the c.d.f. of Ks. For r > 1 (B3) becomes 

( 5 0 = / 0

1 / T dksP(Ks)H - l ) (B5) 

+ j1

1

/TdksP(ks)e-^r;ks)H - 1 

= [P($) ~P(ir)+ Pd) - P (£)] H(l - zA) 
+ | P ( 1 ) - P [ks ( T ) ] } H(zA - 1)H \z(t) - z) 

with P(x), k s and z given by (39) and (42) of the text. 
For (B2) 7 = l/ks and we have 

{Sa) = J?dk.*${Hffi-l] H(l-r) 

+Q1(t)-<3H zA - 1 H(T-1) 

= {p(i)H [m1/p\ - 1 ) } 

H(l-T) + e^(r){p(l)H 

+P ( r - 1 ) 
(B6) 

with P(x) given by (39) of the text. 

A P P E N D I X C: D E R I V A T I O N O F T H E M E A N 
S O L U T E C O N C E N T R A T I O N F O R 

I N S T A N T A N E O U S I N P U T 

The mean concentration (43) can be represented as a 

sum (C(z,r)) = M e " * T [ ( 7 i ( i , r ) + C 2 ( z , r ) ] / (pbW) 

where 

C i ( 5 , r ) = f1 dksP(kS)8[z-zc(r)} (CI) 
Jo 

/
oo 

dksp(ks)6[z-zc(r)} (C2) 

We calculate the two means (Cl ) and (C2) separately. 
For (C l ) 7 = 1. Therefore zc(r) results from (27) as 

follows 

zc{r) = ZfH(\-kar) + (C3) 

-H{Kst - 1) 
6T + A O - " (t;KS) 

When r < 1 introducing u = Kst/6s produces 

CiO*.?") = — Jo dupy—J8{z-u) 

es (z0a\ 
# ( T - 0 a z) (C4) 

For T > 1 introducing a new variable by v = l/[9r + 
Ae-0{T;KS)} we have 

C1(z,T) = ^ti/e"dup(^)6(z-u) 

+ Jiy^dvP(ksl)%^6(z-v) 

= <Lp(*i*)H(i-eaz) 

+%±p(kSL)H(esz - 1)H(zp(t) - z) 

where Ks\ and zp are given by (46). 
If k s > 1 then 7 = l/ks and i c ( r ) is given by 

(C5) 

+ ft,.+A(Ks)-^e-'i(r)-Hr(T ~ X ) 

Denoting 

„ f T n ( f l for r < 1 

^ = { i ; ^ = A { © r V ) foroi 
and subst i tut ing (C6) into (C2) yields 

C,(z,r) = J~dkap{ka)6 (z - j ^ ? ) 

(C6) 

(C7) 

(C8) 

Introducing a new variable x = - 4 / [ # r + D(l/ksY] 
transforms (C8) to 



LESSOF ET AL. 143 

(C(z,r)) = i$vS%_ dxp[K*s{x)\ ^ 6 ( z - X) 

(C9) 
with 

/ Dz V/0 

^ U ^ l ) <cio> 
Expressions (C4), (C5) and (C9) lead to (44) of the 

text. 
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Analytical Solutions for Two-Dimensional Solute Transport with 
Velocity-Dependent Dispersion 

P h i l i p B r o a d b r i d g e , R. Joe l Moi t shek i a n d M a u r e e n P . E d w a r d s 

Institute for Mathematical Modelling and Computational Systems, University of Wollongong, New South Wales, 
Australia. 

A form of t h e so lu te t r a n s p o r t e q u a t i o n is t r a n s f o r m e d from C a r t e s i a n 
t o s t r e a m l i n e coo rd ina t e s . S y m m e t r y ana lys i s of t h i s e q u a t i o n w i t h a p o i n t 
w a t e r source reveals a 5 - p a r a m e t e r s y m m e t r y g r o u p . E x p l o i t a t i o n of t h e r ich 
s y m m e t r y p rope r t i e s of t h e e q u a t i o n leads t o a n u m b e r of a s soc ia t ed r e d u c e d 
p a r t i a l differential e q u a t i o n s - t h a t is, p a r t i a l differential e q u a t i o n s w h e r e t h e 
n u m b e r of i n d e p e n d e n t var iab les h a s b e e n r e d u c e d by one . Us ing fu r the r 
s y m m e t r y r educ t ions a n d o t h e r t r a n s f o r m a t i o n t echn iques , t h e c o n s t r u c t i o n 
of n e w so lu t ions for non - rad i a l so lu te t r a n s p o r t on a b a c k g r o u n d of r a d i a l 
w a t e r flow is possible . 

1. I N T R O D U C T I O N 

Throughout his working life, John Philip devoted 
much of his energy to analysing macroscopic models for 
real-world problems in environmental mechanics. Dur
ing the 1990s, one of those areas tha t captured his at
tention was solute t ransport [Philip, 1994, 1996]. This 
field is of immense practical interest since regional soil 
contamination and salinisation has become one of our 
most serious environmental problems. The t ime scale 
of these regional processes is of the order of several 
decades. Therefore, for the purposes of environmen
tal management, it takes too long to experimentally 
determine the outcomes of agricultural and industrial 
practices. Predictions must be made by mathematical 
modelling or by designing small physical models whose 
results may be sensibly scaled up to predict outcomes at 
the field scale. A full theory of solute t ransport will re
quire understanding of microscopic t ransport processes 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM14 

in fluctuating fluid flow fields in networks of tor tuous 
channels (for a review, see e.g. [Jury, 1988]). Nev
ertheless, macroscopic t ransport models, described in 
terms of part ial differential equations, will remain im
por tant for efficiently predicting solute t ranspor t at the 
field scale. In practical problems, it is normal to solve 
the relevant part ial differential equations by approxi
mate numerical methods. However, we face the serious 
problem tha t available numerical packages have signifi
cant disagreements in their prediction of solute disper
sion [Woods et al, 1998]. Therefore, exact solutions are 
very impor tant not only because they provide insight 
but also because they are needed as validation tests for 
numerical schemes. 

Solute dispersion is complicated even at the macro
scopic level because the dispersion coefficient increases 
with fluid velocity, which in general is varying in space 
and t ime. The fluid velocity vector field cannot be an 
arbi t rary smooth function of space and time; it must 
conform to the established laws of fluid flow in porous 
media. Although passive scalar t ransport in solvent-
conducting porous media has been intensively studied 
by many people for many years, realistic exactly solv-
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able models with spatially varying dispersion coefficient 
are very rare. Perhaps the most notable effort in this 
direction has been tha t of Moench [1989], who obtained 
the Laplace transform for solute concentration during 
t ranspor t from an injection well to a pumped with
drawal well after approximating the flow as being radial 
towards the withdrawal well. In this case, the Laplace 
transform must be inverted numerically but this has 
been achieved with demonstrated accuracy [Moench, 
1991]. Most other good approximate and exact ana
lytic results have similarly focussed on radial t ransport 
in two or three dimensions [Hoopes and Harleman, 1967; 
Eldor and Dagan, 1972; Tang and Babu, 1979; Hsieh, 
1986; Novakowski, 1972; Fry et al, 1993]. Simple one-
dimensional, axisymmetric or spherically symmetric ge
ometries are most insightful in our analysis of solute 
dispersion. However, in these simplest cases the trans
port process is automatically represented as a partial 
differential equation in two dependent variables, includ
ing the t ime variable t and only one space variable r. 
Such equations do not provide a genuine test for nu
merical simulations of two-dimensional flows. Zoppou 
and Knight [1996] made some progress in this direction 
by producing the point source solution for dispersion in 
a background of hyperbolic water streamlines bounded 
by a wedge. The main drawback of this solution is tha t 
it required a special form of anisotropy in the velocity 
dependence of the dispersion tensor. 

Over his many years of research in environmental me
chanics, John Philip 's powers of physical intuition and 
deductive reasoning were such tha t he rarely needed 
more than undergraduate calculus to solve seemingly 
difficult applied problems. However, we find it neces
sary to use some slightly more sophisticated algebraic 
tools to progress towards our aim; tha t is to construct 
exact two dimensional solutions to velocity-dependent 
isotropic dispersion tha t are not axially symmetric. To 
this end, we select a form of the solute t ranspor t equa
tion tha t has a particularly large symmetry group of 
invariance transformations, depending continuously on 
a number of real parameters. In Section 2, we formu
late the class of partial differential equations tha t we 
will study. We will briefly outline the requisite Lie sym
metry theory in Section 3. In Section 4, we summarise 
the results of our symmetry analyses. This leads to 
a number of new exotic solutions for non-radial solute 
t ranspor t on a background of radial water flow. These 
are discussed further in Section 5. 

2. S O L U T E T R A N S P O R T E Q U A T I O N S 
Here, we concentrate on macroscopic deterministic 

models based on local conservation laws [e.g. see 

Wierenga 1995]. In the most complete formulations, 
the dispersion tensor may have anisotropic dependence 
on various components of pore velocity [Bear, 1979]. 
However, for the purposes of exact analysis, we assume 
here t ha t dispersion is isotropic, with the single dis
persion coefficient being a function of pore water speed 
v = \V\/6. Here 6 is the volumetric water concentra
tion in the soil. The solute flux density J is the sum of 
three components, 

J = - 0 D o V c - 6De(v)Vc + cV, (1) 

due to molecular diffusion, dispersion and convection 
respectively. V is the volumetric Darcian water flux. 
The dispersion coefficient De is found to be an in
creasing function of pore water speed. It has often 
been convenient to model this function as a power law, 
De = Divm, with 1 < m < 2. This has some experi
mental support [Salles et al, 1993]. When we combine 
(1) with the equation of continuity for mass conserva
tion, 

we obtain the convection-dispersion equation, 

^ = V . [ M ? ( V ) V c ] - V . ( c V ) , (3) 

where D(v) = Dq + De(v). For the remainder of this 
article, we shall consider two dimensional steady flow 
of water in sa tura ted soils. These satisfy 6 = 0S, along 
with Darcy's law V = — KSV$, where 0S is the water 
content at saturat ion, $ is the total hydraulic pressure 
head and Ks is the hydraulic conductivity at saturation. 
For flow sa tura ted soils, the equation of continuity 
V • V = 0 combined with Darcy's law implies Laplace's 
equation 

V 2 $ = 0, (4) 

and (3) takes the form 

dc 
= V • [D(v)Vc] + fcV$ • Vc, (5) 

where k = KS/0S and v = |fcV$|. Since in two di
mensional Darcian saturated flow, the velocity v is ir-
rotational and the fluid is incompressible, there exists 
a s t ream function ij)(x,y) which is a harmonic func
tion conjugate to the pore velocity potential which is 
<Kx,y) = Ks$. Thus, V = = ( - & £ ) . 
After the transformation from Cartesian coordinates 
(x,y) to streamline coordinates (0,-0), convection takes 
place in the direction of constant ij), and the convection-
dispersion equation transforms to [Hoopes and Harle-
man, 1967; Segol, 1994]: 
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\_dc 
v2 dt 

d_ 
D{v)d4>. 

d_ 

This form of the solute t ransport equation happens to 
be more amenable to symmetry analysis. 

In most dispersion problems of interest, molecular 
diffusion is negligible compared to dispersion, and we 
approximate D{v) by De(v) = vp with 1 < p < 2. 
For radial water flows from a line source of strength 
q, in terms of the radial coordinate r, the Darcian flux 
is V = q/r, and the pore velocity is v = V / 0 S , for 
which the velocity potential is <fi = — (q/Qs) log r and 
the s tream function is ij) = —(q/0s) arctan(?//x). In this 
case, Equat ion (5) takes the form 

dc 
dt + 

(q/Os) dc 
r dr' (7) 

Note t ha t the gradient operator here is not simply 
radial as we are allowing solute concentration to de
pend on the polar angle. Equation (7) may be non-
dimensionalised and rescaled so tha t all coefficients of 
proportionality are unity. Consider dimensionless quan
tities C = c/c8, T = t/ts and (X,Y,R) = (x,y,r)/ls, 
where s-subscripted parameters represent suitable con
centration, t ime and length scales. The unique choice 
of t ime scale t s and length scale ls t ha t will normalize 
Equat ion (7) is 

ts 

Then Equat ion (7) rescales to 

BP + RdR' (8) 

Now we will summarize the techniques of symmetry 
reduction before we apply them to find forms of the 
convection-dispersion equation tha t allow exact solu
tion. 

3 . A L G E B R A I C T E C H N I Q U E S F O R 
S Y M M E T R Y R E D U C T I O N 

The theory and applications of continuous symmetry 
groups were founded 120 years ago by Lie [1880]. There 
are many modern readable accounts of this theory but 
we will mention only a few here [Ovsiannikov, 1982; 
Bluman and Kumei, 1989; Hill, 1992; Ibragimov, 1995]. 
Given a continuous one-parameter symmetry group, in 

most practical cases we may reduce the number of inde
pendent variables by one. The most familiar symmetry 
is the rotational symmetry tha t enables us to reduce 
(x,y) to the single radial variable r. For example, con
sider the nonlinear diffusion equation, familiar to all 
who s tudy porous media, 

^ = V.[Z>(0)V0]. 

This equation is invariant under the group of plane ro
tat ions 

x' = x cos(e) — y sin(e), 

y' = x sin(e) + y cos(e), 

0' = 0. 
This Lie group of transformations depends continuously 
on the group parameter e which is the rotat ion angle. 
The invariants of this transformation group are 6 and 
the radial coordinate r = (x2 + y 2 ) 1 / 2 . Rotationally 
invariant solutions satisfy a reduced R D . E . for 9(r,t). 

The next most familiar example is the scaling sym
metry. For example, the nonlinear diffusion equation is 
invariant under the Boltzmann scaling symmetry 

t' = te2e, 

6f = 6. 

The group invariants are 8 and (j) = x/t1/2. Invariant 
solutions satisfy an O.D.E. for 0 = /(</>) or equivalently 
x = £ 1 / 2 p ( 0 ) . Philip [1957,1969] used this form as a 
s tar t ing point for the infiltration series to be used when 
gravity is not ignored in flow of water in unsatura ted 
soils. 

The identity transformation, which must belong to 
any group, is conventionally labeled by e = 0 (e.g. for 
rotat ion by angle e = 0 or scaling by factor ee = e° = 1). 
As well as the familiar geometric one-parameter groups, 
there may be additional more complicated symmetry 
groups tha t apply only to special subclasses within the 
class of governing equations. For example, if D(0) = 
0 ~ 4 / 3 , then the one dimensional nonlinear diffusion 
equation is invariant under the non-obvious symmetry 
group [e.g. Galaktionov et al, 1988] 

x = 1 + cx ' 

0' = 0(1 + e x ) " 3 , 

t' = t. 
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Fortunately, we need only use infinitesimal symmetry 
techniques, since Lie's fundamental result is tha t the 
whole of the one parameter group can be determined 
from the transformation laws up to first degree in e. 

If we know the coefficients r (£ ,x , 0), x, 0) and 
rj(t, x, 9) of the infinitesimal transformations 

t' = t + er + 0 ( e 2 ) , 

x1 = x + e£ + 0 ( e 2 ) , 

0' = 9 + er) + 0(e2), 

then the full group may be writ ten formally as 

f' = eTf(t,x,9), 

where T is the infinitesimal symmetry operator T = 
r ^ + ^ ^ + r ^^ . The exponential of T may be defined 
as the usual power series. 

Given a governing part ial differential equation, we 
may derive determining relations for the coefficients 
r (£ ,x , 0), £(£,x, 0) and r?(£,x,0) in order for T to be 
a symmetry operator. These determining relations are 
linear part ial differential equations and they can be gen
erated and solved automatically by many computer al
gebra programs. 

Conveniently, the coefficients of T lead directly to the 
form of invariant solutions, obtained by solving the in
variant surface condition 

09 h9 

for example by the method of characteristics. 
If we begin with a P.D.E. in three independent vari

ables, such as Equat ion (6), then a single symmetry will 
allow us to reduce to a P.D.E. in two independent vari
ables. If the resultant reduced P.D.E has an additional 
symmetry, then it may be reduced further to an O.D.E. 
The reduced P.D.E. is guaranteed to have an inherited 
symmetry if the original P.D.E. has two independent 
symmetries satisfying [ T i ^ ] = iT\, with 7 constant. 
Successive reductions can then take place by T\ followed 
by a reduced form of T2> In more complicated situa
tions, successive reductions can take place by a chain of 
symmetries for the original P.D.E., provided tha t set of 
symmetries has the algebraic structure of a solvable Lie 
algebra [e.g. Olver, 1986]. Even if the original P.D.E 
with a symmetry does not have a solvable Lie symmetry 
algebra, an additional hidden symmetry may still show 
up for the reduced P.D.E. In practice, these may be 
found by successively reapplying the symmetry-finding 
procedure to each reduced equation. 

4. S Y M M E T R Y R E D U C T I O N S O F S O L U T E 
T R A N S P O R T E Q U A T I O N S 

Ultimately, we wish to obtain exact solutions to the 
system of Equations (4) and (5) . However, if we look 
for Lie symmetries of the entire system (4) and (5), then 
we will find nothing more than rescaling of c, transla
tion in t, and translations and rotations in (x, y). These 
are the only conformal maps t ha t leave not only (4) 
but (5) invariant. Nevertheless, we may hope to find 
symmetries tha t leave the single Equat ion (5) invariant 
when 3>(x,2/) is a special solution of Laplace's equa
tion. This may lead to useful reductions and solutions 
of (5) even if $ ( x , y ) itself is not an invariant solution 
of Laplace's equation. For this purpose, we could carry 
out a symmetry classification of the single equation (5), 
t reat ing $ ( x , y) as a free coefficient function. Given the 
class of functions $ (x , y) t ha t lead to extra symmetries, 
we could later select from these, solutions of Laplace's 
equation. 

In order to generate and solve the symmetry deter
mining relations, we have used the freely available pro
gram DIMSYM [Sherring, 1993], tha t is written as 
a subprogram for the computer algebra package RE
DUCE [Hearn, 1985]. The only point symmetries for 
the general equation (5) are combinations of transla
tions in T, rescaling of C and linear superposition. 
The symmetry operators are linear combinations of 
Ti = ^ , T 2 = C ^ , , and = h(X, Y , T ) ^ , where 
h(X,Y,T) is any particular solution of (5). The output 
of DIMSYM indicates special algebraic and differential 
equations among the free functions D(v) and <£(x,?/), 
which, if satisfied, may lead to additional special sym
metries. In fact, we have found tha t DIMSYM more 
easily finds special symmetric cases when the general 
convection-dispersion equation is expressed in terms of 
streamline coordinates, as in (6). Not surprisingly, even 
when the pore velocity is non-uniform, many special 
symmetries arise when D is constant. Even this sim
pler case is directly applicable for modelling convection 
and molecular diffusion, or as a first approximation to 
dispersion. This case was studied more extensively in 
an earlier paper [Broadbridge et al, 2000]. Not all sym
metric cases have yet been determined, but useful ad
ditional symmetries certainly occur when the water ve
locity is radial or when it represents strained flow along 
hyperbolic streamlines bounded by a wedge. From an 
arbi trary initial condition, we showed how to construct 
exact solute concentration profiles in terms of Laguerre 
polynomials, modified Bessel functions and confluent 
hypergeometric functions when the water flow had hy
perbolic streamlines bounded by a wedge. For the case 
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of hyperbolic strained flow, additional symmetries do 
not occur for any velocity-dependent dispersion coeffi
cient D(v). For radial water flow, with power-law dis
persion coefficient D(v) = vp, additional symmetries 
occur only for the cases p = 0, p = — 2 and p = 2. This 
choice p = 2 is in accord with Taylor's [1953] theory of 
dispersion by fluctuations of a fluid velocity field and it 
seems to be a reasonable model for dispersion in porous 
media [Philip, 1994; de Gennes, 1986]. For this case, 
the solute t ransport equation may be rescaled to Equa
tion (8) with p = 2. For the relevant normalised point 
water source, (f> = —log R, is simply the clockwise 
polar angle coordinate — arctan (Y/X) and v = e^. In 
this case, besides the generic symmetries T i , T 2 and Too, 
Equat ion (6) has three additional independent symme
tries 

R 3 -(? + ̂  - -re -2<j> + ! E - 4 A C JL 
16 J ° dC 

+ T2 
d_ T d_ 

2 of 

The optimal system is { r 3 ; T 3 + Yx ; T 3 + a r 5 ; T 3 + 
r 4 + a r 5 ; r 4 ; r 4 + Q T I ; r 4 + a r i + / ? r 5 ; r 5 ; r 2 ; r 5 + 
a T2}' Wherever they appear in this list, a and (3 repre
sent arbi t rary constants. In Table 1, we list the canon
ical invariants and the reduced P.D.E.s associated with 
each of these symmetries. 

We are able to construct a variety of exact non-radial 
solutions in terms of elementary functions, Bessel func
tions, and Rummer ' s function [Abramowitz and Stegun, 
1972] using subsequent symmetry reductions, and other 
transformation techniques. In Section 5, we construct 
some well behaved solutions tha t are invariant under the 
complicated symmetry T 3 . Solutions t ha t are invariant 
under other symmetries will be derived elsewhere. 

5. I N V A R I A N T N O N - R A D I A L S O L U T I O N S 

Consider the T 3 -invariant solutions of the form 

c = e x p ( - | - ! 2 | I + ^ _ ^ ) X F ( F T 7 ) , 

with F satisfying the R D . E . listed in Table 1. Since 

[ R 3 , R 4 ] = - R 4 , 

the reduced equation inherits the symmetry T 4 , which 
now takes the form 

leading to the reduction 

F = pg{l), with ff"(7) + 80(7) = 0. 

In terms of the original variables, this leads to the so
lution 

C = k3 + k4 cos(2v/2V + fo)VfR - 2 

x exp 
f_T I? _ R4 \ 
V 4 + 4 1 6 7 7 (9) 

For convenience of interpretation, we have neglected the 
analogous solutions wherein sine functions replace co
sine functions, and we have added the constant solution 
ks. The solution (9) has the concentration boundary 
condition C = ks a t -0 = 2 ~ 3 / 2 ( & 5 — ^ ) and the zero flux 
boundary condition J • n = 0, where n is the outward 
(circumferential) normal vector at -0 = 2~3^2(k^ — IT). 

The solution is depicted schematically in Figure 1. Liq
uid at the lower radial boundary is maintained at con
centrat ion ks] for example this may be the equilibrium 
satura ted concentration where the liquid contacts a salt 
block. The liquid and the solute are contained by a bar
rier a t t he upper radial boundary. The concentration 
is initially a t the uniform equilibrium value. For some 
time, water with a lower concentration of solute flows 
in from the origin, flushing the interior and reducing 
its solute concentration. After some time, the inflowing 
water again becomes saturated with solute and the inte
rior again approaches its initial concentration. At each 
point, t he concentration reaches its minimum value at 
t ime 

R = L + ( L + i # 4 ) 1 / 2 . 4 
Unfortunately, it is common for symmetry solutions not 
to have easily interpretable boundary conditions be
cause they are very special solutions with few param
eters t ha t can be adjusted to satisfy boundary condi
tions. Sometimes, the number of free parameters may 
be greatly increased because the first reduced equa
tion happens to be equivalent to a s tandard constant-
coefficient linear equation with many solutions obtain
able by linear transforms or series methods. For exam
ple, the P.D.E. obtained by reduction under T 3 t rans
forms to the negative Helmholtz equation 

d2V | d2V 
d\2 dv2 V = Q, (10) 
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Table 1. Reduced P.D.E.s 

Reduced P.D.E. 

with C = exp ( - £ - ^ + i e - 2 * - I 5 T e " 4 * ) x % 7 ) , p = Te2\ 7 = V> 

16p 2 f£ + ( 2 4 p - l ) f + § £ = 0 
with C = exp ( - £ + {e'2*) x F(p ,7) , p = Te 2 *, 7 = ^ 

with C = exp ( - ? - I t a n " 1 T - i 2 S ^ ± i l + I e ~ 2 * - ^ ^ e - 4 * ) x F ( p , 7 ) , 

p = V T 2 + 1 e24", 7 = V 

with C = exp ( - £ - 12|Z + i e - 2 * _ _ ^ e - 4 0 ) x F { p i i ) > p = T e

2 * , 7 = £ + ± 

with C7 = exp ( - £ - \ t a n - 1 T - !*$£±!2 + i f i - a * _ _ _ r _ e - 4 ^ x F ( p > 7 ) ) 

p=VW+Te^, 7 = t a n - 1 T - ^ 

1 6 p 2 | £ + ( 2 4 p - l ) f + 0 - * F = O 
with C = exp ( - £ + f log(T + a) + \e~2*) x F ( p ) 7 ) , p = (T + a) e 4 *, 7 = 

16p 2 f£ + ( 2 4 p - l ) f + ^ ^ + ( j 7 - 4 r ) 7 | f = 0 

with C = exp ( - 2 + i e - 2 * ) x F(p ,7 ) , p = (T + a) e4*, 7 = T e " -

1 6 p 2 f £ + ( 2 4 p - l ) f + ^ 0 + ( ^ - a ) 7 | £ + $ F = O 

with C = exp ( - £ + f log(T + a) + \e~2*) x F(p, 7) 

p = ( T + a ) e 4 * , 7=(r + a ) e - ^ 

0 _ e - P | £ + ( 2 + e- 2 *) %+a2F 
with C = exp(a tp) x 7), p = 0, 7 = T 

Tj 

r 3 

r 4 

r 3 + r i 

r 3 + r 5 

r 3 + r 4 + a r 5 

T 4 + aTi 

T 4 + a T 5 

T 4 + aTi + /3T5 

r 5 + a r 2 

under the transformation 

F = U(x,v)e-* ; p = e 2 * ; i> = v ; F - ^ . 

Equat ion (10) has many available solutions since it 
has been intensively studied in several physical applica
tions including quasilinear steady unsaturated flow [e.g. 
Philip, 1985b; Waechter and Philip, 1985]. If we im
pose zero-concentration initial conditions and zero nor
mal flux boundary conditions on a wedge, 

C = 0 at T = 0, 

J • n = 0 at ip = -0a, 

these transform to 

V - o , X ^ - c o , (11) 

V = 0, v = ip0^i. (12) 

Without loss of generality, we take -00 = 0 . By separa
tion of variables within the self adjoint equation (10), 
we obtain a general Fourier series solution. Expressed 
in the original variables, this solution is, for R > T 1 / 2 , 
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c = k 3 

— — — — • W a t e r f l u x v e c t o r 

»» S o l u t e f l u x v e c t o r 

F igu re 1. Schematic representation of solute streamlines 
for solution given by Equation (9). 

x An(TR~2)an cos(nTr^M), (13) 
n = 0 

and for R < T 1 / 2 , 

OO 

x £ An(TR~2)~1~CCn C O S ( T M T ^ M ) . (14) 
n = 0 

where an = ^ [ \ / ( r i 7 ^ ^ / , — l ) 2 + 1 — 1]. 

Figure 2 is a polar plot of this solution for solute con
tained in a right angled wedge ( ipi = 7r/2), and with a 
step profile at T = l , 

C ( ^ , l ) = 1.0 for ^ > T T / 4 , 

C t y > , l ) = 0 . 8 for ^ < T T / 4 . 

The dimensionless total solute content is 

rOO pip! 

/ / C(R, V, T ) R dRdip = A 0 T T 
Jo Jo 

1 + erf 

This shows t ha t an amount AQK is deposited instanta
neously at the origin and tha t an equal amount is in
jected continuously over t ime, with a decreasing supply 
rate. Note t ha t total solute content does not depend on 
A N with n > 0. These coefficients have no effect on total 
solute content or on mean solute t ransport ra te across 
a circular arc R = constant and 0 < i/> < How
ever, they dictate the variability of concentration and 
flux on polar angle. Although the source is isotropic 
with respect to water flux, it is not isotropic with re
spect to solute flux. Notionally, the continuous source 
represents a discharge pipe tha t is covered with a filter 
of variable s trength. 

6. C O N C L U S I O N S 

In a letter dated 10th. February 1998, John Philip 
responded to congratulations on his admission to the 
Order of Australia: 

". . .I t 's encouraging tha t the system can, in 
the end, tolerate the occasional oddball ( though 
longevity may help). Of course I 'm pleased; 
but , in a deep sense, the same reward has 
been the sheer fun of any (non-) labours over 
these 52 years." 

We too have experienced a little of the fun in tack
ling an exacting mathematical problem in environmen
tal mechanics. The symmetry analysis has produced 
a rich array of variable reductions and exact solutions 
for non-radial solute t ransport on a background of ra
dial water flow. As far as we are aware, these are the 
only known solutions for non-radial two-dimensional 
isotropic velocity-dependent dispersion. However, we 
know tha t the outcomes fall a little short of the late 
John Philip 's ideals of exact solutions for key nonlinear 
boundary value problems with direct testable practical 
implications. In symmetry analysis of complicated par
tial differential equations, it is unusual t ha t the bound
ary conditions are directly interpretable. In the solu
tions tha t we have displayed, we maintain constant-
concentration boundary conditions or zero-flux bound
ary conditions tha t are indeed interpretable. However, 
the solute injection rates at the source must be special 
functions of t ime. These may provide some insight on 
the effect of varying water velocity in dispersion but 
they are more likely to be important as bench tests for 
two-dimensional numerical schemes. 

While the solute t ransport equations are linear, they 
have highly variable coefficients. We have found tha t 
this has been more troublesome than the nonlinear-



152 TWO DIMENSIONAL SOLUTE TRANSPORT 

0 0.2 0.4 0.6 0.8 1 

F i g u r e 2 . Polar plot for analyt ic solution of solute con
cent ra t ion given by Equa t ion (13) showing concentrat ion 
as a function of polar angle for given values of R and 
T. T h e s tep function represents t he imposed condition a t 
(R, T) = (1 ,1 ) . T h e other curve shows smoothing at a later 
t ime; (R,T) .= (1.2,1.2) . 

i t y in s y m m e t r y c lass i f ica t ions of t h e g e n e r a l non l in 
e a r R i c h a r d s e q u a t i o n for u n s a t u r a t e d w a t e r t r a n s p o r t 
[Own and Rosenau, 1986; Sposito, 1990; Edwards, 1994; 
Edwards and Broadbridge, 1994; Yung et al, 1994; Ed
wards and Broadbridge, 1995; Baikov et al, 1997]. H o w 
ever , t h e s c o p e for s y m m e t r y ana lys i s of l inear P . D . E . s 
s u c h a s t h e s o l u t e t r a n s p o r t a n a l y s i s h a s g r e a t l y b r o a d 
e n e d fol lowing t h e in i t i a l ly s u r p r i s i n g r e su l t of Broad
bridge and Arrigo [1999] t h a t e v e r y so lu t i on of a n y sec
o n d o r h i g h e r o r d e r l i nea r P . D . E . is i n v a r i a n t u n d e r 
s o m e c lass ica l L ie s y m m e t r y . T h i s gives u s h o p e t h a t we 
m a y b e a b l e t o i n c o r p o r a t e b o u n d a r y c o n d i t i o n s f rom 
t h e o u t s e t of s y m m e t r y a n a l y s e s . 
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Stability Criteria for the Vertical Boundary Layer Formed by 
Throughflow Near the Surface of a Porous Medium 

C. J. van Duijn, G. J. M. Pieters 

Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, 
The Netherlands 

We consider gravitat ional instability of a saline boundary layer formed by 
evaporation induced upward throughflow at a horizontal surface of a porous 
medium. Two pa ths are followed to analyse stability: the energy method 
and the method of linearised stability. The energy method requires con
straints on saturat ion and velocity per turbat ions. The usual constraint is 
based on the integrated Darcy equation. We give a fairly complete analyt
ical t rea tment of this case and show tha t the corresponding stability bound 
equals the square of the first root of the Bessel function J 0 . This explains 
previous numerical investigations by Homsy &. Sherwood [1975, 1976]. We also 
present an al ternative energy method using the pointwise Darcy equation as 
constraint, and we consider the t ime dependent case of a growing boundary 
layer. This al ternative energy method yields a substantially higher stability 
bound which is in excellent agreement with the experimental work of Wooding 
etal [1997a, b]. The method of linearised stability is discussed for complete
ness because it exhibits a different stability bound. The theoretical bounds 
are verified by two-dimensional numerical computat ions. We also discuss 
some cases of growing instabilities. The presented results have applications 
to the theory of stability of salt lakes and the salinization of groundwater. 

R. A. Wooding 

CSIRO Land and Water, Canberra, Australia 
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1. INTRODUCTION 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM15 

Consider a semi-infinite porous medium with a horizontal 
upper boundary. If a uniform upward flow exists within the 
medium and through the boundary, and if appropriate bound
ary conditions apply, a spatially one-dimensional boundary 
layer may be created and sustained by the outflow. For in-
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stance, if the surface is maintained at a temperature different 
from that of the medium and the saturating fluid, a thermal 
boundary layer is formed with an equilibrium thickness 
proportional to the ratio of thermal diffusivity to upflow rate. 
Similarly, a boundary layer is formed by dispersing solute 
if the solute concentration at the boundary differs from the 
concentration of the solution issuing from the medium. 

Such flows occur naturally in areas of groundwater dis
charge. These may be characterised by very low flow rates, 
leading to boundary layers of significant thickness. An up
flow of warm or hot groundwater has been postulated for 
some shallow geothermal areas (Wooding [I960]). As the 
surface is relatively cold, a thermal boundary layer of cool 
water is formed below the surface. A reversal of this situa
tion relative to gravity may arise for in situ coal gasification 
(Homsy & Sherwood [1975]), where a hot reaction surface 
forms a boundary layer at the lower horizontal boundary of a 
cooler permeable layer. Boundary layers are also formed in 
semi-arid regions containing extensive areas of groundwater 
discharge (Gilman & Bear [1996]; Wooding et al. [1997a]). 
The groundwater contains salt. After throughflow induced 
by evaporation, the salt remains behind at the surface to form 
saline deposits (salt lakes). These salt lakes may be 'dry' at 
the surface under the influence of evaporation, or may con
tain standing water (ponding), perhaps varying seasonally 
between the two states. 

In each of these examples the fluid in the horizontal 
groundwater boundary layer differs in density from the fluid 
in the adjacent permeable medium, and the question of the 
gravitational stability of the boundary layer arises. Wood
ing [1960] treated the case of a constant-pressure (ponded) 
boundary by linearised stability theory. Jones & Persichetti 
[1986] applied linear analysis to a permeable layer with all 
combinations of boundary condition and throughflow direc
tion. Nield [1987] obtained approximate stability criteria by 
variational means. Gilman & Bear [1996] treated the lin
earised stability of a horizontal unsaturated layer (vadoze 
zone) overlying a shallow water table. Wooding et al. 
[1997a, b] discussed saturated groundwater movement with 
dry or ponded conditions at the surface, and used both ex
perimental and numerical methods to simulate the unstable 
behaviour of a boundary layer growing from an initial salin
ity discontinuity at the surface, and including the margin, of 
a dry salt lake. 

In an important step, Homsy & Sherwood [1975, 1976] 
pointed out that the presence of throughflow contributes non-
symmetric (odd-order) terms to the stability equations. The 
linear, time-independent part of the stability equations is not 
self-adjoint, and linear stability analysis is applicable only 
when the system is definitely unstable. Subcritical instabil
ities of finite amplitude are possible at Rayleigh numbers 
below the critical value derived using linear theory (Davis 
[\91\],Straughan[\992\). 

In the present work we are concerned with this aspect and 
also with the stability of a growing boundary layer. For sim

plicity we consider only the dry lake case in a vertical up
flow, in which we assume that a rapidly established saturated 
surface layer exists yielding a steady boundary condition for 
the salt concentration. We will employ both the energy (vari
ational) method and the method of linearised theory. 

1.1. Stability of the Equilibrium Saline Boundary Layer 

In applying the energy method we follow two approaches. 
The first one is the 'standard approach' as outlined, for ex
ample, by Homsy & Sherwood [1975,1976] or by Straughan 
[1992]. In this approach one incorporates an integral con
straint in the class of admissible perturbations, which is 
based on continuity and the integrated Darcy equation. The 
Euler-Lagrange equations with boundary conditions can be 
combined into a second order eigenvalue problem with time 
as a parameter. One of the goals of this paper is to demon
strate that at equilibrium, when the boundary layer has 
reached its large time profile, this eigenvalue problem can 
be solved in terms of Bessel functions yielding 

R E L = 5.7832 (1.1) 

as a value of the Rayleigh number below which the system 
is definitely stable; note that y/REx is the first root of the 
Bessel function J 0 (Abramowitz & Stegun [1972, p. 409]). 

In a second approach we deviate from Homsy & Sher
wood and consider a different maximum problem. Using the 
same functional, we replace the integral constraint with an 
exact differential relation which is now based on continuity 
and the 'pointwise' Darcy equation. This yields a sixth or
der eigenvalue problem which we solve numerically by the 
Jacobi-Davidson method. With the given boundary condi
tions we find approximately 

R E 2 = 8.590 (1.2) 

as the largest Rayleigh number below which the system is 
definitely stable. The close agreement of this result with the 
numerical results of Pieters [2001] and the experimental re
sults of Wooding et al. [1997a, b] is discussed in Section 5. 

For completeness we also consider the linearised stabil
ity analysis of the equilibrium boundary layer. This yields 
a fourth order eigenvalue problem. Using again the Jacobi-
Davidson method we find approximately 

RL = 14.35 (1.3) 

as a critical Rayleigh number above which the system is def
initely unstable. 

Given the physical parameters of the system a value for the 
Rayleigh number R S results. This value may fall within one 
of three ranges: definitely stable for R S ^ R E I (i = 1,2), 
definitely unstable for R S > R L , and possibly unstable to 
disturbances of finite amplitude (leading to subcritical insta
bilities) when R E . < R S ^ R L . 

Homsy & Sherwood [1976] considered throughflow in a 
finite slab. Their numerical results for large thickness of the 
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slab approximately give the critical Rayleigh numbers (1.1) 
and (1.3). 

1.2. Time Dependent Growth of the Saline Boundary Layer 

Problems of fluid instability with impulsively-generated 
(time-dependent) density profiles have been discussed, in 

particular, by Homsy [1973], who used the energy method to 
treat global stability of fluid layers, and Caltagirone [1980], 
who compared the stability behaviour using linear and en
ergy methods and also used finite-difference computations 
for a horizontal porous layer with a sudden rise in surface 
temperature. These studies, however, did not involve a su
perimposed throughflow. 

Our case involves a dispersive boundary layer in an up
flow, and we shall identify approximate parameter values 
where instability is likely to occur. Section 3 explains the 
stability analysis for a growing boundary layer. Here time t 
appears as a parameter. In the early stages of development, 
the layer is sufficiently thin to be stabilised by the given 
boundary conditions. However, the monotonic increase in 
layer thickness with time will be accompanied by decreas
ing stability of the system as the influence of the boundary 
diminishes. This is shown in Figures 2 and 3. 

Figure 2 shows a family of curves in the a, R plane, a de
noting the horizontal wavenumber, for increasing values of 
t. The curves are obtained with the energy method based on 
the differential constraint. For a given time t > 0, corre
sponding to an instantaneous state of the growing boundary 
layer, let ##(£) denote the minimum of the corresponding 
curve. Similarly, Figure 3 shows a family of curves obtained 
with the linearised stability method. Now, let R L (t) denote 
the minimum of the curve corresponding to time t. 

We now have the following refinement with respect to the 
equilibrium case. If Rs ^ RE(OO) = RE2, the layer will at
tain a stable equilibrium profile. If, however, R8 > RE2 we 
can determine a time t%, corresponding to Rs = RE^E)* 
and conclude the stability of the growing boundary layer for 
t < ts

E. On the other hand, if Rs > i? i we can nomi
nate an elapsed time ts

L corresponding to Rs = RL{ts

L) and 
conclude the instability of the layer for t > ts

L. These ob
servations follow from the nature of the curves in Figures 2 
and 3. The curves in Figure 2 are upper bounds for regions 
of stable (a, R) combinations, whereas the curves in Figure 
3 are lower bounds for regions of unstable (a, R) combina
tions. 

The shape, i.e. number of 'salt-fingers' or critical wave-
number, of growing instabilities depends substantially upon 
the perturbations present during the initial stable period. 
This is investigated numerically in Section 4, where we use a 
finite element approach based on the stream function formu
lation. If initial perturbations are periodic and sufficiently 
small we observe growing instabilities in the theoretically 
predicted range. This is shown in Figure 5. Other perturba
tions are considered as well. Some qualitative features of the 

computational results are explained in terms of the stability 
bounds. In particular the stochastic case meets the theory 
quite satisfactory (see Sub-subsection 4.3-a). 

In Section 5 we present conclusions and discuss exper
imental Hele-Shaw results (Wooding et al. [1997a, b]) in 
terms of our theoretical findings. Theory and experiment 
are reproduced in Figure 10, showing excellent agreement. 

The results presented in this contribution are taken from 
three extensive technical reports, Van Duijn et al. [2001a, b] 
and Pieters [2001]. These reports are available upon request 
from the authors at Eindhoven University of Technology. 

2. PROBLEM FORMULATION 

Following Wooding et al. [1997a], we consider a uniform 
isotropic porous medium occupying the three dimensional 
halfspace Q = {(x,y,z) : — oo < x,y < oo, z > 0} , 
where z points vertically downwards. The medium is satu
rated with a fluid of variable density p: i.e. water with dis
solved salt. Along the upper boundary {z = 0} we prescribe 
density and fluid flow corresponding to a 'dry lake bed', with 
a sufficient rate of evaporation to remove all free surface wa
ter and a rapid buildup of salt. Yet it is assumed that the salt 
solution everywhere and always fills up the pore space. If 
p r denotes the fluid density in 'natural circumstances' (i.e. 
far away from the outflow boundary) and p m the maximum 
density at the outflow boundary, we have p r ^ p ^ pm 
throughout the flow domain Q. Here p m may represent the 
fluid density in an overlying pond or the density of the salt-
saturated solution. 

The flow equations in terms of the Boussinesq approxi
mation (Bear [1972], Nield & Bejan [1992], Wooding et al. 
[1997a]) are given by: 
Fluid ^compressibility 

d ivg = 0 ; (2.1) 

Darcy's law 

f^q + gradp - pgez = 0 ; (2.2) 

Salt transport 

4>^+div(pq) = W)Ap. (2.3) 

Here q denotes fluid discharge, p, fluid viscosity, K medium 
permeability, p fluid pressure, g gravity constant, <f> poros
ity and ID) an appropriately defined dispersivity or diffusivity. 
Further, ez denotes the unit vector in ^-direction, pointing 
downwards. 

These equations are considered in Q subject to the bound
ary conditions 

q = -Eez and p = pm at z = 0 (2.4) 
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and initial condition 

PU=n in Q . (2.5) 

Here E denotes the evaporation rate. 
We recast the problem in dimensionless form by setting 

and U — — , uc = 
Pm - Pr Uc P 

pr)gK 

(2.6) 

and by introducing the thickness of the equilibrium bound
ary layer ID/E and (jM/E2, respectively, as scales for length 
and time. This yields 

div U = 0 , 

U + g rad P - Sez = 0 
ds 
dt 

+ RSU • grad S = AS , 

(2.7) 

(2.8) 

(2.9) 

in i? and for all t > 0, subject to 

1 
U = U0 := 

and 

Rs 
and 5 = 1 a t z = 0 (2.10) 

(2.11) 

Here P = (p - prg^z)/(pm ~ P r ) p § represents departures 
of the dimensionless pressure from hydrostatic conditions 
and Rs the system Rayleigh number 

Rs (pm - Pr)gK 
pE 

Uc 

~E 
(2.12) 

The main purpose of this paper is to investigate the stabil
ity properties of the flow problem defined by (2.7)-(2.12). 
More specifically, we will consider the stability of the ground 
state implied by the uniform initial condition (2.11). Be
cause of the constant boundary data (2.10), this ground state 
can be determined explicitly. It is characterized by the uni
form upflow 

U = U0 in Q 

and the growing boundary layer, for z > 0, 

(2.13) 

S = S0(z,t) = ±e- ' erfc 
[2Vi 

1 r + - erfc 
z + t 

2y/i 

satisfying 

So(z,t) -> e z as t -» oo . 

(2.14) 

(2.15) 

The corresponding pressure P = P0 is found by integrat
ing Darcy's law (2.8). The stability analysis is based on the 
expansion 

S _ _ S 0 + s , U = U0 + u and P = P0 + p , 
(2.16) 

with u = (u, v,w), and where 5 , U and P satisfy equations 
(2.7)-(2.9) and boundary conditions (2.10). In the next sec
tion we study the corresponding perturbation equations. In 
the analysis we drop the subscript s on Rs and denote the 
Rayleigh number by R. This is to distinguish between R as 
an eigenvalue in the equations and its value Rs for the actual 
physical system. 

3. ANALYSIS OF PERTURBATION EQUATIONS 

Based on experimental observations of early instabilities 
we assume that the perturbations are periodic in the hori
zontal y plane. Further we require that the perturbations 
vanish at and far below the outflow boundary: 

= u = 0 at z = 0, co , (3.1) 

expressing that { 5 , U} and {So, Uo} both satisfy (2.10) and 
behave similarly at large depth. 

3.1. Perturbation Equations 

Substituting (2.16) into equations (2.7)-(2.9) and writing 
R instead of RSi yields the system (in Q and for a lH > 0) 

div u = 0 , (3.2) 

u + grad p — sez = 0 , (3.3) 

!£-?±+Rw^+Ru.ffad8 = A8. (3.4) 
at dz dz 

As in Lapwood [1948] we note that equations (3.2) and (3.3) 
can be combined to give for s and w the linear relation 

Aw = A±s in Q , (3.5) 

where A± denotes the horizontal Laplacian 

d2 d2 

dx2 dy2 

This relation plays a crucial role in various parts of the sta
bility analysis. 

Because of the assumed x, ^/-periodicity, we may restrict 
the analysis of equations (3.2)-(3.4) to the periodicity cell 

V = {{x,y,z) : \x\ < ir/ax, \y\ < 7r/ay, 0 < z < oo} , 

(3.6) 

where ax and ay are the, as yet unspecified, horizontal 
wavenumbers. We call 

a := yjal + al (3.7) 

the horizontal wavenumber of the periodicity cell V. 
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There are two well-known paths to carry out the stabil
ity analysis: the variational energy method and the method 
of linearised stability. Some important references in this re
spect are Wooding [1960], Nield [1987], Straughan [1992] 
and Homsy & Sherwood [1976]. Because of the existing 
throughflow (U = U0), the energy method and the lin
earized stability method yield different stability bounds on 
the Rayleigh number. Therefore we will discuss both ap
proaches. 

3.2. Variational Energy Method 

In the energy method one estimates the time derivative of 
the L 2 -norm of the saturation perturbation. In particular, the 
aim is to find the largest ^-interval for which 

time dependent ground state and show that this differential 
constraint significantly improves integral constraint (3.11). 

3.2.1. Integral constraint. Identity (3.10) and constraints 
(3.2), (3.11) lead to the maximum problem 

- = sup 
K ( « , u ) G H 

Jy dz " 
/ | g r a d s 

Jv 

(3.12) 

with 

H = { ( s , u) : x, ^-periodic with respect to V, 

s = u = 0atz = 0, oo, 

d* 

div i x = 0 and / | w | 2 = / sw} . 
Jv Jv 

s2 < 0 . (3.8) 

Here and in integrals below we disregard the infinitesimal 
volume elements in the notation. The related maximum R -
value clearly will depend on the wavenumber a and, because 
S0 = So (z, t), on time t. Once (3.8) is established, it follows 
that the L 2 -norm of the velocity perturbation is bounded as 
well, since (VanDuijn etal. [2001b]) 

/ I«I2 < / 
Jv Jv 

(3.9) 

The corresponding Euler-Lagrange equations are 

-2As + R-^-w - uw = 0 , dz 
d S 

2fiu — g rad TT + R--—sez — \isez = 0 , oz 

| d i v u = 0 and j \u\2 = j sw , 

where /i (constant in space) and TT are Lagrange multipliers. 
Applying the scaling This is a direct consequence of (3.2) and (3.3). 

To investigate (3.8), we multiply (3.4) by s and integrate 
over V. Using (3.2) we find the identity 

A R 1 A 
A 2 2VR 

one finds 

d 

d*2 \l/=-jv^,?-RJy-§. <3..o, \^(i-x°j»y+A,=0, (,13) 

Thus if R is chosen such that the right-hand side of (3.10) 
is negative for all perturbations satisfying a given constraint, 
then stability is guaranteed. 

It is our aim to investigate the consequences of two differ
ent constraints. In the first we consider perturbations satis
fying (3.2) and the integrated Darcy equation: 

~Y{x~x~dz~) 
div u = 0 , 

sez — u - g rad p = 0 , (3.14) 

(3.15) 

-w . (3.16) 

/ | u | 2 - / 
Jv Jv 

• 0 . (3.11) 

This approach is a modification of that used by Homsy 
& Sherwood [1976]. While they considered a stationary 
ground state only and solved the corresponding eigenvalue 
problem numerically, we are in the position to deal with time 
evolution of the primary profile as well. However, we shall 
not pursue the time dependence for this constraint. Instead 
we give a complete analytical treatment of the case where 
the ground state is given by the equilibrium case (2.15) for 
a l H > 0. This analysis explains quite elegantly some of the 
previously obtained numerical results. 

In the second constraint, we consider perturbations sat
isfying the differential expression (3.5). We shall treat the 

These equations were also found by Homsy & Sherwood 
with a slightly different interpretation of the parameter A. 

Note that (3.14) has a structure similar to Darcy's law. 
As before, (3.14) and (3.15) can be combined to give 

Aw _VR(1 x 8 S 0 \ 
~ 2 [\ Xdz) A\s . (3.17) 

Further, multiplying (3.14) by u, integrating the result over 
V, and using (3.16) yields the useful identity 

/ sw 

_ f dSot 

Jv dz ' 
(3.18) 
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Finally, multiplying (3.13) by 5 , integrating the result over 
V, and using (3.18) gives 

f | g r a d s | 2 = ^ / sw . (3.19) 
Jv * Jv 

Next we introduce the periodicity. Setting s := as, with a 
given by (3.7), we find from (3.13) and (3.17) the equations 
(with D signifying d/dz) 

u > - o . + ^ ( i - » £ ) . - . . 

(3.20) 

(3.21) 

for 0 < z < oo. Note that in these equations t appears as 
a parameter through the ground state. We seek non-trivial 
solutions subject to the homogeneous conditions (3.1) and 
the constraint (3.18). 

As a first observation we note that (3.20), (3.21) and the 
boundary conditions imply s = w. Hence we are left with 
the second order boundary value problem (for 0 < z < oo) 

( £ 2 _ fl2) s + 

ay/R 

I 5 ( 0 ) = s(oo) = 0 , 

subject to the constraint (replacing w by s in (3.18)) 

X2 = f 
Jo 

T 
JO 

dz 
V 

(3.23) 

(3.24) 

Identity (3.19) rewrites into 

r « - ' ' - ( ^ - ) r 
(3.25) 

This expression and equation (3.22), using dSo/dz -)• 0 as 
2 —» oo, imply that nontrivial solutions only exist in the 
parameter range 

1 < — < 2 . 
aX 

(3.26) 

So far we have not used the explicit form of So- In the 
analysis below we confine ourselves to the equilibrium case 
(2.15), where So is a simple decaying exponential. Intro
ducing the new parameters 

y/R 
aX ( w i t h l < < & < 2 ) , a = \j^f 

P = 0(a,S) = 2ay[l^i, (3.27) 

Figure 1. Comparison of estimates involving lowest eigen
value R\ versus wavenumber a for the equilibrium boundary 
layer. Curve 1: Energy method using integral constraint. 
Curve 2: Energy method using differential constraint. Curve 
3: Linearised stability method using Jacobi-Davidson (solid 
curve) and Frobenius expansion (crossed points). 

and the transformation 

(3.28) 

we find for / a boundary value problem involving the Bessel 
equation 

£2/" + W + (£ 2 - P2)f = 0 o n O < £ < a , (3.29) 

with 

/ ( 0 ) = / ( a ) = 0 . (3.30) 

Here primes denote differentiation with respect to f. A solu
tion of (3.29) satisfying the first condition in (3.30) is 

/ ( 0 = M0 (3.31) 

with Jp denoting the Bessel function of the first kind, order 
P. Next we fix a > 0 and consider 

J0(a,6){&) = 0 f o r l < J < 2 , (3.32) 

where £i = £ i (a , S) is the first positive zero of Jp. Then 
setting a = £i in the second equation of (3.27), we obtain 
the first eigenvalue Ri for the given values of a and 8: 

= i*i(a,<5) = i<$(fi(a,<&)) 2 for 1 < S < 2 . (3.33) 

Keeping a fixed, we now turn to the integral constraint 
(3.24). In the transformed variables it reads 
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Jo 
(5 rti 

(3.34) 

The question now arises whether there exists a unique num
ber 6a € (1,2) such that J = Sa satisfies (3.34). This would 
result in the first eigenvalue 

J*i(a) := i - i ( M a ) f o r a > 0 . (3.35) 

The proof involves some technical details which are given 
in Van Duijn et al. [2001b]. The energy stability curve in the 
a, R plane is plotted as curve 1 in Figure 1. If perturbations 
are x, y-periodic with wavenumber a and if Rs < Ri(a), 
then the ground state (at equilibrium) is stable in the L 2 -
sense. The construction implies 

Ri(0) lim Ri (a) • 5.78318 • • • (first zero of J 0 ) 2 . 

(3.36) 

Homsy & Sherwood used a numerical shooting method to 
solve the eigenvalue problem. They found (3.36) approxi
mately as a stability bound. 

3.2.2. Differential constraint. In a second approach we 
want to achieve (3.8) for perturbations satisfying the diffen-
tial constraint (3.5). This leads to a maximum problem in 
which (3.12) is considered for the space of perturbations 

H = {(s,w) : x, ^/-periodic with respect to V, 

s = w = 0 at z = 0, oo, and Aw = A±s in V} . 

This maximum problem results in an eigenvalue problem 
which has a much higher complexity than the eigenvalue 
problem related to (3.11). In fact it leads to a sixth order dif
ferential equation in terms of w, for which no explicit solu
tion is known. However, one expects to have a more accurate 
description, yielding larger Rayleigh numbers, in particular 
since (3.5) is based on the pointwise Darcy equation. This 
statement is made precise in Appendix A. 

Now the Euler-Lagrange equations read (Van Duijn et al. 
[2001b]): 

(D2-a2)s = tl 
RdS0 

2 dz w + • 

with TT(0) = 0 as natural boundary condition, and 

(3.37) 

(3.38) 

F i g u r e 2. Stability curves for equilibrium boundary layer 
according to the energy method with differential constraint. 
Dashed curves show lowest eigenvalue R\ versus wavenum
ber a prior to equilibrium, treating time as parameter. 
Numerical values are calculated by the Jacobi-Davidson 
method. Short-dashed curve traces minima of stability 
curves with increasing t > 0. Solid curve 2 is taken from 
Figure 1 (equilibrium case). 

These equations need to be solved for 0 < z < oo and they 
contain time t (through So = SQ(Z, t)) as parameter. Elim
inating 7r from equations (3.37) and (3.38) yields a fourth 
order equation in 5 and w, and the further elimination of s 
using (3.39) leads to the sixth order w equation 

( o . _ < 1 » ) ' „ + ^ « { ( D » _ 0 » ) ( g L „ ) 

-h 
dSo 0 . (3.40) 

The corresponding boundary conditions for this equation are 

w(oo) = 0 , (3.41) 

implying that all higher order derivatives vanish as well at 
z = oo, and 

w(0) = D2w(0) = D4w(0) = 0 . (3.42) 

The first two conditions are obvious. The third one is a con
sequence of 7R(0) = 0; this condition implies D 2 s (0) = 0 
from (3.37), which is then used in (3.39). In terms of the 
variables w, s and 7 R , we have the homogeneous conditions 

(D2 - a2) w = -a2 (3.39) s = TT — 0 at z = 0, oo . (3.43) 
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The eigenvalue problem (3.40), (3.41) and (3.42), or equiv-
alently (3.37)-(3.39) subject to (3.43), was solved numeri
cally by the Jacobi-Davidson method. This method is briefly 
described in Van Duijn et al. [2001b]. Detailed information 
is given in Fokkema et al. [1999] and Sleijpen & Van Der 
Vorst [1996]. 

For a given wavenumber a > 0 and time t > 0, let 
R E (a, t) denote the smallest positive eigenvalue. The dashed 
curves in Figure 2 show the numerical approximations of the 
curves {(a , R) : a > 0, R = R E (a, t)} for increasing val
ues of t. Note that these curves essentially move downwards, 
except for large a and t. At large time they converge to the 
equilibrium curve, corresponding to (2.15). This limit case 
is also shown in Figure 1 (curve 2). The results obtained with 
the differential constraint are superior to the results obtained 
with the integral constraint. In particular, the minimum of 
curve 2 is R = 8.590 approximately, which is significantly 
higher than the minimum of about R = 5.78 of curve 1. 

To interpret the results of the time dependent case, we set 

RE(t) :=mmRE(a,t) f o r 0 < * < o o (3.44) 
a > 0 

and we recall the Rayleigh number of the physical system 
Rs, given by (2.12). 

If Rs < RE(OO) =: R E , which we denoted by R E 2 in 
the introduction, the boundary layer is definitely stable for 
all t > 0. However, if Rs > R E , we can only conclude 
that the boundary layer is stable for 0 < t < ts

E, where t*E 

is determined by Rs = R E ^ E ) - W h e n t > ts

E no direct 
conclusions can be drawn. The appearance and form of the 
growing instabilities critically depends on the choice of ini
tial perturbations. This is further investigated in Section 4. 

a small time scale for the perturbation. Now again t ap
pears as a parameter in the equation, as in the case of the en
ergy methods. From here on the procedure is quite standard 
(Wooding [1960], Nield & Bejan [1992]). Applying again 
the y- periodicity, taking a as the exponential growth rate 
and setting 

s,w = s,w(z) exp(crr + i(axx + ayy)) , (3.47) 

we find from (3.5) and (3.46) the coupled set of second order 
equations 

(D2 -a2)w = -o?s , (3.48) 

(D2 + D - a2 - a) s = R^-(z, t)w . (3.49) 

The corresponding eigenvalues now depend on a, t and on 
the growth rate a. An analysis as in Van Duijn et al. [2001a] 
shows for the smallest positive eigenvalue Ri (a, t, a): 

# i (a, t, a) ^ R1 (a, t, 0) if and only if a ^ 0 . (3.50) 

These inequalities imply the following. Let Rs be suffi
ciently close to Rx (a, t, 0). If Rs > Ri (a, t, 0), then there 
exists a a > 0 such that Rs = R\(a, t, a). In other words, 
if Rs > Ri (a, £, 0) , there exists a growing infinitesimal per
turbation which implies that the boundary layer is unstable. 
If Rs < Ri (a, t, 0) no definite statement about stability can 
be made. Only certain infinitesimal perturbations now de
cay. Others, and in particular large perturbations, may still 
grow in time. 

As a consequence it suffices to analyse equations (3.48), 
(3.49) for the case of neutral stability a = 0. Eliminating s 
and setting a = 0, gives for w the fourth order eigenvalue 
problem 

3.3. Linearised Stability 

In the method of linearised stability one disregards the 
higher order terms in (3.4) and considers the approximate 
linear saturation equation 

ds ds ^ dSo _ ^ 
dt dz dz in Q (3.45) 

for t > 0. We shall seek nontrivial solutions of this equa
tion together with (3.5), subject to the homogeneous bound
ary conditions (3.1). In case of a stationary ground state 
one looks for solutions having an exponential growth rate in 
time. Since here, the ground state (2.14) depends on time 
as well, such a construction is only possible under the as
sumption that the rate of change of the ground state is small 
compared with the growth rate of infinitesimal perturbations 
(the frozen profile approach). Hence, for given t > 0, we 
consider instead of (3.45) the approximate equation 

ds ds _ dSo, , x 
in Q (3.46) 

for r > 0 and sufficiently small. In fact we have two time 
scales: a large time scale for the evolving ground state and 

(D2 + D - a2) (D2 - a2) < -azR-P?-(z,t)w (3.51) dz 
for 0 < z < oo, with 

w(0) = D2w(0) = 0 and w(oo) = 0 . (3.52) 

The equilibrium case (t = oo and So = e~z) can be treated 
by a semi-analytical technique based on a Frobenius expan
sion in terms of descending exponentials (Van Duijn et al. 
[2001b], Wooding [I960]). As a result one finds an accu
rate approximation to the lowest eigenvalue Ri(a) for any 
wavenumber a > 0. In Figure 1, point values of Ri(a) 
have been plotted as crosses, showing excellent agreement 
with solid curve 3 - the numerical solution of the eigenvalue 
problem (3.51), (3.52) using the Jacobi-Davidson method. 
We find 

R L := minimi (a) 
a > 0 

# i ( a c ) = 14.35 

with 

ac = 0.759 

(3.53) 

(3.54) 
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0 1 2 3 a 

F i g u r e 3. Stability curves for equilibrium boundary layer 
according to the linearised stability method. Dashed curves 
show lowest eigenvalue R\ versus wavenumber a prior to 
equilibrium, treating time as parameter. Numerical values 
are calculated by the Jacobi-Davidson method. Solid curve 
3 is taken from Figure 1 (equilibrium case). 

approximately. These numbers, in good agreement with the 
numerical results of Homsy & Sherwood [1976], are charac
teristic of the linearised stability method. 

To study the instability of the growing boundary layer 
we need to consider the eigenvalue problem for each finite 
t > 0. Let RL(CL, t) denote the smallest positive eigenvalue. 
Again we used the Jacobi-Davidson method to find accu
rate numerical approximations. These results are shown in 
Figure 3 where the dashed curves indicate R L (a, t) for in
creasing values of t. Note again that these curves essentially 
move downwards, except for large a and t. As t ->• oo con
vergence towards the equilibrium curve Ri (a) is attained. 

As before, we set 

RL(t) := mm RL(a,t) . (3.55) 
a>0 

If Rs > RL(OO) =: RL, an estimate for the onset time of 
instability is found by the crossover time t*L determined by 
Rs = RL(ts

L). In other words, the boundary layer becomes 
unstable for t > ts

L. If Rs « R L , the boundary layer be
comes unstable when it is close to its equilibrium profile. 

For Rs < R L no definite statement about stability is pos
sible. The linearised stability analysis only implies that in
finitesimal small perturbations vanish for Rs < RL. Sub-
critical instabilities originating from large perturbations may 
still grow in time. This is a consequence of the uniform up-
flow, implying that the eigenvalue problem is not self-adjoint 
(Homsy & Sherwood [1976]). 

4. GROWING INSTABILITIES 

The theoretical stability bounds tell us how the system will 
respond to periodic perturbations of the initial state S = 0. 
For Rs < RE we expect decaying perturbations and for 
Rs > R L growing instabilities or salt-fingers. In this sec
tion we verify this behaviour by means of numerical ex
periments. We also investigate the response of the system 
to non-periodic (Figures 7,8) and a combination of periodic 
(Figure 9) initial perturbations. 

In the numerical experiments we consider the two-dimen
sional truncated flow domain 

GH := i(x>z) .~L<x<L, 0<z<H}. (4.1) 

In this definition the quantities H and L are scaled with re
spect to the length scale B/E. The truncated flow domain 
needs additional boundary conditions for the velocity U and 
the saturation S: we set S = 0 and U = Uo at z = H 
and we impose no-flow and no salt transport along the lat
eral boundaries. 

We solve equations (2.7)-(2.9) in terms of the saturation 
S and the stream function where 

/ 0_? d#\ 

Following de Josselin de Jong [1960] we obtain the system 

' — + R (—— - — —} - AS (4 3) 
i dt s \ dx dz dz dx J ' 

4 * = 7 T , (4-4) ^ ox 

in Qfj and for all t > 0. The corresponding boundary con
ditions result directly from the imposed saturation and flow 
behaviour. 

4.1. The Numerical Method 

Let t n = nAt, n = 1,2, • • • , AT, N sufficiently large, and 
let Sn denote the saturation at t = t n . The corresponding 
stream function is found from 

ft on 
4*=-^- in i?&. (4.5) 

This problem is discretised by the finite (linear) element 
method. The corresponding matrix equation is iteratively 
solved using the conjugate gradient method. The numerical 
approximation of (4.5) is denoted by 

Next we consider 
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tn tn 

Figure 4. Left: Early-time behaviour of E(tn) originating from (4.8): solid line ( R S = 35), crossed solid 
line ( R S = 5). Right: Long-time behaviour of energy E(tn) for R S = 35. Solid line corresponds to 
perturbation (4.8), dotted line to (4.9), dash-dotted line to (4.10) and finally dashed line to (4.11). 

in Ojj and for t > t n . Again we use a finite element dis
cretisation, together with an upwind discretisation for the 
convective part. Now the corresponding linear system is 
iteratively solved with the bi-conjugate gradient stabilized 
method. For the time integration we use the implicit Eu-
ler scheme. The numerical solution of (4.6) is denoted by 
S £ + 1 . Replacing 5 n + 1 in equation (4.5) by the approxima
tion S £ + 1 , the above cycle is repeated for subsequent time 
steps. 

The numerical method does not involve automatic time-
step adaptation nor does it include algorithms for local mesh 
refinement. This implies that the time-step and mesh are 
fixed during the computations. The mesh consists of square 
elements of length h. Motivated by the convergence be
haviour of the scheme (see Pieters [2001] for technical de
tails), we use At = 0.005 and h = 0.15625 for respectively 
the time-step and element length, and we fix H = 5 and 
L = 25. 

4.2. Stability Criterion 

To decide whether the system is stable or unstable, a sta
bility criterion is required. Inspired by the energy method 
we consider the functional 

E(tn):= f \u%(x,z,t)\2dxdzy (4.7) 
Jo-

where u% is the numerical approximation of the velocity per
turbation u. It is found by substracting the ground state U o 

from the numerical solution t / £ = (-&#%/dz , d&£/dx). 
Numerical observations (Pieters [2001]) show that E(tn) 

either decreases from a positive value E(0) towards zero for 
large n , or E(tn) first decreases, reaches a minimum and 
then strongly increases away from E(0). Based on these ob
servations, we call the ground state unstable if there exists a 
IN 3 N such that E(tm) ^ E(tn) for all 0 ^ n <C N. 
Otherwise the ground state is stable. The time t m is called 
turning time and will be further denoted by t. 

The behaviour of E(tn) is illustrated by two numerical 
experiments. First we set R S = 5 < RE and consider 

S(x, z,t = Q) = e cos(x) , e = 5 • 10" 4 , (4.8) 

for (x, z) e The functional (4.7) is plotted as a crossed 
solid line in Figure 4 (left). Indeed, for this choice the en
ergy norm decreases with time and the system remains sta
ble. Next we set R S = 35 > RL and again (4.8). For this 
unstable regime the functional is plotted as solid curves in 
Figure 4. The saturation profile and velocity field for this ex
periment are depicted in Figure 6. As to be expected, the ini
tial periodic perturbation triggers growing instabilities in the 
saturation profile. At later times the influence of the lower 
boundary becomes noticeable (middle and bottom figures) 
and a steady state is reached. The corresponding saturation 
profile has the original eight fingers. This is due to the partic
ular choice a = 1. Note that the energy E(tn) has a relative 
high value, Figure 4 (right). 

As explained in Pieters [2001] this observation leads to an 
alternative method to analyse stability of the system: given 
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wavenumbers a and system Rayleigh numbers Rs within rel
evant ranges, we can determine the turning times i, yielding 
a set of triples (a, Rs, t). Treating i as parameter, we can 
construct stability curves similar to the ones in Section 3. 
The result is shown in Figure 5 and agrees with the curves 
obtained by the method of linearised stability (Figure 3). 

This is due to the fact that the initial perturbations are small. 

4.3. Numerical Experiments 

We investigate the development of instabilities for more 
general initial perturbations. We take Rs = 35 and consider 
the following cases: 

a. Stochastic perturbation, with 

S(x, z, t = 0) = eu(x, z) , for (x, z) e OH » (4-9) 

where p is uniformly distributed in [0,1]. 
The computational results are shown in Figure 7. The sys

tem clearly selects a preferential wavenumber a* for small 
and intermediate times. From the top figure in Figure 7 we 
deduce a* = 1.86 approximately. At later times a steady 
state is reached which now has a saturation profile with 
twelve fingers and a relative low energy. 

Taking Rs = 35 and considering the curve connecting the 
rninima in Figure 3, we expect to find from linear stability 
a = a = 2.08. Similarly, we obtain from the energy method, 
Figure 2, a = a = 1.82. We observe that a « a* < a. 
This is in agreement with the experimental results of Wood
ing et al. [1997a, b], see also Figure 10 in Section 5. 

b. Non-periodic perturbation, with 

S ( x , , , * = 0) = ( e f O T - £ < * < i 0<z<H, 
I 0 elsewhere, 

(4.10) 

The results for flow and saturation are shown in Figure 8. 
Now, at small and intermediate times, no preferential wave 
number can be detected. At large times the resulting steady 
state shows ten fingers and an intermediate energy E(tn). 
We stopped the computations at t = 15. It could be possible 
that the steady state is not yet reached because the corre
sponding energy is still slightly increasing in time. 

c. Combination of periodic perturbations, with 

S(xyz,t = 0) = e{cos(0.25a;) + cos(x) + cos(2#)} , 
(4.11) 

for (x, z) £ 0^. 
We observe that the modes with a = 0.25, 2 decay, while 

the one with a = 1 grows. The decay of a = 0.25 is in 
agreement with the stability analysis (Figure 3). However, 
Figures 2 and 3 seem to indicate competition between a = 1 

4 0 r 

10 

° ' 0 5 1 L5 2 25 
a 

F i g u r e 5 . Stability curves for equilibrium boundary layer 
corresponding to the numerical method as described in 
Pieters [2001]. Dashed curves show system Rayleigh num
ber Rs versus wavenumber a prior to equilibrium, treating 
t as parameter. Solid curve 3 is taken from Figure 1. 

and a = 2. Apparently, nonlinear effects cause decay of a = 
2 and growth of a = 1. Note that the large time behaviour is 
identical to Figure 6, with the same energy. 

5. DISCUSSION AND CONCLUSIONS 

We have formulated a stability problem involving a porous 
medium saturated with saline water flowing vertically up
wards through a horizontal surface. The upflowing water is 
assumed to evaporate completely at the surface. Salt satura
tion is established quickly and is sustained there, with excess 
salt precipitated on the surface. Below the surface, a saline 
boundary layer grows by diffusion in the counter direction 
to the upflow. If this layer remains stable under gravity, 
an equilibrium state is reached where the salinity (or den
sity) profile is exponential, decreasing downwards towards 
the ambient upflow value. 

Since the surface salinity and upflow rate are both taken 
constant, the layer is stable provided it is sufficiently thin; it 
is initially stable, but will tend to become less stable mono-
tonically as the thickness increases by diffusion/dispersion. 
The system is least stable when the boundary layer has at
tained maximum thickness, which occurs at equilibrium. 
The equilibrium boundary layer thickness provides a length 
scale for the Rayleigh instability problem. If the porous 
medium has a lower boundary, it is assumed to be at a dis
tance large relative to that scale. 
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F i g u r e 6. Periodic initial perturbation (4.8): contour plot of saturation at t = 3 (top) and t = 15 (middle), 
velocity field (bottom) at t = 15. 

To study the stability of the boundary layer we have used 
two energy methods and the method of linearised stability. 
In terms of the system Rayleigh number Rs (2.12), the first 
give upperbounds for stability, the latter a lower bound for 
unstable behaviour. These bounds do not coincide (see Fig
ure 1) and leave the possibility for decay of infinitesimal 
small perturbations and growth of large perturbations. 

In the first energy method we follow Homsy & Sherwood 
[1976] and use (3.11) as constraint for perturbations. As-
surning horizontal periodicity in the usual way, this con

straint leads to a second order eigenvalue problem. Homsy 
and Sherwood constructed a numerical solution for the case 
of a porous layer of finite thickness with a (thermal) bound
ary layer at equilibrium. We explain their asymptotic result 
for large thickness in terms of Bessel functions. In particular 
we find that their stability bound corresponds to the square 
of the first root of the Bessel function J o . 

In the second energy method we use (3.5) as differential 
constraint and we consider the time dependent behaviour 
(growth) of the boundary layer. This leads to a sixth or-

F i g u r e 7. Stochastic initial perturbation (4.9): contour plot of saturation at t = 3.5 (top) and t = 15 
(middle), velocity field (bottom) at t = 15. 
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F i g u r e 8. Non-periodic initial perturbation (4.10): contour plot of saturation at t = 3.5 (top) and t = 15 
(middle), velocity field (bottom) at t = 15. 

der eigenvalue problem which we solved by means of the 
Jacobi-Davidson method. Figure 2 shows the behaviour of 
the smallest positive eigenvalue versus the wavenumber a, 
with time as parameter. Figure 1 compares the two methods 
for the equilibrium case (t = oo) and shows superior be
haviour when using (3.5) instead of (3.11). This is explained 
in Appendix A. Given a Rs-value, we are now in a position 
to estimate the time during which the boundary layer grows 
in a stable manner. This is explained in Section 3.2.2, see 
(3.44). 

The method of linearised stability estimates the onset of 
instabilities. We used the frozen profile approach which 

allows us to incorporate the growth of the boundary layer 
in the analysis. As a result we arrive at a fourth order 
eigenvalue problem which we solved again by the Jacobi-
Davidson method. The corresponding stability curves are 
shown in Figure 3. Now we are in the position to estimate 
an elapsed time beyond which the boundary layer becomes 
unstable. This is explained in Section 3.3, see (3.55). 

In Section 4 we considered two-dimensional flow and 
study the growth of instabilities by means of the finite el
ement method (with the stream function as flow variable). 
Introducing the energy functional (4.8) we are now in a po
sition to estimate the elapsed time numerically for a given 

-25 -20 -15 -10 - 5 

0 
-25 -20 -15 -10 10 15 20 25 

F i g u r e 9. Combined periodic initial perturbation (4.10): contour plot of saturation at t 
t = 15 (middle), velocity field (bottom) at t = 15. 

= 3 (top) and 
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50-B 

F i g u r e 1 0 . Comparison of theory (this paper) with experi
mental results (Wooding et al. [1997a, b]). Solid curves 1-3 
give eigenvalues R versus wavenumber a for the equilibrium 
boundary layer (Figure 1). Curves of minima of R with re
spect to a for t > 0 increasing to equilibrium: by energy 
method (Figure 2, dashes), by linearised theory (Figure 3, 
short dashes). Symbols for experimental results are identi
fied in the text. 

initial perturbation. In this way we could qualitatively repro
duce Figure 3 (linearised stability) for small periodic pertur
bations. The response of the system to other initial pertur
bations was investigated as well. The results are shown in 
Figure 7 (stochastic), Figure 8 (non-periodic) and Figure 9 
(combination of periodic modes). The stochastic case shows 
a preferential wavenumber which can be estimated in terms 
of the curves tracing the minima in Figures 2 and 3. It is also 
worthwhile to note that different initial perturbations may 
lead to different steady states (occuring at large times). This 
follows clearly from Figure 4 (right), where the energy func
tional is plotted versus time. 

Figure 10 repeats the equilibrium stability curves of Fig
ure 1 and includes experimental measurements obtained us
ing a tilted Hele-Shaw cell to simulate two-dimensional flow 
in a porous medium, with inflow of a saline solution and 
evaporation along part of the upper edge (Wooding et al. 
[1997a, b] , Simmons et al. [1999]). Experimental points are 
represented in Figure 10 by the symbols + , x and *. In the 
experiments, the large scale Rayleigh number Rs based on 
finite "aquifer" depth was greater than 1 0 2 times the bound
ary layer .R-value. Although the large scale flow in the ex
perimental work differed from a simple vertical upflow, a 
uniform evaporation rate was modelled and a saline bound
ary layer of uniform thickness was observed to develop. 
Wavenumbers of initial instabilities, scaled to the equilib

rium boundary layer thickness, were measured for a wide 
range of .R-values. Previously, these observations were plot
ted by Wooding et al. [1997a, Figure 7] using wavenumbers 
scaled to the diffusion thickness and therefore equivalent to 
a/R in the present case. 

From the published experimental data, stable boundary 
layers were observed for 12-values of 5.8, 5.6 (two exper
iments), and smaller R. Unstable boundary layers resulted 
for ^-values of 5.6 (one experiment), 8.9 (two experiments), 
and larger R. Except for the unexplained appearance of in
stability in one experiment performed at R = 5.6, there 
was a clear separation of stable and unstable layers into two 
ranges. If the single unstable result at R = 5.6 is not in
cluded, the theoretical lower bound of 8.590 obtained using 
the alternative energy method is in agreement with the re
sults of the experimental studies. 

The dashed curves in Figure 10 provide traces of the min
ima of the stability curves defined by the energy method in 
Figure 2 and by linearised stability analysis in Figure 3. For 
the data obtained by experimental simulation, either curve 
might be considered as an upper bound to the wavenumber 
of an instability which first appears. This is on the assump
tion that growth rate is zero at a critical point for stability, 
and a growing perturbation becomes significant when the 
boundary layer thickness scale has increased significantly. 
Clearly, however, the instabilities plotted in Figure 10 have 
been initiated by perturbations of small but finite amplitude, 
and the energy method with differential constraint provides 
the appropriate estimate. Three experimental points at the 
low-i? end appear to be exceptional. These occur in a range 
where accurate observation becomes more difficult, and an 
inadvertent change of background conditions could have al
tered the wavenumber. 

In general, we may conclude that the alternative formu
lation of the energy method has improved the quantitative 
and qualitative estimate of a lower bound to absolute stabil
ity, and is in agreement with experimental modelling. The 
comparison with results from linearised analysis yields in
teresting qualitative similarities, and stability properties of 
a growing boundary layer can be described in some detail. 
The above results have applications to the theory of stability 
of salt lakes and the salinization of groundwater. 

APPENDIX A 

In this appendix we compare the maximum problem (3.12) 
for the admissible perturbations H and H. In particular we 
show that H can be identified with a proper subspace of H. 
This explains why the differential constraint yields larger 
Rayleigh numbe£s than the integral constraint. 

Let (s, w) e H. For this given s we have the unique de
composition (Temam [1984]) 

sez = v + grad tp (v , ip are x, ^/-periodic), (A l ) 
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where div v = 0 and v • n = 0 on dV. Here n denotes the 
unit normal at the boundary dV. As in (3.5) we find 

Av3 = A±s in V , 

where v3 is the vertical component of v. This implies 

A(v3 - w) = 0 in V , 

and the boundary conditions on dV give ^ 3 = w in V. Thus 
given (s, w) G H we have obtained the pair (s, v) with 
div v = 0 and v 3 = w in V. Multiplying (Al ) by v and 
integrating the result over V gives 

/ M2 = I sw , 
Jv 

in other words, (s, ».) G H. 
The converse is not true. Given (s,u) G H and using 

(Al ) we obtain the^vector field v satisfying Av3 = A±s in 
V. So (s, v3) G H , but in general v = u + curl # for a 
smooth vector field $ which vanishes on dV. 
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Injection of Dilute Brine and Crude Oil/Brine/Rock Interactions 
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Sensitivity of oil recovery to injection brine composi t ion has been reported for 
a variety of circumstances including trends of increased recovery of crude oil 
wi th decrease in salinity. Absolute permeabil i t ies of sandstones to synthetic res
ervoir brines and dilutions of these brines show little sensitivity to salinity when 
the initial brine and injected brine are of the same composit ion. With reservoir 
brine as the initial brine and injection of dilute brine, the p H of the outflow brine 
increased and absolute permeabil i ty to brine decreased, but never to less than 
5 0 % of its original value. Such changes, if any, were much less for rocks with 
low clay content. During the course of recovery of crude oil, interfacial tensions 
of crude oil and dilute effluent brine were reduced by about 2 5 % relative to val
ues for crude oil and reservoir brine. Effluent brine p H increased after injection 
of low salinity brine, but showed no response in the absence of an initial water 
saturation. Changes in brine composi t ion resulting from flow through Berea 
sandstone were small. Fines production and permeabil i ty reduction resulting 
from injection of dilute brine was greatly reduced by the presence of crude oil. 

1. INTRODUCTION 

A series of studies has shown that the recovery of crude 
oil from sandstones containing clay can be markedly 
affected by brine composition. In particular, a trend of 
increase in oil recovery with decrease in salinity has been 
observed for a variety of crude oil and rock combinations. 
Necessary conditions for increased recovery are the 
presence of: 1) polar components in the oil phase, 2) clays 
and 3) an initial water saturation [Tang and Morrow, 1999]. 

It is well known that with injection of fresh water there is 
potential for formation damage; this presents a possible 
deterrent to injection of dilute brine for increased oil 
recovery. Extensive studies of brine/rock interactions have 
been made in the context of formation damage [Jones, 1964; 
Khilar et ah, 1983; Vaidya et al., 1990; Souto and Bazin, 
1993; Miranda et al, 1993; and Rahman et al, 1994]. 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM16 

Migration of fine particles is widely recognized as the main 
cause of formation damage. Mueke, 1979; Sarker and 
Sharma, 1990; and Tang and Morrow, 1999, reported 
observations on fines migration in the presence of crude oil. 

In study of crude oil/brine/rock interactions, an important 
guide to possible oil recovery mechanisms is provided by 
examining brine/rock interactions in both the absence and 
presence of an oil phase. Results presented in this paper 
focus on the effect of injecting dilute brine on rock and 
other properties. They include information relevant to oil 
recovery on absolute and relative permeabilities, effluent 
brine pH, interfacial tensions, dissolution of minerals, and 
initial water saturation. 

2. EXPERIMENTAL 

2.1 Crude Oil/Brine/Rock Systems 

The aqueous phases were synthetic reservoir brines 
designated PB-RB, CS-RB, or DG-RB and dilutions of 
these brines and CaCl 2 brines with salinity ranging from 
0.01 to 2%. Six kinds of rock, Berea sandstone, Bentheim 
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Table 1. Core properties. 

Core Kg Oil Type 

(%) (md) content 
(%) 

Berea sandstone 22.9-23.2 800-1100 0 outcrop 
Bentheim sandstone 23.1-23.4 1800-2400 0 outcrop 
DG sandstone 21.6-21.8 400-600 >50 reservoir 
Clashach sandstone 17.1-19.0 1350-1688 0 outcrop 
F/A Berea sandstone 23.2-23.3 750-850 0 outcrop 

Table 2. Synthetic reservoir brine compositions. 

Concentration (ppm) 
Brine N a + K + C a 2 + M g 2 + cr HC0 3 " S 0 4

2 " TDS 
DG-
RB* 4,267 7,237* 218 32 13,414 - - 24,166 
PB-
RB 8,374 52 110 24 13,100 - - 21,660 
CS-
RB 5,626 56 58 24 8,249 1,119 16 15,150 
* high K + concentration was due to the addition of KC1 to the injection water to 

prevent clay swelling in the target formation. 

Table 3. Viscosity and density of cs crude oil. 
Oil Temp Viscosity Density Asphaltene Wax 

(°C) (cP) (g/cm 3) (%) (%) 
22 70.5 0.891 

CS 50 23.6 0.860 0.78 12.6 
75 11.6 0.835 

Acid number 0.33±0.03; Base number 1.16±0.18 (Buckley et al. 1998) 

sandstone, CS Reservoir Sandstone, DG reservoir 
sandstone, Clashach sandstone, and fired/acidized Berea 
sandstone, were tested. All core samples were 3.8 cm in 
diameter and 7.6-7.8 cm in length. In experiments that 
involved oil, CS crude oil was used. The properties of the 
rocks, brines and crude oil are listed in Tables 1, 2, and 3, 
respectively. 

2.2 Procedures 

All the core plugs were saturated with test brine and 
equilibrated for ten days. None of the plugs were reused. 
The brine permeability at 100% saturation of the test brine 
was used as the base brine permeability. For most tests, the 
cores were first equilibrated with a relatively saline brine 
and then flooded with various dilute brines to determine if 
injection of low-salinity brine caused changes in brine 
permeability (single-phase flow tests). All of these tests 
were run at room temperature. 

Some of the cores were aged at 55°C with CS crude oil 
for an aging time of 10 days to induce a mixed-wet 
condition before injection of low salinity brines (two-phase 

flow tests). Pressure drop at constant flow rate and effluent 
brine pH were measured vs. injected brine volume for both 
single and two-phase flow tests. In the investigation of 
dissolution of rock minerals, effluent brine was re-circulated 
through the core. Pressure drop versus oil recovery data was 
interpreted to obtain unsteady state relative permeabilities. 

3. RESULTS AND DISCUSSION 

3.1 Brine/Rock Interactions 

3.1.1 Injection brine and initial brine of same composition. 
In the first series of tests, the injection brine composition 
was the same as the initial brine. The reservoir brines (CS-
RB, PB-RB, and DG-RB) were diluted with distilled water 
by up to 100 times. The CaCl 2 brine salinity was varied 
from 0.01 to 2% (wt.%). The results presented in Figure 1 
are absolute permeability to brine versus salinity. 
Permeability tended to decrease slightly with decrease in 
salinity. However, even when the salinities of synthetic 
brines were as low as 155 ppm (0.01 CS-RB), 217 ppm 
(0.01 PB-RB), or 242 ppm (0.01 DG-RB), the brine 
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Figure 1. Effect of Salinity on Absolute Brine Permeability of 
Berea Sandstone When There is No Difference in Composition 
Between Initial Brine and Injected Brine 

DG Sandstone. DG reservoir sandstone was cleaned using 
toluene and methanol. The core was flooded with 6 PV DG-
RB, followed by 0.01 DG-RB The results are presented in 
Figure 2. Switching the injection brine from DG-RB to 0.01 
DG-RB resulted in increase in effluent brine pH, closely 
followed by reduction of brine permeability. This slight 
delay in permeability reduction may be related to the 
stabilizing effect of potassium ions and the possible 
presence of some fraction of organic material that was not 
removed by the toluene/methanol cleaning procedure. The 
maximum permeability reduction was about 32%. The 
effluent brine pH increased from 7.7 to 10.1. Production of 
fines was observed after 0.3-0.5 PV of 0.01 DG-RB had 
been injected. Fines production gradually decreased and 
ceased after about 3-5 PV of 0.01 DG-RB had been injected. 

Comparison of the results shown in Figs. 1 and 2 
indicates that the difference of ionic strength between initial 
and injection brines is a key factor in permeability 
reduction. This observation is qualitatively consistent with 
previous studies related to formation damage [Jones, 1964]. 

permeabilities were over 90% of the permeability for the 
corresponding reservoir brine. For CaCl 2 brine, the 
permeability was nearly constant even when the salinity was 
decreased from 2% to 0.01%. Thus little permeability 
reduction with dilution was observed when there was no 
difference in composition between the brine initially in 
place and the injected brine. 

3.1.2 Injection of dilute brine. Cores in this test series were 
saturated with reservoir brine (RB) and aged for 10 days at 
room temperature. The flow rate was 18 ft/d. In these tests, 
the initial ionic equilibrium between aqueous phase and 
solid phase is disturbed by injection of dilute brine. 
Decrease in brine salinity results in cation exchange 
between the aqueous phase and the clay minerals in the 
rock. Exchange of metal ions from the clays with 
hydronium ions from the injected brine is the likely cause of 
increase in pH of the effluent brine. Rock-fluid interactions 
may also cause mobilization of fines that originally coated 
grain surfaces. The released fines can block the pore 
restrictions and thus reduce permeability. One mechanism 
of clay release is through reduction in van der Waals forces 
that accompany expansion of electrical double layers when 
the ionic strength is decreased. 

The presence of potentially mobile fines is often cited as 
the main cause of formation damage resulting from injection 
of fresh water. However, it has also been concluded that the 
presence of mobile fines plays a key role in increased oil 
recovery that has been observed with injection of dilute 
brine [Tang and Morrow, 1997; and 1999]. It is therefore of 
interest to study the consequences of brine/rock interactions 
with respect to both improved recovery and formation 
damage that can result from injection of dilute brine. 

Berea Sandstone. Berea sandstone, a model rock widely 
adopted for laboratory study, contains about 8% of clay, 
mainly illite and kaolinite [Ma and Morrow, 1994]. The 
Berea sandstone used in this study had a gas permeability of 
900 to 1000 md and porosity of 23%. After pre-equilibration 
with CS-RB, the core was flooded at 18 ft/d with CS-RB, 
followed by 0.01 CS-RB. 

The results shown in Figure 3 are consistent with those 
shown in Figure 2. Switching injection brine from CS-RB to 
0.01 CS-RB resulted in increase in effluent brine pH 
followed almost immediately by reduction in brine 
permeability. The effluent pH increased from 7.1 to a 
maximum of 10.1 and after falling to about 9 gradually 
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Figure 2. Change in K b and Effluent pH with Injection of Diluted 
DG-RB into DG Reservoir Sandstone 
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Figure 3. Change in K b and Effluent pH with Injection of 0.01 CS-
RB into Berea Sandstone 

decreased to 8.3 after injection of 15 PV. The brine 
permeability decreased by about 35% of the absolute 
permeability to CS-RB. After switching the injection brine 
to 0.01 CS-RB, fines were observed in the effluent brine for 
the first 3 PV of injection but not thereafter. The produced 
fines were observed to settle after production. 

Bentheim Sandstone. Bentheim is described as a clean 
sandstone because it has very low clay content. For these 
cores, porosity was about 23-24% and air permeability 
around 1500-2000 md. The test results are presented in 
Figure 4. The response to injection of dilute brine was 
evident but the changes in permeability and pH were much 
smaller than for Berea sandstone and DG reservoir 
sandstone. The brine permeability never fell below 83% of 
the value to CS-RB throughout injection of 14 PV of 0.01 
CS-RB. The effluent pH increased after switching the 
injection brine to 0.01 CS-RB, but never rose above 9.0 for 
this relatively clay free sandstone. Slight production of fines 
was observed after injection of 0.01 CS-RB. 

Clashach Sandstone. Results obtained for the Clashach 
sandstone (Figure 5), which has extremely low clay content, 
were similar to those for the Bentheim cores. Although the 
effluent pH increased slightly after the injection brine was 
switched from CS-RB to 0.01 CS-RB, there was no 
reduction of permeability or production of fines. 

Fired and Acidized (F/A) Berea Sandstone. Berea sandstone 
cores were fired at 800°C, and then acidized with 2N HC1 to 
remove metal oxides. Thereafter, the cores were flooded 
with CS-RB until the effluent pH was neutral. Based on the 
X-ray examination of fired Berea by Ma and Morrow, 1994, 

water sensitive clays were stabilized for Berea sandstone 
fired at 800°C. 

The results obtained for the fired and acidized Berea 
sandstone demonstrate the effect of removal of potentially 
mobile clay particles (compare Figs. 3 and 6). The brine 
permeability remained essentially constant, even after the 
core had been flooded with 18 PV of 0.01 CS-RB. Injection 
of dilute brine resulted in only slight increase in pH of the 
effluent brine. These observations support the conclusion 
that the increase in effluent pH observed for DG and Berea 
sandstone is related to cation exchange. 
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Figure 4. Change in K b and Effluent pH with Injection of 0.01 CS-
RB into Bentheim Sandstone 
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3.1.3 Dissolution of minerals. Brine/rock interactions that 
result in dissolution of minerals at pore surfaces are a 
possible cause of change in wettability and oil recovery 
[Tang and Morrow, 1997 and 1999; and Morrow et al, 
1998). Preliminary studies were made of the change in 
composition of the effluent brine resulting from circulation 
of CS-RB through the core samples (Berea and Bentheim 
sandstones). The core initially 100% saturated with CS-RB 
(PV=23 cc) was flooded with 0.01 CS-RB for 177 cc. 
Thereafter, the combined brine (initial and injected brine) 
was recycled through the core for 24 hours at room 
temperature. The brine was then filtered to remove fines and 

analyzed for K + by atomic adsorption spectroscopy and for 
other cations by inductively coupled plasma - optical 
emission spectroscopy. The test results are presented in 
Figure 7. Na + , K + , and M g 2 + increased slightly for both 
Berea and Bentheim sandstone. Traces of Al and Si were 
also found in the effluent. These results suggest that the 
dissolution of minerals from solid surfaces is slight. 
However, because wetting of a rock surface is dominated by 
the outermost layer of molecules, the contribution of 
dissolution of minerals to observed changes in wetting 
cannot be ruled out. 

3.2 Brine/Oil Interactions 

Lowering of the interfacial tension between water and oil 
phases underlies the mechanism of improved oil recovery 
by surfactant and alkaline flooding processes. Decrease in 
IFT results in a proportional increase in the capillary 
number, the ratio of viscous to capillary forces. 

Figure 8 shows the measured IFT values between effluent 
brine and CS crude oil. For these tests, the CS-RB was the 
initial brine. Relative to injection of CS-RB, the results 
show that decrease in injection brine salinity resulted in 
decrease in IFT. When the brine salinity was decreased from 
CS-RB to 0.01 CS-RB, the EFT decreased by about one 
third. For all dilute brines except 0.01 CS-RB, the IFT 
exhibited a distinct minimum value after injection of about 3 
PV of dilute brine. The minimum in IFT matched a 
maximum in pH of the effluent brine for both the pH and 
EFT behavior. Results for 0.01 CS-RB also showed decrease 
in IFT but only slight increase above the minimum value 
with continued injection. 

CS Crude Oil/CS Brine/Berea Sandstone 

5 10 
Injected Brine Volume (PV) 

Figure 8. CS Crude Oil/Effluent Brine Interfacial Tensions vs. PV 
Injected Brine 
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Figure 9. Relative Permeabilities (S w i ~ 25%); a) CS Crude Oil/CS Brine/Berea Sandstone (connate brine=injection 
brine=CS-RB); b) Injection of Dilute Brine (connate brine=CS-RB, injection brine=0.1 CS-RB); c) Injection of Dilute 
Brine (connate brine=CS-RB, injection brine=0.01 CS-RB); d) Injection Brine Salinity - Comparison (from a, b, and c). 

From observations of the values of capillary numbers 
required for water-wet and mixed-wet conditions [Zhou, et 
al, 1995], it is unlikely that the increase in oil recovery that 
accompanies reduction in salinity of the injection brine 
could be ascribed directly to the increase in capillary 
number resulting from decrease in IFT. 

3.3 Oil/Rock/Brine Interactions 

3.3.1 Relative permeability. Donaldson et al. (1969] pointed 
out that wettability can strongly affect relative permeability 
behavior because it is a major factor in control of the 
location, flow, and distribution of fluids in a porous 
medium. For the relative permeability tests, all cores were 
aged with CS crude oil and CS-RB at reservoir temperature 
(T a=55°C) for 8 days (t a) before the waterflood tests. The 

initial CS-RB brine saturation was close to 25% for all tests. 
Relative permeabilities were measured by the unsteady-state 
JBN method [Johnson, et al, 1959]. A high flood rate, 6 
ft/d, was used to stabilize the flow and minimize end effects. 
The effect of brine salinity on unsteady-state relative 
permeability with change in injection brine concentration 
(0.01 CS-RB, 0.1 CS-RB and CS-RB) was measured at 
T d=T a=55°C. 

The calculated relative permeability curves for three 
kinds of injection brines (CS-RB, 0.01 CS-RB, and 0.01-
CS-RB) are presented in Figs. 9a, b, and c, respectively. 
Fluctuations in pressure caused scatter in the data which was 
analyzed without pre-smoothing. The results show the trend 
in relative permeabilities resulting from change in brine 
salinity. The smoothed curves are compared in Figure 9d. 
According to Craig's rule of thumb, 1971, for assessment of 
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Figure 10. Effluent Brine pH for Three Injection Brine Salinities 

wettability, all three relative permeability curves for the 
three brines corresponded to water-wet conditions. 

Four features of the effect of brine salinity on the relative 
permeability were: (1) the saturation at the cross-over point 
between oil and water relative permeability curves tended to 
increase with decrease in the brine concentration. The cross
over saturation was 0.62 for CS-RB, 0.67 for 0.1 CS-RB, 
and 0.67 for 0.01 CS-RB; (2) residual oil saturation 
decreased with decrease in brine concentration; 0.31 for CS-
RB, 0.28 for 0.1 CS-RB, and 0.2 for 0.01 CS-RB; (3) the 
relative permeability to water at maximum water saturation 
decreased with decrease in brine concentration; 0.23 for CS-
RB, 0.17 for CS-RB, and 0.15 for 0.01 CS-RB; (4) oil 
relative permeability increased significantly with decrease 
in injection brine salinity. The relative permeability 
behavior indicates, according to traditional interpretations, 
that decrease in brine concentration resulted in transitions 
toward increased water-wetness for CS crude oil/CS 
brine/Berea. 

3.3.2 Connate water saturation and effluent pH. Berea 
sandstone, initially saturated with CS-RB, was flooded with 
CS crude oil to establish initial water saturation, S w i . The 
cores were then aged with CS crude oil for 10 days at 55°C, 
and flooded with CS-RB, 0.1-CS-RB, or 0.01 CS-RB, 
respectively. For these three floods, values of the effluent 
pH increased with decrease in injection brine salinity from 
CS-RB to 0.01 CS-RB (Figure 10). Comparison of these 
results with those obtained for a 100% CS-RB saturated 
core shows that presence of crude oil did not prevent cation 
exchange between the injection brine and the rock surfaces. 
There are two possible reasons for this: (1) the smaller pores 
were still occupied by water (S w i =25%); (2) in the larger 
pores, although occupied mainly by crude oil, water is 

retained as thin films and in association with micropores at 
rock surfaces as bulk water. When pore spaces are invaded, 
the injection brine mixes with the initial water, and then 
interacts with the rock surfaces. Possible reasons for 
increase in effluent pH are: (1) cation exchange between the 
aqueous and solid phases; (2) dissolution of carbonate. 

A question of more practical concern is how the injection 
brine salinity affects brine/rock interactions in the presence 
of crude oil. In a test of the role of an initial water 
saturation, a Berea sandstone core was first dried at 105°C 
to remove all adsorbed water and then 100% saturated with 
CS crude oil. The core was then aged for 10 days at 55°C 
and then flooded with 0.01 CS-RB. The effluent pH did not 
change with injection of dilute brine (Figure 11) and no 
fines production was observed. When the initial water 
saturation was zero, the otherwise water sensitive particles 
were initially coated with crude oil and showed no response 
to injection of dilute brine. 

3.3.3 Oil recovery with different initial water saturation 
(CS-RB). Decrease in injection brine salinity can result in an 
increased oil recovery at S w i =25% [Tang and Morrow, 
1997; and 1999]. Further study has been made of change in 
oil recovery with initial water saturation, S w i (CS-RB). 

The cores, originally saturated with CS-RB, were 
saturated with CS crude oil for S w i ranging from 0 to 27% 
and aged at T a=55°C for t a=10 days. The aged cores were 
flushed with fresh CS crude oil before being flooded with 
0.01 CS-RB. 

The exploratory results shown in Figure 12 indicate that 
the initial brine saturation has a significant effect on 
breakthrough oil recovery and final recovery. For S w i =0, the 
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Recovery at Breakthrough and Final Oil Recovery. 

breakthrough recovery was only 32% but increased to 68% 
after injection of 10 PV. In the presence of an initial water 
saturation, the breakthrough and final oil recoveries were 
higher. For Swi>5.4%, the breakthrough recovery was more 
than 50% and the final oil recovery was about 70%. This 
result indicates that the presence of initial water saturation is 
necessary for improved oil recovery by injection of dilute 
brine. For this test series, a maximum in oil recovery of over 
80% was obtained for an initial water saturation of 13.4%. 
However, the recovery curves exhibited crossover and no 
clear trend between initial water saturation and oil recovery. 

For all values of initial water saturation, the production of 
fines for the oil/brine/Berea systems with injection of dilute 
brine (0.01 CS-RB) was much less than that for the 
brine/Berea systems. A small amount of fines was produced 

at water breakthrough. Fines production ceased before 0.2 
PV of production as compared to about 3 PV of production 
in the absence of crude oil (see 3.2). However, a light 
brown suspension of about 1-2 mm in depth formed at the 
oil/water interface of the produced liquids. The nature and 
location of suspended fines and/or droplets with respect to 
the interface and the neighboring phases deserves detailed 
investigation. 

4. CONCLUSIONS 

1. Injection brine salinity can have distinct interaction with 
rock surface mineralogy. Increase in effluent pH with 
injection of dilute brine is ascribed to cation exchange. 
Overall changes in brine composition resulting from flow of 
dilute brine through sandstone were very small. 
2. The extent of formation damage on rock permeability 
resulting from injection of dilute brine is mainly dependent 
upon how the injection brine salinity is decreased. When 
injection brine and initial brines have the same composition, 
the decrease in brine permeability is small. 
3. The presence of potentially mobile fines such as kaolinite 
is a key factor in reduction of brine permeability resulting 
from injection of dilute brine. If the active clay is destroyed 
or if the rock has very low clay content, little or no effect of 
injection brine on brine permeability is observed. 
4. The presence of crude oil tends to inhibit release of fines 
from the rock surfaces. For the crude oil/brine/rock 
combinations studied to date, injection of fresh water caused 
only slight production of fines and these were concentrated 
at the oil-water interface. 
5. Injection of dilute brine causes interfacial tensions of 
crude oil and reservoir brine to fall by about one third as 
determined for effluent brine and oil. This decrease in 
itself, is not expected to cause the increase in oil recovery 
observed for injection of dilute brine. 
6. When the injection brine is more dilute than the connate 
brine, change of fluid distribution is indicated by relative 
permeability behavior. Residual oil saturation decreases 
with decrease in salinity. 
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Multidimensional Flow of Water in Unsaturated Soils 

P e t e r A . C. R a a t s 

Wageningen University and Research Centre, Wageningen, The Netherlands 

In his s tud ies of flow in p o r o u s med ia , J o h n Phi l ip favored t h e macroscop ic 
(Darc ian) scale, a l t h o u g h he also regular ly pa id a t t e n t i o n t o processes a t t h e 
under ly ing po re scale. A t b o t h of t he se scales, he recognized t h e connec t ions 
be tween genera l concep t s in c o n t i n u u m mechan ics a n d the i r p a r t i c u l a r forms 
in soil physics . T h i s p a p e r specifically explores c o n c e p t s from c o n t i n u u m 
mechanics t h a t can b e used t o i n t e r p r e t mul t i -d imens iona l flow p a t t e r n s a t 
t h e D a r c i a n scale. T h e s t a n d a r d mode l for flow of w a t e r in s a t u r a t e d a n d 
u n s a t u r a t e d soils is p r e sen t ed . Techniques for solving mul t i -d imens iona l flow 
p rob l ems for specific classes of u n s a t u r a t e d soils a re i nd i ca t ed briefly. Some 
concep t s of t h e k inemat i c s of con t i nuous m e d i a a re i n t roduced , w i t h e m p h a s i s 
on t h e velocity vec tor field. Eu l e r ' s genera l so lu t ion of t h e m a s s ba l ance 
e q u a t i o n for a compress ib le c o n t i n u u m is a d a p t e d t o soil w a t e r . N u m e r o u s 
special cases of th i s genera l so lu t ion a re der ived, t h u s unifying t h e s c a t t e r e d 
l i t e r a tu r e deal ing w i th specific spa t i a l a n d / o r t e m p o r a l s implif icat ions. T h e 
impl ica t ions of D a r c y ' s law for t h e veloci ty a n d vo lume t r i c flux vec tor fields 
a re explored . T h e r o t a t i o n vec tor fields of t h e vo lume t r i c flux a n d veloci ty 
vec tor fields a re ana lyzed by cons ider ing the i r decompos i t i ons in t e r m s of 
t h e Frene t t r i h e d r o n . T h e express ions for t hese r o t a t i o n vec to r s a re found t o 
b e surpr is ingly s imple , involving explici t ly t h e soil physica l p r o p e r t i e s t h a t 
a re known t o govern mul t i -d imens iona l flows. Finally, s o m e impl ica t ions 
of D a r c y ' s law for t h e n a t u r e of flow p a t t e r n s of soil w a t e r a re r e l a t ed t o 
p rope r t i e s of genera l lamel lar a n d complex lamel lar vec tor fields. 

1. INTRODUCTION 

About 70 years ago, Richards [1931] consolidated the 
efforts of previous generations of soil physicists - notably 
Franklin H. King, Charles S. Slichter, Lyman J. Briggs, 
Edgar Buckingham, Willard Gardner and W.B. Haines - by 
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Copyright 2002 by the American Geophysical Union 
10.1029/129GM17 

formulating a general, macroscopic theory for movement of 
water in rigid, unsaturated soils (see Philip [1974]; Raats et 
al, [this volume]). Richards theory fits experience in many 
branches of continuum mechanics: it combines the simplest 
possible balances of mass, expressed in the equation of con
tinuity, and of momentum, expressed in Darcy's law. Philip 
[1973] recognized the continuum mechanical nature of this 
theory and its extensions with the words: 

"This Darcy-scale attack on problems of flow in porous 
media evidently has some affinities with continuum mechan
ics, but there are profound differences: primarily differences 
associated with the scale of discourse, but also differences 
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in philosophy. One is tempted, nevertheless, to remark that 
many of us workers in porous medium physics are rather 
like M. Jourdain (Moliere, 1671) who spoke prose for forty 
years without knowing it: we have practiced something akin 
to continuum mechanics for about as long and never knew 
it." 

Now again 28 years later, soil physicists still by and large 
are practicing continuum mechanics. Moreover, the thermo-
mechanical continuum theory of mixtures is now the widely 
recognized framework for organizing and extending exist
ing theories. This means that the reservation with regard to 
"differences associated with the scale of discourse, but also 
differences in philosophy" is now less relevant. 

The theory of Richards can be formulated within the 
framework of the mechanical continuum theory of mixtures, 
provided that one recognizes from the outset the existence 
of the separate solid, liquid, and gaseous phases (for reviews 
see Raats [1984a, 1998]). Richards theory can also be justi
fied on the basis of the continuum mechanical principles of 
surface tension and viscous flow at the pore scale (see e.g. 
Miller & Miller [1956]; Whitaker [1986]). 

In this paper, the focus is on the macroscopic (Darcian) 
scale, specifically on the connections between general con
cepts in continuum mechanics and their particular forms in 
soil physics. A specific aim is to bring together scattered 
ideas that can be used to interpret multi-dimensional flow 
patterns. 

The organization of this paper is as follows. In section 
2, the standard model for flow of water in saturated and un
saturated soils is presented. Techniques for solving multi
dimensional flow problems are indicated briefly. In Section 
3, some concepts of the kinematics of continuous media are 
introduced, with emphasis on the velocity vector field. In 
section 4, Euler's general solution of the mass balance equa
tion for a compressible continuum is adapted to soil water. 
Numerous special cases of this general solution are derived, 
thus unifying the scattered literature dealing with specific 
spatial and/or temporal simplifications. In section 5, the im
plications of Darcy's law for the nature of flow patterns is 
discussed, with emphasis on the rotationality of the flow and 
the existence of scalar potentials and distance functions. In 
section 6, some concluding remarks are presented. 

2. THE STANDARD MODEL FOR FLOW OF WATER 
IN SATURATED AND UNSATURATED SOILS 

2.1. Balance of Mass 

Assuming the density of the soil water to be constant, the 
balance of mass can be expressed as a volumetric balance 
equation: 

^ = - V • (0v) - A, (2.1) 

where t denotes the time, 9 the volumetric water content, 
v the velocity of the water, and A the volumetric rate of 
uptake of water by plant roots. Further V = \xd/dx + 
iyd/dy + izd/dz denotes the vector differential operator, 
where i^, i y , iz are unit vectors in the orthogonal x,y,z di
rections. If the flow is steady, (2.1) reduces to 

V • (0v) = - A , (2.2) 

giving 

V • (0v) = 0 (2.3) 

in the absence of plant uptake. A vector field, such as 0v , 
satisfying an equation of the form (2.3) is called solenoidal 
or divergence free. Some properties of solenoidal vector 
fields are discussed in sub-subsection 4.1.5. 

In a saturated soil, the volumetric water content 9 is in
dependent of time and, assuming A vanishes, equation (2.3) 
will apply, whether the flow is steady or unsteady. If the 
porous medium is homogeneous, then the volumetric water 
content will be independent of position x , so that (2.3) fur
ther reduces to 

V • v = 0. (2.4) 

So in this case both the volumetric flux vector field 9v and 
the velocity vector field v are solenoidal. In unsaturated 
soils, (2.4) will strictly only apply if the soil is homogeneous 
and 0v is purely gravitational. Nevertheless, in steady multi
dimensional flows the water content may be nearly uniform 
and (2.4) may apply approximately (see Philip [1984a, b]). 

2.2. Darcy-Buckingham Equation 

Given the constancy of the density of the soil water, 
Darcy's law can be written as: 

0v = -kVh + kVz, (2.5) 

where k is the hydraulic conductivity, z the vertical coor
dinate taken positive downward, and the capillary pressure 
head h is defined by: 

19 19 

Here p and p a are the pressures of the aqueous and gaseous 
phases, p c is the capillary pressure, and g is the gravitational 
constant. The capillary pressure head and the hydraulic con-
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ductivity are nonlinear functions of the volumetric water 
content 9. Moreover, the relationship h(9) is hysteretic. 

In discussions of flow patterns and of convective transport 
of solutes, it is often useful to consider the velocity vector 
field v , rather than the volumetric flux vector field 0v. Di
viding both sides of (2.5) by 9 gives: 

v = -£vft+£v*. (2.7) 

The hydraulic mobility k/9 represents the speed of the water 
when the driving force is unity [Raats and Gardner, 1974]. 

For future reference, three alternative forms of Darcy's 
law are also recorded: 

9v = -kVH, (2.8) 

0v = -DV9 + kVz, (2.9) 

9v = -V<f> + kVz, (2.10) 

where H = h — z denotes the total head, D = kdh/d9 = 
k/C the diffusivity (with C = d9/dh the water capacity), 
and (f> the matric flux potential defined by: 

h e 

<f>-<f>o = j kdh = j Dd9, (2.11) 

ho 0n 

where ho and Oo denote reference values and 9o = 9(ho). 
The volumetric flux 9v is the sum of a matric component 
—kVh = —DV9 = —W<f> and a gravitational component 
k Vz . The matric component of the volumetric flux is given 
by minus the gradient of <j> , explaining why we call <j> the 
matric flux potential. A transformation of the type intro
duced in (2.11) was already given around 1880 by Kirchhoff 
[1894] in his lectures on heat conduction. For this reason the 
transformation is often referred to as the Kirchhoff transfor
mation and the potential <j> is sometimes called the Kirchhoff 
potential (e.g., Philip [1989]). 

Corresponding expressions for the velocity vector field v 
are obtained by dividing both sides of Equations (2.8)-(2.10) 
by 9. In addition, in analogy with (2.10) and (2.11) one can 
introduce the form 

v = -V<f>v + {k/9)Vz, (2.12) 

where the matric velocity potential <j)v is defined by 

h e 

<j>v -<f>v0 = j(k/9)dh = J{D/9)d9. (2.13) 

h0 d0 

2.3. Soil Hydraulic Properties and Multi-dimensional 
Flows 

In the context of Richards equation, the relationships 
among the water content 9, pressure head h, and hydraulic 
conductivity k specify the hydraulic properties of a soil. One 
can distinguish two groups of parametric expressions de
scribing these hydraulic properties: 

(1) A group yielding flow equations that can be solved an
alytically, in most cases as a result of linearization following 
one or more transformations. 

(2) A group that is favored in numerical studies and to a 
large extent shares flexibility with a rather sound basis in 
Poiseuillean flow in networks of capillaries. 

2.3.1. Group leading to analytical solutions. The para
metric expressions belonging to the first group have been 
widely used for one-dimensional flow problems (see Raats 
[2001]; Raats et al, this volume). Examples include the 
delta function diffusivity leading to solutions with sharp 

fronts, the Brooks and Corey power functions leading to 
similarity solutions, and various expressions leading to the 
soluble Burgers equation. At least three parametric expres
sions belonging to the first group have also led to analytical 
solutions for multi-dimensional problems, all with key con
tributions from John Philip. 

The class of linear soils with diffusivity D constant and 
hydraulic conductivity k linear in 9 leads to a linear Fokker-
Planck equation, which can be solved relatively easily (see 
Philip [1969,1990]). It yields useful results for the integral 
aspects of the water balance, but is rather unreliable with 
respect to details of the distribution of the water content. 

For the class of Brooks & Corey [1964,1966] power func
tion soils, Philip & Knight [1991] and Philip [1992] devel
oped similarity solutions for redistribution of finite slugs of 
soil water applied from instantaneous 1-dimensional plane, 
2-dimensional line, and 3-dimensional point sources near the 
soil surface. Until that time the ideas used in these works 
lay hidden under a cloud of rather abstract mathematics, to 
which, among others, a group of mathematicians at Leiden 
and Delft under the leadership of L.A. Peletier and C.J. van 
Duijn made important contributions. In his characteristic 
fashion, John Philip saw the opportunity to apply the tech
nique to movement of soil water and, with the help of John 
Knight, worked out the details, including illuminating pic
tures and examples of practical calculations. Enough details 
are given so that irrigationists can apply their results to other 
situations. The authors admit that their results apply to a re
stricted class of soils. However, one might expect that, if 
and when this work stimulates numericists to consider the 
general case, the results in these papers would be a bench-
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mark for the accuracy of the calculations and for qualitative 
interpretation of the results. 

Of much wider use has been the class of Gardner soils 
with exponential dependence of the hydraulic conductivity 
upon the pressure head (see Gardner [1958]): 

k — ko e x p a (h — ho), (2.14) 

where a is an inverse characteristic length of the soil and the 
subscript 0 denotes reference values. For the Gardner class 
of soils, Darcy's law reduces to the linear form: 

6v = - V ^ + o ^ V z . (2.15) 

Introducing (2.15) in (2.3) gives: 

V2<f> = a<j>d<j)/dz. (2.16) 

The linearity of (2.15) and (2.16) in the matric flux poten
tial <f> opens the way to analytical solutions of steady multi
dimensional flow problems (see Raats [1970] for the early 
history of this linearization). Philip [1968] initiated the 
mathematical analysis of multi-dimensional flow problems 
on the basis of (2.16) with a paper on buried point sources. 
In the same year Wooding [1968] published an analysis of 
infiltration from shallow circular ponds, which later became 
the basis for the development of disc permeametry. Wood
ing's solution generalizes the solution for an electrified disk, 
which was the basis of the analysis of stomatal resistance. 
Later, Philip made numerous other contributions to this very 
fruitful line of research, often in co-operation with John 
Knight (for reviews see Philip [1988, 1989, 1998]; Pullan 
[1990];/toate [1988]). 

A subclass of the class of Gardner soils, of interest in the 
context of this paper, is the class with exponential depen
dence of the hydraulic mobility upon the pressure head: 

k/9 = ko/0oexpav (h — ho) , (2.17) 

where av is an inverse characteristic length of the soil. For 
this class of soils the velocity v is given by 

v = -V<j)v + av<f)vVz. (2.18) 

The inverse characteristic lengths a and av are related by 

av = a - \ ^ - = a-C/0. (2.19) 
v an 

For a soil of the subclass of Gardner soils characterized by 
(2.17), not only a, but also C/9 is constant. 

2.3.2. Group used in numerical solutions. In the second 
group of parametric expressions for the hydraulic proper

ties, empirical expressions for the water retention charac
teristic are used to infer the pore size distribution, which 
in turn is used in expressions based on certain assumptions 
concerning the geometry of the pore system and the Pois-
seuille equation to calculate the hydraulic conductivity char
acteristic (see Raats [1992] for a review). The procedure in 
essence links physico-mathematical models at the Darcy and 
Navier-Stokes scales. In soil science the most commonly 
used models for the hydraulic properties are those of Van 
Genuchten [1980] and Mualem [1976]. The relationship of 
Van Genuchten [1980] reads: 

S(h) = 6-^=^ = (l + \ahn-m, (2.20) vs — vr 

where S is the effective saturation (0 < S < 1), 9T is the 
residual water content, 98 is the water content at saturation, 
and a, n (> 1) and m are shape parameters. The steep
ness of 0 (/i) is determined by n, whereas m determines the 
value for S when h = — l/a. Assuming m = 1 — 1/n 
in (2.20), the corresponding k (9) relationship according to 
the assumptions about the geometry of the pore system of 
Mualem [1976] is: 

k ( S ) = ksSx ( l - ( l - S 1 " 1 / ™ ) ™ ) , (2.21) 

where ks is the hydraulic conductivity at saturation, and A 
is the curve shape parameter representing a pore-size dis
tribution index, sometimes set equal to 1/2 as suggested by 
Mualem. 

Already in the early work of Klute [1952] and Philip 
[1955,1957] it was clear that most flow problems in the un
saturated zone require, at least in part, numerical solutions. 
In a comprehensive review by Breaster et al [1971], most 
numerical studies discussed concerned one-dimensional flow, 
including complications arizing from hysteresis, ponding 
and moving water tables. Rubin [1968] was the first to an
alyze a 2-dimensional flow, using a alternating direction im
plicit method. About a dozen studies of 2-dimensional prob
lems followed in the next three years, all using various finite 
difference methods. The only 3-dimensional model found 
by Breaster et al [1971] was the finite difference model of 
Freeze [1971]. 

Progress with multi-dimensional problems was hampered 
not only by the low speed of the available computers, but 
also by the finite difference methods used. Finite differ
ence methods are awkward for handling curved boundaries 
and coping with anisotropic media for which the principal 
axis do not coincide with the coordinate axis. The first 2-
dimensional numerical model overcoming these limitations 
was UNSAT2, a finite element model developed by Neu
man (see Neuman [1973]; Neuman et al [1975]; Fed-
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des et al [1975]). The model SWM II and the now 
popular HYDRUS-2D software package evolved from UN
SAID (see Vogel [1987] and Simunek et al [1996]. 
Other more powerful 2- and 3-dimensional models that have 
been developed later include the integrated finite difference 
model TRUST [Narasimhan, 1976, 1978a, 1978b; Reise-
nauer et al, 1982) and its descendants TOUGH [Pruess, 
1987] and TOUGH2 [Pruess, 1991], the control volume 
method FUSSIM2 [Heinen, 1997; Heinen andDe Willigen, 
1998], and the finite (control) volume and finite element heat 
and mass computer code FEHM [Zyvoloski et al, 1995]. 
The numerical methods for solution of the Richards equation 
now seem to have evolved to a satisfactory state and attention 
of model builders has shifted to post-Richards factors such 
as swelling and shrinkage [Gamier et al, 1997], local non-
equilibrium [Selim and Ma, 1998; Vogel et al, 2000], and 
water uptake by plant roots [Feddes and Van Dam, 1999; 
Heinen, 1997; Heinen andDe Willigen, 1998] and to link
age with other processes such as solute transport, aeration, 
chemical and biochemical reactions, and activity of plant 
roots. 

The now available methods and faster computers have 
made it possible to efficiently solve transient flow prob
lems involving complications such as (i) multi-dimensional 
regions that are partly and variably saturated, (ii) spatially 
variable soil physical properties, (iii) hysteresis of water re
tention, and (iv) uptake by plant roots. The HYDRUS-2D 
package was used by De Vos et al [2000] to analyze a 
large field data set, yielding detailed information about the 
profile distribution of the soil physical properties and the 
time course and composition of the tile drain discharge. The 
FUSSIM2 model, including implementation of the modified 
dependent-domain theory of hysteresis of Mualem [1984], 
was used to simulate the 2-dimensional flow of water from 
surface drip sources and to bottom drains in closed, recircu
lating cropping systems in glasshouse horticulture [Heinen 
and Raats, 1999]. 

It is clear that in recent years analytical solutions, numer
ical solutions, and laboratory and field observations all have 
contributed to the rapid progress of our understanding of 
multi-dimensional flows. This paper is intended to review 
and further develop concepts that can be used to interpret 
such flows. 

3. KINEMATICS OF THE SOIL WATER 

3.1. Analysis of Deformation and Motion 

Two approaches can be used to describe deformation and 
motion of the soil water (cf. Raats [1987a, b]). The spatial 
approach describes what happens in the course of time t to 

certain parcels X of the soil water. The material approach 
gives for any parcel X of the soil water the positions x oc
cupied in the course of time t: 

x = x ( X , t ) . (3.1) 

As labels for parcels of the soil water, one can use locations 
x« = X in the reference configuration K at some reference 
time tK. Differentiation of the functional relationship (3.1) 
gives the two key concepts for describing the deformation 
and motion of the soil water, namely the deformation gradi
ent tensor F , and the velocity vector v : 

F = ( 0 x / 5 X ) t , v = (dx/dt)x . (3.2) 

The velocity vector v defined by (3.2) can be used to re
late the spatial time derivative [d/di]^ and the material time 
derivative {d/dt)^: 

(d/dt)x = (d/dt)x + v(d/dx)t. (3.3) 

The spatial coordinates x and material coordinates X are 
often referred to as, respectively, Eulerian and Lagrangian 
coordinates. However Truesdell [1954b, footnote 2 on p. 30-
31] has shown that historically this cannot be justified (see 
also Aris [1989]). Commonly used notations and names for 
the material derivative ( d / 9 t f ) x are, respectively, D/Dt and 
convective or convected derivative. 

The local properties of the deformation from a reference 
configuration at time tK to a configuration at time t are de
scribed by F . Numerous concepts describing various aspects 
of the deformation can be derived from F . If, from any con
figuration actually occupied, a continuous motion can reach 
the reference configuration, then J = d e t F and then the po
lar decomposition theorem gives two unique, multiplicative 
decompositions of F : 

F = R U = V R , (3.4) 

where the rotation tensor R is orthogonal ( R R T = I, with 
the superscript T denoting the transpose and I the identity 
tensor), and the right and left hand stretch tensors U and V 
are symmetric (U = U T , V = V T ) . The geometric in
terpretations of the multiplicative decompositions (3.4) are 
very straightforward: the deformation corresponding locally 
to F may be regarded as resulting from pure stretches along 
three suitable, mutually orthogonal directions, followed by 
a rigid rotation of those directions, or from the same rota
tion, followed by the same stretches along the appropriate 
directions. 

The velocity gradient tensor 3v/<9x compares the current 
velocities of neighboring parcels of the soil water. The ten
sor 9 v / 9 x can be additively decomposed in a symmetric 
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stretching tensor D and a skew-symmetric vorticity or spin 
tensor W 

where 

3v/3x = D + W, (3.5) 

D = 1/2 (<9v/dx + <9v/3xT) , (3.6) 

W = 1/2 (3v/5x - <9v/<9xT) . (3.7) 

The geometric interpretation of the additive decomposition 
(3.5) is again very straightforward: the symmetric stretching 
tensor D describes the rate of stretch, the skew-symmetric 
spin tensor W describes the rate of rotation of a parcel of 
water. The spin tensor W is related to the vorticity V x v 
by: 

V X V = 2 {WyAx + WZXly + WXylZ) (3.8) 

where Wyz, Wzx, and Wxy are the components of W. The 
vorticity vector V x v represents the angular rotation with 
speed l / 2 | V x v | i n a plane perpendicular to V x v . The 
vorticity of soil water will be discussed in detail in section 5. 

Differentiating the first of (3.2) with respect to t for fixed 
X or the second of (3.2) with respect to X for fixed t, it can 
be shown that the tensors dv / <9x and F are related by 

{dF/dt)x = (<9v/<9x)F. (3.9) 

According to (3.9), the material derivative of F is equal to 
the product of 3v / <9x and F itself. Generally, solving this 
material, tensorial partial differential equation to obtain the 
deformation gradient tensor from one configuration to an
other will be difficult, since the components of <9v/<9x at a 
particular parcel will generally be a function of time. How
ever, of particular interest is the material, scalar partial dif
ferential equation resulting from taking the trace of (3.9): 

J~1{dJ/di)K = V v , (3.10) 

where J = d e t F . Integration of (3.10) from some reference 
time tK to the current time t gives: 

J = J^exp I V • vdtf i: (3.11) 

The determinant J of the deformation gradient tensor F is a 
measure of the volume of a parcel of soil water, and (3.11) 
describes the volumetric growth of such a parcel. 

Equation (2.1) is the spatial form of the volumetric bal
ance equation of the soil water. Adding v • V0 to both sides 
of (2.1) and using (3.3) gives the material form: 

(dO/dt)x = -9V v - A . (3.12) 

Substitution of (3.10) in (3.12) and rearranging gives: 

[9J)'1 {39J/dt)yL = ~x/e- (3-13) 

In (3.13), J transforms the volumetric water content 6 to 
the configuration at the reference time tK. According to 
(3.13) the relative rate of change of 9 J is equal to the source 
strength per unit volume of soil water (—A/0). Integration 
of (3.13) gives: 

9 = ^ J _ 1 e x p 
jtK 

A/0) dt. (3.14) 

Note that, since the configuration at time tK is the reference 
configuration, JK = 1. It is important to recall that (3.13) 
and (3.14) apply for a parcel X of soil water, not at fixed 
points x in space. According to (3.14) the water content at 
a parcel X at the current time t is the product of the initial 
water content 9K, a factor J - 1 describing the effect of the 
deformation, and a factor describing the effect of the source 
strength. If the source strength vanishes, then (3.14) reduces 
to: 

e = oKj-1. 
3.2. Vector Fields, Vector Lines, and Vector Tubes 

For any vector field f: 

f = / s , 

(3.15) 

(3.16) 

where s is the unit tangent vector field and the scalar field / 
is the magnitude of the vector field f. Taking the divergence 
off gives: 

V f = V - s + fSs f, (3.17) 

where the scalar field V • s is the divergence of the unit tan
gent vector field s associated with f and where 6/8s is the 
directional derivative along the vector line. Consider an in
finitesimal vector tube with cross section Ao~. One can show 
that the divergence of the unit tangent vector field s is equal 
to the ratio of the rate of change of ACT along a vector line 
and A CT itself, i.e. is equal to the relative rate of change of 
ACT (see Raats [1974] and references given there): 

V s = 
1 SAa 

ACT Ss 

Integration of (3.18) along a vector line gives: 

A C T = (Acr) 0 exp / V • sds, 
J s0 

(3.18) 

(3.19) 
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where (A<r) 0 is the cross section at s0. According to equa
tion (3.19) the cross-sectional area A C T at some point s is 
proportional to the area (A<r) 0 at the reference point so and 
a function of the distribution of the divergence V • s between 
so and s. As its name suggests, the divergence V s measures 
the divergence of the infinitesimal vector tube. It involves 
only the vector line pattern, nothing about the magnitude of 
the underlying vector field f. 

3.3. Velocity and Volumetric Flux Vector Fields 

The velocity vector field v can be written as the product 
of the unit tangent vector field s and the speed v: 

v = v (x,tf) s (x,tf) . (3.20) 

The interpretation of the vector field s as the unit tangent 
vector field of the velocity field v is not unique: the vector 
field s is also the unit tangent vector field of the volumetric 
flux vector field 0v and, in view of (2.8), the vector field 
—VH. The volumetric flux vector field 0v of the water can 
be expressed as the product of the scalar field 9, the scalar 
field v, and the vector field s: 

0v = 0 (x, t) v (x, t) s (x, t). (3.21) 
The unit tangent vector field defines the flow pattern, inde
pendent of the scalar magnitude fields v(x,t), 
0 (x, t) v (x, t), or |Vff | (x, t). Generally the flow pattern 
varies in the course of time. If the flow pattern is time in
variant, then (3.21) reduces to 

0v = 0 ( x , * ) i ; ( x , t ) s ( x ) . (3.22) 

Time invariant flow patterns are of particular interest since 
they allow the derivation of lumped models relating, for a 
family of stream lines, the input and the output [De Valk 
and Raats, 1995]. If the flow is steady, then (3.22) further 
reduces to: 

0v = 0 (x) v (x) s (x) . (3.23) 

For steady flows, (2.1) reduces to (2.3) and Ov is solenoidal 
(see also sub-subsection 4.1.5). Sometimes the further as
sumption that 6 (x) can be replaced by an average value 6 
is used [Raats, 1975; Philip, 1984a, 1984b], so that (3.23) 
reduces to: 

Ov = Ov (x) s (x) . (3.24) 

In this case, (2.1) reduces to (2.4) and v is solenoidal. 

3.4. Balance of Mass Along a Stream Tube 

Introducing the decomposition (3.22) of the volumetric 
flux vector Ov in the spatial form (2.1) of the mass balance, 
and using (3.18) gives: 

S0v 
~Ss~ 

d_0_ 
dt 6 W • s - A = 

89 9v SAo 
A. (3.25) 

dt A<7 Ss 
According to (3.25), positive contributions to S (9v) /Ss re
sult from (i) a decrease of the water content with time, (ii) 
convergence of the streamlines, and (iii) a sink of water. If 
the flow is steady and the sink term A vanishes, then (3.25) 
reduces to: 

1 SOv „ 1 SAa 
0v~Ss~ 

= - V s = (3.26) 
A C T SS 

Integration of (3.26) along a stream line and using (3.19) 
gives: 

(A<r) 0 Ov = Oovoexp GO sds ] = OQVQ- Aa 
(3.27) 

According to (3.27), in a steady flow without sources or 
sinks of water the magnitude of the volumetric flux Ov at 
some point s along a stream line can be calculated from its 
value Oo v0 at some other point so and the distribution of V • v 
between so and s. Also according to (3.27), the volumetric 
flux and the cross sectional area are inversely proportional to 
each other. 

4. SOLUTION OF THE VOLUMETRIC MASS 
BALANCE 

4.1. Three-dimensional Flows 

4.1.1. Transient 3-dimensional flows. Without the source 
term, the volumetric mass balance equation (2.1) is analo
gous to the mass balance for a compressible fluid, the vol
umetric water content 0 corresponding to the mass density 
of the fluid. The general solution of such equations was dis
covered by Euler [1770, sections 44-49; see also the com
mentary by Truesdell [1955]] in the context of compress
ible fluids. In modern times it was given, among others, 
by Yih [1957, equation (25)], Krzywoblocki [1958, case (5)] 
and Truesdell and Toupin [1960, equation (164.6)]. Nelson 
[1964, Appendix] introduced Euler's solution in porous me
dia hydrodynamics. Written in the form of a 4-vector, the 
solution of the volumetric mass balance for transient, 3- di
mensional flow of soil water is: 

01, 0vxix, 9vyiy,9vziz 

dF dt 

dG 
dt 

\ dt 

dF dF 
dx dy 
dG dG 
dx dy 
dH dH 
dx dy 

dF dz 

dG 
dz 

dH I 

dz / 

(4.1) 
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where 1, i^, \y, iz are the unit vectors, respectively, in the 
t, x, y, z directions, and where F (t, x, yy z), G (t, x, y, z), 
H (t,x,y, z) are three families of surfaces partitioning the 
4-dimensional t,x,y, z-space in cells or, interpreted alter
natively, three families of moving surfaces partitioning the 
physical 3-dimensional x, y, z-space. Expansion of (4.1) 
gives 

d (F G H} 
61,6vx\x,0vy\y,6vz\z = -^-Tj1—1— 

d (F,G,H). d(F,G,H). d(F,G,H). 

dx dy dz 
(4.5) 

d(t,y,z) ' d{t,x,z) y' d(t,x,y) 
(4.2) 

It is easily shown that the 4-vector 91, 0vx ix, 9vy iy, 
9vz iz satisfies the 3-D volumetric mass balance (2.1) with
out the source term. As often occurs with very general re
sults, Euler himself seems to have noticed only a few of the 
implications of his general solution in special cases. These 
special cases were mostly discovered independently. In the 
remainder of this subsection, I will further interpret (4.1) 
and (4.2), and discuss the special cases of 3-dimensional 
flows with time invariant flow patterns, and of 3-dimensional 
steady flows. In the next two subsections, I will consider the 
special cases of, respectively, 2- and 1-dimensional flows. 
The overall result will be a unified presentation of scat
tered results in the literature. Truly 3-dimensional flows 
have rarely been analyzed thus far (see however Larabi & 
deSmedt [1994]). 

4.1.2. Connection with Pfaffian differential equations. 
The families F (t, x, y, z), G (t, x, y, z), and H (t, x, y, z) of 
surfaces in the 4-dimensionaU, x,y,z space can also be seen 
as the solution of the Pfaffian differential equations for the 
path lines x = x (X, t ) , with X fixed and — o o < t < o o , of 
the parcels of water [Pfaff, 1818; Sneddon, 1957; Truesdell 
and Toupin, 1960, section 70] 

dx 
vx 

dy 
Vy 

d z 

vz ' 
(4.3) 

The solutions of these equations can be written as 

F (t, x, y, z) = a, G x, y, z) = b, H (t, x, y, z) = c. 
(4.4) 

Yih [1957] points out that, since the path lines are intersec
tions of the 4-dimensional surfaces described by equations 
(4.4), they must lie in these surfaces, which are therefore 
material surfaces. 

At a fixed instant t = tc, equations (4.3) reduce to [Gour-
sat, 1959, section 31; Truesdell and Toupin, 1960, section 
70]: 

The solutions of these equations can be written as 

F (tc, y, z) = a c , G (te, x, y, z) = bc. (4.6) 

The two families of 3-dimensional surfaces described by 
equations (4.6) are instantaneous stream surfaces and their 
intersections are instantaneous streamlines at t = t c . 

4.1.3. Integral mass balance. Note that, with the help of 
(3.15), the expression for 9 implied by (4.2) can be related to 
the volumetric water content in the reference configuration 
and the deformation gradient tensor F by: 

#=*î  = t = , . , * , - > . (4.7, 

d(x,y,z) J dx 
This equation shows that the material coordinates X and 
the three families of surfaces F (t,x,y, z),G (t,x,y, z), and 
H (t,x,y, z) are closely related. 

At the current time t, consider the volume of water V$ con
tained in the space V bounded by the six surfaces (cf., [Yih, 
1957, equation (26)]; [Truesdell and Toupin, 1960, equa
tions (155.4), (156.1), (156.2, material), (156.5, spatial), and 
(164.7)]): 

F ( t , a ? , y , z ) = F i , a n d F (t, x,y, z) = F2, (4.8) 

G ( t , z , y , * ) = F i , a n d G {t, x,y, z) = F2, (4.9) 
H{t,x,yjz) = Fu a n d H (t, x, y, z) = F2. (4.10) 

This volume of water V$ can be determined (i) by integrating 
the elements of volume of water dv# directly, or (ii) by inte
grating at the reference time t = tK the reference volumetric 
water content 9K over the reference volume VK, or (iii) by 
integrating at the current time t the volumetric water content 
0 over the volume V, corresponding to the volume VK: 

V9 / dv0 

Jve 

I 0KdvK = / 
JvK Jv 

III 
Odv 

d(F,G,H) 
v d(x)y)z) 

dxdydz, (4.11) 

which can also be written as 

pH 2 nG-2 ?F<2 
Ve= / / dFdGdH = 

(F2-F1)(G2-G1)(H2-H1). (4.12) 
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4.1.4. Time invariant, 3-dimensional flow patterns. In 
subsection 4.1.2 we saw that the surfaces F ( t c , x,y, z) = ac 

and G (tc,x,y, z) = bc in 3-dimensional x, y, z-space are 
the instantaneous stream surfaces at the fixed instant tc, We 
now consider the possibility that these stream surfaces are 
steady (time-invariant). Then the flow pattern is steady, al
though the speed may still vary in time. 

Assuming that the time-invariant stream surfaces already 
exist at the reference time tK,wQ set 

F (t, x, y,z) = F (tK, x, y, z) = FK {x, y, z), (4.13) 

G (t, x, y,z) = G (tK, s , y, z) = GK (x, y, z). (4.14) 

Introducing (4.13) and (4.14) in (4.2) and expanding the de
terminants, noting dFK/dt = 0 and dFK/dt = 0, gives 

0 1 , 0 v x i X i 6vyiy,6vz\z = 01 , 

dFKdGK dFKdGK\ dH, 
dz dy dy dz ) dt 27' 

0FKdGK dFK dGK \ dH. 
dx dz dz dx J dt 

dF^dG^ _ OF^dGjA dH_. 
dy dx dx dy ) dtlz' 1 ' 

Note that (4.15) implies that the volumetric flux vector 0v is 
given by: 

0v = 6vxix + Ovyiy + 0vziz = 
dH 

( V F a x V G a ) - . (4.16) 

Some aspects of the class of time invariant flow patterns 
were discussed by Truesdell [1954b, section 28, p57; 1977, 
p. 110-111]. For this class of flows (i) the streamlines and 
the path lines coincide, and (ii) the velocity or volumetric 
flux vector fields change in the course of time only in mag
nitude, not in direction. A necessary and sufficient condition 
for such fields is that: 

v x (dv/dt) = 0. (4.17) 

This means that the velocity vector v and the local accel
eration vector (dv/dt)x are collinear. Time invariance of 
flow patterns facilitates the characterization of transport of 
solutes by means of transfer functions [Raats, 1978a, b; De 
Valk and Raats, 1995]. 

4.1.5. Steady, 3-dimensional flows. The solution (4.2) of 
the mass balance for time-invariant 3-dimensional flow pat
terns reduces to the solution for steady 3-dimensional flow 
by setting: 

H (t, x, y,z) = H (iK,x, y, z) + (t - tK) = 
HK(x,y,z) + {t-tK). (4.18) 

Introducing (4.18) in (4.15) and (4.16) gives: 

01 , 0vxix, 0Vyiy,0vziz = 01 , 

dFK dGK dFK dGK 

dz dy dy dz 
dFK dG 
dx dz 

K dFKdGK\. 
dz dx )ly> 

( ^ ^ _ ^ 9 G J L \ i ( 4 1 9 ) 

\ dy dx dx dy J 

and 

0v = 6vx\x + 0Vyiy + Ovziz = (VFa x VGa). (4.20) 

Steady 3-dimensional flows were discussed by Truesdell 
[1955, equation (203); pXV, line 2-3], Yih [1957, section VI, 
equation (20)], Krzywoblocki [1958, case (4)] Truesdell and 
Toupin [1960, section 163, equation (163.2)], Nelson [1964, 
equation (26)]. For steady 3-dimensional flows the volumet
ric mass balance equation (2.1) reduces to (2.3), expressing 
the solenoidal nature of the volumetric flux vector 0v in this 
case. A characterization by the cross product of the gradi
ents of two scalar fields, as in (4.20), is a general property of 
solenoidal vector fields (see Raats [1967]). It is nice to see 
that this characterization can be obtained as a special case 
from Euler's general solution (4.1). 

The function H (t, x, y, z) = HK (x, y, z) + (t - tK) in 
(4.18) describes the evolution of material surfaces. The 
function HK (x, y, z) — H (tK,x, y, z) corresponds to the 
isochrones in discussions of purely convective transport of 
solutes (see Raats [1978a, b] and De Valk & Raats [1995] 
for details). 

4.2. Two-dimensional Plane Flows 

4.2.1. Transient 2-dimensional plane flows. The solution 
of the mass balance for transient 3-dimensional flow reduces 
to the solution for transient 2-dimensional flow by setting: 

F{t,x,y,z) = F{t,x,yQ,z), (4.21) 

G(t,x,y,z) = y, (4.22) 

H(t,x9y9z) = H(t,x,yQ,z). (4.23) 

Introducing (4.21), (4.22), and (4.23) in (4.2) gives: 
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. . . . . . . d(F,H)H d(F,H). 
01,0vx\x,0vyiy,0vz\z = — r - 1 , -^j-—r-ix, d(x,z) d(t,z) 

v y - W t { - < 4 - 2 4 ) 

This corresponds to case 4 of Krzywoblocki [1958]. Ex
panding the determinants gives: 

91, 0VX1X, 0Vyly,0Vz\z = 

'dFdH^ OF dH 
dx dz dz dx 

'dFdH dF dH 

K dz dt dt dz 
'dFdH dFdH 

( ° M ^ - ^ r - (4-25) 

One can write (4.25) in the form 

01,0vx\x,0vy\y,0vz\z = VtXzFxVtxzH,{0)iy. (4.26) 

Note that mathematically this case is analogous to steady 3-
dimensional flow: the role of the t-coordinate in 2-dimensional 
transient flow corresponds to the role of the y-coordinate in 
steady 3-dimensional flow (cf. equation (64)). 

Transient, 2-dimensional flows can be calculated in detail 
with current numerical models discussed in subsection 2.3. 
For example, using Hydrus-2D Simunek et al. [1996], De 
Vos et al [2000] calculated the instantaneous spatial distri
bution of the volumetric flux vector 0v. The instantaneous 
streamlines Ftxz (tc,x,y) = ac are the tangent curves of 
such instantaneous volumetric flux vector fields. 

4.2.2. Connection with Pfaffformulation. The differential 
equations for the path lines are: 

dt 
dz 

The solutions of these equations can be written as 

F (t, x, z) — a, H (t, x, z) — c. 

(4.27) 

(4.28) 

The lines described by (4.30) are the instantaneous stream
lines. 

4.2.3. Integral mass balance. At the current time t, the 
mass contained in the space V of thickness Ay and bounded 
by the two pairs of curves: 

F(t,x,z) = Fu a n d F{t,x,z) = F2, (4.31) 

H(t,x,z) = Hu a n d H(t,x,z) = H2, (4.32) 

is given by 

Ve= f dve = f 0KdvK = / Odv = 

Jv6 JvK JV 

Ay j f 94^4dxdz, (4.33) 
d(x,z) 

which can also be written as 

Ve = Ay / dFdH 

Ay{F2-F1)(H2-H1). (4.34) 

4.2.4. Time invariant, 2-dimensional plane flow patterns. 
The solution of the mass balance for transient 2-dimensional 
flow reduces to the solution for transient 2-dimensional flow 
with a time-invariant flow pattern by setting: 

F(t,x,y,z) = F(tK,x,y0,z) = FK {x,y0,z), (4.35) 

Introducing (4.35) in (4.2) gives: 

a i a • a • A • t'dF*dH dFKdH\ 91,9vxix,0Vy\y,0vz\z - I — — 1 1, 

Since the path lines are intersections of the 3-dimensional 
surfaces described by equations (4.28), they must lie in these 
surfaces, which are therefore material surfaces. 

At an instant t = t c 

dx dz 
vx vz ' 

The solutions of this equation can be written as 

F(tc,x,z) = ac. 

(4.29) 

(4.30) 

dx dz dz dx J 

8FKdH\. fdFKdH\. 

^ w r ' ^ ' V d ^ - a r ) 1 ' - ( 4 ' 3 6 ) 

One can write (4.36) in the form: 

01, 0vxix, 0vyiy, 0vziz = V 
XZA K ^ v tXZ 

H,{0)iy. (4.37) 
The surfaces incons tan t are material surfaces. For these 
flows with fixed streamlines, one can derive a parcel function 
for the infinitesimal stream tubes [Wilson and Gelhar, 191 A, 
1981; Raats, 1982]. 

4.2.5. Steady, 2-dimensional plane flows. The solution 
of the mass balance for transient 2-dimen-sional flow with 
time-invariant flow pattern reduces to the solution of steady 
2-dimensional flow by setting 
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H{t,x,y, z) = H (tK,x,y0,z) + (t-tK) = 

HK{x,y0,z) + {t-tK). (4.38) 

Introducing (4.38) in (4.36) gives 

ot o ' a ' o ' f9FK0HK dFKdHK\ 

or 

01,0vxix,Ovyiy,0vziz x VxzHK, ( 0 ) i y . 
(4.40) 

The function FK is the D'Alembert stream function [D' 
Alembert, 1761]. According to Truesdell and Toupin [1960, 
section 161], in 1757 Euler introduced a more general type 
of stream function for pseudo-plane motions, but he did not 
note the especially simple properties of FK. The D'Alembert 
stream function was introduced by Forchheimer [1886] 
for what is now known as horizontal Dupuit-Forchheimer 
groundwater flow and by Slichter [1897] for vertical 2-D 
flow in saturated soils. Originally, I introduced this stream 
function for any steady flow in unsaturated soils [Raats, 
1967]. Later, I showed that, for the Gardner class of soils 
defined by (2.14), the function FK satisfies a partial differ
ential of the same form as the equation (2.16) for the matric 
flux potential [Raats, 1970]: 

V 2 F K = o ^ . (4.41) 
dz 

In (5.5) the function H (t,x,y,z) = HK (x,y0, z) + (t - tK) 
describes the evolution of material surfaces. The function 
HK (x, z) describes plane isochrones. Following some pio
neering work by Batu and Gardner [1978], Philip [1984a] 
calculated isochrones for a periodic distribution of surface 
source strength, both for flow to infinite depth and for flow 
to a water table at finite depth. In his analysis, Philip used 
the flow equation (2.16) for multidimensional steady flow 
and the assumption, expressed in (3.24), that 0 (x) can be 
replaced by an average value 0. 

A similar derivation can be given for the Stokes' stream 
function for steady axisymmetric flows [Raats, 1971]. Cor
responding isochrones were calculated by Philip [1984b] 
for surface and buried point sources. For the surface point 
source, Clothier [1984] evaluated the validity replacing 
0 (x) by an average value 0. 

4.3. One-dimensional Flows 

4.3.1. Transient, 1-dimensional flow. The solution of the 
mass balance for transient 3-dimensional flow reduces to the 
solution for transient 1-dimensional flow by setting: 

F(t,x,y,z) = x, (4.42) 

G{t,x,y,z) = y, (4.43) 

H(t,x,y,z) = H{t,x0,y0,z). (4.44) 

Introducing (4.42), (4.43), and (4.44) in (4.2) gives: 

Ol,Ovx\x,Ovy\y,0vz\z = 

^ l . ( 0 ) i « , ( 0 ) H , , ^ - i , . (4.45) 

The parcel function H for transient, one-dimensional flow 
was first introduced by Euler [1757, sections 48-49; see also 
the commentary Truesdell [1954a, equations 116 and 118]], 
and discussed later by Kirchhoff [1930], Krzywoblocki [1958, 
case 1], and Truesdell and Toupin [1960, section 161, equa
tion 161.22]. The parcel function H for transient one-
dimensional flow is analogous with the stream function FK 

for 2-dimensional plane flow derived in subsection 4.2.5. I 
first introduced the parcel function in a seminar at the Uni
versity of Wisconsin in the fall of 1972 [Raats, 1972] and 
a year later at the Annual meeting of the American Soci
ety of Agronomy. The parcel function HK has been widely 
used in last two decades [Smiles et al., 1981; Wilson and 
Gelhar, 191 A, 1981; Raats, 1982, 1984b, 1987a, b; Smiles, 
2000, this volume]. In an analysis of brine transport, Van 
Duijn and Schotting [1998; see also Schotting, 1998] use a 
transformation from t, z -coordinates to H, z -coordinates, re
ferring to it as a variant of the Von Mises transformation in 
fluid mechanics. 

4.3.2. Steady 1 -dimensional flow. The solution of the mass 
balance for transient 1-dimensional flow reduces to the solu
tion for steady 1-dimensional flow by setting: 

H(t,x,y,z) = H (tK,x0,y0,z) - 0KvK (t-tK) = 

HK(xo,yo,z)-0KvK(t-tK). (4.46) 

Introducing (4.46) in (4.2) gives: 

01, Ovxix, 0Vy\y,0VZ\z — 
BH 
- ^ l , ( 0 ) i r , ( 0 ) i y , - < W , . (4.47) 
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The idea of keeping track of parcels of water can also easily 
be generalized to steady flows in the presence of uptake of 
water by plant roots [Raats, 1975] 

5. IMPLICATIONS OF DARCY'S LAW FOR THE 
NATURE OF THE FLOW PATTERNS 

5.1. Rotationality of Flow of Soil Water 

5.1.1. The rotationality of the flux Ov and the velocity v. 
Taking the curl of the Darcian expressions for the volumetric 
flux Ov and the velocity v vector fields gives: 

V x (0v) = -
Vk x VH -Vk xVh-Vkx Vz, (5.1) 

V x v = - V (k/0) x VH = 

- V (k/0) xVh-V (k/0) x Vz. (5.2) 

Assuming that the hydraulic conductivity k and the hy
draulic mobility k/0 are functions of the pressure head h, 
both Vk and V (k/0) are collinear with Vh, and hence the 
first terms on the right hand sides of (5.1) and (5.2) vanish: 

V x (Ov) = -Vk x Vz, (5.3) 

V x v = -V(k/0) x Vz. (5.4) 

According to (5.3), the rotation vector V x (0v) is perpen
dicular to the plane spanned by Vk and — Vz and accord
ing to (5.4) the vorticity vector V x v is perpendicular to 
the plane spanned by V (k/0) and — Vz. This means that 
both the rotation vector V x (Ov) and the vorticity vector 
V x v are always horizontal. It should be emphasized that 
the simple expressions (5.3) and (5.4) apply only if the soil 
is homogeneous and isotropic. 

Again making use of the dependence of the hydraulic con
ductivity k and the hydraulic mobility k/0 upon the pressure 
head h, equations (5.3) and (5.4) can be rewritten as: 

1 c\k 
V x ( « v ) = ~ ( - k V / i ) x V ^ 

* dh 

V x v = 
1 dk/0 

k/0 dh 
(-(k/0) Vh) x Vz. 

(5.5) 

(5.6) 

Since Vz x Vz = 0, equations of the form (5.5) and (5.6) 
also apply with the gradient of the pressure head Vh re
placed by the gradient of the total head VH = V (h — z): 

1 dk 
V x (Ov) = - —(-kVH) x Vz, (5.7) 

k an 

V x v = 
1 dk/0 

k/0~dh~ 
(- (k/0) VH) x Vz. (5.8) 

Using (2.8) in (5.7) and (5.8), and making use of the fact that 
the cross product of the vertical component of v and V x z 
is a zero vector, gives: 

V x (0v) 

V x v = 

I d * 
kdh 

0\ x Vz 
I d * 
kdh 

0vhor x Vz, (5.9) 

1 d*/fl 
k/0 dh 

v x Vz = 
1 dfc/0 

k/0 dh 
x Vz. 

(5.10) 

According to (5.9) and (5.10), the direction of both the ro
tation vector V x (0v) and the vorticity vector V x v is 
horizontal and perpendicular to Vhor- According to (5.9), 
the magnitude of the rotation vector V x (Ov) is equal to 
the product of the magnitude of the horizontal component of 
the volumetric flux vector Ov and dlnfc/d/i. According to 
(5.10), the magnitude of the vorticity vector V x v is equal 
to the product of the magnitude of the horizontal component 
of the velocity v and din (k/0) /dh. 

Recall that for the Gardner class of soils, defined by 
(2.14), dlnk/dh = a = constant, and for its variant, de
fined by (2.17), din (k/0) /dh = av = constant. Hence, 
for these two classes of soils, respectively, equations (5.9) 
and (5.10) reduce to: 

V x (Ov) = aOv xVz = aOvhor x Vz, (5.11) 

V x v = avv xVz = avVhor x Vz. (5.12) 

Introducing (3.2), the definition of the velocity vector, in 
(5.12) and integrating with respect to time, shows that the 
rotation over the time interval t —10 is the product of av and 
the horizontal displacement. 

In an early discussion of the rotation vector V x (Ov) of the 
volumetric flux vector field Ov, I derived (5.3) and referred 
to the rotation vector V x (Ov) as the vorticity [Raats, 1967], 
but this name should be reserved for the rotation vector V x v 
of the velocity vector field v . The expression (5.10) for the 
vorticity vector V x v was also given earlier, but with the 
factor xVz missing [Raats, 1982]. 

5.1.2. Intrinsic representation of rotation vectors. Some 
intrinsic geometric properties of vector fields become most 
transparent if various quantities are expressed in terms of the 
trihedron of Frenet, i.e., the unit tangent vector field s, the 
unit principal normal vector field n , and the unit binormal 
vector field b . Subsections 3.2-3.4 already dealt with such 
intrinsic representations of features involving s, but not n 
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and b . The intrinsic representation of the curl of the vector 
field f is [Truesdell, 1954b]: 

V X f : 1 * / 
A s + jTb

n + 
( - X J 1 
V f*n 

b / , (5.13) 

where the scalar field A is the abnormality, and the scalar 
field AC is the curvature of the system of vector lines. The 
curvature K measures, as one moves along a streamline, the 
rate at which the unit tangent vector turns to the unit normal 
vector or, equivalently, the rate at which the normal plane 
turns about the binormal vector. Taking the inner product of 
f given by (3.16) and V x f given by (5.13) gives 

f • V x f = Af2. (5.14) 

From (5.14) it follows that the abnormality A is defined by: 

. f - V x f 

P 
= s • V s . (5.15) 

From (5.13) it can be inferred that the expressions of the 
rotation vector fields of the volumetric flux vector field Ov 
and of the velocity vector field v, expressed in terms of the 
Frenet trihedron (s, n , b ) , are: 

V x Ov = OvAs + + [OVK - ^f) b , (5.16) 
do \ do J 

„ . dv 
V x v = vAs + — n + 

do 
VK 

dv 
db 

b . (5.17) 

Setting f = v in (5.15), introducing (2.7) and (5.17), and 
making use of the facts that in the triple scalar product the 
dot and cross products commute and the cross product of a 
vector with itself is the zero vector, gives: 

v • V x v 
A = = 

v • v 

- « a ^ ^ ( ( ^ + ^ ) - ( V * x V , ) ) = 

~ ^TTTi^Tr- ((VA • Vh x Vz) • {Vh • Vz x Vz)) 
k/0 dh 

= 0. (5.18) 

Therefore, the first terms on the right hand sides of (5.16) 
and (5.17) vanish, implying that both the rotation vector V x 
(Ov) and the vorticity vector V x v lie in the n , b -plane 

The name abnormality expresses that it is a measure of the 
departure of the unit tangent vector field s from the property 
of having a normal congruence of curves. It has been de
scribed also as 'the torsion of the curve system' and as 'the 
torsion of neighboring vector lines' [Truesdell, 1954b]. In 

analogy with the term 'helicity' used in particle physics for 
the product of momentum and spin of a particle, in the mod
ern literature of turbulence and magneto-hydrodynamics the 
quantity f • V x f = Af2 is called the helicity density, i.e. 
the helicity per unit volume [Moffatt, 1969; Moffatt and Tsi-
nobar, 1992]. Finnigan [1990] discussed the intrinsic de
scription in the context of fluid mechanics, indicating the 
importance of the abnormality for the onset of chaotic ad
vection. The abnormality being zero for flow of water de
scribed by the Richards equation, evidently implies that for 
such flows chaotic flow patterns are not to be expected. As 
one reviewer pointed out, this is interesting and should be 
explored further. 

5.2. Scalar Potentials and Distance Functions 

5.2.1. For arbitrary vector fields. A vector field f = ft is 
called lamellar or conservative, if there exists a scalar poten
tial field fa such that [Truesdell, 1954b]: 

f = ft = Vfa. (5.19) 

Mathematicians usually call such vector fields conservative. 
A lamellar vector field f = ft is everywhere normal to the 
equipotential surfaces fa = constant constant. A vector 
field f = ft is lamellar if and only if its curl vanishes, i.e. if 

V x f = V x f ( = 0. (5.20) 

For this reason lamellar fields are called also irrotational 
fields. 

A vector field f = fci is called complex-lamellar if there 
exist scalar fields fa and fa such that [Truesdell, 1954b] 

f = ici = faVfa. (5.21) 

A complex-lamellar vector field f = id is everywhere nor
mal to the equipotential surfaces fa — constant. A vector 
field f = id is complex-lamellar if, and only if, it is normal 
to its curl, i.e. 

f - V x f = f c r V x f d = 0 . (5.22) 

Any vector field f may be represented as the sum of a lamel
lar vector field ft — Vfa and a complex-lamellar vector field 
id = faVfa [Truesdell, 1954b]: 

f = ft + f d = Vfa + faVfa. (5.23) 

Truesdell [1954b] calls the scalars <j>i, fa, and fa Monge 
potentials. 

5.2.2. For velocity and flux vector fields in soil physics. 
Comparison of equations (2.8) and (5.19) shows that, if the 
soil is saturated and homogeneous with saturated hydraulic 
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conductivity ks and volumetric water content 0S, then the 
velocity vector field v is a lamellar field. The scalar field 
(ks/9s) H is then the scalar potential of the velocity vector 
field v. The vector field v being lamellar implies that it is 
irrotational, i.e., that its curl vanishes. Of course, the viscous 
flow in individual pores will always be rotational, even if the 
macroscopic field v is irrotational [Raats, 1967]. 

Comparison of (2.8) and (5.21) shows that, if the soil 
is unsaturated and homogeneous, in general the volumet
ric flux vector field Ov and the velocity vector field v are 
complex-lamellar fields (cf., Nelson, 1966; Raats, 1967]. A 
significant implication is that the vector fields Ov and v are 
normal to the surfaces of equal total head H. This makes it 
possible to infer the flow direction at any point from mea
surements of the total head H, or equivalently the pressure 
head h and gravitational head z, at a sufficient number of 
points. Bouwer & Little [1959] constructed lines of equal 
total head for steady plane flow in saturated and unsaturated 
soils from resistance network measurements and then, at the 
suggestion of E.C. Childs, drew the stream lines as orthogo-
nals. 

The expression (2.15) for the volumetric flux of the soil 
water is precisely of the form (5.23), with the matric com
ponent of the flux V (—<j>) being the lamellar part and the 
gravitational component of the flux a<j>Vz = kVz being the 
complex-lamellar part. With this interpretation of (2.15), the 
matric flux potential <j>, the hydraulic conductivity a<f> = k 
and the gravitational head z are the three Monge potentials. 

6. CONCLUDING REMARKS 

The brief and selective review in section 2 shows the key 
role of John Philip in analysis of multi-dimensional flow in 
rigid, unsaturated soils. The papers by him and his collab
orators show that progress mostly depended on ideas from 
outside the narrow confines of soil physics and porous me
dia hydrodynamics, particularly from the mathematical spe
cialty of partial differential equations. In this paper, I have 
tried to demonstrate that continuum mechanics and differen
tial geometry are also among the disciplines providing guid
ance. 
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The effect of t empera ture on capillary pressure is one of several fascinating 
problems unear thed by J.R. Philip during his long career. In his classic paper 
wri t ten with Daniel de Vries, he assumed reasonably, but incorrectly, t ha t 
the relative change in capillary pressure with t empera tu re was equal to t ha t 
of the surface tension of water. In fact the change for capillary pressure is 
roughly four t imes as large. Four mechanisms may be proposed to explain 
this discrepancy: expansion of water, expansion of ent rapped air, solute 
effects on the surface tension of water, and temperature-sensi t ive contact 
angles. None of these explanations describes all of the per t inent da ta . A 
definitive explanation appears to be as elusive today as it has been at any 
time. 

1. I N T R O D U C T I O N 

John Phi l ip ' s intellect, creativity, and product iv i ty 
were so p ro tean t h a t his body of work can be viewed as 
a scientific bulldozer t h a t created a vast ter ra in of im
por t an t results b u t s imultaneously left numerous lesser, 
bu t fascinating, problems for his grateful successors to 
examine in detail . An il lustrative example of this simile 
is t h e subject of this chapter : t h e effect of t empera
tu re on capillary pressure, which was a minor point in 
a shor t (yet, nonetheless, very influential) paper t h a t 
Phi l ip published wi th Daniel de Vries in 1957. 

Three aspects of Philip and de Vries [1957] are no
tab le . F i rs t , given t he problem addressed, t he paper is 
astonishingly short , a scant t en undersize pages. (This 
chapter , one of many t h a t have dwelt on a single equa-
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t ion in t h e paper , is th ree t imes as long.) Second, t he 
paper has been ext remely influential b o t h in geophysics 
bu t no less so in engineering. A recent computer ized 
inquiry for c i ta t ions of t h e paper found 473 c i t a t ions -a 
s ta t i s t ic t h a t undoub ted ly underes t ima ted the influence 
of t he paper . Given t h e pape r ' s age, m a n y modern au
thors have no doub t cited in te rmedia te works wi thout 
citing (or knowing) t h e original, seminal work. T h e 
th i rd and most fascinating aspect is t h a t b o t h au thors 
largely abandoned t h e topic wi th this paper . After leav
ing CSIRO, de Vries became a physics professor in his 
nat ive Nether lands . While his professional obligations 
compelled h im to work on other problems, de Vries re
ta ined an affinity and interest in t h e subject . (After 
his re t i rement he wro te a review pape r revisi t ing t h e 
topic in which he quoted touchingly t he French, On re-
vient toujours a ses premieres amours [de Vries, 1987].) 
Aside from a paper wr i t t en dur ing a second visit by 
de Vries nearly t h i r t y year later, Phi l ip appears not 
t o have considered t h e problem further [de Vries and 
Philip, 1987]. 

In Philip and de Vries [1957] t he au thors developed 
wha t proved t o be a seminal model describing t h e simul-
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taneous transfer of energy, liquid water , and water va
por in an unsa tu ra t ed , nonisothernia l porous medium. 
To describe these processes, t hey needed to es t imate t he 
change in capillary pressure wi th t empe ra tu r e . Philip 
and de Vries [1957] t u rned na tu ra l ly t o t h e so-called 
Young-Laplace equat ion: 

2 7 l g cos 8 
(1) 

where pc is capillary pressure (in pascals); B , t he con
t ac t angle between t h e solid and t h e liquid-gas interface 
(in degrees); 7 l g , t h e liquid-gas interfacial tension (in 
newtons per mete r ) ; and r , t h e apparen t pore radius (in 
mete rs ) . At t h a t t ime it was well established t h a t t he 
wa te r film thickness for agr icul tura l soils above the per
manen t wil t ing point was equivalent t o many molecular 
thicknesses [Taylor, 1958]. T h e conventional wisdom of 
t h e day held t h a t t h e contac t angle of a liquid-gas in
terface a t a solid wet ted wi th two or more molecular 
layers of water was zero. As will be discussed in Sec
t ion 3.4.1, it has only recently become apparen t t h a t 
th i s conventional wisdom was fallacious. Accordingly, 
it was not merely expedi t ious, b u t reasonable also, to 
assume a zero contact angle at a porous solid so wet ted 
and, accordingly, c o s O = 1. Equa t i on (1) t hen became: 

Pc 
2 7

l g 

(2) 

Taking t h e to t a l derivative of equat ion (2) wi th respect 
t o t e m p e r a t u r e and dividing t h rough by pc, they ob
ta ined: 

i dPc _ i d y g 

p~c d T ~ ^IXT (3) 

where T is t e m p e r a t u r e (in kelvins). 
As the old chestnut says, "Complex problems have 

simple, easy- to-unders tand wrong answers," and equa
t ion (3) appears to be wrong, on average, by a factor 
of 4. For soils s tudied (l/pc) (dpc/dT)T=298 K ranges 
from -0.00172 to -0.02829 K _ 1 wi th an average value 
of -0 .00844 K - \ whereas (l/Vg) ( d 7

l g / d T ) T = 2 g 8 K for 
pure liquid water is -0.002135 K - 1 [Grant, in press]. 
T h e difference is small bu t much too large and too con
sistently observed to be a t t r i bu t ab l e to exper imental 
error. 

Interestingly, why equat ion (3) is wrong has not been 
resolved after almost th i r ty years of detailed s tudy by 
some of t he most ta len ted minds in geophysics and 
pe t ro leum engineering. T h e problem was a popular 
topic assigned to doctora l s tuden t s in these disciplines 
[Wilkinson, 1960; Meeuwig, 1964; Haridasan, 1970; Jury, 
1973; Okandan, 1974; Miller, 1983; Nimmo, 1983; Hop-
mans, 1985; Salehzadeh, 1990; She, 1997]. There have 
been numerous explanat ions for th is disparity, all of 

which were based on reasonable supposi t ions abou t the 
n a t u r e of we t t ing liquids in porous med ia and all of 
which failed t o give a completely sat isfactory descrip
t ion of t h e phenomenon . Even t h o u g h t h e phenomenon 
has not been resolved, much has been learned about 
porous med ia behavior . A great deal of th is knowledge 
was due t o failed a t t e m p t s to unde r s t and t h e inadequa
cies of equa t ion (3). In this Phi l ip was wrong, bu t in 
being wrong, Phi l ip opened up rich areas of s tudy t h a t 
has compelled geophysicists and engineers to explore 
t h e fundamenta ls of their unders t and ing of na tu r a l phe

nomena . 
T h e ba lance of th is paper will present a selective sur

vey of t h e exper imenta l d a t a describing t h e effect of 
t e m p e r a t u r e on capillary pressure. T h e pape r will then 
review t h e explanat ions proposed to explain t h e phe
nomenon and suggestions for future research. 

2. T H E P H E N O M E N O N 

As far as we can determine, the effect of t e m p e r a t u r e 
on capillary pressure was first observed wi th a recording 
tens iometer by Richards and Neal [1937]. T h e y acquired 
capillary pressure continuously in t h e field wi th a sim
ple circular char t recorder, which showed t h a t capillary 
pressures declined in t he morning, as t h e soil warmed. 
T h e decrease in capillary pressure was most pronounced 
for tens iometer cups near the surface. Whi le some of 
t he phenomenon could have been due to t h e the rma l 
expansion of liquids in t h e appa ra tus , their results indi
ca ted t h a t capillary pressure decreased wi th increasing 
soil t e m p e r a t u r e . 

Subsequently, t h e effect of t e m p e r a t u r e on capillary 
pressure was carefully s tudied in several l abora tory s tud
ies. These s tudies generally, bu t not exclusively, con
sisted of de te rmina t ions of capillary pressure sa tura
t ion relat ions de termined at more t h a n one tempera
tu re . Figure 1 presents an example of d a t a collected 
in these s tudies , which indicated t h a t t e m p e r a t u r e was 
having an effect, t hough because t he capillary pressure 
sa tu ra t ion relat ions were themselves so complex, it was 
difficult to grasp t he na tu re of the effect. 

In comparison, Gardner [1955] p lo t ted capillary pres
sures of a soil sample mainta ined at a cons tant degree 
of sa tu ra t ion as it was heated and cooled. This plot 
is presented here as Figure 2. Due to its simplicity, 
Figure 2 demons t ra tes clearly and convincingly t he na
tu re of t h e t e m p e r a t u r e effect, which was obscured by 
the complexity of Figure 1, t h a t pc decreases linearly 
wi th t e m p e r a t u r e . T h e d a t a of Gardner [1955] suggest 
t h a t capillary pressure a t a par t icular t e m p e r a t u r e is 
not precisely reproducible after cycles of hea t ing and 
cooling. Faybishenko [1983] conducted a s t udy similar 
to Gardner [1955], bu t , as presented in Figure 3, found 
t h a t capillary pressures at his observat ional t empera-
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F i g u r e 1 . Capillary pressure saturation relations of a 
Plainfield sandy loam soil measured at 19.1 (circles), 34.1 
(squares), and 49.2 °C (triangles) as reported by Nimmo 
and Miller [1986]. 

tu res were reproducible on cycles of hea t ing and cool
ing and appea red t o be linear functions of t e m p e r a t u r e . 
T h e results of Gardner [1955] and Faybishenko [1983] 
suggested t h a t t h e effect of t e m p e r a t u r e on capillary 
pressure could be described by: 

Pc = % (4) 

F i g u r e 3. Capillary pressure measured by Faybishenko 
[1983] on a loam soil at three constant water contents, but 
at a range of temperatures. Roman numerals refer to wa
ter contents (I: 0.347 m 3 « m ~ 3 , I I : 0.326 m 3 « m ~ 3 , I I I : 0.3 
m 3 « m - 3 ) . Arabic numbers refer to steps in heating-and-
cooling cycles. 

where aPc a n d bPc are empirical constants (in pascals 
and pascals per kelvin, respectively). 

As wi th capil lary pressure, all known liquid-gas inter-
facial tensions are well described as linearly decreasing 
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functions of t e m p e r a t u r e . F igure 4 presents t he liquid-
gas interfacial tensions of selected liquids from t h e com
prehensive compila t ion of Jasper [1972]. We may wri te , 
therefore, t h e liquid-gas interfacial tensions as a similar 
linear function of t e m p e r a t u r e : 

(5) 

320 340 360 380 
Temperature/K 

F i g u r e 2. Capillary pressures presented by Gardner [1955] 
of a coarse sand at 2.2 % water content subjected to heating 
and cooling cycles. 

F i g u r e 4. Liquid-gas interfacial tensions of selected liq
uids at a range of temperatures: acetone (circles), benzene 
(squares), ethylene glycol (triangles), and water (diamonds). 
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F i g u r e 5. Normal ized values of liquid-gas interfacial ten
sions as functions of temperature: acetone (circles), benzene 
(squares), ethylene glycol (tr iangles), and water (diamonds). 

where a 7 i g and 6 7 i g a re empirical constants (in newtons 
per meter and newtons per meter-kelvin, respectively). 
To facilitate t he compar ison of liquid-gas interfacial ten
sions of d ispara te liquids, equa t ion (5) can be normal
ized by dividing t h r o u g h by its t e m p e r a t u r e derivative: 

(#) 
+ T. (6) 

We note here, and will r e tu rn to , t h e fact t h a t a 7 i g / 6 7 i g 

for pure water was equal t o -766.45 K. Figure 5 replots 
the liquid-gas interfacial tension d a t a presented in Fig
ure 4 in t e rms of equat ion (6). Each line in Figure 5 had 
a slope of 1 and an intercept equal to a 7 i g / 6 7 i g . Follow
ing this example , equa t ion (4) can normalized by: 

Pc 
(7) 

Figure 6 presents a plot for capillary pressures of se
lected porous media similar t o t h a t in Figure 5. T h e 
dashed line in Figure 6 presents t he line described by 
equat ion (6), t h a t is, t h e expected relation if t he tem
pe ra tu re sensit ivity of capillary pressure were due exclu
sively to t h e t empera tu re - induced changes in the inter
facial tension of pure water . As in Figure 5, t he slope 
is each line is unity, and thei r intercepts are equal t o 
aPc/bPc. F igure 6 m a d e clear t h a t capillary pressure was 
a linear function of t e m p e r a t u r e , t h a t t he phenomenon 
differed from porous m e d i u m to porous medium, and 
t h a t for most soils, t h e relative change in capillary pres
sure wi th t e m p e r a t u r e was very different from t h a t of 
the liquid-gas interfacial tension. 

In a wholly different theore t ica l t r ea tmen t , Grant and 
Salehzadeh [1996] assigned t h e variable name fto to the 
ra t io aPc/bPc. Equa t ion (7) can be integrated to yield: 

Pc{T=TF) ~ P c ( T = T R ) ^ Q + T r J • (8) 

where T r and Tf were t h e reference and observational 
t empera tu re s (both in kelvins), respectively. 

Subsequently, Grant [in press] es t imated f3o by non
linear regression analysis for vi r tual ly all available water-
air capillary pressure sa tu ra t ion relat ions measured at 
more t h a n one t e m p e r a t u r e . His results were summa
rized in Table 1. He found t h a t (3Q has values between 
-800 to -330 K, t h o u g h generally far from -766 K. 
Bachmann et al. [in review] found t h a t /30 could be 
es t imated well also from equa t ion (7) and from t ran
sient flow exper iments . She and Sleep [1998] found t h a t 
equat ion (8) described well t h e capillary pressure satu
ra t ion relations behavior of b o t h water-air and water-
te t rachloroethylene sys tems. 

T h e preponderance of t he s tudies conducted thus far 
have indicated t h a t (3Q was largely unaffected by the de
gree of sa tura t ion . Grant and Salehzadeh [1996] found 
t h a t t he residuals of their nonlinear fits did not show 
a pronounced t r end a t t he upper or lower extremes of 
the soils they s tudied. Similarly, Bachmann et al. [in 
review], who de te rmined (30 by calculat ing equation (7), 
found t h a t fa was a weak linear function of water con
tent . 

150 200 250 
Temperature/K 

F i g u r e 6. Normalized values of capil lary pressure of 
selected porous media measured at different temperatures: 
Dubbs silt loam (circles), glass beads (squares), loam (up
right tr iangles), Norfolk sandy loam (diamonds), Plainfield 
sand (inverted tr iangles), sand (fi l led circles), and silt (filled 
squares). The dashed line is the expected normalized value 
for the surface tension of pure water. 
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Table 1. Values of /3o estimated by nonlinear regression analysis of capillary pressure 
saturation relations in the published literature and the corresponding relative values 
of the temperature derivative of capillary pressure and this temperature derivative to 
that of water's surface tension. 

Matrix D/I A ) ± S E ( £ ) ( & ) 
7 H 2 0 

Citation 

Sand D 8 . 7 6 x l 0 1 3 9 ± 0 0.00 Bachmann [1998] 
Hydrophobicized 

1.51 x 1 0 1 3 9 ± 0 

Bachmann [1998] 

sand D 1.51 x 1 0 1 3 9 ± 0 0.00 Bachmann [1998] 
Silt D -507.4±26.4 -0.00478 2.24 Bachmann [1998] 
Hydrophobicized 

Bachmann [1998] 

silt D -603.4±57.1 -0.00328 1.53 Bachmann [1998] 
Soil D -674.3±56.8 -0.00266 1.25 Bachmann [1998] 
Hydrophobicized 

Bachmann [1998] 

soil D -346.6±12 -0.02064 9.67 Bachmann [1998] 
Oakley Sand D -413.4±15.3 -0.00868 4.06 Constantz [1982] 
Oakley Sand 
(dynamic) D -419.7±13 -0.00823 3.85 Constantz [1982] 
Hanford 
Sandy Loam D -441.2±36 -0.00699 3.27 Constantz [1982] 
Hanford 
Sandy Loam 
(dynamic) D -448.8±16.8 -0.00664 3.11 Constantz [1982] 
Tipperary Sand D -498.2±27.7 -0.00500 2.34 Constantz [1983] 
Tipperary Sand I -440.4±15.9 -0.00703 3.29 Constantz [1983] 
Nonwelded tuff D -441±17.2 -0.00700 3.28 Constantz [1991] 
Nonwelded tuff I -598.1±89.5 -0.00333 1.56 Constantz [1991] 
Oakley sand D -436.2±10.8 -0.00724 3.39 Constantz [1991] 
Oakley sand I -391.8±4.4 -0.01068 5.00 Constantz [1991] 
Quartz sand D -783.9±48 -0.00206 0.96 Crausse [1983] 
Mixed sand D -384.2±10.7 -0.01162 5.44 Davis [1994] 
Mixed sand I -812.3±612 -0.00194 0.91 Davis [1994] 
Standard sand D -386.1±6.7 -0.01137 5.33 Davis [1994] 
Standard sand I - - 4 x 1 0 1 2 ± 0 0.00 Davis [1994] 
Loam I -376.6±12 -0.01275 5.97 Faybishenko [1983] 
Loam I -381.9±10.7 -0.01194 5.59 Faybishenko [1983] 
silt loam D -437.8±21.2 -0.00716 3.35 Haridasan and Jensen [1972] 
Dundee 

Haridasan and Jensen [1972] 

silt loam D -566±62.8 -0.00373 1.75 Haridasan and Jensen [1972] 
Norfolk 
sandy loam D -439.3±29.7 -0.00708 3.32 Hopmans and Dane [1986b] 
Norfolk 
sandy loam I -370.6±13.2 -0.01380 6.46 Hopmans and Dane [1986b] 
Subalpine D -385.4±13.6 -0.01146 5.37 Meeuwig [1964] 
clay loam 
Mountain D -355.4±14.1 -0.01747 8.18 Meeuwig [1964] 
brush zone 
clay loam 
Millville silt loam D -522.7±45.5 -0.00445 2.09 Meeuwig [1964] 
Glass beads D -450.8±1.5 -0.00655 3.07 Nimmo and Miller [1986] 
Glass beads I -403.9±1 -0.00946 4.43 Nimmo and Miller [1986] 
Plainfield sand D -431.5±5 -0.00750 3.51 Nimmo and Miller [1986] 
Plainfield sand I -414.5±3.8 -0.00859 4.03 Nimmo and Miller [1986] 
Piano silt loam D -395.8±3.5 -0.01024 4.80 Nimmo and Miller [1986] 
Piano silt loam I -333.5±1.6 -0.02829 13.25 Nimmo and Miller [1986] 
Granular glass D -388.8±9.7 -0.01103 5.17 Novak [1975] 
Glass beads ? -878.9±18.4 -0.00172 0.81 Salehzadeh [1990] 
Piano silt loam D -380.4±2 -0.01216 5.69 Salehzadeh [1990] 
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Table 1. (continued) 

Matrix D / I /?o±SE Citation Matrix D / I /?o±SE 
d-v l g 

( ^ - ) ( ^ ) 
7 H 2 0 

Citation 
d-v l g 

( ^ - ) ( ^ ) 
7 H 2 0 

Piano silt loam I -356±2 -0.01729 8.10 Salehzadeh [1990] 
Elkmound D - 2 x 1 0 1 5 ± 0 0.00 Salehzadeh [1990] 
sandy loam 

Salehzadeh [1990] Elkmound I -398.8±5.9 -0.00994 4.65 Salehzadeh [1990] 
sandy loam 
Sand D -468.8±5 -0.00586 2.74 She and Sleep [1998] 
Sand I -617.7±59.9 -0.00313 1.47 She and Sleep [1998] 
104-149 fim D -670±30.5 -0.00269 1.26 Wilkinson and Klute [1962] 
sand 
53-74 /xm D -501.4±8.1 -0.00492 2.30 Wilkinson and 
sand Klute [1962] 
13.0-18.5 fim D -522.2±9.4 -0.00446 2.09 Wilkinson and 
silt Klute [1962] 

There is an old joke t h a t goes something like this: 

Fi rs t person: My uncle th inks he is a chicken. 
Second person: W h y don ' t you take him to 

a psychiatr is t? 

Fi rs t person: Because we need t h e eggs. 

Equa t ion (8) describes well t h e effect of t e m p e r a t u r e on 
capillary pressure, b u t t h e s tudies thus far have been 
unable to reconcile clearly equat ion (8) wi th any phys
ical insight abou t capillary pressure in porous media. 
T h e following section reviews some of these a t t e m p t s . 

3. E X P L A N A T I O N S O F T H E P H E N O M E N O N 
A N D T H E I R F A I L U R E S 

Three models have been developed to describe the 
enhanced sensit ivity of capil lary pressure t o tempera
tu re , en t r apped air, solutes, and temperature-sensi t ive 
contac t angles. While t h e th ree will be discussed be
low, we begin wi th a digression t o discuss the notion 
t h a t t he the rma l expansion of water as a mechanism. 
It is likely t h a t this mechanism was considered first, 
bu t never published because of its l imitat ions. Bu t it is 
a useful s tage to begin this discussion since it i l lustrates 
the l imitat ions of approaches based on the the rmal ex
pansion of t h e wet t ing liquid. 

3.1. Water Expansion 

While we know of no publ ished works speculat ing on 
it, t he first na tu r a l suggested mechanism to explain the 
discrepancy between t h e relat ive sensitivities of capil
lary pressure and surface tension of water would be due 
to t he t h e r m a l expansion of water . If it is assumed t h a t 
capillary pressure is solely a function of volumetric wa

ter content and surface tension, t he to t a l derivative of 
capil lary pressure wi th respect t o t e m p e r a t u r e becomes: 

dpc = dpcd0_ dpc_&y^_ ( ) 

dT ~ d6 dT c V s dT ' U 

T h e dpc/d6 t e r m in equat ion (9) reveals t he greatest 
difficulty wi th models of capillary pressure t empera tu re 
sensit ivity based on the rma l expansion of the liquid or 
gas en t r apped in it. dpc/80 is a highly nonlinear func
t ion of 6. (Or, if it is inverted, 06/dpc is a highly non
linear function of pc.) F igure 7 presents dpc/d0 as a 
function of capillary pressure for t h e sand studied by 
She and Sleep [1998]. It is unrealist ic t o assume t h a t 
any function multiplied by (or divided by) dpc/d0 will 
be linear or nearly linear. Accordingly, realistic models 
based on the rma l expansion are unlikely. 

Unfor tunate ly for the proponents of these mecha
nisms, t he preponderance of available evidence has indi
ca ted t h a t t he t e m p e r a t u r e sensit ivity of capillary pres
sure is, a t best , a weak function of water content . 

Equa t ion (9) could be divided th rough by pc t o yield, 
after rear rangement : 

PcdT Vc\^-6dT 7

l s dT' [ } 

If it is assumed further t h a t t h e relat ion between cap
illary pressure and water content is described by the 
equat ion of van Genuchten [1980] 

n - l 

e = oT + {ea-0r)\- 1 .1 " ( i i ) 

I [aPc(T=T t)J + 1 J 
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Figure 7. Partial derivative of capillary pressure with re
spect to degree of saturation for drainage by the sand sample 
studied by She and Sleep [1998]. 

where a (in reciprocal pascals) and n (dimensionless) 
are empirical parameters; 9 is volumetric water content 
(in cubic meters of water per cubic meter of soil); and 9S 

and 9r are the saturated and residual volumetric water 
contents (in cubic meters of water per cubic meter of 
soil), the three elements of equation (10) become: 

1 dpc _ 1 
^ d T ~ A) + T 

i a y s 1 

(12) 

(13) 

and 

19 1 139 _ 
Jcl^f~9cJT~ 

[1 + (pca)n] ay 

( n - i ) (aPc)n (er-es) 
(14) 

where ay (in reciprocal kelvins) is the volumetric coeffi
cient of thermal expansion of water. At 298 K ay has a 
value of 0.00026078 K " 1 . Figure 8 presents these three 
elements of equation (10) for imbibition of an Elkmound 
sandy loam. The dark horizontal line approximates the 
relative effect of temperature on capillary pressure for 
this soil. The stippled horizontal line shows the relative 
effect of temperature on the surface tension of pure wa
ter. The dashed line shows the value of equation (14) for 
this soil. For this soil, the volumetric model was able to 
explain part of the observed discrepancy for some of the 
curves. The predictions of this model are not credible 
at the lower and higher extremes of capillary pressure. 

3.2. Trapped Air Bubbles 

A.J. Peck, a colleague of Philip's, suggested that 
trapped air was responsible for the enhanced sensitiv
ity to temperature of capillary pressure [Peck, I960]. 
This model and its successors [e.g., Chahal, 1964, 1995] 
suffer from the limitation of all models based on ther
mal expansion. Further, the central assumption of these 
models, that the volume of entrapped air increased with 
temperature, have not been supported by experiment. 

Peck [1960] defined an apparent water volume as the 
sum of a "true" water volume and air bubbles trapped 
in the water that have no route to the external atmo
sphere: 

#H 20(l),APP = #H 2 0(1) + #G,BUB (15) 

where #H 2 0 ( i ) ,A P P

 w a s the apparent volumetric liquid 
water content (in cubic meters per cubic meter); #H2O(1)> 
volumetric liquid water content (in cubic meters per cu
bic meter); and #G)BUB> volumetric gas content in bub
bles (in cubic meters per cubic meter). Peck [1960] as
sumed that the total differential of capillary pressure 
with respect to temperature was due to interfacial and 
volumetric effects 

dpc 

dT 
dPc ?H2Q(L),APP 

89 

+ 

H 20(L),APP 

ayg 
dT 

r *s dT 
(16) 

Hopmans and Dane [1986b] carefully measured the vol
ume of entrapped air in unsaturated soil columns at 
two temperatures and found that its volume actually 
decreased with temperature. A plausible explanation 
for this behavior was that it was due to the aqueous 
solubilities of gases, which decreased with increasing 
temperature [Fogg and Gerrard, 1990]. 

ioJ io4 io5 

Capillary pressure/Pa 

Figure 8. Plot of three elements of equation (10). Solid 
line: (l/p c)(dp c/dT); dashed line: {l/pc){dpc/d6)(d9/dT); 
stippled line: ( l / 7

l s ) (d 7

I s /dT) . 
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To make t h e problem more t rac tab le , Peck [1960] as
sumed t h a t t h e t r a p p e d air is composed of spherical 
bubbles wi th uniform radii . T h e pressure experienced 
by water in t h e porous ma t r i x can be calculated by cap
illary pressure or by t h e radius of of the bubbles: 

2 7

l g 

n>ub 
Pg,bub Pg-Pc (17) 

where p g , b u b was pressure in gas bubbles (in pascals); 
pg, pressure in t h e ex terna l gas phase (in pascals); and 
r b u b , r ad ius of t r a p p e d bubble (in meters) . T h e volume 
of Nhub uniformly sized spherical bubbles in t h e uni t 
volume of t h e porous m a t r i x was 

^g,bub = iVbubVg.bub — 
ub (18) 

where iVb u b was number of bubbles per uni t volume 
(in uni ts per cubic meter ) and Vbub, volume of a single 
bubble (in cubic meters ) . Since the pressure wi th in a 
bubble and its volume were related by t he gas law: 

P g ,bubVg,bub = ng,bubRT (19) 

where R is t h e universal gas constant (in joules per 
kelvin-mole) and n g ) b u b , amoun t of gas t r a p p e d in bub
bles per uni t a rea (moles per cubic mete r ) . Combining 
equat ions (17) and (19) yields 

Va g,bub 
«jVg,bub 

/ 3 ngjhuhRT. (20) 

Peck [1960] arr ived a t t h e following approximat ion: 

pc # 7 l g dpc 

dT y s dT 
^v0u2o(\)T(p9 -pc 

+ T(pg-Pc)de/dPc 

Vg,bub(Pg -Pc) -

— Vg.bub 

1 ^ dT 

• nVg-pc)de/dpc-vgMh

 ( 2 1 ) 

From equat ion (7), it was known empirically t h a t t em
pe ra tu re sensit ivity of capillary pressure for most soils 
was described well by: 

dPc = Pc 
dT ~ Po + T' 

Accordingly, t h e equat ion 

(22) 

Pc 
y s dT 

avQn2o{\)T{pg -pc 

+ T(pg-Pc)d6/dPc 

Vg,bub (p g ~Pc) 

Vg,bub 

T Pc a 7

l g 

' 1 ^ dT 
I i ~ ~~ (23) 

T(pg-Pc)d6/dpc-VgMh

 v ; 

could be solved for Vg,bub a s a function of capillary pres
sure. This was done for t h e soil pa ramete r s for drainage 

g- -o.oi 

Capillary pressure/Pa 

F i g u r e 9. Predicted volumes of entrapped air of a Piano 
sandy loam as a funct ion of capi l lary pressure for the model 
of Peck [1960] for the effect of temperature on capil lary pres
sure to be consistent w i t h the empir ical ly determined value 
of ft). 

from a P iano silt loam (drainage) as es t imated by Grant 
and Salehzadeh [1996]. F igure 9 presents the Vg^ub so 
es t imated. 

T h e model of Peck [1960] mus t call upon widely vary
ing and even negat ive values of en t rapped air to de
scribe the empirically described effect of t empera tu re 
on capillary pressure. To be fair, these negative values 
of en t rapped air m a y be due t o the simplifying assump
t ion of spherical bubbles . Negative bubbles may be cal
culated because t h e phenomenon is due to the expan
sion of en t r apped air a t pore t h roa t s , whose behavior 
is poorly represented by spherical bubbles. Subsequent 
researchers have found t h e model of Peck [1960] suc
cessful. 

3.3. Solutes 

Soil solutions are typically di lute (ca. 0.01 m o l » k g _ 1 ) 
aqueous solutions wi th a variety of inorganic and or
ganic solutes. Since it is well known t h a t solutes can 
have a pronounced effect on t he thermophysical prop
erties of the solution, it is reasonable to expect t h a t 
the unexpectedly large effect of t empera tu re capillary 
pressure may be due t o t h e influence of solutes. Ad
ditionally, na tu ra l organic solutes sorb to mineral sur
faces to form "condit ioning films" wi th surface proper
ties different from those of t he prist ine mineral surface 
[Schneider, 1996]. 

T h e solute-effect hypothesis proposes t h a t t he equa
t ion of Philip and de Vries [1957] is correct, bu t t h a t the 
liquid-gas interfacial tension of pure water does not rep
resent t h a t of the pore solutions. Therefore, the equa
t ion of Philip and de Vries [1957] could be rewri t ten 
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dpc 

dT 
1 ^ g

o l 

%g

o l 
dT 

(24) 

where 7 ^ is the liquid-gas interfacial tension of the pore 
solution. Since — 4fe has been determined for most 

Pc di 
porous media, we can state, for the solute effect to be 
true: i 

1 d 7 ° " 1 -0.008 K " 1 (25) 
7& d T 

The experimental evidence reported by Hopmans and 
Dane [1986b] indicates that the condition presented in 
equation (25) is not met. They measured at several tem
peratures the liquid-gas interfacial tensions of solutions 
extracted from a glass bed sample and a soil sample. For 
solutions obtained from a porous matrix of glass beads 
( 1 / 7 s o i ) ( d 7 s o i / d T ) = -0-0019 K " 1 . For solutions ob
tained from a Norfolk sandy loam (^ / l^0\){d^0J dT) = 

-0.0020 K " 1 . 
Chemical thermodynamics presents the solute effect 

hypothesis with another difficulty. The temperature 
derivative of the interfacial tension ( 7 ° ^ ) is equal to the 
negative of the interfacial entropy per unit area (sa,a^, 
in joules per kelvin-meters squared): 

$ 7 ' aj3 

dT 

Equation (25) becomes: 

o^gsol 

% s

o 1 

0.008 K" 

(26) 

(27) 

Equation (27) makes clear that, for the solute-effect hy
pothesis to be correct, the solutes must increase interfa
cial entropy, decrease interfacial tension, or some com
bination of the two. 

Aqueous solutions are more ordered than than the 
pure solvent and it can be inferred that the entropies 
of aqueous solutions are lower than that of pure water. 
(Interestingly, the measurements of Hopmans and Dane 
[1986b] discussed above imply just such a reduction.) 
According to the development of Cahn and Hilliard 
[1958], the entropies of interfaces are identical to those 
of the bulk solution. Accordingly, the solute-effect hy
pothesis can only accepted tentatively if it markedly 
reduces interfacial tension. 

For water to spread on a surface, the adhesive forces 
must exceed the cohesive forces within the bulk water. 
A contact angle of 90° arises when the solid surface 
tension is 7 l g / 4 ; a zero contact angle occurs when the 
surface tensions of solid and liquid are equal [Letey et 
al., 2000]. If the interfacial tension of the solid is smaller 

than the surface tension of pure liquid water, solutes in 
the soil solution may have a considerable impact on the 
contact angle. Increasing interfacial tension between 
the liquid and gas phases 7 l g may lead to greater contact 
angles, and a reduction of the liquid interfacial tension 
may decrease the contact angle. We are aware of only 
one study that found that the surface tension of soil 
solution was higher than for pure water. Hartge [1958] 
showed that liming his soils under study increased the 
concentration of inorganic cations in the solution, which 
increased the liquid surface tension to values around 
76 m N « m _ 1 at 20 °C. More often, a reduction of the 
liquid interfacial tension was observed. The presence 
of both hydrophilic polar and hydrophobic structural 
units of natural organic compounds can be expected to 
promote accumulation at the liquid-gas interface, which 
thereby influences the solution surface tension [Ander
son et al., 1995]. Humic and fulvic acids, proteins, 
fatty acids, and other organic compounds of natural 
ecosystems possess both hydrophobic (aromatic rings 
and aliphatic hydrocarbons) and hydrophilic (oxygen-
containing) functional groups. This suggests that, like 
synthetic surfactants, these compounds would exhibit 
significant surface activity. Chen and Schnitzer [1978] 
demonstrated that pyrolyzed fulvic acid, which had lost 
the functional groups, lowered the surface tension of wa
ter only slightly. The potential of humic and fulvic acids 
to lower the soil surface tension was shown by Chen and 
Schnitzer [1978]. For humic acid dissolved in water, a 
linear reduction to values of 43 m N « m - 1 and for fulvic 
acid a hyperbolic decrease to values of 44 m N « m _ 1 were 
observed, whereas Tschapek et al. [1978] observed only 
a decrease in surface tension of diluted soil solutions 
of about 9 m N « m _ 1 . Temperature may have a signif
icant effect on the solubility of surfactants in the soil 
solution. As reported by Nimmo and Miller [1986], the 
temperature effect on the surface tension of soil solu
tions is larger than for pure water. Unfortunately most 
of the measurements of the interfacial tension of soil 
solution were made without considering the tempera
ture effect. It was shown that the solubility of fatty 
acids may increase with temperature by a factor of 2 
to 3 for a temperature increase from 0 to 60 °C [Sin
gleton, 1960, cited by Nimmo and Miller, 1986]. Chen 
and Schnitzer [1978] showed further that lipid-enriched 
leaf extracts of poplar and maple decreased the surface 
tension of water of 72 m N » m _ 1 effectively by 30 %. 
Anderson et al. [1995] demonstrated that humic acid-
water solutions decrease linearly in surface tension with 
increasing concentration. The temperature had a sub
stantial effect on the liquid interfacial tension. Surface 
tension reductions were linear with increasing tempera
ture. Surface tension reductions per kelvin were found 
to be twice as high compared with pure water of-0.138 
m N t m - ^ K " 1 . 
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3.4. Contact angles 

3.4-1. The nonzero contact angle phenomenon in soils. 
The cosine of the contact angle at the intersection of the 
gas, liquid, and solid phases is related to the pertinent 
interfacial tensions by 

V s _ gs 

where 7 l s and 7 g s are the liquid-solid and gas-solid in
terfacial tensions (in newtons per meter), respectively 
[Rowlinson and Widom, 1982]. In order to discuss the 
wetting coefficient as a relevant factor affecting the tem
perature dependence of the capillary pressure, it is es
sential to realize that, in general, porous media exhibit 
nonzero contact angles with respect to water or soil so
lution. This statement should not be considered trivial, 
because in the past most scholars assumed complete 
wetting, except the few who focussed on eye-catching 
"extremely water repellent" soils [Doerr et al, 2000]. 
Until now, only a few studies indicate that, besides wa
ter repellency, "all other soils" or packings of glass beads 
[Lu et al, 1994] were interacting with the soil solution 
or water with nonzero contact angles. 

Langmuir reported in 1919 in a lecture to the Fara
day Society that an adsorbed monolayer of some or
ganic compound could radically change the frictional 
and wetting properties of the solid surface [Zisman, 
1964]. Selective sorption of organic molecules, as it 
was observed for aliphatic alcohol from water to silica 
surfaces [Tschapek, 1984], or the loss of water through 
evaporation, allows the deposition of solutes on the sur
face of the mineral. 

Surface tensions of hard solids, like metals and min
erals, range from 5000 m N « m _ 1 (high-energy surfaces), 
depending on their hardness and melting point, down 
to 9 m N » m _ 1 for closed packed - C F 3 groups [Zisman, 
1964]. Soft organic solids have much lower melting 
points, and the surface tension is generally less than 
100 m N » m _ 1 . The few measurements of interfacial ten
sion in soil [Miyamoto and Letey, 1971] indicate small 
values. These authors reported interfacial tensions for 
quartz sand of about 43 m N i m " 1 , for water-repellent 
soil of 25 m N » m _ 1 , and for silane-treated soil around 10 
m N « m - 1 . It has also been argued that all the inorganic 
soil minerals were hydrophilic because their surfaces 
usually hold ions and polar groups [Tschapek, 1984]. 
The hydrophilicity of minerals increases together with 
the densities of their surface charges and surficial polar 
groups. 

Generally, a hydrophobic surface in contact with wa
ter can remain hydrophobic, as long as the interaction 
between water and a hydrophobic surface takes place 
through dispersive forces, while the polar forces remain 

free. According to the comprehensive review article 
by Doerr et al [2000], the breakdown of hydropho-
bicity can be caused by the migration of surface-active 
substances in contact with water. The combination of 
surface properties and topology of the porous media 
emphasizes that observations were, at best, apparent 
contact angles, which cannot be related directly to the 
contact angle at interfaces within the medium [Philip, 
1971]. 

When in studies about the temperature dependence 
of the contact angle, apparent contact angles were de
termined through capillary ascent, the tendency was a 
decrease of the contact angle with increasing temper
ature [King, 1981]. The soils studied by King [1981] 
had contact angles between 75 and 99 0 and were rated 
from not water repellent to severely water repellent. It 
was also shown that the temperature dependence of all 
soils increased with increasing contact angle and that 
in all cases it was considerably larger than estimated 
for pure water. Over the temperature range 0 to 36 °C, 
a negative linear relationship between capillary ascent 
and temperature was obtained.The height of water rise 
of the reference medium (ignited soil) was not affected 
by temperature. Further evidence for nonzero contact 
angles was provided by Siebold et al. [1997] with the 
capillary rise technique. For silica powder (<123 /im, 
99.5% S i0 2 ) and for limestone particles (>460 fim, 98 % 
CaCOs), contact angles of 56° to 79° were measured. 
The above findings indicate that a wetting coefficient 
< 1 (i.e., contact angles > 0°) was not restricted to a 
few hydrophobic soils. It seems that weathered min
eral surfaces or coatings and hydrophobic particles in 
the pore space of wettable mineral particles reduced the 
wettability of the high-energy surfaces to values < 72 
m N t m " 1 . It was further interesting to note that accord
ing to King [1981], soils classified with the conventional 
Water Drop Penetration Time (WDPT) Test as soils 
with a low degree of water repellency (WDPT <60 s) 
have contact angles up to 86°. 

Experiments conducted with wettable soils and their 
water-repellent counterparts having identical textures 
showed that the contact-angle decrease with temper
ature is between -0.03° mK'1 and - 0 . 2 6 ° « K _ 1 [Bach
mann et al, 2001, Table 1]. These values agreed with 
those cited by She and Sleep [1998]. The results of Bach
mann et al [in review] suggested further that equation 
(16), which predicts an increase of the contact angle 
with increasing temperature, did not match the ob
served tendency to lower contact angles with increas
ing temperature in a partly saturated porous medium. 
However, Figure 10 shows contact angles measured with 
the sessile drop method for dry soil treated with differ
ent amounts of dimethyldimethylsilane. In this case, an 
increase of the contact angle with increasing tempera-
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F i g u r e 10. Sessile drop contact angle measured on hy
drophobic soil particles of the silt fraction. Soil was treated 
with 84 mL dimethyldichlorosilane per kg dry soil (closed 
symbols) and 21 mL silane per kg soil (open symbols). The 
method was reported by Bachmann et al. [2000]. 

tu re was found. T h e largest t e m p e r a t u r e effects were 
observed for the soil wi th contact angles a round 90° at 
20 °C. 

3.4.2. Interaction of capillary water and adsorbed water 
films. T h e adsorpt ion of water vapor leads to a de
crease of t h e interfacial tension between the solid and 
the gas. B a n g h a m and Razouk [cited in Schrader, 1993] 
s ta ted t h a t " . . . t h e adsorbed vapor phase and bulk liq
uid in contact wi th t h e solid surface must be regarded 
as dist inct t h e r m o d y n a m i c entit ies, separa ted in gen
eral by a discontinuity." Al though not s t a ted directly, 
the derivation of equat ion (32) did not include explicitly 
the physical n a t u r e of t h e th in water films either a lready 
adsorbed on the solid surface or adsorbed as droplets or 
menisci. Taking t h e case t h a t the vapor phase was re
placed by the liquid, t hen t he decrease of t he interfacial 
tension was 7 l g c o s G . T h e decrease of the interfacial 
tension tak ing place when water vapor was adsorbed 
was propor t ional to t he t e m p e r a t u r e and the integral 
of t he number of moles adsorbed per unit area a t pres
sure p [Schrader, 1993]. A n increase of water repellency 
wi th an increasing amoun t of water was phenomeno-
logically observed for soils [see review paper Doerr et 
al., 2000]. Most s tudies on t h e t empera tu re effect on 
capillary pressure have been conducted for in termedia te 
water contents . In this case it could be assumed t h a t 
water films and menisci existed simultaneously. This 

may have had impor t an t consequences for the contact 
angle of the solid-liquid interface. Under an initially dry 
condit ion, t h e wet t ing front proceeded like a j u m p be
havior a t the par t ic le wi th t he smallest d iameter , while 
a very th in , unobservable water film may have existed 
on the surfaces. Under an initially wet condition, cap
illary rise occurred as a film thickening process [Lu et 
al., 1994]. Derjaguin and Churaev [1986] suggested sep
a ra t ing th in water films into two regions wi th different 
physical proper t ies . I t was assumed t h a t th inner a-
films are caused by s t ruc tu ra l forces and thicker /3-films 
by electrostat ic forces. T h e t rans i t ion from an a- t o 
a /3-film is character ized by complete wet t ing (contact 
angle = 0°) . I t was found t h a t t h e range of thickness of 
films varied between 3.0 and 27.0 nm. W i t h an increas
ing contact angle, t h e film thickness decreased. Th i s 
effect was observed on glass, quar tz , and mica surfaces. 
Derjaguin and Churaev [1986] indicate also t h a t an in
creasing t e m p e r a t u r e leads t o th inner water films a n d 
increasing contact angles. T h e general behavior of a 
surface dur ing adsorpt ion of water vapor (drop forma
t ion or film formation) can be derived from water vapor 
adsorpt ion isotherms [Schrader, 1993]. 

3.4.3. Temperature-sensitive contact angles. Grant and 
Salehzadeh [1996] explored t h e not ion t h a t t he phe
nomenon was due t o t empera tu re - induced changes in 
the contact angle. If a tempera ture-sens i t ive contact 
angle is accepted conditionally, t h e n t he t e m p e r a t u r e 
derivative of equat ion (1) becomes 

1 dpc = 1 c l7 l g 1 d c o s 6 
pc dT ~ y s d r c o s e dT • 1 } 

As discussed in Section 2, for pure water 

1 d 7

l g 1 

y s d T f + T " 

It remains therefore t o derive an expression for 

1 d cos B 
cos 9 d T 

(30) 

(31) 

Equa t ion (31) can be evaluated wi th a frequently cited, 
bu t rarely tes ted , expression first derived by Harkins 
and Jura [1944]: 

- A ^ = V g c o s e - T ^ ^ ) ( 3 2 ) 

where — £±fghs is t h e en tha lpy of immersion per uni t 
area (in joules per square me te r ) . 

If it is assumed t h a t 

dAths 

^ — = 0 
d T 
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one der ives i m m e d i a t e l y 

cos 9 
a + bT 

( 3 3 ) 

where C i is a cons tan t of integrat ion. Equa t ion (29) 
can t h e n be evaluated directly: 

where 

j _ d p e = 1 
pc dT Po + T 

Po = 
C i 

(34) 

(35) 

S u b s t i t u t i n g e q u a t i o n s ( 3 4 ) a n d (30 ) into e q u a t i o n (29) 

y ie lds : 

1 1 1 d c o s O 

Po + T~ f + T + cosG) d T " ( ' 

C l e a r l y , i f d c o s 0 / d T = 0, as a s s u m e d i m p l i c i t l y b y 

Philip and de Vries [1957] , t h e n p0 = a/b = - 7 6 6 . 4 5 K . 

E q u a t i o n (8 ) c a n b e d e r i v e d f r o m f irst p r i n c i p l e s a n d 

d e s c r i b e s v i r t u a l l y a l l ava i l ab le c a p i l l a r y p r e s s u r e s a t u 

r a t i o n r e l a t i o n d a t a we l l . I n sp i te of t h i s , She and Sleep 

[1998] f o u n d a se r ious p r o b l e m w i t h e q u a t i o n ( 3 4 ) . F o r 

c o n s i s t e n c y w e are p r e s e n t i n g the i r a r g u m e n t m o r e i n 

keep ing w i t h t h e t r e a t m e n t i n th is a r t ic le . W e h o p e 

they agree t h a t t h i s t r e a t m e n t ref lects the i r ideas . 

W h i l e there is a not i n c o n s i d e r a b l e u n c e r t a i n t y i n the 

m e a s u r e m e n t s , the ava i l ab le d a t a ind ica te tha t the c o n 

tac t ang le i n so i ls is g e n e r a l l y i n a w i d e r a n g e be tween 

0° a n d > 90° a n d t h a t the contac t angle is a d e c r e a s i n g 

f u n c t i o n of t e m p e r a t u r e . 

R e a r r a n g e m e n t a n d s i m p l i f i c a t i o n of e q u a t i o n (36) 

y ie lds 

^ d 9 1 8 0 / 1 1 \ 
t a n 9 — = ( - ^ - ^ - n m ] . ( 3 7 ) 

d T f + T Po + T 

E q u a t i o n ( 3 7 ) d e m o n s t r a t e s the per i l s of f o r m u l a t i n g 

th is we t tab i l i t y of p o r o u s m e d i a i n t e r m s of con tac t a n 

gles. T h e g r a p h o f the f u n c t i o n tan 0 has a d i s c o n t i 

nu i ty at 90° , l i m t a n 0 0 _ ^ 9 o o is + o o w h e n a p p r o a c h e d 

f r o m below 90° a n d —oo w h e n a p p r o a c h e d f r o m above . 

S i n c e at 298 K 

1 = - 0 . 0 0 2 1 4 5 
+ T 

a n d at the s a m e t e m p e r a t u r e the average v a l u e of /3Q 

for the so i ls s t u d i e d t h u s far y ie lds 

1 

Po + T 
it w o u l d b e e x p e c t e d t h a t 

= - 0 . 0 0 8 4 4 , 

d e 
t a n 9 — - « 0 .36. 

d T 
(38) 

F o r v i r t u a l l y a l l so i ls s t u d i e d t h e r ight h a n d s ide of e q u a 

t i o n (38 ) is p o s i t i v e . T h i s i m p l i e s tha t t a n O a n d ^ 

m u s t have the s a m e s i g n . A s s u m i n g that d © / d T < 0 

a n d r e c a l l i n g t h a t t a n 6 > 0 for 0° > 9 > 90° a n d 

t a n 9 < 0 for 90° > 9 > 180° , equa t ion (38 ) w i l l 

h o l d o n l y for 9 > 9 0 ° , w h i c h is inconsis tent w i t h the 

"conven t iona l w i s d o m " a b o u t the wet tab i l i ty of n a t u r a l 

p o r o u s m e d i a . 

4 . C O N C L U D I N G R E M A R K S 

T h e effect of t e m p e r a t u r e o n c a p i l l a r y p r e s s u r e is 

a l inear ly d e c r e a s i n g f u n c t i o n of t e m p e r a t u r e we l l de 

s c r i b e d b y e q u a t i o n ( 8 ) . T h e p a r a m e t e r PQ a p p e a r s to 

b e unaf fec ted or w e a k l y af fected b y water content . I t is 

un l i ke ly t h a t a m e c h a n i s m d u e to the t h e r m a l e x p a n 

s ion of the s o i l s o l u t i o n or i ts const i tuents c a n d e s c r i b e 

the effect of t e m p e r a t u r e o n c a p i l l a r y p ressure . T h e 

most l ike ly m e c h a n i s m s are so lu te effects o n the so i l s o 

l u t i o n s u r f a c e t e n s i o n or t e m p e r a t u r e - i n d u c e d changes 

i n contac t ang les . 

I t is i m p o r t a n t to no te t h a t the genera l bel ie f t h a t 

soi ls exh ib i t n o n z e r o c o n t a c t angles m a y b e i n v a l i d . 

G e n e r a l l y , the w e t t i n g coeff ic ient m a y be one of th ree 

c a n d i d a t e m e c h a n i s m s for the l a r g e r - t h a n - e x p e c t e d t e m p 

e r a t u r e - d e p e n d e n c e of t h e c a p i l l a r y p ressure . I n o u r 

o p i n i o n , w e t t i n g coef f ic ients a re t e m p e r a t u r e d e p e n 

dent . H o w e v e r , a l t h o u g h the t e m p e r a t u r e effect is 

c lear ly o b s e r v a b l e for sessi le d r o p s o n re la t ive ly d r y so i l 

p a r t i c l e s , there are v e r y few s tud ies c o n d u c t e d to inves

t igate the t e m p e r a t u r e effect o n the contact angle of s u r 

faces i n c o n t a c t w i t h wa te r . G e n e r a l l y , a larger t e m p e r 

a ture factor po i n e q u a t i o n (8) resu l ts in lower c a p i l l a r y 

forces at h i g h t e m p e r a t u r e s b e c a u s e i n c r e a s i n g t e m p e r 

a tu re affects the c a p i l l a r y p r e s s u r e i n the s a m e d i r e c t i o n 

( to less negat ive v a l u e s ) as a n i n c r e a s i n g contact angle . 

T h i s effect, however , c a n n o t b e quant i f ied w i t h o u t a d 

d i t i o n a l m e a s u r e m e n t s of the t e m p e r a t u r e d e p e n d e n c e 

of the soi l s o l u t i o n s u r f a c e tens ion . 

F u r t h e r i m p o r t a n t r e s e a r c h gaps c a n be ident i f ied . 

Soi ls are genera l l y s t r u c t u r e d . H o w e v e r , no a t tempt h a s 

been m a d e to inves t iga te the w e t t i n g coefficient of outer 

a n d inner aggregate s u r f a c e s . E v e n w h e n some e x p e r i 

ments m a d e o n w a t e r / g l a s s - b e a d s y s t e m s ind ica te tha t 

solutes do not c a u s e a t e m p e r a t u r e dependence , a l ter

na t ive m e t h o d s of i n v e s t i g a t i o n (e .g . , the c a l o r i m e t r i c 

m e t h o d ) seem to c o n f i r m the a s s u m p t i o n of a t e m p e r a 

tu re d e p e n d e n c e of t h e w e t t i n g coeff icient a c c o r d i n g to 

e q u a t i o n ( 3 2 ) . 

R e s o l u t i o n of these issues w i l l r e q u i r e nove l e x p e r i 

m e n t a l t e c h n i q u e s a n d n e w p h y s i c a l ins ights . F o r t y - f o u r 

years after i ts p u b l i c a t i o n , t h e ques t ions ra ised b y Philip 

and de Vries [1957] c o n t i n u e to c o m p e l the geophys ics 

c o m m u n i t y to t h e l i m i t s of u n d e r s t a n d i n g . 



GRANT AND BACHMANN 211 

n 
^g,bub 

JVbub 

Pc 
Pg 

Pg,bub 
r 

?"bub 
R 

ss,cc{3 

^bub 

T 
Tf 

Cty 

t7g,bub 

0 H 2 O ( 1 ) 

% 2 0 ( l ) , a p p 

0 

N O T A T I O N 

f i t ted p a r a m e t e r , P a 
f i t ted p a r a m e t e r , N / m 
f i t ted p a r a m e t e r , P a / K 
f i t ted p a r a m e t e r , N / ( m K ) 

v a n G e n u c h t e n e q u a t i o n p a r a m e t e r , d i m e n s i o n 1 
a m o u n t of gas t r a p p e d i n b u b b l e s p e r u n i t a r e a 
m o l / m 3 

n u m b e r of b u b b l e s p e r un i t v o l u m e , m - 3 

c a p i l l a r y p r e s s u r e , P a 
p r e s s u r e i n the e x t e r n a l gas p h a s e , P a 

p r e s s u r e i n gas b u b b l e s , P a 

p o r e r a d i u s , m 

r a d i u s of t r a p p e d b u b b l e , m 

u n i v e r s a l gas c o n s t a n t , J / ( K m o l ) 

i n te r fac ia l en t ropy p e r un i t a r e a be tween a a n d 
/3 p h a s e s , J / ( K m 2 ) 
v o l u m e of a s ing le b u b b l e , m 3 

t e m p e r a t u r e , K 

o b s e r v a t i o n a l t e m p e r a t u r e , K 
re ference t e m p e r a t u r e , K 

v a n G e n u c h t e n e q u a t i o n p a r a m e t e r , P a - 1 

the c u b i c e x p a n s i o n coeff icient of wa ter , K _ 1 

p a r a m e t e r , K 

i n t e r f a c i a l t e n s i o n be tween the l i q u i d a n d gas 
p h a s e s , N / m 

i n t e r f a c i a l t e n s i o n between the l i q u i d a n d s o l i d 
p h a s e s , N / m 

i n t e r f a c i a l t e n s i o n be tween the s o l i d a n d gas 
p h a s e s , N / m 

v o l u m e t r i c so i l -water content , m 3 / m 3 

v o l u m e t r i c gas content i n b u b b l e s , m 3 / m 3 

v o l u m e t r i c l i q u i d water content , m 3 / m 3 

a p p a r e n t v o l u m e t r i c l i q u i d w a t e r content , 
m 3 / m 3 

r e s i d u a l v o l u m e t r i c so i l -water content , m 3 / m 3 

s a t u r a t e d v o l u m e t r i c so i l -water content , m 3 / m 3 

c o n t a c t angle of the l i q u i d - g a s in ter face w i t h the 
s o l i d , ° 
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Hysteresis in the water retention characteristic of a soil is important in predic
t ion of soil hydraulic propert ies and in description of vadose zone flow and 
transport processes. Al though a number of models have been proposed, some are 
entirely empirical and others are inconvenient to use. W e apply a theoretical ap
proach to derive parameters for a more suitable model based on the concept of 
rational extrapolation. Consider ing the water retention curve to be described by 
three parameters , the first defining the shape of the curve and the two others 
scaling the soil water pressure head and volumetr ic soil water content, three 
geometrical scaling condit ions are derived. The first condit ion determines a 
shape parameter which is identical for all wet t ing and drying curves and inde
pendent of their scanning order ; the second defines the relation be tween the 
pressure head scale and the water content scale specific to each curve in wet t ing 
or drying; and the third condit ion determines specific water content scale pa
rameters according to the points of departure and arrival of each scanning curve. 
Equat ions necessary for the calculation of the different scale parameters are de
rived. Given the saturated water content, all main, pr imary and higher order 
scanning curves can be predicted from knowledge of only one curve, al though in 
practice knowledge of a main or pr imary curve is desirable. Constraints such as 
the need for scanning curves to be closed and to lie inside curves of a lower 
scanning order are automatical ly satisfied. The method is illustrated using the 
van Genuchten water retention function but could also be applied to other func
t ional forms. Results agree wel l wi th the existing data. It appears that knowledge 
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214 SOIL WATER HYSTERESIS PREDICTION MODEL 

of water retention in the field is often hampered by uncertainty in the hysteresis 
history of the soil. The model el iminates the residual water content as a soil 
characterist ic parameter. 

1. INTRODUCTION 

Knowledge of the soil water retention curve h(d), relat
ing soil water pressure head h [L] to volumetric soil water 
content 6 [L 3 /L 3], is important in field studies of water and 
solute transport in the unsaturated zone. A full description 
of the relationship requires at least three parameters: one 
shape parameter and a scale parameter for each of 6 and h. 
While the shape parameter is strongly linked to soil texture, 
the water content and pressure head scale parameters are 
primarily related to soil structure [Haverkamp et al., 1998]. 
The relationship is complicated by hysteresis where water 
content at a given pressure head is higher during drying 
than during wetting. Hysteresis is more pronounced for 
sands than for clay soils, particularly for sands with low 
initial water content profiles prior to wetting [e.g., Vachaud 
andThony, 1971]. 

For convenience, hysteresis is usually ignored because its 
influence under field conditions is often masked by hetero
geneities and spatial variability. However, many authors 
[e.g., Nielsen et al., 1986; Parker and Lenhard, 1987; 
Russo et al., 1989; Heinen and Raats, 1997; Often et al, 
1997; Whitmore and Heinen, 1999; Si and Kachanoski, 
2000] have shown it to be important in simulations of water 
transfer, solute transport, multiphase flow and/or microbial 
activities, and to disregard it leads to significant errors in 
predicted fluid distributions with concomitant effects on 
solute transport and contaminant concentrations [e.g., Gil-
ham et al., 1976; Hoa et al, 1977; Kool and Parker, 1987; 
Kaluarachchi and Parker, 1987; Mitchell and Mayer, 
1998]. 

Theoretically, it should be possible to predict hysteretis 
from first principles [e.g., Hassanizadeh and Gray, 1993]. 
However, this problem remains largely unsolved, and our 
rather sketchy understanding of soil structure suggests that 
only a few soil models will yield to this approach. Instead, 
the description of hysteresis in soils remains largely based 
on Poulovassilis' [1962] application of the independent 
domain theory to soils. Most hysteresis models presented in 
the literature [e.g., Topp, 1971; Mualem, 1974; Mualem 
and Miller, 1979] interpolate scanning water retention 
curves from both main drying and wetting curves. A simple 
linear interpolation method was proposed by Hanks et al. 
[1969] which assumed that the scanning curves can be re
placed by straight lines, with slopes defined by the bound

ary curves. Jaynes [1985] concluded from a comparative 
study that "none of the interpolation methods was consis
tently better than the other" and suggested that because of 
its simplicity "the linear method appears to be the method 
of choice". Some empirical hysteresis models used geomet
ric scaling [e.g., Scott et al., 1983; Kool and Parker, 1987; 
Parker and Lenhard, 1987] with various methods to ensure 
closure of the scanning loops depending on possible air 
entrapment during rewetting [e.g., Hopmans and Dane, 
1986]. 

As an alternative, Parlange [1976] presented a theoreti
cal approach based on the concept of rational extrapolation. 
This theory is precise and robust. It requires only one 
boundary curve of the hysteresis envelope to predict the 
other boundary and all scanning curves in between. The 
basic equation, which estimates a drying curve starting at a 

given soil water pressure head hstd on the wetting curve, can 
be generalized to the differential equation: 

dh 

where the subscripts d and w refer to drying and wetting; 
the subscript std designates the pressure head hstd on the 
wetting branch from which a drying curve departs. As il
lustrated by Figure 1, Eq. (1) is only valid for 6d <z0std, 
where 6std = 6{hstd). The integration of Eq. (1) gives an 
equation for the wetting curve starting at a pressure head 
hstw(&stw) on the drying curve [see Parlange, 1976]. Based 
on this concept, Haverkamp and Parlange [1986] simpli
fied and reformulated the hysteresis model for the case of a 
Brooks and Corey [1964] water retention function. Hogarth 
et al. [1988] and Liu et al. [1995] generalized this explicit 
hysteresis model and demonstrated its accuracy against 
experimental observations. 

An inconvenience of the Parlange [1976] model (Eq. 
(1)) is that it imposes a wetting curve without an inflection 
point. This is illustrated by Figure 1 taken from Haverkamp 
and Parlange [1986], where the main drying curve is given 
by a modified Brooks and Corey [1964] function. When 
considering other forms for the main drying water retention 
equation such as the van Genuchten [1980] function, the 
inconvenient condition imposed by Eq. (1) on the behavior 
of the main wetting curve remains. In general no analytical 
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6 (cm3/cm3) 

Figure 1. Schematic diagram of the Parlange [1976] hysteresis 
model with the main wetting curve (MWC), the main drying curve 
(MDC), a primary drying curve (PDC) with starting point 
(0std, hstd) and a primary wetting curve (PWC) with starting point 
(@stw J nstw)' 

solution can be found for the Parlange model applied to the 
van Genuchten water retention equation, although some 
solutions are available for special cases [Braddock et al., 
2001]. 

This study develops a simple analytical hysteresis pre
diction model using a convenient functional form such as 
that of van Genuchten [1980] for all wetting and drying 
curves. The Parlange [1976] model provides the theoretical 
basis, but instead of using the differential equation (1) di
rectly we derive simple geometric scaling conditions. The 
analysis is presented in two parts: the first part deals with 
the theory of the model; the second tests it against data for 
various soils taken from the literature. 

2. THEORY 

The model uses the water retention relation proposed by 
van Genuchten [1980] but the method applies to other 
functions such as the Brooks and Corey [1964] relation. 

The van Genuchten equation is given by: 

* 
where 6 is degree of saturation; 6 is volumetric water 
content [L 3 /L 3 ] ; 0S is the volumetric water content at natu
ral saturation chosen as the water content scale parameter; 
6r is a parameter often referred to as the residual volumetric 
soil water content; h [L] is soil water pressure head, taken 
to be negative and expressed in cm of water; and hg is the 
van Genuchten pressure head scale parameter (note that hg 

is inversely proportional to the Miller [1980] characteristic 
length scale). The two dimensionless water retention shape 
parameters, m and n, are related by: 

k 
m = \ - with n>km , (3) 

n 

where km was initially introduced as an integer by van 
Genuchten [1980] to calculate closed-form analytical ex
pressions for the hydraulic conductivity using the predictive 
conductivity models of Burdine [1953], when km = 2 and 
n>2, or Mualem [1976a], when km = 1 and n>\. For large 
negative pressure heads only the product mn is significant. 
Haverkamp et al. [1998] showed that its value is constant 
for a given soil as it remains independent of km , while m 
and n individually depend on km. This allows the shape pa
rameter values calculated using the Burdine-mode to be 
converted into m and n values valid for the Mualem-mode 
of the van Genuchten equation and vice-versa. For the ma
jority of soils (96 %) taken from the GRIZZLY soil data
base [Haverkamp et al., 1998] mn lies in the interval 
0 < mn< 1. The product mn will be referred to as the water 
retention shape indicator. 

The value of dr is generally estimated by fitting the water 
retention equation to measured h{6) data points. This pro
cedure reduces 0r to an empirical fitting parameter re
stricted to the range of data points used. It gives doubtful 
results when applied beyond this range (e.g., in evaporation 
studies). The physical meaning of parameter 6r is ambigu
ous. When wetting an oven dried soil sample, the 0,.-value 
of the main wetting curve should obviously be equal to 
zero. As the hysteresis loop should be closed, it follows that 
the 0r- value of the main drying curve should theoretically 
also be equal to zero. Under field conditions a soil will 
rarely dry to zero water content. Small quantities of water 
are held by adsorptive forces and trapped in dead-end pores 
resulting in a non-zero 0 r-value. As this non-zero # r-value 
depends not only upon the pore geometry of the soil but 
also upon the initial conditions prior to wetting, the non-
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6 (cm3/cm3) 

Figure 2. Schematic diagram of the hysteresis model with the 
main wetting curve (MWC), the main drying curve (MDC), a 
primary wetting curve (PWC) with starting point (0stpw, hstpw) and 
a primary drying curve (PDC) with starting point {0stpd, hstpd). 

zero 6r-value cannot be considered as a soil characteristic 
parameter. In our model the value of 6r is related to the 
wetting and drying history prior to measurement of the h{6) 
data points. Setting &r=Q for the main hysteresis loop, the 
scanning curves (e.g., a primary wetting curve) will have 
non-zero # r-values. The non-zero capillary 6r-value is then 
attributed to a wetting or drying curve of a higher scanning 
order rather than to the main wetting or drying curve. This 
eliminates 6r as a soil characteristic parameter (at least for 
soils with unimodal behavior). We note that even though a 
zero dr-value seems the obvious choice for the main dry
ing/wetting loop, the hysteresis model described here can 
still be applied when a non-zero &r- value is preferred. 

2.1. Hysteresis Model 

The model is shown schematically in Figure 2. The 
boundary hysteresis loop consists of the main wetting curve 
(MWC) and main drying curve (MDC). If the wetting proc
ess is truncated and reversed to drying at a pressure head 
hstpd on the main wetting curve, a primary drying curve 
(PDC) results. Similarly, a primary wetting curve (PWC) 

departs from the main drying curve at a pressure head hstpw 

on the main drying curve and finishes at saturation &s (Fig
ure 2). This condition implies that changes in the volume of 
entrapped air during rewetting [Hopmans and Dane, 1986] 
are disregarded. In general, any wetting (or drying) curve is 
defined by its point of departure from and arrival at a dry
ing (or wetting) curve of a scanning order one lower. For 
example, in Figure 2 a secondary wetting curve (SWC) 
would depart from the primary drying curve (PDC) at some 
pressure head hstsw and rejoin the primary drying curve 
(PDC) at the point (dstpd,hstpd) where the PDC departed 
from its wetting parent (MWC). Further wetting would then 
continue along the MWC. 

The basic hypothesis for our hysteresis model is that all 
wetting and drying curves, whatever their scanning order, 
have the form of the normalized van Genuchten water re
tention equation (Eq. (2)); that is, they have shape similar
ity, which does not necessarily mean shape identity. Each 
curve is characterized, a-priori, by its specific shape pa
rameters (m and «), pressure head scale parameter (hg) and 
water content scale parameters i.e., &r and/or 6S depending 
upon the starting and end points of the curves. For example, 
the PDC (Figure 2) which departs from the MWC at a point 
(OstPd,hstpd)i e n d s at 0rpd= 0, and can be prolonged beyond 
the hysteresis envelope to the 6- axis (dashed line). When 
h = 0 then 6 = 6Spd, which is fully determined by the starting 
point 6stpd at which the primary drying curve departs. Al
though the physical meaning of the water content scaling 
parameter 6Spd is slightly abstract, its value is mathemati
cally well-defined. The residual water content values of the 
various scanning curves are mathematically defined in a 
similar way, i.e., when A->-<» then 6 -> 6r. For example, 
for the PWC (Figure 2) 6r= 0rpw, even though its value lies 
outside the hysteresis envelope. Obviously, 0r=O for the 
main wetting and drying curves, as well as for the primary 
drying curves. 

Table 1 gives the parameter notation we use for the vari
ous scanning curves. 

This set of wetting and drying equations with their spe
cific shape and scale parameters defines the basic frame
work of the hysteresis model. To minimize the number of 
parameters for prediction purposes, relations between the 
different parameters must be determined. As shown by the 
arrows in Table 1, there are two sets of relations: one links 
parameters of curves belonging to the same scanning order 
but different families (e.g., main wetting curve o main 
drying curve); the other links parameters of curves be
longing to the same family but different scanning order 
(e.g., main wetting curve primary wetting curve). Only 
then can the hysteresis model be used to predict the hys
teretic behavior of a soil from a simple set of water reten-
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Table 1. Table showing the specific parameter notations used for 
the main and scanning curves in wetting and drying. Parameter k 
designates the scanning order. 

SHAPE and SCALE Parameters 

Scanning order Wetting Drying 

Main curves mmw •> nmw •> mmdi nmd> 
(* = 0) @S •> hgmw &S>hgmd 

Primary curves mpw' npw •> ™pd> npd 
(k=\) ®S' @rpw» hgpw QSpd? hgpd 

Secondary curves mSW J
 nsw •> ™sd, nsd> 

(k = 2) @Ssw' @rsw •> hgsw QSsd> &rsd, hgsd 

Tertiary curves mtw > ntw > ™td ntd 
(* = 3) &Stw > Ortw > ngtw QStd> °rtd> hgtd 

Quarternary curves mqw> nqw J "*qd> nqd, 

(* = 4) 1 @Sqw > @rqw > hgqw QSqd? &rqd> hgqd 

tion measurements. While the model of Parlange [1976] 
provides a suitable theoretical basis for deriving the rela
tions between the shape and scale parameters of the main 
and scanning curves, the concept of geometric scaling al
lows the determination of the scale parameters as a function 
of the starting and arrival points. First, the relations be
tween the shape and scale parameters of the main and scan
ning curves are addressed. 

2.1.1. Shape and scale parameters 

i) Routing between the main wetting and main drying curves 

Starting with the main loop, the main wetting curve 
(MWC) expressed in the form of the van Genuchten func
tion (Eq. (2)) is given by: 

6mw = 
'Smw 

1 + 
h 

(4) 

and the main drying curve (MDC) by: 

'Smd 

1 + 

/ Xnmd^mmd 
1 h x 

\hgmd ) 
, (5) 

where the subscripts mw and md refer to the main wetting 
and main drying curves respectively. The loop for the main 

wetting and drying curves should obviously be closed with 
Osmw = 0Smd=ds and 0rmw = 6rmd-0 (Figure 2). While the 
relations between the specific wetting parameters mmw, nmw, 
hgmw and drying parameters mmd, nmd, hgmd are unknown a-
priori, the MWC should not cross the MDC. 

The differential equation (1) of Parlange [1976] does not 
permit direct calculation of a main wetting curve following 
the van Genuchten form. However, it does provides a theo
retical basis to derive appropriate conditions for a van 
Genuchten main wetting curve so that it approximates the 
solution of the differential equation. The area under the 
water retention curves is chosen to provide these conditions 
since it is directly related to the work done in wetting or 
drying the soil. Integration of Eq. (1) gives: 

/epd{h)dh-je^dh -f{h-hstpd)ddmw + c , (6) 

where c is a constant of integration; and hstpd is the soil wa
ter pressure head value on the main wetting curve at which 
the primary drying curve departs. The subscript pd denotes 
the primary drying curve. Evaluating the last integral by 
parts yields: 

f0pd{h)dh = 2femw(h)dh-[h-hstpd]0mw +c . (7) 

When hstpd=0, then 6 equals 6S and the primary drying 
curve becomes the main drying curve. Applying Eq. (7) to 

the functions of van Genuchten describing the main wetting 
and main drying curves (Eqs. (4) and (5)), gives: 

1 + 
f Ji \nmd -mmd 

dh = 

h 

2dsC 1 + 

1 + 

lgmw 

dh (8) 

/ h \ n m w 

h 

ylgmw J 

For large hlhmw (or h/h^) the van Genuchten function 
behaves as a power function in h with an exponent of 
-mmwnmw (or -mmdnmd). On integrating an exponent 
(l-mmwnmw) or (1 -mmdnmd) is obtained. Hence, unless the 
product m^n^ > 1 (or w w ^ w > 1 ) the area under the 
curve becomes infinite [Fuentes et al., 1991]. This is a con-



218 SOIL WATER HYSTERESIS PREDICTION MODEL 

sequence of choosing the van Genuchten function, but the 
same is true for the Brooks and Corey [1964] water reten
tion function. In the case 0 < w w w ^ 1 (or 
0 < mmdnmd<, 1), which covers the majority of field soils, it 
is therefore necessary either to modify the original van 
Genuchten equation (Eq. ( 2 ) ) or to seek conditions that 
cancel the terms in h. As the former option is considered 
beyond the scope of this study, the solution for the original 
van Genuchten equation is analyzed. 

When 0 < mmwnmw and/or mmdnmd<. 1 each term of Eq. (8 ) 
is expanded about l/h = 0 as follows: 

1 + 
( h \ 

ngmd 

lh ,\mmdnmd 

m md 
1gmd 

(l + mmdKd 
(9 ) 

+.... 

Integrating and retaining only the leading terms, Eq. (8 ) 
becomes: 

IK 

1 " mmdnmd 
gmd 

2h 
gmw 

1 - mmwnmw { h 
(10) 

( L \
 mmw nmw ~ 1 

V 
h 

To cancel these terms we require: 

mmw nmw = 171 md nmd 

and 

fogmd = hgmw (l ™mw ^mw ) 

( i i ) 

(12) 

which are the conditions necessary to satisfy the Parlange 
hysteresis model (Eq. (1 ) ) . As km is considered to remain 
constant for wetting and drying, it follows from Eqs. (3 ) 
and (11) that: 

and 

mmw - mmd 

nmw nmd 
(13) 

When mmwnmw and/or mmdnmd= 1 then hgmd = 2 hmw (Eq. 
(12)) . Similar results were reported by Haines [1930] and 
Bouwer [1966] who showed on field measurements that the 
drying pressure head scale parameter (hae) of the Brooks 
and Corey (1964) water retention equation is twice the 
wetting scale parameter (hwe) when associating hae and hwe 

with the air entry and water entry pressure heads, respec
tively (Figure 1). Likewise, Kool and Parker [1987] re
ported a ratio hgmdlhgmw=2M with the pressure head scale 
parameters and calculated independently using a 
best fit to measured h(0) data points of 8 soils ranging 
from clay loam to sand. 

When mmwnmw and/or mmdnmd> 1 Eq. (7 ) can be solved for 
the main hysteresis loop with hstpd = 0 without using the 
conditions (11) and (12) . The solution gives a relation be
tween the ratio Ih^ and the shape parameters m^ , 
nmw and mmd, nmd [Haverkamp et al., 1998]: 

r{mmd) 
r 

l 

"gmw 

1 

K

nmd 

, 0 4 ) 

r 
"md , 

where r() refers to the classical gamma function. Obvi
ously, Eq. (14) is rather laborious to use for routine pur
poses. On the other hand, the conditions (11) and (12) (used 
for mmwnmw and/or mmdnmd<. 1) are still valid as they serve to 
match areas under the curves for large negative pressure 
head values. Since for most field soils mmwnmw and/or 
ynmdnmd < 1 [Haverkamp et al., 1998], and since results ob
tained with conditions (11) and (12) agree well with ex
perimental data for m^n^ and/or w m £ /« O T ^>l, condition 
(11) is adopted hereafter for both cases 0<mmwnmw<z 1 and 
f^mw^mw > 1- Combining Eqs. (13) and (14) gives then the 
extremely simple condition for the drying and wetting pres
sure head scale parameters: 

hgmd ~~ ^ hgmw 
for mmwvtm 

mmdnmd 2*1 
(15) 

The behavior of the ratio hmdlhmw as a function of mmwnmw 

is shown in Figure 3. 
In short, to satisfy the theoretically based hysteresis 

model of Parlange (Eq. (1 ) ) the van Genuchten functions 
describing the main wetting and main drying curves should 
have identical shapes (i.e., mmw = mmd and nmw = nmd) and 
can be collapsed into one unique dimensionless function 
h*(0*) where the dimensionless water pressure head h* is 
defined by the ratio h/h^ or h/hgm^ For the sake of con-
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2 

mn > 1 

Eq. (15) 

~ ~ - - ~.. 

Eq. (12) 

i i 

- 6 S [ h - h ^ ] 1 + 
h 

lgmw 

which is different from Eq. (8) by its interval of integration. 
Evaluating the solution of Eq. (17) in a similar way to that 
of Eq. (8), we have for the shape parameters: 

and 
mpd = mmw = m 

npd = nmw = n , 
(18) 

Figure 3. The ratio h ^ l h ^ 
shape indicator mn. 

mn 
as a function of the water retention 

ciseness the main wetting and main drying shape parame
ters mmw, mmd, and nmd are referred to, hereafter, as m 
and «. 

The next step concerns the relation between curves of 
lower and higher scanning orders. 

ii) Routing between main and primary scanning curves 

Equation (1) used for the previous analysis is not only 
applicable to the main loop. The primary scanning curves 
can be analyzed in a similar way. Starting with the scanning 
curve emanated from the main wetting curve, a primary 
drying curve (PDC) expressed in the form of the van 
Genuchten function (Eq. ( 2 ) ) is given by: 

6*Pd - e Pd 
7Spd 

1 + 
lgpd 

n

Pd ripd 
(16) 

where 6Spd is the value of saturation specific for this pri
mary drying curve; and mpd, npd,md hgpd are the specific 
shape and pressure head scale parameters. As mentioned 
before, the residual water content 6rpd equals zero for pri
mary drying curves (Figure 2 ) . 

Applying Eq. (16) together with the MWC equation (4) 
to Eq. (7), gives: 

Qspd J 
nstpd 

1 + 
( h 

npd 
npd 

2 0o 

nstpd 

1 + 

dh = 

/ h \ n m w 

yhgmw j 
dh 

and for the scale parameters: 

h = h 
rigpd rtgmw 

- ( 1 + mn ) 
7Spd 

limn 

( 1 9 ) 

or 

h = h 
ngpd "gmd e Spd 

limn 

( 2 0 ) 

Equation ( 2 0 ) expresses the variation of the pressure head 
scale parameter as a function of the change in water content 
scale when routing from the main drying to the primary 
drying curve (i.e., different scanning orders but within the 
same family). Consequently, Eq. ( 2 0 ) is valid whether 
0 < mn<, 1 or mn> 1. 

Hence, the shape identity between the primary drying 
curve and the main drying (or main wetting) curve is main
tained (Eq. (18)). However, the primary drying pressure 
head scale parameter hwd changes as compared to the main 
drying scale parameter hmd (Eq. ( 2 0 ) ) . As shown by Figure 
4, the ratio h^lh^d increases non-linearly with decreasing 
water content dSpd, i.e., the smaller the value of 6Spd, the 
steeper is the primary drying curve. This behavior becomes 
gradually more important for decreasing mn. 

Next, the shape and scale parameters of the primary wet
ting curve (PWC) are explored. The PWC expressed in the 
form of the van Genuchten function (Eq. ( 2 ) ) , is given by: 

n _ n 
^* _ upw urpw 

US " Urpw 
1 + ( h \npw 

"gpw 

"•pw 
(21) 

where 6^ is the residual water content value specific for 
the primary wetting curve; and ml rc^and hgpw are the 
specific shape and pressure head scale parameters. As men-
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Figure 4. The ratio h^/h^ as a function of dSpdlds for different 
values of mn. 

tioned before, the water content at natural saturation 
&spw= 0s for the primary wetting curve (Figure 2). Thus, the 
system disregards possible air entrapment during rewetting. 

Writing Eq. (7) for the case of the secondary drying 
curve (SDC), we have: 

J0sd{h)dh -l^d^dh-ih-h^d^+c , (22) 

where the subscript sd refers to the SDC; and hstsd is the 
starting point on the primary wetting curve (PWC) from 
which the SDC emanates. When hstsd= 0, then by definition, 
the secondary drying curve collapses into the main drying 
curve over the pressure head interval hstpw^h^0. So, the 
relation between the main drying and the primary wetting 
curve can be expressed by: 

h h 

J0md{h)dh = ife^hUh-hd^ . (23) 

Applying Eqs. (5) and (21) to Eq. (23) and integrating, the 
analysis of the leading terms (evaluated similarly to those 
for Eqs (8) and (17)) gives for the shape parameters: 

and 

and for the scale parameters 

(24) 

bgpw ~~ hgrnd 
6 

-limn 
(25) 

or combined with Eq. (12): 

hgpw — hgmw 
0a 

i limn 

0s-0, rpw 
(26) 

where Eq. (26) is valid independent of the value of mn. 
When 6rpw=0, then hgpw = hgmw (Eq. (26)) and Eq. (25) is 
identical to Eq. (12) which is fully consistent as the PWC 
becomes the MWC. 

Hence, the shape identity between the primary wetting 
curve and the main wetting (or main drying) curve is main
tained (Eq. (24)). However, as for the previous case of the 
primary drying curve, the primary wetting pressure head 
scale parameter changes as compared to the main wet
ting scale parameter hgmw (Eq. (26)). The ratio h^lh^ 
increases non-linearly with decreasing water content scale 
( f t - @rpw\ i e . , the bigger the value of 0^, the steeper is the 
primary drying curve. 

The next step concerns the secondary scanning curves 
and the generalization of the routing equations. 

iii) Secondary and higher order scanning curves 

Starting with the secondary loop, a secondary wetting 
curve (SWC) expressed in the form of the van Genuchten 
function (Eq. (2)) is given by: 

/)* _ @sw @rsw 1 + h \ (27) 

and a secondary drying curve (SDC) by: 

esd-et rsd 
Qssd - rsd 

i + 
"sd 

(28) 

where the subscripts sw and sd refer to the secondary wet
ting and drying curves respectively. Unlike primary drying 
and/or wetting curves which use only one single water 
content scale parameter (i.e., 0Spd for the PDC and 6rpw for 
the PWC), the second and higher order scanning curves are 
defined as functions of two unknown water content scale 
parameters (e.g., 0Ssw and drsw for the SWC, Eq. (27)). 

As shown before, Eq. (7) relates the parameters of two 
water retention equations of consecutive scanning order, 
but it also alternates the family. Hence, the series of scan
ning curves emanating from the main wetting curve slaloms 
down the rank of scanning orders following the sequence 
MWC, PDC, SWC, TDC, .... The series is shown sche-
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6 stsw Q sttd & stpd 0 S 

0 (cirfVcm3) 

Figure 5. Schematic diagram of the hysteresis model with the 
main wetting curve (MWC), the main drying curve (MDC), a 
primary drying curve (PDC) with starting point (0stpd, hstpd), a 
secondary wetting curve (SWC) with starting point (0stsw, hstsw) 
and a tertiary drying curve (TDC) with starting point {dsttd, hsttd). 

matically in Figure 5. The alternation (represented by the 
shaded areas in Table 1) is illustrated here for the secon
dary wetting curve (SWC). When applying Eq. (7) to the 
secondary wetting curve, the shape and pressure head scale 
parameters can be related to those of either the primary 
drying curve (PDC) or the tertiary drying curve (TDC), 
depending upon the value of the starting point hsttd on the 
secondary wetting curve where the tertiary drying curve 
departs. When hsttd < hstpd, then Eq. (7) relates the SWC to 
the TDC : 

J0jh)dh = 2f0jh)dh-[h-hsttd]0sw+c . (29) 

However, when hsttd equals its limiting value hstpd (the hys
teresis loop should be closed) then the SWC relates to the 
PDC: 

j o ^ d h ^ L P J ^ d h ^ h - h ^ ^ ^ c . (30) 

Obviously, if wetting were to continue beyond the point 
(QTPD,HSTPD), then the MWC would be rejoined and the sys
tem would retain no memory of the secondary wetting 
curve. 

First, we consider the case of the secondary wetting curve 
with HSTTD=HSTPD (Eq. (30)). The integral analysis used for the 
main and primary loops, gives for the shape parameters: 

and 
= rnpd = m 

KSW = npd = n , 
(31) 

and for the scale parameters: 

HGSW ^GPD 
0SSW DRSW(X + M N > J 

0 SPD 

-limn 

(32) 

Combination of Eqs. (19) and (32) gives then: 

, limn 

H = H 
0, 

®SSW @RSW 
(33) 

When the analysis is applied to Eq. (29) with HSTTD < HSTPD 

(TDC) the shape and pressure head scale relations take the 
form: 

and: 

h - h 
RIGTD "GSW 

mTD = rrisw = m 

nTD = KSW = n , 

&SSW 6RSW{<L + R N N ) 
ESTD - 6RTD 

(34) 

limn 
(35) 

or combined with Eqs. (20) and (33): 

HGTD ~ HGMD 

i l/mn 

&STD ~ QRTD 
(36) 

Obviously, the procedure presented so far for the SWC, 
and the TDC can be repeated for all other curves belonging 
to the sequences of scanning curves emanating from the 
main wetting curve (shaded areas in Table 1) and the main 
drying curve (non-shaded areas in Table 1). Instead of con
tinuing the detailed description of the shape and scale pa
rameter relations of each scanning loop, we will pass di
rectly to the generalized equations. 
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As for the first three scanning loops, it can easily be 
shown that the shape parameters m and n remain identical 
for all wetting and drying curves whatever their scanning 
order: 

and 
m = mjw = mM 

n = rikw =nkd , 
(37) 

where k designates the scanning order (n.b., the case k = 0 
refers to the main loop). Hence, to satisfy the theoretically 
based hysteresis model (Eq. (1)) of Parlange [1976] , the 
van Genuchten functions describing the wetting and drying 
curves should have identical shapes and collapse into one 
unique dimensionless function of the form: 

rkd 
®Shd ~ ®rkd 

for drying, and 

1 + 
\hgkd 

= [l + ( / , f p ( 3 8 ) 

&Skw ~ Orkw 
1 + 

h \ 

\hgkw 
= [ i + ( * * r p ( 3 9 ) 

for wetting. By contrast, the pressure head and water con
tent scale parameters of each scanning curve change ac
cording to the scanning order and the family. The relations 
linking these specific scale parameters can be generalized 
for the two families (n.b., when staying within the same 
family the equations are valid whatever the interval of mn). 
For the drying family we have: 

hgkd - hgmd 
0, 

®Skd ~ ®rkd 

l/mn 
(40) 

and for the wetting family: 

h = h 
rigkw rigmw rkw 

l/mn 
(41) 

The link between and h^ is given by: 

a = {l + mn)Vmn for 0<mnzl 

a = 2 for mn>\ . 
(43) 

Note that the shape identity condition (37) derived for the 
hysteresis model presented here (i.e., the shape parameters 
m and n are independent of the hysteresis history of a soil), 
is consistent with the fact that the water retention shape 
indicator mn is mainly texture dependent [Haverkamp et 
al, 1998] . This condition (37) was chosen intuitively as the 
leading hypothesis for three empirical hysteresis models 
based on the use of the van Genuchten water retention 
equation [i.e., Scott et al., 1983; Kool and Parker, 1987; 
Parker and Lenhard, 1987] . 

Equations (37) to (43) define the general framework of 
the hysteresis model. However, the scale equations (40) and 
(41) are not yet expressed in terms of the starting point of 
any particular wetting or drying scanning curve. For exam
ple, for the PDC (k=l) with the main wetting curve being 
known, Eq. (40) defines the pressure head scale parameter 
(hgpd) as a function of the water content scale parameter 
(0spd)- As there is an infinite number of primary drying 
curves depending on the starting point hstpd on the MWC, 
the scale parameter equation must be defined in terms of 
hstpd. Only then can the specific water content and pressure 
head scales be calculated for each particular primary drying 
curve. To do so, we use a geometric scaling approach 
which is described next. 

2.1.2. Geometric scaling 

i) Primary loop 

Starting with the primary loop we first analyze the PDC. 
Equations (19) and/or (20) are expressed in terms of the 
two variables 0Spd and hgpd which depend upon the reversal 
point hstpd where the PDC leaves the MWC. Evidently, hstpd 

is part of both the MWC and PDC (Figure 2) and from Eqs. 
(4) and (16) for h = hstpd we have: 

1 + 
nstpd 

"gmw 

Mm 

x

0Spd ) 
1 + 

nstpd 
ngpd 

. (44) 

Combining Eqs. (20) and (44) and transforming, we have: 

= ah gmw (42) 

where a is the pressure head scale ratio which depends 
upon the value of mn: 

6sPd = Os 1 + 
nstpd nstpd 1 

"gmw 
Hgmd 

(45) 

and 
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1 + (Ktpdx 

'"gmw 

(Ktpdx 

ngmd 

l/n 

(46) 

So, from the knowledge of one boundary curve of the hys
teresis envelope and the starting point hstpd on the main 
wetting curve, Eqs. (45) and (46) fully define the corre
sponding primary drying curve guaranteeing the closure of 
the scanning loop. 

The procedure for the primary wetting curve (PWC) is 
similar. The two variables 6rpw and in the scale pa
rameter equation (26) have to be expressed in terms of the 
starting point (dstpw,hstpw) on the MDC. Using Eqs. (5) and 
(21) we have: 

j + i Ktpw \ 
-m 

(47) 

1 + (h stpw 
-m 

Equation (47) fully defines the unknown 6rpw. when the 
primary wetting scale parameter hgpW is replaced by h m d 

using Eq. (26). However, the calculation of 6^ from Eqs. 
(26) and (47) is not altogether straightforward, because 
enters implicitly. For the higher order scanning loops two 
unknowns have to be determined (e.g., dSsw and 6rsw for the 
SWC) as a function of the starting and arrival points of the 
scanning curves. The procedure followed here is based on 
the principle of geometric scaling as conditioned by the 
unique dimensionless function for the wetting and drying 
curves (Eqs. (38) and (39)). The method guarantees closure 
of the scanning loops. 

Before going into detail it is useful to revisit briefly two 
empirical scaling techniques used in the literature [i.e., Kool 
and Parker, 1987; and Parker and Lenhard, 1987]. Both 
methods rescale the drying scanning curves from the main 
drying curve and the wetting scanning curves from the main 
wetting curve. The scaling equations proposed by Kool and 
Parker [1987] are based on closure of the scanning loops at 
the point of departure only. As the arrival points of the pri
mary loop are well-defined i.e., 0Spw

= 0S for the PWC and 
6rpd=0 for the PDC, the prediction of the primary loop re
mains closed. However, for the secondary and higher order 
scanning loops the scaling technique of Kool and Parker 
[1987] has closure problems which can cause mass balance 
errors [Jaynes, 1984]. The technique proposed by Parker 
and Lenhard [1987] forces closure of the scanning loops by 

using the points of both departure and arrival. The authors 
used the van Genuchten expression for both the main wet
ting and drying curves with identical shape parameters and 
two different pressure head scale parameters (e.g., h m w and 
hgmd)- The consecutive scanning curves are calculated by 
rescaling the water content values only. Hence, the scan
ning curves are expressed by composed functions which are 
different from the van Genuchten expression used for the 
main curves. This approach is fundamentally different from 
that followed here where all wetting and drying curves are 
expressed by the van Genuchten equation (which therefore 
necessitates scaling of both pressure head and water content 
values). 

As shown by Eqs. (38) and (39), all wetting and drying 
curves can be represented by one unique dimensionless 
function 6 *(/**) independent of their scanning order. As the 
starting point (dstpw,hstpw) is part of both the MDC and 
PWC, Eq. (39) gives: 

q _ &md(Ktpw) ~ &S Qpw{Ktpw)_ 

[ l - ^ ( / Z y i f p w ) ] 
(48) 

where 6Spw is set equal to 6S. To solve Eq. (48) in terms of 
the parent curve (MDC), d^^hstpw) is expressed by the 
use of Eqs. (26) and (42): 

^pw ( hstpw) ~~ \ + a" 
es-drpw\xlm (h 

On 

lstpw 
ngmd ) 

, (49) 

where a is the pressure head scale ratio defined by Eq. (43). 
The value drpw is then calculated by the simultaneous use of 
Eqs. (48) and (49) using a root finding technique. The algo
rithm presented in Appendix uses simple bisection, but 
more efficient methods are available [Press et al, 1992]. 

When the influence of 0rpw is considered to be negligible 
for the calculation o f f ?^ , Eq. (49) gives 0p\v(hstpw) = 

0mw(hstpw) or hgpw= hgmw yielding a first order explicit ap
proximation of drpw through Eq. (48). This first order ap
proximation of hgpw = h m w corresponds to the scaling equa
tion given by Kool and Parker [1987], when applied to the 
primary loop for which the scaling equation is still valid in 
terms of closure. 

Equation (48) imposes a condition on the value of 6rpw. 
As drpw ^ 0, the numerator of the right hand term of Eq. 
(48) should be positive: 

emd{Ktpw)-6S e*pw{Ktpw) * 0 (50) 
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Combination of Eqs. (12), (49) and (50) leads to the condi
tion: 

[mn] 
&rpw ^ ^STT. 1 ' 

y [l + mn\ 

(51) 

which implies <s h m d (Eqs. (12) and (26)). Hence, the 
interval of possible fl^-values decreases with mn, espe
cially for small values of mn, such as are found for clay 
soils, where the range of 0 r / w,-values is reduced (e.g., for 
mn = 0.1, 0 < drpw <; 0.09 6S cm 3/cm 3). 

The last step concerns the definition of the secondary and 
higher order scanning curves in terms of the parent curves 
of a scanning order one lower. 

ii) Secondary and higher order scanning curves 

The problem for the secondary and higher order scanning 
curves is slightly more complicated than that encountered 
for the primary curves, because two unknowns have to be 
calculated (e.g., 6Ssw and 0^ for the SWC) instead of one. 
Starting with the secondary loop we first analyze the SWC. 
As shown by Figure 5, any SWC is defined by its point of 
departure (6stsw,hstsw) from and arrival (6stpd,hstpd) at a dry
ing curve of a scanning order one lower (PDC), where the 
arrival point is the departure point of the lower order curve 
(PDC) from its own lower order curve (MWC). Hence, the 
SWC has two points in common with the PDC. 

Applying the geometric scaling approach (as for the 
PWC) and substituting both points in the appropriate gen
eral equations (Eqs. (38) and (39)) shows that for any sec
ondary wetting curve we must have: 

[ @Ssw ~ ®rsw ] ~ 
[&pd{ Ktpd ) -QpdiKtsw) 

6^ (h s t p d ) 6^ (h s t s w ) 
(52) 

and 

a \&pdiKtsw) QwiKtpd) ~6pd(Ktpd) Gswi hstsw)] 
r s w L * tu—\ n* (U—Tl >v3) 

\ nstpd ) Usw \ nstsw ) J 

where 0Pd(hstsw) = 0sw(hstSw) and 0pd(hstpd)= eUKtpd)- To 
solve Eqs. (52) and (53), dtw(hstpd) and 0s\v{hstsw) are ex
pressed in terms of the parent curve (PDC) by the use of 
Eqs. (41) and (43): 

Qsw{hstpd) - I n + a 7Ssw 
\ U m ( k 

&Spd ~ Orpd 

lstpd 
ngpd 

(54) 

and 

Osw (K t s w ) \ + an 

&Spd - @rpd 

Mm IK 
ngpd 

.(55) 

The value of (fysw- drsw) is then calculated by the simultane
ous use of Eqs. (52), (54) and (55). Subsequently, the indi
vidual values of 6rsw and 6Ssw are determined from Eqs. (52) 
and (53) with dtw(hstpd) and &$w[hstsw) known from Eqs. 
(54) and (55). The bisection method used in Appendix be
gins by bracketing (0 & M , - 6rsw) between 0 and 9S, then re
placing one of the end points by the midpoint to keep the 
solution bracketed, and so on. This method is guaranteed to 
converge, though more efficient methods are available 
[Press etal, 1992]. 

Obviously, once again a first order approximation can be 
written by setting hgsw= which corresponds to 
0s% \hstpd) = 6pw [Ktpd) and 0*w (hstsw) = 0^ (hstsw). These 
first order approximations of dtw(hstPd) and 6s%(hstsw) can 
be useful to provide a first estimate of 6rsw. 

The procedure for the calculation of the secondary drying 
curve (SDC) is very similar, so we will pass directly to the 
generalized equations. 

The generalized expressions which describe the scanning 
curves as a function of their respective points of departure 
from and arrival at the scanning curve of an order one 
lower, are different for wetting and drying. If the departure 
and arrival points are referred to as (/*/,#/) and (h2,02) 
respectively, then substitution in the appropriate general 
water retention equation (Eq. (39)) shows that, for any wet
ting curve, we must have: 

[ 0 a m . erkw] = ( 5 6 ) 

and 

, ( 5 7 ) 

where k designates the scanning order. To solve Eqs. (56) 
and (57), 6^(h\) and ^ ( / f c ) are expressed in terms of the 
parent (drying) curve of a scanning order one lower (k-l) 
using Eqs. (41) and (43): 

< & ( A i ) - 1 " 

l + a 
&Skw ~ ft 

Mm , 
rkw 

Qs{k-\)d _ Qr(k-\)d \hg{k-\)d ) 

(58) 
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and 

C(/*2) = \ + an @Skw ~ drkw 

\Os(k-\)d - 6r{k-\)d 

Mm J 

ng{k-\)d 

(59) 

To calculate individual values of 0Skw and &rkw, (Qskw-fykw) 
is determined using Eqs. (56), (58) and (59) simultane
ously. The iterative procedure is the same as for the SWC. 
Obviously, Eqs. (56) and (57) are only applicable for k& 1, 
because for k=0 (main wetting curve) 6Sow= dsmw= @s and 

The generalized expressions for the drying scanning 
curves are derived in a similar way: 

[®Skd ~ 6rkd\ = (60) 

and 

[etd{h)-otd{h2)\ 

where O^h) and0^( /* 2 ) are given by: 

(61) 

Water content 
d (cm3/cm3) 

Figure 6. Schematic diagram of the hysteresis model showing 
hypothetical wetting and drying paths. 

1 + a -n I @Skd - drkd \ V m / h, 

eS{k-\)w " 6r{k-\)w ) ng(k-l)w 

(62) 
and 

Mm . .n 

1 I a~n I ^Skd ~ ̂ rkd 

}s(k-r)w - Qr{k-\)w ) \ hg(k-\)w j 

(63) 

To solve Eqs. (60) and (61) for the individual values of 0Skd 
and drkd, first the term (0skd~ &rkd) is determined iteratively 
using simultaneously Eqs. (60), (62) and (63). 

With the last series of equations (Eqs. (56) through (63)) 
the theoretical framework of the hysteresis model is com
plete. 

2.1.3. Summary of theory 

Summarizing the model we showed that, when choosing 
the van Genuchten equation to describe the water retention 

curve, all wetting and drying curves (whatever their scan
ning order) have identical shapes (the same mn). The curves 
can be collapsed into one unique dimensionless expression 
(Eq. (38) and/or Eq. (39)). The pressure head scale pa
rameters (hgkw or hgkd) are specific for each curve depending 
on the family (i.e., wetting or drying family) and the scan
ning order (k). They are expressed as a function of the shape 
parameter (mn) and the specific water content scale pa
rameters i.e., 6Skd and 0rkd for drying (Eq. (40)), or 0Skw and 
6rkw for wetting (Eq. (41)). The water content scale pa
rameters depend upon the family and the scanning order 
(hysteresis history); they are calculated as a function of the 
points of departure and arrival of the specific scanning 
curve (Eqs. (56) through (63)). 

To clarify the behavior of the hysteresis model, we con
sider the prediction of h(6) relations for a hypothetical case 
illustrated in Figure 6 for a path sequentially passing 
through reversal pressure heads hstpw, hstsd, hsttw, hstqd and 
hst5w. The path follows scanning curves of increasing order 
represented by the alternating non-shaded areas given in 
Table 1. The calculations were carried out with the algo
rithm presented in Appendix which gives a short numerical 
code for calculating water content and updating the hystere-



226 SOIL WATER HYSTERESIS PREDICTION MODEL 

sis state. Starting at saturation (ft), the drying path follows 
the MDC up to a reversal point hstpw at which wetting be
gins. The subsequent wetting path lw lies on a primary 
wetting curve (PWC) defined by the starting point hstpw. At a 
reversal point hstsd the drying process starts again following 
path 2d which is a segment of a secondary drying curve 
(SDC) defined by its starting and arrival points (hstsd and 
hstpw)- At reversal point hsttw rewetting occurs following path 
3w which is a segment of a tertiary wetting curve (TWC) of 
the closed loop hstsd-^ SDC ~~* hsttw^ TWC —* hstsd. If the soil 
resumes drying at a point hstqd the drying path follows path 
4d which is a segment of a quaternary drying curve. How
ever, if wetting were to continue beyond point hstqd and sub
sequently point /zstSd, then the primary wetting curve would 
be resumed and the system would retain no memory of the 
loop hstsd^$DC^>hsttw^>TWC-+hstsd. Figure 6 clearly 
shows that hysteretic effects will usually become small be
yond third- or fourth-order scanning curves. 

Before discussing the results and validation of the model, 
it is most convenient for practical purposes to recapitulate 
the application procedure. 

3. PROCEDURE 

The following step by step procedure should be used to 
calculate a series of successive wetting and/or drying scan
ning curves from a given set of water retention data: 

1) Identify the family and scanning order (k) of the ex
perimental data used for the calculation (e.g., main or pri
mary wetting data). 

2) Calculate the function parameters (f t^, 0 r k d , hgkd and 
m) or ( f t ^ , 0 r k w , hgkw and m) by fitting Eqs. (38) or (39) to 
the experimental data according to the family (i.e., drying 
or wetting). 

3) Calculate the shape parameter n and the pressure head 
scale ratio a using Eqs. (3) and (43) respectively. 

4) Decide upon the starting point hst^X)d or hst(k+i)W from 
which the higher order drying or wetting scanning curve 
should depart. 

5) Calculate (ft^+iy- %+iy) using simultaneously Eqs. 
(60), (62) and (63), or (0S(k+i)w- <Vi)w) using Eqs. (56), 
(58) and (59) depending on the family. 

6) Determine the residual water content value 0r(k+i)d 
from Eq. (61) or 0^k+i)w from Eq. (57) using the results of 
step 5. 

7) Calculate ft(*+iy from Eq. (60) or ft(*+i)w from Eq. 
(56) using the values of or % + i ) w determined in step 
6. 

8) Finally, calculate the pressure head scale parameters 
hg(k+i)d by Eqs. (40) and (43) or ^ + i ) w by Eqs. (41) and 
(43), using parameter a calculated in step 3. 

While this procedure describes the sequence of steps re
quired to calculate higher order scanning curves, a similar 
sequence determines lower order parent curves. 

4. MATERIAL and TEST CRITERIA 

Twenty three different soils were chosen from the litera
ture to validate the hysteresis model. Most of the experi
mental data (21 soils) was taken from the three independent 
soil databases of Mualem [1976b], UNSODA [Leij et al., 
1996] and GRIZZLY [Haverkamp et al., 1998]. Using the 
7th American soil classification system of the US Depart
ment of Agriculture, USDA, [1960] the soils cover 6 differ
ent texture classes, i.e., sand, sandy loam, sandy clay loam, 
silt loam, silty clay loam and clay loam. As was expected, 
most soils were sands (11) for which the effect of hysteresis 
is more important than for heavy soils such as clays. For 16 
soils, the data came from laboratory experiments carried out 
on disturbed samples; for 6 other soils the data were ob
tained on soil samples combined with field measurements. 
Only for one soil (soil n° 23) were the data fully measured 
in the field. 

The soil series, texture classes, authors and literature 
sources are given in Table 2. 

While the hysteresis history of the laboratory soils was 
mostly well documented, the reported data for the field 
soils gave little or no information on the hysteresis history. 
For three soils (Rubicon sandy loam, Caribou silt loam and 
Rideau clay loam) reported by Topp [1969 and 1971], the 
main drying data clearly suggest a bi-modal behavior 
probably caused by dynamical effects [Topp, 1966]. 

The generalized wetting and drying water retention equa
tions (Eqs. (38) and (39)) postulate exact functional rela
tionships between the variables 0 and h. The most elemen
tary examination of water retention data, however, indicates 
that measurement points (#/,/*,) do not lie exactly on a 
smooth function such as given by Eqs. (38) and/or (39). A 
more realistic hypothesis is to consider the water retention 
curve fitted to a scatter of measurement data, as an estimate 
of the true curve h ( 0 ) . Taking the most common example 
where the drying data are measured after wetting of the soil 
sample, the estimate of the generalized drying curve is ex
pressed by: 

^ ( h ) = 0 r k d 4 0 S k d - 0 r J i+ 
( h \ 

ngkd 

+ e, (64) 

where Gskd, 9rkd , h&d , fn and n are all estimates of the 
unknown parameters 0 s d , 0 r d , hgd, m and n; 0M is the water 
content value calculated by the drying water retention curve 
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Table 2. Soil names, texture classes, authors and literature sources for soils used for the validation of the hystere
sis model. NA stands for Not Applicable. The principal literature sources are the soil databases of Mualem 
[1976b], UNSODA [Leij et al, 1996 ] and GRIZZLY [Haverkamp et al, 1998]. 

No Soil Series / Texture class Authors Literature Source 
Location 

Laboratory Measurements 

1 Del Monte Sand Liakopoulos, 1966 Mualem, code 4108 
2 NA Sand Poulovassilis, 1970 Mualem, code 4106 
3 NA Sand Poulovassilis, 1970 Mualem, code 4107 
4 Molonglo Sand Talsma, 1970 Mualem, code 4126 
5 Grenoble Sand Vauclin, 1971 NA 
6 Grenoble 1 Sand Vachaud and Thony, 1971 GRIZZLY, code 8 
7 Grenoble 3 Sand Elmaloglou, 1980 GRIZZLY, code 10 
8 Grenoble 5 Sand Toumaetal, 1984 GRIZZLY, code 12 
9 Las Cruces Sand Dane and Hruska, 1983 UNSODA, code 1310 
10 Rubicon Sandy loam Topp, 1969 Mualem, code 3501 
11 Glendale 1 Sandy clay loam Dane and Hruska, 1983 UNSODA, code 1300 
12 Ioa Silt loam Green etal., 1964 Mualem, code 3305 
13 Caribou Silt loam Topp, 1971 Mualem, code 3301 
14 Manawatu Silt loam Clothier and Smettem, 1990 UNSODA, code 2140 
15 Rideau Clay loam Topp, 1971 Mualem, code 3101 
16 Glendale 2 Clay loam Dane and Hruska, 1983 UNSODA, code 1301 

Combined Field and Laboratory Measurements 
17 Femic 1 Sand Bouten UNSODA, code 3340 
18 Femic 2 Sand Bouten UNSODA, code 3341 
19 Twyfordy (hor.l) Sandy loam Clothier and Smettem, 1990 UNSODA, code 2150 
20 Twyfordy (hor.2) Sandy loam Clothier and Smettem, 1990 UNSODA, code 2151 
21 Tantalus 1 Silty clay loam Ahuja and El-Swaify, 1974 UNSODA, code 2020 
22 Tantalus 2 Silty clay loam Ahuja and El-Swaify, 1974 UNSODA, code 2021 
23 Tomelloso Silt loam Haverkamp et al, 1997 NA 

for any given value of h; and e is a variable associated with 
the model (or equation) error which is supposed to follow a 
normal distribution (centered at zero) with a finite variance 
a\e). 

The procedure for using the hysteresis model described in 
the previous section involves two steps. For the example of 
measured drying data, the first step consists of the calcula
tion of the unknown parameters Sskd, Orkd, hgkd, 
m and n by fitting the appropriate drying curve to the se
ries of sample observations (0j,ht). The values of dskd, 
Orkd, hgkd , fh and n are chosen so as to make the sum of 
the squared residuals 2 e 2 as small as possible and the good
ness of fit is expressed by: 

where s(e) is the estimator of the standard deviation a(e) 
[cm 3 /cm 3 ] ; the subscript / refers to the sample measure
ments (0i,hj) with /= l,:...,NP; and the water content val
ues dkd{ h) are calculated by Eq. (38). The quantity s(e) is 
non-negative and varies with the spread of the data points 
from the function (38). The second step consists of the pre
diction of the successive wetting scanning curve by the use 
°f Qskd>6rkd->hgkd>™ and « optimized in the first step. 
When experimental wetting scanning data are available the 
goodness of prediction can be expressed, once again, by the 
use of Eq. (65) but with 3kd(h) replaced by the wetting 
values ht). The latter water content values ht) are 
calculated by the appropriate wetting scanning curve equa
tion (Eq. (39)). 

However, the experimental data points (0,,ht) are affected 
by measurement errors which are not taken into account by 
the definition of criterion (65) . These errors tend to mask 
'true' values of volumetric water content and soil water 
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pressure head, so measured values 0/ and ht may be con
sidered as estimates of the true values: 

^ = ^ + v,-

where w; and v, are measurement errors distributed with 
expected values of zero and standard deviations of o(Uj) 
and cr(v,), respectively. Since none of the literature sources 
used for this study estimated measurement errors, the water 
content error is chosen to be ± 0.01 cm 3/cm 3 for laboratory 
experiments and ± 0.02 cm 3/cm 3 for field experiments [Sin
clair and Williams, 1979; Haverkamp et al., 1984]. Simi
larly, the measurement error associated with soil water 
pressure head is taken to be ± 2 cm for laboratory experi
ments and ± 5 cm for field experiments. These measure
ment errors are expressed as two standard deviations a(u,) 
and a(v ; ) . Hence, for each observation a(ui) = 0.005 
cm 3/cm 3 and cr(v,) = 1 cm for laboratory experiments, and 
a(u{) = 0.01 cm 3/cm 3 and cr(v,) = 2.5 cm for field experi
ments. 

While the effect of the measurement errors is superim
posed on that of the equation error (Eq. (64)), it also affects 
the values of the optimized function parameters 
dskd,Srkd, hgkd, in and n (when using a drying curve). 

Therefore, the fitted parameters should be considered as 
biased estimators of 0Skd, &krd, hgkd, m and n. When subse
quently using the fitted parameters for the prediction of a 
scanning curve of an order one higher, the inaccuracies in 
OSM , Orkd, hKkd, fh and n are obviously reflected in the 

results of prediction. For the case of a linear regression, this 
effect can easily be quantified in terms of a confidence in
terval [e.g., Johnston, 1963; Sinclair and Williams, 1979; 
Haverkamp et al, 1984], but for the case of a non-linear 
regression such as used for the water retention equation, the 
analysis based on the classical principle of least squares can 
not be applied Recently, Haverkamp et al. [1998] de
scribed the uncertainty analysis applied to the hysteresis 
model presented in this study and the reader is referred to 
that study for more information. Here, only the results on 
the goodness of fit and goodness of prediction (Eq. (65)) 
are reported. 

5. RESULTS AND DISCUSSION 

For convenience, the laborious statistical notation applied 
in the previous section is disregarded hereafter. The proce
dure for using the model for interpreting measured data is 

dependent on the data available. The complete set of curves 
is defined by three unknowns mn, h^ (or h^) and 6S. If 
points on the main drying curve have been measured, Eq. 
(5) can be fitted to give mn, h^ and 0Smd= &s- If any dry
ing curve of scanning order k is known, Eq. (38) can be 
fitted to obtain mn, hgkd, 6rkd and 6skd. A similar procedure 
is followed by fitting Eq. (4) for the MWC or Eq. (39) for 
any wetting scanning curve when wetting data are available. 
The MWC will seldom be observed under field conditions 
as this curve applies to an initially oven dry sample. There
fore, wetting data should generally be attributed to wetting 
scanning curves. The model input parameters, such as m, 
hgmd and dSmd for the MDC, were calculated using a least 
squares fit procedure minimizing s(e) given by Eq. (65). As 
the shape parameter n is directly related to m by Eq. (3), it 
should be replaced in terms of m before fitting. The value 
of km=2 corresponding to the Burdine mode was chosen in 
Eq. (3). However, note that the Mualem-mode of the water 
retention curve with km= 1 gives almost the same goodness 
of fit, because the shape indicator mn is practically inde
pendent of the value of km. Only the individual values of m 
and n change. 

The fitted and predicted characteristic soil parameters are 
given in Tables 3 a, b and c. 

5.1. Quality of Experimental Soil Data 

Even though the experimental water retention data used 
for this study are collected from the literature and, there
fore, can be assumed to have been checked for quality, 
other features such as data scatter and number of data 
points influence the representativeness of the regression 
parameters (e.g., m, ds and h^ for the MDC) when calcu
lated over the experimental water retention data. Therefore, 
it is appropriate to examine the quality of the experimental 
data of the 23 soils in terms of the standard deviations of 
the three regression parameters. As the drying water reten
tion data are generally used for the best-fit procedure and 
the wetting data for the validation of the hysteresis model, 
the analysis is carried out for the drying data. 

To estimate s(m), s(0s) and s(hg„d) we assume that the er
rors Uj and v ; introduced in Eq. (66) are random errors be
longing to a Gaussian distribution of mean zero with stan
dard deviations equal to a(u,) and a(v,). For given values 
of a(ut) and cr(v/), repeated samples of w, and v, are gener
ated using a Monte-Carlo technique. The sample size NMC is 
chosen such that robust statistics are guaranteed, i.e., 
NMC= 1000. Hence, the values of 6t and ht vary from sample 
to sample as a consequence of the drawings from the u and 
v distributions in each sample. Calculating m, 0S and h^ 
for each set of sample observations, series of NMC values of 
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Table 3. Characteristic soil parameters obtained by fitting to experimental main drying data (Table 3a) and pri
mary wetting data (Table 3b), together with the system parameters used for the prediction of main and primary 
wetting curves and secondary drying curves. Three series of prediction parameters are presented for soil n° 23. 
Each series refers to a different soil depth, i.e., n° 23 a corresponds to the top layer (0 < z < 50 cm), n°23 b to the 
horizon at 70 cm depth and n° 23 c to the layer at 90 cm depth. The characteristic soil parameters of the 
bi-modal soils (Table 3c) are calculated by fitting to experimental primary wetting data. 

Table 
3a 

Soil 
no. (cnrVcnf 

Os 
.3/ 3 

Fitting 

Main Drying Curve (MDC) 

-hgmd rn i 
(cm) 

Prediction 

Primary Wetting Curve (PWC) 

s(e) 3 

(cm/cm 
@rpw 

(cm3/ cm3 

" hgpw 
(cm) 

@stpw 
(cmVcm3 

s(e) 
(cm3/ cm3) 

1 0.2993 0.86 116.56 0.518 2.150 6.9 IO"3 0.0233 60.52 0.0302 1.0 10"2 

2 0.2724 0.81 24.37 0.553 2.478 2.6 10"3 0.0750 13.88 0.0931 3.0 10"3 

3 0.2612 0.82 29.17 0.654 3.784 2.6 IO"3 0.0857 16.21 0.0939 6.0 10"3 

4 0.2710 0.80 10.99 0.334 1.003 2.6 10"3 0.0423 6.51 0.0852 1.2 IO"2 

5 0.3776 0.83 39.09 0.526 2.220 1.4 10"2 0.1049 22.63 0.1364 7.7 10"3 

6 0.3553 0.83 48.86 0.551 2.451 1.2 IO"2 0.0995 27.93 0.1241 1.7 10 2 

7 0.2902 0.75 38.20 0.466 1.744 1.8'10' 2 0.0375 20.68 0.0537 6.8 10"3 

8 0.3120 0.84 38.20 0.481 1.857 9.9 10"3 0.0609 21.47 0.0851 1.7 10"2 

11 0.3825 0.75 23.38 0.087 0.189 9.7 IO' 3 0.0213 12.66 0.1339 9.1 10' 3 

12 0.5375 0.99 45.35 0.133 0.308 9.3 10"3 0.0313 23.06 0.1332 3.2 10"2 

14 0.3986 0.87 82.29 0.146 0.340 3.4 IO"3 0.0733 63.24 0.2967 6.3 10' 3 

16 0.3748 0.76 25.15 0.061 0.130 5.5 IO"3 0.0005 9.93 0.0043 1.7 10"2 

17 0.3247 0.75 16.44 0.320 0.940 1.5 10"2 0.0210 8.69 0.0413 2.3 IO"2 

18 0.3970 0.80 24.35 0.149 0.350 2.1 IO - 2 0.0428 14.31 0.1651 2.6 IO"2 

19 0.3964 0.75 22.40 0.152 0.358 8.9 IO"3 0.0390 12.72 0.1479 9.1 10"3 

20 0.2934 0.78 36.64 0.444 1.599 3.3 10"3 0.0662 21.50 0.1006 8.8 10"3 

21 0.6849 0.94 6.71 0.030 0.062 2.8 IO - 3 0.0244 4.56 0.4164 1.1 10"2 

22 0.6480 0.97 10.20 0.018 0.037 2.0 I O 3 0.0161 7.47 0.4451 5.4 10"3 

Table 
3b 

Fitting 

Primary Wetting Curve (PWC) 

Prediction 

Secondary Drying Curve (SDC) 

Soil 
no. (cm3/cm3 

) 
(cmVcm3 

) 

ds/s - hgpw 
(cm) 

mn s(e) 
(cm3/cm3 

) 
(cmVcm3 

) 

Orsd 
(cmVcm3 

) 

- hgSd 
(cm) 

s(e) 
(cmVcm3) 

9 0.3863 0.0545 0.97 14.81 3.238 9.8 10"3 0.1644 0.0054 37.18 5.3 10"3 

23 a 0.4457 0.0594 0.83 380.98 2.556 1.5 IO"2 0.4227 0.0002 735.71 9.8 10"3 

23 b - - - - - - 0.3657 0.0007 779.06 5.4 10"3 

23 c - - - - - - 0.2963 0.0016 847.17 3.3 10"3 

Table 
3c 

Fitting 

Primary Wetting Curve (PWC) 

Prediction 

Main Drying Curve (MDC) 

Soil - hgpw mn Ostpw s(e) ds &rmd " hgmd s(e) 
no. ( c r n W ( c r n W (cm) (c rnW) ( c r n W ( c r n W (cm3/cm3 (cm) (cmVcm3) 

) ) ) ) ) 
10 0.3805 0.1434 14.29 0.778 0.1737 4.6 10"3 0.3805 0.1148 31.71 5.8 10"2 

13 0.4380 0.2859 15.22 0.517 0.3032 9.9 IO"4 0.4380 0.2769 30.52 2.2 10 2 

15 0.4168 0.2690 11.09 0.626 0.2790 1.2 IO"3 0.4168 0.2628 22.57 1.4 10"2 
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Figure 7. The standard deviations s(m) and s*(m) of the shape 
parameter m calculated as a function of the 23 soils used in this 
study. 

m, 0S and hmd are generated. The distributions of these val
ues form the sampling distributions of m, 6S and hmd for 
which the respective standard deviations s(m), s(0s) and 
stygmd) can be calculated. Their values are used as the qual
ity indicators of the experimental data points used. As the 
values of the standard deviation s(6s) calculated for the 23 
soils are all of the same order of magnitude, with an aver
age of s{6s)= 0.0031 cnrVcm3, only the standard devia
tions of m and hmd are shown in Figures 7 and 8. The rela
tive standard deviations s*(m) and s*^^) are defined by 
s*(m)= s(m)lm and s*(hgmd)=s(hgmd)/hgmd. 

The results of Figure 7 show that the standard deviations 
s(m) calculated for the group of sands (soils n° 1-9) are 
generally larger than those calculated for the other soils. On 
the contrary, the relative standard deviations s*(m) of the 
sands are smaller. Hence, the uncertainty in parameter m 
increases with the value of m. However, two soils clearly 
deviate from this general trend, i.e., soil n° 4 with 
s*(m) = 0.0853 and soil n° 10 with s*(w) = 0.1130. While 
there is no apparent reason for soil n° 4 (a series of 10 ex
perimental drying data regularly spread without any appar
ent scatter) to give such large uncertainty s(m) = 0.0285, the 
problem for soil n° 10 is more evident as this soil has a 
typical bi-modal behavior which affects the drying data in 
particular. The shape parameters m and n of these two soils 
must be considered with caution in the analysis presented 
hereafter. 

The standard deviations of the pressure head scale pa
rameter hgmd are shown in Figure 8. Note that the values of 
s*(hgmd) are multiplied by a constant factor 25. This allows 
presentation of the histograms of both sQigm^ and s*{hgmd) 
in the same figure. Generally speaking, the standard devia

tion sQigmd) increases with h^. This explains that the val
ues of s(hgmd) calculated for the non-sand soils (i.e., soils n° 
11-16 and n° 19-23) are slightly larger than those calculated 
for the sands (soils n° 1-9). Only soil n° 14, the Manawatu 
silt loam taken from Clothier and Smettem [1990], shows 
an unusual large uncertainty s(hgmd) = 9.97 cm. Apart from 
the fact that only 6 experimental data points are available 
for this soil and that the water retention curve is steep and, 
therefore sensitive to the value of h^, there is no apparent 
reason for the large uncertainty in hmd. Nevertheless, the 
results of this soil should be interpreted with great caution. 

5.2. Scanning Order 

The hysteresis history of soils n° 1-8 was fully described 
by the different authors, as the laboratory experiments were 
carried out expressly to demonstrate hysteresis. The drying 
data of these soils were measured after total wetting of the 
entire soil sample yielding MDC data. The drying process 
was then truncated at a given pressure head hstpw on the 
main drying curve and reversed to yield wetting PWC data. 
For these soils, the MDC data are chosen for the fitting pro
cedure and the PWC data are used for the validation of the 
prediction procedure. The results are given in Table 3 a. 

For soils n ° 8 - 2 3 , the description of the experimental 
conditions was often less well documented. This lack of 
precise information introduces an uncertainty in the choice 
of the appropriate scanning equation to be used for the pa
rameter identification. The problem is illustrated for soil n° 
9 (Las Cruces sand) taken from Dane and Hruska [1983]. 
The experiment was started by wetting an air dried soil col
umn yielding PWC data. After saturation of the surface 
layer, the infiltration was stopped and the drying process 

10 

8 

1 3 5 7 9 11 13 15 17 19 21 23 

Soil number 

Figure 8. The standard deviations sQignJ) and s*( h^) of the 
pressure head scale parameter h m d calculated as a function of the 
23 soils used in this study. 



Figure 9 . Primary wetting curves (PWC) fitted to measured primary wetting data ( ) for sand (9 a) and silt loam 
(9b), soils n° 9 and 23 taken from Dane and Hruska [1983] and Haverhamp et al [1997] respectively. The pre
dicted main wetting curve (MWC) and secondary drying curves (SDC) are presented together with experimental 
secondary drying data ( • ) , (X) and ( • ) . The horizontal and vertical bars correspond to the measurement errors in 
water content and soil water pressure head (i.e., ± 0.01 cm 3 /cm 3 and ± 2 cm for soil n° 9 (9a), and ± 0.02 cm 3 /cm 3 

and ± 5 cm for soil n° 23 (9b)) associated with each observation (ty,h,). 

was measured. However, at the moment the infiltration was 
stopped only the top layer was saturated whereas the deeper 
soil layers were probably still not frilly saturated. Hence, 
the drying data measured at some depth below the soil sur
face is more likely to belong to a secondary drying curve 
(SDC) than to the main drying curve (MDC) such as re
ported by Dane and Hruska [1983]. Fitting the main drying 
curve to such data obligatory leads to erroneous parameter 
values. As an example, the water content at natural satura
tion calculated by the main drying equation fitted to the 
drying data of soil n° 9 gives the value 6S= 0.162 cm 3/cm 3 

which seems highly unrealistic as a porosity of e = 0.3962 
cm 3/cm 3 was reported by Dane and Hruska [1983]. The 
resulting ratio Osle takes a value of 0.41 which is consid
erably smaller than the interval 0.8 < 6sl£ < 1 typically re
ported for field soils [Rogowski, 1971]. Therefore, the ratio 
6sle can be used as an indicator to decide upon the scan
ning order of the drying data. Hereafter, 6sle = 0.75 is cho

sen as the threshold value below which the drying data are 
considered to belong to a secondary drying scanning curve 
rather than to the main drying curve. As a result, for soils n° 
9 and 23, the PWC data are used for the fitting procedure 
and the SDC data for the validation of prediction. The re
sults are reported in Table 3 b and illustrated in Figures 9a 
and b. 

The scanning order being determined for the different 
soils, the prediction ability of the hysteresis model is tested. 
As stated before, the model is essentially based on three 
geometrical conditions: i) the first imposes the shape pa
rameter (mn) to be identical for all wetting and drying 
curves independent of their scanning order; ii) the second 
condition determines the pressure head scale parameter 
specific for each drying and wetting curve; and iii) the third 
condition gives the specific water content scale parameters. 
The validity of these conditions is tested separately. The 
shape identity is verified first. 
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5.3. Shape Parameters 

As shown by Eqs. (38) and (39), the main and higher or
der scanning curves in both drying and wetting collapse 
into one non-dimensional expression. Since experimental 
data are available in drying and wetting for all test soils, the 
two sets of shape and scale parameters (i.e., 0Skd, 6M hgkd, 
md and nd\ and dskw, &rkw, hgkw, mw and nw) can be calculated 
independently for each soil by fitting Eqs. (38) and (39) to 
the different sets of drying and wetting data. Theoretically, 
the shape indicators calculated for the drying data (mdnd) 
and the wetting data (mwnw) should be identical for each 
soil. WTien experimental data of more than one secondary 
drying curve were available, such as for soil n° 23 (Figure 
8b), each scanning curve was analyzed separately. The re
sults of soils n° 10, 13 and 15 were not taken into account 
as these soils show a clear bi-modal behavior as explained 
in more detail in Section 6. All together 23 combinations of 
mwnw and m^d were analyzed. 

Before discussing the results, a complication related to 
the best-fit procedure used for the wetting data should be 
noted. For several field soils, very few experimental wetting 
data were available. As an example, only three data points 
were reported for soils n° 14, 19 and 20. Identification of 
the full set of system parameters 0S, 6rpw, h^ and m of Eq. 
(39) on such limited series of data points is obviously not 
possible. To overcome this problem the best-fit procedure 
was carried out by imposing physical constraints on some 
of the parameters. For the case of soils n° 14, 19 and 20, 
only two independent parameters i.e., m and hgpW were op
timized while the values of 6S and 6rpw were taken from the 
analysis carried out over the main drying data. For the 
group of soils for which 8 or fewer experimental data points 
were available (i.e., soils n° 5, 21 , 22, 23b and 23c) the 
three parameters m, 6^ and h^ were optimized. For the 
other soils the complete set of system parameters was cal
culated. 

The comparison between mwnw and mdnd is given in Fig
ure 10. A linear regression of the form mwnw= a mdnd gives 
a coefficient a equal to 0.961, with a squared correlation 
coefficient of r2 = 0.995, which shows only slight deviation 
from the 1:1 line. This result clearly validates the assump
tion that the wetting and drying shape indicators may be 
taken equal, i.e., mwnw = mdnd = mn. Since km is chosen 
constant in Eq. (3) for both wetting and drying, it follows 
that mw=md=m and nw=nd=n. Especially for the soils 
with mn ^ 1, which covers most of the field soils, the shape 
identity condition is extremely well verified. 

Even though all soils lie within the 95% confidence in
terval of ± 2 s(e) with s(e) = 0.203, soils n° 3, 4, 14 and 23c 
are at the limit. The results for soils n° 4 and 14 are not 
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Figure 10. The wetting shape indicator / n ^ ^ a s a function of the 
drying shape indicator mdnd calculated independently by fitting to 
the wetting and drying data of 20 soils used for this study. The 
dotted lines confine the 95% confidence interval and the error 
bars are estimated by twice the standard deviations s{mdnd) and 
s(mwnw) given by Eqs. (67) and (68) respectively. 

surprising as these soils belong to the group of three prob
lem soils shown to be affected by large uncertainties in m 
and hgmd (see Section 5.1). The difficulty of soil n° 23c is 
illustrated by Figure 9b ( 3 r d SDC). Only 7 experimental 
data points are available for the best-fit procedure. As all 
data points are concentrated around the inflection point 
(Figure 9b), the precision in the determination of mdnd is 
questionable. Finally, soil n° 3 is the only soil which mar
ginally satisfies the shape identity condition (mwnw = 
mdnd = mn) without any apparent reason. 

The uncertainties in the values of mwnw and mdnd can be 
evaluated through the standard deviations s(mdnd) and 
s(mwnw). Using Eq. (3), the equations for s(mdnd) and 
s (mw nw) are given by: 

s(mdnd) = [ 2 + " ^ ] 2 s(m) (67) 

and 

s{mwnj - ± —s(m) . (68) 

Setting the errors of mwnw and mdnd respectively to plus or 
minus twice the standard deviations s{mwnw) and s(mdnd\ 
the individual error bars can be calculated for each soil 
(Figure 10). The soils with small /ww-values (e.g., mn<> 1) 
are exposed to the smallest errors as their standard devia-
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tion s(m) is generally small (Figure 7). The soils which 
show large error bars (e.g., soil n° 3) are those which are 
characterized by a combination of large mn and s(m) val
ues. Note that the uncertainties in mwnw and mdnd of soil 
n° 3, which only marginally satisfies the shape identity con
dition, are such that the error bars are still crossing the bi
sector. 

As mentioned at the beginning of this chapter, we chose 
to apply the hysteresis model with the residual water con
tent of the main loop set to zero. However, for the drying 
data of soils n° 1, 5, 6, 8 and 17, reported as main drying 
data, a non-zero f^^-value would be preferable in terms of 
the goodness of fit criterion (Eq. (65)). Whether or not the 
experimental drying data belong in reality to a SDC curve 
with drsd* 0 rather than to the MDC, it is worthwhile noting 
that the shape identity condition (mwnw= mdnd= mn) is 
fully maintained when fitting a main drying equation with a 
non-zero r^^value . As an example, the results calculated 
for soil n° 6 taken from Vachaud and Thony [1971] are 
shown in Figure 11. When setting 0r of the main loop a-
priori equal to zero, the fit of Eq. (38) to the set of drying 
data yields a drying shape indicator mdnd = 2.451 with a 
goodness of fit 5 ( e ) =1.17 10"2 c m W (Table 3a). Apply
ing the best-fit procedure to the experimental wetting data, 
reported as PWC data, with the physical constraint dSpw = 
6S, we obtain mwnw = 2.596 with s(e) = 1.10 10"2 cm 3/cm 3 . 
When performing the same procedure for the case where 6r 

of the main loop is not set equal to zero, then we have 

mdnd = 3.5\3 with s(e) = S.96 10' 3 cm 3 /cm 3 for the MDC 
and mwnw= 3.346 with s(e) = 9.\0 10"3 cm 3/cm 3 for the 
PWC. Apart from the fact that the goodness of fit improves 
with a non-zero dr, it is clear that the shape identity is well 
maintained even though the numerical value of mn in
creases. Obviously, the value of mdnd increases when intro
ducing a non-zero 0 r-value in the van Genuchten expression 
(MDC), because a squatter curve provides a better fit to the 
experimental data of soil n° 6 (Figure 11). 

5.3.1. Summary shape parameters 

Summarizing the results obtained in this Section 5.3, the 
shape identity condition (37) derived by the hysteresis 
model presented in this study has been verified for all soils 
tested. 

5.4. Pressure Head Scale Parameters 

The analysis of the pressure head scale parameter equa
tions is less straightforward than that used to validate the 
shape parameter identity. As main drying data and primary 
wetting data are available for most soils (apart from soils n° 
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Figure 11. Main drying curve (MDC) fitted to measured drying 
data ( • ) for sand n° 6 taken from Vachaud and Thony [1971]. 
The predicted main wetting curve (MWC) and primary wetting 
curve (PWC) are presented together with experimental primary 
wetting data ( ). The horizontal and vertical bars correspond to 
the measurement errors in water content and soil water pressure 
head (i.e., ± 0.01 cmVcm 3 and ± 2 cm). 

9 and 23 for which primary wetting and secondary drying 
data were reported), the pressure head scale parameters h ^ 
and hgpn can be calculated independently for each soil by 
fitting the appropriate water retention equation to the dif
ferent sets of drying and wetting data. The values of h ^ 
can then be predicted for the best fit values of h ^ by the 
use of Eqs. (42) and (43) depending on the values of mn. 
However, the prediction of the primary wetting pressure 
head scale parameter h ^ from the calculated value of h ^ 
requires information on the water content scale parameter 
drpw, which depends on the precision with which the starting 
point (0stpw,hstpw) of the PWC is known. Consequently, 
when comparing the predicted values (hgpW)pred with those 
calculated by the best fit procedure ( h ^ ) ^ , possible ampli
fying or compensatory effects cannot be excluded. As no 
main drying data were available for soils n° 9 and 23, the 
comparison was carried out over the values (hgpW)flt, and 
(hgpw)pred was calculated backward from the fitted secondary 
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wetting pressure head scale parameter (hgsd)fit. Once again 
the data of the bi-modal soils n° 10, 13 and 15 are not taken 
into account. 

The comparison between ( Z ^ ) ^ and (hg^)^ is given in 
Figure 12. A linear regression of the form (hgpw)pred = 

b(hgpw)fit gives a coefficient b equal to 1.005 with a squared 
correlation coefficient of r2 = 0.999 which shows nearly no 
deviation from the 1:1 line. Obviously, this extremely high 
correlation is partially forced by soils n° 1 and 23 which 
have the largest values of (Tables 3a and b). When 
soils n° 1 and 23 are excluded, the squared correlation coef
ficient falls down to r2 = 0.985 with a regression coefficient 
b = 1.071. The foregoing results clearly validate the condi
tions (40) to (43), which relate the wetting and drying pres
sure head scale parameters. Apart from soil n° 14, 
Manawatu silt loam, all soils lie within the 95% confidence 
interval of ± 2 s(e) with s(e)=3 .672 cm. It was noted in 
Section 5.1 that soil n° 14 showed a large uncertainty in 
hgmd calculated over the drying data. This uncertainty auto
matically affects the value of {hgpw\red which is calculated 
from hgmd. Moreover, the value of (h^)^ was calculated 
over a series of only 3 experimental data points in wetting 
making its value also very questionable. These reasons 
which are independent of the hysteresis model, explain the 
large discrepancy between {hgp»)Pred and (hgpw\x observed in 
Figure 12. Therefore, we prefer to ignore this soil for the 
calculation of s(e) in order not to widen artificially the 95% 
confidence interval. 

The calculation of the error bars used in Figure 12 is ex
plained next. The horizontal error bars are associated with 
(hgpy^fit and are estimated by: 

s (hgpW )jit - s( hgmd ) (69) 

where s(hgmd) results from the uncertainty analysis given in 
Section 5.1. The estimation of the vertical error bars associ
ated with (hgp^pred is more complicated as two different 
steps are involved. First, the main wetting pressure head 
scale parameter is predicted from hgmd using Eqs. (42) and 
(43). The uncertainty associated with (hgmW)pred is estimated 
by: 

s[(hgmw)preJ = s{hgKd) for mn>\ (70) 

and 

hgmd 

m[l + mn]u" 

In (1 + mn) 1 
(71) 
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Figure 12. The fitted primary wetting pressure head scale pa
rameter (hgp^fit as a function of the predicted primary wetting 
pressure head scale parameter {hgpy)Pred. The dotted lines confine 
the 95% confidence interval. The error bars are estimated by twice 
the standard deviations s((hgpJ)ji^ and ^ ( ( / z ^ ) ^ ) given by Eqs. 
(69) and (72) respectively. 

for 0<mn<z 1. The second step predicts h ^ from the values 
of hgmw using Eq. (41). This introduces a supplementary 
uncertainty associated with the precision in 6S and 6^. The 
equation for estimating the error .s((^gw)pred) as a function 
of s((hgmw)Pred) and s(m) is taken from Haverkamp et al. 
[1998]: 

0s 
0S - On 

limn 

h I 
^ l n 

# 5 rpw 

'pred 

[2 + mnf 
(72) 

mn 
(» ) , 

where Eq. (72) is written so that it maximizes the error of 
(hgpw)pred' As expected, the uncertainty in (hgpw^pred increases 
with increasing 6rpw. Combining Eqs. (70), (71) and (72) we 
have an estimation of the standard deviation of (hgpw\red hi 
terms of s(m) and s(hgmd)> Setting the error of (hgpw\red to 
plus or minus twice the value of s({hgpW)pred), the individual 
error bars can be calculated for each soil. As shown by Fig
ure 12, the imprecision in the prediction of h g ^ is of the 
same order of magnitude as that observed for the best fit 
values of h g ^ validating once again the pressure head scale 
conditions (40) to (43) derived by the hysteresis model. 

In addition to the previous test, the values of hgmd and 
hgpW calculated by individual fitting to the different sets of 
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Figure 13. Parameter a as a function of the water retention shape 
indicator mn. The points ( • ) correspond to Oflt calculated for each 
soil and the continuous line represents the theoretically derived 
relation (43). The dotted lines confine the 95% confidence inter
val. The error bars are estimated by twice the standard deviations 
s(mri) and s{afii) given by Eqs. (67) and (73) respectively. 

drying and wetting data of each soil can be used to verify 
the relation between hmd and h ^ in Eq. (42). Calculating 
backward the best-fit values of (hgm^pred from (h^p, the 
values of Oflt defined as the ratio (h^fu over ( A ^ ) ^ 
should theoretically follow the relation a(mri) given by 
Eq. (43). Obviously, this test is less dominated by the large 
values of h m d than the previous test (Figure 12). Hence, it 
gives a better picture of the validity of the pressure head 
scale relation in the range of small w«-values which covers 
most of the field soils. The results are shown in Figure 13. 

When mn ^ 1, the best fit values of a are very close to 
those predicted by Eq. (43). However, when mn<l, the 
prediction slightly underestimates the values of Oflt. Never
theless, all soils lie within the 95% confidence interval of 
± 2 s(e) with s(e)=0.775, with the exception of soils n° 14 
and 19. When taking into account the uncertainties in Oflt 

indicated by the vertical errors bars, soil n° 19 still lies 
within the confidence interval. However, soil n° 14 is to
tally out of range with Oflt= 24.75. Therefore, this value is 
ignored for the calculation of s(e) in order not to widen the 
95% confidence interval unrealistically. 

The horizontal error bars used in Figure 13 are identical 
to those given by Eq. (67). The estimation of the vertical 
error bars is more complicated as two steps are involved. 
First, the uncertainty associated with Oflt is expressed as a 
function of the standard deviations of (hmd)fit and {hmw\red 
using Eq. (42) {Haverkamp et al. [1998]): 

\hgmd)fit 

where Eq. (73) is written so that it maximizes the error of 
Ofit. The values of sdhgmd)^) are given by the uncertainty 
analysis addressed in Section 5.1. As (hgmv^pred is calculated 
from (hgpy^fit using Eq. (41), the uncertainties associated 
with the precision in 6S and 6rpw have to be taken into ac
count for the estimation of s((/*g7mv)/?ra/): 

For convenience, s^hgp^fu) is chosen equal to s^h^fit). 
Combining Eqs. (73) and (74) we have an estimation of the 
standard deviation of Oflt in terms of s(m) and sihgmd). Set
ting the error of Oflt to plus or minus twice the value of 
s(cxfit), the individual error bars can be calculated for each 
soil. 

Generally speaking, the uncertainty in Oflt increases with 
decreasing values of mn (Figure 13). This is mainly due to 
the fact that, according to Eq. (74), .s , ((/? g w v v )^) increases 
with increasing pressure head scale values. Taking into ac
count these uncertainties in OflU the behavior of Eq. (43) 
which slightly underestimates a for small mn (i.e., 
0<mn<l) is still satisfactory. Moreover, when using 
Eq. (43) to predict the wetting pressure head scale parame
ter, hgpw, for soils with 0<mn< 1, the effect of the underes
timation in a on the prediction of the wetting scanning 
curve is hardly noticeable due to the steepness of the water 
retention curve. As an example, Figure 14 shows the results 
obtained for soil n° 14 with mn = 0.34. As mentioned before 
(Section 5.1), the data for this soil are highly problematic 
with an uncertainty of 12% in the best fit value of h ^ . 
Among the 23 soils tested in this study, it is the only soil to 
give erratic pressure head scale prediction (Figure 12). The 
predicted value of ( Z ^ ) ^ equals -63.24 cm, which is ten 
times larger than the best fit value (hgp^fl^- 6.04 cm. In 
spite of this large discrepancy, the predictive results shown 
in Figure 14 still give reasonable agreement with the ob
served primary wetting data. 

5.4.1. Summary pressure head scale parameters 

Summarizing the results obtained in this Section 5.4, the 
pressure head scale relations (Eqs. (40) to (43)) derived by 
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Figure 14. Main drying curve (MDC) fitted to measured drying 
data ( • ) for sand n° 14 taken from Clothier and Smettem [1990]. 
The predicted main wetting curve (MWC) and primary wetting 
curve (PWC) are presented together with experimental primary 
wetting data ( ). The horizontal and vertical bars correspond to 
the measurement errors in water content and soil water pressure 
head (i.e., ±0.01 cmVcm3 and ±2 cm) associated with each ob
servation (&i,hj). 

the hysteresis model presented in this study have been veri
fied for all soils tested with the exception of soil n° 14 
which showed large uncertainty in the experimental soil 
pressure head data. 

5.5. Water Content Scale Parameters 

The third stage of verification concerns the water content 
scale parameters. First, soils n° 1 - 8 with a well described 
hysteresis history are analyzed. The MDC data were chosen 
for the fitting procedure and the PWC data were used for 
the validation of the prediction procedure. As shown by 
Table 3a, the goodness of fit calculated by Eq. (65) over the 
measured MDC data points is of the same order of magni
tude as the goodness of prediction calculated over the PWC 
data points. On average the goodness of fit for this group of 
soils (s(e) = 8.57 10"3 cm 3/cm 3) is slightly smaller than the 

goodness of prediction (if (e) =9.94 10"3 cm 3/cm 3). Figure 
15 illustrates the results obtained for the laboratory soils n° 
1, 3, 7 and 8; the results of soil n° 6 were already shown in 
Figure 11. The agreement between predicted and measured 
primary wetting curves is good for all soils. Soil n° 3 was 
chosen on purpose to show to what extent the slight differ
ence between the predicted and the fitted shape indicator 
mn (see Figure 10) affects the overall results. Indeed, a 
slightly smaller value of mwnw, such as suggested by Figure 
10, would improve the prediction of the primary wetting 
curve, but the results are still extremely good, especially 
when considering the error bars associated with the meas
urement points. Even though the results obtained for soils 
n° 1, 6 and 8 shown in Figures 15a, 11 and 15d could 
probably be improved by considering a non-zero &rmd-value 
in the original MDC expression, the predicted PWC passes 
through the scatter of measurement points. The results 
shown in Figures 11 and 15 support the validity of the 
geometric scaling approach used to calculate the water 
content scale parameters 6$ and 6rpw. 

The second group of soils includes soils n° 10 to 23 for 
which the hysteresis history is less well documented. The 
shape indicator mn is smaller than 1 for this group with the 
exception of soils n° 20 and 23 (Tables 3a and b). Hence, 
the hysteresis effect is less evident as the water retention 
curves are much steeper than those observed for sandy soils 
with mn > 1. The elongation of the water retention curve 
causes the inflection point to be less pronounced leading to 
less precision in the determination of the pressure head 
scale parameter hgmd. This problem is reflected in the error 
sihgmd) detailed in Section 5.1 (Figure 8). Similar to the 
foregoing group of soils, the goodness of fit calculated by 
Eq. (65) over the measured MDC data points is of the same 
order of magnitude as the goodness of prediction calculated 
over the PWC data points (Table 3a). On average the good
ness of prediction for this group of soils (s(e) = I A3 1 0 2 

cm 3/cm 3) is slightly inferior to the goodness of fit 
(s(e) =8.72 10"3 cmVcm 3). As an example, Figure 16 
shows the results obtained for soils n° 11, 12, 20 and 21 
taken from the finer textured soil classes, i.e., sandy clay 
loam, silt loam, sandy loam and silty clay loam, respec
tively. The agreement between predicted and measured 
primary wetting curves is good for all soils. The examples 
show how easily the wetting and drying measurement points 
can be confused for soils which cannot be classified as 
sandy soils, especially when the hysteresis history is not 
well known, as is the case for most field measurements. 
Even though the difference between the wetting and drying 
pressure head scale parameters increases (Eq. (42)), the 
water content scales reduce to such a narrow band that the 
hysteresis effects become almost negligible, i.e., the steeper 
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Figure 15. Main drying curve (MDC) fitted to measured drying data ( • ) for sands n° 1, 3, 7 and 8 taken from 
Liakopoulos [1966], Poulovassilis [1970], Elmaloglou [1980] and Touma et al [1984] respectively. The pre
dicted main wetting curve (MWC) and primary wetting curve (PWC) are presented together with experimental 
primary wetting data ( ). The horizontal and vertical bars correspond to the measurement errors in water con
tent and pressure head (i.e., ± 0.01 cm 3 /cm 3 and ± 2 cm) associated with each observation (0j,h,). 
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Figure 16. Main drying curve (MDC) fitted to measured drying data ( • ) for soils n° 11, 12, 20 and 21 taken 
from Dane and Hruska [1983], Green et al [1964], Clothier and Smettem [1990] and Ahuja and El-Swaify 
[1974] respectively. The predicted main wetting curve (MWC) and primary wetting curve (PWC) are presented 
together with experimental primary wetting data ( ). The horizontal and vertical bars correspond to the meas
urement errors in water content and soil water pressure head (i.e., ± 0.01 cmVcm3 and ± 2 cm) associated with 
each observation (0,,/*/). 
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Figure 17. Main drying curve (MDC) fitted to measured drying 
data ( • ) for sand n° 6 taken from Vachaud and Thony [1971]. 
The predicted main wetting curve (MWC), primary wetting curve 
(PWC) and secondary drying curve (SDC) are presented together 
with experimental primary wetting data ( ) and secondary dry
ing data (x). 

the water retention curve, the less noticeable are the hys
teresis effects. 

The last test used to verify the validity of the geometric 
scaling approach focuses on prediction of a series of scan
ning curves with different scanning orders. Soil n° 6 
[Vachaud and Thony, 1971] is used for this test as it is the 
only soil for which sufficient experimental data were re
ported. After calculating the model parameters from the 
main drying data, a sequence of primary wetting and secon
dary drying curves was predicted. The results are shown in 
Figure 17. For the sake of clarity, the error bars are not 
presented. Even though the agreement between predicted 
and measured primary wetting and secondary drying curves 
is good, the prediction would have been even better with a 
non-zero 0 r-value for the MDC (Section 5.3, Figure 11). 
The goodness of prediction calculated with Eq. (65) for the 
SDC ($(£?) = 8.1 IO"3 cm 3/cm 3) and for the PWC (s(e) = 
1.7 10"2 cmVcm3) is of the same order of magnitude as the 

goodness of fit calculated over the measured MDC data 
points (s(e)= 1.2 10"2 c r n W ) . 

5.5. /. Summary water content scale parameters 

Summarizing the results obtained in this Section 5.5, the 
water content scale relations (Eqs. (56) to (63)) derived by 
the hysteresis model presented in this study have been veri
fied for all soils tested. 

6. LIMITATIONS ON THE USE OF THE MODEL 

So far, the results obtained using the prediction model 
agree well with the available data on hysteresis taken from 
the literature. However, there are some limitations to its 
use. 

The first limitation, already mentioned, concerns changes 
in the volume of entrapped air during rewetting, that is 
Qspw* 0S. This effect may occur when temperature changes 
are involved [e.g., Hopmans and Dane, 1986]. Even though 
no rigorous theoretical solution is available in the literature, 
the effect could be incorporated in the model using the 
purely empirical relationship presented by Aziz and Settari 
[1979]. 

The second limitation concerns the Rvalue of the main 
loop. The generalized pressure head scale relations (Eqs. 
(40) and (41)) and water content scale equations (Eqs. (56) 
to (63)) derived from the hysteresis model are based on the 
assumption of 0rmd=0rmw=Q- A non-zero value of 6 r m d or 
drmw does not fundamentally change these equations. While 
Eqs. (40) and (41) should be used with (0s-&rmd) instead of 
ds, Eqs. (56) to (63) remain as they stand. However, the 
introduction of a non-zero 0,.-value has a non-negligible 
effect on the value of mn which increases with a non-zero 0 r 

as shown before in the context of Figure 11. 
The third limitation concerns bi-modal systems. Three 

exemplary soils (i.e., soils n° 10, 13 and 15 taken from 
Topp [1969 and 1971]) with a typical bi-modal behavior 
are included in the 23 test soils. As the bi-modal behavior 
principally affects the drying curve, the characteristic soil 
parameters were calculated by fitting to the wetting data 
(Table 3c). The data for drying were then used for compari
son with the predicted MDC. Figures 18a and b show the 
results obtained for the soils n° 10 (Rubicon sandy loam) 
and n° 15 (Rideau clay loam). Note that it was necessary to 
apply the hysteresis model with a non-zero 6rmd-vd\uQ. Due 
to the bi-modal behavior of the MDC the prediction based 
on a unimodal PWC is obviously not satisfactory. Bi-
modality is likely to be at least partially caused by the labo
ratory treatment of the soil during the packing of the col
umn, e.g., unstable particle arrangements. Whether or not 
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Figure 18. Primary wetting curves (PWC) fitted to measured primary wetting data ( ) for soils n° 10 (18a) and 
n° 15 (18b), taken from Topp [1969] and Topp [1971] respectively. The predicted main wetting curves (MWC) 
are presented together with experimental main drying data ( • ) . The horizontal and vertical bars correspond to the 
measurement errors in water content and soil water pressure head (i.e., 
with each observation (#,/*,). 

0.01 cmVcm3 and ± 2 cm) associated 

the bi-modality is artificially generated, it is only effective 
for the range of small negative pressure head values. For 
example, for the Rideau clay loam (Figure 18b) the behav
ior of the water retention curve tends to the unimodal shape 
for h<-60 cm. This corresponds to the range where the 
predicted MDC merges into the measured drying data sup
porting at the same time the validity of the hysteresis model 
presented here. Similar results were observed for the other 
two bi-modal soils n° 10 (Figure 18a) and 13. 

7. CONCLUSIONS 

A model of soil hysteresis based on theory and geometric 
scaling has been presented, together with a short algorithm 
for calculating water content and updating the hysteresis 
state in numerical flow codes. The theoretical based model 
of Parlange [1976] was applied to determine the relation 
between the main wetting and drying curves using the van 
Genuchten [1980] equation to describe the water retention 
curve. We showed that all wetting and drying curves, what

ever their scanning order, can be collapsed into one unique 
dimensionless expression defined as a function of three 
parameters, one determining the shape of the curve and the 
two others scaling the soil water pressure head and volu
metric water content. The shape parameter mn is identical 
for all wetting and drying curves. The pressure head scale 
parameters hgkw or hgw are specific for each curve depend
ing on the family (i.e., wetting or drying family) and the 
scanning order k. They are expressed as a function of the 
shape parameter mn and the specific water content scale 
parameters given by 0Skd and 6rkd for drying and 0Skw and 
6rkw for wetting. The water content scale parameters depend 
upon the family and the scanning order, i.e., the hysteresis 
history. They are calculated as a function of the points of 
departure and arrival of the specific scanning curve. 

The model uses extrapolation and requires only the water 
retention shape parameter mn, together with the water con
tent and pressure head scale parameters ds and hmd. Given 
these input parameters, full description of soil hysteresis, 
i.e., main, primary and higher order scanning curves, can be 
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predicted. The shape and scale parameters mn, 6S and h m d 
are best obtained from the main drying curve or a primary 
wetting curve, otherwise the hysteresis history must be 
known. The method is formulated to facilitate its use in 
numerical flow analyses. 

The model was tested on 23 soils (taken from the litera
ture) covering 6 textural classes. With the exception of one 
soil with a large uncertainty in the experimental soil pres
sure head data, the predicted and measured results agree 
extremely well for all soils, e.g., the goodness of prediction 
is of the same order of magnitude as the goodness of fit. 
The shape parameter condition as well as the pressure head 
and water content scale conditions have been verified for all 
soils supporting the validity of the hysteresis model pre
sented here. 

Even though the residual water content &r of the main 
loop was chosen equal to zero, a non-zero value can easily 
be introduced into the hysteresis model. The model does 
not allow prediction of soil hysteresis for bi-modal soils. 

8. APPENDIX 

An algorithm suitable for incorporating hysteresis in the 
soil water retention relation into a computer program must 
store and update the current hysteretic state as well as re
turn the value of content 6 corresponding to a given soil 
water pressure head h (here we regard 6 as the dependent 
variable and h as the independent variable). The state is 
defined entirely by a list of points (hi, &l) at which reversal 
from drying to wetting or wetting to drying has occurred, 
plus a 'previous point' (hp, 0P), which is the last known point 
attained and therefore a potential reversal point. The first 
point in the list will normally be (0,6fc) corresponding to the 
start of the main drying curve (only for an oven dry soil 
would the state ever be on the main wetting curve). In addi
tion to the state, it is necessary for practical calculation to 
store the pressure head scale parameter hg associated with 
each scanning curve. Thus the burden of storage is three 
values per reversal, but when the pressure head goes out
side the range of a scanning loop the six values for the loop 
are deleted. In addition, it is convenient to store the water 
content scale parameters for the current curve. 

The following algorithm updates the hysteresis state and 
calculates 6(h). In the algorithm, Y(h,hg)=[\+(hlhg)n\m 

while 6sr and 6r refer to the current curve (with 0sr= ds- 6r). 
A simple bisection method is used to find 6sr, but more effi
cient methods are possible. The points of reversal from 
wetting to drying and vice-versa are (hi9&i) with i=l,...j. 
The initialization sets the first of these, together with the 

associated pressure head scale parameter hgX, then the 'pre
vious point1 (hp, 0P), then the parameters dr and 6sr for the 
main drying curve. Values for 6S, hgmd, m and n are as
sumed known. The value of 6r is taken as zero, although 
this is not necessary for the calculations. If the algorithm is 
used within an iterative method for finding h, then j and 
(hp, dp) should not be changed permanently until a final 
value of h is found; this not allowed for here. 

8.1. Hysteresis Algorithm 

Initialise If mn<\ Then a=(l+mn)l/nm Else a=2 
A=0.000001; hx=0; dx=6s; hgX=hmd\ Reset 

Function 0(h) 
Kh*0 Then 

Reset; d=ds 

Else 
js=j 
If Reversal Then AddPoint 
Do While OutOfRange;y=/-2; End Do 
If j*js Then GetParameters 
d=dr+dsrY(h,ha) 
hp=h; ep=e 

End If 

End Function 
Reset: j=l; hp=hx; 0P=0X, 0r=O; 0sr=0s-0r 

Reversal: (h-hp)(hp-hj)<0 
AddPoint: h/=hp; 0f=0p 

OutOfRange: If j=l Then False Else (h*max(hj.l9hj) Or 
h^min(hj.i,hj)) 

GetParameters: Ify-1 Then 
0r

=O; 6sr=6s-6r 

Else 
Uj>js Then 

If hj>hj_i Then hg=ohgj.x Else 
ng=hgj-l/°^ OsrolcT dsn XX=0; 
x2=0s 

Do 
0sr=O.5(x^x2); 
hgT QsrolJ dsr) i 

F 1 = F ( A ^ ) ; F 2 = F ( A > 

uhgj); 
^ ( ^ - ^ i ) / ( F r F 2 ) 

If 6sr>y Then x2=0ST 

Else J C i = # s r 

Until | 6sr-y | < A 
Else 

F 1 = F ( A y , A ^ ) ; F 2 = F ( A > 1 ^ ) ; 

^ ( ^ - ^ i ) / ( F r F 2 ) 

End If 
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^ ( ^ - i F 1 - ^ F 2 ) / ( F 1 - F 2 ) 

End If 

9. PARAMETER NOTATION 

a regression coefficient; 
b regression coefficient; 
c constant of integration; 
e deviation between measured and fitted water con

tent values (L 3 /L 3 ); 
h soil water pressure head taken to be negative (L); 
h* non-dimensional soil water pressure head; 
h a e drying pressure head scale parameter of the 

Brooks and Corey water retention equation (L); 
h w e wetting pressure head scale parameter of the 

Brooks and Corey water retention equation (L); 
h g general notation for pressure head scale parameter 

of the van Genuchten water retention equation (L); 
hgkd pressure head scale parameter of any drying curve 

of scanning order k (L); 
h g k d estimate of the pressure head scale parameter h g k d 

(L); 
hgkw pressure head scale parameter of any wetting curve 

of scanning order k (L);); 
hgmd specific pressure head scale parameter of the main 

drying curve (L); 
hgmw specific pressure head scale parameter of the main 

wetting curve (L); 
hgpd specific pressure head scale parameter of the pri

mary drying curve (L); 
hgpW specific pressure head scale parameter of the pri

mary wetting curve (L); 
hgsd specific pressure head scale parameter of the sec

ondary drying curve (L); 
hgsw specific pressure head scale parameter of the sec

ondary wetting curve (L); 
h & d specific pressure head scale parameter of the terti

ary drying curve (L); 
h g t w specific pressure head scale parameter of the terti

ary wetting curve (L); 
hstpd soil water pressure head value on the main wetting 

curve from which the primary drying curve departs 
(L); 

h s t p w soil water pressure head value on the main drying 
curve from which the primary wetting curve de
parts (L); 

hstsd soil water pressure head value on the primary wet
ting curve from which the secondary drying curve 
departs (L); 

h s t s w soil water pressure head value on the primary dry
ing curve from which the secondary wetting curve 
departs (L); 

h s t t d soil water pressure head value on the secondary 
wetting curve from which the tertiary drying curve 
departs (L); 

hsttw soil water pressure head value on the secondary 
drying curve from which the tertiary wetting curve 
departs (L); 

k scanning order; 
km integer value relating shape parameters md and nd 

as well as mw and nw ( k m

 = 2); 
m general notation for the shape parameter of the van 

Genuchten water retention equation; 
m estimate of the shape parameter m\ 
ntmd specific shape parameter of the main drying curve 

(mmd=m)\ 
mmw specific shape parameter of the main wetting curve 

(mmw = m)\ 
ntpd specific shape parameter of the primary drying 

curve (mpd=m)\ 
mpw specific shape parameter of the primary wetting 

curve (rripw = m); 
mSd specific shape parameter of the secondary drying 

curve (msd=m); 
rrisw specific shape parameter of the secondary wetting 

curve (ifisw = m)\ 
mtd specific shape parameter of the tertiary drying 

curve (mtd=m); 
nttw specific shape parameter of the tertiary wetting 

curve (mtw = m); 
mn water retention shape indicator of the van 

Genuchten water retention equation; 
MDC main drying curve; 
MWC main wetting curve; 
n general notation for the shape parameter of the van 

Genuchten water retention equation; 
n estimate of the shape parameter n\ 
nmd specific shape parameter of the main drying curve 

0 w = « ) ; 
nmw specific shape parameter of the main wetting curve 

(nmw = n); 
npd specific shape parameter of the primary drying 

curve (npd=n); 
npw specific shape parameter of the primary wetting 

curve (npw = n)\ 
nSd specific shape parameter of the secondary drying 

curve (nsd=n)\ 
n^ specific shape parameter of the secondary wetting 

curve (nsw = n); 
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ntd specific shape parameter of the tertiary drying 
curve (ntd=n); 

ritw specific shape parameter of the tertiary wetting 
curve (ntw = n); 

NP total number of water content measurements; 
PDC primary drying curve; 
PWC primary wetting curve; 

r2 squared correlation coefficient; 
s(e) goodness of fit expressed in terms of volumetric 

water content (L 3/L 3); 
standard deviation of h m d \ 

s(hgmw) standard deviation of 
sifrgpw) standard deviation of h ^ ; 
s(m) standard deviation of m\ 
s(mdnd) standard deviation of mdnd\ 
s(mwnw) standard deviation of mwnw; 
s(0s) standard deviation of 6fc; 
SDC secondary drying curve; 
SWC secondary wetting curve; 
TDC tertiary drying curve; 
TWC tertiary wetting curve; 
ut measurement error associated with measured water 

content value 0t (L 3/L 3); 
v, measurement error associated with measured soil 

water pressure head value h t (L); 
a pressure head scale ratio; 
e soil porosity (L 3/L 3); 
0 volumetric soil water content (L 3 /L 3 ); 
0* general notation for degree of saturation; 

volumetric soil water content of any drying curve 
of scanning order k (L 3 /L 3 ); 

Okd estimate of water content 0M (L 3 /L 3 ); 

Vkd non-dimensional soil water content of any drying 
curve of scanning order k; 
volumetric soil water content of any wetting curve 
of scanning order k (L 3 /L 3 ); 

a* non-dimensional soil water content of any wetting 
curve of scanning order k; 

@md volumetric soil water content of the main drying 
curve (L 3 /L 3 ); 

vmd non-dimensional soil water content of the main 
drying curve; 
volumetric soil water content of the main wetting 
curve (L 3 /L 3 ); 

/ I * non-dimensional soil water content of the main 
wetting curve; 

Opd volumetric soil water content of the primary drying 
curves (L 3 /L 3 ); 

0*d non-dimensional soil water content of the primary 
drying curves; 

Qpw volumetric soil water content of the primary wet
ting curves (L 3/L 3); 

6 p \ non-dimensional soil water content of the primary 
wetting curves; 

0r general notation for the residual volumetric soil 
water content (L 3 /L 3 ); 

Orkd residual water content of any drying curve of scan
ning order k (L 3 /L 3 ); 

0rkd estimate of residual water content 0rkd (L 3 /L 3 ); 
Orkw residual water content of any wetting curve of 

scanning order k (L 3 /L 3 ); 
Orpd residual volumetric soil water content of the pri

mary drying curves with 0rpd= 0; 
Orpw residual volumetric soil water content of the pri

mary wetting curves (L 3 /L 3 ); 
Orsd residual volumetric soil water content of the sec

ondary drying curves (L 3 /L 3 ); 
0rsw residual volumetric soil water content of the sec

ondary wetting curves (L 3 /L 3 ); 
0nd residual volumetric soil water content of the terti

ary drying curves (L 3 /L 3 ); 
Ortw residual volumetric soil water content of the terti

ary wetting curves (L 3 /L 3 ); 
0sd volumetric soil water content of the secondary 

drying curves (L 3 /L 3 ); 
0*d non-dimensional soil water content of the secon

dary drying curves; 
0SW volumetric soil water content of the secondary 

wetting curves (L 3 /L 3 ); 
Otw non-dimensional soil water content of the secon

dary wetting curves; 
0stpd volumetric soil water content on the main wetting 

curve associated with the pressure head value 
(htpd) from which the primary drying curve departs 
(L 3 /L 3 ); 

0stpw volumetric soil water content on the main drying 
curve associated with the pressure head value 
(hstpw) from which the primary wetting curve de
parts (L 3 /L 3 ); 

Ostsd volumetric soil water content on the primary wet
ting curve associated with the pressure head value 
(hstsd) from which the secondary drying curve de
parts (L 3 /L 3 ); 

0stSw volumetric soil water content on the primary dry
ing curve associated with the pressure head value 
(hstsw) from which the secondary wetting curve de
parts (L 3 /L 3 ); 
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6sttd volumetric soil water content on the secondary 
wetting curve associated with the pressure head 
value (hsttd) from which the tertiary drying curve 
departs (L 3/L 3); 

Osttw volumetric soil water content on the secondary 
drying curve associated with the pressure head 
value (hsttw) from which the tertiary wetting curve 
departs (L 3/L 3); 

ds general notation for volumetric water content at 
natural saturation (L 3 /L 3 ); 

6Skd saturated water content of any drying curve of 

scanning order k (L 3 /L 3 ); 

0Skd estimate of saturated water content 0Skd (L 3/L 3); 

6Skw saturated water content of any wetting curve of 
scanning order k (L 3 /L 3 ); 

0sPd volumetric soil water content at saturation of the 
primary drying curves (L 3 /L 3 ); 

dSpw volumetric soil water content at saturation of the 
primary wetting curves with 0Spw = &s (L 3/L 3); 

Qssd volumetric soil water content at saturation of the 
secondary drying curves (L 3 /L 3 ); 

6Ssw volumetric soil water content at saturation of the 
secondary wetting curves (L 3/L 3); 

6Std volumetric soil water content at saturation of the 
tertiary drying curves (L 3 /L 3 ); 

&stw volumetric soil water content at saturation of the 
tertiary wetting curves (L 3 /L 3 ); 

0td volumetric soil water content of the tertiary drying 
curves (L 3/L 3); 

da non-dimensional soil water content of the tertiary 

drying curves; 
volumetric soil water content of the tertiary wet
ting curves (L 3/L 3); 

&Z non-dimensional soil water content of the tertiary 

wetting curves; 
cr(ut) standard deviation associated with measurement 

error w, (L 3/L 3); 
O(VJ) standard deviation associated with measurement 

error v, (L); 
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How Useful are Small-Scale Soil Hydraulic Property Measurements 
for Large-Scale Vadose Zone Modeling? 

Jan W. Hopmans and Don R. Nielsen 
Hydrology, Department of Land, Air and Water Resources, University of California, Davis, California 

Keith L. Bris tow 
CSIRO Land and Water, Townsville, Australia 

A major challenge that recurs throughout the geophysical sciences is the 
downscal ing (disaggregation) and upscaling (aggregation) of flow or transport 
processes and their measurement across a range of spatial or temporal scales. Such 
needs arise, for example, when field-scale behavior must be determined from soil 
hydraulic data collected from a limited number of in situ field measurements or 
analysis of small soil cores in the laboratory. The scaling prob lem cannot be solved 
by simple consideration of the differences in space or t ime scale, for several 
reasons. First, spatial and temporal variability in soil properties create 
uncertainties when changing between scales. Second, flow and transport processes 
in geophysics and vadose zone hydrology are highly nonlinear. W e present a 
historical overview of the theory of scaling procedures, and demonstrate the 
application of various aggregation techniques, such as scaling and inverse 
modeling, to aggregate laboratory-scale soil hydraulic properties to larger scale 
effective soil hydraulic properties. Examples of application of these aggregation 
techniques from the pore scale to the watershed scale are demonstrated. W e 
conclude that the development of new instrumentation to characterize soil 
properties and their variation across spatial scales is crucial. Moreover , the 
inherent complexity of flow in heterogeneous soils, or soil-like materials , and the 
need to integrate theory with experiment, requires innovative and multidisciplinary 
research efforts to overcome limitations imposed by current understanding of 
scale-dependent soil flow and transport processes. 

INTRODUCTION 

For the past few decades, soil scientists have applied 
soil hydraulic data to characterize flow and transport 
processes in large-scale heterogeneous vadose zones, 
using measurement scales that are typically much 
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smaller. For example, prediction of soil-water dynamics 
at the field-scale is derived from the measurement of 
soil hydraulic properties from laboratory cores, 
collected from a limited number of sampling sites across 
large spatial extents, often using large sampling 
spacings. Typically, the measurement scale for soil 
hydraulic characterization is in the order of 10 cm, with 
a sample spacing of 100 m or larger. 

This scale-transfer question is being asked more 
frequently than ever, mostly because of water quality 
issues resulting from chemical contamination of soil, 
groundwater, and surface water systems worldwide. 
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Appropriate answers are expected, requiring the 
estimation of appropriate soil hydraulic parameters for 
use in describing the behavior of pollutant plumes at 
field or landscape scales. In 1991, the U.S. National 
Research Council [NRC, 1991] identified the scaling of 
dynamic nonlinear behavior of hydrologic processes as 
one of the priority research areas that offer the greatest 
expected contribution to a more complete understanding 
of hydrologic sciences. Simultaneously, with the 
increasing awareness of the crucial role of the soil and 
the vadose zone in the management of chemical 
loadings to groundwater and surface waters, soil 
hydraulic characterization is needed to predict transport 
and fate of agricultural and industrial chemicals at the 
regional or landscape scale. Routine measurement of 
soil hydraulic properties are usually conducted in the 
laboratory [Dane and Hopmans, 2002], using small-size 
soil cores, collected in-situ from a few representative or 
many random locations within the region of interest, or 
is done in the field on small field plots at the meter-
scale [Green et al., 1986] using either direct or inverse 
methods [Hopmans et al., 2002]. Soil parameters 
obtained from cm-scale measurements (laboratory 
scale) are included in numerical models with a grid or 
element size ten times as large or larger, with the 
numerical results extrapolated to field-scale conditions. 
A critical analysis of the assumptions made when 
applying small-scale (subgrid) parameters to the model 
grid scale, was presented by Beven [1989]. 

Irrespective of scale, transient isothermal unsaturated 
water flow in non-swelling soils is described by the so-
called Richards' equation, 

C ( A J — = V[K(hJV(hm-z)] (1) 
dt 

which provides the soil water matric potential (hm), 
water content (0) and water flux density as a function of 
time and space, using one-, two-, or three-dimensional 
flow models (e.g.,Simunek et al., 1995]. In (1), K is the 
unsaturated hydraulic conductivity tensor (L T"1), and z 
denotes the gravitational head (L) to be included for the 
vertical flow component only. The function C(h m) in (1) 
is the so-called soil water capacity, and represents the 
slope of the soil water retention curve. Both the soil 
water retention and unsaturated hydraulic conductivity 
functions are highly nonlinear, with both h m and K 
varying many orders of magnitude over the water 
content range of significant water flow. These 
nonlinearities make the application of (1) across spatial 
scales inherently problematic. Specifically, the 
averaging of processes determined from discrete small-
scale samples may not describe the true soil behavior 
involving larger spatial structures. Moreover, the 
dominant physical flow processes may vary between 

spatial scales. For example, Dooge [1997] discussed the 
hypothesis that the mathematical model represented by 
Eq (1) may not be applicable to describe unsaturated 
water flow at the watershed scale. Because their 
measurement is time-consuming, the number of 
measured hydraulic data is usually limited, and is 
usually far less than statistically required to fully 
characterize soil heterogeneity. As a result, data 
assimilation techniques, such as linear regression 
analysis, pedotransfer functions and neural networks 
[Pachepski et al, 1999, Schaap et al, 1998] have been 
developed to derive soil hydraulic functions from other, 
easier-to-obtain soil properties. Considering that soil 
hydraulic measurements are typically conducted for 
small measurement volumes and that the natural 
variability of soils is enormous, the main question 
asked, is how small-scale measurements can provide 
information about large-scale flow and transport 
behavior [Gelhar, 1986]. 

Field experiments have confirmed that soil 
heterogeneity controls flow and transport, including 
preferential flow. Initial attempts of the prediction of 
large-scale flow problems used deterministic modeling. 
Although studies such as those of Hills et al. [1991] 
showed a qualitatively acceptable comparison between 
field-measured and predicted water contents using a 
deterministic approach, other studies have shown the 
need for either distributed physically-based modeling 
[Loague and Kyriakidis, 1997] or stochastic modeling 
[Famiglietti and Wood, 1994] at the watershed scale, 
mostly because it will require an enormous amount of 
data to accurately represent the multi-dimensional soil 
heterogeneity. Similarly, stochastic approaches have 
been developed to characterize field-scale soil water 
flow, e.g. by using scaling and Monte-Carlo analysis 
[Hopmans et al, 1988; Hopmans and Strieker, 1989], 
stochastic modeling [Mantoglou and Gelhar, 1987] and 
geostatistical methods [Yeh and Zhang, 1996; Rockhold, 
1999]. 

Alternatively, the conceptual characterization of the 
flow system may be simplified by modeling the key 
flow mechanisms for representative elementary areas 
(REA) only, and for which effective hydrological 
parameters can be defined [Duffy, 1996; Famiglietti and 
Wood, 1994], assuming that variability within a REA is 
statistically homogeneous. Although partially successful 
in surface hydrology, it has been determined that the 
size of the REA is event-dependent, controlled by initial 
conditions and rainfall intensity [Bloschl et al, 1995; 
Grayson et al., 1997]. Surface hydrological modeling at 
watershed scales has also demonstrated that the spatial 
distribution of hydrological processes is controlled by 
the spatial organization of key soil properties (Bloschl 
and Sivapalan, 1995; Merz and Plate, 1997]. The need 
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to incorporate the spatial organization of these key soil 
properties, such as the soil hydraulic functions, is also 
recognized in soil science. Specifically, we refer to the 
treatise by Roth et al. [1999], outlining a 
conceptualization of the control of soil heterogeneity on 
soil flow and transport processes, using the so-called 
scaleway approach. In this approach, the soil is 
conceptualized by a hierarchical heterogeneous medium 
with discrete spatial scales, that each may require 
different effective process models with distinct effective 
material properties. 

Assuming that soils are statistically heterogeneous, 
Freeze [1975] questioned the existence of a uniquely 
defined equivalent saturated hydraulic conductivity, and 
concluded that its value is likely a function of the 
boundary conditions and soil geometry. In his review of 
some basic issues of the consequences of natural soil 
variability for prediction of soil hydraulic properties, 
Philip [1980] extended the work of Freeze [1975] to 
unsaturated, scale-heterogeneous soils, to hypothesize 
that the field application of theory of heterogeneous soil 
systems might lead to "trans-science." Although his 
conclusion appears bleak at first reading, Philip ends 
this remarkably insightful paper with a plea to 'not 
abandon the task of seeking to understand as much 
about these systems as we possibly can.' It is in this 
spirit that many soil scientists have continued their 
analysis of theories, both deterministic and stochastic, 
and soils, both at the field and landscape scale, to 
increasingly elucidate the control of small-scale 
processes on larger-scale flow behavior. 

The following was partly presented at the joint 'Soil 
Science Society of America-German Soil Science 
Society' meeting in Osnabrueck [Hopmans and Bristow, 
2000], and specifically asks whether routine soil 
hydraulic measurements conducted in the laboratory can 
successfully be applied to larger-scale flow and 
transport problems. 

We will make an attempt to answer this question, 
while adopting the relativist concept of Baveye and 
Sposito [1984], assuming that soil property values are 
dependent on the scale of the measurement that can vary 
between soil properties. We also agree with Baveye and 
Sposito [1984] and Beven [2001] that the physical laws 
of the model scale must be consistent with the 
measurement scale. Hence, laboratory-measured soil 
hydraulic properties are appropriate input for 
laboratory-scale columns studies and simulation models. 
When applied to larger spatial scales, we offer two 
alternatives. First, the laboratory-scale soil hydraulic 
properties may be spatially distributed across the larger 
spatial scale of interest, assuming that the integrated 
flow behavior can be determined from aggregation of 
many individual, soil column-like flow processes. 

Second, laboratory-measured soil hydraulic functions 
can be used as initial estimates, and improved by using 
inverse modeling (IM), conditioned by scale-appropriate 
boundary conditions and flow measurements. Hence, we 
concur that prediction of hydraulic behavior of 
heterogeneous soils is likely impossible from the a 
priori knowledge of the homogeneous soil components 
that make up the heterogeneous soil, and that its 
estimation can only be accomplished using scale-
appropriate measurements. 

SCALE-DEPENDENCY OF SOIL PROPERTIES 
AND PROCESSES 

Upscaling requires integration and aggregation of 
spatial information into larger spatial units, e.g., as in 
the estimation of an effective field soil water retention 
or conductivity curve from small-scale laboratory core 
measurements. As clearly pointed out by Baveye and 
Boast [1999], Darcy's experiment [1856] can in effect 
be interpreted as yielding an upscaled, effective 
saturated hydraulic conductivity. In contrast, the 
downscaling requires the disaggregating of scale 
information to smaller scales, e.g., by discerning the 
contribution of different soil structures to the effective 
soil hydraulic conductivity function (Kasteel et al., 
2000). In a statistical sense, one may refer to scale as 
the spatial correlation length or integral scale of the 
measurement, property, or process [Dagan, 1986]. In 
his classic treatise, Dagan distinguishes between the 
laboratory core scale, local scale, and regional scale. He 
defines the laboratory scale as equal to the 
representative elementary volume (REV), for which the 
mean is a constant deterministic quantity, and the 
variance approaches zero [Bear, 1972]. It is this scale, 
for which the Darcy equation can be used as the 
equation of motion, as derived from the volume 
averaging of the Stokes equations [Whitaker, 1986]. At 
the next, larger scale, Dagan [1986] defines the local 
scale, where the soil is heterogeneous, but stationary in 
the mean and variance. We interpret the regional scale 
as the spatial dimension at which the relevant soil 
properties become nonstationary. 

Nonstationary Soil Properties 

When increasing spatial scales, soil properties 
typically become nonstationary [Russo and Jury, 
1987a], as evidenced by the delineation of soil map 
units in a soil survey. Much of the early soil spatial 
analysis, specifically geostatistics, was based on the 
intrinsic hypothesis of stationarity (stationarity of spatial 
differences), however, it is questionable whether this 
stationary model is realistic [Webster, 2000]. 
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Figure 1. Conceptual model of evolving hetereogeneity [after 
Wheatcraft and Tyler, 1988]. 

Nevertheless, as was pointed out by Kavvas [1999], the 
averaging of hydrologic observations or aliasing at a 
larger observation scale may remove nonstationary 
trends at the smaller observation scale. Specifically, as 
one moves through a hierarchical sequence of 
increasing sampling scales, nonstationarities at smaller 
spatial scales may be eliminated. An ideal instrument, 
such as the mathematical tool by Cushman [1984], will 
work similarly and filter out the high frequency 
variability component of a spatial signal to yield a scale-
specific measurement. The remaining nonstationary 
trends of the natural variability or process scales 
[Bloschl and Sivapalan, 1995] may be determined from 
the power spectrum, covariance analysis, and by 
wavelet analysis [Lark and Webster, 1999]. 

As an example, a model of evolving heterogeneity 
[Sposito, 1986], assuming fractal heterogeneous soil 
properties, was presented by Wheatcraft and Tyler 
[1986], showing a pattern of heterogeneity that is scale-
independent across a large range of scales (Figure 1). 

Natural patterns of soil variability may show 
embedded, organizational structures as in Figure 1, that 
are not necessarily fractal, but that lead to nonstationary 
soil properties or processes. However, as pointed out by 
Cushman [1990], spatial patterns of soil properties 
within and between scales (structural hierarchy) might 
be different from the organization of the soil 
hydrological processes (functional hierarchy) across 
spatial scales. As different flow processes may be 
dominant at each scale, different mathematical 
relationships may be required to describe the 
underpinning physical process at each scale [Klemes, 
1983]. As one moves towards a larger spatial scale, soil 
properties may change from deterministic to random, 
with the smaller-scale variations filtered out by the 
larger-scale process, thereby eliminating nonstationary 
trends at the smaller spatial scales. 

The spatial organization and its evolvement across 
spatial scales can be defined in various ways. The 
example of Figure 1 shows a discrete and a continuous 
variation pattern between and within the main spatial 
units, respectively. As noted by Gelhar [1986], at each 
field-of-view, the large-scale variation, which causes the 
nonstationairity of the specific soil variable or process, 
can be regarded as deterministic, whereas the smaller 
scale variations within each main unit can be treated 
stochastically. Alternatively, one can define the types of 
variability as ordered (between main units) and 
disordered (within main units), or as macroscopic and 
microscopic variations. Most appropriately, the 
hierarchical heterogeneous soil medium can be 
described by the structural and textural definitions or the 
scale way approach of Roth et al. [1999], with the 
structural elements describing the dominating soil 
patterns that affect the physical mechanisms operating 
at the a priori defined field-of-view. In contrast, the 
textural patterns within the structural units are merely 
perturbations of the main processes, and can be 
described statistically. Thus, when characterizing soil 
hydraulic variability for the prediction of soil 
hydrologic processes, it is assumed that the occurrence 
and location of these structural elements are dominating, 
and must be accurately determined. We conclude that 
stationarity of a soil hydrological process or parameter 
is dependent on the scale of observation. 

Analysis of process scales 

Scale-dependent, nonstationary processes exhibit 
statistical properties that are different than what is 
usually assumed in geostatistical analysis. Specifically, 
the REV [Bear, 1972] cannot be defined, as the soil 
property changes value, when increasing the scale of 
observation. Moreover, the spatial correlation structure 
of nonstationary fields will depend on the spatial extent 
or sampling area of the data, resulting in variograms 
with multiple sills (see Figure 2) that occur at 
correlation lengths of the multiple process scales 
[Gelhar, 1986]. In addition, Rodriquez-Iturbe et al. 
[1995] demonstrated that nonstationary properties will 
show a power law decay of the variance, resulting in a 
linear relation between variance and observation scale, 
when plotted on a log scale. 

The power spectrum is determined from the Fourier 
transform of the autocovariance functions and 
represents the partitioning of the sample variance into 
spatial frequency components [Greminger et al., 1985]. 
Process scales occur at spectral peaks, whereas spectral 
gaps represent spatial scales with minimum spectral 
variance. An example of a hypothetical power spectrum 
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Semivariance Regional 

Lag (Separation distance) 

Figure 2. Hypothetical variogram for scale-dependent hydraulic 
conductivity. Adapted from Gelhar, [1986]. 

is demonstrated in Figure 3, with a small-scale (core 
scale) component, superimposed on two large-scale 
components (local and regional scale). 

The Nyquist frequency of the power spectrum 
determines that the smallest process scale that can be 
examined is twice the sampling scale [Cushman, 1984]. 
In other words, if the sampling distance is d (spatial 
frequency is 1/d), then no fluctuations in processes with 
size smaller than 2d (or larger than l/2d) can be 
observed. Using measurement scales larger than defined 
by the Nyquist frequency would merely show noise, 
rather than describing spatial trends. Analogously, 
Russo and Jury [1987b] demonstrated for stationary 
fields that the correlation length of the process scale 
could only be accurately estimated if the sampling 
distance is smaller than half of the range of the 
underlying process. This constraint is usually not an 
issue for most soil hydraulic measurements, as the soil 
sampling scale (about 10 cm) is usually smaller than the 
natural process scale. 

According to the scaleway or nested approach of Roth 
et al. [1999], subsequent aggregation of information and 
the modeling of flow and transport at one specific scale, 
provides the required information at the next, larger 
scale level. However, rather than implying that this type 
of analysis is needed across many spatial scales, we 
argue that likely only two scale levels need to be 
considered within the spatial domain of interest. For 
example, if the scale of interest is an agricultural field, 
one defines the structural elements based on the 
dominant physical mechanism that causes the major 
differences in soil water regime between the structural 
units. Most recently, Becker and Braun [1999] defined 
these units as hydrotopes or hydrological response units, 
based on differences between vegetation types, shallow 
groundwater presence, soil type or hillslope. Wood 
[1995] and Famiglietti and Wood [1994] described the 

aggregated watershed response by aggregation of total 
watershed runoff using area-weighted average runoff 
values of REA's with different topography indices. 
Likewise, in his review on scale issues in hydrological 
models, Beven [1995] introduced the simple patch 
model for scale-dependent modeling, with a patch 
defined as any area of the landscape that has broadly 
similar hydrological response in terms of the quantities 
of interest. In soil hydrological studies, soil map units 
may define the structural units across the landscape 
[Ferguson and Hergert, 1999] or may be indicative of 
geologic hydrofacies as identified using the transition 
probability geostatistical method [Weizmann et al, 
1999]. The smaller spatial scale level of the textural 
information within structural units is distributed either 
deterministically or stochastically, e.g. using scaling of 
soil hydraulic properties from laboratory soil cores 
[Hopmans and Strieker, 1989]. The upscaling from the 
textural to the structural scale level may result in 
effective, scale-appropriate soil hydraulic functions that 
may differ in form and parameter values between scales, 
but serve a similar function across scales. The 
subsequent distribution of the structural units is 
deterministic (distributed modeling) and their 
aggregation to the scale of interest may be possible by 
simple mass conservation principles, e.g by the 
fractional area approach (addition or averaging). It is 
important to realize that the spatial organization of 
structures might be caused by different soil processes at 
different spatial scales. 

SCALING ACROSS SPATIAL SCALES 

Whereas we have presented a general framework to 
measure and model flow and transport processes across 
spatial scales, various mathematical and analytical tools 

Spectral 
variance 

Spectral 
peak 

Regional Local l/2d Lab 1/d 

Frequency of sampling scale 

Figure 3. Schematic presentation of power spectrum, showing 
various process scales (d = sampling spacing). 
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are needed to aggregate soil hydraulic information 
across spatial scales. Specifically, we review scaling 
and inverse modeling. 

Scaling and Monte Carlo Analysis 

Most of the uncertainty in the assessment of water 
flow in unsaturated soils at the field scale can be 
attributed to soil spatial variability caused by soil 
heterogeneity. The knowledge of constitutive 
relationships for the unsaturated hydraulic conductivity, 
water saturation, and soil water matric potential are 
essential in using (1). The exact nature of the functional 
dependence of these flow variables with water content 
differs among soil types with different particle size 
compositions and pore size geometry within a 
heterogeneous field soil. The scaling approach has been 
extensively used to characterize soil hydraulic spatial 
variability and to develop a standard methodology to 
assess the variability of soil hydraulic functions and 
their parameters. The single objective of scaling is to 
coalesce a set of functional relationships into a single 
curve using scaling factors that describe the set as a 
whole (e.g. structural unit). The concept of this 
approach has been developed principally from the 
theory of microscopic geometric similitude as proposed 
by Miller and Miller [1956]. The procedure consists of 
using scaling factors to relate the hydraulic properties in 
a given location to the mean properties at an arbitrary 
reference point. Philip [1967] designated this type of 
variability scale-heterogeneity, emphasizing that the 
spatial variation of soil properties is fully embodied in 
the spatial variability of the scaling factor. Instead of 
using pore radius as the microscopic characteristic 
length, similarity of pore size distribution [Kosugi and 
Hopmans, 1998] was used to scale soil water retention 
curves for soils that exhibit a lognormal pore-size 
distribution. In this study, the physically based scale 
factors were computed directly from the physically 
based parameters describing the individual soil water 
retention [Kosugi, 1996] and unsaturated hydraulic 
conductivity [Tuli et al., 2001] functions. The 
physically based scaling concept provides for the 
simultaneous scaling of the soil water retention and 
unsaturated hydraulic conductivity functions, assuming 
that all soils within a structural unit are characterized by 
a lognormal pore-size distribution. This approach leads 
to scaled-mean soil hydraulic functions for each 
structural unit that may serve as effective soil hydraulic 
functions. In addition, physically based scaling results 
in a set of lognormally distributed scaling factors, from 
which the textural distribution within a structural unit 
can be characterized. Using Monte Carlo analysis, 
stochastic soil water flow modeling can be conducted, 

with scaling factors generated from a known probability 
density function [Hopmans and Strieker, 1989]. 

Inverse Modeling 

The inverse method offers a powerful procedure to 
estimate flow properties across spatial and temporal 
scales. As numerical models have become increasingly 
sophisticated and powerful, inverse methods are 
applicable to laboratory and field data, no longer limited 
by the physical dimensions of the soil domain, or type 
of imposed boundary conditions. Inverse methods 
might be especially appropriate for estimating regional-
scale effective soil hydraulic parameters, from boundary 
condition measurements. For example, Eching et al. 
[1994] estimated field-representative hydraulic 
functions using inverse modeling of Eq. (1) with field 
drainage flow rate serving as the lower boundary 
condition for the Richards' flow equation applied at the 
field-scale. The application of inverse modeling to 
estimate soil hydraulic functions for laboratory soil 
cores has been extensively reviewed by Hopmans et al. 
[2002]. 

The inverse modeling approach mandates the 
combination of experimentation with numerical modeling. 
Since the optimized hydraulic functions are needed as 
input to numerical flow and transport models for 
prediction purposes, it is an added advantage that the 
hydraulic parameters are estimated using similar 
numerical models as used for predictive forward 
modeling, with similar grid sizes so that the estimated 
effective hydraulic properties include the within grid 
integration of real soil variability. Although application 
of inverse methodology may suffer from non-
uniqueness (e.g., Beven, 2001], the application of 
inverse methods in general to estimate soil hydraulic 
functions across spatial scales is very promising. This 
technique has demonstrated potential as an excellent 
new tool for a wide spectrum of transient laboratory and 
field experiments, yielding effective or lumped 
hydraulic properties that pertain to the scale of interest. 
We will demonstrate various applications in the 
following examples. 

EXAMPLES OF SCALING APPLICATONS ACROSS 
SPATIAL SCALES 

We demonstrate the application of the various 
aggregation techniques, to estimate effective large-scale 
soil hydraulic properties from small-scale laboratory 
measurements on soil cores. We start with the 
measurement of REV of porosity at the pore-scale, and 
present scaling applications at the soil core, field plot, 
field, and watershed scale, respectively. As the 



Figure 4a. Three-dimensional image of dry glass beads (light 
gray) and pore space (dark grey) [after Clausnitzer and 
Hopmans, 1999]. 

examples will show, the conceptualization of separating 
soil heterogeneity into textural and structural elements 
allows the integration of small-scale soil hydraulic 
properties to larger spatial scales, possibly resulting in 
scale-dependent soil hydraulic properties. 

Pore Scale 

Although (1) is not applicable at the pore scale, this 
example is shown to demonstrate the existence of a 
REV for porosity, for the first time as we know 
[Clausnitzer and Hopmans, 1999], using x-ray 
computed tomography (CT). Using the three-
dimensional spatial distribution of x-ray attenuation as a 
proxy, porosity measurements for a glass bead medium 
were conducted for increasing measurement volumes. 
X-ray CT measurements were conducted in a random 
pack of uniform glass beads within a vertical Plexiglas 
cylinder of 4.76 mm inner diameter. The bead diameter, 
dp, was 0.5 mm and the spatial resolution was 18.4 
micrometer, resulting in (18.4 jum)3 voxel volumes (see 
Fig. 4a). In this example, the single structural unit is 
represented by the glass beads pack, and textural 
variations are defined by porosity changes at a 
measurement scale larger than the REV. Starting from 
the original three-dimensional data set of attenuation 
values, increasingly larger volumes were extracted, all 
centered at the same location, beginning with 8x8x8 
voxels and incrementing the cube side length, L, of the 
averaging volume by 4 voxel lengths (0.0736 mm) in 
each step. The sequence of porosity calculations with 
increasing volume size was conducted twice, first with 
the initial 8x8x8 averaging volume centered in the air 
phase, and subsequently with the averaging volume 
centered in the glass phase. The resulting curves are 
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Figure 4b. Estimated porosity for a cubic domain with 
increasing size within the glass-bead pack [after Clausnitzer 
and Hopmans, 1999]. 

presented in Fig. 4b, suggesting a REV of about 3 to 5 
times the bead diameter. In an independent, modeling 
study, Zhang et al., [2000] showed that the REV may 
depend on the quantity being represented, as suggested 
by Baveye and Sposito [1984]. Thus, the REV for 
porosity may be different than for the Darcy scale at 
which (1) may be applicable, and for which soil 
hydraulic properties can be defined. 

Soil Core Scale 

Both Roth et al [1999] and Kasteel et al. [2000] have 
shown that the spatial structure of soil hydraulic 
properties at the core-scale must be known, to 
accurately predict solute transport through the soil core. 
Using soil bulk density, as measured by x-ray CT, to 
proxy for soil hydraulic properties, two distinct soils 
were characterized within a 16-cm diameter soil core. 
The resulting image of the dense (light) and less dense 
soil matrix (dark) is shown in Figure 5, delineating the 
high and low-conductive soil materials or structural 
elements within the core. In this example, no textural 
variations within the structural elements were assumed. 

The hydraulic properties of the more-conductive soil 
material were determined using a network model from 
independently measured pore geometry. Assuming a 
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Figure 5. Illustration of two soil density classes in one 
specific cross-section of a 16-cm soil core [after Kasteel et al, 
2000]. 

trial value for the conductivity of the low-conductivity 
structure, an effective saturated conductivity for the 
whole soil core was estimated from a composite 
conductivity, with weighting factors determined by the 
volume fraction of each soil material. Subsequently, it 
was demonstrated using a three-dimensional flow and 
transport code, that the simulated breakthrough of a 
chloride solution in the unsaturated soil core could be 
matched reasonably well with breakthrough 
measurements, if the ratio of saturated conductivity 
between the two soil materials was optimized, while 
maintaining the spatial structure of soil variation in the 
three-dimensional flow and transport code. Specifically, 
different conductivity ratios affected solute spreading, 
with preferential water flow through the higher-
conductive soil structure dominating transport. The 
study showed that nonstationarity of the hydraulic 
properties can have a large effect on solute transport. 
Moreover, this study demonstrated a successful 
application of inverse modeling, to estimate a core-scale 
effective hydraulic conductivity functions with 
structural contraints. 

Field Plot and Field Scale 

The next larger scale level was investigated by 
Wildenschild and Jensen [1999a and b] to study the 
effective water flow behavior in heterogeneous, two-
dimensional soil slabs. Experiments consisted of a series 
of infiltration experiments with varying application 
rates, in a two-dimensional 100x100x3 cm, 
heterogeneous soil slab, consisting of various 
realizations of packings with 5 different sands, using 
5x5x8 cm unit cells. The soil hydraulic properties for 
each sand type were measured in the laboratory first, 
and represented the structural units. The soil tank was 

instrumented with strategically placed tensiometers and 
TDR probes, to estimate local soil hydraulic properties 
and their spatial distribution, from measurements during 
various steady state flow regimes, with water flux rates 
determined by a rain application device. After 
incorporating the distributed soil heterogeneity 
deterministically, using the laboratory-measured soil 
hydraulic functions for the individual sand types, a two-
dimensional flow and transport model [Simunek et al, 
1999] was able to predict the measured spatial 
variability of soil water flow in the soil slab. In addition, 
effective soil hydraulic properties for the whole slab 
were determined using simple statistical averages 
(geometric and arithmetic), as well as by inverse 
modeling using the measurements of water content and 
matric potential in the transient stages between the 
steady state experiments. In either case, effective 
hydraulic properties were able to describe the average 
transient soil water behavior for the heterogeneous soil 
system, as determined from two-dimensional transient 
water flow modeling. 

In the field experiment by de Vos et al. [2000], nine 
soil horizons were classified into four different 
hydrologic zones, each determined by different soil 
hydraulic functions, representing the functional soil 
structural elements. The tile-drained field was 62.5 by 
12 m with a center drain at about the 1 m soil depth. 
Soil water matric potential, groundwater level, 
piezometric heads, at various locations within the 
experimental field, and field discharge rate and nitrate 
concentrations were measured during the 1991-92 
leaching period. Soil water retention, saturated and 
unsaturated hydraulic conductivity data for the 4 
characteristic zones were measured from laboratory soil 
cores. The HYDRUS-2D model [Simunek et al, 1999] 
was used to simulate the two-dimensional flow regime 
and nitrate transport in the field, and the drainage rate 
and nitrate concentration in the drain outlet. Field-
effective soil water retention and hydraulic conductivity 
functions were estimated using an inverse modeling 
approach, by adjusting the hydraulic parameters that 
were measured from the laboratory soil cores. 
Regarding the calibration of the field-representative 
hydraulic conductivity function, the saturated hydraulic 
conductivity for each of the four functional soil layers 
was adjusted, so that the simulated groundwater level-
drainage rate relationship matched the measured data, 
using the constraint that effective saturated hydraulic 
conductivity values were within their laboratory-
measured ranges. Laboratory-measured soil water 
retention curves were adjusted to match simulated with 
measured groundwater level and drainage rate during 
the monitoring period. 
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Watershed scale 

At the watershed scale, Hopmans and Strieker [1989] 
used a stochastic-deterministic model to simulate soil 
water flow in the spatially heterogeneous Hupsel 
watershed. Using various laboratory techniques, soil 
water retention and unsaturated hydraulic conductivity 
functions were measured for each of 3 hydrologically-
distinct soil layers that were widely present in the 650 
ha watershed. Simultaneous scaling was used to model 
the spatial variability of the soil hydraulic data, yielding 
reference curves and a set of scaling factors for each of 
the 3 identified soil layers. The objective of this 
experimental study was to quantify the impact of soil 
spatial variability on the water balance of the watershed. 

The spatial organization of the various soil types was 
selected based on the starting depth of a clay layer, 
since it largely controlled spatial variations in 
groundwater level and drainage rate within the 
watershed. The influence of small-scale local variations 
in soil hydraulic properties on water flow within each 
structural unit was simulated stochastically, using 
Monte-Carlo simulations, from random generation of 
scale factors for each of the 3 distinct soil layers. 
Computer simulations with SWAP [van Dam et al., 
1997] were conducted for a dry (1976) and a wet year 
(1982), yielding mean and variance of 
evapotranspiration, groundwater level, and drain 
discharge for each structural unit. Subsequently, the 
same hydrological variables were either simply 
averaged or added, to yield watershed-representative 
values. Without any further calibration, independently-
measured and simulated groundwater level and 
watershed discharge were close for both years. This last 
example shows how the proposed deterministic-
stochastic approach using the structure-texture concept 
was successfully applied at the watershed scale, using 
laboratory-core soil hydraulic functions. 

Using the laboratory-measured soil hydraulic 
functions as a starting point, Feddes et al. [1993a] 
subsequently demonstrated that almost equally good 
agreement was found, by using a single set of effective 
soil hydraulic functions, representative for the whole 
watershed. Their numerical exercise demonstrated that 
an area-average, effective parameterization of the soil 
hydraulic functions can be applied to (1). Results 
obtained by using the scaled reference hydraulic 
functions were almost as close as using an inverse 
approach, by optimization of the hydraulic functions via 
minimization of the residuals between measured and 
simulated soil hydrological variables. In a later study, 
Kabat et al. [1997] concluded that effective soil 
hydraulic properties could successfully describe area-

average evaporative and soil moisture fluxes at the 10-
100 km 2 scale, provided that the averaged area 
contained a single soil type only. This was concluded 
with the understanding that the estimated effective 
properties are merely calibration parameters, which do 
not necessarily have the physical meaning implied by 
application of the Darcy flow equation. 

CONCLUDING REMARKS 

Although most of the presented examples show that 
some kind of fitting is needed along the way, the 
estimated soil hydraulic properties using small-scale 
laboratory soil cores can be effective in estimating 
large-scale, effective soil hydraulic properties. We are 
also convinced that significant progress in the 
understanding of fundamental flow processes in 
heterogeneous soils is possible only if scale-appropriate 
measurement technologies are available. Innovative 
examples of such instruments that are explored to 
characterize subsurface flows across spatial scales 
include the application of noninvasive techniques 
[Hopmans et al, 1999], such as x-ray tomography, 
electromagnetic induction, electrical resistivity, seismic 
reflection, and microwave remote sensing [Jackson et 
al, 1999; Hollenbeck et al, 1996; Mattikalli et al, 
1998]. Present theory and applications of remote 
sensing may potentially help improve the 
understanding of large-scale hydrological processes 
such as runoff, infiltration and evapotranspiration, 
including their spatial distribution and scale-
dependency. The monitoring of transient soil moisture 
changes by remote sensing may provide the essential 
information to estimate up-scaled soil hydraulic 
parameters such as the saturated hydraulic conductivity 
or unsaturated hydraulic parameters, using the inverse 
modeling approach. An excellent example of such an 
application was presented by Feddes et al. (1993b), who 
demonstrated that remote sensing of soil surface 
temperature and soil moisture combined may provide 
the essential information to estimate effective soil 
hydraulic parameters at the catchment scale. The work 
of Ahuja et al (1993) support this potential application 
of remote sensing, and showed that spatial variations in 
surface soil moisture can be related to spatial variations 
in effective values of soil profile saturated hydraulic 
conductivity. In their review of scaling field soil-water 
behavior, Nielsen et al. [1998] suggested that increased 
efforts to measure field-based soil hydraulic data are 
needed to extend the application of (1) to the 
landscape-scale. 

In his analysis, Philip [1980] used the analytical 
solution of a simple one-dimensional sorptivity 
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experiment to determine whether a sample-mean 
sorptivity value could be predicted from sorptivity 
values of the individual soil components that made up a 
deterministic heterogeneous soil. His results indicated 
that the averaging of spatially-variable soil parameters 
does not necessarily result in an average soil water flow 
behavior. Even now, after a further two decades of 
dedicated research in soil physics and vadose 
hydrology, we must agree with Philip's [1980] final 
statement, 'that our adventures into trans-science will be 
least likely to lead to disaster if we are as well informed 
as possible about stochastic heterogeneous systems.' 
Hence, we conclude that the development of new 
instrumentation to characterize soil properties and their 
variation across spatial scales is crucial. Moreover, the 
inherent complexity of flow in heterogeneous soils or 
soil-like materials and the need to integrate theory with 
experiment, requires innovative and multidisciplinary 
research efforts to break the deadlock, imposed by 
current understanding of scale-dependent soil flow and 
transport processes. 
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For model ing of t ransport processes and for prognosis of their results, the 
knowledge of hydrodynamic parameters is required. Soil hydrodynamic parame
ters are determined in the field by methods based upon certain approximations 
and the procedure of inverse solution is applied. The estimate of a parameter P 
includes therefore an error e. Hydrodynamic parameters are variable to a different 
degree like other soil propert ies even over the region of one pedotaxon and the 
knowledge of their probabil i ty densi ty function P D F is frequently required. W e 
have used five approximate infiltration equations for the est imation of sorptivity 
S and saturated hydraulic conductivi ty K. Distr ibution of both parameters was 
determined with regard to the type of applied infiltration equation. P D F of pa
rameters was not identical w h e n w e compared the parameter est imates derived by 
various infiltration equations. A s it follows from this comparat ive study, the es
t imation error e deforms P D F of the parameter est imates. 

1. INTRODUCTION 

John R. Philip deserves the merit for shifting soil physics 
from empirical studies to theoretical analysis of processes. 
He was the first to present theoretical solutions of soil hy
drological problems, among them infiltration of water in 
soil [Kutilek and Rieu, 1998]. His infiltration equations 
[Philip, 1957a] and equations of soil physicists inspired by 
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his approach are applied here to the study on probability 
density function PDF of soil hydraulic parameters. 

Soils are spatially variable natural bodies due to their ge
netic development, actual vegetation cover, the recent type 
of land use and methods of soil cultivation. All soil proper
ties vary at relatively short distance with various coeffi
cients of variation CV ranging from less than 15% to over 
100% [Wilding, 1985, Jury, 1989] on one soil taxon within 
a landscape unit of a few ha. Soil physical properties are 
grouped into two classes: 1. Capacity parameters which 
have a static character with CV usually small. 2. Transport 
characteristics including hydrodynamic parameters and 
fluxes which are dynamic, their CV is relatively high 
[Kutilek and Nielsen, 1994]. For modeling of transport pro
cesses and for prognosis on their results, the knowledge of 
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hydrodynamic parameters is required. Using the term trans
port processes, we understand by it e.g. fluxes of water in 
soil-plant-atmosphere system, recharging of groundwater, 
fluxes of solutes in soil profile and consequent potential 
pollution of groundwater. Owing to the spatial variability of 
hydrodynamic parameters their statistical evaluation is ap
plied and for a proper understanding of their variation, the 
probability density function PDF is estimated. 

For the determination of soil hydrodynamic parameters in 
the field we use methods which are based upon certain ap
proximations [Angulo-Jaramillo et al, 2000] and the pro
cedure of inverse solution is applied. We are searching the 
value of a certain soil parameter P, however our observation 
is equal to (P + e), where e is the estimation error related to 
the applied method. 

The aim of this research is to study the role of the estima
tion error e upon PDF of soil hydrodynamic parameters. 
Since we do not know a priory the value of P, we are re
stricted in this study to the relative comparative procedure. 
Thus we have evaluated a population of infiltration tests by 
various methods and the PDF of resulting physical parame
ters have been determined. 

2. MATERIALS AND METHODS 

2.1. Site Description 

Experiments have been performed on two sites: 
1. Arenic Chernozem of the carbonate variety (FAO) in 

Central Bohemia (Czech republic). The soil has been devel
oped on a Quaternary fluvial terrace of gravel sand overlaid 
by sandy-loamy topsoil of variable thickness. Fluvial origin 
of the parent material is the main factor causing greater 
spatial variability of soil physical properties than in soils of 
site 2. The soil is typical by its low structural stability in A 
horizon. We assume therefore that the pore size distribution 
is not constant during wetting and in the time span of infil
tration. Infiltration tests were performed on a rectangular 
net with spacing of 7.5 m. The net consisted of 10 rows and 
7 columns, total number of infiltration tests was 70. 

2. Deep Ferralsol in Nigeria, with loamy texture and 
highly stable aggregates. Infiltration tests were performed 
on four transects. Two parallel transects (A, B) were at the 
mutual distance 38 m and the distance of two parallel tran
sects (C, D) located perpendicularly to (A, B) was 8 m. 
Spacing of infiltration tests in transects was 2 m. Total 
number of infiltration tests was 128. 

2.2. Infiltration Tests 

Double ring infiltrometers were used with ponding depth 
(= positive pressure head on the soil surface) in ranges 2 to 
2.5 cm, the diameter of the inner ring was 37.5 cm, of the 

outer ring 60 cm. We have assumed that the experimental 
conditions were very close to the conditions of one-
dimensional infiltration with Dirichlet boundary conditions 
on the top boundary. The mean initial soil water content of 
the topsoil on site 1 was dx = 0.222 at the depth 10-15 cm. 
6 i was not determined on site 2. Since there was no rain 
during the time of infiltration measurement and the tests 
were performed after a dry rainless period, we have as
sumed that 0 i of the topsoil did not change practically 
within the time of the whole set of measurements. In the 
tests, we have measured cumulative infiltration / [L] in time 
t up to 120 min. The time tc of the quasi steady infiltration 
rate, qc = dl/dt = const, was reached in less than 120 min., 
q[LT1]. This was due to limited accuracy in measuring 
technique and q was oscillating at t > tc around the mean qc 

which was taken as quasi steady infiltration rate. 

2.3. Evaluation of Infiltration Tests 

The measured data I(t) were fitted to the following ap
proximate infiltration equations derived from the theoretical 
solution of the process: 

Green-Ampt rs [1911] equation which is exact for Dirac 
delta soil [Philip, 1957b] 

7 ( 0 - » + Aln(l + ̂ ) (1) 
A 

where K is saturated hydraulic conductivity [LT"1], and the 
parameter A = (&\ - 0\)(ho- /zf), with h0 the pressure head on 
the soil surface [L], and hf the pressure head on the wetting 
front. 

Philip's [1957b] two terms algebraic equation was de
rived from the infinite series solution [Philip, 1957a] 

I(t) = Stl/2 +At (2) 

with S sorptivity [LT" 1 / 2], which is an estimate of the real 
sorptivity of infinite series solution [Kutilek et al, 1988] 
and parameter A [LT 1 ] which is related to K by A = mK. 
Theoretically based and most frequently used m is close to 
m = 0.361 [Philip, 1987]. 

The three parameters equation derived from the Philip's 
[1957a] infinite series solution [Kutilek and Krejca, 1987, 
quotation and details see in Kutilek and Nielsen, 1994] is 

I(t) = c / 1 2 +c2t + c3t3/2 (3) 

with parameters cx [LT" 1 / 2], c2 [LT - 1] and c 3 [LT"3 / 2] related 
to the Philip's series solution. The estimate of sorptivity is S 
= ch and approximation of K = ( 3 c i c 3 ) 1 / 2 + c2. 
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Table 1. First two best fitting distributions of S [ L T 1 / 2 ] , sorptivity, and of qx [LT 1 ] , infiltration 
rate after the first minute of infiltration 

Equation Site 1 Site 2 Site 2 
Short set Full set Transects Transects Transects 

A, B C , D A, B, C, D 
s ft _ £ i ^. J [ j k s Hi s 2l 

- E B E E - N 
G W G G G 

(2) LG - G N N 
E E W G 

(3) LG E G N E 
G G E W G 

(4 ) LG E G E N 
E G LG G G 

(5) LG - LG G G 
G E E E 

Type of probability density function: N - normal, LG - lognormal, W - Weibull, G - gamma, B -
beta, E - Erlang. Number of infiltration tests in short set: 49, in full set: 70, in transects A, B: 64, 
in transects C, D: 64, and in all transects A, B, C, D: 128. 

Swartzendruber's [1987] three parameters equation is 

7 (0 = — [ l - e x p ( - c 4 r 1 / 2 ) ] + * r (4) 

where S is the approximation of sorptivity, and c 4 [T" 1 / 2] is a 
parameter. 

Brutsaert's [1977] equation is 

I(t) = Kt + — II l— 1 (5) 
BK\ \ + (BKtx,2)lS\ 

where B is an empirical dimensionless coefficient. 
S and K in the above equations are estimates of sorptivity 

and saturated hydraulic conductivity. During the fitting pro
cedure, they behave as fitting parameters [Kutilek et al, 
1988]. Their physical interpretation corresponds to our ear
lier statement that the results of our evaluation procedures 
are equal to (P + e), where P is the physical parameter, in 
our case either S or K, and e is the estimation error related 
to the applied method. 

We have used the chi-square goodness-of-fit test and 
Kolmogorov-Smirnov test on the fit [Statgraphics, 1985] 
for the determination of the probability density function of 
sorptivity and of saturated hydraulic conductivity estimates 
obtained by equations (1), (2), (3), (4), (5). Further on, for 
comparative reasons, PDF of the directly measured experi
mental data qx and qym were evaluated, too. 

3. RESULTS AND DISCUSSION 

In many of instances, the evaluation of PDF according to 
Kolmogorov-Smirnov test and by the chi-square goodness-

of-fit test have offered the same results. The second proce
dure was sensitive to the number of classes and due to this 
requirement the PDF differed in some instances, as it could 
be expected theoretically. In Tables 1 and 2, there are re
sults obtained by Kolmogorov-Smirnov test. 

On experimental site 1 with Arenic Chernozems, the in
filtration data were not applicable to the fitting procedure 
according to equation (1) of Green and Ampt. Therefore, 
this equation was excluded from PDF testing on site 1. 
Philip's two parameters equation offered non realistic val
ues of hydraulic conductivity K with either K = 0 or even K 
< 0 in about 30% of tests. Brutsaerts equation (5) led to un
realistic values of parameter B -> 0 or B = 0 in 16 % of in
stances. They were identical with tests belonging to 30% of 
non-realistic output in £ according to eq. (2). We have 
therefore formed a shortened set of 49 infiltration tests, 
where we have omitted the infiltration experiments not ap
plicable for fitting according to eq. (2). We have determined 
PDF of parameters obtained from equations (2), (3), (4), 
and (5) in this short set. Full set with all 70 infiltration ex
periments was kept for PDF determination of parameters 
obtained by eq. (3) and (4). 

On site 2 with Ferralsols all equations were applicable 
and no fitting problems occurred there. In parallel transects 
A, B, the number of infiltration tests was 64 and the same 
number of tests was performed in parallel transects C, D. 

3.1. PDF of Sorptivity 

Evaluation of distribution functions of sorptivity S esti
mates is in Table 1. The PDF of S are supplemented by 
evaluation of infiltration rate after the first minute, qh which 
is theoretically closely related to sorptivity. However, PDF 
of qx differ in the majority of instances from PDF of S. The 
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Table 2. First two best fitting distributions of K [ L T 1 ] , saturated hydraulic conductivity, and of 
quo [ L T 1 ] , infiltration rate after 120 minutes of infiltration 

Equation Site 1 Site 2 Site 2 
Short set Full set Transects Transects Transects 

A, B C , D A, B, C, D 
K #.!.2Q K .feo K #.12.9. K a.m.... K #120 

- - B - W - LG - G - LG 
E B E B G 

(1) - - - - LG - G E . -
E E G 

(2) LG - - - LG - E - LG -
G E G G 

(3) W - B - LG - E - LG -
N W G G G 

(4) B - W - LG - E - LG -
W E G B E 

(5) W - - - LG - LG - LG -
B E N G 

Type of probability density function: N - normal, LG - lognormal, W - Weibull, G - gamma, B -
beta, E - Erlang. Number of infiltration tests in short set: 49, in full set: 70, in transects A, B: 64, 
in transects C, D: 64, and in all transects A, B, C, D: 128. 

only exception is in site 2, all transects A, B, C, D together, 
where S obtained by equations (2) and (4) show the same 
PDF as qx. There is distinct curtosis and skewness of S and 
qx distributions indicating that in the majority of instances S 
is not normally distributed. The exception is in 4 cases, 
where normal PDF was evaluated. Lognormal PDF was 
equally frequent as gamma PDF and both were more fre
quent than other tested PDF. For qx we have found normal 
PDF in one case, while Erlang PDF was prevailing in re
maining sets. We are concluding that the PDF of S estimates 
depends not only upon distribution of theoretical S which is 
unknown to us, but upon the nature of approximation in the 
applied equation. A not unique type of PDF in directly 
measured qx is probably due to a lack of accuracy even in 
the measuring technique with double ring infiltrometers and 
with no strictly constant pressure head on the surface. In 
addition to it, the variation in soil heterogeneity on vertical 
may cause variation of divergence of flow paths and a non-
unique deviation from theoretically assumed 1-dimensional 
flow. Low population in short sets may play a role in dis
cussed differences, too, especially due to soil heterogeneity. 
For population of 128 experiments (all transects A, B, C, D) 
there was an increased identity in PDF between qx and 
S estimates. 

3.2. PDF of Saturated Hydraulic Conductivity 

In Table 2 there are the results of distribution evaluation 
of estimates of saturated hydraulic conductivity K together 
with evaluation of quasi steady infiltration rate after 120 
minutes, qX2o- The PDF of qUo and PDF of K estimates was 

more frequently identical than was the case of S and qx. 
However, a complete identity did not exist. A distinct curto
sis and skewness of K and qX2o distributions was found indi
cating that there is not normal distribution in all instances. 
The type of prevailing PDF was different on site 1 and on 
site 2. On site 1 was the Weibull PDF more frequent than 
other distributions. On site 2, lognormal PDF was distinctly 
prevailing and the next most frequent was Erlang PDF. This 
was dominant in transects C, D. There is a tendency show
ing that the increase of population in the studied sets leads 
to a better agreement between PDF of directly measured 
qUo and PDF of the K estimates. A greater variation of PDF 
types in site 1, when compared to site 2 is probably due to 
the instability of soil structure on site 1. Owing to it A'was 
probably time dependent. 

4. CONCLUSIONS 

The comparison of PDF for the estimates of parameters 
S and K shows that their PDF is deformed by the error e, i.e. 
we are determining PDF of an estimate (P + e\ where P is 
the studied soil parameter. The error e is a summation of 
two components: 1. Error due to the approximate character 
of the equation applied for fitting the experimental data. 2. 
Error due to the difference between the field reality and the 
physical soil conditions assumed in the theoretical devel
opment of equations, i.e. the assumed soil physical homo
geneity in depth and time. The instability of soil structure 
and thus induced non-constant pore size distribution in time 
increases the role of the second component of the estimation 
error e. This is a probable reason for a greater variation of 



KUTILEK ET AL. 263 

P D F of the studied parameters in the soil with a low stabil
ity of aggregates. 
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Infiltration outflow experiments , performed on undisturbed soil samples of 
coarse sandy loam taken in Korkusova Hut (KH) revealed the presence of prefer
ential flow and "steady state" infiltration rate instability, compared to results of 
the same experiment performed on an undisturbed sample of fine sand taken in 
the Hupselse Beek, (HB) experimental watershed. The structure of soil samples 
was visualized by means of computer tomography, and in addit ion the infiltration 
outflow experiment for K H soil was performed in a magnet ic resonance (MR) 
scanner. From M R images it was found that for the K H soil sample the character 
of flow changes gradually during the ponded infiltration. The vo lume flowing 
through the sample by gravity at the beginning of the experiment forming early 
outflow later decreases as the port ion of the matr ix flow increases. In the recurrent 
infiltration run into the "saturated" sample this decrease m a y be abrupt, accompa
nied by a significant decrease in the "s teady s ta te" infiltration rate. Both effects 
are unexpected from the point of v iew of Richards ' theory. 

1. INTRODUCTION 

Since the time John Philip published his papers on infil
tration theory the world has changed. Almost everyone can 
now use basic and/or advanced modeling techniques of un
saturated water flow and solute transport in the vadose zone 
having bought efficient user-friendly software packages. 
But a question remains, whether our understanding of the 
mechanism of the flow processes has developed adequately 
as well? In fact this question is similar to John Philip's 
questions or better his worries [Philip, 1991; Nash at al., 
1990]. 

The principles of continuum mechanics and the energy 
concept, expressed through the total matrix potential, allow 
us to write a number of continuity and motion equations for 
an elementary volume. For soil water flow, the generally 
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accepted approach results in the classic Richards' equation 
(RE) and the advection-dispersion equation for the solute 
transport. In this principle, the pore geometry and the driv
ing force mechanism are considered implicitly, defining 
media hydraulic properties averaged over the representative 
elementary volume (REV). In reality, all the processes are 
born at the molecular scale, where the field of interfacial 
forces forms. 

In the classical flow theory, natural soil materials are de
scribed by soil hydraulic properties. Microscopic (pore) 
flow is generally related to macroscopic (Darcian) flow 
using capillary models [e.g. Childs and Collis-George, 
1950; Brooks and Corey, 1964; Burdine, 1953; Mualem, 
1976; van Genuchten, 1980]. The soil hydraulic character
istics are derived on a hypothetical bundle of capillaries re
lated to the pore space geometry. The first derivative of the 
retention curve is mostly considered as a simple transfor
mation of the pore size distribution curve. In the case of 
multi-structured media this distribution is treated as multi
modal [Burner, 1994]. Numerous assumptions have to be 
adopted, some of which are difficult to fulfill in reality. 
There are severe problems with the application of this con-
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Figure 1. Infiltration and outflow rates vs. time plotted for two re
current ponded infiltration experiments on a 20 cm diameter and 
20 cm high undisturbed soil sample a) for Hupselse Beek (HB) 
fine sand (a "regular" ponded infiltration); b) for Korkusova Hut 
(KH) coarse sandy loam (a typical example of the infiltration in 
this soil). 

cept, in addition to the possible inadequacy of a particular 
capillary model itself [ Vogel and Cislerova, 1988]. 

Alternatively, the unsaturated flow can be treated as mul
tiphase flow. The multiphase approach makes it possible to 
reproduce soil hydraulic characteristics by pore-scale mod
els based on microscale data. The pore-scale physics of 
fluid-fluid interfaces can be incorporated serving as internal 
system boundaries in case of preferential flow formation 
[e.g., Tuller and Or, 2001]. 

Regardless of the method used, there is the problem of 
convenient experiments to produce the accurate data neces
sary to interpret the measured macroscopic quantities. In 
standard observations, a more or less arbitrary size and 
shape of the soil sample is taken in the field to be subjected 
to flow measurements. The averaged data are measured 
over the sample, and thus the sample imposes in the real 
world the size and the shape of the REV. That means the 
scale threshold of the observation of involved flow and 
transport processes is given and some information from 
below this threshold is missed. One of the unresolved 
problems born below this threshold is the preferential flow 
often accompanied by flow instability. Non-invasive visu
alization of the pore geometry may be very helpful in 
studying this problem. We describe infiltration-outflow ex
periments that elucidate the observed flow effects. 

2. THE PROBLEM DEMONSTRATION 

Conventionally, when vertical infiltration is considered it 
is assumed that water propagates evenly through the soil 
sample forming a "piston like" wetting front. The fine sand 
from the Hupselse Beek (HB) experimental watershed 
[Cislerova et al, 1990] exhibits this type of flow. Infiltra
tion and outflow rates, the result of the ponded infiltration 
outflow experiment described below, measured on a sample 
of HB soil are presented in Figure la). The beginning of the 
outflow was reasonably delayed, the steady state infiltration 
rate is equal to the outflow rate and therefore to the satu
rated hydraulic conductivity of the sample. The drainage at 
the end of the infiltration run is negligible. In the subse
quent infiltration performed on the "fully" saturated sam
ple, steady state infiltration of equal rate continues. 

In the country where the crystalline rocks prevail, in all 
scales we have to tackle the preferential flow accompanied 
by flow instabilities, that are widely observed on Dystric 
Cambisols [Cislerova et al, 1988; Prazdk et al, 1994; Te-
saf et al, 2001]. Typical shape of consecutive ponded in
filtration runs for a sample of coarse sandy soil from 
Korkusova Hut (KH) is given in Figure lb . The outflow 
commences quickly after infiltration begins because of 
preferential flow. In addition, both the infiltration and out
flow rates continue to decrease and, at the end of infiltra
tion, a certain volume of gravity driven water leaves the 
sample. In a second run performed on the "fully" saturated 
sample, the infiltration rate is substantially less from the 
beginning and continues decreasing. The volume of gravity 
driven outflow draining from the sample at the end of the 
experiment is smaller than after the initial infiltration run, 
demonstrating a change in the contributing flow domain. 

Other examples of irregularities in the course of ponded 
infiltration and outflow also for other soil types, using HB 
fine sand soil as a reference, were discussed earlier [Cisle
rova etal, 1990]. 

In natural porous media, heterogeneity appears at all 
scales, ranging from nanometer to kilometer scales. In the 
case of fast flow it is the very fine scale heterogeneity (100 
u,m) where the preferential flow starts to form. The KH 
coarse sandy loam belongs among highly heterogeneous 
soils, representing a typical "randomly structured medium" 
[Nimmo, 1997]. WHien we compare microphotographs of 
KH and HB soils (Figure 2), we see differences in the soil 
structure at all scales. There is an obvious difference be
tween idealized bundles of capillaries and the natural pore 
spaces, that are multiscale and have a convoluted character 
of pore structure systems [Or and Tuller, 1999]. 

The data obtained from the infiltration outflow experi
ment may be related to the pore geometry non-invasively 
visualized by the X-ray CT (Computer Tomography) and 
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Figure 2. Microphotos of KH coarse sandy loam in the upper row, and HB fine sand in the lower row. The scale 
enlargement ratios from left to right are 19x, 99x, 990x and 4900x. In this sequence the central part of the photograph 
is always enlarged. 

magnetic resonance imaging (MRI). Thus, more informa
tion can be obtained regarding a) the geometry of pore vol
umes contributing to the fast flow, b) the boundaries be
tween the fast and slow flow domains. The images consist 
of voxels with the size given by the image resolution and 
the image thickness. While 3-dimensional CT scans of a 
dry sample describe the solid matter density distribution, in 
MR images provide complementary information on the 
„free" water distribution. Compared to CT, however, the 
character of the MRI information is more complicated. 
Treating the pore-size distribution and tortuosity in hetero
geneous porous media, Latour et al, [1995] classifies po
rous media samples as "regular", "well behaved" and 
"bad". The behavior of the regular group is similar to that 
of glass-sphere packs. The majority of rocks and soils how
ever are distinctly irregular, due to varying shape and min-
eralogical composition of particular grains, complicated 
chemistry and structural and textural instability. Because of 
the presence of paramagnetic substances, soils are consid
ered an inconvenient medium for MR quantitative analysis, 
which are at the edge of MRI possibilities [Amin et al, 
1997; Hall etal, 1997]. 

3. INFILTRATION OUTFLOW EXPERIMENT 

The laboratory infiltration outflow experiments men
tioned above are performed on 1-6 liter undisturbed soil 
samples. A sample is placed on a digital balance in order to 

record changes of the weight throughout the experiment. A 
wide mesh supports the bottom of the sample allowing wa
ter to drain freely. The infiltrated volume and the draining 
outflow are recorded continuously. Tensiometers with pres
sure transducers are installed along the height of the sample 
and continuously read. 

The measurements are done for a sequence of suction 
heads imposed by means of the tension infiltrometer 
[Clothier and White, 1981] placed on top of the sample. 
Between infiltration runs, fan-driven evaporation dries the 
sample to obtain comparable initial conditions for the each 
subsequent run. Each run lasts long enough to reach "steady 
state" flow conditions. In addition, consecutive ponded in
filtration experiments are executed, separated by a period of 
drainage (shown in Figure 1). Details of the experimental 
set-up are presented by Snehota at al, [2001]. 

The collected data supply the information about changes 
of mass balance components during the flow process. For 
each imposed pressure head the values of hydraulic con
ductivities and the moisture contents are measured directly 
[Snehota at al, 2001]. The parameters of the retention 
curve and the relative hydraulic conductivities are later 
evaluated from transient infiltration outflow data by inverse 
modeling [Vogel et al, 1999]. At the end of the complete 
set of experimental runs, the flow paths are visualized by 
adding a pulse of Brilliant Blue color into the ponded water 
of the last ponded infiltration run. Later when drained, the 
sample is sliced and photographed to reveal the distribution 
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Figure 3. Changes of the sample mass (weight) in time for particular infiltration runs. Points where the curves break 
correspond to times when the outflow from the sample began. 

Table 1. Overview of the inflow-outflow experiment settings and 
results 
i hi q(hi) volume 

[cm] [cm/h] [g] [% of pore volume] 
1 -10 0.049 0 0 
2 -7 0.255 10 1.1 
3 -5 0.498 17 1.9 
4 -3 1.066 21 2.4 
5 -1 0.579 30 3.4 
6 +0.6 61.56 54 6.2 

of the dye. In this article we will pay attention to the sample 
mass (weight) developments in time (Figure 3) and to the 
volumes of water moving through the sample by gravity 
(Table 1). Data shown in Figure 3 were obtained for the 
undisturbed sample of Korkusova Hut coarse sandy loam 
12 cm in diameter and 20 cm high. A sequence of pressure 
heads (h) of-15, -10, -7, -5, -3 , -1 and +0.6 cm was applied 
as upper boundary conditions for particular infiltration runs 
starting at the same initial condition. The sample mass de
velopment illustrates the changes of the sample water con
tent during the flow process. For all runs the slope of the 
curve breaks when the outflow begins. Even for visually 
equal outflow and inflow rates, similar to those given in 
Figure 1, a slow filling of the sample continues as recorded 
in the weight increase. It still continues after more then 30 
hours. In subsidiary experiments on 100 cm 3 samples to get 
the saturated moisture content the weight of the samples 
saturated for 48 hours was 8% greater than that achieved by 
a standard 24 hours saturation. When air-dried the volume 
of the samples decreased by approximately 0.5% in diame
ter. We note, however, that all infiltration outflow experi
ments were performed at the initial moisture content suffi
ciently great to avoid signs of shrinking. In Table 1 the vol
umes leaving the sample at the end of infiltration run are 

given in grams and as a percentage of the total pore volume 
(in the case of ponded infiltration after the water on the top 
of the sample had disappeared). In the third column the 
flow rates at the end of each run are given. 

4. COMPUTER TOMOGRAPHY 

Based on measurements of the attenuation of X-ray 
beams and the numerical reconstruction of an image CT 
scanning produces the matrix of voxel numbers in Houns-
field units (HU), which can be correlated with various po
rous media properties. The relationship between HU and 
dry bulk density is reported to be linear, as is the relation
ship for voxel porosities. Dry soil is composed of both air 
and mineral solid. The HU measured for a voxel is some 
composite of air and solid; that means that the information 
contained in each voxel is at the averaged macroscopic 
level. 

Figure 4 illustrates a three-dimensional reconstruction of 
CT data acquired for the air-dried undisturbed soil core of 
the KH soil from the infiltration-outflow experiment. 
Blanking out selected categories of voxel HUs in the image 
illuminates some interior features. In Figure 4, dense vox
els, mostly stones, are shown. The dimensions of the sam
ple are given in Table 2 (KH large). 

In Figure 5 the normalized cumulative frequency of voxel 
HU values for three samples of KH and for one sample of 
HB are given. In the image, the relative HU value for air 
corresponds to zero, while for mineral solid we obtain 
4095. When related to the voxel porosity distributions, the 
empty, air filled voxels scale to unity and the mineral solid 
of HU=4095 to zero. In Figure 5 the different range of val
ues for both soils are evident. While the HU values of the 
images of KH samples are distributed over the whole range 
0-4095, the HB matrix image consists of a narrow range of 
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Figure 4. Three-dimensional reconstruction of CT data acquired 
for the air-dried undisturbed soil core of the KH soil. It shows 
dense voxels of HU greater than 2500 [mostly stones]. A quite 
complicated spatial structure of the porous medium is apparent. 
The 3D image consists of 23 819 481 voxels of 0.3 x 0.3 x 1mm. 

HU values only, between 1250 - 2450. Figure 6 shows the 
particle size distribution of both soils. It can be seen that the 
differences in the ranges of particle diameter are very simi
lar to differences in relative HU distributions. The mutual 
comparison of the frequency distributions of the three KH 
samples is also instructive. While in practice the particle 
size curves for one soil usually show little difference, the 
HU distributions of the three analyzed samples differ sig
nificantly, showing large variations in the pore space 
structure. By blanking out selected classes of HU values we 
may obtain "skeletons" of voxels visualizing empty or less 
dense regions and their connectivity throughout the sample. 

It is straightforward to relate the part of these less dense re
gions to the pore volume of gravity driven water shown in 
Table 1. The classes of voxels representing volumes of dif
ferent density give a basic idea of where the flow can take 
place. For the large KH sample this volume represents the 
voxels of HU < 170. While the network of empty voxels for 
the large KH sample is sparse, the network of voxels corre
sponding to the volume of gravity water of HU < 170 is 
continuous [Cislerovd et al, 2001]. This information is es
sential for the evaluation of flow domains within the sam
ple, and is also very useful for the correct interpretation of 
MR images. 

5. MAGNETIC RESONANCE IMAGING 

For the sake of understanding the results, a simplified de
scription of the MRI method follows (fundamentals are 
given e.g. by Kean and Smith, [1986]). When excited by a 
radio frequency pulse in a homogeneous magnetic field, 
each particular hydrogen proton of the water present in a 
soil sample produces a signal. The MR signal that we detect 
is the sum of all these. The parameters of the MR signal 
needed to quantify the entities of interest are the signal in
tensity, M0, and the relaxation times, Th and T2, which rep
resent the rate of decay of the MR signal in longitudinal and 
transversal directions. Not all of hydrogen protons in the 
water in porous media produce an equal signal however, 
and both relaxation rates are dominated by relaxation at in
terfacial surfaces and are sensitive to pore size. In smaller 
pores the decay of the signal may be so fast that the MR pa
rameters cannot be evaluated. In larger pores filled by rea
sonable numbers of water protons, the decay of the water-
proton signal is close to the decay of bulk water. This is 
used to advantage when looking for the fast moving water 
during the flow, since in the case of KH, the "MR free" 

1000 2000 3000 

relative HU 

4000 5000 

KH large 
> KH sample C3 
• KH sample A 
HB matrix 

Figure 5. Cumulative frequency of voxel density for Korkusova Hut coarse sandy loam (KH) and Hupselse Beek fine 
sand (HB). 
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Figure 6. The particle size distribution of the both (KH and HB) 
soils. 

water is the only water, which is visible (gives a signal). We 
may thus trace water contributing to preferential flow in the 
KH sample. Figure 7 shows that from the two soils, the HB 
fine sand gives significantly better bulk signal than the KH 
coarse sandy soil. 

Based on the ability of MRI to visualize primarily gravity 
driven water in large pores, a method of quantitative 
evaluation of MRI in heterogeneous soils exhibiting prefer
ential flow using the combination of several measuring 
categories has been suggested earlier [Cislerovd et al, 
1999]. ID imaging of the ponded infiltration experiment 
performed in the MR scanner is applied in combination 
with 2D imaging and Tl mapping. During the ponded in
filtration experiment the fast breakthrough of gravity driven 
water (preferential flow) together with the temporal 
changes of the MRI visible water volume can be monitored. 

10 1 
8 - HB fine sand g/cm3 

t > 6 - * A 1.17 

O 1,36 

2 - A o + + 1.47 

0.0 0.1 0.2 0.3 0.4 

moisture content 

a) 

In the experiment performed in the MR scanner, temporal 
changes of MR signal are traced during the continuous in
filtration through a partially undisturbed soil core 4.5 cm in 
diameter and 7 cm high. The porosity of the sample was 
0.49, the initial moisture content 0.23 and the bulk density 
1.19 g/cm 3. To illustrate the development of the volume of 
"visible" water moving within the sample during the whole 
infiltration experiment, the sums of the signal intensities 
along the sample height were calculated from a series of ID 
images as shown in Figure 8. The fast breakthrough of 
gravity driven water during the first stage of the ponded in
filtration experiment is evident (it lasted for about 3 min
utes). Later, when the flow is continuous the changes of 
MR signal are slower and the signal intensity decreases. As 
discussed above, in all infiltration outflow experiments per
formed on this soil, the sample weight in the corresponding 
period of time however steadily increases due to the in
crease of the soil moisture content (an example is given in 
Figure 3). The gradual decrease of the signal thus implies 
changes in the spatial distribution of water molecules dur
ing the flow from "MR visible" fraction (large pores) to 
"MR less visible" fraction (small pores). The sharp de
crease of the signal intensity at the end of infiltration ex
periment shown in Figure 8 reflects the decrease due to 
drainage, when all gravity driven water drained from the 
sample. In Figure 9 two images of the central horizontal 
slice of the sample are shown. The image marked (Flow) 
reflects the distribution of the signal intensity during 
steady-state infiltration, in the image marked (Drained) the 
distribution of signal intensity at the end of the experiment 
is given when the gravity flowing water has drained out. In 

moisture content 

b ) 

Figure 7. Bulk MR signal intensities for packings of varying bulk density and moisture content (a) for fine sand 
(Hupselse Beek), considered being a homogeneous soil material suitable for MRI, and (b) for coarse sandy loam 
(Korkusova Hut), a heterogeneous material with paramagnetic substances [Votrubovd et al, 1999]. While the plotted 
relationship is nearly linear in case (a), in heterogeneous soil (b) the signal is very weak and increases only when 
large pores are filling. Note the differences in the signal intensity scale. For bulk imaging this soil is not acceptable 
and was considered as unsuitable for MRI. However, in case of tracing water contributing to preferential flow this 
fact turns to advantage. 
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Figure 8. Temporal changes of the signal intensity summarized along the vertical axis of the whole sample acquired 
during the ponded infiltration and when the sample was drained. The infiltration rate was approximately 0.014 
cm/sec. 
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Figure 9. Two images of the central horizontal slice: the image 
marked (Flow) is taken during steady-state flow, and (Drained) at 
the end of the experiment when the gravity flowing water drained 
out. In both images, only 30% of all pixels are shown, those, 
which contain "MRI visible" water. 

both images, only 30% of all pixels are shown, these which 
contain "MRI visible" water. 

In an earlier experiment it was found that in the repeated 
infiltration the cumulative signal intensity stays much lower 
[Amin et a l , 1994]. The detailed "visibility", related to the 
mobility of water occupying the pore space has to be gained 
from the Tl distribution maps [Cislerova et al., 1999]. 

The whole series of MR images including T l maps was 
obtained during the ponded infiltration performed on the 
KH sample C3 (Table 2). The initial water breakthrough at 
the beginning of ponding was imaged, then the later "steady 
state" stage when the sample was fully saturated, followed 

by imaging of the sample when drained and then when the 
second infiltration run took place. There was an overnight 
period between the runs. The sequence of 2D images of the 
central slice for the saturated sample at the end of the first 
infiltration run (saturated 1 (SI)), drained sample (drained 
(D)) and for the saturated sample at the end of the second 
infiltration run (saturated 2 (S2)) were taken. Although 
there is not much difference between the images visible to 
the naked eye, (and therefore not shown here), they differ 
significantly both as a whole and in detail. By means of T l 
mapping it was found that only 30 percent of the voxels in 
the central slice contain a reliable MR signal. The MR sig
nal intensities integrated over the "MR visible" 30% por
tion of images SI , D and S2 are given in Table 3. The high
est signal of the three is the one for the SI run; the signal 
for S2 is much lower (90%). 

To illuminate changes in water distribution in detail, a 
fixed line of 28 pixels of higher MR signal was selected ar
bitrarily. The MR signal intensity distribution acquired at 
these pixels during the three experiment stages SI , D and 
S2 is illustrated in Figure 10 in the form of diagram. For S2 
the highest values are much lower than for SI and the posi
tion of extremes is shifted during the drainage period. In 
some pixels with a high signal in case of the run SI the sig
nal vanished in run S2. This suggests that these pixels had 
to be almost empty (air filled) during the second infiltration 
run. It may be explained by the redistribution of water pres
ent in the sample during the interruption of infiltration 
when gravity water drains out of the sample. This detailed 
picture supports the hypothesis that water in large pores 
moves in the second run only near the walls, continuing to 
flow in smaller pores, in both cases being bound by the in
terfacial forces and not free enough to produce a signal 
anymore. The fast-flow region and driving force fields es
tablished during repeated infiltration events are evidently 
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Table 2. Description of the samples scanned by CT and MR 
sample diameter height porosity bulk density dry weight volume pore volume 

[mm] [mm] [-] [g/cm 3] b l [cm 3] [cm 3] 
KH large 120 200 0.39 1.26 2 848.6 2 260.8 872.7 
K H C 3 54.5 99 0.43 1.52 319.6 211.7 87.4 
KH A 44.0 100 0.53 1.24 188.0 152.1 81.1 

Table 3. Totals of the "reliable" MR signal intensities from the 
central slice of the sample C3 at different stages during the ex
periment 
saturated 1 drained saturated 2 
7.61 E+08 6.20 E+08 6.83 E+08 

different from those in the first run. This is consistent with 
observed drop of the outflow rate in the repeated infiltration 
runs, which is accompanied by the increase of the sample 
weight. 

6. DISCUSSION 

Using the concept of momentum balance, German and 
DiPietro, [1999] concluded that pores within the range 
from 10 \im to 10 mm can, under certain specific condi
tions, participate in preferential flow. From the MR images 
of the flow it is evident that the amount of water partici
pating in the preferential flow in the coarse sandy loam 
changes during the flow process and depends on the distri
bution of the soil moisture in smaller pores. Because the 
pore distribution is smooth, not bimodal but multimodal, as 
has been confirmed by the CT voxel porosity distribution, 
the size of the pores changes gradually and despite the 
larger open spaces there is not a firm boundary between dif
ferent groups of pores. Due to the soil/pore heterogeneity 
the rates of the flow in the smallest pores and of the fast 
flow in the large pores differ by several orders of magni
tude. Fast flow is initiated within seconds, the slow flow 
during many hours to days. The driving force fields are 
therefore not in equilibrium, and even during "steady state" 
flow they gradually change. For this soil, the final equilib
rium may never be reached. In addition, the boundary be
tween fast and slow flow domains for this soil is unstable, 
and moves with the gradual filling of the pore system. 

The structure of the large pores network can be well 
evaluated from CT images, however no further conclusions 
about the parameters and contribution of the fast flow do
main can be derived. For the infiltration experiments with 
the upper suction set close to zero, at the beginning the 
gravity flow dominates and the main portion of infiltrating 
water thus percolates through the sample via interconnected 
empty larger pores when available. Due to extremely con
trasting flow rates only a small portion of infiltrating vol

ume participates in the filling of the soil matrix obeying the 
rule that the smallest pores fill the first. However with 
gradual filling of the slow domain (soil matrix), a gradually 
increasing fraction of water volume moving through the 
sample participates in the flow in this domain being at
tracted by the matrix potential. Although the velocity field 
within the sample becomes less contrasting, the preferential 
flow continues and the "steady state" infiltration rate stays 
high. It was found to stay almost unchanged for several 
days (measured, but not shown here). When the infiltration 
is interrupted, the matrix flow, or in other words the slow 
capillary redistribution continues. This part of the flow rep
resents the classical flow. After restarting infiltration, the 
impact of the newly formed driving force field results in a 
sharp drop of the volume that can flow preferentially and a 
different character of flow is identified by decreased 
"steady state" rate. The influence of the shape and proper
ties of the soil particle surfaces, of the interactions of the 
present soil air phase and of the gradual changes in the 
shape and volume of soil particles, e.g., biotites or clays, 
which may swell, is with no doubts very important during 
the entire flow process. Because of the macroscopic nature 
of imaging technique employed, the more details still stay 
hidden. 

7. CONCLUSION 

The unstable hydraulic behavior was described during in
filtration experiments performed on the undisturbed soil 
sample. Similar effects were observed also in the field, 
playing an important role in forming of floods. The hy
draulic interpretation of these phenomena is under way, to
gether with further experiments. Important information is 
yet to be revealed from MRI data. The generalization to 
another soil types would not be justified at all, however for 
materials with wide ranges of pore size distribution similar 
effects may be expected. 
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Figure 10. MR signal values in a fixed line of 28 pixels from the three runs SI , D and S2. Higher signal intensities 
during the run SI give evidence that a larger volume was available as "free" water. The decrease of the signal during 
the second infiltration run S2 and the spatial shift of pixels with the highest signal may be a sign of changed driving 
force field. 
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Effect of Forced Convection on Soil Water Content Measurement 
With the Dual-Probe Heat-Pulse Method 

Gerard J. Klui tenberg and Joshua L. Hei tman 

Department of Agronomy, Kansas State University, Manhattan, Kansas 

The dual-probe heat pulse (DPHP) method is useful for measur ing soil volu
metr ic water content (0) near heterogeneit ies such as the soil surface, but it does 
not consider convective heat transfer that may result from soil water movement 
(forced convection). In this study, w e examined the effect of forced convection 
on estimates of soil water content using three different D P H P sensor orientations. 
Hea t transfer theory that explicitly accounts for forced convect ion was used to 
test this effect. For Orientation I, the parallel heater and temperature probes were 
in a plane normal to the direction of steady water flow. The temperature probe 
was directly downstream from the heater probe for Orientations II and the tem
perature probe was upstream from the heater probe for Orientation III. A simple 
model based on instantaneous heating of the sensor gave excellent approxima
tions of error in 0 for Orientations II and IH. Est imates of absolute error in 0 (A0) 
for Orientation I required a model based on pulsed heating of the sensor. Forced 
convection causes 0 to be underest imated for Orientation n and overest imated for 
Orientat ion I and III. The magni tude of these errors increased logarithmically 
wi th increasing water flux density, but the error for Orientat ion I was substan
tially smaller than that for Orientations II and III. W e conclude that the effect of 
forced convection may be large enough to render the D P H P method useless for 
Orientations II and IH. It does not, however , appear to limit the practical utility of 
D P H P sensors when placed in Orientation I. 

INTRODUCTION 

The dual-probe heat-pulse method introduced by Camp
bell et al. [1991] has proven useful for measuring soil 
volumetric water content [Tarara and Ham, 1997; Bremer 
et al, 1998; Bristow, 1998; Ham andKnapp, 1998; Song et 
al, 1998, 1999; Basinger, 1999; Bremer and Ham, 1999; 
Bristow et al, 2001]. Because of their small size, dual-
probe heat-pulse (DPHP) sensors may be particularly use-
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fill for measuring water content near heterogeneities. Philip 
and Kluitenberg [1999] tested this expectation and found 
that heterogeneity errors are small provided that the hetero
geneity is no closer than the probe separation (typically 
0.006 m). Estimates of heterogeneity errors were later 
sharpened by Kluitenberg and Philip [1999]. 

The soil surface was one form of heterogeneity examined 
by Philip and Kluitenberg [1999] and Kluitenberg and 
Philip [1999]. The performance of DPHP sensors near the 
soil surface is of considerable interest and practical impor
tance. Spatial and temporal observations of near-surface 
water content are needed to improve our understanding of 
near-surface hydrology [Nielsen et al, 1996] and have 
proven useful in verifying remotely-sensed soil moisture 
estimates [Famiglietti et al, 1999; Georgakakos and Bau-

275 
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mer, 1996]. Wind erosion model development has also 
benefited from near-surface water content measurements 
[Durar et al., 1995]. Many other examples could be cited. 

Heterogeneity imposed by the presence of the soil sur
face is only one of several issues that must be addressed to 
evaluate the expected success in measuring near-surface 
water content with DPHP sensors. One issue of consider
able importance is the possibility of heat convection re
sulting from soil water movement (forced convection). The 
heat transfer theory underlying the DPHP method of 
Campbell et al. [1991] considers only conductive heat 
transfer and implies that forced convection is negligible. 
Inasmuch as water flux densities are often greatest near the 
soil surface, it is important to determine whether forced 
convection due to infiltrating water will cause error in wa
ter content measurements with DPHP sensors. 

In this study, we examine the effect of forced convection 
on estimates of soil volumetric water content for three sen
sor orientations. We first review the theory that forms the 
basis for the DPHP method and then introduce alternative 
heat transfer models that explicitly account for forced con
vection. The alternative models are then used to determine 
expected error in volumetric heat capacity estimates due to 
the effect of forced convection. These error estimates are 
then transformed to determine expected error in volumetric 
water content estimates. 

DUAL-PROBE HEAT-PULSE METHOD 

Campbell et al. [1991] proposed a sensor with two par
allel probes extending from a plastic block. One probe 
contained a temperature sensor and the other probe con
tained a heater element that was used to introduce a heat 
pulse. By assuming that the heater probe approximates in
stantaneous heating of an infinite line source embedded in 
an infinite medium, Campbell et al. [1991] developed an 
inverse relationship between the maximum temperature rise 
at the temperature probe and the volumetric heat capacity 
of the medium. This relationship is 

C-q/(enr2Tm) (1) 

where C is the volumetric heat capacity (J m" 3 K" 1) of the 
bulk soil (soil, water, and air), q is the quantity of heat lib
erated per unit length of heater (J m" 1), and Tm is the 
maximum temperature (K) rise measured at a distance r 
(m) from the heater. A value of r is determined for each 
sensor by making measurements with the sensor immersed 
in a medium of known heat capacity. Thus, r is treated as 
apparent rather than actual probe separation. Thereafter, C 
can be determined simply by obtaining measurements of q 
and Tm. 

Neglecting the contribution from air, the heat capacity C 
is a weighted sum of the heat capacities of soil water and 
soil solid constituents 

C = C w 6 + P b c s (2) 

where C w is the volumetric heat capacity of water (J m~3 

K" 1), 6 is the volumetric water content (m 3 m" 3), p b is the 
bulk density (Mg m" 3), and c s is the specific heat of the soil 
solid (mineral and organic) constituents (kJ kg" 1 K" 1). Re
arranging (2) yields the expression 

e = ( c - P b c s ) / c w (3) 

which shows that 0 can be determined from measurements 
of C and p b . The value of C w is known and c s can be esti
mated with sufficient accuracy for mineral soils. 

It is evident from (3) that the effect of forced convection 
will be manifested in 6 via error in determining C. Thus, it 
follows that fractional errors in 0 will be directly propor
tional to fractional errors in C. It is for this reason that we 
first establish the effect of forced convection on C and later 
show how these errors are transformed into errors in 0. 

HEAT TRANSFER MODELS 

Governing Equation 
Consider homogeneous, isotropic soil through which 

water moves at a constant rate in the x direction. Coupled 
conductive and convective heat transfer can be described 
by [Marshall, 1958; Stallman, 1965; Ren et al, 2000] 

n . x ( ^ * T ) - V E . ( 4 ) 
dt {dx2 dy2 J dx 

where T is temperature (K), t is time (s), K is the thermal 
diffusivity (m 2 s _ 1 ) of the bulk soil, and x and y are space 
coordinates (m). The heat-pulse velocity V(m s"1), taken to 
be a positive quantity for flow in the positive x direction, is 
related to the water flux density J(m s"1) by the expression 

F = J ( C W / C ) (5) 

This approach is based on the assumption that thermal 
homogeneity exists between solid, liquid, and gas phases in 
the soil. This assumption has not been tested and may re
quire further evaluation. 
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Orientation I Orientation II Orientation III 
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Figure 1. Three DPHP sensor orientations for measuring soil water content in the presence of a steady water flux den
sity J in the positive x direction. The heater probe H is located at (x = 0, y = 0) for all orientations. Temperature probe T 
is located at (JC = 0, y > 0) for Orientation I, (x > 0, y = 0) for Orientation II, and (x<0,y = 0) for Orientation III. 

Solutions for Infinite Line Source 
We first consider an instantaneous release of heat from 

an infinite line source, which is normal to the x-y plane and 
passes through the point (x, y) = (0, 0). The solution of (4) 
for this case is [Marshall, 1958] 

T(x,y,t) = 
4nkt 

exp 
(x-Vt)2+y2 

4Kt 
(6) 

where q is the quantity of heat liberated per unit length of 
heater (J m" 1) and K is the thermal conductivity of the bulk 
soil (W m" 1 K" 1), defined as the product of K and C. Sec
ond, we consider an infinite line source heated at the rate q' 
(W m" 1) during the time interval 0 < t & t0. The solution of 
(4) for this case is [Ren et al, 2000] 

T(x,y,t) = ^ -
4nk 

for 0 < f as t0, and 

s exp 
(x-Vs)2 + y2 

r * 

T(x,y,t) = f -
4jtA 

s J e x p 

4KS 

(x-Vs)2+y2 

ds (7a) 

4KS 
ds (7b) 

for t>t0. 

Character of the Solutions 
Consider the three sensor orientations illustrated in Fig

ure 1. Heater probe H is located at (JC = 0, y = 0) for all ori
entations, but the location of temperature probe T varies for 
each orientation. Probe T is located at (JC = 0, y > 0) for 
Orientation I, (x > 0, y = 0) for Orientation II, and (JC < 0, y 

= 0) for Orientation III. We now explore the behavior of (6) 
and (7) in the context of these sensor orientations. Equation 
(6) gives the transient temperature response for an instanta
neous release of heat from an infinite line source in the 
presence of forced convection (Figure 2a). Equation (7) 
gives the transient temperature response for pulsed heating 
of an infinite line source in the presence of forced convec
tion (Figure 2b). The behavior of (7) is similar to that of (6) 
except that pulsed heating causes a delay in the transient 
temperature response and a slightly smaller temperature 
rise. These differences in temperature response are illus
trated for Orientation I (Figure 2b). Pulsed heating results 
for Orientations II and III (not shown) give nearly identical 
delays in transient temperature response and decreases in 
temperature rise. Thus, for all orientations, the maximum 
temperature rises predicted by (6) and (7) are similar in 
magnitude but occur at distinctly different times. 

The results presented in Figure 2a show that forced con
vection causes asymmetry in the spatial temperature field. 
This can be seen by noting that each sensor orientation 
provides a measurement at a different location within the 
spatial temperature field near the heater probe (Figure 1). 
Forced convection causes an increase in maximum tem
perature rise downstream from the heater (Orientation II) 
and a decrease in maximum temperature rise upstream 
from the heater (Orientation III). Although it is not evident 
from Figure 2a, forced convection also causes a slight re
duction in maximum temperature rise (« 2%) for Orienta
tion I. It follows that measurements of Tm obtained for es
timating C and 6 with the DPHP method are influenced by 
forced convection. 

Although forced convection causes asymmetry in the 
temperature field, it appears that the temperature maxima 
occurred at the same time for all sensor orientations (Figure 
2a). We show later that forced convection decreases the 
time tm at which the maximum temperature rise is achieved, 
but that tm is the same for all sensor orientations. 
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Figure 2. (a) Transient temperature response for an infinite line 
source with instantaneous heat input. Results were obtained by 
using (6) with the constants q = 700 J m" 1, K = 6.33 x 10" 7 m 2 s"1, 
C = 3.07 MJ m" 3 K" 1, and V= 6.33 x 10" 5 m s"1 (v = 0.3). Sepa
ration between heater and temperature probes was 0.006 m for all 
orientations, (b) Transient temperature response for an infinite 
line source in Orientation I. Curve for instantaneous heat input is 
identical to that in upper panel. Curve for pulsed heat input was 
obtained by using (7) with q' = 87.5 W m" 1 and t0 = 8 s, which 
yields the same total heat input used for instantaneous heating 
(700 J m" 1). Values for K, C, and F w e r e the same as those used 
for the instantaneous heat input calculations. 

ERROR ANALYSIS METHODOLOGY 

Expressions for Volumetric Heat Capacity 
Rearranging (6) yields an expression for the volumetric 

heat capacity 

which depends on the maximum temperature rise Tm occur
ring at time tm. In the absence of convection (V = 0), (8) 
can be reduced to (1) by using the identity r2 = x2 + y2 and 
the fact that tm = r2/^. Unfortunately, both (1) and (8) rely 
on the assumption of instantaneous heating. Kluitenberg et 
al. [1993] showed that the instantaneous heating assump
tion used by Campbell et al. [1991] in obtaining (1) typi
cally causes error of < 1% in estimates of C, but this result 
applies only in the absence of convection (V= 0). Thus, (8) 
cannot be used to evaluate the effect of forced convection 
without first understanding whether the assumption of in
stantaneous heating is reasonable. 

An alternative approach is to use an expression for C that 
explicitly accounts for pulsed heating. Such an expression 
can be obtained by rearranging (7b) to give 

c = 
4JTK TL, 

exp 
(x-Vs)2 +y2 

4KS 
ds (9) 

which, in the absence of velocity (Vz 

tow etal., 1994] 
0), reduces to [Bris-

C = -
4 j t K 7 L 

Ei - r 
[4K(tm-t0) 

- E i 
4 K tn 

(10) 

where -Ei(-x) is the exponential integral. 
Consistent with the use of (1) in the method of Campbell 

et al. [1991], we assume that measurements of Tm are 
available for use in (8) - (10), but that K , V, and tm must be 
specified or calculated. We next explore the relationship 
between K, V, and tm. 

Relationships for Time to Temperature Maxima 
Differentiating (6) with respect to time and setting the re

sult to zero gives 

4Ktm=x2

+y2-{Vtmf 

A useful dimensionless form of (11) is 

2 
T m = -

+ V i + i > 2 

(11) 

(12) 

where x m , dimensionless time to the temperature maximum, 
is defined as 

C = 
4JTK7L/™ 

m m 

exp 
(x-Vtm)2+y2 

4Ktn 

(8) 
2 2 

x +y 
(13) 
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and v, dimensionless velocity, is defined as 

v = 
2K 

(14) 

From (14) we see that v becomes Vy/2K for Orientation I, 
VX/2K for Orientation II, and | VX/2K | for Orientation III. 
Figure 3 shows that x m = 1 in the absence of convection and 
decreases as v increases. 

Differentiating (7) with respect to time and setting the re
sult to zero yields 

I 'mj 4K 4K tjtm-t0) 

A dimensionless form of (15) is 

(15) 

ln 1 — (16) 

where x 0 , dimensionless heating duration, is defined as 

4K; 0 

x + y 
(17) 

Values of x m satisfying (16) for different values of v and 
x 0 were obtained using a Van Wijngaarden-Dekker-Brent 
iterative technique [Press et al., 1989]. Results for select 
values of x 0 in Figure 3 show that x m increases as heating 
duration x 0 increases. But notice that the shapes of the xm-v 
curves remain largely unaffected by the heating duration x 0 . 

Examination of (12) and (16) reveals that they are inde
pendent of sensor orientation. Thus, the results shown in 
Figure 3 hold for all orientations. In other words, the effect 
of convection in reducing x m (or tm) is manifested similarly 
for all orientations. This confirms our earlier observation 
(Figure 2a) that tm is decreased as a result of forced con
vection, but that it is decreased by the same amount for all 
sensor orientations. 

Heat Capacity Error Analysis 
For the instantaneous heating model, fractional error in 

C, denoted AC/C, is calculated by computing the error in
troduced when (1) is used instead of (8) to estimate C. In 
this case AC/C is 

q 
AC 
~C ~ 

4xKTmtm 

exp 
(x-Vtm)2+y2 

4Ktn 

- - 1 (18) 

which reduces to 

AC 
C = tm e x P 

v2xn Vx_ 
2K 

- 1 - 1 (19) 

from which Jt, q, and Tm have been eliminated. Evaluation 
of (19) is accomplished by first specifying values for VX/2K 
and v. Substituting v into (12) provides a corresponding 
value for x m . Using the values for VX/2K, V, and x m in (19) 
give a corresponding value for AC/C. 

For the pulsed heating model, AC/C is calculated by 
computing the error introduced when (10) is used instead of 
(9) to estimate C. In this case AC/C is 

AC 
C 

4JTK7L 
Ei 

4K(fm-/0) 
- E i 

4K t„ 

4jtK7L 
s ! e x p 

(x-Vs)2 +y2 

- 1 ( 2 0 ) 

4KS 
ds 

Following Kluitenberg and Warrick [2001], (20) be
comes 

AC 
C 

10 

0 1 — , 0 -W 
1 

,0 

exp 
(Vx^ 

W -W 

- 1 (21) 

To = 8 

T0 = 4 

T0 = 2 

Instantaneous 

0.01 0.1 

v 

Figure 3. Time to temperature maximum (xm) as a function of 
velocity (v) and heating duration (x 0). Results for instantaneous 
heat input are from (12). Results for pulsed heat input are from 
(16). The dimensionless variables xm, v, and x 0 are defined in 
(13), (14), and (17), respectively. Note that x m = 1 for instantane
ous heating when v = 0. 
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o 
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0.001 

The procedure for evaluating (21) is similar to that for 
evaluating (19) except that a value for T 0 is also required 
and (16) is used to calculate x m . The method of Kluitenberg 
and Warrick [2001] was used to evaluate with error < 1 
x 10 - 5 . 

Water Content Error Analysis 
Examination of (3) yields the expression 

A8 = 
C AC 

C L C 
(23) 

for absolute error in water content (A6), which is linearly 
related to fractional error in heat capacity. We used C w = 
4.18 MJ m~3 K" 1 in subsequent calculations. 

Figure 4. Fractional error in volumetric heat capacity (AC/C) for 
Orientation I as a function of velocity (v) and heating duration 
(x 0). As noted in the text, v = Vy/2K for Orientation I. Results for 
instantaneous heating were obtained from (19); results for pulsed 
heating were obtained from (21). Dimensionless heating duration 
is defined in (17). 

1 

0.001 -I 1 1 — , ,—, . i , , , ! 
0.01 0.1 1 

Figure 5. Fractional error in volumetric heat capacity (AC/C) for 
Orientation II as a function of velocity (v) and heating duration 
( T 0 ) . As noted in the text, v = VX/2K for Orientation II. Results for 
instantaneous heating were obtained from (19); results for pulsed 
heating were obtained from (21). Dimensionless heating duration 
is defined in (17). 

from which JT, q, and Tm have been eliminated. The func
tion W in (21) is the well function for leaky aquifers, de
fined as [Hantush, 1964, p. 321] 

» F ( i i , p ) - | z-l&qp(-z-$2/4z)dz (22) 

ERROR ANALYSIS RESULTS 

Error in Heat Capacity 

Fractional error in heat capacity (AC/C) is plotted as a 
function of v for Orientations I, II, and III in Figures 4, 5, 
and 6, respectively. Results for the instantaneous heating 
model in Figures 4-6 were obtained from (19); results for 
the pulsed heating model were obtained from (21). As indi
cated previously, v = Vy/2K for Orientation l,v= VX/2K for 
Orientation II, and v = \ VX/2K | for Orientation III. The 
magnitude of AC/C increases with increasing velocity for 

0.001 -I . , — , ,—, , , , , , I 
0.01 0.1 1 

Figure 6. Fractional error in volumetric heat capacity (AC/C) for 
Orientation III as a function of velocity (v) and heating duration 
( T 0 ) . AS noted in the text, v = | VX/2K | for Orientation III. Results 
for instantaneous heating were obtained from (19); results for 
pulsed heating were obtained from (21). Dimensionless heating 
duration is defined in (17). 
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Table 1. Soil physical properties reported by Ren et al, [2000]. Volumetric heat capacity ( Q and thermal diffusivity 
(K) were measured with disturbed soil material (ground, sieved, and repacked) at saturation. 

Textural Bulk Organic 
Soil Class Density Matter C K 

Mg m - 3 % MJ m" 3 K" 1 2 -1 
m s 

Hanlon Sand 1.53 0.8 3.07 6.33 x IO" 7 

Clarion Sandy loam 1.38 2.3 3.19 5.54 x IO" 7 

Harps Clay loam 1.21 2.3 3.24 4.23 x IO" 7 

all sensor orientations, but is positive (C overestimated) for 
Orientations I and III and negative (C underestimated) for 
Orientation II. It is also evident that AC/C is substantially 
smaller for Orientation I than for Orientations II and III 
over most of the dimensionless velocity range shown in 
Figures 4-6. Although it cannot be concluded from the fig
ures, AC/C is zero in the absence of forced convection (V = 
0) for both instantaneous and pulsed heat inputs. 

Campbell et al. [1991] used DPHP sensors with an ap
parent probe spacing of r « 0.006 m and a heating duration 
of t0 = 8 s. Others have used similar values for r and t0. 
Typical values of thermal diffusivity for a mineral soil 
range from K « 2 X 10~7 to K » 9 X 10~7 m 2 s"1. Thus, we 
find from (17) that x 0 can be expected to fall in the range 
0.2 < T 0 < 0.8 under most circumstances. If indeed x 0 is re
stricted to this range, (19) and (21) yield similar AC/C val
ues for Orientations II and III in the velocity range 0.01 < v 
< 1.0 (Figures 5 and 6). For Orientation II, values of AC/C 
obtained from (19) are within 1.5% of the values obtained 
from (21). For Orientation III, values of AC/C obtained 
from (19) are within 2.4% of those obtained from (21). We 
conclude that (19), which is simpler to evaluate than (21), 
provides excellent estimates of AC/C for Orientations II 
and III. 

Unfortunately, (19) is not a good substitute for (21) when 
estimating AC/C for Orientation I with x 0 restricted to the 

range 0.2 < x 0 < 0.8 (Figure 4). Values of AC/C obtained 
from (19) and (21) differ by as much as 10% over the ve
locity range 0.01 < v < 1.0. Therefore, accurate estimates 
of AC/C for Orientation I require the use of (21). 

Error in Water Content 

Figures 4-6 provide general AC/C results that are appli
cable for a wide range of soil thermal properties. Similar 
generalization is not possible in presenting results for A6. 
Instead, we present AO results for several examples based 
on the soils studied by Ren et al., [2000]. Physical proper
ties of these soils are reported in Table 1. Note that the 
thermal properties (Table 1) were obtained with disturbed 
soil material (ground, sieved, and repacked) at saturation. 
Inasmuch as we expect J to be largest for saturated soil, 
these soil materials, at saturation, yield worst-case esti
mates of error in A6. For all example calculations, (21) was 
used to obtain AC/C, heating duration was fixed at to = 8 s, 
and (23) was used to calculate A6 from AC/C and C/C w . 

Results for the Hanlon sand (Table 2) show that the 
magnitude of AO increases with increasing velocity for all 
sensor orientations, but is positive (0 overestimated) for 
Orientations I and III and negative (0 underestimated) for 
Orientation II. It is also evident that AO is substantially 
smaller for Orientation I than for Orientations II and III for 
the range of fluxes shown in Table 2. A flux density of J = 

Table 2. Fractional error in volumetric heat capacity (AC/C) and absolute error in volumetric water content (AO) as a 
function of water flux density (J) for saturated Hanlon sand (see Table 1). As noted in the text, v = Vy/2K for Orienta-
tion I, v = VX/2K for Orientation II, and v = | VX/2K | for Orientation III. 

Orientation I Orientation II Orientation III 

J v AC/C A6 a AC/C A6 b AC/C A6C 

m s 1 m 3 -3 
m m 

3 -3 
m m 

3 -3 
m m 

1 x IO" 6 6.45 x IO"3 1.09 x 10" 5 < 0.001 -6.42 x 10" 3 -0.005 6.49 x IO" 3 0.005 

3 x IO" 6 1.94 x 10" 2 9.84 x 1 0 - 5 < 0.001 -1.91 x IO"2 -0.014 1.97 x I O - 2 0.014 

1 x 10" 5 6.45 x IO" 2 1.09 x 10" 3 0.001 -6.15 x IO - 2 -0.045 6.78 x IO" 2 0.050 

3 x 10" 5 1.94 x 10" 1 9.81 x 1 0 - 3 0.007 -1.68 x 10"1 -0.123 2.26 x 10" 1 0.166 

1 x IO" 4 6.45 x 10" 1 1.06 x 10" 1 0.078 -4.20 x 10"1 -0.308 1.11 x 10° 0.814 
aError of AO = 0.01 occurs atJ= 3.538 x 10" 5 m s"1. 
bError of AO = -0.01 occurs at J= 2.133 x I O - 6 m s"1 

cError of A6 - 0.01 occurs at J= 2.089 x 10~6 m s - 1 . 
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Table 3. Absolute error in volumetric water content (A6) as a 
function of flux density (J) for the water-saturated soils listed in 
Table 1. Results are for Orientation I. 

A0 a 

J Hanlon Clarion Harps 

m s m m 
1 x 10" 5 0.001 0.001 0.002 

2 x 1(T5 0.003 0.004 0.007 

3 x 1(T5 0.007 0.009 0.015 

5 x 1(T5 0.020 0.025 0.041 

7 x 10" 5 0.039 0.048 0.078 

1 x 1(T4 0.078 0.096 0.156 
aError of AO = 0.01 occurs at J= 3.538 x 10" 5 m s"1 for Hanlon, 

J= 3.174 x 10" 5 m s"1 for Clarion, and J= 2.462 x 10" 5 m s"1 for 
Harps. 

1 x 10"5 m s"1 (3.6 cm h" 1) causes errors of A8 = 0.001 for 
Orientation I, A6 = -0.045 for Orientation II, and A6 = 
0.050 for Orientation III. We anticipate that, for a coarse-
textured soil such as the Hanlon (92.1% sand), the effect of 
forced convection on DPHP sensors in Orientation I will be 
negligible except for the most extreme flux densities. For 
DPHP sensors in Orientations II or III, the effect of forced 
convection may be large enough to render the method use
less. 

The Clarion and Harps soils exhibited larger water con
tent errors than the Hanlon at a given flux density J (Table 
3). These results are presented to illustrate the sensitivity of 
A6 to changes in soil thermal properties. The larger 6 errors 
were caused by the lower thermal diffusivities of the Clar
ion and Harps soils (Table 1). But this effect was offset 
slightly by the higher volumetric heat capacities of these 
soils. Decreases in C also cause A6 to increase. Note, how
ever, that we would generally anticipate smaller flux densi
ties for the Clarion and Harps soils because of their higher 
clay content than the Hanlon. This is similar to what would 
be expected in the presence of unsaturated flow. Values for 
C and K generally will be lower for unsaturated soil, but 
flux densities can be expected to be orders of magnitude 
smaller than those for saturated flow. 

SUMMARY AND CONCLUSIONS 

We evaluated the effect of forced convection on soil 
water content determination with DPHP sensors for three 
sensor orientations. Heat transfer models that explicitly ac
count for forced convection were used to achieve this pur
pose. One of the models was based on the assumption that 
the heater probe of a DPHP sensor delivers its heat to the 
soil instantaneously. A second model was based on the 

more realistic assumption that the heater probe imparts heat 
to the soil over a finite period of time (pulse input). Both 
models were used to develop expressions for fractional er
ror in volumetric heat capacity (AC/C) and absolute error in 
volumetric water content (A6). We have shown that the 
simpler expression, based on the instantaneous heating 
model, gives excellent approximations of AC/C and A6 for 
Orientations II and III. We have also shown that the ex
pression based on the pulsed heating model must be used in 
order to obtain accurate error estimates for Orientation I. 

We conclude from our results that, for all sensor orienta
tions, error in C and 6 increase in magnitude logarithmi
cally as water flux density increases. But C and 6 are un
derestimated for Orientation II and overestimated for Ori
entations I and III. We also note that lower soil thermal 
properties (C and K) enhance the effect of forced convec
tion and cause greater error in C and 6. Our results also 
show that errors in C and 0 are substantially smaller for 
Orientation I than for Orientations II and III for all but the 
highest water flux densities. Hence, the effect of forced 
convection is predicted to be significantly smaller for 
DPHP sensors installed in Orientation I than for those in
stalled in Orientations II and III. 

For DPHP sensors in Orientations II or III, the effect of 
forced convection may be large enough to render the 
method useless. For DPHP sensors in Orientation I, the 
theory shows that relatively high water flux densities are 
required for forced convection to cause significant error in 
6 measurements. Forced convection, therefore, does not 
appear to limit the practical utility of DPHP sensors when 
placed in Orientation I. 

Finally, we emphasize that our results were obtained us
ing an assumption of uniform water flow in the vicinity of 
the DPHP sensor. Thus, our estimates of error in C or 6 
may not be useful if there is strong spatial heterogeneity in 
water flux density at the spatial scale of the sensor. 
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Momentum Transfer to Complex Terrain 

John Finnigan 

CSIRO Atmospheric Research, Canberra, Australia 

By definition the boundary layer is the layer of the a tmosphere that responds 
directly to the character of the ear th ' s surface. Usually, the land surface is het
erogeneous on a variety of scales and this heterogeneity is reflected in the bound
ary layer. W e have classified surface heterogeneity into three types: complex sur
faces such as plant canopies and urban areas, where the horizontal scale of het
erogeneity is small; changing surface cover such as that found in farmland or 
between major changes in land use; and topography. For each class of heteroge
neity w e compare the changes that occur in the boundary layer with the canonical 
boundary layer over homogeneous flat terrain. Our emphasis is on changes to the 
windfield and surface stress that occur in near-neutral stratification and w e do not 
discuss scalar fields or the effects of changes in the surface energy balance. In 
discussing topography w e deal only wi th low hills whose influence on the flow is 
confined within the boundary layer. 

1. INTRODUCTION 

Although John Philip is best known for his contributions 
to soil science, he also devoted a great deal of his attention 
to the turbulent atmospheric boundary layer. The building 
he designed for the CSIRO Division of Environmental Me
chanics, which he founded and led for over twenty years, 
housed what was then the largest boundary layer wind tun
nel in Australia. From its earliest days, the micrometeoro-
logical work that he encouraged combined simulations in 
this tunnel, field experiments and analytic theory to extend 
the compass of micrometeorology or natural aerodynamics 
from a focus on the 'flat earth' that is so convenient for 
theorists and so rarely encountered in practice, to the real 
world of heterogeneous surfaces, tall plant canopies and 
complex topography. Indeed, John's own most significant 
contributions to micrometeorology addressed the important 
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question of scalar transfer from heterogeneous surfaces 
[Philip, 1987;I996a,b; 1997]. 

In this paper, the present state of understanding of the 
way momentum is transferred to real surfaces is summa
rized. As will become apparent, a substantial degree of 
commonality can now be traced in transfer mechanisms in 
what are, at first sight, quite different physical configura
tions. I am sure that this emerging synthesis would have 
appealed to John's deep conviction that unity in the de
scription of physical phenomena is to be found not far be
neath surface dissimilarities. 

The boundary layer is the layer of the atmosphere that is 
influenced directly by the roughness and energy balance of 
the surface. Atmospheric properties like windspeed, tem
perature and scalar concentrations vary rapidly through this 
layer, changing from their surface values to merge with the 
synoptic state above the boundary layer. The boundary 
layer is the only region of the atmosphere that is neutrally 
or unstably stratified for much of the time as the layers of 
air in contact with the ground respond to the friction and 
solar heating of the surface and become turbulent. Much of 
the character of the boundary layer, therefore, is impressed 
upon it by the particular nature of the underlying surface. 

285 
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At a sufficiently small scale all natural surfaces exhibit 
some spatial inhomogeneity. When this is of a scale large 
enough to cause sensible spatial variations in the mean and 
turbulent properties of the boundary layer, then we regard 
the underlying ground as a 'complex' surface. Although, 
more often than not, we find the elements of complexity in 
arbitrary combinations, it is useful to divide them into three 
main classes, each with its own characteristic features. 
These are: Complex Surfaces, including vegetation cano
pies and urban areas; Changing Surface Cover, including 
transitions between surfaces of different roughness such as 
farmland to forest or water to land; and Topography rang
ing from small hills to mountains. 

Complex Surfaces 

The distinguishing feature of complex surfaces is that, 
while the horizontal scale of inhomogeneity in the ele
ments that make up the surface-plants or houses, for exam
ple-is relatively small, the elements are high enough that 
we are interested in the properties of the atmosphere be
tween them, not just because we might walk amongst them 
as in a city or forest but because it is necessary to recog
nize that the exchange of quantities like heat and momen
tum between them and the atmosphere occurs over some 
height range rather than just at the ground surface. 

Changing Surface Cover 

Here we are concerned with inhomogeneity at much 
larger horizontal lengthscales, ranging from simple 
changes between one surface type and another to continual 
changes such as might be seen in farms with fields planted 
with different crops. It is characterized by the appearance 
of internal boundary layers over each new surface. If the 
new surface continues sufficiently far downstream without 
further change, the new internal boundary layer replaces 
the old boundary layer and eventually a new geostrophic 
balance is struck between the surface and the synoptic flow 
above the boundary layer. If the surface character changes 
continually, however, the impact of each internal layer 
only extends up to some blending height, above which the 
total boundary layer behaves as if it were flowing over a 
surface with properties that are some average of the differ
ent patches. 

Topography 

Hills and valleys affect boundary layer flow because the 
pressure field, that develops as the atmosphere flows over 
them, accelerates and decelerates the near-surface flow. In 
a relatively thin layer near the surface, analogous to an in

ternal boundary layer, changes in turbulent stresses 
strongly affect the mean flow but at higher levels the 
changes in mean windspeed are essentially inviscid. The 
pressure field that develops about any given hill is strongly 
dependent upon the stratification of the atmosphere flow
ing over it, which can be characterized by a Froude num
ber. Hence, the scale of the topography profoundly affects 
the resultant boundary layer flow patterns [Carruthers and 
Hunt, 1990]. Those over a very large hill, whose pressure 
field is largely determined by the displacement of the 
stratified synoptic flow above the boundary layer, are quite 
different to those over a smaller hill, where flow displace
ment is confined within the neutral or unstable boundary 
layer. Here we will confine our attention to smaller hills. 

In this chapter we will be concerned with the boundary 
layers that develop over terrain with these different kinds 
of complexity and will concentrate especially on two as
pects of their description: the windfields that we observe 
within them and the surface stresses beneath them. Our in
troduction of spatially averaged equations below suggests 
one motivation for this. Mathematical models used for cli
mate or weather prediction have horizontal resolutions 
between 50km and 500km so that the windspeed averaged 
over grid cells between 50km 2 and 500km 2 in area has to be 
related to some average of the surface properties within the 
cell. At the same time we want to know how to relate 
measurements of windspeed and other variables at points 
in an evolving boundary layer to the surrounding land
scape. 

Although this paper will concentrate on the windfield, 
surface roughness and stress this is not meant to discount 
the equally important relationships between surface energy 
balance, heat and water vapour fluxes. Rather it is a re
sponse to space limitations and in recognition of this our 
attention will be primarily on boundary layers near neutral 
stratification, where the energy balance is less important. 
In particular, we have not discussed stably stratified noc
turnal boundary layers as universal scaling laws are much 
less applicable in their case. 

2. GOVERNING EQUATIONS 

In discussing flow over individual roughness elements, 
surface patches or hills we adopt familiar Reynolds aver
aged flow equations. Conservation of momentum is ex
pressed as, 

du, —du, dp . — d r . . 0 
dt dXj dx, dXj T0 

and conservation of mass by the continuity equation, 

duL = ^ L = S « i = 0 ( 2 ) 

dx, dx, dx, 
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The time average operator is denoted by an overbar, 

/ x 1 J+T/2 

and the velocity vector is split into mean and fluctuating 
parts, 

ut(t) = w,+u t (t) where, w.'(r) = 0 (4) 

We use a right-handed rectangular Cartesian coordinate 
system, xt (x,y,z) with xj (x) aligned with the mean velocity 
at the surface and x3 (z) normal to the ground surface. Ve
locity components aligned with JC, (x,y,z) are denoted by ut 

(u,v,w) with ui (u) the streamwise and u3 (w) the vertical 
component. eijk is the alternating unit tensor and dtj, the 

Kronecker delta. The acceleration due to gravity is g, 6 is 
the averaged potential temperature, T0 a reference tem
perature and we have made the Boussinesq assumption [eg. 
Businger, 1982]. Q 7 is the angular rotation vector of the 

earth, p is the kinematic pressure and v the kinematic vis
cosity. The kinematic momentum flux tensor Ty includes 
both turbulent and viscous stresses, 

— T T ... r>J=-UiUJ+V^t (5) 

We are particularly interested here in the average flow 
that develops over various scales of surface heterogeneity 
and so we now introduce momentum and continuity equa
tions in which mean quantities are averaged spatially as 
well as in time. 

The volume average of a scalar or vector function (f>i is 

defined as, 

{t)M=jSS<f>^+r^r (6) 

v v 

and <t>j=(4>j)+ (/>'• where (^;(x,/)) = 0 

The averaging volume V, which excludes solid rough
ness elements, consists of a horizontal slab, extensive 
enough in the x-y plane to eliminate variations in flow 
structure on the scale of individual roughness elements but 
thin enough to preserve any important variation of proper
ties in the vertical. When it is convenient, we will allow the 
thickness of the slab to be vanishingly small so that ( ) 

can also denote an areal average over the x-y plane. In 
canopies where a significant fraction of the total volume is 
occupied by solid elements, which may be the case in 

dense urban areas, V should reflect the ratio of solid to 
open space and may be a function of height. 

Where the surface roughness elements intersect the spa
tial averaging slab, differentiation and volume averaging 
do not commute. Instead it can be shown [Raupach and 
Shaw, 1982; Finnigan, 1985], 

dx, dx, 
(7) 

where the surface 5/ is the sum of all the solid surfaces that 
intersect the averaging volume V, and nt is the unit normal 
vector pointing away from S/into V. 

With these definitions, spatially averaged continuity and 
momentum equations become, 

d(u\ dip) 

dt 

+^7±L+^S1zr+FPI+FV, 

(9) 

$1 

The kinematic momentum flux tensor, (rtj ^ as well as 

the conventional turbulent and viscous stresses now in
cludes the dispersive flux term, the second term on the 
right hand side of equation (10), which results from any 
spatial correlations in the time-averaged velocity field. The 
viscous flux is usually negligible in the high Reynolds 

Number flows we discuss in this Chapter. In defining (r^ } 

we have ignored small terms that arise because the space 
and time averaging operators do not strictly obey Reynolds 
averaging rules. 

F P I and F V I are (minus) the volume averaged sums of the 
pressure and viscous forces, respectively, exerted on every 
solid element that intersects the averaging volume V. To
gether they constitute the aerodynamic drag on unit mass 
of air within V. These two terms are identically zero when 
z is above the level of the highest roughness element. 
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Figure 1. Normalized mean velocity and shear stress profiles 
measured in a variety of canopies ranging from wind tunnel mod
els a few centimeters high (prefix WT), through natural cereal 
crops (Shaw and Wilson corn) to forests (Moga, Uriarra, Bor
deaux). Full details may be found in Kaimal and Finnigan (1994) 
(see further reading). 

One effect of the absorption of momentum over the 
height of the canopy is that the origin of coordinates for the 
logarithmic velocity profile above the canopy is displaced 
from the ground a distance d, the displacement height so 
that in the neutral surface layer the velocity profile must be 
written, 

u(z) = —Log 
K 

(12) 

where K is Von Karman's constant (• 0.4) and 

u* = yf^o = yj(Tn){hc) is the friction velocity, hc being the 

height of the canopy. The displacement height d is equal to 
the mean level of momentum absorption on the solid ele
ments [Jackson, 1981], 

3. COMPLEX SURFACES 

he ~ Ihc ~ 

'-/*£*//£* ( 1 3 ) 

The defining characteristic of a complex surface is that 
the region of interaction between the atmosphere and the 
surface is extended in the vertical rather than being con
fined to the ground plane. The most obvious and best 
studied examples are plant canopies but urban landscapes 
share many of the same characteristics and cityscapes are 
often referred to as 'Urban Canopies'. Canopies, whether 
natural or urban, have obvious structure in the vertical but 
are horizontally homogeneous on the scale of many plants 
or buildings. It is a practical impossibility to deal directly 
with the spatial complexity of the airflow between the can
opy elements so below the level of the roughness elements 
we apply the equations defined in the last section and de
scribe canopy flows in terms of areally averaged variables. 

In figure (1) we have plotted mean velocity and shear 
stress profiles typical of natural and artificial canopies on 
flat ground [Kaimal and Finnigan, 1994; Raupach et al, 
1996]. They illustrate some key features of flow close to 
and within complex surfaces. Looking first at Figure ( lb) , 
the shear stress profile, we observe above the canopy the 
constant stress layer expected in a steady, non-accelerating 
atmospheric surface layer (ASL) but within the canopy we 
see that momentum is absorbed steadily as aerodynamic 
drag on the canopy and that little stress is exerted on the 
underlying ground surface. An immediate consequence of 
this is seen in the velocity profiles plotted in Figure ( la) . 
Again, above the canopy we see the expected boundary 
layer profiles but within the canopy the profiles are 
roughly exponential with a marked inflection point at the 
canopy top. 

The inflection in the velocity profile at the top of the 
canopy has very important consequences for the turbulent 
structure and scaling laws. An inflected profile of this kind 
is inviscidly unstable and spontaneously generates ener
getic turbulent eddies. The size of the eddies that are gen
erated is of order hc and they dominate the turbulence 
structure in a layer known as the 'Roughness Sub-Layer', 
which extends from the ground up to two or three canopy 
heights [Raupach et al, 1996, Finnigan, 2000]. When the 
canopy elements are sufficiently sparse, a dynamically sig
nificant inflected profile may not be present although the 
area-averaged velocity will still display an inflexion point. 
In this case, the size of the dominant eddies will be linked 
to the size of the separated flow regions and wakes behind 
individual elements, which will still often be of order h& 
especially in urban canopies. 

The Roughness Sub-Layer (RSL) forms the lowest dis
tinct layer of the atmospheric boundary layer over complex 
surfaces. Between 3hc and hc turbulence statistics such as 
integral lengthscales depart from Monin-Obukhov scaling, 
where the lengthscale is (z-d), and become constant with 
height, scaling on Ls, the natural lengthscale of the shear at 
the canopy top, 

h=lf{hc))j[^{hc))l^] (14) 
or more conveniently on (h-d), which is approximately 
proportional to Ls [Raupach et al, 1996; Kaimal and Fin
nigan, 1994]. 
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In this region also, vertical diffusion by the turbulence 
becomes more 'efficient' in the sense that eddy diffusivi-
ties for momentum, KM and scalars, Kc, 

\{ujjdz ' 
K - F c 

dz 
(15) 

(where Fc is the kinematic flux density of an arbitrary 
scalar c) become up to twice as large as their Monin-
Obukhov, ASL counterparts. Within the canopy layer itself 
(hc > z >0) turbulent transport is not a diffiisive process 
because the large canopy eddies responsible for transport, 
are the same size as the scale of mean vertical gradients in 
momentum and scalars. Indeed, locally, the eddy-
diffusivities may even become negative [Denmead and 
Bradley, 1985]. 

The effects on other turbulence moments of the vertical 
distribution of sources and sinks and the special character 
of RSL turbulence are equally profound. We have a par
ticular interest in these features of complex surfaces for at 
least two reasons. First because plant canopies form a bio
logically active lower boundary to the atmosphere at which 
incoming solar radiation is partitioned into the sensible and 
latent heat fluxes which drive atmospheric mixing over 
land. Second because in cities, it is the turbulence gener
ated though these mechanisms that is responsible for ven
tilating urban streets. 

4. CHANGING SURFACE COVER. 

Moving now to larger scale, we consider patches of sur
face cover that contain many individual roughness ele
ments so that their characteristics can be described by av
eraged quantities like roughness lengths, z0 or displacement 
heights, d (Equation 12). We will look first at simple 
changes of surface roughness such as those between bare 
soil and an irrigated crop. Once we have established the 
nature of simple transitions from one type of surface to an
other we will be in a position to describe the boundary 
layer over patchy surfaces. 

4.1. Local Advection: Yhe Wind Field 

Local advection refers to situations where the effects of 
surface changes do not propagate above 8ASL, the depth of 
the surface layer. Imagine a situation where an equilibrium 
boundary layer, where the airflow in the surface layer is 
characterized by a logarithmic profile with roughness 
length z01 and displacement height d], encounters a new 
surface with roughness length z02 and displacement height 
d2. We will assume that the boundary is perpendicular to 
the surface wind vector. As the airflow encounters the new 

surface it either slows down because of increased surface 
friction (smooth-rough, z02>z0i) or speeds up because the 
surface friction falls (rough-smooth: z02<z0i). The effect of 
this acceleration or deceleration, which is initially confined 
to the air layers in contact with the new surface, is diffused 
vertically by turbulence and the effect of the change is felt 
through a steadily growing internal boundary layer of 
depth dj(x) (see Figure 2a) [Garratt, 1990; Kaimal and 
Finnigan,\994]. 

The effects of the change are also transmitted by pres
sure forces that are associated with any change in stream
line height that follows if d] is not equal to d2 and this pres
sure perturbation is not confined to the internal boundary 
layer. Its effect is negligible, however, except very close to 
the transition even when the change in displacement height 
is significant and for the rest of this section we will ignore 
it. We will also avoid writing z-d, assuming that the origin 
of the z coordinate is adjusted appropriately to include d. 

The strength of the roughness change can be character
ized by the ratio of the roughness lengths, M* or its loga
rithm, M, 

M * = ^ ; 
Zr\rt 

M = \n 
I • 

= l n ( z 0 1 ) - l n ( z 0 2 ) (16) 

Within the internal boundary layer the flow displays char
acteristics of the downstream surface. Outside it, apart 
from the small perturbation caused by the pressure pulse at 
the transition, the flow field is identical to that upwind (see 
Figure 2b). The internal boundary layer depth 8^ (x ) i s 

usually defined, therefore, as the height at which the 

downwind velocity u2(z) or shearing stress T2(Z) attain 

fixed fractions, eg. 99%, of their upwind values at the same 
height. Unless we state otherwise, henceforth we will as
sume that 8j(x) is defined in terms of the velocity. 

The growth of the internal boundary layer is caused by 
turbulent diffusion and, if we take the characteristic diffu
sion velocity as u^2 = , the downstream friction veloc
ity, then we can write, 

dx 
Bum2 

« 2 (r) 
(17) 

To integrate equation (17) we need an expression for 
ui (z) and, for 8t < 8ML, the simplest assumption is that, 

tt2(z) = ^ l n 
V Z02 
— (18) 
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Figure 2. (a) Schematic diagram of internal boundary layer 
growth. The inner equilibrium region is marked by the dashed 
curve. This region is not expected to begin until some distance 
after the roughness change, (b) Logarithmic velocity profiles after 
a roughness change. The upwind equilibrium profile is denoted 
by a dashed line. 

Then stipulating that Si(x) = 0at x=0, and locating the 

origin of coordinates at the roughness change, we obtain 
[Panofsky andDutton, 1984], 

6\x) 
ln 

6\x) 
- 1 = B K (19) 

Equation (19) provides a qualitative description of the 
growth of the internal boundary layer and, with BU 1.25 
provides a good quantitative measure of 8j(x) for 
smooth-rough changes and for moderate rough-smooth 
transitions (M < 2). WTien the rough-smooth change is 
larger (M > 3), equation (19) tends to overestimate the 
growth in Sj(x) because then, diffusion downstream of 

the roughness change is controlled for some distance by 
the slowly decaying upstream turbulence [Antonia and 
Luxton, 1972]. 

To obtain equation (19) we assumed that the velocity 
profile within the internal boundary layer was logarithmic 
all the way up to 8^ (x). This is a gross oversimplification, 
however. In Figure (2b) we have identified an inner equi

librium layer, 8e (x) at the bottom of the internal boundary 
layer. Only in this layer has the flow attained local equilib
rium with the new surface with the shearing stress r 2 (z) 
approximately constant with height and the velocity profile 
w 2 (z ) obeying equation (18). An estimate for de(x)can 

be obtained by first writing an approximate equation for 
the streamwise momentum balance that ignores any pres
sure perturbation at the roughness change and also assumes 
that the changes in the flow field are small, 

- / N dAu m dAr 
« ' ( * ) — D — (2°) dx dz 

where Aw = U2 (z)-m (z) and AT = r 2 {z)-rx ( z ) . If we 
now insist that for local equilibrium to obtain be
low de(x), the integral from z=0 to deof the advection 

term on the left hand side of equation (20) must be negligi
ble compared to the perturbation in surface stress, 

, we obtain [Mason, 1988], 

^ • 2 ^ ( 2 1 ) 
X { UI 

whence, 

*.(*)to2̂.(*) • 2/r 2 (22) 
*02 ) 

For the kinds of roughness changes often studied in mi
crometeorology, the slope S^x^l/lto 

while 8e/x^ 1/100. Hence 8e corresponds to the height-
to-fetch requirements traditionally adopted as a rule of 
thumb by researchers who wish to apply one-dimensional 
formulae downwind of a change in surface cover. 

For 51 >z> Se we have a blending region, where the ve

locity profile changes smoothly between 

u(z) = UT2/tc\n(z/z02)andu(z) = w + 1 / / r l n ( z / z 0 1 ) . In this 
region and downwind of the immediate vicinity of the tran
sition, the velocity and shear stress perturbations are self 
preserving, that is, they can be written as functions of a 
velocity scale u0 and a dimensionless 

height T]{x) = z/8i (x), 

Au{z) = u2{z)-m{z) = ̂ g{r,) (23) 

A T = r 2 (z) - u\ = [u2.2 - u\ ] % ) (24) 
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Figure 3. The development of logarithmic velocity profiles after 
a roughness change (Data taken from Bradley (1968) see Kaimal 
and Finnigan (1994) for details), (a) smooth-rough: z0 7=0.02 mm, 
z02=2.5 mm, M= -4.8 (b) rough-smooth: z0J=2.5 mm, z02=0.02 
mm, M= +4.8. 

A good choice for the velocity scale is u0 = um2 - uml and 

the functions g{rj) and h{rj) can be found by substituting 

equations (23) and (24) into the equations of motion and 

making a closure assumption to relate r 2 {z)to u2 (z). 

Several theories have been developed in this way [eg, Mul-
hearn, 1977] and we shall encounter one of them when we 
consider continually changing surfaces. 

Typical examples of the velocity profiles that develop 
following smooth-rough (M= -4.8) and rough-smooth 
(M=+4.8) changes are illustrated in Figures (3a) and (3b) 
[Bradley,l96&\. In each case we see the internal boundary 
layer deepening with downstream distance and the velocity 
profile slowing in the smooth-rough case and accelerating 
in the rough-smooth. In both cases, the lower part of the 
internal boundary layer is occupied by a logarithmic profile 
in equilibrium with the new surface although the true depth 
of the equilibrium region is exaggerated by the logarithmic 
height scale. Measured in terms of physical distance the 
equilibrium region appears to be established more slowly 
in the rough-smooth case but in terms of dimensionless 
distance, x/z0 there is little difference between the two 
transitions in the rate at which equilibrium is reached. 

4.2. Local Advection: Surface Stress 

In Figures (4a) and (4b) we have plotted measurements 
of surface shearing stress from the experiment that fur
nished the velocity profiles of Figure (3a,b) [Brad
ley, 1968]. These results are typical of those from experi
ments at a range of scales [Kaimal and Finnigan, 1994]. 
Two features are noteworthy: the overshoot in stress at the 
transition and the rapid attainment of a new equilibrium. 

The overshoot phenomenon is easily explained. In the case 
of a smooth-rough transition, the airstream, travelling rela
tively rapidly over the smooth surface, generates a high 
stress on first encountering the increased roughness. As the 
region of decelerated flow thickens into an internal bound
ary layer, the velocity of the air in contact with the surface 
slows and the surface stress falls. In a rough smooth tran
sition we see a stress undershoot with a relatively slow air-
stream generating lower stress when the surface roughness 
falls but the stress then rising as the flow accelerates. 

Although sophisticated models of the magnitude of the 
stress change have been developed, a simple expression 
can be derived by assuming that the velocity profile obeys 
equation (12) with um = uml and z0 = z02 for the full depth 

of the inner region and then with u^ = unX and z 0 = z0l af

ter a sharp discontinuity at z = ($. [Elliot, 1958]. Matching 

the two layers leads directly to, 

1 -
M 

(25) 
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Figure 4. Surface shear stress development after roughness 
changes (Data taken from Bradley (1968) see Kaimal and Finni
gan (1994) for details), (a) smooth-rough: z 0 /=0.02 mm, z 0 2=2.5 
mm, M=-4.8 (b) rough-smooth: z0I=2.5 mm, z02=0.02 mm, 

M=+4.8. The dotted line represents equation (21) with Sj(x) 

calculated using equation (15). 



292 FLOW OVER COMPLEX TERRAIN 

The result of equation (25) is plotted on top of the data 
points in Figures (4a) and (4b) and it is clear that it per
forms quite well in the smooth-rough case but underesti
mates the stress change for the rough-smooth transition. 
Equation (25) relies on an accurate expression for 8^ and 

we have already noted that equation (19), which is used to 
generate the curves in Figure (4a,b), underestimates the 
growth rate of 8^ (JC) in the rough-smooth case because it 

discounts the influence of the energetic upstream turbu
lence on the diffusion of the new internal boundary layer. 

4.3 Advection on Larger Scales 

The formulae we have derived above and the reasoning 
behind them strictly apply to internal boundary layers that 
are no deeper than 8ASL because we have assumed that the 

mean velocity ux (z) may be described by the logarithmic 

law. Above 8ASL, both the characteristic velocity and length 

scales of the turbulence change. The length scale be

comes 0(zt), the depth of the whole boundary layer, while 

the velocity scale depends upon whether the boundary 
layer is neutrally or unstably stratified. In a neutral bound
ary layer, the turbulent velocity scale is u^ and, at higher 

levels, w(z) changes much more slowly with height than in 

the logarithmic surface layer. More usually, the surface 

layer is capped by a convective mixed layer, where the tur

bulent velocity scale is wt = ^ S ^ Q [W'O')Q z \ w i t r l 

(W'#')Q the surface heat flux [Kaimal and Finnigan, 

1994]. In the mixed layer the mean velocity u(z) = UM is 

approximately constant with height. 
Inserting constant values for the turbulent velocity scale 

( w t o r w t ) and advection velocity (u{z) orUM ) into equa
tion (17), we see that we can expect 8j(x) to grow line
arly above the surface layer with a slope between 
Buju(z) and BwJUM as the boundary layer varies be
tween neutral stratification and convective mixing. There 
are relatively few measurements in this regime but those 
that exist suggest that the surface layer value B »1.25 re
mains applicable [Garratt, 1990, Kaimal and Finnigan, 
1994]. 

The early attainment of a new equilibrium surface stress 
that is shown in Figure (4) belies the continual slow ad
justment of this quantity as the internal boundary layer 
grows out of the surface layer. The new internal boundary 
layer replaces the old boundary layer when 8j{x) equals 

the old boundary layer depth. This occurs at downstream 
distances of order x/z02 = 10 6 in neutral conditions but 
possibly much less in a convective boundary layer with a 
weak mean wind. Current understanding of the magnitude 
of the geostrophic drag coefficient u^ /G , where G is the 
geostrophic windspeed, suggests that in the smooth-rough 
case illustrated in Figure (4), the early equilibrium value of 
r 0 2 / r 0 1 • 3.5 will fall to r 0 2 / r 0 1 • 2.0 as the new boundary 
layer attains geostrophic balance [Taylor, 1969; Jensen, 
1978]. For the neutral case, this occurs between the point 
x/z0 « 1 0 6 , at which the new boundary layer replaces the 

old andx/z 0 « 1 0 8 . We can see by integrating equation (1) 
across the boundary layer that attaining a new balance 
between the surface drag and the geostrophic wind will 
also change the geostrophic departure, the angle between 
the surface and geostrophic wind direction. This angle will 
increase in a smooth-rough and decrease in a rough-smooth 
change [Taylor, 1969]. 

4.4 Patchwork Surfaces 

Natural surfaces rarely consist of simple changes be
tween two types, rather the surface cover changes continu
ously. To describe flow over these surfaces we generalize 
the concept of the internal boundary layer to define the 
blending height, hB [Mason, 1988; Mahrt, 1996; Philip, 
1996a, 1996b, 1997]. Figure (5) illustrates a hypothetical 
surface consisting of a set of N patches of different surface 
cover, each occupying a plan area a, with streamwise ex
tent L, and having roughness lengths and displacement 
heights z 0. and dt, respectively. Over each surface an in
ternal boundary layer grows and reaches a depth <$• (Lf) by 
the end of the patch. From the definition of the internal 
boundary layer we know that above 8 i m x , the height of the 

deepest internal boundary layer, the velocity profile 

w(z)no longer varies horizontally but attains a spatially 

averaged value so we can identify the blending height 

( 2 6 ) 

If 8iu4x is smaller than the depth of the surface layer, 8ASL, 

then for 
8ASL > z > hB the velocity profile will be logarithmic with 
the form, 
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Figure 5. Schematic drawing of the flow structure over a series of 
surface patches with different roughness lengths z0i and stream-
wise extents Li. 

where ( ) here denotes a volume average over a slab of 

vanishing thickness or, equivalently, an area average over 
the (x,y) plane. 

A central problem over natural surfaces is to find an ex
pression for the effective roughness length zf in terms of 
patch level roughness lengths z0i and other accessible pa
rameters such as the windspeed above <$. so that the 

area-averaged surface momentum flux ( r 0 ) can be in
ferred from windspeed measurements or parameterized in 
models that are unable to resolve the individual patches. 

One approach to finding zf is to assume once again that 
the flow within each internal boundary layer, rather than 
being self preserving (equations (23), (24)), can be repre
sented by logarithmic profiles with local roughness lengths 
and then to average the profiles across the x-y plane, 

whence, 
( ^ l n ( z 0 , ) ) r— 

\T0i) 

Equation (29) is not a very useful formula because we do 
not, in general, know the stress r0i on each patch. The 
simplest recourse is to ignore the correlation between stress 
and roughness length and to write [Taylor, 1987] 

z f • z 0

M = ( l n ( Z ( ) j ) ) (30) 

Because, as we have seen, z0j and r0i are positively corre

lated, z^wil l always be an underestimate of z|f but it 

forms a useful reference value and provides a first estimate 
of zf when the variation in roughness length between 
patches is small. 

A more accurate formula for zf has been derived by 
exploiting the fact that the flow in the internal boundary 
layers making up the blending region between dei and hB is 
self-preserving and assuming that in this region, a simple 
mixing-length expression is adequate to express the rela
tionship between shear stress r ( z ) and velocity shear 

du/dz [Goode and Belcher, 1999]. These two assumptions 
allow the shear stress and velocity at the blending height to 
be related to the local values within the thin equilibrium 
layer over each patch so that the value of r 0 . required to 

weight the local roughness length z0i in equation (29) can 
be inferred. The result is a formula for the effective rough
ness length that is most simply expressed as, 

In | + K ln H 
ln £) 

h 
+ • ln - 1 

where hei = dei (z?.) andh t = df (Lj) - Values fo rh B , 

and hei are readily obtained using equations (26), (19) and 

(22). 
Equation (31) is a much better estimate of zjfthan z™ 

but it also starts to underestimate the momentum-absorbing 
capacity of a heterogeneous surface when the streamwise 
lengthscale of the patches, Li becomes small. This is be
cause in deriving equation (31), it is assumed that the 
equilibrium value of stress, r0 j. applies over an entire patch 
at and the overshoots and undershoots in stress at the 
roughness transitions that we saw in Figure (4) have been 
ignored. Closer inspection of Figure (4) reveals that the 
smooth-rough and rough-smooth overshoot-undershoot in 
stress is not symmetrical. If we define the average of the 
equilibrium stress values over two adjacent patches 
asroA = {TOR +Tos ) /2 j where subscript R refers to the rough 
and s the smooth surface then A r 0 , a non-dimensional de
viation from r0A can be written as [Schmid and Bun-
zli,1995], 

A T o = A z ^ ( 3 2 ) 

^0R ^0A 
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Figure 6. Schematic diagram of the asymmetry in smooth-rough 
and rough-smooth transitions using data taken from Figure (4). 

and Ar 0 (x/z0R) is plotted in Figure (6), which uses values 
of stress taken from the experiment shown in Figure (4). It 
is clear that, relative tor0A, there is an excess of stress as
sociated with smooth-rough transitions within a region 
103 > x/zQR > 0 so that as Li, the streamwise extent of the 

rough patches of surface approaches x/z0R • 10 3 , then zf 
will climb above the value predicted by equation (31). 
There is evidence from field studies, for example, that 
scattered small patches of woodland in a rural landscape 
can easily double zf relative to the value predicted by 
equation (31) [Hopwood, 1995]. 

This effect is most severe when the regions of high mo
mentum absorption cannot be regarded as patches of sur
face roughness at all but instead are windbreaks, hedges, 
dykes, walls or other bluff structures. We can represent 
Fw the drag force on a unit cross-wind strip of an obstacle 
such as a windbreak, whose height is Hw by the expres
sion, 

Fw=pCwU2

HHw (33) 

where the drag coefficient Cw is of order 1 and UH is the 
mean velocity at height Hw in the undisturbed upwind 
flow. Imagine now that we have an array of such obstacles 
aligned normally to the prevailing wind and spaced regu
larly a distance Lw apart on a surface that would have a 
roughness length z0 in the absence of the windbreaks. Ex
periments have shown that the windbreak will effectively 
shelter a downwind region x ~10HW , hence, using equa

tion (12), we can readily calculate the spacing at which the 
momentum absorbed by the windbreaks and by the inter
vening surface is equal. This occurs at, 

L„ Cw \n2(z/z0) 
±K * + (34) 
Hw K2 

With z0~ 0.002m (typical of bare soil or snow) Lw/Hw ~ 
500 while for z0 ~ 0.01m (crops) Lw /Hw -100 so that in a 
typical rural landscape a large fraction of zf may be con
tributed by isolated upstanding obstacles and formulae like 
equation (27) must then be used with care. 

4.5 Larger Scale Surface Variability 

WTien the scale of individual surface patches Li becomes 

much larger than a kilometre, then the blending height will 
be greater than the depth of the surface layer. At much 
larger scales ( Li »lOfow ) then the new internal boundary 

layer will replace the entire planetary boundary layer and 
the regional surface stress can be calculated by averaging 
the contributions of essentially independent patches. At the 
intermediate scale, where 10km > Li > Ikm, the blending 

height will be above the surface layer and formulae based 
on assumptions of logarithmic velocity profiles are inap
propriate. Currently there are no simple descriptions of this 
scale of heterogeneity. Numerical models that can accom
modate the diabatic influences that are usually important 
above the surface layer have been used in particular cases 
and the average surface stress can be considered to be 
bounded by the values appropriate to small and large scale 
heterogeneity. 

5. TOPOGRAPHY 

As we did in considering changing surfaces, we shall first 
describe the flow over an isolated hill and then go on to 
consider how the boundary layer adjusts to continuously 
hilly terrain. We will confine our attention to hills suffi
ciently small that the flow perturbations they cause are 
confined within the boundary layer. In practice this means 
that the hill height H and the hill horizontal lengthscale L 
satisfy H«zt and L«h*, where h*, the 'relaxation 
length' of the boundary layer is defined as 
h* ^ Z J J Q / U ^ or zJJ^jw^ according to whether the flow 
is neutrally stratified or convectively unstable. The hori
zontal lengthscale L is defined as the distance from the hill 
crest to the half-height point. In continuously hilly terrain it 
can be more appropriate to use a characteristic wavelength 
A as the horizontal lengthscale. For sinusoidal terrain, 
L = A/4 . 
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Figure 7. Schematic drawing of the flow over a 2D ridge show
ing the formation of a downstream separation region when the 
ridge is steep enough. On an axisymmetric hill, the upwind decel
eration region is replaced by a region of lateral flow divergence. 

In Figure (7) we have sketched the main features of the 
velocity field about an isolated hill. The figure could repre
sent flow approaching an axisymmetric hill or a 2D ridge 
at right angles. Close to the surface, the flow decelerates 
slightly at the foot of the 2D ridge before accelerating to 
the summit. In the axisymmetric case the deceleration is 
replaced by a region of lateral flow divergence at the foot 
of the hill. The wind reaches its maximum speed above the 
hill top and then decelerates on the lee side. If the hill is 
steep enough downwind, a separation bubble forms in 
which the mean flow reverses direction. Whether the flow 
separates or not, a wake region forms behind the hill with a 
marked velocity deficit extending for at least 10H down
wind. 

The same information is made more concrete in Figure 
(8), where we plot velocity profiles well upwind, over the 
hill top and in the wake. The vertical coordinate z measures 
height above the local surface. In Figure (8) it is made di
mensionless with the inner layer height, I, defined below. 
Upwind we have a standard logarithmic profile but on the 
hill top the profile is accelerated with the maximum rela
tive speed-up occurring quite close to the surface at 
z/l ~ 0 .3 . In the wake we see a substantial velocity deficit 
extending to at least z = H. 

Much of the understanding we now have about the dy
namics of flow over hills derives from linear theory, which 
assumes that the mean flow perturbations caused by the 
hill are small in comparison to the upwind flow. Although 
strictly, linear theory is limited to hills of low slope, 
H/L « 1 , its insights are applicable to much steeper hills. 
Linear theory supposes a division of the flow field into two 
main regions, an inner region of depth / and an outer region 
above, which are distinguished by essentially different dy

namics (Figure 9). The balance between advection, 
streamwise pressure gradient and the vertical divergence of 
the shear stress can be expressed in an approximate line
arized momentum equation, 

dx dx dz 

where Aw,Ap,Ar are the perturbations in streamwise ve
locity, kinematic pressure and shear stress that are induced 
by the hill and U(z) denotes the undisturbed flow upwind 

of the hill. Well above the surface, perturbations in stress 
gradient are small and advection and pressure gradient are 
essentially in balance. Close to the surface an imbalance 
develops between these terms as the perturbation stress 
gradient grows. The inner layer height is defined as the 
level at which the left hand side of equation (35) equals the 
right hand side [Hunt et al, 1988]. 

A second interpretation of / is as the height at which the 
time taken for a turbulent eddy to be advected over the hill 
is equal to the eddy turnover time, that is the typical life
time before the eddy, generated by interaction with the 
mean flow, is dissipated [Kaimal and Finnigan, 1994]. 
This interpretation tells us that for z/l « 1 , the turbulence 
will be approximately in local equilibrium, that is, that 
production and dissipation of turbulent kinetic energy bal-

1 0 

0 . 1 

Figure 8. Profiles of mean velocity observed upwind, on the crest 
and in the wake region of a hill. The vertical scale is made dimen
sionless with the inner layer depth, /. Note the position of the 
maximum speed-up on the crest at z - 1 / 3 . 
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Figure 9. The different regions of the flow over a isolated hill, 
comprising: inner, middle, outer and wake layers and their asso
ciated lengthscales. 

ance locally so that the relationship between the shear 
stress and the mean flow can be described by a mixing 
length or eddy-diffusivity . For z/l » 1 , in contrast, the tur
bulence will experience rapid distortion, where changes to 
the turbulent stresses will depend on the cumulative 
straining of eddies by the mean flow as they are advected 
over the hill. In particular, for z/l » 1 , the response of the 
mean flow is essentially inviscid because changes in tur
bulence moments have negligible effect on the mean flow. 
Hence, although the vertical structure of the undisturbed 
velocity profile U(z) is entirely the result of turbulent 
stresses, perturbations to this profile are governed by invis
cid dynamics except within the thin inner layer / (as long 
asL«h*). 

If the undisturbed upwind profile is taken as logarithmic, 

U(z) = ujfc\n(z/z0), and we adopt a mixing length pa

rameterization to relate the shear stress r(x,y,z) to the 
velocity field over the hill, the first definition for the inner 
layer depth given above leads to an implicit expression for 
I [Huntetal, 1988], 

LJ-L) = 2K2 (36) 

Equation (36) is very similar to the expression we found 
for the internal boundary layer height, equation (19). This 
is no accident as yet a third interpretation of / is as the 
height to which new vorticity, which is generated at the 
surface at a rate equal to the streamwise gradient of pertur
bation pressure, diffuses over the hill [Finnigan et al, 
1990]. 

The pressure field that develops over the hill deflects the 
entire boundary flow over the obstacle. Its magnitude is 
determined, therefore, by the inertia of the faster flowing 
air in the outer region and is also related to the steepness of 
the hill so we expect, 

A p ~ ^ ( 3 7 ) 

Scaling arguments [Hunt et al, 1988] reveal that the appro
priate definition of U0 is, 

U0=U{hm); K_Wn 
L 

I ~ 1 (38) 

The middle layer height hm divides the outer region into a 
middle region between / and hm, where shear in the ap
proach flow exerts an important influence on the flow dy
namics, and an upper region, where the perturbations are 
described by potential flow. For a hill with L= 200m, w, = 
0.3m/s and z0 = 0.02m, typical sizes of these scales are / = 
10m, hm = 70m, U0 = 6m/s and U(l) =4.5m/s. Note that in 
the linear theory, the vertical extent of the regions influ
enced by the hill depend only on the hill length, L. The hill 
height enters only through the influence of steepness H/L 
on the pressure perturbation that drives all other changes in 
the flow field. 

The pressure perturbation falls to a minimum at the hill 
top and then rises again behind the hill and it propagates 
essentially unattenuated to the surface. Its scaling gives a 
strong clue as to why the relative speed-up peaks in the in
ner layer. Referring again to equation (35), except very 
close to the surface the momentum balance is dominated 
by the pressure gradient and the advection so 
tbatU(z)Au(x9z)/L~(H/L)Ut/L. Within the inner 

layer, as the background flow U(z) becomes much 
smaller than U0, the velocity perturbation Aw must grow to 
compensate. Eventually, at the bottom of the inner layer 
the stress gradient dominates the momentum balance and 
reduces Aw so that the peak in speed-up is found at 
about z ~ 1/3 . The effects of this shifting balance can be 
clearly seen in the expression for the relative speed-up de
rived from linear theory [Hunt et al, 1988], 

A W ( J C , Z ) H_ 
L 

u2{K) 
U(l)U(z) 

c{x,z0) (39) 

^ ( x , z 0 ) i s a function that factors the precise shape of the 
hill and the influence of surface roughness into the equa
tion while both the dependence of the driving perturbation 
pressure gradient on hill slope H/L and the amplification of 
the speed-up by the ratio of background velocities across 
the middle layer,U(h m )/U(l) is evident. 
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5.1 Drag Force on Isolated Hills 

We are particularly interested here in the drag force ex
erted by the hill upon the atmosphere. This is almost en
tirely a result of the asymmetry in the pressure field about 
the hill, which results in a net form or pressure drag on the 
obstacle as in equation (11). The hill also produces a nega
tive perturbation in the surface shear stress, equal to the 
balance between the increase in stress as the wind acceler
ates to the hill crest and the extended region of reduced 
stress on the downslope and sheltered wake region. Even 
on low hills, however, this net reduction in r 0 is an order of 
magnitude smaller than the increase in form drag. Over 
steep hills, flow separation ensures that the pressure on the 
lee side of the hill does not recover to its upstream value, 
leading to a net form drag but over lower hills without 
separation, the mechanism is more subtle. 

The effect of the shear stress in the inner layer on the 
streamwise velocity perturbation Aw is to displace its peak 
value slightly upwind of the hill crest and to thicken the 
inner layer on the downslope side so that streamlines are 
not symmetrically disposed about the hill but are further 
from the surface on the downslope side. The asymmetric 
perturbation in vertical velocity Aw that accompanies 

Aw is amplified by the shear in the middle layer and acts to 
force an asymmetric component in the pressure perturba
tion A/?, which is determined primarily by the flow at 

z = hm and above. When integrated over the hill as in 
equation (11), this asymmetry in Ap results in form drag 
[Belcher et al, 1993]. Put more simply, the flow well above 
the hill acts like an inviscid flow over a surface defined by 
the streamlines at the top of the inner layer and it is this 
'inviscid' flow that determines the pressure field acting on 
the surface. From this viewpoint it is easy to see that sepa
ration will set an upper limit on flow speed-up and form 
drag because, as the hill gets steeper, the upper level flow 
'sees' the hill plus separation bubble as the lower boundary 
condition, effectively increasing L in equation (39) and 
limiting H/L. 

Linear theory gives an exact expression for the drag on a 
2D sinusoidal ridge of wavelength A [Belcher et al, 1993], 

U(l) 

(40) 

JVH 2 1 x 
U A = 

Un 

U(l) 

4 2 

L 
u2L 

where Fp - ff pntdS is the streamwise pressure drag on a 

ridge whose surface is SH (see equation (11). 
Comparing equations (40) and (39) we can see that the 

pressure asymmetry is proportional to the square of the 
velocity perturbation and so is proportional to the square of 
the hill slope H/L and to the 4 t h power of the shear ampli
fication factor U0/U(l). This formula has been success
fully extended to 3D hills by generalizing the hill slope 
H/L to A/Sh , where A is the frontal area of the hill and 

Sh its base area [Wood and Mason, 1993]. We then obtain, 

Fp\= 2JV2/3 \ U° 1 
4 

A' 
uzA (41) 

and p is an O(l) shape factor for a particular hill. For 3D 
hills in the linear range, that is A/Sh < 0 .1 , /? can be com
puted by treating the 3D hill as made up of 'slices' of 2D 
ridges with thickness dy and appropriate heights and 
wavelengths. For example, for an axisymmetric 3D hill of 
surface 

heightZy(x,y) = / / C O S | T T j ( x / A ) 2 +(j>/A) 2 j j , we 

find that /3=Jt2/% [Wood and Mason, 1993]. 
So far we have concentrated on low 

hills, H/L or A/Sh « 1. To extend these results to steeper 
hills we first rewrite the pressure drag formula as, 

\ F ' \ - \ C d { « f ( Z ^ A <42> 

where ZM is the height at which the area averaged wind-

speed ^ ( z ) ( o r simply the upstream speed U(z) for 
isolated hills) provides a proper scaling for the pressure 
force so that Cd is an O(l) drag coefficient [Wood and Ma
son, 1993]. Equation (42) is commonly used in canopy 
studies, (see the earlier section on Complex Surfaces or 
Kaimal and Finnigan, 1994, Chapter 3) to parameterize the 
canopy drag force or generally to represent the drag on a 
bluff body (equation (33)). Over shallow hills ZM = hm but 

with steep hills H may exceed hm and we expect that the 

correct scaling velocity for steep hills that behave more 

like bluff bodies will be^w^(Z m ) ; H > ZM > 0 . In prac

tice, for steep hills we may take U(H) or (U^(H)SLS the 

scaling velocity when H > hm and 

U{hm) or (u){hm)=U0whenHzhm. 



298 FLOW OVER COMPLEX TERRAIN 

The second step is to assume that there is a smooth tran
sition between the shallow hill result, equation (41) and the 
steep hill result equation (42) and to insist that they match 
when H = h. The formula that results is, 

2JT2P 
U(l) 

u2A 
(f){Zm) 

\Zm=hmforH<hm 

\Zm=HforH*hm 

(43) 
Despite the rather ad hoc derivation of this equation, 

which can be followed in more detail in Wood and Mason, 
1993, it appears to describe the functional dependence of 
the form drag quite well up to values of hill slope 
A/Sh ~ 0.2 - 0.3 implying that the low slope, quasi-2D 
value for can be used through this range. Care must be 
taken, however, because experimental determinations of 
hill drag are exceedingly rare and equations (41) and (43) 
have only been tested against numerical models so far. 
Nevertheless, they provide a point of departure for a con
sideration of the effect of hilly terrain on the whole bound
ary layer. 

5.2 Effective Roughness Length of Hilly Terrain 

Derivations of the logarithmic law in the ASL proceeds 
by an asymptotic matching argument that only applies in 
the height range z( » z » zs, where zs 

is a characteristic size of the surface roughness elements. 
When most of the drag force on the surface is due to the 
form drag on hills, we expect that zs ~ H and, if H is a 
sensible fraction of zi, we might not expect to observe a 
logarithmic region at all, the ASL being squeezed between 
the roughness sublayer that should exist above hills in 
analogy with flow over canopies, and the outer layer flow. 
Nevertheless, numerical models of flow over ranges of 
hills suggest that the area averaged velocity, 

(u^j(z) generally does have a logarithmic dependence 

through a layer that can occupy a much greater fraction of 
the PBL depth than the classic surface layer [Wood and 
Mason, 1993]. The experimental evidence is less convinc
ing, partly because area averages are very difficult to 
measure, but they do not contradict the model results 
[Kustas and Brutsaert, 1986, Grant and Mason, 1990]. 

It seems reasonable then, in analogy with equation (27), 
to represent the flow over hilly terrain in the approximate 
range z. /2 > z > 2H as [Wood and Mason, 1993, Xu and 
Taylor, 1995], 

so that, 

uf2- • = ( - (^ ) -<^) ) (45> 

where (7y) is the counterpart of(Fp), resulting from sur

face friction. Now since the perturbations in (Fv ) induced 

by a hill are much smaller than \(FV ) | , we can write 

ufu(-(Fp) + u2J2 (46) 

The area averaged form drag is obtained by dividing 
equation (43) b y S ^ , the plan area of the domain under 

consideration so (Fp ) = Fp /SD , and we approximate the 

undisturbed stress u] by assuming that it can be related to 
the area-averaged velocity at the pressure scale height, 
Zm through the undisturbed roughness length z 0 , 

[Mz.Ao)] 
(47) 

This is not a bad assumption when H«hm and, when Zm < 

H, the form drag term in equation (45) is dominant. 
Finally, combining equations (39) to (41), we obtain an 

expression for the effective roughness length [Wood and 
Mason, 1993], 

1 Cj_ 1 

{ l n [ ( Z . - r f ) / z f ] } 2 " ' a + W ^ A o ) } 
and 

U(l) 

A 

with, 

(48) 

Z. = K f°r H < K 
Zm=HforH*hm 

We can take the displacement height, d as the mean level 
of momentum absorption as in canopies (see earlier section 
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on Complex surfaces or Kaimal and Finnigan, 1994, 
Chapter 3) or more simply as the average level of the ter
rain. Since we should not apply equation (44) or (45) with 
(48) too close to z=H, the precise specification of d is not 
critical. 

Equation (48)(44) has been compared to mathematical 
models of the whole boundary layer and of the surface 
layer and it predicts zf to within better than 15% for 
slopes A/Sh <0.3. Comparison with field data is more dif
ficult but equation (48) matches the available data reasona
bly well. We can infer from equation (48) that zf is an in
creasing function of slope A/Sh for low to moderate slopes 
and also that zf for a range of 2D ridges is substantially 
larger than for a range of close-packed 3D axisymmetric 
hills of the same wavelength, a result confirmed by nu
merical model studies that give values of zf2D/zf3D 

between 3 and 6 [Wood and Mason, 1993]. An idea of the 
actual change that hills induce in the effective roughness of 
a natural surface can be gained by noting that, for 2D 
ridges with z0 « O.lm mdA/Sh « 0.3 , equation (44) pre
dicts that zf /z0 «15 while for close-packed 3D axisym
metric hills with the same z0 and A/Sh, we 
find zf /z0 « 4 . 

6. SUMMARY 

We have seen both similarities and differences between 
boundary layers over three kinds of complex surface. 
Canopies absorb momentum from the boundary layer pri
marily by pressure drag on their roughness elements be 
they plants or buildings. In the close-packed canopy envi
ronment very high levels of turbulence ensure that the flow 
patterns around individual elements are quite different to 
those they would experience in isolation. Instead we ob
serve a critical modification of the mean velocity profile 
and the consequent generation of large energetic turbulent 
eddies. Their effect is felt through a roughness sub-layer 
extending to two or three canopy heights, where details of 
turbulent transport as well as length and velocity scales de
part substantially from those of the surface layer above. 

Over continuously changing horizontal surfaces we also 
observe a blending region where turbulence properties and 
scaling depart from standard equilibrium ASL forms. The 
depth of this zone is related to the size of the surface 
patches and to the rate at which turbulence can diffuse in
formation about the surface changes vertically. For suffi
ciently large patches the whole boundary layer readjusts to 
the new surface. Except very close to the edges of distinct 
patches, pressure effects are negligible but, if the surface is 

covered with scattered bluff objects like windbreaks or 
buildings, these can be responsible for a large fraction of 
the total drag of the landscape. 

Over natural hilly landscapes we also find a region of al
tered mean flow extending up to z~Z, where L is the hori
zontal lengthscale of the hills, but the depth of this region 
is determined by the pressure field that develops around 
the hill. Turbulent diffusion, in contrast, affects only a 
shallow surface layer. Increased momentum absorption by 
the hills is almost entirely the result of pressure drag and 
even for very shallow hills, this substantially exceeds the 
drag of a flat surface with the same surface texture. Unlike 
the roughness elements in canopies, the flow patterns 
around individual hills are not qualitatively affected by 
their neighbours, at least for hills with slopes commonly 

found in nature (A/Sh <0.3). 
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Diffusion of Heavy Particles in a Turbulent Flow 

M.R. Raupach 

CSIRO Land and Water, Canberra, ACT 2601, Australia 

Simple expressions are derived for the far-field eddy diffusivity and particle 
velocity statistics of a cloud of heavy particles in isotropic turbulence, in terms 
of statistics of the fluid flow. The analysis leads to the following outcomes: 
(1) Using a linearised solution of the equation of mot ion for a heavy particle in 
a fluid and a kinematic analysis of dispersion, the particle diffusivity KP is ex
pressed in terms of the t ime scale 7> of the fluid (not particle) velocity along the 
particle path. This yields the simple result KplKF = Tp/TF, where KF is the diffu
sivity and TF the Lagrangian t ime scale for passive fluid elements . 
(2) T h e t ime scale 7> is evaluated in terms of the particle-fluid relative speed 
Vfl, using two alternative hypotheses ("elliptic" and "triangular") about the mixed 
space-t ime velocity covariance function in isotropic turbulence. Under both hy
potheses , TP depends explicitly on the mean of VR (the drift velocity) and im
plicitly on the variance of VR. 
(3) The theory is compared with two sets of observations, providing reasonable 
overall agreement and experimental support for the "elliptic" hypothesis . 
(4) The theory and observations together provide an estimate for the ratio of the 
fluid Lagrangian t ime scale to the Eulerian turbulent t ime scale. 

1. INTRODUCTION 

The motion of suspended heavy particles in a turbulent 
flow is not only a basic physical problem, but also has rele
vance in many geophysical and engineering disciplines. In 
the atmospheric environment, for example, the transport of 
heavy particles is a crucial process in sand and dust trans
port by wind; the drift of agricultural sprays to their target 
destinations or to other receptors where they may have un-
desired effects; the transport and eventual deposition of 
natural and anthropogenic aerosols to vegetation, soil, water 
and biotic receptors; and many related phenomena. Because 
of its significance both as a fundamental problem and in 
applications, the dispersion of heavy particles has been 
studied for many years, using theoretical analysis, numeri
cal methods and experiments. The following brief survey 
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examines in turn the contributions of each of these three 
approaches. 

Theoretical analysis of heavy-particle dispersion began 
with the work of Tchen [1947], also described by Hinze 
[1975], which determined the variance and covariance 
function for the heavy-particle velocity in terms of fluid 
velocity statistics. These are fundamental results. However, 
Tchen also assumed that particles move with fluid ele
ments, which led him to conclude - incorrectly in general -
that the far-field eddy diffusivities for particles and passive 
scalars such as heat are identical. The essence of the prob
lem is that the dispersion of heavy particles in a turbulent 
flow is different from the dispersion of a passive scalar, or 
an ensemble of marked but otherwise passive fluid ele
ments. Two main factors contribute [Yudine, 1959]: drift 
due to body forces such as gravity, and particle inertia. 
First, gravity (or any other body force) gives heavy parti
cles a drift or settling velocity relative to the fluid and 
causes them to continually change their fluid environment. 
This drift effect was called "trajectory crossing" by Yudine 
[1959] and Csanady [1963]. Second, inertia causes heavy 
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particles to accelerate less rapidly than the fluid in response 
to fluctuating stress fields, so that the fluid swirls about 
them. This effect also involves heavy particles crossing the 
trajectories of fluid elements, but it was labelled separately 
as the "inertia" effect by Csanady [1963]. Arguing that the 
inertia effect is small and analysing the drift effect alone, 
Csanady [1963] deduced the following expression for the 
ratio of the diffusivities of heavy particles and fluid ele
ments in homogeneous turbulence: 

KP/KF = [ l + ( P V D / O ) 2 J V 2 (1) 

where KP and KF are respectively the eddy diffusivities of 
heavy particles and fluid elements, VD is the drift velocity 
of the particles, a is the velocity standard deviation in the 
direction of the drift, and (3 is an 0(1) constant. This result 
has been widely used. It predicts that KplKF is always less 
than 1 for particles with a finite drift velocity. 

The combined effects of drift and inertia were studied 
theoretically by Reeks [1977; 1983; 1991], Pismen and Nir 
[1978], M r and Pismen [1979], and Gouesbet et al [1984], 
using relationships between Lagrangian and Eulerian fluid 
velocity statistics [Corrsin, 1963; Lundgren and Pointin, 
1976]. The resulting theories involve integral or integro-
differential equations and are too complex to be suitable for 
most applications. A rather simpler, algebraic theory, simi
lar in some respects to the present work, was developed by 
Wang and Stock [1993]; see also Shao [2000]. A feature of 
all these theories incorporating both drift and inertia is that 
they predict that in some circumstances KplKF can exceed 
1, so that particles disperse faster than fluid elements. This 
is a consequence of the inertial effect, and is predicted to 
occur when drift is small and when the autocorrelation 
function for the fluid velocity along the particle path has a 
negative loop [Gouesbet et al, 1984]. 

Theoretical analysis has also been used to examine more 
subtle features of particle motion in a fluid, including the 
consequences of the added-mass and time-history (Basset) 
terms in the equation of motion [Tchen, 1947; Hinze, 1975; 
Maxey and Riley, 1983; Gouesbet et al, 1984; Mei et al, 
1991]. Provided the particle is much more dense than the 
fluid (by a factor of 100 or more), these effects are not 
quantitatively significant. Also, Maxey [1987] has analysed 
an interaction between inertia and gravity which increases 
the drift velocity of a heavy particle in homogeneous tur
bulence by up to a few percent. 

Turning now to numerical methods, random-flight 
simulations of heavy-particle motions in a turbulent flow 
have been carried out by Hunt and Nalpanis [1985], Walk-
late [1987], Sawford and Guest [1991], and Kaplan and 
Dinar [1992]. In this approach, Langevin-style stochastic 
equations are used to mimic the equations of motion for 
fluid elements and heavy particles. The equations are 

solved by numerically constructing thousands of realisa
tions of individual trajectories. In formulating the stochastic 
equation, it is necessary to confront the same central prob
lem tackled by all the theoretical approaches mentioned 
above, that is, establishing a relationship between the Eule
rian velocity, the fluid Lagrangian velocity and the fluid 
velocity along a heavy-particle path. Other numerical ap
proaches include higher-order closure modelling of a cloud 
of heavy particles as a continuum [Shih and Lumley, 1986] 
and direct numerical simulation of the turbulent velocity 
field and the resulting particle trajectories [Squires and 
Eaton, 1991]. 

Finally (in this brief introductory review), there have 
been few laboratory experiments on the dispersion of heavy 
particles. Investigations in wind-tunnel (grid) turbulence 
have been carried out by Snyder and Lumley [1971], Wells 
and Stock [1983] and Ferguson [1986]. The first two of 
these are described in some detail later, as they are used for 
experimental comparisons. 

Turning to the present paper, this work seeks to under
take a minimalist treatment of a complex problem. Such an 
attempt is natural in a volume commemorating the scien
tific life of John Philip, as he held parsimony to be one of 
the highest scientific virtues and was a master in its prac
tice. The subject matter is also appropriate: JRP wrote a 
number of papers on problems in turbulent dispersion, con
centrating especially on arguments based on the classic 
kinematic analysis of Taylor [1921], for example, Philip 
[1968]. 

Let me indicate something of the Philip influence. In the 
early 1990s, my colleague Yaping Shao and I began to 
grapple with the physical processes involved in wind ero
sion and the transport of sand and dust by wind; see Shao 
[2000] for a recent thorough review. One of our approaches 
at that time was the random-flight method described above. 
The JRP attitude to numerical methods in general, and sto
chastic methods in particular, was unequivocal: not parsi
monious, not good science. After a seminar by Yaping de
scribing that line of work, he handed us, the following day, 
several closely handwritten pages headed Particle motions 
in turbulence - an essay by A SIMPLE ENGINEER, with 
heavy underlining. The note was similar in approach to the 
work of Tchen [1947] mentioned above, with the trademark 
JRP creativity in the use of special cases. Though the essay 
by a simple engineer was never published, I acknowledge 
the profound influence of its writer - encompassing, for me, 
a striving for economy in scientific description but not a 
blanket rejection of numerical methods. 

This paper is minimalist in several senses. First, it is 
partly based on simple kinematics in the spirit of Taylor 
[1921] (as are many of the papers reviewed above). Second, 
its dynamical analysis uses a linearised version of the equa
tion of motion which provides a simple solution for part of 
the problem. Third, the treatment ignores the more subtle 
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aspects (noted above) of particle motion in a turbulent fluid. 
The fourth and most severe respect in which this is a mini
mal treatment is that it concentrates only on the case of far-
field diffusion in homogeneous turbulence, where a gradi
ent-diffusion approach to scalar dispersion is valid. The 
main aim is to relate the fluid and particle diffusivities in 
the far field. This approach does not address the fact that in 
many real-world turbulent flows, a gradient diffusion ap
proach is invalid because the length scales of the active, 
transporting turbulent eddies are comparable with the 
length scales in the mean flow, leading to such things as 
countergradient fluxes or negative diffusivities in flows in 
vegetation canopies [Corrsin, 1974; Denmead and Bradley, 
1987]. While many authors including myself [Finnigan and 
Raupach, 1987] have criticised gradient-diffusion theory on 
such grounds and have sought alternatives, two factors 
cause gradient-diffusion theory to remain important: first, 
in many simple flows it works surprisingly well, key exam
ples being atmospheric and laboratory surface layers. The 
main reason is that the relationships between fluxes and 
gradients are dimensionally constrained in these simple 
flows [Tennekes and Lumley, 1972]. Second, even in more 
complicated situations such as flows in vegetation canopies, 
a gradient-diffusion description can provide a base upon 
which non-diffusive aspects of the transport can be added 
as perturbations [Raupach, 1989]. 

The aim here is to develop and test simple, approximate, 
algebraic expressions for determining the far-field eddy 
diffusivity and particle velocity statistics for a cloud of 
heavy particles in homogeneous turbulence, in terms of 
statistics of the fluid flow. The argument proceeds in three 
main steps, respectively described in Sections 2 to 4. In 
Section 2, the equation of motion for a heavy particle in a 
fluid flow is presented and solved in linearised form. This 
well-known solution [Tchen, 1947] depends on the fluid 
velocity along the particle path, which differ from either 
conventional Lagrangian (fluid-following) or Eulerian 
(fixed-location) velocity statistics. In Section 3, the solution 
of the equation of motion is combined with basic kinemat
ics to produce an expression for the particle diffusivity in 
terms of the covariance function for the fluid velocity along 
the particle path. This expression is also well known, dating 
from Pismen and Nir [1978]. In Section 4, the required co-
variance function is characterised by a time scale TP, which 
is evaluated using two alternative hypotheses about the 
mixed space-time velocity covariance function. The expres
sion for TP depends on the particle-fluid relative velocity V/? 
and its variance, which in turn is a function of TP. A closed 
solution for the whole problem is thus obtained. With the 
development complete, the last two sections of the paper 
present results and comparisons with observations (Section 
5) and conclusions (Section 6). 

The main notation is as follows: the fluid velocity vec
tor is Ui(x,t). The trajectories of a fluid element and a heavy 

particle (both starting from position vector x = 0 at time 
t = 0) are Xt(t) and F,(f), respectively. The heavy particle 
velocity is V/(f) = dYJdt. Overbars denote ensemble aver
ages and small letters fluctuating quantities: Ui = Ut +ut. 
The Lagrangian fluid velocity (along a fluid element tra
jectory) is written as UPi(t), while the fluid velocity along 
the trajectory of a heavy particle is UPi(t), so that 

UFi(t) = UFi{t) + uFi{t) = U,{X(t),t) 1 

UPi{t) = U„(t) + u„(t) = U,{Y(t),t) J 

The relative velocity of the particle with respect to the fluid 
is VRi = Vt - UPi, and the relative speed is = \VRi\. 

2. DYNAMICS OF A HEAVY PARTICLE IN A FLUID 

2.1. Equation of Motion 

The equation of motion for a spherical particle in a fluid 
is taken to be 

^ = _ 3 Q ( R e ) 
dt 4rPFd *' *' *l 

where d is the particle diameter, rPF the particle-to-fluid 
density ratio, gt - (0,0,-g) the gravitational acceleration 
vector or body force vector per unit particle mass, CD the 
particle drag coefficient and Re = VRd/K the particle Rey
nolds number, with K the kinematic viscosity. Equation (3) 
involves an assumption: 
• Compared with the full equation of particle motion in a 
fluid [Hinze, 1975; Maxey and Riley, 1983; Gouesbet et al, 
1984; Mei et al, 1991], Equation (3) neglects several terms 
including the added-mass term and the Basset or history 
term. However, these terms are negligible when the density 
ratio rPF is large, as for liquid droplets or solid particles in 
air. Consideration is accordingly restricted to large rPF. 
(Here and elsewhere, assumptions are highlighted by dots). 

The next simplifying assumption is: 
• Equation (3) can be linearised [Owen, 1964] and split 
into mean and fluctuating parts, giving 

f = S ^ + S , ; ( 4 ) 

dt x dt X 

where x is a particle relaxation time scale defined by 

x = A ^ d - (5) 
3CD(VRd/K)VR 

Here is an average value rather than instantaneous value 
as in Equation (3), and defines the point about which line
arisation occurs. A linearised equation of motion is exact 
only in the small Reynolds number limit, but Equation (4) 
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is a tenable approximation at larger Re, provided that CD 

and x are evaluated at a mean VR . 
Formally, the solutions of the mean and fluctuating 

parts of Equation (4) are: 

V((t) = V;.(0)e-' / T + x-ljUPi(s) 
o 

+ * , T ( l - e " ' r t ) 

{s-O/X ds 

v , ( f ) = v,(0)e-'H + T - ' J t(s-T)/X ds 

(6) 

The second term on the right hand side of each solution 
shows that the particle velocity is given by low-pass filter
ing the fluid velocity along the particle path, with time con
stant x. The other terms are a decaying contribution from 
initial conditions and a gravitational drift term in the case of 
the mean velocity. The long-time limit of the mean solution 
in steady conditions (constant UPi) yields the drift velocity, 
equal to the mean relative velocity vector: 

V;-UP (7) 

The magnitude of the drift velocity is written as VD = gx. 
The mean relative speed in the steady state is therefore 

VR = (K^+^f2 = (vZ+W*~)m (8) 

and includes contributions from both the drift velocity and 
the fluctuating relative velocity induced by particle inertia. 
Summation over repeated Roman indices (i) is understood, 
so that vRivRi = vRlvRl + vR2vR2 + vR3vR3 . 

2.2. Particle Velocity Spectra and Covariance Functions 
Using a statistical solution of the linearised equation of 

motion, Equation (4), the spectra, covariance functions and 
variances of the fluctuating particle velocity (v,) and rela
tive velocity (vRi = v, - uPi) can be found in terms of statis
tics of the forcing velocity uPh the fluctuating fluid velocity 
along the particle path. It is convenient to work with Fou
rier transforms, denoted by a tilde: 

v.(/) = \eim vt.(co)dco 

vi(a) = ^)e-i»'vi(t)dc» 
(9) 

where j = V(- l) and co is natural frequency. The Fourier 
transform of the fluctuating part of Equation (4) is 

(10) 

giving immediately the Fourier-transformed solutions for v,-
and vRi in response to forcing by uPi, the fluctuating fluid 
velocity along the particle trajectory: 

V: = 
1 

1 + JCOX 
r —/cox ^ 

1̂ + Zcox, 

Hence, the (tensor) spectra of v, and vRi are 

(11) 

v.v* _ ( 1 l 
T 

TOTAL U + co2x2J 
vRiv*Rj 

( ,JIJ2 \ CO X 

T 
* TOTAL 

V)« ( 0 ) ) 

(12) 

where O ^ ^ c o ) is the spectrum of uPi, Tlolai is the (large) 
total record length subject to Fourier transformation, and 
asterisks denote complex conjugates. 

The covariance functions for uFi (Lagrangian fluid ve
locity), uPi (fluid velocity along a particle path), v, (particle 
velocity) and vRi (particle velocity relative to fluid) are 

* W ( ') = v,(*)M* + f ) = J e<°" O M . . ( c o ) r f c o 

(13) 

W ' ) = v * ( ' K ( * + r ) = J / * ' < J > ( v R ) l > ) d c o 

where each covariance function is also the Fourier trans
form of the corresponding spectrum. Using Equation (12), 
the covariance functions for and vRi are 

RM9

 = I 

1 _ \ 
,2^2 l + co2x2 

2 2 \ 
CO X ^ 

1 + coV 
0 K ) i 7 ( c o ) ^co 

(14) 

Equations (12) and (14) relate the particle velocity statistics 
to statistical properties of uPi. These are characterised as 
follows. First, consideration is restricted to one coordinate 
direction a, denoted by a Greek letter (using the convention 
that a repeated Greek index is not subject to summation, in 
contrast with a Roman index as in Equation (8)). Next, time 
scales TFa and TPa are defined for the fluid velocities uFa 
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(along a fluid-element trajectory) and uPa (along a particle 
trajectory), such that 

2 rTl 2 ^ 

Two assumptions are now made: 
• In homogeneous turbulence, the variances of w F a and 
w/>a are identical and are both equal to the Eulerian velocity 
variance a a

2 . In a homogeneous, incompressible turbulent 

flow, the fluid Lagrangian variance u2

Fa = w 2 (X( r ) , r ) can 
be proved equal to a a

2 [Tennekes and Lumley, 1972]. The 
further assumption u2

Pa = w 2 (Y(r ) , f ) = aa

2 is an ap
proximate extension of this result. It is exact in the limits 
i/Tfa —> 0 (vanishing inertia, when the heavy particle be
haves like a Lagrangian fluid element) and i/TFa —> °° 
(large inertia, when the particle motion becomes independ
ent of the turbulence and the particle trajectory represents a 
purely Eulerian sample of the fluid velocity field). For in
termediate values of x/7> a, Maxey [1987] has suggested that 
inertia produces a bias in particle trajectories toward re
gions of high strain rate or low vorticity, causing the time-
averaged drift velocity to be slightly larger than its value in 
still fluid (gx), by up to a few percent near x/7> a = 1. A 

similar process can potentially cause u2

Pa/o2

a to differ 

slightly from 1 near x/7> a = 1. However, since this effect is 
neglected for the mean drift velocity, it is consistent to ap
proximate u2

Pa/c2

a as 1 for all x/TFa. 

• It is assumed that uFa and uPa have exponential autocor
relation functions and associated spectra: 

R

(uP)aa(t) = a i e x p f - f / T ^ ) 

(uP)aa 7t(l + CD27>2

a) 

(16) 

and similarly for uFa. This is consistent with the assumption 
that both uFa and uPa behave as first-order Markov proc
esses [Sawford, 1984, 1991]. 

Now, putting the expression for 0(Mp)ty(co) from Equation 
(16) into Equation (14) and doing the integrals with contour 
integration or by other means, it is found that the covari
ance functions for v, and vRi are 

a2T \%e~th - T e~t/Tpal 
K(V)aaV) ~ 2 _ T 2 

1 lPa 

Q 2 x [ x ^ -TPae^] 
R(vR)aa ( 0 x 2 -T2 

1 LPa 

(17) 

Thus, even when the fluid velocities uFa and uPa have ex
ponential autocorrelation functions, the particle velocity v a 

and relative velocity vRa do not. Taking the limit t —> 0 
gives the variances of v a and v ^ : 

1 + T / T X 

i + r P a / x 

(18) 

These simple results show that for very small particles 
(normalised relaxation time x/7> a—>0), the particle veloc
ity variance approaches the fluid velocity variance a a

2 , and 
the relative velocity variance approaches zero. For very 
large particles which do not respond to the turbulence 
(x/7> a —> oo)? the situation is reversed. 

Most of the above solutions for the spectrum, covari
ance function and variance of the particle velocity v a were 
given by Tchen [1947], Csanady [1963] and others since, 
for instance Hinze [1975] and Walklate [1987]. The corol
lary results for the relative velocity v^ a are not usually 
given explicitly, though they are important for the determi
nation of the particle diffusivity. 

3. DIFFUSIVITIES FOR FLUID ELEMENTS AND 
HEAVY PARTICLES 

3.1. Fluid Elements 

Taylor [1921] used kinematic arguments to analyse the 
dispersion of an instantaneous point release of a passive 
scalar, or a cloud of passive marked fluid elements, in ho
mogeneous turbulence. His essential result was expressed 
by Batchelor [1949] in terms of a time-dependent eddy 
diffusivity tensor KFij for marked fluid elements, such that 

dXjWjjt) 
dt 

(19) 

where Xt(t) is the trajectory of a fluid element passing 
through the origin at time t = 0, and the overbar denotes an 
average over an ensemble of independent elements. The 
kinematic argument then yields 

M O = 2 J (s) + V ) ; . ' ( ' ) ] d s ( 2 ° ) 

expressing KFij in terms of the Lagrangian fluid velocity 
covariance function R(UF)ij defined in Equation (13). 
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3.2. Heavy Particles 
A similar analysis can be applied to the eddy diffusivity 

of heavy particles, by defining a time-dependent particle 
diffusivity tensor 

dt 
(21) 

where Yt(t) is the particle trajectory. In this case the kine
matic argument yields 

W O = I J [ W 0 + W 0 ] * ( 2 2 ) 

where is the particle velocity covariance function de
fined in Equation (13). 

At this point the analysis for heavy-particle dispersion 
introduces dynamical information from the equation of par
ticle motion, thus departing from the analysis for fluid ele
ment dispersion which is purely kinematic. By using Equa
tion (6) (the explicit solution of the linearised equation of 
motion) in Equation (22), R^j can be found in terms of 
statistics of the fluid velocity along the particle path: 

W O = ^~JW*) e x p 
s-t ds (23) 

Hence, R^ is a convolution of R(uPyj with an exponential 
filtering function. The particle eddy diffusivity tensor can 
now be expressed in terms of statistics of the fluid velocity 
along the particle path, using Equations (22) and (23) and 
integrating by parts once again. This leads to 

z o 
1 °° 

+ TJ[V)»(0+V) / ' (0 ]«P 
z t 

- § [ W 0 + W 0 ] 

1 ) 
ds (24) 

which has the far-field limit 

K Pij ^ ) [ W 0 + W 0 ] * (25) 

Hence, in the far field, KPij has the same form as the fluid 
eddy diffusivity KFij (Equation (20)), except that the La
grangian fluid velocity covariance is replaced by the co-
variance of the fluid velocity along a particle path. These 
results for KPij were first given by Pismen and Nir [1978]. 

For dispersion in a single coordinate direction a, Equa
tion (20) shows that the time dependent diffusivity KFaa(t) 

for passive marked fluid elements approaches the constant 

value u2

FaTFa = ca

2TFa in the far field limit t » TFa. This is 

the conventional eddy diffusivity in the a-direction for a 
homogeneous turbulent flow. Accordingly, in the far-field 
limit, the dispersion of the cloud of passive scalar or 
marked fluid elements is diffusive, satisfying the diffusion 
equation 

ac = K D 2 C 

dt dxl 
(26) 

where C is the scalar concentration and the diffusivity 
K = K F a a = GaTpa- On the other hand, in the near field 
where t is of the order of or smaller than TFa, the diffusion 
equation (26) is not satisfied and the dispersion is non-
diffusive. Applying the same principles to the dispersion of 
heavy particles in one coordinate direction a, Equation (25) 
shows that the one-dimensional particle diffusivity in the 

far field approaches u2

PaTPa, so that a cloud of dispersing 
heavy particles obeys a diffusion equation similar to Equa
tion (26) with C being the particle concentration and with 

diffusivity K= KPaa = u2

PaTPa . By combining these expres
sions for the fluid-element and particle diffusivities in the 
far field and using the approximation u2

Fa = u2

Pa - a a

2 , a 
very simple result is obtained: 

i Z k « Z*L ( f a r field) 
2 rj. 

(27) 

Hence, the problem of finding the far-field diffusivity for a 
cloud of heavy particles in homogenous turbulence reduces 
to that of finding the fluid eddy diffusivity and the ratio of 
the time scales TPa/TFa (recalling that TPa is the time scale 
for the fluid velocity along the particle trajectory, not the 
particle velocity itself, or the time scale for £/ a (Y(f) ,0 rather 
than V a ( 0 ) . 

4. THE COVARIANCE FUNCTION AND TIME SCALE 
FOR THE FLUID VELOCITY ALONG A HEAVY-

PARTICLE TRAJECTORY 

The difference between TPa and TFa is caused by the 
fact that heavy particles continually change their fluid envi
ronment, that is, move from one fluid element trajectory to 
another, because of both inertia and drift due to external 
body forces on the heavy particles (typically gravity). This 
motion of the particle relative to the fluid occurs at the 
relative velocity VRa =Va- UPa, which has a mean part 
VRa (equal to the drift velocity) and a fluctuating part vRa 
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associated with particle inertia. Both parts contribute to the 
— / v l / 2 

mean relative speed = [VD+vRivRij . 
The determination of TPa proceeds in two steps: first, 

the covariance function R(Up)o.a(t) is expressed in terms of 
Lagrangian and Eulerian covariance functions. This yields 
an expression for the time scale ratio TPa/TFa, which de
pends on fluid velocity statistics ( a a and TFa) and the mean 
relative speed VR . Second, the problem is closed by using 

the dynamical solutions given in Section 2 to express v^v^. 

and thence as a function of TPa. The two steps yield a 

pair of algebraic equations which together determine TPa 

and VR fully, with given flow properties oa and TFa and 

particle properties T (the relaxation time) and VD = gx (the 
drift velocity). The first of these steps largely follows pre
vious analyses cited in Section 1, while the second is novel. 

4.1. The Covariance Function R(up)aa(t) 

The first problem is to express the covariance function 
for the fluid velocity along the particle path, R(uP)aa(t) = 

UPa{S)UPa{S+t) = W a ( ° > ° )
 Ma( Y(0'0' i n tQTWiS ° f 

measurable properties of the fluid turbulence. The starting 
point, following Csanady [1963] and many others since, is 
to note that when the (scalar) relative speed is very 

small compared with a turbulent velocity scale (say a) , 
particle trajectories and fluid-element trajectories are nearly 
identical so that R(Up)aa(t) approaches the fluid Lagrangian 
covariance function: 

(28) 

On the other hand, when is very large compared with a, 
a heavy-particle trajectory is a slice through a turbulence 
field which is effectively static compared with the particle 
motion, so that R(Up)aa(t) is determined by the Eulerian flow 
properties. In this case 

V)o«(0 "> V*') as VR/o-*oo (29) 

where R(uF)aa is the two-point fluid Eulerian velocity co-
variance function defined by 

^ ) a a ( r ) = Ui(xft)uj(x + rft) (30) 

This is a function of the separation vector r alone because 
the turbulence is assumed to be homogeneous and station
ary. In Equation (29), r is estimated as the product V^r 
where is the mean relative velocity vector. 

For intermediate values of VR/o, R^naait) is deter
mined with the following three assumptions. 
• Guided by Equations (28) and (29), it is assumed that 

(31) 

where the function / characterises the two-point, two-time 

covariance function w a ( 0 , 0 ) w a ( Y ( / ) , f ) . 

• The dependences o f / o n t and \ R t are replaced by de
pendences on the normalised scalar variables t/TFa and 
V^r/Lg , where TFa is the fluid Lagrangian time scale and 

L 5 is the Eulerian length scale in the direction of the mean 
drift or body force (cartesian index 8). This direction may 
or may not be the same as the direction of dispersion (carte
sian index a ) . As discussed below, the two important cases 
are when the drift is parallel to the direction of dispersion or 
normal to it. 
• The func t ion / in Equation (31) is determined by con
tours of constant covariance R(Up)aa(t) on a plane with axes 
tlTFa and V^/l^ . Two possible models are: 

r . \2 

\TFaJ 
= constant 

constant 

(elliptic) 

(triangular) 

(32) 

where the shapes describe the appearance of the contours 
on the [t/TFa, VRt/L^ plane. The elliptic model was pro
posed by Csanady [1963] and the triangular model by 
Walklate [1987], in both cases on intuitive grounds. Here 
these models are taken as broadly spanning a range of pos
sibilities, and both are tested against data. 

Combining Equation (32) with the requirements of 
Equations (28) and (29), it follows that 

~t/TFl 

~t/TFa 

1 + {VRTjL,) 

V2 (elliptic) 

(triangular) 

(33) 

Expressions for the fluid time scale along a particle trajec
tory, TPa, are now readily found by matching Equation (33) 
with the second of Equation (13). It follows that 

TPa = 7>„( l + {Vjjl^fj (elliptic) 

( l + [V^ra/I*))' ( tr iangular) 

(34) 
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In the fluid-Lagrangian limit VRTFa/L5 —»0, Equation 
(33) relaxes to the exponential form for R(UF)aa(t) in Equa
tion (13). In the Eulerian limit VRTFa/L6 a conse
quence of the above assumptions is that the Eulerian co-
variance function /?( H £ ) a a ( r ) in the drift direction 8 also takes 
an exponential form: 

^W-(0 = <T2

AEXP(-R/M (35) 

Exponential covariance functions are not fully consistent 
with known properties of the fine structure of turbulence. In 
the Lagrangian case, departures occur at times of the order 
of the temporal Taylor microscale and smaller [Sawford, 
1991]. In the Eulerian case, the actual slope of the spectrum 
in the inertial subrange is -5 /3 according to Kolmogorov 
inertial subrange similarity theory [Tennekes and Lumley, 
1972; Hunt and Nalpanis, 1985], rather than - 2 as required 
by an exponential covariance function (see Equation (16)). 
However, as argued by Wang and Stock [1993], the use of 
exponential covariance functions is justifiable if the main 
properties of the dispersion are determined by the integral 
scales TFa and L 5 , rather than the details of the shapes of the 
covariance functions. Since the particle diffusivity is an 
integral property of R(Up)aa(t) (Equation (25)) and the parti
cle dispersion F a

2 is a double integral, this is a reasonable 
position to take. The benefit is that exponential covariance 
functions make the analysis mathematically straightfor
ward. 

4.2. Closing the Problem 

Equation (34) specifies TPa in terms of the fluid turbu
lence properties oa, 7> a and L 5 and the mean relative speed 
VR , which depends on both the drift velocity VD and the 

relative velocity variance v^v^ . Of these two, VD is an 

external parameter but v^v^ depends on the particle-

turbulence interaction. However, Equation (18) already 

provides a specification of v^.v^. in terms of TPa and the 

particle relaxation time x. From Equations (8) and (18), 

is given by 

l + 7 P 1 / x l + 7> 2/x 1 + 7 > 3 / T 
(36) 

Hence, involves all three components of the relative 
velocity variance, even in a treatment of one-dimensional 
particle dispersion. For isotropic turbulence the fluid statis
tics are independent of direction (<Ti = a 2 = a 3 and 
7>i = Tpz = Tn), but it does not follow that the fluid veloc
ity time scale along particle trajectories (TPa) is independent 

of direction, because there is a preferred direction for parti
cle dispersion induced by the drift velocity. Thus, even in 
isotropic turbulence, the components of TPa cannot be as
sumed equal. In anisotropic turbulence the fluid statistics 
a a and TFa also vary with direction, introducing additional 
sources of inequality among the components of TPa. In 
principle, this requires that, even in isotropic turbulence, 
four variables (V^ , TP\, Tpi and T^) must be treated as un
knowns in the four equations formed from the three com
ponents of Equation (34) and the scalar Equation (36). 
However, this complication can be avoided by a modest 
additional approximation: 
• For the purpose of calculating with Equation (36) 
(but not elsewhere), the three time scales TP\, Tj^ and 7>3 
may be related to the time scale TPa in the direction of dis
persion by assuming that the ratios among TPU Tn and T^ 
are the same as those among the fluid time scales Tn, Tpi 
and Tp^. Equation (36) then becomes 

n + 1 
Y =l 1 + 

(T 
LPa 

37; Fy 
\TFl+TF2+TF3 j j 

(37) 

The solution for TPa is now complete, since Equations 
(34) and (37) form a pair of coupled nonlinear algebraic 
equations which uniquely specify and a single value of 
TPa in the direction of dispersion. These can be reduced to 
just one closed equation for TPa (a cubic in TPa in for both 
the triangular and elliptic models for R(uP)aa) but in practice 
the simplest method of solution is a coupled iteration of 
Equations (34) and (37) starting from the initial estimates 
VR =VD — gt> TPa — TFa. This converges rapidly. 

4.3. The Time Scale TFa and the Length Scale L 5 
To use the solution formed by Equations (34) and (37), 

it is necessary to determine the scales TFa and L 5 . The fluid 
Lagrangian time scale TFa is estimated using the relation
ship proposed by Corrsin [1963]: 

(38) 

where P is a constant of order 1 and La is the length scale in 
the direction of dispersion (a). This may differ from L§, the 
length scale in the direction of drift (8). 

It remains to identify the relationship between La and 
L 5 . As foreshadowed above, the two important cases are 
when the drift is parallel to the direction of dispersion or 
normal to it. Several authors [Csanady, 1963; Wang and 
Stock, 1993] have dealt with this issue by appealing to 
analytic results for isotropic turbulence. The same approach 
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is followed here, on the grounds that the experiments used 
below for tests of the predictions took place in grid (de
caying, approximately isotropic) turbulence. 

A standard result [see Hinze, 1975] enables the Eulerian 
(two-point, one-time) velocity covariance function for iso
tropic turbulence to be expressed as 

^ ( r ) = ut(x,t)uj(x + r,t) 

V ( r ) - * ( r ) (39) 

where a = aa (the subscript a being unnecessary for iso
tropic turbulence), r2 = rfi = r*r, a n d / a n d g are the longi
tudinal and transverse velocity correlation functions. These 
are the instantaneous velocity correlations (normalised with 
a 2 so that/(0) = g(0) = 1) between velocity components at 
two points separated by a distance r, such that the velocity 
components are parallel to the separation vector r in the 
case of/[r) , and normal to r in the case of g(r). Equation 
(38), which is a consequence only of the requirements of 
isotropy, implies that the full two-point covariance function 
R(uE)ij ( a second-rank tensor) is determined by the two scalar 
functions fj) and g(r). If the additional requirement of fluid 
incompressibility is imposed, then du/dxj = 0 and dR(uE)ij/drj 
= 0, which implies that 

*(') = f(r) + & (40) 

If longitudinal and transverse length scales Lf and Lg are 
defined foxj{r) and g(r) by 

L, = lf(r)dr; Lg = )g(r) dr 

then Equation (40) shows that 

(41) 

(42) 

irrespective of the shapes of/(r) and g(r). 
The length scale La in Equation (38) is always a longi

tudinal length scale, since the velocity fluctuations respon
sible for dispersion in the direction a are parallel with that 
direction. The length scale L 5 is a longitudinal length scale 
when the drift is parallel to the dispersion and a transverse 
length scale when the drift is normal to the dispersion. 
Hence, for isotropic turbulence, it follows that 

fv = 1 (drift parallel to dispersion) 
La/L,=y, with \ \ , (43) 

|Y = 2 (drift normal to dispersion) 

Note that the term "longitudinal" in this section refers to the 
direction of the dispersion, not the direction of the flow, 
and also identifies a spatial length scale for velocity com

ponents parallel (rather than normal) to the direction of 
separation. Also, the proportionality constant (3 in Equation 
(38) is independent of direction. For any direction, P relates 
the Lagrangian time scale 7> a to the longitudinal (rather 
than transverse) length scale La. 

4.4. Character of the Solution 

In summary, by using Equations (27), (34), (38) and 
(43), the solution for the far-field eddy diffusivity for a 
cloud of heavy particles in homogenous turbulence can be 
written as 

1 + 

K Paa _ x P a _ 1 + 

Ja J 

V Q a J 

-1/2 

(elliptic) 

(triangular) 

(44) 

where and y are respectively given by Equations (37) 
and (43). The coupled Equations (44) and (37) are solved 
iteratively, or (with more algebra and little gain in numeric 
efficiency) by the formation of a cubic equation in TPa. 

The Csanady [1963] result, Equation (1), is a special 
case of this theory (for the elliptic choice of the covariance 
function R(uP)<m(t)) when the second term in the right-hand 
bracket of Equation (37) is omitted, so that = VD = gx in 
Equation (44). This corresponds to estimating from drift 
only and neglecting inertia. By retaining the full Equation 
(37), the inertia effect is included. 

Other statistics of the particle motion may also be com
puted from TPa, including the covariance functions and 
variances for the particle velocity and relative velocity 
(Equations (17) and (18), respectively). 

The nature of the solution is shown by plotting the par
ticle-to-fluid diffusivity ratio (KPoLa/KFaa = TPa/TFa) in Fig
ure 1, and the particle velocity variance normalised by the 
fluid velocity variance (v^/a^ ) in Figure 2, both as func
tions of VjJOa = gx/cay the ratio of the drift velocity to the 
turbulent velocity scale. The drift velocity VD increases 
with increasing particle diameter (d), body force per unit 
particle mass (g), and particle-to-fluid density ratio (rPF). In 
both figures, the three panels show the effect of varying (a) 
the fluid Lagrangian time scale 7> a, (b) the fluid velocity 
scale a a, and (c) the formulation for the covariance function 
R(uP)aa(t), among the elliptic and triangular choices defined 
in Equation (32). In both Figures 1 and 2, panels (a) and (b) 
use the elliptic formulation for R(^uP)aa(t). The main features 
of these results are: 
(1) The particle diffusivity is always less than the fluid 
diffusivity and the particle velocity variance less than the 
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Figure 1. The diffusivity ratio KPoLa/KFaa as a function of v y a a = 
gx/a a , the ratio of the drift velocity to the turbulent velocity scale. 
Conditions held constant unless otherwise specified: particle-to-
fluid density ratio rPF = 2200 (an approximate value for quartz 
grains in air); fluid Lagrangian time scale TFa = 0.1 s; fluid veloc
ity scale a a

2 = 0.1 m s"1; constants (3 = 0.5 and y = 1; elliptic for
mulation for R(Up)aa(t), the fluid velocity covariance function 
along a particle trajectory, R^aaiO- (a) Effect of varying TFa\ (b) 
effect of varying a a ; (c) effect of varying the formulation for 
R{UP)aa(f) among the elliptic and triangular choices defined in 
Equation (32). The Csanady [1963] prediction is obtained as 
7>a ~~> 0 0 a s a a —> 0, and coincides with the uppermost curve 
in panels (a) and (b). 

fluid velocity variance. The two converge (KPaa/KFaa —> 1, 

vlhl ^ l ) a s W a a ^ 0 . 

(2) With increasing VjJoa, KPaa/KFaa falls off more rap

idly than vl/o2

a. 
(3) For a given VrJ<5a (or particle diameter), KPaa/KFaa 

becomes progressively closer to 1 in slower (larger TFa) and 

weaker (smaller a a) turbulence (Figures la, lb). The same 

trends appear in v2

a /o2

a (Figures 2a, 2b). 

(4) The inertia effect causes KPaa/KFaa and v^/a^to de
crease below their values without inertia. The inertia-free 
values (the same as the predictions from the Csanady 
[1963] theory) coincide with the upper curves in Figures la, 
lb, 2a and 2b. The effect of inertia becomes progressively 
more significant in faster (smaller TFa) and stronger (larger 
oa) turbulence. For most atmospheric flows the ranges of 
TFa and G A are such that neglect of inertia causes an error of 
no more than a few percent, but this may not apply in other 
flows. 
(5) The choice between the elliptic and triangular formu
lations for R(Up)aa(t) has a significant influence on 

O c <o 
ca > 

o o 
% 
-q 

a> o c 

> 
>> 
o o a> > 
o 
"•c 

Figure 2. The particle velocity variance normalised by the fluid 

velocity variance, v^ /a^ . Conditions and panel descriptions as 

for Figure 1. 
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Table 1. Properties of the spherical particles used in the dispersion 
experiments of Snyder and Lumley [1971] ( S L 7 1 ) and Wells and 
Stock [1983] (WS83) : particle density (p P ) , particle diameter (d), 
drift velocity (VD = gx) and relaxation time (x). For W S 8 3 parti
cles, values of VD are with no applied electric field. 

P P d VD = 8T X 
(kgm" 3 ) (pm) (ms" 1 ) (s) 

SL71 particles 
Hollow glass 2 6 0 46 .5 0 .0167 0 . 0 0 1 7 
Corn pollen 1000 8 7 0 .198 0 .020 
Solid glass 2 5 0 0 8 7 0 .442 0 .045 
Copper 8 9 0 0 46 .5 0 .483 0 .049 
WS83 particles 
5 pm glass 2 4 7 5 5 0 .000188 0 .192 
5 7 pm glass 2 4 2 0 5 7 0 . 2 3 1 6 0 .0245 

KpaJKfaa, and to a lesser extent on vl/o2

a (Figures lc , 
2c). These quantities are lower for the triangular than the 
elliptic formulation. The difference in K P a a / K F a a is large 
enough to be experimentally testable. 

5. COMPARISONS WITH OBSERVATIONS 

5.7. The Experiments 

Two significant sources of data for testing theories of 
particle dispersion in a turbulent flow are provided by the 
experiments of Snyder and Lumley [1971] and Wells and 
Stock [1983], hereafter SL71 and WS83 respectively. Both 
experiments used homogeneous, decaying grid turbulence 
in a wind tunnel, this being perhaps the closest approxima
tion to isotropic turbulence that is easily achieved in a labo
ratory flow. WS83 arranged their flow field to be as close 
as possible to that of SL71, facilitating comparisons be
tween the flow measurements in the two experiments. 

There were also some major differences between the 
experiments, particularly in the choices of dispersing parti
cles and in the orientation of the wind tunnel, which was 
vertical in the SL71 experiment and horizontal in WS83. 
This has the important implication that the primary direc
tion of dispersion (transverse to the flow) was parallel with 
the body force (gravity) in the WS83 experiment, and per
pendicular with the body force in SL71. 

In both experiments, grid turbulence was generated in a 
square-duct working section of breadth about 0.4 m, using a 
square grid at the upstream end of the working section 
(streamwise coordinate J C = 0). Both grids consisted of 
square bars of size b = 4.76 mm, made into a square-lattice 
mesh with spacing M = 25.4 mm. In both cases the mean 
flow speed was U = 6.55 m s"1. The only essential differ
ence between the wind tunnels (other than the orientation, 
which does not affect the flow) was in the effective length 

of the working section: this was about x/M- 180 or 
x = 4.6 m for SL71, and x/M = 90 or x = 2.3 m for WS83. 

SL71 used four kinds of spherical particle (copper, solid 
glass, corn pollen, hollow glass) with properties given in 
Table 1. WS83 used just two kinds of particle, glass beads 
with diameters 5 jum and 57 jum (Table 1), but modified 
their drift velocities by giving the particles controlled elec
tric charges and setting up an electric field across the wind 
tunnel to either oppose (cancel) the gravitational force or 
augment it. In both experiments the particles were intro
duced into the flow from an effectively point source near 
the tunnel centreline, at x/M = 20 for SL71 and at x/M = 1 5 
for WS83. Particle positions and velocities were measured 
photographically in SL71 and by laser doppler anemometry 
inWS83. 

5.2. Flow Fields 

Because of the significance of the turbulence properties 
in any comparison of a dispersion theory with experiment, 
it is important to make a careful assessment of the velocity 
measurements in both SL71 and WS83. Given the nearly 
identical flow configurations, it is expected that the flow 
fields should be practically identical, providing a useful 
cross-check. 

Figure 3 shows a comparison of several flow properties 
as functions of a normalised distance (X-XQ)/M. The effec
tive origin x 0 is chosen to optimise the fit of the data to the 
basic decay law for grid turbulence, 

SL . SL . D(izf\ (45) 

where a 2 and aw

2 are the velocity variances in the stream-
wise and cross-stream directions, respectively, and D is a 
dimensionless decay constant. The fitted parameters were D 
= 41 , XQ/M = 14.0 for SL71, and D = 55, xJM = 8.0 for 
WS83. In both experiments, the turbulence was measured 
to be very nearly isotropic (ou = cw) and the velocity stan
dard deviation for both components is henceforth denoted 
o a. This obeys oJU = D~m((x-x0)/M)~m, shown together 
with the measurements from both experiments in Figure 3a. 
Here, and for other power-law fits to the data described 
below, the WS83 parameters (D = 55, x<JM = 8.0 )are used. 
The power law for oJU from Equation (45) was well satis
fied by the velocity variance data from both experiments, 
but the measured turbulent velocities throughout the SL71 
data were about 15% higher than those in the WS83 data 
under otherwise identical conditions. 

Using Equation (45), power laws can be deduced for 
other turbulence properties. The dissipation rate e is of in
terest because it provides one way to estimate the time scale 
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TFa. From the turbulent kinetic energy equation for homo
geneous, decaying grid turbulence, e obeys 

3U da2

a 

2 dx 

which yields the power law 

' M \ 3 ' 
2D M 

V 

(46) 

(47) 

This is compared with the measurements in Figure 3b. Not 
surprisingly, the agreement is very good, because the 
quoted measured values were partly derived using Equation 
(46). However, independent dissipation measurements in 
both experiments were also made by integrating the area 
beneath a dissipation spectrum (the spectrum of duldt), with 
good agreement in both cases. 

A power law for the Lagrangian fluid time scale TFa can 
be found by using the inertial-subrange law for the Lagran
gian structure function [Monin and Yaglom, 1975; Thom
son, 1987; Sawford, 1991]: 

(uF)a At) = ^Fa(S)UFa{S^t) = C 0 E t 
1 V ' definition M V ; ^ V ' inertial U 

subrange 
law 

(48) 

where Co is the Kolmogorov Lagrangian structure function 
constant. The structure function is also related to the co-
variance function R(UF)aa(t) defined in Equation (13), by 
B(uF)aa(i) = a ~ R(uF)aa(t)' If the co variance function is 
exponential with time scale TFa, this relationship implies 
that B(uF)aa(t) = 2c5at/TFa in the inertial subrange (t« TFa). 
Equating with Equation (48), it follows that 

T = 
1 Fa 

2< 
C 0 e 

(49) 

Then, using Equations (45) and (47) to specify power laws 
for a a and e, the power law for TFa is obtained: 

M 1 F a 

[Fa 

A r 

3C M 
(50) 

In Figure 3c, this prediction is compared with two values 
inferred from the measurements: a "dissipation" value from 
Equation (49) with e inferred from Equation (46) with 
C 0 = 4.5 (see Section 6), and a "length scale" value inferred 
from measured values of the streamwise Eulerian length 
scale Lu, using Equation (38) with p = 0.4 (Section 6). The 
Lu values were tabulated directly by SL71, and in the case 
of WS83 were inferred from tabulated values of the fixed-
point Eulerian time scale for u (TEu) as Lu = UTEu. In both 
experiments the agreement between Equation (50) and the 

"dissipation" values is excellent, again not surprisingly con
sidering the way these values were inferred. The agreement 
between the "length scale" values and Equation (50) is very 
good for WS83 except at small xlM, but for SL71 the length 
scale values of TFa exceed the other three estimates and 
Equation (50) by a factor between 1.5 and 2, with the 
agreement improving as xlM increases. 
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Figure 3. Normalised flow statistics as functions of normalised 
distance (x-x0)/M, for the experiments of Snyder and Lumley 
[1971] (SL71) and Wells and Stock [1983] (WS83): (a) velocity 
standard deviation aa/U\ (b) dissipation rate (M/f/ 3)e; (c) fluid 
Lagrangian time scale (U/M)TFa; (d) Eulerian length scale LJM. 
Power-law fits are from Equations (45) to (51). 
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Figure 4. Predicted particle-to-fluid diffusivity ratio KPaa/KFaa 

compared with the observations of Snyder and Lumley [1971], 
using (a) the triangular formulation and (b) the elliptic formulation 
for R(uP)aa(t), from Equation (32). Different observation methods 
are described in the text. 

Finally, a power law for the streamwise Eulerian length 
scale Lu can be obtained by using Equation (38) and the 
power laws already established for a a and TFa: 

u_ 
M 3 p C 0 D V2 

N V 2 

M 
(51) 

Figure 3d compares this prediction with direct measure
ments. The SL71 results exceed those from WS83 by a 
factor between 1.5 and 2, consistent with the pattern for the 
"length scale" estimates of TFa. 

WS83 also compared their flow field with several ear
lier experiments on grid turbulence, including SL71. They 
found generally good agreement with earlier work, except 
for a few discrepancies concerning SL71 (in aa and Lu, as 
noted above, and in the effective origin JC 0 ) . This result mo

tivated the present choice of WS83 rather than SL71 values 
of D and XQ/M in setting the power-law fits to the data. 

From the point of view of the dispersion predictions, the 
most important outcome of the flow-field analysis is a set 
of estimates for aa and TFa at a central point in the working 
section (in the x direction) at which the mean particle dis
persion is to be predicted. That point is chosen to be x/M = 
60 for WS83 and x/M = 107 for SL71, the fourth of six ve
locity measurement stations in each case. Because the tun
nels were practically identical in the setup of the flow, the 
predictions are made with values of ca and TFa respectively 
derived from Equations (45) and (50) with consistent 
(WS83) values of D and XQ/M. The resulting values are a a = 
0.089 m s"1, TFa = 0.114 s (at x/M = 107, for SL71); and aa 

= 0.123 m s"1, TFa = 0.060 s (at x/M = 60, for WS83). 

5.3. Particle Dispersion Measurements 

In both experiments the observed dispersion rates 

dY2/dt = U dY2/dx were nearly constant with x, despite 
the fact that the grid turbulence was slowly decaying. One 
interpretation of this constancy is that the far-field diffusiv
ity KFaa = ca

2TFa is independent of JC, from the power laws 
for aa [proportional to ((x-x0)/M)~m] and TFa [proportional 
to ((X-XQ)/M)]. This supports the use of decaying grid tur
bulence for testing a dispersion theory, despite the fact that 
both aa and TFa are changing with x. 

The primary quantity used here for comparison between 
the theory and the experiments is KPaa/KFaa, for a trans
verse direction of dispersion a. From the SL71 data, three 
different observed values of KPaa/KFaa are available: 

(1) KPaa from the measured dispersion rate U dY2/dx and 

Equation (21), and KFaa from measurements of a a

2 7> a ; 

(2) KPaa from the measured U dY2/dxand KFaa from 
measurements of dispersion for the lightest particles 
(hollow glass); 

(3) KPaa/KFaa from the measured time scale ratio 7> a/7> a, 
using Equation (27). 

From the WS83 experiment, two different observed values 
are available: 

(4) KPaa from the measured U dY2/dx and KFa0L from 

measurements of oa

2TFa (as in (1)); 
(5) KPaa from particle velocity correlation measurements 

and Equation (22), and KFaa from oa

2TFa. 
Figures 4 and 5 compare the observed and predicted 

values of KPaa/KFaa for the SL71 and WS83 data, respec
tively, using both the triangular and the elliptic formulation 
for #( M />)aa(0- The only adjustable parameter available in the 
theory is P , which was set at P = 0.4 to provide best overall 
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Figure 5. Predicted particle-to-fluid diffusivity ratio KPaaIKFa<x 

compared with the observations of Wells and Stock [1983]. Details 
as for Figure 4. 

agreement between model and both sets of measurements 
(see Section 6). It is important to note that y in Equations 
(43) and (44) is 2 for SL71 and 1 for WS83, because the 
direction of drift was normal to the direction of dispersion 
in SL71 (with a vertical tunnel) and parallel to the disper
sion WS83 (with a horizontal tunnel). 

The agreement between measurements and predictions 
in both experiments is good, provided the elliptic formula
tion for R(up)aa(t) is used. The triangular formulation does 
not provide satisfactory agreement. The quality of the 
agreement is broadly similar for all methods of observing 
KpaJKFaa across both experiments, indicating that the ob
servations are essentially in agreement as noted for methods 
(4) and (5) by WS83. 

6. DISCUSSION AND CONCLUSIONS 

6.1. Parameter Values 
The only free parameter in the theory is (3, which relates 

the fluid Lagrangian and Eulerian time scales (TFa and 

LjGa) through Equation (38). This has been chosen to op
timise the agreement in Figures 4 and 5 between the meas
ured and predicted values of KPaa/KFaa. The resulting value 
is P = 0.40 ± 0 . 1 , where the uncertainty takes account of 
both the scatter in the measurements and the uncertainty in 
other measured parameters, especially aa (recalling that 
there is some difference between SL71 and WS83; see Fig
ure 3 a). This procedure is effectively a determination of P, 
based on the model with the elliptic formulation for 
R(Up)aa(t)- If P is optimised with the triangular formulation, 
a smaller value (around p = 0.2) is obtained, but the result
ing fit to both data sets, especially WS83, is substantially 
worse that with the elliptic formulation. Hence, at least 
between these two choices, the triangular option can be 
rejected. 

It is interesting to compare the value p = 0.4 with an in
ferred value of p for the adiabatic atmospheric surface 
layer, obtained by equating two estimates for the vertical 
eddy diffusivity (KFaa with a = 3) for a passive scalar. The 
first (Lagrangian) estimate is 

K F33 ^ ° 3 % 3 = = P ° 3 ^ 3 = -
(a) (b) (c) (d) 2nn 

(52) 
>( PEAK) 

where the successive equalities come from (a) Equation 
(20) in the far-field limit; (b) Equation (38); (c) Taylor's 
hypothesis L 3 = UT^, where is the fixed-point time 
scale for the vertical velocity; and (d) the assumption = 
ll(2nfw{peak)) = z/(2nUnw(peak)). Here z is height above 
ground and nwipeak) is the peak dimensionless frequency of 
the vertical velocity spectrum, plotted as f&ttifilo2 against 
the dimensionless frequency n -fzJU where / i s frequency 
[ s - 1 ] . Many observations, reviewed for example by Kaimal 
and Finnigan [1994], give n ^ ^ in the range 0.3 to 0.5. 
The second (Eulerian) estimate of K^ comes direct from 
surface-layer similarity theory: 

(53) 

where ks is the von Karman constant for a scalar and u* is 
the friction velocity. Equating these two estimates gives 

P = 2nny (PEAKFTS (w./a 3) (54) 

Taking ks = 0A, nwipeak) = 0.3 to 0.5 and a3/w* = 1.25 (a 
typical value for an atmospheric surface layer), it follows 
that p i s 0.6 to 1.0. 

This would seem to conflict with the estimate P = 0.4 
from the present work, until it is recalled that the length 
scale L 3 from Equation (52) applies to vertical velocities 
along a streamwise axis of separation, because of the use of 
Taylor's hypothesis to transform the time axis of spectral 
measurement into a streamwise axis x = Ut. Hence, 
L3 = UTE3 is a transverse length scale rather than a longitu
dinal length scale as required by a dispersion theory. If the 
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turbulence were isotropic, a factor y = 2 should then appear 
in equality (b) of Equation (52). This therefore becomes 
Km = P Y a 3 ^ 3 »

 a n d Equation (54) becomes 

P = ^mw{peak)^S ( M * / a 3 ) / Y (55) 

which (with y = 2) implies P = 0.3 to 0.5, bracketing the 
result from the heavy-particle analysis. Of course surface-
layer turbulence is far from isotropic, so y cannot be as
sumed to be exactly 2. However, the comparison indicates 
the importance of the distinction between longitudinal and 
transverse length scales when using the hypothesis TFa = 
$La/oa. 

The other parameter introduced in Section 5 is C 0 , the 
Kolmogorov Lagrangian structure function constant defined 
by Equation (48). This appears only in the power laws for 
TFa and Lu in grid turbulence (Equations (50) and (51)), not 
in the particle dispersion theory. The value used here, 
C 0 = 4.5, was chosen to provide good agreement between 
the "dissipation" and "length scale" values of TFa in Figure 
3c, for the WS83 measurements. Had the SL71 data been 
used instead, the resulting value of C 0 would have been 
somewhat lower (3.0 to 3.5). The effect of such a change on 
other predictions is insignificant. 

Sawford [1991] showed that Reynolds number effects 
appear in Equation (49), making C 0 (defined to satisfy a 
relationship involving the integral Lagrangian time scale) a 
function of the Reynolds number Rex = o a A /K based on the 
Taylor microscale X ( K is kinematic viscosity). He predicted 
that C 0 approaches a value of 7 as Rex —» °°, and that when 
Rex = 50 (about the value for the SL71 and WS83 grid tur
bulence), the effective C 0 in Equation (49) (which he de
noted C 0 ) is about 0.6 of the limiting value at large Rex, 
that is, about 4. This is close to the value of 4.5 used here. 

6.2. Concluding Summary 
Through the simple (though approximate) relationship 

KpaJKFaa =TPa/TFa (Equation (27)), it has been possible to 
develop an analytic theory for the eddy diffusivity of heavy 
particles in a turbulent flow. The focus is on the time scale 
TPa for the fluid velocity (uPa) along a particle trajectory, 
rather than the covariance function for the particle velocity 
(v a). Hence the present theory is simpler than alternative 
theories based on integral [Reeks, 1911 \ Pismen and Nir, 
1978] or algebraic [Wang and Stock, 1993] equations which 
solve for the covariance function. 

The theory has been compared with experiments, lead
ing to: 
(1) good overall agreement; 
(2) ability to discriminate on the basis of the experimental 
evidence between "elliptic" and "triangular" formulations 
for the covariance function R(up)aa(t) for uPa; and 

(3) the estimate p = 0.40 ± 0.1 for the ratio of the fluid La
grangian time scale TPa to the Eulerian turbulence time 
scale LJoa (Equation (38)). 

This theory predicts that the heavy-particle diffusivity 
K P a a is always less than the fluid diffusivity K F a a . Some 
more complex theories [Reeks, 1977; Pismen and Nir, 
1978] predict that K P a a can exceed K F a a as a consequence 
of the inertial effect. However, this only occurs when the 
covariance function for R^up)aa(t) has negative loops 
[Gouesbet et al., 1984]. The present assumption that 
R(uP)aa(t) is exponential, without negative loops, accord
ingly rules out the possibility that K P a a > K F a a . In an ex
periment designed specifically to isolate the effects of iner
tia [Wells and Stock, 1983], no significant evidence that 
K P a a > K F a a was found. 

The predictions from these cases provide a description 
of the diffusivity of particles in homogeneous turbulence 
which is suitable for many environmental applications. It is 
reasonable to expect that this description is applicable in 
inhomogeneous environmental turbulent flows, to the same 
extent that a gradient-diffusion relationship describes scalar 
transfer in such flows. One reason for expecting this to be 
the case is that the time scale TPa governing heavy-particle 
diffusion is less than the time scale TFa for the diffusion of 
fluid elements, so the criteria for a diffusion-equation de
scription of heavy-particle dispersion should at least be no 
more severe than equivalent criteria for fluid-element dis
persion. 
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A Simple One-dimensional Model of Coherent Turbulent Transfer in 
Canopies 
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Vert ica l t u r b u l e n t h e a t flow in a v e g e t a t i o n c a n o p y is desc r ibed us ing a 
one -d imens iona l t r a n s i e n t h e a t t r ans fe r e q u a t i o n w i t h s t e a d y - s t a t e source 
dens i ty d i s t r i b u t i o n . F l u x e s a re a s s u m e d p r o p o r t i o n a l t o local g r a d i e n t s a t 
all levels, w i t h a t i m e - v a r y i n g diffusivity t h a t a c c o u n t s for t h e i n t e r m i t t a n t 
cohe ren t eddies t h a t m e d i a t e m o s t of t h e u p w a r d t r ans fe r of h e a t in canop ies . 
Diffusivities also va ry w i t h he igh t in a real is t ic way. So lu t ion is achieved nu
mer ica l ly us ing a finite e l emen t t e c h n i q u e a n d c a l c u l a t e d air t e m p e r a t u r e s 
a r e c o m p a r e d w i t h va lues m e a s u r e d in a Douglas-f i r forest . G o o d a g r e e m e n t 
w i t h a m e a s u r e d d a y t i m e profile is achieved by a d j u s t i n g i n p u t diffusivity 
p a r a m e t e r s , b u t in r e t r o s p e c t t h e s e a re shown t o have s o m e phys ica l bas is . 
T h e t h e o r y is ab le t o desc r ibe t h e r amp- l ike b e h a v i o u r often seen in t e m 
p e r a t u r e t i m e series a n d t h e c o u n t e r - g r a d i e n t h e a t flow t h a t o c c u r r e d w i t h i n 
t h e Douglas-fir canopy. R a u p a c h ' s local ized near-f ield t h e o r y b a s e d on La
g r a n g i a n m e t h o d s is also t e s t e d a n d is shown t o u n d e r e s t i m a t e t h e near-field 
effect in t h e forest . 

I N T R O D U C T I O N 

The flow of air within and above vegetation and other 
surface canopies, such as plant-residue mulches, occurs 
at very high Reynolds number and is therefore highly 
turbulent . While the randomness of turbulence has of
ten been emphasized, it is now recognised t ha t vertical 
transfer of momentum and scalar quantities (e.g., heat 
and water vapour) within vegetation canopies and be
tween canopies and the atmosphere is largely mediated 
by intermit tant canopy-scale, coherent eddies [Gao et 
al, 1989; Raupach et al, 1996]. One signature of these 
coherent flow structures are the so-called "ramps" tha t 
occur in the t ime series of vertical wind speed and tem
perature, vapour density, CO2 concentration, and other 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM26 

t race gases. For example, when heat is flowing from the 
canopy into the air near midday, air t empera ture traces 
often consist of repeated pa t terns in which tempera ture 
increases fairly steadily with t ime at all heights within 
and just above the canopy until a rapid drop occurs 
nearly simultaneously in all traces. The drop occurs 
first near the top of the canopy and is progressively de
layed with decreasing height within the canopy. Both 
the delay and the drop occur quickly compared to the 
t ime during which the tempera ture is steadily increas
ing. They are associated with a canopy-scale coherent 
flow event t ha t injects cooler air from above the canopy 
down into it and which, as a consequence, sweeps rela
tively warm canopy air up and out. On nights when the 
canopy is a sink for heat (with the ul t imate loss of heat 
occurring by upward longwave radiation flow) and wind 
speeds exceed the threshold required for forced convec
tion, only the directions change in the ramp pat terns , 
i.e., the tempera ture steadily decreases before exhibit
ing a sudden increase. The period of steady tempera-

317 
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ture change and the sudden drop or increase are referred 
to as "quiescent" and "gust" periods, respectively. 

Researchers have exploited this ramp behaviour and 
developed "surface renewal" models tha t describe the 
fluxes of various scalar quantities exchanged between 
the surface and the atmosphere [Paw U et al, 1995; 
Chen et al, 1997a]. Most often, these models have 
been applied above the canopy to the total heat flux ex
changed, although Chen et al. [19976] showed tha t they 
could be used to predict the flux profile within a canopy. 
The greatest use for renewal models appears to be as a 
measurement tool, either in primary or backup mode to 
determine fluxes more cheaply and easily than eddy cor
relation, because high frequency measurements of wind 
speed are not needed and the monitoring frequencies for 
the scalar variables can be reduced. At present, how
ever, renewal models are semi-empirical and a proper 
physical theory is lacking. Such a theory should allow 
the development of more complete predictive models of 
canopy exchange. 

"if- theory" assumes t ha t the vertical flux of any en
ti ty at any height is linearly proportional to the lo
cal vertical gradient in the concentration of tha t en
tity, with turbulent diffusivity, if, as proportionality 
factor. However, field measurements in canopies have 
demonstrated tha t -theory is invalid within canopies. 
A common observation, in canopies ranging in scale 
from plant-residue mulches up to forests, is tha t the 
flux density is counter the sign of the local gradient, 
so t ha t i f is negative, which is both physically illogical 
and leads to numerical instability when used in predic
tive models. This behaviour occurs because the ver
tical size of the turbulent eddies tha t t ransport most 
of the flux (the coherent structures discussed above) 
is roughly given by canopy height, /i, so tha t the ex
change depends upon differences in concentration over 
vertical distances larger t han implied by the local gradi
ent. Raupach [1989] presented an analytical Lagrangian 
theory of vertical turbulent dispersion tha t explains the 
counter-gradient fluxes as the effect of the "near-field" 
on the profile of temperature . He showed tha t his the
ory was in good agreement with a more general random-
flight model of turbulent dispersion. However, Baldoc-
chi [1992] found tha t a similar random-flight model was 
not in good agreement with his measured scalar profiles 
in a soybean canopy, which he speculated might be due 
to its neglect of intermittancy. Lee [1992] showed tha t 
a random-flight model applied to a Douglas-fir forest 
predicted counter-gradient flow as observed but under
estimated the magnitude of the effect. El-kilani [1996] 
suggested tha t the disagreement with random-flight and 

Lagrangian-type models is related to the universal as
sumption tha t released particles move independently 
throughout t ime, which clearly is violated due to the 
intermit tant canopy-scale coherent eddies. 

This paper presents numerical solutions of the t ran
sient heat transfer equation t ha t describe the ramping 
of air temperature and the counter-gradient flow ob
served in canopies. The quiescent and gust periods 
are simulated by a time-varying turbulent diffusivity, so 
t ha t despite the remarks above, i f - theory is assumed. 
Although it is recognized t ha t the exchange of air dur
ing the gust is primarily advective and two-dimensional 
[Brunet and Raupach, 1987], it is assumed to be one-
dimensional and diffusive in the theory. El-kilani and 
Van Pul [1996] developed a complete canopy energy bal
ance model based on the same concepts and validated 
it with measurements made in a maize canopy. Herein, 
the numerical solutions are compared with field mea
surements only for heat transfer in a Douglas-fir forest, 
with simplified boundary conditions, so as to better il
lustrate the fundamental elements of the theory and its 
sensitivity to basic input parameters . Comparison of 
the Raupach [1989] Lagrangian analytical theory with 
the same forest canopy da ta set is also presented. 

M E T H O D S 

Theory for Time- Varying Diffusivity 

The equation governing one-dimensional vertical heat 
transfer within and above a canopy, assuming if- theory 
to be valid, is given by 

where 6 = 9(z,t) is the potential temperature of the 
air (which in practice differs negligibly from actual air 
tempera ture in the domain of interest), t is the time, z 
is the height above the soil surface, i f = i f (z , t) is the 
turbulent diffusivity, S = S{z, t) is the sensible heat flux 
source density, and C is the volumetric heat capacity (at 
constant pressure) of the air. According to if-theory, 
the sensible heat flux density, H, is given by 

For both analytical and numerical efficacy, it is assumed 
tha t i f ( z , t) — Kz(z)Kt(t), so t ha t changing the t ime 
variable to 

T= f Kt(S)dS (3) Jo 
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yields 

dr dz \ zdz) CKt' (4 ) 

which is the s tandard heat equation but now with the 
time-varying factor Kt in the source term. Although 
this assumption for K is somewhat restrictive, more 
complex expressions are probably not warranted. Note 
tha t Kt is dimensionless, so tha t Kz carries the dimen
sions of K. 

To simulate the effects of the turbulent exchange, 
Kt{i) is assumed to be a series of repeating step func
tions such tha t Kt = K\ for nT < t < t\ + nT 
and Kt = K2 for nT + tx < t < (n + 1)T, where 
n = 0 , 1 , 2, 3 . . . and the period T = t\ + £2, with t\ 
and £2 the t ime periods for which Kt = K\ and K2, re
spectively. i \ i applies to the quiescent period between 
gusts and if2 to the gust period. 

To simulate a real forest canopy (described later) , 
Kz(z) is chosen as follows, based on Lee [1992]: 

Kz=al(z)TL(z), (5) 

where aWl t he s tandard deviation of the vertical wind 
speed, is given by 

f (Tw{zr), z > h < <M*r) ( ^ i r 2 ) 1 7 2 » 0 < Z < ft 

and T L , the Lagrangian t ime scale, is given by 

(6) 

TL=< 

0.43 <7™(z r)' z > h 

0.43- ft 
(7) 

, 0 < z < ft. 

In these equations, the units of z are m, ft — 16.7 m is 
the height of the trees, and zr — 23 m is the reference 
height, which was the highest measurement level. The 
o~w{z) profile in (6) is based directly on measurements 
made with a 3-dimensional sonic anemometer during 
the field study. The form of the TL(Z) profile in (7) is 
based on other studies from the li terature, with the fac
tor 0.43 determined by fitting (2), with K = Kz given 
by (5)-(7), to daytime values of H measured by eddy 
correlation with the 3-dimensional sonic anemometer at 
z = 2 m, the lowest measurement height for H during 
the study (near-field effects were shown by Lee to be 
small at this height). The 0.43 is slightly greater t han 
the expected value of 0.38 based on the usual assump
tions tha t within the canopy TL = 0.3ft/w*, with u* the 

friction velocity, and o~w = 1.25 u* above the canopy 
under neutral conditions [Raupach, 1989]. The offset 
for z of 0.3 m in (6) differs from the value of 0 in Lee 
[1992], but avoids a potentially troublesome singularity 
at z — 0 and has little effect on the solution except very 
near z — 0. The small discontinuity in Kz at z — h 
t ha t arises from this offset has little effect on the solu
tion. It was assumed tha t aw(zr) = 0.6 m s _ 1 , which 
was the daytime average over the three measurement 
days of interest. Although these expressions are spe
cific to Lee's forest canopy, their form is typical of most 
canopies [Raupach, 1989]. 

In general, S , which represents the par t of the net ra
diation absorbed by the trees t ha t is available for sensi
ble heat, changes with both z and t throughout the day. 
Herein though, comparison with field measurements is 
on a daytime average basis and so S is assumed to be 
independent of t. This is not considered to be a dras
tic assumption since the t ime scale of interest, deter
mined by the quiescent and gust periods, is relatively 
short compared to the t ime scale with which S changes 
diurnally (except perhaps for part ly cloudy conditions 
during which solar irradiance is highly variable). Fol
lowing Lee [1992], S was assumed to be proportional to 
the measured vertical leaf area density distribution, i.e., 

S(z) 

5.5 
1 1 3 ' 6 7 • h * * 

Kh - 5.5 
W m ~ 3 , 5.5 < z < h 

0 . 8 z - 5.5 
ft-5.5 

1 . 4 4 

(8) 

0, 0 < z < 5.5 m and z > ft. 

The value of H at z — 0, H G I was assumed to be con
stant and equal to 45 W m - 2 , which was the daytime 
average value over the three measurement days of inter
est a t z = 2 m. The average value of H over any period 
of length T after the steady periodic s ta te is reached, 
at any z, is therefore given by HG + JQS(Z) dz, with the 
value at z = ft, H T , equal to 230 W m - 2 . 

Analytical solution of (4) is possible using methods 
described in Carslaw and Jaeger [1959]. Novak [1997] 
presented such a solution for the case of Kz(z) = 1, on a 
semi-infinite domain. I also derived the solution to this 
case for a finite domain, with 6 known and constant at 
some Zb, which yields similar results. For Kz(z) oc z, 
as in (5)-(7), (4) can be transformed into a nonhomo-
geneous Bessel equation [Novak, 1986; Raupach, 1989] 
and then solved analytically. 

However, herein solutions were determined numer
ically with a commercial part ial differential equation 
solver, F lexPDE version 2.20c (available at 
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www.pdesolutions.com), which uses a finite element 
technique. The steady-state solution {Kt = 1) and 
the time-varying solution as described above (but with 
Kz constant) were found to be in excellent agreement 
with analytical solutions to these problems, and t ime-
averaged fluxes (once the solutions became periodic in 
time) for all numerical solutions presented were always 
in excellent agreement with the distribution expected 
from Hg and S(z). I found tha t accurate numerical so
lution of (1) directly was very difficult when Kt changed 
dramatically but t ha t (4), whose use is evidently critical 
for developing analytical solutions, was easily solved for 
all Kt. F lexPDE has the advantage tha t problems are 
formulated simply and naturally and numerical details 
are hidden from the user, including determination of 
the unstructured mesh, which is automatically adapted 
to the solution to meet specified accuracy criteria. 

Lagrangian Theory of Raupach [1989] 

Raupach [1989] developed an approximate Lagrangian 
theory based on the assumption tha t the mean verti
cal tempera ture profile in a canopy is the sum of near-
field and "far-field" contributions, and tha t the near-
field part can be determined assuming the turbulence 
to be locally homogeneous (hereafter referred to as the 
localized near-field theory, or LNF). The near-field con
tribution is from sources near enough upwind tha t their 
release tempera ture still persists at the measurement lo
cation while for the far-field the sources are far enough 
upwind tha t parcels of heat arriving there have under
gone a random walk and so contribute diffusively. The 
near-field term, 0 n , is given by 

where MO = -kn{-C) = - l / \ / 2 ^ i n ( l - e - c ) + ( l / 2 -
7r 2 / \ / 7 2 7 r ) e ~ ^ , and the far-field term, #/ , is given by 

with 
Ofb = 0{zh)-On{zb). (11) 

Here 0{zb) is a known constant temperature specified at 
some z — Zb, usually chosen well above the canopy. 

Field Experiments 

All field measurements shown were extracted directly 
from Lee [1992] and his da ta set; see also Lee and Black 
[1993a ;6]. Micrometeorological measurements were made 
in a Douglas-fir forest near Courtenay, on the east coast 
of Vancouver Island, British Columbia, during July 19 -
20 and July 26-August 1, 1990. The period from July 
6-August 1 was rainless and the trees were moderately 
stressed with daytime overstory Bowen ratios between 
1 and 3. The stand was planted in 1962 and thinned (to 
575 stems h a - 1 ) and completely pruned (up to z = 5.5 
m) in 1988. It had a (projected) leaf area index of 5.4, 
a height of 16.7 m, and was located on a 5° east-facing 
slope. The forest floor was littered with dead branches 
and trunks, with sparse understory vegetation less than 
0.5 m tall. 

Air temperature profiles were measured using fine-
wire thermocouples installed at z = 0.9, 2, 4.6, 7, 10, 
12.7, 16.7, and 23 m throughout the experiment. Da ta 
were sampled at 10 Hz but averaged on-line, half-hourly, 
throughout each day. Wind speeds and H, including 
all high frequency turbulence statistics, were measured 
by two 3-dimensional sonic anemometers operating at 
10 Hz (during daytime only, with averaging every half 
hour). One anemometer was installed permanently at 
z = 23 m, while the second was successively placed at 
one of z = 2, 7, 10, and 16.7 m for two or three days 
at a time. For the most par t herein, only da ta from 
July 19, 20, and 26 are used. On these days, the roving 
sonic anemometer was located at z — 2 m and Hg was 
assumed to be equal to H measured by it. 

R E S U L T S 

Figure 1 compares profiles of average 0 from the nu
merical solution with a measured profile for the forest, 
which is an average of those daytime half-hour peri
ods for which Hg/Ht was in the range 0.15-0.25 on 
July 19, 20, and 26. The measured temperatures were 
normalized as [0(z) — 0{zr)\/0* = A0/0*, where 0* = 
Ht/[Caw(zr)] for each half hour. For the numerical so
lutions, 0 = 20 °C at Zb — 50 m was assumed (this was 
also the initial condition), and the profiles were normal
ized as were the measurements by subtracting the av
erage 0{zr) and dividing by 0* = Ht/[Caw(zr)] = 0.32 
°C with Ht = 230 W m ~ 2 , C = 1200 J m ~ 3 K " 1 , and 
o~w(zr) = 0.6 m s - 1 . Since these Ht and aw(zr), and 
Hg — 45 W m - 2 , were daytime averages for the three 
measurement days, which includes periods for which 
Hg/Ht was outside the range 0.15-0.25, the parameters 
assumed may not be perfectly applicable to the subset 

http://www.pdesolutions.com
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Measured, H /H=0.15-0.25 
9 t 

Numerical, Basic 
Numerical, Gust 
Numerical, Quiescent/Gust 
Numerical, Quiescent 

In fo » ^ . ^ . T - - T . 

4 6 
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F i g u r e 1. Numerical ly calculated profiles of normal ized 
potent ia l t e m p e r a t u r e in the Douglas-fir forest for t h e four 
i f t -pa rame te r cases in Table 1. T h e numerical profiles are 
averages for the last computed per iod of length T. Also 
shown is the measured average profile for Hg/Ht in t h e 0.15— 
0.25 range. 

of da ta with Hg/Ht in the 0.15-0.25 range, al though 
because of the normalization this is expected to have a 
small effect. The z& = 50 m was chosen because ramp 
behaviour was observed at z = 23 m. If the roughness 
sublayer is est imated to extend to 2h then ramps asso
ciated with coherent structures generated at z — h by 
shear instability [Raupach et al., 1996] should be dis
cernible to t ha t level; above z = 2h the tempera ture 
is generally not constant but variations should not be 
correlated with those below this level. Averages for the 
numerical solutions were from the last calculated period 
of length T , which was chosen so tha t the solution had 
clearly achieved periodicity in time. The s tandard value 
of C = 1200 J m ~ 3 K _ 1 was reduced by 5% within the 
canopy to roughly account for the volume of the canopy 
layer occupied by the trees. 

The only differences between the four numerical runs 
shown in Figure 1 are in the Kt parameters , which are 
listed in Table 1. The t\ = 70 s used in all t he runs is 
the average t ime between ramps found by Chen et al. 
[1997a] for t he z — 23 m da ta during all 9 measurement 
days. For the run labelled "basic", K\ = 0.3 is a rea
sonable guess for the quiescent period based on El-kilani 
and Van Boxel [1996], and £2 = 5 s and K2 = 300 were 
chosen to guarantee t ha t essentially all heat stored in 
the canopy volume is removed upwards during the gust 

period, as suggested by El-kilani and Van Pul [1996]. 
For the run labelled "gust", gust parameters (only) have 
been modified by trial and error to achieve the best fit 
possible to the measured data . For the run labelled 
"quiescent/gust", both quiescent (only Ki) and gust 
parameters were modified to achieve a good fit to the 
measured data . For the run labelled "quiescent", t he 
K\ = 0 . 0 2 assumes diffusivity values t ha t are probably 
unreasonably low from a physical s tandpoint . 

Evidently, the theory with the basic input parame
ters is able to reproduce the general shape of the mea
sured profile but yields normalized 9 about 3 times too 
low within the canopy. Reducing K\ but keeping the 
gust parameters such tha t virtually all heat within the 
canopy is removed during the gust periods does not in
crease canopy 9 overall, only modifying profile shape 
(quiescent case). The only way to increase canopy 9 
is to adjust gust parameters so t ha t heat removal dur
ing the gust is less effective, which allows a buildup of 
canopy heat . This was done by decreasing £ 2 and K2 
as shown in Table 1 (gust case), al though it could have 
been done by keeping £2 constant and only adjusting 
K2. A reasonably good fit to the measured profile is 
obtained by a combination of reducing K\ and adjust
ing gust parameters (quiescent/gust case). 

According to Figure 2, the average H from the last 
calculated period of length T is in excellent agreement 
with t ha t expected from Hg and the profile of 5 , i.e., 
Hg + §*S(z)dz, for all four numerical cases. This 
demonstrates tha t the numerical calculations were ac
curate and tha t the (implicitly determined) t ime steps 
were adequate to capture all temporal variations. It is 
evident t h a t average H > 0 at all z within and above 
the canopy, so t ha t for bo th measurements and theory 
(quiescent/gust case) the average flux is counter the lo
cal average tempera ture gradient for 0.3 < z/h < 0.6. 

Time series of 9 a t selected z for the basic and qui
escent/gust cases are shown in Figures 3 and 4, respec
tively. Ramping behaviour is evident in bo th cases as 
expected and both eventually reach steady periodicity, 
the basic case doing so almost immediately while the 
quiescent/gust case requires about 500 s, or 7 periods, 

Table 1. Kt pa rame te r s (four cases) used in the numer
ical solutions, as described in t he t ex t . 

Quiescent Per iod Gus t Per iod 
*i (s) Kx t2 (s) K2 

Basic 70 0.3 5 300 
Gus t 70 0.3 1 30 
Qu iescen t /Gus t 70 0.1 1 50 
Quiescent 70 0.02 5 300 
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1.4, 

0.5 Measured, HIH=0.15-0.25 J 
9 t 1 

Numerical, Basic 
Numerical, Gust 

- - Numerical, Quiescent/Gust 
-•— Numerical, Quiescent 
j i i 
0.5 

H/H 
1.5 

F i g u r e 2. Numerical ly calculated profiles of normalized 
sensible hea t flux densi ty in the Douglas-fir forest for the 
four K t - p a r a m e t e r cases in Table 1. T h e numerical pro
files are averages for t h e last computed period of length T . 
Also shown is the average profile for Hg/Ht in the 0.15-0.25 
range calculated by in tegra t ing (8), which was based on field 
measurements . 

to do so. This is not considered significant because con
ditions in the field should always be near the steady 
periodic state. The amplitudes of the ramps (difference 
between maximum and minimum values of 0) are simi
lar for both cases at all z. This is not surprising given 
tha t S is the same for both. 

Measured values of r amp amplitude, determined us
ing the ramp model of Chen et al [1997a], are: 0.62 ± 
0.31, 0 .61±0.28, 0 .84±0.40, 1.32±0.43, and 1.23±0.38 
°C at z = 2, 7, 10, 16.7 (ft), and 23 m, respectively, 
with the indicated range being 1 s tandard deviation. 
Since determination of ramp amplitude required da ta 
from the 3-dimensional sonic anemometer, simultane
ous values were not measured at all z within and above 
the canopy. Therefore, it is not possible to generate a 
proper profile with these ramp data , but they give us a 
rough indication of it. While measured and calculated 
amplitudes match fairly well at and below z = 10 m, 
modelled values are apparently too low above this level. 

Time series of H a t selected z for the basic and qui
escent/gust cases are shown in Figures 5 and 6, respec
tively. H varies strongly with t, with large spikes oc
curring during the gust periods. Detailed calculations 
show tha t about 90% of the vertical transfer occurs dur
ing gusts and only about 10% during the quiescent pe

riods. The magnitudes of H during the gust periods are 
clearly not realistic, being much too large. Despite this, 
average values of H are correct, as shown in Figure 2. 
I t may be tha t optimizing Kt parameters should have 
also included a good represention of the time series of 
H, but the focus herein was on average 0 and H profiles. 

Figure 7 tests whether the theory, with Kt parame
ters from the quiescent/gust case, can predict the effect 
of Hg/Ht on the profile of average 0. Lee [1992] gener
ated the measured profiles from the half-hour average 
daytime da ta for July 19, 20, and 26 (the profile for 
Hg/Ht in the range 0.25-0.35 is not shown for clar
ity). Although the theory predicts the direction of the 
changes correctly, it underest imates their magnitudes, 
requiring tha t optimal values of Kt change somewhat 
with Hg/Ht. 

Figures 8 and 9 repeat the above comparisons but for 
the Raupach [1989] LNF theory. While the LNF theory 
is able to reproduce the general shape of the average 0 
profile, it underestimates the magnitude of the "bump" 
in the profile associated with the peak value of S near 
z/h — 0.55. Calculated profiles are quite sensitive to the 
assumed value of aw(zr). Reducing it by only 10% to 
0.54 m s _ 1 improved the agreement in the lower part of 
the canopy, while a 20% reduction to 0.48 m s _ 1 yielded 
good agreement for the mean 0 within the canopy. Such 
reductions may not be excessive, given tha t crw(zr) = 
0.6 m s _ 1 is a daytime average for July 19, 20, and 26, 
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F i g u r e 3. Time-series of numerical ly calculated potent ia l 
t e m p e r a t u r e a t the indicated heights in the Douglas-fir forest 
for t he basic case (see Table 1). 
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F i g u r e 4. Time-series of numerically calculated potent ia l 
t e m p e r a t u r e a t the indicated heights in the Douglas-fir forest 
for t h e quiescent /gus t case (see Table 1). 

while the da ta for Hg/Ht in the range 0.15-0.25 is a 
subset of the daytime values. The LNF theory captures 
the trends, but not the magnitudes, of the effects of 
changing Hg/Ht, similar to the time-varying diffusivity 
theory. But changing Hg/Ht has a stronger effect on 
profile shape, with the bump eliminated for Hg/Ht — 
0.45. 

C O N C L U D I N G D I S C U S S I O N S 

The time-varying diffusivity theory can simulate the 
tempera ture profiles measured in the Douglas-fir forest 
studied by Lee [1992], but only after determining op
t imal difffusivity parameters by fitting to the desired 
profile. Both gust and quiescent period parameters 
were critical in achieving a good fit. Initially, it was 
hoped tha t the best solution would be insensitive to 
gust parameters and sensitive only to quiescent period 
parameters. During the quiescent period, turbulence is 
smaller in scale, l f - theory is expected to be valid, and 
the possibility of developing a robust physically mean
ingful method to estimate K\ is strong. But during the 
gust phase, turbulence is large-scale and vertical t rans
fer is two-dimensional (at least) and advective, so tha t 
gust parameters for a one-dimensional model based on 
if- theory are artificial and difficult to estimate directly. 

However, for the quiescent/gust case, the average Kt, 
given by {K\ti + K^t^jT, is 0.8. This is equivalent to 
using (5)-(7) with aw(zr) = 0.48 m s _ 1 , which it was 

seen yields a good fit on average for 0 within the canopy 
with the LNF theory. If detailed future analysis shows 
t ha t aw(zr) is appropriate for the subset of da t a with 
Hg/Ht in the range 0.15-0.25, then gust parameters can 
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F i g u r e 5. Time-series of numerical ly calculated sensible 
hea t flux densi ty a t t he indicated heights in t h e Douglas-
fir forest for t h e basic case (see Table 1). T h e lower g raph 
shows the gust phase dur ing t h e second to last per iod in 
grea ter detail . 
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F i g u r e 6. Time-series of numerical ly calculated sensible 
hea t flux densi ty a t the indicated heights in t he Douglas-fir 
forest for t h e quiescent /gus t case (see Table 1). T h e lower 
g raph shows the gust phase dur ing the second to last per iod 
in greater detai l . 
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Figure 7. Numerical ly calculated profiles of normalized 
poten t ia l t e m p e r a t u r e in the Douglas-fir forest for different 
values of Hg/Ht. T h e numerical profiles are averages for the 
last compu ted per iod of length T. Also shown are measured 
average profiles for t h e indicated ranges of Hg/Ht. 

be determined objectively in the theory by requiring 
tha t the average K be given by the far-field diffusivity 
profile for the period of interest. A second critical ques
tion is whether K\ = 0 . 1 is physically realistic for the 
quiescent periods in the Douglas-fir forest. Answering 
this also requires further analysis, first to isolate qui
escent periods in the measured temperature t ime series 
(Chen et al. [1997a] used a wavelet transform to identify 
the ramps) and then to assess turbulence during these. 

Wi th the proper diffusivity parameters, the model 
reproduces not only average 9 profiles but also the 
small-scale ramping behaviour in time. Despite its K-
theory basis, it simulates the strong counter-gradient 
vertical heat transfer tha t occurred near midday in the 
Douglas-fir forest. Mathematically, this is because when 
K = K(t) the proportionality between averages of the 
flux and local gradient over some long time period can 
be very different from tha t occurring at each instant 
of t ime, to the extent tha t the sign of the proportion
ality can be reversed. This has been seen for soil heat 
transfer (which is dominated by conduction) when ther
mal properties vary with t ime [Burn and Smith, 1988]. 
The theory also reproduces the intermittant nature of 
turbulent heat transfer [El-kilani and Van Boxel, 1996; 
Gao et al, 1989] as nearly all of the upward flux occurs 
during the short gust periods, although the magnitudes 
of the fluxes during the gusts is greatly overestimated. 

The Raupach [1989] LNF theory apparently underes
t imates the strength of the near field in canopies, since 
it did not reproduce the distinct bump in the measured 
daytime tempera ture profiles. Based on his Figure 9, a 
small part of this might be due to neglect of w skewness, 
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Figure 8. Profiles of normalized potent ia l t e m p e r a t u r e in 
the Douglas-fir forest calculated wi th t he Raupach [1989] lo
calized near-field theory for different values of crw(zr). Also 
shown is t he measured average profile for Hg/Ht in t he 0.15-
0.25 range. 
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Figure 9. Profiles of normalized potent ia l t e m p e r a t u r e in 
the Douglas-fir forest calculated wi th the Raupach [1989] lo
calized near-field theory for different values of Hg/Ht. Also 
shown are measured average profiles for the indicated ranges 
of Hg/Ht. 
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w h i c h r e a c h e d va lues d o w n t o —0.5 in t h e Douglas - f i r 
forest . El-kilani [1996] m a k e s s o m e s u g g e s t i o n s a s t o 
how t o i n c l u d e t h e effects of t h e i n t e r m i t t a n t c o h e r e n t 
s t r u c t u r e s in a L a g r a n g i a n ana lys i s of t u r b u l e n t t r a n s 
fer d u e t o c a n o p y sou rce s , a n d it m a y b e t h a t w h e n 
t h e y a r e i n c o r p o r a t e d in such a m o d e l t h e n e a r field 
will b e c o r r e c t l y d e s c r i b e d . T h e o n e - d i m e n s i o n a l t i m e -
v a r y i n g diffusivity t h e o r y p r e s e n t e d h e r e i n is a n o t h e r 
a p p r o a c h , w h i c h d o e s a c c o u n t for t h e d i s t i n c t s h a p e of 
t h e d a y t i m e t e m p e r a t u r e profile, a s well a s t h e o b s e r v e d 
r a m p i n g b e h a v i o u r a n d flux i n t e r m i t t a n c y in t i m e . 
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The Concept of the Soil-Plant-Atmosphere Continuum and Applications 

M.B. Kirkham 

Department of Agronomy, Kansas State University, Manhattan, Kansas 

J.R. Philip pioneered the concept of the soil, plant, a tmosphere as a 
thermodynamic cont inuum (SPAC) for water transfer. A central, currently 
unresolved problem arises as a result of the SPAC concept. H o w can water move 
to the top of tall trees in a water cont inuum from soil to leaf surface without 
cavitation? A suction p u m p can lift water only to the height due to atmospheric 
pressure (1.0 atm = 10.33 m) . However , trees are taller than 10.33 m. To get 
water to the top of skyscrapers, standing tanks are used. In plants, there are no 
standing tanks, pumps (hearts), or valves that can move water up trees. At 
present, the cohesion theory is the theory generally accepted as the one that 
explains the way that water ascends in plants. With the advent of the pressure 
probe, the necessary high tensions for the cohesion theory have not been found. 
Consequently, in 1995 a new theory was put forward which postulates that 
solutes in the parenchyma cells of the tissue around the tracheary elements cause 
an imbibing of water, and this creates a pressure on them that prevents water 
cavitation. However , the theory has been questioned both thermodynamical ly 
and anatomically. The challenging problem now is to use the S P A C concept on a 
fine scale and determine the water potential gradients in the xy lem tissue to see 
how water can be at the top of tall trees. 

INTRODUCTION 

John R. Philip pioneered the concept of the soil, plant, 
atmosphere as a thermodynamic continuum for water 
transfer. He defined the SPAC as follows [Philip, 1966, p. 
246]. "Because water is generally free to move across the 
plant-soil, soil-atmosphere, and plant-atmosphere interfaces it 
is necessary and desirable to view the water transfer system 
in the three domains of soil, plant, and atmosphere as a 
whole. Under some circumstances, and for some purposes, 
we can, of course, isolate certain parts of the total system and 
study only certain modes of water transfer; but a general 
appreciation of the plant water relations of the whole plant in 

Environmental Mechanics: Water, Mass and Energy Transfer in 
the Biosphere 
Geophysical Monograph 129 
Copyright 2002 by the American Geophysical Union 
10.1029/129GM27 

nature must involve the soil-plant-atmosphere continuum 
(SPAC)." In an earlier paper, Philip (1957) discusses the 
soil-plant-atmosphere continuum and diagrams it (Fig. 1), but 
he does not use the abbreviation SPAC. The 1966 review is 
more cited than the 1957 paper, because it is easily accessible 
in the literature. 

Philip (1966) was the first to use the term SPAC. It now 
is part of the standard terminology of soil-plant water 
relationships and appears in textbooks and reviews, 
sometimes with accreditation to Philip [e.g., Scott, 2000, p. 
329], but usually without [e.g., Kramer and Boyer, 1995, p. 
201; Steudle, 2001]. Adaptations of the term SPAC are in 
common use. The computer-controlled environmental 
systems for studying whole-plant responses, developed by 
the United States Department of Agriculture, are called 
SPAR units. SPAR stands for a Soil-Plant-Atmosphere 
Research system [Phene et al, 1978]. In addition, to SPAR, 
SVATS (soil-vegetation-atmosphere-transfer schemes) are in 
use and can be seen as the logical extension of the SPAC 
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SOIL ROOT STEM LEAF ATMOSPHERE 

Figure 1. The soil-plant-atmosphere continuum, showing energy 
profiles, (1), during normal transpiration; (2), during temporary 
wilting; (3), at permanent wilting. DPD = diffusion pressure 
deficit. Points on the transpiration path: A. Soil (a definite 
distance from plant root); B. Surface of root hairs and of 
absorbing epidermal cells; C. Cortex; D. Endodermis; DE. 
Vessels and tracheids in xylem; E. Leaf veins; F. Mesophyll 
cells; FG. Intercellular space and substomatal cavity; GH. 
Stomatal pore; HI Laminar sub-layer; JK. Turbulent boundary 
layer; KL. Free atmosphere. (Redrawn from Philip, 1957). 

concept from plant to vegetation and from local boundary 
layer to the larger scale of the convective boundary layer 
{Raupach, 1995; Raupach and Finnegan, 1995). 

HISTORY 

The concept of water moving through a soil-plant-
atmosphere continuum was present in the literature, even 
before Philip's (1966) widely cited review. Stephen Rawlins 
and Paul Waggoner at the Connecticut Agricultural 
Experiment Station in the USA discussed the idea (Rawlins, 
1963; Waggoner, 1965). Philip (1966, p. 257) credits 
Gradmann (1928) for providing the initial steps toward the 
formulation of the SPAC. Gradmann recognized, for an 
isothermal system, the thermodynamic equivalence of water 
in the transpiration stream within the plant and as vapor in the 
atmosphere, and, in consequence, the existence of systematic 
gradients of potential in the plant and atmosphere, with 
continuity of potential at the interface. Gradmann's Figure 1 
(1928, p. 3; reproduced here as Fig. 2) represents the 
"Schema des Saugkraftabfalles" (Diagram of the Decrease in 
Suction Force"), and it has three lines: AB, BC, and CD. 

Line CD shows the fall in suction force between the air and 
the surface of the plant; line BC shows the fall from the 
outside surface of the plant to the plant; and line AB shows 
the fall from the plant to the soil. The total drop goes from 
1000 arm (in the air) to 0 arm (in the soil). Gradmann's 
insight was neglected by other workers for nearly 20 years, 
when van den Honert (1948) drew attention to it in the 
English literature [Philip, 1966]. Philip (1966; 1996) also 
acknowledges that the basic ideas behind the SPAC were 
"largely implicit in the 1952 review of Richards and 
Wadleigh". Richards and Wadleigh (1952) discuss the use of 
the free-energy function for expressing the energy status and 
driving forces of water in soils and plants. They use the term 
"soil-plant-water system" [Richards and Wadleigh, 1952, p. 
157]. 

Van den Honert (1948) said, "It was Gradmann's idea to 
apply an analogue of Ohm's law to this water transport as a 
whole." Richards and Wadleigh also noted, "Gradmann 
(1928) applied an analog of Ohm's law to this water transport 
as a whole, to the effect that the potential drop across a given 
part of the system is directly proportional to the resistance" 
[Richards and Wadleigh, 1952, p. 175]. However, Gradmann 
does not mention Ohm in his paper. But Gradmann does 
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Figure 2. Diagram of the decrease in suction force. (Redrawn 
from Gradmann, 1928, and translated into English; original 
German words at the top were Boden, Pflanze, Luft, and the 
"relative humidity" at the bottom was abbreviated R.F. by 
Gradmann). 



KIRKHAM 329 

state (1928, p. 3), "Das Gefalle wird zwar innerhalb der 
Pflanze von A bis B nicht so gleichmaBig sein, sondern 
jeweils proportional den Teilwiderstanden..." (the A and B 
refer to line AB in his figure described above). So he 
recognized that the fall in suction force was proportional to 
the resistance of each part of the system. Gradmann realized 
that he was working with a linear flow law, like Ohm's law, 
without mentioning Ohm specifically. 

Despite the uncertainty about who originated the idea that 
water flow through the soil-plant-atmosphere system is 
similar to the flow of electricity, the paper published by van 
den Honert (1948) is the most cited paper on the topic and 
has been used to model movement of water in the soil-plant-
atmosphere continuum [e.g., Cowan, 1965; Scott Russell, 
1977, p. 94; Wind and Mazee, 1979]. Now hydraulic systems 
are modelled as an analogue to a simple electrical circuit with 
no acknowledgement to van den Honert [Williams et al., 
1996]. 

Ohm's law states that the potential difference, or voltage 
drop, V, measured in volts, across any part of a conductor is 
equal to the current in the conductor, I, measured in amps, 
multiplied by the resistance, R, of that part, measured in 
ohms, or [Schaum, 1961, p. 147]: 

V = IR (1) 

When Ohm's law is applied to the soil-plant-atmosphere 
continuum, the following analogies are made: V is the 
potential difference between any two parts in the system. 
The potential in each part of the system is the (total) water 
potential (y/w), which is measured, for example, with a 
thermocouple hygrometer or pressure chamber and is usually 
expressed using the unit of MPa. lis the flow of water or the 
transpiration rate. This is what Nobel (1974, e.g., p. 142) 
calls Jv or volume flow measured in units such as m s'1. R is 
the hydraulic resistance. Its units depend upon how V(or y/w) 
and / have been defined. Combined resistance/capacitance 
networks also have been developed, and addition of 
capacitance to the SPAC in trees resulted in a number of 
papers in the 1970s and 1980s, such as the one by Landsberg 
et al. [1976]. Capacitance in trees is important, because they 
can store large quantities of water in the wood. Nobel [1983, 
p. 514] calculates the capacitance of a tree truck to be 1.5 x 
10"2 m 3 (MPa)"1 and that of much smaller stems, such as a 
young tomato or sunflower, to be 1.5 x 10"5 m 3 (MPa)"1. 
Whitehead and Jarvis (1981, p. 107) report that coniferous 
species store up to 70% of the total water of the aerial parts in 
the stems. The change in stem diameter of trees can be used 
as an estimate of transpiration, because more shrinkage 
means a higher transpiration rate [Herzog et al., 1995]. 

Ohm's law is for steady-state conditions. The question 
arises, "Does one have steady state in the plant?" Richards 
and Wadleigh state, "[T]he plant is a dynamic organism" 

(1952, p. 178), which seems to refute steady state. Van den 
Honert said his considerations were "confined to steady-state 
conditions" [1948, p. 147]. Zhang and Kirkham [1999] 
calculated hydraulic resistance in two ways: (1) using an 
Ohm's law analogue, which assumes that the relation 
between flux (transpiration) and difference in water 
potentials of the soil and plant is linear; and (2) using an 
equation that considers diurnal changes in leaf water content 
along with transpiration and difference in water potentials. 
Because change in leaf-water content during a day was small, 
hydraulic resistances calculated by the two methods resulted 
in similar values. 

In developing his Ohm's law analogue, van den Honert 
[1948] uses the now obsolete term "diffusion pressure 
deficit" (D.P.D.), which is equal to the osmotic pressure 
(O.P.) minus the turgor pressure (T.P.) of classical plant 
physiology [Kirkham et al., 1969]. The D.P.D. is 
Gradmann's "suction force" in the plant. Today the D.P.D. is 
the sum of the osmotic potential (\|/s) and turgor potential 
(\|/p), and the matric potential (\|/m) and gravitational potential 
(\ | /g) energies of the plant are neglected. Van den Honert 
(1948) states, "In the steady-state, the rate of water transport 
dm/dt is the same in all successive parts. If we call the 
resistances in root cells, xylem, leaf cells and in the gaseous 
part Rr, Rx, R{ and Rg respectively, the D.P.D. values on either 
side of each respective part P0, Pj, P2, P3 and P4, we have: 

dm/dt = 
(P t - PoVR, = (P 2 - Pi)/R x = (P 3 -P2OR1 = ( P 4 - P3)/Rg (2) 

This equation now appears in textbooks on plant-water 
relations [Slatyer, 1967, p. 223; Kramer, 1983, p. 190; Baker, 
1984]. 

CURRENT PROBLEM 

A central, currently unresolved problem arises as a result 
of the SPAC theory. How can water move to the top of tall 
trees in a water continuum from soil to leaf surface without 
cavitation? The presence of water at the top of giant trees 
seems to defy the laws of physics. Let us consider why is it 
hard for water to get to the top of trees. A suction pump can 
lift water only to the barometric height, which is the height 
that is supported by atmospheric pressure from below (1.0 
arm = 10.33 m of water) [Salisbury and Ross, 1978, p. 49]. If 
a hose or pipe is filled with water, sealed at one end, and then 
placed in an upright position with the open end down and in 
water, atmospheric pressure will support the water column to 
10.33 meters theoretically. At this height the pressure equals 
zero, and above this height the water will turn to vapor. My 
father, Don Kirkham, and his students at Iowa State 
University tried to see how far they could climb the outside 
back stairs of the Agronomy Building with a hose which had 
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its bottom in a water bucket on the ground. The column of 
water in the hose collapsed well before they climbed 10.33 
meters. 

So how does water get to the top of tall trees? The tallest 
tree in the world is 111.6 m, and in 1872 a tree estimated to 
be over 150 m tall was felled in Victoria, Australia [Salisbury 
and Ross, 1978, p. 49]. 

Let us first consider how water gets to the top of 
skyscrapers. Wooden tanks that hold water are used to raise 
water in cities. If one lives in a tall building and is not getting 
a good strong shower, the spigot is probably too close to the 
holding tank. In those buildings whose plumbing requires 
the help of gravity to create sufficient water pressure, a tank 
needs to be elevated at least 7.6 m above a building's highest 
standpipe. One gets 6896.3 Newtons/m2 or 0.068963 bar of 
pressure for every 7.0 m in height [Weber, 1989]. Animals 
have hearts and valves to move blood to the head. 

However, in plants, no standing tanks, pumps (hearts), or 
valves have been observed. If one looks through Katherine 
Esau's books on plant anatomy, one sees no such structures 
[Esau, 1965; 1977]. Gradmann himself said that there is no 
proof that pressure or suction pumps are in plants (1928, p. 3, 
footnote no. 1). So, again we ask, how does water get to the 
top of tall trees? 

COHESION THEORY 

At present, the cohesion theory, or sap-tension theory, is 
the theory generally accepted as the one that explains most 
satisfactorily the way that water ascends in plants. Here we 
shall use interchangeably the terms "sap" and "water in the 
xylem tissue." We recognize that the fluid in the xylem 
tissue is not pure water, but a dilute aqueous solution [Nobel, 
1974, p. 393]. Even in mangroves, which grow in salt water, 
the sap in the xylem tissue is very nearly salt free and lowers 
the temperature at which water freezes by <0.1°C [Hammel 
and Scholander, 1976, p. 32]. 

The cohesion theory, as first described in English by 
Dixon and Joly (1895; see Steudle, 2001, for earlier 
references), assumes that diffusion of water from the non-
collapsible xylem elements in contact with the leaf cells 
creates a state of tension within the water columns in the 
xylem vessels. This tension is possible because of the 
cohesion of water molecules and their adhesion to the 
hydrophilic walls of the xylem elements. Tension in the 
water columns is assumed to lift water from the roots to the 
leaves, in addition to reducing the free energy of the water in 
the root xylem tissue until water diffuses from the soil into 
the root during absorption of the water. The cohesion 
hypothesis assumes continuity of water columns, laterally 
and vertically, in the conducting elements of the xylem 
tissue. These water columns ultimately are placed under 
tensile strain. 

The cohesion theory of the ascent of sap was 
foreshadowed by Stephen Hales (1677-1761), an English 
clergyman, physiologist, chemist, and inventor, famous for 
his pioneering studies in animal and plant physiology, Julius 
von Sachs (1832-1897), a German botanist and outstanding 
plant physiologist, and Eduard Strasburger (1844-1912), a 
German botanist and one of first to realize the importance of 
the nucleus and chromosomes in heredity. They all 
concluded that transpiration produces the pull causing the 
ascent of sap [Kramer, 1983, p. 282]. 

Even though most plant physiologists feel that the 
cohesion theory is probably the correct explanation for the 
rise of water in plants, it has limitations. The main 
difficulty is that it postulates a system of potentially great 
instability and vulnerability. It is clear, however, that the 
water-conducting system in plants must be both stable and 
invulnerable. The objections that have been raised in plant 
physiology textbooks concerning the theory include three 
major points [Kramer, 1983, p. 283; Salisbury and Ross, 
1978, p. 58-60]: 
1. The tensile strength of water is inadequate under the 
great tensions necessary to pull water to the top of plants, 
especially tall plants. 
2. There is insufficient evidence for the existence of 
continuous water columns (that is, water columns under 
tension are not stable and cavitate). 
3. It seems impossible to have tensive channels in the 
presence of free air bubbles, which can occur when trees in 
cold climates freeze and then thaw. 

These are the classical objections, with which not all plant 
physiologists now agree. We examine each problem 
below. 

FIRST PROBLEM OF COHESION THEORY 

Is the tensile strength of water adequate to pull water to 
the top of plants? Nobel's (1974, p. 46-47, 52-53) theoretical 
considerations show that the calculated value for the tensile 
strength of water is large (1800 MPa) and would permit rise 
of water in plants even under great tensions. Tensions in 
higher plants probably never exceed 100 arm. Lower plants 
like fungi apparently can grow in soil with a tension (or 
absolute value of matric potential) of |400| bars [Harris, 
1981, p. 26]. 

What are values of the tension of water that have been 
measured experimentally? Scholander et al. (1955), who 
centrifuged water in glass tubes, observed tensive values 
from 10 to 20 arm (10.13 to 20.26 bar) without producing 
cavitation of water. When the experiments were repeated 
using plant material, they observed much lower values (1-3 
arm or 1.01 to 3.04 bar). Also, they were unable to fit 
hydrostatic pressures in transpiring grape vines into a pattern 
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that followed the cohesion theory. Measured pressure, done 
with a pressure chamber [Scholander et a l , 1965], did not 
indicate cohesion tension at any time, and hydrostatic 
pressure in transpiring tall vines were higher at the top rather 
than lower, as they should have been if the transpiring stream 
were under tension. Measurements taken on Douglas fir 
trees, however, did follow the pattern that one would expect 
if water were rising in the plants according to the cohesion 
theory [Scholander et al., 1965]. That is, the hydrostatic 
pressure at the top of the trees was more negative than at the 
bottom of the trees. However, later experiments by others 
with trees did show the expected gradients of water potential 
through the stems and branches of trees (e.g., see Whitehead 
andJarvis, 1981, their figure on p. 90). Schill et al. [1996] 
also found that the osmotic potential of xylem sap decreased 
with height in maple. 

Experiments demonstrate that water can withstand 
negative pressures (tensions) up to about 300 bars without 
breaking [Nobel, 1974, p. 52]. Recent work confirms the 
high tensile strength of water and demonstrates that xylem 
can support large negative pressures (Holbrook et al, 1995; 
Pocbnan et al, 1995). The observed tensile strength 
depends upon the wall material, the diameter of the xylem 
vessel, and any solutes present in the water. Local 
imperfections in the semicrystalline structures of water, such 
as those caused by Y? and OH", which are always present, 
even in pure water, reduce the observed tensile strength from 
the maximum value predicted based on hydrogen bond 
strengths. 

The ability to hear the water columns break is supporting 
evidence that the columns are under tension, and, when they 
cavitate, the sound can be picked up acoustically. Milbum 
and Johnson (1966) developed an acoustic detector, and 
subsequent experimenters have monitored cavitation using 
the technique [Tyree et al, 1986; Jackson and Grace, 1996; 
Hacke and Sauter, 1995]. 

SECOND PROBLEM OF COHESION THEORY 

Let us now consider the second problem with the cohesion 
theory. Are water columns in the xylem tissue stable under 
tension? Much has been written about the instability of water 
columns under tension and the ease with which they break by 
cavitation in glass capillary tubing [Kramer, 1969, p. 275]. It 
has been suggested that if they break as easily in the xylem of 
trees, they would soon become inoperative because of shocks 
such as those caused by swaying in the wind. There is 
evidence of widespread fracture of stretched water columns 
and a high percentage of gas-filled, nonfunctional elements 
under field conditions [Greenidge, 1957; Scholander, 1958]. 
However, it seems probable that the nature of the walls of the 
dead xylem tissue, which is filled with imbibed water, makes 
the water columns in the stems of plants more stable than 

those in glass tubes. If cavitation caused by air entry should 
occur in the conducting tubes of the xylem tissue, the matric 
potential component attributed to the hydrophilic nature of 
the surfaces involved can be expected to maintain surface 
films of water capable of transporting water up the stem 
[Gardner, 1965]. 

THIRD PROBLEM OF COHESION THEORY 

Let us now consider the third problem. Microscopic 
observations have shown that air blockage occurs when some 
trees in cold climates are frozen [Johnson, 1977]. Inability to 
restore the water columns in the spring may well be the factor 
that excludes certain trees and especially vines with large 
vessels from these regions [Salisbury and Ross, 1978, p. 60]. 
But how do trees grow in such regions? Imagine a northern 
tree thawing in the spring. As the ice melts, the tracheids 
become filled with liquid containing the many bubbles of air 
that had been forced out by freezing. As melting continues 
and transpiration begins, tension begins to develop in the 
xylem tissue. Because of the small dimensions of the 
tracheids involved, the pressure difference across the curved 
air-water interface bounding the bubbles would be 
considerable, resulting in much higher pressure in an air 
bubble than would exist in the water. Any bubbles which 
form should dissolve fairly readily restoring the integrity of 
the water column [Gardner, 1965]. Hammel (1967) found 
no evidence for cavitation of the xylem sap of twigs of 
hemlock after freezing. He interpreted his results to mean 
that the bordered pits on the tracheids of gymnosperms 
function to isolate the freezing sap in each tracheid so that the 
expansion of water upon freezing not only eliminates any 
existing tension but also develops positive pressure in the 
sap. Dissolved gases frozen out of solution may then be 
redissolved under this positive pressure as melting occurs. 
However, he found that freezing stem sections of 
angiosperms invariably increased the resistance to sap flow 
leading to wilting and death in a few hours. Studies of wood 
in the spring indicate that about 10% of the tracheids are 
filled with vapor, but the remaining 90% appear ample to 
handle sap movement [Salisbury and Ross, 1978, p. 60; 
Kramer, 1983]. 

Also new wood that forms in the spring carries water with 
it. Jaquish and Ewers [2001] found that stems of two ring-
porous trees, Sassafras albidum and Rhus typhina were 100% 
embolised in the early spring and became conductive by late 
June following leaf expansion and maturation of new early 
wood vessels. Dyes indicated that the stem conduction was 
restricted almost exclusively to the current year's growth 
ring. Stems became totally embolized again by early 
October, before the first freezing temperatures. In contrast, 
woody roots of both species maintained low embolism 
values, many conductive growth rings, and high conductivity 
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values regardless of the season. No positive root pressures 
were detected in either species. Embolism results not only 
from freezing, but also from drought [Nardini et al, 2001]. 
Conifers vary in their vulnerability to drought. Scots pine is 
one of the most vulnerable ones, with a threshold water 
potential for cavitation between -2.5 and -0.55 MPa 
[Jackson et al, 1995]. Problems remain in explaining how 
refilling occurs in trees in the absence of freeze-thaw and in 
the absence of root pressure. 

Gymnosperms with their tracheids are especially well 
adapted to cold climates. Trees and vines with large, long 
vessels, are practically absent from cold climates, but are 
abundant in the tropics. In a study of moisture relations in 
tall lianas, Scholander et al. (1957) found that allowing 
vessels of a cut vine to become plugged with air caused a 
lowered hydrostatic pressure in the plant, but did not reduce 
the rate of water uptake, indicating that water movement was 
shifted to the numerous tracheids of the stem. Again, they 
found no direct evidence of the cohesion theory. 

PRESSURE PROBE MEASUREMENTS 

For several decades, the cohesion theory was accepted, 
and essentially no experiments on the topic between about 
1960 and 1995 were published. A probe had long been 
available to measure pressure in large cells of algae [Steudle 
and Zimmermann, 1971]. In recent years, this probe has been 
miniaturized, so small cells of multicellular plants can be 
measured [Boyer, 1995]. However, early measurements 
made with it contradicted the cohesion theory. They showed 
the following [Canny, 1995a]: 1) The necessary high tensions 
in the xylem are not present and the tension in the xylem is 
around 2 bars; 2) The necessary gradient of tension with 
height is not present; 3) The measurements of tension with 
the pressure chamber, believed to verify the cohesion theory, 
conflict with those made with the pressure probe. 

Canny (1995a), therefore, put forward a theory called the 
"compensating-pressure theory" to account for rise of water 
in plants. He noted that the xylem tissue has ray cells 
throughout it. These are living parenchyma cells. He said, "I 
now propose an entirely different resolution: that the 
compensating pressure is provided by the tissue pressure of 
xylem parenchyma and ray cells, pressing onto the closed 
fluid spaces of the tracheary elements and squeezing them. 
The driving force is provided, as in the Cohesion Theory, by 
evaporation and the tensions generated in curved menisci in 
the wet cell walls of the leaf. The force is transmitted, as in 
the Cohesion Theory, by tension in the water in the tracheary 
elements. But this tension is kept within the operating range 
by the compression from tissue pressure around the tracheary 
elements. The gravitational gradient of tension up a tall tree 
would then be compensated by increasing tissue pressure of 
the xylem parenchyma with height, and the need for a tension 
gradient to sustain the standing columns would vanish." Key 

to his theory is the endodermis, the inner layer of cortical 
cells in roots which contains the Casparian strips. They are 
bands of lignin and suberin in the walls of the endodermal 
cells [Esau, 1977, p. 504] and force water and solutes moving 
through the apoplast of the root into living cells. A 
differentially permeable membrane, such as that in a living 
endodermal cell, appears essential for root pressure [Kramer, 
1983, p. 223]. Canny (1995a) postulates that root pressure 
pumps water up the stem. He discusses his theory in other 
papers [Canny, 1995b; 1997; 1998; 2001]. The theory of 
Canny (1995a) has support from the work by Kargol et al. 
(1995), who say that water is transported along the xylem 
vessels by "graviosomotic mechanisms." They also show 
the importance of a root pump in getting water up a plant. 

Canny's theory has been challenged by Comstock (1999). 
He points out that Canny's theory "suffers from fatal flaws". 
Tissue pressure is likely to be ubiquitous but small. Extreme 
reinforcement would be needed to sustain the tissue pressures 
postulated in his model, not just one or two cell layers with 
thickened walls. Canny postulates a pump-and-valve system, 
which is essential to the working of his model, but no viable 
mechanism has been identified. If the water potential 
gradient is such that the parenchyma cells have a lower water 
potential than the cells of the xylem tissue, water would 
move from the tracheary elements to the parenchyma. 
Comstock (1999) says, "[W]ater would be pouring out of the 
xylem into the surrounding parenchyma to equilize the water 
potentials of the two compartments, exactly the opposite of 
what Canny claims is happening in his putative refilling 
mechanism." 

Tyree (1999) takes issue with Canny's concept of "tissue 
pressure." Tissue pressure arises when the volume change of 
some living cells exerts a pressure on adjacent living or dead 
cells. Tyree (1999) says, "Contrary to previous assertions, 
tissue pressure cannot cause a permanent change in pressure 
potential or water potential of adjacent cells. Tissue pressure 
induces only a transitory increase of pressure and water 
potential. After equilibrium is reestablished, the same or a 
more negative pressure or water potential results. The idea 
that tissue pressure can prevent or repair xylem embolism is 
without merit." 

Canny (2001), in responding to Comstock (1999), said, 
"It is not helpful to isolate parts of the system mentally and 
try to assign them water potentials." But we do need to do 
this. Only by knowing the water potential gradient can we 
determine the direction of water movement in the SPAC. 

Others defend the cohesion theory [Pockman et al, 
1995; Tyree, 1997; Stiller and Sperry, 1999; Wei et al, 
1999a, 1999b, 2000; Steudle, 2001]. Most of the negation of 
the cohesion theory comes from measurements made with 
the xylem pressure probe. Zimmermann et al. (1994, 1995) 
say that the cohesion theory requires a reappraisal, because 
direct measurements of the xylem pressure in single vessels 
of higher plants and tall trees, by means of the xylem 
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pressure probe technique, indicate that the xylem tension in 
the leaves of intact, transpiring plants is often much smaller 
than that predicted for transpiration-driven water ascent 
through continuous water columns. The probe may be 
measuring inaccurate values [Tomos and Leigh, 1999]. The 
ultimate tension limit of the probe is somewhere between 1.6 
and 1.8 MPa [Wei et al, 2000]. The probe is incapable of 
measuring higher tensions either because of an imperfect seal 
between the probe and the xylem wall or the creation of 
micro-fissures in the xylem cell wall when the probe is 
inserted. In both cases, cavitation via "air-seeding" is 
proposed to occur at pressures less negative than those 
normally sustained by the xylem [Tomos and Leigh, 1999]. 
Wei et al. [1999a] report that their new, direct measurements 
of xylem pressure support the cohesion-tension theory. 
Xylem pressure probes used by Wei et al. [1999a] differed 
from those of other researchers, because they used a cell 
pressure probe filled with silicone oil instead of with water. 
They put the probe directly in the tracheary elements. If the 
pressure probe can be used to monitor pressure (or tension) in 
the tracheary elements, then it seems to me that the pressure 
probe could be inserted into a ray cell (parenchyma cell) to 
see what pressure exists there that is pushing against the 
tracheary elements. This would confirm or refute Canny's 
theory. 

EXPERIMENTAL MEASUREMENTS NEEDED 

Experiments to study tensive values of water in plants 
have been done with plants that have been punched with 
manometers [Scholander et al., 1955], cut [Scholander et al., 
1957], sawed [Greenidge, 1955], punctured with a pressure 
probe [Tomos and Leigh, 1999], frozen [Cochard et al., 
2000], or otherwise disturbed. If it would be possible to 
study plants under natural conditions when they are intact, 
one might come to a better understanding as to what tension 
water is under in plants, and, if tensions are built up, if they 
are sufficient to account for the rise of water. 

New equipment is being developed that can be used to 
measure non-destructively the characteristics of water 
transport in the SPAC, such as nuclear magnetic resonance 
imaging (NMR) [Scheenen et al., 2000]. Equipment can be 
gotten to the top of giant trees. Tall platforms have been 
constructed to access the top of forest canopies (12 m high) 
[Ellsworth, 1999]. See the cover of Plant, Cell Environment, 
May, 1999, for a photo of a platform with a man standing on 
it at the top of a forest canopy. However, the problem would 
be using the equipment. For example, the pressure probe 
requires a totally stable environment for its use [Boyer, 1995] 
and could not provide useful data in a gondola suspended 
from a canopy crane. Maybe Scholander's measurements 
were correct [1955, 1957] and the tension does not increase 
with height. (I was told that Scholander got his 
measurements of tension in the top of tall vines and trees by 

shooting branches down with a gun and then putting them in 
his pressure chamber!) The unanswered question is how 
much transpiration does actually occur from the top of tall 
trees. 

CONCLUSIONS 

In spite of difficulties of demonstrating in some 
experiments appreciable values of tension in water columns 
of plants, most plant physiologists continue to assume that 
high tension values are readily obtainable and that the 
cohesion theory is correct [e.g., see Wei et al., 1999a]. On 
the assumption that water moves through the SPAC 
according to potential gradients, one has to assume that the 
cohesion theory works. Van den Honert (1948) assumed that 
it was valid and said "[T]he correctness of the cohesion 
theory will be taken for granted". 

Feelings get heated when scientists are either defending or 
refuting the cohesion theory. A plant physiologist told me 
when I was a graduate student that the cohesion theory was 
valid, and I should not waste my time thinking about it. 
Almost 80 years ago, when a physicist published a book 
questioning the validity of the cohesion theory [Bose, 1923], 
plant physiologists who reviewed the book used strong 
language to show that he was wrong. For example, 
MacDougal and Overton (1927) said, "Every page of Bose's 
book on the ascent of sap ... is utterly lacking in scientific 
significance. Such books appearing on the lists of scientific 
publications constitute a menace and danger to sound 
science." The Bose questioning the cohesion theory was Sir 
Jagadis Chunder Bose, who was the teacher of Satyendra 
Nath Bose [Ghosh, 1992]. S.N. Bose was the Bose of the 
Bose-Einstein condensation (BEC) [Wyatt, 1998]. The 
cohesion theory has been vigorously defended by plant 
physiologists for many years, but more experiments based on 
sound physical theory are needed to accept its assumptions. 
The challenging problem now is to use the SPAC theory on a 
fine scale and determine the water potential gradients in the 
xylem tissue to see the direction of movement of water. 
Philip's concluding words (1966, p. 265) are as appropriate 
now as they were 35 years ago: "The few years since the 
SPAC concept has had wide acceptance have seen an 
increasing stream of experiments and observations pertinent 
to the problems of plant-water relations in the field. The 
SPAC has been a fruitful stimulus to meaningful research, 
and has thus proved its worth as a scientific idea. My only 
concern is that this heartening upsurge of effort should not be 
vitiated by a failure of self-criticism." 
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John Phi l ip 's first j o b in 1947, at Griffith in Austral ia 's Murrumbidgee Irrigation 
Area, was to develop means by which irrigation practices could become 
sustainable. Subsequently, through his analytical endeavors he created 
revolutionary new understanding of mass and energy transfers in the soil-plant-
atmosphere continuum. Here we describe applications and modeling that have 
directly benefited from John Phi l ip ' s insights and perspicacity. W e have used a 
new means for determining the radiation interception by an isolated olive tree, and 
w e have employed these results to interpret and model the measured rates of tree 
water-use from heat-pulse measures of sapflow. These parameters are used in a risk 
assessment framework, along with measures of the soil 's hydraulic character to 
provide a basis for establishing guidelines for the equitable and sustainable 
allocation of water for the irrigation of olive trees in Marlborough, N e w Zealand. 
W e find that small 2-year old olive trees use about 25 litres a week, whereas 
mature 8-year old trees transpire about 525 L/wk. Our model developed to 
establish irrigation allocations, SPASMO, used a 28-year sequence of local 
weather records. For the Fairhall stony silt loam, we find that an irrigation 
allocation of 230 m m will meet the needs of olives 9 years in 10. Average 
requirements would be met with jus t 140 m m . Only 35 m m would be required to 
meet the needs of olives 9 0 % of the t ime on the Woodbourne deep silt loam. 
Apposite measurements and apt modeling are shown capable of guiding regulatory 
authorities in managing the complexity of allocating water to olive irrigationists. 

1. INTRODUCTION 
1 Present address: Colorado State University, Grand Junction, 
Colorado, U.S.A Today, irrigation is responsible for some two thirds of 

the worldwide usage of fresh water. In developing coun-
Environmental Mechanics: Water, Mass and Energy Transfer in the t r i e s ? t h i s allocation to irrigation rises to 90 percent (Postel, 
Biosphere 2001). Yet, as much as half of all water diverted for agri-
Geophysical Monograph 129 c u l t u r e n e y e r i e M s food [ s o ] t h e c h a l l e n g e s w e f a c e 

Copyright 2002 by the American Geophysical Union , , u . r J n . 
10 1029/129GM28 a r e u s e w a t e r w e have more efficiently, [and] to re

think our priorities for water use (Gleick, 2001). 
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Table A l . Water holding properties of Marlborough soils. 
TAW is the total available water in the top 1.0 m of soil 
between field capacity (-0.01 MPa) and wilting point (-1.5 
MPa). The readily available water (RAW), we take for 
olives to 65% of TAW. 

Soil Type % stones TAW 
[mm/m] 

RAW 
[mm/m] 

Fairhall 44-77 41 24 

Renwick 25-50 73 46 

Wairau - 157 66 

Woodbourne - 176 110 

Back in 1947, a callow engineer named John Robert 
Philip was seconded to the CSIR's Irrigation Research Sta
tion at Griffith in NSW's Murrumbidgee Irrigation Area. 
There, in his words (Philip, 1992), he found ". . . agricul
tural scientists struggling to understand the hydraulics of 
furrow irrigation". He noted that ". . . the question of just 
how water is held and moves in soil are central to the sci
entific study of the land sector. Surprisingly, a proper un
derstanding of these processes came very late ... until the 
mid-1950's, they were treated more or less at the folklore 
level" (Philip, 1977). At Griffith, Philip discovered that" . . . 
my own modest stock of mathematics and physics seemed 
to shed light where no light had been (Philip, 1992). As we 
show here, Philip's mathematical musings have lead to 
knowledge that has improved our ability to model the fate 
of irrigation water applied to soil. Once efficiently in the 
soil, irrigation water then needs to be effectively available 
to the plant. 

"Water moves in all parts of the complicated soil-plant-
atmosphere system down the gradient of potential (Philip, 
1957). . . this concept gives a useful first picture, but it must 
be emphasized that for real plants the three-dimensional 
disposition of roots, leaves and other plant parts makes for 
a more complicated problem (Philip, 1977). In developing 
equitable and sustainable irrigation strategies for olive 
trees, we have had to determine what controls water use 
from an olive tree in a grove containing trees of various 
ages. This has demanded that we respond to Philip's chal
lenge by determining the impact of canopy architecture on 
water use. We have used a Whirligig (McNaughton et al, 
1992), in conjunction with heat-pulse measurements of sap-
flow (Green and Clothier, 1988), to model the transpiration 
of an olive tree, following Green and McNaughton (1997). 

Our mechanistic models of soil-water movement and 
tree-scale transpiration we then employ in a risk assessment 
framework, using a long sequence of weather data, to de
termine the probability that any given amount of water will 
be required for irrigation on various soil types. A decade 
ago, John Philip expressed fear that simulation modelling 

will mean ". . . that by 2066 we shall be deep into the elec
tronic Dark Ages" (Philip, 1991). He asserted that ". . . 
modelling is rather ... a pleasurable and harmless pastime". 
We are not blinded by this assertion. Rather we consider 
that by its ability to accommodate rationally temporal vari
ability, apposite modelling provides a robust risk-
assessment framework. 

This year in Marlborough, New Zealand's prime viti-
cultural region, rainfall for the three months of summer has 
been the lowest on record with just a trace of precipitation 
falling. Furthermore, as irrigated vineyards expand, and as 
owners of new olive plantings seek irrigation consents, 
pressure is mounting on the ground and surface water re
sources. The District Council is thus seeking guidelines for 
the equitable and sustainable allocation of irrigation water 
to grapes and olives. Nuttle (2000) pondered whether eco
system managers could rely on mechanistic models to guide 
their decisions. He concluded that a whole system approach 
was the key, and that ". . . observation, experiment and 
modelling together are the essential components of the 
whole-system approach". Here we present the results of 
both an experimental study and modelling analysis of allo
cation of irrigation water to olives. 

2. EXPERIMENTS 

2.1. Field Site 

An experiment on olive trees (cv Barnea) of ages 2, 4 
and 8 years old was carried out on the Ponder Estate 
(41°30 >S, !73°52\E) in Marlborough between October 
1999 and April 2000. The site is flat and the trees are 
planted in rows 6 m apart, at a tree-spacing of 5 m. The 
ground is covered in grass except for a 2 m wide herbicide 
strip along each row. The Renwick stony silt loam at the 
site is deep, yet because it comprises 25-50% stones, its 
total available water holding capacity (TAW) is just 73 mm 
of water per m depth of soil (Table 1). We take TAW as 
being that water held in the soil between potentials of -0.1 
and -15 bar. The readily available water (RAW), we take 
for olives to be 65% of TAW (Allen et al., 1998), and so it 
is just 46 mm/m. The orchard trees are irrigated using low 
pressure drippers (2 L/h) connected to a single drip line. 
There is one dripper per tree on the 2 and 4 yr-old trees, 
and three drippers per tree on the 8 yr-old trees. During the 
summer of our experiment the irrigation was turned on for 4 
hours, once every three days. 

2.2. Measurements 

Six olive trees were instrumented with heat-pulse 
equipment to monitor instantaneous rates of tree transpira-
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Figure 1. Measurement of energy and light interception by a medium-sized olive tree. The 'Whirli
gig' rotates at 3 rpm and measures the amount of visible and all-wave solar energy intercepted by 
the isolated tree. 

tion (Green and Clothier, 1988). Each tree had two sets of 
heat-pulse probes installed into the trunk. Sap flow was 
monitored for a period of about 8 weeks during the middle 
of the summer. A data logger (Model CR10, Campbell Sci., 
Utah, USA) was used to activate the heat-pulse equipment 
and to record sap flow every half hour. The measured sap 
flow was then summed up over 24 hours to calculate the 
daily water use of the trees. Details of the heat-pulse system 
can be found in Green (1998). 

A weather station in the middle of the orchard recorded 
half-hourly averages of net all-wave radiation, global PAR 
radiation, air temperature, relative humidity, wind speed 
and rainfall. These data were used to calculate instantane
ous rates of whole-tree transpiration, E [kg s"1], as de
scribed below. 

The 'Whirligig' radiometer of McNaughton et al., 1992 
was set up around one of the 4 yr-old olive trees and used 
to measure the total amount of solar radiant energy inter
cepted by the tree canopy (Fig. 1). Light interception by the 
other olive trees was estimated using an array of 20 PAR 
sensors (Biggs et al., 1971) distributed uniformly over a 
square grid located close to the ground surface. 

An array of 16 rain gauges, made from 185 mm dia. 
plastic funnels and 4 L plastic bottles, was distributed over 

a regular grid located close to the ground under each of the 
instrumented trees. The catch from each rain gauge was re
corded manually, shortly after each large rainfall event. 
Readings from each rain gauge were subsequently com
pared against the accumulated rainfall recorded by the 
weather station in order to determine what fraction of rain
fall enters the tree's root-zone. 

Next to each rain gauge, a set of 2-wire Time-Domain 
Reflectometry (TDR) probes (5 mm dia. stainless steel 
rods) was installed vertically into the soil to record changes 
in soil moisture at depths of 0.15, 0.30 and 0.45 m. The 
soil's volumetric water content, 0 [m 3 m" 3], was measured 
manually, once every week, using a digital TDR (Tektronix 
Model 1502B, Oregon, USA) under computer control. 
Analysis of the waveform followed a procedure similar to 
that of Baker and Allmaras (1990), using the general equa
tion of Topp et al. (1980) to calculate 0. 

The measurements of light interception, tree water use, 
soil water content and throughfall of rain were used to pa-
rameterise a risk-assessment model of the daily water bal
ance and the irrigation requirements of olives in Marlbor
ough. A continuous record of 28 years of daily weather data 
(global short-wave radiation, air temperature, wind speed, 
rainfall) was also downloaded from the national climate 
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Day of Y e a r 

Figure 2. Measured water use of a 4 year old olive tree (data) 
during summer, compared to model calculations based on local 
weather. The measurements are the average sap flow recorded in 
two trees. 

database (NIWA Ltd., New Zealand) for the purpose of 
making these calculations. 

3. MODELLING 

3. L Tree-Scale Modelling 

Total transpiration from the olive tree was modelled 
using a modified form of the Penman-Monteith equation. 
For this calculation, the total leaf area of the tree, AT [m 2], 
was divided into a fraction of sunlit leaves (ax) and a com
plementary fraction of shaded leaves (a 2 ) . Uniform leaf 
properties were assumed for each class of leaves. Since ol
ive leaves are hypostomatous we used the equation 

kE = 
sRn9irhj+pcpDa 

(s + 2y)rbJ+yrSJ 

(1) 

following Jarvis and McNaughton (1986). In this equation 
we have assumed that each class of leaves has an associated 
leaf stomatal and boundary-layer resistance equal to r s i and 
r b i [s m" 1], respectively. We model these resistances using 
empirical relationships based on local microclimate and 
leaf dimension (Green, 1993). Here, E is the total transpi
ration [kg s"1] from all the leaves, Rnj is the net radiation 
flux density [W m 2 ] of the /-th set of leaves, D a is the am
bient vapour pressure deficit of the air [Pa], X is the latent 
heat of vapourization of water [J kg" 1], y is the psy-
chrometric constant [Pa], p is the density of moist air [kg m" 
3 ] , and c P is the specific heat capacity of air [J kg"1 K" 1]. 

Data from the 'Whirligig' are used to calculate both 
and # i from a direct measure of the total amount of all-wave 
radiation absorbed by the tree (Green and McNaughton, 
1997). Implicit in this calculation is a knowledge of the 

tree's total leaf area. This area was estimated by counting 
all leaves and removing a fraction (1 in 50 or 2%) whose 
area was measured using a leaf area meter (Licor Model 
3100, Nebraska, USA). The leaf area of the tree in Fig. 1 
was calculated to be about 13.5 m 2 . A simple allometric 
relationship between branch circumference and leaf area 
was then derived so that the total leaf area of the other trees 
could be estimated. 

A time sequence of tree water use, as calculated by the 
big-leaf model of Eq. [1], is shown in Fig 2. The same 
graph also shows our heat-pulse measurements of sap flow 
in the trunk of the olive tree. There is a very good corre
spondence between our sap flow measurements and the 
tree-scale model results. This gives us added confidence in 
our calculation procedures. 

Between 14 t h and 2 1 s t of January the days were mostly 
sunny with little cloud cover. Yet there were large differ
ences in tree water use. Transpiration rates peaked at about 
3.5 L h"1 on a bright, sunny day when the air temperature 
exceeded 32 °C and the relative humidity fell below 20%. 
However, on other days we observed much lower rates of 
water use, because of changes to the local weather. For ex
ample, the 15 t h January was quite cool (15 °C) and humid 
(RH > 60%), and transpiration rates were less than 2 L h' 1. 

Tree water use is strongly influenced by changes in the 
temperature and humidity of the air. The data of Fig. 2 re
flect a change in the predominant wind direction, from an 
easterly (a moist off-shore wind) to a north-westerly (a dry 
foehn wind) on 17 t h and 20 t h . The north-westerlies brought a 
much warmer, dryer air mass into the valley and resulted in 
much higher transpiration rates on the 17 t h and the 20 t h , 
compared to the other days when the wind blew from the 
east (off shore) and the ambient air was cooler and more 
humid. Our tree-scale model is able to account for those 
weather-induced changes in tree water use. 

When the sap flow is summed up over a week, we cal
culate the 2 yr-old trees used about 25 L of water, the 4 yr-
old trees used about 175 L of water, and the 8 yr-old trees 
used about 525 L of water during the warmest week of the 
summer. We take these measured rates of water use to rep
resent the maximum transpiration expected during one 
week, for olive trees of this size. These results are useful to 
develop a very simple 'rule of thumb' that can be used by 
growers to estimate the maximum water use of their olive 
trees each week in summer. Tree age is something that most 
growers can relate to. 

3.2. Grove-Scale Modelling and Crop Factors 

The more progressive farmers in the region, along with 
the resource managers at the District Council, are very keen 
to use advances in irrigation science to improve irrigation 
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scheduling and to minimise any wastage of the regions pre
cious water resources. Any savings in water also means a 
savings in the electricity costs associated with running the 
pumps for irrigation. A understanding of how crop water 
use responds to changes in the daily and seasonal weather is 
seen as a vital first step to improving irrigation manage
ment. The next step is to develop irrigation management 
that replaces just that amount of water used by the crop, and 
applies water only when the crop is in need of it. We will 
use grove-scale modelling to guide the water allocation 
process. 

Weather watching has become a major interest for all 
farmers and growers in Marlborough because summer rain
fall is unreliable, and because their crops are reliant on 
adequate soil moisture to achieve optimum productivity. 
The local newspaper regularly reports values for the poten
tial evapotranspiration, E T 0 [mm d"1] as well as daily rain
fall totals that farmers can use to guide their irrigation man
agement. An appropriate 'crop factor' is needed to relate 
the actual water use of the olive trees to potential E T 0 . 

Our measurements of trunk sap-flow provide a direct 
means of determining the daily water-use of the trees (Fig. 
1). Our weather data can also be used to calculate values of 
the potential E T 0 . The procedure is based on guidelines 
given by the Food and Agriculture Administration (FAO) of 
the United Nations (Allen et al, 1999). From the modified 
Penman-Monteith equation, we obtain 

—(RN -G) + y w 2(e„ -ea) 

= A V + 273) 2 ^ 
0 s + y (l + 0.34w2) 

where R N [MJ m"2 d"1] is the net radiation, G [MJ m"2 d"1] is 
the ground heat flux, e s [kPa] is the saturation vapour pres
sure at the mean air temperature T [°C], e a [kPa] is the 
mean actual vapour pressure of the air, u 2 [m s*1] is the 
mean wind speed at 2 m height, and the remaining terms 
have been described above. We use daily weather records 
from the national climate database (NIWA Ltd., New Zea
land) to calculate values of the E T 0 . A continuous record 
spanning the last 28 years of climate data, between the 
years 1972 and 2000, was extracted from the database. 

The link between a reference evaporation rate, E T 0 , and 
the actual crop water use, ET C , is made using the crop fac
tor approach. A crop factor, K c , is used to approximate the 
influence of canopy architecture and plant-physiological 
characteristics. For routine calculations of crop water use, 
the following equation is used: 

ETC=KC.ET0 (3) 

where Kc is a dimensionless number that varies between 
about 0.2 and 1.1 for most crops (Allen et al., 1998). 

By integrating the sap flow measurements over a whole 
day (midnight to midnight) we are able to calculate the daily 
water use of the olive trees. For the 8 yr-old trees, this 
ranged between about 30-75 L per day during the middle of 
summer (Fig 3). A tree water use of 75 L d"1 corresponds to 
an effective transpiration rate of just 2.5 mm d' 1 when the 
results are expressed on a 'per unit ground area' basis. 
Similar rates of daily water use have been reported for ma
ture olive trees growing in the south of Spain (Fernandez 
and Moreno, 1999). 

A very good correspondence was found between the 
daily water use and the potential E T 0 (Fig. 3). On days 
when the reference E T 0 equaled 5 mm d"1, the correspond
ing transpiration rate from the trees, ET C , was equal to 2.5 
mm d"1. It follows from Eq. [3] that the ratio E T C / E T 0 gives 
a direct measure of the crop factor, Kc. Here, we calculate 
K c = 0.50 for the 8 yr-old olive trees in the Marlborough. 

Trees at the experimental site were all planted at the 
same spacing, i.e. 6 m by 5 m, but their leaf canopies were 
at different stages of development. As expected, the appro
priate crop-factor for olives depends on the size, or age, of 
the olive tree. In terms of water use, the 2 yr-old trees used 
just 25 L (= 1 mm) and the 4 yr-old trees used just 175 L (= 
6 mm) of water per week, respectively, for the same evapo
rative demand. During the middle of summer the average 
weekly value of E T 0 in Marlborough is about 35 mm per 
week. Thus, we calculate the crop factor for 2 and 4 yr-old 
olive trees to be 0.05 and 0.17, respectively. 

It is interesting to note that our value of Kc is very close, 
numerically, to the corresponding value of % light intercep
tion as determined from the array of PAR sensors placed on 
the ground under the tree canopy. The fractional crop cover 
of the 8 yr-old trees was found to be 0.53, and the corre
sponding value of the crop factor was K c = 0.50. 

0 . . . r-L 0.0 

322 336 350 364 378 

Day of Experiment 

Figure 3. Measured sap flow of an 8 yr-old olive tree compared 
to the potential evapotranspiration, E T 0 , calculated from local 
weather data. The measurements are the average sap flow in two 
trees. The trees were on a 6 m by 5 m spacing. The ratio of tree 
water use per unit ground area (L m"2 d"1) to E T 0 is a measure of 
the crop factor, Kc (=0.5). 



342 ROOTZONE PROCESSES AND THE EQUITABLE IRRIGATION OF OLIVES 

Similar findings have been reported in the literature. For 
example, Fernandez and Moreno (1999) found an 'effec
tive' crop factor of between 0.35 and 0.50 for a mature ol
ive orchard with mature trees planted at a 7 x 5 m spacing, 
and covering 34% of the ground surface. Allen et al. (1998) 
suggest a mid-season value of Kc = 0.65 as being typical for 
olive trees that provide 60% ground coverage by the can
opy. It appears that % light interception is a very good sub
stitute for the crop factor of olive trees. Variations in Kc 
between orchards are expected because of varietal factors 
that effect tree shape and stomatal response, and also other 
orchard factors such as soil type, planting density and irri
gation management. 

Olives are often recognized as being drought tolerant, 
and they have an ability to reduce water loss when they ex
perience a shortage of water in their root zones (Dichio et 
al., 1993). In our experiment, the root zone soil of the 8 yr-
old trees did become quite dry over the summer. TDR 
measurements of soil moisture in the root-zone of the 8 yr-
old olives indicated the tree roots had depleted more than 
70% of the total available soil water from the top 0.5 m of 
the root zone. It is possible that the 8 yr-old trees could 
have been under a mild degree of water stress during our 
experiment. The trees were growing on very stony soils and 
receiving only a small amount of irrigation (8 L d"1) relative 
to their actual water use (30-75 L d"1). 

The remaining factor needed to complete the param-
eterisation of our simple water balance model is an estimate 
of the fraction of rainfall that enters the root zone. This 
fraction was determined by simply taking the amount of 
rainfall collected in the array of rain gauges under the olive 
trees and comparing it to the amount of rain fall in the open 
area of the orchard. A very good linear relationship was 
found between throughfall and incident rain, when taken 
over periods of a week or more (data not shown). On aver
age, the 2-yr old trees intercepted about 5% of the rain, the 
4 yr-old trees intercepted about 10% of the rain and the 8 
yr-old trees intercept about 15% of the rain that fell at the 
site. 

Some of the intercepted rainfall will be lost as evapora
tion from the wet leaves, and the remainder will run down 
the tree stem and enter the root zone. For the purpose of 
modeling, we have assumed any intercepted rain is lost 
from the system. Thus, we have assumed that the effective 
rainfall is just 85% of actual rainfall for a grove of 8 yr-old 
olive trees. 

4. TEMPORAL RISK ASSESSMENT 

In this section, we describe our risk assessment model, 
SPASMO (Soil-Plant-Atmosphere-System-Model) that was 
used to determine the soil water balance and calculate the 
irrigation requirements of an olive grove in Marlborough. 

The calculations run on a daily basis and assume model pa
rameters derived from field experiments using the 8 yr-old 
olive trees. 

The SPASMO model considers water movement 
through a 1-dimensional soil profile that extends from the 
soil surface to a depth of 6.0 m. The model calculates the 
water balance of a cropped soil by considering the inputs 
(rainfall and irrigation) and losses (plant uptake, evapora
tion, runoff and drainage) of water from the soil profile. The 
soil's physical and hydraulic properties are defined using 
data from the NZ Soils database (Landcare Research Insti
tute, New Zealand) to describe the water retention proper
ties, the stone fraction and the bulk density of the soil. We 
use a continuous record of average daily weather, from the 
national climate data base (NIWA Institute, New Zealand). 

Water transport through the soil profile is modelled us
ing a water capacity approach (Hutson and Wagenet, 1993) 
that considers the soil to have both mobile and immobile 
pathways for water transport. The mobile domain is used to 
represent the soil's macropores (e.g. old root channels, 
worm holes and cracks) and the immobile domain repre
sents the soil matrix. After any rainfall or irrigation events, 
water is allowed to percolate through the soil profile when
ever the soil is above field capacity. The infiltrating water 
first fills up first the immobile domain and, once this do
main is full, it then refills the mobile domain as the water 
travels progressively downward through the soil profile. 
Subsequently, on days when there is no significant rainfall, 
there is a slow approach to equilibrium between the mobile 
and immobile phases, driven by a difference in water con
tent between the two domains. 

Crop water use is determined from meteorological data 
using the FAO Penman-Monteith method (Allen et a l , 
1998) to get a standard reference value for potential evapo-
transpiration, E T 0 . We use a dual crop-factor approach to 
describe the combined water loss from the crop and the soil 
surface. The depth-wise pattern of the crop's fine roots and 
the local soil-water potential are used to determine the pat
tern of water uptake in the root zone (Green and Clothier, 
1998). We have assumed the tree roots extend to a depth of 
2.0 m and that root-length density decreases exponentially 
with increasing soil depth (Moreno et al., 1996). 

Crop water use is assumed to proceed at the maximum 
rate when soil water is non-limiting. The crop can tolerate a 
certain 'water deficit' in the root zone, and will grow and 
transpire at the optimum rate while there is enough water in 
the root zone. However, once the root-zone water deficit 
increases above a given threshold, then the crop will begin 
to exhibit symptoms of water stress that impact on crop 
water use and productivity. Irrigation is applied automati
cally to the crops, on basis of need, whenever the water 
deficit in the root-zone declines below the threshold value. 
For olives, which can tolerate a dry root-zone, we have as-
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Figure 4. The water balance of an olive grove in Marlborough, 
as represented by transpiration (black) and soil evaporation 
(grey). 

sumed irrigation is required whenever the depletion level 
exceeds 65% of the available soil water (Allen et al., 1998). 
The calculations have allowed for a daily irrigation rate of 
2.8 mm d"1 when the soil is dry and the crops are in need of 
water (Fig. 5). An irrigation of 2.8 mm is the maximum 
daily value that is allowed for by the District Council. 

Figure 4 shows the daily water loss from the olive grove 
due to crop transpiration and soil evaporation, as calculated 
by the SPASMO model. The corresponding temporal pat
tern of soil water content and the daily irrigation required to 
meet the tree's water demands is shown in Fig. 5. Large 
olive trees are expected to have a peak transpiration rate of 
3.0-3.5 mm d"1 during the middle of summer, but they use 
less than 1.0 mm d"1 during the winter (Fig. 4). The evapo
rative loss of water from the bare-soil strip under the trees 
is predicted to reach a maximum of just 1.5 mm per day in 
the springtime, whenever the soil is quite wet. A reduced 
radiant-energy load (> 45% of incident) and a small frac
tional ground area ( -33% of the land area) are the main 
reasons for the relatively low evaporation rates from the 
bare soil. 

Over the summer time, evaporation from the bare soil 
declines further, below about 0.5 mm d'1, as the surface soil 
becomes drier (Fig. 4). Soil evaporation does not decline all 
the way to zero because there is sufficient rainfall and fre
quent irrigation to maintain soil water content above the air-
dry value. Water loss from the grassed inter row will peak 
at about 2.0 - 2.5 mm d"1 in the spring and thereafter de
cline over the summer as the readily available soil water is 
progressively depleted (calculations not shown). 

Figure 4 suggests that an irrigation of 2.8 mm d"1 is rea
sonable for large olive trees, since it matches approximately 
the peak water use of trees planted at a spacing of 5 m by 6 
m. However, a daily irrigation of 2.8 mm would exceed the 
actual tree water-use by a factor of about 3 for the 4 yr-old 
trees, and by a factor of about 20 for the 2 yr-old trees. As 

expected, smaller trees require more frequent irrigation of a 
smaller amount. 

Irrigation will not be required every day through the 
summer, and it is never required in the wintertime. This is 
because there is often enough rainfall to top-up the amount 
of readily-available soil water that is stored in the root-zone 
(Fig. 5). In the wet summers of 1980 and 1981, irrigation 
was not necessary until late December, and then it was only 
needed every couple of days through until the end of March. 
In contrast, in the drier summer of 1982 irrigation was re
quired almost every day, from November through until the 
end of March (Fig. 5). The variability and uncertainty of 
rainfall has a large influence on the timing and the total 
amount of irrigation required. 

With regard to the depth-wise pattern of water uptake, 
we know from our measurements that the surface roots are 
the most active. In our model we make sure that these sur
face roots are the first to deplete the soil water when it be
comes available. Meanwhile, as soon as the surface soil 
dries, we know from our measurements that the trees will 
switch their uptake activity to become more reliant on water 
that is deeper in their root zone (Clothier and Green, 1996). 
Once most of the readily-available soil-water gets depleted 
from the root zone, then additional irrigation is needed to 
maintain the tree water status. 

If regular irrigation is supplied to the soil surface at a 
rate that approximately matches tree water use, then most of 
the tree's water uptake will be via the surface roots and so 
water extraction by the deeper roots will cease. Between 
January and March, we predict that the soil-water content 
will hardly change near the bottom of the root zone (Fig. 5). 
This is because of a declining water uptake by the deeper 
roots, combined with a reduced drainage over the summer 
time. Thereafter, the root zone water content will be re
charged slowly by winter rainfall. 
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Figure 5. Predicted changes in the soil's volumetric water con
tent and automatic irigation of 2.8 mm whenever the threshold 
soil water content is reached. 
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Figure 6. Risk assessment for the irrigation requirements of 
olives on a Renwick stony silt loam in Marlborough. 

As expected, the irrigation requirements for olive are 
greatest in the middle of summer when the root-zone soil 
water is at its highest level of depletion. We have carried 
out a risk assessment for the monthly irrigation require
ments of olives and the results are shown in Fig 6. For ol
ives on a Renwick silt loam soil, we calculate an average of 
36 mm of irrigation is required in the month of January. 
Half of the time the olives will need more irrigation, and 
half the time they will need less. 

During January, there is a 20% probability that more 
than 62 mm of irrigation will be required. Yet, there is also 
a 20% probability that they will need less that 14 mm of ir
rigation. Rainfall variability is the main reason for such a 
wide range in irrigation needs. According to our calcula
tions, an allocation of 62 mm of water in January should be 
sufficient to meet the water demands of olives in four out of 
five years. 

5. SPATIAL RISK ASSESSMENT 

Crop irrigation depends not only on the time of year, but 
it also depends on the soil type. This is most clearly illus
trated by comparing the probability distribution for the an
nual irrigation requirements of olives on a Renwick stoney 
silt loam against the same calculations for olives on a 
Woodbourne deep silt loam (Fig 7). The SPASMO model 
predicts there to be very little need for irrigation of olives 
on a Woodbourne soil, other than when the trees are young 
and they need frequent watering of small amounts for es
tablishment. 

The big difference in the irrigation requirements is asso
ciated with the very different water holding capacities of 
these soils. A Woodbourne silt loam that has a deep profile 
and very few stones, can store more that 170 mm of water in 
the top 1.0 m of the soil profile (Table 1). Contrast this with 
a Renwick silt loam that has 25 - 50% stones and a much 
lower storage capacity of just 72 mm in the top 1.0 m. 
During the dry summer months, olives on the Woodbourne 

soil would have the equivalent of about 4 to 6 weeks more 
'available' water stored in their root-zone. This additional 
store of root-zone water is almost enough water to carry the 
trees through the dry summer months. 

The annual water requirements of olives on other soil 
types in Marlborough is shown in Figure 7. Half of the time 
we estimate that mature olive trees will not need any 
irrigation if they grown on the Woodbourne deep silt loam. 
The same trees grown on the Wairau silt loam will, on 
average, require about 75 mm of irrigation, while those 
trees on the more stoney Renwick and Fairhall soils will, on 
average, need more than 130 mm of irrigation. 

For the purpose of irrigation allocation, we suggest a 
less conservative figure that would satisfy the crop water 
demands in four out of five years. Olives should be 
allocated the following amount of irrigation water: 193 mm 
per year on a Fairhall stoney silt loam, 185 mm per year on 
a Renwick silt loam, 154 mm per year on a Wairau silt 
loam, and 78 mm per year on a Woodbourne deep silt loam. 
It is clear from Fig. 7 that soil type plays a key role in 
determining what is a reasonable water allocation for olives. 

The annual irrigation requirements of olives (Fig. 7) 
appear to be much less than would be calculated from 
adding up the corresponding monthly totals at the same 
probability of exceedence (Fig. 6). This is because the driest 
month does not always coincide with the driest year. 

The District Council have decided to make water 
allocations on an annual basis, and they are using Fig. 7 to 
set their guideline values. These are based on local soil data 
and take into account 28 years of local weather data that 
includes at least two periods of extended drought in 
Marlborough region. If the District Council were to allocate 
irrigation water on the basis of a maximum allowable water 
take each month, then they could use results similar to those 
of Fig. 6 for guidance. That information would also be 
useful in determining design factors for any storage dam or 
water augmentation schemes that might, in the future, be 
proposed for this water short region. 
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Figure 7. A risk assessment of the annual irrigation require
ments of olives for a range of soils in Marlborough. 
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Apposite measurements and apt modeling are shown ca
pable of guiding regulatory authorities in managing the 
complexity of allocating water to olive irrigationists. It is 
only through the endeavors, insights and perspicacity of 
scientists such as John Robert Philip that we have the tools 
to provide regulators and growers with the means to allo
cate and manage irrigation sustainably. 
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