
Springer Tracts in Advanced Robotics 92

Field and Service 
Robotics

Kazuya Yoshida
Satoshi Tadokoro Editors

Results of the 8th International 
Conference



Springer Tracts in Advanced Robotics

Volume 92

Series editors

B. Siciliano, Napoli, Italy
O. Khatib, Stanford, USA

Editorial Advisory Board

O. Brock, Berlin, Germany
H. Bruyninckx, Leuven, Belgium
R. Chatila, Toulouse, France
H. Christensen, Atlanta, USA
P. Corke, Kelvin Grove, Australia
P. Dario, Pisa, Italy
R. Dillmann, Karlsruhe, Germany
K. Goldberg, Berkeley, USA
J. Hollerbach, Salt Lake City, USA
M. Kaneko, Osaka, Japan
L. Kavraki, Houston, USA
V. Kumar, Philadelphia, USA
S. Lee, Seoul, South Korea
F. Park, Seoul, South Korea
T. Salcudean, Vancouver, Canada
R. Siegwart, Zurich, Switzerland
G. Sukhatme, Los Angeles, USA
S. Thrun, Stanford, USA
Y. Xu, Hong Kong, People’s Republic of China
S. Yuta, Tsukuba, Japan

For further volumes:
http://www.springer.com/series/5208

http://www.springer.com/series/5208


STAR (Springer Tracts in Advanced Robotics) has been promoted
under the auspices of EURON (European Robotics Research
Network)



Kazuya Yoshida • Satoshi Tadokoro
Editors

Field and Service Robotics

Results of the 8th International Conference

123



Editors
Kazuya Yoshida
Department of Aerospace Engineering
Tohoku University
Sendai
Japan

Satoshi Tadokoro
Graduate School of Information Sciences
Tohoku University
Sendai
Japan

ISSN 1610-7438 ISSN 1610-742X (electronic)
ISBN 978-3-642-40685-0 ISBN 978-3-642-40686-7 (eBook)
DOI 10.1007/978-3-642-40686-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955063

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human
environments and is vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced reveals a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abundant
source of stimulation and insights for the field of robotics. It is indeed at the
intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote
more exchanges and collaborations among the researchers in the community and
contribute to further advancements in this rapidly growing field.

The Eighth edition of Field and Service Robotics edited by Kazuya Yoshida
and Satoshi Tadokoro offers in its ten-part volume a collection of a broad range of
topics spanning: disaster response, service/entertainment robots, inspection/
maintenance robots, mobile robot navigation, agricultural robots, robots for
excavation, planetary exploration, large area mapping, SLAM for outdoor robots,
and elemental technology for mobile robots. The contents of the 43 contributions
represent a cross-section of the current state of robotics research from one par-
ticular aspect: field and service applications, and how they reflect on the theoretical
basis of subsequent developments. Pursuing technologies aimed at emergency
scenarios and realizing robots operating in real and challenging disaster environ-
ments is the big challenge running throughout this focused collection.
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Rich in topics and authoritative contributors, FSR culminates with this unique
reference to the current developments and new directions in field and service
robotics. A fine addition to the series!

Naples, Italy, July 2013 Bruno Siciliano
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Preface

FSR, the International Conference on Field and Service Robotics, is the leading
single track conference of robotics for field and service applications. Its goal is to
report and encourage the development and experimental evaluation of field and
service robots, and to generate a vibrant exchange and discussion in the com-
munity. Field robots are non-factory robots, typically mobile, that operate in
complex and dynamic environments: on the Earth, or other planetary surface,
under the ground, underwater, in the air, or in space. Service robots are those that
work closely and interactively with humans to help them with their lives.

The first FSR conference was held in Canberra, Australia, in 1997. Since then it
has been held every two years in rotation in Australia, America, Europe, and Asia,
such as Pittsburg, USA (1999), Helsinki, Finland (2001), Mount Fuji, Japan
(2003), Port Douglas, Australia (2005), Chamonix, France (2007), and Cambridge,
USA (2009). Following this tradition, the eighth FSR conference was originally
planned for 2011 with the venue of Matsushima in Tohoku region of Japan.
However, on March 11, 2011, a magnitude M9.0 earthquake occurred off the
Pacific coast of Tohoku, and a large-scale disaster was caused by the Tsunami
which resulted. However, the Matsushima area suffered relatively minor damage,
so rather than cancelling the conference, it was decided to postpone it to July 2012.

In fact, this earthquake raised issues concerning the contribution of field and
service robotics technology to emergency scenarios. A number of precious lessons
were learned from operation of robots in the resulting, very real and challenging,
disaster environments. We therefore organized a special session to feature the up-
to-date study on disaster response, relief, and recovery on 16 July 2012, the first
day of the conference held in Tohoku University. Then, three-day technical ses-
sions were followed in Matsushima on 17–19 July.

This book presents the results of FSR2012, the eighth conference of Field and
Service Robotics. There are 43 papers in this volume. Thirty-seven papers were
presented in oral sessions and six were presented in an interactive session. The
papers cover a broad range of topics including: Disaster Response, Service/
Entertainment Robots, Inspection/Maintenance Robots, Mobile Robot Navigation,
Agricultural Robots, Robots for Excavation, Planetary Exploration, Large Area
Mapping, SLAM for Outdoor Robots, and Elemental Technology for Mobile
Robots.
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In addition to the paper presentations, there were eight keynote talks in the
conference. We would like to acknowledge these talks with great appreciation and
thanks to the speakers:

• ‘‘Damage Due to the 2011 Tohoku Earthquake Tsunami and its Reconstruction’’
by Prof. Fumihiko Imamura, Tohoku University, Japan

• ‘‘Spatio-Temporal Video Archive of 3.11 Earthquake and Tsunami Disasters
and Their Visualization Supported by Computer Vision Techniques’’
by Prof. Koichiro Deguchi, Tohoku University, Japan

• ‘‘Human-Robot Interaction Lessons from Unmanned Vehicles at Fukushima and
Tohoku Tsunami Response’’
by Prof. Robin R. Murphy, Texas A&M University, U.S.A.

• ‘‘Rescue Mobile Robot Quince: Toward Emergency Response to Nuclear
Accident at Fukushima Daiichi Nuclear Power Plants on March 2011’’
by Prof. Keiji Nagatani, Tohoku University, Japan

• ‘‘Therapeutic Robot, PARO, and Mental Care for Victims of Disaster by
Earthquakes in Japan’’
by Dr. Takanori Shibata, National Institute of Advanced Industrial Science and
Technology, Japan

• ‘‘Autonomous Agile Aerial Robots’’
by Prof. Vijay Kumar, University of Pennsylvania, U.S.A.

• ‘‘Design and Navigation of Wheeled, Running and Flying Robots’’
by Prof. Roland Siegwart, ETH Zurich, Switzerland

• ‘‘Thoughts on Fully Autonomous Vehicles’’
by Prof. Alberto Broggi, Università di Parma, Italy

The abstract of the talks and the speakers’ biographies can be viewed in:
http://www.astro.mech.tohoku.ac.jp/FSR2011/KeynoteSpeakers.html

Kazuya Yoshida
Satoshi Tadokoro
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Utilization of Robot Systems in Disaster Sites
of the Great Eastern Japan Earthquake

Fumitoshi Matsuno, Noritaka Sato, Kazuyuki Kon, Hiroki Igarashi,
Tetsuya Kimura and Robin Murphy

Abstract In this paper, we report our activities in the real disaster areas damaged
by the Great Eastern Japan Earthquake. From March 18–21, 2011, we tried to apply
a ground rescue robot to the real disaster sites at Aomori Prefecture and Iwate Pre-
fecture. On March 18, we carried out inspection mission in a damaged gymnasium.
From March 19–21, we went to other sites to identify possibility of usage of robots,
and we found the potential needs for not only ground robots but also underwater
robots. Then, after the first activity we established a joint United States-Japanese
team for underwater search. From April 19–23, 2011 the joint team brought four
ROVs to Miyagi Prefecture for port inspection and to Iwate Prefecture for search-
ing for submerged bodies. The joint team returned to Miyagi Prefecture October
22–26 with an AUV and two ROVs for cooperative debris mapping needed to assist
with resuming fishing. Based on these experiences, we discuss the effectiveness and
problems of applying the rescue robot in the real disaster sites.
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1 Introduction

After the Great Eastern Japan Earthquake occurred, we visited the disaster sites
with robots. In this paper, we report our activities in the disaster sites.

The damages in the Great Eastern Japan Earthquake were caused not only by the
seismic motion but also by the tsunami and the nuclear power plant accident. This
made the situation more complicated, and made it difficult to cope with the disaster.
One of the roles of robots for the earthquake hazard is inspection in the disaster
site such as a damaged building, an underground mall or in/on rubble piles. In order
to cope with the earthquake hazard, many robot systems have been developed in
Japan since 1995 Hanshin-Awaji Earthquake [1] , and we have also developed robot
systems [2–5]. In order to respond to the Great Eastern Japan Earthquake, we took a
ground robot named KOHGA3 and used it in the real disaster site. The overview of
KOHGA3 and reports of our activities using it are described in Sect. 2.

Although, many robots have been developed for earthquake hazard, there are few
robots for the tsunami disaster in Japan. This is because 1995 Hanshin-Awaji Earth-
quake, which was an inland earthquake and did not have the tsunami, is considered
as a kind of benchmark for robot developments.

However, throughout the activities and considerations in real disaster sites of
the Great Eastern Japan Earthquake, we found potential needs for the underwater
exploration in the harbor areas by the robots. A joint United States-Japanese team was
established for recovery mission at ports and sea in stricken areas in cooperation with
International Rescue System Institute (IRS) and Center for Robot-Assisted Search
and Rescue (CRASAR). In Sect. 3, we report activities in Minami-sanriku, Miyagi
Prefecture for inspection of a port and in Rikuzen-takata, Iwate Prefecture for body
search by using underwater robots and summarize lessons learned from the missions.
The locations of our activities are shown in Fig. 1.

2 Response to Earthquake Hazard: Inspection in the Damaged
Gymnasium

The owner of a damaged gymnasium in Hachinohe City, Aomori Prefecture asked
us to inspect inside of it. The members of the first activity at Aomori and Iwate
Prefecture were Dr. Noritaka Sato, Dr. Kazuyuki Kon, Mr. Hiroki Igarashi and
Prof. Fumitsohi Matsuno, Kyoto University.

On March 18, 2011, we arrived at Hachinohe City through Misawa Airport and
carried out inspection task with KOHGA3 in the damaged gymnasium. On March
19, we tried to apply our robot to rescue missions at tsunami-hit areas in Kuji City
and Noda Village, Iwate Prefecture. On March 20 and 21, we visited Hachinohe Port
and the administrative organizations in Hachinohe City to search a task using a robot,
and gathered detail information of situation of Hachinohe Port and Misawa Port.
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Minami-sanriku, Miyagi
(April 18-19, October 22-26)

Fig. 1 Locations of our activities

2.1 Specification of KOHGA3

The hardware of KOHGA3 as shown in Fig. 2 consists of one body, four crawler arms
which can be independently controlled, and one 4-DOF sensor arm. It is capable of
driving on rubble piles by swinging its crawler arms to fit the shape of the ground.
A Laser Range Finder (LRF), a posture sensor, a two-way audio (a microphone and
a speaker), LED lights, fish-eye cameras, a Pan-Tilt-Zoom (PTZ) camera, a thermal
camera, a gas sensor (for flammable gas, CO and H2S), a wireless LAN device, and
batteries are mounted on/in the robot. And the other sensors (a camera, a thermal
sensor, a CO2 sensor) for finding victims are installed at the end of the sensor arm.
The size of KOHGA3 is W433 mm × L860 mm × H530 mm, the length of the sensor
arm is 950 mm, and the weight of the robot included batteries is 45 kg. It can climb
up a 300 mm step and a 43◦ slope and gather information by using the sensor arm
that can reach a target object even if the body of the robot can not approach.

KOHGA3 can be remotely controlled, and it can continuously run for about 1 h
with installed batteries. An operator controls the robot using the information sent from
the robot via a Graphical User Interface (GUI) as shown in Fig. 3. The maximum
communication distance via wireless LAN between the robot and an operator station
is about 50 [m] (depends on the condition). It can be teleoperated even in dark
environment with installed LED lights.
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2.2 Missions

The inspection mission in a gymnasium, whose ceiling was partly fallen down due
to the earthquake, was conducted on March 18. No person was allowed to enter the
gymnasium because remaining parts of the ceiling might be collapsed if an aftershock
occurs. Therefore, KOHGA3 entered the gymnasium instead of human and gathered
the information by teleoperation. In this mission, KOHGA3 checked four parts of
the gymnasium: (i) the broken and fallen ceiling, (ii) the rubble piles on the floor,
(iii) inside of the room next to the stage and (iv) the surroundings of the stage.
KOHGA3 had two runs: in the first run it checked the ceiling and the floor and in the
second run it checked the room and the stage. Figure 2 shows snapshots of KOHGA3
in the damaged gymnasium.

We set up the operator station at the entrance of the gymnasium. KOHGA3 entered
to the gymnasium from the entrance. The information of the situation of the ceiling
and the floor was gathered by the PTZ camera mounted on the robot. We watched the
fallen part of the ceiling and could find that the structures of the gymnasium has few
possibility for the secondary collapse. And by watching the image from KOHGA3,
some chairs on the floor were broken but the floor was not so seriously damaged.

We found the door of a room next to the stage was open with about 400 [mm] gap.
Since KOHGA3 could not enter through the 400 [mm] opening, we decided to use
the sensor arm to check inside of it (Fig. 2(b)). Some pipes were fallen on the floor
in the room, but there were no serious damages.

After checking the room, KOHGA3 checked the surroundings of the stage. There
were stairs to climb up to the stage, however we were not sure that KOHGA3 could
climb the stairs. Therefore we decided to use the sensor arm again. We could find
that there were no serious damages around the stage.

(a) (b)

Fig. 2 Snapshots of KOHGA3 in a damaged gymnasium
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Image of the ceiling displayed on GUI.

Fig. 3 Graphical user interface for remote control

2.3 Lessons learned

We summarize lessons learned from the inspection mission in the real disaster site
by using a ground robot.

We could obtain limited information of the situation in the gymnasium from its
entrance because there were many blind areas. We applied a mobile robot to gather
information of the blind areas. We think that this is major effectiveness of usage of
the robot in the inspection mission.

The PTZ camera was really useful, especially the optical zoom. With its function,
we could get a sharp image of a distant target object. If we could not use this function,
we might not check the detail of the ceiling because the ceiling of the gymnasium
was very high.The sensor arm was also effective in the inspection mission. By using
it, we can obtain information of an unaccessible area where a robot can not enter
or approach. Fortunately, there were no troubles with KOHGA3 during our activity.
Note that our activity by KOHGA3 in the damaged gymnasium is reported in IEEE
Spectrum [6].

Throughout the operation in the real disaster situation, we found the following
problems of our robot to be solved. The remain electrical power of the batteries
must be displayed on the GUI. Decision of changing and charging batteries should
be easy. Sensors should be easily changed as necessary. The modularization of the
hardware and software might be useful in the real disaster site. The robot should
climb steep stairs and slopes in the disaster sites. However, every mobile robots have
limitation of the mobility. Therefore, the system should autonomously show the
operator whether the robot can climb up the obstacles or not based on information
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from sensors. As the throughput of communication network may change depending
on the surrounding physical conditions, the quality of communication should be
visualized for the operator.

For a task by using a teleoperated robot in a real disaster site, the operator feels
responsibility. It is a very tough work. To reduce the operator load should be consid-
ered. To overcome this problem, some functions such as half-autonomy/auto-return
function should be installed. Moreover, for teleoperation mission, calculation and
display function of GUI of possible routes that the robot could run is very effective
to reduce the load of the operator. Otherwise, low cost throwaway system is another
solution for solving this problem.

2.4 Try to find other robotics tasks in Kuji City and Noda Village

On March 19, we went to Kuji City, Iwate Prefecture located about 100 [km] south
from Hachinohe City, Aomori Prefecture. Kuji City has a national oil storage station,
the ground facilities of the station was completely destroyed by the devastating
tsunami as shown in Fig. 4.

In Kuji City, the tasks of inspection in the damaged building or on the rubble piles
were almost finished. After discussion with a commander caption in this area, we
knew that the inspection task was operated in Noda Village, Iwate Prefecture located
about 20 [km] south from Kuji City. And he contacted to the wide-area disaster
countermeasures office of Kuji Area and we visited it. In the office, we explained
our robot system and the purpose of our activity to the director-general of emergency
response headquarters of Kuji Area. Our explanation got a solid understanding, and
we could enter Noda Village under leading by a fire-fighting vehicle. After arrival at
the disaster site of Noda Village (see Fig. 5), we explained our robot system to the
top executives of emergency response headquarters of Noda Area (Fig. 6).

Fig. 4 National oil storage
station in Kuji City, Iwate
Prefecture



Utilization of Robot Systems in Disaster Sites of the Great Eastern Japan Earthquake 7

Fig. 5 Tsunami hit Noda
Village, Iwate Prefecture

Fig. 6 Negotiation with
rescue workers in Noda
Village, Iwate Prefecture

They were very interested in our robot and decided to use it for inspection of
some damaged buildings. However, in the final adjustment with the mayor in the
village office, he wanted to get approval from owners of the buildings. It was very
hard to contact them in the confused emergent situation. Then, we should give up
the inspection in the building with our robot.

3 Response to Tsunami Hazard using Underwater Robots

The response to the tsunami hazard using underwater robots involved three prefec-
tures: Aomori, Iwate, and Miyagi [7].

On March 20 and 21, we inspected harbor areas of Aomori Prefecture and visited
some political administrative organizations to identify possible uses of robots for the
tsunami hazard. We visually inspected the damage of Hachinohe Port and Misawa
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Port. By the tsunami, many obstacles were scattered on the bottom of the sea. These
obstacles were dangerous for ships. Therefore, in order to restore damaged ports, it is
necessary to gather information of the situation of the bottom of the sea. As there are
many keen debris in the coat of the tsunami-hit areas, works in these areas are very
dangerous for divers. Not only the coat but also deep-sea more than 10 [m] depth
is very dangerous for divers because of the bends. We considered that the under-
warter tasks should be executed by robots instead of the human divers. These tasks
are necessary for re-establishment of the port and investigation of missing people.
In order to explore needs of usage of robots for recovery mission of ports, we vis-
ited some political administrative organizations such as the city office of Hachinohe,
Hachinohe Fire Fighting Head Office, and Volunteer Center. Finally, we could reach
the office which administrates the ports located in the Hachinohe area. The officer
had a need to search the bottom of the sea, and asked us to inspect ports in Hachi-
nohe by using underwater robots immediately. However, we did not have underwater
robots available at that time. Then we returned to Kyoto and started to identify new
sites and new use for underwater robots. International Rescue System Institute (IRS)
reached out to the Center for Robot-Assisted Search and Rescue (CRASAR) in the
USA. CRASAR was under travel restrictions stemming from the uncertain state of
the Fukushima nuclear plant. Two joint CRASAR-IRS activities in Miyagi and Iwate
prefectures one in April and the second in October were carried out.

3.1 Joint United States-Japanese Team Deployments

The two joint CRASAR-IRS teams were headed by Prof. Fumitoshi Matsuno, a vice-
president of IRS, and Prof. Robin Murphy, a director of CRASAR. Prof. Tetsuya
Kimura took charge of logistics and safety management, while Dr. Eric Steimle
coordinated unmanned marine vehicles. The team consisted of UMVs and roboticists,
responders and students. The first team, which deployed in April to Minami-sanriku
and Rikuzen-takata, brought four different remotely operated vehicles (ROV), which
are small tethered underwater robots. The second team, which deployed in October,
brought two ROVs and an autonomous underwater vehicle (AUV) and geographical
information systems for coordinating robots and distributing information over the
internet.

On April 19 and 20, the team conducted inspection missions at a port of
Minami-sakriku, Miyagi Prefecture, at the request of the mayor. On April 21-24,
the team conducted victim recovery missions along the shore of Rikuzen-takata,
Iwate Prefecture, at the request of the disaster countermeasures office of Iwate Pre-
fecture. This deployment illustrates the importance of rescue robots for the recovery
phase of a disaster, not just the immediate life-saving response phase.

For Phase 1, the team used tethered remotely operated marine vehicles (ROVs),
choosing not to use the other two types of UMVs– autonomous underwater vehicles
(AUV) or unmanned surface vehicles (USV). As with any disaster, logistics are
important; a UMV must be small and light enough to be transported in cars and
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handled by one or two people. Furthermore, tsunami disaster response occurs in an
extreme environment, where not only must the robot function reliability underwater
but the operator control unit must be rugged as it is exposed to salt water spray or
rain and snow.

Four commercially-available ROVs were chosen for the Phase 1 deployment based
on i) the expectation of critical infrastructure missions which meant that the ROVs
had to carry an imaging sonar, not just a video camera, and ii) transportation logistics.
AUVs were not considered because they cannot operate near structures as they do
not have obstacle avoidance capabilities, cannot be used around unmapped debris,
and require a boat in case the AUV gets into trouble and does not return. The three
ROVs, SeaBotix SARbot, Seamor, and the Access AC-ROV are shown in Fig. 7 were
used, a fourth robot, the SeaBotix LBV-300 was not used as it was essentially the
same as the SARbot. All four ROVs were teleoperated. Teleoperation appears to be
the industry standard for two reasons. First, navigational autonomy is challenging
due to limited sensing (especially as GPS does not work underwater) and, second,
mission autonomy (versus navigational autonomy) is hampered by the perceptual
complexity of the task and unpredictable attributes of a disaster, thus it requires
human interpretation.

For Phase 2, the team was reconfigured to adapt to a different mission: rapid
mapping of large scale debris fields. The team brought the SeaBotix SARbot ROV to
be in conjunction with a YSI Echomapper AUV as shown in Fig. 8 and the RTV-100
ROV. The intent was for the AUV to map the large portion of Shizugawa Bay and
identify potential debris. The team would then deploy on a boat with the ROVs to
perform a more accurate identification of the debris and also localize it (the SARbot
ROV position could be determined by an external sonar on the boat and then mapped
to GPS coordinates). In addition, the data from the robots would be integrated into
the General Dynamics GeoSuites system which would allow groups with access to a
private web site to view the findings in real-time. However, the AUV experienced a

Fig. 7 The ROVs used at
the sites for Phase 1
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Fig. 8 The AUV and ROV
for Phase 2

malfunction and could not be used. Instead, members of the Shizugawa and Utatsu
Fishing Cooperatives identified large areas of interest and the ROVs searched there.

3.2 Phase 1 Missions

The CRASAR-IRS team worked at one site at Minami-sanriku, Miyagi Prefecture
and five sites at Rikuzen-takata, Iwate Prefecture. We carried out two types of mis-
sions. One is port area assessment at Minami-sanriku as shown in Fig. 9 . The team
successfully cleared the Minami-sanriku “new port” facility for use. The other is
underwater victim search and recovery in Rikuzen-takata in collaboration with Japan
Coast Guard as shown in Fig. 10. In Rikuzen-takata, the team searched shallow
underwater debris fields and under islands of flotsam for victims in a bay, two small
marinas, bridge footings, and a residential coastal area; while no bodies were found,
the search was successful in ruling out areas. Table 1 shows number of runs of each
robot by site.
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Fig. 9 Damaged port in the
port area of Minami-sanriku

Fig. 10 Collaboration with
Japan Coast Guard

3.2.1 Minami-sanriku

The team used the SARbot and Seamor on April 19-20, 2011, at the “new port”
section of the Minami-sanriku fishing port. The objective was to determine if there
was at least 5 meters of clearance for fishing boats to enter the port, and if there was
rubble within 5 meters of the surface to locate it with GPS. A particular concern was
that severed mooring lines floating below the surface could tangle the propellers of
fishing boats.

Both the SARbot and Seamor were useful in the highly turbid waters, with the
SARbot able to cover an area of interest (inside of thick line in Fig. 11) in 4:45 hours
in the water over 1.5 days as shown in Table 1. The transparency of the water in the
new port was 30-50 [cm]. It is very hard to identify an object by images from the color
video camera. Sonar sensor was very effective for inspection in turbid water. As seen
in Fig. 12, the resolution of the DIDSON acoustic camera on the Seamor ROV was
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Fig. 11 Covered area of the
new port in Minami-sanriku

Table 1 Number of runs of each underwater vehicle by site

Date Location Robot Time in Water

19-Apr-11 Minamisanriku New port SARbot 0:16:57
SARbot 2:02:18

20-Apr-11 Minamisanriku New port SARbot 2:25:00
Seamor 2:58:00

Bay SARbot 2:28:31
21-Apr-11 Rikuzentakata Small marina 1 SARbot 0:44:03

AC-ROV 0:35:00
River bridge SARbot 0:24:18

22-Apr-11 Rikuzentakata SARbot 1:12:17
Small marina 2 Seamor 0:42:00

AC-ROV 0:20:00
23-Apr-11 Rikuzentakata Residential coastal area SARbot 0:44:17

sufficiently high to spot cables attached to anchor stones for the moorings. Seamor
was in the water for 3 hours. As the activities by a diver in this bad transparency area
was very dangerous, ROVs were very useful.

The Minami-sanriku work yielded one device failure, and one instance of tether
tangling. The first problem was that a relatively flimsy connection on the Seamor
operator control unit immediately broke and had to be repaired in the field; this
illustrates the need for reliability and field hardening. The second problem was that
the SARbot tether tangled in one of the remaining ship mooring buoys and the lack
of situation awareness in the turbid water prevented the ROV operator from being
able to untangle it- a nearby leaky rowboat was used to recover the robot.
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Fig. 12 Example of (b) dual-
frequency identification sonar
and (c) multi-beam imaging
sonar

3.2.2 Rikuzen-takata

The team used the SARbot and Seamor on April 21-23, 2011, at five sites around
Rikuzen-takata. The objective was to search for victims underway in shallow littoral
areas, where bodies which normally would float to the surface might be trapped on
the sea floor under debris or floating under large islands of flotsam.

All three robots were useful in both the clear water in the two small marina sites
and the turbid waters in the other three, though no bodies were found. The SARbot
was used to explore the shallow debris-filled bay and two floating islands of flotsam.
The operators relied on the enhanced video imagery to see despite turbidity within
1.5 m of an object. At a small marina, the SARbot was able to explore under an island
of flotsam that included the upper story of a house (Fig. 13).

The Rikuzen-takata work was notable for the mission surprises and the continuing
reliability problems with the Seamor. The major surprise was the shift to a victim
recovery mission. This had not been considered in the choice of ROVs, which were
selected based on the ability to work close to structures. An AUV to provide quick
coverage of large areas to find underwater debris piles would have been useful. The
SARbot was very useful for working under the islands of flotsam but a surprise was
the need to look up into the floating debris or to probe it. A third surprise was the
clarity of the water in the coves and shallow regions, which allowed the color video
to be used more than had been expected. It should be noted that the SARbot video
was superior to the Seamor due to the LYYN software real-time enhancement. The
AC-ROV was difficult to control in field, highlighting the need for better cyber-
physical controls, and it also lacked the ability to record video, which did not match
the mission where stakeholders were not necessarily in the field or dedicated to a
device.
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Fig. 13 View of house
in flotsam

3.3 Phase 2 Missions

The Phase 2 mission was to identify submerged debris that could impact fishing,
either through pollution or presenting snags for nets, or to navigation. The Shizugawa
Bay is a major food supply for Japan, relying on the pristine water for salmon
fishing and aquaculture of oysters and seaweed; thus restoration of fishing has both
significant local and national impact. The fishermen were particularly concerned
about submerged cars and boats leaking fuel into the pristine waters as well as ghost
nets.

The CRASAR-IRS team made four trips with members of the Shizugawa and
Utatsu Fishing Cooperatives over Oct. 23-26, 2011, visiting 40 sites with two ROVs.
Initially, the team worked from a large fishing boat that was followed with a smaller
boat and a diver, who would tie a float to the debris to mark it. However, this practice
was quickly abandoned for two reasons. First, the ROV was able to identify debris
faster than anticipated and there was more debris than the fishermen expected, thus the
diver could not keep up. Indeed, some of the areas that the ROV found submerged
cars or fishing boats had been searched by divers and declared clear. Second, the
SARbot’s GPS location could be inferred from an external sonar, giving the fishermen
confidence that they could return to the spot.

The results by the SARbot ROV are shown in Table 2. The ROV was in the water
for a total of 371 minutes, finding 104 major pieces of debris marked to be removed
and countless other smaller underwater items. The data was taken directly from the
GPS trail of the ROV and assumes a 15 m visibility of the sonar. The data for Oct.
26 is an estimate. This means the ROV was able to cover over 80, 000m2 in slightly
more than 6 h of time in the water, averaging 217m2 per minute.

The results strongly suggest that ROVs can be of significant value in finding debris,
reducing the time divers spend in the water, and reducing the errors. Figure 14 shows
divers marking a submerged fishing boat that was found in an area previously searched
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Table 2 Data from phase 2 missions. Data in gray is an estimate, not from direct GPS tracking

#Sites Time in water (min) Area covered (m2) Distance traveled Findings

23-Oct-11 6 49 21,524 8,048 5
24-Oct-11 6 105 26,884 6,281 32
25-Oct-11 13 160 51,623 11,480 42
26-Oct-11 7 57 2,000 500 25
totals 32 371 80,507 26,309 104

Fig. 14 Submerged fishing boat (a) View from SARbot sonar (b) View of driver attaching a marker
float from SARbot

manually. The boat was difficult to find due without sonar due to the turbidity of the
water. The diver used the tether of the ROV to quickly go to the boat, and spent
only a few minutes in the water. The ROV in theory could have tied off the marker
buoy, but mobile manipulation is difficult. The combination of the diver and the ROV
was effective and the ROV provided oversight. By working cooperatively, robots and
divers can be much more effective.

The use of the GeoSuites tablet-based geographic information system was favor-
ably viewed by the fishermen and local harbormaster. This reinforces the need to
develop robot systems with internet connectivity and mi.ddleware.

3.4 Lessons Learned

At least three conclusions can be drawn from the experiences with the recovery
operations:

Rescue robots are valuable for both economic and victim recovery, not just
response. This deployment extended the scope of rescue robotics from immedi-
ate life-saving to the recovery phase. The Minami-sanriku mayor, Hitoshi Sato,
emphasized the value of ROVs for the local economy. The mayor is quoted as saying
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“The fishery industry is a pillar of our recovery plan. The search result has given us
a boost to reopen the fishing port at an early date.”

Disaster robots need to be optimized for the unique missions and stakeholder
needs. The SARbot, the only ROV optimized for search and recovery, was used 67 %
of the total time and the only robot used on the two half-day deployments when
time was limited as it took less than 10 min to go from the case to in the water.
The AC-ROV used 6 % of the time could be in the water in 3 min. In contrast, the
general purpose Seamor often took between 30 minu to an hour to set up and had
two equipment failures. This supports the finding that at a minimum disaster robots
have to be easy to transport, quick to set up, reliable and record the data for later
viewing. Further optimization would be to have GPS mapping (which SARbot has),
image enhancement (which SARbot has), and station-keeping abilities (i.e., have the
ROV autonomously hold an object in the center of the image).

Human-robot interaction remains a challenge. One example of a HRI challenge
is the loss of situation awareness when the tether tangled in turbid water around the
mooring buoy line. This highlights the need for increased efforts to design systems
and displays that support human perceptual processes. But it should be noted that HRI
is more than displays, it is about the larger systems-level design choices that make a
system useable for the environment which includes packaging, use, and amount of
training needed to be effective.

In the under water tasks a sonar sensor and a camera are only useful to understand
surroundings and search a drowned body. Development of underwater sensors is very
important, especially for positioning and sensing a body.

4 Conclusion

In this paper, we report our activities in the real disaster areas damaged by the
Great Eastern Japan Earthquake. At Hachinohe, Aomori Prefecture, we carried out
the inspection mission in the damaged gymnasium by using a ground robot and
we identified a potential need for underwater robots. We established a joint United
States-Japanese team for underwater search. The joint team visited tsunami-hit areas
for inspection of ports in Minami-sanriku, Miyagi Prefecture and search bodies on the
shore at Rikuzen-takata, Iwate Prefecture. Based on these experiences, we understand
the effectiveness and problems of applying the rescue robots in the real disaster sites.
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Improvements to the Rescue Robot Quince
Toward Future Indoor Surveillance Missions in
the Fukushima Daiichi Nuclear Power Plant

Tomoaki Yoshida, Keiji Nagatani, Satoshi Tadokoro,
Takeshi Nishimura and Eiji Koyanagi

Abstract On March 11 2011, a huge earthquake and tsunami hit eastern Japan, and
four reactors in the Fukushima Daiichi Nuclear Power Plant were seriously dam-
aged. Because of high radiation levels around the damaged reactor buildings, robotic
surveillance were demanded to respond to the accident. On June 20, we delivered
our rescue robot named Quince which is a tracked vehicle with four sub-tracks,
to Tokyo Electric Power Company (TEPCO) for damage inspection missions in the
reactor buildings. Quince needed some enhancements such as a dosimeter, additional
cameras, and a cable communication system for these missions. Furthermore, stair
climbing ability and user interface was implemented for easy operation for novice
operators. Quince have conducted six missions in the damaged reactor building. In
the sixth mission on October 20, it reached to the topmost floor of the reactor building
of unit 2. However, the communication cable was damaged on the way back, and
Quince was left on the third floor of the reactor building. Therefore, an alternative
Quince is requested recently. In this paper, we report the situation of the missions
for Quince, and introduce enhancements of the next Quince for future missions.

1 Introduction

On March 11, 2011, a huge earthquake and tsunami hit eastern Japan, and four reac-
tors in the Fukushima Daiichi Nuclear Power Plant were seriously damaged. There
were explosions in three reactor buildings, and a large quantity of radioactive mate-
rials was released. The operator of the power plant, Tokyo Electric Power Company
(TEPCO), was unable to manage the situation because of the high radiation levels
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measured around the perimeter of the reactor buildings, which prevented people from
safely entering the affected areas. They ware unable to plan the best approach for
handling the crisis because the situation inside the building was unknown. Therefore,
robotic surveillance was required.

The first robot that entered the reactor building was Packbot [1], which was devel-
oped by iRobot. On April 17, Packbot opened an airlock gate, which was composed
of dual doors, and investigated the situation on the first floor of the reactor buildings
[2, 3]. The result of the mission confirmed fears that the radiation dosage in the
building was very high humans would have been able remain there for only a short
time. Packbot was controlled via a radio communication system, and the radio waves
could reach only some parts of the first floor. Furthermore, Packbot could not climb
up or down the stairs. Therefore, even after the Packbot mission, TEPCO still needed
a robotic surveillance system that could cover extensive areas in the building.

At that time, our joint research group, supported by the New Energy and Industrial
Technology Development Organization (NEDO), had been researching and develop-
ing tracked robots to assist rescue crews in search and rescue missions in dangerous
environments. Quince, the robot developed by us, has high mobility on rough ter-
rains. However, it could not have been mobilized to the reactor building at the time of
the crisis because it needed to be reconfigured for the target environment. Therefore,
we began to redesign the Quince to resolve the following concerns, which enabled
it to be used for surveillance in the reactor building [4].

Communication system At the beginning of the project, we did not know whether
the wireless communication system would have been able to control the robot in the
reactor building from the outside. We conducted communication tests in the reactor
building of the Hamaoka Nuclear Power Plant, which was of the same model as
the reactor in the Fukushima Daiichi Power Plant. The test result suggested that a
wireless communication link was possible in only a very limited area, so we decided
to develop a cable communication system.

Radiation tolerance Our robot was composed of conventional electric devices,
and we had very little information about how well it would survive when exposed to
gamma rays. Therefore, we conducted experiments to ascertain the radiation toler-
ance of the components of Quince [5]. The results showed that the essential compo-
nents of Quince can survive up to 160 Gy of radiation dose.

Reliability We would not have been able to maintain Quince directly after its deliv-
ery to the site. Therefore, we focused on improving the reliability of its mechanisms,
components, and software by performing numerous tests in a test field.

Operability A good user interface for remote operation was required for Quince
to be used by the operators from TEPCO, who had not undergone prior training in
its use. This was also significantly improved by performing tests.

Additional sensors In this mission, dosimeter readings were very important. Small
dosimeters were supplied by TEPCO and were mounted on Quince. The dosimeters
used were the same device used by humans and clipped onto the chest pocket in
nuclear power plants. The measured value is displayed on the embedded display
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of the device, but the device has is unable to communicate with external devices.
Therefore, we attached a small camera close to the display for transmitting display
images to the operator.

Moreover, at the beginning of May 2011, TEPCO requested two more functions
to be added to Quince. At that time, water had been continuously injected into the
primary pressure vessels to cool down the fuel core, and the contaminated water had
spilled onto the basement floor. It was not possible to measure the depth of water
in the basement floor. Thus, functions to install a water level gauge and to sample
the contaminated water needed to be added to Quince. Therefore, the following
enhancements were added.

Additional functions A simple manipulation mechanism was mounted on Quince.
The mechanism included a crane and a winch to install a water level gauge, and a
simple mechanism for handling a water-sampling cup.

Mobility improvement For the revised target, the stairs leading down to the base-
ment floor were steeper and narrower than those leading to higher floors. Because of
such difficult to maneuver terrain, the robot was required to have a more enhanced
stair-climbing ability. Therefore, we optimized its track mechanisms.

On June 20, 2011, the redesigned Quince (Quince 1) was deployed to the
Fukushima Daiichi Power Plant. After that, Quince 1 conducted six missions in
the damaged reactor buildings. The results of the missions contributed significantly
to efforts to restore the plant to a degree of normalcy. However, in the process of
doing this, some unforeseen technical issues developed.

The first important issue concerned its communication cable. On October 20,
2011, Quince 1 was left inside the reactor building after its sixth mission because
the communication cable failed. The cable rewinding device on Quince 1 was not
designed to rewind very long cables. During the mission, Quince 1 had navigated
a very long course, and while attempting to rewind the cable, the rewinding device
failed and damaged the cable. This limitation and failed operation contributed greatly
to the loss of communication.

The second important issue concerned the requirement of additional functions.
TEPCO requested a new mission to sample air dust after the first mission by Quince 1
ended. They attached timer-triggered air pumps on Quince 1 to conduct the mission.
In this case, the operator was required to direct Quince 1 to the target location within
a specific time period, and this was very stressful for the operator. The ability to
remotely trigger the air pump would have simplified this process.

Through the six missions, we also identified many others issues that needed
improvement, and TEPCO requested an alternative Quince model. Therefore, we
developed a revised model of Quince that dealt with the above issues. In addition,
to address the communication cable problem, we defined a communication recov-
ery scenario by providing another robot that acts as a communication repeater to
re-establish a data link to Quince via a wireless link between the robots.

In this paper, we report the missions performed by Quince 1 in a real disaster site
and discuss issues that arose during the missions. Furthermore, we introduce a revised
model of Quince that is able to resolve earlier issues and perform a communication
recovery scenario.
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Table 1 A brief timeline of missions for Quince 1

Date Event

June 20, 2011 Quince1 was delivered to the site
June 24, 2011 The first mission at unit 2 was conducted. Quince was not able to

install a water level gauge
July 8, 2011 The second mission at unit 2 was conducted. Quince was reached

the third floor of the building and two sets of air dust samples were
successfully captured

July 26, 2011 The third mission at unit 3 was conducted. Target facilities were
successfully observed

September 22, 2011 The forth mission at unit 2 was conducted. Target facilities were
successfully observed

September 24, 2011 The fifth mission at unit 3 was conducted. Target facilities were
successfully observed

October 20, 2011 The sixth mission at unit 2 was conducted. Quince was successfully
reached the fifth floor. However it lost a data link at the third floor
on its way back

2 Missions of Quince 1

In the damaged reactor buildings in the Fukushima Daiichi Power Plant, a total of six
missions were conducted with Quince 1 (Table 1). Furthermore, many practice tests
were performed in the reactor building of unit 5, which was not seriously damaged.
In this section, we report the missions conducted in the damaged reactor buildings.

2.1 The First Mission on June 24, 2011

The first mission of Quince 1 was conducted on June 24, 2011, at the reactor build-
ing of unit 2. The objective of the mission was to install a water level gauge into
the contaminated water pool on the basement floor. At that time, water had been
continuously injected into the primary pressure vessels to cool down the fuel core,
and the injected water had accumulated in the basement floor. An urgent mission
was required to survey the status of the contaminated water pool because there was
a possibility that the contaminated water could overflow and spill into the sea. To
conduct this mission, Quince 1 was fully equipped with a crane, a winch, and a water
level gauge.

Quince 1 attempted to descend the staircase and reached the first stair landing.
However, the size of the landing was much narrower than what had been commu-
nicated to us in advance by TEPCO. In the building, there were multiple staircases
to the basement floor, and Quince 1 attempted to descend two of them. However, it
was impossible to navigate the landings of the first set of stairs. Ultimately, Quince
1 was unable to accomplish the objective of the first mission.
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2.2 The Second Mission on July 8, 2011

The second mission was conducted on July 8, 2011, at the reactor building of unit
2 [3, 6]. The objectives of this mission were to measure the radiation levels of the
upper floors and to sample air dust in the building. Quince 1 was equipped with
two timer-triggered air pumps for this task. The crane and the winch were removed
because they were not required for this mission.

Quince 1 climbed up the staircase and reached the third floor. During this motion,
the air dust samplers were activated at the second and third floors. However, on
the way back to the entry point, the motor driver boards mounted on Quince 1
encountered problems because the air temperature inside the building was extremely
high. The problems were successfully resolved by sending low level commands to
the motor driver boards instructing them to reboot. Finally, the robot returned to
the entry point, and the second mission, which included the air sampling and dose
measurement tasks, was completed. However, it had not been far from being a failure.

2.3 The Third Mission on July 26, 2011

The third mission was conducted on July 26, 2011 [3], at the reactor building of unit
3, which was heavily damaged by an explosion. The objectives of this mission were
to investigate the damaged piping of the core spray system and to measure the dose
levels around the facility. In the event that the damage was minimal, it may have
been possible to re-activate the spray system to cool down the reactor core directly,
instead of using the reactor feed water system.

Quince 1 climbed up the staircase and reached the second floor. Then it approached
the target piping and captured high-resolution photographs of the target facilities.
After that, Quince 1 tried to climb up the staircase to the third floor, but found that
the staircase was damaged and blocked with rubble.

Figure 1 shows the high-resolution photographs captured by the wide-angle cam-
era on Quince 1. The left photograph shows the piping of the core spray system,
which was located next to the primary containment vessel. The right photograph is
of the staircase to the third floor, showing the rubble blocking the staircase.

Based on the exploration results, the restoration process was planned and the core
spray system was re-activated on September 1, 2011 [3, 7].

2.4 The Fourth and Fifth Missions on September 22 and 24, 2011

The fourth and fifth missions were conducted on September 22 and 24, 2011, respec-
tively. The objectives of these missions were to inspect the first floor of the reactor
buildings of units 2 and 3. The missions were a part of the preparation for the project
to investigate inside the primary containment vessel using a borescope. Quince 1
explored the target area, obtained many photographs, and measured the dose rate.
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Fig. 1 High-resolution photos captured in the reactor building of unit 3. The left shows the piping
of the core spray system and the right shows the rubble blocking the staircase to the third floor

2.5 The Sixth Mission on October 20, 2011

The sixth mission was conducted on October 20, 2011, at the reactor building of
unit 2. The objectives of the mission were to investigate the damage to the the
facility on the third floor and to inspect the spent fuel pool on the fifth floor. Air
temperature measurements were also a part of tasks performed during this mission,
and a conventional thermometer was placed on Quince 1 within the range of vision
of a spare camera on Quince 1. The camera image was displayed on the operator
console.

Quince 1 climbed up the staircase and reached the third floor. Then, it approached
the target facility and captured some photographs. After that, it explored the third floor
to measure the radiation level, and climbed up the staircase to the fifth floor. On the
fifth floor, it opened a metal accordion curtain with its sub tracks and approached the
lid of the primary containment vessel. It measured the radiation level and temperature
in the immediate vicinity and took photographs. The dosimeter display showed very
high radiation levels (over 200 mSv/h) around the lid.

After inspection of the fifth floor, Quince 1 returned to the entry point. However,
the communication cable was caught on piping on the third floor. At the same time, the
cable had become jammed in the cable reel because the cable had been continuously
rewound from the fifth floor. As a result, the communication cable could not be
rewound or be released. Eventually, communication cable was lost and Quince 1
remains there up to the present.
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3 Lessons Learned from the Missions of Quince 1

As shown in Sect. 2, the missions completed by Quince 1 contributed significantly
to recovery work at the plant. Especially, its mobility and clear camera images were
highly evaluated. Quince was the only robot which can climb up the staircases and
explore the upper floors. Furthermore, its mobility on rough terrain was very impor-
tant because there were number of obstacles such as steps, dikes, cables and debris.
Still images captured by Quince are very clear and high-resolution (2048 × 1536
pixels). Therefore, Quince was chosen out of other robots for the missions on
September 2011, even the targets were on the first floors of the buildings.

Aside from these advantages, the following problems were encountered.
Communication cable The most significant problem was with the communication

cable. The cable rewinding device did not function properly toward the end of the
sixth mission., and eventually failed causing us to abandon Quince 1 on the site. In
our initial implementation of Quince, the ability to make preemptive moves was the
first priority. Furthermore, we supposed that the communication cable would have
been replaced after each mission, so no rewinding function was installed in the early
stages of the project to redesign Quince. However, to enable the switch-back motion
of the robot in narrow environments, we added an ad hoc rewinding function, which
did not have the ability to wind the cable evenly. Therefore, we specified that it should
not be used to rewind cables longer than 20 m. In practice, the device worked much
better than we had expected, and at times rewound over 200 m of cable in trial runs.
Therefore, during the real missions, longer cable exceeding 20 m was rewound.

Unknown environment In the information received from TEPCO, the the staircase
landing down to the basement was reported to 91 cm wide. We built a mock envi-
ronment in our laboratory using these dimensions, and tested Quince 1 in the mock
environment. However, the actual width was 71 cm, and this prevented us from real-
izing the objectives of the first mission. The data received from TEPCO was based on
the construction drawings of the building, but repeated modification to the structure
of the building reduced the width of the staircase landing. However, all information
pertaining to the re-construction had been washed away by the tsunami.

Carrying method Quince 1 was carried on a stretcher or by manually holding each
of the sub tracks. A stretcher could not always be used because of the narrow corners
en route to the entry point. After the mission in the reactor building, contaminated
dust was stuck on the tracks of Quince 1. When the operators held the sub tracks to
transport Quince 1, they became exposed to the radiation source from a very close
range.

Additional components The request to sample air particles in the reactor building
was requested after Quince 1 had been delivered to the site. The mission was con-
ducted with two timer-driven pumps attached on Quince 1. The timer had to allow a
delay time to ensure the robot’s arrival at the requested position. This increased the
duration of the mission. Furthermore, air temperature measurements were requested
for the sixth mission. To do this, a conventional thermometer was attached to Quince 1
within the range of vision of a spare camera. The temperature value was recorded
by capturing the screen of the operator console.
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These additional functions were not requested until after Quince 1 had been
redesigned in our laboratory.

Environment conditions not covered by prior tests Two extreme conditions that
were not covered in our laboratory tests were encountered in the missions: strong
illumination and high temperature.

The radiation level was displayed on a small screen on the dosimeter, and a small
camera captured the screen image and transmitted it to the operator. The screen was a
raster scan device. In the reactor building, the only external light was that on Quince
1, and the dosimeter’s screen was captured by the camera without any problems.
However, in locations that received direct sunlight, e.g., the carry-in-entrance and a
location near the blow out panel, the shutter speed of the camera became very fast,
and the camera was unable to capture a full frame of the screen on the dosimeter.

In the second mission in the reactor building of unit 2, the air temperature around
Quince 1 was very high. The main motor driver overheated and the temperature
exceeded its safety limit (50 ◦C). As a result, the main motor driver was shutdown
temporarily. The driver was recovered by remotely sending reset commands, and
eventually, Quince 1 returned to the entry point. After the mission, the threshold
temperature for shutting down the driver was changed to 80 ◦C. However, it was
difficult to foresee this situation.

4 Enhancements for the New Versions of Quince

The sixth mission was the final mission for Quince 1, as it was left on the third floor
of the reactor building unit 2. TEPCO still required a robotic surveillance system
that covers extensive areas (particularly upper floors) in the building. Therefore,
we prepared two new versions of Quince robots: Quince 2 and Quince 3 (Fig. 2).
We redesigned the robot to resolve critical issues encountered in the missions of
Quince 1. The enhancements over Quince 1 are as follows:

Fig. 2 New versions of
Quince. The image on the
right is Quince 2, which is
equipped with an air dust
sampler and the image on
the left is Quince 3, which is
equipped with laser scanners
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• Detachable carrying handles
After surveillance missions, the robot may be contaminated by radioactive materi-
als. To carry the robot with minimum radiation exposure to workers, we installed
detachable carrying handles to the robot body.

• USB thermometer and hydrogen meter
To digitally record air temperature and hydrogen concentration values, we mounted
a USB thermometer and a hydrogen meter on both of the robots.

• Enclosed dosimeter
To prevent difficulties in recording reading from dosimeter, we put the dosimeter
and a small camera into an opaque box for protection from direct sunlight.

• Remote-controlled air pump
We mounted a remote-controlled air pump for the air dust sampling mission on
Quince 2. This was considered as standard equipment.

• Laser range scanner
To obtain details of the target environment, we mounted laser range scanners on
Quince 3. More information about the scanner is included in previously published
papers [4, 8].

• Cable rewinding device
• Backup robot system
• Improvement of the operator console.

The last three enhancements mentioned above are described in detail in the fol-
lowing subsections.

4.1 Cable Rewinding Device

The simple cable rewinding device present on Quince 1 encounters difficulties while
rewinding long cables. This is because it does not have the capability to wind the
cable evenly. Figure 3 shows the simple rewinding device on Quince 1. The cable
is pulled and reeled out passively as Quince 1 moves, and it is rewound by rotating
the cable guide by the motor. If the unreeled cable is too long, the rewound cable
accumulates on the upper part of the reel. This is because the end of the cable guide
arm is aligned at the top of the reel. The robot motion may shake the reel, causing
the rewound cable to fall and become jammed. In this case, the reel would no longer
be able to release the cable.

The revised Quince models are equipped with a new cable handling device
redesigned to avoid the above problem. Features of the device are as follows:

• The cable is rewound evenly on the reel,
• It can handle about 500 m of cable continuously,
• An operator wearing thick gloves can easily change the cable reel,
• The ability to automatically release and rewind is included, and
• It has the mechanical compliance to respond to a sudden change of cable tension.
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Fig. 3 A cable rewinding
device on Quince 1. When
the cable is pulled as Quince
1 moves, the cable guide
rotates passively and releases
the cable. When the operator
instructs the device to rewind
the cable, the guide is driven
by the motor to rotate in the
reverse direction, and the
cable is rewound

Fig. 4 Cable rewinding mod-
ule on the reel. The module
is driven by a motor located
inside the reel. As it rotates
around the reel, the cable
guide swings up and down
to evenly wind the cable

Figure 4 shows the new cable rewinding device. A motor rotates the cable rewind-
ing module, which is shown in the upper part of the right figure, around the reel to
wind the cable. While the module rotates around the reel, the cable guide arm is
swung up and down to evenly wind the cable around the reel. One of the advantages
of the system is that the module can be easily detached, so an operator wearing thick
gloves can effortlessly change the cable reel.

To incorporate the automatic release and rewind functions, we implemented a
tension control mechanism. Figure 5 shows the mechanism. The tension in the cable
pulls down the upper arm that is supported by a spring located at the root. Thus, we
can measure the cable tension by measuring the angle θ . By controlling the cable
rewinding motor to keep the angle θ constant, the cable will be released or rewound
as the robot moves.

To evaluate the new device, we conducted some tests in our mock field, and we
identified two problems with the constant-tension control of the cable.

One problem was the difficulty with cable release in case of obstacles. When
the cable was obstructed by obstacles, it was difficult for it to be released, because
a constant-tension control of the cable was specified. To solve this problem, we
installed a “no rewinding mode.” In this mode, the tension control mechanism is
disabled and the tension in the cable is lowered. This increases the possibility that
the cable will be released from the obstacle. In this mode, when the cable is pulled,
it releases the cable to prevent damaging it.



Improvements to the Rescue Robot Quince 29

Fig. 5 Redesigned cable
handling device. Tension in
the cable can be measured
by measuring the angle θ ,
and, by controlling the angle
constant, the cable will be
either released or rewound

The other problem was due to loosening of the cable after it is caught by obstacles
and then released quickly. In such cases, excessive amount of the cable was loosened
and lay on the ground for a while. The loosened cable may be run over by the robot
while moving backwards. To avoid this situation, the robot should wait until the
proper cable tension has been recovered. Therefore, we implemented an alert icon
system and tension meter display on the console, which gives a warning to the
operator about any abnormal status of the cable.

4.2 Backup Robot System

With Quince 1, there was no communication redundancy, and only one cable failure
resulted in loss of the robot. Therefore, to handle such situations involving cable
failure, we implemented a backup communication function on a secondary robot
to restore the data link of the primary robot using a wireless communication link
between the primary and secondary robots.

Figure 6 shows the structure of the backup robot system. Both robots possess
a VDSL cable communication system and a 802.11 g wireless LAN system. The
primary robot conducts the mission using the cable communication system. If the
cable fails, the backup robot is directed to the location, and it approaches the primary
robot until a wireless connection is established between the two robots. Then, the
data link to the primary robot is restored via the cable communication system of the
second robot and the wireless connection between the robots.

For this system, the requirement is simply to mount a wireless transceiver device
on both robots. While this was easily implemented, it significantly improved our
ability to help stuck robots. Additionally, Quince 2 can function as both a primary
and a backup robot, depending to the mission.

The Quince robot has four small cameras and two wide-angle view IP cameras.
Images from these cameras are encoded in the MJPEG format and transmitted to the
operator console. The VDSL modem on Quince (ABiLINX 1511) has a bandwidth
of around 25 Mbps with a 500 m long thin cable. Since multiple video streams are
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Fig. 6 Use of a secondary
robot to restore the data link
to the primary robot. The data
link would be restored using
the cable communication
system of the backup robot
and a wireless link between
the two robots
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transmitted over the data link with limited bandwidth, we allocated an optimal band-
width for each video stream depending on its contents. However, when the cable
of the primary robot dies and the backup robot restores the data link, the required
bandwidth of the data stream doubles. and the actual data flow may exceed the
bandwidth capability. Therefore, we setup two communication modes: the primary
mission mode, in which each robot can use a bandwidth of up to 20 Mbps, and the
emergency communication mode, in which each robot can use a bandwidth of up to
8 Mbps.

Switching between these communication modes is done by just a few clicks.
Therefore, switching from the primary mission mode to the emergency communi-
cation mode can be done easily in a real mission.

4.3 Improvement of the Operator Console

The operator console screen of Quince 1 displayed camera images, the robot’s pos-
ture, battery voltage, and motor driver temperatures. The operators used a gamepad
to assign the speeds for the motors of the main and sub tracks. Furthermore, there
were two buttons on the console screen that could be used to instruct the sub tracks
to take a predefined postures.

The new operator console was improved to consider the feedback given by the
operators of the missions conducted by Quince 1. Figure 7 shows the new console
screen. The major improvements in response to the feedback were as follows:

The amount of cable remaining should be displayed.

A reel counter is implemented and the value is displayed on the screen.

Abnormal conditions should be signaled.

In the case where abnormal conditions are detected, flashing alert icons will
be displayed over the camera image. The conditions include low battery, short
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Fig. 7 Improved operator console screen for Quince 2. Status indicators for information such as
the amount of cable remaining, temperature, and wireless signal strength, and some alert signals
were added

length of cable remaining, low cable tension, and abnormal inclination of the
robot.

Commanding sub tracks to take predefined posture should easily be activated

This function was assigned to the gamepad buttons for quick activation.

In addition to the above improvements, we added indicators displaying read-
ings from the newly added components such as sensors for temperature, humidity,
wireless signal strength, and cable tension.

5 Summary

Quince 1 was a rescue robot developed to perform surveillance missions in the
damaged reactor buildings in the Fukushima Daiichi Reactor Power Plant, and it
conducted six missions. The results of the missions significantly contributed to
the restoration of the site. However, several issues were identified during the mis-
sions. These included the reliability of the communication cable handling device,
the method for transporting the contaminated robot, and other problems encoun-
tered in the extreme environmental conditions that were not covered by tests in our
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laboratory environments. In the sixth mission, the communication cable failed and
Quince 1 was left on the third floor of the reactor building of unit 2.

TEPCO has requested modified Quince robots, so we upgraded the robots to
resolve the critical issues. The upgraded robots were recently completed and deliv-
ered to TEPCO in February 2012. We hope that these robots will contribute to the
project aimed at recovering from the Fukushima Daiichi Nuclear Power Plant dis-
aster.
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Abstract We report recent results from field experiments conducted with a team of
ground and aerial robots toward the collaborative mapping of an earthquake damaged
building. The goal of the experimental exercise is the generation of 3D maps that
capture the layout of the environment and provide insight to the degree of damage
inside the building. The experiments take place in the top three floors of a structurally
compromised engineering building at Tohoku University in Sendai, Japan that was
damaged during the 2011 Tohoku earthquake. We provide details of the approach
to the collaborative mapping and report results from the experiments in the form of
maps generated by the individual robots and as a team. We conclude by discussing
observations from the experiments and future research topics.

1 Introduction

In this work we report recent results from field experiments conducted with a team
of ground and aerial robots toward the mapping of an earthquake damaged building.
We focus on the investigation of the feasibility of deploying aerial robots, specifi-
cally a quadrotor, into disaster scenarios where the building is critically damaged but
still accessible to robots and humans for experimental purposes. The experimental
environment covered the top three floors of an engineering building on the campus
of Tohoku University in Sendai, Japan during the first week of August, 2011. Repre-
sentative images of the interior and exterior of the building are shown in Figs. 1, 2.

On March 11, 2011, a 9.0-magnitude earthquake (on the moment magnitude
scale) occurred off the coast of Japan, approximately 130 km from Sendai [1]. The
consequences of the earthquake were devastating with significant loss of human life
and damage to the environment. Resulting tsunami waves generated further damage
and instigated a meltdown at a nuclear power plant near Fukushima, Japan [2].

Fig. 1 Panoramic images depicting the interior of the building. These images are representative
of the clutter found throughout the experimental areas
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Fig. 2 The building suffered significant structural damage due to the earthquake

Several robotics research groups and companies responded to this natural and
nuclear plant disaster [3, 4]. Ground robots with onboard sensing enabled environ-
mental observation of the compromised nuclear power plants in regions inaccessible
to humans due to high levels of radioactivity. The ground robots were equipped with
long-range cable tethers to enable remote communication, tele-operation, and the
transmission of sensor data. These ground robots proved capable in maneuvering
through the cluttered environments [5].

We are interested in exploring the possibility of leveraging an autonomous quadro-
tor in such environments through field experiments that focus on cooperative map-
ping using both ground and aerial robots. Aerial robots offer several advantages over
ground robots including the ability to maneuver through complex three-dimensional
environments and gather data from vantages inaccessible to ground robots. Further,
quadrotors are able to hover in place, making them well-suited for observation and
human-guided or autonomous inspection. However, aerial robots also suffer from
several limitations that reduce their applicability in disaster scenarios such as the
need for wireless communication and a limited onboard power supply which restricts
the platform’s payload capacity and flying time.

Given the prior experience of using ground robots at the nuclear power plant
disaster site, we designed the experimental scenario based on conditions consistent
with those found at the disaster site. Consider an earthquake damaged building with
multiple floors that are generally accessible to ground robots. However, various
locations in the environment are inaccessible to the ground robots due to debris or
clutter. The goal of the experimental exercise is the generation of 3D maps that
capture the layout of the environment and provide insight to the degree of damage
inside the building. Additionally, there may be specific regions of interest that require
attention from operators during the mapping. Throughout the experiments, remote
operators must be able to maintain control of the robotics platforms on the ground
and in the air.

The experiment design highlights the need for heterogeneity. Ground robots do
not suffer as greatly from the same payload limitations as quadrotors and are there-
fore able to carry larger sensor payloads, maintain tethered communication links,
and operate for longer periods of time. However, quadrotors provide mobility and
observational capabilities unavailable to ground robots. Hence, to build a rich 3D
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representation of the environment, we leverage the advantages of each platform and
in doing so, mitigate the platform limitations.

The problems of localization and mapping in 3D environments are well-studied
for both ground and aerial robots and many methodologies exist to address these
problems. In this work, we focus primarily on the integration of our prior work in
the areas of localization and mapping for ground and aerial robots. However, there
are several examples of prior works employing similar methodologies to our own
approach for either ground or aerial platforms [6, 7] including cooperative map-
ping with ground and aerial platforms [8, 9]. Researchers have also pursued the
mapping of complex environments for applications such as search and rescue via
ground and aerial platforms [10–12]. Therefore, the contributions of this work are
three-fold. First, it experimentally supports the argument that the mapping of com-
plex multi-story environments with ground and aerial robots in disaster scenarios is
viable (or nearly viable) given the current state-of-the-art in vehicle design, sensors,
computation, and algorithms. Second, it supports the statement that the strengths and
weaknesses of individual robot platforms may be overcome by employing hetero-
geneity in system design. Third, it provides insight into the gap between the current
technological capabilities and the remaining challenges we must overcome toward
application in true disaster scenarios.

2 Experiment Design and Methodology

To address the requirements of the experimental scenario, we use three different
research platforms. The first platform is a ground robot equipped with an onboard
sensing suite that enables the generation of dense 3D maps. The vehicle is tele-
operated through the multi-floor environment while simultaneously collecting sensor
data. After the operators identify locations in the environment that are inaccessible
to the ground platform, a second ground platform equipped with an automated heli-
pad is tele-operated to these locations and carries a quadrotor robot equipped with
onboard sensing that is able to autonomously open and close the helipad and take-off
and land from the helipad (Fig. 3). The aerial robot is physically transported by the
ground robot to each location of interest where it autonomously takes-off before
an operator is able to guide the robot to map or observe these inaccessible regions.
Upon completion of the mapping and observation phase, the aerial robot is remotely
signaled to autonomously land and close the helipad. The quadrotor is then guided
to the next location of interest via the tele-operated ground robot.

The experiment primarily focuses on the problems of localization and coopera-
tive mapping in 3D environments with ground and aerial robots. In this work, we
do not emphasize vehicle autonomy as the experiments required that the operators
tele-operate the vehicles. We discuss this requirement further in Sect. 4. During the
experiments, tele-operation is conducted over wireless communication. However,
we assume that in a disaster scenario, the ground vehicles will communicate with
an external operator via a tether as currently employed at the Fukushima site [4].
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Fig. 3 The Quince ground platform carries the Pelican aerial robot via a landing pad. The aerial
robot opens and closes the landing pad via a wireless interface during autonomous take-off and
landing

Communications with the aerial robot are via a local access point carried by the
ground robot.

In this work, we leverage our previous efforts in the areas of ground robot design
[13], sensor design for 3D map building [14], and ground robot tele-operation [15]
toward mapping with ground robots [16–18]. Additionally, we build upon prior work
towards autonomous navigation and 3D mapping with an aerial robot [19, 20].

2.1 Robot Platforms

As previously discussed, we employ three robot platforms for this work: two tracked
ground platforms (Kenaf and Quince) and a quadrotor (Pelican). We now briefly
detail each platform.

2.1.1 Ground Robots

The Kenaf is a tracked ground platform with an onboard rotating laser-scanner that
provides feature-rich 3D point clouds of the environment (Fig. 4). The laser scanner

Fig. 4 The three robots used in the experiments include the Kenaf (Fig. 4a) and Quince (Fig. 4b)
tracked ground robots. Here we see the Quince transporting the Pelican between discrete sites of
interest via the landing pad



38 N. Michael et al.

on the Kenaf operates at 40 Hz and rotates about the vehicle body-frame at 0.2 Hz.
All laser scans from one revolution are assembled into a 3D point-cloud aligned with
the robot body-frame origin. Further details of the platform and 3D laser scanner are
available in [14, 17] and [18], respectively. The Quince platform (detailed in [13],
Fig. 4b) shares a similar tracked design. Both platforms provide odometry and IMU
information and are equipped with stabilizing tracked arms that permit climbing
stairs and navigating clutter- or debris-filled environments.

The Kenaf and Quince provide visual information for the tele-operation of the
vehicle including camera imagery of the surrounding environment during operation.
We process any additional sensory information from the Kenaf and Quince off-board.

For this work, we equipped the Quince with a landing pad that opens and closes via
a remote signal transmitted over an 802.15.4 wireless interface. The landing pad is
equipped with an actuated pair of foam-lined arms that open and close via this remote
signal. During the experiments, the aerial robot signals the opening and closing of
the arms. The arms grip the base of the aerial robot via the compression of the dense
foam lining, keeping the aerial robot firmly in position when it is transported by the
Quince. Additionally, the foam helps absorb vibrational or impulse forces on the
vehicle due to the Quince going over rough terrain and steps (Fig. 3).

2.1.2 Aerial Robot

The Pelican quadrotor robot platform is sold by Ascending Technologies, GmbH [21]
and is equipped with an IMU (accelerometer, gyroscope, magnetometer) and pressure
sensor. We developed custom firmware to run at the embedded level to address
feedback control and estimation requirements. The other computation unit onboard
is a 1.6 GHz Atom processor with 1 GB of RAM. The sensors on the robot include
a Hokuyo UTM-30LX (laser), and a Microsoft Kinect (RGB-D sensor). A custom
3D printed mount is attached to the laser that houses mirrors pointing upward and
downward. Communication with the robot for monitoring experiment progress and
remote tele-operation is via an 802.11n access point mounted on the Quince.

Unlike the ground robots, the aerial robot requires some degree of onboard auton-
omy to permit autonomous navigation, take-off, and landing. Therefore, the vehicle

Fig. 5 The aerial robot flies through cluttered regions of the environment that are inaccessible to
the ground robot and builds a 3D map that will be merged with the maps made by the ground robot
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must be able to localize its position based on the current environment map and address
the planning and control considerations required to permit autonomous navigation,
take-off, and landing during experimentation (Fig. 5). The details of the algorithms
employed to enable these capabilities are provided in [19, 20]. Figure 8 depicts a
representative 3D map generated online during the experiments that is transmitted
to the operator and used for autonomous navigation.

For this work, we require some degree of operator control to permit tele-operation
of the vehicle. However, the complexity of the environment and the fact that the
operator frequently did not have line-of-sight vision of the vehicle prevented full
manual control of the vehicle. Therefore, we provided a “semi-autonomous” mode
which permitted the operator to control the vehicle as a kinematic point-model agent
or via waypoint control in the current map. Hence, at any moment, the operator could
transition between full-autonomy and semi-autonomy to permit closer inspection of
a location of interest or override the current behavior of the vehicle.

For this work, the autonomous take-off and landing is based on the originat-
ing position of the aerial robot in the current map. Therefore, we required that the
Quince not move while the Pelican was flying. Although the autonomous landing
maneuver was feed-forward in the sense that it did not observe the platform while
landing, we found that the vehicle was able to land without issue in general. How-
ever, the autonomous landing maneuver also included a recovery phase should the
vehicle detect that it did not successfully land on the platform. This lack of addi-
tional feedback information was primarily due to the short time-frame in which
these experiments needed to be conducted prior to the experimental site becoming
unavailable.

2.2 Map Generation and Merging

We now briefly describe the methods used to generate the 3D maps during the exper-
iment. The experiment consisted of two phases. During the first phase, we tele-
operated the Kenaf across the three stories of the building and collected sensor data
for 3D map generation. We also identified locations inaccessible to the vehicle (six
in total). After completing the first mapping phase, the Quince carried the Pelican
to the six locations across the three stories of the building to further extend the map.
The maps are generated using a sparse 3D voxel grid representation with a 10 cm
resolution [22].

2.2.1 Kenaf

We used two methods to generate 3D maps via the Kenaf sensor data. The first
approach uses a 3D iterative closest point (ICP) algorithm to determine incremental
body-frame transformations. Details of map generation via this method are discussed
in [17]. However, as noted in our prior work, 3D ICP can converge to poor alignment
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Fig. 6 The 3D rotating laser scanner on the Kenaf generates feature-rich 3D point clouds. Here we
show the full output from a single revolution of the scanner

(a)

(b)

Fig. 7 The 2D occupancy grid map (Fig. 7a) and 3D point-cloud map (Fig. 7b) of the 7th floor
generated via the Kenaf sensor data

solutions. We found that when the vehicle was operating on a level z-plane (i.e. not
in a stairwell), we could yield a more robust mapping solution by employing the
methods discussed in [19] which requires the assumption that the environment is
generally described by flat planes and vertical walls (the 2.5D assumption).

For this approach, map corrections are done on a per-revolution basis with the
assumption that the odometry error within one revolution is sufficiently small and
the assembled point-cloud is accurate. Error in yaw is also corrected using IMU
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information. Figure 6 shows a typical point-cloud output from one revolution. The
point-cloud is down-sampled via a voxel grid filter, from which we generate a 2D
point-cloud by choosing all samples at a fixed z-height. We compute SLAM correc-
tions from this 2D point-cloud and odometry data via the methods detailed in [19] to
yield corrected robot poses. These corrected poses are used with the 3D point-clouds
to generate globally consistent 3D maps of the environment (Fig. 7a) along with 2D
occupancy grid maps resulting from the 2.5D assumption (Fig. 7b). In general, we
applied the second method when operating on level terrain and only reached for 3D
ICP-based SLAM methods when operating in the stairwell regions.

2.2.2 Pelican

As previously noted the Pelican generates a 3D map online during autonomous flight
following the methodology detailed in [19]. Unlike the Kenaf, the Pelican collects
data at discrete locations in the environment with the origin associated with the take-
off location as visited by the Quince. In a manner similar to above, we generate a
3D point-cloud and a 2D occupancy grid map associated with each take-off location.
Figure 8 depicts a representative visualization of the sensor data and generated maps.
These maps are merged with the Kenaf maps from the previous section to form a
complete 3D representation of the environment.

2.2.3 Merging Ground and Aerial Robot Maps

We begin by registering the two types of maps (the Kenaf and Pelican maps) via an
initialization point near the known take-off location of the Pelican, as the Quince
visits locations defined in the Kenaf map. Further refinement between the two maps
is accomplished via ICP [17, 18]. This approach is applied for each of the rooms
visited by the Pelican (Fig. 9).

Fig. 8 A representative 3D
map generated by the aer-
ial vehicle during flight. A
2D occupancy grid map is
also generated at all times.
The vehicle and its path are
shown as a red mesh and line,
respectively
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Fig. 9 Merging the Kenaf and Pelican maps. The map generated by the Kenaf is shown on the left
while the extended map via the Pelican observations along with the Quince and Pelican trajectories
(red and black, respectively) are shown on the right

3 Results

As previously noted, the goal of this work is the generation of 3D maps that capture the
layout of the environment and provide insight to the degree of damage inside a multi-
story building. In Figs. 10, 11 we provide full 2D and 3D maps of the 7th–9th floors
of the building. We can clearly see features in the environment, such as the structural
braces placed on the 8th floor (Fig. 11d) to prevent further structural collapse and
the locations on the 9th floor (Fig. 10c) where the walls caved out of the building,
leaving large openings. In Fig. 12, we show the 3D map for the stairwell between the
7th and 8th floors at various z-height levels.

The experiment lasted a total of 2.5 hours with the Kenaf first generating a 3D map
via tele-operation followed by the Quince carrying the Pelican to discrete locations.
It is worth noting that while the flight-time of the Pelican in confined environments
can be as low as 5 min, we only needed to replace the battery in the vehicle twice
due to our use of the aerial robot only when necessary for map extension. Although
our Pelican can traverse hallways and stairwells autonomously (as shown in [19]),
we conserved the battery power whenever possible by employing the Quince.

4 Discussion, Conclusion, and Areas for Future Work

The original experiments were intended to occur over several days but we found that
we were able to complete the full exercise in one afternoon without any failures.
While the fact that we were able to map a multi-story building with a heterogeneous
team of robots without any significant issues or failures is an encouraging argument
that the technological level is close to applicable in real scenarios, there are still some
fundamental challenges left to be addressed.

We must first acknowledge that the environment was modified prior to our entry in
that it was cleaned of any hazardous materials and structural reinforcements were in
place to prevent further building collapse. For this reason, one should be cautious to
state that our experiments are completely representative of an earthquake damaged
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(a)

(b)

(c)

Fig. 10 The 2D occupancy grid maps generated during the experiment of the 7th, 8th, and 9th
stories of the Tohoku University Electrical Engineering Building. The contributions to the map
made by the Kenaf are shown in yellow with an overlay of the contributions made by the Pelican
in green. The path of the Quince is shown in red while the trajectory followed by the Pelican is
depicted in blue. The path of the Kenaf is not shown, a 7th Floor b 8th floor c 9th Floor

building. However, the environment still possessed similar attributes to what one
would expect: fallen beams, dust and debris throughout the interior, water pools
where rain freely entered the building, wires hanging from the ceiling, and personal
affects and furniture in disarray. Indeed, loose wall and ceiling materials were of
concern for both the ground and aerial robots due to the possibility of breaking the
vehicles. Many of the windows and walls were compromised, yielding inconsistent
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 The 3D voxel grid maps generated during the experiment. The map resulting from the
Kenaf sensor data is shown on the left while the merged maps resulting from both the Kenaf and
Pelican sensor data are shown on the right, a 7th floor - Kenaf b 7th floor - Kenaf and Pelican,
c 7–8th floor - Kenaf, d 7–8th floor - Kenaf and Pelican, e 7–9th floor - Kenaf, f 7–9th Floor - Kenaf
and Pelican

air flow that impacted the aerial robot’s flight performance. Additionally, some of the
debris and clutter proved to test the 2.5D assumption employed by the aerial robot
to simplify the localization problem and permit real-time performance. Hence, we
were not able to use the aerial robot in all locations that were inaccessible to the
ground robot (Fig. 9).

The 3D voxel grid-based maps resulting from this work provide insight into the
building layout and structural information but may be too coarse to be of practical
use in real search and rescue applications. Recent progress in the area of dense
3D mapping suggests that high fidelity maps suitable for real search and rescue
applications are achievable using laser and RGB-D sensors [23, 24]. Further, these
richer 3D maps can be generated offline or on an external system as they are not
required to enable the individual vehicle autonomy. Thus, the major constraint is the
communication bandwidth required to transfer the data between aerial and ground
vehicles and the base station. In this work, we consider a tethered ground robot
with an aerial vehicle operating in close proximity communicating via 802.11n.
Therefore, we believe that given the proposed heterogeneous team, such rich 3D
maps are feasible following the implementation methods proposed in [23, 24].
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Fig. 12 The 3D map generated for the stairwell traversed by the vehicles between the 7th and 8th
floors showing various z-height levels of detail along with the trajectory followed by the Quince
robot

In addition to the platform or algorithmic limitations, an interesting consideration
that arose in this work is the role of autonomy for aerial robots in search and rescue.
We found that tele-operation of an aerial robot can be quite challenging in complex
and confined environments, particularly when the operator does not have direct line-
of-sight and debris is interacting with the vehicle. An autonomous vehicle may be
able to sense and locally avoid those external interactions and preserve stable flight
while a tele-operated system may not yield the same result. We found this to be the
case at several points during our experimentation when the operator failed to navigate
the vehicle through tightly confined spaces but the fully autonomous vehicle was able
to find a path and autonomously navigate through the confined space.

From these statements, one may conclude that the areas that require the greatest
attention in the future do not lie at the core problems of localization and mapping
but more at the boundaries of these problems including the interfaces between the
operators and the vehicles and vehicles and the environment. We require a better
understanding of the appropriate methods to permit operators to interact with aer-
ial robots in complex and confined environments such as those found in this work.
Additionally, we must design aerial vehicles to be more robust to debris in the envi-
ronment. In this work, we did not notice a significant impact on sensor performance
(laser and RGB-D) due to dust or other airborne obscurants. However, this fact is
likely due to the nature of the building airflow conditions rather than the sensor
robustness, as this is a known concern [25], and should therefore also be considered
when determining platform suitability for real applications.

While there are still issues that must be addressed in the algorithms, these prob-
lems are primarily of pragmatic concern. At present, we require the 2.5D assumption
on the aerial vehicle due to constrained onboard CPU capabilities. As CPUs becom-
ing increasingly capable, we will continue to incorporate more sensor information
and eliminate the need for the 2.5D assumption. We are particularly interested in
eliminating this assumption in the near future as it is a major algorithmic limitation
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for the aerial platform. We are also interested in further experimentation with coop-
erative teams of ground and aerial robots but with multiple ground and aerial robots
operating concurrently as opposed to the sequential phases in this work.
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Three-Dimensional Thermography Mapping
for Mobile Rescue Robots

Keiji Nagatani, Kazuki Otake and Kazuya Yoshida

Abstract In urban search and rescue situations, a 3D map obtained using a 3D range
sensor mounted on a rescue robot is very useful in determining a rescue crew’s strat-
egy. Furthermore, thermal images captured by an infrared camera enable rescue work-
ers to effectively locate victims. The objective of this study is to develop a 3D ther-
mography mapping system using a 3D map and thermal images; this system is to be
mounted on a tele-operated (or autonomous) mobile rescue robot. The proposed sys-
tem enables the operator to understand the shape and temperature of the disaster envi-
ronment at a glance. To realize the proposed system, we developed a 3D laser scanner
comprising a 2D laser scanner, DC motor, and rotary electrical connector. We used a
conventional infrared camera to capture thermal images. To develop a 3D thermogra-
phy map, we integrated the thermal images and the 3D range data using a geometric
method. Furthermore, to enable fast exploration, we propose a method for continuous
thermography mapping while the robot is in motion. This method can be realized by
synchronizing the robot’s position and orientation with the obtained sensing data. The
performance of the system was experimentally evaluated in real-world conditions.
In addition, we extended the proposed method by introducing an improved iterative
closest point (ICP) scan matching algorithm called thermo-ICP, which uses temper-
ature information. In this paper, we report development of (1) a 3D thermography
mapping system and (2) a scan matching method using temperature information.

1 Introduction

Recently, there has been a growing demand for preliminary robotic investigation in
urban search and rescue missions conducted at sites affected by disasters such as
earthquakes or terror attacks. For this purpose, search and rescue robots are being
developed by a number of institutes [1], particularly in Japan [2, 3].
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The important functions of rescue robots are to search for victims and to gather en-
vironmental information. for planning rescue operations. Useful information for the
former function constitutes biological signals such as body temperature and carbon
dioxide, whereas that for the latter function continues images, three-dimensional
(3D) shapes [4], temperature, and gas concentration in the target environment.
In both cases, infrared cameras are indispensable, particularly in dark conditions.
In the 2011 RoboCupRescue competition [5], such cameras mounted on rescue ro-
bots were widely used for identifying simulated victims which have heat sources.
However, the two-dimensional (2D) information captured by the camera makes it
difficult for rescue crews to deduce 3D structures.

Therefore, in this study, we propose a sensor fusion method to integrate a 3D-map
captured by a 3D range scanner with infrared images captured by an infrared camera,
to construct a 3D thermography map. The integration of a 3D map and color images
has been investigated in several studies [6–8]. Recently, some studies on 3D ther-
mography mapping were conducted [9, 10]. However, to the best of our knowledge,
this technology has not been applied to rescue robots thus far. The proposed method
enables rapid mapping for rescue scenarios. To realize map building, the robot ac-
quires environmental information while it is in motion. We installed the proposed
system on a mobile rescue robot testbed called Kenaf in order to verify the validity
of the method.

2 3D Range Scanner

Conventional commercial 3D range scanners are expensive and bulky. Therefore, we
decided to develop a small, light weight 3D range scanner for this study. In general,
a 3D range scanner is realized by rotating a conventional 2D laser range scanner.
We adopted this method, as described in the following section.

2.1 Hardware

The 3D range scanner that we developed consists of a 2D laser range scanner (UTM-
30LX, HOKUYO Co., Ltd.), DC motor (RE25, Maxon Motor), and rotary connector
(Model630, Mercotac). A schematic of the scanner is shown in Fig. 1 (left).

The 2D scanner is attached to a rotating table at a certain angle, β. Thus, the
scanning surface of the 2D scanner is inclined to the rotating surface of the table,
so that 3D environment information is obtained by rotating the table [11]. At the
rotation axis of the table, we installed a rotary electrical connector that having a
mercury contact. Therefore, the table with the 2D scanner can rotate freely without
causing the cables to twist. The rotation speed of the table can be increased up to
180 rpm, and frequency 3D range scanning can be performed using this device.
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Fig. 1 3D scanner (left) and coordinate system (right)

2.2 Geometric Model

Here, we introduce the geometric model of the 3D range scanner, as shown in Fig. 1
(right). Let us assume that the coordination system

∑
L is attached to the 2D scanner.

The origin O ◦ of the coordinate is located at the center of the scanning surface, the
x-axis X ◦ corresponds to the front of the scanner, the z-axis Z ◦ is perpendicular to
the scanning surface, and the y-axis Y ◦ is defined to satisfy the right-handed coordi-
nate system. The coordination system

∑
S is attached to the 3D range scanner, and

the origin O of the coordinate is located at a certain distance above the center of the
rotation table. The x-axis X corresponds to the front of the 3D range scanner, the
z-axis Z corresponds to the rotational axis of the table, and the y-axis Y is defined to
satisfy the right-handed coordinate system. The mounting angle of the 2D scanner
is β, and rotational speed of the table is γ̇. The homogeneous transform matrix S TL

between
∑

L and
∑

S is expressed by:

S T L =
⎧

S RL
S t L

0 1

⎨

(1)

S RL =
⎡

⎣
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

⎤

⎦

⎡

⎣
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

⎤

⎦ (2)

S t L = S RL

⎡

⎣
0
0
L

⎤

⎦ (3)
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where S RL and S t L are the rotation and translation matrices of
∑

L relative to
∑

S ,
and γ and β are rotations around the Z-axis and the Y-axis, respectively. A measured
point Lp relative to

∑
L is expressed by:

Lp =
⎡

⎣

Lpx
Lpy
Lpz

⎤

⎦ =
⎡

⎣
rcosθ
rsinθ

0

⎤

⎦ (4)

where r represents the measured distance, and θ represents the scanning angle.
Finally, the measured point coordinate Sp relative to

∑
S is

Sp = S T L
Lp (5)

⎡

⎣

Spx
Spy
Spz

⎤

⎦ =
⎡

⎣
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

⎤

⎦

⎡

⎣
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

⎤

⎦

⎡

⎣
rcosθ
rsinθ

L

⎤

⎦ . (6)

2.3 Control Architecture

To obtain accurate 3D Cartesian coordinates of sensing points Sp, synchronization
between the scan data and the rotation angle of the table γ is very important. In our
control architecture, we use a synchronizing signal from the 2D scanner, a signal of
the encoder attached to the motor rotating the table, H8S micro control unit (MCU),
and a host PC. Figure 2 shows a conceptual diagram of the synchronization. The 2D
scanner sends 1,081 points of measurement data Lp every 25 ms to the host PC. The
synchronizing digital signal is also generated by the scanner, and it becomes a trigger
for reading the encoder data. We assume that the rotation speed γ̇ is constant, so that
linear interpolation is conducted to obtain γ for each sensory reading.

Fig. 2 Conceptual diagram of synchronization
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3 3D Thermography Mapping System

To construct a 3D thermography map, we need a wide-view infrared image. How-
ever, the view angle of a conventional infrared camera is typically small. For the
purpose of 3D thermography mapping, the camera should be mounted on a rotating
table. Furthermore, we conducted a calibration of the camera’s distortion in order
to integrate a 3D range map and infrared images. Finally, we extended the method
to provide a moving measurement system for mobile robots, as described in this
section.

3.1 Hardware

Ideally, the focal position of the infrared camera and the center of the 3D range
scanner should be the same. Practically, this is impossible, and we should ensure that
they do not occlude each other. Therefore, we place the infrared camera and the 3D
range scanner at different heights, as shown in Fig. 3.

We chose infrared camera module HX0830M2, manufactured by NEC Avio
infrared technologies Co., Ltd. as our target infrared camera. The pixel number of the
camera is 320 (H)×240 (V), and the field of view is 50×37.5∩. To rotate to which
the camera is attached, we chose a smart motor, Dynamixel DX-117, manufactured
by ROBOTIS Inc. By using the camera module and rotating the table from −90 to
90∩, we can obtain a wide infrared image: 50∩ in the vertical field of view and 217.5∩
in the horizontal.

Fig. 3 Kenaf equipped with
3D scanner and infrared
camera
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3.2 Geometric Model

Here, we introduce a method to match a scan point Sp with a pixel in an infrared
image. The coordination system of the scanner system is shown in Fig. 4 (left). Let
us assume that the coordination system

∑
C is attached to a camera. The origin

O ◦◦ of the coordinate is located at the focal position of the camera, the x-axis X ◦◦
corresponds to the optical axis, the z-axis Z ◦◦ corresponds to the vertical coordinate
of the camera, and the y-axis Y ◦◦ is defined to satisfy the right-handed coordinate
system. A scan point Cp represented by

∑
C is calculated by

C p = C T S
Sp, (7)

where CTS is the homogeneous transform between
∑

S and
∑

C . In fact, the positional
relationship W T S between

∑
S and

∑
W (the world coordinate system) is known, and

W TC between
∑

C and
∑

W is calculated by camera position and camera rotating

angle. Therefore, C T S is obtained by the equation

C T S = C T W
W T S (8)

= WT−1
C

W TS (9)

=
⎧

WRT
C −W RT

C
W TC

0 1

⎨ ⎧
WRS

WT S

0 1

⎨

(10)

=
⎧

WRT
C

W RS
W RT

C

(
W T S − W T C

)

0 1

⎨

. (11)

Finally, Eq. (7) is represented by

Cp =
⎧

WRT
C

W RS
WRT

C

(
W T S − W T C

)

0 1

⎨
Sp. (12)

Fig. 4 Coordinate system of thermography mapping system (left) and projection model of the
camera (right)
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In case of exchanging from
∑

W to the robot coordinate system
∑

RS , Eq. (12)
represents a scan point when the robot is motionless. In Sect. 3.4, it will be extended
to the scan point model when the robot is moving.

The next step is to obtain the scan point coordinate on the infrared image. Figure 4
(right) shows the projection model of the camera. The transform from 3D point
Q = (X,Y, Z) to an image point q = (x, y) is conducted by the homogeneous
coordination q̂ = (x, y, 1)T and the equation

ωq̂ = M Q. (13)

M =
⎡

⎣
fx 0 cx

0 fy cy

0 0 1

⎤

⎦ (14)

where M is the internal parameter matrix of the camera, fx and fy represent the
focal lengths, and cx and cy are the offsets of the projection center.

Equation (13) is satisfied only when there is no lens distortion. Practically, distor-
tion calibration of the infrared camera is required, as shown in the next subsection.

3.3 Distortion Calibration of Infrared Camera

To obtain the internal and distortion parameters of the infrared camera, we applied
Zhang’s method [12]. This method requires images of the calibration pattern to be
obtained at different locations. In this study, we used an infrared camera; thus, an
ingenious method was required to obtain clear calibration patterns. Therefore, we
developed a calibration board composed of high-infrared-reflectance aluminum and
low-infrared-reflectance masking tape [13], as shown in Fig. 5 (left). The size of the
board was 300 mm × 400 mm, and its grid size was 50 mm. Based on the above
method, we were able to obtain clear images of the board (see Fig. 5 (right)) when
the surface of the board reflected the sky outside.

Fig. 5 Developed calibration board (left) and obtained image (right)
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3.4 Extension to Moving Measurement System

To enable rapid map building, we extended the thermography mapping method to a
moving measurement system for mobile robots. The method is based on a gyroscope-
based 3D odometry system [14].

Let us assume that
∑

RS is the robot coordinate system when the scanner cap-
tures data, and

∑
RC is the robot coordinate system when the camera captures an

image. The homogeneous transform matrix C T S (to represent
∑

S relative to
∑

C )
is decomposed as

C T S = C TRC
RC TW

W TRS
RS TS, (15)

where RS TS is the homogeneous transform matrix that represents the scanner
coordinate relative to the robot coordinate, and RC TC is the homogeneous trans-
form matrix that represents the camera coordinate relative to the robot coordinate.
WTRS and WTRC are obtained by the 3D odometry system, C TRC and RCTW can be
calculated from RC TC and WTRC . Finally, Cp is obtained by Eq. (7).

3.5 Synchronization Between the Scan Data
and the Odometry Data

Because the sampling time of the odometer is different from that of the scanner, we
applied time stamps to synchronize the scan data and the odometry data. To achieve
precise synchronization, we applied a linear interpolation of the odometry data. The
details are explained in [14].

Fig. 6 Setup of the basic experiment (left) and the mapping result (right)
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3.6 Initial Experiment

To evaluate our 3D thermography mapping system, we conducted an initial mapping
experiment, as shown in Fig. 6. The translation speed of the robot was typically about
4.3 cm/s, and it surmounted a concrete block while it mapped the environment three-
dimensionally. The distance from the robot’s path to the target board was 1.2 m. The
mounting angle of the 2D scanner, β, was set at 60∩, and the rotation speed of the
table γ̇ was set at 6 rpm.

Figure 6 (right) shows a thermography mapping result. In this figure, the block
and the target calibration board can be seen: the image does not collapse because of
the robot’s motion.

Figure 7 shows the binarized result of one scan (10 s) while the robot sur-
mounted the blocks. During the motion, the transition vector of the robot is
(x, y, z,φx,φy,φz) = (+164 mm,+4 mm,+15 mm,−0.4∩,+16.7∩,+0.5∩). In this
figure, the white frame represents the ideal boundaries of the lattice, red dots repre-
sent high-temperature points, blue dots represent low temperature points, and green
dots represent excluded measurement points. The total number of dots in the board
was 1,733, and the number of dots assigned correctly was 1,492. Thus, the pro-
portion of dots assigned correctly was 86.1 %. According to the above results, the
thermography mapping of the range data was conducted precisely, even if the robot
surmounted the block. The errors were attributed to the laser beam being slightly
conical in shape, so that the reflection close to the edge of the board returned.

3.7 Experiments in Wide Area

To evaluate our 3D thermography mapping system, we conducted a wide-area
experiment, shown in Fig. 8. The target environment is the fourth floor of the building

Fig. 7 Binarized thermography map of the target board
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Fig. 8 Experiments in wide area. a setup of the experiment, b mapping result, c binarized mapping
result, d zoomed-in view of victim 2

that houses our laboratories’, which includes three rooms connected by a straight
corridor, as shown in Fig. 8a. We located three dummy victims. Figure 8b shows a
thermography mapping result, and Fig. 8c shows a binarized thermography mapping
result. Figure 8d shows a zoomed-in view of victim 2 and a raw infrared image.

Based on the results, the target environment was measured with no distortion,
even if it was measured by only a gyroscope-based odometry system, because the
robot navigated on a flat surface. Furthermore, we understood that, since it focuses
on the detected victims, a binarized map is an effective aid for human operators, as
shown in Fig. 8c.

4 Thermo-ICP (Thermography-Based Iterative Closest Point)
Matching Method

As an application of the 3D thermography mapping system, we introduce a
thermography-based iterative closest point (ICP) matching method, called Thermo-
ICP. A conventional ICP-matching method [15] relies on the shape of the environ-
ment’s features. Therefore, it is difficult to apply the method to an environment that
has a small number of geometrical features, such as a long corridor. Some meth-
ods use color information for ICP matching; however, such methods are sensitive to
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lighting conditions. Therefore, in this study, we used temperature information as a
feature for ICP matching.

4.1 Temperature-Shift According to Measurement Position

To use temperature data for ICP matching, the target temperature should be the same,
regardless of the position from which it is measured.

First, we consider a temperature measurement at a glancing angle θ. Infrared rays
emitted from a point source decrease according to the glancing angle θ (Lambert’s
cosine law) as:

Iθ = I0 × cosθ. (16)

On the other hand, the target size Dθ increases according to the glancing angle θ:

Dθ = D0 × 1

cosθ
. (17)

Thus, the total amount of infrared rays for each pixel of a camera Iθ Dθ is equal to
I0 D0.

Practically, an object that has low emissivity of infrared rays has angular depen-
dency. Therefore, it is said that a reasonable measurement angle θ is within ±45∩.

Second, we consider the distance from the camera to the measured object. The
emitted power of infrared rays is inversely proportionally with the square of the
distance from a heat source. On the other hand, the target size increases proportional
to the square of the distance from the heat source. Thus, the total amount of infrared
rays for each pixel of a camera is independent of its distance from the heat source.
However, in practice, the effect of water vapor or flue dust increases with the distance
between the camera and the object.

Accordingly, we used temperature data when the measurement angle θ was within
±45∩, and the distance was not too great for thermo-ICP.

4.2 ICP matching Method

ICP matching is a popular method for fitting two sets of shape data based on geometric
features. Mobile robots that can reconstruct environmental information and conduct
SLAM (simultaneous localization and mapping) are very useful. In this subsection,
we would like to introduce a brief description of conventional ICP matching.

In this method, two sets of sensing points are registered in Cartesian coordinates.
In each iteration step, the algorithm selects the closest points as correspondences and
calculates the rotation matrix R and the translation matrix t to minimize the equation
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E(R, t) =
Nm∑

i=1

Nd∑

j=1

ωi, j
∥
∥mi − (Rd j + t)

∥
∥2

, (18)

where Nm and Nd are the number of points in the reference data set M and the
matching data set D, respectively. ωi, j = 1 when mi in M is the closest point to d j

in D, and ωi, j = 0 otherwise. Newton’s method is typically used for calculating R
and t in the evaluation function.

4.3 Thermo-ICP Matching

Our Thermo-ICP matching uses not only Euclidean distances but also temperature
difference to search for corresponding points. The evaluation function of the algo-
rithm uses not only the squared sum of the closest distance, but also the squared
difference of thermo-values. Thus, the evaluation function for thermo-ICP is

ET (R, t) =
Nm∑

i=1

Nd∑

j=1

ω̂i, j

⎛∥
∥mi − (Rd j + t)

∥
∥2 + K |hmi − hd j |2

⎝
, (19)

where K represents a weighting factor of the temperature term. Currently, we don not
have any method to determine the value K, instead we set the parameter empirically.
hmi is the temperature value of mi , and hd j is the temperature value of d j . ω̂i, j = 1
when the following function e is minimized,

e = ∥
∥mi − (Rd j + t)

∥
∥2 + K |hmi − hdk |2, (20)

and ωi, j = 0 otherwise.
The above calculation is repeated until the value of ET (R, t) converges.

4.4 Simple Experiment

To evaluate the proposed thermo ICP matching, we conducted a simple experiment in
a corridor environment that has a few geometric features, and compared the results
with those of conventional ICP matching. Figure 9 (left) shows the experimental
setup. There is a heat source, a disposable body warmer, attached to the corridor
wall. In this environment, the robot captured two scan sets. The first scan was con-
ducted at the origin of the world coordinates, and the second scan was conducted
at (x, y, z, yaw) = (−200, 0, 0 mm, 10∩). Figure 9 (right) shows the motion of the
robot. Figure 10 shows top view of the results before ICP matching. It can be seen
that the two scans do not overlap at all.
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Fig. 9 Experimental scene (left) and parameters of motion (right)

Fig. 10 Before scan matching

Fig. 11 ICP matching result

First, we applied conventional ICP matching to the data based on Eq. (18), and
obtained R and t . The result in the top view is shown in Fig. 11 (left), and its
zoomed birds-eye-view is shown in Fig. 11 (right). The method seems to have
succeeded in matching two scanned data, in the left figure. However in the right
figure, you can see that two colors on the wall are not coincident, and the black
circles that represent occluded unscanned areas are completely matched even if the
scanned position of the robot was different. The calculated translation vector was
(x, y, z, yaw) = (−13.5, 0.0,−8.2 mm, 10.7∩), and the value of the x-axis was far
from the correct value, −200 mm. This is understandable because there were very
few features along the x-axis in the corridor.
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Fig. 12 Thermo ICP matching result

Second, we applied the proposed Thermo-ICP matching to the data based on
Eq. (19). The result in the top view is shown in Fig. 12 (left), and its zoomed birds-
eye-view is shown in Fig. 12 (right). The method succeeded in matching two scanned
data. In the right figure, you can see that two colors on the wall are coincident, and
the black circles that represent occluded unscanned areas are out of alignment in the
amount of robot’s translation. The calculated translation vector was (x, y, z, yaw) =
(−181.6,−7.3,−12.0 mm, 11.3∩). The value of the x-axis was much closer to the
correct value: −200 mm. This is a very simple but clear example that proves the
effectiveness of the proposed thermo ICP.

5 Conclusions

In this paper, we introduced a 3D range scanner to obtain a 3D range map and an
infrared camera to obtain temperature images; in addition, we proposed a fusion
method to integrate the data from both deveices to obtain a 3D thermography map.
Our system was applied to a simulated disaster environment, and it captured the
victims’ data successfully. The experiment proved the validity of this method. We
then applied the method to the implementation of a Thermo-ICP algorithm, and to a
simple experiment. It was a very ad hoc experiment, and we did not apply it in a real
environment. However, the result showed the effectiveness of the 3D thermography
data for improving matching results. In the future, plan to perform more realistic
experiments to confirm the validity of the method.

References

1. Binoy Shah, Howie Choset, Survey on urban search and rescue robots. J. Robot. Soc. Jap. 22,
582–586 (2004)

2. Special issue of advanced robotics, Advanced research and development of robotics for search
and rescue. J. Adv. Robot. 19(3), 219–347 (2005)

3. F. Matsuno, S. Tadokoro, Rescue robots and systems in japan. in Proceedings of 2004 IEEE
International Conference on Robotics and Biomimetics (2004), pp. 12–20



Three-Dimensional Thermography Mapping for Mobile Rescue Robots 63

4. K. Nagatani, Y. Okada, N. Tokunaga, Kazuya Yoshida, S. Kiribayashi, K. Ohno, E. Takeuchi,
S. Tadokoro, H. Akiyama, I. Noda, T. Yoshida, E. Koyanagi, Multirobot exploration for search
and rescue missions: a report on map building in robocuprescue 2009. J. Field Robot. 28(3),
373–387 (2011)

5. H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, S. Shimada, Robocup
rescue: search and rescue in large-scale disasters as a domain for autonomous agents research.
in IEEE International Conference on Systems Man and Cybernetics 1999, vol. 6. IEEE (2002),
pp. 739–743

6. S. Fleck, F. Busch, P. Biber, W. Strasser, H. Andreasson, Omnidirectional 3d modeling on a
mobile robot using graph cuts. in IEEE International Conference on Robotics and Automation
(2005), pp. 1748–1754

7. Y. Bok, Y. Hwang, S. Kweon, Accurate motion estimation and high-precision 3d reconstruction
by sensor fusion. in IEEE International Conference on Robotics and Automation (2007), pp.
4721–4726

8. K. Nagatani, T. Matsuzawa, K. Yoshida, Scan-point planning and 3-d map building for a 3-
d laser range scanner in an outdoor environment. in Field and Service Robotics (2010), pp.
207–217

9. I. Grubisic, L. Gjenero, T. Lipic, I. Sovic, T. Skala, Active 3d scanning based 3d thermogra-
phy system and medical applications. in MIPRO 2011 Proceedings of the 34th International
Convention (2011), pp. 269–273

10. S. Laguela, J. Martinez, J. Armesto, P. Arias, Energy efficiency studies through 3d laser scanning
and thermographic technologies. J. Energy Buildings 43, 1216–1221 (2011)

11. K. Ohno, T. Kawahara, S. Tadokoro, Development of 3d laser scanner for measuring uniform
and dense 3d shapes of static objects in dynamic environment. in Proceedings of 2008 IEEE
International Conference on Robotics and Biomimetics (2008)

12. Z. Zhang, A flexible new technique for camera calibration. IEEE Transa. Pattern Analy. Mach.
Intell. 22(11), 1330–1334 (2000)

13. IHI Corp, Calibration method and instrument for infrared cameras. Japan patent. 2010–48724
(2010)

14. K. Nagatani, N. Tokunaga, Y. Okada, K. Yoshida, Continuous acquisition of three-dimensional
environment information for tracked vehicles on uneven terrain. in Proceedings of the 2008
IEEE International Workshop on Safety Security and Rescue Robotics (2008), pp. 25–30

15. Paul J. Besl, Neil D. McKay, A method for registration of 3-d shapes. IEEE Trans. Pattern
Analy. Mach. Intell. 14(2), 239–256 (1992)



Creating Multi-Viewpoint Panoramas of Streets
with Sparsely Located Buildings

Takayuki Okatani, Jun Yanagisawa, Daiki Tetsuka,
Ken Sakurada and Koichiro Deguchi

Abstract This paper presents a method for creating multi-viewpoint panoramas that
is particularly targeted at streets with sparsely located buildings. As is known in the
literature, it is impossible to create panoramas of such scenes having a wide range of
depths in a distortion-free manner. To overcome this difficulty, our method renders
sharp images only for the facades of buildings and the ground surface (e.g., vacant
lands and sidewalks) along the target streets; it renders blurry images for other objects
in the scene to make their geometric distortion less noticeable while maintaining
their presence. To perform these, our method first estimates the three-dimensional
structures of the target scenes using the results obtained by SfM (structure from
motion), identifies to which category (i.e., the facade surface, the ground surface,
or other objects) each scene point belongs based on MRF (Markov Random Field)
optimization, and creates panoramic images of the scene by mosaicing the images of
the three categories. The blurry images of objects are generated by a similar technique
to digital refocus of the light field photography. We present several panoramic images
created by our method for streets in the tsunami-devastated areas in the north-eastern
Japan coastline because of the Great East Japan Earthquake of March 11, 2011.

1 Introduction

This paper presents a method for creating multi-viewpoint panoramas of long scenes
such as city streets. Focusing on urban or residential streets along which buildings
are only sparsely located, the method creates their panoramic images that depicts not
only building facades but vacant lands and sidewalks along the street within a single
image.

This study is one of our series of studies associated with the tsunami devastation
due to the Japan earthquake of March 11, 2011. A large number of architectures are

T. Okatani (B) · J. Yanagisawa · D. Tetsuka · K. Sakurada · K. Deguchi
Tohoku University, Sendai 980-8579, Japan
e-mail: okatani@fractal.is.tohoku.ac.jp

K. Yoshida and S. Tadokoro (eds.), Field and Service Robotics, 65
Springer Tracts in Advanced Robotics 92, DOI: 10.1007/978-3-642-40686-7_5,
© Springer-Verlag Berlin Heidelberg 2014



66 T. Okatani et al.

Fig. 1 Examples of omni-directional images from our image archives of the tsunami-devastated
areas in the north-eastern Japan coastline. Displayed as (single-viewpoint) cylindrical panoramas

damaged in many urban and residential areas in the coastlines of Iwate, Miyagi, and
Fukushima prefectures located in the north-eastern part of Japan. The main purpose
of our studies is to develop a method that can visualize these damages as well as the
recoveries/reconstructions of these areas that take place thereafter.

We formed a joint team with researchers from Tokyo University and went into
these areas about one month after the earthquake; Since then, we have been recording
the damages and recoveries mainly using a vehicle-mounted omni-directional cam-
era. In the first one month, our activity mostly covered the entire devastated areas
across the three prefectures, and the resulting image archives amount to about 10
terabytes. Examples are shown in Fig. 1. Similar activities are conducted by other
parties. For example, Google inc. started collecting similar image archives about
three months after us and have made them publicly available on their Street View
site.1

While omni-directional imagery can create a sensation of immersion into the
scenes, they give merely single-viewpoint images. As in Street View of Google inc.,

1 As our archives contain the images of the devastated areas comparatively right after the disaster,
we have not make them publicly available due to privacy consideration.
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the user has to change viewpoints to explore a wider space, which is more or less
time-consuming. As in the aforementioned tsunami-devastated areas, the damages
are often widespread throughout whole cities, an image-presentation method by using
which the user can grasp the situation of damages over a large area at a glance will
be helpful for educational purposes as well as for the purpose of civil engineering
aiming at the recovery/reconstruction of the damaged areas. Note that satellite or
aerial imagery provides a useful measure in this regard but does not fully replace the
ground-level imagery.

In this paper, based on these background, we present a method for rendering
streets in a wide panoramic format such as those shown in Fig. 12. There is a long
history of the studies in the creation of such multi-viewpoint panoramas [1–8]. While
our study is based on these works, it differs from them in the nature of the target
scenes. Our target is typically streets along which vacant lands are more dominant
than buildings. In a large number of streets in the tsunami-devastated areas, many
buildings are swept away by the tsunami or removed in the recovery processes,
and thus only a few buildings survived and are located sparsely along the street, as
shown in Fig. 1. This nature of the scenes makes it particularly difficult to create their
panoramic images, as will be discussed in the Sect. 2

The paper is organized as follows. In the next section, we first discuss the funda-
mental limitation of multi-viewpoint panoramas that is the most critical for the scenes
of our interest, and then present our approach to overcome this limitation. Section
3 presents our model of the three-dimensional structures of scenes and a method to
estimate them from the three-dimensional reconstruction obtained by SfM (structure
from motion). Section 4 shows a method of creating panoramic images based on the
estimated scene structures. Section 5 gives some results and Sect. 6 concludes this
study.

2 Previous Works and Our Approach

In general, there is a fundamental limitation in panoramic images of long scenes,
which is that objects at different depths cannot be imaged without any distortion in
a single image; closer objects have to become narrower and distant objects become
wider. This distortion in aspect ratio is less noticeable for scenes of nearly constant
depth, whereas it is significant for scenes having a large range of depth. As it is
impossible in principle to thoroughly solve this problem, previous studies have been

Fig. 2 Example of point cloud
of a scene and a trajectory of
the camera (about 70 poses)
which are obtained by SfM
(structure from motion) using
hundreds of images
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focusing on how to synthesize panoramic images whose distortion is as least notice-
able as possible. For example, a semi-automatic method based on cross slits [2] is
shown in [5]; it enables the user to design panoramic images based on his/her inten-
tion by manually specifying multiple slits. In [6], a method is presented that explicitly
estimates the dense depth map of the target scene and creates a panoramic image
based on it that minimizes the aspect distortion. These studies, including others such
as Street Slide of Microsoft [7], assume more or less that only a few local parts of
the target scenes have a wide range of depths. For example, scenes of city streets
usually have densely located buildings along them and have large depth variation
only at intersections.

Such a nature does not hold true for the target scenes of this study. They have
sparsely located buildings alongside the streets and these buildings are mixed with
far away objects (other buildings, mountains, sky etc.); more importantly, significant
portions of the scenes are often filled with such far away objects. This can be thought
of as the most difficult type of scenes to create panoramic images with small amount
of distortion.

Our approach to overcome difficulty is as follows:

• Only the facades of the buildings alongside the target street and the ground surface
(e.g. vacant lands, sidewalks etc.) are chosen as the targets of precise rendering.
This choice reflects the fact that these two are important from an application point
of view. For this purpose, our method estimates where the building facades and
the ground surface are in the three-dimensional space by using the point cloud and
the camera trajectory obtained by SfM (structure from motion).

• Objects other than these two are rendered in a blurry manner simulating
defocus blurs. As their details are lost in the image, it makes their distortions
hardly noticeable while somehow retaining their presence in the scene. The image
blur is generated in a similar manner to digital refocus of the light field photography
[9, 10]. Although the relation between the creation of multi-viewpoint panorama
and the light field photography is pointed out by several researchers (e.g., [3, 5]),
it has not been intentionally used to design the method for creating panoramas.

• A pushbroom imaging (see [11] for details) is employed for projection model; the
projection center is a smooth curve approximating the trajectory of the moving
camera. In addition to that the building facades can be rendered free of distortion,
the ground surface is rendered in such a way that its image will not provoke
sensation of incorrect aspect ratio, owing to the fact that the ground surface extends
along the viewing direction and thus the aspect ratio of its texture is not defined.

• A panoramic image is created by mosaicing the textures of the building facades,
that of the ground surface, and the blurry images of other objects. To perform this
mosaicing, each scene point is classified into these three categories. This is done by
using local image similarity across the input images of different viewpoints, while
enforcing categorical similarity of neighboring points. The problem is formulated
as MRF (Markov Random Field) optimization, which is efficiently solved by graph
cuts.
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Our aim is to make compatible geometrically accurate rendering of important objects
in the scenes and the creation of immersive sensation in a single panoramic image.

3 Model of Scenes

We model the three-dimensional structure of the target scene in such a way that it
consists of (i) a surface approximating the facades of buildings alongside the street,
(ii) a surface approximating the ground surface, and (iii) other objects. In the simplest
case, the two surfaces might be modeled as planes. However, building facades do
not generally lie on a single plane. Although we exclude here the streets having
steep turns, we still wish to be able to deal with streets that are moderately curved.
Therefore, we generate curved surfaces by sweeping a line segment in space to model
the surfaces (i) and (ii).

3.1 Camera Trajectory

These surfaces representing the building facades and the ground surface are generated
based on the camera trajectory estimated by SfM (Fig. 2). The original images are
captured by a vehicle-mounted omni-directional camera; a few examples are shown
in Fig. 1. The camera acquires an image at about every 2 m, while the vehicle moves
along streets. Although our system is equipped with several GPS sensors and an
odometer, they are not used in the three-dimensional reconstruction by SfM. Thus,
the images from Google Street View may be used for our purpose here.

The camera trajectory is given as a discrete set of camera poses at which the
images are captured, and it could be not smooth due to occasional pose changes of
the vehicle. We fit a parametric curve to them to obtain a continuous and smooth
approximation of the trajectory. The fitted curve will be used as the projection center
of the pushbroom imaging explained later.

Consider the world coordinate system fixed to the scene and the camera coordinate
system defined locally on the camera which moves with the camera. Let X and X◦
be the world and camera coordinates of the same scene point, respectively. They
are transformed by a Euclidean transform X◦ = TX with a rotation matrix R and a
translational vector t. Using the indexes k = 1, 2, . . . to indicate each camera pose
and the associated image, we denote the camera coordinates of a point by X◦

k and
the pose parameters by Tk or Rk and tk .

When we use K images, the camera trajectory is given as {T1, . . . , TK }. The k-th
pose Tk can be expressed by a 6-vector ck = [t∩k , ω∩

k ], where ωk is the angle-axis
representation of the rotation Rk , i.e., the 3-vector obtained by Rodrigues’ formula.
We use the following polynomial function to approximate the camera trajectory:
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c(s) =
L∑

l=0

al s
l , (1)

where s ∈ [0 : 1]. We set L = 4 in our experiments. The coefficients al ’s are
determined by the least squares fitting:

min
a0,...,aL

K∑

k=1

⊂c(sk) − ck⊂2. (2)

We perform the above least squares fitting by setting sk = (k −1)/(m −1), followed
by reparametrizing s ← s̃(s) so that s is proportional to the arc length of the curve
in space.

3.2 Building Facades and Ground Surface

The surface approximating the building facades, which we will call the facade surface
from now on, is generated as follows. We first specify the direction v◦ in the camera
coordinate system for which we wish to create a panoramic image; for example, if
we want to create a panorama of the scene on the right side of the moving vehicle, v◦
orients at 90∅ right relative to the direction of the camera/vehicle motion. It is also
necessary to specify the zenith direction z◦ in the camera coordinate system. Then
we define n◦ to be the vector perpendicular to v◦ and lying on the plane spanned by
v◦ and z◦, i.e., n◦ ∝ (I− v◦v◦∩)z◦. Note that these vector are all locally defined in the
camera coordinate system.

Then, the line segment generating the facade surface is defined to be the one
located at a distance d along v◦ and is parallel to n◦, as shown in Fig. 3a. The parameter
d represents the distance from the camera to the building facades, which is also
estimated for each s from the point cloud obtained by SfM. To do this, we extract
the points belonging to the building facades by the following simple thresholding.
Defining for each camera pose k a local coordinate system xyz whose z axis coincides
with v◦ and y with n◦, we denote the coordinates of each point of the SfM point cloud
by {x j , y j , z j }. We then extract points that satisfy

⎧
⎨

⎡

|x j | < α

β1 < y j < β2
|z j − d0| < γ d0

(3)

where α, β1, β2 and γ are thresholding constants and d0 is a (rough) estimate of dk

that we manually specify, which is constant for all k’s. We use the average of z j ’s
for the extracted points as dk , the depth estimate. The thresholding values α, β1, β2
and γ are determined as follows: α is determined from the neighboring camera pose
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d

n’

v’

Picture surface / facade surface

Camera pose

Interpolated trajectory

(a) (b)

Fig. 3 Geometry of the trajectory of the camera and the surface of building facades. a The inter-
polated camera trajectory and the picture surface of panoramic images. b The imaging geometry of
the picture surface and an (omni-directional) image captured by the camera

Fig. 4 Estimated surfaces for the three-dimensional reconstruction of Fig. 2. The blue line indicates
the estimated facade surface and the green line the estimated ground surface

distance; β1 and β2 are determined from the estimate of the camera height from the
ground surface and the vertical field of view of the final panoramic image; γ is set
to 0.2. As in the case of the camera trajectory c(s), we fit a polynomial function to
d1, . . . , dK to obtain a continuous representation d(s).

The two functions c(s) and d(s) specify a single spatial line for each s. As shown
in Fig. 3a, we limit the range of the line to define a line segment in such a way that
the mid point of the segment will lie on the ray parallel to v◦ emanating from c(s)
and moreover its length will be 2d(s) tan(φ/2), where φ is the vertical field of view
of the panoramic image. The line segment thus determined is then parametrized by
t ∈ [0 : 1]; t = 0 indicates the highest point of the segment and t = 1 the lowest
point; t is also proportional to the line length. Sweeping this line segment along the
fitted camera trajectory c(s) yields the facade surface, as shown in Fig. 3a, which is
parametrized by (s, t) and we denote the surface by f(s, t). Figure 4 shows the result
for the three-dimensional reconstruction of Fig. 2.

The ground surface is determined in a similar way. Suppose a line segment that
is perpendicular to n◦ and is located by a distance h(s) below the camera. As in the
case of d(s), the function h(s) is obtained by first extracting points belonging to
the ground surface based on simple thresholding as in (3), then estimating for each
k the distance hk from the camera to the extracted point set, and finally fitting a
polynomial function to h1, . . . , hK . Sweeping the line segment thus obtained along
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the camera trajectory c(s), we generate the ground surface g(s, t). In the case of
ground surfaces, t is parametrized in such a way that a point g(s, t) will lie on the
ray connecting the point f(s, t) of the facade surface and the camera trajectory c(s).

4 Rendering Panoramic Images

4.1 Imaging Geometry

We create panoramic images by a pushbroom imaging whose projection center is
given by the fitted camera trajectory c(s). Then, the facade surface f(s, t) itself
becomes the picture surface onto which each ray emanating from an object is pro-
jected. Each generator (i.e. a line segment) of f(s, t) matches a single column in the
final panoramic image. Setting the size of the panoramic image to be W × H pixels,
an image point (u, v) ∈ [0 : W − 1] × [0 : H − 1] is transformed to a facade point
(s, t) by s = u/(W − 1) and t = v/(H − 1). Note that the image width W may be
chosen arbitrarily, whereas H should be determined so that the aspect ratio of the
texture on the facade surface will be 1:1. This imaging geometry determines where
on the picture surface each scene point outside the facade surface (e.g. points on the
ground surface) is projected.

4.2 Rendering Component Images

Next we describe how the color of each scene point is determined. The real cam-
eras (precisely, the real camera poses at which the images were captured) sparsely
distribute near the fitted camera trajectory c(s). As shown in Fig. 3b, when speci-
fying a scene point, its relative direction from each camera position is immediately
determined, from which the color of the scene point viewed from the camera is
determined.

We do not know where the scene point corresponding to each image point is
located in space, since SfM gives only sparse point cloud and we do not have the dense
three-dimensional structure of the scene. Instead, assuming that all the scene point
(covered by the image) belong to the facade surface, we can generate a panoramic
image for each camera k, as shown in Fig. 5. Similarly, we can generate the images
of the ground surface, as shown in Fig. 6. We denote the kth camera image of the
facade and ground surfaces by I (k)

f (u, v) and I (k)
g (u, v), respectively.

Consider the projection of the kth camera position onto the picture (facade) surface
in such a way that the nearest point on the picture surface to the kth camera position
is chosen as its projection. Then, we denote the index of the camera whose projection
is the nearest to an image point (u, v) by k = k̃(u, v). We then define
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Fig. 5 Examples of the panoramic image of a facade surface created from each viewpoint image.
Selected three out of 70 images

Fig. 6 Examples of the panoramic image of a ground surface for the same viewpoints as Fig. 5

Fig. 7 The strip image of the facade surface (upper) and the ground surface (lower)

I f (u, v) = I (k̃(u,v))
f (u, v), (4)

Ig(u, v) = I (k̃(u,v))
g (u, v), (5)

which are the images generated by copying to the color of each image point from
that of the image of the nearest camera k at the same point. As shown in Fig. 7,
these images are such that vertical strips cut from the facade/ground surface images
of different cameras are orderly placed side by side. We therefore call them strip
images. It is observed from Fig. 7 that for the facade-surface strip image, only the
textures on the building facades are smoothly stitched; for the ground-surface strip
image, only those on the ground surface are smoothly stitched.

Our method renders the objects that are neither close to the facade surface or to
the ground surface in a blurry manner. Their blurred images are generated simply by
taking the average of the facade surface images over all viewpoints k = 1, . . . , K
as
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Fig. 8 The average of all the facade surface images

I f̄ (u, v) = 1

K

K∑

k=1

I (k)
f (u, v). (6)

The trimmed areas of each facade-surface image are excluded in this average.
Figure 8 shows an example of the averaged images. It is observed that only the

scene points close to the targeted depth (i.e., the building facades) have sharp textures,
whereas other scene points have blurred textures. This is identical to the technique
of digital refocus using an multi-camera array, or the light field (or plenoptic) pho-
tography [9, 10], i.e., capturing multiple images of a scene from different viewpoints
and synthesizing an image focusing on an arbitrary depth. In our case, the cameras
(or projection centers) are located only in one dimensional manner, and thus the
images are blurred only in the single (i.e., horizontal) direction. Nevertheless, the
effect of the blur is sufficient for our purpose, which is to suppress the presence of
objects outside the target distance range in the panoramic image so that their incorrect
aspect ratios will be less noticeable.

It is noteworthy that the image blur of an object thus generated automatically
changes its strength depending on the distance from the object to the target facade
surfaces. More distant objects have more blurry images and so on. This is because
the digital refocus simulates the physical process of the generation of image blur
in optical lenses. It should also be noted that the overall strength of the blur can be
controlled by varying the field of view of each facade surface image. A larger field
of view results in a more blurry image.

4.3 Mosaicing the Component Images

The final image is synthesized by mosaicing the three component images introduced
above, the facade-and ground-surface strip images, I f (u, v) and Ig(u, v), and the
averaged facade surface image, I f̄ (u, v). For each pixel i whose coordinates are
(ui , vi ), we introduce a variable li such that li = 0 indicates the scene point corre-
sponding to the pixel i belongs to the facade surface, li = 1 to the ground surface,
and li = 2 to other objects. Then, the final image is mosaiced as follows:

I (ui , vi ) =
⎧
⎨

⎡

I f (ui , vi ) if li = 0,

Ig(ui , vi ) if li = 1,

I f̄ (ui , vi ) if li = 2.

(7)
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The label li of each pixel i is estimated also from the images themselves. We use
MRF-based optimization framework, which is widely used in dense stereo matching,
to perform this estimation.

As is shown in the facade surface images of different viewpoints (Fig. 5), if a
scene point belongs to the facade surface, its imaged position will not move across
different camera images, and this holds true for the ground surface images (Fig. 6).
Thus, to which of the three scene categories each pixel belongs to can be estimated by
checking whether the corresponding scene point moves or not. This can be checked by
measuring image similarity between different viewpoint images. Let k̃i = k̃(ui , vi )

be the index of the camera whose projected position on the image plane is the closest to
(ui , vi ). (This is the same as the one used for generating the strip images.) Employing
SSD as a similarity measure, we compute SSD at (ui , vi ) between the reference image
of k̃i and a few images around the reference, i.e., k̃i + k (k = · · · ,−2, 1, 1, 2, · · · ).

E f (ui , vi ) =
∑

k 	=0

∑

(u,v)∈W (ui ,vi )

|I (k̃i )
f (u, v) − I (k̃i +k)

f (u, v)|2, (8)

Eg(ui , vi ) =
∑

k 	=0

∑

(u,v)∈W (ui ,vi )

|I (k̃i )
g (u, v) − I (k̃i +k)

g (u, v)|2, (9)

where W (ui , vi ) is the 5 × 5 window centered at (ui , vi ).
It should hold that E f becomes smaller if (ui , vi ) is a facade surface point and

Eg becomes smaller if it is a ground surface point; they will not be small otherwise.
Therefore we define the data term for each pixel as

Edata(ui , vi , li ) =
⎧
⎨

⎡

E f (ui , vi ) if li = 0
Eg(ui , vi ) if li = 1
Ea if li = 2

, (10)

where Ea is a constant representing the cost when the pixel does not belong to the
first two categories.

We finally define the total cost for the MRF graph as follows:

E(l1, . . . , lN ) =
N∑

i=1

Edata(ui , vi , li ) + β
∑

(i, j)∈E
δ(li , l j ), (11)

where N is the number of pixels; E is the set of the pairs of neighboring pixels in
the image; δ(l, l ◦) is a energy function such that it gives 1 if l 	= l ◦ and 0 if l = l ◦
(i.e., the Potts model). The minimization of this cost is performed by graph cut with
alpha expansion. We used the code from GCoptimization version 3.0 [12–14] for
this minimization.
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Fig. 9 An example of the optimization performed by graph cuts. Upper: Labels for each image
pixel. Lower: Resulting panoramic image by the image mosaicing based on the labels

Fig. 10 Magnified versions of the strip image (left) and our result (right) for a certain image region.
The strip image could give the viewer an incorrect sensation of the buildings at far away distances.
Our image avoids this by blurring those buildings etc

Fig. 11 Magnified versions of the strip image (left) and our result (right) for a certain image region.
Another case

5 Results

Figure 9 shows the result of the optimization described in the previous section for the
same data as earlier. As shown in the label image, the building facades, the ground
surface, and other objects at far away or close distances are all fairly accurately
identified. Only the region of the sky (i.e., the periodic patterns at the image top)
is incorrectly identified, which may be due to the presence of the clouds in the sky,
whose appearances are obscure and thus difficult to match correctly. However, our
purpose is to present the man-made structures on the ground in a geometrically
accurate manner, which is achieved in the result. (The sky is not important for our
purpose; moreover, if necessary, we may identify the regions of the sky in the input
images and eliminate them in advance by color-based image segmentation.)
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Figure 10 shows magnified versions of the strip image shown in Fig. 7 and our
result for a certain image region. It is observed that the strip image presents the
buildings located at a distance from the our target depth in a corrupted manner. This
could give the viewer an erroneous impression of the shapes of these buildings. On
the other hand, our result presents these buildings in a blurred manner and thus avoids
giving such an incorrect impression.

Figure 11 presents a similar comparison for another result. Besides the incorrect
display of the distant building, the strip image also fails to correctly show the road
intersecting the street; there appears to be multiple roads, although there is in reality
a single road intersecting the street. Our result gives the viewer a correct impression
of the geometry of the intersecting road.

Figure 12 presents panoramic images created for several scenes. It can be observed
that these results mostly achieves our goal of simultaneously presenting scene struc-
tures in a geometrically accurate manner as well as creating immersive sensation in
a single image.

6 Summary

We have described a method for creating multi-viewpoint panoramas of streets with
sparsely located buildings. To alleviate the difficulty with the creation of panoramas
for scenes having a large depth range, our method renders sharp images only for
the building facades and the ground surfaces and renders blurry images for other
objects. The proposed method satisfies two contradictory demands of the geometri-
cally accurate rendering of important objects existing in the scenes and the creation
of immersive sensation in a single image.
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Disaster Back-up Support using GIS Contents
Composed of Images from Satellite and UAV

Sota Shimizu, Taro Suzuki, Masaya Ogawa, Yoshiyuki Fukazawa, Yuzo
Shibayama and Takumi Hashizume

Abstract This manuscript describes a volunteer activity of reconstruction assistance
for Great East Japan Earthquake. Concretely, the authors make sand erosion control
contents, composed of 3D information from Geospatial Information Authority of
Japan, and a combination between wide-area satellite images and a high-resolution
mosaic image generated from a movie shot on UAV, i.e., Unmanned Aerial Vehicle,
flying in a low-altitude-sky. In addition, we discuss and consider usability of the
contents taking into account comments and advices from specialists of geology.

1 Introduction

Great East Japan Earthquake, which occurred on 11th March 2011, has been the most
miserable disaster of our country in recent years. Many people over 15,000 died and
other people over 3,000 are still missing by the terrible earth-quake and tsunami.
Survived people have also been suffered from damages of deep sadness, anxiety of
dark prospects, and true crisis of severe winter for their daily lives. For half a year
after this tragic disaster, the number of volunteers who help them decreased compared
to just after the earthquake in spite of many calls by municipal organizations and
volunteer associations. As reported in news, cleaning away rubble is a severe problem.
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Many fires were caused by spontaneous ignition of methane gas from a heap of the
rubble. We need more years and much more helps continuously in order to revive
the disaster areas.

The authors have joined to the reconstruct assistance. The first straw was that there
exists a person who worked as a volunteer in the authors’ laboratory. Taking into
account his experience of volunteer, we knew that it was essential for the survived
people to construct temporary housing as soon as possible before severe winter
comes. Thus, it is quite important to maintain and control the major arterial roads,
e.g., national routes and local railways, in order to carry in heavy machinery and
construction materials. Ministry of Land, Infrastructure, Transport and Tourism has
planned a mission of “Comb-like road network” for it. We thought that we were
also able to assist the mission by surveying and warning dangerous areas where sand
erosion, e.g. landslides and rock falls, occurs possibly.

In this paper, the first section described a background of our activity for reconstruct
assistance. The second section mentions geographic characteristics of a surveyed area
and how and why to choose it. The third section focuses on the following 3 things; (1)
Implementing shooting from the sky by a small autonomous flight helicopter, one of
UAVs, i.e., Unmanned Aerial Vehicles, (2) Generating a mosaic image from a movie
shot in the sky, and making GIS contents of sand erosion database using Google
Earth as a platform. The mosaic images and images from a satellite are combined
there appropriately and we can observe its geometry as an approximate 3D image
by DEM, i.e., Digital Elevation Model, (3) Examining the GIS contents taking into
account comments by specialists of geology.

2 Geographic Characteristics of Surveyed Areas

There has been the person, who worked as a volunteer in the early April just
after the disaster occurred in the authors’ laboratory. He went to the disaster area
by train via an active airport in the Tohoku area. He was going to Kesen-numa or
Rikuzen-Takada first. But the major railway, Tohoku Shinkansen line, did not work
because of comparatively-large earthquake aftershocks. Thus, he had a contact to
Iwate Prefectural Council of Social Welfare in Morioka, Iwate. The council asked
him to help coastal areas from Aomori prefecture to Iwate prefecture including around
Miyako and Kamaishi because the number of volunteers was not enough, although
damages in Kesen-numa and Rikuzen-Takada were severe. He reached Miyako along
the national route 106 (Route 106 hereafter) by car and worked there. Throughout
his volunteer activity, he had an opportunity to look at damages of Miyako, Yamada,
O-otsuchi, Kamaishi, and O-ofunato by his own eyes. Significantly, he noticed the
following geographic characteristics: (1) Iwate Prefecture has thriving inland cities
along the Kitakami River, (2) There exist the major arterial roads and local railways
along a river from the inland cities to each community of the coastal cities, where
many people live, located in a narrow plain as facing to a cove along a ria shoreline,
e.g., the Hei River runs along Route 106 and Yamada line of Japanese Railway (JR)
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East Japan company in case of Miyako, (3) Geographically, areas around these major
arterial roads and local railways have canyon topography, (4) The coastal cities are
connected serially along the national route 45 and Sanriku highways (partly under
construction), that is, it is not too much to call this national road “the life line”. The
major arterial roads from the inland cities have been constructed as being connected
like a mesh in order to keep transport on hand with the shortest distance for emer-
gencies such as landslides and rock falls. However, even in case of Route 106, there
exist a couple of important spots where it becomes more difficult to carry supplies
quickly into the disaster areas when it is decoupled there. These spots in the canyon
topographic geography are quite close to the sea. Based on the above information,
the authors have decided to implement a geographic survey for maintaining transport
between Hanaharashi and Rikuchu-u-Kawai along Route 106 as one of the major
arterial roads and JR Yamada line (running almost parallel to Route 106). When
we decided the survey area, we avoided the disaster area damaged directly by the
tsunami considering pains of the people living there. Figure 1 shows 6 spots for this
survey in the Google map [1], chosen exactly as a takeoff and landing points of a
small autonomous flight helicopter (mentioned in detail later) for shooting from the
sky, by reference to the Sand Erosion GIS contents in Iwate Digital Map [2] in a
web page managed by Iwate prefecture. Since this GIS contents in the web page are
made by focusing onto communities where people live, we paid different attention
mainly to gap areas where people do not live.

3 Generating Mosaic Image from Movie shot in the Sky
and Making Sand Erosion GIS Contents

3.1 Implementation of Shooting from the Sky by UAV

The authors implemented shooting from the sky over Route 106 and JR Yamada
line along the Hei River in Miyako on the 28th and 29th June, 2011. We chose the
small autonomous flight helicopter RMAXG1 (Yamaha motors, Fig. 2) as an UAV
for shooting, because it is more suitable for this survey in the canyon topography
due to hovering ability, i.e., keeping its posture better than a fixed wing type of UAV
we had used before. RMAXG1 can achieve an autonomous round flight to a distant
spot (at most 30 km potentially) far away from the takeoff and landing point due to
the posture control system and RTK-GPS system. An operator just needs to give it
multiple way points in the sky in order to shoot a movie for a long distance. Even
when its remote wireless intercommunication is lost, it has a waiting function as
hovering over at takeoff point using GPS information. But, in the actual shooting
flight, we should manage its safe flight based on rules of JUAV, i.e., Japan UAV
association, as keeping its flight distance within a range in which we can confirm
it visually and preventing its flight from being beyond houses and Route 106. The
flight altitude from the ground was 100 m. We used 3 types of digital cameras,
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Fig. 1 Route 106 and JR Yamada line along the Hei river a Surveyed region (hatching part)
b Taking off and landing points of helicopter

i.e., with Full HD (1920×1080) and 60◦ view angle, with HD (1280×720) and 25◦
view angle, and with VGA (640×480) and 120◦ view angle. Each spatial resolution
of shot images is determined from “the number of pixels, image size, and the view
angle of lens” of each digital camera.
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Fig. 2 Unmanned helicopter
RMAX G1

3.2 Generating Mosaic Image and Making Sand Erosion GIS
Contents using Google Earth as a Platform

In order to generate a mosaic image (Fig. 3) from still images extracted from a
movie shot in the sky with 1[fps] (an extracted still image is shown as in Fig. 4), the
authors use not only GPS and IMU information from the sensor unit equipped on
the helicopter but also SIFT feature information and digital elevation model (DEM)
data provided from Geospatial Information Authority of Japan.

The UAV system as in Fig. 2 consists of a small helicopter type of UAV and a
ground control station (GCS).

The UAV comprises a GPS receiver module, an IMU having three gyroscopes
and a three-axis accelerometer, and a laser range finder (LRF). In an autonomous
flight, the position and attitude data of the UAV calculated by GPS and the IMU

Fig. 3 A merged mosaic
image
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Fig. 4 A still image extracted
from a movie

Fig. 5 Projected images
obtained by the UAV using
on-board position and attitude
data

contain errors. This degree of accuracy is short of the accuracy needed to generate
well-overlapped mosaic images.

Figure 5 illustrates this problem. The 64 images captured by the digital camera
during a flight are transformed and projected onto a 50-meter-mesh digital elevation
model (DEM) surface using the position and attitude data in accordance with the
method described later. The relative position of these projected images is roughly
correct, but the generated image is more distorted than in satellite photography, and
multiple images do not accurately overlap one another.
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This inaccurate overlap of images is caused by the following reasons:

1. The original position and attitude data of the UAV measured by GPS and the IMU
include errors.

2. There is a synchronization error between images data captured by the digital
camera and “the position and attitude data”.

3. The resolution of DEM is insufficient.

Although these errors may reduce the correlation between the projected images,
the authors think that the common underlying cause is the error in the original position
and attitude data. The shape of the projected image is susceptible to being affected
by small changes in the position and attitude data. For this reason, accurate position
and attitude data must in some way be estimated.

This paper presents a technique for the estimation of position and attitude data of
the UAV using the integration of the image sensor in order to generate the accurate
mosaic image [3, 4]. The procedure of estimating and generating mosaic images is
as in the following items.

I. First, the area of the images projected onto the DEM surface is calculated using
the original position and attitude data.

II. The overlap ratio is calculated using the areas of the projected images, and each
combination of overlapped images is evaluated.

III. Key feature points on the images are then identified and matched to form a
combination of the overlapped images.

IV. The position and attitude data are estimated in order to minimize the weighted
sum of the squared error cost function, using the image correlation.

V. Finally, the mosaic image is generated using the estimated position and attitude
data based on the image projected onto the DEM surface.

Here we describe the method of generating a mosaic image more in detail.

(1) Projection onto a map
First, we project the image onto the DEM surface using the original position and

attitude data. It is possible to reduce inaccuracy of distortion using a perspective
projection. Figure 6 shows coordinate systems employed in this study.

A 2D image coordinate is denoted by m = [u, v]T . A 3D camera coordinate is
denoted by MC = [XC, YC, ZC]T . The plane that coincides with the DEM surface
is denoted by the world coordinate MW = [XW, YW, ZW]T . x̃ denotes an aug-
mented vector obtained by adding 1 as the last element, i.e., m̃ = [u, v, l]T , M̃C =
[XC, YC, ZC, 1]T and M̃W = [XW, YW, ZW, 1]T . The camera is modeled by the
usual pinhole; the relationship between a 3D camera coordinate M̃C and its image
projection m̃ (perspective projection) is given by

sm̃ = PM̃C, (1)

where s is an arbitrary scalar factor and P is a 3×4 projection matrix that contains
the camera’s intrinsic parameters. These camera intrinsic parameters are assumed to
have been calibrated in advance.
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Fig. 6 Coordinates and
image projection Xc

Yc

Zc

Xw

Yw
Zw

World coordinate

Camera coordinate

Image plane

DEM surface
Projected image

R  t 0 m

Mc(Mw)

The equation expressing the relationship between M̃C and M̃W is defined as

M̃C = RT (M̃W − t0), (2)

where R is a rotation matrix calculated using the UAV attitude estimated by GPS and
IMU and t0 is the UAV position in the world coordinate system. Using Eqs. (1) and
(2), the relationship between m and MW is derived, and the image pro-jected onto the
DEM surface is determined. This projected image is used to calcu-late overlapped
image pairs in the next step.

(2) Image overlap calculation
As shown in Fig. 5, the error in the original position and attitude data was responsi-

ble for an overlap error in the mosaic image. Therefore, in order to correct the position
and attitude data, the information of feature points that are associated in overlapped
images is used. Before this feature extraction and association, the overlapped image
pairs need to be determined. Over 100 images are extracted from a movie during a
flight, and a flight trajectory of the UAV is a complicated circular form. This renders
identification of overlapped areas in all images a difficult task. For this reason, the
original position and attitude data are used to determine the overlapped image pairs
automatically.

Using Eqs. (1) and (2), the area of each projected image is calculated. Figure 7
illustrates an example of the projected images used to calculate a pair of overlapped
images.

In this example, the areas of 4 images are projected onto the DEM surface using
the original position and attitude data. In order to determine an overlapped pair, the
overlap ratio θ is defined. One area of one projected image is denoted as Area1, and
another area is denoted as Area2; the overlap ratio θ is then defined as follows:
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Fig. 7 Overlap detection
using the original position
and attitude

1

2

3

4

θ = 2 × Area1 ∩ Area2

Area1 + Area2
, (3)

The threshold processing of the overlap ratio θ is used to define and extract the
pair of overlapped images from which we construct whole images. In this study, 0.3
is used as the threshold of overlap ratio θ.

Note, however, that even as the original position and attitude data have errors to
some degree, the accuracy of the position and attitude data suffice to define a pair of
overlapped images.

(3) SIFT feature extraction and association
On this step, in order to correct the position and attitude data using the image cor-

relation, scale invariant feature transform (SIFT) [6] feature points in the overlapped
images are extracted and associated. This approach transforms each feature in an
image into a 128 dimensional local feature descriptor, i.e., each of which is invariant
to image translation, scaling, and rotation, and is partially invariant to illumination
changes and projection. In the images extracted from the movie, substantial changes
in camera attitude and outdoor illumination occur over the course of a flight circuit.
For this reason, the SIFT features make it possible to associate the feature points
between a pair of all the overlapped images. To associate the SIFT features, the
Euclidean distance D between 128 dimensional local feature descriptor d is used.
The feature descriptors in a pair of overlapped images are denoted by d1 and d2, and
the Euclidean distance D is given as

D =
√
√
√
√

128∑

i=1

(d1(i) − d2(i))2. (4)

By detecting the minimum distance D using this equation, temporary points of cor-
respondence are defined. These features are matched and associated across multiple
frames by using just the image feature descriptor. In order to detect and reject an out-
lier of the association, the epipolar geometry constraints between the images based
on the MAPSAC algorithm [7] are used.
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An example of the SIFT feature extraction and association is shown in Fig. 8. The
associated features are marked by lines which join their locations in the four images.
This example shows the same part of the images used to detect overlapped area as in
Fig. 7. In addition, the feature points illustrated in Fig. 8 are reduced till 1/10 to make
them be readily visible, so one can check that the association between the multiple
images extracted from the movie has been successful.

(4) 3D position and attitude optimization
With respect to creating a large mosaic image, the projection error introduced

by the constraints of epipolar geometry need to be optimized in order to correct the
original position and attitude data using the associated feature points.

We apply a 3D optimization technique such as the bundle adjustment technique
[8] to compute the maximum likely position and attitude data. We denote the sum of
the squared error cost function of the projection error. The estimation of the position
and attitude data is performed to minimize the cost function. We use the original
position and attitude data as initial values for the function. It reduces the likelihood
as converging towards a local solution.

The position and attitude data are denoted as p = [x, y, z] and � = [ς, π, ϕ],
respectively. The [ς, π, ϕ] signifies the roll, pitch and yaw angle. The position and
attitude in the i-th pair of overlapped images are p1i ,�1i and p2i ,�2i , respectively.
The coordinate of the associated feature points in the i-th pair of overlapped images
are denoted by m1i j and m2i j . Here, j stands for the number of associated feature
points in each image. The sum of the projection error � i (p,�) is given by

φi (p, δ) =
∑

j

wi j

∣
∣
∣ f (m1i j , p1i , δ1i ) − f (m2i j , p2i , δ2i )

∣
∣
∣, (5)

where f (m, p, δ) is the projection function by which we calculates the coordinate
of the feature points projected onto the DEM surface from Eqs. (1) and (2). The wi j

Fig. 8 Example of SIFT
feature extraction and
association
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is a weight of the optimization calculated by an inverse of the Euclid distance of
associated feature points D, as calculated from Eq. (4). The cost function E is the
sum of the projection error in all pairs of overlapped images. It is given by

E =
∑

j

φ2
i (p, δ), (6)

In order to minimize the cost function as in Eq. (6), the UAV position p and attitude
δ are estimated. Jacobian matrix ΔJ is evaluated by computing the Jacobians of
Eq. (5). OnceΔJ is computed for a current iteration of the estimator, the Gauss-
Newton iteration step is used to converge toward the optimal state estimate.

A result of the optimization of the position and attitude data is illustrated in Fig. 9.
Solid black lines indicate the original UAV position and attitude data, and solid red
lines indicate the compensated position and attitude. In this result, 84,351 features
in the 64 images have been used, and the algorithm has taken 24 iterations to reach
the optimized estimate. The value of the cost function E has decreased from 376,
184 to 363.9. Figure 10a–f shows the error in the on-board position and attitude data
as a reference compared to the estimated position and attitude. A green dashed line
indicates the mean value and a red line indicates the standard deviation (SD) 1∂ .
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The SD of the position [x, y, z] and attitude [ς, π, ϕ] are 4.4, 4.8, 4.2 m, 3.0, 1.9 and
7.2◦ , respectively. In this experiment, the altitude has the large bias error compared
with the other values. Additionally, the SD of the yaw angle indicates a high value.
The altitude estimation seems to attribute the error to a characteristic of GPS, i.e.,
in which the altitude error is generally specified as being 1.5 times larger than the
horizontal error. In addition, the roll and pitch angles are observed in the direction
of the gravity vector, but the yaw angle is weakly observed, only when the UAV
accelerates, using GPS and IMU. It seems that the error of the yaw angle occurs in
this way.

(5) Mosaic image generation using estimated state
Using the estimated position and attitude data, the mosaic image is generated

based on the method mentioned in Sect. 3.1. Figure 11a shows the mosaic image
generated by using the proposed method. Compared to the image shown in Fig. 5, the
mosaic image is accurately assembled. In addition, the luminance of this generated
mosaic image as in Fig. 11b is adjusted to represent the average luminance of all
the images. The problematic correlation of captured images is easily resolved by
the proposed method. A large mosaic image is automatically generated with GPS
and IMU. In the next section, we evaluate the generated mosaic image in terms of
low-cost and flexible vegetation monitoring.

In order to utilize the generated mosaic image and geographic data measured
from a laser range finder (LRF) as effective sand erosion GIS information, we make
contents which are useful for users intuitively to recognize information they need,
e.g., landslides and rock falls, using Google Earth as a platform. The high-resolution
mosaic images from the UAV are combined with Google map images shot from
satellites in order to improve not only fineness of contents’ image but also reliability

Fig. 11 A result of mosaic
image by the proposed method
a Projected mosaic image
b Adjusted illumination
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because this method can increase frequency to update contents as reducing its cost.
When resolution of the image from the helicopter flying at about 100 m height is
higher than that of the satellite image, the former is overlapped. On the other hand,
when the former is lower than the latter, the latter is survived. In addition, the DEM
data are also combined. Figure 12 shows (a) Google Earth displays a combination of
the generated mosaic images and the sat-ellite images as a virtual 3D image and (b)
LRF geographic data by the vrml form are visualized as changing color graduation
from red to green corresponding to the highest height to the lowest one. A part where
the color changes from red to green rapidly means to be quite steep (potentially,
landslides and rock falls occur more easily). This time, we succeeded in shooting a
landslide just after it occurred. Comparing between Figs. 12a, b, we can confirm this
land slide occurred in a steep part.

The image from the HD camera at about 100 m height has at least 2 × 2 cm
resolution theoretically (Fig. 13). This resolution means that we can not only find
empty cans but also discriminate their kinds.

3.3 Examination Taking into Account comments by Geologists

We usually need to go along the following manual in order to make sand erosion GIS
contents published as in the web page of Iwate Digital Map:

(1) Choosing candidates from air photos shot by Cessna plane.
(2) Confirming visually by specialists of geology.
(3) Verifying scientifically, e.g., measuring electric resistance, moisture content,

and etc.

The contents we made throughout this reconstruction assistance are effective for
choosing the candidates of sand erosion more accurately as in (1) of the above manual.

An important advice, that images from not only visible light cameras but also a
near infrared camera are required, has been given from a view of geology, because

Fig. 12 Sand erosion control contents composed of 3D. a Virtual 3D image of mosaic images on
Google earth. b Topography data measured with LRF
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Fig. 13 Quite high resolution due to shooting at 100 m low height

occurrence of landslides, for example, can be presumed from three conditions of
geography, type of soil, and moisture content. However, we need to progress an
analysis method furthermore as advised, for example, presuming moisture content
from vegetation classification using also middle infrared camera, because the ground
for measuring moisture content is hidden almost in a rainy season when landslides
occur more easily.

4 Conclusion

This paper has reported our reconstruction assistance in Great East Japan Earthquake.
The results of this paper are summarized as follows:

1. Geometric characteristics along Route 106 were surveyed for back-up support of
reconstruction assistance.

2. Shooting from the sky using UAV was implemented in June.
3. The method of generating a mosaic using DEM data and SIFT has been applied

for high-resolution image put on the Google Earth.
4. According to professional comments by the geologists, the sand erosion GIS

contents made by our laboratory were examined and discussed as an intuitively-
comprehensible form.

Considering practical operation for a long term, one of the most realistic problems
seems to be frequency of update images from the UAV and the satellite. It is related
deeply to running cost. In addition, we need to progress a method for presuming
moisture content much more in order to make a sand erosion GIS contents which is
practical for an statistically-irregular weather as a guerrilla heavy rain, i.e., cataract.
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oped system called MIDERS-1 and MIDERS-2. The system is consisted of rough
terrain mobile platform, multi degree of freedom manipulator, and the all-in-one
mine detecting sensor module between ground penetrating radar and metal detector.
We have focused that our cooperative demining procedure between the macro-
scopic and microscopic demining enhances the conventional human demining. With
proposed methodology, the hardware configurations and functions are described.
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1 Introduction

For many years, the humanitarian demining have been the core motivation for the
development of demining robot system [1, 2]. It surely had many challenges and
limitations along with the demining robotic researches [3, 4]. Real environments
are left unproven for the robotic system to take over human’s job in demining
[5, 6]. Against the numerous efforts for proving the robotic system can be help-
ful for demining task, Trevelyan believes that the robotic system is not suitable for
this task because it could be too expensive and the sensor technology is still not pro-
ficient enough to guarantee the safety [7]. In the sense that the sole robot demining
system can be unstable and therefore possibly dangerous, many scientists insisted
that the beneficial points would be obtained by the cooperation between human and
robotic system [8–10]. In order to accomplish this, the robot system should contain
some level of automation or it could be a remote controlled mobile robot system to
ensure safety of the operator [11, 12].

There have been many researches regarding tele-operated machines, multi-
functional teleoperated robots, and demining survice robots [13–15]. Traditional
tele-operated machines include light flail type demining robot system [16, 17].
As tele-operated robotic system enhanced its multi-functional aspects, the system
started including other components than demining mechanisms such as mine detect-
ing sensor, laser, vision camera, and etc. [18, 19]. Another advanced type of the
demining robot system is demining service robots [20, 21].

In the same motivation under the humanitarian demining service robot devel-
opment, we suggest brilliant cooperative robotic demining strategy in this project.
Suggested strategy of the macroscopic and microscopic demining process would
shorten the operating time by utilizing multi-arrayed detecting sensor. It also would
enhance the accuracy of mine detection because the mine scanning procedure is
repeated numerously in the scanning procedure of MIDERS-1 and MIDERS-2.
Section 2 demonstrates overall demining scenario with details on each strategy.
Section 3 explains hardware architectures with the functionalities of MIDERS-1 and
MIDERS-2.

2 Mine Detection Scenario

In order for a robot system to be used for a dangerous mine detection task, it has
to be as efficient as human or even better. Observing current demining process by
human, we have concluded that replacing the demining process with a robot system
enhances the task performing speed and the safety beneficial for human who operates.
In the project, we have developed two mine detection robot systems, macro-scanning-
robot and micro-scanning-robot for two phases of a scanning strategy, which are
macroscopic scanning process and microscopic scanning process.
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Mine detecting strategy with both the macroscopic and the microscopic scanning
procedure will be faster and more precise than the conventional human demining
strategy. (i.e., overall scenario in Fig. 1). We distinguished the purposes of two dif-
ferent systems as fast and detailed mine detecting robot systems for macro scan-
ning robot and micro scanning robot, respectively. Overall mine detection scheme is
described below;

1. Remote operator controls macro-scanning-robot to scan and detect the buried
mines on the mine fields with high speed.

2. As mines are detected, macro-scanning-robot marks the detected location with
paint (i.e., the paint cannot be sprayed at specific spot).

3. Macro-scanning-robot continues the macroscopic scanning process.
4. Micro-scanning-robot is employed in the vicinity of previously mine detected

area by macro-scanning-robot.
5. Micro-scanning-robot detects mine precisely and in great detail with smaller mine

detecting sensor.
6. Micro-scanning-robot moves to another locations where macro-scanning-robot

suspects that the mine can be buried, and continues the microscopic scanning
process.

Cooperation between two different kinds of robot aims to be as efficient as tradi-
tional human demining method in addition to guarantee a safe working environment
for the operator as well.

2.1 Macroscopic Scanning Strategy

As mentioned above, the macroscopic scanning strategy aims for fast operation.
Macro-scanning-robot therefore uses many properties in order to speed up the whole
process such as a large size of mine detecting sensor in covering as large as possible
area at a single scan or the linear stroke of the manipulator.

Figure 2 demonstrates the sequential macroscopic scanning process. At first step,
human develops the safe and mine free region as in Fig. 2a. After it is confirmed that
no mines are buried in the scanned area, bush was removed, Fig. 2b–c. Then, macro-
scanning-robot operates on the safe zone while it detects mines on the right hand
side, because the mine detecting sensor, consisted of three sets of ground penetrating
radar (GPR) and metal detector (MD), is installed at right side of macro-scanning-
robot as in Fig. 2d. If a buried mine is detected, macro-scanning-robot marks the
position with the paint spray for the future detailed mine searching process of micro-
scanning-robot, Fig. 2e. Once the mines fields are cleared, the robot continues the
macroscopic scanning strategy for the next mine fields, Fig. 2f–g.
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Fig. 1 Overall scenario

Fig. 2 Macroscopic scanning procedure

2.2 Microscopic Scanning Strategy

For the microscopic scanning procedure, the smaller size of mine detecting sensor
than macro-scanning-robot was used for relatively slow and detailed detection strat-
egy. The microscopic scanning process is presented in Fig. 3b. Micro-scanning-robot
proceeds towards the location where macro-scanning-robot expected the mines are
buried as in Fig. 3a. Then, it detects mine carefully and in detail around the desig-
nated location with making the semi-circle sensor trajectory. Micro-scanning-robot
was equipped with a mine detecting sensor, in which GPR and MD sensor are stacked
so that the volume of the sensor becomes smaller. Due to small mine detecting sen-
sor with GPR and MD, it is more suitable for more precise and sophisticated scan-
ning. Once the micro-scanning-robot detects and locates the landmine, it ceases the
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operation and human removes the mine before micro-scanning-robot continues the
operation.

3 Hardware Architecture and Functions

Developed mine detecting robot system is consist of three major parts, mobile plat-
form, manipulator mechanism, and mine detecting sensor unit. This chapter demon-
strates the overall hardware compositions, specifications, and functions for hardware
architectures of a macro-scanning-robot, which is called “MIDERS-1,” and a micro-
scanning-robot, which is called “MIDERS-2.”

Fig. 3 Macroscopic scanning procedure, a Expected mine locations, b Schematic of the macro-
scopic scanning strategy

Fig. 4 MIDERS-1 a Integrated system, b Mobile platform only
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Table 1 Performance specifications

Performance criteria MIDERS-1 MIDERS-2

Maximum speed 5 (km/h) 12 (km/h)
Maximum obstacle overcome 15 cm 30 cm
Gradability 20◦ 30◦
Size 1200 × 780 × 330 mm3 920 × 620 × 270 mm3

Weight 220 kg + payload (100 kg) 85 kg + payload (40 kg)
Operating hour 2 h 3 h

3.1 MIDERS-1

3.1.1 Mobile Platform

The macros-scanning-robot, MIDERS-1, that we operate is shown in Fig. 4. This
caterpillar chain type mobile platform is designed for swift mine detection. It can
proceed forward with maximum speed at 5 km/h. The velocity and the turn rate can
be commanded as a control input, and the mobile platform changes its orientation
by skidding on the ground. The robot is equipped with a Compact-Rio by National
Instrument Inc. as a control PC, which controls the integrated system of the mobile
platform and the manipulator. It also conducts the wireless communication with
a remote control station. A pan-tilt camera and two cameras are installed for sur-
veillance at middle, front and back on the platform, respectively. The performance
specifications of the mobile platform are shown in Table 1.

3.1.2 Manipulator

The manipulator of MIDERS-1 is designed for fast scan of a mine fields. Figure 5
represents operating strategy of MIDERS-1. MIDERS-1 moves along the safe region
which is cleared by human at initial state. A sensor array possessing MD and GPR
is located at one side of MIDERS-1. While MIDERS-1 moves along the safe region,
the sensor array scans an unrevealed area (i.e., scan region in Fig. 5) for a mine.
Detection of a mine is performed with the sequence of move, stop and scan. When
a mine is detected, MIDERS-1 marks the location of a mine with paint spray. Note
that elimination of a mine is not considered for MIDERS-1.

Since it is planned to perform scanning at the side of MIDERS-1, a manipulator
is directed to the side of MIDERS-1. The manipulator of MIDERS-1 is depicted in
Fig. 6. The sensor can move in the x, z, roll, and pitch directions. For motions in the
x and z directions two linear actuators are equipped, respectively. The stroke in the x
direction has value of 1 m and that in the z direction has value of 0.3 m. The sensor
array can move with velocity of 0.1 m/s in the x and z directions, respectively. The
velocity of 0.1 m/s indicates the scanning speed. The roll and pitch rotations have
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Fig. 5 Operation of MIDERS-1

Fig. 6 3D drawing of MIDERS-1

ranges of ±15◦, respectively, and moves with the maximum speed of 30◦/s. It takes
around 15 s for a single mine scanning sequence and the covered scanning area at one
sequence is 0.82 m2, which makes faster scanning process than the human demining
method.

Since the magnetic field of an electric motor can interfere with MD sensors, an
electric motor should be located remotely. For MIDERS-1 a parallel mechanism is
adopted for the roll-pitch rotations to remotely locate electric motors. Two linear
actuators (i.e., roll-pitch actuators in Fig. 6) are equipped at link 2 with ball-socket
joints, respectively. The sensor array is attached at link 2 with a universal joint and
is connected with two linear motors with ball-socket joints, respectively. When two
linear actuators move in the same direction, the roll rotation happens. When one linear
actuator moves in the opposite direction to the other actuator, the pitch rotation is
made.
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Fig. 7 Motion of the manipulator of MIDERS-1

For precise scan of a mine the manipulator of MIDERS-1 operated the following
sequence;

1. Surface scan,
2. Approach,
3. Mine detection,
4. Home.

The sensor array is located the highest position in the z direction at the home
pose and stays at the home pose during moving the mobile base. For the surface
scan MIDERS-1 measures the profile of the surface with a laser scanner and path
planning of the manipulator is made. After scanning the profile of the surface, the
sensor array moves close to the surface for the mine detection and scanning a mine
is performed. When scanning a mine is finished, the sensor array goes to the home
position for move Fig. 7.

3.1.3 Mine Detecting Sensor

The GPR and the MD were developed by Isung Engineering Inc., cooperated with
us for the MIDERS-1 project. For the macroscopic scanning strategy, the system
should cover as large as possible area at one scan in order to speed up the mine
scanning process. Within the purpose, three sets of MD and GPR were sequentially
arrayed as in Fig. 8a. There exist space around 15 cm between GPR and MD because
MD signal can be interfered by the metal component of GPR. The size of a multiple
sensor array is 770×680×46 mm3 and the total weight of it is 8.1 kg. The frequency
bandwidth of GPR is 0.5–1.5 GHz and the detecting frequency is 10 Hz. The anti-
personal landmine, so-called KM-16 as in Fig. 8b, was buried under the center of
test field. Each set of MD and GPR detects the mine buried under the ground and
transmits signal data to remote station. Then three sets of signal data is processed
and displayed on PC at the remote station in order for the operator to determine if
the data indicates possible mined buried under the ground. Figure 8c shows that the
only middle set result detected the landmine. It was possible for MIDER-1 to detect
KM-16, buried within 30 cm deep.

However, the gap between GPR and MD, placed for the minimization of signal
interference, inhibits the large area scanning comparing to the sensor module size.
The need for all-in-one sensor of GPR and MD, thereby, became explicit.
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Fig. 8 Mine detecting sensor, a Sensor module, b KM-16 AP landmine, c Signal processed image

Fig. 9 MIDERS-2, a Integrated system, b Mobile platform with flippers
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3.2 MIDERS-2

3.2.1 Mobile Platform

The mobile platform, MIDERS-2, that we developed is shown in Fig. 9. The rubber
track type mobile platform is designed for the rough terrain operations. Since it should
be able to navigate on the rough terrain and maintain its stability for detecting mines
with more detailed manner, the mobile platform become smaller than MIDERS-1
platform. Minimized size also helps more precise control of the mobile platform.
In order to obtain more stable and accurate positioning along the path with many
obstacles, four sets of flippers are implemented as in Fig. 9b. It can proceed forward
with maximum speed at 3 km/h. A Compact-Rio as a control PC, the product of
the National Instrument Inc., controls the integrated system including the mobile
platform and the manipulator. Two sets of cameras are installed for surveillance at
front and back. The performance specifications of the mobile platform are shown in
Table 1.

3.2.2 Manipulator

MIDERS-2 is developed for precise scan of a mine. Once MIDERS-1 marks the
location of a mine with paint spray and goes further for fast scan, the location is
transmitted to MIDERS-2 and MIDERS-2 is approached to the marked area to per-
form precise scan of a mine.

The manipulator system of MIDERS-2 is depicted in Fig. 10 and consists of three
modules;

Fig. 10 Manipulator of MIDERS-2, a Schematic, b 3D drawing
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Fig. 11 Joint structure with
the spring-clutch

1. A manipulator,
2. A pan-tilt module,
3. Tool (or gripper).

The manipulator and pan-tilt module possess four and three degrees of freedom,
respectively. The pan-tilt module can be attached at the distal link or the mobile
base. MIDERS-2 can be operated for EOD and surveillance missions by equipping a
gripper at the end-effector and attaching the camera module at the distal link. For the
mine detection the MD and GPR sensor module is attached at the end-effector and
a laser scanner is substituted for a camera. Rotations of each joint are represented in
Fig. 10b.

During precise scan contact may happen between the sensor module and the
ground. The so-called spring-clutch [22] is adopted for safety reason and equipped
at joint 1, joint 2 and joint 3. A joint structure with the spring-clutch is shown in
Fig. 11. The spring-clutch is located between the gearhead and the output link. When
joint torque exerting at a joint is less than predetermined torque of the spring-clutch,
the output link is firmly fixed at the output axis of a gearhead by the spring-clutch.
When excessive torque is exerted at the joint by contact, the spring-clutch is unlocked
mechanically and the output link can rotate freely. Since no excessive torque can
be exerted at the joint, the spring-clutch guarantees to avoid mechanical failures.
A joint torque sensor is also equipped at the spring-clutch. External force estimation
and force control utilizing the estimated force can be enabled. For details of the
spring-clutch refer to [22].

3.2.3 Mine Detecting Sensor

The mine detecting sensor for MIDERS-2 was developed upon the consideration
regarding how to diminish or even eliminate the gap between GPR and MD, because
the gap caused such a small overlapping detected area at one scan, which eventually
retarded the whole process. Isung Engineering Inc. cooperated in this project for
developing all-in-one sensor with significantly minimized interference between GPR
and MD as in Fig. 12a. In keeping with the purpose of the microscopic scanning
strategy, the size of all-in-one mine detecting sensor became much smaller than
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Fig. 12 Mine detecting sensor, a All-in-one sensor module, b Signal processed image

before in Fig. 9a. The size of it was 260 × 180 × 65 mm3, and the weight was
0.85 kg. MIDERS-2 definitely is to perform detailed and accurate mine detection.
It is because the pervious multiple arrayed sensor module shrunk and resulted better
ground profile adaptability which enables better and more precise mine detection
strategy. With the developed sensor, the operator could locate the exact locations of
the buried mines as in Fig. 12b.

4 Conclusion

In this project, we have suggested the cooperative demining strategy between macro-
scopic and microscopic scanning procedure. The overall purpose was to enhance the
traditional human demining in the aspects of the processing time and the accuracy.
MIDERS-1 was designed for swift demining in a relatively large and uneven ground
condition. It was operated as described macroscopic strategy in the test field, the
result showed 0.82 m2 for 15 s which was satisfactory for proposed strategy.

MIDERS-2 was developed as the microscopic demining strategy for more sophis-
ticated mine detection than MIDERS-1. In order for the system to be compact enough
for delicate tasks, all-in-one mine detecting sensor and multi degree of freedom
manipulator were equipped. Joint can be protected from the excessive torque by
unlocking the spring-clutch mechanically. However, we have not performed the field
tests regarding the operations of MIDERS-2. It would be our future work to verify
the feasibility of the cooperative demining strategy.
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Abstract The paper describes experience with applying a user-centric design
methodology in developing systems for human-robot teaming in Urban Search
and Rescue. A human-robot team consists of several semi-autonomous robots
(rovers/UGVs, microcopter/UAVs), several humans at an off-site command post
(mission commander, UGV operators) and one on-site human (UAV operator). This
system has been developed in close cooperation with several rescue organizations,
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and has been deployed in a real-life tunnel accident use case. The human-robot team
jointly explores an accident site, communicating using a multi-modal team interface,
and spoken dialogue. The paper describes the development of this complex socio-
technical system per se, as well as recent experience in evaluating the performance
of this system.

1 Introduction

Urban Search and Rescue is a domain where robots have the potential to make
a difference [27]. They can go where people cannot: To help assess a situation,
determine an approach to deal with it, even before humans have gone in.

To make this possible, we do need more autonomy in the robot [3], in perceiv-
ing the environment, in navigating it. However, disaster areas are harsh places. We
inevitably experience what Woods et al. [37] termed “(Robin) Murphy’s Law: any
deployment of robotic systems will fall short of the target level of autonomy, creating
or exacerbating a shortfall in mechanisms for coordination with human problem
holders.” Adaptive autonomy is one way of trying to address this problem [24, 31],
making explicit the inherent interdependence between humans and robots [13].

Still, this is all for naught if the humans in the team do not accept a robot’s
autonomous capabilities and intelligence. Recent experience with synchronous
human-robot interaction in Fukushima (S. Tadokoro, p.c.) and in our own end user
studies underline this. A robot’s abilities, behaviour, and possible achievements need
to be transparent to a human operator: Whether the robot is doing something, what
it is doing and why, whether it thinks it has achieved a goal (or not). If an operator
is unclear about what to expect from the robot, he or she is unlikely to delegate
control to the robot. Instead, no matter what the robot is able to do autonomously,
the operator will revert to tele-operation.

And that’s not quite what anybody wants. We see this as an issue of (lacking)
transparency in experience, behavior and intentions [6]. Robot behavior needs to be
transparent, to allow for a proper management of user expectations. A gap between
these expectations, and what actually happens, can seriously affect the interaction
[17, 23]. A lack of transparency reduces acceptability, which might explain why
human-robot interaction (HRI) is a bottleneck in USAR [25]. (For similar observa-
tions in the field for asynchronous forms of human-robot interaction see [35], and
also the projections for synchronous interaction in [25]).

The problem gets exacerbated in the context of USAR. Humans and robots per-
form under stress, in complex environments. Situations, interactions, plans change.
And with that, expectations change. What we are looking at is not characterizing a
gap between expectations before and after a human has interacted with a robot, as is
typically done in studies on HRI [17, 23]. Instead, we need to address expectation
management online. As situations change, affecting the dynamics of the team, the
robot needs to adapt its behavior, and the way it presents that behavior to continue
to provide adequate and effective transparency; cf. e.g. [28].
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Fig. 1 NIFTi tunnel accident use case: a Setting. b UAV and UGV in action; c control center

In this paper, we try to further understand the problem. We do not offer a solution;
but we discuss a way in which we believe we can come to understand the problem
better, and design systems that can eventually address the problem in real-life. We
present a user-centric design methodology (Sect. 2) which draws in end users (first
responders from several organizations across Europe) and their experience into the
entire R&D process. Following this methodology, we discuss how we design our
systems (human-centric, Sect. 3), and how we experiment with them and evaluate
them (with end users, under real-life circumstances Sect. 4).

2 User-centric Design Methodology

We adopt a user-centric design methodology, in several respects. Firstly, we include
users in all the phases of the development cycle: Requirements analysis, component-
and system development, and experiments and evaluations. Users are from various
rescue services (Fire Department of Dortmund/Germany, Vigili del Fuoco/Italy).
Together, we formulate requirements for hard- and software functionality, and
develop physically realistic use cases in which we can experiment with and evaluate
our approaches. Figure 1 illustrates one such use case, namely a tunnel accident.

Involving users throughout the yearly development cycle does more than just
telling us what they need (requirements), and whether our systems do the job (eval-
uations). Their involvement provides us with a deeper insight into their needs, their
procedures, and what happens out in the field. This is another aspect of the human
user-centric design approach we follow. We build systems which can assist humans,
doing so in ways that mimic human understanding, and operational procedure. The
hypothesis being that this makes robot behavior more transparent to the user.

In the system design, the human perspective is pervasive throughout the repre-
sentations the robot builds, and the way it determines its behavior. The conceptual
understanding of the environment provides a human-like view on the environment,
and the inference of spatially grounded affordances results in robot behavior that
mimics standard procedure. When it comes to human-robot interaction and planning,
humans are explicitly modeled as actors, and action and interaction are planned in
ways that conform to human operational practice.
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3 Socio-Technical System Design

We approach design from a socio-technical perspective. It concerns the entire system
of robots, humans, and how they work together. We focus on the four questions listed
below.1

1. How to model situation awareness which (a) bridges the gap between a robot’s
quantitative, and a human’s qualitative sense of space, (b) facilitates use by a
geographically distributed team, and (c) provides the basis for individual or joint
action (4)? See Sect. 3.1.

2. How to model the impact of situations in task- and team-work which influence
user performance, given that (a) humans typically perform under stress in USAR
missions, and (b) stress alters interaction patterns (3)? See Sect. 3.2.

3. How to model user-adaptive human-robot communication, to adjust how, what,
and when a robot communicates given an awareness of the current operative
situation (1) and its effects on human performance (2)? See Sect. 3.2.

4. How to model flexible temporal planning and execution, to guide how a robot
plans and executes its own actions under different conditions (1)? See Sect. 3.3.

3.1 Intelligence in Situation Awareness

A robot builds up a situation awareness which bridges the gap between its own
quantitative forms of perception, and a human qualitative understanding of space.
The robot builds up a qualitative structure of dynamic space, and can make inferences
about possible actions situated in that space. Mapping therefore builds up several
layers of abstraction. First we try to build an accurate metric representation of the
environment based on the 3D rolling laser sensor mounted on our robot. Based on this
metric representation, we then segment the navigable space into coherent areas linked
in a navigation graph. Going 3D requires both to have an efficient 3D representation
of the environment and to be able to estimate the six degrees-of-freedom pose of our
robot. To avoid part of the distortions, the 3D point clouds are registered into the
map only when the robot is static. Preliminary results show that in most cases the
distortion when the robot is moving is not too large, but localization may jump from
local optima and induce point cloud deformation due to the pose interpolation. The
6 DOF pose estimate is based on a robust 2D map when the robot lies in a mostly 2D
part of the environment. We rely on fast and efficient 3D registration implementation
(i.e., libpointmatcher) to handle 3D environments online [33].

For the topological segmentation, we take as input the map of the environment.
Previously we performed topological extraction based on spectral clustering and
mutual information [22]. To better handle changes in the map, both due to exploration

1 Relations between questions are indicated in brackets, e.g. (4) means a relation to question 4.
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(a) (b) (c)

Fig. 2 3D mapping: a 3D point cloud in tunnel, b 3D map (indoor environment), c Topological
segmentation of tunnel, with navigation graph (in grey)

Fig. 3 Car detection using visual features and 2D mapping (a), 3D laser point clouds (b) and fusion
with visual data from omnicam (c)

and due to actual changes, we use incremental topological segmentation. Figure 2c
illustrates the result of this new method in the tunnel environment.

In parallel to constructing 3D spatial structure, we combine 3D point clouds and
robot positioning to improve vision, and ground observations of objects in the scene.
Image-based detection of rear parts of cars in a tunnel accident works relatively
well [38], see Fig. 3. Estimating the 3D positions of cars proved more difficult,
especially the orientation. To deal with 3D instability we associate 2D features with
the 3D metric maps. Figure 3b, c shows an example of assigning image colors to the
3D point clouds. The 2D object detector creates a probabilistic map over the image,
and attributes this to points in a 3D point cloud. The 3D information provides an
absolute scale, which allows for discarding many false positives.

We use these object observations to perform Functional Mapping, a form of spatial
inference [14]. Given an object, and an action to be performed, functional mapping
infers areas around the object, where the action can be performed relative to the object.
This combines logical inference over associated ontologies for objects and their
internal structure, and for actions; and geometric inference. In the tunnel accident,
functional mapping infers that being in a particular position relative to a car window
facilitates looking into that car. The projection of the areas into 3D space is based
on real-time map data and the observed 3D pose of the object. Functional mapping
thus combines top-down inferencing, from a priori knowledge of expected objects,
and bottom-up inferencing from real-time observations.

Inferring functional areas serves several purposes. First of all, when fire-fighters
explore a disaster site, they themselves move between functional areas to make their
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Fig. 4 Gap detection and analysis; a Top view of the 3D point cloud and b detected gaps together
with traversability direction

observations [15]. We observed the same behavior when fire-fighters tele-operated
robots to explore an accident [14]. Making the robot follow similar behavior makes
that behavior more transparent to an operator working with the robot. Secondly, we
use the inference of functional areas to determine optimal vantage points for the
robot to perform an observation. Finally, these functional areas serve in maintaining
common situation awareness between the robot’s metrical environment knowledge
and the pilot’s qualitative understanding of the environment. Thus, when a human
instructs the robot to “go to the car”, it goes into a functional area, rather than naively
trying to go to (the center of) the car.

Finally, we use map information to perform terrain analysis for traversabil-
ity, particularly negative obstacle and gap detection. Our approach has two main
stages: (i) Application of image morphological and contour detection algorithms and
(ii) application of Principal Component Analysis in the orientation domain of the
gap contours [29] and extraction of the optimal traversability path. Reasoning with
respect to the traversability of the detected gaps is done considering the dimensions
and morphological adaptation capabilities of the robot. A representative example of
gap detection and analysis is given in Fig. 4.

Adapting the robot’s morphology concerns adjusting its articulated components
to reduce instabilities that could tip it over [30]. To optimally adapt its morphology
with respect to the terrain we consider maximizing the surface contact of the tracks
with the ground. (This aims to maximize the traction efficiency of the robot which in
parallel results in minimized pressure on the tracks.) Using a set of various terrains
classes we first learn the optimal configurations of the robot offline, using a simulation
environment (Gazebo) [10], to employ them later on in the real scenario.

3.2 Intelligence in Interaction

HRI is regarded one of the major bottlenecks in rescue robotics [25, 27].
Tele-operating a robot is highly demanding. More autonomy can be a way out of this.
But as we already argued, more autonomy requires more transparency, to facilitate
common ground and coordination. And that requires communication (Fig. 5).
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Fig. 5 Team-based, multi-modal GUI with multiple perspectives (a) and multiple info-views (b)

Unfortunately, most models of HRI have so far been relatively limited in their use
of spoken dialogue, one of the most natural means for humans to interact. Also, these
models typically do not ground communication in the social structure, to explain why
actors (need to) interact, and what information is to be exchanged. We are working
on an approach that takes the social structure and the collaborative (“intentional”)
context explicitly into account [18–20]. The approach is based in previous collabo-
rative views on dialogue processing [1, 2, 11]. Our approach improves on these by
dealing explicitly with uncertain, incomplete information, as is typical for spoken
dialogue, and particularly situated dialogue.

We have integrated (limited) spoken dialogue into our multi-modal GUI for
human-robot interaction. A user can use dialogue to instruct the robot to move to
particular waypoints or landmarks (possibly selected in the GUI), or drive in spe-
cific directions [21], similar to [8]. Based on insights in human-human interaction in
human-robot teams for USAR (NJEx 2011, Sect. 4), and the recent experience in the
end user evaluations at SFO (Sect. 4), we see there is particularly a need for the robot
to produce contextually appropriate feedback to maintain transparency. (The range
of utterances which a robot needs to understand is relatively limited in this domain).
Using our recent experimental data, we are investigating the relation between when
what is to be communicated by the robot to someone (communication patterns) –
and task context, and the user’s estimated stress and workload. This should provide
an insight in not just what to say, but also how to say it best such that it is easy to
understand by the user under the given circumstances.

3.3 Intelligence in Team Cooperation

Human-robot teams are typically geographically dispersed. For team cooperation
this requires the entire system to integrate different views on the environment, (e.g.
UAV, UGV, in-field operators), and to facilitate different perspectives and needs
[34]. Below we briefly describe the planning approach we use for a robot to share
and coordinate control with other team members, to support coordinated execution.

The dynamics of the UGV and UAV can be modeled separately by defining two
different temporal declarative models in the Temporal Flexible Situation Calculus
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(TFSC) [7]. The UAV can act in strict cooperation with the UGV, so the TFSC model
needs to know the states of both system components, via a common model.

The hybrid framework combines temporal constraint reasoning and reasoning
about actions. The flexible behaviours of the UAV and UGV are specified in a com-
pact representation by temporal constraint networks TU AV and TU GV , with the possi-
bility to include a network TH O corresponding to an in-field human operator-rescuer.
These causal and temporal relations, and their constraints, are learned by continuous
interaction with humans, via demonstration and by collected observations of success-
ful processes in controled contexts [15, 32]. The networks are mapped into a structure
managing time, resources and actions (model-based control). The model accounts
for timelines with time flexibly assigned to each component, to satisfy priorities for
both resources and tasks, and which rely on online acquisition of sensor data [9]. The
whole set is managed by an execution monitor which continuously checks the envi-
ronment models {MH O , MU AV , MU GV } and the inner states {SH O , SU AV , SU GV }.
The execution loop ensures that the network is kept up to date and consistent. The
inner states SU AV and SU GV represent the internal loop which checks on all of the
machine components, namely both of the UAV and UGV. The human-robot team
shares the information about the environment and the mission, combining together
their models of the current percepts. To integrate the different abilities of the UAV,
the UGV, and the users, a set of properties P1, . . . , Pn is defined on top of the inner
states of the team units bridging the different dynamic models (Fig. 6).

4 Field Experiments and Evaluations

During 2011, we performed several experiments with end users operating our systems
under realistic circumstances. Almost needless to say, we observed problems along

Fig. 6 Properties P1, . . . , Pn
are defined on inner states
S of each team unit, to give
a uniform representation of
the multi-agent system. M
denotes a perceptual model of
a unit, T temporal model of
unit activities
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Fig. 7 Field experiments at the FDDO training center (a; Jan. 2011), control post at joint exercises
at FDDO (b; Jul. 2011), user evaluations at SFO (c; Dec. 2011)

the way that are familiar to anyone operating in the field, see e.g. [5]. Below we focus
on the lessons learned with respect to human-robot collaboration.

4.1 January 2011: Pilot Experiments at FDDO

The first pilot experiments with users took place at the training center of the Fire
Department of Dortmund (FDDO) in January 2011. Users were all professional first
responders, and had no prior experience with robots. Each user operated a UGV in
a “tunnel accident”—like environment (several crashed cars, a motor bike, debris,
set up in a large garage). We ran experiments with two different types of fully tele-
operated UGVs: The TNO “Generaal” robot [12], and an ActivMedia P3–AT. The
UGVs differed primarily in how the interaction with the robot was supported. The
Generaal has a specially designed telepresence control, consisting of a headtracking
head-mounted display, whereas the P3–AT was operated via the NIFTi operator
control unit (OCU) [21]. The P3–AT was the focus of the pilot experiment, as it
used the NIFTi interface and sensory analyses. The users were mostly unfamiliar
with robots and and spent 30–60 min training and performing simple tests such
as slalom navigation and object detection. Many technical problems arose: signal
loss, insufficient battery power, insufficient bandwidth for video-based feedback,
and damages due to obstacles and cold temperatures [5]. Out of the three users using
the P3-AT to perform the 15-min exploration task, two had to be cut short after 10
and 13 min respectively.

This experiment provided insights similar to what is found in for example [4]. We
could observe that users spent about half their time navigating, and about one third
of the remaining time trying to find pathways [21]. By observing the paths taken
by the users in the scenario, we found out that they were similar to those followed
by fire fighters in similar scenarios [15]. A surprising observation was that the users
were satisfied with the robot’s video feed. The highly-compressed poorly-lit images
were typically shown in a low 400× 800 resolution. The users indicated that the
quality was sufficient, even if the update frequency was too low (< 8Hz) for safe
tele-operation. The experiments did reveal that tele-operation increased the cognitive
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load of the user [21]. This was one reason to develop more autonomous robot behavior
(Sect. 3). We were worried that with so much time spent on navigation tasks rather
than on observation, the user’s situation awareness would be poor. However, sketch
maps drawn on white boards during the scenario showed that the users located most
objects within one meter of their actual location, and that the relative positioning of
the objects with one another was often entirely correct.

It was thus difficult to explain why tele-operation was so difficult if the users were
well aware of their surroundings. We have since improved the visualization in the
OCU, to make the robot’s maps more intuitive to users. For example, we have added
a to-scale 3D model of the robot in the metrical map, and provide more and better
views of the maps. We also provide means for controlling robot movement through
other than manual operation, e.g. by spoken commands.

4.2 July 2011: NIFTi Joint Exercises (NJEx) at FDDO

The pilot study focused on single-robot single-operator missions. Given safety ratio
and workload considerations (e.g. [26]), we wanted to move to human-robot team
setups, and study those in more detail. We organized a more complex joint exer-
cise event at FDDO (NJEx 2011), involving project partners and end users (FDDO,
VVFF). During this event, teams of several humans, a NIFTi-specific outdoor UGV
(shown in Fig. 1b), and a UAV explored several complex environments. This included
a multi-story residential building “on fire”. Missions of 45 min were performed by a
team consisting of a mission commander, a UGV operator, and a UGV/UAV mission
specialist (all in a remote control post), and a UAV operator and two safety directors
for the UGV and the UAV (all in-field, line-of-sight). Team members included both
first responders, with minimal experience with robots, and scientists, who use the
robots on a daily basis.

For NJEx 2011 we focused on human-human interaction within the human-robot
team—the robots were fully tele-operated. Interesting observations were that com-
munication primarily concerned the communication of situation awareness (“we see
a victim under the shelves in the room at the end of corridor, right”), and goals (“we
are going to look under the staircase, at the end of the corridor, left”). Nearly all
of the information exchanged was explicitly situated in the environment. The mis-
sion commander mostly communicated situation awareness, to maintain common
ground within the team, whereas the UGV operator would indicate the next actions of
the UGV. Planning exploration tasks was typically done within the control post and
the coordination with the in-field team was done through the mission commander.
The UAV operator’s task was to fly to a particular point, with an explicitly commu-
nicated purpose—typically, what kinds of observations the control post would like
to make. Video feeds from the UAV were inspected by the UAV mission specialist
in the command post, with the mission commander providing feedback to the UAV
operator. The two safety directors had the best awareness of the situations around
the robots, as they were in line-of-sight.
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Analysis so far has yielded that the mission commander and the UGV operator
generate the most radio traffic, with one or the other taking on a leading role. In
the most effective teams, this was always the mission commander. Furthermore,
variations in stress levels could be detected, particularly for team members with
high radio traffic, i.e., the mission commander, UGV operator, and the UGV safety
commander. We observed that in low stress situations, loosely defined roles and
communication protocols can have a slight negative impact on the team performance.
However, in more complex situations (e.g., time pressure, high cognitive load, stress),
the lack of protocol can break the team cohesion altogether. Face-to-face and radio
communication get overloaded, team members get orders from multiple people,
situation awareness becomes more local and poorly shared.

It is thus imperative that human team members follow strict rules from the onset of
the mission until the end. Adding an autonomous robot to this team thus means that
it needs to “fit in”. It must be socially accepted by the team. The next experiments
studied the introduction of such a robot in a complex USAR mission.

4.3 December 2011: End User Evaluations at SFO

This field trial is the third and most recent. The scenario was again a tunnel car
accident but this time was located inside a real tunnel, as shown in Fig. 1. The area
spanned 25 m into the tunnel by a width of 10 m, filled with debris, pallets, barrels,
crashed vehicles, and smoke. Users were professional Vigili del Fuoco firefighters,
with no prior experience in operating robots (UGVs). Each user had 40 min to assess
the situation with one UGV and one UAV. The human team members were the
mission commander and the UGV pilot (in the command post), and the UAV pilot
(in-field). The UGV pilots were fire fighters who had minimal experience with robots
and received 45 min of training, followed by simple tests like in January 2011.

The team members in the control post had access to a variety of information
sources, in a multi-screen multi-modal user interface set-up. The views included
robot-specific interfaces, for example one NIFTi OCU per robot (UGV, UAV), and
qualitative views for team-level situation awareness (TREX, [36]). Communication
between the command post and the in-field UAV operator was via hand-held radio,
through the mission commander. The UGV operator communicated with the in-field
UGV using the OCU, by touch through spoken dialogue. The UGV was capable of
autonomous navigation, and could also use spoken dialogue to provide observations
and basic feedback on actions (action-possibility, action-onset).

For these evaluations, we had defined clear roles for the human participants, we had
a robust outdoors robot with enough power, space, and bandwidth for the scenario,
we had much improved visualization, we had a task planner and a path planner, we
had several different levels of autonomy to reduce the amount of tele-operation, and
we ensured that the robot could support a basic dialogue with the operator. From our
experience in January 2011, we expected that reducing the need to tele-operatethe
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Fig. 8 Path taken in semi-
autonomous mode (orange
segments) versus tele-
operation (green)

robot to only the situations when autonomous navigation does not work well would
free up some time for the user to observe the environment or perform other tasks.
However, reality was different.

Figure 8 shows the typical path followed by a user during the 40-min scenario. The
first section in orange shows that the user was using spoken commands to control the
robot. The green section shows where the robot was tele-operated. Figure 8 illustrates
that autonomous behavior of the robot was used less than expected. One explanation
might be a lack of transparency of the robot’s behavior, and the resulting impact on
the user’s trust in the robot’s capacities. It was often unclear to the user whether a
robot had achieved a goal, or why it was failing to do so.

All users started with operating the robot in a high degree of autonomy. However,
they all took back control as soon as the path became more difficult to navigate,
and many more objects to observe became visible (after about 5 m into the tunnel).
This change in sharing control could be grounded in technical reasons (low speed
or failures of the autonomous navigation) or on social reasons (lack of trust and
understanding about autonomous navigation). While autonomy per se remains crucial
to achieving success in robot-assisted USAR, what becomes clear is that we need to
find understandable ways to present this autonomy to the users. The robot’s state,
behavior, and capabilities must be transparent to the human operator. It must be clear
what the robot knows, what it is currently doing and why, and what it plans to do.
And, perhaps even more importantly from the viewpoint of expectation management,
it is crucial that the robot communicates why it cannot perform certain actions, or
succeed performing them, rather than just failing. If a user is unclear about what to
expect from the robot, that user is unlikely to delegate control to the robot. Instead, the
operator keeps control, no matter how capable the robot is. In summary, transparency
is needed for understanding and trust, and trust is needed for autonomy. Future field
experiments will focus on understanding how to achieve transparency, especially in
situations of high stress and cognitive load. For example, statements that carry spatial
information should convey this spatial part in a multi-modal fashion. Additionally, we
need to spend more time on user training, allowing them to adjust their expectations
and develop trust in the system.
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5 Conclusions

Developing, experimenting, and evaluating USAR robots together with professional
users who have much at stake in this domain has turned out to be extremely revealing.
In some sense, reality bites. What we believed to be the main issue at stake (auton-
omy) might well be overshadowed by the problems we are facing in making robot
intelligence acceptable. Human-robot interaction as “the bottleneck” points into the
direction we need to look. We face a socio-technical issue: the entire complex of a
robot that can truly behave as a team member in a human-robot team (cf. also [16]).
And before we can even talk of common ground, of collaboration, one of the most
fundamental lessons we have learnt recently is that this all stands and falls with that
robot’s autonomous behavior being transparent.

Now that we are slowly beginning to achieve an acceptable level of robot auton-
omy, it is time to focus our efforts on making this autonomy accepted. In the last
field trial, we used a Wizard-of-Oz (WoZ) rather than an automatic speech recog-
nizer (simply to avoid unnecessary complications in the experiment). We plan on
pushing this type of setup further, to see how we can control the perception and
usage of autonomous behavior. We would like to identify how technical limitations
and failures affect the user’s perception, compared to how transparency affects the
perception of limitations, failures, as well as (situated) capabilities.
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1 Introduction

Competitions have often been used as a way of encouraging collaboration and
directing research energy towards particular goals. In this paper, we discuss how
the RoboCupRescue Robot League (RoboCup RRL), through competitions and other
events, is an effective driver for its three main objectives: increasing awareness of the
challenges inherent in Urban Search and Rescue (USAR) Robotics, providing objec-
tive performance evaluations for these robots, and promoting collaboration, research,
and dissemination of best-in-class solutions to the challenges posed by this domain.
In particular, the League has become a competition and community that is geared not
to competition against rivals, but rather to moving forward, as a worldwide league
of teams, towards solutions to very real challenges. There are many other applica-
tion domains in the area of field and service robotics where a similar approach may
be used to focus development, collaboration, and dissemination among the research
community.

The RoboCup RRL was started in response to the 1995 Kobe earthquake and began
in association with the broader RoboCup Competitions in 2001. Each year over one
hundred teams from academic institutions all over the world compete in regional
open competitions that culminate in the International RoboCup RRL Competition.
These events are built around the demonstration of advanced robotic capabilities for
emergency response applications. These include advanced sensing for situational
awareness, mapping and surveying, articulated arms for manipulation and directed
perception, mobility platforms for a wide variety of terrains, autonomous behaviours
for operator assistance and survivability, algorithms for data interpretation and map
building, and human-robot interfaces for highly complex real-time control of robots.

During the course of a week-long competition, 15 to 25 teams, qualified through
a competitive regional open and paper submission process, field robots that under-
take a series of autonomous and remotely teleoperated search missions to locate

Fig. 1 The RoboCup RRL Arena from the 2011 competition. The tops of the walls are color
coded corresponding to the arena areas (the Red and Black arenas are hidden behind the raised wall
sections). A map of this arena appears in Fig. 2
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simulated victims in a specially constructed arena, an example of which is shown
in Fig. 1. The robots must generate a map with useful information on the state of
victims and hazards for emergency responders. This arena consists of a maze of
terrains and challenges based on current and emerging standard test method appa-
ratuses for response robots, developed by the US National Institute of Standards
and Technology (NIST) through the ASTM International Committee on Homeland
Security Operations; Operational Equipment; Robots (E54.08.01). The competition
acts as a stepping stone between the laboratory and wider deployment. The appa-
ratuses represent the real world operational requirements gathered from emergency
responders, distilled into a form that allows for the repeatable evaluation of robot
performance. They reflect the many different challenges that a response robot may
encounter. Teams vying for the championship must demonstrate reliable, cutting
edge capabilities across the entire arena. Teams may also win Best-in-Class Cham-
pion awards for demonstrating Best-in-Class performance in specific problems in
USAR robotics.

The RoboCup RRL forms part of the development and dissemination process for
standard test methods for response robots, led by NIST [3]. The standards process is
driven from the operational requirements of emergency responders who benefit from
the development of these tools, such as police, explosive ordinance disposal (EOD)
technicians, fire fighters, and rescue and military personnel. At the competition,
these test methods are further refined in the presence of the wide variety of robotic
solutions to the challenges presented. The competition also helps to disseminate
the test methods and apparatuses as teams recreate the arenas in their own labs.
Valuable input from researchers, working on the next generation of capabilities,
are also gathered and fed back into the standards process. Likewise, exposure to
the operationally relevant apparatuses gives teams valuable exposure to real world
requirements and highlights the gaps in current capabilities. The competition also
gives NIST the opportunity to expose the emergency responders to demonstrations of
next generation capabilities. NIST invites teams with best-in-class implementations
to response robot evaluation exercises, held at search and rescue training facilities,
in order to demonstrate their capabilities to emergency responders, vendors, and
officials, with the aim of generating the demand that will shorten the time taken
for developments in the lab to reach deployment. As we have focused this paper on
how the RoboCup RRL is an effective driver of research and collaboration, we have
restricted our reporting of such topics as rules, history, specific test methods, arena
construction, and results. For an overview, we invite the reader to refer to the current
League Overview [8]. The reader is also invited to refer to the current Rules Outline,
Arena Construction Guide, and Community Wiki [4, 6, 9].

2 The RoboCupRescue Robot League

Several unique features of the RoboCup RRL Competition make it particularly
effective in promoting research and collaboration. First and foremost, the RoboCup
RRL is presented as a competition that does not consider teams as rivals. Rather, the
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rivalry is between the teams and the application, represented by the arena and the
mission specifications. The competition is carefully structured to give teams every
chance possible to demonstrate and disseminate their advanced capabilities to their
full potential. The RoboCup RRL also specifically encourages teams with well inte-
grated, near-deployable robotic systems, as well as teams with experimental systems
that push the boundaries in specific areas and demonstrate Best-in-Class capabili-
ties. It is usually the case that major advances in specialized capabilities come from
groups that have specialized and devoted the majority of their energies into that
area. Making their inclusion in the competition a priority allows those advances
to be demonstrated alongside the more mature, but perhaps less advanced imple-
mentations. This makes the competition a unique venue whereby researchers may
disseminate their research to others and accelerate the progress of these technologies
towards eventual deployment.

The competition starts with a preliminary round where all teams have the opportu-
nity to fully and equally compete in. The aim of this round is to provide all teams with
the opportunity to demonstrate their capabilities and obtain statistically significant
performance data on their systems. The preliminary round takes up one-half of the
week and is held in two half-sized arenas to allow all teams to complete six 15-minutes
missions. Team performances in the Preliminary missions decide their qualification
for the Championship and Best-in-Class competitions. Teams may compete in all of
these competitions or they may decide to focus on one or a few. The Championship
competition consists of a semi-final and final round and decides the overall 1st, 2nd,
and 3rd place winners. The qualification process, discussed in Sect. 2.3, ensures
that teams demonstrating competent, statistically significant performance across the
whole arena qualify for the Championship. However, there are also opportunities
for more specialized teams to demonstrate their capabilities in the Championship.
The Best-in-Class awards, of which there are currently three, are decided on the
basis of both the Preliminary missions and a dedicated set of Best-in-Class missions,
described in Sect. 2.4. In the rest of this section, we will present in further detail how
the different components of the competition work together to foster collaboration
among teams with very different capabilities, allow teams to demonstrate their work,
and advance the work of the community as a whole. A more general discussion of
the competition logistics and the current outline of the rules appears in the current
Rules Outline [4].

2.1 Arena

The arena in which the competition is held represents a building, such as a small
house or apartment, in various stages of collapse. The arena that was used in the
2011 international competition is shown in Figs. 1 and 2 and consists of current and
emerging standard test method apparatuses embedded in a maze. The RoboCup RRL
is geared towards showcasing the abilities of robots that are still in the research lab
and that are rarely hardened for deployment. Therefore, many of the less practical
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Fig. 2 Map of an example
RoboCup RRL Arena showing
the Red, Orange, and Yellow
arenas, the Black arena (car
with victims), Yellow/Black
Radio Dropout Zone, and Blue
manipulation area. This arena
is approximately 15×19 m

or unsafe challenges such as dust, water, mud, fire, chemical hazards, truly unstable
terrain, and radio disruptions have been omitted or replaced with more practical sub-
stitutes. The simulated victims that teams must locate in order to score points are
distributed throughout the arena in such a way as to require them to demonstrate mas-
tery of these apparatuses. In this section we will describe how the design and layout
of the arenas and victims were influenced by the objectives of the League. Further
details of the makeup of the arena elements and victims may be found in the Arena
Construction Guide [9]. As this evolves from year to year, the reader is also invited
to refer to the Community Wiki [6]. The arena is divided into three main arenas:
Yellow, Orange, and Red, shown in Fig. 3. These form a continuum of increasing
difficulty and focus on different current and future challenges faced by Urban Search
and Rescue robotics. In addition to the three major arena areas, three specialty arenas
exist to encourage developments in specific challenges relevant to USAR Robotics.
They are the Blue and Black arenas, shown in Fig. 3, and the Radio Dropout Zone.
By dividing the continuous arena into discrete areas, specialist teams are able to
focus their energies on the arenas that lie within their area of expertise, where they
are able to compete without disadvantage against the Championship teams. It also
provides the League with a context in which to introduce new test method apparatuses
that reflect the refined operationally relevant requirements gleaned from emergency
responders through the ongoing standards development process.

The Yellow arena, in which all missions begin, represents a building to navigate
that is largely intact and is designed to showcase teams that are able to navigate and

Fig. 3 The Red and Black arenas, Orange arena, Yellow arena and Blue arena as configured for the
Preliminary and Championship missions
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identify victims autonomously. It is arranged as a maze with continuous but non-flat
flooring in order to encourage teams to implement robust, 3D-aware mapping and
localisation. Although it is the easiest of the three arena areas, robots that find and
score victims in this arena must do so without any human control. For teleoperated
robots, it represents a navigation speed test. The faster they can reach the other are-
nas, the more time they will have to perform the rest of their mission. The Orange
arena represents an area that has suffered from additional collapse and showcases the
ability of robots to cover a wide variety of structured terrains and accurately place
their sensors in hard-to-reach locations. It is laid out as a maze with multiple levels
and discontinuous flooring. Embedded in the Orange arena are structured mobility
test method apparatuses such as steep ramps, stairs, steps, and mismatched ramps.
All robots may score victims in the Orange arena, however all of these victims are
challenging. For instance, they may be placed in difficult locations such as very close
to the ground or against steep ramps and only accessible through small holes, or high
on walls next to sloped flooring. The Red arena represents complex terrain such as a
rubble pile and showcases the abilities of advanced mobility robots and the systems
that allow operators to effectively drive these robots in highly unstructured environ-
ments. It consists of a stepfield [2], designed to replicate unstructured terrain in a way
that is reproducible. This arena tests advanced mobility where the primary challenge
is getting to the victim and staying in location while the victim is surveyed—victims
are usually easy to view once the robot is co-located. Barriers and victims are placed
around the arena so robots must demonstrate well controlled movement. The Black
arena, an extension of the Red arena, represents a less standardized part of the arena
where robots can demonstrate their abilities in more realistic scenarios. It usually
takes the form of victims hidden inside a full sized vehicle.

The Blue arena tests the ability of robots to manipulate objects and carry them as
they traverse the terrain in the arena. It consists of shelves containing objects, such
as water bottles, radios, and boxes, and grids of holes in which the objects may be
placed. In the main competition, teams earn additional points by taking objects from
the shelves and placing them with any victims that they find. As mobile manipulation
capabilities are still in their infancy among League teams, teams are allowed to start
the mission with a single object in the robot’s possession. The Radio Dropout Zone,
also called the Black/Yellow arena, represents an area of a largely intact building
that is experiencing radio interference and encourages teams to incorporate both
mobility and autonomy on a single robot. Although it resembles the Yellow arena, it
is placed beyond the Orange arena and thus robots require some degree of mobility
to reach it. While teams may teleoperate their robots up to the Radio Dropout Zone,
once inside the robot must navigate autonomously. On reaching the end of the Zone,
teams may resume teleoperation to score victims. As a further incentive, successful
autonomous navigation back to the start of the Zone doubles the team’s score for
finding the zone’s sole victim.

Simulated victims are the objectives that all of the robots seek in the arena. They are
evenly distributed throughout the three main arenas; an additional victim is assigned
to the Radio Dropout Zone. In order to score a victim, the team’s robot must be
co-located with the victim (usually defined as the centre of the robot’s base within
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Fig. 4 Examples of simulated victims that appear throughout the arena

1.2 m of the victim) and have line-of-sight to the victim with its sensors. To score well,
robots often must deploy their sensor package right up against the victim, requiring
slender, dexterous arms and compact sensor packages. Examples of simulated victims
are shown in Fig. 4. They consist of several co-located signs of life: a human form,
heat, motion, sound, and carbon dioxide. Several of these signs of life taken together
are used to identify the state of the simulated victim: unconscious, semi-conscious,
or aware. These signs of life have been chosen to be detectable with widely available
equipment and yet require sensing and processing that reflects that required to sense
real objects of interest. Alongside the simulated victims are test method artifacts
that evaluate the ability of the robots to survey the environment, such as hazardous
materials labels and eye charts, placed in hard-to-see areas.

Victims are placed in boxes that are either open or accessed through holes of
varying sizes, changing the level of difficulty. Victims located in areas that pose
greater challenges, such as advanced mobility or full autonomy, are easier to access
while victims in areas that have easier terrain are placed in smaller holes that require
the robots to be positioned in difficult locations and require novel ways of rapidly
and reliably directing perception. Reaching a victim and reporting their condition is
only part of the challenge. Teams must also locate the victim on a human-readable
georeferenced Geospatial Tag Image File Format (GeoTIFF) map of the arena that
their robot autonomously generates as it traverses the arena. Points are scored for
the accuracy of the map and its usefulness to an emergency responder who should
be able to use it to locate the victim [7].

2.2 Missions

In this section we will first discuss the overall structure of the missions, followed
by a brief discussion of the particular features of the missions, which make up the
Preliminary and Championship rounds, that help to achieve the goals of the League,
as described earlier in this paper. A more complete discussion of the mission and
rules appears in the Rules Outline [4]. Each time-limited mission represents a search-
and-rescue deployment. Teams deploy their robots to the start point in the arena and
their operator interface to the operator station, which is out of sight of the arena. Once
set up, the single robot operator uses their single teleoperated robot and multiple
autonomous robots to navigate and map the arena, locate the victims, determine
their signs of life, and deliver objects. The mission ends when their allotted time has
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expired, after which they have a short period of time to produce an automatically
generated map of the arena with victims identified and localized. The team’s score
depends on the quality of this map and the extent and accuracy of the information
they are able to gather about the victims.

The League uses the scoring process to encourage teams to implement solutions to
gaps in current capabilities, as identified through the ongoing standards process. For
example, points are awarded for the ability to obtain thermal information about the
victim. While teams are able to score some points using non-contact thermometers,
more points are available to teams that are able to return a thermal image, resulting in
some innovative approaches to performing thermal image surveys of the arena using
low cost sensors. Likewise, automatic mapping, 3D perception, and high resolution
imaging are encouraged using the scoring metric. As in the rest of the competition, the
missions have been designed to facilitate experimentation, allow teams to disseminate
their developments to other teams and the general public, collaborate, and assist
in the refinement of the standard test methods. The League’s objectives are best
satisfied if teams are confident that they will be able to showcase their capabilities
to their full potential. However, the implementations seen in the competition are
rarely deployment-hardened and are highly experimental. The competition has been
carefully structured to reduce the risk that luck or random factors result in a team not
reaching their full potential. Teams qualify for the Championship rounds based on
overall points scored during the preliminaries. To encourage teams to push their robot
and to reward teams for bringing innovative, but possibly imperfect, implementations,
the worst preliminary mission score for each team is discarded. Furthermore, the
qualification cutoff is decided based on the distribution of scores after the preliminary
round. There should be a clear performance gap between the best eliminated team
and the worst qualified team.

Prior to each mission, the team’s operator, or their representative, is asked to walk
the arena, identify all of the simulated victims, and check their signs of life. This
ensures that bad luck, in the form of the operator randomly choosing a poor path
through the maze or a broken simulated victim, plays no part in the ability of the
team to showcase their capabilities. While it also means that the operator knows
the location and signs of life of each victim, they must still navigate the arena and
present convincing evidence to the referee, by way of their user interface, in order to
score points. Once the mission has begun, teams are encouraged to have a “spotter”
in the arena, who is responsible for ensuring the safety of the robots. Although the
mission ends if the spotter touches the robot or interferes with its sensors, it allows
teams to experiment and push their robots without fear of damaging them. Teams
are also allowed to reset their missions after an intervention, if the robot becomes
immobilized, or at any other point of their choosing. This entails moving the robots
back to the starting location, resetting their maps and other internal state, repairing,
modifying, or replacing the robots as necessary and beginning again. However, while
their mission score is set to zero, the clock is kept running so teams effectively have
as many missions as they like, within the 15 or 20 minutes they have been allotted. At
the end of the time, the mission in which they scored the most points is recorded. In
this way, teams may experiment with new settings or approaches, knowing that they
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will be able to salvage the mission and recover to still earn points. It also reduces the
cost of failures early in a mission, before they have had a chance to demonstrate their
abilities. During the course of the mission, other teams and members of the public
are encouraged to watch the operator and the robots, both of which are projected
onto a large screen. This is further facilitated by swapping the order in which teams
run between days so that all teams have the opportunity to observe all other teams
while not preparing for their own mission. As a further incentive to disseminate
their work, a small but significant number of points are given to teams that produce
an informative slide and assign a representative to provide a live commentary to
the audience during their mission. Following the mission, the maps that each team
produces to document their mission is scored by the referees. These are publicly
posted, along with their scores and the salient features that either earned points or
showed scope for improvement. This allows teams to see how each others’ mapping
sensors and algorithms have affected their maps and scores and identifies the Best-
in-Class implementations to aspire towards.

2.3 Championship

At the start of the semi-final rounds, all team scores are reset to zero. This allows high
scoring teams that are confident of qualifying to experiment during the preliminary
rounds, where the competition is less fierce, without jeopardising the higher stakes
semi-final and final rounds. Depending on the number of qualified teams, the semi-
finals are held in either a half-sized or full-sized arena and consume another day of
competition. Following the semi-finals, the best performing three or five teams move
on to a finals round in the full-sized arena that usually consists of two short missions
with scores carrying over from the semi-finals and the final three places decided on
points. Teams that present integrated systems that competently perform in all aspects
of the arena always qualify for the Championship rounds. Very inexperienced and
highly specialized teams are often eliminated. These teams are encouraged to use the
remaining one or two days to practice for the Best-in-Class competitions on the final
day. Indeed, many specialized teams come to the competition only to compete in
the preliminaries and the Best-in-Class competitions with no intention of qualifying
for Championship. Yet these teams are not out of the main competition. To further
encourage the entry of specialist teams and to foster a spirit of collaboration, each
qualified team is strongly encouraged to pair with a team that has been eliminated
and progress through to the Championship as a combined team. Each member of
the combined team is awarded should the combined team receive the first, second,
or third place awards. In recent years, it has been common for teams that focus on
mechatronic engineering, and who often perform well across the Orange and Red
arenas, to qualify and merge with teams that focus on artificial intelligence, who
dominate the Yellow autonomous arena and have excellent mapping but lack the
resources to tackle the more physically challenging arenas.
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2.4 Best-in-Class

As previously discussed, the field of USAR robotics is so large that many of the break-
throughs in the advancement of capabilities come from specialized research groups.
To recognize and reward these groups, who may lack the resources to demonstrate
broad competence in enough areas to win the Championship, the League also pro-
vides three Best-in-Class awards. Equal in status to the Championship, these awards
focus on specific challenges that exist in this field, as identified through consultation
with emergency responders as part of the broader standards development process.
The current Best-in-Class competitions focus on Mobility, Autonomy, and Mobile
Manipulation. Qualification is based on the preliminary missions and performance
in these rounds contributes one-half of the Best-in-Class score. The second half
comes from a dedicated Best-in-Class round. There is also a separate award, decided
by the Organizing Committee, for the team that demonstrates the most remarkable,
operationally relevant innovation in user interface development.

The Best-in-Class Mobility competition challenges robots with advanced mobility
to demonstrate their ability to rapidly traverse unstructured terrain. Half of a robot’s
Best-in-Class Mobility score consists of the number of victims that were found by
the robot in the Red arena during the preliminary round; teams must find at least
one victim in this arena to qualify. The second half of the Best-in-Class Mobility
score is based on the standard test method for Advanced Mobility: Stepfields [2]. It
takes the form of a race against the clock around the Red arena stepfields. In a fixed
time period (usually 10 minutes) teams must drive their robot in a figure-of-eight
pattern around the stepfield as many times as possible. While being one of the oldest
challenges in the competition, many real world terrains continue to thwart deployed
solutions. Through this challenge, teams are encouraged to not only develop highly
mobile, robust mobility platforms, but also to develop effective ways of controlling
the robots through careful camera placement for situational awareness, reliable low
latency communications, and intuitive, low cognitive load user interfaces.

The Best-in-Class Autonomy competition was developed to encourage teams to
pursue autonomous victim identification and navigation in continuous but non-flat
flooring and in the presence of difficult terrain that must be avoided. Half of the
robot’s score consists of the number of victims that were found autonomously dur-
ing the Preliminary missions. The second half of the Best-in-Class Autonomy score
is earned during a single Best-in-Class Autonomy mission. The arena is reconfig-
ured so that the Yellow arena becomes one large loop around the whole arena and
the mission is for the robot to map as much of the arena as possible within a set
time limit. The maps are then evaluated based on coverage and accuracy [7]. There
is only a small, albeit growing, subset of teams that are competitive in the Best-
in-Class Autonomy competition. However, the technologies required to perform well
in this challenge have greater applicability in augmenting existing capabilities. For
example, autonomous victim identification drives the development of sensor fusion
and object class recognition. This may be equally applied to recognizing not only
actual victims but also other objects of interest, such as hazardous material placards
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or shipping labels across a wide area, something that a robot operator, concentrating
on the task at hand, can easily miss. Autonomous navigation can assist the operator
by helping to perform long downrange traverses and enhance robot survivability by
allowing it to act appropriately should radio communication be impaired. Automatic
mapping is also a valuable technology that is only just starting to reach deployment;
this competition serves as a valuable proving ground for the test methods that are
being developed to evaluate these new capabilities.

The Best-in-Class Mobile Manipulation competition is the newest of the three and
encourages the development of dexterous, intuitive mobile manipulation capabilities.
Half of the score for this competition comes from the number of objects that were
placed with victims during the Preliminary missions. The other half comes from the
dedicated Best-in-Class Mobile Manipulation competition, based on the emerging
standard test methods for mobile manipulation. Teams use their robots to take as
many objects as possible from the shelf and place them in a grid of holes in the Blue
Arena within 10 minutes. There is a very real need for dexterous mobile manipula-
tors with intuitive control in the field of USAR robotics. Apart from a few salient
examples, robots used in these applications have rudimentary dexterous manipulation
capabilities when compared to those in other domains such as telemedicine. Clearly
this is a domain where the performance of the bulk of deployable solutions, and to a
large part the expectations of the end users, trail the state-of-the-art in the academic
community by a significant margin. This competition plays an important part in not
only evaluating the performance of the next generation of implementations, but also
in helping disseminate their progress to end users and vendors and assisting their
rapid integration into fieldable implementations.

One of the main areas of open research in USAR robotics is in the quality of
the user experience. This includes all aspects of the robotic system that influence
what the user observes through the interface, from the interface itself right through
any assistive technologies to the sensor selection, placement, and direction capabil-
ities. It also includes the whole process by which the user controls the robot. To
encourage innovations that push the state-of-the-art in this area, the League presents
an Innovative User Interfaces award, selected at the end of the competition by the
Organizing Committee based on the implementations demonstrated during the week
of competition. This award is given to teams that demonstrate implementations that
solve an operationally relevant user interface and experience problem in the field of
USAR robotics. The League community is made up of groups with a wide variety of
approaches to the user interface experience. In the past, this award has been presented
to teams for developing wearable interfaces, interfaces based on metaphors such as
car driving, and interfaces that use autonomous behaviours to assist the operator.

2.5 Rules and Administration

The RoboCup RRL is primarily administered by NIST as part of its work on
standard test methods for response robots. NIST guides the design of the arena
and the embedded test method apparatuses, provides the general outline of the
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competition rules and scoring metrics, defines the Best-in-Class challenges, and
manages various competition logistics [4]. Embedded in the arena design, standard
test method apparatuses and rule outlines are the operationally relevant requirements
that NIST has distilled from its close collaboration with emergency responders and
industry. This provides NIST with a powerful way of using its position at the cross-
roads of researchers, vendors, and emergency responders, to guide the competition
towards the challenges that exist in the real world, in a way that is feasible for
research-grade implementations to address.

The focus of the RoboCup RRL is not on finding a winner but rather to encourage
research and collaboration. To this end, the rules themselves are not set in advance.
Rather, based on the outline, the rules are presented, discussed, amended, and agreed
upon during meetings at the start of the competition and again at the start of every
day with leaders from every competing team. The rules are allowed to evolve from
one day to the next to respond to new developments, close loopholes, and adjust
scoring to best reward promising implementations. This approach means that teams
have little incentive to try to “game” the system—any exploitation of the rules will
simply result in that loophole being closed. Instead, teams are encouraged to bring
general solutions to the types of challenges that exist in the field of USAR robotics
and as emphasised by the published arena design guides and rule outlines. During
the competition, much like in a real deployment, teams that do well are the ones
that are able to improvize, adapt, and perform rapid development as the conditions,
apparatuses, and rules evolve.

3 Dissemination of Solutions

The RoboCup RRL has expanded to host regional open competitions through the year,
often serving as qualifying competitions that feed into the international competition.
Particularly significant regional opens include those held in Germany, Japan, Iran,
and Thailand. The Iranian community, inspired by the 2003 earthquake in Bam,
has grown to be one of the major forces in the international competition, fed by
a vibrant domestic competition of several hundred teams. The Thai competition is
particularly notable, in only a few short years it has rapidly grown to encompass over
100 domestic teams with a championship trophy that is granted and presented by the
Thai royal family. As a result of resources and support provided to the domestic Thai
RoboCup RRL community, Thai teams dominate the world competition, winning
the Championship several years in a row. In the process they have demonstrated
many practical advancements that have been disseminated throughout the league,
particularly in mobility and directed perception.

It is rare for teams to finish the competition without having made significant
improvements to their robot’s capabilities in response to its performance in the are-
nas and the dissemination of best-in-class implementations from other teams. How-
ever, it is a high pressure environment, where teams are ultimately concerned with
demonstrating their capabilities to their full potential. In order to further encourage
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collaboration and the dissemination of best-in-class solutions, especially among
groups that are considering entering the League, the RoboCup RRL community
hosts annual international Rescue Robotics Camps and Summer Schools. Represen-
tatives from teams that have exhibited Best-in-Class capabilities in previous com-
petitions are invited to present their work and lead tutorials to help other teams
and researchers build on their work. Topics that these events have been particularly
effective at disseminating in the past include 2D and 3D mapping, user interface
design, and autonomy. These events, attended by around 30 participants and led by
around 10 speakers and practical leaders each year, have been instrumental in the
development of several new teams who now rank as Best-in-Class in their own right.
The League also brings in distinguished speakers in relevant fields to introduce the
League community to new developments and encourage research to proceed in the
direction of gaps in current capabilities.

Through competition experience, some teams have been able to refine their imple-
mentations and move beyond the confines of the relatively safe, structured arenas.
Teams that perform well in the competition are invited to demonstrate their imple-
mentations at Response Robot Evaluation Exercises, held regularly at fire and rescue
training facilities to evaluate the performance of deployable systems. These events
represent the next stepping stone between the lab and deployment, with emergency
responders, procurement officials, and vendors in attendance. While they are still
safe, structured events, the environments are more realistic with real concrete and
wood rubble, dirt, dust, and water. Sensors are further challenged with a wider variety
of surfaces, longer sight lines, and sunlight, while communications are hampered by
steel reinforcing and other structures.

Many teams in the League have implementations that demonstrate capabilities
several generations ahead of currently deployed capabilities across the spectrum
of user interfaces, manipulation, directed perception, autonomy, mapping, sensing,
sensor fusion, and mobility. By demonstrating these capabilities in scenarios that
emergency responders are familiar with, the League can spark demand for these tech-
nologies and, with vendors also in attendance, hasten their integration into deploy-
able systems. At the same time, researchers are able to see more clearly how their
work fits with the overall operational scenarios and identify where and how further
improvements may be made. Several teams have already taken advantage of these
opportunities, which have proven to be valuable to all parties involved. During subse-
quent meetings with responders it has been clear that exposure to these cutting-edge
implementations has changed their way of thinking about how their problems might
be solved. Likewise, researchers exposed to these events have found the experience
critical in shaping their research directions to be more application-focused. For pro-
curement officers it has also helped them gain a clearer insight into the capabilities
that exist outside of a corporate marketing officer’s brief.

Many teams have also formed collaborations with local emergency responder
communities and fielded their technologies at Urban Search and Rescue facilities
in Australia, Germany, Japan, the United States, and beyond. For example, teams
from Japan have long been involved in the domestic Japanese emergency respon-
der community. The design of their robots bear the hallmarks of development in
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collaboration with emergency responders, with unique capabilities in manipulation
and mobility, and unusual and specialized mechanisms such as snake-like robots.
German RoboCup RRL teams have also participated in events such as the European
Land Robot Trials involving military and civilian applications. Thailand, with its
vibrant RoboCup RRL community, has seen teams working with emergency respon-
ders to deliver robots for operational purposes. These collaborations with the emer-
gency responder community help to validate both the approaches that the teams have
taken, as well as the overall direction of the RoboCup RRL. In an ideal world, the
advances made by the teams in the RoboCup RRL would not be required. However,
disasters do happen and several teams have already seen their robots deployed in full
operational scenarios. The 2011 competition saw the sudden withdrawal of several
teams from Japan, when their robots and expertise were required in the aftermath
of the 2011 East Japan Earthquake. Robots that were developed for the competition
played an instrumental role in the disaster response. This included the Quince robot
(CIT, Tohoku University, IRS and NEDO), which was initially designed for travers-
ing the stepfields in the competition. Its proven ability to overcome these terrains
resulted in it being chosen for inspecting the buildings housing the reactors at the
tsunami-damaged Fukushima Dai-1 nuclear power plant [5].

4 Future Directions

The RoboCup RRL is constantly evolving as the state of the art in implementations
and test methods change. In particular, the focus in past years on improving mobility,
2D mapping, and sensing have resulted in most teams achieving a very high level of
performance in these areas. The next challenge will be in 3D mapping, manipulation,
autonomy, and user interfaces—technologies where a small number of teams have
demonstrated mastery. The League organization is also refining the links between
these focus areas and the real world challenges through collaboration with emergency
responders as part of the standards process and other projects and competitions. As
these are reflected in the apparatuses, rules, scores, and Best-in-Class awards, it is
anticipated that these focus areas will continue to improve.

New test methods on the horizon are also slated for possible inclusion into the
League. In particular, standards for other, related, classes of robots, such as those
designed to fight fires, are being considered for adaptation into the League. By care-
fully matching these new challenges to the skill set already present in the community,
the League organization is able to leverage the existing capabilities. This helps to
drive innovation in a new, much needed area of research, increases awareness among
the research community of a new set of research challenges, and helps to advance
a new set of standard test methods by which the performance of future implemen-
tations may be evaluated. For the competition as a whole, it also allows new teams
a niche in which they can grow and excel and compete with the entrenched play-
ers; in the process they benefit the League community by bringing and sharing their
unique expertise into the community while themselves learning from the other teams
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in the League. The explosive ordinance disposal (EOD) community has also been
interested in leveraging the RoboCup RRL to further research in their domain. This
interest fits well with the increasing focus on manipulation tasks in the competition.
The RoboCup RRL is working with the EOD community to ensure the relevance of
new competition challenges.

While the RoboCup RRL is focused on robots for disaster response, another league
that has its origins in the RoboCup RRL community, RoboCup@Home, focuses on
service robots in the home. The two leagues share a common approach to promot-
ing research and collaboration, as well as many common research frontiers. The
communities are quite distinct, with the RoboCup RRL community dominated by
teams with mechanical and mechatronic backgrounds and the RoboCup@Home
community, with its focus on human-robot interactions, heavily focused on artificial
intelligence. Going forward, the two leagues plan on working together to encour-
age the RoboCup RRL community to pursue more complex autonomy in wider,
more semantically complex environments, while encouraging the RoboCup@Home
community to improve their mechanical platforms to cope with more varied and
unstructured terrain. In the process, it is hoped that collaboration and dissemination
of technologies between the two communities, and a better understanding of each
others’ challenges, can be further strengthened.

The RoboCupRescue Virtual Robot League was also formed out of the RoboCup
RRL community in order to lower the barrier of entry into this field, especially for
teams that are heavily focused on artificial intelligence. This league shares the same
challenges as the RoboCup RRL, deployed in a validated physics simulator. Another
competition that builds on the RoboCup RRL experience is the DARPA Robotics
Challenge [1]. This multi-year competition encourages the development of semi-
autonomous robots for disaster response that can operate in a designed-for-human
world. It incorporates many of the concepts that make the RoboCup RRL a success
and leverages many of the same test methods and processes.

Finally, additional outreach events, such as new summer schools, are planned that
aim to bring together not only RoboCup RRL based teams, but also other students
and early career researchers to work intensively on focused problems that exist in the
league. These include software architectures that improve the ability of teams to share
software implementations across different robot platforms and the software modules
that will allow teams with little software engineering expertise to begin to compete
in this space. Other focus areas for these events include 3D mapping, user interfaces,
manipulation, and autonomy. The RoboCup RRL has focused the community on the
challenges that matter to the future deployment of Urban Search and Rescue Robotics.
Through the combination of a solid grounding in the requirements of emergency
responders, integration with the wider standards development process that promotes
fair and rigorous evaluation, and an active decision to encourage experimentation,
research, collaboration, and dissemination as opposed to rivalry purely for the sake of
competition, the RoboCup RRL has succeeded in becoming a “League of Teams with
one goal: to Develop and Demonstrate Advanced Robotic Capabilities for Emergency
Responders.”
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Estimating the 3D Position of Humans Wearing
a Reflective Vest Using a Single Camera System

Rafael Mosberger and Henrik Andreasson

Abstract This chapter presents a novel possible solution for people detection and
estimation of their 3D position in challenging shared environments. Addressing
safety critical applications in industrial environments, we make the basic assumption
that people wear reflective vests. In order to detect these vests and to discriminate
them from other reflective material, we propose an approach based on a single cam-
era equipped with an IR flash. The camera acquires pairs of images, one with and
one without IR flash, in short succession. The images forming a pair are then related
to each other through feature tracking, which allows to discard features for which
the relative intensity difference is small and which are thus not believed to belong to
a reflective vest. Next, the local neighbourhood of the remaining features is further
analysed. First, a Random Forest classifier is used to discriminate between features
caused by a reflective vest and features caused by some other reflective materials.
Second, the distance between the camera and the vest features is estimated using a
Random Forest regressor. The proposed system was evaluated in one indoor and two
challenging outdoor scenarios. Our results indicate very good classification perfor-
mance and remarkably accurate distance estimation especially in combination with
the SURF descriptor, even under direct exposure to sunlight.

1 Introduction

People detection is an important task in both autonomous machines and human oper-
ated vehicles equipped with driver assistant technology. Especially when it comes to
applications where machines operate in industrial workspaces shared with humans,

R. Mosberger (B) · H. Andreasson
AASS Research Centre, School of Science and Technology, Örebro University,
Örebro, Sweden
e-mail: rafael.mosberger@oru.se

H. Andreasson
e-mail: henrik.andreasson@oru.se

K. Yoshida and S. Tadokoro (eds.), Field and Service Robotics, 143
Springer Tracts in Advanced Robotics 92, DOI: 10.1007/978-3-642-40686-7_10,
© Springer-Verlag Berlin Heidelberg 2014



144 R. Mosberger and H. Andreasson

it plays a crucial role towards improved safety for the operators. Different sensor
modalities have been commonly used in people detection including laser scanners,
thermal cameras and vision-based systems. All approaches suffer from drawbacks
in safety critical applications. Thermal cameras are expensive and their use depends
on the ambient temperature. Laser scanners are also expensive and can fail under
extreme conditions such as direct sunshine into the sensor. Vision-based systems
offer appealing solutions since they can be inexpensive but require that the ambient
illumination is neither too strong nor too weak. Yet, for the application in safety sys-
tems for industrial environments, reliable people detection in a variety of different
conditions is critical.

In many industrial workplaces such as manufacturing areas, construction sites,
warehouses or storage yards the wearing of a reflective safety vest is a legal require-
ment. In contrast to more general approaches, the work presented in this chapter
therefore takes advantage of the enhanced visibility of a person due to the reflective
vest to facilitate the detection. Andreasson et al. [1] introduced a people detection
system based on a single camera unit which was successfully used to detect humans
wearing a reflective vest. The core principle of the detection system is to take two
images in short succession, one with and one without IR flash, and to process them
as a pair. The processing scheme identifies regions with a significant intensity differ-
ence between the two images in order to detect locations where reflective material
appears.

The system proposed in this chapter is an extension of the work presented in [1].
The extended system allows not only for detection of people wearing reflective vests
but also adds estimation of the 3D position for individual vest features. A machine
learning approach is applied in order to estimate the position of a reflective vest
based on the description of an image patch extracted from the neighbourhood of the
location where the vest was detected in the image.

This chapter is organised as follows. Section 2 briefly discusses related work in
the field of vision-based people detection. In Sect. 3, the complete vest detection and
position estimation system is described in detail. The section is divided into a part
dedicated to the detection of reflective vest features (Sect. 3.1) and a part describing
the estimation of a 3D position corresponding to each detected vest feature (Sect. 3.2).
In Sect. 4, the performance of the system is evaluated in different environments and
conclusions and an outlook on future work are presented in Sect. 5.

2 Related Work

Vision-based people detection for non-stationary environments has been extensively
studied for applications in robotic vehicles, (semi-) autonomous cars, driver assistant
systems and surveillance. State-of-the-art techniques mainly rely on either the detec-
tion of individual body parts or the analysis of templates. Both techniques are com-
monly used in combination with machine learning techniques. The state-of-the-art
method of template based techniques uses the histogram of oriented gradients (HOG)
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descriptors [2] computed on a dense grid of uniformly spaced cells. The descriptors
are fed into a detection system consisting of a binary classifier obtained by super-
vised learning. Body part based detection systems follow a different approach by
representing the body as an ensemble of individual parts pairwise connected with
a spring-like link. In [3], the different body parts are represented using a simple
appearance model and arranged in a deformable configuration to obtain a pictorial
structure which is then matched to the images to be observed.

The performance of vision-based techniques heavily depends on the presence of
good visible structures in the images, and thus on a sufficient illumination of the
observed scene. Their application is not suitable for dim or completely dark envi-
ronments. Also, vision-based approaches typically struggle in cases where people
have little contrast with the background. For these reasons, existing people detection
approaches are not directly applicable in a safety system supposed to operate under
challenging conditions, such as rain, snow or direct exposure to sunlight.

The system presented in this chapter focuses on the detection of people wearing a
reflective vest using active IR illumination. The detection of retro-reflective material
has been successfully applied in motion capture systems where passive markers are
used in combination with an array of IR or visible-light LEDs mounted around the
lens of one or several cameras in order to detect selected spots on the human body [4].
Yet, to the best of the author’s knowledge, there exists no people detection system
that makes use of the reflective vest properties in the detection process.

Instead of analysing single images as it is done in most of the related work,
our system processes a pair of images one of which is taken with an IR flash
and one without. The proposed algorithm exploits the fact that the IR flash is very
strongly reflected by the vest reflectors to detect locations in the image where a large
intensity difference exists between the two images. Andreasson et al. show in [1]
that especially in the mid- and long-range people detection where spatial resolution
decreases rapidly in the image, their approach clearly outperforms a state-of-the-art
people detection algorithm (Histogram of Oriented Gradient, HOG) applied to a
single image.

3 System Description

The reflective vest detection and position estimation system presented in this chapter
is described in two parts. Section 3.1 is dedicated to the detection of reflective vest
features in the input images while Sect. 3.2 describes the estimation of a 3D position
for each detected vest feature. For a schematic overview of the complete system,
individual processing steps as well as the data flow in the system see Fig. 1.
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Fig. 1 Overview of the reflective vest detection and position estimation system

3.1 Vest Detection

The upper part of Fig. 1 depicts the detection scheme employed to detect persons
wearing reflective vests. The detection system works by comparing two images,
one acquired with IR flash, I f , and one taken without, In f . A feature detector is
used to identify the set Fraw of high intensity blob-like interest points in the image
I f . Subsequently, the features detected in I f are tracked in In f and, based on the
output of the tracker, a subset of features is discarded as not belonging to reflective
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Fig. 2 Example of an image pair taken in short succession. The image on the left was taken with
IR flash and the image on the right without. The images show a panoramic view which is obtained
by unwrapping of the raw fish-eye images. The difference in intensity values at locations where the
reflective vest appears is clearly visible. The filled white circle at the bottom right represents a lens
artifact originating from direct sunshine into the camera. It may be noted that the overall brightness
of the images is very low due to the use of the IR band pass filter in the camera system

material and thus not originating from a reflective vest. Features are discarded if they
can be tracked and if the intensity difference between the two images is below a
set threshold. This pre-selection process is further described in Sect. 3.1.3. Finally, a
binary random forest classifier, trained by supervised learning is used to discriminate
vest features from non-vest features.

3.1.1 Hardware and Image Acquisition

The camera unit consists of a standard monochrome CMOS sensor with a resolution
of 752 × 480 pixels and a fish-eye lens with an approximate FOV of 180◦. Eight
IR LEDs with a wavelength of 850 nm are placed in a ring around the camera. The
orientation of the LEDs assures a wide and relatively uniform illumination of the
scene in the camera’s FOV. A band pass filter with a center wavelength of 852 nm
and a full width at half maximum of 10 nm is mounted between the lens and the
sensor. The filter corresponds to the dominant IR wavelengths of the IR LEDs.

The image acquisition involves taking a pair of images, one with IR flash and one
without. An exemplary pair of panoramic images, obtained from the raw fish-eye
images is depicted in Fig. 2. The time increment ta between the acquisition of the
two images is kept as short as possible in order to minimize the difference between
the two images due to changes in viewpoint and changes in the scene. The raw
fish-eye images are unwrapped to represent a panoramic view containing the area
of interest for the reflective vest detection. The unwrapped flash image I f and the
unwrapped non-flash image In f form the image pair I = (I f , In f ) on which all the
post-processing is based.

3.1.2 Feature Detection

The reflection of the IR light by the reflectors of a vest results in high intensity blob-
like regions at locations where the vest appears in the image I f . Shape and size of
the high intensity regions depend heavily on the distance between the camera unit
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and the person wearing the vest as well as on the body pose of the person. Especially
at short distances, the reflective markers of a vest appear as elongated regions rather
than as circular blobs.

The first step in the vest detection process consists in identifying locations in
the image I f where such high intensity regions appear. It was shown in [1] that the
STAR algorithm by Konolige et al. which is a speeded-up version of the CenSurE
feature detector [5] yields good results. The STAR detector produces a set of raw
features, named Fraw, in which every feature is described by the image coordinate
pair u = (u, v) indicating the location in the image I f where it was detected.

An exemplary result of the feature detection is given by the ensemble of crosses in
the upper image of Fig. 3. The example illustrates that under the influence of the IR
illumination from the flash and the sun, the detected feature set Fraw includes many
features that do not originate from a reflective vest. Also it is worth mentioning
that due to the STAR algorithm’s sensitivity to circular shapes, one reflective vest
marker can be detected more than once (cf. Fig. 3), especially when its shape appears
elongated.

3.1.3 Feature Tracking and Intensity Check

The detected features in the set Fraw originate either from a reflective vest or from
another bright object in the FOV of the camera. As the images I f and In f were taken in
short succession, the appearance of non-vest features is assumed to change little from
one image to another. In contrast, this brightness constancy assumption is not valid
for features originating from a reflective vest since the intensity values in the vicinity
of a vest feature differ considerably for the image pair I. Based on this property, the
first processing step to eliminate non-vest features consists in tracking raw features,
detected in image I f , in the corresponding image taken without IR flash, In f , and
perform a check on the intensity difference between the image patches surrounding
the detected and the tracked feature locations.

The tracking of the features is performed using a pyramidal implementation of
the Lucas-Kanade feature tracker [6]. The tracker is based on the assumption that
the temporal increment between two consecutive images is small enough such that
the location of a feature changes little from one image to another. As the images I f

and In f are taken in very short succession, this is the case. Furthermore, the tracker
assumes brightness constancy.

In the case of vest features, the tracker is typically unable to find any suitable
match in the image In f because the brightness constancy assumption does not hold
true. Thus, features that failed to be tracked are added to the set of reflection based
features Fref lex . It is worth noting that in contrast to the standard application of a
feature tracker, we are not only interested in features that can be successfully tracked.
We specifically identify features that cannot be tracked as possible vest features.

In the case of non-vest features, where the brightness constancy assumption holds
true, the tracker typically finds the corresponding locationin the non-flash image In f
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Fig. 3 The figure shows an exemplary result of the vest detection process. Blob-like features are
detected in the image I f taken with IR flash (above). Detected features are represented by the
ensemble of crosses in I f . The detected features are then tracked in the image In f taken without
IR flash (below). The detection area in I f is restricted to the white bounding box to allow features
to be tracked even in the case of quick rotational movements. Successfully tracked features are
marked as white crosses in image I f and the tracked locations are indicated by white 0 crosses in
image In f . All tracked features in the above example show a very low intensity difference and are
therefore not considered as vest candidates. Features that failed to be tracked include detections on
the reflective vest as well as on the metallic surface of the car standing right in front of the camera.
All the untracked features are considered as vest candidates and classified by the random forest
model. A black square is drawn around features that are finally classified as vest features

and an intensity difference check within a square window of size wi surrounding the
feature can be performed. If the average difference between the pixels in the window
is above a threshold ti the feature is declared reflection based (and exceptionally
tracked) and added to the feature set Fref lex . Otherwise, this is not the case and the
feature is considered to originate from an area without reflective material and will
not be further processed.
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3.1.4 Feature Description and Classification

The set Fref lex typically contains features that originate from the reflection of the
IR light on a reflective material. Yet, other reflective objects than the reflective vest
markers can appear in the scene, such as metallic surfaces, windows, mirrors or
reflective floor and wall marking tape. An additional processing step therefore aims
at classifying the features collected in the set Fref lex into a set of vest features Fvest

and a set of non-vest features Fnonvest .
The additional processing step is also motivated by the fact that extreme camera

movements that cause strong motion blur can result in a high number of detected
features that can not be successfully tracked in the image In f . In such cases, the set
Fref lex , supposed to contain mainly features representing reflective materials, would
contain many other undesired features.

The classification is not performed by directly evaluating the raw intensity values
of the image. Instead, a local image descriptor is extracted from the neighborhood of
each detected feature in Fref lex and serves as input for the classifier. The descriptor
is extracted from a square image patch of size wd centered at the location where a
reflection based feature was detected in image I f . Requirements for an appropri-
ate descriptor include robustness to illumination changes, motion blur and noise as
well as computational efficiency of the extraction process. State-of-the-art feature
descriptors that were found appropriate include SURF [7] and BRIEF [8].

A random forest classifier [9] is then applied to classify all features in the set
Fref lex . The forest is an ensemble of nt binary decision trees with a randomized
selection of descriptor variables on which a tree splits. Thus, the classification of a
feature descriptor with the random forest classifier provides nt individual votes, one
per each tree in the forest. The probability that a reflection based feature represents a
reflective vest can be inferred by dividing the number of trees voting for a reflective
vest by the total number of trees nt in the forest. In a supervised learning task, the
random forest classifier is trained on a set of descriptors that are manually labelled
with a tag indicating whether the descriptor corresponds to a vest feature or not.

3.2 3D Position Estimation

The lower part of Fig. 1 depicts the two steps the system performs in order to estimate
a 3D position for features that were detected in I f and classified as belonging to the
set of vest features Fvest . First, the system estimates the distance of a vest feature with
a machine learning approach before exploiting the intrinsic camera model together
with the distance estimate to produce a 3D position estimate.
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3.2.1 Distance Estimation

The same local image descriptors used for the feature classification described in
Sec. 3.1.4 are employed to estimate the distance of a reflective vest feature based on
machine learning. Using supervised learning we train a random forest regressor on a
set of descriptors that are labelled with the ground-truth distance between the camera
and the reflective vest that caused the appearance of the corresponding vest feature.
The trained model is then applied to obtain a distance estimate d for descriptors of
unseen vest features.

A strong emphasis has to be made on the rotation and scale invariance of the feature
descriptors adopted in the underlying system. The size of a reflective vest pattern in
the image I f decreases with increasing distance between the vest and the camera. As
we aim to estimate the distance to the vest based on the local image descriptor, scale
invariance is clearly undesired because it would make it impossible for the regressor
to consider the size of the patch. On the other hand, rotation invariance would be
beneficial for cases where the regressor has to estimate the distance of an untrained
vest feature which is just a rotated version of a trained feature.

In the case of BRIEF the descriptor is neither scale nor rotation invariant but
tolerates small amounts of rotation [8]. In contrast, the SURF descriptor is designed to
be rotation and scale invariant but this property only holds true if the SURF descriptor
is used in combination with the corresponding SURF feature detector which provides
a scale and an orientation for every detected feature. The STAR feature detector used
in our application does not provide any orientation for the detected features. Thus,
we extract the descriptors within a window of fixed size wd and constant orientation
of zero degrees and obtain BRIEF and SURF descriptors that are neither scale nor
rotation invariant.

3.2.2 3D Projection

The final step aims at estimating the 3D position relative to the camera for all
features in the set Fvest . Therefore, an intrinsic camera model of the camera sys-
tem is obtained by a calibration method dedicated to omni-directional cameras [10].
The method assumes that the image projection function can be described by a Taylor
series expansion for which the coefficients are estimated in the calibration process.

Using the obtained camera model and given the image coordinates u = (u, v)
of the location at which a feature in Fvest was detected, a ray in 3D space can be
inferred on which the object that caused the appearance of the feature in the image
must lie on. By further taking into account the distance d that was estimated for
the corresponding feature, a 3D point on the ray can be located leading to the final
position estimate x = (x, y, z) in the coordinate system fixed to the camera.
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Table 1 Test scenarios with number of acquired image pairs featured in the system evaluation

Scenario Environment Image pairs I

1 Indoors, warehouse-like environment 400
2 Outdoors, car parking area, sunny weather conditions 380
3 Outdoors, car parking area, direct sunshine into camera 100

Table 2 Values of the various system parameters used for the evaluation setup

Parameter Description Value

fa Image pair acquisition rate ∼14 Hz
ta Time delay between the acquisition of I f and In f ∼35 ms
w/h Width and height of the unwrapped input images I f and In f 600 x 240 Pixel
b Feature detection window border size 40 Pixel
wi Window size for the intensity difference check 5 Pixel
ti Threshold for the intensity difference check 30.0
wd Window size for the descriptor extraction 24 Pixel
nt Number of trees in the random forest classifier/regressor 20

4 Experiments

The reflective vest detection and position estimation system has been evaluated in
three different test scenarios as listed in Table 1. A sensor unit consisting of the
camera system and a 2D laser range scanner (SICK LMS-200) both fixed to a solid
mechanical frame was used for the data acquisition. An extrinsic calibration was
carried out to obtain the position and orientation of the laser range scanner relative
to the camera [11]. The sensor unit is mounted at a height of approximately 1.5 m
on a mobile platform with four hard rubber wheels.

Several training and validation data sets were acquired for each scenario by simul-
taneously recording the raw camera images and the 2D laser readings. During the
acquisition of all data sets the mobile platform was moving at a speed of approx-
imately 0.5 m/s. One data set per scenario was held back for evaluation purposes
while the remaining sets served as training data. Table 2 summarizes the values of
the different system parameters used in the evaluation setup.

All the acquired data sets were preprocessed to detect the set of raw features Fraw

and to extract the corresponding local image descriptors. A BRIEF descriptor of
256 binary variables and a standard SURF descriptor of 64 floating point variables
was extracted for every feature. A ground-truth label was manually assigned to each
descriptor indicating whether it corresponds to a vest feature (label 1) or not (label 0).
Furthermore, the ground-truth distance between the camera and the person wearing
the vest was extracted from the laser readings and assigned to the descriptors.

A supervised learning process is applied to obtain the models of the feature
classifier and the distance regressor. We trained a random forest on 45 k extracted
image descriptors and the corresponding labels to obtain the classifier described in
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Table 3 Result of the feature detection process

Scenario Total detected features Average features per image I f Vest detection rate (%)

1 1,612 4.03 97.50
2 1,540 4.05 97.84
3 4,953 49.53 88.37

Sect. 3.1.4. Likewise, we trained a random forest on 30 k image descriptors labelled
as vest features (label 1) and the corresponding ground-truth distance to the person
to obtain the regressor described in Sect. 3.2.1.

The evaluation was then performed by processing the validation data set of each
scenario and comparing the obtained results with the ground-truth labels assigned
during preprocessing. The main processing steps of the system according to Fig. 1
are evaluated individually.

Feature Detection

To evaluate its performance, the feature detector (Sect. 3.1.2) is applied on each image
I f in the validation data sets resulting in a set of raw features Fraw. If a reflective
vest is identified with at least one feature in Fraw the detection process for image I f

is declared successful. Images in which no reflective vest appears are not considered
in the evaluation. The vest detection rate is defined as the ratio between images in
which the vest is successfully detected and the number of images showing a vest.

Table 3 shows the result of the feature detection evaluation. The data shows that
in nearly all images of scenarios 1 and 2 the detector reliably detects at least one raw
feature per reflective vest. In scenario 3 the camera faces the sun resulting in lens
artifacts frequently appearing in the images. The detector occasionally fails to detect
features intersecting with the lens artifacts which leads to a detection rate decreased
by approximately 10 %.

Feature Classification

In a second step we evaluate the system’s ability to correctly classify a set of detected
features Fraw into a set of vest features Fvest and a set of non-vest features. The
evaluation assesses the performance of several processing steps as a group, namely
the feature tracking and intensity check (Sect. 3.1.3) as well as the feature description
and classification (Sect. 3.1.4). Every set of raw features Fraw detected in the series
of images I f is processed to obtain a corresponding set of predicted vest features
Fvest . The set of predicted non-vest features is defined as Fnonvest = Fraw\Fvest .
The result of the binary classification into vest and non-vest features is then compared
to the ground-truth label manually assigned during preprocessing.
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Table 4 The matrices of the binary feature classification into vest- and non-vest features for the case
where a the classification is based only on the feature tracking and intensity check (Fvest = Fref lex ),
b the feature set Fvest is obtained by further classification based on the BRIEF descriptor and c by
further classification based on the SURF descriptor

Scenario 1

Predicted
0 1

Actual
0 n/a n/a
1 0.06% 99.94%

Predicted
0 1

Actual
0 n/a n/a
1 16.00% 84.00%

Predicted
0 1

Actual
0 n/a n/a
1 4.28% 95.72%

Scenario 2

Predicted
0 1

Actual
0 79.07% 20.93%
1 1.30% 98.70%

Predicted
0 1

Actual
0 97.94% 2.06%
1 15.32% 84.68%

Predicted
0 1

Actual
0 95.09% 4.91%
1 10.94% 89.06%

Scenario 3

Predicted
0 1

Actual
0 97.45% 2.46%
1 15.92% 84.08%

(a)

Predicted
0 1

Actual
0 99.29% 0.71%
1 34.39% 65.61%

(b)

Predicted
0 1

Actual
0 99.51% 0.49%
1 30.86% 69.14%

(c)

Table 4 shows the results of the evaluation in form of confusion matrices. Scenario
1 contains images acquired indoors where the only IR source was the flash of the
camera system and where no other reflective object than the vest appeared. Thus, true
negative and false positive rates are not defined. The results illustrate the effect of the
feature description and classification described in Sect. 3.1.4. The false positive rate
is decreased by rejecting features of other reflective material than reflective vests.
By doing so, the classifier also erroneously discards some actual vest features that
look unfamiliar, resulting in an increased false negative rate. Classification based on
the SURF descriptor yielded the best trade-off between the two effects.

Distance and Position Estimation

The trained model of the random forest regressor (Sect. 3.2.1) is used to obtain a
distance estimate for every predicted vest feature in Fvest . The distance estimate is
used together with the feature coordinates u = (u, v) and the intrinsic camera model
to obtain a corresponding 3D position estimate according to Sect. 3.2.

Figure 4 shows the results of the distance estimation. While the estimations based
on the SURF descriptor show a widely stable accuracy over the whole distance range,
the BRIEF descriptor only allows a reliable estimation for short range distances up to
7 m. The plots also report sporadic but large outliers indicating a distance estimation
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Fig. 4 The box plots show the distance estimation error for the scenarios 1–3. The indications BR
(BRIEF) and SU (SURF) specify the image descriptor on which the estimation is based. Missing
plots indicate that the vest detection failed and no distance estimation could be performed
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error of several meters. Even in the most extreme conditions with direct sunshine into
the camera (Scenario 3) the system still gives accurate estimates up to 6 m distance.
Under the influence of strong sunlight, the system fails to detect features for higher
ranges and no distance and position estimations are available.

In the same way as for the distance estimation, we also evaluated the final position
estimation error. The results are not shown here for lack of space. However, they
indicate the same tendency as the results shown in Fig. 4.

5 Conclusions and Future Work

In this chapter we presented a system capable of detecting people wearing reflective
vests and estimating their position in 3D space. The system has been evaluated in an
indoor warehouse-like environment and outdoors in sunny weather conditions. The
experiments show that the system gives accurate distance estimates for distances up
to 10 m, with only sporadic outliers. Even under the extreme conditions of direct
sunshine into the camera, the system still performs well for distances up to 6 m.

Future work includes the tracking of reflective vests over time using a particle filter
which is continuously updated with the 3D position estimates of single vest features.
Thus, vest detections will be maintained over several frames and the influence of
outliers will be reduced. To allow for simultaneous detection and tracking of multiple
persons, a clustering process will also be introduced.

Future work also includes a systematic evaluation of the system in a range of
different weather conditions including rain, snowfall, and fog. Additional scenarios
will be tested that were not addressed in this chapter, such as persons that are partly
occluded or lying on the floor (e.g. fainted persons) as well as different types of
camera movements. An extended version of the camera system will include more
powerful IR LEDs to extend the detection range to 20 m and beyond.
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Impression of Android for Communication
Support in Hospitals and Elderly Facilities

Yoshio Matsumoto, Masahiro Yoshikawa, Yujin Wakita,
Masahiko Sumitani, Masutomo Miyao and Hiroshi Ishiguro

Abstract In this paper, we report the impression of our android robot obtained in
experiments and reactions of people to the android in demonstrations in medical
and nursing fields. Our newly developed android robot Actroid-F is utilized for this
research. Since the total system for controlling the android is light and compact, it
is easy to install in medical and nursing fields. In order to survey the impression
of android in the real-world, we conducted a preliminary experiment utilizing the
android in a various environments. As a result, it was revealed that most of the
subjects have no aversion to the presence of the android, and elderly people tend to
have positive impressions of the android. Furthermore we demonstrated the robot
in facilities for the elderly, and a school for children with developmental disorders.
Findings from the demonstrations together with ideas for the potential application
of the android based on the findings are presented.

1 Introduction

In recent years, various kinds of practical assistive robots have been developed for
medical and nursing fields, such as exoskeleton power assist robots [1], assistive
manipulators [2], robotic beds [3], and intelligent wheelchairs [4]. The main purpose
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of these robots is the direct and physical assistance for either disabled people or their
helper. In addition, robots which support psychologically in medical and nursing
field have been developed. Paro [5] is a robot which looks like a seal puppy. It gives
animal therapy effects to people in environments such as hospitals and extended
care facilities where it is difficult to keep living animals. It responds as if it is alive,
moving its head and legs, making sounds, and showing preferred behavior through
interaction with people. Keepon [6] can express emotion and attention with gestures
through its simple yellow puffballs body and eyes. It is used in a therapy for autistic
children.

The psychological support robots mentioned above have simple and exaggera-
tive appearances, by extracting essences of shape and function from real animals or
human. On the contrary, android robots which have closely resembling appearances
with human are developed in last decade. The utilization of the android for psycho-
logical support in the medical and nursing fields has just started recently. In Osaka
University, an android named ReplieeQ2 was introduced into a medical examination
room as a bystander, and synchronized its nodding and smiling motion with patients
during the medical treatment. The experimental result revealed that the presence of
the bystander android gave positive effects on impressions of a doctor and satisfac-
tion level of medical treatment [7]. This fact suggests that the android robots have a
potential to provide new service to medical and nursing fields.

In this paper, we present our newly developed android robot platform, and a result
of preliminary field experiment to survey the impressions of people to the android in
the real-world. In Sect. 2, the android platform is to be described, and from Sects. 3
to 5, the detail of the result of preliminary experiments and demonstrations are
described. Section 6 presents the discussion and Sect. 7 concludes the paper.

Fig. 1 Actroid-F (male and
female versions)
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Table 1 Arrangement of
pneumatic actuators

Face 7 Eyebrows (up/down)

Eyebrows (furrow)
Eyelids (open/close)
Eyeballs (pan)
Eyeballs (tilt)
Mouth (open/close)
Corners of mouth (up/down)

Neck 3 Head turn (pan)
Head lean to left (back/front)
Head lean to right (back/front)

Body 2 Breath
Waist (bow)

2 Android Platform

2.1 Android Robot Actroid-F

Actroid-F (Fig. 1) is an android robot manufactured by Kokoro Company Ltd. Its
appearance highly resembles with human. The face of the android is made of soft
silicon rubber by taking a copy of a real human face. The male version, a newly
developed android has exactly the same hardware including the skin as the female
version. The only differences are the wig, clothes, and makeup.

It is designed to conduct field experiments fields, and has following features:

• It has 12 degrees of freedom in upper body.
• Actuators are driven by a small air compressor.
• It requires standard 100 V power supply and can be connected to household wall

socket.
• It has no extra control box with valves. They are installed inside the body.
• Low cost (approx. USD 100,000).

The limbs (i.e. arms and legs) are not movable. All of the degrees of freedom are
driven by pneumatic cylinders with air servoing, thus the air compressor is necessary
for controlling. The arrangement of pneumatic actuators is shown in Table 1.The
face has only seven degrees of freedoms, however as the arrangement was carefully
designed to achieve natural communication in medical and nursing fields. As a result,
Actroid-F can show more natural facial expressions especially for smile (Fig. 2),
which is the most important expression in such situations. Except for the face, the head
can pan (shaking motion), tilt (nodding motion), and incline to one side. Furthermore,
it has actuators for bending in the waist and for breathing in the chest. The use of
the air actuators achieves silent and robust motion without heat problems, and no
maintenance is necessary for a year. It also enables the android to have physical
compliance and silent motion which are also quite important for field experiments.
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Fig. 2 Facial expression of
Actroid-F

Neutral

Anger Surprise

Smile

2.2 Hardware Configuration

The system of the android is composed as follows: An air compressor and the android
are connected using a 20 m air tube. Twelve valves in the body of the android
control the quantity of air flow, which drives actuators (i.e. air cylinders). The android
is connected to a notebook PC via USB cable, and angles of each joint can be
commanded from this PC. A webcam which captures a facial image of a target
person for face recognition is also connected to the notebook PC. A microphone is
connected to the notebook PC via a voice changer. The voice of the android which
is generated from speech synthesizer or the voice changer is output from a speaker
behind the android.

2.3 Software Implementation

The graphical interface for the operator has push-buttons which corresponds to
pre-determined motions such as “Nodding”, “Smile”, “Anger”, “Surprise”, and
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“Bowing”. All of the 12 degrees of freedom can also be manually controlled by
sliders in the interface. In addition, all of the motion generated by the android can
be recorded automatically, and replayed afterwards.

Natural human motion such as blinking, gaze movements, head movements, and
breathing were implemented on the android. In addition, unconscious head move-
ments of human were recorded beforehand, and were replayed during idle state.
Motions of the android can be operated by the motions of the target person using
the webcam and faceAPI [8] that recognizes human faces. Roll-pitch-yaw of the
head, opening and closing of the mouth, motions of the mouth corner, motions of
the eyebrows can follow.

As for speech functions, the system enables the operator to make an utterance
using a speech synthesis (text to speech) function. The speech synthesis function is
implemented using Speech API (SAPI) of Windows Operating System, and the lip
motion synchronizes with the speech.

3 Communication with Patients

3.1 Experimental Setup

We conducted a clinical bystander experiment with android in an examination room
of the pain clinic at the outpatient department in The University of Tokyo Hospital
for a month and a half. In the clinical examination room, the android was sitting
next to the doctor, directing its face to the patient position to make eye-contact with
the patient. The air compressor was installed in a distant room in order to prevent
disturbing medical examination by noise. Webcams were put on the desk of the
doctor, and were connected with the PC for controlling the android. The PC was
installed in the neighboring room, and an operator was controlling the android while
observing the examination through the webcams (see Fig. 3).

The experimental protocol is as follows: After taking a consent from a subject, the
subject enters the clinical examination room. Then the operator makes the android
bow in order to attract his/her attention once, after that a normal clinical consulta-
tion starts, which takes 10–15 min on average. A single medical doctor performs
the clinical consultation throughout the experiment to standardize the experimental
condition. Unconscious motion such as blinking, gaze movements, head movements,
and breathing are automatically executed during the experiment. The nodding and
smiling motion of the android is controlled to synchronize with either the doctor
or the patient for each patient, which is not known by the doctor. After the clini-
cal consultation, the subject answers a written questionnaire about their subjective
evaluations of the android.
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Fig. 3 Experimental scene of bystander experiment in hospital

Table 2 Evaluation about presence of android in examination room

Under 65 Over 65 Total

Prefer presence 5 18 23
(7.1) (25.7) (32.9)

No difference 18 16 34
(25.7) (22.9) (48.6)

Prefer absence 3 1 4
(4.3) (1.4) (5.7)

N.A 5 4 9
(7.1) (5.7) (12.9)

Total 31 39 70
(44.3) (55.7) (100.0)

Numbers in parentheses are relative frequency ( %)

3.2 Experimental Results

Subjects of 70 patients (31 males and 39 females) took part in the experiment. The
mean age was 62.1 (±15.4) years. Most of the patients were at their first medical
visit to the doctor.

The result of the questionnaire about preference for the presence of the android is
shown in Table 2. Approximately half of the patients answered that they did not mind
the presence of the android, which was similar to the result shown in Ref. [7]. Since
all of the patients visited doctors at the university hospital to take an expert medical
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Fig. 4 Comparison of impres-
sion on the android between
under 65 and over 65 years
old
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consultation, this is a natural reaction. However one-third of the patients answered
that they preferred the presence of the android. The major reasons for the preference
were “It was comfortable”, “It made me relax”, and “I got interested in it”. Only
5.7 % answered that they preferred the absence of the android, and the major reason
for that was “the android had no relations with the clinical consultation”. The total
ratio of patients who preferred presence and who did not mind was 81.5 %, thus it
was shown that most of the subjects have no aversion to the presence of the android.

Figure 4 shows the relation of impression of the android with the age factor.
Patients over 65 years old (N = 39) showed statistically better impression on the
android compared with the patients under 65 years old (N = 31) as to the most
of adjective words assessed by t-test. Actually, several patients over 65 years old
explicitly answered that they enjoyed the experiments and they wanted to talk with
the robot more.
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Fig. 5 Comparison of impres-
sion on android between male
and female
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Figure 5 shows the relation of impression of the android with the gender fac-
tor. Female patients (N = 39) showed statistically better impression on the android
compared with the male patients (N = 31) as to three adjective words “natural”,
“conscious”, and “human-like” assessed by t-test. Female patients also showed bet-
ter impression as to all other adjective words on average but not statistically.

Before conducting the experiment, we supposed that younger subjects would have
positive impressions on the android, since they are familiar with “robots” from comics
and movies, and that male subjects would have positive impressions of the android,
because the android utilized in this experiment was a young female version. However
the experimental results indicated totally opposite tendency. Actually several elderly
subjects gave positive comments such as “I enjoyed the experiment and would like
to talk with the android more”, and some elderly female subject answered “I’m glad
to see beautiful thing” and “I prefer a female android than a male android”.
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4 Communication with Elderly People

4.1 Experimental Setup

The experimental results shown above indicated that most of the subjects have no
aversion to the presence of the android in the clinical examination room and elderly
subjects had positive impressions of the android. This fact is important to carry on
demonstration experiments in the hospital where many of users are elderly people.

We then took the android to facilities for the elderly in order to investigate the
effect of the android in the nursing field. Figure 6 shows our androids (both female and
male versions) communicating with elderly people in a nursing facility for the elderly.
The androids played a role as a photographic model in the “photographic therapy”,
where elderly people take photographs of human and other subjects, mount them on
cardboards, and decorate them by adding words and paper ornaments. Approximately
half of the elderly people there suffer from dementia, and the photographic therapy
is one of the activities being conducted for preventing dementia.

The androids were tele-operated to show facial expressions such as smiling, and
to utter synthesized voice by operators sitting about 5 ∼ 10 m away from the robot.
Answers to the frequently asked questions were previously assigned to buttons in
the graphical user interface for the operator. Arbitrary sentences can also be uttered
by typing it via keyboard utilizing the interface. Captured images from tiny cameras
built in the eyeballs of the androids were displayed on the monitor, which were
utilized to establish eye contacts with people by the operator.

4.2 Experimental Results

Each android interacted with approximately 50 people. We have not conducted
detailed analysis for the experimental results, but a number of interesting acceptance
behaviors of the elderly people reacting to the android were observed as follows:

• There were no person who reacted to feel uncanny, scary, or uncomfortable,
• Most of the people enjoyed talking and interacting with the android,
• Many people, especially ladies, were eager to touch and shake hands with the

android,
• Once they touch the hand of the android, they seemed to felt closer to the android,
• They seemed to keep interested in the android about half hour or one hour in

general,
• A gentleman who usually cannot interact with the staffs of the facility stayed in

front of the android for a long time and tried to communicate with it,
• A lady dressed up and came to see the android,
• A lady said that she was more interested in the robotic researchers than the android.
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Fig. 6 Experiment at a nursing facility for the elderly

These are very preliminary results of the experiments. We are going perform more
experiments to analyze the reactions of elderly people in more detail.

5 Communication with Children

We also took the android to robotic events, where many people of all ages
communicated with it. In this section, the reaction of the children to the android
is to be described.

Children in elementary age and junior high school age usually regarded the android
as a “curious” object, and get close to the robot with touching it. However, as far
as we observed, the touching behavior looked not so familiar but rather guarded
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Fig. 7 Communication with
children

with some caution as shown in the upper figure in Fig. 7. The toughing behavior was
totally different from that of elderly people shown in the previous section.

Children in kindergarten age (i.e. from 2 to 5 years old) did not show as curious
expression as older children. Many of them even refused to get closer to the robot
as shown in the lower figure in Fig. 7. However children in this age are often shy
or afraid of strangers in general, and it is still not clear how they regard the android
robot.

We also gave a demonstration of the android at a school for children with devel-
opmental disorders, especially with Autism and Asperger’s syndrome. About 70
students from junior high school to university age joined the demonstration together
with five teachers in a large classroom as shown in the upper figure in Fig. 8. They
first observed the motion and utterances of the tele-operated android, and then some
students voluntarily tried to communicate with the android as shown in the lower
figure in Fig. 8. Some students also tried to operate the android by the terminal.
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Fig. 8 Demonstration at
a school for students with
developmental disorder

The response of the children with developmental disorders to the android was
mostly positive. They understood that was a tele-operated robot, and most of them
commented that they liked the android. Only a few students commented that they
feel some fears against the robot, especially looking at the eyes of it. The difficulty
of making eye-contact is a typical symptom of autistic patients. The most interesting
finding was that a student commented they felt easier to talk to the robot than to
the real human, and many students agreed to it. The student explained that he felt
easier because he thought the robot would not negatively respond to his words. It
seemed that they were afraid of negative response of their family or friends due to
their experience, and many of them regarded the android as a conversation partner
better than the human.
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6 Discussion

6.1 Interpretation of Experimental Results

Although the android has highly real appearance, it might give “unpleasant” or
“uncanny” impressions to some people. This phenomenon can be explained by
“uncanny valley”, [9] and the effect may vary depending on the appearance and
the motion of the robot. However as far as we experienced through demonstrations,
not many people seemed to have such feelings, and we regard it have overcome the
uncanny valley to some extent.

There can be two reasons of the positive impression by elderly people. One is
that elderly people tend to have less social interaction with others, since they usually
do not work over 65, and the ratio of living alone is high. The other is that as they
have lived longer, they feel less fears to any events. We will further investigate these
hypothesis through the future experiments.

6.2 Potential Application of Android

We aim to utilize our android platorm in various health-care fields such as hospitals
and nursing facilities, in which they need communication support. From our exper-
iments and demonstrations, we came up with some ideas as to how to make use of
androids in such situation.

The first usage is utilization of the synchronous android to enhance communication
between a medical doctor and a patient as a bystander. As previously mentioned, an
android may be able to support medical treatment by decreasing anxiety of patients,
or increasing trust of a doctor. Actually, the reason we chose the pain clinic as the
first experimental field was that nearly half of the clinical treatments given at the pain
clinic is “counseling” rather than “treatment”. Since many of the patients are suffer-
ing from uncontrolled pains due to unknown physical reasons, the doctor behaves
like an counselor, and listens to the patient’s talk. Then the doctor encourages the
patient to activate the daily life and to control the pain. This kind of treatment is called
“pychoeducation” and to be a “good listener” is very important. Therefore we expect
that our synchronous android will help the doctor and patients to communicate with
each other as a bystander empathetically listening to the patient’s talk.

The second usage is a robotic agent at home. An autonomous or semi-autonomous
android would be able interact with elderly people as a conversation partner to make
them relax and comfortable, to supply useful information from the Internet. It is also
important to encourage physical activities and social participation to prevent “disuse
syndrome”. It should be noticed that elderly people have less “uncanny” feeling
toward the android than younger people.

The third usage is a tool for understanding diseases and disabilities, and supporting
rehabilitation especially for autistic children. As autistic children commented that
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they felt easier to talk to the android than to a real human, android might be able to be
utilized as a conversation partner for training social skills. This usage will also help
other people to understand the state of mind of autistic children, if they can honestly
talk what they think to the android. Furthermore, it is thought that some symptoms of
autism are caused by disorder of mirror neurons in the brain, which play important
roles for imitating and understanding intention of other people. Therefore, it might
also be effective for autistic children to try to imitate facial expression of the android
which has high reproductivity, for assessment of disorder and training of social skills.

7 Conclusion and Future Works

In this paper, we reported the impression of our android developed to achieve psy-
chological communication support in medical and nursing fields. We conducted a
preliminary experiments utilizing the android in various field such as in a medical
examination room at a university hospital, at nursing facilities for the elderly, and at
a school for children with developmental disorder. As a result, it was revealed that
most of the subjects have no aversion to the presence of the android. It was also
found that elderly people tend to have positive impressions to the android. We also
found that children with autism and Asperger’s syndrome can communicate with the
robot, and many children even felt it easier to communicate with it than with a real
human. As future works, we are planning to conduct further experiments for further
investigation of the impression. We are also planning to design the methodology to
support communication in medical and nursing fields based on the findings.
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Multi-Robot Formation Control via a Real-Time
Drawing Interface

Sandro Hauri, Javier Alonso-Mora, Andreas Breitenmoser,
Roland Siegwart and Paul Beardsley

Abstract This paper describes a system that takes real-time user input to direct
a robot swarm. The user interface is via drawing, and the user can create a single
drawing or an animation to be represented by robots. For example, the drawn input
could be a stick figure, with the robots automatically adopting a physical configu-
ration to represent the figure. Or the input could be an animation of a walking stick
figure, with the robots moving to represent the dynamic deforming figure. Each robot
has a controllable RGB LED so that the swarm can represent color drawings. The
computation of robot position, robot motion, and robot color is automatic, including
scaling to the available number of robots. The work is in the field of entertainment
robotics for play and making robot art, motivated by the fact that a swarm of mobile
robots is now affordable as a consumer product. The technical contribution of the
paper is three-fold. Firstly the paper presents shaped flocking, a novel algorithm to
control multiple robots—this extends existing flocking methods so that robot behav-
ior is driven by both flocking forces and forces arising from a target shape. Secondly
the new work is compared with an alternative approach from the existing literature,
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and the experimental results include a comparative analysis of both algorithms with
metrics to compare performance. Thirdly, the paper describes a working real-time
system with results for a physical swarm of 60 differential-drive robots.

1 Introduction

The goal of this work is to allow a non-expert user to represent drawings and
animations with a robot swarm. Previous work has demonstrated the artistic potential
of robot swarms but the focus has been on abstract visual effects. In contrast, this
work describes how to create representational images with robots. A user can make
a drawing and the robots will adopt a physical configuration and colors to represent
the drawing as shown in Fig. 1. Or the user can create an animation by (a) creating
an initial shape and moving it, or (b) creating a sequence of keyframe drawings, and
the robots will move to represent the animation.

The motivation for a drawing interface is that it is an intuitive way for a non-
expert user to direct a swarm. It is not feasible for a user to explicitly control every
robot in a swarm because of the large number of degrees of freedom—three DOF
for the location of each robot, two DOF for velocity (on the ground plane), and three
DOF for color. Existing flocking algorithms already offer a way for a user to direct a
whole swarm, but they do not offer any possibility for representational visual effect.
In contrast, our goal with the drawing interface is to allow a user to easily create
representational robot art. Our approach has been to build on the power of existing
flocking algorithms, and extend them to incorporate shape.

The work belongs in the field of entertainment robotics. The falling price of robots
like the ones in Fig. 1 makes for an affordable consumer product. For example, the
hardware components of a differential-drive robot with IR communication and RGB

Fig. 1 At left, the user interface for creation of drawings and animations. At right, the experimental
setup and the robot representation of the fish drawing. Robots around the perimeter are docked in
battery chargers, and the robots automatically move between the workspace and the chargers as
required



Multi-Robot Formation Control 177

LED cost as little as $5, although the robot used in these experiments presents a
higher cost. Common portable devices such as smartphones would be suitable to
provide the user interface. (The system in this paper uses a fixed overhead camera,
but a hand-held device with camera is also a feasible approach for controlling the
swarm).

The primary contribution of the paper is shaped flocking, a method for formation
control. It combines traditional flocking forces with forces arising from a target
shape. It draws on the power of flocking to produce collective motion that is visually
compelling, and adds the ability to achieve formations with desired shapes.

Flocking is a non-explicit approach to guiding a multi-robot system, with robot
motion being emergent from the flocking forces. A completely alternative approach
is to do a geometric analysis of a target shape, and explicitly determine the goal
positions of individual robots within the shape. Algorithms for such a goal-directed
approach, in particular Voronoi coverage, already exist in the research literature. To
provide a comparative analysis, we do a head-to-head comparison of shaped flocking
and a goal-directed approach [2] in Sect. 5.

2 Related Work

Outside of robotics, shape constraints have been extensively studied in computer
graphics and crowd simulation.

Takahashi et al. [13] achieves smooth transformations between key frames in
crowd simulation, using a spectral-based approach, where a transformation is made
on the Delauney triangulation from the one key frame to the next. In a next step,
a social force field is introduced to avoid collisions. In [5], the complexity of the
agent formation is reduced and described only by mean and deviation. It presents a
decoupled controller to move and transform a group of robots, but only for simple
cases as ellipses and rectangles. In a crowd simulation, Gu [6] samples the outline of
the desired shape first and then fills the rest of the shape area using grid points. The
agents are assigned to their goal positions by finding correspondences from the cur-
rent position and the goal deployment. These correspondences are found separately
for the outline and the inner part of the shape. The collision avoidance is created
by repulsive forces between agents. Rubenstein [10] shows a way to automatically
scale the size of the displayed image, so that all robots can fit in the shape. It works
without knowing the number of robots in the display, but the robots agree on a factor
of the image scale, that is increased, if robots do not fit into the image or reduced, if
there is unfilled space around the robot.

A way of controlling coverage in real mobile sensor networks is implemented in
[11], where each robot can approximate its weighted Voronoi cell by knowing its
local sensor values.

Reynolds famously published a method of simulating the flocking behavior of
birds in 1987 [9], using only three behavioral rules to create global bird migration
motions. A lot of attention has been given to theoretical and practical research on
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Reynolds’ rules. Olfati-Saber showed in [8], that all three Reynolds rules can be
expressed with a simple control law, that uses attractive and repulsive forces between
the robots. Additionally to this, forces of the environment can be added, to affect the
behavior of the swarm. The control laws are proven to be stable and collision free
for simulated point-agents. Flocking with real non-holonomic robots was achieved
by Antonelli [4] by defining a set of rules, how a robot has to react to achieve a
specific task, like obstacle avoidance, collision avoidance and approaching the goal.
The correct rule is then chosen by a supervisor, which adapts the priority of the
rule. In both [3] and [14], shape constraints are created by taking random samples
within the wanted shape with a later relaxation to distribute the sample points more
evenly. While [14] generally uses a random assignment from agents to those sampling
points, [3] minimizes the squared distances of the swarm. In [3], additional constraint
at intermediate times can be set and therefore make agents or even the center of the
swarm meet exact constraints at specific times. Ho [7] presents a way to control
the navigation of a flocking swarm, while navigating through obstacles and along
paths with strong curvatures. They assume a flock that already has a given shape,
where the connections between the agents is known. The motion of the flock is not
rigid, but flexible, which leads to a natural flow of the swarm. Syamsuddin [12] also
uses sample points of a skeleton to simulate particles forming a human body. Each
particle is attracted by a fixed number of neighboring sample points that are next to
each other. Since the particles all start at about the same position and are not real,
the assignment and collision avoidance do not matter. The forces are designed in
a way, that the particles can follow the sample points without oscillation. A force
for obstacle avoidance is also introduced, which allows for simulations including
obstacles.

3 Representing Drawings and Animations

This section describes the method for taking a drawing or animation created on the
drawing interface and realizing it with robots.

3.1 Representing a Static Drawing

The starting point is the traditional flocking approach defined by Reynolds [9]. Flock-
ing behavior is achieved using three steering rules which define forces between
agents:

• Cohesion—steer towards the average position of neighboring agents
• Alignment—steer towards the average heading of neighboring agents
• Separation—steer to avoid close proximity with neighboring agents
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The rules can be implemented in different ways, and the formulation here draws
on Olfati-Saber [8]. An agent ri has location qi and holonomic velocity pi . It can
sense agents within a range rα . A pair of agents ri to r j has a connecting line ni j ,
and an associated variable ai j :

ai j =
{

1 if ◦qi − q j◦ ∩ rα

0 otherwise
(1)

where ◦q j − qi◦ is the Euclidean distance between agent ri and r j .
Olfati-Saber showed that the following formulation for acceleration ui of agent

ri incorporates all three Reynolds’ rules if the robots are sufficiently close:

ui =
∑

j∈Ni

φ(◦q j − qi◦)ni j +
∑

j∈Ni

ai j (p j − pi ), (2)

If the agents are within sensing range, φ(◦q j − qi◦) is a function that drives
the two agents to adopt a separation dα . If the agents are not within sensing range
then φ(◦q j − qi◦) is 0. The second term adds a damping force between agents that
drives an agent to adopt the same velocity as its neighbors. The result is flocking, an
emergent collective motion of all the agents.

Parameter dα is critical in determining the flocking behavior. Our formulation
defines dα based on characteristics of the target drawing. Assume that the drawing
has total area is A and N is the total number of agents. Then:

dα = 2 · cg ·
√

A

π · N
, (3)

The parameter cg is related to neighbor connectivity as described in Olfati-Saber.
We augment the traditional steering rules by formulating an additional steering

rule called the shape-steering rule, which has the effect of causing the robots to adopt
a target shape. The process is:

• The target shape is transformed from screen coordinates of the drawing interface
to ground plane coordinates of the physical workspace. The transformation can be
done straightforwardly and directly because the aspect ratio of the canvas in the
drawing interface is the same as the aspect ratio of the physical workspace.

• For each robot, a circle ci with radius R is constructed. Subsequent processing for
robot ri depends on whether any of the target shape is contained within ci .

• If ci contains none of the target shape, then the nearest boundary point bi of the
target shape is found for ri , and the steering force is towards bi .

• If ci contains some of the target shape, then the center of mass mi is computed for
the parts of the target shape within ci , and the steering force is towards mi .

The shape-steering rule causes robots outside the shape to move towards the
shape, and it causes robots on the shape perimeter to move within the shape. It has
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no effect on a robot whose ci is completely within the shape. As for distribution of
robots within the shape, this results from the traditional Reynolds rules because of
the choice of dα in Eq. (3).

The combined steering forces determine an acceleration, and thereby a required
velocity pi , at each robot ri for the next iteration, suitable for holonomic robots. In
fact the robots are non-holonomic, and the velocities pi are modified to account for
this as described in the next section.

If the drawing is formed by more than one shape, each of the robots is assigned
to one of the shapes and ignores the other ones. The number of robots assigned to
each shape can either be proportional to the area or specified by the user.

3.2 Implementation with Differential-Drive Robots

A holonomic velocity defines a preferred velocity for a non-holonomic agent. The
preferred velocity is achieved using the velocity mapping method in [1] as follows.

The aim is for the non-holonomic agent to achieve a trajectory within a bounded
error of the trajectory of the holonomic agent. The method has two parameters.
Parameter T0 is the time which determines how quickly the non-holonomic agent
should achieve the orientation of the holonomic trajectory. Parameter ε is a a max-
imum tracking error, which enforces the proximity of the non-holonomic agent to
the holonomic trajectory.

These two parameters limit the possible set of allowed holonomic velocities, as
illustrated by Fig. 2. If a holonomic velocity lies outside this set, it is optimally

Fig. 2 Set of allowed holo-
nomic velocity (SAHV) for
a fixed T0 and varying ε. A
desired holonomic velocity
is optimally reduced to the
nearest allowed velocity in
this set, and then transformed
to a non-holonomic velocity
and angular velocity
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reduced to give the nearest allowed velocity. The allowed holonomic velocity is then
transformed to a linear and angular velocity for the non-holonomic agent [1].

There is no explicit handling of collision avoidance in this scheme. The Reynolds
steering rule for separation prevents robots coming into close proximity, and collision
rarely occurs in the real system. But no guarantee of collision-free trajectories is
given.

3.3 Representing an Animation

This section describes how to create a robot animation. A user interacts with the
drawing interface in the following way:

• Define the first action by creating one or more shapes on the drawing interface.
Then repeat the steps below for each new action.

• Define a new action by adding one or more new shapes.
• Define a new action by transforming an existing shape s to a new shape s⊂ using

translation or rotation.
• Define a new action by an unconstrained morphing of an existing shape s to a

newly drawn shape s⊂.

In its most basic form, the animation is thus a sequence of drawings that can be
input directly to the algorithm in Sect. 3.1 to drive the robots. But one important
modification is needed. In the case that the user creates multiple shape pairs (si , s⊂

i )

above, it is also possible to specify that the shape pairs maintain an association with
the same group of robots gi . This is useful, for example, for the case of an animated
face. The robots for the eyes and mouth should not drift between different facial parts
during the animation.

For the case where there are multiple triplets (si , s⊂
i , gi ), i > 1, the method in

Sect. 3.1 is modified as follows. The Reynolds Separation rule is applied across
all of the robots, but the Reynolds Cohesion and Alignment rules, and the new
shape-steering rule, are applied separately to each triplet (si , s⊂

i , gi ). This achieves
the desired result—a user can ensure that the robots for individual components of a
drawing maintain their identity as they transition through an animation. And it avoids
that robots are freely redistributing across the drawing in a confusing and unwanted
way.

4 Comparison with a Goal-Directed Approach

The shaped flocking method in Sect. 3 is a non-explicit way to compute robot motion,
with the motion being emergent from the flocking rules. A completely alternative
approach is to do a geometric analysis of a target shape, and explicitly compute the
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goal positions for robots within the shape. This goal-directed approach is found in
[2] and is not a contribution of this paper, but it does provide a basis to assess this
work by a comparative analysis.

The goal-directed approach is described next, followed by a general discussion
about both approaches.

4.1 Goal-Directed Approach

Given a target shape, a number of goal positions, equal to the number of robots, is
determined by computing the Voronoi coverage of the target shape as described in [2].
The goal positions are fixed, and the robots are advanced to the goal positions over
multiple iterations. At each iteration, each robot is associated with a goal position
using some proximity criteria. Computed trajectories to reach the goals are modified
as required for collision avoidance between robots. Each robot is then advanced for
that iteration. The process stops when each robot is within a tolerance of its goal.

4.2 Discussion of Shaped Flocking and Goal-Directed Approach

This section addresses the question of why we are investigating shaped flocking given
that the existing goal-directed approach could achieve similar goals. The motivation
for our work is that flocking is known to be a powerful method for producing aesthetic
effects in multi-agent systems. These effects are both visually compelling and they
can be readily varied by changing the steering rules. We seek to build on that, while
adding the ability to represent target shapes. In contrast, the goal-directed approach is
explicit and rigid, and would require new components in order to vary the computed
robot motion.

More specifically, flocking has these interesting properties:

• A change in one part of a shape affects only the local robots in a flocking approach.
But it requires a complete recomputation of goal positions in the goal-directed
approach.

• It is straightforward to add heterogeneous behavior of agents in a flocking
approach. For example, some agents can be more attractive or repulsive. Or agents
can be grouped like the shape triplets described in Sect. 3.3.

• Steering parameters in the flocking approach provide an opportunity for automated
learning of a range of aesthetic effects.

These arguments suggest that flocking can provide the most flexible basis for
producing varied and compelling visual effects.
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5 Results

In this section we discuss the execution and the results of the conducted experiments.
We first describe the experimental setup and then compare specific measures for the
shaped flocking and the goal-directed approach.

5.1 Experimental Setup

The experimental setup is shown in Fig. 3. There is a 2m-by-2m workspace for
deployment of the robots. An overhead camera views the workspace, and a central
computer provides the drawing interface (see Fig. 1), tracks the robots, computes the
required motion of the swarm, and sends wireless commands to direct the robots.

Fig. 3 The experimental
setup—robots on the ground
plane, overhead camera for
tracking, and central computer
for processing and sending
wireless motion commands to
the robots
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Battery chargers line the perimeter of the workspace as shown in Fig. 1, and the
robots have the ability to automatically dock for recharging.

The overhead camera used for tracking is fixed at a height of 2.3 m above the
deployment plane and can detect both visual and infrared light. The camera has
1600×1200 resolution, running at a frame rate of 10 Hz and can localize robots
with precision better than 0.01 m.

Figure 4 shows the differential-drive robot used in the experiments. The RGB LED
is under a translucent cover. The robot has two wheels driven by geared motors.
The motors allow maximum speed of 0.5m/s. The onboard microcontroller runs
a fast controller measuring the wheel speed using back-EMF of the motor. Speed
commands are transmitted constantly from the host computer through a 2.4 GHz
radio with a specific protocol that ensures 10 Hz for up to 100 robots.

Figure 4 also shows a close-up of the charging unit. The robot docks by driving
directly into the center channel of the metal component on the green strip, so that it
touches the springed recharging contacts that are on either side of the channel.

Figure 5 shows examples of robot faces. Figure 6 shows an animation of a tree
and Fig. 7 of a fish.

5.2 Comparative Analysis

Table 1 provides a comparison of the shaped flocking algorithm and the goal-directed
algorithm. Both algorithms can apply to a group of robots starting from arbitrary
positions, although convergence results may vary. In these experiments the robots

Fig. 4 Differential-drive robot with controllable RGB LED. The robot automatically docks in the
charging plate for battery recharging
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Fig. 5 Smiley faces—at top, the drawings created on the user interface and, at bottom, the corre-
sponding robot configurations. Faces make a good choice for animation with wobbling eyebrows
and dynamic smiles

Fig. 6 Tree animation starting with flat earth at left, and growing into a full tree at right

were randomly distributed in the environment (approximately uniform distribution).
The effect of the initial distribution of robots is further described in Sect. 5.3.

The first three rows display the time to converge to a new shape. Shaped flocking
needs longer to converge to its final configuration. This is unsurprising because
there are no explicit goal positions, and hence no direct motion toward the final
configuration, unlike the goal-directed approach.

The coverage cost is a measure of quality of the distribution of robots through the
shape and is given by

C =
∑

u∈U

min
i

◦qu − qi◦ (4)

where qi the location of robot i and U is the set of all pixels u of all patterns, with
coordinates qu .
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Fig. 7 Fish animation showing motion though user defined keyframes. The image series is arranged
from left to right and top to bottom

Table 1 Performance metrics for the shaped flocking and goal-directed algorithms

Tree animation Shaped flocking Goal-directed

Time to convergence (keyframe 1) 33.1 s 18.1 s
Time to convergence (keyframe 2) 14.5 s 5.1 s
Time to convergence (keyframe 3) 50.0 s 11.1 s
Final coverage cost (keyframe 1) 2647 2486
Final coverage cost (keyframe 2) 2635 2553
Final coverage cost (keyframe 3) 3241 2938

Shaped flocking presents higher coverage cost. Again this is unsurprising because
shaped flocking implicitly achieves low coverage costs via steering rules, whereas
the goal-directed approach explicitly precomputes goal positions by minimizing the
coverage cost.

Figure 8 shows the progression of coverage cost for the animation of the fish in
Fig. 7. The shaped flocking method typically shows an increase in cost at the start
of a new keyframe, which then reduces as the motion proceeds. As in the discussion
above, this is a consequence of the implicit nature of flocking, which is not enforcing
low cost configurations of the robots during the motion.

In summary, the goal-directed approach is superior in time to convergence and
in coverage cost. However shaped flocking is still the primary focus of our research
because

• It is a flexible basis for future work as argued in Sect. 4.2.
• Flocking motion is aesthetically appealing in our experiments, although we have

not identified a way to quantify this.
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Fig. 8 Coverage cost progression for an animation of a fish. The blue line shows the cost of
shaped-flocking, the black line of goal-driven method. Vertical lines indicate the beginning of a
new keyframe in the animation

5.3 Bottlenecks and Convergence to Local Minima

The experiments revealed a limitation in the shaped flocking algorithm for certain
types of shape and depending on the initial conditions. Figure 9 shows an example
with robotic Kanji. Once within the shape, the flocking rules disperse the robots. But
for shapes with a pipe-like form, dispersion is slow i.e. it is a bottleneck problem. This
is an issue where goal-direction does not encounter the same problem because goal
positions are explicitly computed throughout the target shape. We have observed,
as expected from the methods, that the goal-directed approach does present simi-
lar convergence results to arbitrary shapes independently of the initial conditions,
whereas the shaped flocking algorithm strongly depends on the characteristics of
the shape and the initial distribution of the robots (convergence to a local minima).
For the latter, initial distributions that are homogeneously distributed over an area
containing the shape typically present better results.

Fig. 9 Illustration of the bottleneck problem. At left, the user drawing. At center, robot start position.
At right, the shape is convoluted, and diffusion of robots to achieve the shape is slow
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This problem requires further research. For example, additional forces toward
unoccupied space in the shape could help to disperse the robots faster and drive the
robots through bottlenecks. And the scaling strategy in [10] could be used to define
optimal distances between robots to ensure better dispersion.

6 Conclusion

This paper has described shaped flocking, a novel algorithm for representing static
and deforming shapes with a multi-agent system. Traditional flocking algorithms
produce compelling collective motion in a group of agents. Shaped flocking extends
this so that the agents additionally conform to a static or deforming shape. The
algorithm was demonstrated in the context of a system that allows a user to do
real-time direction of a swarm of robots via a drawing interface, in the field of
entertainment robotics.

For comparison, shaped flocking was evaluated against a goal-directed approach.
Conceptually the two approaches are different, with shaped flocking relying on emer-
gent behavior to represent a target shape, while goal-direction relies on an explicit
geometric analysis of the shape. Both approaches show good representational power
and support real-time interaction. Although the goal-based approach shows supe-
rior results, we believe that shaped flocking is worth further investigation due to its
flexibility and potential for creating robot art.
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Evaluation and Training System of Muscle
Strength for Leg Rehabilitation Utilizing
an MR Fluid Active Loading Machine

Hiroshi Nakano and Masami Nakano

Abstract An evaluation and training system of muscle strength for leg rehabilitation
has been developed by using a new conceptual loading machine. This loading ma-
chine, which is called MR fluid active loading machine, mainly consists of a newly
designed magneto-rheological (MR) fluid clutch and a reversible induction motor.
The MR fluid clutch produces passively the magnetic field-dependent transmitting
torque almost independent of the rotational speed. Because of this feature, the MR
fluid clutch will be suitable for the loading machine of a rehabilitation system from
a viewpoint of safety and relief. This system can perform the isometric and isoki-
netic strength evaluations and the isokinetic strength training. And also, the system
has applicability to the Range Of Motion training (ROM training). In this paper, the
methods of the muscle strength evaluations and training in this system are described,
and the performances of the evaluation and training modes are discussed.

1 Introduction

In various rehabilitation machines with passive or active loading devices for muscle
strength evaluation and training, it is important to precisely control the load inde-
pendent of the training inertia and speed, keeping safety. Currently, these machines
have been widely using AC, DC servo motor, hydraulic actuator and pneumatic ac-
tuator as the loading devices. From the viewpoint of safety and controllability, these
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active actuators are not well suited for rehabilitation machines, because of the lack
of intrinsic mechanical protection for human safety and passive controllability such
as back-drivability and torque limiting control. The often used muscle strength mea-
surement and training systems such as CYBEX NORM [4] and BIODEX System
[12] which do not have Range Of Motion (ROM) training function, are not always
safety because of the usage of the active actuator of DC servo motor as a loading
device.

The devices using functional fluids such as MR fluids [7, 10, 11] and
electro-rheological (ER) fluids, which have variable viscosity depending on the ap-
plied magnetic or electric field, have received much attention for use in rehabilitation
because of quick response and safety for humans. Mavroidis et al. [3] applied MR
and ER fluid brakes to portable rehabilitation devices for elbows and knees of pa-
tients. Hakogi et al. [5] applied the combination of motor and MR fluid rotary brake
to ROM training robot, which assisted students in the training. Nikitczuk et al. [8] ap-
plied an ER fluid brake to knee rehabilitation device. Dong et al. [14] applied an MR
fluid damper to knee rehabilitation device. Chen et al. [9] applied the combination of
motor and multiple-disc MR fluid clutch to assistive knee braces for disabled people
with mobility problem. However, the versatile system, which is possible to perform
several functions such as ROM training, muscle strength training and measurement,
has not been developed.

Therefore, this study aims at developing a versatile leg rehabilitation system
utilizing an active loading machine using the MR fluid. The leg rehabilitation system,
which is designed to be unified and compact and can flexibly adjust the load depend-
ing on the muscle strength of subjects, has been proposed and developed, featuring
higher safety and inward security for human since it measures and trains muscle
strengths making good use of the passive load of a developed MR fluid loading
machine.

In this paper, the design and performance of the developed MR fluid active loading
machine are described, and the evaluation and training system for leg rehabilitation
utilizing this machine is presented. And also, the validity of muscle strength measure-
ments and possibility of trainings on this system are discussed, based on the results of
isometric and isokinetic strength evaluation, isokinetic training and torque-limiting
test of the MR fluid active loading machine for ROM training during knee extension
and flexion.

2 MR Fluid Active Loading Machine

The MR fluid, which is one of functional fluids, is changed its rheological properties
by applying magnetic field, and behaves like a Bingham fluid having variable yield
stress with magnetic field. Because of this inherent feature, the clutch using the MR
fluid (MR fluid clutch) generates the magnetic field-dependent transmitting torque
almost independent of the rotational speed.
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Fig. 1 MR fluid active
loading machine

In this study, the MR fluid active loading machine has been developed, which
mainly consists of the newly designed MR fluid clutch and a reversible induction
motor with an electromagnetic mechanical brake. The MR fluid clutch can transmit
the torque below a torque limited by the applied coil current and slip when the
torque exceeds the limited value. This loading machine can perform the following
two different modes.

Active load mode The load is produced by the induction motor. In this case, since
the MR fluid clutch functions as a torque limiter, the loading
machine can generate active loads below a limited torque under
a safe condition. It is expected to be used to perform the active
training such as the ROM training and isokinetic training [2],
and the isokinetic strength evaluation.

Passive load mode In the case of fixing the motor shaft on an electromagnetic
mechanical brake, the MR fluid clutch functions as an MR fluid
brake which works as a passive loading machine. It is expected
to be used to perform the muscular evaluation and the isotonic
training.

Fig. 2 Cross-sectional view of the MR fluid active loading machine. In order to limit output torque
of loading machine, MR fluid clutch is installed to output side of motor
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(a) (b)

Fig. 3 Steady torque responses of the cup-type MR fluid clutch: (a) Time variations of experimental
torque for coil current I at rotational speed of motor Nr = 30 rpm; (b) Comparison between
analytical and experimental steady torques versus coil current I

Figures 1 and 2 show the MR fluid active loading machine consisting of the
developed cup-type MR fluid clutch, the induction motor and reduction gears. As
seen in Fig. 2, the developed clutch has two cup-shaped rotors of the driving and
follower shafts, an MR fluid (MRF-132DG, Lord Co.) in the gap of 1 mm between the
two rotors and a magnetic coil (wire diameter; 0.4 mm, turns; 675, electric resistance;
23.7θ) inside of the cup rotors. The MR fluid clutch was designed based on a steady
electromagnetic field analysis using the JMAG software. Analytical and experimental
steady torque responses of the clutch are shown in Fig. 3. The clutch can transmit
almost constant torque T depending on the coil current I. The transmitting torque
increases with increasing the coil current almost independent of the rotational speed
as well as analytical one, and generates the torque of at least 8.5 Nm at I = 1.0 A.
Since the MR fluid clutch has a reduction gear of 1/3 gear ratio connected to the
follower shaft, the output torque of the active loading machine is about three times
of the clutch torque. And also, the induction motor (rated torque: 1.27 Nm) has an
ability to generate the output torque of 12.7 Nm to the MR fluid clutch through a
reduction gear of 1/10 connected to the output shaft. Therefore, it can be ensured
that the MR fluid active loading machine generates the output torque of at least about
25.5 Nm at I = 1.0 A.

It can be said that the developed MR fluid active loading machine has high con-
trollability because its output torque is controlled by only coil current, and shows the
specific feature of high safety because it has a torque limiting function in the active
mode and generates only passive load in the passive mode.

The cup-type MR fluid clutch has a time constant Tc = 60 ms and a pure time
delay L = 25 ms in the step response of torque when a regulated DC amplifier
is used as a power supply for coil current of the clutch. In previous study [6], the
step response have been remarkably improved to Tc = 14 ms and L = 11 ms by
changing the power supply to a servo amplifier, and more improvement of magnetic
circuit response by changing the conducting material of magnetic isolating parts to an
insulator has been demonstrated by an unsteady electromagnetic field analysis. The
magnetic isolating parts made of nonmagnetic material (aluminum) in two cylindrical
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Fig. 4 Cross-sectional view
of cup-type MR fluid clutch

Fig. 5 Step responses of ana-
lytical magnetic flux density,
experimental torque and coil
current before and after chang-
ing the material of magnetic
isolating part of cup-type MR
fluid clutch

rotors are set to form the magnetic circuit through the two rotors, as shown in Fig. 4.
The step responses of coil current and torque before and after replacing the magnetic
isolating parts of aluminum to that of cast nylon as an insulator are shown in Fig. 5. It
is obviously recognized that the change of the materials results in faster step response
of torque where Tc = 9 ms, L = 9 ms.

3 Evaluation and Training System of Muscle Strength for Leg
Rehabilitation Utilizing an MR Fluid Active Loading Machine

Figure 6 shows a schematic view of developed evaluation and training system of
muscle strength for leg rehabilitation. This system mainly consists of an adjustable
seat, the developed MR fluid active loading machine, a revolving arm which leads to
knee extension and flexion to the leg of subject, and the measurements and control
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Fig. 6 Overall view (a) and front and side views (b) of developed evaluation and training system
of muscle strength for leg rehabilitation utilizing MR fluid active loading machine. Subject is held
on seat by tightening waist and thigh belts, and ankle is held to leg holder of revolving arm by ankle
belt

PC unit. The horizontal and vertical position of the seat can be adjusted for the
rotational center of the knee of subject to be coincided with that of the revolving
arm. The force F acting to the revolving arm from the leg is measured on a load
cell. A knee angle ς is measured on a rotary encoder, and is defined as a knee joint
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Fig. 7 Measured results and
detection of isokinetic strength

angle from vertical direction. The torque of the loading machine is amplified and
transmitted to the revolving arm through a reduction gear and a timing belt. The
maximum load torque of the revolving arm is about 120 Nm.

This system has four operating modes of evaluations and trainings as follows.

1. Isometric strength evaluation
The system can lock the revolving arm every 15◦ of the knee joint angle from 0
to 75◦ using an arm lock mechanism, like as the CYBEX NORM [4]. Then, the
isometric strength of subjects is measured at several knee joint angles.

2. Isokinetic strength evaluation
In the CYBEX NORM [4], the revolving arm with leg is controlled to actively
rotate at constant angular velocity by the servo motor and then the maximum
torque acting on the arm from the leg is measured as the isokinetic strength.
While, in this system the isokinetic strength is measured by utilizing the passive
load mode of the MR fluid active loading machine. In this evaluation, subjects
must exert all their strength to kick up the revolving arm under an almost con-
stant load determined by the coil current of the loading machine, and then the
torque at constant knee angular velocity detected automatically is measured as
the isokinetic strength, as shown in Fig. 7. The measured torque at the constant
velocity includes no inertia force of the arm and devices. The measurements are
done under several constant loads for the arm by changing the coil current.

3. Isokinetic training
Isokinetic training is the muscle training of isokinetic motion. In the isokinetic
training mode of the CYBEX NORM [4], the revolving arm with leg is controlled
to forcibly rotate at constant angular velocity by the servo motor. While, in this
system the isokinetic training is performed by utilizing the passive load mode of
the MR fluid active loading machine. Figure 8 shows the block diagram of the
angular velocity controller in the isokinetic training. During the subject kicks up
the revolving arm, the knee joint angular velocity is controlled to be a desired
constant speed by controlling the braking torque acting to the revolving arm.
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Fig. 8 Block diagram of feedback controller of arm angular velocity

4. ROM training
The ROM training is the training to extend the range of motion for a patient of
joint disease such as arthrogryposis. In the arthrogryposis, the joint resistance
becomes larger as the joint angle approaches movable limit. Therefore, the
physical therapists try to extend the range of joint motion by adding an effectual
load to the joint of angle close to movable limit. In this study, the developed MR
active loading machine is considered to utilize to the ROM training. The MR
active loading machine has the ability to apply an active load to the joint under
safe condition because the limiting load can be set by the MR fluid clutch.

4 Experimental Results

To discuss the validity of strength measurements and the possibility of trainings on
this system, the isometric and isokinetic strength evaluations, the isokinetic training
and the torque-limiting test for ROM training are demonstrated for healthy men and
women in their twenties. The results are shown below. However, the comparisons
of the performances between the CYBEX NORM [4] and this developed system are
not done here, because the measuring and training methods for muscle strengths in
both the two systems are big different each other, as described above.

4.1 Isometric Strength Evaluation

The isometric strengths are measured as a function of knee joint angle ς every
15 ◦ from 0 to 60 ◦. As seen in Fig. 9, the measured isometric strengths for five
subjects represent the maximum value at the knee joint angle of about 15 ◦ , and then
decreases with increasing ς . These characteristics are in good agreement with that of
the existing experimental data of the leg muscle strength [13], showing the validity
of this evaluation.

4.2 Isokinetic Strength Evaluation

To discuss the results of this evaluation, the measured isokinetic strengths are fitted
by the Hill-based muscle model [1], which is given by the following equation.
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Fig. 9 Measured isometric
strengths

Fig. 10 Measured isokinetic
strengths

ς̇ × (F + π) = ϕ × (F0 − F) (1)

where, F is the measured isokinetic strength at angular velocity ς̇ , F0 is the maxi-
mum isometric strength, π and ϕ are constants depending on the muscle. Figure 10
shows the results of the isokinetic strength measurement for five subjects. The isoki-
netic strength decreases with increasing the knee joint angular velocity, and can be
approximated well by the Eq. 1. And also, the difference of the isokinetic muscle
strength as a function of the angular velocity among five subjects can be obviously
compared with each other. Therefore, this evaluation can be said to be valid.

4.3 Isokinetic Training

In the proposed isokinetic training, the revolving arm rotates at a constant angular
velocity independent of the muscle strength of subjects, so that the training can be
conducted in a full range of joint motion proper to the subject. Therefore, this training
also contributes to the keeping and expansion of the range of motion. From the above
reasons, this training is considered to be suitable for rehabilitation.
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Fig. 11 Time histories of
angular velocity and torque in
isokinetic training

Figure 11 shows the time histories of knee joint angular velocity ς and strength
(torque) in the isokinetic training using this system. In this case of relatively low
velocity, the angular velocity is controlled to well follow the desired one. Therefore,
it can be said that the isokinetic training at the angular velocity less than ς = 10 deg/s
can be easily performed on this system.

In the isokinetic training on this system, the following control performance of
angular velocity mainly depends on the transient response of the MR fluid clutch.
Figure 12 shows a comparison between the isokinetic training results utilizing the
pre-improved MR fluid clutch controlled by a DC power amplifier, and the improved
fast response MR fluid clutch controlled by a servo amplifier, which are obtained at the
desired knee joint angular velocity of 50 deg/s. The result utilizing the fast response
MR fluid clutch shown in Fig. 12(b) shows better following control characteristic
than the other shown in Fig. 12(a). It exhibits that the improvement of transient
torque response in MR fluid clutch results in better following control ability of
angular velocity in the isokinetic training.

4.4 Applicability to ROM Training

In order to confirm the applicability of this system to ROM training, the torque
limiting function of the MR fluid active loading machine has been investigated to
work effectively in the ROM training. In this study, a weight is hanged on the ankle
of subject to simulate the arthrogryposis as shown in Fig. 13, and the simulated
ROM training is demonstrated experimentally. In the experiments, firstly a constant
coil current to the MR fluid clutch is applied to determine the upper limit of the
transmitting torque, and then the revolving arm and leg are actively rotated by the
motor of the MR fluid active loading machine. Figure 14 shows the time histories
of the torque T acting on the leg and the arm angle ς in the experiment where
the rotational speeds of the motor and the revolving arm are respectively 100 rpm
and 4 deg/s. The torque T and the angle ς increase with time slowly, and then stop
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Fig. 12 Isokinetic training
results comparison between
the system utilizing pre-
improved MR fluid clutch (a)
and improved fast response
MR fluid clutch (b)

(a)

(b)

increasing to maintain almost constant values due to the MR clutch slipping at the
upper limit torques determined by the applied coil currents I . Thus, this developed
system can easily set the upper limiting load appropriate for the subject by the MR
fluid clutch, and can avoid overload, showing the applicability to the ROM training.

5 Conclusion

In this paper, we proposed and developed the new conceptual loading machine,
which is called the MR fluid active loading machine, and described the design and
performance of this loading machine. And also, we proposed and developed the
evaluation and training system with safety for leg rehabilitation utilizing this loading
machine, and investigated the validity of evaluations such as isometric and isokinetic
evaluations, possibility of isokinetic training, and applicability to ROM training. The
results are summarized as follows.
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Fig. 13 Method of simulating
the joint resistance. Joint
resistance will increase in
almost proportion to increase
of knee joint angle due to
weight hanging on ankle

Fig. 14 Time histories of
knee joint resistance force and
angle in test simulating ROM
training

1. It is found from the experiments for steady torque responses of the developed
MR fluid clutch that the active loading machine is capable of generating the
magnetic field-dependent torque up to about 25.5 Nm for a coil current of 1.0 A.
And, the step torque response of the MR fluid clutch is improved to be a first
order lag element plus pure time delay system with the time constant of 9 ms
and the dead time of 9 ms, by replacing the conducting material (aluminum) of
magnetic isolating part of the cylindrical rotor with the non-conducting material
(cast nylon).

2. The validity of isometric evaluation is confirmed by obtaining the almost same
results as the existing experimental isometric data. And the validity of isokinetic
evaluation is confirmed by obtaining the results in good agreement with the Hill-
based muscle model and a possibility of comparing with the muscle strengths for
each subject.
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3. The isokinetic training is well performed in the relatively high speed range up to
about 50 deg/s. This system has a high potential for the ROM training, since it
can easily set the upper limiting load appropriate for the patient by the MR fluid
clutch and can avoid overload.
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Automated and Frequent Calibration of a Robot
Manipulator-mounted IR Range Camera
for Steel Bridge Maintenance

Andrew Wing Keung To, Gavin Paul, David Rushton-Smith,
Dikai Liu and Gamini Dissanayake

Abstract This paper presents an approach to perform frequent hand-eye calibration
of an Infrared (IR) range camera mounted to the end-effector of a robot manipulator
in a field environment. A set of three reflector discs arranged in a structured pat-
tern is attached to the robot platform to provide high contrast image features with
corresponding range readings for accurate calculation of the camera-to-robot base
transform. Using this approach the hand-eye transform between the IR range cam-
era and robot end-effector can be determined by considering the robot manipulator
model. Experimental results show that a structured lighting-based IR range cam-
era can be reliably hand-eye calibrated to a six DOF robot manipulator using the
presented automated approach. Once calibrated, the IR range camera can be posi-
tioned with the manipulator so as to generate a high resolution geometric map of the
surrounding environment suitable for performing the grit-blasting task.

1 Introduction

In order for a field robot to successfully operate in an unstructured complex
environment, a robot must firstly be able to sense and explore the surrounds [3].
For a field operation such as steel bridge maintenance, a robot manipulator can be
used to perform the dangerous abrasive blasting task of removing old lead paint and
rust [13]. Currently, a mobile manipulator platform (Fig. 1) is being developed for
deployment in a steel bridge maintenance field environment to perform grit-blasting.
The mobile platform firstly builds a geometric map of the environment using a range
camera, and then performs abrasive blasting on the identified steel surfaces. The
generated geometric map needs to be accurate and high-resolution for two reasons;
so that a safe blasting trajectory can be planned for the manipulator; and so that
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execution of this path produces good abrasive blasting results. However, maintain-
ing accurate mapping is a significant challenge in steel bridge maintenance where
the work safety process requires the mobile robot platform to be regularly disas-
sembled to be cleaned and relocated. Additionally, the camera mounting position
is prone to change slightly after prolong use due to vibration and blast-hose kinks.
Thus, frequent in-situ recalibration is necessary to maintain the required mapping
accuracy.

Range camera calibration in robotics is commonly performed to improve both
mapping accuracy and multiple scan registration [2, 4]. For example, a checkerboard
plane observed from multiple view points [15, 17, 18] is used to calibrate for the
range camera’s intrinsic and extrinsic parameters (e.g. intrinsic parameters for image
projection into 3D coordinates, and extrinsic parameters that describes the position
of the range camera relative to a world coordinate). In the case where a range camera
is mounted to the end-effector of a robot manipulator [4, 12] extrinsic calibration
is also carried out to discover the position of the range camera relative to the end-
effector. Generally referred to as hand-eye calibration, the resulting transform is used
in geometric map building to register range data taken from different viewpoints into
a global world coordinate frame.

Depending on the type of range sensor attached to the robot manipulator, different
hand-eye calibration approaches are used. For passive types such as the stereo vision
camera, hand-eye calibration is performed using corner and edge features extracted
from images of the surrounding environment and/or containing calibration objects
[5, 6, 9]. Passive range sensors are limited to a sufficiently illuminated environ-
ment to extract features accurately. Therefore, calibration performed in the field
environment will require the cumbersome setup of additional lighting infrastructure.
Alternatively, active range sensing devices including the laser range scanner and
the Infrared (IR) range camera are able to accurately extract scene features without
the need for external lighting infrastructure. It has been shown through field trials
that the bridge vibration caused by passing traffic affects the scan quality of the
laser range scanner. As such, the IR range camera which can instantaneously capture
the range data of the whole image frame is preferred in this application. Hand-eye
calibration of the IR range camera is performed by extracting 3D edge and plane
features from the range data of either the sensed environment and/or a 3D calibration
object [10, 14]. However, reliable 3D feature extraction in a dusty and harsh bridge
environment is still a challenge that needs addressing to enable the automated and
frequent in-situ hand-eye recalibration. This paper proposes an approach that uses
image processing to aid the extraction of 3D features for hand-eye calibration of an
IR range camera in a bridge. Similar to Gatla et al. [6], which uses a project laser
point to generate a high-contrast feature in the image for stereo vision hand-eye cal-
ibration, this approach proposes the novel use of reflective material (reflector discs)
to create high contrast features in the captured IR image. These reflector discs are
arranged in a structured pattern to enable the consistent extraction of 3D points that
can be distinctly feature matched for hand-eye calibration.

The paper is structured as follows; Sect. 2 presents the calibration approach which
is made up of three main methods: a method for identifying a feature point in 3D
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Fig. 1 a A mobile robot manipulator in a steel bridge maintenance environment; b Grit-blasting
work performed using the robot manipulator

from each reflector disc; a method for calculating the camera-to-robot base transform
using the identified feature points; and a method for calculating the hand-eye
transform between the IR range camera and the end-effector of the robot manip-
ulator. Section 3 presents the experimental results of feature point extraction and the
camera calibration. Section 4 presents a discussion of the results along with conclu-
sions and future work.

2 Proposed Approach

2.1 Methodologies

There are three main prerequisites for an automated approach to the calibration of
a hand-eye transform eTs for an IR range camera mounted to a robot manipulator.
Firstly the model of the robot manipulator must be accurate [8, 11]. Secondly, the
intrinsic of the IR range camera must be known [9]. Finally, reflector discs must
be installed such that the robot base-to-object relationship can be established using
the technique [4]. Figure 2 shows the overview of the proposed hand-eye calibration
approach. Initially a set of robot manipulator poses are selected so the IR range camera
on the end-effector is positioned and orientated to capture IR images containing all the
reflector discs. The pixels representing the reflector discs in the IR image are shown
to have higher intensity values than the pixels of the surrounding environment. The
IR range camera also provides a 3D point cloud generated from the range data and
IR camera’s intrinsic model. Using the available data, a feature point in 3D can
be selected from the centre of each reflector disc using the devised combination
of image processing, plane fitting, and circle fitting techniques. Subsequently, the
camera-to-robot base transform oTs is calculated by matching the extracted feature
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Fig. 2 Overview of the process for hand-eye calibration

Fig. 3 a IR image; b Binary image of reflector discs

points (in the camera frame) with the established ground truth location (in the robot
base frame) of the feature points. The hand-eye transform eTs is then calculated using
the camera-to-robot base transform and the end-effector-to-robot base transform
oTe(Q) calculated from the model of the robot manipulator.

2.2 Feature Points Identification

Once a set of IR range images is captured, the 3D features corresponding to reflector
discs are extracted using the IR image and the 3D point cloud. The captured IR image
of the reflector discs (shown in Fig 3a) is processed using a median filter to isolate
the reflector disc pixel from the projected IR pattern. An incrementally increasing
filter kernel is used to remove the projected IR pattern gradually from the IR image
and terminates when only the reflector disc blobs remain in the IR image. Region fill
is then applied to the filtered image to remove the holes in the reflector disc blobs
and then the image is converted from greyscale to black and white by thresholding
the intensity values. The resulting binary image is shown in Fig. 3b. Each of the pixel
in the blobs are indexed to the corresponding 3D coordinate in the point cloud to
represent the reflector discs location in 3D as shown in Fig. 4a.

Perspective correction is applied to remove the shape distortion caused by a
non-perpendicular viewing angle from the IR range camera to the reflector discs.
This is achieved by applying the RANSAC plane fitting algorithm to the 3D dataset



Automated and Frequent Calibration 209
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Fig. 4 a Datasets of points in 3D representing the reflector discs; b Circle fit on a dataset
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Fig. 5 a X-axis rotation; b Y-axis rotation

of each reflector disc as in [16], and then identifying the required rotations to align
the fitted plane to the image plane of the IR range camera. As illustrated in Fig. 5, it
is possible to determine the X and Y axis rotations: β, the angle between the normal
vector of the fitted plane Vn and the x-axis of the camera frame Vx , and γ the angle
between Vn and the y-axis of the camera frame Vy

β = arccos(Vn · Vx ) (1)

γ = arccos(Vn · Vy) (2)

The rotations matrices about the x-axis Rx and the y-axis Ry by the angles β and
γ , are applied to each reflective disc’s 3D point cloud.
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Rx (θ) =


⎧
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎨

⎡ (3)

Ry(θ) =


⎧
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎨

⎡ (4)

Di = [X j , Y j , Z j ], where j = 1, 2, ... N , to generate the perspective corrected
reflective disc dataset D̂i ,

D̂i = Di × Rx (
π

2
− γ )Ry(

3

2
π + β) (5)

From the perspective corrected dataset D̂i , a geometric least-squares fitting of a
circle [7] is applied to extract the centre point [X̂c, Ŷc], of the fitted circle as shown
in Fig. 4b. Since the radius r is known a priori, the following error function is min-
imised to identify [X̂c, Ŷc],

F(X̂c, Ŷc) =
N⎣

j=1

⎤

(X̂ j − X̂c)2 + (Ŷ j − Ŷc)2 − r (6)

The depth value of the centre point, Ẑc is solved using the plane coefficients from
the perspective corrected dataset D̂ j and X̂c, Ŷc,

Ẑc = a X̂c + bŶc + d

−c
(7)

Finally, [X̂c, Ŷc, Ẑc] is rotated into the IR range camera frame to obtain the 3D feature
point [Xc, Yc, Zc],

[Xc, Yc, Zc] = [X̂c, Ŷc, Ẑc] × Rx (
π

2
− γ )−1 Ry(

3

2
π + β)−1 (8)

The 3D feature point is calculated for each reflector disc and used to match against
a pre-measured ground truth location of the reflector discs relative to the robot base,
further discussed in Sect. 2.3.
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2.3 Camera-to-Robot Transform Through 3D Feature
Matching

In order to calculate the camera-to-robot base transform oTs , a feature matching
technique is used to relate the IR range camera frame with the robot base frame.
The robot base-to-object relationship describing the object in the robot base frame
is assumed to be static and in a position and orientation that can be easily measured,
and the camera-to-object relationship describing the object in the IR range camera
frame is dynamic. As shown in Fig. 6a, the transform oTs describes the translation and
rotation required to match the object in the IR range camera frame to the measured
location of the object in the robot base frame.

M number of reflector discs placed in a specific configuration on a flat plane
are used to determine the correspondence between the two coordinate frames. The
location of the reflector discs relative to the robot base is known accurately by moving
an end-effector pointer tool to the reflector disc positions as in [4] and the camera-
to-object relationship is obtained using the method described in Sect. 2.2. Feature
point matching is performed using Singular Value Decomposition (SVD) [1] to find
the least-square fit of feature points in the IR range camera frame fi with the feature
points in robot base frame f ◦

i where i = 1, 2, ... M , using the equation

f ◦
i = o Rs fi + ots + Ni (9)

where o Rs is the rotation matrix, ots is the translation vector and Ni the noise vector.
The least-square solution to o Rs and ots is taken as the camera-to-robot base homo-
geneous transform oTs ,

oTs =
⎦

o Rs
ots

0 0 0 1

]

(10)

2.4 Hand-Eye Transform and Point Cloud Registration

In order to register a point cloud from the IR range camera frame to the robot
base frame, the hand-eye transform eTs is calculated. As shown in Fig. 6b, the
hand-eye transform is constant between the camera-to-robot base frame and the
end-effector-to-robot base frame for any given robot manipulator pose. Using the
camera-to-robot base transform oTs (Sect. 2.3) and the end-effector-to-robot base
transform oTe(Q) calculated from the corresponding robot manipulator pose with
joint angles, Q = [q1, q2, ... q6]T using the D-H model of the robot manipulator,

oTe(Q) =
6∏

i=1

i−1Ti (qi ) (11)
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Camera-to-robotbasetransform

End effector-to-robot base transform 

Fig. 6 a An IR range camera attached to a robot manipulator observing the calibration plate; b
Camera-to-robot base frame and end-effector-to-robot base frame

the following expression is solved for the hand-eye transform.

eTs = oTs × oTe(Q)−1 (12)

Using the calculated eTs , the registration of a point cloud Pk in the IR range cam-
era frame to the robot base frame, P ◦

k where k = 1, 2, ... N , is achieved by deter-
mining the camera-to-robot base transform oTs(Q) for the end effector-to-robot
base transform oTe(Q), specific to a robot manipulator pose with joint angles,
Q = [q1, q2, ... q6]T ,

oTs(Q) = oTe(Q)×eTs (13)

where
[P ◦

k, 1] = [Pk, 1] × oTs(Q) (14)

The hand-eye transform is used to register point clouds, from the IR range camera
frame into the robot base frame. A rich geometry map of the environment can be
constructed using a single IR range camera by moving the manipulator into different
pose [12].
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3 Experiments and Results

3.1 Experiment Setup

An IR range camera developed by Microsoft and PrimeSense (Kinect) is used in the
following experiments. The sensor interprets 3D scene information through the use
of continuous infrared structured light created by an onboard IR projector. Figure 7a
shows the mapping experiment setup where the IR range camera is mounted onto
the end-effector of a six DOF robot manipulator constructed using Schunk power-
cube modules. Figure 7b, shows reflector discs setup on the calibration plate used
in the experiments, which contains three reflector discs arranged in a right scalene
triangle configuration to create a unique feature set. A reflector disc diameter size
of 40 mm is selected to provide adequate surface area for depth reading at the tested
viewing distance. The reflector discs are arranged such that the disc A-to-B distance
is 260 mm, the disc B-to-C distance is 385 mm, and ∠ABC = 90 ∩

3.2 Experiment: 3D Feature Point Extraction
from Reflector Discs

In this initial experiment, the accuracy of extracting feature points in 3D using the
range camera’s IR image and range data at increasing distances is evaluated. Figure 8a
shows the controlled office environment where the calibration plate is sensed from
viewing distances between 500 and 2,000 mm at 100 mm increments. Figure 8b shows
the bridge environment setup where a field experiment is conducted to test fea-
ture point extraction. The feature points are extracted using the method detailed
in Sect. 2.2 at each viewing distance. and the point-to-point distances calculated to
evaluate the performance.

Table 1, shows the point-to-point error at each viewing distance for the exper-
iment conducted in the office. The error is calculated by subtracting the sensed
point-to-point distance from the known ground truth distance. A positive error value
indicates a sensed distance greater than the ground truth and a negative error value
indicates a sensed distance shorter than the ground truth. Results shows that the view-
ing distances between 900 and 1,500 mm have point-to-point distance error values
within ±6 mm for all point-to-point combinations. The maximum error observed in
this experiment is at a viewing distance of 1,900 mm with a point A-to-C error of
12.37 mm. Furthermore, Fig. 8c shows the limitations determined from this experi-
ment. Although the IR range camera is capable of capturing range data at distances
between 500 and 800 mm. But due to the field-of-view constraints and/or the intensity
saturation of the reflector discs resulting in null range returns, feature point extraction
was not possible within that range. The outcome of the bridge experiment determined
that no significant interference was caused by the addition of field elements (i.e. dust
in air, shiny metal, lighting).
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Fig. 7 a An IR range camera
attached to a robot manipula-
tor observing the calibration
plate; b The calibration plate
with reflector discs

Table 1 Office environment experiment: point to point errors

Viewing distance (mm) Error A-B (mm) Error B-C (mm) Error A-C (mm)

900 2.96 2.22 4.01
1,000 0.16 1.91 0.82
1,100 3.96 1.67 −0.92
1,200 3.06 4.1 3.55
1,300 3.0 3.8 2.03
1,400 1.59 5.24 3.84
1,500 2.13 5.07 4.33
1,600 2.63 6.93 8.2
1,700 4.15 6.74 6.73
1,800 5.72 9.02 11.46
1,900 7.37 9.92 12.37
2,000 9.26 9.86 11.29

3.3 3D Feature Matching Experiment

In this experiment the performance of feature extraction and matching is evaluated
with the IR range camera mounted on the end-effector. The configuration of this
experiment is shown in Fig. 7a, with the reflector discs positioned statically in a
known position relative to the robot base. The robot manipulator is used to position
and orientate the IR range camera at 10 different viewpoints to provide various
observations of the reflector discs. The method discussed in Sect. 2.3 is used to find a
transformation to match the extracted feature points into the measured ground truth
location. Performance is based on the distance between the transformed feature point
and the corresponding ground truth location of the feature point.
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Fig. 8 a Office environment experiment setup for 3D feature point extraction; b Bridge environment
experiment setup for 3D feature point extraction; c Example IR image and range image from 500
to 900 mm in controlled environment
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Fig. 9 a Feature matching between extracted feature points (+) to measured ground truth location
(o) shown in the robot base frame; b Expanded view of point A

Table 2 Mean and standard deviation of position error for the 10 manipulator poses

PointA error (mm) PointB error (mm) PointC error (mm)

Mean error 0.2593 0.1758 0.2574
Std Dev 0.09 0.0497 0.09

Figure 6a illustrates the feature matching for a viewpoint provided by a specific
robot manipulator pose. The triangle represents the feature points extracted by the
IR range camera transformed into the robot base frame using the camera-to-robot
base transform. The crosses represent the ground truth location of the feature points.
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Fig. 10 a Replica of bridge structure; b Transformed sensed point cloud data with ray-casting

Figure 9a shows an overlay view of the feature points matched from 10 different
robot manipulator poses. Figure 9b shows the expanded view of point A, the crosses
represent the sensed feature points and the circles represents the ground true location
of the reflector discs. Table 2, shows the mean and standard deviation of the position
error of the sensed feature points from the ground truth. Execution time for the
positioning of the manipulator into the 10 different poses with feature extraction and
matching in this experiment required approximately 5 minutes.

3.4 3D Map Generation Experiment

This experiment tests the accuracy of the generated hand-eye transform by regis-
tering the point clouds captured by the IR range camera into the robot base frame.
Performance is evaluated by comparing the difference between the sensed surface
with physical measurements. Figure 10a shows the environment that is a replica of
a steel bridge I-beam channel containing a main I-beam web with top and bottom
flanges. Ray-casting from the corners of the robot platform is performed to identify
the intersection point with the sensed surface as shown in Fig. 10a, b. The distance
between the intersection point and the platform corner point is calculated and then
compared with physical measurements. The difference between the sensed surface
and the physically measured distance is recorded and repeated for a set of 10 different
robot manipulator poses that position the IR range camera so as to observe the same
side wall surface. Table 3 shows the mean error and standard deviation between the
sensed surface distance and measured physical distance.
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Table 3 Surface to robot base distance error over the 10 IR camera locations

Distance 1 error (mm) Distance 2 error (mm)

Mean error 13.32 16.37
Std Dev 5.04 4.3

3.5 Discussions

The experimental results show that calibration for an IR range camera is possible
using the simple reflector discs. Experiment 1 demonstrated that data from an IR
range camera can be processed by the presented approach to simultaneously detect
a set of reflector discs in the IR image and also to provide range data on the reflector
discs for feature extraction. Experiment 2 and 3 demonstrated that the identified
feature points are accurate enough to be used in the desired application, and thus can
generate the required hand-eye transform such that multiple point clouds can be fused
and represented in the robot base frame. These results demonstrate the potential use
of reflector discs as a dispensable and effective tool to calibrate an IR range camera
in a field environment.

Currently the approach is limited by the viewing distance. Due to intensity satura-
tion at close viewing distances, an accurate range reading of the reflector disc is not
possible. Thus, the feature extraction scheme can be modified to select 3D dataset
points from the surface surrounding each reflector disc as opposed to the surface on
each reflector disc. The range returns for pixels surrounding each reflector disc does
not suffer from intensity saturation, therefore feature extraction should be possible
for a closer viewing distances than is currently possible. A redesign of the calibration
plate will also be necessary to provide the surface plane around each reflector disc.
Further onsite experiments will also be conducted to extend the testing of calibration
performance in the presence of vibration and dust.

4 Conclusion

This paper has demonstrated an automated approach to hand-eye calibration for use in
a harsh field environment. The proposed approach has successfully used an IR range
camera to extract feature points from a set of three reflector discs to determine the
camera-to-robot manipulator base transform, and subsequently the hand-eye trans-
form by considering the robot manipulator model. Experiment results indicate high
performance in feature point extraction using the image processing and 3D manip-
ulation on the IR image and the point cloud. The generated hand-eye transform is
able to accurately register point clouds into the robot base frame and verified through
physical measurements. Future work will involve extending the range of the feature
extraction scheme, the redesign of the calibration plate, and further field testing of
the approach.
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Vertical Infrastructure Inspection Using
a Quadcopter and Shared Autonomy Control

Inkyu Sa and Peter Corke

Abstract This paper presents a shared autonomy control scheme for a quadcopter
that is suited for inspection of vertical infrastructure—tall man-made structures
such as streetlights, electricity poles or the exterior surfaces of buildings. Cur-
rent approaches to inspection of such structures is slow, expensive, and potentially
hazardous. Low-cost aerial platforms with an ability to hover now have sufficient
payload and endurance for this kind of task, but require significant human skill to
fly. We develop a control architecture that enables synergy between the ground-
based operator and the aerial inspection robot. An unskilled operator is assisted by
onboard sensing and partial autonomy to safely fly the robot in close proximity to the
structure. The operator uses their domain knowledge and problem solving skills to
guide the robot in difficult to reach locations to inspect and assess the condition of the
infrastructure. The operator commands the robot in a local task coordinate frame with
limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away
with respect to the infrastructure. We therefore avoid problems of global mapping
and navigation while providing an intuitive interface to the operator. We describe
algorithms for pole detection, robot velocity estimation with respect to the pole,
and position estimation in 3D space as well as the control algorithms and overall
system architecture. We present initial results of shared autonomy of a quadcopter
with respect to a vertical pole and robot performance is evaluated by comparing with
motion capture data.
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1 Introduction

The options for inspecting locations above the ground are quite limited, and all are
currently cumbersome. Ladders can be used up to a height of 10–15 m but are quite
dangerous: each year 160 people are killed and 170,000 injured in falls from ladders
in the United States.1 A person can be lifted in the basket of a cherry picker up to a
height of 15 m but vehicle access is required and the setup time is significant. Beyond
that height a person either climbs up the structure or rappels down from the top, both
of which are slow and hazardous. Inspection from manned rotorcraft is possible
but is expensive and only suitable in non-urban environments. In recent years we
have seen significant advances in small VTOL platforms, in particular quadcopters,
driven by advances in power electronics, MEMS sensors and microcontrollers. These
systems are low-cost and have sufficient payload and endurance for useful inspection
missions. They are also low-weight which reduces the hazard due to their deployment.

This paper presents a shared autonomy system for inspection of vertical
infrastructure—tall man-made structures such as streetlights, electricity poles or the
exterior surfaces of buildings—using a vertical take-off and landing (VTOL) robot
platform. Shared autonomy indicates that the major fraction of control is accom-
plished by the onboard computer. The operator provides “high level” commands in a
reduced DOF task space, while the robot is responsible for stable flight, disturbance
rejection and collision avoidance. This allows an unskilled operator to easily and
safely control a quadcopter to examine locations that are otherwise difficult to reach
(Fig. 1).

The presented VTOL flying robot has functionalities of pole detection and task-
space operator command input. Implicit in the inspection task is the requirement
to fly close to structures with which a collision would significantly damage the
vehicle. Air flow around tall structures results in eddies that induce disturbances on

(a) (b) (c)

Fig. 1 a The Cyphy Lab MikroKopter research platform. The pole can be seen on the left of the
image. b A dangerous situation to inspect or repair a street light (Baltimore museum of industry;
http://www.thebmi.org/). c Sufficient space is required for vehicle access and it is a time consuming
process to setup operation (Facelift; http://www.facelift.co.uk/)

1 May 2009 Consumer Reports magazine. http://www.consumerreports.org/cro/magazine-archive/
may-2009/may-2009-toc.htm

http://www.thebmi.org/
http://www.facelift.co.uk/
http://www.consumerreports.org/cro/magazine-archive/may-2009/may-2009-toc.htm
http://www.consumerreports.org/cro/magazine-archive/may-2009/may-2009-toc.htm
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the vehicle which must be robustly rejected to ensure safety and task performance.
This requires accurate and fast velocity and position estimation and an appropriate
control methodology.

This paper is organised as follows: Sect. 2 presents relevant research on quad-
copter and bio-inspired climbing robots suitable for inspection. Section 3 explains the
methodologies: system modeling and identification, velocity estimation and nested
controllers, pole detection algorithm, shared control scheme. We present our exper-
imental results in Sect. 4, and important technological trends and conclusions in
Sect. 5.

2 Related Work

Robotics and mechatronics researchers have demonstrated a variety of climbing
robots for vertical infrastructure inspection. Typically, these robots are inspired by
reptiles, mammals and insects and their type of movement varies between sliding,
swinging, extension and jumping. The MATS robot has 5 DOF and a symmetrical
mechanism that showed good mobility features for travel, however, it requires a
special docking stations to hold itself [1]. A bio-mimicking robot, StickyBot, has a
hierarchical adhesive structure under its toes to hold itself on any kind of surfaces [2].
RiSE V3, a legged locomotion climbing robot, is designed for high-speed climbing
of a uniformly convex cylindrical structure, such as a telephone or electricity pole
[3]. A bridge cable inspection robot [4] has wheels held against the cable to create a
contact force required to move along the cable. These types of robots could not only
replace a worker undertaking risky tasks in a hazardous environment but also increase
the efficiency of such tasks. However, they require complex mechanical designs,
special materials and complicated dynamics analysis. Their applications are limited
to specific type of structures, such as cylindrical-shaped poles. VTOL platforms are
a feasible alternative to achieving the same goals as climbing robots and involve
a much simpler mechanism. Recently, [5] demonstrates embedded stereo camera
based egomotion estimation for structures inspections such as a boiler and general
indoor scenarios. Although IMU guided feature matching and stereo based camera
pose estimation show impressive real-time achievements, it might need integration
of control theory to fly in close quarters.

3 Methodologies

This section describes the key approaches of our system: shared control; modeling
and system identification; pole detection; velocity estimation and nested controllers.
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3.1 Shared Control and Task Frame

Sheridan [6] introduced a spectrum of approaches for remote operation of a system.
At one end is “conventional manual control” (system 1) where the system is fully
controlled by a human operator and there is no computer-aided functionalities. At
the other end is “fully autonomous system” (system 5) where a human operator can
observe but cannot intervene in the process. Our proposed system is modelled on
Sheridan’s “Supervisory Control” architecture, specifically system 4, in which the
control loop is closed through a computer but there are still human interventions. This
approach allows the high-bandwidth flight control and obstacle avoidance loops to
be closed on board the robot with the “high level” commands from the human being
treated as requests that will be implemented if safe to do so (Fig. 2).

A task frame (TF) refers to a coordinate frame that can be attached to an object in
the workspace [7]. There is a geometric transformation between the world coordinate
and TF. The advantages of a TF is that actions which are difficult to express in the
world coordinate can be easily specified in the TF. For an inspection task the TF
is associated with the operator’s current view of the infrastructure and provides an
intuitive control framework to the user in which to express desired motion commands.
Fig. 3a shows the world coordinate W and the task frame T.

A VTOL platform has four DOF (roll, pitch and yaw angles, and throttle) and
significant operator skill is required to control position in 3-dimensional Cartesian
space. One aspect of this skill is that the roll and pitch angles induce forces on the
vehicle, and with relatively little aerodynamic damping these inputs are effectively
Cartesian accelerations. The level of skill required is greatly increased when flying
next to a large and unforgiving structure in the presence of wind-induced force
disturbance. Manual piloting also requires the vehicle to be in the pilot’s visual field
of the pilot and sufficiently close that its orientation in space can be determined.

Fig. 2 Hierarchical multi-loop shared control architecture. The inner loop receives a desired goal
by the outer loop. Control, Position estimator loops have different update rates for a purpose. Arrows
indicate data flow directions and specify inputs
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(a) (b)

Fig. 3 a World frame W and the task frame T. W is the centre of the pole and T denotes a camera
coordinate which is equal to a user’s point of view. An unskilled operator can easily control the
robot because it can localize with respect to the pole. b Reduced controllable task degree of freedom
(DOF)

For an unskilled operator we need to reduce the number of DOF that must be
controlled and make the DOF intuitive and task specific. As shown in Fig. 3b, for a
pole inspection task, the operator controls only 2 DOF: distance along the pole and
angle around the pole. This is sufficient for inspection of the entire pole area and
easy to control.

3.2 Modeling and System Identification

The quadcopter is an under-actuated force-controlled flying vehicle. This force actu-
ation implies that rotational and translational motion can be modeled as a double
integrator from command to attitude angle or horizontal position [8, 9]. In our work
we use the MikroKopter open-source quadcopter2 for which there is few engineering
documents or published dynamic models [10]. The vehicle has an onboard attitude
controller which uses rate and angle feedback from gyroscopes and accelerome-
ters. We identified the dynamics of the closed-loop attitude by recording pilot com-

2 MikroKopter. http://www.mikrokopter.de/

http://www.mikrokopter.de/


224 I. Sa and P. Corke

mands and MikroKopter attitude estimates, for manual flight. We fit an autoregressive
moving average model with exogenous inputs model (ARMAX) using recursive least
squares to this time series data giving a linear discrete-time (at 50 ms) first-order
model

F(z)pitch = 0.148

z − 0.7639
, F(z)roll = 0.145

z − 0.7704
(1)

as the angle response to angle demand.
Translational motion is driven by the thrust force component in the horizontal

plane and can be modelled as a double integrator. There is relatively little translational
aerodynamic damping, though blade flapping does add some damping [11]. For
stability additional damping is required and this necessitates velocity estimation.

3.3 Velocity Estimation and Nested Controllers

The key to stable control of such systems is providing artificial damping through
feedback of rotational and translational velocity. In order to introduce damping we
require a high quality velocity estimate: smooth, high update rate with low latency.
Computing velocity using differentiation of the position from the pole detection
and pose estimator results in velocity at 10 Hz with a latency of 100 ms. This sig-
nificantly limits the gain that can be applied when used for closed-loop velocity
control. Instead we use the MikroKopter acceleration measurements (AccRoll and
AccNick) which we read at 20 Hz with low latency and integrate them to create a
velocity estimate. We subtract the acceleration due to gravity using the MikroKopter’s
estimated roll and pitch angles

ẍQ = ax + g sin θ

cos θ
, ÿQ = ay − g sin ς

cos ς
(2)

where ax , ay are the measured acceleration from the flight control board converted
to our coordinate system, and θ, ς denote the pitch and roll angles respectively. {Q}
is a coordinate frame centred on the vehicle with axes parallel to the world frame.
Acceleration and attitude are returned together in the flight-controller status message
at 20 Hz.

As any estimator that relies on integration is subject to substantial errors due to
drift, even over quite short time intervals, we therefore fuse these two estimates using
a simple discrete-time complementary filter [12] as shown in Fig. 4 and described by

v̂xk+1 = v̂xk + (ẍQk + K (vxk − v̂xk ))πt (3)

where v̂xk is estimated velocity, vxk is obtained from differentiation of the laser-based
pose estimate and is computed at a slower rate than ẍQk so the filter takes the most
recent value, and K is a gain. Complementary filters have been used previously for
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Fig. 4 Complementary filter for velocity estimation. Compared to a Kalman filter the computation
is simple, and there is only one tuning parameter, K . v̇x and v̇y are obtained from a onboard IMU
sensor. vx and vy are from a laser range finder

Fig. 5 Velocity estimator and control structure for translational motion. The Kvel for the velocity
loop is 27 and K P = 0.8, K I = 0.1 and K D = 0.7 for the position PID controller

UAV velocity estimation, such as to fuse velocity from low-rate optical flow with
high-rate inertial data [13].

The block diagram of our nested controller is shown in Fig. 5. The inner-loop is
a velocity controller with proportional and integral control with feedback of esti-
mated velocity from the complementary filter, Eq. (3). The outer loop is a position
controller with proportional control.This structure is equivalent to a proportional-
integral-derivative, however the nested structure decouples the different sampling
rates of the position sensor and the velocity sensor. The inner-loop runs at 20 Hz and
the outer-loop at 10 Hz. As we showed in [10] this simple control architecture gives
performance that is comparable with other published results that are using 40 Hz
laser scanners and 1 kHz IMU sample rates.

3.4 Pole Detection

We use an Hokuyo model URG-04LX laser range finder (10 Hz and 4 m range) to
detect the pole. As shown in Fig. 6 the laser detects the 15 cm radius pole as a straight
line rather than a circular arc, and we believe this is an artifact of filtering firmware
in the laser range finder. We use a Split-Merge line extraction [14] routine on the raw
laser data, followed by target discrimination (see Algorithm 1), tracking and filtering
to estimate the range and bearing of the pole with respect to the robot.

We score each candidate using a previous detected averaged position.
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Fig. 6 Top view: Red dots
are raw laser scan data and
the yellow circle denotes the
scan data corresponding to
the pole. The white dot is the
centre of the sensor

Sk = dist (P̄, P̃k) (4)

where P̃k ∈ R
2 is the kth candidate position, and P̄ ∈ R

2 is the average position. All
candidates are sorted by decreasing score and the one with the maximum score is
selected. For bootstrapping, we assume that a pole, P, is located within discoverable
boundary (P < ϕ, φ, δ ) at system startup (see Algorithm 1) .

4 Experimental Results

In this section, software and hardware implementation are described in depth. We also
present results of estimator performance evaluation while hovering which includes
velocity, position and ground-truthed circle trajectory around a pole.

4.1 Software and Hardware Implementation

The ROS framework is used to integrate modules (see Fig. 7), where blue boxes
denote the ROS nodes which are individual processes. The onboard Overo Gumstix
runs the standard ROS laser scanner node and publishes the topic /scan over WiFi to
the base station every laser scan interval (100 ms). The ROS pole detector subscribes
to this topic, and estimates 2D pose (x, y) which it publishes as topic /pole pose2D .
The ROS serial node communicates with the MikroKopter flight control board over
the ZigBee link. Every 50 ms it requests a DebugOut packet which it receives and
the inertial data (converted to SI units) is published as the /mikoImu topic. This node
also subscribes to the /mikoCmd topic and transmits the command over the ZigBee
uplink to the flight controller. Note that the overall software system latency is about
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Fig. 7 Software implementation using ROS platform where blue boxes represent ROS nodes run-
ning on the ground station in real time and the orange box is the quadcopter platform. The prefix ‘/’
denotes a ROS topic. p̂ and p∗ are estimated and desired position respectively. v denotes velocity
and notation are same as position

Algorithm 1: Pole detection algorithm

while ! (Find a pole) do
if (l.length[i] <ϕ) && (l.distance[i] < φ)&&(l.angle[i] <δ ) then

l[i] is the pole;
Find a pole = TRUE;

else
i = i + 1;

end
end
Continuous : find the best candidate satisfying less strict conditions.
while ! (Find the best candidate) do

if (c.length[j] <Δ) && (c.distance[j] <∂)&&(c.angle[j] <ζ ) then
Put c[ j] in the candidate list;

else
j = j + 1;

end
Calculate scores using Sk = dist (P̄, P̃k); //Equation 4
Ascending sorting of the candidate list and pick the best score,c;
if c > ξ then

pole = c;
Find the best candidate = TRUE;

end
end
Note that constant parameters ϕ < Δ, φ < ∂ and δ < ζ .
ξ denotes the score threshold.

170 ms and the system response delay is about 200 ms. Technical documentation
and this software are available online.3

3 ROS QUT Cyphy wiki page http://www.ros.org/wiki/MikroKopter/Tutorials

http://www.ros.org/wiki/MikroKopter/Tutorials
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Our MikroKopter L4-ME quadcopter carries an Overo Gumstix which runs
Ubuntu Linux and ROS.4 An Hokuyo model URG-04LX laser scanner (10 Hz and
4 m range) scans in the horizontal plane and the “laser hat” from the City College
of NewYork5 provides altitude as well. The total payload mass is 0.18 kg and a
Lipo pack (4cells, 2,200 mAh), provides the system power. The advantage of the
MikroKopter is a competitive price. This platform is 6.4 times more cost effective
than the similar level “Pelican ” platform.6

4.2 Estimation and Control

The performance evaluation of the velocity estimator is performed by compar-
ing the measured velocities with the ground truth—a sub-millimetre accuracy
g-speak/VICON motion capture system.7 The ground truth velocities are obtained

Hokuyo laser scanner

Full speed USB

USB Hub

Gumstix Overo Fire

Flight control ME2.1

Motor controller X4 Motors

Zigbee 
module

WIFI, 802.11g

Zigbee
USB to RS232

2.4GHz PPM

FUTABA 10CHG
,emergency stop

2200mA 
4C Lipo

I2C

Fig. 8 Hardware integration. The laser scanner is attached to a USB Hub since the Overo Gumstix
USB host only supports High Speed USB. The Zigbee module is used to transmit IMU data to
the ground station and receive commands. The WiFi connection connects the ROS nodes on the
Gumstix to the ground station. For safety a manual pilot transmitter is linked to the quadcopter
system

4 Robot Operating System, http://www.ros.org/wiki/
5 City College of NewYork Robotics Lab, http://robotics.ccny.cuny.edu/blog/
6 Ascending Technologies, http://www.asctec.de/
7 Oblong,g-speak motion capture platform. http://www.oblong.com

http://www.ros.org/wiki/
http://robotics.ccny.cuny.edu/blog/
http://www.asctec.de/
http://www.oblong.com
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Fig. 9 The lateral velocities estimation results with respect to the pole while hovering. Solid line
denotes the ground truth and dash indicates the complimentary filter velocity estimation output.
Thick solid line is the reference

by calculating the first derivative of the position and the estimated velocities
are generated by the proposed complementary filter, Eq. (3). Note that during
takeoff, the quadcopter moves a little horizontally due to poor trim but returns
quickly to the desired hovering position (Fig. 8). Figure 9 shows the estimated
horizontal velocities compared to the ground truth. The standard deviation values
are {σvx σvy} = {0.0495, 0.0375}m/s. Note that these values are calculated over the
flight interval between t = 30 s (takeoff) and t = 70 s (landing).

The vehicle position was estimated using the laser-range-finder, pole detector and
Kalman filter and used in a PID controller to maintain the pole at a fixed range
and bearing angle—hovering with respect to the pole. Ground truth data obtained
from the g-speak system is shown in Fig. 10. The reference position of the vehicle is
(0.8, 0, 0.6)m. The standard deviations of the ground truth position are {σx σy, σz} =
{0.0483, 0.0455, 0.0609}m. These are again computed over the flight interval.

If we yaw the vehicle while maintaining the pole at a fixed bearing, the result is
motion around the pole as shown in Fig. 11. Figure 12 shows the ground truth circle
trajectory with the proposed shared control. A current limitation is that yaw angle
is estimated from the vertical gyro and drifts with time. A video demonstration is
available on our YouTube channel.8

8 YouTube QUT Cyphy channel. http://youtu.be/F1vljjPIglg

http://youtu.be/F1vljjPIglg
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Fig. 10 x, y position estimation with respect to the pole while hovering with the ground truth. Solid
line denotes the ground truth and dash indicates Kalman filter position estimation. Thick solid line
is the reference. Median filter is used to estimate z position estimation

Pole center

dx

dy

dx

time = t

Fig. 11 a Changing yaw angle makes the quadcopter circle around the pole (red bar indicates the
front rotor. References for x ,y position controllers are dx and 0 respectively. The robot hovers by
keeping dx distance at time = t . b An operator sends yaw command and it introduces dy distance
at time = t + 1. c The robot moves to right to eliminate dy and keeps dx distance at time = t + 2

5 Conclusion and Future work

We have described our progress toward a shared control scheme that allows an
unskilled operator to control a quadcopter easily and safely for a useful class of tasks.
Translational velocity estimation is crucially important for quadcopter control and
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Fig. 12 The ground truth trajectory with shared control. An operator sends only yaw commands
using a joystick and the quadcopter keeps the desired distance, dx , dy , dz = [1, 0, 0.6] in metre,
with the pole. Red denotes the reference. Note that only the ground truth trajectory is presented due
to difficulty in estimating yaw angle with a low performance gyroscope

we have presented computationally efficient state estimation and control algorithms
which allow for smaller onboard computers. We have demonstrated ground-truthed
comparison of lateral velocity, position estimation while hovering and presented
circle movement around a pole, done with a platform of less than one fifth the cost
and with a laser scanner that scans four times more slowly than other comparable
results in the literature.

We used an amateur-class quadcopter, and to achieve a high level of performance
required understanding the dynamics of the quadcopter through system identification
and reverse engineering. This platform has many advantages such as cost efficiency,
high payload, open source firmware and a large user community. Our knowledge
about this platform are returned to the community through open documentation and
software available online.9

9 ROS QUT Cyphy wiki page http://www.ros.org/wiki/MikroKopter/Tutorials

http://www.ros.org/wiki/MikroKopter/Tutorials
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We have a large program of ongoing work. We are augmenting gyro-based yaw
angle estimation with a magnetic compass and a visual compass. We are moving
to a higher performance onboard computer which allows us to move computational
processes to the robot and eliminate the complexity, limited range and unreliability
of the communications link. We are investigating upward looking sensors so the
robot can manoeuvre around pole-top structures. Finally, we are investigating high
update rate monocular camera (up to 125 Hz) with wide-angle field of view for fast
estimation of robot and task-relative state.

Acknowledgments We would like to thank Liz Murphy for providing Split-Merge source code,
and Timothy Gurnett for assistance while using the VICON system at the QUT Cube Lab.
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Towards Autonomous Robotic Systems
for Remote Gas Leak Detection and Localization
in Industrial Environments

Samuel Soldan, Jochen Welle, Thomas Barz, Andreas Kroll
and Dirk Schulz

Abstract Detection and localization of escaped hazardous gases is of great industrial
and public interest in order to prevent harm to humans, nature and assets or just to
prevent financial losses. The development of novel leak-detection technologies will
yield better coverage of inspected objects while helping to lower plant operation
costs at the same time. Moreover, inspection personnel can be relieved from repeti-
tive work and focus on value-adding supervisory control and optimization tasks. The
proposed system consists of autonomous mobile inspection robots that are equipped
with several remote gas sensing devices and local intelligence. All-terrain robots
with caterpillar tracks are used that can handle slopes, unpaved routes and offer
maneuverability in restricted spaces as required for inspecting plants such as petro-
leum refineries, tank farms or chemical sites as well as sealed landfills. The robots
can detect and locate gas leaks autonomously to a great extent using infrared opti-
cal spectroscopic and thermal remote sensing techniques and data processing. This
article gives an overview of the components of the robotic system prototype, i.e.
the robotic platform and the remote sensing and evaluation module.The software
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architecture, including the robot middleware and the measurement routines, are
described. Results from testing autonomous mobility and object inspection func-
tions in a large test course are presented.

1 Motivation

Detecting gas leaks in pipes and vessels within a plant is of interest for several reasons.
At first, escaped hazardous (toxic/explosive) substances have to be detected and
removed before people or the environment is harmed. Secondly, pressured equipment
is often designed to show “leak-before-break” behavior. This means that a partial
failure may result in a detectable leak before a final fracture occurs [1, 2]. Thirdly,
leakages are a key maintenance issue: 23.5 % of all damages in a large chemical plant
appeared as leak. This made leaks the second most frequent failure mode (valued
1.59 MEUR p. a.); following just 2.2 % behind the #1 symptom (program sequence
error) [3].

The use of mobile inspection robots is motivated by various reasons such as better
access to remote or tight places, replacing human missions in hazardous environments
or to counteract consequences of demographical changes [4]. The development of
autonomous robotic systems for remote gas leak detection and localization addition-
ally aims at:

• Quality of process and results: improved inspection due to mobile remote gas
sensing technology, central knowledge base increases locally available knowl-
edge, increased coverage of extended inspection areas and increased inspection
frequency with available staff

• Operator relief: easier inspection of remote areas by remote sensing technology,
automation of repetitive, monotonous routine tasks, automated measurement eval-
uation and results documentation

• Profitability: more efficient and effective deployment of specialist staff, more time
for human operators for activities that create higher value such as planning, supervi-
sion, and optimization, efficient deployment of sophisticated measurement devices

In contrast to robots with local (in-situ) gas measuring instruments (see [5]
for an overview) remote sensing is contact-free, reactionless and does not disturb
the wind field and therefore provides for better leak detection. Also the sensor
must not immerge into gas plume/hazardous area and permits measuring of diffi-
cult/impossible to access areas.

2 Project Background

The proposed robotic systems are developed in the joint research venture
“RoboGasI nspector ”1 with four research, three industrial development and two appli-
cation partners. The project activities have been grouped to the major working areas

1 See www.robogasinspector.de for further information.

www.robogasinspector.de
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Fig. 1 Testing environments and possible future application areas. Top petroleum refinery (© PCK
Raffinerie GmbH), bottom gas compressor station (© GASCADE Gastransport GmbH)

of ‘gas propagation and measurement’, ‘mobile robots’ and ‘man-robot-interaction’.
The application partners in the project consortium are a petroleum refinery and a
gas transportation and distribution provider. They provide industrial environments
in which the system could be deployed within in the future (see Fig. 1 for an aerial
view of the plants). Therefore these plants are used for requirement elicitation and
testing; the target gas species were derived from these applications. In addition a
closed and sealed landfill was added as a third application area: in Germany period-
ical inspections for gas emissions are required by law and their extensiveness makes
them a prime target for robotic inspection.

A brief list of general requirements is provided in the following:

• Mobility: The ground mainly consists of stretches of grass, paved and unpaved
roads; slopes go up to 40 % (22◦). Robust ground propulsion is needed.

• Remote gas sensing: Target objects are up to 20 m elevated above the level of
traversable paths/roads, pipe bridges are between 5 m and 15 m high. The material
of the components is mainly steel or stainless steel; the surfaces can be bare
(pristine or corroded), painted or covered with insulation. Connecting pipes are
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usually bundled and can stretch for several hundred meters. The major target gas
is methane (CH4) and in addition other alkanes for the refinery.

• Explosion protection: In some areas of in the plants flammable/explosive gas mix-
tures may occur. Based on the probability of this occurrence these areas are clas-
sified into zones according to IEC 60079.10. The robot should be able to enter a
zone 2 area and not serve as an ignition source.

• Industrial application: The overall system has to comply with industrial guidelines.
The acceptance of the system from the operator has to be considered during the
design phase. System evaluations in industrial plants involving the industrial user
group are planned.

3 Robotic Platform and Software Architecture

The prototype of the autonomous mobile inspection robot (see Fig. 2) basically con-
sists of three major components:

3

1
5

76

42

8

9

Fig. 2 System overview. 1 telerob tEODor chassis, 2 compartment module, 3 inspection
module, 4 front laser scanner, 5 optical odometry, 6 in-situ gas sensor for ex-protection, 7 inertial
measurement unit and GPS antennae, 8 weather sensor, 9 extendable rear mast with camera, top
mounted communication antennae, emergency stop button and warning lights
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• A telerob tEOD or chassis with caterpillar tracks and a rear camera mast. This
platform is a modified version of a commercially available component from the
field of manual remote explosive ordinance disposal.

• A compartment module, developed by the Unmanned Systems group of the
Fraunhofer FKIE, which houses an industrial computer (Spectra PowerBox 1260HP,
QX9300 CPU, 4 GB RAM) for local robot control and other non-weatherproof
electronics. It serves as baseplate, as well as a central power and information
distribution hub for all attached devices and top mounted superstructures.

• The inspection module, developed by the Measurement and Control Department
of the University of Kassel, which features remote sensing technology installed
on a pan-tilt unit (see Fig. 8).

In its current state the prototype has a maximum speed of 1 m/s, a total weight
of approximately 385 kg, an additional payload of up to 340 kg and a drag force
of 3,000 N. For communication a Wi-Fi mesh architecture from Proxim is used. To
increase communication range the investigation of the usage of the built in video
wireless transmitter in conjunction with a separate radio transmitter for control is
planned.

Movement is measured by an inertial measurement unit (IMU) that combines
local data from acceleration sensors with external positioning information from GPS
satellites. The chassis itself provides no odometry information as it was de-signed
for manual operation. Therefore, the prototype was enhanced with an experimental
optical odometry. The optical odometry uses a mouse sensor with higher power
LEDs and a modified lens to measure position changes via relative motion of optical
features.

Two planar mounted 2D laser scanners, one at the front and one at the rear,
provide a 360◦ distance measurement for self-localization and collision avoidance.
A third laser scanner on the inspection module is used for stationary 3D scanning
and additional ground surveillance during movement to detect obstacles not visible
in the planar mounted 2D laser scanners. A Vaisala Weather Transmitter WXT520
is used to provide information about wind speed and direction.

Even though other projects have shown the feasibility for mobile robots to get an
approval to operate in explosive atmospheres [6] it was decided that for a system pro-
totype this is not necessary. Instead a certified gas warning device (Sewerin EX-TEC
HS 680) automatically interrupts the robot’s power supply if the local background
gas concentration reaches a certain level, well below the lower explosive limit (LEL).
Using test gas with only 2.2 vol.% methane it took less than 4 s for the device to sense
the concentration and power off the system.

To meet general safety considerations bright warning lights indicate that the
robot’s drive is in action and increases the visibility to human personnel to a great
extent. In addition to an easy to access local emergency stop button the robot can
also be stopped and powered off by a certified hardware-based safety remote control
system at any time.



238 S. Soldan et al.

3.1 Software Architecture

The system software is based on Fraunhofer FKIE’s service-oriented middleware
RoSe [7]. This Framework was developed for the use of multi robot systems in
rough outdoor environments and especially takes the problem of unreliable wireless
communication into account that is often neglected. It has been used in a variety of
projects as well as on various robotic platforms of which some have been recently
demonstrated in the context of the European Land Robot Trial 2011 [8].

A RoSe service is an independent, multi-threaded stand-alone application with
the capability of exchanging messages with other services via the RoSe message
system that encapsulates network communication. As an exception, inter-process
communication between services on the same host can be handled by shared memory
to allow exchange of large data volumes like 3D laser scans.

The RoboGasI nspector software framework consists of a variety of RoSe services
that were cooperatively developed by several project partners and:

• Control Station Service: Service on the control station that provides an interface
for remote controlling the system via graphical user interaction.

• Robot Control Service: High-level service on the robot that executes commands
from the control station. It controls and supervises other services in order to execute
a high-level task, e.g. conducting an inspection.

• Localization Service: Responsible for deducing the actual robot position by com-
bining information from different sources, laser scanners, optical odometry, IMU
data, GPS and stored map information. The laser-based part of the localization is
based on the Monte Carlo localization in [9].

• Navigation Service: Handles higher-level navigation points. The system follows
GPS-waypoints (outdoors) or 2D map related waypoints (indoors) spaced at inter-
vals of several meters. The navigation service supervises and controls local nav-
igation services that are responsible for local path planning, collision avoidance
and issuing actual driving commands to the robot’s drive system. At present an
‘Expansive Spaces Trees’ planner as described in [10] is used.

• Measurement Control Service: High-level service that supervises and controls
the inspection module and its lower-level support services in order to perform the
requested measurement operation. It assesses the gas concentration, informs the
control station and robot control system, and initiates measurements for gas leak
localization if necessary.

• For each hardware device, such as the robot base platform, laser scanners, pan-tilt
unit, gas sensors, cameras and so on, a different service exists, which is responsi-
ble for encapsulating the low-level communication and providing an appropriate
interface for other higher-level services.

All persistent information gathered or generated by the system is stored in rela-
tional databases and can be divided into three categories:

• Global knowledge that is needed by the robot and the control station during an
inspection, e.g. route information, measurement targets, restricted zones that may
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not be entered by the robot autonomously. This data has to be synchronized online,
when changes occur.

• Local robot knowledge that is produced during an ongoing inspection or is only
valid in its context. This may be for example extensive amounts of raw measure-
ment data, which can be transferred to the control station offline afterwards, or
temporary status information.

• Local control station knowledge that has no impact on the robot’s immediate
inspection duty, e.g. old inspection reports that have to be archived.

As bandwidth of wireless communication is limited, separate databases exist on
the robot and on the control station. Only the necessary global knowledge updates or
explicitly requested information is transmitted immediately, other data is synchro-
nized later at specific points where a high speed data connection is available.

4 Remote Gas Detection

For the proposed robotic system the remote gas sensing is based on infrared measure-
ments. Three different technologies are used: Tunable diode laser absorption spec-
troscopy (TDLAS), thermography for gas imaging and thermal imaging for validation
of leak hypotheses or detection fluid leakages. The main principles are described in
the following section followed by the strategies for detection and localization as well
as the practical integration of the instruments into one platform independent module.

Fig. 3 Wavelength depended transmittance through Earth’s atmosphere for electromagnetic
radiation (horizontal path at sea level, 1,828 m) [11]
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Fig. 4 Spectral transmittance of different hydrocarbons and of atmosphere. Data from [12]

4.1 Remote Gas Sensing

Every object with a temperature above 0 K emits electromagnetic radiation with vary-
ing intensity in different wavelengths. For an idealistic object (black body radiator)
the amount of radiation of a certain wavelength can be calculated by Planck’s law.
The transmittance/opacity of the atmospheric gases varies with the wavelength of
the electromagnetic radiation and is shown in Fig. 3). The opacity of the atmosphere
is caused by the composition of its gases as shown on top of the figure (mainly by
oxygen, carbon dioxide and water vapor).

Each gas has a specific absorption behavior, which is caused by different energy
levels within the molecules of the gas. Figure 4 depicts the transmission behavior of
some gases including the atmosphere (as a gas mixture). It can be seen that in certain
wavelengths the atmosphere is approximately transparent while other gas species are
opaque (e.g. around 3.3µm). In TDLAS a laser diode is used to emit electromagnetic
radiation in two different wavelengths. The wavelengths are chosen in a region where
the atmosphere has a high transmittance and so that the target gas has a high opacity
in one wavelength and a low opacity in another wavelength. A detector measures
the received radiation intensity in both wavelengths and the gas concentration can
be computed using the Lambert-Beer-Law. Because this method uses a man-made
radiation source it is called an active method (Fig. 5). The active measurement systems
can be either bistatic (receiver and transmitter at separate locations) or monostatic
with the receiver and transmitter being at the same location while using a diffuse
reflecting surface or a (retro)reflector to reflect the emitted radiation to the receiver
(Fig. 5). The measured gas concentration result is an integrated value for the whole
measurement path.

In contrast to TDLAS, thermography for gas imaging is deployed as a passive
technology with state of the art commercial devices and does not require an artificial
radiation source. It is basically a thermography camera with a narrow wavelength
band-pass filter that measures the surface temperature of objects. The chosen wave-
length region is transparent for the atmosphere but not for the target gas species. This
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Fig. 5 Measurement arrangement options for passive and active infrared spectroscopy

Fig. 6 Lighter with escaping gas seen in video image–wavelength 0.38–0.78µm (left) and
thermography for gas imaging—wavelength 3.2–3.4µm (right). Note that the gas plume of the
escaping propane/butane is only visible in the right image

makes their temperature visible during measurements (if their temperature is differ-
ent from the background temperature). The gas plume can be detected as a cloud that
occludes the background in an image (Fig. 6). It is therefore only a visualization tech-
nique and provides no quantitative reading. Thermography for gas imaging can be
used in different wavelength regions and permits detecting multiple gases. However,
the sensors do not distinguish single gases but indicate that a gas with absorption in
the sensed spectral region is present (e.g. multiple species have absorption character-
istics around 3.3µm in Fig. 4). Similar to the characteristics of gas warning devices
this functionality is sufficient for many inspection, monitoring and surveillance tasks.

For more in-depth information about electromagnetic radiation, absorption and
thermography Vollmer and Möllmann [13] can be consulted; information about ther-
mography and non-destructive testing can be found in Maldague [14]. Regarding
spectroscopic measurements techniques the reader is referred to [15]. An overview
of available remote gas sensing systems can be found in [16].
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4.2 Automatic Target Scanning, Leak Detection and Localization

TDLAS based measurements with a monostatic setup provide for one integral mea-
surement for one measured direction. A pan-tilt unit or a moveable mirror can be used
to scan an area. The measured values increase with increasing measurement distance
due to the background gas concentration. Therefore a preliminary depth scan is used
to correct the measurements by subtracting the average background concentration
(either a typical atmospheric concentration of e.g. 2 ppm for methane is used or the
absolute local concentration is determined by an additional in-situ senor) times the
measurement path distance. This information is also used to adapt the sensed region
e.g. by removing areas that are too far away to be inspected or have no suitable diffuse
reflection [17]. By using an adaptive grid scan technique the direction with the max-
imum concentration can be determined [18]. As the gas leak can be anywhere within
this direction the robotic system has to acquire further measurements from different
positions. Head-towards-the-maximum or triangulation strategies have been tested
to localize the gas leak [18].

Thermography for gas imaging already provides for an image of the inspected
object; panning or tilting of the instrument is only necessary to inspect a wider area.
Without moving the robotic system or the camera an image series (video) from
the inspected object is recorded with both the measurement instrument and a video
camera. A gas plume can be detected using motion detection algorithms on the
recorded data from the gas imaging camera. The data from the video camera is used
to reduce false alarms due to other moving objects that can be seen in the normal
visual wavelength region.

Having closed in on a potential leak thermal imaging is used to get a confirmation
of the location of the leak hypothesis. Because of expansive cooling, the area around
a leak in a gas pipe or similar cools down and this effect can be measured and
automatically be detected using pattern matching with known leak patterns (Fig. 7)

Fig. 7 Water spill on the floor and gas leak in the pipe in video image (left) and a corresponding
thermogram with temperatures ranging from 20 to 22.1 ◦C (right)
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[19, 20]. Additionally, thermal imaging can be used for other inspection tasks like
detecting liquid spills (Fig. 7), electric short circuits, broken insulation or bearing
wear.

4.3 Inspection Module

For the system prototype three main measurement instruments have been selected
and are used:

• TDLAS: Sewerin/Heath RMLD (Remote Methane Leak Detector), wavelength:
1.6µm, detection distance: up to 30 m, detectable gas: methane.

• Thermography for gas imaging: FLIR GF320, wavelength: 3.2–3.4µm, detectable
gases: hydrocarbons with up to 8 carbon atoms (methane to octane).

• Thermography camera: Infratec VarioCam hr research; wavelength: 7–14µm,
temperature resolution: 30 mK, geometric resolution: 1280 × 960 pixels.
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Fig. 8 Inspection module. 1 thermography camera for gas imaging, 2 2D laser scanner, 3 video
camera, 4 thermography camera, 5 pan-tilt-unit, 6 TDALS instrument, 7 compartment with elec-
tronics and a control computer
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Fig. 9 Inspection module on Neobotix MP-S500 (top), MobileRobots Seekur Jr. (bottom, courtesy
of Human-Machine Systems Engineering, University of Kassel)

These instruments are mounted on a pan-tilt unit (PTU, Schunk PW90) along with
a normal USB-camera (IDS uEye) and a 2D laser scanner (Sick LMS 151). In Fig. 8
the setup is shown. Underneath the PTU a compartment was constructed to house the
control module of the RMLD, electronics, cabling and a computer for data processing
(Intel Core i7 CPU). The whole module only requires one network and one power
connection to the robot and can therefore be easily used on different platforms (e.g.
lab robots as shown in Fig. 9 or a bigger all-terrain outdoor robot as shown in Fig. 11).

5 Test Results

To test and demonstrate the abilities of the robotic system a test course was designed
by the RoboGasI nspector project group with mobility and gas measurement related
tasks. An overview of the test field can be seen in Fig. 10). The robot is supposed to
complete one round autonomously and thereby pass the following tasks (letters in
brackets refer to the area on the test field in Fig. 10):
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Fig. 10 Overview of test course, top schematic, bottom photo. Labels are described in the text

• Autonomous driving and obstacle avoidance
• Avoidance of a restricted areas (a)
• Narrow passages (b)
• Ramp climbing and descent (c)—also shown in Fig. 11 (left)
• Scanning of an area and finding of a gas probe (d)—shown in Fig. 11 (right)
• Live stream of video and thermography images
• Handing over to operator for manual control tasks (e)
• Resuming inspection mission after manual control(e)
• Emergency shutdown in case of high background gas concentration (explosion

protection) (f)

The test course is approximately 80 m long and only 10 waypoints were provided to
the mobile robot. All tasks were successfully completed for 10 rounds, demonstrating
the reliability of the system prototype and the reproducibility of the task execution.
The robot needed less than five minutes to complete the course (including leak
detection). Videos from the robotic system on the test course can be found at www.
robogasinspector.de.

www.robogasinspector.de
www.robogasinspector.de
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Fig. 11 Left: robot climbing a ramp, right: robot doing close up inspection of a flange

6 Summary and Future Works

In this article an autonomous robotic system for remote gas leak detection in industrial
environments was presented. The platform is a commercially available EOD robot
with caterpillar tracks which has been modified for computer control. Software ser-
vices enable autonomous path planning and obstacle avoidance. The principles of the
used remote gas sensing instruments are based on spectral absorption. Measurement
devices based on different technological methods (TDLAS, passive thermography
and thermography for gas imaging) are combined on a modular inspection module.
Leak detection and localization strategies have been implemented. The system was
successfully tested on a test course with challenging tasks like ramp climbing and
remote leak detection.

Future activities include testing and improving the strategies in outdoor scenarios
in industrial plants.
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To the Bookstore! Autonomous Wheelchair
Navigation in an Urban Environment

Corey Montella, Timothy Perkins, John Spletzer and Michael Sands

Abstract In this paper, we demonstrate reliable navigation of a smart wheelchair
system (SWS) in an urban environment. Urban environments present unique chal-
lenges for service robots. They require localization accuracy at the sidewalk level, but
compromise GPS position estimates through significant multi-path effects. However,
they are also rich in landmarks that can be leveraged by feature-based localization
approaches. To this end, our SWS employed a map-based localization approach. A
map of the environment was acquired using a server vehicle, synthesized a priori,
and made accessible to the SWS. The map embedded not only the locations of land-
marks, but also semantic data delineating 7 different landmark classes to facilitate
robust data association. Landmark segmentation and tracking by the SWS was then
accomplished using both 2D and 3D LIDAR systems. The resulting localization
method has demonstrated decimeter level positioning accuracy in a global coordi-
nate frame. The localization package was integrated into a ROS framework with a
sample based motion planner and control loop running at 5 Hz to enable autonomous
navigation. For validation, the SWS repeatedly navigated autonomously between
Lehigh University’s Packard Laboratory and the University bookstore, a distance of
approximately 1.0 km roundtrip.

1 Introduction and Motivation

In 1997, Professor Illah Nourbakhsh of Carnegie Mellon University established The
Wheelchair Project. Its goal was to develop an autonomous wheelchair capable of
reliable navigation in both indoor and outdoor environments [14]. As an initial
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milestone, Nourbakhsh proposed to demonstrate autonomous outdoor navigation
from Smith Hall to the University Center bookstore—a distance of ◦ 500 m out-
doors. While it does not appear that Nourbakhsh’s vision has been realized yet, we
draw inspiration from his work to pose a similar challenge to ourselves: demonstrate
reliable autonomous navigation of a smart wheelchair system (SWS) from Lehigh
University’s (LU) Packard Laboratory to the LU Bookstore. Coincidentally, the most
direct wheelchair-accessible route (see Fig. 7) for our task is also ◦ 500 m. It also
required the wheelchair to navigate multiple street crossings, and to maintain a suf-
ficiently accurate localization estimate to realize reliable navigation at the sidewalk
scale.

To accomplish this objective, we leveraged technologies unavailable to Nour-
bakhsh at the time he posed the challenge, the most important of which was a low-
cost 3D LIDAR system for ground plane detection, feature detection, and obstacle
avoidance. From the development and testing that followed, we provide significant
insights into what worked and what did not. By integrating these lessons learned, the
SWS was capable of completing our bookstore challenge without incident.

In this chapter, we detail the implementation of a robot platform capable of
autonomous navigation in a structured outdoor environment. While the methods
in this paper were applied to a SWS, they have broad applicability to general field
and service robots operating in urban environments.

2 Related Work

Smart wheelchair systems have been an active research area since the early 1980s.
The spectrum of work has ranged from component level safety sensors, to assistive
controllers for steering, to completely autonomous indoor solutions. A survey of the
field (as of August 2005) can be found in [19]. More recent projects of note include
the MIT Intelligent Wheelchair Project [10], the goal of which is to develop a voice-
commanded autonomous wheelchair intended for use in indoor environments. The
Home, Lift, Position, and Rehabilitation (HLPR) Chair [1] developed by NIST is a
special-purpose assistive mobility device to provide independent patient mobility for
indoor tasks, such as moving to and placing a person on a chair or bed. HLPR has
demonstrated obstacle detection and navigation indoors with promising results. The
Personal Mobility and Manipulation Appliance (PerMMA) [2] is being developed
at the University of Pittsburgh and Carnegie Mellon University with the objective
of combining manipulation and mobility assistance in support of complete inde-
pendence for its users. The system employs two robotic arms, and has demonstrated
object manipulation tasks such as retrieving a drink from a refrigerator. Our own work
to date in the smart wheelchair space includes the Automated Transport and Retrieval
System (ATRS) [6]. ATRS improves automobile access for power wheelchair users
by eliminating the need for an attendant to stow and retrieve the wheelchair.

In contrast to these efforts, the emphasis of our current work is navigation in
structured outdoor environments, such as an urban center. Developing robust robotics
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solutions suitable for use outdoors is a significant challenge compared to indoor envi-
ronments: the scale is much larger, illumination levels vary from strong sunlight to
near complete darkness, the environment is far less structured, environmental con-
ditions can quickly and dramatically change, and simplifying assumptions such as
a level ground plane are not reliable. Furthermore, operations at the sidewalk level
require localization performance beyond the bounds of what traditional GPS can pro-
vide. Other research groups have studied the problem of localization in outdoor and
urban environments. These include Georgiev et al., who used a mixture of cameras,
GPS, LIDAR, sonar, tilt sensors, and a database of facade models for localization [8].
They demonstrated their approach by traveling a 330 m course and localizing with
an error of ◦ 1 m. Ramos et al. combined an EKF-SLAM approach with landmark
modeling [16]. Driving an automobile over a course of 1.5 km, they were able to
localize within an error of 8.6 m.

In this work, we build upon our own previous results in large-scale map based
localization. First, our localization approach was improved and extended to enable
decimeter level accuracy. Second and more significantly, our SWS was able to employ
the localization scheme for reliable outdoor autonomous navigation for the first time.
This was validated through significant experimental results—including over 10 km of
autonomous operations—culminating in the successful completion of our bookstore
challenge.

3 Prototype Smart Wheelchair Sytem

The prototype SWS employed in this research was based on an Invacare Pronto
Power Wheelchair differential drive platform, pictured in in Fig. 1. The hardware
and software architecture of this prototype platform are outlined in this section.

3.1 Development Platform

From our experiences, three-dimensional (3D) perception is a critical enabling tech-
nology for autonomous navigation in outdoor environments. Therefore, the primary
exteroceptive sensor on the SWS was an IFM O3D200 3D flash LIDAR. New to the
robotics arena, the IFM can measure the range to and surface reflectivity of objects in
the environment [11]. It is also relatively compact and low cost (<$1,500 US). More
importantly, the IFM performs well in the range of illumination levels encountered
outdoors. The trade-offs for this low price point are a relatively low resolution (48×64
pixels), narrow field of view (30∩ × 40∩) and limited effective range (◦ 6–8 m in our
application). Despite these limitations, we could identify no sensor on the market
that provided reliable 3D measurements outdoors at a comparable price point (note
the Microsoft Kinect is not suitable for operations in bright sunlight [12]). In our
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Fig. 1 The SWS integrates
both 2D and 3D LIDARs for
exteroceptive sensing, high-
resolution encoders, and an
IMU

application, the IFM established the ground-plane, detected obstacles, and tracked
landmark features in 3D at a rate of ◦ 5 Hz.

The SWS prototype also integrated a Hokuyo UTM-30LX 2D LIDAR. The
Hokuyo’s larger field of view (270∩), finer angular resolution (0.25∩), higher update
rate (40 Hz), and longer effective range (up to 20 m) complemented the limitations
of the IFM. Like the IFM, the Hokuyo was mounted as an accessory forward of
the left wheelchair armrest and slightly pitched down. It was used for both obstacle
detection and tracking landmark features. Motor control for the SWS was accom-
plished with an on-board embedded computer. To regulate the vehicle’s linear and
angular velocities, it employed a software-based PID that controlled the individual
wheel velocities using feedback from high resolution quadrature encoders (4,096
CPR). A Microstrain 3DM-GX1 IMU mounted to the SWS frame provided gyro
corrections for improved odometry performance. All other processing was done by
a laptop computer with a 1.6 GHz Intel 720QM processor.
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3.2 Software Architecture

The system software architecture was based upon the ROS paradigm of intercon-
nected nodes that communicate via messages [15]. Each node subscribed to top-
ics (data streams) published by other nodes, and published its own messages as it
processed data. Nodes also listened to a transform tree, which allowed messages to
transform to and from any coordinate frame. For basic algorithms, like RANSAC,
pass-through filtering, and nearest neighbor cluster extraction, we leveraged Point
Cloud Library (PCL) for processing 2D and 3D LIDAR data [17]. The block diagram
in Fig. 2 shows the basic structure of the SWS architecture. Each block represents a
major subsystem of the SWS, and the arrows represent inter-process message passing
between the systems. These subsystems are detailed in the remainder of the paper.

4 Generating the Global Map

A primary motivation for the map-based localization approach was that by leveraging
such maps, robots with lower cost sensor suites gain some of the benefits obtained
from the higher fidelity sensors of the mapping platform, but without the cost. This
necessitated an a priori map construction phase for both localizing landmarks, as
well as identifying wheelchair-accessible routes within the global map. These two
phases are described in this section.

4.1 The Landmark Map

To obtain the desired sub-meter localization accuracy in the absence of reliable GPS,
we used a map-based localization approach, which necessitated the availability of an
accurate landmark map. To this end, we leveraged our previous results in large-scale
outdoor mapping [7]. In this paradigm, three dimensional map data were acquired by
manually driving an automobile (Fig. 3) instrumented with a high precision GPS/INS,
in conjunction with LIDAR systems. LIDAR range measurements were subsequently
registered to a global (WGS 84) coordinate frame. The resulting map data were
then synthesized a priori to identify robust, salient features for use as landmarks in
localization.

As in [7], the landmarks that were used in this work were limited to “pole-like”
features (e.g., lamp posts, trees, parking meters, street signs, etc.) that are prevalent
in urban landscapes. Each landmark was characterized by 5 parameters: (1) xy posi-
tion (WGS 84), (2) position uncertainty (covariance) estimate, (3) radius estimate,
(4) radius estimate uncertainty, and (5) mean reflectivity. The radius was used to
classify the landmarks into one of seven classes, with examples shown in Fig. 4. This
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Fig. 2 Major subsystems of
the SWS software architec-
ture. Arrows indicate inter-
process communication

Fig. 3 The mapping vehicle
integrated an OXTS RT-3050
GPS/INS for 6DOF vehicle
pose estimation, and a pair of
roof mounted Sick LMS291-
S14 LIDARs (circled red)
to capture relative range
measurements

classification was used to protect against incorrect landmark data association, and is
described in more detail in Sect. 6.2.

We should also note that while the original landmark map of South Bethlehem had
been automatically synthesized as outlined in [7], it was augmented for this work “by
hand” with additional landmarks. This was necessitated due to the recent razing and
reconstruction of a one square block region along our route, and the unavailability
of the mapping vehicle during this time frame. The global coordinates of larger
features (e.g., lamp posts, trees, etc.) were identified from satellite imagery, while
smaller features (e.g., parking meters and street signs) were mapped manually using
the SWS itself, and subsequently refined during a SLAM phase to improve local
consistency. After this refinement phase, their locations and positional covariances
were considered fixed within the landmark map.

Fig. 4 Instances of the 7 landmark classes. Landmarks were classified and tracked based upon
geometry and reflectivity. Detected landmarks could be reliably associated with their respective
classes, which prevented data association errors in our experiments
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4.2 The Route Network

The SWS relies upon a route network that exists in the world frame, and serves as the
global map for wheelchair accessible paths. The route network was constructed by
manually driving the SWS along the desired navigation path while running the local-
ization algorithm described in Sect. 5. Waypoints were then obtained by sampling
the SWS pose for every ◦ 4 m traveled. In addition to WGS 84 position information,
waypoints were also augmented with semantic information to include labels (e.g.,
“LU Bookstore”), speed limits, and stop points. Stop points were placed at areas
such as cross walks, which currently require human supervision to safely traverse.
In our current implementation, when the SWS reaches a designated stop point it will
pause until receiving a resume command from the operator.

For global path planning, the route network was represented as a graph G(V, E).
Waypoints in the route network corresponded to vertices vi ∈ V of G, and the edge
set E⊂G corresponded to path segments where each ei j ∈ E connected a pair of
waypoints (vi , v j ). Edges were weighted based upon the expected traversal time as
estimated using the edge length and associated waypoints’ speed limits. The optimal
path to a given destination was then specified via a waypoint sequence as determined
from Dijkstra’s algorithm.

5 Map-based Localization

Localization of the SWS was based upon a modified version of the FastSLAM 2.0
algorithm [13]. Although FastSLAM is a localization and mapping algorithm, for this
work no mapping was conducted during navigation, as the fixed landmark map was
provided a priori. The algorithm was also adapted to accommodate multiple obser-
vations per control, as the control loop (5 Hz) and LIDARs (5 and 40 Hz) operated
asynchronously and at different update rates. Each particle was of the form

Y [k]
t = ←x [k]

t , ←μ[k]
1 , θ

[k]
1 , s[k]

1 ∅, ..., ←μ[k]
N , θ

[k]
N , s[k]

N ∅∅ (1)

where x [k]
t was the pose of the kth particle at time t . Each of the N landmarks was

parameterized by a mean position μ[k] and covariance estimate θ[k] which remained
fixed. Furthermore, each landmark carried additional semantic data, s[k], used for
data association and tracking. In our case, this was the radius of the landmark and
reflectivity (in the tracking case). For our tests we used a fixed set of 60 particles.
While fewer could be used when the robot was properly localized (◦ 15), we found
a large set of particles ( > 30) was important to properly initialize the robot.

For the prediction phase of the filter, we sampled from a probabilistic motion
model for a differential drive robot where the robot control inputs (v, ς) were cor-
rupted with additive Gaussian noise [20]. Four noise parameters were used: two to
indicate control noise for a translational movement (a1 = 0.05 and a2 = 0.01), and
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Table 1 Sub decimeter 1D localization accuracy is achieved even when half the landmarks are
removed from the map. In each scenario the localized robot pose did not diverge

100 % Landmarks 75 % Landmarks 50 % Landmarks

Average error (cm) 5.15 5.97 7.18
Standard dev (cm) 4.81 5.20 6.48

Maximum error (cm) 15.71 18.28 23.20
Minimum error (cm) 0.16 0.38 0.31

two to indicate control noise for a rotational movement (a3 = 0.001 and a4 = 0.1).
We determined the values for these parameters empirically. Further, we found that
with sparsity of landmarks a diverse particle set improves localization performance,
thus exaggerated noise in the motion model was preferred.

To perform data association with the landmarks, we used maximum likelihood
correspondence (MLC) [20]. Our MLC implementation compared each observation
to every landmark in the landmark map, and computed a weight for each association.
The weight was approximated by a Gaussian with mean (zt − ẑ j ), where zt is the
observation at time t and ẑ j is the predicted observation of landmark j ; and covariance
Q j = Hjθ j H∝

j + Qt , where Hj is the 3 × 3 pose Jacobian taken with respect to
map features, θ j is the covariance of the jth landmark, and Qt is the linearized
vehicle measurement noise. The observation and predicted observation were of the
form zt = [πt , ϕt , st ]∝ where π, ϕ, and s are respectively the range, bearing, and
radius of a feature. The final weight was then approximated by

w j = |2φ Q j |− 1
2 exp{−1

2
(zt − ẑ j )

∝Q−1
j (zt − ẑ j )} (2)

The landmark with the maximum weighted association, w∗, was then used for local-
ization as long as it exceeded a minimum threshold, otherwise it was ignored.

To assess the performance of our localization module, we measured the ground
truth distance from reference landmarks and compared this against the localized robot
pose. To do this, the robot was manually driven through the course and at 22 reference
points we measured the normal distance from the robot base to the nearest landmark.
This same distance was calculated through analyzing recorded data on the localized
robot pose. We repeated this for three different scenarios: perfect observation, obser-
vation of only 75 % landmarks, and observation of only 50 % landmarks. This was
done to simulate cases where landmarks may be occluded by dynamic obstacles (i.e.,
pedestrians). The results of this experiment are summarized in Table 1. While far
from exhaustive, these results indicate that while localization accuracy does drop as
landmarks are occluded, average 1D accuracy remained sub-decimeter when even
half the landmarks were not observed. More significantly, the localization filter did
not diverge.
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6 Perception

6.1 Ground Plane and Obstacle Detection

Obstacles were detected by both the IFM and Hokuyo LIDARs. The IFM accounted
for close range (within 6 m) and low lying obstacles. First, points above the height of
the SWS were removed from then scan. Then, a ground plane was established using
RANSAC with a planar model [5]. Once a ground plane was established, all points
within the noise threshold of the IFM sensor were removed from the raw point cloud
data. The 3D points in the remaining point cloud were projected to a 2D xy plane
for integration into the local cost map, which is detailed in Sect. 7.1.

The Hokuyo was able to detect obstacles out to 20 m. The raw data was pre-
processed by removing max-range scans and outlier points. Since the data were only
2D, no segmentation was needed and the pre-processed scan was integrated directly
into the cost map.

6.2 Landmark Segmentation

Landmarks were segmented from both the 2D and 3D LIDAR scans. For the 2D
case (Hokuyo LIDAR), each scan was first registered to the fixed global frame to
account for any wheelchair motion between scans. Each scan was then decomposed
into connected components (CC) with a maximum intra-cluster spacing of 45 cm,
and a minimum cluster size of 4 points. Then, a 2D circle was fitted to each CC using
RANSAC. Any CC with a fitted circle radius greater than 40 cm was discarded, as
this radius was larger than any in our landmark map. Further, any CC that did not fit
the circle model well (less than 90 % inliers) was discarded. Each remaining CC was
then a potential landmark. Each potential landmark was decomposed into a feature
vector for tracking over time, which included the following features: xy coordinate
in the global frame, range and bearing to the robot, bounding box dimensions, radius,
mean reflectivity, and the number of observations of that potential landmark.

To discriminate between static observations (e.g., trees, parked cars, stationary
pedestrians, etc.) and dynamic ones (e.g., walking pedestrians, moving cars), each
new potential landmark was compared against a list of potential landmarks detected in
previous scans. Newly detected potential landmarks that were within the 45 cm intra-
cluster threshold and with features (bounding box, radius, and reflectivity) within
10 % of a previously detected potential landmark incremented the observation count
of that potential landmark, as well as update all intrinsic parameters to account for the
new observation. The range and bearing to a potential landmark was only published
when it was observed at least twice.

The 3D case was similar, except given the extra dimension the feature vector for
potential landmarks was larger. Since the LIDAR scans were sparse, we concatenated
the 5 most recent scans (again registered to the global frame) to create a richer point



258 C. Montella et al.

Fig. 5 Scan fidelity was improved by creating composite point clouds from multiple scans. A
single scan of a pole (left) shows three distinct clusters. The pole in the combined scan (right) is
contiguous, and will be tracked more reliably due to its higher height/width ratio.

cloud for feature extraction as shown in Fig. 5. We ran this input cloud through a
series of filters to remove noise. The ground plane was then removed as described in
Sect. 6.1, and the remaining cloud was further processed to segment features. As in the
2D case, the point cloud was broken into connected components of nearest neighbor
clusters. A cylindrical model was then fitted to each CC, again using RANSAC,
which allowed us to estimate the component’s position, orientation, and radius. We
necessitated that any potential landmark have a height/width ratio of at least 2, and the
lowest point of the feature should be at most 5 cm from the ground plane. Potential
landmarks in 3D were tracked just as they were in the 2D case. Again, the range
and bearing to a potential landmark was only published as an observation for the
localization engine when that potential landmark was observed at least twice.

Fig. 6 Navigation visualiza-
tion. The light blue rectangle
is the robot footprint, the
green line is the desired path,
the yellow line is the lowest
cost trajectory. The bright red
cells are obstacles of maxi-
mum cost. Obstacle cells are
inflated with a high cost region
in blue
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7 Planning and Control

7.1 Generating the Cost Map

As the wheelchair traversed its environment, it maintained a local cost map repre-
sented as a 2D occupancy grid [4]. The cost map was 20 m × 20 m in size centered
on the robot base, and followed the vehicle in a rolling window fashion. Cell reso-
lution was 5 cm. Each cell was assigned a cost based on three factors: distance to
path (C p), distance to goal (Cg), and occlusion cost (Co). Cells containing the global
path were marked with zero path cost. For all other cells, C p was proportional to the
Euclidean distance from each cell to the closest path cell. A similar process was used
to calculate the Cg . Note however that the goal was not the final goal destination, but
the last global path point within the dimensions of the rolling window. Any cell that
contained an obstacle (as detected by the IFM or Hokuyo) was marked as occupied
and given cost Co which would prohibit traversal. The cost of occupied cells was
inflated to the circumscribed radius of the SWS footprint (80 cm) as described in [3].
Occupied cells were only cleared when a ray from both lasers was traced through
the occupied cell. The cost map served as input to the local planner for trajectory
optimization. A sample costmap is shown in Fig. 6.

7.2 The Local Planner

The SWS employed trajectory rollout for local planning [9]. This is a sample based
approach on the input space of the linear and angular control velocities (v, ς). A
sample trajectory T = {x0, v1, ς1, ..., vk, ςk} was specified by the current robot
pose x0 and a sequence of k velocity inputs where k denotes the number of time-
steps in the control horizon. The velocities were then integrated forward in time
yielding a projected path over the chosen time horizon. An advantage of sampling
the control velocities is that we ensure each trajectory is feasible in terms of the
wheelchair kinematics. For our implementation, the discretization of v and ς was
.06 m/s and .05 rad/s, respectively, and the control horizon k = 10 time steps. Each
trajectory Ti was then evaluated against the cost map M described in Sect. 7.1 using
the cost function C(Ti , M) = koCo + kpC p + kgCg . The optimal trajectory T ∗ =
arg min C(T, M)was then selected, and the associated velocity command (v∗

1 , ς∗
1) ∈

T ∗ was issued to the wheelchair controller.

8 Experimental Results

Figure 7 provides a satellite view of our bookstore challenge. The green line seg-
ments denote the route from Packard Laboratory (right side) to the bookstore (left
side). Note that a more direct route was not used, as stairs made it inaccessible



260 C. Montella et al.

Fig. 7 Satellite view of the route from Packard Laboratory (right) to the LU Bookstore (left). Stop
points are shown as red octagons, and landmarks as red “x” marks. The round-trip distance is 980 m.
The four numbered points correspond to locations of interest, as highlighted in Fig. 8

Fig. 8 Ground-level photographs of points of interest along the route from Packard Laboratory
to the LU Bookstore. These include: (1) a crosswalk on Packard Ave., (2) street crossing at Asa
Packer Drive with curb cutouts, (3) narrow sidewalk Morton St. with significant obstacles, and (4)
the route destination

for wheelchair users. The red “x” marks denote the locations of landmarks along
the route. A maximum of 92 could be observed by the SWS along the route. Red
“octagons” denote stop points and are located at the two street crossings as well as
the entrance to a parking garage. As noted previously, when the SWS reached a stop
point, it paused until manually resumed by the operator (i.e., the user touched the
space bar). In a clean run, these and specifying the goal location were the only inputs
provided by the user.

The numbered locations in Fig. 7 correspond to the sub-figures in Fig. 8, which
provides close-ups of points of interest. These include: (1) the cross-walk on Packard
Avenue; (2) the street crossing on Asa Packer Drive; (3) the sidewalk on Morton
Avenue, which was only wide enough for single direction traffic; and (4) the LU
Bookstore. A successful trip brought the SWS immediately in front of the bookstore
doors.
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Over the course of a 1 month test period, a total of 11 round-trip missions to/from
the bookstore were conducted, for a total distance over 10 km. The nominal SWS
speeds were 0.9 m/s (3.1 km/hr) for runs 1–4, 1.0 m/s (3.5 km/hr) for runs 5–8, and
1.2 m/s (4.3 km/hr) for runs 9–11. Of the 11 trips, 3 required user intervention.

The first intervention occurred during the low speed trials, and was attributed
to excessive inflation of obstacles in the cost map. This lead the SWS to believe
incorrectly that the sidewalk path was blocked. In this case, the SWS attempted to
circumvent the perceived obstacle by traveling along the grass to the right. Although
this behavior would have been safe, it was obviously incorrect and the run was
aborted. A subsequent adjustment to the cost map parameters was made, and this
failure mode was not seen subsequently. Success in subsequent trials lead us to
increase the SWS speed to 1.0 m/s, and it was this higher speed that exhibited the
second failure mode.

At 1.0 m/s, two of the first three trials ended with operator interventions as a result
of the SWS leaving the sidewalk path. In one case, a drive wheel migrated onto the
grass shoulder and the second time into a mulch bed. Upon review of the log files,
we determined that although the SWS perception and planning subsystems were
operating properly and sending correct velocity inputs to the motor controller, these
were not being actuated in a timely fashion. The cause of failure was identified as
the motor controller. The motor controller PID gains had originally been tuned to
minimize the steady-state error in the wheel velocities. However, this came at the
expense of rise time. As a result, the PID could not achieve the velocity setpoints in a
single 200 ms I/O cycle and short duration velocity inputs were lost. This deficiency
had been masked at low speeds by the overall system latency, and as a result the
local planner could not compensate for the lost actuator inputs. This shortcoming
was corrected by re-tuning the motor controller PID using a minimum rise time
criterion which was more suitable for real-time control. This allowed setpoints to be
approached in a single 200 ms control cycle. An additional benefit from this change
was a reduction in the overall actuation latency from approximately 600 to 370 ms
as estimated by cross-correlating the velocity I/O response.

After these modifications, an additional trial with the SWS was conducted at
the 1.0 m/s velocity. Wheelchair response was noticeably improved, and the trial
was completed successfully. As a result of this success, the velocity was further
increased to 1.2 m/s, and three trials were completed at this speed without incident.
This corresponded to a total distance of over 3.8 km with the new PID tuning, and the
SWS behaved predictably at all times. A video of one of these trials can be viewed
at http://youtu.be/FUgHMReg4xM. Figure 9 depicts screenshots from this video of
the numbered areas in Fig. 7.

9 Conclusions

In this work, we successfully completed our bookstore challenge to demonstrate
autonomous navigation of a smart wheelchair system in an urban environment. This
was realized by combining 2D and 3D LIDAR sensor systems with a global map to
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Fig. 9 Screen captures of autonomous navigation. Video capture is on the left, visualization of data
is on the right. In addition to data visualized in Fig. 6, this figure depicts robot pose particles (yellow
arrows), 2D range data (white points), 3D particle cloud (rainbow points), and the landmark map
(colored cylinders). Landmark radii are represented by color and size of the cylinders. Detected
landmarks are colored green

obtain decimeter level localization accuracy. Open-source software (ROS/PCL) was
also leveraged to facilitate platform development.

While we are satisfied with our progress to date, significant work in many aspects
of autonomous navigation remains before real-world systems will be available. In
the immediate future, we intend to investigate higher speed limits for the SWS, and
to grow the global map to investigate longer distance/duration operations. We have
no doubt that additional failure modes will manifest as we expand the wheelchair’s
operational envelope.

In future work, we would also like to address several drawbacks of our current
approach. One major disadvtage of the system is that if the localized robot pose
diverges, it is very unlikely to ever recover. Therefore, we aim to add new navigation
aids like terrain classification so that the wheelchair does not need to be constantly
localized in the map, but can navigate the environment and localize only at key points,
like when it’s nearing an intersection or a destination. The perceptual limitations of
the IFM hinder this objective, but we are experimenting with using multiple IFMs
to extend the effective perceptual range of the SWS.

A further future emphasis will be navigation in crowds. This will require SWS
localization to be robust to occlusion for intermittent periods of time, and likely
require the introduction of additional landmark classes into the global map. It will
also necessitate reliable people detection and tracking so that appropriate interaction
models can be made. We have obtained preliminary results in this area [18], but
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effectiveness has been hindered by the constrained field-of-view of the IFM. Still,
we will continue to make progress, which will inevitably be aided by the future
maturation of sensor technologies.
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A Trail-Following Robot Which Uses
Appearance and Structural Cues

Christopher Rasmussen, Yan Lu and Mehmet Kocamaz

Abstract We describe a wheeled robotic system which navigates along outdoor
“trails” intended for hikers and bikers. Through a combination of appearance and
structural cues derived from stereo omnidirectional color cameras and a tiltable laser
range-finder, the system is able to detect and track rough paths despite widely varying
tread material, border vegetation, and illumination conditions. The approaching trail
region is efficiently segmented in a top-down fashion based on color, brightness,
and/or height contrast with flanking areas, and a differential motion planner searches
for maximally-safe paths within that region according to several criteria. When the
trail tracker’s confidence drops the robot slows down to allow a more detailed search,
and when it senses a dangerous situation due to excessive slope, dense trailside
obstacles, or visual trail segmentation failure, it stops entirely to acquire and analyze
a ladar-derived point cloud in order to reset the tracker. Our system’s ability to
negotiate a variety of challenging trail types over long distances is demonstrated
through a number of live runs through different terrain and in different weather
conditions.

1 Introduction

Roughly linear terrain features such as roads, hiking trails, rivers, powerlines, and
pipelines are common in man-made and natural outdoor environments. Such features
can be navigationally useful to unmanned ground or aerial vehicles in that they
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both “show the way” and “smooth the way”. Finding and keeping to a path by
driving along it or flying above it can simplify an autonomous robot’s perceptual and
motion planning tasks and mitigate hazards which occur in general cross-country
navigation. The relative narrowness and continuity of such features implies a certain
commonality in the framework of detection, tracking, and control, but each path type
has unique appearance and structural characteristics worthy of investigation.

In this chapter we describe a robotic system (shown in Fig. 1a) for following hiking
and mountain-biking trails through varied field and forest terrain. We assume that the
trail is everywhere traversable with a wheeled vehicle, and also that the trail is non-
branching and non-terminating, removing the necessity of intersection or dead-end
detection (although our results show that the robot naturally if arbitrarily “chooses”
a fork when given a choice). In essence, the task is analogous to “lane keeping” from
autonomous road following, involving repeated estimation, or tracking, of the gross
shape and appearance attributes of a previously-found trail.

This task echoes the first two DARPA Grand Challenges, which required vehicles
to follow rough roads, but there GPS and ladar were sufficient for most successful
teams [1, 2]. The DARPA Urban Challenge required more road shape estimation
ability, and several teams detailed approaches using primarily vision [3] and rich
structural information based on a Velodyne ladar [4]. In the DARPA LAGR program
robots had stereo vision instead of ladar and were looking only for open space on
their way to a GPS goal, although in constrained areas this was often coincident
with path following. Among LAGR-derived work, [5, 6] stand out for explicitly
looking for path-like corridors of homogeneous color or texture along the ground.

Fig. 1 a Robot in testing area; b Sample view from one omnidirectional camera
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The European ELROB competitions have also required path-following skills; one
robot effectively followed paths by finding “passages” among scattered trees in ladar
data [7]. An approach to non-parametric trail detection and tracking using color +
intensity saliency maps and agents was discussed in [8].

We reported on earlier versions of our omnidirectional trail-following system in
[9, 10]. The former paper discussed a strictly monocular, appearance-based approach
to discriminating and tracking the oncoming trail region in an image sequence, cou-
pled with differential motion planning within the parametrized trail region while
taking into account ladar-detected obstacles. [10] introduced an approach to incor-
porating stereo-derived scene structure estimates as an additional cue at the trail
segmentation stage.

Here we present a fully integrated system which uses appearance and structure,
not just from stereo but from ladar as well, to find and track the trail in real time.
Previous iterations of the system moved at a constant speed regardless of trail or
obstacle geometry; now the robot can detect loss-of-trail, excessive slope, or dan-
gerous obstacle events to slow down and even stop in order to more deeply analyze
the situation before proceeding. Finally, the differential motion planning system has
been updated to lessen the likelihood of collisions while still preserving a basic
impetus for forward motion. These changes have yielded vast improvements in the
operational performance of the robot in many real-world situations.

2 Methods

As described in [9, 10], the trail region R immediately in front of the robot is
approximated as a constant-width w arc of a circle with curvature κ over a fixed arc
range [dmin, dmax]. The position of the robot with respect to the trail is given by its
lateral offset Δ x from the trail centerline and the difference θ between its heading
angle and the tangent to the trail arc. Grouping these, we have the current trail state
X as the 4-parameter vector (w, κ,Δ x, θ).

Under the assumption that a unique trail is present in each image, it is segmented
in a top-down, maximum likelihood fashion: multiple candidate regions are hypothe-
sized and scored using a trail likelihood function L , and the highest-scoring region is
the winner. Trail-following entails tracking the trail region over an image sequence,
so we use particle filtering [11] to incorporate a prior p(Xt |Xt−1) on the hypotheses
which keeps them near the predicted location of the trail in the current frame as
derived from the robot’s dynamics, as well as setting absolute limits on every state
parameter.
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2.1 Appearance Likelihood

[9, 12] describe our technique for computing the color appearance likelihood of
a candidate region Lappear (R) based on the assumption that the trail region has a
strong color and/or intensity contrast with the left and right neighboring regions RL

and RR . Briefly, following [5] we compute a small set of exemplar colors for each
image using k-means clustering in CIE-Lab space and assign every pixel one of these
k labels. A label histogram is computed for each candidate region and its neighbors,
and the likelihood is obtained as a weighted combination of contrast and homogeneity
(the entropy of the region color distribution). More details on the approach are given
in [9].

In [9, 10] the color contrast is measured by the χ2 distance between the region
and its neighbors, and that measure is used here for some of our results. However,
this approach can have some problems with certain scenes such as the one shown in
Fig. 8, landmark 3, where several similar shades of grass are found alongside the trail.
After k-means clustering the χ2 metric treats all color clusters as equally dissimilar,
meaning that two shades of green are effectively as different as a green and the brown
of the actual trail. To avoid accidentally locking onto a marginally distinctive grassy
strip beside the trail, we want a measure that preserves some notion of more- and
less-similar colors after clustering. The earth mover’s distance (EMD) [13, 14] has
this property, and so we use this for contrast where noted in Table 1.

Extensive experimentation has shown this approach to trail segmentation to work
on a wide range of trail types and illumination conditions without training. Nonethe-
less, we have found that as a practical matter camera exposure issues can cause serious
problems, as with any vision algorithm run outdoors [3]. In particular, bright condi-
tions can be very difficult because of issues with glare (i.e., oversaturation) and deep
shadows. These phenomena can obliterate scene colors and make the trail impossi-
ble to see in sections, as in Fig. 2. Our cameras (Sect. 3) are in auto-exposure mode
by default, but we have found that on sunny days the built-in algorithm frequently
gives unsatisfactory results. To mitigate this we implemented our own proportional
exposure control method which computes median intensity over a region of interest
(ROI) directly in front of the robot and keeps it in a target range by adjusting the
shutter speed. This results in much better contrast around the nominal trail region
even if other portions of the image are under- or over-exposed.

2.2 Structure Likelihood

The color/intensity contrast between the trail region and neighboring regions depends
heavily on the trail material and surrounding terrain and vegetation. While it is suf-
ficient in many situations, when the contrast becomes too low trail tracking may
deteriorate or fail entirely. An additional cue which may compensate in these situ-
ations is that of scene structure. Intuitively the trail region itself is expected to be
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Table 1 Testing notes by day

Day Weather Key
changes

Total km Number
of runs

Mean
run (m)

Maximum
run (m)

LW Overcast, few
shadows

– 0.77 7 110 310

S1 Overcast, few
shadows

– 1.57 9 174 410

S2 Strong sun, deep
shadow

Stop-and-scan
for “danger,”
lowered
undersatura-
tion
threshold

1.32 18 73 348

S3 Strong sun, deep
shadow

ROI-based
manual
exposure
control,
image capture
7.5 → 10 fps

1.15 19 61 240

S4 Overcast, light
rain at times

χ2 → EMD for
color
contrast, ladar
traversability
map in
likelihood

1.68 7 240 800

S5 Scattered clouds,
bright sun
alternating
with gray

Speed ∝ trail
confidence,
max-safety +
min-hits
motion
planning

1.74 4 435 984

relatively smooth while off-trail regions are rougher (i.e., have higher height vari-
ance). Moreover, there is often a measurable contrast between the mean height of the
trail and the mean height of regions immediately bordering it, whether due to grass,
bushes, or rocks that do not exist in the trail or because a “trough” in the soil has
been formed from the passage of previous hikers and bikers. More generally, we use
the apparent traversability of a region as a proxy for the likelihood that the trail goes
through it, and then linearly combine this likelihood with the appearance likelihood
described above with weighting chosen based on experiments using ground-truth
trail segmentations from a separate dataset. There are several sources of scene height
information which we exploit:

Stereo A depth map for a subimage of every frame is generated from the robot’s
stereo omnidirectional cameras. We used the OCamCalib Omnidirectional Camera
and Calibration Toolbox for Matlab [15] to obtain intrinsics for the two cameras.
Relative extrinsics were initially estimated with manual measurements and then
refined with bundle adjustment using levmar [16]. Following a common approach
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Fig. 2 Problems with oversaturation and shadows. These images are from test S2 in the mixed
section just north of landmark 4

to computing correspondences in omnidirectional imagery [17–19], we rectify the
relevant portion of each omnidirectional image into a virtual perspective image such
that epipolar lines are image rows; mask out the robot chassis, sensor mast, and
peripheral pixels which are not imaged due to the fisheye lens; and then apply a
standard pixel correspondence algorithm available in OpenCV, semi-global block
matching [20]. The depth map for a sample scene is shown in Fig. 3 at left.

Next, we simplify the approach of [21], which fits planes to robot-sized chunks of
a stereo-derived point cloud and combines them into a traversability map comprising
several hazard-related factors. Full repeated plane-fitting is somewhat expensive, so
we approximate it by computing the median absolute deviation (MAD) of the stereo
height map over robot-sized bins. If μM AD is the mean MAD value or “badness”
within a hypothesized trail region R, then Lstereo

structure(R) = e−αμM AD . When com-
bined with the appearance likelihood above, this formulation rewards smoother trail
region hypotheses and ones which do not contain large step edges (up or down).

Tilting ladar point cloud The exact same MAD approach described for stereo
can be used on any point cloud, and the tilting SICK ladar offers very accurate, very
detailed point clouds when the robot stops long enough to perform a scan. Because

Fig. 3 (Left) Detail of rectified left camera image at landmark 13 (Fig. 8 for full image) and its
stereo depth map; (Right) Corresponding stereo traversability map in red, with SICK ladar obstacles
in purple and estimated trail region and planned robot path also indicated (grid is 1 m per square)
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such point clouds are not available as the robot is moving, Ltilt
structure is not part of

the normal trail likelihood. When they are gathered, however (see Sect. 2.3 for an
explanation of when full tilting ladar point clouds are created), they are used as the
sole cue to infer the trail location, and the normal visual trail tracker’s state is reset to
the value indicated by the point cloud search. Some sample point clouds are shown
in Fig. 4.

Regular ladar obstacles A traversability map of sorts can be created from the
obstacles detected by the SICK ladar in its normal, level configuration as the robot
travels. Because obstacles are only detected in one plane, we cannot use height
variation as above. Rather, we use the simple criterion of proximity: a bin in the
traversability map is incremented if it is within a robot radius of a ladar obstacle. The
“badness” of a hypothesized trail region R is now a sum N of these colliding bins’
values, and Lladar

structure(R) = e−βN . Adding this component to the trail likelihood is
extremely helpful because it will push trail hypotheses toward empty or less-dense
regions of space even when the robot’s visual system is impaired.

2.3 Motion Planning

As described in [9], our motion planner is derived from a Dubins car model [22],
which accounts for differential constraints on the robot’s motion in the form of a
minimum turning radius and rules out reverse motion. The basic Dubins planner,
which works for all start and end (x, y, θ) configurations in the absence of obstacles,
is used as the kernel of a lookup-table-like approach to planning along the trail in
the presence of obstacles. Briefly, given the currently estimated trail region a single
ultimate goal pose and a set of nearer candidate goals are generated and planned
for. Each of these plans is evaluated and possibly pruned based on their trajectories
colliding with too many obstacles or leaving the trail. From the remaining plans
whichever terminates closest to the ultimate goal is selected for execution.

Candidate goal poses are generated in a regular array spanning the trail region
laterally in a series of mini-lanes and distally from just in front of the robot out to

7 13

Fig. 4 Tilting ladar point cloud examples for landmarks 7 and 13 (see Fig. 8 for corresponding
images). The embankment’s drop-off on the right is clearly visible in 13
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the ultimate goal, all with θ tangent to the trail. A Dubins plan is constructed from
the current robot position to each candidate goal pose, and then extended along its
mini-lane out to the ultimate goal distance. Selecting candidate goals along the same
mini-lane but closer to the robot induces more aggressive lane changes in the manner
of “swerves” versus “nudges” from [1] or “sharp” versus “smooth” trajectories from
[23]. In this work the robot also adaptively inserts lanes which maximize clearance
in order to help get through tight spaces. Some examples of plan candidates and their
relation to inferred trail regions are shown Fig. 5.

In previous work [9, 10] the criterion for selecting between plans could be termed
min hits—the path with the fewest collisions was selected. If there was a collision-
free path, so much the better, but under the assumption that there is always a way
forward, this heuristic would always keep the robot moving with the least amount
of obstacle contact—critical for proceeding along trail sections with encroaching
foliage such as landmark 5 in Fig. 8. One problem with this approach, however, is
that even when there is enough room to stay well away from all obstacles, the robot
may pass very close to them because there is no incentive to maximize clearance.
Here we implement a two-level path evaluation technique which first ranks plans in
terms of max safety (the best being a no-collision plan farthest from a collision) and
only falls back to the previous min collisions criterion when every plan within the
trail region collides.

A further safety and performance improvement can be gained by modulating the
robot’s speed based on the state’s trail likelihood (aka “confidence”) and the number
of ladar hits anticipated along the robot’s planned path. When the trail likelihood is
above a certain threshold and the number of expected hits is 0, the robot moves at its
maximum speed. As the confidence that it is accurately tracking the trail decreases
and/or its expectation that it will be touching or near obstacles goes up, the robot
smoothly turns its speed down to a fixed minimum to (a) Allow the trail tracker more
time to find or get a better lock on the trail, (b) Allow more time for obstacle avoidance
maneuvers to work if the robot is actively turning away from an approaching collision,

Fig. 5 Motion planning examples: Selected trajectories (green) and candidates (dark green) within
the estimated trail regions. The red dot is the ultimate goal pose, while purple dots are obstacles
detected by the SICK ladar. A max safety, no-collision plan is shown in (a), while every plan collides
in (b), forcing a min hits decision
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and (c) Not hit any solid obstacle as hard if a collision is unavoidable. Giving the
trail tracker more time is critical at very sharp turns such as landmark 11 where the
tracker may lag the angle of the quickly-curving trail, or when the exposure control
is working to obtain better contrast in difficult light conditions.

Finally, as a last line of defense the robot will stop completely and perform a
full tilt ladar scan when it detects “danger” in form of (a) very large roll or pitch
angle which might cause the robot to roll over, or (b) too many collisions in the min
collision plan. By performing a search for the trail in the traversability map generated
from the full point cloud (as detailed above), the robot can correct mistracking caused
by a confused vision system or prevent further travel down a steep slope.

3 Equipment

The primary sensors used for the results in this chapter are two Point Grey Flea2
color cameras and a SICK LMS 291 ladar. Each camera is mounted about 1.15 m
off the ground, pointed straight down and rotated so that the longer axis of its CCD
is oriented in the direction of vehicle travel. The baseline between them is roughly
0.2 m. The cameras are fitted with omnidirectional Fujinon FE185C046HA-1 lenses
which provide a field of view (FOV) of 180◦ along the vehicle Z axis and 145◦
along the X axis. In all of these experiments the cameras were set for auto-white
balance; where noted they were either in auto-exposure mode or had their exposure
manually controlled as described in Sec. 2.1. All images were captured at 640 × 480
and downsampled as noted for different vision modules.

The SICK ladar is mounted on the robot about 0.6 m off the ground, 0.4 m in
front of the robot center, and facing forward with a sweep plane parallel (by default)
to the X Z (i.e., ground) plane. Its FOV is 180◦ and the maximum range is set to 8 m.
Its tilt angle is controlled via a Dynamixel EX-106 high-torque servo, enabling the
capture of point clouds when the robot is stationary. All point clouds used in this
paper were gathered over a tilt range of [+15,−45] degs., with the servo moving at
a rate of 20◦. / s and the SICK scanning at 50 Hz.

The robot used is a Segway RMP 400 with four-wheel differential steering. The
default speed for autonomous trail-following here was 0.75 m/s except where oth-
erwise noted, and the minimum turning radius was limited to 0.75 m. 0.6 m-wide
front and rear bumper switches e-stop the motors automatically when pressed with
44.5 N or more of force.

To enable real-time performance, system tasks are distributed over several onboard
computers connected via a gigabit Ethernet LAN with IPC message-passing [24].
For all of the experiments described here, the robot’s primary computer for image
processing, tracking, and motion planning is a Lenovo W520 laptop with an Intel
Core i7-2720QM CPU and 8 Gb of RAM. A second computer (a Dell Precision
M2400 laptop with an Intel Core Duo T9600 2.80 GHz processor and 4 Gb of RAM)
handles and logs all data coming directly from—as well as commands sent to—the
front and rear Segway motors, the SICK ladar, and the GPS.
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4 Experiments

All autonomous runs documented here were conducted along a combined hiking/
mountain-biking trail in a mid-Atlantic US state park which we will term WCC. The
trail forms a ≈ 1.7 km long loop covering varied terrain which on a gross scale can
be broken into three largely contiguous types:

(1) Open, grassy fields which are part of a working farm;
(2) A mixture of dense bushes and shorter trees, some overhanging; and
(3) Mature forest, some sections of which have sparse understory foliage and some

which are quite dense.

As shorthand, we refer to these categories as field (0.6 km long), mixed (0.4 km),
and forest (0.7 km), respectively. The entire loop with the types marked is shown in
Fig. 6. A set of notable or difficult locations along the trail are numbered in clockwise
order. A short description of each landmark is given in the table next to the trail map,
and corresponding images are in Fig. 8.

Testing was conducted on six separate days, with one test occurring in late winter
(LW ) and five spanning the summer months (S1–S5). Key differences in weather
conditions for each day are noted in Table 1, but seasonal variations in vegetation
were also important. LW presented a challenge with a lack of color contrast (see
Fig. 7 for some examples): the grass was dormant, making the fields predominantly
brown and yellow, and the trail itself was a wet and muddy brown in many places.

Fig. 6 Aerial image of ≈ 1.7 km WCC trail loop. field segments are shown in green, mixed in
yellow, and forest in red (the trail location is approximate in the lower forest area). Numbered
landmarks referenced in the text are briefly described in accompanying table and pictured in Fig. 8.
The area shown is ≈ 0.6 km2
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4 9

Fig. 7 Low color contrast from late winter (LW ) at landmarks 4 and 9 on the WCC trail. See the
summer images of the same landmarks in Fig. 8 for comparison

Trees and shrubs were largely bare and many mixed and forest sections were littered
with leaves. By the time of S1 and S2, spring plant growth made for very strong
color contrast for most of the field and mixed sections. This was true for some of the
forest as well, but under a dense canopy much of the forest floor remains fairly brown
throughout the year. Moreover, the field grass was long, providing height contrast.
For S3–S5, however, the field grass had been cut short for hay.

Two small sections of the loop were not attempted because of terrain characteris-
tics beyond the current perceptual and motion planning abilities of the robot. These
were a forest segment in the north (landmark 1 in Figs. 6 and 8) and about 20 m
of field just to the east of it (landmark 2). The problematic forest segment has one
2 m section of large, exposed roots and tightly spaced trees that is very difficult to
negotiate even manually, and the field segment has a series of large rocks hidden in
the grass right alongside the trail. Both are pictured in Fig. 8. Although the robot can
track the trail through both of these sections, in the former case it cannot do technical
driving that requires reasoning about balance and tire contacts or making zero-radius
turns and reversing when necessary. In the latter case grass is growing so close to
both sides of the trail that the robot must “brush” past it to proceed (e.g. landmark 5),
and it does not detect or reason about the hidden rocks as solid obstacles which must
be avoided entirely. Therefore, except for one run on day S2 into the rock section
(shown in Fig. 8), all runs were started after the rocks.

Each run generally started immediately after the end of the previous run, but in
several cases the robot was driven forward manually to get past a difficult spot or to
skip a section entirely that it was not deemed ready for. This explains why the total
distance traveled on each day varies and why, for example, LW ’s total distance is
not close to the loop length of 1.7 km: the brown grass contrast was so low that no
field section was attempted. Time constraints on day S2 and low motor batteries on
S3 necessitated skipping the last field section.
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4.1 Results and Discussion

Top-level results are summarized in Table 1: over the course of six days of testing as
the system evolved, 64 separate autonomous runs were attempted. A total of 8.23 km
were traveled autonomously by the robot, with a mean run length of 129 m and a
median of about 44 m. The five longest individual runs, in order, were 984, 800, 682,
504, and 410 m.

Results varied based on several factors, with the weather having surprising weight.
As the table notes, days S2 and S3 were very sunny, and the average run length was
quite low for those days. Of the 33 poor runs which were under 50 m in length,
24 were on these extremely bright days. Even after the ROI-based manual exposure
control algorithm described in Sect. 2.1 was implemented for S3, the light was still
an issue. A major improvement in robustness came with the incorporation of the
ladar traversability map from Sect. 2.2 in the trail likelihood with S4. This helped
the robot navigate areas like landmark 10 in Fig. 8 without being distracted by such
bright patches. In general, the modification of the robot’s perception and motion

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 8 Robot-view images of trail landmarks during autonomous runs, with the tracked trail region
drawn in yellow. Landmark 1 was never attempted autonomously and thus no trail region is shown.
The images for landmarks 3–16 are all from day S5
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planning algorithms over the course of testing significantly improved performance.
To underline this, the four longest runs overall were in S4 and S5. The mean run
length for the first two days was 146 m, compared to 311 m for the last two, under
similar weather conditions.

On S4 the robot completed the loop in seven runs, with its two longest runs that
day accounting for 1.3 km or 76 % of the loop. The first of S4’s seven runs went
from landmark 2 to landmark 6. The run ended when the robot’s right front tire
rubbed against a small trailside sapling on the way by, causing it to climb slightly
and drop suddenly, disconnecting the camera’s Firewire cable. The next run ended
quickly because a USB cable was still loose. Run 3 was ended manually as the robot
approached landmark 7, the trail junction (which it was able to successfully negotiate
in S5). Run 4 began past landmark 9 and ended at landmark 11 because the turn was
too sharp. Run 5 crossed the bridge but was manually terminated because the robot
was very close to the embankment on the right (landmark 13). Run 6 quickly missed
another sharp left turn, but run 7 took the robot to the end of the loop at landmark 16.

On S5 the robot completed the loop in four runs, with its two longest runs totalling
1.66 km or 98 % of the loop. Run 1 went from landmark 2 to landmark 3, where it
appeared to mistrack because the trail was obscured by tall grass. Run 2 began at
landmark 3, spanned most of the first field section, all of the mixed, and a difficult
early portion of the forest before its bumper clipped the sapling in the center-left
of the landmark 8 image in Fig. 8. Run 3 ended at landmark 9 because the robot
could not maneuver between the two tightly-spaced trees, but on run 4 the robot
made it across the bridge, past the embankment, and all the way to the finish line at
landmark 16.

By the last two days of testing the trail-tracking system was mature enough that
the types of failures observed were primarily ones of motion planning in technical
and tight situations, rather than of mistracking the trail. A recurrent problem, echoed
in landmarks 2, 6, 8, and 9, stems from a shortcoming in the robot’s reasoning about
obstacles in the two-level motion planner described in Sect. 2.3. The problem is that
when the planner falls down to the min hits level, it is basically assuming that the
obstacles it will be colliding with are all soft vegetation like grass and twigs. Seeking
a least-density path through such obstacles makes sense as a strategy to stay on the
trail, but the robot is unable to recognize that some obstacles like saplings and rocks,
which may be mixed in with the grass, are solid and must be avoided.

5 Conclusion

The trail-following system presented here has been successfully tested over a vari-
ety of challenging terrain types, a range of weather conditions and seasons, and
at different times of day from mid-morning to late afternoon. In its final form, no
parameter changes are necessary for the robot’s perceptual component to function
in these different situations, nor did the robot have any a priori model of the charac-
teristics of its area of operation. Based on previous work using very diverse image
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data sets [12, 25] and live runs in other locations [10], we believe that the system’s
perceptual capabilities would transfer quite well to other kinds of trails accessible to
wheeled vehicles. In order to increase the overall reliability of the system, however,
further improvements in the motion-planning component of the system are being
incorporated, including explicit detection of certain classes of obstacles.

Despite these strengths, the possibility of dynamic parameter or sensor changes
and exploitation of prior knowledge is attractive. For example, incorporation of trail
map information via GPS and visual odometry along GPS-denied trail sections could
be quite helpful (1) to let the robot know if it had strayed from the trail, or where the
nearest trail was if “lost”; and (2) to allow for intersection anticipation and higher-
level route planning over the trail network.

A scenario in which adapation would be desirable is nocturnal trail-following, as
neither the color nor stereo structure information derived from the omnidirectional
cameras would work in the dark without active lighting. As a dark-capable source
of dense structural information for traversability map computations, we have tested
a pair of non-overlapping Microsoft Kinect stereo depth cameras and found them
highly useful in shady patches and early morning/twilight.

Acknowledgments The authors gratefully acknowledge the support of the National Science Foun-
dation under award 0546410.
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Construction of Semantic Maps for Personal
Mobility Robots in Dynamic Outdoor
Environments
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Abstract In this paper, a construction system of outdoor semantic maps by per-
sonal mobility robots that move in dynamic outdoor environments is proposed. The
maps have topological forms based on understanding of road structures. That is, the
nodes of maps are intersections, and arcs are roads between each pair of intersec-
tions. Topological framework significantly reduces computer resources, and enables
consistent map building in environments which include loops. Trajectories of mov-
ing objects, landmarks, entrances of buildings, and traffic signs are added along each
road. This framework enables personal mobility robots to recognize dangerous points
or regions. The proposed system uses two laser range finders (LRFs) and one omni-
directional camera. One LRF is swung by a tilt unit, and reconstruct 3D shapes of
obstacles and the ground. The other LRF is fixed on the body of the robot, and is used
for moving objects detection and tracking. The camera is used for localization and
loop closings. We implemented the proposed system in a personal mobility robot,
and demonstrated its effectiveness in outdoor environments.
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1 Introduction

Personal mobility robots are required to have ability to move safely in outdoor envi-
ronments. Outdoor environments are much larger than ranges of sensors and include
moving objects faster than robots. Although mapping, localization and path planning
methods have been radically improved in recent years, safe navigation in dynamic
outdoor environments will not be achieved by just improving their accuracy or reduc-
ing their computational costs. To cope with the dangers inherent in dynamic envi-
ronments, we introduce semantics and reasoning on maps.

Several previous researchers took notice of semantic maps, and proposed their
applications. Nüchter et al. developed semantic labeling and object detection frame-
work using a 3D map obtained by a robots [1]. Posnera et al. proposed an online
system for semantic labeling of maps in outdoor urban environments [2]. Mozos
extracted semantic areas like rooms, corridors, and doors from a 2D map obtained
by a robot, and built topological construction using them [3]. This framework enables
to decrease computational time required for localization and navigation and to inter-
act with robots using nature language. Galindo et al. improved the performance of
their planner using semantic information in the maps [4].

In this paper, we focus on road structures and their semantics, and propose a
system of building maps which includes those semantics and a system of navigation
using these maps. This paper is organized as follows. We present an overview of
the proposed method in Sect. 2. In Sect. 3, we introduce our personal mobility robot
and its sensor system for outdoor navigation. In Sect. 4, the geometric semantic map
making system performed offline is described. Online navigation system using the
semantic maps is presented in Sect. 5, and a conclusion is given in Sect. 6.

2 Concept Description of Outdoor Semantic Maps

This section introduces the advantages of semantic maps for autonomous navigation
of mobile robots. Figure 1 shows a simple example of outdoor environment and the
presumed path of a person, and Fig. 2 shows the result of shortest path planning using
a simple grid map. The path in Fig. 2 would increase a person’s chances of being
struck by a car.

In this study, we introduce a semantic map to make the mobile robot take a
safer path like the one shown in Fig. 1. Semantics useful for outdoor navigation
are classified into three categories, “Geometrical Semantics”, “Traffic Semantics”
and “Symbolic Semantics”. Geometrical Semantics indicate geographical properties,
such as roads and intersections. Traffic Semantics indicate movement properties of
pedestrians and cars on roads, such as which side of the road cars should be on and
whether or not cars can enter certain areas. Symbolic Semantics indicate pedestrian
crosswalks, traffic signs, etc.
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Fig. 1 A simple example of
outdoor environments and a
person’s path

Fig. 2 A path generated from
a grid map: it has higher risk
of colliding cars

The Geometrical Semantic Maps are constructed as sets of roads. These maps
have topological structures that connect the roads with intersections. Even if the map
is not geometrically accurate, the positions of robots can be estimated as long as it can
recognize intersections or landmarks. Figure 3 shows an example of a topographical
semantic map based on road structure.

Other semantics are added in the Geometrical Semantic Maps. The Traffic Seman-
tics can be obtained from the trajectory histories of moving objects (Fig. 4), and the
symbolic semantics are obtained from the results of image processing (Fig. 5). The
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Fig. 3 A geometrical semantic map. Green circles mean intersections, and red arrows indicates
that the roads continue in the indicated directions

: Walkway

: Roadway

: Crosswalk

Entrance
P

P

P

Car

Car

Car

Fig. 4 Left: trajectory histories of moving objects (“P” means a pedestrian), Right: traffic semantics
obtained from the histories. Green part indicates the areas in which pedestrians moved around and
the red part indicates the area cars moved around. The place where a person may appear (written
as “entrance”) , pedestrian crosswalks, and the directions of cars in each part of the roads can be
found

Traffic Semantics in this example are incomplete, but the accuracy can be improved
by moving in the same environment repeatedly and updating the trajectory histories.

These semantics makes it possible to plan a path similar to the one shown in
Fig. 1 (Fig. 6). Arcs are placed as close as possible to the edges of roads. In addition,
reasoning such as “the robot should cross roads at crosswalks”, or “the robot should
stop temporarily before moving in front of an entrance or entering a crosswalk and
confirm that the conditions are safe” will be used to improve safety.
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Fig. 5 Symbolic semantics:
it is possible to find pedestrian
crosswalks and entrances
from which pedestrians might
appear

Sho
p 

B

Shop A

Fig. 6 Path planning result
using a semantic map. Circles
and lines indicate nodes and
arcs respectively, and red lines
indicate the path

Goal

:Intersection

:Entrance
:Crosswalk
:Road

Start

3 System Configuration of Personal Mobility Robot
for Outdoor Environments

Figure 7 shows a mobile robot called “PMR” [5]. It is a single-seat two-wheeled
inverted pendulum mobile robot originally developed by Toyota Motor Corporation
as “MOBIRO”. As PMR can maintain horizontal stance on a slope, it is at little
risk of falling over in outdoor environments. Besides, PMR can climb over small
bumps up to 50 mm high. The sensor system of PMR is constructed as follows. One
LRF (Hokuyo Top-URG 100 Hz version) is mounted on a pan-tilt head (TrackLabs
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Fig. 7 Two-wheeled inverted pendulum mobile robot “PMR” and its sensor system

Biclops PT), and is used for 3D reconstruction described in Sect. 4.1. The pan-tilt
head swings the LRF between 0 ◦ (horizontal) and 50 ◦ downward, and each one-
way swing takes 1.8 seconds. Another LRF (Top-URG 40 Hz version) is fixed on
the robot, and is used for tracking of moving objects described in Sect. 4.2. Also,
PMR is equipped with an omni-directional camera (Opt NM33) for loop closing
detection described in Sect. 4.3 and an inertial measurement unit (Crossbow VG440)
for accurate posture estimation. The camera is mounted on the pan-tilt head, and
images are obtained only when the head is horizontal.

4 Semantic Map Making using Sensor Data Logs

This section describes a method for obtaining the semantic map described in Sect. 2
by using data from the sensors mounted on PMR. Once PMR runs manually in a
targeted outdoor environment, a geometrical semantic map is obtained. Then, PMR
can move automatically in the environment, and the map is updated each time it does.

Geometrical Semantic maps are made in the following steps:

1. Local 3D maps are constructed using a every time the swinging LRF reaches the
top or bottom of a swing. Local 3D maps are represented by digital elevation
maps (DEMs), and each DEM cell is classified as “ground”, “obstacle”, and so
an.

2. “Obstacle” cells corresponding to moving objects are removed using the results
of tracking of the moving objects.

3. Local Topological Map Patches are generated from DEMs. Topological Map
Patches contain the positions of intersection points and the widths of roads.

http://dx.doi.org/10.1007/978-3-642-40686-7_4
http://dx.doi.org/10.1007/978-3-642-40686-7_4
http://dx.doi.org/10.1007/978-3-642-40686-7_4
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Fig. 8 A result of DEM making on a slope. Left: 3D point cloud. Center: DEM and Delaunay edges
(perspective and side views), Right: Interpolated DEM. Green, red, pink, gray, cells respectively
mean ground, obstacle, near obstacle, and unknown

4. Topological Road Maps are generated from Map Patches. When the robot turns
at a intersection, a new road is added to the map.

4.1 Local 3D Map Generation using a Swinging LRF

The proposed method makes local 3D maps by using a swinging LRF to detect static
obstacles. It is capable of detecting slopes and small bumps included in outdoor
environments. The LRF continues to be swung while the robot is moving. The origin
of each 3D map is the point midway between the bottoms of the wheels when the
robot start swinging, and the relative coordinates of the robot while moving are
estimated using odometry.

As the density of 3D LRF scan points is not uniform, the proposed method uses
DEM and Delaunay triangulation. DEM is a kind of 2D grid map in which each
grid cell has height information. DEM enables to decrease the number of points in
dense areas. If there are several LRF points in one DEM cell, the height of that cell
becomes the height of the highest LRF point.

The resolution of LRF scans far away from the robot is sparser than the granularity
of DEM, and Delaunay triangulation is used to deal with this disparity. The points
for Delaunay triangulation are center points of DEM cells in which there are LRF
scan points. The heights of DEM cells without LRF scan points are estimated using
Delaunay triangles that include the center points of those cells.

DEM cells are classified as “ground,” “obstacle,” “near obstacle,” and
“unknown.” It is impossible to classify a cell as “ground” or “obstacle” when using
only its height, because outdoor environments include slopes. Therefore, the pro-
posed method uses gradients of Delaunay edges. If the gradient of one of edges
connected to a DEM cell is larger than a threshold, that DEM cell is classified as
“obstacle”. Cells within half the robot’s length from “obstacle” cells become “near
obstacle” cells, which means the center of the robot cannot enter these cells. Figures 8
and 9 show the results of DEM generations. The size of each DEM cell is 100 mm x
100 mm.
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Fig. 9 A result of DEM making. The bump in the center of the DEM is about 80 mm high. The
area to the left of the bump is planer, but the robot cannot enter it because of the bump. As a result,
most of cells in that area are classified as unknown

4.2 Tracking and Identification of Moving Objects

Outdoor environments include not only static objects but also moving objects. It is
difficult to track moving objects by using a swinging LRF because of its slow swing
speed. The proposed method therefore uses another LRF fixed to the robot’s body to
detect and track moving objects.

The tracking algorithm is based on SJPDAF (sample-based joint probabilistic data
association filters) [6]. SJPDAF is a kind of multiple hypothesis tracking algorithms
[7], and it is robust against false positives and negatives, and makes it possible to
flexibly design individual trackers using particle filters.

In the targeted outdoor environments, several kinds of moving objects exist: pedes-
trians, bicycles, and cars. As the height of the fixed LRF on PMR is about 800 mm,
the shapes of LRF scans corresponding to pedestrians are almost the same as those
of LRF scans corresponding to bicycles. The, sizes and shapes of LRF scans corre-
sponding to pedestrians and cars, however, are quite different. Besides, as pedestrians
often form groups, estimation of the numbers of pedestrians in groups is needed.

The proposed method performs classification of clusters using SVM (Support
Vector Machine), and has seven classes: false positive, a car, a pedestrian, and from
two to five pedestrians. That is, the method treats estimation of the numbers of
pedestrians in a group as a classification problem. As the shapes of LRF scan segments
are not stable, the method uses a time-series estimation.

We define the feature vector of LRF scans in a cluster at time t as z f (t), and a set
of feature vectors from time 0 to t as Zt

f = {z f (0) · · · z f (t)}. The value we want to
estimate is P(cn|Zt

f ), we obtain

P(ck(t)|Zt
f ) = α · P(z f (t)|ck(t)) · P(ck(t)|Zt−1

f ) (1)

P(ck(t)|Zt−1
f ) =

∑

n

[P(ck(t)|ck(t − 1) = n) · P(ck(t − 1) = n|Zt−1
f )] (2)

Also, from Bayes’ theorem, we obtain
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Fig. 10 Result of tracking and identification of moving objects. Circles and squares respectively
indicate pedestrians and cars. Although G11 was initially classified as a pedestrian when it was far
away from the robot, it was correctly classified as a car when it approached the robot

Fig. 11 Trajectory histories in a DEM and an image obtained by the front camera. White arrows
indicate trajectories of moving objects

P(z f (t)|ck) = P(ck |z f (t))P(z f (t))

P(ck)
= alpha

P(ck |z f (t))

P(ck)
(3)

P(ck |z f (t)) can be estimated using SVM, and P(ck) can be estimated using SVM
training sets.

The features for SVM are defined as follows:
z f 0 : Number of LRF segments
z f 1 : Sum of lengths of LRF segments
z f 2 : Average speed
z f 3 : Difference between angle of directed bounding box and angle of average
velocity vector
z f 4 : Length of long side of directed bounding box
z f 5 : Length of short side of directed bounding box
z f 6 : Residual error between directed bounding box and LRF scan points

All features are unaffected by distances and gradients of bounding boxes. Figure 10
shows a result of tracking and identification of moving objects, and Fig. 11 shows
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Fig. 12 A result of building of a Road Map using topological map patches. The center image shows
a Road Map, the lower side images show map patches that are parts of that Road Map, and the
upper side images show the corresponding DEMs before they were converted map patches. Red
areas in the map patches and the Road Map indicate obstacles and yellow areas indicate open spaces
(intersections)

trajectory histories in a DEM. Cells that moving objects got through are classified as
“Ground” or “Unknown”.

4.3 Making of Topological Map Patches and Reconstruction
of Road Structures

The geometrical semantic maps defined in Sect. 2 consist of topological structures.
The proposed system integrates local DEMs and builds several Topological Road
Maps. Then, topological connections between roads are made using odometry logs
and image processing.

Firstly, each DEM is converted to “Topological Map Patch”. Topological Map
Patches consist of “Raster Segments”. Raster Segments are placed every 100 mm
(the length of a side of a DEM cell) along x axes, and parallel to y axes. Note
that the directions of x axes of DEMs and Topological Map patches are parallel to
corresponding roads. The length of a Raster Segment means the width of the road.
The left and right edges of each raster can have three kinds of status: “obstacle,”
“open space,” “unknown.” “open space” means that there are no obstacles within the
range of the swinging LRF, and the system regards “open space” as intersections.
Intersections can become nodes that connects two roads.

Next, Road Maps are built using Topological Map Patches. Road Maps have same
the structure as Topological Map Patches. Localization of Topological Map Patches
is performed using the odometry of the robot, and if overlapped Raster Segments
exist, the newer ones are used. Figure 12 shows a result of Road Map Making.

Finally, topological connections between pairs of Road Maps are updated.
Because map making is a offline process, the future trajectory of the robot from
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Fig. 13 Results of geometrical semantic map building. Red arrows indicate topological
connections. The longest arrow in the right-hand image indicates a connection made by FAB-
MAP

the time when the swinging LRF scans were obtained is known. If the future trajec-
tory cross an intersection of the current Road Map, the system considers the robot
transitions to another road, and creates a new Road Map when the robot reache the
intersection. The two Road Maps are connected with each other by a topological link.
The proposed system solves loop problems by using FAB-MAP [8]. FAB-MAP is
the method to choose the most similar image with the current one from a sequence of
images. Whenever the robot reaches an intersection, the system makes a FAB-MAP
by using an omni-directional camera, and checks similarity. If FAB-MAP estimates
that the robot has already visited the current intersection, the corresponding topo-
logical the connection is created. Figure 13 shows results of semantic map building.
Although the shape of the map in the left image is skewed because of inaccurate
odometry, the loop is processed appropriately.

5 Outdoor Navigation using a Semantic Map

This section describes outdoor navigation system based on semantic maps. Although
the algorithms in the previous section are performed offline, the algorithms in this
section are performed online using a laptop computer mounted on PMR.

5.1 Localization Algorithm Using a Geometrical Semantic Map

A geometrical semantic map consists of several Road Maps, and the localization here
means to estimate coordinates of robots on a Road Map. It is easy to estimate that
which road is the road the robot exists in, because the robot is given the first road
and the initial coordinate of the robot in the first road, and the localization enables
to detect the intersection where the robot should turn.
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Fig. 14 A result of the angle estimation using FAB-MAP. The upper image is the one selected by
FAB-MAP as the one most similar to the lower one. Yellow circles indicate SURF features used in
the angle estimations, and green lines indicate the move distances between corresponding points

The localization method in the proposed system uses omni-directional images and
topological map patches, and is performed in two stages. Firstly, the angle between
the road that the robot is on and the current direction of the robot is estimated
using omni-directional images. Secondly, x and y positions are estimated using a
topological map patch. Note that x axis of a Road Map is parallel to the road, and
the estimations of x positions mean to estimate how far the robot moved along the
road.

The angle estimation is based on FAB-MAP, mentioned in Sect. 4.3. Firstly, FAB-
MAP selects from the image sequence obtained when the Road Map was constructed
the image most similar to the current image. Secondly, the angle estimation is per-
formed using SURF feature points used for FAB-MAP. Only features in the middle
240 pixels (67.5 ◦) are used for the estimation, and it is assumed that the offsets
along y direction are much smaller than distances between the robots and SURF fea-
ture points. The angle offsets are calculated simply using average horizontal offsets
between corresponding points. Outliers are excluded by using Smirnov-Grubbs test.
Figure 14 shows a result of the angle estimation method.

The next stage is the estimation of x and y positions in a Road Map by using
topological map patches. Before topological map patches are constructed, the result
of the angle estimation described above is used to rotate the 3D LRF scan points so
that x axis of the patches are parallel to the x axes of the corresponding Road Map.

x positions are estimated using positions of intersections. Intersections in the
Road Map corresponding to ones in the current topological map patch are selected,
and the x position of the robot is calculated using average values of the positions of
lower end of the intersections. If there are no intersections in the current map patch,
the x position is updated using the odometry of the robot.

y positions are estimated using the x positions estimated above. First, we define the
average values of the y positions of obstacles in the left and right sides of the current
map patch as yl,t and yr,t respectively. Then the Road Map areas corresponding to
the current map patch are extracted using the estimated x position of the robot. We

http://dx.doi.org/10.1007/978-3-642-40686-7_4
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Fig. 15 Traffic semantics: detection of entrances: white lines indicate trajectories of moving objects

Fig. 16 Nodes in a Road Map: yellow, white, and blue circles respectively indicate Node Type 1,
3, and 4

define the averages values of y positions of obstacles in left and right sides of the
extracted part of the Road Map as yl,g and yr,g respectively. Finally, the estimated y
value of the robot yt is calculated as follows:

yt = ((yl,t − yl,g) + (yr,t − yr,g))/2 (4)
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Fig. 17 A result of path planning on a semantic map (Red lines are the path)

5.2 Update of Semantic Information

Localization makes it possible for traffic streams or landmarks to be placed into the
map. As mentioned above, semantic information is extracted from them. Figure 15
left shows trajectories of moving objects. PMR made four runs in that environment.
The images on the right side of Fig. 15 show “Entrance Points.” That is, although
the robot detected no intersections, pedestrians appeared out of those points. For
safe navigation, the robot should stop before those points, and check for pedestrians.
Several other kinds of semantics are extracted. For example, the robot can discern
road ways and walkways and can discern the directions of road ways by using the
trajectory histories of cars.

5.3 Navigation Experiment in an Outdoor Environment

The path planning in the propose system is performed in two stages: global path
planning and local path planning.

As mentioned in Sect. 2, Global path planning makes rough routes to the desti-
nation by using the semantic map. It decides that that side of each road the robot
should move along and where the robot should cross roads. The proposed system
places several types of nodes (Fig. 16). All nodes are placed along the right and left
sides of each road. The types of nodes are the following:

“Node Type 1” Starting and ending points of intersections.
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Fig. 18 Navigation experiment results. Upper left: front camera images. Upper right: DEMs,
Lower left: local map patches and results of the local path planning. Lower right: results of the
localization and the global path planning

“Node Type 2” Starting points of roads.
“Node Type 3” Points placed at the opposite sides of “Type 1” nodes. These nodes

are not placed if the opposite sides are intersections.
“Node Type 4” “Entrance points” described in Sect. 5.2.

The robot stops temporary in front of “Node Type 1”(if they are starting points)
and “Node Type 4” to confirm the safety. Arcs are created as follows. Firstly, adjacent
nodes along the x axis of each road are connected. Then “Node Type 3” are connected
to corresponding nodes in the opposite side of the road. Finally, “Node Type 2” are
connected to “Node Type 1” placed at the corresponding intersections. The costs of

http://dx.doi.org/10.1007/978-3-642-40686-7_5


296 N. Hatao et al.

the arcs are calculated using length of arcs, and then the costs of the arcs indicating
that the robot crosses a road are doubled. This weighting is intended to decrease the
number of crossings of roads. Figure 17 shows a result of the global path planning.

Although the global path planning uses semantic maps made using the sensor
data obtained in previous runs, local path planning uses the current 3D sensor data.
This is because outdoor environments might be changed by quasi-static objects like
stopped cars or bicycles. The local path planning generates a line along which the
robot can come as close as possible to the left or right edge of the road.

Figure 18 shows the result of the navigation system. The semantic map used in this
experiment was the same as that used when the result shown in Fig. 17 was obtained.
The moving distance of PMR was about 250 m.

6 Conclusion

To realize autonomous navigation in outdoor environments that include moving
objects, in this paper we proposed a system of semantic map making based on road
structures. In the future we aim to make a safer navigation system taking human
social nature into consideration, and conveying the robot’s intentions to the people
around it.
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Terrain Mapping and Control Optimization
for a 6-Wheel Rover with Passive Suspension

Pascal Strupler, Cédric Pradalier and Roland Siegwart

Abstract Rough terrain control optimization for space rovers has become a popular
and challenging research field. Improvements can be achieved concerning power con-
sumption, reducing the risk of wheels digging in and increasing ability of overcoming
obstacles.In this paper, we propose a terrain profiling and wheel speed adjustment
approach based on terrain shape estimation. This terrain estimation is performed
using sensor data limited to IMU, motor encoders and suspension bogie angles.
Markov Localization was also implemented in order to accurately keep track of the
rover position.Tests were conducted in and outdoors in low and high friction environ-
ments. Our control approach showed promising results in high friction environment:
the profiled terrain was reconstructed well and, due to wheel speed control, wheel
slippage could be also decreased. In the low friction sandy test bed however, terrain
profiling still worked reasonably well, but uncertainties like wheel slip were too large
for a significant control performance improvement.

1 Introduction

Since the first landing of a rover on the moon in 1970 by the Soviet Union, these
semi-autonomous, mobile explorers enjoy an increase in popularity. In 1997, the
first successful rover named Pathfinder rolled over the Mars surface. On Mars, this
is still the only possibility to collect scientific data in such a mobile and interactive
manner. Since space rovers are a relatively new way to explore extraterrestrial terrain,
mission durations still vary a lot, but the latest missions have been brought to an end
due to the rover wheels getting stuck in sand. The two current Mars rovers Spirit
and Opportunity were already able to stay operational for more than 5 years, which
is 20 times the originally planned mission duration. Nevertheless, they occasionally
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bogged themselves down in the sand and Spirit was given up and stays immobile
because of this issue.

One way to reduce this problem is to minimize wheel slip. During wheel slip the
wheels don’t move as far as they are supposed to according to their rotational speed.
On a sandy surface, this can result in wheels digging themselves in. One of the cause
of wheel slippage is often wheels fighting each other because of lack of knowledge
about the involved terrain shape. In this paper, we therefore propose a method to adapt
the individual wheel speeds of a rover according to the terrain profile. This leads to
reduced wheel slippage as well as reduced chances of wheels digging into sandy soil.
Because of the complexity of developing new and advanced sensors for space rover
wheels, our method is based on sensor input of commonly used and reliable rover
sensor technology like inertial measurement unit (IMU), wheel encoders and angle
measurements of the bogie suspension system.

1.1 Related Work

Optimizing rough-terrain control for space rovers is a popular field of research. One
approach by Iagnemma et al. proposes to estimate force distribution on the wheels
by using approximated wheel-ground contact angles [1, 2]. By computing the force
distribution of a rover, it is possible to optimize the torques applied on the wheels and
therefore reduce wheel slip and power consumption. The estimation of the wheel-
ground contact angles is done using simple on-board sensors like IMU inclinometer,
joint angle sensors and wheel encoders. Its accuracy strongly depends on dynamic
angle measurements and therefore no estimation can be computed when the rover is
still. Furthermore, wheel slip and smooth terrain profiles also result in poor wheel
contact angle estimation.

Thus Lamon et al. from ETH Zürich developed tactile wheels to measure these
wheel-ground contact angles instead of performing an estimation [3, 4]. This method
was first implemented on the rovers Octopus [5] and Solero [6]. Later it was also
applied to the 6-wheel Crab rover [7]. Although the approach shows promising
results [8], embedded wheel sensors are still too complex and unreliable to be used
in extraterrestrial environments.

1.2 Goals and Limitations

Our objective is to develop an alternative approach on reducing wheel slip and opti-
mizing control of space rovers in rough terrain. In contrast to the work by Iagnemma
et al. mentioned above, our control should also yield good results in smooth terrain.
On the other hand, we want to avoid using tactile wheels and other complex sensor
systems in order to deliver a realistic approach for current space rovers. Our core
idea relies on profiling the terrain shape using commonly used rover sensors such as
IMU, wheel encoders and angle measurements of the bogie suspension system. The
terrain shape can then be used to achieve wheel speed optimization.
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2 Simultaneous Mapping and Control

Our approach proposes a velocity controller based on on-line terrain profiling, called
simultaneous mapping and control (SMAC). An overview of this controller is shown
in Fig. 1. In the state estimation part, the terrain shape and the rover position are
estimated. On one hand, terrain shape estimation highly depends on the rover position,
but on the other hand, the rover position estimate can be improved significantly by
accounting for the terrain shape in a probabilistic filter. Finally, knowing the terrain
and rover position, a wheel controller can be proposed which optimizes the wheel
speed to minimize theoretic slippage.

In the following, our implementation is explained using a parallel suspension bogie
rover model, as shown in Fig. 1. However it is possible to adapt the controller to other
suspension systems by modifying the geometry equations accordingly. Furthermore,
we take the following assumptions:

1. We decouple both rover sides from each other and apply our method to each side
independently.

2. We do not actually profile the real terrain, but the path traversed by the center of
the wheels (see Fig. 1). From now on the term terrain designates this wheel center
path. Note that recovering the real terrain shape is not possible due to ambiguities
in corners.

3. The rover is assumed to drive straight and does not roll sideways. This allow
reducing the profiling problem to 2 dimensions. As another consequence, all the
wheel centers will follow the same terrain path which is included in a vertical
plane in 3D space (designated as wheel movement plane, also take a look at Fig. 4
in Sect. 3).

In this paper, we focus straight trajectories as a proof of concept for simultaneous
mapping and control. This also allows applying the 2 dimensional modeling to each
side of the rover independently. However, it is clear that considering curved trajectory
would require to consider the full 3D complexity of the problem, for which we cannot
propose a solution at this stage.

Fig. 1 State estimation and controlling (left), rover model (top right) and profiled wheel path
compared to the real terrain (bottom right)
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2.1 Terrain Profiling

Terrain profiling allows us to approximate the terrain shape and—knowing the rover
position—to optimize the wheel speed. Our objective is to use space-realistic sensors
to achieve this goal: IMU, angle measurements of suspension bogies and motor
encoder readings. First of all, we assume that, lacking visual or other distant sensing
devices, there is no possibility to foreknow the terrain shape. The latter needs to
be profiled in the instant the front wheels are traversing it. Therefore, these front
wheels can be seen as cantilever-based tactile sensors. They can be used as profiling
sensors while the two middle wheels use the former profiled terrain for propagation
estimation. During the next iteration, the propagated middle wheels acts as new
reference points for the front wheels to profile the next terrain points and so on.
Hence, the terrain can be iteratively built up. This procedure is illustrated in the state
estimation part of Fig. 1. However, one can easily observe that errors in profiling will
accumulate since there are no measurements with absolute reference. To partially
mitigate that, the middle wheel position is estimated through a probabilistic filter
that reduces the displacement errors along driving direction and thus also improves
the quality of the terrain profile. This is described in the next Sect. 2.2.

The illustration of a parallel bogie rover in an arbitrary configuration is shown in
Fig. 1. The front and the middle wheels are connected with a parallel bogie (to be
called front left/right bogie). In the rear view, one can see that the two back wheels
are also connected with a parallel bogie (rear bogie). A simplified model used for
the upcoming computations is illustrated in Fig. 2. Note that the parallel bogie-wheel
connectors can be disregarded since we only depend on relative wheel positions.

In order to profile the terrain at the front wheel, the position of the middle wheel
has to be defined first. Assuming its x-position is iteratively propagated, we can find
the y-position by placing the middle wheel on our current terrain profile:

xMW (x) = x (1)

yMW (x) = T errain(x) (2)

The position of the front wheel can then be found using the IMU tilt angle β and the
front bogie angle ϕ:

Fig. 2 The Crabli rover and its simplified rover model with bogie angle ϕ and IMU angle β (crosses
represent wheel positions)
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xFW (x) = xMW (x) + lF B cos(−ϕ − β) (3)

yFW (x) = yMW (x) + lF B sin(−ϕ − β) (4)

where lF B denotes the distance between the middle and the front wheel (length of
the front bogie). Hereby, it is possible to profile new terrain points using the current
terrain, the middle wheel x-position and the configuration of the rover.

To initialize the system, it is assumed that the rover starts on a flat terrain. Unfor-
tunately, from proprioceptive measurements only, it is not possible to guess the shape
of the terrain. As a result, even though the flat terrain assumption is far from per-
fect it seems to be the only one available. Alternatively, one could use exteroceptive
measurements (e.g. from a stereo camera) as a starting point for the terrain profiling.
Although very relevant this has not been addressed in the context of this paper.

2.2 Markov Localization

Markov Localization is used to estimate and propagate the middle wheel x-position
by fusing the wheel speed information and the rover configuration. The general
Markov Localization equation derived from Bayes’ law is given by:

Bel(xt |zt ...z0) = η p(zt |xt )

∫

p(xt |ut−1, xt−1)Bel(xt−1)dxt−1 (5)

where p(zt |xt ) corresponds to the observation model predicting the observation zt

(see below) given the middle wheel position xt , and p(xt |ut−1, xt−1) is the rover
motion model giving the rover displacement for a control input ut−1.

Belief

The belief Bel(xt |zt ...z0) is an arbitrary probability distribution for the middle wheel
x position. Since we do not account for the kidnapped rover problem and the updates
are quite frequent, the belief does not have to be computed along the whole terrain.
We can keep the width of the belief relatively narrow (about 1–2 times the length of
the rover) centered around the middle wheel position. This saves a lot of computing
power since the belief is involved in the discrete convolution for the action update.

A sequence of beliefs resulting from our test data is shown in Fig. 3 (left). In the
beginning, the belief is relatively wide—the position is not known very well yet. As
soon as the rover reaches distinctive terrain, the belief gets more narrow (which is
due to the sensor model as we can see later). In the second picture of the sequence,
the belief gets steeper on the left side. Since the front wheel of the rover is situated
higher than the other wheels, it would not make any sense for the rover to be placed
more than 0.1 m to the left. In the third illustration, the rover is in a very distinctive
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Fig. 3 Markov localization: belief propagation based on sensor model and motion model

configuration. This configuration can only appear if the middle wheel is positioned at
the middle of the step slope. Hence the resulting belief is very narrow and precise—
the rover is localized. Later, when flat terrain is reached, the belief starts to widen
again. This is caused by the convolution with the motion model.

Motion Update

During the motion update, the old belief Bel(xt−1) is convolved with the action model
p(xt |ut−1, xt−1). The latter defines the expected rover displacement given the motor
input. In our case, this is the result of combining two probability distributions:

• A normal distribution centered around the value ut−1dt of the distance traveled
since the last update. This distribution models the ordinary motion of the rover
without wheel slip.

• A sigmoid distribution (approximation of the uniform distribution) from 0 to the
center of the normal distribution and modeling the uncertainty resulting from
slippage.

The equation of the motion model is given by:

p(xt |ut−1, xt−1) =
∑

Sr

p(xt |ut−1, xt−1, Sr )p(Sr ) (6)

p(xt |ut−1, xt−1, Sr ) =
{

h(1 − 1

e−xend (xt−m)
), if Sr = 1

N (
xt−1 + ut−1dt, σ 2

)
, if Sr = 0

(7)
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where Sr for wheel slip (Sr = 1 if the wheel is slipping, Sr = 0 otherwise). Although
the slip indicator is binary, the use of a sigmoid distribution means that any movement
up to the desired one is considered equally likely in case of slippage, thus covering
the cases from the wheel slipping just a bit up to 100 % slippage.

Sensor Update

The sensor model p(zt |xt ) describes the probability of measuring the observations
zt given xt . In our case, the measurements are the IMU tilt angle β, the front bogie
angle ϕ and the back bogie angle θ . But in order to reduce computational complexity,
we transform these measurements into the y position (height) of the front wheel yFW

and the back wheel yBW . Using these transformed measurements, we can write:

p(zt |xt ) = p(yFW,t , yBW,t |xt ) = p(yFW,t |xt )p(yBW,t |xt ) (8)

where we introduce the reasonable approximation of the probability distributions of
yFW,t and yBW,t being independent and normally distributed around the position
that can be predicted from the terrain shape.

A sequence of sensor models from our test data is shown in Fig. 3 (more precisely,
the plots correspond to the posterior localization using the sensor model and a uni-
form prior). The sensor model is depicted blue, the current rover configuration green
and the profiled terrain red. In the first diagram of the sequence, one can see that
there is more or less the same probability of this configuration to be placed around
the middle wheel position neighborhood. In the next diagram the sensor model prob-
ability narrows a little bit due to the front wheel position on the step. Eventually in
the third diagram, the configuration appears to be very distinctive and can only be
placed in the center of the step. This is also indicated by its narrow sensor model.

2.3 Wheel Speed Controller

Based on the approximated terrain and the current wheel positions, an optimal speed
for the front, middle and back wheels can be derived. The principle of our approach
is to compute the movement of the front wheel that would result from applying the
desired speed for a control interval. From this movement, based on the known length
of the suspension element, we can compute the resulting displacement of the middle
and rear wheel, and deduce their optimal speed. The challenge is that the terrain is
necessarily unknown in front of the front wheel, and consequently, the front wheel
movement must be computed by extrapolating the known terrain. Given the low
speed we are considering, we currently use a linear extrapolation based on the last
measured terrain slope.
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3 Simulation and Testing

3.1 Goals

To measure a possible performance gain due to the new wheel speed controller com-
pared to the former situation, we intend to evaluate if the controller helps decreasing
wheel split and power consumption as well as improving the ability to overcome
obstacles.

3.2 Wheel Tracking System

In order to measure wheel slip, the difference between actual wheel velocity (ground
truth) and commanded velocity needs to be determined. Additionally, we would like
to compare the profiled terrain of the controller with the actual path traversed by
the wheels. Therefore we decided to implement an external optical wheel tracking
system. It is based on a camera recording the test runs from aside the track. Markers
placed on the wheels assure reliable detection of the wheel centers. The origin of the
3D coordinate frame is placed below the camera on the ground; y axis aligned with the
camera. This setup is illustrated in Fig. 4. For most of the tracking implementation,
functionalities from the OpenCV library were utilized. See [9] for more details on
the tracking system and its calibration.

3.3 Testing Environment

Indoor

In a first approach, tests were performed indoor in the ASL Robolab at ETH Zürich
(see Fig. 4). The HD webcam was set at the distance of 1.35m from the track, which
appeared to be a reasonable trade-off between track length and resolution of wheel

Fig. 4 The indoor test setup (left), the wheel tracking setup with HD webcam and markers (center)
and the outdoor setup (right)
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tracking. With this distance to the track, a resolution of about 5.75 pixels/cm was
achieved.

The track surface consisted of carpet to reduce wheel slip at first. The test runs were
performed using 3 different obstacles on the track: a step obstacle (carpet surface),
a hill obstacle (wooden surface) and a smooth step obstacle (Wooden surface).

Outdoor

In a second stage, tests were also done outdoors in a sand pool (see Fig. 4). The
distances and lengths of the track were similar to the indoor setup. Before each run,
the sand surface had to be made smooth and level. Tests with slack sand where also
performed to compare the influence of the different types of sand consistencies.

The outdoor obstacles were slightly different from the indoor setup: a step obsta-
cle (bricks), a hill obstacle (wooden surface) and an asymmetric, irregular obstacle
(stones).

3.4 Result Discussion

In this subsection we would like to discuss the results of a part of the test runs
performed indoors and outdoors. As can be seen later, it is really hard to find a
right measure for performance. In our current setup, the performance improvement
on wheel slippage due to the controller is small with respect to the measurement
noise. Therefore, it has not been possible to end up with quantitative performance
metrics describing wheel slip performance or power consumption. In the following,
a qualitative analysis of the performance is proposed.

Indoor

The obstacle traversed by the Crabli rover was a 8 cm high step covered by carpet.
The situation is shown in Fig. 4.

The resulting terrain shape profiled by the controller is plotted in Fig. 5 as a blue
line. The red line originates from the wheel tracking and is seen as ground truth.
The most noticeable difference is the slope at the step. The real terrain features a
sharp rise followed by an even curve. By contrast, the profiled terrain has an almost
constant slope which is more flat. This is actually due to the short wheel slip that
occurs when the front wheel touches the step. At that instant, the rover stands still
before the front wheel moves up, causing the middle and rear wheels to slip. Our
controller is not able to sense this slip though and assumes that the rover is still
moving forward. Combined with the new velocity component in vertical direction
according to the changing rover configuration, the slope angle appears to be flatter
than the one from the ground truth. This effect can also be shown using the diagram
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Fig. 5 Profiled terrain compared to tracked terrain (front, middle and back wheel)

Fig. 6 Profiled terrain compared to tracked terrain, x and y position versus time (front wheel)

of the y and x-position over time: As one can see in Fig. 6 the y position of the terrain
can be followed quite nicely only having a small lag. Whereas the x position of the
profiled terrain deviates from the ground truth in the moment of a wheel reaching
the step (Fig. 6). Other than that, the qualitative appearance of the profiled terrain
matches the one from tracking.

Incorporating this profiled terrain shape, the controller adapted the wheel speeds
accordingly. This can be seen in Fig. 7. There are some key differences between the
computed speed by the controller and the real wheel speeds. First of all, it can be
observed that the decelerations of the controller are about 30 % lower than in reality.
This condition is due to the lower slope gradient of the profiled step. Next the motor
speed slow-down lags behind the real wheel deceleration. This is mostly caused by
the delay of the front wheel moving up when reaching the step. At that time, the
rover stands still, which cannot be sensed by the controller. For the front wheel, in
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Fig. 7 Front, middle and rear wheel speed

contrast to the middle and back wheel, the controller does not know yet the shape of
the terrain ahead. Hence it is not possible to introduce a foresighted controlling for
the front wheel. At around 16 s, the middle wheel reaches the terrain. Here the lag
of the front and back wheel deceleration appears to be smaller. Finally at 24 s, the
back wheel moves up. One can observe that the deceleration lag seems to be larger
again. This issue is more complex: It is probably due to a small dent, located at 0.07
to 0.11 m in the profiled terrain. This dent was formed by the profiling front wheel
during the middle wheel moving up the step face. In the current situation, the middle
wheel is situated at this asperity. At the instant when the back wheel starts to move
up, the rover configuration change is interpreted differently by the controller. This
configuration change is equivalent to the back wheel remaining level and the middle
and front wheel moving down. Whereas the middle wheel moves down anyway due
to the dent. At this stage, it is not clear how this perceptual ambiguity can be identified
and solved.

Tests run on a smooth step obstacle and a small wooden bump Fig. 8 lead to similar
results, with an even better terrain profiling: because there are no sudden change of
direction such as on the step obstacle, no wheel slip occur and the terrain profiling
performance improves. More details on these test results can be found in [9].

Fig. 8 Smooth step obstacle and small hill
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Outdoor Tests on Sand

During the indoor tests, we were able to achieve good terrain profiling and to some
extend good wheel speed controlling in high friction environment. The next question
was about how the controller would perform on low friction surfaces like sand.
One test to be discussed incorporated a step obstacle shown in Fig. 10. Looking
at the corresponding terrain diagram (Fig. 9, left) the terrain profiling seems to be
reasonably good. However when plotting the y wheel position against time (see
Fig. 9, right), lag can be noticed. This increasing lag is responsible for the late wheel
speed decelerations observed in the wheel speed diagrams (Fig. 10). One may note
that some of the wheel decelerations contributed just about 30 % of what would
have been needed to match speeds. This issue can be once again explained by the
lower gradient of the step slope in the profiled terrain. As during the indoor test,
this happened due to the fact that the rover stood still as the front wheel touched the
step face. Now it even takes more time for the slipping middle and rear wheel to
build up enough normal force for the front wheel moving up. Additionally the front
wheel also slips when moving up—thus using extra time which flattens the slope
even more. The high velocity peak at the end is caused by the wheels falling of the
second step.

During the outdoor tests, a lot more test runs were performed and analyzed,
with similar results: in most cases, the terrain profiling works well, but a significant
resulting control performance improvement did not follow. This probably stems out
from the lag and strong coupling between the control input and the terrain estimation,
as well as out of the impossibility to sense wheel slippage. Should simple sensors such
as desktop mouse movement estimator be integrated in future rover, our approach
could naturally integrate their input to improve both the terrain profiling and as a
result the wheel speed control. More details about this test can also be found in [9].

Fig. 9 Profiled terrain compared to tracked terrain (front, middle and back wheel), as a function of
distance (left) and time (right)
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Fig. 10 Illustration of a step obstacle on a sand surface and measured front wheel speed while
passing the step. Note in particular the dig-in that occurs each time a wheel climbs the step

4 Conclusion and Outlook

This paper presented an approach for simultaneous terrain profiling and control for
6-wheel rovers with passive suspension. The approach is based on a probabilistic
filtering of the vehicle suspension deformation to jointly estimate the rover displace-
ment and the shape of the terrain. Based on this terrain, a wheel speed controller
was implemented to minimize the discrepancy between the ideal speed of a wheel
following the terrain without slipping and the speed applied by the wheel controller.

Experiments indoor and outdoor have shown that the terrain profiling approach
is sound and behave well even in presence of slip. However, at this stage of the
implementation, it was not possible to demonstrate a significant control performance
improvement resulting from the terrain profiling. The main reason for this lack of
performance is mostly the delay introduced in by the terrain estimation, and the
absence of wheel-slip sensing leading to noise in the terrain profile.

As for computational load, the SMAC controller was only occupying 10–15 % of
the capacity of an Atom-based embedded PC (FitPC2). In cases where the computa-
tional load would have to be reduced, there would be enough parameters to influence
the controllers computational need. Especially narrowing down of the updated belief
yields large differences.

On the hardware side, future work will need to consider integrating ground track-
ing sensors (e.g. optical mouse sensors) close to the wheels to detect and estimate
wheel slippage. On the software side, it would be theoretically feasible to put the
terrain estimation in the same Bayesian framework as the current wheel localization.
Such a joint estimation would be similar to what is currently implemented in the state
of the art of simultaneous localization and mapping (SLAM). Although the compu-
tational cost would certainly be higher, a more robust estimation might be possible.
Integrating a sensor for wheel sinkage would also help improving the profiling and
mitigate the multi-pass effect when 3 wheels drive on the same track.

As a last remark, we would like to point out an alternative application for our
SMAC implementation: Since the terrain profiler performs relatively well, one could
think of using it for improving odometry or just helping localization on pre-planned
path. Let’s think of the rover Opportunity on Mars: These rovers plan paths ahead
while standing still. Then in a second phase they try to follow this path using mostly
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odometry. Integrating the terrain estimator or just the terrain-base wheel localization
would certainly improve the odometry performance, without having to resort to a
full 6-degrees-of-freedom odometry.
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Robust Monocular Visual Odometry
for a Ground Vehicle in Undulating Terrain

Ji Zhang, Sanjiv Singh and George Kantor

Abstract Here we present a robust method for monocular visual odometry capable
of accurate position estimation even when operating in undulating terrain. Our
algorithm uses a steering model to separately recover rotation and translation. Robot
3DOF orientation is recovered by minimizing image projection error, while, robot
translation is recovered by solving an NP-hard optimization problem through an
approximation. The decoupled estimation ensures a low computational cost. The
proposed method handles undulating terrain by approximating ground patches as
locally flat but not necessarily level, and recovers the inclination angle of the local
ground in motion estimation. Also, it can automatically detect when the assumption
is violated by analysis of the residuals. If the imaged terrain cannot be sufficiently
approximated by locally flat patches, wheel odometry is used to provide robust esti-
mation. Our field experiments show a mean relative error of less than 1 %.

1 Introduction

The task of visual odometry is to estimate motion of a camera, and by association
the vehicle it is attached to, using a sequence of camera images. Typically, visual
odometry is used in those cases where GPS is not available (eg. in planetary environ-
ments), or is too heavy carry (eg. on a small air vehicle), or, is insufficiently accurate
at a low cost (eg. in agricultural applications). In ground vehicle applications, visual
odometry can provide an alternative or compliment to wheel odometry since it is
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not prone to problems such as wheel slippage that can cause serious errors. Recent
developments show significant progress in visual odometry and it now possible to
estimate 6DOF motion using stereo cameras [1–3]. Stereo cameras help provide
scale and some constraints to help recovery of motion but their use comes at a cost.
Accuracy is dependant on inter-camera calibration which can be hard to ensure if
the cameras are separated significantly. The use of stereo cameras also reduces the
field of view because only features that lie in the intersection of the field of view of
two cameras can be used. Finally, cost in components, interfacing, synchronization,
and computing are higher for stereo cameras compared to a monocular camera.

While it is impossible to recover scale in translation for arbitrary camera motion
in 6DOF when using monocular imaging, it is possible to recover scale when some
additional information such as the distance and attitude of camera from the ground
plane, such as is reasonably constant on a ground vehicle, is available. Recent work
shows that under the assumption that the imaged areas are flat and level, it is possible
to use visual odometry with monocular imaging [4–6]. This is a significant constraint
in that such methods fail if the imaged areas are not guaranteed to be flat.

Here we report on relaxing the constraint such that visual odometry coupled
with wheel odometry can be viable in undulating and even in severely 3D settings
(Fig. 1) using monocular vision. We do this in two ways. First, our formulation of
visual odometry only requires the imaged areas to be locally flat but not necessarily
level. Our method recovers the ground inclination angle by finding coplanar fea-
tures tracked on the ground. Second, the method can automatically determine when
the imaged areas are not well approximated by locally flat patches and uses wheel
odometry. The result is a monocular system that recovers differential motion with
non-holonomic constraint in 3DOF rotation and 1DOF translation. When used on
a ground vehicle, our experiments indicate an accuracy comparable to that from
state-of-the-art stereo systems even the vehicle is tested in undulating terrain.

To estimate motion from imagery, the standard way is formulating visual odom-
etry into a bundle adjustment problem and solves numerically through iteration.

Fig. 1 a An example of the type of terrain over which our ground vehicle based visual odometry
is intended to work b An example of the type of scene that can be imaged by the visual odometry
system. Monocular visual odometry systems that assume a flat environments fail in such a case
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Alternatively, by using a steering model, the proposed method decouples the prob-
lems of estimating rotation and translation. In the first step, we estimate robot orien-
tation using QR factorization [7] applied to a RANSAC algorithm [8] that minimizes
the image reprojection error. In the second step, we use the same set of inlier features
found by the RANSAC algorithm and solve an optimization problem that recovers
translation together with the ground inclination angles. Since the full blown problem
is believed to be NP hard, we utilize an approximation that ensures computational
feasibility. The proposed two-step estimation algorithm is able to run with very low
computational cost. Further, if the ground patches cannot be approximated as locally
flat, the second step estimation becomes inaccurate. Then, wheel odometry is used
to compute translation, and visual odometry is only for recovering rotation.

The rest of this paper is organized as follows. In Sect. 2, we present related work.
In Sect. 3, we define our problem. The problem is mathematically solved in Sect. 4
with implementation details provided. Experimental results are shown in Sect. 5 and
conclusions are made in Sect. 6.

2 Related Work

Today, it is commonly possible to estimate camera motion using visual odometry,
that is through the tracking of features in an image sequence. [2, 3]. Typically, the
camera motion is assumed to be unconstrained in the 3D space. For stereo systems
[9–11], the baseline between the two cameras functions as a reference from which
the scale of motion can be recovered. For example Paz, et al’s method estimates the
motion of stereo hand-hold cameras where scale is solved using features close to
the cameras [12]. Konolige, et al’s stereo visual odometry recovers 6DOF camera
motion from bundle adjustment [1]. The method is integrated with an IMU that
handles the orientational drift of visual odometry. It is able to work for lone distance
navigation in off-road environments. For monocular systems [13–15], if camera
motion is unconstrained, scale ambiguity is unsolvable. Using a monocular camera,
Civera, et al formulate the motion estimation and camera calibration into one problem
[16]. The approach recovers camera intrinsic parameters and 6DOF motion up to
scale.

When a monocular system is used in such a way that the camera motion is con-
strained to a surface, recovering scale is possible. For example, Kitt, et al’s method
solves scale ambiguity using Ackermann steering model and assumes the vehicle
drives on a planar road surface [5]. Nourani Vatani and Borges use Ackermann steer-
ing model along with a downward facing camera to estimate the planar motion of a
vehicle [6]. Since the method only recovers the vehicle planar motion, an INS system
is used to obtain vehicle pitch and roll angles. Scaramuzza, et al’s approach adopts
a single omnidirectional camera [4], where Ackermann steering model and steer-
ing encoder readings are used as constrains. This approach can recover motion at a
low computational cost with a single feature point, and shows significantly improved
accuracy compared to unconstrained cases. Scaramuzza also shows that a monocular
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camera placed with an offset to the vehicle rotation center can recover scale when
the vehicle is turning [17]. In straight driving, however, the formulation degenerates
and the scale is no longer recoverable.

In [4–6, 17], the methods all assume a planar ground model. However, violation
of the assumption can make motion estimation fail. Compared to the existing work,
our method does not require the imaged terrain to be flat and level. Our method
simultaneously estimates the inclination angle of the ground while recovering motion.
Further, our method combines wheel odometry to deal with the case where the system
automatically determines if the terrain cannot be well approximated by a local flat
patch. Here, we summarize our theoretical analysis of the motion estimation due to
space limitations. A more complete analysis will be published in the future.

3 Problem Definition

We assume that the vehicle uses Ackermann steering [18] which limits the steering
to be perpendicular to the axles of the robots. We also assume that the camera is well
modeled as a pinhole camera [7] in which the intrinsic and extrinsic parameters are
calibrated.

3.1 Notations and Coordinate Systems

As a convention in this paper, we use right uppercase superscription to indicate the
coordinate systems, and right subscription k, k ◦ Z+ to indicate the image frames.
We use I to denote the set of feature points in the image frames.

• Camera coordinate system {C} is a 3D coordinate system. As shown in Fig. 2, the
origin of {C} is at the camera optical center with the z-axis coinciding with the
camera principal axis. The x − y plane is parallel to the camera image sensor with
the x-axis parallel to the horizontal direction of the image pointing to the left. A
point i , i ◦ I , in {Ck} is denoted as XC

(k, i).

Fig. 2 Illustration of the
vehicle coordinate system {V }
and the camera coordinate
system {C}

Front
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• Vehicle coordinate system {V } is a 3D coordinate system. The origin of {V } is
coinciding with the origin of {C}, the x-axis is parallel to the robot axles pointing
to the robot left hand side, the y-axis is pointing upward, and the z-axis is pointing
forward. A point i , i ◦ I , in {Vk} is denoted as XV

(k, i).• Image coordinate system {I } is a 2D coordinate system with its origin at the right
bottom corner of the image. The u- and v- axes in {I } are pointing to the same
directions as the x- and y- axes in {C}. A point i , i ◦ I , in {Ik} is XI

(k, i).

3.2 Problem Description

Since our robot remains on the ground and follows the Ackermann steering model,
the translation is limited to the z-direction in {V }. Let θz be robot translation between
frames k−1 and k, θz is in the {Vk−1} coordinates. In this paper, we treat the features
on the ground in the near front of the robot as coplanar. As shown in Fig. 3, let W
indicate the plane. Let d0 be the height of the camera above the ground, d0 is set as
a known constant. Let P be the projection of the camera center. We model W with 2
rotational DOFs around P. Let N be the normal of W, and let tk and rk be the Euler
angles of N around the x- and z- axes in {Vk}, respectively. tk and rk represent the
pitch and roll inclination angles of the ground. Let θp, θt , and θr be robot rotation
angles around the y-, x-, and z- axes of {Vk−1} between frames k − 1 and k, we have
θt = tk − tk−1 and θr = rk − rk−1. In this paper, we want to measure the robot
motion between consecutive frames. Our visual odometry problem can be defined
as

Problem 1 Given a set of image frames k, k ◦ Z+, and the camera height d0,
compute θp, θt , θr , and θz for each frame k.

N

W
P

Fig. 3 Modeling the ground. The blue colored curve represents the ground, P is the projection of
the camera center, and W is the plane representing the ground in the near front of the robot. W has
pitch and roll DOFs around P
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4 Visual Odometry Algorithm

4.1 Rotation Estimation

In this section, we recover the 3DOF robot orientation. We will show that by using
the Ackermann steering model, robot orientation can be recovered regardless of
translation. From the pin-hole camera model, we have the following relationship
between {I } and {C},

ςXI
(k, i) = KXC

(k, i), (1)

where ςk is a scale factor, and K is the camera intrinsic matrix, which is known from
the pre-calibration [7].

The relationship between {C} and {V } is expressed as

XC
(k, i) = Rz(r0)Rx (t0)Ry(p0)XV

(k, i), (2)

where Rx (·), Ry(·), and Rz(·) are rotation matrices around the x-, y-, and z- axes
in {V }, respectively, and p0, t0, and r0 are corresponding rotation angles from {V }
to {C}. Here, note that p0, t0, and r0 are the camera extrinsic parameters, which are
known from the pre-calibration [7].

Let X̃
V
(k, i) be the normalized term of XV

(k, i), we have

X̃
V
(k, i) = XV

(k, i)/zV
(k, i). (3)

where zV
(k, i) is the 3rd entry of XV

(k, i). X̃
V
(k, i) can be computed by substituting (2) into

(1) and scaling XV
(k, i) such that the 3rd entry becomes one.

From the robot motion, we can establish a relationship between {Vk−1} and {Vk}
as follows,

XV
(k, i) = Rz(θr)Rx (θt)Ry(θp)XV

(k−1, i) + [0, 0, θz]T , (4)

where Rx (·), Ry(·), and Rz(·) are the same rotation matrices as in (2).
Substituting (3) into (4) for frame k − 1 and k, and since θp, θt , and θr are

small angles in practice, we perform linearization to obtain the following equations,

ci x̃V
(k, i) = x̃ V

(k−1, i) + θp + ỹV
(k−1, i)θr, (5)

ci ỹV
(k, i) = ỹV

(k−1, i) + θt − x̃ V
(k−1, i)θr, (6)

ci = 1 − x̃ V
(k−1, i)θp − ỹV

(k−1, i)θt + θz/zV
(k−1, i), (7)

where x̃ V
(l, i) and ỹV

(l, i), l = k − 1, k, are the 1st and the 2nd entries of X̃
V
(l, i), respec-

tively, zV
(l, i) is the 3rd entry of XV

(l, i), and ci is a scale factor, ci = zV
(k, i)/zV

(k−1, i).
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Eqs. (5) and (6) describe a relationship of θp, θt , and θr without interfering with
θz. This indicates that by using the Ackermann steering model, we can decouple
the estimation problem and recover θp, θt , and θr separately from θz. Stacking
(5) and (6) for different features, we have

AX = b, (8)

where

A =



⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎨

1 0 ỹV
(k−1, 1) −x̃ V

(k,1) 0 0 ...

0 1 −x̃ V
(k−1, 1) −ỹV

(k,1) 0 0 ...

1 0 ỹV
(k−1, 2) 0 −x̃ V

(k,2) 0 ...

0 1 −x̃ V
(k−1, 2) 0 −ỹV

(k,2) 0 ...

... ... ... ... ... ... ...

⎡

⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎤

,

b = −
⎦
x̃ V
(k−1, 1), ỹV

(k−1, 1), x̃ V
(k−1, 2), ỹV

(k−1, 2), ...
]T

,

X = [θp, θt, θr, c1, c2, ...]T .

Equation (8) can be solved using the QR factorization method. Since A is a sparse
matrix, the QR factorization can be implemented very efficiently. Let x̃ ∩V

(k−1, i) and

ỹ∩V
(k−1, i) be the reprojected coordinates of x̃ V

(k, i) and ỹV
(k, i) in {Vk−1}. The QR factor-

ization minimizes the image reprojection error,

min
θp,θt,θr,

∑

i◦I
(x̃ V

(k−1, i) − x̃ ∩V
(k−1, i))

2 + (ỹV
(k−1, i) − ỹ∩V

(k−1, i))
2. (9)

ci ,i◦I

With (8) solved, let ex
(k−1, i) = x̃ V

(k−1, i) − x̃ ∩V
(k−1, i) and ey

(k−1, i) = ỹV
(k−1, i) − ỹ∩V

(k−1, i),

ex
(k−1, i) and ey

(k−1, i) represent the reprojection errors of feature i , i ◦ I , in {Vk−1}.
Using (5) and (6), we can compute ex

(k−1, i) and ey
(k−1, i) as,

ex
(k−1, i) = x̃ V

(k−1, i) + θp + ỹV
(k−1, i)θr − ci x̃V

(k, i), (10)

ey
(k−1, i) = ỹV

(k−1, i) + θt − x̃ V
(k−1, i)θr − ci ỹV

(k, i). (11)

Similarly, let ex
(k, i) and ey

(k, i) be the reprojection errors in {Vk}, ex
(k, i) and ey

(k, i) can
be obtained as

ex
(k, i) = ex

(k−1, i)/ci , ey
(k, i) = ey

(k−1, i)/ci . (12)

Define π(l, i), l ◦ {k − 1, k}, as a 2 × 2 matrix,

π(l, i) = diag
⎦
(ex

(l, i))
2, (ey

(l, i))
2
]
, l ◦ {k − 1, k}. (13)
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π(l, i) contains the covariance of X̃
V
(l, i) measured from the image reprojection error,

which will be useful in the following sections.

4.2 Robot Translation

With robot orientation recovered, we derive the expression of translation in this
section. The task of recovering translation is formulated into an optimization problem
in the next section, and solved in the same section. An shown in Fig. 3, recall that W
is the plane representing the local ground in the near front of the robot, and tk and
rk are the pitch and roll angles of W. For a feature i , i ◦ I , on W, the following
relationship holds from geometric relationship,

− zV
(k, i)(ỹV

(k, i) − tan rk x̃V
(k, i) + tan tk) = d0, (14)

where d0 is the height of the camera above the ground.
Since tk and rk are small angles in practice, we approximate tan tk ∈ tk and

tan rk ∈ rk . Then, by substituting (14) into (7) for frames k − 1 and k, we can derive

ϕtk + φrk = δ, (15)

where

ϕ = −x̃ V
(k−1, i)θp + ỹV

(k−1, i)θt − ci + 1,

φ = (ϕ + 1)x̃ V
(k, i) − x̃ V

(k−1, i),

δ = −(ϕ + 1)(θt + x̃ V
(k, i)θr − ỹV

(k, i)) − ỹV
(k−1, i).

Equation (15) contains two unknown parameters, tk and rk , which indicates that we
can solve the function by using two features. Let (i, j) be a pair of features, i, j ◦ I ,
here we use (i, j) to solve (15). Then, let θz(i, j) be the translation computed from
feature pair (i, j). From (14), we can derive

θz(i, j) = 1

2
(T(k, i) + T(k, j) − T(k−1, i) − T(k−1, j)) (16)

where
T(l, h) = d/(ỹV

(l, h) + x̃ V
(l, h)rk + tk), l ◦ {k − 1, k}, h ◦ {i, j},

Now, let Δ(i, j) be the standard deviation of θz(i, j) measured from the image
reprojection error, Δ(i, j) will be useful in the next section. From (16), it indicates

that θz(i, j) is a function of X̃
V
(l, h), l ◦ {k − 1, k}, h ◦ {i, j}. Let J(l, h) be the

Jacobian matrix of that function with respect to X̃
V
(l, h), J(l, h) = ∂θz(i, j)/∂X̃

V
(l, h),

we can compute
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Δ 2
(i, j) =

∑

l◦{k−1, k}

∑

h◦{i, j}
J(l, h)π(l, h)JT

(l, h). (17)

4.3 Translation Recovery by Optimization

In the above section, we showed that the translation can be recovered using a pair
of features. In this section, we want to estimate translation using multiple features,
by solving an optimization problem that minimizes the error variance of translation
estimation. Suppose we have a total number of n features, n ◦ Z+, combination of
any two features can provide n(n − 1)/2 feature pairs. Let J be a set of feature
pairs, 1 ⊂ |J | ⊂ n(n − 1)/2. Here, we use the feature pairs in J to compute the
translation θz. Define θz as the weighted sum of θz(i, j), (i, j) ◦ J ,

θz =
∑

(i, j)◦J
w(i, j)θz(i, j), (18)

where w(i, j) is the weight for feature pair (i, j), such that

∑

(i, j)◦J
w(i, j) = 1, and w(i, j) ← 0, (i, j) ◦ J . (19)

Define Δ as the standard deviation of θz measured from the image reprojection
error. Here, we want to compute θz such that Δ is minimized. We start with our
first question. For a given set of feature pairs J , how to assign the weights w(i, j),
(i, j) ◦ J , such that Δ is the minimum? Mathematically, the problem can be
expressed as,

Problem 2 Given Δ(i, j), (i, j) ◦ J , compute

{
w(i, j), (i, j) ◦ J

} = arg min
w(i, j)

Δ 2, (20)

subject to the constraints in (19).

To solve this problem, we can prove that if each feature i , i ◦ I belongs to at most
one feature pair in J , then Problem 2 is analytically solvable using the Lagrange
multiplier method [19]. However, if a feature exists in multiple feature pairs, the
problem becomes a convex optimization problem that has to be solved numerically
[20]. Here, we directly give the solution for Problem 2,

min
w(i, j)

Δ 2 =
∑

(i, j)◦J
w2

(i, j)Δ
2
(i, j), (21)

where
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Algorithm 1: Feature Pair Selection
1 input : I and Δ(i, j), i, j ◦ I
2 output : J
3 begin
4 J = ∅;
5 Sort Δ(i, j), i, j ◦ I in increasing order;
6 Create a variable Δi for each i ◦ I ;
7 for the decreasing order of Δ(i, j), i, j ◦ I do
8 Δi = Δ(i, j), Δ j = Δ(i, j);
9 end

10 for each i, j ◦ I do
11 if 1/Δ 2

(i, j) > 1/Δ 2
i + 1/Δ 2

j then
12 Put (i, j) in J , then delete i, j from I ;
13 end
14 end
15 for the increasing order of Δ(i, j), i, j ◦ I do
16 if i, j ◦ I then
17 Put (i, j) in J , then delete i, j from I ;
18 end
19 end
20 Return J .
21 end

w(i, j) = 1/Δ 2
(i, j)

⎛
(p, q)◦J 1/Δ 2

(p, q)

, (i, j) ◦ J . (22)

With Problem 2 solved, we come to our second question. How to select the feature
pairs in J such that Δ is the minimum? Mathematically, the problem is

Problem 3 Given I and Δ(i, j), i, j ◦ I , determine

{
J = {(i, j)

}
, i, j ◦ I } = arg min

J
( min
w(i, j)

Δ 2), (23)

such that each feature i , i ◦ I belongs to at most one feature pair in J .

Problem 3 can be reformulated into a balanced graph partition problem [21], which
is believed to be NP-hard [22]. Here, we focus on an approximation algorithm. The
following two inequalities help us to construct the approximation algorithm. First,
we find a sufficient condition for selecting the feature pairs. For feature pair (i, j),
i, j ◦ I , if the following inequality is satisfied, then (i, j) ◦ J ,

1

Δ 2
(i, j)

>
1

Δ 2
(i, q)

+ 1

Δ 2
(p, j)

, ∝p, q ◦ I , p, q 	= i, j. (24)

Second, we find that if we select the feature pairs (i, j), i, j ◦ I in the increasing
order of Δ(i, j), we can obtain a set of feature pairs, let it be J̃ , and let Δ̃ be the
standard deviation of θz computed using feature pairs in J̃ . Let Δ∗ be the standard
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deviation of solving Problem 3 without approximation, we can prove that,

Δ̃ 2 ⊂ 2Δ 2∗ . (25)

Equation (25) indicates that we can solve Problem 3 with an approximation factor
of 2. Consequently, the feature pair selection algorithm is shown in Algorithm 1.
In Line 5, we first sort the feature pairs in the increasing order of Δ(i, j), i, j ◦ I .
Then in Lines 6–14, we go through each feature pair and check if (24) is satisfied.
If yes, the feature pair is selected. Then, in Lines 15–19, we select the rest of the
feature pairs in the increasing order of Δ(i, j), i, j ◦ I . The algorithm returns J in
Line 20.

4.4 Implementation and Hybrid with Wheel Odometry

To implement the algorithm, we select a number of “good features” with the local
maximum eigenvalues using the openCV library, and track the feature points between
consecutive frames using the Lucas Kanade Tomasi (LKT) method [23]. To estimate
robot rotation, we solve (8) using QR factorization method. The QR factorization
is applied to a RANSAC algorithm that iteratively selects a subset of the tracked
features as inliers, and uses the inliers to recover the 3DOF rotation, namely θp, θt ,
and θr . After recovering the rotation, we also obtain the error covariance for each
feature point from (13). Using the inliers selected by the RANSAC algorithm and the
corresponding error covariance, we can select the feature pairs based on Algorithm 1
and recover robot translation θz based on (18), (16), and (22).

In the two-step estimation process, the translation estimation requires the ground
patches to be locally flat, while the rotation estimation does not rely on such re-
quirement. Therefore, when this requirement is violated, the translation estimation
becomes inaccurate. To deal with this case, a checking mechanism is implemented.
If the error variance Δ 2, the ground inclination angle tk or rk is larger than a corre-
sponding threshold, a hybrid odometry system is used. The wheel odometry is used
for computing translation, and the visual odometry is for recovering rotation. This
strategy allows the system to work robustly even when the camera field of view is
blocked by obstacles.

5 Experiments

We conduct experiments using an electrical vehicle as shown in Fig. 4a. The vehicle
measures 3.04 m in length and 1.50 m in width. The wheelbase of the vehicle is 2.11 m.
The vehicle is embedded with wheel encoders that measures the driving speed. An
Imagingsource DFK 21BUC03 camera is attached in front of the vehicle, as shown
in Fig. 4b. The camera resolution is set at 640 × 480 pixels and the focal length is
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Fig. 4 a Our robot, and b A monocular camera attached in front of the robot

Table 1 Computation time
of the visual odometry
algorithm using 300 features

Feature Tracking State Estimation Overall

38 ms 5 ms 43 ms

4 mm (horizontal filed of view 64◦). The vehicle is equipped with a high accuracy
INS/GPS system (Applanix Pos-LV), accurate to better than 10 cm for ground truth
acquisition.

5.1 Computation Time

We first show computation time of the proposed visual odometry algorithm. The
algorithm is tested on a laptop computer with Quad 2.5GHz CPUs and 6G RAM.
We track 300 features at each frame. As shown in Table 1, the feature tracking takes
38 ms and consumes an entire core. The state estimation takes 5 ms and runs on
another core. The proposed algorithm is able to run at 26 Hz on average.

Table 2 Accuracy test configuration and relative error computed from 3D coordinates

Configuration
Test Driving Elevation Ground Relative
No. Distance (m) Change (m) Material Error (%)

1 903 18 Grass 0.71
2 1117 27 Asphalt 0.87
3 674 15 Grass+Soil 0.74
4 713 17 Concrete 1.13
5 576 21 Asphalt 0.76
6 983 13 Soil 0.81
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Fig. 5 a Planar view and b 3D view of the robot trajectories in accuracy test 1–2 (Table 1). The
black colored dots are the starting points. The green colored curve is the visual odometry output
for Test 1, and the red colored curve is the corresponding ground truth. The blue colored curve is
the visual odometry output for Test 2, and the black colored curve is the ground truth. Ground truth
is measured by a high accuracy INS/GPS system

5.2 Accuracy of Test Results

To demonstrate the accuracy of the proposed visual odometry algorithm, we conduct
experiments with relatively long driving distance. The test configuration is shown in
Table 2. The experiments are conducted with different elevation change and ground
material. The overall driving distance for the 6 tests is about 5 km. The mean relative
error of the visual odometry is 0.83 %. Specifically, the trajectories of Test 1–2 are
presented in Fig. 5.

5.3 Experimental Results

To test the robustness of the proposed method, we conduct experiments with obstacles
on the driving path. When the camera field of view is blocked by an obstacle, the
requirement on local flatness of the ground pathes is violated. In this case, a hybrid
odometry system is used. The translation is measured by wheel odometry and the
rotation is estimated by visual odometry. As shown in Table 3, the robustness tests
are conducted with different number of obstacles. By using the hybrid odometry
system, the relative error is kept much lower than using the visual odometry only.
Specifically, the trajectories and obstacles of Test 1 are shown in Fig. 6.

5.4 Analysis of Optimization

Finally, we analyze the effectiveness of the optimization procedure in Sect. 4.3. We
compare three different versions of visual odometry algorithms as follows.

1. Visual Odometry (VO): The proposed visual odometry algorithm of this paper.
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Fig. 6 a Robot trajectories for robustness test 1 (Table 2). The test includes 4 obstacles labeled
with numbers. The corresponding obstacles are shown in b–e. The black colored dot is the starting
point. The blue-green colored curve is measured by the hybrid odometry system, the blue colored
segments are measured by visual odometry and the green colored segments are measured by visual
odometry for rotation and wheel odometry for translation, the red colored curve is measures by
visual odometry only, and the black colored curve is the ground truth

2. Visual Odometry Random Pair Selection (VORPS): In this version, we turn off
the feature pair selection and use randomly selected the feature pairs. By using
this algorithm, we can inspect the effect of Problem 3.

3. Visual Odometry Equal Weight (VOEW): In this version, we completely turn
off the optimization and use equal weights instead of optimized weights in (18).
By doing this, we can inspect the effect of Problem 2.

For comparison, we define two evaluation metrics. Let Δ̄ as the mean standard
deviation of the one-step translation θz, and let ζ̄ be the mean relative error of

Table 3 Robustness test configuration and relative error computed from 3D coordinates.

Configuration Relative Error
Test Driving Obstacle Visual+Wheel Visual
No. Distance (m) No. Odometry (%) Odometry (%)

1 167 4 0.43 1.83
2 124 3 0.39 2.46
3 182 4 0.54 1.54
4 263 6 0.61 4.13
5 106 3 0.47 2.76
6 137 5 0.41 3.81
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Fig. 7 Comparison of 3 different versions of the visual odometry. VO is the proposed visual
odometry algorithm of this paper. VORPS is another version without the feature pair selection,
randomly selected feature pairs are used. VOEW uses equal weights instead of optimized weights
in (18). Δ̄ is the mean standard deviation of the one-step translation θz. A full scaled comparison
of Δ̄ is shown in the small thumbnail at the left-top corner. ζ̄ is the mean relative error of the visual
odometry. The results are obtained using combination of the data in Table 2

the visual odometry output, Δ̄ and ζ̄ are computed using combination of the data
in Table 2. Comparison of the results is presented in Fig. 7. Since Δ̄ of VOEW is
significantly larger than that of VO or VORPS, we have to show the full scaled
comparison in a small thumbnail at the left-top corner of the figure. From Fig. 7,
it is obvious that the errors of VOEW and VORPS are larger then those of VO,
especially the errors of VOEW are significantly larger. This result indicates that the
optimization functions effectively, while using the optimized weights (Problem 2)
plays a more important role than using the selected feature pairs (Problem 3) for
reducing the visual odometry error.

6 Conclusion and Future Work

Estimation of camera motion by tracking visual features is difficult because it depends
on the shape of the terrain which is generally unknown. The estimation problem is
furthermore difficult when a monocular system is used because scale of the trans-
lation component cannot be recovered. Our method succeeds in two ways. First, it
simultaneously estimates a planar patch in front of the camera along with camera
motion, and second recovers scale by taking advantage of the fixed distance from
the camera to the ground. In some cases, approximating the terrain in front of the
vehicle as a planar patch cannot be justified. Our method automatically detects these
cases and uses a hybrid odometry system in which rotation is estimated from visual
odometry and translation is recovered by wheel odometry.

Since this paper relies on a kinematical vehicle steering model, lateral wheel
slip is not considered. For the future work, we are considering a revision to the
vehicle motion model such that the algorithm can handle more complicated ground
conditions where lateral wheel slip is noticeable.
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Lighting-Invariant Visual Odometry using Lidar
Intensity Imagery and Pose Interpolation

Hang Dong and Timothy D. Barfoot

Abstract Recent studies have demonstrated that images constructed from lidar
reflectance information exhibit superior robustness to lighting changes in outdoor
environments in comparison to traditional passive stereo camera imagery. More-
over, for visual navigation methods originally developed using stereo vision, such as
visual odometry (VO) and visual teach and repeat (VT&R), scanning lidar can serve
as a direct replacement for the passive sensor. This results in systems that retain the
efficiency of the sparse, appearance-based techniques while overcoming the depen-
dence on adequate/consistent lighting conditions required by traditional cameras.
However, due to the scanning nature of the lidar and assumptions made in previous
implementations, data acquired during continuous vehicle motion suffer from geo-
metric motion distortion and can subsequently result in poor metric VO estimates,
even over short distances (e.g., 5–10 m). This paper revisits the measurement timing
assumption made in previous systems, and proposes a frame-to-frame VO estimation
framework based on a novel pose interpolation scheme that explicitly accounts for
the exact acquisition time of each feature measurement. In this paper, we present the
promising preliminary results of our new method using data generated from a lidar
simulator and experimental data collected from a planetary analogue environment
with a real scanning laser rangefinder.

1 Introduction

Over the past two decades, advances in computer vision have prompted rapid devel-
opment of appearance-based estimation techniques for both terrestrial and space
applications. For the Mars Exploration Rovers in particular, stereo-vision-based VO
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Fig. 1 Panoramic view of the planetary analogue test site in Sudbury, Ontario, Canada. Located
inside a gravel pit, the site was chosen for its lack of vegetation and three-dimensional character.
Our field robot can be seen traversing the site here in the daytime, although our test data were
gathered at night

provided crucial feedback to operators when wheel odometry could no longer be
trusted; the onboard vision system was deemed instrumental in enabling several
kilometers of travel for each of the rovers when large error was incurred in wheel
odometry due to slip [12].

With greater onboard capability, such as the abundant power available to the Mars
Science Laboratory rover, it is desirable to have robust autonomous capabilities that
allow a rover to drive in the dark, thereby increasing its daily travel range to maximize
scientific return. Other mission scenarios, including exploration of permanently-
shadowed regions of the Moon, will require technology that can operate under drastic
lighting changes and/or in complete darkness.

Unlike stereo cameras, light detection and ranging (lidar) sensors are active sen-
sors that use one-axis or two-axis scanning lasers to generate 2D or 3D information
of the surrounding environment. Due to the dense nature of 3D information, algo-
rithms using two-axis scanning lidar point clouds are typically more computationally
intensive than their stereo-vision-based counterparts, which work directly with 2D
images.

We have been working toward navigation systems that retain advantages of both
cameras and lidar. Specifically, we want to retain the computational advantage of
the sparse visual navigation techniques associated with cameras, while gaining
the robustness to ambient lighting change for which lidars are known. The key to
enabling this vision is the realization that lidar intensity/reflectance information can
be processed into a greyscale appearance image of the environment. Moreover, many
state-of-the-art computer vision algorithms, such as the SURF feature extractor and
descriptor [1], work out of the box on the lidar intensity images [13].

Earlier works on lidar navigation using intensity information revealed promis-
ing results. VO estimation performance comparable to that of established stereo-
vision-based methods was obtained using a stop-scan-go acquisition method, and
the lidar-based approach was shown to be significantly more robust to ambi-
ent lighting changes [13]. More recently, appearance-based lidar has also been
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successfully adapted for use in a VT&R system, enabling long-distance, lighting-
invariant autonomous traverse with high accuracy [14].

While stopping for each lidar scan results in high-quality data and has been used
in a number of other systems (e.g., [11, 17]), it vastly limits the traversal speed,
and in some cases reduces the capability of the autonomous platform. For instance,
existing passive camera-based VO allows for continuous vehicle motion, and the
velocity derived from pose estimation can be used as feedback in closed-loop speed
control; the same cannot be accomplished with lidar in stop-scan-go mode.

Unlike a charge-coupled device (CCD) camera sensor, which captures a com-
plete image at a single instant of time, scanning lidar acquires one time-of-flight
(TOF) measurement at a time. Assuming a static scene, any motion experienced
by the platform during acquisition translates into a corresponding change in relative
displacement between the lidar and the scan subject, resulting in a scan that is geomet-
rically warped in comparison to one acquired while the platform remains stationary.
This effect is referred to as motion distortion. While McManus et al. [14] achieved
accurate autonomous traverse using local sub-maps, the metric accuracy of the esti-
mated rover track in a global frame is in fact very poor primarily due to this motion
distortion effect. In addition to warping of the 3D point cloud, motion distortion can
also be observed in the appearance image created using intensity information, as
shown in Fig. 2.

The extent of motion distortion is related to the vehicle’s velocity and scan rate.
Off-the-shelf one-axis lidar scanners typically take milliseconds to produce a scan
line (e.g., a little as 2 ms on SICK LMS 111), and at a speed of 1 m/s, the vehicle would
only have moved few millimeters during a scan. Relatively trivial in magnitude, the
motion distortion effect is generally not accounted for when working with a one-axis
scanner. In comparison, a two-axis scanner takes significant longer to produce a full
scan; depending on the lidar, it can take anywhere from 100 ms to minutes. Hence, the

Nodding
Mirror

Polygonal 
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Fig. 2 Simplified illustration of the Autonosys lidar’s two-axis scanning mechanism [18] (left)
and geometric motion distortion effect as seen in intensity images (right). Note that in the intensity
images, the rover was turning left during both scans. Different skewing effects of the rectangular
checkerboard were caused by the nodding behaviour of this lidar. The raw intensity information
provided by the lidar is a function of the emitted beam energy, range, target reflectance and its surface
orientation with respect to the lidar. See McManus et al. [13] for details on how our intensity images
are assembled
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effect of motion distortion is no longer inconsequential. For our experiment, we have
selected Autonoys’ LVC0702 two-axis scanning lidar over the well-known Velodyne
HDL-64E for its higher (and adjustable) vertical scan resolution. At its 2 Hz scan
setting, the lidar produced intensity images that still allow for reliable SURF feature
extraction and matching with a nominal rover speed of 0.5 m/s as demonstrated by
McManus et al. [14].

To achieve accurate VO estimates despite lidar motion distortion, this paper pro-
poses an algorithm that explicitly compensates for motion distortion by accounting
for the exact measurement time of each lidar return, and still remains computationally
tractable using a novel pose interpolation scheme. While many other pose interpo-
lation schemes have been proposed in the past, to our knowledge this is the first one
that cleanly handles rotations, and at the same time allows for derivation of analytical
Jacobians that are used during a bundle adjustment nonlinear optimization, resulting
in a more efficient algorithm than comparable systems using numerical Jacobians [4].

We validate the resulting motion-compensated VO algorithm using data produced
by a lidar simulator, and 525 m of real lidar data collected around midnight from a
planetary analogue site, shown in Fig. 1, located in Sudbury, Ontario, Canada.

The rest of the paper is organized as follows. Section 2 reviews related navigation
systems using lidar intensity data, other lidar-based systems that deal with lidar
motion distortion, and our approach at a high level. Section 3 describes our overall
VO pipeline, our proposed pose interpolation scheme, and its application to the VO
estimation problem. Our hardware configuration as well as simulated and field testing
results are documented in Sect. 4, followed by conclusions in Sect. 5 (Figs. 2, and 3).

2 Related Works

The intensity information is often available on laser rangefinders, though its quality
differs greatly depending on the model. Neira et al. [16] combined both range and
intensity data from a one-axis scanner using an Extended Kalman Filter (EKF) to
localize against a known indoor planar map. Guivant et al. [8] noted the distinctive-
ness of reflective marks in the intensity information, and used it to simplify outdoor
data association. A notable use of intensity information came out of the DARPA
Urban Grand Challenge; the Stanford racing team successfully used the intensity
information from a Velodyne lidar to localize against an intensity-based occupancy
grid map [10], providing the vehicle higher localization accuracy than what was
obtainable from GPS. Similar technology enabled Google’s self-driving car to com-
plete over 300,000 km of autonomous traverse [20]. It is worth noting that the Google
system tightly couples intensity-data-based localization with an inertially-aided GPS,
and requires a preprocessed map of the environment, neither of which are available
for space rovers.

As for lidar motion distortion, thus far there have been three primary approaches
to mitigate its impact on estimation accuracy:
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Fig. 3 Major processing blocks of our VO algorithm

1. Reducing acquisition time per scan: given the same platform velocity, spending
less time on each scan results in less motion distortion. Most lidars have a fixed
data acquisition rate, so this approach typically involves a trade-off between scan
rate and scan resolution.

2. Dewarping the point cloud directly using an external motion estimate such as
from an IMU.

3. Dewarping the point cloud iteratively by calculating a motion estimate using
the Iterative Closest Point (ICP) method and motion-distorted scan, then updat-
ing/dewarping the scan using the motion estimate. The process repeats until
the motion estimate converges. To speed up the algorithm, Bosse and Zlot [2]
preprocessed the dense point cloud into more sparse voxelized version, while
Moosmann and Stiller [15] used sub-sampled surface normals for scan matching.

We approach this problem a bit differently. Instead of viewing the entire scan as a
unit of acquisition and attempting to correct for motion distortion by dewarping the
scan, we view each lidar time-of-flight measurement as our base unit of acquisition.
This change of perspective effectively turns a motion-distorted scan (say containing
100,000 points) as viewed from a single pose into 100,000 accurate lidar measure-
ments taken from 100,000 slightly different poses. The large number of poses is
non-ideal; each pose in 3D space has six degrees of freedom (DOF). As the number
of poses increases, the solution quickly becomes computationally intractable.

Assuming that the platform travels with reasonably constant linear/angular veloc-
ity between two consecutive lidar scans, which is typically true for mobile ground
robots if the time between scans is short (in our case 0.5 s), it is then possible to
represent the large number of poses by interpolating between only two poses.

Faced with similar motion distortion effects in complementary metal-oxide-
semiconductor (CMOS) camera sensors and the need to represent large numbers
of poses, Forssén and Ringaby [4] choose to use SLERP [19], a quaternion interpo-
lation scheme commonly used in computer graphic animation. Since there exists no
simple way to incorporate SLERP analytically into the optimization process, Forssén
and Ringaby [4] resorted to using numerical Jacobians for nonlinear optimization.

Another alternative is to parameterize rotations using Euler angles, which are
subject to singularities. Moreover, interpolating Euler angles can lead to strange
results [7]. As such we set out to find a simple ‘linear’ interpolation scheme that not
only handles rotations cleanly, but also allows for derivation of analytical Jacobians
that can be used during the optimization process. Our scheme will be presented in
detail in Sect. 3.
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(a) (b) (c)

Fig. 4 Sample post-RANSAC feature tracks from four consecutive frames (three pairs). The outliers
that made it past RANSAC but were detected by the M-estimator are shown in yellow. Note the
feature tracks’ lengths change between consecutive frame-to-frame matching pairs, as a result of
the nodding behaviour of the scanning mechanism. a A downward scan matched to an upward scan.
b An upward scan matched to a downward scan. c Repeating pattern in (a)

3 System Description

The data flow in our VO algorithm, shown in Fig. 3, is similar to its stereo-vision
counterpart, and is nearly identical to the system presented in [13]. We no longer
use stereo geometry to extract 3D information as this is directly available in the lidar
data. In brief, we extract and match sparse SURF features in consecutive pairs of
lidar intensity images, introduce the associated range images to obtain 3D feature
locations, run RANdom SAmple Consensus (RANSAC) to reject outliers, and then
perform a bundle adjustment nonlinear optimization to determine pose change from
frame to frame. We record timestamps for every laser return, which enables pose
interpolation inside the frame-to-frame maximum-likelihood solution. Moreover,
with motion distortion, we find it necessary to relax the RANSAC matching threshold
to avoid throwing away valid feature matches that are temporally far apart. At the
same time, this change does allow more outliers to pass RANSAC. We handle these
remaining outliers using a Geman-McClure M-estimator during iterative nonlinear
optimization. A typical set of post-RANSAC feature tracks is shown in Fig. 4. The
most significant change occurs inside the formulation of the maximum-likelihood
solution, to which we will devote the remainder of this section.

3.1 Problem Setup

Our VO algorithm is essentially a frame-to-frame bundle adjustment technique that
solves for the following incremental variables:

rk+1,k
k : translation of camera pose k + 1 relative to pose k, expressed in frame k,

Ck+1,k : rotation matrix of camera pose k + 1 (from pose k to pose k + 1),

p j,k
k : position of landmark j relative to pose k, expressed in frame k,
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where j = 1 . . . J . After calculating the incremental transforms, we can compose
them to obtain metric pose estimates with respect to the initial coordinate frame.
Thus from here, we will focus on solving for the incremental variables.

The measurement error term is given by

e jl(r
l,k
k , Cl,k, p j,k

k ) := y jl − f
(

Cl,k(p
j,k
k − rl,k

k )
⎧

, ∀( j, l)

where y jl is the measured quantity (measured at time tl ∈ [tk, tk+1], l = 1 . . . L) and

f(·) is a nonlinear camera model. We seek to find the values of Ck+1,k , rk+1,k
k , and

p j,k
k to minimize the following objective function:

J (x) := 1

2

⎨

j,l

e jl(r
l,k
k , Cl,k, p j,k

k )T R−1
jl e jl(r

l,k
k , Cl,k, p j,k

k ), (1)

where x is the full state that we wish to estimate (pose and landmarks) and R jl

is the symmetric, positive-definite covariance matrix associated with the ( j, l)-th
measurement. The usual approach to this problem is to apply the Gauss-Newton
method [6]. The added challenge here lies in the fact that our state variables are at
times tk while our measurements are at times tl , which do not line up. Our approach
will be to ‘linearly’ interpolate poses between the tk times.

3.2 Interpolation Strategy

In this section we present the necessary formulation to implement our algorithm.
Due to the paper length restriction, we refrain from going into detailed background
and derivation. First we define the interpolation variable, αl ∈ [0, 1], as

αl := tl − tk
tk+1 − tk

. (2)

Recognizing that we can write any rotation matrix using the exponential map,

C = e−φa× = e−φ×
,

where φ is the angle, a is the unit-length axis, φ := φ a, and (·)× is the skew-
symmetric operator, we then define our interpolation of rotation variables to be

Cl,k := Ck+1,k
αl = e−αlφ

×
k+1,k . (3)

Here we are effectively just scaling the angle of rotation by αl and leaving the
axis untouched. This is not the only way we could define the interpolation, but it
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is a notationally simple one that avoids singularities. Trivially, we interpolate the
translation variable according to

rl,k
k := αl rk+1,k

k . (4)

It is easy to see that αl = 0 implies Cl,k = 1 (identity matrix) and rl,k
k = 0, and

αl = 1 implies Cl,k = Ck+1,k and rl,k
k = rk+1,k

k .

3.3 Perturbing Interpolated Poses

In order to linearize our error terms, we perturb the pose variables according to

Ck+1,k = eδφ×
k+1,k C̄k+1,k, (5)

rk+1,k
k = r̄k+1,k

k + δrk+1,k
k , (6)

whereupon it can be shown (derivation not included due to space constraints) that
the interpolated variables can be perturbed according to

Cl,k =
(

1 − αl
⎡
Φl δφk+1,k

⎣×⎧
C̄l,k, (7)

rl,k
k = r̄l,k

k + αlδrk+1,k
k , (8)

p j,k
k = p̄ j,k

k + δp j,k
k , (9)

where

C̄l,k := C̄k+1,k
αl

,

r̄l,k
k := αl r̄

k+1,k
k ,

Φl := S
⎡
αl φ̄k+1,k

⎣
S
⎡
φ̄k+1,k

⎣−1
,

S (φ) := sin φ

φ
1 +

⎤

1 − sin φ

φ

⎦

aaT − 1 − cos φ

φ
a×,

and φ̄k+1,k can be determined from C̄k+1,k exactly and should not be near a singularity
so long as the rotation is not large. In the next section we will use these perturbations
to linearize our error terms.

After solving for the incremental quantities at each iteration of Gauss-Newton,
we will update the mean quantities according to the following update rules:
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C̄k+1,k ← e−δφ×
k+1,k C̄k+1,k,

r̄k+1,k
k ← r̄k+1,k

k + δrk+1,k
k ,

p̄ j,k
k ← p̄ j,k

k + δp j,k
k .

3.4 Linearized Error Terms

The last step is to use our perturbed pose expressions to come up with the linearized
error terms. Consider just the first nonlinearity before the camera model:

p j,l
l := Cl,k

(
p j,k

k − rl,k
k

⎧
.

Inserting (7), (8), and (9) and dropping products of small terms we have

p j,l
l ≈

(
1 − αl

⎡
Φl δφk+1,k

⎣×⎧
C̄l,k

(
p̄ j,k

k + δp j,k
k − r̄l,k

k − αlδrk+1,k
k

⎧

≈ C̄l,k

(
p̄ j,k

k − r̄l,k
k

⎧

︸ ︷︷ ︸

p̄ j,l
l

+
⎛
−αlC̄l,k αl p̄

j,l×
l Φl C̄l,k

⎝

︸ ︷︷ ︸
=:D jl

⎞

⎠
δrk+1,k

k
δφk+1,k

δp j,k
k





︸ ︷︷ ︸
=:δx jl

= p̄ j,l
l + D jl δx jl .

Inserting this into the full error expression we have

e jl(x̄ jl + δx jl) ≈ y jl − f
(

p̄ j,l
l + D jl δx jl

⎧

≈ y jl − f
(

p̄ j,l
l

⎧

︸ ︷︷ ︸
=:ē jl

− F jlD jl
︸ ︷︷ ︸
=:−E jl

δx j,l

= ē jl + E jl δx jl ,

where

F jl := ∂f
∂p

∣
∣
∣
∣
p̄ j,l

l

.

We can then insert this approximation into the objective function in (1), causing
it to become quadratic in x, and proceed in the usual Gauss-Newton fashion, being
sure to update our rotation variables properly at each iteration.
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4 VO Algorithm Test

Testing of the algorithm was conducted in two stages:

1. Using data produced by a custom lidar simulator, which forms a controlled envi-
ronment and provides 6 DOF groundtruth information.

2. Using real lidar data collected from a planetary analogue site in complete darkness,
demonstrating the lighting-invariant aspect of the system, as well as its actual
performance in an outdoor unstructured 3D environment. Groundtruth is provided
by DGPS.

At each stage we will compare the VO estimates with and without motion com-
pensation against the groundtruth.

4.1 System Testing using Lidar Simulator

The purpose of testing with simulated data was to validate the algorithm as much
as possible in a controlled environment. We configured the lidar simulator using
parameters from a real scanning laser rangefinder (see details in Sect. 4.2). This
included giving it the identical scan resolution of 480 × 360 pixels and the scanning
frequency of 2 Hz, as well as the exact same scanning pattern caused by the nodding
mirror inside the real sensor (see Fig. 2).

During the simulation, the rover was given a sinusoidal trajectory with amplitude
0.25 meters in the xy-plane. Yaw heading angle was tangential to the xy planar
trajectory.
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Fig. 5 VO estimates using simulated lidar data. The estimated rover track with motion compensa-
tion is smoother and accumulates error at a much lower rate. a Groundtruth versus estimates from
first 5 s of traverse. b Euclidean error over traversed distance
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Fig. 6 VO estimation errors in all 6 DOF. Note that during estimation, attitude was represented
using a rotation matrix, which is decomposed into roll, pitch, and yaw here for comparison against
groundtruth. a Position estimation error. b Orientation estimation error

As shown in Fig. 5, the VO estimate without motion compensation struggled
to match with the groundtruth; a distinctive sawtooth-shaped estimate is clearly
visible in the xz-plane as a result of motion distortion. On the other hand, the VO
algorithm with motion compensation produced a smooth estimate that closely follows
the groundtruth. Figure 6 provides 6 DOF error plots to further demonstrate the
contrast in quality between the two estimators. Note the small sinusoidal error in
yaw angle even with motion compensation, indicating that the interpolation-based
motion compensation is not sufficient to completely capture a nonlinear sinusoidal
motion, which is expected.

4.2 Hardware Description

Our field experiment was carried out using a ROC6 skid-steered rover, an Autonosys
LVC0702 lidar sensor, and a differential GPS for groundtruth positioning. The con-
figuration is shown in Fig. 7a.

The Autonosys lidar employs a unique two-axis scanning system (see Fig. 2).
While the horizontal scanning direction is consistent, a nodding-mirror-based vertical
scanning mechanism switches scanning direction after each scan to avoid the need
for quick return. As a result, the motion distortion in adjacent scans has completely
opposite distortion effects, as shown in Fig. 2. With a field of view (FOV) similar to
traditional stereo cameras, this lidar is also referred to as a lidar video camera by the
manufacturer, capable of producing 480 × 360 pixel lidar scans at 2 Hz. The lidar
sensor has a horizontal FOV of 90 degrees, and vertical FOV of 30 degrees. In order
to maximize valid lidar returns, the sensor was aimed 15 degrees down, giving it an
effective vertical FOV from −30 to 0 degrees.



338 H. Dong and T. D. Barfoot

GPS Antenna
AC Generator

ROC6 Rover
Autonosys Lidar

25 meters

North
Seg. 1 Start
23:35:05

Seg. 1 End
23:45:30
Seg. 2 Start
23:46:09

Seg. 2 End
00:00:12

Courtesy of Google Earth - 46°25’22”N 80°50’58” W

Fig. 7 Appearance-based lidar VO experiment setup (left) and traverse path groundtruth (right)
a Hardware configuration. b GPS tracks of two traverse segments used for VO testing and their
associated collection times

Since it was nearly impossible and dangerous for a human operator to pilot
the robot in complete darkness, all the data used in this section were collected
autonomously; during the daytime, the path was driven once manually, and repeated
at night autonomously at a nominal speed of 0.5 m/s using VT&R [14]. The data
used in this paper were logged as a byproduct of this unrelated test. The traversed
path is shown in Fig. 7b.

Segment 1 is 225 m in length, and contains mostly a long smooth traverse and
gradual turns. There is one direction switch in the latter half of the traverse. Segment 2
is 300 m in length, and contains many sharp turns and more elevation changes. There
is also a three-point turn in the middle of this traverse.

4.3 Field Testing Results

As shown in Fig. 8, the VO estimator with motion compensation performed better
qualitatively in both traverse segments than the estimator that does not address motion
distortion. Closer inspection of the Euclidean error plots (see Fig. 9) reveals that the
motion-compensated case has much lower error in segment 2 than in segment 1.
The Euclidean-error-to-distance-travelled ratio remains under 5 % on segment 2 as
compared to 7 % on segment 1, despite the fact that segment 2 was anecdotally
a more challenging traverse. From the VO estimate result of segment 1, we can
see that while the incremental heading estimate appears to be accurate, there was
a gradual accumulation of heading error. As the attitude estimate drifted, the error
grew superlinearly, similarly to stereo-camera-based VO results reported by Lambert
et al. [9]. The direction switches and heading changes in segment 2 incidentally had
a net effect of partially cancelling estimation error in different parts of the traverse,
therefore resulting in a better VO estimate.
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Fig. 8 VO estimates of the two traverse segments in Fig. 7b. The estimator without motion compen-
sation severely underestimates both rotational and translational changes a Segment 1. b Segment 2
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Fig. 9 Euclidean estimation error vs. traverse distance plots, showing the cumulative pose error
grows significantly slower with motion compensation. a Segment 1. b Segment 2

As for the reason behind why VO without motion compensation performed much
worse in segment 2, we can explain it by zooming in on short stretches of traverse,
shown in Fig. 10. The estimate exhibited a choppy sawtooth shape due to motion
distortion, and as a whole underestimated both rotational and translational motion.
In contrast, the estimate with motion compensation was smooth and closely followed
the groundtruth. This agrees with our earlier observation made using simulated lidar
data.

Another source of error is the assumption of constant velocity between poses
previously introduced by our pose interpolation scheme. Since our formulation only
estimates one pose placed at the center of each scan, it is insufficient at times to fully
capture the motion of the rover in a rough terrain (e.g., when driving over a rock).
This error can be mitigated by reducing the temporal spacing between poses (similar
to higher sampling rate in analogue to digital conversion).
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Fig. 10 Close-ups of segment 2. In the estimates without motion compensation, the sawtooth-
shaped error previously observed during simulation is clearly visible at this scale. a Sharp turn
located at (−30 m, 25 m) in segment2. b Three-point turn located at (−75 m, −5 m) in segment 2

Currently, the system is not able to correct orientation error accumulated over
time as the estimates produced by VO are incremental in nature. Lambert et al.
[9] demonstrated with stereo-based VO that by continuously incorporating absolute
orientation measurements from a inclinometer and a sun sensor, highly accurate
metric VO can be expected over multi-kilometer traverses during the daytime. Given
the lidar-based VO’s ability to operate in complete darkness, a natural extension of
this work is to fuse absolute orientation measurements available at night; we are
currently working towards using a star tracker [3].

5 Conclusion

We have presented an improved appearance-based lidar navigation system that
exhibits the computational efficiency of sparse visual techniques, typically asso-
ciated with stereo cameras, while overcoming the lighting dependence of traditional
cameras. The contributions of this work include:

1. A novel pose interpolation strategy based on the exponential map that allows
for derivation of analytical Jacobians used during a bundle adjustment nonlinear
optimization.

2. A VO algorithm based on #1 that compensates for motion distortion in lidar scans
acquired during continuous vehicle motion.

3. Testing of #2 using a simulated lidar dataset and over 500 meters of experimental
data collected from a planetary analogue environment with a real scanning laser
rangefinder in complete darkness.

Our results demonstrate clear improvement in the VO estimate by compensat-
ing for the motion distortion effect. We obtained 5–7 % linear error growth in
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hundred-meter-scale traverses during our field experiment using only lidar data and
no other sensor information. This work can be further improved by carrying out
global minimization over a small set of scans and/or introducing additional attitude
sensors, such as an inclinometer or star tracker into the system. Furthermore, we
are interested in moving beyond linear interpolation, as a spline-based interpolation
approach may better approximate the nonlinear motion of the robot [5, 21].

Finally, any estimation problem in which there is a large collection of sensor data
with distinct measurement times can be solved using far fewer poses/variables by
interpolating poses. With new sensors producing measurements at higher and higher
rates, and the fact that it may not always be possible to trigger/synchronize different
sensors, the proposed interpolation scheme and its associated derivation could be
useful for a general set of problems.
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Modeling and Calibrating Visual Yield
Estimates in Vineyards

Stephen Nuske, Kamal Gupta, Srinivasa Narasimhan and Sanjiv Singh

Abstract Accurate yield estimates are of great value to vineyard growers to make
informed management decisions such as crop thinning, shoot thinning, irrigation and
nutrient delivery, preparing for harvest and planning for market. Current methods are
labor intensive because they involve destructive hand sampling and are practically
too sparse to capture spatial variability in large vineyard blocks. Here we report on an
approach to predict vineyard yield automatically and non-destructively using images
collected from vehicles driving along vineyard rows. Computer vision algorithms
are applied to detect grape berries in images that have been registered together to
generate high-resolution estimates. We propose an underlying model relating image
measurements to harvest yield and study practical approaches to calibrate the two.
We report on results on datasets of several hundred vines collected both early and
in the middle of the growing season. We find that it is possible to estimate yield to
within 4 % using calibration data from prior harvest data and 3 % using calibration
data from destructive hand samples at the time of imaging.

1 Introduction

Harvest yield prediction is critical to any vineyard grower for deciding when and how
to make adjustments to their vines to optimize growth, for preparing a grower for
the harvest operation, for shipping their crop, storing their crop and also selling their
crop on the market. The typical process of estimating yield is for workers to manually
sample a small percentage of the vineyard and extrapolate these measurements to
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the entire vineyard. The manual practice is labor intensive, expensive, inaccurate,
spatially sparse, destructive and riddled with subjective inputs.

Vineyard managers currently do not have the information they require to make
informed decisions on their operations with accuracy and precision. We present
technology that can make dense predictions of harvest yield efficiently and automat-
ically using cameras. Here we report results of an approach to automatically detect
and count grapes to forecast yield with both precision and accuracy. The approach
is to take conventional visible light cameras through a vineyard to image the vines
and detect the crop and predict yield, see Fig. 1b.

Visually detecting grape berries is difficult because often there is a lack of color
contrast to the background, which is often similarly colored to the grapes, (Fig. 1a).
We specifically address the issues of lighting and lack of color contrast, by using
shape and texture cues for detection. Also not all berries are visible and therefore the
camera makes incomplete measurements that need to be calibrated.

Preliminary results of our approach were reported in Nuske et al. [9], where we
presented a method to detect berries and count berries to correlate against yield and
we extend our prior work in the following ways:

1. we study the underlying model relating the image measurements of the grape
berries to the harvest weight

2. we demonstrate two different approaches to calibrate our image berry measure-
ments to harvest yield

3. we present experimental results with image data collected at various stages during
the growing season and in both wine and table-grape vineyards

We deployed our method on three different vine varieties and conducted experiments
in which manual per-vine harvest weights were collected and used as ground truth
to evaluate our automated yield measurements. The size of the experiment includes
860 individual vines, of three different varieties and vineyards over a linear distance
of 2.5 km. Our method predicts weight with approximately 4 % error of the overall
actual harvest yield and approximately 8 % error of the harvest weight for individual
vineyard rows.

2 Related Work

Current practices to forecast yield are inaccurate because of sampling approaches
that tend to adjust towards historical yields and include subjective inputs [2]. The
calculation of final cluster weight from weights at véraison use fixed multipliers from
historic measurements [12]. Unfortunately, multipliers are biased towards healthier
vines thus discriminating against missing or weak vines and multipliers for cluster
weights vary widely by vineyard, season and variety.

Sensor-based yield estimation in vineyards has been attempted with trellis ten-
sion monitors, multispectral sensors, terahertz-wave imaging and visible-light image
processing. A dynamic yield estimation system based on trellis tension monitors
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Fig. 1 Photos of the vineyards and equipment from our experiments. Equipment mounted on an
aluminum frame fixed on the back tray of a Kawasaki Mule farm utility vehicle. The sensing
equipment used is a Nikon D300s color camera facing sideways from the vehicle detecting the fruit,
an AlienBees ARB800 ring flash mounted around the lens of the color camera illuminating the scene,
a PointGrey BumbleBee2 stereo camera facing back down the row tracking the vehicle motion.
Images collected of the vines are processed to detect and measure the vine fruit. a Chardonnay
vineyard used in experiments. b Sensors used in experiments. c Raw images. d Detected berries

has been demonstrated [1] but it requires permanent infrastructure to be installed.
Information obtained from multispectral images has been used to forecast yields with
good results but is limited to vineyards with uniformity requirements [8]. A proof of
concept study by Federici et al. [5] has shown that terahertz imaging can detect the
curved surfaces of grapes and also has the potential to detect these through occluding
thin canopy. The challenge for this approach is to achieve fast scan rates to be able
to deploy the scanner on a mobile platform.
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Small scale yield estimation based on simple image color discrimination has been
developed by Dunn and Martin [4]. This approach was attempted on Shiraz post-
véraison (i.e. after color development, very close to harvest) in short row segments.
The method would not be applicable for the majority of real world examples where
the fruit appears over a background of similarly-colored leaves, as is the case in white
grape varieties and in all varieties before véraison. Other recent small scale experi-
ments in vineyard work is Dey [3] present a method for classifying plant structures,
such as the fruit, leaves, shoots based on 3D reconstructions generated from image
sequences which unlike our work is sensitive to slight wind whilst imaging. Other
crop detection based on computer vision methods using color pixel classification or
shape analysis has been attempted on various fruit types—Jimenez et al. [6] provides
a summary of fruit detection work, Singh et al. [10] present a method for detecting
and classifying fruit in apple orchards and Swanson et al. [11] use the shading on
the curved surfaces of oranges as a cue for detection.

Our prior work, Nuske et al. [9], demonstrated how to detect berries similar in
color to the background of leaves using a combination of image processing techniques
including a radial symmetry transform and classification of texture properties. In the
previous section we list the extensions to our earlier work.

3 Modelling Harvest Yield with Image-Based Measurements

Viticulturalists have long studied the process of predicting the size of the harvest
yield and have developed models of the various yield components [2]. In the most
basic form, the weight of the harvest (Wh) can be expressed as a product of the
number of berries (Nb) and the mean weight of the berries (Wb).

Wh = NbWb (1)

Once berry set has passed the number of berries can be considered constant
throughout the remainder of the season, whereas the mean berry weight will substan-
tially increase in size. The standard practice for generating accurate yield predictions
is to measure the number of berries early in the season and use historic information
of the mean berry weight to project to a harvest estimate. Using historical records of
mean berry weight will introduce error into the projection as the mean berry weight at
harvest will vary from year to year. However the variation is berry weight is small and
is known only to account for 10 % of the year-to-year variations in harvest yield. The
berry count contributes to the remaining 90 % [2] of year-to-year yield variations.

Our approach to predict the yield at harvest time is also focussed on measuring
the number of berries and we do so using cameras mounted on vehicles driving
collecting images of the vines. From a single input image we use our visual berry
detection algorithm detailed in Nuske et al. [9] for calculation of the number of
berries. Often the canopy of the vines visually similar to the fruit. To detect the fruit
we find possible berry locations based on their shape for robustness and classify
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based on texture and color. The method is to look for radially symmetric points in
a fixed, pre-decided radius range followed by color and texture based classification.
Fig. 1d presents examples of the berries being detected by our algorithm.

The number of berries found by our visual berry detection algorithm (N d
b ) is the

measurement that we pass to a yield forecasting function, f (·), which outputs an
estimate (N̂b) of the actual berry count:

N̂b = f (N d
b ) (2)

Multiplying our estimated berry count by the expected berry weight at harvest
(Wb) gives our yield prediction.

To generate accurate estimates, the function f must model several biases that are
inherent to the visual detection process. In Nuske et al. [9] we treated the biases
together as a single first order linear factor (k):

N̂b = f (N d
b ) = 1

k
N d

b (3)

Here in this work we study the individual causes of the bias in an attempt to
better understand the system as a whole. First, we introduce three different types of
occluders that cause many berries to not be visible to the camera and bias the counts:

1. Self-occlusions (ks): Berries hidden behind berries within the same grape cluster
2. Cluster-occlusions (kc): Berries hidden behind other grape clusters
3. Vine-occlusions (kv): Berries hidden behind the leaves and shoots of the vine

All of these physical biases can be seen in Fig. 1. There are also biases in the visual
detection process. In Nuske et al. [9] the performance of the detection algorithm was
analyzed to find that a fraction of the berries visible to the camera are not detected
by the algorithm and also small fraction of times the algorithm falsely reports a
berry where there was not, and these two factors combined introduces a detection
bias (kd ). Further, when combining detections from several overlapping images, the
system is susceptible to errors where berries are either double-counted or mistakenly
not counted, introducing a mis-registration bias, kr .

The naive approach is to combine these bias terms as linear factors as follows:

f (N d
b ) = N d

b

kskckvkdkr
(4)

Later, in the results section, we attempt to isolate the five bias parameters aiming
to deepen our understanding of the origins of the error in our visual estimation
framework.
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3.1 Estimating Self-Occlusions

In our prior work [9] we used the visible berry count as a prediction of the cluster
size, assuming the visible berry count is proportional to the total berry count:

Nb ∝ N d
b (5)

In the results section we study the visible berry count in controlled experiments
and also in an attempt to improve the measurement of the occluded berries in a
cluster, we propose two potential modifications.

The first alternative measurement we propose is to take the convex hull formed
by all the berries in the cluster. Assuming the cluster has uniform density, k, and an
average thickness of the grape cluster to be d, we multiply the area A to this fixed
cluster depth, and normalize with the average berry radius Rb.

Nb ∝ d
A

R2
b

(6)

The second alternative to measuring the size of a cluster is to extend the convex
hull model by predicting the berries occluded by the visible layer of berries using
an ellipsoid model. A grape cluster’s volume can be approximated with an ellipsoid
cutting off the image plane as an ellipse. We find the best fit ellipse for the berry center
locations with same normalized second central moments. Given the semi-axes of the
ellipse in pixels R1 and R2, with R1 ≥ R2, volume of the corresponding ellipsoid
would be proportional to volume occupied by the berries (Bv) in the cluster. Using
the average berry radius (Rb) of the cluster, we can hence calculate the total number
of berries occupied by the cluster:

Vc ∝ 4

3
πr1r2

2

Nb = Vc/(
4

3
πr3

b ) (7)

We study these three approaches to measuring grape cluster size in controlled
laboratory tests in the results section. In the vineyard experiments we focus just
on using the visible berry count will evaluate the alternatives in future vineyard
experiments once we have developed a method to accurately segment and separate
neighboring clusters.

4 Calibrating Image Measurements to Harvest Yield

Here we take into consideration different procedures that are possible for calibrating
our image measurements. In our prior work [9] we demonstrated that computing
a ratio between berries detected and the harvested fruit on one portion of data is
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sufficient for predicting yield on another portion of data by the applying a linear
ratio to the image measurement. In practice, knowing the mean occlusion ratio of a
given vineyard would be needed at the time of imaging, because it would defeat the
purpose of predicting yield if it were necessary to wait for the harvest data before it
were possible to measure the occlusion ratio. We propose two methods for acquiring
the calibration ratio at (or before) the time of imaging, well in advance of harvest.

4.1 Calibration of Occlusion Ratio from Destructive Hand Samples
at Time of Imaging

One approach takes a small number of destructive hand samples in the vineyard at
the time of imaging. The vines are imaged first and then on a small sample of vines
the fruit is destructively removed and weighed. The hand fruit weight is projected
to harvest using the ratio between current berry weight and expected berry weight
at harvest. Taking the hand estimate against the image berry count for these specific
vines produces an occlusion ratio that can be estimated well in advance of harvest, and
applied to predict yield of the remaining vines that were not destructively sampled.

Figure 2a shows a satellite image of the Chardonnay vineyard, highlighted with red
to indicate the six vineyard rows that were imaged in our experiment. On bottom row,
purple marks indicate the 15 vines in which the hand samples used for calibration.
In Fig. 2b a graph shows the relationship between the hand fruit samples collected
the day after imaging and the image berry counts. We derive a calibration function
from this relationship and predict the crop weight based on the image berry counts
of the remaining vines that were not a part of the destructive hand sample.

Fig. 2 Satellite image of the Chardonnay vineyard. Highlighted with red to indicate rows that were
imaged by our setup and marked with purple on the bottom row to indicate where destructive hand
samples were measured the day after imaging. Overall six rows were imaged totaling 665 vines, and
15 vines on the bottom row were destructively hand sampled. Graph showing calibration between the
hand sample and the corresponding image berry counts. a Satellite image of Chardonnay vineyard.
b Calibrating with destructive hand sample
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4.2 Calibration of Occlusion Ratio from Prior Year Harvest Data

The second method we evaluate for calibrating the image measurements is to use
harvest data from prior growing seasons. We have analyzed harvest data from vines
trained and prepared in a similar manner from year to year and noticed consistencies.
The advantage of calibrating from a prior harvest season is that hand samples are not
necessary. The method simply takes a total measurement of the fruit harvested and
compared against the berry count detected in the imagery.

We compute calibration functions from datasets collected in 2010 and normalize
the calibration based on the mean berry weight at harvest. We then apply the cali-
bration to the image berry counts we collected a year later in 2011 in a vineyard of
a different varietal. In the following results section we compare the accuracy of the
various approaches to predict harvest yield.

5 Results

5.1 Vineyard Datasets

We deployed our method on three different vine varieties and conducted experiments
in which manual per-vine harvest weights were collected and used as ground truth to
evaluate our automated yield measurements. The size of the experiment is significant,
including 860 individual vines, totaling 2.5 km vines, including following varieties:
Traminette, Riesling and Chardonnay. See Table 1 for details of the different datasets,
and see Fig. 1b for an example of the equipment we use to image the vines. Equipment
mounted on an aluminum frame fixed on the back tray of a Kawasaki Mule farm utility
vehicle. The sensing equipment used is a Nikon D300s color camera facing sideways
from the vehicle detecting the fruit, an AlienBees ARB800 ring flash mounted around
the lens of the color camera illuminating the scene, a PointGrey BumbleBee2 stereo

Table 1 Vineyard dataset description

Variety Location Date Trellis Time before
harvest at
imaging
(days)

Mean berry
weight at
imaging (g)

Num. vines

Traminette Fredonia,
NY

Sep. 2010 VSP 10 1.6 88

Riesling Fredonia,
NY

Sep. 2010 VSP 10 1.5 124

Chardonnay Modesto,
CA

June 2011 Semi-VSP 90 0.15 648
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camera facing back down the row tracking the vehicle motion and a synchronization
box generating pulses to keep the two cameras synchronized. We also collected a
small dataset in controlled laboratory for studying self-occlusions, as described in
the following section.

To generate a measure for each vine we use the stereo camera using a visual odom-
etry algorithm [7] to track position along the row. We reduce drift in the odometry
by detecting the stakes supporting the trellis infrastructure which are fixed at known
spacings and provide an extra source of positioning. We detect the stakes by simple
image processing searching for near verticle lines in the images. Finding the stakes
in neighboring frames enable us to triangulate the stakes location and depth from the
camera. We assume the fruiting zone lies in a single plane at the depth of the stakes.
Using this assumption we can compute the overlapping content of the images and
crop images to avoid double counting the fruit.

5.2 Evaluating Berry Self-Occlusion

First, we evaluate the occlusion of berries within a cluster by the outer layer of
clusters (kb) and study some approaches to potentially improve the estimate of the
number of hidden berries. For this specific study, we use a controlled laboratory
environment where we collected images individually of 56 grape clusters. We use
ripe clusters of the Thompson Seedless variety. For each cluster we collected several
images from different orientations, at a fixed distance, and collected a weight and a
count of the number of berries. In the laboratory dataset we do not use our automatic
detection algorithm and instead hand mark all berries visible within the images
to replicate a perfect detection algorithm and remove any bias from errors in the
detection algorithm (kd and kr ). Also, in the laboratory dataset there are no biases
from the vine (kv) or from other clusters (kc) and hence we can isolate and study the
bias from self-occlusions (kb).

Initially we compare the total berry count (gathered manually) of each cluster
against its weight, Table 2. The correlation score for total berry count to weight is
r2 = 0.95 and mean squared error from least squares fit of 9.3 %. We consider this
an upper bound for the yield predictions as the best yield prediction we could achieve
is accurately knowing the berry count.

Table 2 Measurement correlation to fruit weight

Measure-type r2 correlation Mean squared error (%)

Total berry count 0.95 9.3
Visible berry count (Eq. 5) 0.88 15.4
Ellipsoid model (Eq. 7) 0.85 17
Convex hull model (Eq. 6) 0.92 13.7
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Next we study different image measurements starting with the visible berry count
and present the results in Table 2. The visible berry count correlates with r2 = 0.88
which provides a mean squared error of 15.4 %. The error is just 6 % greater than the
total berry count and indicates a similar fraction of visible berries is present for small
clusters as with large. The ellipsoidal model has a correlation score of r2 = 0.88 and
the lowest mean squared error of 17 %. Even though the ellipsoidal model attempts
to predict the occluded berries behind the visible layer of berries, it correlates with
a lower score than the visible berry measure. The ellipsoidal model could be less
accurate because it violates one of our assumptions; the clusters do not have uniform
density or the clusters are not ellipsoidal, or the model could suffer from errors in
the designation of the cluster contour.

The final image measurement model we evaluate is the convex hull in Table 2. The
correlation measures at r2 = 0.92 which is the best of the three image measurements
we study. One possible reason for the high correlation is because it encompasses the
entire cluster contour, therefore it includes a measure of the partially visible berries
as well as the completely visible berries, thus being more accurate than visible berry
count alone. Despite finding that the contour area in the image is more accurate
measure other than visible berry count, we do not yet deploy this measure outside the
laboratory environment. In the datasets collected in the vineyards, several clusters
are visible in each image and we have yet to develop a technique for successful
segmenting one cluster from another—a requirement of the ellipsoid and convex hull
models. Hence, at present we have only been able to demonstrate precise detection
of individual berries, regardless of which cluster they belong, and therefore in the
following vineyard results we consider just the visible berry count that our algorithm
provides. However, we have indicated with these laboratory tests an avenue for future
improvement of our fielded system.

5.3 Biases in Visual Measurement

Here we take data both collected in the vineyard and laboratory we attempt to segre-
gate the biases involved in the visual detection process. Table 3 presents a study of the
different visual estimation biases measured in the various datasets. The laboratory
dataset was used to estimate the self-occlusion parameter ks by manually counting
visible berries in the images and hand counting the total number of berries physically
pulling apart the clusters. The dataset showed that 46 % of the berries are visible to
the camera.

The visual detection bias kd was estimated by manually assessing false positive
and false negative detections of berries in images with the marked output of the
detection algorithm. The false positive and false negatives combined with the true
berry detections gave us the parameter kd . The detection algorithm is biased towards
under-counting the berries which was discovered in our prior work Nuske et. al [9]
and here we see between 25 % and 35 % fewer berries than are visible are reported
by the algorithm. The algorithm detected about 10 % fewer of the visible berries in
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Table 3 Biases in visual yield estimation (Sect. 3). Bias parameters are unit-less and standard
deviations where applicable are presented as percentages in brackets. Missing entries for the self-
occlusion parameter (ks ) are due to data not collected in a controlled environment in the vineyard
datasets, the other missing entries are for the biases not applicable to the laboratory dataset

Dataset
name

Mean berry
weight at
harvest (g)

ks kd kr kv ∗ kc

Riesling 1.5 - 0.74
(13.4 %)

1.0 0.29

Traminette 1.6 - 0.75
(10.7 %)

1.0 0.24

Chardonnay 0.9 - 0.65
(12.3 %)

1.03 (8.7 %) 0.31

Laboratory - 0.46 (22 %) - - -

the Chardonnay 2011 dataset which captured around 90 days from harvest when the
berries were much smaller. Similarly we take images marked by the detection and
image alignment algorithm and manually assess double-counting and mis-counting
berries between overlapping images. In the 2011 Chardonnay dataset the automatic
aligning algorithm was biased to slightly over-count berries by 3 %. In the 2010
datasets (Riesling and Traminette) we did not deploy our automatic alignment algo-
rithm, and instead manually cropped images to have zero overlap and hence we list
a bias of 1.0 here.

Finally, the bias from vine and cluster occlusions we have not experimentally
determined, but we combine the other bias factors, assume a similar self-occlusion
rate to the laboratory, use the mean berry weight at harvest and deduce the combined
effect of the terms kv and kc indirectly. We see here that there are significant occlusions
from the vine leaves, shoots and clusters occluding clusters with between two thirds
and three quarters of the fruit being occluded by these factors.

5.4 Yield Prediction Results

Now we present yield prediction results by applying our calibration approaches
described in Sect. 4, including calibration from destructive hand samples at the time
of imaging and also calibration from prior harvest data and compare average error
for the prediction of the individual vine weights of the Chardonnay dataset. After
discovering in the previous section that the visible berry count has the most accurate
correlation to yield in the vineyard datasets we use this as our image measure for the
following results. We take the Traminette and Riesling datasets, collected in 2010,
compute a calibration between image measure and yield, and apply to the Chardonnay
dataset from 2011. Figure 3a shows a comparison between the data collected in the
two vineyards after normalizing for respective berry weights. The graph shows that
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Fig. 3 Graphs demonstrating calibration from prior harvest data. After normalizing for berry weight
there is a trend between the 2010 and 2011 datasets. The calibration functions computed from the
2010 datasets applied to the Chardonnay image berry counts produces harvest predictions 12 weeks
prior to harvest. a Comparison of Traminette and Chardonnay datasets—normalized for berry
weight. b Predicting Chardonnay 2011 yield from 2010 calibration (lbs)

the Traminette and Riesling vines despite holding much less fruit, do have a trend
between the image berry counts in the Chardonnay data. We apply the Traminette
and Riesling calibration to the Chardonnay data and show the predicted weight in
Fig. 3b. This result demonstrates the prediction of harvest yield 12 weeks out from
harvest. We also evaluate calibrating using hand samples collected in the vineyard
at the time of imaging, see Fig. 2b.

The results of the calibration on the Chardonnay dataset are presented in Fig. 4a.
The errors are between 17 and 19 % for the different calibration approaches, with
the calibration from destructive hand samples slightly more accurate. We see that
some of the error averages out when comparing yield of entire rows, where the error
is now between 7 % and 8 %. In Fig. 4b we present the error for prediction of the
entire yield of the vines in the dataset. The hand calibration was most accurate at
3 % error and using calibration from the 2010 Traminette dataset had 4 % error. We
see an under-prediction of overall weight by 4.5 % using the 2010 Riesling dataset
calibration. It is apparent that despite average absolute per-vine errors of around
18 % for all approaches, the overall error is below 5 % indicating the individual vine
errors are well distributed and average out. For comparison in Fig. 4b we present
the estimate taken by extrapolating the hand samples alone, which is the traditional
industry practice, and was found to be the least accurate estimate with −13 % error.
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Fig. 4 Results on the prediction of harvest yield in the Chardonnay dataset. We evaluate the pre-
diction accuracy when calibrating using a destructive hand sample at the time of imaging compared
to calibrating using prior harvest data. We present two statistics in (a); the average absolute error
computed for individual vine predictions and the average absolute error for the estimate of row
weights. In (b) we present the error for prediction of the entire yield of the vines in the dataset. The
calibration from hand samples is slightly more accurate than the calibration from prior harvest data.
For comparison we present the estimate taken by extrapolating the hand samples alone, with is the
least accurate estimate with 13 % error. a Vine and Row Mean Error. b Overall Prediction Error

6 Conclusion and Future Work

We have demonstrated a method to automatically generate non-destructive, high-
resolution, yield predictions vineyards and shown practical approaches to calibrate
the measurements. We evaluate the system at both 10 days from harvest and 90
days, finding similar results, with the algorithm detecting only slightly less of
the visible berries earlier in the season. Of the two methods of calibrating image
measurements—using destructive hand samples at the time of imaging was slightly
more accurate at giving predictions within 3 % of harvest yield. Nevertheless cali-
bration from prior harvest data from a different varietal, albeit grown in a similar
vine trellis and training structure, gave only 4 % error.

In future work we will look to develop an approach to count grape clusters early in
the season, even before berries have formed, to give vineyard managers information
with maximum time before harvest to make the necessary adjustments to their vines.
We also look at extending the experimentation to more varietals and trellis structures.
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Abstract This research work is aimed at application of sensing and mapping
technologies that have been developed in mobile robotics, so as to perform equip-
ment measurements of forest trees. This research work utilizes a small sized laser
scanner and SLAM (Simultaneous Localization and Mapping) technology for the
problem of performing forest mensurements. One of the key pieces of information
required for forest management, especially in artificial forests, is accurate records
of the tree sizes and the standing timber volume per unit area. The authors have
made measurement equipment fore a pre-production trial which consists of small
sized laser range scanners with a rotating (scanning) mechanism of them. SLAM
and related technologies are applied for the information extraction. In the develop-
ment of SLAM algorithm for this application, the sparseness of the standing trees
and the inclination of the forest floor are considered. After performing the SLAM
and obtaining a map based on the data from several measurement points, we can
obtain useful information including a map of the standing trees, the diameter at chest
height of every tree, and the height at crown base (length of the clear bole). The
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1 Introduction

The motivation of this research work arises from the need for a labor-saving alterna-
tive that can perform the in forest measurements required for proper forest manage-
ment. The present authors have experience performing research work in other areas
of mobile robotics, and are now applying similar sensing and mapping techniques
and technologies into the problem of measurements. Although the field work of the
measurements are laborious, manual measurement is still undergoing. The standard
method employed for forest survey is the belt transect method (Fig. 1) [1]: e.g., which
is 30 m long and 10 m wide with a base line running up and down slopes in a survey
plot. Within the belt transect, the distance between every tree and the base line is
used to determine the trees’ location. Its diameter at the chest height and its height
at crown base (length of clear bole) are also measured. Currently, these measure-
ments must be performed manually with measuring tapes by a three person party.
The measured parameters are once recorded in a field notes by one person, while the
other two people measure the survey items. It takes at least 30 min for a unit area to
be measured. After taking measurement, the team inputs the data in an information
processing facility.

These data that are collected are processed to obtain the standing timber volume
and the growth rate of forest. Such human-intensive manual measurements for forest
survey are necessary and common in forest management throughout the world [2].
Even though a remote sensing approach, such as airborne measurement with laser
profiler, has been being utilized successfully in some specific cases [3–7], it is still
necessary to establish models of correspondence between tree measurement from
the ground and measurements from the air [8].

(a) (b)

Fig. 1 Manual measurement: a Measure the diameter of each tree within a sampling unit area using
a tape measure. b Measure the horizontal distance from the base linfe and its location on the base
line. Three people cooperate to perform the tree location measurements
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The main problem with performing measurement manually is that the task is so
time-consuming that it is intractable to cover all the targeted forests in Japan. The
Japanese government, as a country engaged in the Montreal Process that aims at
sustainable forest management, has set the forest monitoring points at 15,000 for
the whole of Japan, it is said that the number of the monitoring points is still not
enough to obtain sufficient data. Increasing the number of the point is desired, but it
is not often possible in reality because of insufficiency of budgets to employ enough
workers to perform the required measurements.

The authors consider that replacing such manual measurements with equipment
measurements is a good idea to improve the efficiency of the forest measurements.
Although an airborne approach (Nelson et al. [3] and enclosed references) is one
efficient method of equipment measurement, it can only provide a macroscopic view
that will not provide the required detailed observation. Yao et al. [9] already pointed
out such a problem and their institution - CSIRO proposes several ideas to gather
the forestry information on the ground in the forest. In Yao et al. [9], measurement
results by using an Echidna lider are presented. They placed the lider at 5 points in a
100m by 100m area and took point clouds as the primary measurement data. There
seems to be differing overlaps of the point clouds depending upon the measurement
locations. There are several other reports where a laser profiler is used in a forest (for
example Ref. [8]). However, many available profilers have in the past been expensive
and heavy. Such expensive and heavy infrastructure will thus not solve the budgetary
problem, and will not be portable enough for the required measurement task.

On the other hand, in field robotics, it becomes popular to scan the environment
using a small-sized light-weight laser scanner on a mobile robot. Such a laser scan-
ner is less expensive than the laser profiler. Furthermore, some appropriate SLAM
(Simultaneous Localization and Mapping) technologies which are detailed in Thrun
et al. [10] can be applied to estimate measured locations, to build a map, and to
assemble point clouds that are obtained by the laser scanner at several measured
locations. The authors considered that such sensing and mapping technologies for
mobile robots can be applied to the forest measurement problem. When we scan the
forest using the small laser scanner and obtain point clouds in many locations, the
assembled point clouds assembled by SLAM will provide shape and arrangement of
the trees, and will yield data of tree sizes and standing timber volume.

The authors propose the desired equipment as a rotating laser scanner at the top
of a pole. A person can easily carry this equipment in the forest. Once the person
stands the pole on the forest floor, they can collect a three dimensional scan there. The
person will repeat such a scanning technique at several locations to gather multiple
three dimensional point clouds within a sampling unit area in the forest. Since some
portions of the point clouds at different standing points will overlap, an ICP scan
matching algorithm such as in [11–13] for the registration of overlapped portions
can be applied to align all the obtained data to produce a 3D map of the forest.
In this paper, the authors propose a step by step matching algorism that takes the
sparseness of the standing trees into account before the application of ICP. The
proposed scan matching algorithm also takes the steepness of the slope of the forest
floor into account. Following the proposed idea, the authors built a scanner device
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(a) (b)

Fig. 2 A scanner device is illustrated in a An axle of the motor stands vertically followed by a
special crank. An axis coincident with laser rotation axle of the scanner will rotate in precession
by the rotation of the motor and crank mechanism. b The device is deployed for the field trial
measurements

and performed experiments in the forest. This paper reports the result of the 3D
mapping from the obtained data of the rotating laser scanner at several points in the
forest and the results of diameter measurement of trees in the map.

2 A Scanner and Measurement in the Forest

Figure 2 illustrates the scanner device. A small sized Hokuyo laser scanner UTM-
X002S whose planer view angle is 270 ◦ (0.6 ◦ per steps) is employed. The scanner is
placed on a stage driven by a motor and a crank (45 ◦ ) where the authors made use of
a mechanism proposed by [14]. This mechanism performs precession rotation along
the center axis which is coincident with the laser rotation axle so that the scanning
plane is swayed. In the experiments, the period of stage swaying is 2 seconds. During
one period of the swaying, 200 scans of the laser scanner are performed. One scan
consists of 440 points of the range data. However, only the 400 points of the range
data that corresponds to ±120 ◦ from the center of the scanner are used. A coordinate
system is defined on the scanner device such that origin is at the base of the device,
the x axis os toward the front, the z axis coincides with the motor axle and the y axis
forms the right hand coordinate system. The authors placed the scanner device whose
front, or x axis, looks up 15 ◦ from the horizontal level by adjusting the lengths of
the legs of the tripod. Therefore, the x − y plane of the scanner device also has an
angle of 15 ◦ from the ground.

Figure 3 illustrates the location where the scans of the environment are taken and
obtained point clouds of surface of the trunks in the forest. In the experiment of this
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(a) (b)

Fig. 3 Measured environment and locations in the sampled slope. Measured locations are numbered
from 1 to 5

paper, the authors set the baseline in the direction of the steepest slope at the sampled
area as shown in Fig. 3b. The steepness of the slope is 30 ◦ on average there. The
authors set the device from the lowest to the highest location in approximately at 5 m
interval along the base line of the slope. The locations where the device is placed are
illustrated with ’+’ and numbered from 1 to 5 in Fig. 3a. The front of the device is
facing in the direction of the base line (Fig. 2b).

3 ICP Considering the Slope and Sparseness of Standing Trees

For the purpose of so called scan matching, ICP [11–13] is a popular method for
aligning reference point clouds with current scans which are obtained from two
or more locations. After scanning the surroundings by a laser scanner, the authors
applied the ICP to the point clouds in planer forest and obtained enough performance
for the scan matching [15]. However, the same technique is applied in a forest with
a slopped floor, the matching performance in vertical direction deteriorates because
trees are still standing vertically and have less features on their trunks. Separation of
point clouds into tree trunks and undergrowth is also necessary. Therefore, the scan
matching process is designed and proposed as follows:

1. extraction of timbers from the point clouds in a current scan and a reference scan,
2. determine the correspondence between the timbers in the current scan and the

reference scan,
3. extraction of the slope ground level, and
4. application of ICP for the scans.
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(a) (b)

Fig. 4 Separation of point clouds into tree trunks and undergrowth

3.1 Extraction of Timbers

First a point cloud density histogram is obtained from a set of scan data of one location
by projecting onto the x − y plane of the scanner device. However, the points are
translated onto the log R, θ plane, where R = √

x2 + y2, θ = atan2(x, y) and
(x, y) is at the existing cloud point that z ignored. Figure 4a illustrates an example
histogram, where color presents the frequency of the cloud points—green presents
low frequency, blue mid and red high. When we see the histogram as a density
function of F(log R(θ), θ), high frequency is observed at specific θ for the part of
undergrowth. On the other hand, it is not observed at specific θ for the part of tree
trunk surface. Therefore, a filter is applied to reduce the density if high frequency
is observed at specific θ . An example result of the filtering is illustrated in Fig. 4b,
then, the tree trunk surfaces are extracted and identified.

A least square circle fitting is applied to each identified surface of the trunk in
the x − y coordinate and center location of the timber is obtained. The plot of such
points of the timber center on the x − y plane is named “timber center map”. The
timber center map could be seen as constellations which are used for the next step of
determining the correspondence between the constellation of the reference and the
current scans.

3.2 Determine the Correspondence Between Trees

When applying ICP, prior knowledge about the correspondence between the same
objects in the reference and current scan is helpful to avoid unexpected convergence
because of the local minima problem. For this purpose, the correspondence between
the trees in the tree trunk centroid map of the reference and current scans must be
established [16]. This process has similarities to matching the constellations in two
star charts.

The algorithm to make correspondence among the timbers is summarized as
follows (Fig. 5) :
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(a) (b) (c) (d)

Fig. 5 Determining correspondence between the tree trunk centers in the tree trunk centroid map
of the reference and the current scans a Timber locations of the reference scan b Timber locations
of the current scan c Sccess match of the two scans d Failed match of the two scans

1. Take three points of the timber center randomly in the tree trunk centroid map of
the reference scan and form a triangle.

2. Take three points of the trunk center randomly in the tree trunk centroid map of
the current scan and form a triangle.

3. Check whether the two triangles are congruent.
4. If the two are congruent, translate and rotate the current map so as to quadrate

the triangle in the reference scan with the one in the current scan. Calculate the
sum of squared distance between every center point of a trunk in the current scan
and a point in the reference scan within 100 mm of the point of the current scan.
Count the number of ’paired’ points to calculate the sum.

5. Iterate 1. to 4. to find smallest sum and larger the number of the paired points
in 4.

6. When found in 4., translation and rotation parameters are obtained and the pairs
are recognized as corresponding trunks in the reference and the current scans.

7. Use the translation and rotation parameters obtained in 6. as the initial and find
most likelihood parameters for them by means of least square method to mini-
mize the sum of distance between paired corresponding timbers in the tree trunk
centroid maps of the reference and the current scans.

The sparseness of the distribution of the timber centers is considered in the process
proposed here.

3.3 Extraction of the Forest Ground Level Slope

For the purposes to obtaining good convergence in the z direction, the ground level
slope is extracted from the point clouds both in the reference and current scans. The
algorithm is summarized as follows:

1. Define a grid in the scanner device x − y plane.
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(a) (b) (c)

Fig. 6 Extraction of the slope ground level a Extracted slope ground level after Delaunay triangu-
lation b Timber point clouds measured from the location 1 c Timber point clouds measured from
the location 2

2. Obtain a cloud point such that z coordinate value is the smallest within every
square grid lattice, which is a candidate for the ground and not the undergrowth
vegetation.

3. Associate all the points obtained in 2 and construct a surface by means of
Delaunay triangulation.

Fig. 7 Example result of ICP scan matching among the 4 locations illustrated in Fig. 3a
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Figure 6a illustrates the extracted ground level slope. After the ground level slope
is determined, the part of point clouds on the surface of each of the corresponding
tree trunks in the different measurement locations is extracted at the same height
(Fig. 6b, c). These point clouds are subject to the ICP scan matching technique pre-
sented in the next section.

3.4 Application of ICP

For this application the steepest descent ICP algorithm is applied. Translation and
rotation parameters that are obtained at the step 6 in Sect. 3.2 are used for initial

(a)

(b)

Fig. 8 Example result of ICP scan matching among the 4 locations illustrated in Fig. 3a
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Table 1 Comparison between manual measurement and proposed equipment measurement for
diameter at the chest height

Timber No. Diameters at the breast height
Manual Proposed Errors Standard deviation of

the residue of fitted
circle

The number of cloud
points

(cm) (cm) (cm) (%) (cm)

1 25.8 25.4 −0.4 1.6 0.94 432
2 22.3 18.2 −4.1 18.4 0.78 10750
3 30.1 30.6 0.5 1.7 0.93 2113
4 23 23.8 0.8 3.5 0.99 369
5 24.5 21.2 −3.3 13.5 0.85 11452
6 21.5 22 0.5 2.3 0.82 1257
7 24.6 21.2 −3.4 13.8 1.52 523
8 21.3 21.2 −0.1 0.5 1.54 737
9 21 20.2 −0.8 3.8 0.99 1492

location to begin the ICP. All the point clouds extracted in Sect. 3.3 in the reference
scan are used, but 60 randomly sampled cloud points extracted in Sect. 3.3 in the
current scan are used for the scan matching. The x and y translations and rotations
for the tree axes between the reference and the current scan are obtained. Then the
z translation is obtained to match the ground level slope. Iterate 1000 times for the
random samples of the point clouds of the current scan extracted in Sect. 3.3 and
obtain the best converged or minimal residue result. Figure 7 is 3D map obtained
where point clouds were gathered at locations 1 to 4 in Fig. 3a. In the right of Fig. 7,
a magnified image of a shrub is illustrated. Observing the branches of the shrub, the
scan matching performs well for all the translation and rotation components.

4 Extraction of Tree Data

From the 3D map presented in Fig. 7, the trunks of the tree at the chest height from
the ground level slope are extracted (Fig. 8). Figure 8a presents the point clouds of
the trunks and fitted circles on them. This map can be used for forest maintenance
to yield the standing timber volume. Figure 8b illustrates magnified images of tree
trunks of No. 1 and 8 to show how the circles fit on the point clouds. The circle and
point clouds on the trunks of tree No. 1 fits within a tolerance of 5 cm. On the other
hand for No. 8, the point clouds are close but do not precisely coincide.

Table 1 presents a comparison of the diameters at chest height between the manual
measurement and the presented measurement technique. The diameter of trees at the
chest height is also an important parameter for forest maintenance. Six trunks out
of nine have error under 2 cm, while the other two have an error for the diameter
in the order of 3 cm and the remaining has 4.1 cm error. It is said that the desired
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performance for the error must not be more than 2 cm. Given this, the proposed
equipment measurement achieves the required level of the performance. However,
more improvement to reduce the errors is desirable.

5 Conclusions

The authors presented the necessity for equipment-based measurement for the forest
measurement and pointed out that it is a good application field for sensing and SLAM
technology for mobile robotics. An experimental setup using a for mechanically
rotating small-sized laser scanner has been prepared. By operating the setup in the
forest, point clouds are obtained at several locations. The authors proposed a step by
step scan matching algorithm utilizing ICP taking into account both the existence of
the slope and the sparseness of the tree trunks. Such equipment measurement in the
forest has been shown to be effective. However more improvements are necessary
so as to obtain more accurate data. These improvements are set as future work.
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Iterative Autonomous Excavation

Guilherme J. Maeda, David C. Rye and Surya P. N. Singh

Abstract This paper introduces a Cartesian impedance control framework in which
reaction forces exceeding control authority directly reshape bucket motion during
successive excavation passes. This novel approach to excavation results in an iterative
process that does not require explicit prediction of terrain forces. This is in contrast
to most excavation control approaches that are based on the generation, tracking and
re-planning of single-pass tasks where the performance is limited by the accuracy
of the prediction. In this view, a final trench profile is achieved iteratively, provided
that the forces generated by the excavator are capable of removing some minimum
amount of soil, maintaining convergence towards the goal. Field experiments show
that a disturbance compensated controller is able to maintain convergence, and that
a 2-DOF feedforward controller based on free motion inverse dynamics may not
converge due to limited feedback gains.

1 Introduction

Autonomous excavation has the potential to improve the quality and throughput in
a variety of field domains. However, it also represents a challenging low-level con-
trol problem. Autonomous excavation control attempts date back more than twenty
years with very few successful and realistic systems implemented so far. Despite a
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significant history, direct force control remains elusive due to compliance (of both the
hydraulic actuation and terrain), coupling, and limited observability of ground reac-
tions. These factors, while complex, are structured (they are not chaotic). Given that
the task can be viewed as a multiple-query, successive operation towards a desired
profile, an iterative and adaptive control approach is advocated in which the distur-
bance and estimated reactions are differentially used to reshape (bucket) actuation
for subsequent (digging) processes.

The dominant problem in excavation control is that the reaction forces generated
through interaction with the environment are difficult to predict, and may equal the
force capability of the machine. In the literature, proposed solutions to this problem
fall into two broad categories: explicit modelling and reactive strategies.

Explicit modelling. Soil-tool interaction modelling allows for force prediction.
In excavation control, prediction is useful for the generation of digging strategies
(feasible and optimal scoop trajectories), and anticipative excavation force compen-
sation (computation of feedforward commands that accounts for soil-tool interaction
forces). A flat blade is the basic geometry studied in soil mechanics from which the
majority of explicit models are derived. A widely accepted model based on flat
blade assumptions is known as the fundamental equation of earthmoving (FEE)[19].
Experimental results have shown that flat blade models are helpful in assisting
machine design [7] and equipment selection [6]. In regards to excavation, in [23]
the author shows that the FEE predicts well when the bucket is not full, however
prediction deteriorates as the bucket fills up. In [15] the author adapts the FEE for
the excavation case at the cost of global and local optimisation methods for fitting
model parameters. The work in [4] is notable for providing a comparison between an
analytical and a regression methods and to effectively use their outputs for generation
and selection of candidate trajectories.

Beyond the flat blade a variety of 3D models for the excavator bucket address the
presence of side walls and surcharge (a review is found in [2]), however those models
lack experimental validation even for the simple purpose of force prediction. A step
further would require experimental validation of 3D models in terms of low-level
control improvements. Alternative methods for modelling include energy methods
[24] and exhaustive laboratory experiments [14].

Reactive strategies. In this category control strategies do not make use of model
prediction, but instead reactive strategies are used to adjust control actions according
to some variable of interest. Since experiments are necessary for the tunning of para-
meters the literature in reactive approaches is rich in field trials. In general, reactive
excavation cannot be achieved by pure position tracking since the commands under
feedback can either saturate actuators or generate excessive structural stress. Because
no prediction is available, the underlying behaviour (despite different strategies) is
that of generating some form of accommodation as reactive forces build. This could be
in the form of sensor based active compliance [17, 20] where the forces or trajectories
are continuously adjusted. A simple, but experimentally validated, strategy is to sim-
ply slow down and decrease the depth of the desired path according to the load con-
ditions of the drives [5]. Artificial intelligence methods have been applied to encode
and blend expert operator reactions and other empirical rules [3, 22] in an attempt
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to address the problem of removing or contouring in the unpredictable presence
of large rocks that can constrain the motion. Robust methods [9] have also been
applied in excavation, however since the execution is a based on tracking of force or
position, the generation of a reference without an explicit model requires restrictive
assumptions on terrain forces, usually in the form of an impedance model.

This paper proposes a different solution for the excavation problem. The solu-
tion is based on a reactive approach in order to avoid the difficulties imposed by
predictive methods; mainly, parameter and structure adaptation, observability, and
terrain profile estimation. The solution explores the use of the undesirable compli-
ance of the arm and iteration. Here, “iteration” means making multiple passes with
the bucket, where each pass comes closer (iterates) to the desired profile. In principle
this approach is orthogonal to the usual idealisation of excavation, where both com-
pliance and iteration are undesirable. The ideal controller would be stiff enough to
overcome any reactions, finishing any dig in a single pass. Both compliance and iter-
ation are, however, intrinsic to excavation and thus addressing them is fundamental
since:

• Iteration is required because the finite volume capacity of the bucket is usually
much smaller than the amount of material to be removed (final profile shown as
“target” in Fig. 1). Also, due to the finite force and power that the excavator can
apply on the environment the bucket tends to undershoot the desired path, requiring
at least one subsequent clean-up pass.

• Compliance in excavation is caused by a lack of control authority. It becomes
apparent when forces generated by the controller are lower than the forces required
to cut the soil, resulting in position and velocity deviations. Those deviations

ta
rg

et

soil to be 
removed

target

(a) (b)

Fig. 1 Excavating (a) the face of a mine or (b) a trench for piping are iterative processes where
there is a desired profile to be achieved. The number of scoops and their paths, however, depend
on the interaction forces between machine and soil which are difficult to model and to predict.
Illustration (a) reproduced with permission from P&H. Extracted from: P&H MinePro Services,
Peak Performance Practices Excavator Selection, 2006. Illustration (b) reproduced from http://
www.findfreegraphics.com/image-94/excavator.htm

http://www.findfreegraphics.com/image-94/excavator.htm
http://www.findfreegraphics.com/image-94/excavator.htm
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resemble a situation described as “force in, motion out” in impedance control [11]
or, in excavation terms, “reaction in, deviation out”. This lack of stiffness can not
be avoided since the maximum closed-loop gains are limited by the low bandwidth
of the mechanism (around 3 Hz in excavators).

From a perspective of iteration, the problem of robotic excavation is that of main-
taining convergence towards a goal that defines the desired trench profile while
accounting for unavoidable compliant motion. Notice that compliance and iteration
are present in many other situations where motion is dominated by reactions that can
be decreased iteratively. This includes tasks as diverse as scooping ice-cream with a
plastic spoon or CNC machining a tough material; both are potential candidates for
the proposed control strategy.

2 Excavation as Compliant Manipulation

In this paper an excavator arm is viewed as a manipulator where end-effector motion
is dominated by large, somewhat unpredictable soil reactions. If the forces required
to cut the soil exceed the excavator’s control authority, the resulting motion exhibits
a compliant characteristic (“reaction in, deviation out” [11]). With a suitable control
law, this behaviour can be used naturally to reshape the motion towards areas of less
resistance while maintaining attraction towards the goal.

Recently, compliant behaviour in manipulation has received a great deal of atten-
tion in control and actuator design. Compliance not only allows manipulation to be
safe and to adapt to uncertainties [1] but also increases success rates in tasks where
high-gain feedback tracking fails [12]. Cartesian impedance control [11, 18] has
been adopted in several of those implementations. The impedance methods used in
manipulation have a very intuitive appeal in excavation. In the case where the force
generated by the control impedance is larger than the soil resistance, excavation pro-
ceeds towards the target by removal of material. When the opposite occurs, the bucket
will drift from its desired course while imposing on the environment a recovering
response given by the controller impedance. By iterating this control strategy several
times, excavation is expected to converge towards the desired dig profile without the
need of additional high-level prediction-dependent trajectory planning.

Note that the Cartesian impedance control used in this work [18] differs signifi-
cantly from previous impedance controllers used in excavation [9, 21]. Those works
were based on the idea of generating “target impedances” between a hydraulic cylin-
der and its load, where the load is the sum of the arm dynamic forces and an assumed
linear mass-spring-damper model used to represent terrain forces. The model is used
to generate target impedance values which are then tracked by an inner force feedback
loop at cylinder level.
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3 Low-Level Control

The basic control implementation uses operational-space [13] for feedback control
and feedforward joint commands for decoupling and linearisation. End-effector
(bucket tip) position is projected into Cartesian space using the excavator forward
kinematics. The difference between the bucket and the desired trench positions,
multiplied by the proportional feedback gain K p, generates a virtual spring force.
Similarly, the difference in velocities multiplied by the derivative feedback gain Kd

generates a virtual damping force. The virtual spring-damper ‘connects’ the bucket
tip to the desired trench profile, generating the impedance of the system.

Figure 2 shows a simplified block diagram of the two controllers evaluated during
the experiments reported here. The controller at the left, referred as the inverse
dynamics controller (ID), is composed of a feedforward compensator and a Cartesian
PD feedback law. The controller at the right, termed the ID-VSO controller, is the ID
controller augmented with a disturbance estimator in the form of a variable structure
observer.

3.1 Cartesian Impedance Control with Feedforward

The ID and ID-VSO controllers use the same gains and are tuned with (1) to the
highest possible impedance values by selecting the largest set of gains that do not
excite the first resonant mode of the arm.

F = K pex + Kd ėx (1)

The bucket force on the environment is related to the actuator joint torques by
projection into the Cartesian space using

u

PD arm

x, x

u
inverse

arm
dynamics

PD arm

inverse
arm

dynamicsff

u u

VSO

-udist

ff
disturbance disturbance

.

(x, x)
.
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(x, x)

.
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x, x
.
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Fig. 2 The two controllers used to evaluate the iterative approach: (a) Inverse dynamics controller
and (b) inverse dynamics with disturbance observer controller. Here, u f f feedforward torques, udist
estimated disturbances, and x = [x, y, θ] is the bucket position in Cartesian space. This simplified
representation omits the joint/Cartesian space transformations
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u = JT (q)F , (2)

where F is a vector [Fx , Fy, τz] of horizontal and vertical forces at the bucket tip
and the torque on the bucket, K p and Kd are diagonal matrices of proportional and
derivative gains for each Cartesian direction, ex is the position error in relation to the
desired trench, u are the torques at the joints, J is the Jacobian of the manipulator,
and q are the joint angles.

The original implementation of the operational space control [13] requires an
inverse dynamics compensator to achieve linearisation and decoupling. In excavation
large modelling errors permit only partial compensation; in [16] this was used in a
feedforward scheme to improve performance while avoiding destabilisation. The
hydraulic compliance of the experimental platform severely limits the gains of the
feedback controller and the feedforward element is essential for position tracking.
In [16], feedforward actions were pre-cached by computing values in a forward
simulation. In the present work, the 2DOF controller structure in Fig. 2a is used,
with the difference being that the pre-cached actions are computed from the inverse
arm dynamics instead of from the forward simulation.1

3.2 Disturbance Compensation

In the controller shown in Fig. 2a, the only forces that are reactive to disturbances
are those given by the feedback actions. As results will show, this controller can not
always maintain convergence towards the goal. Forces generated by the impedance
controller may be insufficient to cut the soil.

Improving performance in the presence of low feedback impedance is possible
by measuring reaction forces and subtracting them from the feedback output, gen-
erating compensation. In this work, a disturbance observer is used to generate this
compensation, even though some force sensing is available for monitoring purposes.
The disturbance values are estimated directly as actuator inputs (that is, disturbances
at the plant input) as opposed to external forces acting on the arm (that is, distur-
bances at the plant output, which is the usual case when using force sensing). This
form of compensation simplifies the controller structure since the observed values
are added directly to the feedback command, not requiring high bandwidth inner
loops to regulate sensed forces.

A robust variable structure observer (VSO) and its dual, a sliding mode con-
troller, were presented in [8] aiming at friction compensation. The robustness of a
variable structure observer against model error has been proven suitable for hydraulic
manipulators where high seal friction and temperature effects cause parameters to

1 Forward simulation is used in [16] to pre-cache feedforward commands because it allows the
inclusion of soil-tool interaction models in the simulator. Since this work does not make use of a
soil-tool model, computation of the inverse dynamics of the arm only is more efficient for obtaining
the same required free motion actions.
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drift and make identification problematic. However, in this work an attempt to use
the original VSO resulted in excessive oscillatory behaviour. The oscillation was
a consequence of the observer also compensating the natural mechanical stability
due to friction, yielding a system with marginally stable dynamics. Damping those
oscillations by high feedback gains amplifies noise that is caused by differentiation
of encoder positions. Therefore, the present work proposes friction compensation by
feedforward action, avoiding issues introduced by high feedback damping gains. This
technique, however, requires a modification of the VSO so that it can be combined
with a feedforward command. The following transfer function is proposed:

X1 = X2

s
+ σ

ms
(3)

X2 = (−U + Udist + L1σ)
1

ms + d
(4)

Udist =−L2σ

s
(5)

σ =W ·sign
(
eq

)
, (6)

where X1, X2, and Udist are estimates of position, velocity and disturbance torques;
m, L1, L2, and W are design parameters and eq is the error in position estimation
(for details on the original observer refer to [8]). The term d is the damping that is
added to the observer model, reflected to the joint. The inclusion of damping means
that since the observer knows about friction, it does not compensate for it (it has
already been compensated by the feedforward action). In this work viscous damping
is assumed to be the dominant frictional term and other terms such as stiction and
Stribeck effects are unaccounted for, but could be also added to the observer.

Two additional benefits are obtained by including friction in the observer. First,
since friction parameter values are found by off-line identification, the observer
compensates for its variation and additional modelling errors. Second, feedforward
commands do not overlap with compensation commands, thus the observer can be
added to an existing controller structure without further modifications.

4 Trajectory Generation

Figure 3 shows an example of a path used to specify a desired dig. In this work, the
path design is based on the conclusion in [3] where studies with skilled operators
showed that excavation on hard soil requires a penetrate-drag strategy. High angles
of attack are used here for the penetration phase in order to generate trenches with
close-to-vertical walls.

The bucket is oriented so that the segment A–B, defined as the tangent to the
bucket surface that passes through the bucket tip, is made parallel to the path during
penetration and dragging (Fig. 3). This condition minimises the force that arises by
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Initial point of 
contact

Dragging

Unknown 
surface profile

A         B

Fig. 3 Example of a path defining a desired dig. The number of passes required is assumed to be
unknown, but a function of the impedance of the controller and the reactions of the terrain, and can
only be answered after the trench is finished or the convergence stops

compacting the soil in front of the bucket [10]. Intuitively, the bottom surface of
the bucket must slide during motion, rather than pushing or compacting the soil.
During the lifting phase the bucket orientation gradually changes so that the bucket
top becomes horizontal, minimising spillage.

Time along the path is imposed with smooth velocity profiles. The only require-
ment for trajectory feasibility is that the resulting acceleration does not cause satu-
ration of actuators in free motion.

Notice that saturation is allowed during intermediate passes. Assuming that
(1) each pass will have a minimum of control authority to overcome reactions, and
(2) the “spare” authority is used to capture soil without compacting it, digging re-
sistances will decrease iteratively. Disturbances and saturation will therefore also
decrease, ideally to the point where during the last pass disturbances are reduced to
sliding friction on the bucket surface because no shearing of soil is required.

Saturation in free motion caused by infeasible accelerations can easily be verified
by inverse arm dynamics. The desired trench coordinates are first transformed to
joint angles through the inverse kinematics before solving (7):

u = M(q)q̈ + v(q, q̇)+ g(q) , (7)

where u is the vector of required torques, M is the inertia matrix, v is the vector of
centrifugal and Coriolis forces, and g is the gravity vector. Figure 4 shows an example
of such verification for control actions required for one pass on a trench of 60 cm
depth.
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Fig. 4 Control actions required for a single pass on a 60 cm deep trench in free motion. Actions
are computed by an inverse arm dynamics model only
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Fig. 5 The experimental platform is a 1.5 tonne excavator with a 110 kg hydraulic arm. The com-
pliance due to flexible hoses is modelled as spring-dampers at the cylinders

5 Experiments

5.1 Experimental Platform

The experimental platform is a 1.5 tonne Komatsu PC05-7 (Fig. 5). The arm links
and cylinders weigh a total of 110 kg and the arm reaches 3 m from the boom
base. The hydraulic cylinders are flow controlled by servo-valves. All cylinders are
supplied from the same accumulator, which is charged to 70 bar by a hydraulic
pump driven by a diesel engine. Command signals sent to the servo-valves are spool
position references; these are controlled by analog feedback loops internal to the
servo-valves. More details on the platform can be found in [9] and issues related to
hydraulic compliance and friction are described in [16].

5.2 Results

Figures 6a and 7a show the path described by both the inverse dynamics controller
(ID) and the controller with disturbance observer (ID-VSO). In all cases, only the
final desired dig profile is given to the controller, shown as the dotted trajectory. In
Fig. 6a the reference trajectory depth is of 20 cm and in Fig. 7a the depth is 60 cm.
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Fig. 6 Iterative excavation aiming for a 20 cm depth trench. (a) Workspace motion. The desired
trench profile is shown in dotted lines. The first scoop is shown in grey and iterates five times until
the final black trajectory. (b) Comparison of RMS errors over the five scoops. Left: distance in
relation to the final trench. Right: Orientation of the bucket in relation to the desired trajectory.
The result shows that the controller with VSO always performs better and achieves a final trench
accuracy of 4 cm

A characteristic behaviour seen during experiments was that the bucket tended
to achieve the best tracking during the beginning of the passes. Apart from the sur-
charge, this is caused by the progressive loss in the cutting geometry of the tool, which
is maximal at the beginning of the scoop when the cutting surface is clear. This could
also be an indication that the soil suffered compaction as the tool dragged soil towards
the other end. In principle, those effects could be minimised by pulling the bucket
out as soon as it captures a desired volume, avoiding unnecessary dragging. One
could argue that this form of detection could be achieved by visual feedback. How-
ever, visual methods suffer from the dusty environment typical of excavation and the
true volume in the bucket is usually partially hidden by the roughness of the trench
walls and spillage. Monitoring forces to estimate material weight is effective when
the bucket is filled and moving in free motion, however when scooping, estimation
lumps soil-soil and soil-tool friction which are not related to the amount of mate-
rial inside the bucket. For this reason, the experiments were carried out with the
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Fig. 7 Iterative excavation towards a 60 cm deep trench. (a) For a 60 cm trench the ID controller
convergence stops at the 8th iteration while ID-VSO achieves the final desired profile. This is not
caused by saturation but is due to low feedback gains. (b) Comparison of RMSE over the eight
scoops shows that the ID-VSO performs better at every iteration, with final trench profiling error
of 4 cm

sub-optimal strategy of repeating a full cycle scoop motion, independent of the
amount of material collected in the bucket.

The plots in Figs. 6b and 7b show the RMS error of the distance between the tip of
the bucket, where the virtual spring is attached, and the desired trench. The plots also
show the RMS error of the orientation of the bucket in relation to the ideal orientation
calculated in Sect. 4. The errors were calculated along the whole trajectory of each
iteration. In Fig. 6 both controllers have slow convergence after the 5th pass, with the
ID-VSO producing roughly half of the error at each iteration in comparison to the
ID controller. Despite the larger tracking error, the ID controller was able to achieve
the final profile with an RMSE error of 7 cm showing that even with low control
authority the iterative method can succeed if some progress is made in each pass.

In Fig. 7 the digging aimed a 60 cm deep profile which could not be achieved by the
ID controller. While it could be argued that lack of convergence was a consequence
of actuator saturation, Fig. 8a shows that from the 6th pass the actuator was not
saturated, and yet the resulting motion was far from the desired trajectory. This
shows that the lack of convergence was due to the low Cartesian stiffness of the
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Fig. 8 Boom servo commands (solid lines) during excavation of the 60 cm deep trench, compared
to the feedforward command (dotted line). Note that commands reach the saturation limit of 10 mA
during most of the time. (a) ID controller. The commands of the last iteration (in solid black) show
small differences with the feedforward command despite the large tracking error: an evidence of
lack in feedback gains. (b) ID-VSO controller. Despite small tracking error the final scoop command
is very different from the free motion feedforward input due to sliding friction of the bucket with
the trench walls

controller, which consequently was not capable of generating forces required to
shear the soil. The ID-VSO could achieve the desired profile with less than 5 cm
error, an evidence that the disturbance estimation and compensation approach was
effective in increasing control effort despite the low gain feedback loop. Figure 8b
shows that the last iteration commands are very different from the expected free
motion commands. This difference is caused by the (larger than expected) friction
between the soil and the tool. The disturbance observer was essential to compensate
for this friction.

A load cell was installed at the bucket cylinder for monitoring purposes only. The
measured forces required to control bucket orientation exceeded 1.5 tonne during the
whole dragging phase. Visual inspection on the trenches (Fig. 9) shows that most
of the material below 20–30 cm was clay with scattered pieces of brick and roots.
The polished and smooth surfaces at bottom of the trench were caused by the bucket
sliding and compacting the clay soil during scooping.

Fig. 9 Visual inspection of the opened trenches shows that except for the initial few centimetres
of dry top soil the dominant material was clay. Shearing and dragging a full bucket of this material
was enough to generate more than 1.5 tonne of reactions at the cylinders
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6 Conclusions

This work presented a low-level control approach for excavation from an itera-
tive perspective. Since forces required to shear soil often surpass control actuation,
end-effector motion is dominated by the terrain reactive forces. In this situation
the manipulator assumes a compliant behaviour in relation to the environment and
Cartesian impedance control was used as a natural approach to address this behaviour.

Experimental results showed that convergence towards the goal is possible if
two conditions are satisfied: (a) there is a minimum control authority to counter
some amount of reaction, and (b) that this authority is used to capture soil without
compacting it. A feedforward controller with bounded gains was not sufficient to
satisfy condition (a) requiring the addition of a disturbance observer. Condition (b)
was addressed by careful design of the trajectory and the orientation of the bucket.

As shown in Fig. 8, the desired trench was initially unfeasible with respect to
required forces. While most of approaches would aim at predicting and avoiding
those forces, the combination of impedance and iteration allows feedback to reshape
motion as imposed by the terrain, while still achieving the final trench.

Future work will aim at complementing the low-level controller with high-level
strategies in two ways. First, actions will be added that go beyond low-level control.
For example, consider the case where all areas towards the goal are unfeasible but
there may be a route of escape made available by loosening some rocks on the way.
While a pure impedance strategy would probably fail, shaking the bucket tip could
allow the dig to proceed. Second, concatenation of short trench profiles (used in this
paper) will be investigated to achieve realistic longer, wider and deeper trenches.
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Rock Recognition Using Stereo Vision for Large
Rock Breaking Operation

Anusorn Iamrurksiri, Takashi Tsubouchi and Shigeru Sarata

Abstract At the work front in a quarry, many large rocks are generated by rock
blasting. Since some of these rocks are too large to be fed into a rock crusher machine,
a hydraulic breaker is used to break the oversized rocks into suitable sizes. The
purpose of this study is an automation of rock breaking operation in working front
of an open-pit quarry. In this paper we describe an approach using stereo vision to
recognize position and shape of large rocks. For rock recognition and rock moving
experiments, we set up scaled down experimental environment in laboratory and use
small rocks and a robotic manipulator in experiments.

1 Introduction

This paper concerns rock recognition by means of stereo vision that will be applied for
rock breaking operation of a hydraulic breaker (an excavator with a hydraulic ham-
mer) in an open-pit quarry. The motivation of this research arises from anautomation
of the operation. At the work front in a quarry, since some of the rocks generated by
rock blasting are too large to be fed into a rock crusher machine breaking the large
rocks to a suitable size, a hydraulic breaker is used to break the oversized rocks into
small pieces. However, the working condition in a quarry is generally dangerous and
dirty from flying stone fragments and rock dust; therefore an automation of the rock
breaking operation is required, which is the motivation of this study.

A hydraulic breaker is shown in Fig. 1. The breaker is equipped with a chisel
at the top end of the arm for breaking rocks into small pieces. Since the range
suitable for breaking a rock by the chisel is limited, an operator of the breaker has
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Fig. 1 A hydraulic breaker

to use the chisel to move a rock into the “breaking area” when the rock is out of the
range before breaking it. To automate the rock breaking operation, an automation of
(1) rock recognition, (2) rock moving process and (3) rock breaking process are
required. In this paper we focus mainly on the first part, i.e. recognition of rock
position and shape using stereo vision and focus partly on the rock moving process
with taking the result of the recognition into account.

As a previous work of this study, Namiki et al. [1, 2] proposed an algorithm
for rock recognition using stereo vision and used a small manipulator to realize
an automation of rock moving operation in laboratory environment. However the
proposed algorithm for rock recognition cannot separate and recognize individual
rocks those are piled up or lie close together. In this paper we describe an approach
to improve an accuracy of rock recognition by separating piled rocks based on a
“convex–concave determination” method. As related works, Takahashi et al. [3, 4]
identified position and posture of the rocks in 3D using laser beam and a CCD
camera for rock breaking operation in the production plant of a quarry. And they
also used force sensor attached on a chisel of a hydraulic breaker to detect the status
of the breaker in rock breaking operation [5]. For the use of 3D information of the
rocks, Commonwealth Scientific and Industrial Research Organisation (CSIRO) in
Australia [6] developed a human–machine interface for tele-operated breaker task
which several cameras are used and 3D environment information is extracted based
on image processing. Tadano et al. [7] recognized a shape of a rock by means of
laser scanner and realized rolling movement of the rock on flat experiment table
using a small sized industrial manipulator. Matthew J. Thurley [8] measured the size
distribution of limestone particles on conveyor belt using 3D data by means of laser
triangulation.
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Fig. 2 An experiment table

Fig. 3 Manipulator

2 Experimental Setup

2.1 Experiment Environment

Since it is difficult to realize experiments using a real hydraulic breaker, we set up a
scaled down environment similar to realistic field (see Fig. 2). A specially designed
manipulator (Technocraft M4FS07, see Fig. 3) is used in rock moving experiments.
The manipulator has four DOF and the same ratio of the length of the links as same
as the real hydraulic breaker. The scale of this manipulator and the rocks used in
experiments are approximately 1/12 of the real scale in realistic environment. The
manipulator is placed on a square experiment table of 1 × 1 m. To recognize the
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position and shape of rocks, we use a pair of stereo cameras (Point Grey Research
Flea2 FL2-14S3) which is placed at the left side of the manipulator. The camera
height is set to 306 mm, the tilt angle is approximately 22◦ and the base line distance
between the cameras is set to 60 mm. The lenses of the cameras are Kowa LM5JC1M
with a focal length range of 5 mm. Rubber (C-40) is scattered on the experiment table
and rocks used for rock moving experiment are placed on it. The size of the rocks
varies from 80 to 150 mm.

2.2 System Setup

A data flow diagram is illustrated in Fig. 4. The experimental system consists of a
manipulator, a manipulator controller, stereo vision system and a PC. Image data
which are captured by the stereo cameras are sent from the cameras to the PC via
IEEE1394 interface. In the PC, the image data is used for stereo vision process to
obtain rock position and 3D shape for motion planning of the manipulator. Then the
reference trajectory of the manipulator is created and is transferred to the manipulator
controller via Ethernet and the manipulator is controlled. The manipulator controller
employs SH4 MPU with ART-Linux (General Robotics) HRP-3P-CN-A and I/O
interface board HRP-3P-MCN. Streaming data Sharing Manager (SSM), developed
by our laboratory, is used for data sharing among the processes [9].

Fig. 4 Data flow diagram
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3 Stereo Vision Based Recognition of Multiple Rocks

3.1 Convex–Concave Determination

Large rocks generated by rock blasting in a quarry generally are piled up or lie close
together. Therefore it is difficult to obtain the position and shape of individual rocks
accurately. In this chapter we propose an approach using stereo vision to separate a
rock pile and to obtain position and 3D shape of individual rocks based on “convex–
concave determination” method.

We can observe that most of the large rocks just after blasting have convex shape.
With this hypothesis, if there is a part of the shape of the rocks obtained by stereo
vision that is concave, it can be assumed that two or more rocks adjoin each other
on the concave part. For example, two box-shaped rocks are illustrated in Fig. 5. We
choose two faces from the rocks and determine whether they are convex or concave.
If they are convex, we can hypothesize it that they are the faces of the same rock. If
otherwise, the two faces belong to the different ones as hypothesis. In this chapter
we describe the rock separation method using the convex–concave determination of
rock faces. Computing a disparity map and 3D data from camera images using stereo
vision is presented in Sect. 3.2. Extracting rock faces is described in Sect. 3.3. Rock
separation using convex–concave determination is described in Sect. 3.4. Finally, an
evaluation of the proposed rock recognition method is described in Sect. 3.5.

3.2 Computing Disparity Map and 3D Data Using Stereo Vision

Before stereo matching process, we first remove lens distortion and rectify the left and
right images. The parameters needed for the distortion removal and the rectification
are obtained by Camera Calibration Toolbox for Matlab in advance [10]. Next we
compute a disparity map from the camera images using Semi-Global Block Matching
algorithm (SGBM) which is available in OpenCV library (see Figs. 6, 7). Then we
calculate 3D coordinates (X, Y, Z) of each pixel in the disparity map (Fig. 8). The
3D coordinates are used to create an elevation map and we extract the areas in the

Fig. 5 Convex–concave
determination
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Fig. 6 Camera images (left and right)

Fig. 7 Disparity map

Fig. 8 3D elevation map
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Fig. 9 Binarized 2D elevation
map

Fig. 10 Rock area in the
disparity map

elevation map those are higher than a threshold value (set to 5 cm) assumed to be rock
areas and choose the nearest one as a target rock area (Fig. 9). After that we extract
the area in the disparity map corresponding to the target rock area in the elevation
map; call it a “rock area” (Fig. 10). This rock area is used for extracting rock faces
described in Sect. 3.3.

3.3 Extracting Rock Faces

To extract rock faces, first we calculate 3D normal vectors of each pixel in the rock
area obtained in Sect. 3.2. Then we cluster the 3D normal vectors using K-Means
algorithm. The number of cluster is fixed to 5 and the clustering process is repeated
three times. To calculate the 3D normal vectors, the 3D coordinates of 9 ∗ 9 pixels
around the pixel of attention are used. We approximate the 9 ∗ 9 neighborhood pixels
to a 3D plane and calculate a normal vector of the plane and use it as a normal vector
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Fig. 11 Clustering result

Fig. 12 Separate the areas
those are in the same cluster
but do not connected each
other to different clusters

of the pixel of attention. After clustering the 3D normal vectors, we delete small
clusters and separate the areas those are in the same cluster but are not connected
each other to different clusters (Figs. 11, 12). Finally we create 3D faces from the
3D coordinates of each cluster using least mean square method. To be easy to use
in rock separation described in Sect. 3.4, the faces are approximated to rectangular
shape (Fig. 13).

3.4 Identification of a Rock in the Pile of Multiple Rocks

Convex-concave determination method is used to separate a rock pile and recognize
the position and shape of individual rocks. As mentioned in Sect. 3.1 with the
assumption that the rocks have convex shape, if the two faces extracted from the
rocks are convex, it can be assumed that they are faces of the same rock. If otherwise,
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Fig. 13 3D faces approxi-
mated to rectangular shape

they are the faces of different rocks. A summary of the rock separation procedure is
as follows:

1. Choose randomly a face that does not belong to any group; call “non-group face”
and create a new group for the face.

2. Do the convex–concave determination between the face and other non-group faces
around it. If they are convex, put the non-group face into the group.

3. Do step 2 for all new group members until there is no new member left.
4. Do the convex–concave determination again between group members. If there is

a pair of the faces that is concave, do the convex–concave determination between
the two faces and other members and exclude the face that has less convex results
from the group.

5. Back to step 1 and repeat until there is no non-group face left.
6. Merge the groups those have less than two members with other groups around

them.

The conditions for the convex–concave determination are as follows. Two faces,
for example face A and face B shown in Fig. 14 are convex when:

1. More than half of the area of face A is on the opposite side of face B from the
cameras, and

2. More than half of the area of face B is on the opposite side of face A from the
cameras

The result of rock separation using the convex–concave determination is shown
in Fig. 15. To be easy to use in path planning of the manipulator, we approximate the
rocks to cuboids. We binarize the elevation map of the rocks created in Sect. 3.2 and
then approximate the rock areas to straight lines using least mean square method and
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Fig. 14 Convex–concave
determination

Fig. 15 A result of rock
separation and cuboid-shaped
approximation

wrap the rocks with cuboids parallel to the straight lines. These cuboids are used for
creating a trajectory of the manipulator in rock moving operation.

3.5 Evaluation

Rock recognition experiments using convex–concave determination method are per-
formed with 10 different images and the sample results are shown in Figs. 16, 17,
18, 19. Table 1 shows the numbers of the rocks separated by the proposed recog-
nition method. The numbers of rocks in Table 1 do not include the rocks those are
recognized as a different rock pile; for example the rock at the back right in Fig. 17.
These rocks are recognized as a different rock pile when extracting rock areas from
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Fig. 16 Results of rock recognition (1)

Fig. 17 Results of rock recognition (2)

Fig. 18 Results of rock recognition (3)

the elevation map described in Sect. 3.2; therefore these rocks are not counted in the
numbers of rocks.

From theses results, we can see that some of the rocks are not recognized correctly;
two or more rocks are recognized as parts of a single rock, or one rock is separated
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Fig. 19 Results of rock recognition (4)

Table 1 The result of rock
recognition experiments

No. Number of rocks Number of all rocks
recognized

1 6 7
2 4 5
3 6 6
4 5 6
5 7 7
6 6 7
7 6 6
8 6 6
9 4 6
10 5 6

to multiple rocks. According to our investigations, the wrong recognition could be
due to a number of factors, such as a lack of accuracy in the face extraction process
or wrong convex–concave determination. Due to using 9 ∗ 9 neighborhood pixels
in normal vector calculation, the normal vectors are more or less smoothed with
the neighborhood pixels which induce a false face extraction. The size of the rock
faces is also one of the main causes of the wrong recognition. Due to using least
mean square method to create rock faces from 3D data, the smaller the faces are, the
larger the error of the position and pose become. However for our purpose, 100 or
near high recognition rate is not necessarily desired. Because when the rocks those
are recognized incorrectly are moved, the rocks will be separated by the motion of
the manipulator so that we can recognize the rocks correctly after all. The wrong
recognition problem is described again in Chap. 4.

http://dx.doi.org/10.1007/978-3-642-40686-7_4
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4 Experiments

In this chapter we describe a simple rock moving experiment using the proposed rock
recognition method. The goal of this experiment is moving one of the rocks those
are placed approximately 60 cm in front of the manipulator to the destination. The
destination is set to 30 cm in front of the manipulator and the size of the rocks used in
the experiments is approximately 8–15 cm. A flow chart of the rock moving process
is shown in Fig. 20. First we recognize rocks using the proposed rock recognition
method described in Chap. 3 and select the nearest rock as a target to move. Then the
chisel is raised up over the target rock height and is moved to the back of the target
rock. After that the target rock is moved to the destination by sliding. A trajectory of
the chisel for moving the rock is set with a straight line from the center of the target
rock to the destination. The rock position is obtained by stereo vision throughout the
moving operation to detect whether the target rock is still on the trajectory. If the
rock is out of the trajectory, the chisel will be moved to the back of the rock and do
the moving operation again. The rock moving process finishes when the target rock
reaches the destination.

According to snapshots of a rock moving experiment shown in Fig. 21, the right-
most rock was chosen as a target rock and it was moved to the destination properly. In
this experiment we used only sliding operation to move the rock along the trajectory.
With sliding operation, a target rock was sometimes stuck with other rocks or ground
and stopped on the way. This problem could be avoided by using other operation,

Fig. 20 A flow chart of rock
moving process

http://dx.doi.org/10.1007/978-3-642-40686-7_3
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Fig. 21 Snapshots of a rock moving experiment

e.g. tumbling or rotating instead of sliding to move a rock when it is stuck, which
will be studied in a future work. And as mentioned in Sect. 3.5 due to inaccuracy
of extracting faces and separating a rock pile, the rock position and shape are not
obtained accurately which sometimes induce a failure of the operation. However by
detecting the position and size of the target rock during the moving operation, we can
detect if the rock is recognized correctly and can redo the operation if the recognition
is incorrect. Therefore the wrong rock recognition is not a fatal problem in this rock
moving experiment, though the rock recognition method is needed to be improved
to increase the efficiency in the future.
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5 Conclusions and Future Works

In this paper, we presented a method for recognition of rocks using stereo vision,
which will be applied for an automation of rock breaking operation in an open-pit
quarry. In our approach, we used convex–concave determination to separate a rock
pile and to obtain the position and shape of individual rocks. To prove effectiveness
of the proposed rock recognition method, we also described a simple rock moving
experiment using the proposed rock recognition method.

For a future work, we plan to improve efficiency of rock recognition, for example
by using edge to separate a rock pile. Moreover we will develop path planning
algorithm for a manipulator to move multiple rocks efficiently.
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Plowing for Rover Control on Extreme Slopes

David Kohanbash, Scott Moreland and David Wettergreen

Abstract Planetary rovers are increasingly challenged to negotiate extreme terrain.
Early destinations have been benign to preclude risk, but canyons, funnels, and
newly discovered holes present steep slopes that defy tractive descent. Steep craters
and holes with unconsolidated material pose a particularly treacherous danger to
modern rovers. This research explores robotic braking by plowing, a novel method
for decreasing slip and improving mobility while driving on steep unconsolidated
slopes. This technique exploits subsurface strength that is under, not on, weak soil.
Starting with experimental work on Icebreaker, a tracked rover, and concluding with
detailed plow testing in a wheel test-bed the plow is developed for use. This work
explores using plows of different diameters and at different depths as well as the
associated braking force. By plowing the Icebreaker rover can successfully move on
a slope with a high degree of accuracy thereby enabling science targets on slopes
and crater walls to now be considered accessible.

1 Introduction

The robotic exploration of planetary bodies requires rovers that can safely explore
a variety of environments and have the ability to reach points of scientific interest.
Rovers significantly expand the possible exploration areas and increase the scientific
and programmatic return from a mission. The surface of the moon and planets such as
Mars are covered in fine and unconsolidated regolith making mobility considerations
of utmost importance [7]. There are many craters and steep slopes that are also
covered in this fine and unconsolidated regolith. The ability to traverse steep slopes,
funnels, and holes becomes even more compelling in the case of Mars where there is
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Fig. 1 New deposits found on a crater wall in Centauri Montes [10]

now evidence of new deposits forming on the side of crater walls (Fig. 1) [10] and in
the case of the moon with resources in permanently shadowed polar craters. Many
of these crater walls have slopes that exceed 25◦ [1, 5].

1.1 Background

In this work a plow mechanism is tested both on a rover named Icebreaker as well as
in a wheel test-bed to throughly characterize how a plow can be used for increased
control authority on a slope.

The “plow” is a dagger like rod that is driven into the ground by a robot to create a
braking force by exploiting the subsurface soil strength (Fig. 2). This braking force is
used to counter downhill forces in order to minimize slip (undesried/uncommanded
downhill motion). The plow is a circular rod located at the center point of the robot
to facilitate turning. This is a mechanical analog to a climbers use of an axe or pole
to arrest or control a downhill slide. The plow on the rover is actuated using a rack
and pinion and has a lexan tip to help the plow pierce the ground to minimize vertical
plow forces (Fig. 3).

It is generally recognized that the interaction of the rover and the terrain is complex
and difficult to model. In addition, standard models do not work in very unconsol-
idated material with low moisture levels [15]. Prior work with model based terrain
controls have problems with accurately modeling the terrain and seek better methods
to simulate the wheel-terrain interaction [2, 6]. For these reasons having a device
that is purely reactive and not dependant on possibly inaccurate models is important.
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Fig. 2 Icebreaker’s actuated
plow. The box contains the
motor and pinion for driving
the plow into the ground [17]

Fig. 3 Icebreaker actuated
plow. Conical lexan tip is used
to penetrate into the ground
[17]

1.2 Prior Research in Plowing

In farming tines that are similar to the plow used in this work have been studied
[8]. It is important to note that most tools that interact with the ground have been
designed more on the basis of field experience than on scientific knowledge since
soil-tool interaction is not well defined and quantified [12]. It has been found that
soil moisture and shear strength have the largest impact on the soil forces, and at
small speeds, the effect of speed can be neglected [3]. The disturbance pattern in the
soil has been shown to be repeatable in a wide range of materials and soil moistures
for a given tine design [14].

There are two distinct depths that need to be considered when analyzing the plow
forces. Plowing above the critical depth results (Fig. 4) in brittle failure, which does
not provide a significant resistance force to the plow. This failure is deemed crescent
failure where the disturbed soil is pushed to the sides, in front, and upward. Plowing
below the critical depth results in the surrounding soil compacting in the direction
of motion, thereby providing the subsurface strength that is needed for plowing.
This is called lateral failure (Fig. 5) [3]. This means that in order to have significant
subsurface strength the plow depth must be deeper than this critical depth.



402 D. Kohanbash et al.

Fig. 4 Critical depth in plow
track [3]

Fig. 5 Both soil failure modes
of a tine are shown [4]

2 Rover Testing

Icebreaker is a prototype rover designed to traverse into steep planetary craters. The
rover is 70.4 kg with 47.9 % of the weight to the left and 55.0 % to the rear. It is 1.1 m
wide and 1.4 m long with a track width of 15.5 cm. The top of the rover deck is
22 cm from the ground. It is a tracked rover since tracks can offer the best solution
for operating over complex terrain. This is especially important for steep and loose
slopes [13]. The chassis provides a rigid frame to which the tracks are attached and
the plow is mounted. The plow is mounted 11 cm from the center of the rover and
is actuated to allow for easy plow adjustments (some work has been done creating
a slip controller to dynamically adjust the plow). The tip of the plow has a lexan
cone which is needed to help pierce into the soil and proceed with lowering the plow
further into the ground. All of the electronics and batteries for the rover are contained
within the track side frame. This helps the rover maintain a very low center of gravity
at 13.2 cm from the ground.

2.1 Experiment Design

Testing with Icebreaker was conducted at the Simulated Lunar Operations (SLOPE)
facility at the NASA Glenn Research Center in Ohio. The SLOPE facility has a
large sandbox of GRC-1 lunar simulant that is capable of tilting to 30◦. The soil is



Plowing for Rover Control on Extreme Slopes 403

prepared using a standard method called T3 [16] to achieve conditions similar to
the lunar terrain [11]. This process involves using a shovel to disturb and loosen
the subsurface soil where the rover will be operating and then it is smoothed lightly
using a rake to insure uniform conditions for the test. A Leica TCRA1103 + Total
Station is used to track the rovers position with high accuracy in order to determine
slip (Fig. 6). There is also an adjustable load system and a load cell for conducting
drawbar pull tests (Fig. 7).

Four types of tests were conducted at the SLOPE test facility: decent, drawbar
pull, cross slope, and point turns. A driving test on flat simulant was done to confirm
that there is no bias between the tracks and to get the speed differential between
commanded and actual drive distance. Before starting the tests it was qualitatively
observed that the vehicle had minimal slip at around 17 cm plow depth. In order to
bound this testing was done at 14 and 20 cm plow depth and then at 7 cm plow depth
to bridge the gap from 0 to 14 cm in many of the tests. The plow used in this test is
5 cm (2 in.) in diameter and the vehicle moved at 0.02 m/s.

2.1.1 Descent

Descent tests were done with Icebreaker on a slope at 31◦ (Fig. 8) with plow depths
of 0, 7, 14, and 20 cm where 0 cm is plow disengaged and 20 cm is the plow fully
embedded into the ground. This gives a clean comparison of vehicle performance
and how the plow improves mobility.

Fig. 6 Test setup with surveying instrument (on the left) and prism (bright spot) mounted on a
rover at NASA GRC SLOPE facility
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Fig. 7 Drawbar pull rig with
adjustable load at the SLOPE
facility [16]

Fig. 8 Descent test at 31◦

2.1.2 Drawbar Pull

Drawbar pull tests were conducted with various loads at the four plow depths. For
this test the drawbar pull rig at NASA Glenn Research Center was used. This rig
allows for an adjustable load to be applied to the rover and for recording of vehicle
position. A load cell was attached between the rover and the adjustable load rig. This
helps us understand the braking force being applied by the plow to the rover (Fig. 9).

2.1.3 Cross Slope

Cross slope tests were done at slope angles of 10, 15, 20, 25, and 30◦ with no plow
engaged (Fig. 10). The plow was not used in this case since the primary benifit of the
plow is downslope.
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Fig. 9 Draw bar pull test
setup with lines going to a
load cell and the variable
load source

Fig. 10 Cross Slope test
at 30◦

2.1.4 Point Turns

Point turn tests were done at slope angles of 10, 15, 20, 25, and 30◦ for each plow
depth of 0, 7, 14, and 20 cm. Figure 11a shows how the rover is positioned to start
a test, Fig. 11b shows the rover in the middle of a test as it is pointed at about 45◦,
and Fig. 11c shows the position of the rover at the end of the test where it is pointed
downhill.

2.2 Experimental Results

2.2.1 Descent

Descent tests exhibit an improvement as can be seen from having no plow where the
rover slipped about 27 cm to when the plow is in the full 20 cm depth and acts like a
brake to fully counteract the slip and even slightly impede rover motion (Fig. 12).
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Fig. 11 Point turning test on 25◦ slope (clockwise rotation)

Fig. 12 Descent tests on a 31◦ slope at 4 plow depths
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2.2.2 Drawbar Pull

In the drawbar pull tests results are consistent with what was observed in the slope
tests. The deeper the plow is into the ground the greater the resistance to slip at a
given force. This becomes interesting for the 20 cm plow depth where at an applied
force of 100 % vehicle weight the rover still has trivial slip (Fig. 13).

2.2.3 Cross Slope

The tracked rover demonstrates excellent cross slope abilities. Downhill slip was
below 4 % up to a terrain grade of 25◦. At 30◦ the slip became 7.2 % which is still
very good for such an extreme slope angle on unconsolidated GRC-1 terrain (Fig. 14).

2.2.4 Point Turns

Point turning with the plow also has a tremendous influence (Fig. 15). While with
full plow depth all of the turns had less than 10 cm of slip the effects at the 30◦

Fig. 13 Drawbar pull with the plow at 4 depths. Plus points represent the slip values from the
descent tests (Smaller DP force ratio curves correspond to smaller plow depths)



408 D. Kohanbash et al.

Fig. 14 Cross-slope tests results on GRC-1. Downhill slip is the percentage of downhill displace-
ment with respect to cross-slope distance. Downhill slip was below 4 % up to a terrain grade of 25◦.
At 30◦, slip became 7.2 %

Fig. 15 Point turns slip curves (Slip curves increase in value as the slope angle increases)
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maximum slope are the most telling. At 30◦ with no plow the vehicle slipped
0.58 m, however with the plow fully engaged the slip was only 0.077 m.

2.3 Summary

The addition of the plow to the rover can clearly be seen to benefit mobility, above
what can be achieved with just tractive ability. Using the plow reduces slip in a variety
of situations that are important when traversing on extreme slopes. This is important
as since mission planners can now develop plans for operating on steep slopes in
order to meet objectives and to reach areas of interest.

3 Plow Analysis

In addition to rover testing this research examines the plow as a mechanism in order
to develop the tool and to create a guide that future developers can use to design
and evaluate the plow. This work focuses on the different variables that affect plow
design independent of the vehicle.

Fig. 16 Force (N) for a given plow diameter at different depths. Note Plow diameter is in inches
(Force curves increase in value as the plow diameter increases)



410 D. Kohanbash et al.

3.1 Experiment Design

In order to quantify the plow performance, tests were conducted in the wheel test-bed
at CMU [9]. These tests are designed to look at how the plow performance scales as
the plow diameter changes and with plow depth.

The wheel test-bed has a sandbox filled with the GRC-1 lunar simulant that is
prepared in a similar fashion to the large sandbox at the Glenn Research Center
SLOPE facility before each test. In the sandbox a spade is used to loosen all of the
subsurface sand and then it is lightly smoothed with the blade of a small dustpan. The
wheel test-bed has a motor that can pull the plow at a constant velocity of 2 cm/s and
record the forces on the plow in the direction of travel with an ATI Delta Transducer
six axis force torque sensor. Tests were conducted with plows of 1.27 cm (0.5 in.),
2.54 cm (1 in.), and 5 cm (2 in.) diameter. A 7.62 cm (3 in.) plow was tested, however
the forces were too large for the calibration range of the load cell. All of the plows

Table 1 Percent force
increase from 2.5 to 15 cm
plow depth for each plow
diameter

Plow diameter (cm) Percent change

1.27 33
2.54 45
5 56

Fig. 17 Shape of path created
by 5 cm (2 in.) diameter plow.
Black arrow shows direction
of plow motion
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were tested at 2.5, 5, 7.5, 10, 12.5, and 15 cm depth. A depth of 20 cm was attempted,
however the forces exceeded the range of the load cell.

3.2 Experimental Results

Testing done in the wheel test-bed is very informative and helps us understand how
the plow works. The results can be seen in Fig. 16. As expected increasing the plow
diameter and/or increasing the plow depth showed an increase in braking force. Since
all of these plows had a critical depth less than 2 cm a braking force is achieved at the
shallowest depth tested of 2.5 cm. For each plow the force at 15 cm depth increases
10 fold as shown in Table 1. This plow testing is important and useful for engineers
developing plowing systems.

One of the basic ideas that aligns with theory is that all of the track patterns formed
from the plow cutting through the sand were an identical shape as can be seen in
Fig. 17. The depth of the chevron shaped mark from the plow is roughly the critical
depth (Table 2). There is also a considerable amount of bulldozing at the front of the
plow (Fig. 18).

Table 2 Critical depths for
each plow tested determined
experimentally

Plow diameter (cm) Critical depth (cm)

1.27 2.26
2.54 3.33
5 4.5

Fig. 18 Bulldozing at end of
5 cm (2 in.) diameter plow.
Black arrow shows direction
of plow motion
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4 Conclusion

This research affirms quantitatively that plowing can be used in practice for control on
extreme planetary surfaces that defy tractive descent. This work has shown a 7.5 fold
reduction in slip when using the plow on 30◦ slopes as well as a complete reduction
of slip on straight downhill descents on slopes up to 31◦. A new understanding of the
plow teramechanics is now known based on a thorough review of farming literature
and tine research. The trade offs of plow depth vs plow size has been explored. This
gives the ability to design a plow and know what the braking forces will be. By using
the plow rovers now have the ability to traverse into steep unconsolidated craters,
canyons, funnels, and holes to explore both the slopes and the bottoms.

4.1 Future Work

There are many ways that this work can be extended and future directions for this
work to follow. I think the most important one is to further develop a reactive plow
controller based on on-board slip estimation. The ability to estimate slip on the fly and
react is critical to steep slope navigation. Initial results with these type of controllers
look very promising. This work has focused on a uni-directional plow however there
is a lot of work that can be done with a directional and steerable plow (similar to a
boats rudder) this might give even better performance. Adding a science instrument
to the plow can make the plow even more valuable. Some instruments that could
be integrated are cone penetrometers, water detecting tuned laser diodes, a drill and
many others. Another area to look at it is the tradeoff between mobility methods and
power. In the course of this work we started to look at this and realized a lot more
work is needed.
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Complementary Flyover and Rover Sensing
for Superior Modeling of Planetary Features

Heather L. Jones, Uland Wong, Kevin M. Peterson, Jason Koenig,
Aashish Sheshadri and William L. Red Whittaker

Abstract This paper presents complementary flyover and surface exploration for
reconnaissance of planetary point destinations, like skylights and polar crater rims,
where local 3D detail matters. Recent breakthroughs in precise, safe landing enable
spacecraft to touch down within a few hundred meters of target destinations. These
precision trajectories provide unprecedented access to bird’s-eye views of the target
site and enable a paradigm shift in terrain modeling and path planning. High-angle
flyover views penetrate deep into concave features while low-angle rover perspectives
provide detailed views of areas that cannot be seen in flight. By combining flyover and
rover sensing in a complementary manner, coverage is improved and rover trajectory
length is reduced by 40 %. Simulation results for modeling a lunar skylight are
presented.
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1 Introduction

This paper presents complementary flyover and surface exploration for reconnais-
sance of point destinations, like skylights and polar crater rims, where local 3D detail
matters (See Fig. 1). In contrast to past missions where regional characterization was
the goal, missions to point destinations will detail local terrain geometry, composi-
tion, and appearance. Characterization of this type requires high density sampling
and complete coverage. Standard rover-only approaches are inefficient and cannot
generate the coverage required for complete 3D modeling. Complementary flyover
and surface exploration meets the requirements for modeling point features with
higher efficiency than alternative approaches.

Persistent light illuminates polar locations on the Moon and Mercury. These des-
tinations could serve as bases of operations or power stations for exploitation of
polar resources, but for polar destinations, even small rocks cast long shadows, and
unexpected shadows can be mission-ending for small rovers. Precise knowledge of
3D structure on the meter-scale and smaller is needed to predict where shadows will
fall.

Sub-surface caverns may harbor life on Mars. They may be the best hope for human
habitation on the Moon. They can provide windows into a planet’s past geology,
climate, and even biology. Skylights, formed by partial cave ceiling collapse, provide
access to sub-surface voids. They have been conclusively shown to exist on Mars [1]
and the Moon [2], and evidence supports their existence on other planetary bodies
throughout the solar system [3]. Surface robots can approach and scan skylight walls,
but skylight geometry prevents viewing the hole floor from a surface perspective.

Orbiters currently in service around the Moon and Mars are generating higher
resolution data than ever before, but there are limits to what can be done from orbital
distances. Even with a very good laser, the Lunar Reconnaissance Orbiter (LRO)
sees a 5 m radius laser spot on the ground from its nominal 50 km mapping orbit [4],
limiting modeling precision. LRO’s camera is higher resolution, at 0.5 m per pixel
for the 50 km orbit [5]. Stereo processing can be used to create a 2 m per post digital

Fig. 1 Complementary fly-
over and surface modeling
concept: a lander captures
views of a terrain feature
during final descent flyover.
A rover carried by the lander
returns to examine the feature
in more detail
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elevation map (DEM) from a pair of these images, but this only works for lit terrain.
Skylights and polar craters contain terrain that is always in shadow. More detail,
captured by flyover, is needed to see hazards on the scales that matter for robotic
explorers.

New breakthroughs in terrain-relative navigation enable unprecedented precision
in lander trajectory. This makes possible, for the first time, low-altitude lander fly-
over exploration of point targets. Precise, safeguarded landing can be achieved with
real-time data from cameras and light detection and ranging (LIDAR), enabling a
lander to identify a safe landing location and maneuver past hazards to safely touch
down. Flyover data can further inform subsequent rover exploration for effectiveness,
safety and coverage not possible in traditional missions with multi-kilometer land-
ing ellipses. The combination of two perspectives, flyover birds-eye and rover on-
the-ground, enables construction of the high-quality models needed to plan follow-on
skylight exploration and science missions or develop detailed shadow prediction for
crater rims. This paper presents a simulation of combined lander and rover modeling
of a lunar skylight. A comparison is made between a model built with lander data
only, a model built with rover data only, and a model built from combining lander
and rover data, in which the rover views are chosen based on holes in the lander
model.

Section 2 discusses related work in planetary exploration and “next best view”
modeling. Section 3 discusses the approach to complementary flyover and surface
modeling for point features where 3D detail matters. Specifics of the experiments
conducted are presented in Sect. 4. Results are presented in Sect. 5. Sections 6 and 7
discuss conclusions and directions for future research.

2 Related Work

Modeling and localization are closely related: the robot location when a given frame
of data was captured must be known to fit that data accurately into a model, and
the most accurate localization estimate is often produced by building a model from
multiple frames of data. Maps and 3D models of terrain have been created from a
combination of orbiter, lander and rover imagery and used for rover localization,
but not in a fully autonomous manner, and not for planetary features where 3D
really matters. For the Mars Exploration Rovers (MERs), the DIMES system took
three images of the landing site at about 1,000 m altitude during descent, aiming to
determine the lander motion [6]. The MERs computed visual odometry onboard,
although the computation was quite slow at 2 min per frame [6]. Visual odometry
estimates of rover motion were more accurate than wheel odometry due to wheel slip,
but position estimates still drifted over time, so bundle adjustment was performed on
Earth to improve estimates of rover position. Tie points were selected automatically
within a stereo image pair or panorama, and in some cases across different rover
positions. DIMES imagery from the lander and HiRISE orbital imagery was used
in localizing the rover and building maps, but the registration between rover and
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Fig. 2 Skylight geometry
restricts visibility from a rover
perspective. Blue cone shows
example of visible area from a
rover positioned at the skylight
edge

overhead imagery was done manually [7]. While the models built by MER provide
a fascinating glimpse of Martian terrain, they do not take on point features with
geometries that severely restrict visibility. Victoria Crater is perhaps the closest—it
has been modeled from orbit and investigated extensively by the Opportunity rover
[8, 9], but at 750 m across and 75 m deep, Victoria Crater is not a point feature, and
does not have visibility-restricting geometry. In contrast, the Marius Hills Hole, a
lunar skylight, is estimated to be 48–57 m in diameter and approximately 45 m deep
[2]. See Fig. 2 for an example of how skylight geometry prevents viewing the floor
from a surface perspective.

The MER waypoints were chosen by operators on Earth, but significant work
done in autonomous mapping and modeling can be leveraged to automate this part
of the process. Work on laser scanning of unknown objects has used a “next best
view” approach, choosing the next position from which to scan based on the amount
of new information gained while maintaining overlap with existing data to facilitate
model building [10]. This approach has also been applied to the robotic exploration
of unknown environments [11].

Kruse, Gutsche and Wahl present a method for planning sensor views to explore
a previously unknown 3D space [12]. This space is represented by a 3D grid, and
each voxel in this grid is marked as either occupied, free or unknown. The value
of a given view is evaluated by estimating the size of the unknown regions that
become known after the measurement and determining the distance between that
view and the current position in robot configuration space. The estimation of size
for the unknown regions that can be seen in a given view is done using ray tracing,
with a relatively small number of rays to limit computation time. This value function
is re-evaluated after each view. The next view is chosen by following the gradient
of the value function, starting from the current configuration. If the value function
drops below a threshold, the gradient search is re-started from the best of a randomly
chosen set of configurations.

Sawhney, Krishna and Srinathan use amount of unseen terrain visible and distance
to determine the next best view for individuals in a multi-robot team. They find that
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the metric computed as (amount of unseen terrain)/distance is the most successful
out of several evaluated [13].

Hollinger et al. use uncertainty to plan sensor views for a ship inspection robot
[14]. They use a Gaussian process to model the surface of the ship hull. Because the
shape of the ship is relatively well known before inspection, the approach assumes
there will not be large changes to the model surface. This assumption would not hold
in a skylight exploration case when it cannot be determined from the prior model
whether a region inside the skylight is void space or collapsed ceiling.

3 Complementary Flyover and Surface Modeling Approach

3.1 Overview

This work combines lander flyover and rover exploration data to autonomously model
point destinations where 3D detail matters. Lander and rover use both cameras and
active sensors, such as LIDAR. Active sensing is needed to peer into shadowed
regions, but active sensors are range-limited by available power and lack the high
resolution of cameras.

Satellite imagery is used for terrain relative navigation, enabling landers to pre-
cisely position themselves as they fly over the features of interest. This technology
enables landers to fly within 30 m of their intended trajectory within the final 500 m
of descent and model regions on order of 50 m across from very low altitude. Haz-
ard detection and avoidance technology, combined with precise navigation, enables
safe and autonomous landings near features even without guaranteed-safe zones of
landing-ellipse size.

Rover modeling begins at the lander location, providing a common tie-point
between surface and flyover models. On-board hazard detection and avoidance ensure
safety as a rover moves. Rover paths and sensor views can be autonomously chosen,
using a “next best view” approach, to fill holes in a lander model.

Lander flyover captures detailed overview data, as well as perspectives that cannot
be observed from a rover viewpoint. Rovers can capture close-up images of the ter-
rain, and they can linger to capture multiple views from stationary locations, though
always from low, grazing perspectives. Alternately, landers can acquire bird’s-eye
views but with less detail and resolution since their one-pass, always-moving trajec-
tories are constrained by fuel limitations. Lander and rover data are combined, using
lander data to localize and plan rover paths, to autonomously construct quality 3D
models of point destinations.
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3.2 Lander and Rover Trajectory and Sensing

For complementary flyover and surface modeling, the portion of the lander trajectory
of interest is the final 500 m of descent. By this point, the lander has already canceled
most of its forward velocity. It pitches over to a vertical orientation and cancels gravity
to maintain a constant velocity. The lander points its sensors toward the feature of
interest. After passing over the feature, the lander uses its LIDAR to detect hazards
and follows a trajectory to avoid detected hazards in the landing zone. Above its
target landing point, it cancels the rest of its forward velocity and descends straight
down.

There is a trade-off between time to capture data and fuel used: flying slowly over
a feature leaves more time to capture data but requires more fuel to maintain altitude
for a low flyover; flying quickly over the feature saves fuel but may result in sparse
data coverage. With this architecture, sparse data collected by the lander can be filled
in by the rover, enabling the lander to move quickly and save fuel.

For complementary flyover and surface modeling, rover trajectories are described
by waypoints. Desired view angles at those waypoints are specified. A rover drives
from one waypoint to the next and stops to capture desired views at each waypoint.

3.3 Complementary Flyover and Surface Modeling

Following lander flyover, a point cloud model built from lander data is binned into
a voxel array. Voxels which contain at least one point are marked as occupied, and
all others as unseen. Ray tracing is then done from each camera perspective, and
all voxels that a ray passes through before it hits an occupied voxel are marked as
seen and empty. The Amanatides and Woo algorithm is used to determine ray-voxel
intersections [15].1

The area of interest is gridded into possible rover positions. For each possible
position, a discrete set of possible views are evaluated. The voxel array with seen,
unseen and empty voxels is used to predict unseen areas that can be observed from
each rover view. The list of previously unseen voxels visible from each view is stored,
as well as the total number that can be seen in all of the views from a given position.

A metric is then computed as (number of unseen voxels visible)/ (distance from
current position). The distance is computed along a straight line rover path. The
position with the highest value for this metric is the next rover position. The voxels
that were predicted to be visible in views from the new rover position are then
marked as seen, and the metric is recomputed. This is repeated until there are no
rover positions for which previously unseen voxels are visible. This approach does
not always result in a particularly efficient path between waypoints. Given a set
of rover positions with planned views which cover the space of visible but as-yet

1 The code for this operation is a vectorized version of an implementation by Jesus Mena-Chalco,
available on MATLAB Central: http://www.mathworks.com/matlabcentral/fileexchange/26852

http://www.mathworks.com/matlabcentral/fileexchange/26852
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unseen voxels, the order in which those positions are visited can be changed without
affecting the total number of as-yet unseen voxels observed, so the positions were
re-ordered using a greedy algorithm to pick the next-closest position among the set
of selected rover positions.

4 Experiments

4.1 Overview

A mission to a lunar skylight is examined as an archetypical example of the comple-
mentary flyover and surface modeling approach. Lander and rover data for skylight
modeling are collected in simulation. Three mission scenarios for modeling a sky-
light are evaluated: (1) lander alone, (2) rover alone, (3) lander and rover, where
lander model informs rover path. Case 1 mimics the architecture in which there is
no rover, and the lander is the sole robotic explorer. Case 2 mimics the case in which
the lander does not attempt to fly over or near the feature of interest to capture over-
head views. A rover travels from the landing site to the feature of interest and is the
only robotic explorer to view the feature. Case 3 follows the architecture presented
in Sect. 3, autonomously selecting the rover path to improve the model generated
by the lander. Data for cases 1 and 2 were generated independently. For case 3, the
lander-only model from case 1 was used to determine the rover path and views. The
data for this alternate rover path was then generated and combined with the case 1
model.

The simulated skylight in this work is 30 m in radius and approximately 40 m deep.
Modeling is restricted to a target area 100 m2 , centered on the skylight, although
sensor views may go beyond this area.

Models built using each of the three scenarios are compared using the metric of
percent coverage. In these experiments, percent coverage is defined as the percent
of voxels that are filled in the ground truth model that are also filled in the generated
model.

For robotic planetary landers and ground vehicles, the size of a feature considered
to be a hazard is on order of 0.2–1 m [16–18]. For a terrain model to be valuable for
robotic operations, the resolution should be in this range or better. In the experiment
presented here, the voxelization of the lander model used in the complementary
flyover and surface modeling method was 0.5 m, and the models for each scenario
were also discretized to 0.5 m for comparison with ground truth. Higher resolution
models can easily be built by using a smaller voxel size in the complementary flyover
and surface modeling method.
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Fig. 3 Bird’s eye view of
simulated terrain containing
a skylight. Section shown is
600 m long. Skylight diameter
is 60 m, depth is 40 m

4.2 Simulation

A 3D model of a lunar-like site containing a skylight was fabricated for this work
(Fig. 3). A 2 m/post digital elevation map (DEM) of the Apollo 11 region, created
using a stereo pair from the Lunar Reconnaissance Orbiter, was used as the base
terrain. Small craters and rocks were overlaid following a statistical distribution
derived from Surveyor data [19]. A procedural model was used, so that generated
features did not need to be explicitly stored and only details visible in a given image
were processed. A static 3D mesh of the skylight was manually modeled using
Blender software [20], based on imagery and measurements of the Marius Hills
skylight [3]. Terrain components were combined, detail textures were added, and
simulated color and depth data were generated using Blender’s built-in raytracer.
Images were synthesized using a pinhole camera model with the appropriate field
of view and resolution for each sensor. For LIDAR, depth channel instead of color
channel information was used. Range data were transformed from the orthographic
projection of the depth buffer to a perspective projection with rays from the LIDAR
center.

4.3 Lander Modeling

For purposes of this study, it is assumed that the lander has a camera and a flash
LIDAR mounted on a gimbal. The camera has a field of view (FOV) of 15° by
15° and a resolution of 1944×1944 pixels. The LIDAR also has a 15° FOV, but its
resolution is 128×128 pixels. The optical centers of the camera and LIDAR are
assumed to be co-located, which could be accomplished using a cold mirror.

The lander targets a constant glide slope of approximately 7.5 m/s along-track and
3.5 m/s down while scanning the landing zone and the skylight. After passing over
the skylight it zeros its forward velocity and begins a vertical descent to the ground.
The ground track follows a straight line across the center of the hole to the landing
site. Due to the limited visibility that would occur when the sensors were mounted
on a physical lander, it is assumed that the sensor views are restricted to look forward
along the lander’s direction of travel and to the sides—no backward-facing sensor
views are allowed. Lander camera and LIDAR views are specified with the camera
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Fig. 4 Lander images stitched
together using SIFT features

position and sensor view direction. Views are combined assuming that the lander
position and orientation are known for each sensor view, so ground truth values are
used for these parameters. The data from each view are first combined assuming
that the lander position and orientation are known for each sensor view. LIDAR
point clouds are stitched into a single model using ground truth lander poses, and
the combined model is compared to the ground truth 3D hole model to determine
coverage. In the case where the lander trajectory is not known, SIFT features [21]
can be detected in each image, and the relative camera poses can be determined by
matching features between images. Figure 4 shows an example of images stitched
using this method. These poses could also used to stitch together the LIDAR data,
although that is not explored in this work.

4.4 Rover Modeling

The rover is assumed to have a 45° FOV flash LIDAR with a resolution of 128×128
pixels. It is also assumed to have a pair of stereo cameras with 45° FOV and
1000×1000 pixel resolution. LIDAR and cameras are located on a pan-tilt head.

A naive rover path is selected to achieve full coverage of the skylight walls and
surrounding terrain. The tilt angle of the rover sensors is set to achieve a desired
resolution of data on the ground given the sensor resolution and FOV. The desired
percentage overlap in sensor frames along the rover’s path and between neighboring
parallel paths is set to ensure that no gaps will be left between neighboring paths,
and a resulting zig-zag pattern is generated. So long as the desired resolution can
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Fig. 5 Simulated camera
image from rover’s-eye view,
looking at the skylight edge

be achieved with the selected FOV, the FOV does not significantly affect the sensor
coverage on the ground.

In order to maintain rover safety, there is a keep-out zone around the hole which
the rover cannot enter. For this work, the width of the keep-out zone is 7.5 m. When the
rover’s coverage pattern intersects the edge of the keep-out zone for the first time, the
rover makes a circle of the skylight, aiming its sensors inward to capture the ground
in the keep-out zone. As it travels around the skylight rim, it stops periodically to
scan the opposing skylight wall. The frequency of these stops is determined by the
portion of the far wall that would be visible given the sensor FOV, assuming the hole
is cylindrical. If the sensor resolution on the far wall is predicted to be lower than
the desired resolution, multiple overlapping frames of data are captured to achieve
the desired resolution. Once the rover completes the circle, it continues its zig-zag
pattern.

Data from each view are combined assuming that the rover position and sensor
pointing direction are known for each sensor view, and ground truth values are used
for these parameters. See Fig. 5 for an example rover camera image.

4.5 Lander and Rover Modeling with Informed Path Selection

For this experiment, the method in Sect. 3 is applied to the lander model from Sect. 4.3.
The rover is assumed to have camera and LIDAR with the FOVs and resolutions
described in Sect. 4.4. In this experiment, the grid of possible rover positions had
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Fig. 6 Rover camera posi-
tions (black) and path (green)
chosen naively to achieve full
coverage, overlaid on voxel
model of skylight. Axes are
marked in meters

Fig. 7 Rover path planned
using method from Sect. 3,
overlaid on voxel model of
skylight

squares of 5 m and excluded the skylight and the keep-out zone. Sixteen views were
evaluated at each rover position—8 pan angles to cover a full circle with a 45° FOV,
and 2 tilt angles for each pan angle., Rover paths between waypoints are straight
lines, unless the straight-line path would intersect the skylight or the keep-out zone,
in which case the path skirts the skylight until it can continue in a straight line toward
the target waypoint.
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Fig. 8 Side and top views of point clouds constructed from a flyover LIDAR data, b rover LIDAR
data, and c flyover and rover LIDAR data. The flyover-only model misses detail on the walls of the
skylight. The rover-only model has dense wall coverage, but misses detail on the floor. Combined
flyover and rover modeling provides dense coverage of the entire feature

5 Results

5.1 Results for Lander Modeling

Figure 8a shows a model built from lander flyover LIDAR data. Given a voxelization
of the model and the ground truth at 0.5 m resolution, the coverage of this model
is 46 %.

5.2 Results for Rover Modeling

Figure 8b shows a model constructed from rover LIDAR data. These data were gener-
ated using the naive rover coverage pattern. Note how the skylight walls are densely
covered, as is most of the terrain around the skylight, but the central portion of the
floor cannot be seen by the rover. Given a voxelization of the model and the ground
truth at 0.5 m resolution, the coverage of this model is 85 %. The naive rover path
length is 2152 m (See Fig. 6).

5.3 Results for Lander and Rover Modeling with Informed
Path Selection

Figure 8c shows a model constructed from flyover and rover LIDAR data using the
“next best view” approach for rover path planning. The lander model is used to
generate the rover plan. Skylight walls and surrounding terrain are densely covered.
The resulting model covers 92 % of the ground truth with a rover path length of
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1281 m, a 40 % reduction in path length compared to a the naive coverage pattern.
Figure 7 shows the planned rover path and views.

6 Conclusions

This paper has presented approach and analysis of a new mission concept: comple-
mentary flyover and rover sensing for planetary features. In order to explore and
model planetary terrain features, rovers will be delivered to the surface by landers.
In complementary flyover and surface modeling, the lander is leveraged to serve a
dual purpose as a flyover explorer, capturing 3D data at a much higher resolution
than possible from orbit and obtaining views of the feature not possible from a rover
perspective. By planning rover sensor views from this prior lander model, comple-
mentary flyover and surface modeling achieves greater coverage with a significantly
shorter rover traverse.

Experiments performed for a simulated skylight reconnaissance mission demon-
strate significant improvements in coverage and quality relative to a rover-only or
lander-only mission. The model built by combining lander and rover data follow-
ing the complementary flyover and surface modeling method achieves 92 % terrain
coverage, compared to 46 % coverage for the lander alone and 85 % coverage for a
rover-only approach. The rover-only approach, using a path planned with very lim-
ited prior information about the skylight feature, has a path length of 2152 m. The
complementary flyover and surface modeling approach, by planning the rover path
and views using lander data, is reduced to 1281 m, a 40 % reduction in distance trav-
eled. Although not explored in this work, high resolution data from the lander can
also be used to precisely localize the rover and identify hazards, further improving
the efficiency of rover operations.

7 Future Work

Lander and rover positions were assumed known for this work, but in the future,
accuracy of localization and effects of localization error will be investigated. If only
relative navigation techniques are used and models are built purely from these navi-
gation estimates, position will drift over time. This means, for example, that a longer
rover traverse will tend to result in a less accurate model. Model building can also
contribute to localization, as was done for the MER rovers.

The effects of noise in the LIDAR data and in the camera and LIDAR commanded
orientations will be investigated in future work. Noisy data would tend to reduce the
accuracy of the model, and it could also reduce coverage.

Obstacle avoidance was not considered for these simulations. For a real mission,
however, a rover would need to detour to avoid obstacles. These detours would change
the path length and could provide obstructions to viewing certain areas of terrain that
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had been predicted to be visible. Additional methods of path planning for the rover
views given the flyover data will also be explored.
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Path Planning and Navigation Framework
for a Planetary Exploration Rover Using
a Laser Range Finder

Genya Ishigami, Masatsugu Otsuki and Takashi Kubota

Abstract This chapter presents a path planning and navigation framework for a
planetary exploration rover and its experimental tests at a Lunar/Martian analog site.
The framework developed in this work employs a laser range finder (LRF) for terrain
feature mapping. The path planning algorithm generates a feasible path based on a
cost function consisting of terrain inclination, terrain roughness, and path length. A
set of navigation commands for the rover is then computed from the generated path.
The rover executes those navigation commands to reach a desired goal. In this paper,
a terrain mapping technique that uses a LRF is described along with an introduction
to a cylindrical coordinate digital elevation map (C2DEM). The gird-based path
planning algorithm is also presented. Field experiments regarding the path planning
and navigation that evaluate the feasibility of the framework developed in this work
are reported.

1 Introduction

The surface terrain of the Moon and Mars is covered with fine grained soil, or boul-
ders, rocks, and stones. Because of this challenging terrain, the rover needs to evade
mobility hazards, which includes vehicle rollover, immobilizing wheel slippage, or
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collisionwith obstacle rocks. Therefore, the planetary rover needs to navigate itself by
sensing the environment as well as planning a feasible path for rough terrain traverse.

The rover uses visual information taken by an onboard stereoscopic camera to
obtain terrain features and to find a path for travel [1–3]. The drawbacks of the
camera-based terrain mapping are that it is generally a time-consuming task for the
low-power flight CPU of the rover because the stereo images should be correlated
(stereo matching), requiring a relatively long computational time [3]. Additionally,
the quality of visual information may vary with the intensity of sunlights/shadows.

Another technique for terrain mapping involves the use of a laser range finder
(LRF) that can determine the distance from a laser emitter to an object based on
the time of flight principle. There has been an extensive research and development
for the LRF technique in a geometrical feature mapping and terrain classification
[4–8].The LRF can directly measure three-dimensional distances from the sen-
sor to the objects, providing “Point cloud” data of the scene without any addi-
tional processes (c.f., the camera-based mapping needs stereo matching for the
3D mapping).

The primary focus of this paper is to implement a path planning and navigation
framework as an application for the planetary exploration rover, that utilizes the LRF
technique for terrainmapping. The point cloud data of the terrain features provided by
the LRF are converted into a digital elevationmap (DEM).A square-shaped reference
grid is generally used for conventional DEM; however, in this work, a sector-shaped
reference grid is applied for the DEM conversion, resulting in an elevation map
with cylindrical coordinates, called C2DEM. The path planning algorithm in the
framework considers three indices: terrain inclination, terrain roughness, and path
length. A cost function, composed of these indices with varied weighting factors,
generates various paths on themap. The generated path is then discretized into several
way points, which contain relative distances and headings from one to another. The
way points are sequentially sent to a rover as navigation command. Field experiments
were demonstrated at a Lunar/Martian analog terrain to evaluate the feasibility of
the path planning and navigation framework. The main contribution of this work is
the development and experimental validation of the LRF-based path planning and
navigation framework that uses C2DEM for the terrain representation.

This chapter is organized as follows: Sect. 2 describes the LRF-based terrain
mapping method; Sect. 3 explains the path planning and navigation framework; and
the experimental tests are summarized in Sect. 4.

2 Terrain Mapping Technique with a LRF

2.1 LRF Scanning System

The LRF used for terrainmapping is UXM-30 LX-E developed byHokuyoCorp. [9].
The laser emitter/detector inside of the LRF rotates 360◦ in the yaw direction from an
actuator,which realizes the two-dimensional plane scanning. This LRF ismounted on
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Fig. 1 Gimbaled-LRF sensory system for terrain mapping
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Fig. 2 Geometrical analysis of LRF based terrain mapping

the gimbals (Fig. 1). Controlling the tiltingmotion of the gimbals, alongwith the two-
dimensional scanning of the LRF, three-dimensional terrain mapping is achieved.

Each scanned point of the terrain feature provided by theLRF includes the distance
measured with respect to the scanning angle and the tilting angle. One single point
pc of the point cloud data is determined with the following equation (Fig. 2):
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where D is the distance from the LRF to the objects, ς is the scanning angle (around
the yaw of the LRF), and θ is the tilting angle with 0◦ being horizontal. The offset
distances between the tilt rotation center and the light acceptance point are repre-
sented by lx , ly , and lz . The origin of the terrain coordinate is located at a point that
is determined by a vertical offset distance H between the tilt rotation center and the
bottom of the wheels (Fig. 2). The point cloud data, defined by the above equation,
need to be transformed from the terrain coordinate to the global coordinate based
on a rotation matrix that is composed of the rover orientation (roll and pitch are
measured by an onboard inertial measurement unit).

2.2 Cylindrical Coordinate DEM

A digital elevation map (DEM) is usually employed to illustrate terrain geometrical
features. The DEM is defined by a series of elevations along with discrete nodes. A
square-shaped reference grid is generally used for the conversion from a point cloud
data point to the conventional DEM. Then, the elevation of each node in the reference
grid is determined from the point with the highest elevation among multiple points
inside the grid (Fig. 3). Applying this process to the entire point cloud data set, the
DEM is obtained.

The point cloud data that are scanned by the LRF usually has high resolution
(dense) for the points near the rover, and low resolution (sparse) for the points that
are far from the rover. To represent these characteristics of the point cloud data,
this work considers a sector-shaped reference grid for the DEM conversion which
provides a DEM in the cylindrical coordinate, termed as C2DEM (Fig. 4).

As observed in Fig. 5, the density of the C2DEM is determined with the radial
resolution πR and the angular resolution πς . R is the maximum radial distance
of the C2DEM. One single node connects with eight adjacent surrounding nodes
allowing the rover to move in eight possible directions from its current node. An
example of C2DEM conversion from the point cloud data is shown in Fig. 6.

It should be noted that mapping approaches that are similar to the C2DEM have
been reported. For example, a log-polar grid map representation with an ultrasonic
sensor has been proposed in [10]. A comparison between a localmulti-resolution rep-
resentation and a log-polar representation has been presented in [11]. Additionally,
a hyperbolic polar coordinate map for infinitely long distance vision and path plan-
ning has been described in [12]. Compared to these previous studies, the C2DEM in
this work is a fully three-dimensional map that can be applicable for path planning on
rough terrain. Field experiments in this work validates the usefulness of the C2DEM
over the conventional DEM, as described in Sect. 4.
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Fig. 3 Conventional DEM
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3 Path Planning and Navigation Framework

3.1 Path Planning Algorithm

There have been substantial studies dealing with path/motion planning algorithms
for mobile robots, such as the A* and D* methods [13], the potential field approach
[14], the probabilistic roadmap technique [15], and the rapidly-exploring random
tree (RRT) algorithm [16].

The path planning algorithm in this work uses a classical graph search algorithm
(Dijkstra’s algorithm) to generate a path from a starting point to a goal point. A cost
function used for the algorithm is composed of the three indices: terrain inclination,
terrain roughness, and path length. Each index can be computed based on theC2DEM
representation.

3.1.1 Terrain Inclination Index

A rover experiences relatively high wheel slippage when it climbs up or traverses
on a sloped terrain. This slippage is due to the traction load from the gravity, which
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becomes significant on the sloped terrain. Additionally, rollover of a rover traversing
on a steep slope is a mobility hazard. The terrain inclination index is employed for
the cost function to represent such risks on a sloped terrain.

The terrain inclination index is divided into two axes, roll and pitch of the rover
(Fig. 7). Each axis is geometrically calculated as an angle between the inertial co-
ordinate and a pseudo-plane composed of the wheel contact points at a projection
region of the rover Ri j : Multiple terrain inclinations can be calculated from each
subset of three contact points between the multiple wheels. The terrain inclination
index is the largest inclination between these values.
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Fig. 6 An example of the
conversion from point cloud
data to the C2DEM

Point Cloud data

C2DEM plot

Roll : ϕx i j = max(ςx (Ri j ))

Pitch : ϕy i j = max(ςy(Ri j ))
(2)

The projection region Ri j is determined with the dimension of the rover. The
heading direction is aligned along with the vector −∩n i j , which is composed of the
current node ni and adjacent node n j (Fig. 8).

yb

zb

xb

zb

θy
Rij

θx

Pseudo-plane

Fig. 7 Terrain inclination angles. The curve bold line depicts the projection region Ri j and the
dotted line depicts the pseudo-plane, which is composed of the wheel contact points



438 G. Ishigami et al.

Fig. 8 Projection region
yellow-colored area of the
rover on a terrain map R ij

ni : ( ri , θ i , z i )

nj : ( rj , θj , z j )

ni j

3.1.2 Terrain Roughness Index

The terrain roughness is related to the traversability of a rover. To avoid uneven
bumpy areas for travel path, the terrain roughness index Bi j is employed. First, the
nodes inside the projection region Ri j are rotated around the x and the y with ϕx i j
and ϕy i j , such that the nodes are represented in the terrain coordinate system. The
terrain roughness is then calculated as the standard deviation of the local elevations
z∈ at the terrain coordinate [17]:

Bi j =
⎦
√
√
√

1

N

∑

nk⊂Ri j

(
z∈

k − z̄∈(Ri j )
⎛2 (3)

where N represents the number of nodes inside the region and z̄∈ denotes the average
elevation in Ri j . Rougher terrains around a node increase the index at the node.

3.1.3 Path Length Index

The path length index is used to find the shortest path from a starting point to a goal
point. The path length index Li j is the distance from the current node ni to adjacent
nodes n j :

Li j = |−∩n i j | =
⎝

r2i + r2j − 2rir j (cos(ςi − ς j )) + (zi − z j )2 (4)
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3.1.4 Cost Function for Path Planning

A cost function for path planning is defined by the following equation that is com-
prised of the indices introduced in the above subsections:

C( p) =
∑

ni ⊂ p

⎞
Wςx

ϕx i j

Nςx

+ Wςy

ϕy i j

Nςy

+ WB
Bi j

NB
+ WL

Li j

NL

⎠
(5)

where Wςx , Wςy , WB , and WL are the weighting factors, which assign specific
priorities to the corresponding indices. The weighting factors for the terrain inclina-
tion indices have a value of infinity if the indices exceed predetermined threshold
angles. The threshold angles are determined based on the slope traversability of the
rover (i.e., maximum slope climbing angle). Nςx , Nςy , NB , and NL are the normaliza-
tion factors. Each factor is the maximum value of the corresponding index calculated
from the terrain map. The path p consists of a series of neighboring/chained nodes:

p = {nstart, · · · , ni , n j , · · · , ngoal} (6)

For the cost function in Eq. 5, smaller index values result in lower mobility hazard
levels on a path. Therefore, the path planning problem is a least-cost search problem.
The conventional Dijkstra’s algorithm is used in this work to find the least-cost
path, providing a minimum value for the cost function. The least-cost path varies in
accordance with the values of the weighting factors for the individual indices.

3.2 Navigation Command

The path generated by Eq. 5 is discretized into several way points that are equivalent
to the nodes in Eq. 6. A navigation command NavCmdi = (di , φi ), consisting
of the relative distance di and heading φi from one way point to the next, can be
geometrically calculated based on the terrain map data (Fig. 9). Then, the navigation
commands are sequentially sent to the rover so that it travels through each way point.

3.3 Path Planning and Navigation Framework

The path planning and navigation framework are summarized as follows (Fig. 10):

1. The rover executes the LRF-based terrain mapping and obtains the point cloud
data of the terrain map (the rover does not move while scanning).

2. The point cloud data are converted to the C2DEM.
3. A rover operator selects a desired goal node located inside of the C2DEM.
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Fig. 9 Navigation command:
relative distance and heading
between each way point
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4. The path planning algorithm generates a path from the rover position (origin of
the map) to the goal node. Here, the goal node and the weighting factors may
need to be changed if the cost C( p) exceeds a predefined threshold. Exceeding
this threshold indicates the path may include high mobility hazard areas.

5. The rover then starts traveling through the consecutive way points based on the
navigation commands until the rover reaches the goal.

6. Once the rover reaches a (intermediate) goal, the rover repeats the above-
mentioned tasks to advance its travel on rough terrain.

4 Field Experiments

Field experiments with a rover test bed were performed at a Lunar/Martian analog
field (Izu-Oshima Island, Japan) to evaluate the usefulness of the path planning and
navigation framework with the LRF-based terrain mapping. The terrain in the field
is mostly covered with scoria, scattered rocks and stones. The test field also consists
of sloped terrain, ditches, and vegetations.
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Fig. 10 Path planning and
navigation framework
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4.1 Rover Test Bed Overview

Micro-6 (Fig. 11) is the rover prototype developed by the authors to demonstrate
the mobility and navigation on rough terrain and power management control. The
rover has a four-wheeled drivable/steerable unit. The left and right wheel pairs are
connected with passive rocker link suspension. The navigation subsystem of the
rover has two stereo camera pairs and the LRF. The power management subsystem
provides electrical power to the rover through the solar array panelswith rechargeable
batteries. The communication between the rover and its operators is handled via
a wireless LAN with a 2.4 GHz band. The GPS antenna mounted on the rover
measures the rover position as a ground truth to evaluate the rover trajectory after the
experimental tests. The GPSmeasurement achieves an accuracy of a few centimeters
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Fig. 11 Rover test bed:
Micro-6
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with post-processed kinematic computations. Details of the rover subsystems were
presented in [18].

4.2 Experimental Results

4.2.1 Comparison Between Conventional DEM and C2DEM

As a preliminary test for the framework developed in this work, path planning and
navigation were executed in specific, limited scenarios (obstacle avoidance and ditch
crossing). In this test, path planning with the conventional rectangular DEM and that
with C2DEM are compared to evaluate the characteristics of these two mapping
approaches and to confirm the feasibility of the generated paths.

For fair comparison between the conventional DEM and C2DEM, the dimensions
of the maps are regulated such that the total coverage areas of both maps are of equal
size of 157m2.Thedimension of the conventionalDEMis set as 8.86 (longitudinal)×
17.72 (lateral) m, while the maximum radial distance of the C2DEM is 10.0 m and
the angular range is between ±δ/2. Additionally, the resolutions of the map are set
as the total number of nodes in each map are equal of 2,700. The grid interval of the
conventional DEM is 0.245m, while the C2DEMhas a radial interval of 0.2 m and an
angular interval of 3.4 ◦ . The weighting factors are given as WB = 0.2, Wςx = 0.3,
Wςy = 0.3, and WL = 0.2. The threshold angles for the roll and pitch axes are set
as 5◦ so that Wςx and Wςy have a value of infinity for the node which exceeds these
thresholds.

Figure 12 shows the results of terrain mapping and path planning in an obstacle
avoidance scenario. Table 1 summarizes quantitative results of the generated path,
which includes the total cost C( p), the path length, and the maximum roll/pitch
angles on the path. It can be observed that the paths generated in bothmaps are nearly
equivalent. The total cost of the path and the path length are almost same values.
The maximum pitch angle of the path on the C2DEM is smaller than that on the
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Table 1 Comparison between conventional DEM and C2DEM: path planning resutls

Scenario Map Total cost Path length (m) Roll (deg) Pitch (deg)

Obstacle DEM 13.7 12.0 5.0 4.4
C2DEM 13.9 12.2 4.3 2.6

Ditch DEM 14.2 17.5 3.9 3.9
C2DEM 10.2 17.2 2.7 1.9

conventional DEM. The path on the C2DEM largely avoids the second obstacle that
is located in the left front of the rover. It is deduced that the C2DEM has dense nodes
near the rover and, therefore, the path planner on the C2DEM can more carefully
select appropriate nodes in comparison with the planner on the conventional DEM.

The experiment with the ditch crossing scenario is shown in Fig. 13. For ditch
crossing, the path of the conventional DEM traverses close to the edge of the ditch,
which increases the total cost of the path and the maximum roll/pitch angles as
summarized in Table 1. This is because the conventional DEM cannot properly
represent the ditch near the rover, resulting in such challenging path. By contrast,
the path of the C2DEM evades the ditch and selects the modest area on the map,
resulting in the less values for the total cost and the roll/pitch angles. Based on the
experiments, the C2DEM has a potential to provide a more feasible path than the
conventional DEM.

4.2.2 Short-Range and Long-Range Navigation Tests

The experimental results for the short-range navigation are shown in Fig. 14. In
this scenario, the rover reached the final goal (depicted with a red circle in the
figure), after traveling through three intermediate goals (depictedwith yellowcircles),
where the rover re-scanned the terrain features and re-generated the path to the next

Conventional DEM C2DEM

Fig. 12 Obstacle avoidance scenario: left figure shows path planning based on the conventional
DEM and the right figure is based on the C2DEM
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Conventional DEM C2DEM

8.86 m

8.86 m

10 m

Fig. 13 Ditch crossing scenario: left figure shows path planning based on the conventional DEM
and the right figure is based on the C2DEM

5.0 m
Start position

Fig. 14 Short-range navigation: The left photo indicates an overview of the experimental scene.
The red circle depicts the final goal and the yellow circles depict the intermediate goals

intermediate goal. The total distance traveled was approximately 40 m. From the
figure, the rover traversed a relatively gentle sloped terrain toward the goals while
avoiding the obstacle rocks.

The long-range navigation test was also performed three times with different
types of terrain. A typical result among these tests is shown in Fig. 15. The rover
executed terrain mapping, path planning and navigation at multiple intermediate
goals (20 in total), and successfully traveled 0.31 km in approximately three hours.
The top section of Fig. 15 illustrates that the rover evaded several obstacles (bushes)
throughout the terrain, and selected feasible paths toward each intermediate goal. It
should be noted that the rover had to backtrack along the path at the 5th intermediate
goal due to the following reasons: the rover could not find a feasible path because the
terrain was so rocky that the total cost of the planned path exceeded the predefined
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Fig. 15 Long-range navigation: The upper figure shows an overview of the rover trajectory, plotted
on Google Earth. The red circle in the lower figure depicts the final goal and the blue circles depict
the intermediate goals

threshold. Additionally, the rover needed to head north to obtain enough sunlight for
the solar array panels to recharge the batteries.

5 Conclusions

This chapter has described a path planning and navigation framework for a planetary
exploration rover that employs the LRF-based terrainmapping. In this work, a sector-
shaped reference grid was applied to convert the point cloud data from a terrain map
into the cylindrical coordinate digital elevation map, termed as C2DEM. The path
planning algorithm that is used in this framework considers three indices, including
terrain inclination, terrain roughness, and path length, to generate a feasible path.

The field experiment with the rover test bed at the Lunar/Martian analog site was
also presented in this paper. In the experiment, path planning with a conventional
rectangular DEM and with a C2DEM were compared. The results suggest that the
C2DEMenables the path planner to generatemore feasible path than the conventional
DEM.Additionally, theLRF-based path planning andnavigation frameworkwas able
to execute long-range navigation on rough terrain.
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In this work, the path planner is based on the conventional graph search algo-
rithm, but alternative approaches, such as D← or RRT would also be applicable for
this framework. Additionally, the future work will include an online matching of
consecutive terrain maps that will enable the rover to execute global path planning.
A drawback of LRF-based mapping is that the LRF cannot provide pure color data
for the terrain (grayscale or RGB) even though it can measure distance and the inten-
sity of the light that is reflected from objects. Therefore, future research may include
incorporating the LRF with a single camera that enables three-dimensional mapping
with terrain texture information.
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Motion Analysis System for Robot Traction
Device Evaluation and Design

Scott J. Moreland, Krzysztof Skonieczny and David S. Wettergreen

Abstract Though much research has been conducted regarding traction of tires
in soft granular terrain, little empirical data exist on the motion of soil particles
beneath a tire. A novel experimentation and analysis technique has been developed to
enable detailed investigation of robot interactions with granular soil. This technique,
the Shear Interface Imaging Analysis method, provides visualization and analysis
capability of soil shearing and flow as it is influenced by a wheel or excavation
tool. The method places a half-width implement (wheel, excavation bucket, etc.) of
symmetrical design in granular soil up against a transparent glass sidewall. During
controlled motion of the implement, high-speed images are taken of the sub-surface
soil, and are processed via optical flow software. The resulting soil displacement
field is of very high fidelity and can be used for various analysis types. Identification
of clusters of soil motion, shear interfaces and shearing direction/magnitude allow
for analysis of the soil mechanics governing traction. The Shear Interface Imaging
Analysis Tool enables analysis of robot-soil interactions in richer detail than possible
before. Prior state-of-art technique relied on long-exposure images that provided
only qualitative insight, while the new processing technique identifies sub-millimeter
gradations in motion and can do so even for high frequency changes in motion. Results
are presented for various wheel types and locomotion modes: small/large diameter,
rigid/compliant rim, grouser implementation, and push-roll locomotion.

1 Introduction

The mobility systems of past and current planetary surface exploration missions are
still limited by terrain encountered, demonstrating the need for continued develop-
ment of traction devices for robotic vehicles. Targets, even whole regions, of scientific
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interest exist in terrain that is frequently beyond the capability of all flown mobility
platforms resulting in the loss of potential scientific return. Of specific challenge
on the Moon and Mars are flat ground and slopes covered by loose, low strength
regolith. Wheeled mobility systems can become entrenched in these terrains due to
excessive slip and sinkage. With the continued exploration of Mars and other plan-
etary bodies the study of wheel-soil behavior in loose, granular material remains
imperative for achieving future scientific discoveries. Methods available utilizing
common terramechanics approaches do not achieve high fidelity results, especially
for non-idealized wheels with complex rim-soil surface interaction. Additionally, soil
mechanics processes are not well understood for lightweight vehicles with wheels
operating in loose, granular materials where significant soil flow is present.

The design of traction devices such as wheels for planetary rovers rarely involves
the detailed analysis of soil shearing and failure patterns. The stress applied to the
soil mass is the result of both external loading and the operating state of the wheel-
soil system. The ‘shear interface’ are failure planes that develop in the soil below
the region of interaction with the rim (Fig. 3). Shear interfaces can indicate the soil
failure type, thrust/motion resistance processes and important soil flows present.
Geometry of the rim, presence of grousers, wheel stiffness, contact shape and many
other properties have a large effect on soil shearing during operation of a wheel. The
performance of a traction device in loose, granular soil is ultimately governed by the
soil properties and the shear failures that occur.

As examples, a rotating wheel may induce a forward flow leading to motion
resistance and energy loss. Furthermore, a small diameter rigid wheel will cause a
rearward flow, forcing particles deep into the soil and then back up again in a “v”-like
shape terminating at the rim exit point. In contrast, a footpad utilized by vehicles with
walking locomotion generates a significantly different mode of soil failure, which has
a shear interface extending well beyond the wheel confinement. The distinct modes
of soil failure and flow processes occurring provide insight into the development of
traction of broad range of traction devices. Minute details of the wheel rim geometry
or mechanics of the wheel carcass have a profound affect on the shearing processes.
Geometric features such as the commonly implemented grousers are not able to
be incorporated into existing terramechanic modeling techniques, thus inadequate
results and misleading representations of the shearing processes are produced by
most methods.

This chapter will (1) discuss the importance of the investigation of sub-surface
soil shearing of traction devices in terramechanic evaluation, (2) introduce a method
of analysis called Shear Interface Imaging Analysis [11] and (3) by use of exam-
ples, discuss the affect commonly considered wheel properties have on soil behavior
utilizing the proposed analysis method.

In effort to directly investigate the soil shearing processes occurring due to wheel
operation, an experimental approach was taken for this body of work. The study
of the principles of traction was investigated by soil behavior analysis rather than
bulk performance. The development of a technique we call “Shear Interface Imaging
Analysis (SIIA)” was undertaken in order to measure the location and characteristics
of the soil shearing in great detail. This method relies on the use of photographing soil
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grains through a glass-walled bin as a traction device operates. The SIIA technique
has proven to produce accurate results and allowed for in-depth investigation of
unconventional locomotion modes such as push-roll [11] and various wheel types
for planetary surface vehicles [10].

2 Shear Interface Imaging Analysis

Prior efforts have been made to image soil effects due to travel of a wheel [4, 16]
and operation of other devices such as excavation implements [8]. These researchers
produced extensive results, but a limited amount of this work can provide direct
insight into the application of design for planetary mobility systems. Previous works
focused on validation of existing terramechanic theory, however the analytical models
of interest are limited to simplified wheels and soil interaction. As such, this limited
the experimentation space to simple/idealized wheels (rigid, wide, no grousers, low
slip ratios) and without an investigation of soil behaviors due to a wide range of
common design parameters. Existing techniques of soil imaging also produced low
fidelity results, were not quantitative and could not assess time varying responses
present in the soil. Results in this work show this often does not produce observable
shearing processes similar to that of a rolling wheel. Previous imaging work con-
cluded that terramechanic theory does not well represent flow of soil and that similar
experimentation methods should be utilized for model development and validation
of design [16]. This further motivates the work being conducted utilizing the novel
Shear Interface Imaging Analysis method.

Prior methods of imaging relied on long exposure of film to indicate the shear
interface. This produced low precision results that could only indicate whether soil
was either moving or static and a course average of direction; no other information
could be measured. The shear interface imaging analysis technique described in
this work is a new method that is capable of recording many types of soil shearing
information at high precision. Other techniques for lower precision visualization
of soil motion have included tracking tracer particles exposed to UV light [14],
observing changes to a grid pattern of different-colored particles [9], and applying
white light speckle autocorrelation to an arrangement of natural and colored sand
grains [7].

2.1 Description of Technique: Hardware and Software

The experimental apparatus constructed to analyze the soil shearing below a wheel
consists of a glass-walled soil bin filled with regolith simulant, a traction device
specimen, an actuated horizontal axis of motion (Fig. 1) and a high-speed camera.
The wheel module (Fig. 2) of the imaging test bed is position or velocity controlled
in coordination with the horizontal axis to create a commanded, constant slip ratio
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Fig. 1 Single Wheel Soil Imaging testbed. Wheel travels from left to right with controlled slip
along a belt-driven linear axis

Fig. 2 Wheel module, carriage and glass-walled soil bin. A 31 cm by 22 cm cross-section of soil
below the wheel is imaged with a high-speed camera

as the wheel travels forward. A linear rail allows the wheel to translate freely in the
vertical direction allowing for natural sinkage to occur and payload weight to be
transmitted. A 6-d.o.f. force/torque sensor is incorporated to measure the reaction
loads, specifically in the travel direction as a result of traction generated. Sinkage is
measured via an optical encoder affixed to the vertical free linear axis. All telemetry;
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wheel angular velocity, travel velocity, slip, sinkage, load and power are logged
simultaneously at 20 Hz or higher.

The wheel for all shear imaging analysis experiments is pressed against a sheet of
tempered glass that extends the depth of the soil bin (27 cm depth for rig shown). Of
importance is the use of a wheel of half the width of the actual specimen of interest
and the application of half the payload weight. This aspect has been relied upon for
over 50 years [2] and it has been experimentally validated that if shear stress between
glass and soil is negligible, the glass surface acts as a plane of symmetry and the
soil behaves as it would directly below an implement twice as wide due to the same
boundary conditions [15, 16].

The shearing analysis requires the ability to track soil motion. A digital SLR
camera with a 50 mm macro lens was used to image the wheel-soil interface, logging
frames simultaneously with the rest of the telemetry. A frame rate of 8 frames-per-
second was used and is sufficiently fast for the slow speeds of wheel travel applied
(2 cm/s). The camera is mounted perpendicular to the soil bin glass wall and travels
with the wheel in the horizontal direction as the carriage moves. For most wheel
specimens (23–50 cm) a 31 cm wide by 22 cm high (soil depth) patch of soil is
framed and able to capture the complete shear interface produced by the wheel in
the regolith simulants utilized. External halogen flood lights at a high angle normal
to the glass illuminate the soil particles.

Image processing comprises of optical flow and clustering techniques. The opti-
cal flow algorithm [5] tracks displacement of soil regions relative to a prior frame
and calculates a motion vector at each pixel. Initial clustering separates each image
into “soil” and “not soil” regions. Additional processing is continued only for “soil”
regions. The magnitude of flow at each pixel of the soil regions is calculated from the
optical flow vector fields. Soil flow is clustered into “significant” and “insignificant”
magnitudes of motion. No explicit threshold is used to demarcate these clusters,
but rather automatically adaptive clustering is used. The shear interface is derived
from the boundary between significant and insignificant motions (Fig. 3). Soil flow
direction is calculated from the optical flow vector fields, for soil regions exhibiting
significant soil flow. Soil flow in any direction (360°) is visualized, and an additional
boundary is identified at points where the soil transitions between forward and rear
flow. Figure 3 demonstrates sample output of the process, showing soil flow magni-
tude, shear interface between significant and insignificant flow, soil flow direction
and boundary between forward and rear flow.

2.2 Processed Results

The soil displacement field plots generated during a single wheel experiment are used
to identify the effect wheel parameters and design features have on performance.
Performance metrics such as net thrust produced (referred to as drawbar pull [3]) are
critical for evaluation but there little information provided that aids in investigation
of the underlying principles governing the measured performance. As an example,
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Fig. 3 Shear Interface Imaging plots. Plots show soil flow magnitude (top) and direction (bottom).
Magnitude is plotted from dark blue (stationary soil) to red (soil being displaced at highest speed).
Direction (within the shear interface) is plotted as shown in the circular color legend. Note a
convention of all plots are wheel travel left to right and at a 20 % slip rate unless otherwise noted

parametric studies of grousered wheels are repeatedly encountered [1, 6]. To date,
these investigations into the function of grousers has taken the approach of relying
solely on performance measurements. Net traction, sinkage, slippage, wheel torques,
power and reaction forces are typically measured during single wheel testing over a
wide range of parameter changes, such as grouser spacing or height. Trends in the data
are used to determine optimal parameter combination and conclusions sometimes
inferred from these results. This approach is suitable for determining the response
and performance of specific designs but provides limited information on the actual
mechanisms and processes occurring in the soil that govern traction. Therefore, little
knowledge can be gained in understanding how grousers function in general and how
they should be implemented in design and vehicle operation.

Observing the soil shearing planes allows for qualitative analysis of how soil
structure develops and react thrust loads or produces resistance to travel. The shear
interface is indicative of the soil failure process and type. Analysis of this and the flows
present within the soil can aid design of traction devices and study of terramechanic
fundamentals. Figure 3 shows the processed results of a single wheel shear interface
imaging analysis experiment. The Flow Velocity Magnitude and Flow Direction plots
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are used to analyze the wheel. These plots show processes typically present within
the soil of a wheel operating in loose, granular soil.

The flow velocity field plot uses the optical flow displacement field measured
between image pairs and clustering methods for classification to display the soil
flow speed. These plots (Fig. 3, top) scale from dark blue (stationary soil) to red
(representing the soil flowing at maximum speed, Vmax). This type of plot allows for
the evaluation of the soil flow due to shearing. The shear interface is a key indicator
of the means by which the wheel produces traction. This term, for purposes of this
study, is defined as the region (line or band like in shape) where soil transitions from
measured shear displacement (flowing) to near static (not flowing).

The Flow Direction plot (Fig. 3, bottom) displays the direction of soil particle
shearing as measured by the flow velocity field. The multi-colored wheel is the
legend that maps color to direction with respect to the wheel coordinate frame. ‘Dark
blue’ indicates soil particles moving completely horizontal in the left hand direction,
opposite the direction of wheel travel. The direction of shearing aids in determining
what type of soil failure process occurs, design features that may contribute to the
failure and the identification of multiple flows, such as resistive types at the wheel
front. The separation of two flows (Fig. 3, bottom), as detected by the developed
analysis software, allows for the identification of forward flows and the measurement
of the location of point of maximum shear stress along the rim. This occurs at the
intersection of the wheel rim and flow separation point.

2.3 General Experiment Considerations and Procedure

As an example of this process, the experimentation of the wheel shown in Fig. 4 will
be described. The single wheel imaging testbed is prepared with GRC-1 lunar soil
simulant [13] before each test run. The soil is loosened to a state of lowest relative
density and slightly compacted by use of a drop tamper method to produce repeat-
able soil properties. The wheel specimen shown in Fig. 4 is rigid, 23 cm diameter
by 5.72 cm wide (11.5 cm effective width), with the rim covered by course grain
sandpaper. A 10 kg payload is applied in the vertical direction. All experiments are
analyzed at steady-state response of the soil and reaction loads. The test run begins
at static sinkage and then travels under a controlled slip rate for approximately five
wheel diameters in distance. All rigid wheels (rough rim or grousers) quickly entered
steady-state sinkage, reaction loading and soil shearing behavior within the first wheel
revolution. The testbed controls the wheel slip while maintaining a wheel tangential
rim speed of 2 cm/s by varying horizontal travel (carriage) speed. Most experiments,
such as shown in Fig. 4, are evaluated at 20 % slip. Generally, wheel peak performance
in loose, granular soil occurs between 10–30 % slip and as such, 20 % was chosen as
a point of study for most evaluations. However, for each wheel configuration a full
range of slip values (5–65 % slip, with 5 % slip intervals) are collected, but only key
points such as 20 % and 50 % slip undergo soil shearing analysis. Additionally, for
each experiment, at least three repeats were conducted.
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The focus of this paper is to introduce the technique of improved shear interface
imaging analysis (SIIA). An overview of the investigation of common wheel design
features and resulting soil behavior through examples of experiments conducted will
be utilized in the following section in effort to shed light on this technique.

3 Analysis Examples

There is a set of important parameters commonly decided upon in the design of
a wheel for planetary surface systems. Choices between a rigid or compliant rim,
tread surface parameters such as rough or with grousers and wheel geometry such as
diameter. These all have significant results on the soil behavior during operation of
the vehicle and the resulting traction performance. The study of the effect of some
of these parameters was conducted and preliminary results are shared.

To study the development of the net thrust produced by rigid wheels, soil shearing
was investigated over a range of slip ratios, and over changes in wheel diameter, tread
surface, and locomotion mode. The approach was to conduct a preliminary survey of
design features that have effect on performance and attempt to associate soil shearing
behavior with potential gains or losses.

3.1 Rigid Wheel Soil Failure

It is evident in Fig. 11 that soil fails sharply at the shear interface and that there
is significant forward flow. The shape of the shear interface, the point at which it
originates at the rim (flow separation point) and magnitude of shearing indicate a
forced type failure due to wheel rotation. This is further supported by the direction
of the flow at the shear interface. For this wheel, the soil shearing direction is near
vertical at the front of the wheel and returns to the surface behind the wheel at a near

Fig. 4 Plots shown are particle velocity magnitude (left) and direction (right). Unlike Fig. 3, there
is no threshold on the direction plot (right). The ‘pink’ soil in the bulk direction plot is stationary
(except directly under the wheel). Compaction of soil in forward direction (yellow) is visible in
front of leading edge (right) of wheel. This is evidence of forward motion resistance
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vertical direction. These types of behaviors are typical of small/medium diameter
rigid wheels with mid-range performance where significant slip induced sinkage
(slip-sinkage) is present. This leads to a high entrance angle. This type of observation
of the soil behavior under a wheel rim is valuable in understanding terramechanic
fundamentals and how a specific wheel design functions.

The degree of wheel slippage affects not only the net traction produced but also
the state of soil behavior. Figure 12 shows the drawbar-slip curve for a 23 cm diameter
(5.72 cm wide) rigid wheel with a sand-paper like tread carrying a 10 kg payload.
The shape of the curve is typical of most wheels in loose, granular soil relevant to
planetary vehicles.

There are distinct changes of the soil behavior at key points of the drawbar-
slip curve as seen in Fig. 5. Three important observations can be made: (1) the shear
interface size and shape does not change between 0.05 and 0.20 slip ratio although the
drawbar pull produced quadrupled. (2) From 0.05 to 0.20 slip ratio, the soil shearing
process within the shear interface transitions from a large gradient of shearing to near
zero gradient within the shear interface (3) Lastly, above 0.20 slip ratio, the forward
flow appears to diminish while the shearing zone (region within shear interface)
begins to reduce in depth. There are a number of hypotheses that can be made from
these observations. First, the shear interface of this wheel may be governed primarily
by a mechanism other than applied thrust. This is evident since even at low slip and
low load (0.05 slip and lower), the extent of the affected soil in shearing is similar to
that at 0.20 slip ratio. It is possible that shearing induced by the rotation of the rim is
excessive since large displacements must occur due to wheel sinkage (i.e. soil must
be displaced downwards, rearwards, then back up). The second important hypothesis
is that the knee in the drawbar-slip curve (about 0.20 slip in this example) may occur
when the soil shearing is fully developed within the shear interface. Operating at a
slip ratio above 0.20 appears to transition from a thrust generation type behavior of
the wheel and soil, to an excavation behavior at increasing slip.

3.2 Walking

To investigate the effect of the rotating rim on the generation of thrust, a study
comparing walking locomotion to rolling locomotion was conducted. Push-roll like
locomotion (use of walking and rolling wheels) has been demonstrated to produce
high drawbar pull for increased locomotion capability [11]. Utilizing shear interface
imaging analysis, it was shown that the soil failure type of a walking wheel was
different from a rigid rolling wheel (Fig. 6). This figure shows the “ground type
failure” created by a walking wheel. This type of soil failure, due to the minute
degree of shearing required, is able to produce multiple times the thrust of a rolling
rigid wheel.
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Fig. 5 Drawbar-Slip curve with corresponding soil flow magnitude plots at 5 % slip intervals (see
value above inset plots). Distinct changes in soil shearing behavior at key slip (0.2) and load points
are observed

Fig. 6 Shear interface analysis comparing rolling wheel to push-roll locomotion (walking wheel).
“Ground type failure” of the soil is observed for the walking wheel, identifying a source of tractive
gains

3.3 Wheel Diameter

The diameter of a wheel has a profound effect on the behavior of the soil shearing
and the resulting traction performance. An experiment comparing a 23 cm diameter
rigid wheel to a 41 cm diameter rigid wheel of equal width, payload and slip is shown
in Fig. 7. Performance using the drawbar pull metric measured a 33 % increase in
traction for the larger diameter wheel. The behavior of the soil shearing is also
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Fig. 7 Variation of shear interface with change in wheel diameter. The large wheel shows nearly
horizontal flow compared to large changes in flow direction (down then up ) under the small wheel

observably different. The large diameter wheel lacks an observable forward flow and
the soil shearing is in a near horizontal direction. Lowered resistive flows may not be
the only contributor to the increase in measured drawbar pull. Soil shearing induced
by the rim rotation is in the direction of travel (horizontal) and may account for the
increased drawbar pull. The soil particles need not shear as much when only acted
on horizontally. This creates a larger portion of the shear interface that can operate at
the peak stress of the stress-strain curve of the soil (granular, cohesionless soil shear
strength peaks at low shear strain). A lower shearing magnitude is also evident for
the large diameter wheel.

3.4 Grousers

Grousers are often employed in wheel designs for planetary rovers. The affect of
soil shearing can be studied when analyzing these features [12]. Figure 8 shows the
periodic nature of soil shearing due to individual grouser effects. It appears that the
grouser at the front of the wheel entering the soil have the greatest effect. Experiments
with very close spaced grousers were also conducted and showed similar results
but with periodicity proportional to spacing. As the optical flow algorithm utilizes
overlapping image pairs, high fidelity movies of the grouser shearing effects can be
utilized to observe individual grousers interacting with soil as the rim rotates.

The traction performance of the wheel without grousers (sand paper rim) and the
same wheel with 48 grousers at 13 mm height act as extremes of the configurations
and drawbar pull performance amongst those tested. Studying these two cases leads
to an important realization. The soil displacement behavior of the grouserless wheel
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Fig. 8 Time-lapse images (top to bottom) of soil shearing by a wheel with grousers over two cycles,
two grouser plunges (flow magnitude plot shown). Distinct, periodic soil motion present as each
new lug rotates into the soil. This occurs for even small grouser spacing’s however the magnitude
of soil shearing is lowered. Wheel travel is to the right

(Fig. 4) and the 48 grouser wheel (Fig. 9) are very different at the leading edge of the
wheel. Figure 4 direction plot, no grousers, shows a yellow patch of soil in front of
the wheel that moves in a horizontal direction forward (low magnitude and within
compaction regime). This is evidence of a significant motion resistance that would
be reacted against the rim as soil is pushed forward and compacted downwards. This
observed motion resistance would reduce the drawbar pull of the wheel. A wheel
with high drawbar pull utilizing high performance grouser parameters (48 grousers
at 13 mm height) however does not show evidence of a motion resistance. Addition-
ally, a low resistance large diameter wheel did not have observable forward flow. It
is reasonable to conclude from this observation that grousers can be implemented
to significantly reduce compaction resistance and lead to higher drawbar pull. An
increase in drawbar could also arise from an increase in thrust. Observations of soil
shearing may also suggest whether the grousers provide additional thrust.

The rear shear interface of grousered and non-grousered (wheels are quite similar
(Figs. 4 and 9 respectively). If it is assumed that in the rear flow region, the grousers
are full of compacted soil, it will act like a wheel of larger diameter (only for the
rear flow region, not front entrance area). With this assumption, the length, depth
and shape of the shear interfaces of the two wheels are remarkably similar. If the
magnitude of shearing and the soil density are similar, than the strength along the
shear interface should be similar. The absolute shearing magnitude of the two wheels
was measured to be similar using absolute particle velocity plots. Additionally, a
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reasonable assumption can be made that the soil density (as GRC-1 is not highly
compactable) in the rear flow region behind the wheel center would have undergone
similar compaction do to wheel payload. For these reasons, the soil strength can
be assumed to be similar. As the shear interface shape/size and soil strength are
similar, it is reasonable to conclude that the thrust component of the drawbar pull
are of similar value for both grousered and non-grousered wheels. Differences in
thrust due to drastically different shear interfaces can cause high changes in thrust,
however the failure modes are of the same type for both shear interface observed. As
such, it is theorized that the gain in drawbar pull due to implementation of grousers
arises solely from the reduction of compaction resistance.

Single wheels test load cell measurements shows that wheels with grousers can
be configured to increase drawbar pull. Compaction in the forward flow region in
front of the contact area was not observed for wheels with grouser that generate high
drawbar. Additionally, the shear interface of the region associated with generating
thrust is similar for wheels with and without grousers. It is reasonable to conclude
that increases in drawbar pull of wheels with grousers arises primarily from the
decrease in compaction resistance. The increase in drawbar pull most likely is due
to a decrease in motion resistance, not from an increase in thrust.

3.5 Compliant Wheels

Compliant wheels may provide large gains in performance for future surface explo-
ration missions. Drawbar pull testing of individual wheels and full vehicles with
compliant wheels has shown high tractive and energy performance. The study of the
affect on soil behavior in the generation of thrust is essential. Experiments were con-
ducted using a 23 cm diameter by 10 cm wide compliant wheel with sandpaper-like
tread. The construction of the wheel did not produce uniform contact pressure as a
pneumatic tire would, but a flat contact area was achieved. SIIA testing shows sig-
nificant differences in soil behavior between the rigid wheel (Fig. 4) and compliant
type wheel (Fig. 10). The direction of the soil displacement is completely horizontal.

Fig. 9 Rigid, grousered wheel SIIA. For a high drawbar grousered wheel (48 lugs at 13 mm height),
no observable evidence of forward compaction exists at the leading edge of the wheel. Therefore,
little motion resistance should be present. Wheel motion to right
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Fig. 10 Compliant wheel shearing analysis showing low sinkage, no forward flow, low shearing
magnitude and completely horizontal motion of soil displacement (may all be within compaction
process)

This may occur due to the extraordinary low sinkage and the flat shape of the contact
along the length of the deformed rim.

It should be noted that the soil flow magnitude shown in Fig. 10 is actually an order
of magnitude lower than with the rigid wheel of Fig. 4. As such, the soil shearing
was so low; it appeared to be within the compaction regime of the soil simulant (as
initial state was of low relative density). This limited study illustrates the importance
of study the specific shear interface and soil behavior of a compliant wheel design
when designing for high performance wheels. An understanding of how the observed
behavior of the wheel-soil system affects performance will aid in developing more
capable traction systems.

4 Conclusion

A technique for studying wheel-soil behavior and analyzing shear interfaces was
developed and demonstrated. The technique can aid in design of high performance
systems and increase the knowledge of terramechanics for wheels in a planetary
environment. Examples investigating common wheel design parameters show a wide
variation of shearing behavior that is intimately linked to traction performance.

The technique has been used for detailed quantitative observation of:

• Distinct changes in soil shearing behavior at key slip and load points.
• Distinct failure modes beneath rolling and pushed wheels.
• Variations in soil flow magnitude and direction between wheels of varying diameter

and compliance.
• Discrete periodic soil motions induced by grousers.
• Compaction in the forward flow region in front of the contact area was not observed

for wheels with grousers that generate high drawbar.
• Reduction of forward soil motion for grousers wheels correlated with grouser

spacing/height that excavated at the leading edge enough to drastically lower the
contact angle.



Motion Analysis System for Robot Traction Device Evaluation and Design 463

The state of maturity of the measurement tool (software and hardware) is high
enough that it can now used by designers of mobility platforms for loose, granular
soil. Additionally, the technique provides the benefit of a different perspective on
terramechanics fundamentals.
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Image-Directed Sampling for Geometric
Modeling of Lunar Terrain

Uland Wong, Ben Garney, Warren Whittaker and Red Whittaker

Abstract Geometric modeling from range scanners can be vastly improved by
sampling the scene with a Nyquist criterion. This work presents a method to es-
timate frequency content a priori from intensity imagery using wavelet analysis and
to utilize these estimates in efficient single-view sampling. The key idea is that under
certain constrained and estimable image formation conditions, images are a strong
predictor of surface frequency. This approach is explored in the context of lunar
application to enhance robotic modeling. Experimentation on simulated data and
in artificial lunar terrain at aerial and ground rover scales is documented. Results
show up to 40 % improvement in MSE reconstruction error. Lastly, a class of image-
directed range sensors is described and a hardware implementation of this paradigm
on a structured light scanner is demonstrated.

1 Introduction

Despite proliferation of motion–coupled industrial scanners in field robotics, there
remain important applications which require actuated sensors and intentional sam-
pling. These applications must consider the question of:“Where to sample the data?”
Planetary exploration is perhaps the best example of the need to plan geometric
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sampling. Correct photometric and geometric classification of rocks and craters
could enhance automated sample collection and manipulation for drilling on sci-
ence missions. Steered and optically reconfigurable flash LIDAR is of great interest
in automated planetary landing for its capability in handling a spectrum of ranges
and scales. Lastly, cooperative orbital and ground mapping, where the robot itself is
a bore-sighted, Dirac sampler, will likewise benefit from a saliency-based approach
to resolving terrain obstacles first detected in aerial sensing [1]. In these applications
the importance of intelligent sampling is twofold: (1) the relative expense of range
scanning places a premium on sampling well and (2) the requirements of model
quality dictate the application.

The quality of 3D reconstruction from point measurements is a function of the
density, distribution and order of sampling. Only grid-based or uniform angular sam-
pling strategies – which are commonly used – inform a priori the total number of
readings required to scan a scene from a single viewpoint. In spite of this, these
are poor sampling strategies for reconstruction. Triangulation of the resultant point
clouds produces glaring artifacts like polygonal slivers and incorrect connectivity.
Aliasing of grid-based approaches creates high gradient planes out of depth dis-
continuities. Wasteful and duplicate measurement increases sensing time for little
information gain. These effects are particularly problematic in applications where the
3D detail is used in object recognition or understanding. One of the compelling mo-
tivations of this work stems from the observation that sensors which are not limited
by grid sampling are the same (low-throughput) sensors which would most benefit
from sampling in a principled manner.

Cameras are natural complements to range sensors [2]; the authors advocate that
it is possible to utilize color imagery to direct range sensing of a scene to avoid these
problems. At the core of this idea is the observation that under certain image formation
assumptions, the frequency content of color images correlates strongly with that of
geometry images. By sampling the scene with Nyquist–informed density distribution
– and by utilizing camera information to plan such a sampling – vast improvements
can be made in both the quality and efficiency of range sensing.

This paper identifies frequency features for use with the image-directed scan-
ning approach, compares feature performance based on reconstruction metrics and
demonstrates new sensor designs and visualization techniques which utilize this par-
adigm. The advantages of diffuse planetary environments are discussed in tailoring
domain-specific salient image features. Lastly, the aforementioned planetary appli-
cations are used to test the efficacy of the method.

2 Related Work

Image-direct sampling can be seen as a complementary approach to that detailed in
the prior camera/LIDAR range fusion work of the authors [2]. Specific motivation
for this work arises from the observation that the quality of geometric fusion depends
as strongly on the quality of the underlying range data as it does on the image-based
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shape estimation. By affecting the nature of range samples, image-directed sampling
can be utilized in tandem with a spectrum of traditional fusion techniques [3] to
significantly enhance range models.

Research towards determining and generating optimal point samples is well doc-
umented. Work of particular note includes [4], which devised a method to reduce the
post-processing time and increase the convergence probability of multi-scan align-
ment by storing only high–saliency points from scans. Related multi-view extensions
of the sampling problem include the body of next-best-view work [5, 6]. Frequency
content is also distinguished as a strong predictor of novelty in exploratory map
building in [7], specifically for planetary terrains.

Wavelets and other multi-scale frequency features are widely used in data under-
standing and reconstruction. They include approaches to LIDAR [8] and intensity
images [9, 10]. In particular image based approaches have been successfully used in
interest seeking for planetary science [11]. Range and intensity fusion with wavelets
has also been studied for forest region mapping [12].

While this research draws inspiration from prior work, it distinguishes itself in
two important aspects. Prior approaches have enhanced unstructured range data using
image content in a post-processing manner, this work tightly couples image analysis
in the range acquisition phase. Secondly, this work is motivated by analysis of surface
reflectance in environmental appearance. The authors believe that proper domain
knowledge can constrain image features to physical phenomena.

3 Frequency-based Modeling

Frequency is one of the most effective predictors of information content in a signal.
Continuous time or spatially-varying signals can be decomposed into their frequency
components by utilizing a number of different transforms to the frequency domain.
While, there is no exact definition of this domain, transforms generally have desirable
properties that indicate the change-over-time of the signal.

The frequency components of range models cannot be directly measured, as the
only sensors that exist for range modeling are Dirac samplers. ToF and Triangulation
based methods all produce point estimates; such discrete samples are subject to
aliasing. It is therefore prudent to consider the Nyquist sampling theorem for spatially
varying samples [13] when reconstructing a range image. This states that perfect
reconstruction is possible from severely sub-Nyquist spatial samples, if the signal
has known compact support and shift invariance in the frequency domain.

These conditions are impossible to satisfy in practice due to sensor noise and
discretization. Thus, only effective use of samples can be made by apportioning low
and high information areas with some sample weight distribution and relative regard
for Nyquist. This corresponds to oft-opposing objectives for modeling in a frequency
sense: (1) accuracy of volumetric reconstruction and (2) localization of high spatial
resolution detail to important areas. The approach taken here is that a range of sample
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importance priors should be explored for application-specific reasons, rather than
attempting theoretical optimality.

3.1 An Image-Directed Approach to Sampling

A prior over the Nyquist frequency distribution is sought, which can guide
spatially-varying sample acquisition. Two dimensional range images are common
manifold representations of 3D models. The wavelet transform [14] is a simple and
elegant representation of the spatial frequency content that can be used for such range
images. Sum-squared detail coefficients at each pixel, the wavelet energy, are one
possible indicator of the information distribution. Sample priors can be estimated
using this metric on data from a complementary camera, which can instantaneously
capture high-density intensity with the same perspective as a range image at a low
constant time cost.

However, intensity is a generally inseparable composition of 3D geometric, mate-
rial and illumination properties projected onto a 2D plane [15]. This work considers
a subset of intensity images, whether raw or feature-transformed, which correlate
significantly with scene geometry. Features from these images are viewed as noisy
approximations of high resolution range or geometry cues.

Consider a simplified form of the rendering equation [16], which describes light
transport for geometric optics at each scene point:

Lo = Le +
∫

θ

f × Li (w) × (
w · n̂

)
dw (1)

where Lo, Le, Li are the light intensities outgoing, emitted and incoming respec-
tively; f is the BRDF; w is the incoming light vector and n̂ is the surface normal for
calculating incident irradiance. This equation can be reduced to the manageable form
of (5) using common assumptions of planetary environments, which are barren, dry,
rocky, and simple illumination (point or direct solar) [17]. Barren describes geometric
smoothness, whereby surface normals can be approximated by geometric samples.
Dry indicates a lack of participatory media, such as atmosphere or dust, which sig-
nificantly scatters light. Rocky means scene reflectances are Lambertian and albedo
change is minimal. Lastly, simple illumination assumes an additive set of discrete
point sources, which in most cases reduces to a single sun source approximated by
a point.
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E ◦ (
wi,k · ∩x

)
(5)

Simplifications of the rendering equation result from applying simple illumination
(2), rocky (3), dry (4), and barren (5) assumptions. Equation (5) relates image inten-
sity (E) to a proportion of the dot product between the source and the gradient of
the geometry (i.e. range image). The frequency relationship between a signal and its
gradients is given by Frankot, which enables heuristic, but strongly correlated fre-
quency sample planning for artifact reduction [18]. Note that the planetary assump-
tions above do not allow for cast shadowing, so only camera-centered illumination
is strictly valid for real data.

The reconstruction problem presented here is viewed as selecting xk = ∈s1, . . . sk⊂
from all possible samples, si ← X , such that the reconstruction error is minimized:
e = arg mins ∅t (xk) − X∅ under some interpolating function t . The objective is to
determine features from intensity images (i) and learn a mapping such that f (i, X) ∝
x̂k , where x̂k ∼ xk .

4 Modeling for Planetary Robots

Validation of the image-directed sampling approach is conducted in the specific
context of lunar robotics. Private enterprises, such as the Google Lunar X-Prize,
have renewed interest in automation of landing and exploration on the moon. There
is particular emphasis on creating high quality maps and models of the moon using
robots as precursors to humans. Experiments were conducted with simulated aerial
and ground-robot data to demonstrate scale robustness.

4.1 Lunar Aerial Mapping

Aerial-scale lunar terrain was procedurally generated in BlenderTM, utilizing ran-
domized fractal crater and rock distributions taken from the Surveyor six mission
[19]. The data includes independent overhead depth and RGB values for each voxel
in the scene at 5 vox/m. Three different scenes were generated and are shown in
Fig. 1.

The datasets simulate lunar sensing during terminal descent, at a scale 50 m above
the ground and were generated for related research. An automated lander, for exam-
ple, might identify geometric hazards (rocks and craters) and divert to a suitable
landing spot. Image-feature based methods have been proposed to identify these
hazards, including detection of shadows [20]. However, in this scenario a gimbaled
altimeter or boresight flash LIDAR can also work in tandem with image-based meth-
ods to acquire a full 3D model.

Simulation of the sampling process includes selecting samples (voxels) from the
highest resolution depth map, triangulating the subsamples and linearly interpolating
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to create a depth map at the native resolution. This depthmap is then compared against
the ground truth digital elevation map to produce reconstruction error scores. Artifacts
such as sensor noise are not considered in this analysis. Several scanning strategies
were compared on this dataset. They include:
Uniform Grid – An N x M = k element uniform grid sampling across the scene,
rounded to voxel edges.
Uniform Random – Random sampling of k elements in the scene with each voxel
receiving uniform weight.
Gradient Weighted – Random sampling weighted by the 2-norm of the partial image
derivatives, a precursor to image-based edge detection. Calculated using the matlab
command gradient:

w = ∥
∥∩x I + ∩y I

∥
∥

2 (6)

where ∩x I and ∩y I are the image partial derivatives in the x and y direction respec-
tively.
Wavelet Weighted – Random sampling weighted by the sum-square of the wavelet
coefficients, normalized by subregion size: The wavelet transform is generated with
DB2 wavelet using the command wavedec.

w =
N∑

j=1

1

2 j

(
D j

)2 (7)

where j is the pyramid level and D j are the detail coefficients at level j .
Entropy Weighted – Random sampling weighted entropy in a 9×9 image neighbor-
hood centered about the query pixel, calculated with the matlab command entropyfilt.
This transform is frequently used as a texture cue.

Three separate metrics were used to compare the reconstruction error between
sampled depth maps and ground truth. These metrics each emphasize a different
requirement of the model.
Mean Squared Reconstruction Error (MSE)–Penalizes for any large difference
between the reconstruction and the ground truth.
Gradient Weighted Reconstruction Error (GRAD) – Penalizes for incorrect re-
construction at depth discontinuities.

Fig. 1 Image features in diffuse environments, such as the moon, correlate strongly with geometric
features. These three simulated lunar terrains are utilized in this work
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Table 1 Performance of sampling strategies on simulated aerial terrain

Scene #1 Random Grid Gradient Entropy Wavelet

MSE 1 1.02 0.88 0.87 1.11
GRAD 1 1.1 1.10 1.13 1.12
SAL 1 0.93 0.93 0.88 1.07
Scene #2 Random Grid Gradient Entropy Wavelet
MSE 1 1.01 0.87 0.85 0.99
GRAD 1 1.05 1.12 1.16 1.12
SAL 1 0.82 0.96 0.95 1.05
Scene #3 Random Grid Gradient Entropy Wavelet
MSE 1 0.91 0.83 0.80 1.21
GRAD 1 0.98 1.02 1.06 1.01
SAL 1 1.02 0.82 0.79 1.31

Saliency Weighted (SAL) – Assigns higher weight to in reconstruction salient fea-
tures such as rocks and craters correctly. The saliency map is generated using using
the Saliency Toolbox [21].

Random samples were generated 20 times using each strategy and the resultant
scores were averaged. In the case of the grid strategy, the grid was shifted horizontally
and vertically so that sampling did not always occur in the same voxels or on the
edge of the scene. Optimal linear coefficients were found using fminsearch. The
experiments were performed with fractional sampling density of the ground truth
resolution in log spaced increments, i.e. k = 1/2, 1/4, 1/8, . . . , 1/2, 048.

The results of the sampling simulation are detailed in Table 1. The scores are
given as the mean ratios of the error between random sampling and the strategy in
question, weighted by inverse sample density.

score = 1
∑

k

∑

k←S

T

k
· erand|k

estrategy|k
(8)

Thus, scores represent an improvement multiplier over random sampling. Reweight-
ing by inverse density accounts for performance across the entire logarithmic sam-
pling densities of interest while discounting minute reconstruction noise due to lack
of selection replacement at the highest density trials.

It is noted that in sparse samplings (k < 15, 000), wavelets performed the best
across all metrics (graphs of all curves are omitted for succinctness, see Fig. 3). This
is particularly promising when high reductions in the amount of geometry acquired
are necessary. Wavelets perform more modestly (20 % improvement) given higher
numbers of points, as sample selection becomes constrained in the downsample
simulation. Gradient and entropy approaches both perform relatively poorly. Gradient
weighting fails because the sharpest edges occur in shadowed craters, not depth
discontinuities. A similar problem occurs with entropy, which utilized a fixed scale
and neighborhood. While the wavelet transform is also susceptible to overweighing
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shadow features, the multi-scale capability also captures the crater and rock features.
The grid approach comes out ahead of other methods in deficiently sparse reductions.
While grid sampling is subject to bias and aliasing, there is the possibility for large
holes in random sampling. A better pseudo-random sampling approach for all these
features might first compute a Delaunay triangulation within similarly valued regions
to ensure adequate density.

4.2 Lunar Ground Mapping

Unlike aerial sensing, which is difficult to scale for lab experimentation, high-fidelity
robot scale terrain can be constructed with readily available materials. This section
describes experimental verification of the approach on lunar-like terrain constructed
in a 2 × 1.3 m moonyard. Macro-scale rocks were placed on an undulating bed of
garden lime with size and position determined by lunar rock distribution data. The
moonyard was then dusted with CMU1, a nonhazardous, optical regolith simulant
developed at Carnegie Mellon and consisting primarily of sieved coal dust and pow-
ered lime. Micro craters were created by ballistic placement of pebbles and further
dusting. Figure 2 shows the ideal distribution of features generated in simulation and
the actual placement of these features as-built.

Fig. 2 A simulated lunar rock distribution utilizing Surveyor data (top left) and realization in the
construction of an artificial moon scene (top right). The bottom row illustrates a z-colorized mesh
model of the scene generated with LIDAR scanning (bottom left) and color-mapping of the terrain
from DSLR images (bottom right)



Image-Directed Sampling for Geometric Modeling 473

Fig. 3 Comparison of selected strategies over all subsample amounts and metrics on lunar terrain
model. Visually, wavelets are the best performers (green)

The terrain was placed in a light simulator frame with calibrated sensor and sun-
scale light source positions for data collection (an overhead sun position was used).
Range data was collected with a survey-grade phase-shift LIDAR by scanning from
multiple positions to ensure adequate resolution and elimination of range shadows.
Likewise, HDR imagery was collected from multiple locations utilizing DSLRs.
The raw LIDAR point cloud, consisting of five million points, was colored with
RGB imagery, cropped to the edge of the sandbox and averaged into a 971 × 1674
voxel (1.6 M samples) orthographic digital elevation map. Figure 5 in the next section
shows the data acquisition setup.

As the scanner does not have independent sampling control, it was necessary to
scan at maximum resolution, voxelize into a uniform grid and sub-select samples
post measurement for testing. Quantization into lower resolution voxels enables
independent readings for each position without interpolation and provides resilience
against the natural angular biases of the sensor.

The sampling strategies described in the previous section were tested and the
same metrics described are used in this analysis without change. The results of the
experiment in artificial lunar terrain are summarized in Table 2. The wavelet-based
sampling is clearly the best performer in this experiment (∼ 40 % improvement).
Curiously, all of the strategies performed significantly better than in the simulated
aerial imagery. It is believed that this effect is due to the strong cast shadows in the
simulated imagery, while this experiment (though using real data) featured softer
shadows and few large, negative features. While results are promising, it must be
noted that this single dataset cannot be representative of the entire spectrum o lunar
appearance and geometry and additional testing is required.

Table 2 Performance of sampling strategies on lunar terrain

Grid Random Gradient Entropy Wavelet

MSE 1.1 1 1.09 1.15 1.33
GRAD 0.82 1 1.21 1.32 1.42
SAL 0.96 1 1.2 1.30 1.50
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Fig. 4 Lunar terrain model generated with image-directed sampling. 1 An extremely sparse sam-
pling rendered with roughness-modulated Oren-Nayar BRDF retains useful geometry and is visually
appealing. 2 The frequency map of the terrain generated using wavelet decomposition. 3 Detail of
roughness visualization demonstrates that a data deficient model can retain much of the optical
appearance of the highest resolution model

Visual results of terrain reconstruction using wavelet-weighted, image-directed
samples are illustrated in Fig. 4 . Figure 4 shows a rendering of the terrain with twenty
thousand sample points, representing an 80x density reduction from the ground truth
model of 1.6 million points (Fig. 4). As a result of well-placed samples, the macro-
scopic geometry is surprisingly well-formed for such a sparse mesh; there are few
glaring differences when compared to the ground truth. The downsampled model
is rendered with an inferred roughness from the wavelet decomposition. High fre-
quency features estimated in the image are “painted” onto the sparse geometry by
modulating the roughness term in an Oren-Nayar vertex shader proportional to the
energy (Oren-Nayar is close to the true BRDF of lunar soil) [22]. A threshold can be
applied to ensure major geometric features remain metrically true. This approach to
visualization conveys the high resolution surface characteristics to the viewer while
preserving mesh compactness with minimal computation. Figure 4 further illustrates
this technique. With roughness inference turned off, the surface is an aliased collec-
tion of triangles, but rendering with roughness infuses many of the characteristics of
the true surface.
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5 A Class of Image Directed Scanners

In the prior sections, a discrete grid based approach is compared to random sampling
approaches. Significant improvement was shown when random sampling is combined
with image frequency estimates. However, it can be argued that this comparison is
unfair. Few existing range sensors can acquire random, independent samples. Most
of the applications that are considered in this work would use steered beam sensors
if taken at the current state of sensor art. The authors believe that the approach is still
beneficial when considering motion-constrained devices with trajectory planning and
the possibility of utilizing region-based iterative enhancement in conjunction.

However, it is of interest to consider the class of sensors that provide pixel-
independent sampling, as they are capable of implementing the approach in the
purest form. Perhaps the most obvious and common of these are structured light
sensors based on digital projectors. Though, foundational work has been conducted
in camera-integrated smart laser scanners [23].

A structured light scanner was utilized in developing a proof-of-concept hardware
implementation of image-directed scanning. Figure 5 illustrates the optical configu-
ration of this device. A high resolution DSLR camera is optically co-located with the
projector through the use of a half-silvered mirror. The system is calibrated such that
each pixel in the camera corresponds to an exact outgoing ray of projected light. This
configuration enables the system to sample the exact location viewed by the camera
without shadowing. Finally, a second camera is optically offset from the other two
devices and measures depth via triangulation. This setup is closely related to that
presented in [24], which is a co-located system for augmented reality. Image-directed
sampling is implemented on this scanner as follows. The projector first lights all pix-
els so that the scene can be imaged by the DSLR and analyzed. Afterwards, scanning
proceeds in either of the two modes.

The first mode is ambiguity enhancement. In temporally-coded stripe scanners, the
highest resolution stripes often result in ambiguities or errors (illustrated in Fig. 6).
Among the sources for these errors include the albedos and complex reflectance

Fig. 5 An image-directed scanner consisting of a high resolution camera optically co-located with
a DLP projector (left). Experimental setup utilized in this paper showing mounting positions of all
the sensors (right)
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Fig. 6 Linear gray code scanning of the lunar terrain causes errors at the finest resolution due to
differences in underlying scene albedos (top). Image cues can direct the scanner to resample salient
regions such as rocks a pixel at a time (bottom). Samples are shown simultaneously illuminated for
illustrative purposes; scanning occurs one dot at a time

of materials present in the scene to the resolving power of the camera lens. Gray
codes can alleviate this problem, but result in lower effective resolution when such
errors occur [25]. Image-directed sampling can be applied to identify regions which
require dense, accurate samples, which can then be resampled one pixel at a time
(reducing errors). The bottom row of Fig. 6 illustrates salient features (rocks) that
require more samples. The locations of these samples are all illuminated by the
projector for graphical clarity, but are scanned individually. Results on the moon
terrain showed 25 % improvement in reconstruction MSE by re-scanning ∼ 10 % of
gray code pixels using a single dot. Though the time cost of this extra scanning as
implemented is large, significant reductions are possible with parallelism.

The second mode of operation explored is data reduction. Temporal coding in
structured light scanning often precludes motion while scanning is in progress. Spa-
tial codes, which utilize color or pseudorandom dot distributions, enable all depth
information to be captured in a single frame. However, these techniques do not lend
themselves to tightly-packed high resolution samples [25]. Image frequency can be
utilized to plan a sampling of the scene with optimally placed dot locations. Re-
construction quality is thus improved while maintaining sparse samples. While not
implemented at the time of this writing, using clique coloring in only high density
regions and simple spatial pattern distortion estimation in low density regions can
greatly reduce the number of colors to be discriminated.

Micro mirror arrays, like that used in the projector unit, are much higher reso-
lution than beam sensors and even flash LIDAR. More importantly they require no
actuation. The authors envision future intelligent sensors coupling low-resolution,
low-throughput range receivers, micromirrors and co-located color cameras to de-
termine optimal samples in the same vein our sensor.
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6 Conclusion

An approach to image-directed range scanning utilizing wavelet analysis was
described in this paper. Lunar application was targeted, where the particulars of
surface appearance constrain image formation and correlates intensity with geome-
try. Validation of the approach was conducted for lunar aerial and ground mapping
through simulation and terrestrial recreation respectively. Preliminary results are
promising: reconstruction improvements of 40 % can be achieved over grid-based
scanning techniques from a single viewpoint. Simple, but effective visualization for
sparse meshes was demonstrated for combining image-estimated texture with the
geometric portion of the lunar surface BRDF. Lastly, a hardware implementation on
a pixel-independent structured light sensor was explored.

In the immediate future, we hope to analyze the effects of sensor noise on the
approach. Noise in both the scanner and the camera can contribute to inaccurate
prediction and wasted samples. Though this problem was mitigated in these experi-
ments by limiting the maximum regional density that could be sampled, the sensors
were low noise to begin with. The ability to handle a larger number of different
albedos could also enhance the robustness of the method. Possibilities to crosscheck
albedo changes (which contribute to frequency content in images) and shape changes
include the use of solar-motion and probabilistic albedo estimation techniques. Sim-
ilarly, while it was shown that this approach is defeated with strong shadows, the
shadows can be mitigated with active illumination.

Acknowledgments The authors acknowledge Kevin Peterson, Heather Jones and Jason Koenig
for use of lunar model data.
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Efficient Large-Scale 3D Mobile Mapping
and Surface Reconstruction
of an Underground Mine

Robert Zlot and Michael Bosse

Abstract Mapping large-scale underground environments, such as mines, tunnels,
and caves is typically a time consuming and challenging endeavor. In April 2011,
researchers at CSIRO were contracted to map the Northparkes Mine in New South
Wales, Australia. The mine operators required a locally accurate 3D surface model in
order to determine whether and how some pieces of large equipment could be moved
through the decline. Existing techniques utilizing 3D terrestrial scanners mounted
on tripods rely on accurate surveyed sensor positions and are relatively expensive,
time consuming, and inefficient. Mobile mapping solutions have the potential to
map a space more efficiently and completely; however, existing commercial systems
are reliant on a GPS signal and navigation- or tactical-grade inertial systems. A 3D
SLAM solution developed at CSIRO, consisting of a spinning 2D lidar and industrial-
grade MEMS IMU was customized for this particular application. The system was
designed to be mounted on a site vehicle which continuously acquires data at typical
mine driving speeds without disrupting any mine operations. The deployed system
mapped over 17 km of mine tunnel in under two hours, resulting in a dense and
accurate georeferenced 3D surface model that was promptly delivered to the mine
operators.

1 Introduction

In April 2011, researchers at CSIRO were contracted to map several kilometers
of the decline and drive at the Northparkes copper and gold mine in New South
Wales, Australia. The mine operators were interested in moving large equipment
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underground for future operations. In order to do so, a 3D model of the decline and
drive was essential to determine the level of disassembly of the equipment required
to manage the clearances in the tunnels. The primary requirement was that the model
must be locally accurate: drift in the data acquisition trajectory could largely be
tolerated, as the most critical aspects were the negotiation of curves and changes in
grade.

Our research team at CSIRO had an existing relationship with Northparkes Mine
based on previous work in automating an underground load-haul-dump vehicle [5].
More recently, our group has been investigating 3D SLAM in challenging environ-
ments, and in particular had developed solutions for mobile mapping in GPS-denied
areas. Of particular relevance to the proposed mine mapping application, we had
been working on a SLAM solution capable of estimating the six d.o.f pose of a spin-
ning 2D lidar while the platform on which it is mounted is continuously moving [1].
In its simplest form, this solution requires no more than the raw 3D lidar returns as
input; however, the use of readings from an inertial measurement unit (IMU) can aid
the solution to provide increased robustness and accuracy. Variants of our system
had been deployed for mapping suburban streets, industrial environments, forests,
caves [8], indoor spaces, and a small section of an underground coal mine. Over
the course of these experiments and deployments, our system has been improved
considerably in a number of ways, some of which are detailed in this paper.

Three-dimensional mapping can play a highly critical role in underground mine
development and maintenance, including planning, monitoring, safety, and vehicle
localization; however, to date the existing 3D mapping and localization solutions are
inefficient, labor intensive, or have not been demonstrated to be reliable, robust, and
scalable. The predominant practice for lidar mapping of underground voids (such as
mines, tunnels, and caves) is the use of tripod-mounted terrestrial scanners coupled
with traditional survey methods to accurately estimate the scanner location [7, 9, 14,
16]. Several solutions using a mobile platform have been proposed in the robotics lit-
erature, but thus far these have predominantly been time-consuming “stop-and-scan”
solutions where the platform must stop every few meters to acquire a scan [6, 10,
11, 15, 17]. These examples have further been confined to small test areas in their
respective mines or test environments; none of the approaches have demonstrated
applicability to large-scale deployments of more than a few hundred meters. One
exception is a deployment in the San Jose silver mine in Mexico, where a small
tracked robot with a terrestrial scanner covered 2.2 km of the mine using a stop-
and-scan strategy; however, the data acquisition reportedly required three and a half
days.1 In contrast, above-ground mapping has been revolutionized by mobile map-
ping systems in recent years [12]. Such systems typically consist of high-accuracy
lidars and tactical-grade inertial navigation systems mounted on the rooftop of a
street vehicle. While the point clouds produced by mobile street mapping systems
can be highly accurate and of large-scale, these systems heavily rely on maintaining
a GPS signal (and are considerably expensive). Mobile mapping technology that can

1 “Robot Scans Silver Mine”, Photonics.com, 6 May 2008, accessed 1 June 2012. http://www.
photonics.com/Article.aspx?AID=33755

http://www.photonics.com/Article.aspx?AID=33755
http://www.photonics.com/Article.aspx?AID=33755
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reliably operate underground in the absence of GPS would be ideal for similarly
transforming the underground mapping field. Our work realizes such a system, and
here we demonstrate its application to a real-world large-scale underground mine
mapping scenario, which required only about one hour of driving to generate a dense
and accurate 3D surface model over a 17.1 km trajectory.

The contribution of this work is a SLAM solution that is able to map an under-
ground mine in the time it takes to drive through it (up to maximum mine traffic
speeds). We were able to reliably and accurately localize within and map more than
17 km of the Northparkes mine in under two hours, and effectively in real-time.2

The hardware used to acquire the data was particularly minimal, making all of the
setup, measurement, and teardown activities possible within only a few hours. The
purpose of this deployment was not merely to demonstrate our technology, but to
produce a 3D surface model to a particular specification for use by the mine operators
for planning future operations. Our results surpassed the specified requirements and
have been successfully delivered to the end customer.

The remainder of this paper is organized as follows. In Sect. 2 we first describe
the hardware used, followed by the steps required to generate a dense, accurate, and
georeferenced 3D surface model of the mine decline and drive in Sect. 3. At each
stage, the resulting solution up to that point is illustrated and analyzed. Conclusions
and lessons learned are discussed in Sect. 4.

(a) (b)

Fig. 1 The vehicle and sensing hardware used for data collection. The plastic sheeting over the
sensor cart was used to protect the hardware from mist spray used for dust supression in some
sections of the mine. a The vehicle and sensor cart during setup. b The vehicle and sensor cart
inside the mine

2 While we were not running our SLAM solution while acquiring data in the mine, we can process
the data at a rate that is considerably faster than real-time.
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2 Hardware and Procedure

The sensing platform used for mapping Northparkes Mine is illustrated in Fig. 1. The
primary sensor utilized was a SICK LMS291 2D lidar on a rotating mount which
spins the laser about the central scanning ray at one revolution every two seconds.
As the LMS291 only measures in a single plane, the additional degree of rotation
extends the sensor’s field of view to cover a hemispherical region each second. In
our previous publication [1], a 3D SLAM algorithm is introduced which is capable
of estimating the sensor’s 6DoF motion while the platform on which it is mounted
moves continuously through an environment. For this application, we have also fixed
a MicroStrain 3DM-GX2 MEMS IMU on the back of the spinning laser mount (i.e.,
the IMU does not spin with the laser). The IMU is utilized as an aiding sensor in the
SLAM solution, providing additional robustness in rotation and globally eliminating
drift with respect to the gravity vector. The lidar spin axis was pitched with respect
to the horizontal in order to obtain some coverage above and in front of the vehicle.
This configuration increases the reobservation of surfaces when at driving speeds,
which is beneficial to the SLAM algorithm.

The spinning laser and IMU were mounted on a steel-frame cart, which was
adapted from a recent experiment in which we were evaluating the SLAM solution
in an underground coal mine. Given the short turnaround time expected for the
Northparkes Mine deployment, we concluded that a simple solution would be to
strap the existing cart to the bed in the rear of a site utility vehicle (pickup truck),
thereby eliminating the need for developing a vehicle mount and minimizing the
setup time prior to data collection. In addition to the sensors, the cart also included
batteries and electronics, as well as a laptop which ran the sensor drivers and recorded
data using the robot operating system (ROS) [13].

In addition to the spinning laser, two fixed LMS291 lidars were mounted on the
cart back-to-back with their scanning planes oriented vertically, covering a 360◦ field
of view in a vertical plane. As the vehicle drove, these sensors were trawled across
the environment, covering the mine surface with a more uniform sampling density
than the spinning laser (Fig. 2). The data from these sensors were used for generating
mine surface models given the trajectory solution from the SLAM algorithm. The
configuration of the vertical lidars is illustrated in Fig. 1. A small gap between the
lidar scanning planes produces a 160 mm blind spot in the scanned surface. While
this gap could be filled in with data from the spinning laser, it was not considered
critical for the application and so was left empty in the final 3D models.

With the cart strapped into the bed of the site vehicle, a Northparkes employee
drove the vehicle through the desired trajectory down into the mine, and returned back
up to the start location just outside the entrance. The width and height of the mine
tunnels vary between 5 and 6 m. The vehicle was driven according to site regulations
and within the speed limit of 30 km/h (typically 20 to 30 km/h). When encounter-
ing other vehicles, the driver briefly stopped to allow them to pass in order to both
avoid mapping these vehicles into the surface model and to eliminate shadows due to
the associated occlusions. Any points measured from these vehicles could be easily
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Fig. 2 Point densities of data acquired by the spinning lidar and the two vertical lidars (over
approximately eight seconds), viewed from overhead. a The spinning laser’s scan density is uneven
due to the orientation of the spin axis (pitched 25◦ from the vertical). As the vehicle drives, the scan
rate is effectively higher on the side of the vehicle where the laser spins with the direction of vehicle
motion. b The data from the vertical lasers are more evenly sampled, with the density depending on
the vehicle speed. The small longitudinal gap is due to the blind spot between the two lidar units.
The sporadic radial gaps are due to scans dropped by the LMS driver (discussed further in Sect. 3.5)

removed by ignoring any measurements taken with the vertical lidars while station-
ary. The entire data acquisition process covered approximately 17.1 km of drive in
1 h and 53 min (including 45 min of stops for tag boards, ventilation doors, and equip-
ment checks). Importantly, the entire mapping process was completed without any
negative impact on mine operations. A mine survey shown in Figs. 3d and 4d, based
on reduced-level data provided by the mine operators, illustrates the layout of most
of the area that was covered and provides ground truth for some of our processing
phases.

3 Data Processing

The acquired data are processed through a series of steps to produce the final surface
model. First, an open-loop incremental scan-matching algorithm generates an initial
estimate of the platform trajectory based on the spinning laser and IMU data. The
initial trajectory is then corrected and georeferenced in two offline global registration
stages. Finally a 3D surface model is reconstructed based on the resulting trajectory
and scan data from the vertically-oriented lidars.
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(a) (b)

(c) (d)

Fig. 3 Overhead views of the trajectory resulting from each of the stages of data processing. a
The initial open-loop trajectory resulting from the online incremental scan-matching algorithm,
colored according to elapsed time. Locations where sensor data briefly dropped out (see Sect. 3.1)
are indicated by black circles in the upper right. b The trajectory after applying the first-pass global
registration algorithm. The trajectory is colored according to the local translational stresses applied
to correct the open-loop trajectory. c The trajectory resulting from the mine survey registration
step. Seventeen anchor points are indicated by ⊗ symbols. Illustrated are the mine survey surface
elements colored by the positional correspondence errors to the matched lidar point cloud surfels.
The thin grey trajectory segments are areas we mapped that were not covered in the available mine
survey data. The thin grey segment just east of the origin is outside the mine entrance. d The mine
survey colored by elevation.(b), (c), and (d) are georeferenced in UTM coordinates, but offset here
by a constant value in order to make the axis labels legible
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(a) (b)

(c) (d)

Fig. 4 Side views of the trajectories from Fig. 3. All colors, symbols, and axes follow the same
conventions as in the previous figure

3.1 Initial Trajectory: Open-Loop SLAM

An initial 6DoF sensor trajectory estimate was computed using an incremental scan-
matching 3D SLAM solution. The solution is based on work we previously pub-
lished [1], with several improvements and enhancements incorporated that have been
developed since initial publication. The algorithm at each timestep is presented with
data from at least two sweeps (half-revolutions) of the spinning lidar (referred to
as a segment), and computes a smooth trajectory that best explains the lidar data.
The trajectory segment window is shifted at each timestep by an amount less than or
equal to the segment length. For this application, we use a trajectory segment length
of 2.3 s, and shift it by 0.7 s at each timestep.

Initially, at the start of processing a segment, the true trajectory followed over the
full duration is unknown. However, a rough prior trajectory can be estimated using a
constant velocity model for the previously unobserved portion of the trajectory. The
predicted trajectory is based on an assumed translational velocity from the end of
the previous segment, and the rotational velocity measured by the IMU. The prior
trajectory estimate is generally considerably inaccurate, and the associated point
cloud can still be severely distorted. The goal of processing the current trajectory
segment is then to solve an optimization problem to estimate a correction to the
prior trajectory. The optimization is modeled as a linear system composed of a set of
constraints of four types: surface match constraints, smoothness constraints, gravity
constraints, and initial condition constraints. The system state solved for is a discrete
set of corrections to the prior trajectory segment regularly sampled at fixed intervals.
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The surface match constraints are derived from reobservations of surface patches
in the lidar measurements. An initial lidar point cloud estimate is formed based
on the prior trajectory estimate. Though this point cloud is distorted, locally (i.e.,
over short time intervals) it is approximately correct much of the time.Therefore, we
can compute rough local surface patch estimates (called surfels, and consisting of a
position and surface normal) for which we can search for matches from other parts
of the trajectory segment. The surfels are generated by decomposing space into a
grid of cube-shaped voxels at multiple resolutions (plus a second grid shifted by half
of a cell in each dimension at each resolution), and fitting an ellipsoid to the lidar
points that fall within each voxel. For this application, we use voxel resolutions of
0.5, 1, 2, and 4 m. By limiting the maximum time interval of the points within each
voxel, we can ensure minimal data distortion and associate an approximate trajectory
sample given the surfel’s mean measurement time. For a particular voxel, the surfel
position is taken as the centroid of the ellipsoid, and the surface normal is computed
from the eigendecomposition of the second order moment matrix. Matches between
the surfels are found using a kd-tree based approximate k-nearest neighbor search,
where each vector in the search space is a weighted concatenation of the position
and surface normal of a surfel. Each match constrains the relative pose between their
corresponding trajectory samples.

The smoothness constraints ensure that the trajectory is physically realistic by
modeling physical limitations on linear and rotational accelerations. The gravity
constraints globally reduce rotational drift that would bring the ‘up’ direction out of
alignment with gravity (as measured by the IMU accelerometers after compensating
for the estimated motion of the vehicle). The initial condition constraints ensure
continuity across multiple trajectory segment windows by fixing the start point of
the current segment.

The various constraints are of the form Ax = b, where x is the state vector con-
sisting of the corrections to the initial trajectory segment estimate at the samples. The
system is solved as an iteratively reweighed least squares problem in an M-estimator
framework, where the match constraints are weighted according to a Cauchy distri-
bution to mitigate the effect of outliers. The entire optimization process is repeated
until convergence or a maximum number of iterations is reached, where in each iter-
ation the surfels are first transformed according to the previous (improved) solution,
new matches and other constraints are computed, and the new linear system is solved.

To reduce the accumulation of drift errors over trajectory segment windows, the
algorithm also maintains a set of surfels from past views that are no longer in the active
window, from which additional match constraints are generated. The corresponding
match constraints only contain terms for correcting the current observations (i.e.,
the trajectory corresponding to the fixed surfels is not further corrected). Views are
occasionally saved at fixed distance intervals along the trajectory. A small constant
number of fixed views is buffered (two in this application) in order to avoid unbounded
growth in computation.

Key differences from the solution described in the original publication [1] include:
the use of an IMU as an aiding sensor (and the accompanying reformulation of
the smoothness constraints); the trajectory segment is no longer separated into two
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well-defined halves (matches can be taken from any two distinct times); the use of
fixed views; as well as many efficiency improvements that allow the system to run
in real-time.

The trajectory generated from this phase of the processing sequence is illustrated
in Figs. 3a and 4a. The time required to generate this solution (on a desktop com-
puter with a 3.2 GHz Intel Xeon CPU) is 70 min, which is approximately 62 % of
the total data acquisition time. As expected, since the solution uses an incremen-
tal scan-matching technique, the resulting open-loop trajectory is affected by drift;
however, given the scale of the trajectory, the accumulated drift is reasonably small.
Note that there are two instances at which there are short gaps in the data (indi-
cated in the figures), which is responsible for some of the largest apparent offsets
in the visualization of the trajectory. These gaps occurred when an ethernet cable in
the logging computer became disconnected. In each instance, the disconnection was
noticed reasonably quickly, the driver was requested to stop, and the data logging
soon recommenced (after approximately 25 s in the longest case). The open-loop
trajectory simply continues from the last known location when the gaps occur; there-
fore, large instantaneous errors appear at these locations in the figures. These splits
in the trajectory are repaired in the subsequent processing steps.

The open-loop trajectory produced at this stage is locally accurate and would be
sufficient for the purposes of the application (determining clearance for transport-
ing equipment). Nonetheless, we decided to further improve the result by globally
registering the data using the techniques presented in the sections that follow.

3.2 Loop Closure

Given the open-loop trajectory, we next perform a global optimization that registers
the surfaces that have been observed in multiple passes through the environment. For
this procedure, we are able to apply essentially the same algorithm that is used for
generating the open-loop solution; however, instead of solving for a short trajectory
segment over a few-second time window, we input the entire (nearly two-hour-long)
trajectory. In the same manner as above, surface elements are generated from the lidar
point cloud; match, smoothness, and gravity constraints are formed; and the resulting
linear system Ax = b is solved in an iterative fashion. In addition to the standard
constraints, constraints are introduced which encourage the local modifications to
the original (open-loop) trajectory to be small.

The global optimization algorithm is effective only when the initial trajectory
is reasonably locally accurate, and has difficulties when the error between reobser-
vations from different passes is large (largely due to the use of nearest neighbor
search to identify surface matches). In this type of environment, perceptual aliasing
can occur where different sections of tunnel are relatively close together in the ini-
tial solution, which can pull together incorrect matches. This effect is particularly
troublesome given the difference in elevation between the downward and upward tra-
verses of the lower decline (left side of Fig. 4a), resulting in incorrect loop closures.
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A simple solution to this problem is to use a small number of anchor points, which
are rough locations manually extracted from the 2D mine survey (e.g., at particu-
lar intersections) and associated with the times that the trajectory passed near these
locations. The trajectory is first rigidly transformed to minimize (in a least squares
sense) the distance between the anchor points and the associated trajectory locations.
Constraints encouraging the trajectory to pass within 7 m of the anchor points at the
appropriate times are also incorporated into the first few iterations of the global opti-
mization. The anchor point constraints are relaxed after several iterations due to the
fact that the exact time the anchor points were passed through, and the proximity
of the trajectory to the anchor points, is not known precisely. Therefore, the anchor
points are primarily used to help move the initial solution into the algorithm’s catch-
ment basin, avoiding local minima. The inclusion of the anchor points also roughly
georeferences the trajectory.

Figures 3b and 4b illustrate the closed-loop trajectory resulting from the global
optimization process. Computing the closed-loop trajectory required approximately
45 seconds for generating the surfels, and 3.3 minutes to run the optimization. At
this stage, it is clear to see the resemblance to the mine survey shown in Figs. 3d
and 4d. In Figs. 3b and 4b the trajectory is colored according to the magnitude of the
local translational corrections applied to the initial trajectory in order to arrive at the
registered solution. The RMS of the local translational corrections is 1.8 cm/s, while
the RMS of the local rotational corrections (not pictured) is 0.027◦/ s.

We observe that some of the anchor points deviate from the trajectory due to the
relaxation of the associated constraints in the final iterations of the optimization.
Relaxing these constraints allows the surface match constraints to converge more
freely, and the deviations are tolerable at this stage since they can be corrected in the
next stage of processing.

3.3 Registration with Mine Survey

As a final step in correcting the trajectory, we register our 3D point cloud to the
available mine survey data. By doing so, we can more accurately georeference the
result, and correct some of the finer-scale drift not accounted for in previous steps.
The mine survey data is a set of 17,942 points, which were previously acquired by
surveyors collecting 2D scans throughout the tunnels of the decline and drive at
variable local densities ranging from tens of centimeters to a few meters apart. We
first preprocess the mine survey to extrapolate artificial surface elements given the
2D scan points. As the mine survey points are given as the tunnel outline at floor
level, we can generate a wall surfel and floor surfel for every neighboring point pair
(resulting in 35,612 mine survey surfels). The location of a surfel are taken to be the
average position of the associated point pair, while the normals are constructed under
the assumption that the walls are vertical and floor is aligned with the tunnel slope.
Registration to the mine survey can be performed using the same global optimization
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algorithm described above, but now using the mine survey surfels as a fixed view (as
described in Sect. 3.1).

Figures 3c and 4c shows the results after registering the closed-loop point cloud
with the mine survey. This stage of the solution required 4.9 min of computation.
We evaluate the quality of the match according to the positional error between the
surfel center and the center of the corresponding lidar surfel measured along the
surface normal (visualized by the coloration in the figures). Based on 78,945 such
correspondences (we allow up to three matches per surfel), the error distribution is
observed to be normally distributed with a mean of 3 cm and standard deviation of
26 cm. Based on a visual inspection of the results, the largest outliers are believed
to be in places where the mine survey is inaccurate, likely due to inaccuracy or
alterations to the mine since the original measurements were taken.

3.4 Surface Reconstruction

Three dimensional surface reconstruction of the mine was achieved by meshing the
data acquired from the vertical lidars. The poses of the vertical lasers with respect to
the spinning laser were calibrated by minimizing the error between the point clouds
they produced in a small, representative section of the dataset. To avoid scan data
bunching up in areas where the vehicle stopped, we filter out any scans acquired
while the vehicle was moving below 20 cm/s. In addition to having a more uniform
point density (Fig. 2), it is considerably more straightforward to triangulate the points
from the vertical lasers according to the scan manifold order. The spinning lidar data
was not used here for surface reconstruction due the fact that a similar manifold-
based triangulation of these points results in a non-orientable surface (topologically
a real projective plane for each revolution of the mount).3 Some preprocessing was
undertaken to filter out returns from water droplets and mist, which was present
in some sections of the mine to suppress dust. For this purpose, a 2D (in the scan
manifold) mean filter was used to replace range values that deviated from their local
neighborhood by a significant amount with the median range.

Representative views of the reconstructed surface are pictured in Fig. 5. The mod-
els appear to accurately represent the environment, with the exception of some long
triangles connecting objects at occlusion boundaries (e.g., cables appear connected
to walls). While a simple threshold-based removal of long triangles performs some-
what adequately in removing these connections, a more complex algorithm is likely
required to more elegantly clean these artifacts. The resolution of the reconstructed
surface depends on the vehicle speed and surface geometry, but is roughly at 10 cm
resolution at top speeds.

3 We have developed more complex volume-based methods for surface reconstruction from spinning
lidar data [8]; however, for this application we decided a simpler point-based solution would be
more accurate.
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(a) (b)

Fig. 5 Two views of the reconstructed surface model of the Northparkes Mine. a A typical section
of the decline. The gaps on the floor and ceiling are due to the blindspot between the two vertically-
oriented lasers. Electrical cables are seen along the left side wall. b A section of the mine including
open ventilation doors and ductwork. Some long surface triangles are seen along the door frame
where the surface is essentially parallel to the scanning plane

3.5 Other Technical Considerations

Many other technical issues required consideration in order to produce a successful
outcome. Selected issues and lessons learned from this deployment are highlighted
below.
Beam Divergence. Time of flight laser range scanners return a scalar range value for
each measurement, which is typically assumed to be measured along an infinitesi-
mally narrow ray. In reality, lidar beams can have a substantial footprint diameter,
and neglecting to model the conical beam shape may have significant ramifications.
The long-range, high incidence angle measurements that are typical in tunnel-like
environments result in underestimates in range returns if a naive ray beam model
is used. At sharp incidence angles, the leading edge of the beam footprint reflects
from the surface earlier than the beam center. This effect becomes more significant
at longer distances, since the beam footprint diameter grows linearly with range. The
overall effect is that long, straight walls appear to bow inwards. In our example, since
we had the spinning lidar predominantly focused on the ceiling, this bowing resulted
in a pitch bias that caused the trajectory and tunnel map to arc (due to symmetry,
the biases from the side walls cancelled each other out). We therefore adjust surfel
positions according to a conical model for the LMS291, which has a beam divergence
angle of approximately 0.7◦.
Timing. When using multiple sensors, timing is of critical importance. Any noise,
latencies, or errors in the timing, directly contributes to errors in the point locations.
Care needs to be taken to correct, smooth, calibrate, and synchronize timestamps to
ensure that they are clean and accurate.
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One unexpected challenge we encountered was in the quality of the vertical laser
data timestamps. We used the LMS driver from the SICK Toolbox [4] for data
acquisition,4 and later discovered that the driver consumed more CPU than expected
resulting in many dropped frames. Compounding the issue is the fact that the driver
did not record any internal timing information from the sensor. Assuming a known
sampling rate and that the received scans arrive in order, we were able to correct
many of the timing irregularities; however, due to USB buffering overflows, there is
occasionally some ambiguity in precisely which frames were lost. There are therefore
some residual timing irregularities in the scan sequence that could not be eliminated
(e.g., see Fig. 2).
On-Board Diagnostics. Another device we had anticipated utilizing for additional
robustness is an on-board diagnostics (OBD-II) sensor, which is able to read the
vehicle speed and engine RPM directly from the on-board computer. The availability
of speed data could assist in developing a better motion prior than the constant
velocity model, which would be especially useful in case of any tunnel segments in
areas lacking in surface normals along the tunnel direction. Unfortunately, the only
site vehicle available for the data acquisition was slightly too old to have a compatible
OBD port.

4 Conclusions

Accurately mapping an underground mine is a challenging problem, given the lack
of GPS coverage and the scale of the environment. We presented an approach
which enabled us to map a traverse of over 17 km in a copper and gold mine in
under 2 h, producing a 3D surface model required by the mine operators for plan-
ning an major equipment transport activity. To our knowledge, the scale and effi-
ciency of our data collection method is orders of magnitude beyond what had been
demonstrated previously in the context of 3D mapping of underground mines, and
our solution offers the potential for a new methodology to be adopted for rapidly
generating maps of underground spaces. We plan to provide more details on our
approach and further quantitative analysis of our results in a more comprehensive
forthcoming publication. A video further demonstrating our results is available at
http://youtu.be/QQeJ1xd_sOU.

One limitation of the approach as presented here is the reliance on survey data
to globally register and georeference the data (though this type of data would be
available at operating mines). An alternative strategy for global registration is to
use place recognition to identify reobserved surfaces in the environment. We have
had success applying a regional point descriptor-based technique [2] to coarsely

4 At the time we were in the process of switching our middleware from DDX [3] to ROS [13], and
had not yet extensively field tested all of the drivers. We have since moved to using a version of the
LMS driver from DDX (modified with ROS wrappers), which is considerably less CPU intensive
and contains the necessary scan metadata required for robust timing.

http://youtu.be/QQeJ1xd_sOU
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register the point cloud prior to running the global registration algorithm (though
some surveyed points are still required to georeference the results and remove the
drift accumulated when traversing long tunnels). General applicability to other types
of mines and tunnels has also not yet been established. In particular, the surfaces
in underground coal mines are typically much smoother, making it more difficult to
track longitudinal motion along long tunnels where there is a lack of surface normals
in the tunnel direction. Additional aiding sensors may be required in such scenarios.

While the core of the 3D SLAM algorithm used for this application was origi-
nally developed more a year prior to the deployment [1], it is through fielding our
systems in real conditions and applications that motivates the development of truly
reliable, robust, accurate, and efficient implementations. We have applied the spin-
ning lidar SLAM system to map a variety of environments including streets, forests,
caves, industrial facilities, building interiors, and mines. The challenging scenarios
presented by each new application inspire key extensions and modifications to the
system. Investigating the specifics of each problem helps to develop the approach
into a more general and robust solution.
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Large Scale Monocular Vision-Only Mapping
from a Fixed-Wing sUAS

Michael Warren, David McKinnon, Hu He, Arren Glover, Michael Shiel and
Ben Upcroft

Abstract This paper presents the application of a monocular visual SLAM on a
fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estima-
tion of aircraft pose and scene structure. We demonstrate the robustness of uncon-
strained vision alone in producing reliable pose estimates of a sUAS, at altitude.
It is ultimately capable of online state estimation feedback for aircraft control and
next-best-view estimation for complete map coverage without the use of additional
sensors. We explore some of the challenges of visual SLAM from a sUAS including
dealing with planar structure, distant scenes and noisy observations. The developed
techniques are applied on vision data gathered from a fast-moving fixed-wing radio
control aircraft flown over a 1 × 1 km rural area at an altitude of 20–100 m. We
present both raw Structure from Motion results and a SLAM solution that includes
FAB-MAP based loop-closures and graph-optimised pose. Timing information is
also presented to demonstrate near online capabilities. We compare the accuracy of
the 6-DOF pose estimates to an off-the-shelf GPS aided INS over a 1.7 km trajectory.
We also present output 3D reconstructions of the observed scene structure and texture
that demonstrates future applications in autonomous monitoring and surveying.
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1 Introduction

Low-flying small Unmanned Aerial Systems (sUAS), otherwise known as Unmanned
Aerial Vehicles (UAVs), have received increasing interest in recent years as a poten-
tially cost-effective method of mapping and monitoring large areas of terrain. In
contrast to other methods of environment mapping such as high-flying aerial surveys
using manned aircraft and satellite-based sensing, sUAS provide a number of unique
advantages in terms of reduced size, weight, infrastructure and cost. Additionally,
they are often not subject to the restrictions of full-sized aircraft, meaning they can
fly closer to the ground and in areas of potential sensitivity, increasing resolution and
accuracy. Our interest is in using only visual sensors on the platform to estimate pose
while simultaneously generating high resolution, high accuracy maps of vast areas
in a single Euclidean frame with fast turnaround and minimal human interaction,
facilitating accurate reconstructions of environments for research and commercial
analysis.

Vision is rapidly becoming the sensor of choice in robotic pose estimation and has
the ability to produce dense, 3D point clouds of the environment. These sensors are
small, lightweight and have low-power requirements. Motivated by these properties
and recent advances in visual Structure from Motion (SfM), loop closure detection
and pose optimisation techniques, this paper presents a high-performance monocular
visual Simultaneous Localisation and Mapping (SLAM) system. The pipeline is
applied on data from a low-flying sUAS that determines 6-DOF aircraft pose (up to
scale) and scene structure (Fig. 1) over large (>1 km) trajectories.

While traditionally LIDAR and other laser based systems have been used in map-
ping from the air, including some autonomous applications [14], their bulk, cost and
power requirements mean they are restricted by both platform size and flight time. In
addition, many airborne mapping systems are dependent on Global Positioning Sys-
tem (GPS), Differential GPS (DGPS) and inertial measurement, often in a filtering
framework, for accurate vehicle pose estimation. However, their deficiencies (such
as multi-pathing, lock-on failure, sensor drift) and heavy dependence on external
infrastructure are well known [27].

Fig. 1 A dense 3D mesh of
rural farmland computed from
sequential poses of visual
SLAM from the air
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We demonstrate the ability of vision alone to generate pose capable of rivalling and
ultimately complementing other sensors (GPS, INS etc.) in the airborne scenario for
use in online state estimation feedback. We achieve this by careful implementation
of algorithms for feature detection, pose estimation and feature triangulation, both in
terms of speed and accuracy. In addition, our algorithm detects visual loop closures
using openFAB-MAP [8] and applies these constraints in the pose-graph optimiser
HOG-Man [9] to generate a refined pose and scene structure estimate. We show
timing results demonstrating near online operation of the system and present a pose
comparison to a GPS aided INS system as ground-truth. In this paper we refer to
visual pose estimation (or visual odometry) as the recovery of aircraft pose from
visual SfM techniques in addition to simultaneous estimation of scene structure.

The rest of this paper is outlined as follows: Sect. 1.1 comprehensively reviews
the literature on visual pose estimation and scene reconstruction on the ground and
in the air. Section 2 describes our SLAM algorithm for pose and structure estimation.
Section 3 describes the robotic platform and a collected dataset. Finally, Sect. 4 shows
the results of the algorithm in generating pose on the gathered dataset. We compare
results between raw SfM and a pose-graph optimised SLAM solution and compare
both outputs to a GPS aided INS pose estimate. Additionally, an output mosaic and
3D reconstruction generated from recovered scene structure are demonstrated to
indicate additional uses for the data.

1.1 Prior Work

Visual pose estimation without additional input has been demonstrated to great effect
on the ground using iterative SfM techniques, both in iterative SfM based pose esti-
mation [22, 28] and with the inclusion of loop-closure in the greater SLAM problem
[17, 20]. Additionally, visual SfM has demonstrated highly accurate reconstruction
of environments [23]. Such results demonstrate the suitability of vision to large scale
pose estimation and mapping tasks.

In flying applications, vision has been used in a wide variety of scenarios [14].
It has received significant interest in small-scale online pose estimation tasks, par-
ticularly in quadcopter applications [2], but has often made assumptions about the
environment such as texture [4] or geometry [7] to assist the estimate. Outdoors,
vision has been used within a number of filtered algorithms to produce high quality
pose estimates [3] and to generate both qualitative [5] and ground-truthed recon-
structions of large scenes [16].

Iterative vision-only pose estimation, however, has only been used on small scale
(<20 m) airborne tasks, on relatively slow-moving craft such as airships and heli-
copters, and received little quantitative analysis. It has been shown in simulation [24]
and small outdoor tasks [5], but with only qualitative assessments of accuracy.

A number of solutions exist that perform large scale visual mapping from air-
craft [25] and sUAS [11] but these are characterised by their batch, strictly offline
methods using photogrammetry techniques for image registration. Such methods are
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not suited to iterative online pose estimation and from a field and services point of
view cannot be used to generate 3D maps or estimates in online time, meaning that
autonomous decision-making cannot be performed. As a result, tasks such as ensur-
ing full-coverage or view point path planning (next-best-view) cannot be achieved
in a single flight, causing extended operational time and costs. In contrast, this paper
details an approach that could be deployed as a SLAM pipeline for real-time visual
pose estimation of a sUAS.

2 Methodology

Visual SLAM from a fixed wing aircraft at altitudes greater than 20–30 m presents
unique algorithmic challenges (particularly for SfM techniques), which has limited
attempts at large-scale visual SLAM in this scenario. Firstly, the highly distant fea-
tures impact accurate scene triangulation for small inter-camera baselines and intro-
duce planarity issues for monocular cameras. Secondly, fast motion means feature
tracks are fleeting and have only a short lifetime. Ultimately, the airborne scenario
requires extreme robustness in the SfM algorithm to reliably estimate pose. This
is dependent on reliable feature detection and tracking in addition to accurate tri-
angulation and removal of noisy scene points. We have addressed these issues to
demonstrate a visual SLAM pipeline for online aerial scenarios. This pipeline can
be separated into:

• Pose and structure initialisation,
• An SfM approach for iteratively estimating camera pose and 3D structure of the

observed scene,
• OpenFAB-MAP based loop-closure detection and,
• Pose-graph optimisation to generate a final SLAM estimate of pose and structure.

We additionally describe some algorithmic differences to the current literature.
Finally, we generate 3D meshes from the optimised pose and scene structure as
a demonstration of the quality of the final estimate.

2.1 Pose Initialisation

In order to set up the iterative SfM algorithm, an initial estimate of pose and scene
is required. Initial pose is setup by computing the essential matrix E1↔2 using 5
matched features between the first and second images [21]. From this we fix the
initial camera P1 = K [I|0] at the origin of the global reference frame and extract the
relative pose of the second camera as P2 = K [R|t]. The essential matrix is computed
inside a MLESAC routine to eliminate poor initialisations and find the best subset
of features for a good essential matrix.
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Further, it is well known that a potential ambiguity exists in the pose generated
from an essential matrix estimated from observing planar scenes [26]. The configu-
ration of the airborne scenario often reflects this due to the distance of the scene and
flat terrain. To avoid degenerate initialisations, we implement a test for degeneracy
based on structure. As described in [5], a degenerate essential matrix will result in
an unnatural spread in depth of a reconstructed scene. We use a similar algorithm
as the structural degeneracy test. We first find the subset of points X with depth Z
greater than their median depth Z̃ in the coordinate frame of the origin camera:

Zl =
{

Z : Z > Z̃
}

(1)

We then find the mean of the depths of this subset, Zl, and divide it by the original
median to generate the heuristic h:

h = Z̄l

Z̃
(2)

This heuristic is then evaluated on a strict condition, where if h > 1.2, the initial-
isation is rejected and a new essential matrix computation is performed. We find
that a significant number of initialisations are degenerate when applied to airborne
data, requiring up to five repeats of the initialisation step. Once an initial camera pair
is accepted, observed 3D structure is triangulated directly from the pair and their
matched features.

2.2 Structure from Motion

Following a correctly initialised camera pair and 3D structure, our algorithm then
follows an SfM routine to iteratively generate camera pose and scene structure from
incoming frames. We split the algorithm into four main components:

1. Feature detection, matching and tracking
2. Motion update
3. Structure update
4. Sliding window bundle-adjustment

Additionally, we include openFAB-MAP based place recognition as a final step in
the loop. The aim of our pose estimation and scene reconstruction task is to only use
visual features. We do not consider motion models, filters or any additional sensors
such as an IMU or GPS to aid the solution. Ultimately, however, this pipeline would
be used inside a redundant framework that includes these sensors.
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2.2.1 Feature Detection, Matching and Tracking

SIFT [18] features are detected in the image according to a bucketing scheme (400
equally spaced buckets per frame) to improve the spread of features, similar to that
in [20]. This avoids grouping high density features in highly salient regions to help
improve the pose constraint and more reliably track features throughout the image.
We use a GPU implementation of SIFT detection and matching to approach an online
time pose-update step.

We place requirements on descriptor matching that is stricter than other imple-
mentations to ensure that feature matches are accurate and tracks are generated only
for the most salient features. We use SIFT as this has proven the most reliable in
this scenario for both inter-frame and wide baseline matching, in part due to its 128-
dimension descriptors. This is in contrast to the generally faster and more widely
used SURF descriptor often used in ground applications where upright descriptors
(64-dimensions) are often acceptable. The dot product is used as the metric of a
match between two descriptors instead of the more common Euclidean distance.

2.2.2 Motion Update

Using feature matches between the new and previous frames that have well initialised
scene structure, the new camera pose is extracted using calibrated 3-point pose esti-
mation [10], and uses a fourth point to disambiguate the 3 generated pose solutions.
This is again performed inside a MLESAC estimator to generate the best possible
camera location.

2.2.3 Structure Update

After a new camera pose is estimated, new scene points X that meet the minimum
track length (four sequential views) are computed using a least-squares triangulation.
At each update step, additional observations of a point are used to recompute a least-
squares triangulation from all views.

In this algorithm, a strict upper limit is placed on the reprojection error of any
scene point. A scene point with a reprojection error er > 0.4 pixels in any image
is discarded from the estimate. This actively removes any scene point that is not
accurately triangulated at the extreme depths indicative of this scenario, reducing the
number of active tracks. As a consequence of these strict feature tracking routines we
compensate by detecting and matching a high number of features per frame. We find
that the culling routine actively removes more than 90 % of features in each image,
and only 30–40 are actively tracked frame-to-frame.

2.2.4 Bundle Adjustment

After each motion and structure update, a bundle-adjustment nonlinear optimisation
is performed on the last five camera poses and observed scene. We use the analytical
derivatives in the Jacobian calculation to improve optimisation speed and accuracy.
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The SfM routine is then continuously repeated in a loop such that new poses are
computed, new structure initialised and the estimate optimised via bundle adjustment
to provide an updated and refined estimate in a sequential manner.

2.2.5 Place Recognition

After each pose update, openFAB-MAP generates loop closure hypotheses between
the current and all previous images in the trajectory. The feature codebook and Chow-
Liu Tree used by the algorithm are precomputed offline from separate airborne vision
data. In comparison to the SURF detector used in the original FAB-MAP [6], our
algorithm uses the STAR detector (based on CenSurE [1]). This alternative detector
produces more reliable loop-closure results on airborne data, where scenes have few
unique features and are very self similar.

If openFAB-MAP determines a location probability for a frame greater than 99 %,
features are matched (similarly to Sect. 2.2.1) between the current and other images
at that location. However, a minimum difference of 1,000 frames is required to avoid
naive matching against spatially close frames. If the ratio of matched feature inliers
to the number of features in the current frame is greater than 15 % the match is con-
sidered a positive loop closure and recorded for use in subsequent pose optimisation
(Sect. 2.4).

2.3 Frame Striding

In contrast to other methods that often use a key-framing approach [17, 24] to discard
images with small inter-frame movements, we use a frame-striding technique to
actively skip images in the input stream. In the airborne scenario our algorithm uses
a basis stride length of three frames.

By processing only every third frame, speed is significantly improved and frames
where relative motion is small are actively avoided. In situations where the pose
estimate between frames fails due to frame drops or rapid rolling/pitching of the
aircraft, a recursive fallback is implemented to generate the next pose. When a failure
to generate a pose estimate between frames i and i + 3 is detected, a pose estimate
between frames i and i + 2 is attempted and so on until a reliable pose estimate is
found, then returns to a three frame stride.

2.4 Pose Optimisation

The pose estimates computed from SfM and the constraints imposed by the detected
loop closures can then be represented as a pose-graph and subsequently optimised
using HOG-Man. All camera poses generated by the pose estimation routine are
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represented as nodes, with edges applied between sequentially adjacent poses. The
loop-closure hypotheses generated by openFAB-MAP are used to apply additional
edge constraints in the graph.

Similar to the method described in Sect. 2.2.2, a pose at time j matched to a
‘base’ pose i is re-computed from the structure observed by the camera at pose i .
Any false-positive matches generated by openFAB-MAP are discarded at this point
as they will not meet the required geometry test when generating a new camera pose.

In the pose-graph the loop-closure edge is generated by computing the 3D homog-
raphy between the base camera and recomputed camera. These nodes and edge con-
straints are then input to the graph optimiser and processed in a sequential method to
generate the optimised camera poses. As our graph only considers poses, we need to
recover scene points from the optimised poses. All scene points are re-triangulated
via least-squares based on their original projections while ensuring that all meet the
new epipolar constraints generated from the camera poses.

2.5 3D Scene Reconstruction

As a demonstration of the quality of the optimised solution, we generate a 3D recon-
struction from the imagery and final pose estimate using a methodology described
in [19]. Dense depth maps are generated to create oriented 3D points in a single con-
sistent Euclidean space. A Poisson Surface estimation [12] is performed from this
set of oriented points to generate a reconstruction of the environment and textured
by projecting the coloured image data to the surface. In comparison to other recon-
struction work which creates meshes from optimally selected, high resolution views,
our method generates meshes from sequential, relatively low resolution images in
addition to estimates of aircraft pose.

3 Experimental Setup

The flight platform is a 1/3 scale Piper Cub with a wingspan of 3.6 m and fuselage
length of 2.3 m (Fig. 2). It is capable of speeds of 30–110 km/h with a maximum
payload of 6 kg.

The aircraft includes an off-the-shelf mini-ITX computer system running an Intel
Atom processor (1.6 GHz), with two 64 GB solid-state drives in a RAID0 configura-
tion. The sensor payload consists of a IEEE1394B colour Point Grey Flea 2 camera.
The camera is downward facing towards the terrain in the fuselage of the platform,
behind the engine and logging system (Fig. 2). A 6 mm lens is used with a field
of view of approximately 42◦ × 32◦. The camera is calibrated before flight using a
checkboard pattern and a modified version of the RADDOC Calibration toolbox [15].
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Fig. 2 The experimental
platform, showing the location
of logging system, camera,
INS and GPS antenna

3.1 Dataset

Data was collected over a 90 s portion of flight, at an altitude of 20–100 m and a speed
of ∼20 m/s. Bayer encoded colour images are logged at a resolution of 1, 280×960
pixels at 30 Hz. Shutter time for each frame was set at 8.5µS to counteract motion
blur. The area was rural farmland with relatively few trees, animals and buildings.
Some difficulties in the dataset include rapid lighting transitions, and frame drops
occur at semi regular intervals due to buffer overflows leading to difficulties in feature
tracking. An XSens MTi-G INS/GPS system is used as the ground truth measurement
system on the aircraft, with a manufacturer claimed positional accuracy of 2.5 m
CEP. Size and weight restrictions prevent the use of more accurate DGPS systems,
however, the MTi-G itself provides a reasonably accurate estimate of pose over
broad scales. The MTi-G unit is rigidly attached to the onboard camera, while the
GPS receiver is installed directly above the camera. GPS, unfiltered IMU data and
filtered INS pose were recorded at 120 Hz from the XSens MTi-G.

4 Results

The algorithm was performed offline on the collected images to generate 879 camera
poses. The dataset consisted of 2,670 frames. Some key parameters for the processing
include a stride length of 3 frames, 400 feature buckets, 10 features per bucket and
a sliding window bundle adjustment of 5 frames.

OpenFAB-MAP produced 91 loop closure events with p > 0.99, as seen in
Fig. 3. Of these, 71 passed a minimum feature inlier count of 15 % and the MLESAC
camera resectioning routine, successfully removing all false positive events identified
by openFAB-MAP, and hence used to generate an additional edge constraint. The
generated edges and poses were used by HOG-Man to produce an optimised SLAM
estimate over the 879 poses.
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Fig. 3 Loop-closure events,
highlighted in red, with prob-
ability p > 0.99 detected
by openFAB-MAP overlaid
on the ground truth GPS/INS
pose. Some expected link
locations are not observed due
to differences in camera orien-
tation at similar translational
poses

Fig. 4 Diagram in X, Y,
showing SfM (VO) only path
(blue), SLAM path (green)
and INS path (red)

The monocular pose results for both the raw SfM and optimised pose estimates
were then converted to a metric scale by calculating the ratio of distances between
two spatially distant ground truth poses and their corresponding reconstructed poses.
This scale ratio is then applied via a homography to the reconstructed poses to achieve
metricity. Both the raw and optimised poses are then registered to the ground truth
in all 6 degrees of freedom [13] on the first 30 camera poses.

The results of the SfM only (VO) and optimised (SLAM) pose estimates are shown
in Figs. 4 and 5. The SfM only estimate clearly drifts, and has a final pose error of
40.6 m. The SLAM pose has significantly reduced error due to the optimisation, with
a final pose error at the end of the trajectory of 27.2 m. The length of the entire set
of poses is 1.70 km, meaning a translational drift of approximately 1.6 % over the
length of trajectory. This is consistent with the accumulated error in other presented
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Fig. 5 Diagram in Y, Z, showing SfM (VO) only path (blue), SLAM path (green) and GPS/INS
path (red)

works in ground scenarios [17, 28]. We speculate that some of the error is due to
scale drift observable towards the end of the trajectory of both the raw and optimised
estimates in Fig. 5.

We also compare the orientation produced by both estimates to ground truth,
shown in Fig. 6. From this, it is clear that the algorithm is capable of accurately
estimating orientation, with a maximum error of approximately 10.3◦ from the SfM
only pose estimates, and a significantly reduced maximum error of 5.7◦ in the opti-
mised estimate. The slightly positive pitch visible in Fig. 6 is a result of the slightly
backward facing orientation of the camera and INS rig in the aircraft.

4.1 Timing Results

The SfM algorithm, openFAB-MAP loop-closure detection and HOG-Man pose
estimation were all performed using Windows 7 64-bit on an Intel Core i5 650
Processor at 3.2 GHz with NVIDIA Quadro 600 GPU and 16 GB of system RAM.
Aggressive memory management in the SfM algorithm meant that total memory
consumption at the end of the sequence was 2.04 GB. In performing timing tests
page-outs and disk-writes were not included in the time estimates. From Table 1 it
can be seen that the SfM algorithm is capable of performing at just over 3.1 Hz if
considered as a single frame stride (where every frame is processed). If we consider
the 3 frame stride of this algorithm, the effective computed frame rate increases to
just over 9.4 Hz.

From the computed poses and loop closure links, HOGMan produced an optimised
result over the 879 poses in 2.1 s. While both the SfM algorithm and openFAB-MAP
loop-closure detection were performed in a single thread, multi-threading the algo-
rithm would lead to efficiency gains approaching online operation. We also anticipate
that with strict memory management the algorithm is capable of performing similarly
over much larger datasets.
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Fig. 6 Roll, pitch, yaw estimates for SfM (VO) only (blue), SLAM estimate (green) and GPS/INS
(red), showing strong correlation

4.2 Reconstruction

From the optimised pose estimates, 3D scene points were re-triangulated using their
feature projections to reconstruct the optimised scene. In Figs. 1 and 7 we present
reconstruction outputs generated from this optimised estimate. Figure 7 shows a
2D mosaic of the observed images projected to a ground plane estimated from the
3D scene features. This mosaic is compared to satellite imagery of the area for
qualitative analysis. It should be noted that the mosaic is only computed from pose
estimates of the camera and no explicit feature matching is performed to create the
2D reconstruction.

Figure 1 shows a subsection of the final 3D reconstruction. From this reconstruc-
tion 3D structure is readily apparent, showing buildings, a parked aircraft and trees
on predominantly flat terrain. These results demonstrate the viability of our airborne
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Table 1 Timing results from monocular SLAM algorithm

Process Minimum (ms) Average (ms) Maximum (ms) Note

Initialisation 725 – – Performed only once
Feature detection 129 202 1,294
Feature matching 65 77 196
Pose update 2 15 195
Structure update 1 9 62
Bundle adjustment 0 15 102
Total SfM time per

frame
197 318 1,849 Average fps:

3.14 Hz, @ three
frame stride:
9.43 Hz

openFAB-MAP 21 54 90 None
Loop closure

matching
0 206 1,857 Performed only on

loop closure
detection

Fig. 7 Left A densely reconstructed ground plane using only camera pose to inform map generation
over 879 frames. Right A comparison of the same area on Google Earth, showing qualitative accuracy
of the final SLAM estimate

SLAM algorithm in producing up-to-date, 2D and 3D textured maps of environments
at high resolution with rapid turnaround.

5 Conclusions

We have successfully demonstrated that visual SLAM on a fixed-wing airborne
robotic platform is capable of a high degree of accuracy without additional inputs.
This demonstration shows capability for use in more complicated filtered algo-
rithms and in conjunction with additional sensors in the air. In future we intend
to apply this algorithm in real-time that will facilitate online navigation and mapping
for airborne robotic vehicles. Additionally, we intend to demonstrate the algorithm
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using multi-camera rigs to increase accuracy, remove initialisation degeneracies and
remove scale issues.
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Super-Voxel Based Segmentation
and Classification of 3D
Urban Landscapes with Evaluation and
Comparison

Ahmad Kamal Aijazi, Paul Checchin and Laurent Trassoudaine

Abstract Classification of urban range data into different object classes offers
several challenges due to certain properties of the data such as density variation,
inconsistencies due to holes and the large data size which requires heavy computa-
tion and large memory. A method to classify urban scenes based on a super-voxel
segmentation of sparse 3D data obtained from Lidar sensors is presented. The 3D
point cloud is first segmented into voxels which are then characterized by several
attributes transforming them into super-voxels. These are joined together by using a
link-chain method rather than the usual region growing algorithm to create objects.
These objects are then classified using geometrical models and local descriptors. In
order to evaluate the results, a new metrics is presented which combines both segmen-
tation and classification results simultaneously. The proposed method is evaluated
on standard datasets using three different evaluation metrics.

1 Introduction

Characterization and classification of cluttered urban scenes remains a challenging
task for different field robots and autonomous vehicles operating in such outdoor
environments. Lately, the automatic segmentation and classification of 3D urban data
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have gained widespread interest and importance in the scientific community due to
the increasing demand of urban landscape analysis and cartography for different
popular applications, coupled with the advances in 3D data acquisition technology.
Whereas the automatic (or partially supervised) extraction of important urban scene
structures such as roads, vegetation, lamp posts, and buildings from 3D data have
proved essential in different autonomous perception tasks and mission planning, it
has also been found to be an attractive approach to urban scene analysis because it
can tremendously reduce the resources required for analyzing the data for subsequent
use in 3D city modeling.

In order to fully exploit 3D point clouds, effective segmentation has proved to be
a necessary and critical pre-processing step in a number of autonomous perception
tasks. Earlier works including [1, 14, 18] used small sets of specialized features,
such as local point density or height from the ground, to discriminate only few object
categories in outdoor scenes, or to separate foreground from background. Lately,
segmentation has been commonly formulated as graph clustering. Instances of such
approaches are Graph-Cuts including Normalized-Cuts and Min-Cuts. Golovinskiy
and Funkhouser [7] extended Graph-Cuts segmentation to 3D point clouds by using
k-Nearest Neighbors (k-NN) to build a 3D graph. In this work, edge weights based
on exponential decay in length were used. But the limitation of this method is that
it requires prior knowledge of the location of the objects to be segmented. Another
segmentation algorithm for natural images, recently introduced by Felzenszwalb and
Huttenlocher (FH) [4], has gained popularity for several robotic applications due to its
efficiency. Triebel et al. [26] modified the FH algorithm for range images to propose
an unsupervised probabilistic segmentation technique. In this approach, the 3D data
is first over-segmented during pre-processing. Schoenberg et al. [24] have applied
the FH algorithm to colored 3D data obtained from a co-registered camera laser pair.
The edge weights are computed as a weighted combination of Euclidean distances,
pixel intensity differences and angles between surface normals estimated at each 3D
point. The FH algorithm is then run on the image graph to provide the final 3D parti-
tioning. The evaluation of the algorithm is done on road segments only. Strom et al.
[25] proposed a similar approach, modifying the FH algorithm, to incorporate angle
differences between surface normals in addition to the differences in color values.
Our approach differs from the above mentioned methods as, instead of using the
properties of each point for segmentation resulting in over segmentation, we have
grouped the 3D points based on Euclidian distance into voxels and then assigned
normalized properties to these voxels transforming them into super-voxels. This not
only prevents over segmentation but in fact reduces the data set by many folds thus
reducing post-processing time. A spanning tree approach to the segmentation of 3D
point clouds was proposed in [20]. Graph nodes represent Gaussian ellipsoids as
geometric primitives. These ellipsoids are then merged using a tree growing algo-
rithm. Unlike this method, our approach uses cuboids of different sizes as geometric
primitives and a link-chain method to group them together. In the literature survey
we also find some segmentation methods based on surface discontinuities such as
[17] who used surface convexity in a terrain mesh as a separator between objects.
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In the past, research related to 3D urban scene classification and analysis had been
mostly performed using either 3D data collected by airborne LiDAR for extracting
building structures [28] or 3D data collected from static terrestrial laser scanners for
extraction of building features such as walls and windows [21]. In [13] the authors
extracted roads and objects just around the roads like road signs. They used a least
square fit plane and RANSAC method to first extract a plane from the points followed
by a Kalman filter to extract roads in an urban environment. A method of classifica-
tion based on global features is presented in [8] in which a single global spin image
for every object is used to detect cars in the scene while in [23] a Fast Point Fea-
ture Histogram (FPFH) local feature is modified into global feature for simultaneous
object identification and view-point detection. Classification using local features and
descriptors such as Spin Image [9], Spherical Harmonic Descriptors [10], Shape Dis-
tributions [19], 3D SURF feature [12] is also found in the literature survey. There
is also a third type of Classification based on Bag Of Features (BOF) as discussed
in [16]. In [15] a method of multi-scale Conditional Random Fields is proposed
to classify 3D outdoor terrestrial laser scanned data by introducing regional edge
potentials in addition to the local edge and node potentials in the multi-scale Con-
ditional Random Fields. This is followed by fitting plane patches onto the labeled
objects such as building terrain and floor data using the RANSAC algorithm as a
post-processing step to geometrically model the scene. Douillard et al. [2] presented
a method in which 3D points are projected on to the image to find regions of interest
for classification. In our work, we use geometrical features and local descriptors to
successfully classify different segmented objects represented by groups of voxels in
the urban scene (discussed in Sect. 3). Ground is assumed to be flat and is used as an
object separator.

The main contribution of our work includes: (1) a voxel based segmentation
using a proposed Link-Chain method (discussed in Sect. 2); (2) introduction of a
new evaluation metrics which combines both segmentation and classification results
simultaneously (presented in Sect. 4); (3) evaluation of the proposed algorithm on
standard data sets using three different evaluation methods (see Sect. 5).

2 Voxel Based Segmentation

The proposed voxel based segmentation method consists of three main parts which
are the voxelisation of data, the transformation of voxels into super-voxels and the
clustering by link-chain method.

2.1 Voxelisation of Data

When dealing with large 3D data sets, the computational cost of processing all the
individual points is very high, making it impractical for real time applications. It is
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Fig. 1 A number of points
is grouped together to form
cubical voxels of maximum
size 2r . The actual voxel
sizes vary according to the
maximum and minimum
values of the neighboring
points found along each axis
to ensure the profile of the
structure

therefore sought to reduce this number of points by grouping together or removing
redundant or un-useful points. Similarly, in our work the individual 3D points are
clustered together to form a higher level representation or voxel as shown in Fig. 1.

For p data points, a number of s voxels (s << p) is computed based on r -NN,
where r is the radius of ellipsoid and with w = 1/d given as the weight to each
neighbor (d being the Euclidian distance to the neighbor). The maximum size of the
voxel 2r depends upon the density of the 3D point cloud. In [15] color values are
also added in this step but it is observed that for relatively smaller voxel sizes, the
variation in properties such as color is not profound and just increases computational
cost. For these reasons, we have only used distance as a parameter in this step. The
other properties are used in the next step of clustering the voxels to form objects.
Also we have ensured that each 3D point which belongs to a voxel is not considered
for further voxelisation. This not only prevents over segmentation but also reduces
processing time.

For the voxels we use a cuboid because of its symmetry which avoids fitting
problems while grouping and also minimizes the effect of voxel shape during feature
extraction. Although the maximum voxel size is predefined, the actual voxel sizes
vary according to the maximum and minimum values of the neighboring points found
along each axis to ensure the profile of the structure.
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2.2 Transformation of Voxels into Super-Voxels

A voxel is transformed into a super-voxel when properties based on its constituting
points are assigned to it. These properties mainly include:

• VX,Y,Z : geometrical center of the voxel;
• VR,G,B : mean R, G, and B value of constituting 3D points;
• Var(R, G, B): maximum of the variance of R, G, and B values;
• VI : mean laser reflectance intensity value of constituting 3D points;
• Var(I ): variance of laser reflectance intensity values;
• sX,Y,Z is the voxel size along each axis X, Y and Z ;
• Surface normals: a surface normal is calculated using PCA (Principal Component

Analysis). The PCA method has been proved to perform better than the area
averaging method [11] to estimate the surface normal. Given a point cloud data
set D = {xi }n

i=1, the PCA surface normal approximation for a given data point
p ∈ D is typically computed by first determining the k-Nearest Neighbors, xk ∈
D, of p. Given the K neighbors, the approximate surface normal is then the
eigenvector associated with the smallest eigenvalue of the symmetric positive
semi-definite matrix P = ∑K

k=1(xk − p)T (xk − p) where p is the local data
centroid p = 1

K

∑K
j=1 x j . The estimated surface normal is ambiguous in terms of

sign; to account for this ambiguity it is homogenized using the dot product. Yet for
us the sign of the normal vector is not important as we are more interested in the
orientation. A surface normal is estimated for all the points belonging to a voxel
and is then associated with that particular voxel.

With the assignment of all these properties, a voxel is transformed into a super-
voxel. All these properties would then be used in grouping these super-voxels (from
now onwards referred to as s-voxels) into objects and then during the classification
of these objects. Instead of using thousands of points in the data set, the advantage
of this approach is that we can now use the reduced number of s-voxels to obtain
similar results for classification and other algorithms. In our case, the data sets of 110,
392, 53, 676 and 27,396 points were reduced to 18,541, 6,928 and 7,924 s-voxels
respectively which were then used for subsequent processing.

2.3 Clustering by Link-Chain Method

When the 3D data is converted into s-voxels, the next step is to group these s-voxels
to segment into distinct objects.

Usually for such tasks a region growing algorithm [27] is used in which the prop-
erties of the whole growing region may influence the boundary or edge conditions.
This may sometimes lead to erroneous segmentation. Also common in such type
of methods is a node based approach [17] in which at every node, boundary con-
ditions have to be checked in all five different possible directions. In our work, we
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(a) (b) (c) (d)

Fig. 2 Clustering of s-voxels using a link-chain method is demonstrated. a shows s-voxel 1 taken
as principal link in red and all secondary links attached to it in blue. b, c show the same for s-voxel
2 and 3 taken as principal links. d shows the linking of principal links (s-voxels 1, 2 & 3) to form a
chain removing redundant secondary links

have proposed a link-chain method instead to group these s-voxels together into
segmented objects. In this method, each s-voxel is considered as a link of a chain.
All secondary links attached to each of these principal links are found. In the final
step, all the principal links are linked together to form a continuous chain removing
redundant secondary links in the process as shown in Fig. 2.

Let VP be a principal link and Vn be the nth secondary link. Each Vn is linked to
VP if and only if the following three conditions are fulfilled:

∣
∣VPX,Y,Z − VnX,Y,Z

∣
∣ ≤ (wD + cD) (1)

∣
∣VPR,G,B − VnR,G,B

∣
∣ ≤ 3

√
wC (2)

∣
∣VPI − VnI

∣
∣ ≤ 3

√
wI (3)

where, for the principal and secondary link s-voxels respectively:

• VPX,Y,Z , VnX,Y,Z are the geometrical centers;
• VPR,G,B , VnR,G,B are the mean RGB values;
• VPI , VnI are the mean laser reflectance intensity values;
• wC is the color weight equal to the maximum value of the two variances

Var(R, G, B);
• wI is the intensity weight equal to the maximum value of the two variances Var(I ).

wD is the distance weight given as

(
VPsX,Y,Z

+VnsX,Y,Z

)

2 . Here SX,Y,Z is the voxel
size along X, Y and Z axis respectively. cD is the inter-distance constant (along the
three dimensions) added depending upon the density of points and also to overcome
measurement errors, holes and occlusions, etc. The value of cD needs to be carefully
selected depending upon the data. The orientation of normals is not considered in
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this stage to allow the segmentation of complete objects as one entity instead of just
planar faces.

This segmentation method ensures that only the adjacent boundary conditions
are considered for segmentation with no influence of a distant neighbor’s properties.
This may prove to be more adapted to sharp structural changes in the urban envi-
ronment. The segmentation algorithm is summarized in Alg. 1. With this method
18,541, 6,928 and 7,924 s-voxels obtained from processing three different data sets
were successfully segmented into 237, 75 and 41 distinct objects respectively.

Algorithm 1 Segmentation
1: repeat
2: Select a 3D point for voxelisation
3: Find all neighboring points to be included in the voxel using r-NN within the maximum voxel

length specified
4: Transform voxel into s-voxel by first finding and then assigning all the properties including

surface normal, found by using PCA, to it.
5: until all 3D points are used in a voxel
6: repeat
7: Specify a s-voxel as a principal link
8: Find all secondary links attached to the principal link
9: until all s-voxels are used
10: Link all principal links to form a chain removing redundant links in the process

3 Classification of Objects

In order to classify these objects, we assume the ground to be flat and use it as
separator between objects. For this purpose we first classify and segment out the
ground from the scene and then the rest of the objects. This step leaves the remaining
objects as if suspended in space, i.e distinct and well separated, making them easier
to be classified. The ground or roads followed by these objects are classified using
geometrical and local descriptors. These mainly include:

a. Surface Normals: The orientation of the surface normals is essential for clas-
sification of ground and building faces. For ground object, the surface normals
are along Z -axis (height axis) whereas for building faces the surface normals
are parallel to the X − Y axis (ground plane), see Fig. 3.

b. Geometrical Center and Barycenter: The height difference between the geo-
metrical center and the barycenter along with other properties is very useful
in distinguishing objects like trees and vegetation, etc., where h(barycenter −
geometrical center) > 0, with h being the height function.

c. Color and Intensity: Intensity and color are also an important discriminating
factor for several objects.
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(a) (b)

Fig. 3 a shows surface normals of building s-voxels which are parallel to the ground plane. In
(b) it can be clearly seen that the surface normals of road surface s-voxels are perpendicular to the
ground plane

Fig. 4 Bounding boxes for buildings, trees, cars, pedestrians and poles

d. Geometrical Shape: Along with the above mentioned descriptors, geometrical
shape plays an important role in classifying objects. In 3D space, where pedes-
trians and poles are represented as long and thin with poles being longer, cars
and vegetation are broad and short. Similarly, as roads represent a low flat plane,
the buildings are represented as large (both in width and height) vertical blocks
(as shown in Fig. 4).

Using these descriptors we successfully classify urban scenes into five different
classes (mostly present in our scenes) i.e. buildings, roads, cars, poles and trees.
The object types chosen for classification are so distinctly different that if they are
correctly segmented out, a simple classification method like the one proposed may
be sufficient.The classification results and a new evaluation metric are discussed in
the following sections.
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4 Evaluation Metrics

In previous works, different evaluation metrics are introduced for both segmentation
results and classifiers independently. Thus in our work we present a new evaluation
metric which incorporates both segmentation and classification together.

The evaluation method is based on comparing the total percentage of s-voxels
successfully classified as a particular object. Let Ti , i ∈ {1, . . . , N }, be the total
number of s-voxels distributed into objects belonging to N number of different
classes, i.e this serves as the ground truth, and let t ji , i ∈ {1, . . . , N }, be the total
number of s-voxels classified as a particular class of type- j and distributed into
objects belonging to N different classes (for example a s-voxel classified as part of
the building class may actually belong to a tree) then the ratio S jk ( j is the class type

as well as the row number of the matrix and k ∈ {1, . . . , N }) is given as S jk = t jk
Tk

.
These values of S jk are calculated for each type of class and are used to fill up each
element of the confusion matrix, row by row (refer to Table 2 for instance). Each row
of the matrix represents a particular class. Thus, for a class of type-1 (i.e. first row
of the matrix) the values of:

• True Positive rate TP = S11 (i.e the diagonal of the matrix represents the TPs)
• False Positive rate FP = ∑N

m=2 S1m

• True Negative rate TN = (1 - FP)
• False Negative rate FN = (1-TP)

The diagonal of this matrix (or TPs) gives the Segmentation ACCuracy SACC,
similar to the voxel scores recently introduced by Douillard et al. [3]. The effects of
unclassified s-voxels are automatically incorporated in the segmentation accuracy.
Using the above values, the Classification Accuracy CACC is given as:

CACC = TP + TN
TP + TN + FP + FN

(4)

This value of CACC is calculated for all N types of classes of objects present in
the scene. Overall classification accuracy (OCACC) can then be calculated as

OCACC = 1

N

N∑

i=1

CACCi (5)

where N is the total number of object classes present in the scene. Similarly, the
Overall Segmentation ACCuracy OSACC can also be calculated.

The values of Ti and t ji used above are laboriously calculated by hand matching
the voxelised data output and the final classified s-voxels and points.
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Table 1 Results of 3D data sets of Blaise Pascal university

Data Set Number of Number of Number of segmented
# 3D data points segmented s-voxels objects

#1 27, 396 7, 924 41
#2 53, 676 6, 928 75
#3 110, 392 18, 541 237

5 Results

In order to test our algorithm, two different data sets were used: 3D data sets of Blaise
Pascal University and 3D Urban Data Challenge data set [5].

5.1 3D Data Sets of Blaise Pascal University

These consist of 3D data acquired from different urban scenes on the Campus of
Blaise Pascal University in Clermont-Ferrand, France, using a LEICA HDS-3000
3D laser scanner. In these data sets the 3D points are coupled with the corresponding
RGB and laser reflectance intensity values. The results of three such data sets are
summarized in Table 1 and the results of one such data set are presented in Fig. 5.
The evaluation results using the new evaluation metrics for two of the data sets are
presented in Tables 2 and 3. These results are evaluated using a value of maximum
voxel size equal to 0.3 m and cD = 0.25 m. The choice of an optimal value of
maximum voxel size and cD is important as it is observed that with the reduction
in voxel size the segmentation and classification results improve but at the cost of
processing time. These values can simply be determined by plotting the OCACC
and the corresponding processing time for a range of values of maximum voxel size
and cD for any one of the scenes from the respective data sets. The optimal values
depending upon the requirements can be chosen using these two plots.

5.2 3D Urban Data Challenge Data Set

The algorithm was further tested on the static data set of the recently concluded 3D
Urban Data Challenge 2011, acquired and used by the authors of [5]. This stan-
dard data set contains a rich collection of 3D urban scenes of New York city mainly
focusing on building facades and structures. These 3D points are coupled with cor-
responding RGB and reflectance intensity values. A value of maximum voxel size
equal to 0.5 m and cD = 0.15 m were used for this data set. The evaluation results
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(a)

(b) (c)

Fig. 5 a shows 3D data points of data set 2. b shows s-voxel segmentation of 3D points. c shows
classification results (labeled 3D points)

Table 2 Classification results of data set 2 in the new evaluation metrics

Building Road Tree Pole Car CACC

Building 0.996 0.007 0 0 0 0.995
Road 0 0.906 0.028 0.023 0.012 0.921
Tree 0 0.045 0.922 0 0 0.938
Pole 0 0.012 0 0.964 0 0.976
Car 0 0.012 0 0 0.907 0.947
Overall segmentation accuracy: OSACC 0.939
Overall classification accuracy: OCACC 0.955

using the new evaluation metrics for two such scenes from this data set are presented
in Tables 4 and 5. Results of one such scene from this data set are shown in Fig. 6.

5.3 Comparison of Results with Existing Evaluation Methods

The classification results were also evaluated using already existing methods along
with the proposed evaluation metrics for comparison purpose. Firstly, one of the more
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Table 3 Classification results of data set 3 in the new evaluation metrics

Building Road Tree Pole Car CACC

Building 0.901 0.005 0.148 0 0 0.874
Road 0.003 0.887 0.011 0.016 0.026 0.916
Tree 0.042 0.005 0.780 0 0 0.867
Pole 0 0.002 0 0.966 0 0.982
Car 0 0.016 0.12 0 0.862 0.863
Overall segmentation accuracy: OSACC 0.879
Overall classification accuracy: OCACC 0.901

Table 4 Classification results of scene-A in the new evaluation metrics

Building Road Tree Pole Car CACC

Building 0.980 0.002 0 0 0 0.989
Road 0.002 0.950 0.002 0 0.080 0.933
Tree 0 0.040 0.890 0 0.080 0.885
Pole 0 0 0 0 0 -
Car 0.040 0.020 0.030 0 0.900 0.905
Overall segmentation accuracy: OSACC 0.930
Overall classification accuracy: OCACC 0.928

Table 5 Classification results of scene-B in the new evaluation metrics

Building Road Tree Pole Car CACC

Building 0.985 0.002 0 0 0 0.991
Road 0.002 0.950 0.002 0 0.080 0.933
Tree 0 0.012 0.680 0.080 0 0.794
Pole 0 0.006 0 0.860 0.016 0.919
Car 0.060 0.050 0.020 0.050 0.970 0.895
Overall segmentation accuracy: OSACC 0.889
Overall classification accuracy: OCACC 0.906

frequently used metrics: F-measure which is based on the calculation of Recall and
Precision as described in [6] is used. Secondly, a conditional entropy based metrics:
V -measure which is based on the calculation of Homogeneity and Completeness
as presented in [22] is used. The later method overcomes the problem of matching
suffered by the former and evaluates a solution independent of the algorithm, size of
the data set, number of classes and number of clusters as explained in [22]. Another
advantage of using these two metrics is that just like the proposed metrics they have
the same bounded score. For all three metrics, the score varies from 0 to 1 and higher
score signifies better classification results and vice versa. The results are summarized
in Table 6.
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(a)

(b) (c)

Fig. 6 Segmentation and classification results for a particular scene-C of static scenes from 3D
Urban Data Challenge 2011, image # ParkAvenue_SW14_piece00 [5]. a shows 3D data
points of data set 1. b shows s-voxel segmentation of 3D points. c shows classification results

Table 6 Classification results evaluated using three different metrics. For the calculation of V -
measure the value β = 1 is used

Data Set # OCACC F-measure V-measure

#1 0.943 0.922 0.745
#2 0.955 0.942 0.826
#3 0.901 0.831 0.733
#A 0.928 0.917 0.741
#B 0.906 0.860 0.734

From Table 6, it can be seen that the results evaluated by all the three evaluation
metrics are consistent with data set 2 receiving the highest scores and data set 3 the
lowest. The results not only validate the proposed metrics but also indicate that it
can be used as an alternative evaluation method. The results evaluated using these
standard existing evaluation methods also permits to compare the performance of
the proposed algorithm with other published techniques evaluated using them.
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5.4 Performance Evaluation and Discussion

The proposed method gives good (in terms of scores) segmentation and classifica-
tion results in all three evaluation methods. In general, the classification accuracy
(OCACC) was found to be slightly better than the segmentation accuracy (OSACC).
Not taking anything away from the segmentation method, one of the main reasons for
this being the fact that the 5 types of objects chosen for classification are distinctly
different and that if the segmentation is good, classification becomes easier and a
simple method like the one proposed is sufficient.

As compared to V -measure, the proposed method of evaluation can provide more
information regarding individual segmentation and classification results (SACC and
CACC). These results show that in most of the cases, the buildings, roads and poles
have been classified the best with a consistent scores of SACC and CACC higher
than 90 % except in the case of data set 3 in which the building classification accuracy
CACC is slightly deteriorated due to a large overlapping tree which is wrongly clas-
sified as a building rather than a tree. This is also reflected in the low Homogeneity
value of 0.670 obtained when calculating V -measure for this data set. The classifi-
cation of cars is generally good and the results are consistent but they are slightly
hampered due to occlusions in some scenes (data set 3: CACC 86.3 %, scene-B:
CACC 89.5 %). In case of trees, the SACC and CACC are found to vary the most.
This is mainly due to the fact that the proposed classification method is based on
local descriptors and geometrical features which in the case of trees are very difficult
to define (due to large variation of shapes, sizes and types). Thus, where the pro-
posed algorithm succeeded in classifying smaller trees of more classical shapes with
a higher SACC and CACC scores, it produced a low SACC and CACC score of
68 % and 79.4 % respectively for scene-B. The Recall and Precision scores obtained
during the calculation of F-measure for the tree class of this scene were similarly
found low as well (0.682 and 0.614 respectively).

6 Conclusion

In this work we have presented a super-voxel based segmentation and classification
method for 3D urban scenes. For segmentation a link-chain method is proposed. It
is followed by the classification of objects using local descriptors and geometrical
models. In order to evaluate our work we have introduced a new evaluation metric
which incorporates both segmentation and classification results. The results show an
OSACC of 87 % and an OCACC of about 90 %. The results indicate that with good
segmentation, a simplified classification method like the one proposed is sufficient.
The comparison of the results using three different metrics not only validates the
proposed metrics but also permits to compare the performance of the proposed algo-
rithm with other published techniques evaluated using them. The proposed method
can also be used as an add-on boost for other classification algorithms.
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Classification of 3-D Point Cloud Data
that Includes Line and Frame Objects
on the Basis of Geometrical Features
and the Pass Rate of Laser Rays

Kazunori Ohno, Takahiro Suzuki, Kazuyuki Higashi, Masanobu Tsubota,
Eijiro Takeuchi and Satoshi Tadokoro

Abstract The authors aim at classification of 3-D point cloud data at disaster
environment. In this paper, we proposed a method of classification for 3-D point
cloud data using geometrical features and the pass rate of laser rays. Line and frame
objects often trap robots, which causes the damages of sensors, motors, mechanical
parts etc. at remote operation. Using our proposed method, the line and frame ob-
jects can be classified from the 3-D point cloud data. Key-point is use of the pass
rate of laser rays. It is confirm that recognition rate of line and frame objects can be
increased using the pass rate of laser rays. In addition, it is confirm that the proposed
classification method works in the real scene. A training facility of Japan fireman
department is used for the evaluation test because it is similar to the real disaster
scene comparing the laboratory’s test field.
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1 Introduction

The authors have studied 3-D map construction of disaster areas, and its application
[1, 2]. We constructed 3-D maps using our tracked vehicle equipped with a 3-D
laser scanner at subway stations in Japan, at training facilities of fire department in
JAPAN, and at that of Federal Emergency Management Agency (FEMA) in Disaster
City, USA. Figure 1 illustrates the tracked vehicle equipped with 3-D laser scanner
[3, 4], and 3-D point cloud data measured in Disaster City. 3-D maps were made
from 3-D point cloud data because raw 3-D point cloud data could show the detailed
3-D shapes. These 3-D maps were highly evaluated by Japan rescue members and
FEMA. However, 3-D point cloud data are hard to understand at a glance, without
view angle change.

The aim of this study is to detect important geometric information for the robot’s
operation or human environment recognition, and to display them with different
colors according to their geometric types. One of problems at remote control is the
difficulty of finding line and frame objects (e.g., thin poles, lines, pipe, mesh or
lattice wall, and frame) from dark camera images and 3-D maps. A tracked vehicle
is often trapped by these objects, which results in damages of equipped sensors and
the tracked vehicle. Therefore, we develop a method of classifying 3-D point cloud
data and displaying 3-D shapes with different colors according to their geometrical
types.

Fig. 1 Tracked vehicle equipped with a 3-D laser scanner and 3-D point cloud data measured in
Disaster City, TX, USA
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In the field of mobile robots, one of typical methods of classifying 3-D point
cloud data is the method using geometrical features studied by Vandapel et al. [5].
The geometrical features are represented by eigenvalues of 3-D point cloud in each
voxel. We also use the geometrical features in our classification method because
they are much useful for classifying 3-D point cloud data. However, line and frame
objects cannot be distinguished from noise and flat walls by geometrical features.
Hence, we distinguish line and frame objects from the noise and the flat walls using
the pass rate of laser rays. We also distinguish rugged floor with rubbles from the flat
floor because a tracked vehicle with sub-tracks can run on rubble environments by
changing sub-track motions. The rugged floor is judged according to the roughness
estimated from 3-D point cloud data.

The contribution of this paper is improving the detection of line and frame objects
using the pass rate of laser rays. Using the number of passing laser rays, we can
confirm that the observation of 3-D scanner is sufficient. Geometrical features are
calculated when the number of point cloud data in voxel is low. Using the pass rate
of laser rays allows us to distinguish line and frame objects from noise and flat wall.

In this paper, we explain related works in Sect. 2. In Sect. 3, we propose the
method of classifying 3-D point cloud data using geometric features and the pass
rate of laser rays, and explain the flowchart of our method and the definition of each
feature. Then, we verify the efficiency of detecting pole and frame objects in our
method in Sect. 4. We show the result of classifying 3-D points cloud data collected
in a training environment of Japan rescue members in Sect. 5. We conclude in Sect. 6.

2 Related Works

A typical method of environmental recognition based on geometrical features is
classifying 3-D points cloud data according to eigenvalues [5, 6]. Vandapel et al.
proposed a method of classifying 3-D point cloud data of forest into grass, tree, and
the ground. 3-D point cloud data were classified by comparing three eigenvalues
derived from the covariance matrix of the point cloud in each voxel. “Scatter” was
judged as grass, and “Surface” was judged as the ground or large tree trunk. “Curve”
was judged as telegraph lines or tree branches, but the judgment sometimes fails
because such data are considered as noise if the number of points in the voxel is
low. It is necessary to confirm the point cloud data in each voxel can be used for
the judgment. We thought that the number of passing laser is useful to confirm it. In
addition, point cloud data of frame objects are similar to those of flat walls. It is too
hard to classify them using only the eigenvalues. We considered that the difference
between the wall and the frame is the pass rate of laser rays. Hence, we used the
number of passing laser and the pass rate of laser rays to detect line and frame objects.

A ray tracing score has been used for making occupancy grid map in Voxel space
[7]. A ray tracing score is equivalent to the number of passing laser. Matthew et
al. [7] succeeded in detecting ground in forest by using the ray tracing score. It
enables to distinguish the ground from others if we can assume that the ground never
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exists in the space where laser rays pass. The ray tracing score has been also used
for classification of grasses. If an object is grass, laser reflection and transmission
are observed simultaneously. Alberto et al. [8] succeeded in detecting wide grass
by using the laser reflection and the transparencies. In our research, the number of
passing laser is used to confirm that the observation of 3-D laser scanner is sufficient.
In addition, the pass rate of laser rays is used to find line and frame objects from 3-D
point cloud data. A major difference between our study and previous studies is to use
both the pass rate and the geometric features for detecting line and frame objects.
The safety of remote operation can be increased by using our method.

Saitou [9] proposed a method of classifying road surface by using the reflection
strength of laser. The accuracy of our classification method may be improved by
incorporating it.

3 Classification of 3-D Point Cloud Data Based on Geometrical
Features and the Pass Rate of Laser Rays

3.1 Target Objects for Classification

At first, we define our target objects to be recognized from 3-D point cloud data
by using our classifying method. We consider that target objects for robot’s remote
operation and space recognition are

1. the ground and rough terrain (where the robot or human can move),
2. walls (used for landmarks), and
3. line and frame objects (used for risk avoidance). Figure 2 shows a part of the

target objects.

Plane whose slope is similar to the robot pose is defined as the ground. Tracked
vehicles with sub-tracks need to change the sub-tracks motion according to the ground
shape. So, it is necessary to distinguish rough terrain from the ground. The threshold
of roughness is defined as 150 mm because our tracked vehicle can climb gaps whose
height is less than 150 mm with no sub-tracks motion. Plane whose normal vector is
perpendicular to the normal vector of the ground is defined as wall. Thin pole objects
whose width is between 10 and 80 mm are defined as line and frame objects. Frame
objects includes metal frame structures, pipe frame structure, and lattice objects. The
width value is decided on the basis of Japanese standard of electrical and gas line
(ex. Width of electrical cable is between 6 and 11 mm. So, 10 mm width is selected as
minimum width. Width of pipes inside walls and ceilings is between 19 and 76 mm.
Width of grab rail at the side of corridors and stairs is between 30 and 40 mm.). Since
voxel size must be larger than these thresholds, voxel size is defined as 200 mm
width.
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Fig. 2 Target objects for segmentation

3.2 Classification of 3-D Point Cloud Data that Includes
Line and Frame Objects

3-D point cloud data that includes line and frame objects are segmented using geo-
metrical features and the pass rate of laser rays. Figure 3 illustrates the process flow
of our proposed classifying method. 3-D point cloud data Si · · · St are measured by
a 3-D laser scanner named HD scanner. 256,000 point data are obtained every 2.5 s.
The point cloud is projected inside a voxel space V whose voxel size is 200 mm.
The number of passing laser rays Npass and the number of reflected points Npoint
are counted in each voxel Vi, j,k . If enough number of laser rays passed inside the
voxel, geometrical features λi, j,k = {λ0,λ1,λ2}, the pass rate of laser rays γi, j,k ,
and roughness βi, j,k are calculated from the point cloud data inside the voxel. Using
λi, j,k , γi, j,k , βi, j.k , each voxel Vi, j,k is labeled class label Cn (n = 1:line and frame
objects, n = 2:walls, n = 3:the ground, n = 4:rough terrain, and n = 5:others).
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Fig. 3 Process flow of 3-D point cloud segmentation.

Figure 4 illustrates three patterns of point cloud distribution and its geometrical
features (λ0,λ1,λ2). λ0,λ1,λ2 are eigenvalues calculated from the covariance ma-
trix of the 3-D point cloud in Vi, j,k . The subscript number of λ shows the order of the
eigenvalues: 0 is the largest eigenvalue. The distribution of point cloud in the voxel
can be classified into plane, pole, and ellipsoidal object by using three eigenvalues
[5]. In our research, plane and pole like objects are found using the eigenvalues
λ0,λ1,λ2. Ellipsoidal shape is judged as other objects.

However, it is hard to identify thin line and frame objects from only the eigenvalues
λ0,λ1,λ2 and the number of reflected points Npoint. Figure 5 illustrates three cases

210 λλλ ≈≈ 210 λλλ >>≈ 210 λλλ ≈>>

Fig. 4 Segmentation of 3D point clouds by Eigenvalues

(a) (b) (c)

Fig. 5 Passing Laser Rays inside the Voxel which Contains Pole, Plane, and Lattice Objects a Pole
b Plane c Lattice



Classification of 3-D Point Cloud Data that Includes Line and Frame Objects 533

where a thin line, a plane, and a lattice object are measured respectively. When the
number of reflected points is small in a voxel, these points are considered as noise.
Therefore, the eigenvalues of these points are not calculated even when these points
represent the thin object (Fig. 5a). We would like to improve the judgment accuracy
when the number of points is small. We notice that many laser rays pass inside the
voxel in the case of Fig. 5a. Therefore, we use the number of passing laser rays Npass
to confirm that the observation is sufficient.

Frame object is also segmented by using the eigenvalues. We explain a lattice
object which is one of the frame objects. The eigenvalues of the lattice object is
similar to the eigenvalues of a plane (Fig. 5b, c). We cannot judge whether the object
is a lattice object using only the eigenvalues. In the case of the lattice object (Fig. 5c),
many laser rays also pass inside the voxel (Fig. 5c). So, we use the pass rate of laser
rays γi, j,k to judge whether the object is the lattice object. The details are described
in Sect. 3.3.

Walls are distinguished from the ground using a geometrical constraint that the
wall is perpendicular to the ground. Uneven terrains are distinguished from the ground
using the roughness α,β. The details are described in Sect. 3.4.

3.3 Line and Frame Objects Recognition Using
the Pass Rate of Laser Rays

Figure 6 illustrates a model of laser rays in the voxel space. All voxels between the
sensor and the reflected point are labeled “pass”. The voxels where the laser ray
passes are judged using Bresenham algorithm [11]. The number of passing point
Npass in each voxel is counted when the reflected point is observed.

Fig. 6 Model of a laser ray in voxel space
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The pass rate of laser rays γi, j,k enables to judge whether the number of the
reflected points is small due to the shortage of observation data. The pass rate of
laser rays γi, j,k proposed by the authors is represented as follows:

γi, j, j = 1 − Npoint

Npoint + Npass
(1)

where Npass and Npoint are the number of the passing laser rays and the number of
the reflected points in Voxel Vi, j,k , respectively. The pass rate of laser rays is in the
range of 0.0 ◦ γi, j,k ◦ 1.0, and it becomes closer to 1.0 as Npass increases.

3-D point cloud data in a voxel is classified when Ntotal = Npass + Npoint in the
voxel is above a threshold. The object is classified as “line” when the pass rate of
laser rays is close to 1.0 and the geometrical feature is pole (Fig. 5a). The object is
classified as “lattice wall” when the pass rate of laser rays is above a threshold and
the geometrical feature is plane (Fig. 5b). Although these thresholds are empirically
defined, this method can be applied to various observation data because the pass rate
of laser rays is clearly different between thin objects and others.

3.4 Classification of Rough Terrain Using the Roughness

Segments that belong to the ground are obtained using the eigenvalues. These seg-
ments compose of the flat ground and rough terrain. It is necessary to distinguish the
rough terrain from the segments using the roughness. For calculating the roughness,
we used parameters α,β (Eq. 4) that show the relative distance between points inside
a voxel (Fig. 7).

α =
√

∩pl − pm∩2 − β2 (2)

β = |nl · (pl − pm)| (3)

pl and pm are points inside the voxel labeled the ground. nl a normal vector of point
pl . α is a horizontal distance between pl and pm . β is a vertical distance between pl

and pm . The above features α,β are proposed in the research of Spin Image [10]. In
our research, a histogram of β is used for the classification.

Figure 8 shows the histograms of β. Figure 8a is the histogram of flat plane. Fig-
ure 8b is the histogram of rough terrain. There is a clear difference between the two

Fig. 7 Features of spin image



Classification of 3-D Point Cloud Data that Includes Line and Frame Objects 535

 0

 5

 10

 15

 20

 25

 30

 0  20000  40000  60000  80000  100000 120000

"The number of beta^2"
"T

he
 n

um
be

r 
of

 b
et

a^
2"

(a)

 0

 5

 10

 15

 20

 25

 30

 0  20000  40000  60000  80000  100000 120000

"The number of beta^2"

"T
he

 n
um

be
r 

of
 b

et
a^

2"

(b)

Fig. 8 Histogram of β2: a Flat ground and b Rough Terrain

histograms. The histogram of the plane has one peak, the histogram of the rough ter-
rain has no peaks and wide distribution. For the classification, we used the following
standard deviation σβ .

σ2
β = 1

N
θi (βi − β̄i )

2 (4)

β̄ is the average of β. If the σβ is small, the segment is judged as the ground (flat
ground). If σβ is large, the segment is judged as the rough terrain.

(a) (b) (c) (d)

Fig. 9 Experimental setup and classification results for each experiment
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4 Evaluation of Line and Frame Objects Classification Method

We confirm that the classification rate of line and frame objects increase using the
pass rate of laser rays. Figure 9 shows the experimental setup and the classification
results. 3-D point cloud data of one pole, three poles, a rope, and lattice objects were
measured using the 3-D laser scanner. 3-D point cloud data that belong to the target
objects were extracted by human. The extracted 3-D point cloud data were classified
by using two different methods: 1. using only eigenvalues, 2. using eigenvalues and
the pass rate. Comparing these results, we confirm the utility of the pass rate.

Middle row data in Fig. 9 illustrates the classification results using eigenvalues.
Table 1 shows the classification results and the accuracy (recall). Bottom row data in
Fig. 9 illustrates the classification results using both eigenvalues and the pass rate.
Table 2 shows the classification results and the accuracy. Color of each point in Fig. 9
shows the classification result (red: line and fame objects, yellow: walls, sky blue: the
ground, blue: rough terrain, white: others). In the evaluation, Ntotal was used because
the number of points was small for thin pole objects, a lot of voxel could not be used
for the classification.

When the eigenvalues were used for the classification, the recall of three poles,
rope and lattice were less than 46.2 % except for recall of one pole, it is quite small.
Sixty percentage point cloud data of the three poles was judged as wall because the
distribution was similar to wall’s one. Twenty-five percentage point cloud data of the
rope was judged as rough terrain. Thirty percentage point cloud data of the lattice
was judged as wall. Fifteen percentage point cloud data of the lattice was judged as
rough terrain. Most of the point cloud data were misjudged.

On the other hand, when the eigenvalues and the pass rate were used for the
classification, the recall of the three poles, the rope, and the lattice were improved.
No points were judged as wall in the three poles case. No points were judged as

Table 1 Classification rate using only Eigenvalues

Line & frame Wall The ground Rough terrain Others Recall[%]

1 pole 217 7 0 0 3 95.59
3 poles 215 352 0 42 19 34.24
Rope 146 3 0 92 75 46.20
Lattice 489 1,236 129 512 970 14.66

Table 2 Classification rate using Eigenvalue and the pass rate

Line & frame Wall The ground Rough terrain Others Recall[%]

1 pole 217 7 0 0 3 95.59
3 poles 609 0 0 0 19 96.97
Rope 241 0 0 0 75 76.27
Lattice 2,025 327 14 0 970 60.7
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rough terrain in the rope case. No points were judged as terrain in the lattice case.
The number of points judged as wall in the lattice decreased to 327. It was confirmed
that the recall of line and frame objects classification increased using the pass rate of
laser rays. The number of points judged as others in the rope and the lattice objects is
large because the observation is not sufficient. We need more observation to decrease
the number of others objects. In the real situation, the robot can measure 3-D point
cloud data during the exploration. So, this problem can be solved as the observation
time increases.

Fig. 10 Experimental field
and correct answer data made
by hand
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5 Classification of 3-D Point Cloud Data Measured at a Training
Facility of Japan Fireman Department

We evaluated the validity of our proposed method using 3-D point cloud data mea-
sured in a training facility of Japan fireman department. We would like to confirm that
the proposed classification method works in 3-D point cloud data of disaster area.
Figure 10 shows the experimental field. There were a frame structure, walls, the
ground, rough terrain. The correct answer data was made by hand (Fig. 10). Eigen-
values, the pass rate of laser rays, and roughness were used for the classification.
Noise filter was used to decrease the misjudgment of the classification.

Figure 11 shows the classification result, and Table 3 shows the classification rate.
We calculated two rates (recall, precision) for the evaluation. Recall of lien and frame
objects was up to about 93 %. Using the pass rate of laser rays can help us to find
the line and frame objects. Recall of the ground was up to 70 %. However, recall of
walls and rough terrain was about 55 %.

Twenty-five percentage point cloud data in the wall case was judged as other
because the walls were located around edge of scan and the observation was not

Fig. 11 Classification result of rough terrain using geometrical features, the pass rate of laser rays,
and noise filter

Table 3 Classification rate using geometrical features and the pass rate of laser rays

Line & frame Wall The ground Rough terrain Others Recall[%]

Line & frame 1,448 26 7 75 0 93.06
Wall 336 3,480 32 638 1057 54.59
The ground 1,421 38 18,336 4,636 1,529 70.63
Rough terrain 3,914 193 2,011 10,023 1,478 56.89
Precision[%] 20.34 90.61 89.94 65.20 0.0
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sufficient. Same problem can be found in the walls and uneven cases. These problem
can be solved as the observation time increases.

However, precision of line and frame objects was low. The misjudgment decrease
the recall of ground and rough terrain cases. This problem is caused by the pass rate
of laser rays at the edge of the scan data. We found a solution to improve the problem.
Unfortunately, the evaluation is not enough. So, we will report the solution in next
presentation.

6 Conclusion and Future Works

The authors aim at classification of 3-D point cloud data at disaster environment. In
this paper, we proposed a method of classification using geometrical features and the
pass rate of laser rays. Eigenvalues are used as geometrical feature. The pass rate of
laser rays is calculated in voxel space. It was confirmed that recognition rate of line
and lattice objects can be increased using the pass rate of laser rays. In addition, it
was confirmed that the proposed classification method works in the case of a training
facility of Japan fireman department. It is similar to the real disaster scene comparing
the laboratory’s test field. From the evaluation, recalls of line and frame objects and
the ground was up to 90 and 70 % respectively. However, the recall of wall and rough
terrain was about 50 %. We need to improve the recall of them. The improvement is
on going works.

In the current classification method, some thresholds are used for the decision.
As the feature work, we would like to decrease the number of the threshold using
machine learning techniques. In studies of machine learning, it is well known that
the use of good feature promises the good segmentation result if simple classification
algorithms are used (ex. K-NN, SVM). Combination of geometrical feature and the
pass rate can provide you a good segmentation result.
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Solid Model Reconstruction of Large-Scale
Outdoor Scenes from 3D Lidar Data

Ciril Baselgia, Michael Bosse, Robert Zlot and Claude Holenstein

Abstract Globally consistent 3D maps are commonly used for robot mission
planning, navigation, and teleoperation in unstructured and uncontrolled environ-
ments. These maps are typically represented as 3D point clouds; however other
representations, such as surface or solid models, are often required for humans to
perform scientific analyses, infrastructure planning, or for general visualization pur-
poses. Robust large-scale solid model reconstruction from point clouds of outdoor
scenes can be challenging due to the presence of dynamic objects, the ambigui-
tiy between non-returns and sky-points, and scalability requirements. Volume-based
methods are able to remove spurious points arising from moving objects in the scene
by considering the entire ray of each measurement, rather than simply the end point.
Scalability can be addressed by decomposing the overall space into multiple tiles,
from which the resulting surfaces can later be merged. We propose an approach that
applies a weighted signed distance function along each measurement ray, where the
weight indicates the confidence of the calculated distance. Due to the unenclosed
nature of outdoor environments, we introduce a technique to automatically generate
a thickened structure in order to model surfaces seen from only one side. The final
solid models are thus suitable to be physically printed by a rapid prototyping ma-
chine.The approach is evaluated on 3D laser point cloud data collected from a mobile
lidar in unstructured and uncontrolled environments, including outdoors and inside
caves. The accuracy of the solid model reconstruction is compared to a previously
developed binary voxel carving method. The results show that the weighted signed
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distance approach produces a more accurate reconstruction of the surface, and since
higher accuracy models can be produced at lower resolutions, this additionally results
in significant improvements in processing time.

1 Introduction

In recent years, 3D scanning has become increasingly widespread both in the research
community (robotic perception, remote sensing), and in the commercial space (mo-
bile mapping systems, consumer-grade depth sensors). Models generated by these
systems are typically represented as 3D point clouds; however, in some applications
more physically relevant models are required. An application we have been investi-
gating recently in collaboration with scientists from ANSTO is the generation of 3D
models of natural cave systems. The ANSTO scientists require watertight 3D surface
models of the cave interiors to understand airflows within the cave system. It became
apparent that the 3D models produced would also be useful for tourism and cultural
heritage purposes. Though we could produce interactive 3D visulations or fly through
animations using the surface models or point clouds, tangible 3D printed models are
often more accessible to the public, and could be useful for managing or studying
the caves.While our previous work [1] assumed a fully enclosed environment, there
are several outdoor connections between the caves where this assumption does not
hold. Therefore, to produce a complete model of the cave system and surrounds that
is printable, we must be able to generate 3D solid models of outdoor scenes. As
an important factor in this application is the large scale of the environments (tens of
kilometers), the approach should be automated requiring minimal manual assistance.
We present a method for generating 3D solid models of outdoor scenes from point
cloud data. In addition, aspects of the approach can be applied to improve on our
previous work in 3D surface reconstruction of cave interiors.

There are several methods for surface reconstruction, which can be roughly cate-
gorized into three classes: model-based, point-based, or volume-based methods. The
first group tries to fit geometric primitives such as planes to the points [2–5]. Even
though this method works reasonably well for artificial objects, they are not useful
for the high structural variance in natural scenes. Point-based algorithms create a sur-
face from the points using triangulation and interpolation to generate a mesh [6, 7].
Typically, these techniques require additional pre- or post-processing steps to ensure
watertight surface reconstruction, to deal with noise, or to simplify the mesh struc-
ture [8, 9]. A disadvantage of both model- and point-based methods, is that while
they may cope with a reasonable amount of noise, they are sensitive to outliers, such
as those originating from dynamic objects and misregistrations. Volume-based tech-
niques rasterize the space into a regular voxel grid [10–12] or an octree [13, 14].
Each measurement is rendered into the volumetric grid as a ray or beam of free space
eminating from the sensor to the measured point, thereby erasing non-static points
as rays from other viewpoints pass through the voxels that were occupied in previous
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scans. A surface model can then be extracted from the volume by calculating an
isosurface at an appropriate isovalue.

Solid model reconstruction is typically focussed on modeling objects [15–17],
rather than environments. Compared to a laboratory setting, environment modeling
is relatively challenging as neither complete coverage nor adequate sampling density
can be guaranteed. Existing work in environment modeling from 3D point clouds
has focused on surface reconstruction [2, 18, 19], rather than solid models.

In September 2010, we mapped the Jenolan Cave System in New South Wales,
Australia with a mobile 3D lidar system consisting of a spinning 2D SICK li-
dar mounted on a two-wheeled furniture dolly (Fig. 1a). Data was recorded while
maneouvering the dolly inside the caves and outdoors between and around the cave
entrances. At a walking pace, we collected data along a trajectory of more than 9 km
mainly using pathways and stairways constructed throughout the cave system. Due
to the confined nature of the environment, it was impossible to ensure that the map-
ping team remained outside of the sensor’s wide field of view. To handle unavoidable
lidar returns from dynamic objects, we adopt a volume-based space-carving approach
using a signed distance function [10]. A triangulated surface can be extracted from
the volumetric model by computing an isosurface at the zero level set. In closed
environments (such as cave interiors), one can print the air void as a solid model;
however, in open spaces this approach would not produce desirable results. Instead
we model the volumes of objects, rather than empty space; however, to ensure suf-
ficient thickness for producing a stable printed model, we must extend the regions
behind the measured surfaces (Fig. 1b). Simply extruding surfaces would introduce
solid artifacts into areas of known free space.

The contribution of this work is the development of an algorithm which is able to
robustly reconstruct solid models of large-scale, unstructured, open environments.
In addition, the application of the proposed signed distance function improves the

(a) The Hannibal mapping platform (b) 3D printed solid model

Fig. 1 a Mapping an outdoor area at the Jenolan Caves with a spinning laser. b Photograph of a
solid model of a single tile printed on a 3D printer at 1:250 scale. The distance along the longest
dimension is 60 m. A building, some trees, and a hillside (seen from behind) are visible
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accuracy and robustness of our previous framework for watertight 3D surface recon-
struction in enclosed environments.

The remainder of the paper is organized as follows. Section 2 gives a brief overview
of the signed distance function followed by the surface thickening technique. Exper-
imental setup and its evaluation is provided in Sect. 3. Finally, Sect. 4 concludes the
paper and provides outlook for future work.

2 Approach

2.1 Data Acquisition

A spinning 2D SICK LMS291 mounted on a two-wheeled hand trolley is used to
acquire range measurements within the caves. The scanner updates at a frequency
of 75 Hz, capturing 180 points with one degree angular resolution per scan, with a
maximum scanning range of approximately 80 m (surface dependent). The mount
rotates the laser about the central scan ray at a rate of 0.5 Hz which results in a hemi-
spherical field of view containing 13,500 points each second (with scans spaced at
2.4◦ intervals). The data is transformed into a consistent 3D point cloud using a incre-
mental scan-matching-based SLAM algorithm [20] followed by a global registration
procedure based on the same algorithm.

2.2 3D Reconstruction

In order to reconstruct a solid model or surface from a point cloud, we use a volume-
based approach, where continuous space is split into discrete voxels with a fixed
uniform resolution. Each voxel stores a value related to the distance from the nearest
surface and a weight indicating the confidence of this value. Distance and weight
values for a voxel are updated whenever a new measurement ray passes through
it. After processing all measurements, the resulting solid or surface can then be
derived from the volumetric model. Volume-based methods have the advantage that
they automatically erase points which originate from dynamic objects as rays from
multiple viewpoints pass through the associated voxel. Our approach processes the
data in scan order, and follows four steps for each scan. Steps 1, 2, and 4 are the same
as discussed in our previous paper [1], but for the sake of completeness we briefly
review them here as background.

Triangulation of Scans. Space-carving involves tracing each measurement ray
from the sensor location to the reflecting surface and marking each voxel along that
path. When the surfaces are sufficiently distant from the sensor, a simple carving of
each measurement ray will result in noticeable gaps in the voxel grid. This effect
produces a spiky structure which does not accurately reflect the underlying volume.
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i-1 i

sensor
trajectory

Traingulation Scrface Rasterization Ray casting(a) (b) (c)

Fig. 2 Steps in the rasterization of a laser scan. a Scan points from scan i (small black circles)
are triangulated with the points from the previous scan (small white circles). The two larger circles
at the bottom of the figure represent the sensor position at the time of each scan measurement). A
representative surface triangle is highlighted in red. b The surface triangle is rasterized in a global
3D voxel grid, indicated as red-shaded voxels (the unshaded voxels are untouched in this step).
Only a small local subset of the voxels are illustrated for clarity. c A ray is cast from the associated
sensor position to each surface voxel, and all sampled voxels along the ray are marked as free space.
An example surface voxel is shaded in green, and the marked voxels along the ray are colored in
blue. This step is repeated for all surface voxels resulting from the original triangle, and the process
is applied to all other triangles in the scan triangulation. (Reused from previous publication [1])

To alleviate this issue, we triangulate between neighboring points in the scan manifold
in order to interpolate across the gaps [1]. Due to the spinning lidar configuration,
naive triangulation along the scan manifold would result in non-orientable surfaces,
from which we would not be able to directly construct valid solid models or closed
surfaces. Instead, the manifold triangles provide an intermediate surface which is
sampled to produce rays at a sufficient density to fill the gaps (Fig. 2a).

Voxelization of Surface Triangle. Sampling of the intermediate surface is
achieved by rasterizing the triangles into the voxel grid (Fig. 2b). Rasterization is
performed by recursively splitting the longest edge of a triangle to form two new
triangles. This procedure is continued until the longest edge of a triangle is smaller
than half of the voxel resolution.1 The voxel containing the centroid that small tri-
angle is then marked as belonging to the surface for the subsequent steps.

Voxel Carving. The third step consists of carving the entire volume between the
rasterized intermediate surface and the sensor. The carving is performed by tracing a
ray through the voxels from the surface patch to the sensor using a 3D version of the
well-known Bresenham algorithm [21]. While tracing the rays, the algorithm updates
the corresponding signed distance and weighting values for each voxel traversed.
More details about the weighted signed distance function is given in Sect. 2.3.

Isosurface extraction. The last step of the surface reconstruction algorithm is the
extraction of the surface itself. We use MATLAB’s isosurface function to extract a
zero level set surface from the voxel grid volume.

1 We use the Polygon2Voxel algorithm by Dirk-Jan Kroon, available on the Mathworks MATLAB
Central website.



546 C. Baselgia et al.

2.3 Weighted Signed Distance Function

Signed distance functions define the distances from a point in space to a given
surface. Positive values indicate a point in front of the surface and negative val-
ues a point behind or inside the surface, respectively. Curless and Levoy [10] treat
each scan point to be on the surface and use the signed distance function in combi-
nation with an appropriate weighting to indicate the distance of each point within
the scanning ray to the scan point. The signed distances and weights need only be
calculated for each voxel x j with which the scanning ray intersects. The weights
are an indicator for the uncertainty of the measured distance. The overall signed
distance function D(x j ) at a given voxel x j is recursively updated by combin-
ing the single signed distance functions d1(x j ), d2(x j ), ..., dn(x j ) and correspond-
ing weights w1(x j ), w2(x j ), ..., wn(x j ) obtained from several range measurements
r1, ..., rn [10]. Finally, the underlying surface can be extracted by computing the
isosurface at D(x) = 0 (i.e., where the points have zero distance to the surface). It
can be shown that, under a certain set of assumptions, the extracted surface is optimal
in the least squares sense [10].

The cumulative weighted signed distance DI (x j ) with the corresponding weights
WI (x j ) of a voxel x j to the surface can be written as

DI (x j ) =
∑

wi (x j )di (x j )
∑

wi
, WI (x j ) =

⎧
wi (x j ), (1)

where di (x j ) is the signed distance and wi (x j ) is the corresponding weight for a
measurement i . Note that these quantities can also be computed recursively, so the
voxel states can be updated iteratively.

In defining the distance function and corresponding weights, various effects are
accounted for by decomposing the ray into multiple regions (Fig. 3). Starting from
the sensor, the regions are: free space between the sensor and surface, where we are
highly confident there are no objects; the front surface transition, an interval which
contains the measurement and should contain the physical surface; the interior region;
and the back surface transition, which may not correspond to any physical surface but
thickens the surface to create a solid model. The distance and weight functions are
determined by the incidence angle of the ray with the surface and two user-specified
parameters. The parameter δ defines the width of the transition area and is dependent
on the sensor noise and voxel resolution. The parameter Δ determines the maximum
thickness of the solid, and should be larger than 2δ.

d(x j ) =

⎨
⎡⎡⎡⎡⎣

⎡⎡⎡⎡⎤

δ δ < nT x j

nT x j −δ < nT x j < δ
−δ δ − Δ < nT x j < −δ

−nT x j − Δ −Δ − δ < nT x j < δ − Δ

δ nT x j < −Δ − δ,

(2)
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Fig. 3 Signed distance function and the corresponding weight for a single ray. The red dashed line
is the signed distance function which is assigned to the voxel where the laser beam traverses. The
green dotted line denotes the value of the corresponding weight. For visualization purposes, the
weight is not scaled with 1

r2 in this figure. The traced ray is reoriented to the surface normal behind
the surface to ensure an equal thickness throughout the whole structure (see Sect. 2.4)

where n is the surface normal and x j the coordinates of the voxel. Note that although
the distance function values are assigned to voxels along the ray, the values are
calculated according to the distance from the surface in the normal direction.We
truncate the distance function at a maximum value of δ away from the surface in
order to prevent outliers from dominating the voxel state.

The weighting function indicates the uncertainty of the distance values assigned
to the voxel and is defined as

w(x j ) = 1

∩r2∩

⎨
⎡⎡⎡⎡⎡⎡⎣

⎡⎡⎡⎡⎡⎡⎤

1 δ ∈ nT x j

(1 − wα) 1
δ nT x j + wα 0 ∈ nT x j < δ

wα
2Δ

1
δ nT x j + wα −Δ ∈ nT x j < 0

wα
2 −Δ − δ ∈ nT x j < −Δ

wα
2δ

1
δ nT x j + wα

2δ (Δ + δ) −Δ − 2δ ∈ nT x j < −Δ − δ
0 otherwise.

(3)

Due to errors associated with high incidence angled reflections, in a manner similar
to that of Curless and Levoy [10], we define one part of the weight wα to be the cosine
of the angle α between the incoming ray and the surface normal. That effect is only
considered valid close to the surface, so the baseline weight linearly increases to a
value of one at a distance δ from the surface. Behind the surface, the weight linearly
drops to wα/2 at the back surface transition. The weight value remains constant
for a distance of δ behind the back surface, before dropping to zero within another
distance of δ further back.This choice ensures there is sufficient support for isosurface
near the back transition. An overall factor of 1/r2, where r is the distance from the
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sensor, is applied to baseline weight in order to give the voxels closer to the sensor
higher confidence.The inclusion of this factor helps alleviate some artifacts due to
scan misregistrations, by weighing contributions from near observations higher than
those from afar.

We initialize the whole space to be empty by default (i.e., every voxel has a
distance d(x) = 1) which indicates that it is far from any surface. As this is a strong
assumption about the relative position of a voxel to a potential surface, we initialize
the weights to a small magnitude, indicating the low confidence about the voxel’s
actual state.

2.4 Surface Thickening

Surface thickening is required to ensure that a solid model can be generated from
surface measurements even when objects are not observed from all sides. Having a
model with a thickness is especially useful for outdoor scenes as these environments
are not closed as is the case for the fully enclosed cave interiors. Without adding some
thickness, it would not be possible to render a model of an outdoor environment
on a 3D printer due to the thin surface. Thickening of the model is achieved by
“back-carving” each ray a given distance into the surface while assigning a negative
distance value to each voxel behind the surface. Due to the initialization of the full
voxel set as empty (i.e., the space is set to a positive value), the back-carving results in
another zero transition some distance behind the surface. Thus isosurface generation
produces an additional surface at the back of the structure, resulting in a set of closed
solid models (Fig. 4). Ray carving into the surface is performed in the direction of
the surface normal. By doing so, we can achieve an approximately equal thickness
throughout the structure (Fig. 4b), which would not be the case were we to simply
carve the ray into the surface along its incidence direction (Fig. 4a). Carving along
the ray would result in an irregular background because the distance a ray carves into
a surface is dependent on the angle of incidence.

In Eq. 2 we define negative distances d(x j ) to increase again for negative values
less than δ − Δ (Fig. 3). Defining the distances in this manner avoids a large step in
the zero transition at the back surface which would arise were we to simply assign
increasingly negative values while carving deeper into the surface before terminating
the the back-carving. Due to the well-defined zero transition at the back surface (see
Fig. 7a), the final isosurface extraction produces a smoother surface than would be
the case for a step transition.

2.5 Coarse Spatial Decomposition

Given the scale of the environments and size of the available memory, the algorithm
can work with only a limited volume at any given time. Therefore the working
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(a) Carving along the normal direction (b) Carving along the ray direction

Fig. 4 Comparison of a carving in the normal a and along the ray b direction. It can be observed
that the simple carving along the ray produces a very noisy back surface. The surface coloration
indicates the weights assigned to the voxels (blue low, red high). Note that the resulting structure
with the surface in the back and the front is closed. The open structure appearing on the right of
both images is due to a tile boundary (see Sect. 2.5). The structure continues into the neighboring
tile and forms a closed solid

space is decomposed into coarse sub-volumes we call tiles [1]. Each of the tiles
is processed individually in order to circumvent memory limitations. Using this
technique generally reduces computation efficiency as single scans which intersect
with multiple tiles have to be processed several times. After processing the full
dataset, the solid or surface models generated from all of the tiles are merged together.

As we process each tile individually, we need to initially create a lookup table
in a pre-processing step in order to determine the set of beams that intersect each
tile. Due to the back-carving of the surface, we also need to take those beams into
account which do actually not intersect with a tile, but their back-carving does.

An alternative and more memory efficient approach would be to process the
measurements into a single octree-based volumetric data structure [22], which we
are investigating as future work. Using an octree would allow for the model resolution
to better match the data density, thus regions of empty space and sparse sampling
could be represented by lower-resolution voxels.

3 Experiments

While scanning the Jenolan Caves, we also acquired a considerable amount of data
from areas outside the caves, including around and between the cave entrances. As the
area was not closed off to the public, there are many measurements from pedestrians
and vehicles passing through the field of view of our scanner.
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Table 1 Comparison of the mean distance of the measured point cloud to the calculated surface
and its variances for different carving methods and voxel resolutions. IQR = interquartile range

Carving method Voxel resolution (m) Median (m) Mode (m) IQR (m)

SDF 0.2 -0.030 0.00038 0.190
BC 0.2 0.270 0.057 0.483
BC (biased) 0.2 0.308 0.182 0.483
SDF 0.5 0.0018 0.00015 0.257
BC 0.5 0.512 0.108 0.717
BC (biased) 0.5 0.600 0.103 0.731
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Fig. 5 a Distributions of point-to-surface distances. b Boxplots for the different methods and
resolutions. The numerical values are given in Table 1. SDF signed distance function; BC binary
carving. 0.5 and 0.2 are the voxel resolutions in meters. Results labeled as “biased” are based on a
comparison the binary carving surfaces to the unmodified point cloud

We show a comparison for our method (SDF) developed in Sect. 2.3 and the binary
carving (BC) method developed in our previous paper [1]. In the BC method, we
simply initialize all space to occupied, then mark any voxels through which a ray
passes as free space. The evaluation of the two methods is performed by comparing
the average distance of the generated surface to the originally recorded point cloud for
different voxel resolutions. To do so, we compute the normal vector for each surface
triangle as the cross product of the vertices spanning the triangle. The distance of a
point in the point cloud is then simply the distance from the point along the normal
to the plane spanned by the closest triangle in the mesh.

Figure 5 shows the distributions of the point-to-surface distances for the two carv-
ing approaches at two different resolutions applied to an outdoor scene containing
both natural (trees, hills) and artificial (buildings, roads) structure (Fig. 6). Table 1
presents some of the relevant statistics from these distributions. We observe that
the point-to-surface distances in the BC method are biased towards the associated
voxel resolution. This phenomenon occurs as the BC algorithm sets a voxel to ‘free
space’ when a single ray intersects with it. Thus, even when a ray enters only a few
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Signed distance carving (a) (b) Binary carving

Fig. 6 An outdoor scene processed with the (a) signed distance method and the (b) binary carving
method. The colors in (a) visualize the logarithm of the weights which are assigned to the voxels
where the surface passes through. For (b), the colors indicate a count of the number of times the
corresponding voxel was back-carved during processing. A 3D printed model of (a) can be seen in
Fig. 1b

millimeters into the voxel, the voxel is marked as being free space. To reduce this
bias, we can shrink the point cloud towards the corresponding sensor position by the
voxel resolution. Results both with and without this modification are presented. The
results from the SDF method do not display the bias observed in the binary carving
case: the distributions appear more symmetric and centered close to zero, regardless
of the resolution. The ability of the SDF approach to fuse multiple measurements,
rather than aggressively carve away all intersected space, results in smoother and
more accurate surfaces. More accurate results can be obtained as the resolution is
increased, but as there is a cubic dependency between the resolution and both the
computation time and memory usage, there is a clear tradeoff that must be consid-
ered. In the remaining experiments, results are reported for the unbiased version of
the BC method (i.e., with the modified point cloud).

Figure 6 compares the solid models generated with the SDF and BC methods
for a single tile from an outdoor scene. As expected, the BC method is considerably
more aggressive especially for unconstrained, unstructured objects. This effect is best
observed when looking at the trees which are less voluminous with the BC method
compared to SDF carving. The fuller trees from the SDF approach result from the
distance and weight pairing of the algorithm. SDF can reverse its estimate about the
occupancy of the space if there is enough evidence for a voxel to be assigned as
full, even though it was assigned to be empty from previous measurements. Hence,
it also takes those scans into account which are reflected at the outermost leaves
of the trees and does not necessarily delete the information provided by this scan
if there is another scan which hits the tree in an inner layer. In contrast, BC is a
one-way algorithm: if a voxel is assigned to be empty space, it will remain empty
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Fig. 7 A vertical cross section through the outdoor scene processed with the weighted signed
distance method with a voxel resolution of 0.2 m. a is colored according to the signed distances
D(x j ) and (b) is colored by the weights W (x j ), scaled logarithmically. The black points in (a) are
the raw input data (i.e., the point cloud at the position of the slice) and the black line shows the
extracted isosurface at the zero transition

forever. Thus, the BC method cuts the leaves/branches away when it processes scan
points which hit the tree in an inner layer or even produces holes when a single
outlier beam passes through the entire tree or structure. In our previous paper [1], we
treated all rays with maximum range as outliers and neglected them.This assumption
is reasonable when measurements are made in an enclosed area where it is very
unlikely to observe scans with maximum range, but it does not hold in outdoor
environments. In fact, rays which have maximum range (such as non-reflected rays
shooting into the sky) provide relevant information regarding free space in outdoor
environments. Maximum range measurements resulting from outlier measurements
produce holes when using the BC approach; however, valid measurements are likely
to overwrite the effect of isolated outliers in the SDF approach.

Figure 7 shows a vertical cross section through the voxels of the same area as
shown in Fig. 4. Note that the distance in the back of the structure increases slowly
towards a positive value and thus produces a well defined zero transition as discussed
in Sect. 2.4.

Figure 8 shows a surface model of two connected caves in the Jenolan Cave system,
generated using the signed distance function and 20 cm voxels. The distance between
the lower left and upper right extremes of the visualized model is approximately
360 m.

4 Conclusions

We developed a new approach to reconstruct solid models and surfaces for unstruc-
tured large-scale outdoor environments. Our approach is based on the space carving
using a weighted signed distance function in a 3D uniform grid. The algorithm for
surface reconstruction is demonstrated in an unstructured outdoor scene including
natural (e.g., trees, bushes) and artificial (e.g., buildings, streets) objects. We have
observed a significant improvement over the binary carving in terms of accuracy of
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Surface model: Chiefly and Imperial Caves 3D printed model(a) (b)

Fig. 8 a Reconstructed surface for Chifley and Imperial caves, produced using the signed distance
function with 20 cm voxel resolution. The inset in the lower left illustrates a view from the interior.
b A 3D printed model of a 50 m section of Chifley Cave, printed at 1:250 scale. The printed area is
roughly indicated by the blue ellipse in the upper left area of a

the reconstructed surfaces. As the new approach for surface reconstruction is more
precise even for lower voxel resolutions, we can achieve computational and memory
improvements as the costs increase with O(1/resolution3).

However, there are inherently a few limitations to our approach. Although outliers
are better handled by the weighted signed distance function method, outliers can
still affect the overall result when they occur in concentrated bunches as is often
the case with windows, surfaces with high specular reflectance, or bodies of water.
Furthermore, thin structures which are seen from only one side will appear much
thicker in the reconstruction as a result of the thickening process. Alternatively,
thin structures can disappear if they are seen from both sides and their thickness
is less than a voxel resolution. Another limitation is that the algorithm does not
necessarily produce connected surfaces over the whole model. Disconnections often
occur between structures where too few or no scans are present. In order to produce a
connected surface, one would either have to make sure to densely sample the whole
environment which can become rather tedious (or even impossible) or a method must
be developed which fills up the missing structure in an intelligent way. In some cases,
it may be sufficient to add simple supporting structure to each connected component
in the model.

Future plans also include the combination of the outdoor and enclosed surface re-
construction, such that the full Jenolan Cave system dataset can be processed at once.
Such a model requires integrating variants for both open and enclosed environments
as the back carving in indoor scenes is not desirable.
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Lightweight Laser Scan Registration in
Underground Mines with Band-based
Downsampling Method

James Lee, David Wettergreen and George Kantor

Abstract Robots operating in underground mines must accurately track their
location and create maps. The rough, undulating floors typical of mine environ-
ments preclude the 2D representation of scene integral to many existing real-time
mobile robot simultaneous localization and mapping systems. On the other hand, a
full 3D solution is made unrealistic by the computational expense of aligning large
point clouds. This paper presents an approach that extracts high-density, horizontal
bands of laser scans and uses them to represent the scene with detail sufficient to
capture the moderate non-planar motion typical of mining robots. Our approach is
able to operate in real-time, building maps and localizing in pace with range scan-
ning and is fast enough to allow continuous vehicle motion. We present details of
the approach which has been validated in an underground mine. Trials runs have
shown a significant decrease in computation time without an appreciable decrease
in accuracy over a full 3D strategy.

1 Introduction

Mining is a classic example of the types of dull, dangerous and dirty jobs that
humans are not particularly well suited for. In present-day manned mining operations,
active measures must be taken to bring down heat and pump in air thereby ensuring
the safety of miners. As mines venture further underground it becomes increas-
ingly more difficult to exploit mineral resources both safely and cost-effectively [1].
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Autonomous robotic mining is increasingly being turned to as a solution to these
problems. Moreover, mine accidents, such as one at Quecreek, Pennsylvania, where
the breach of a poorly documented mine caused a flood that trapped nine miners
underground for three days [2], underscore the need for highly accurate mapping of
mines. The tens of thousands of these undocumented mines estimated to exist under
the United States [3] pose a threat to miner safety until they can be reliably docu-
mented. Accurate maps generated by subterranean robots can alleviate these safety
concerns.

Conditions in mining environments dictate sensing modality. In mines where
darkness blinds visual sensors, scanners that sense geometric properties thrive [4].
Light detection and ranging (LIDAR) devices are one means of sensing structure
and scan matching range images is an integral component of several mobile robot
simultaneous localization and mapping systems. Furthermore, these systems do not
require that a robot carry its own light source and function in both active and aban-
doned mines. Many current algorithms represent the world 2-dimensionally in a flat
plane, either with a single scan or by flattening horizontal scans. This 2D approach
is unsuitable for mapping in situations where non-planar movements of a vehicle
confound scan matching. Mine floors, with dips, rises, railways, and debris, are an
example of such an environment. As robot rolls and pitches while travelling over
uneven terrain, strictly 2D scan matching fails because scans no longer overlap.
The full 3D solution is typically made unrealistic by the computational expense of
aligning and matching large numbers of range measurements. Robots that excavate
rock and manipulate their environments cannot rely solely on static, pre-calculated
maps and must be able to create maps in real time to plan as well as to inspect rock
face and ceiling surfaces for damage.

2 Related Research

The backbone of robotic mapping is simultaneous localization and mapping (SLAM).
In order to produce accurate maps a robot must solve the chicken and egg problem
of inferring pose and maps from one another. In recent years much progress has been
made in extending SLAM to large-scale environments but many of these approaches
assume either an in-plane motion rare in mining environments or operate on features
that can suffer from ambiguous data association in the subsurface context [5–8]. A
3D approach presented by Fairfield et al., utilizing a highly compact octree structure
in conjunction with an Rao-Blackwellized Particle Filter, has demonstrated real-time
3D mapping of subterranean voids [9]. This method is able to track the full 6DoF
(degree of freedom) movement of a robot. However, it stores scene structure as occu-
pancy probabilities in an coarse octree producing ordered, grid-like worlds that, while
suitable for planning, are unfavorable for survey quality maps. Other 3D approaches
uniformly or randomly downsample scans [10] or use computationally expensive
probabilistic methods to drive downsampling [11, 12]. These approaches seek to
reduce the number of points in each scan because the computational complexity of
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aligning scans using ICP (iterative closest point) grows exponentially with the num-
ber of points [15]. The many lightweight approaches preserve the structure of the
entire scene by lowering overall point density. However, naively downsampling scans
by either selecting random points, every nth point or points to preserve a constant
density retains points from geometrically uninteresting regions that are unlikely to
assist in registration [14]. Alternatively, Cole et al. have shown that matching with
smaller, high-density regions increases both matching speed and accuracy [14]. They
further note that finding these smaller high-density regions is often difficult and time
consuming and that poor selection criteria can produce regions that do not overlap
across multiple scans or miss important surface features that constrain the transfor-
mation [13].

This paper proposes and evaluates a simple method of selecting suitable high-
density regions to be used in scan matching. In particular we propose to reduce the
size of a 3D point cloud by extracting a band, which is defined to be the set of points
that is swept through by a n-degree rotation of a plane that passes through and rotates
about midpoints on the front and back of a robot. The resulting approach is able to
operate in real-time, building maps and localizing in pace with range scanning. It
combines the benefits of having high-density, geometrically interesting regions and
is fast enough to allow continuous vehicle motion. We present details of the approach
which has been validated in an underground mine and show that match stability and
geometric saliency are persevered. Trial runs have shown a significant decrease in
computation time without an appreciable decrease in accuracy over a full 3D strategy.

3 Method

As a robot traverses through a mine it collects thousands of 3D scans. In our case,
these scans were collected from a SICK LMS200 line-scanning laser spun about
its forward axis to sweep a hemisphere of range measurements. A high-precision
inertial measurement unit, in conjunction with wheel odometry information, is used
to perform the initial alignment creating 3D scans. Band regions are extracted from a
pre-determined point in each scan. A band, in this system, can be simplified to a point
cloud created by stitching n consecutive scans from the spinning laser. We determine

Fig. 1 Perspective view of reconstructed map mine showing sampled bands
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the size and placement of the band region that we extract through stability analysis
(described in Sect. 3.1) and to supplement other functions of the robot. These band
regions are then registered into a global frame using a standard point- to-plane ICP
(Fig. 1) by matching it to a map that combines previous bands. The new band as
well as the transform between it and the last band is stored in a pose graph structure
similar to the one described in [17]. Loop closure adds additional edges to the graph
which, upon optimization, generate accurate estimations of pose. Loops are detected
by looking for intersections within laser scans. When two intersections are found that
are within a threshold distance from one another, we generate two map segments by
combining scans taken around the two intersection scans and align the two segments
to determine the transform used to close the loop.

3.1 Band Stability

Gelfand et al. defines a stable point sampling in the context of point-to-plane ICP
as a sample set that constrains all degrees of freedom of the rigid body transform
[16]. Moreover, they show that ICP registration with a good sampling of stable points
not only improves the stability of the ICP match but also converges to the correct
solution faster [16]. Samplings that only constrain some of these degrees of freedom
introduce slip. For instance, points that describe a flat plane are free to slide about
in two axes and rotate about one. Likewise, points lying on a cylinder have one free
axis about which they can translate and rotate. Point stability for a set of points P
with k number of points p is defined in [16] as the number of eigenvalues above a
threshold of a 66 matrix C where pn is the nth point in set P and nn is the normal
of the point in a overlapping set Q that correspondes to the nth point in set P. C is
defined as

C =
[

p1 × n1 · · · pk × nk

n1 · · · nk

] [
p1 × n1 · · · pk × nk

n1 · · · nk

]T

(1)

4 Experiments

This band matching method was validated with field experiments conducted at a
research coal mine near Pittsburgh, Pennsylvania. Two approximately 300 m long
traverses around large loops were collected in geometrically distinct sections of the
mine to demonstrate suitability in a variety of mining environments.

Data was collected on the robot CaveCrawler (Fig. 2) equipped with a spinning
LMS200 SICK scanner capable of scanning a 180◦ hemisphere at a rate of 3 s per
scan.
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Fig. 2 Cave Crawler platform with spinning SICK in coal mine. Featureless floors, such as the one
in this picture, are prevalent throughout this mine and provide little additional information to aid
scan matching. Picture by Uland Wongg

Fig. 3 Two views of mine corridors showing point stability. Green points represent the most stable
points where all 6 DOFs are constrained. Yellow, orange, red and blue are progressively less stable
points that constrain 5, 4, 3, and 2 or less degrees of freedom

4.1 Band Stability

The stability metric from Sect. 3.1 was used to analyse 3D point clouds col- lected
at a coal mine. Figure 3 shows two 3D scans from within a coal mine with points
colorized to show stability. Points stable in all 6 DoFs were colored green; table in 5,
yellow and 4, orange. Points only stable in 3 DoF or 2 or fewer were colored red and
blue, respectively. The plots indicate that mine walls contain more stable points than
do floors and ceilings. Figure 4 plots the ratio of 4 or more DoF stable points to total
band points of a 10◦ band as a function of the center angle. The most stable band in this
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Fig. 4 Band stability versus band angle

scan is centered near the horizontal at 73◦. We found that using either scan matching
using the full 3D scan or recalculating stability at each timestep to aid downsampling
took more time than it took for the robot to traverse its path. The robot would
return scans at a rate of 1 scan every 3 s, whereas the full 3D and stability assisted
methods took amount 8 and 11 s, respectively, to process each scan. Furthermore, the
exponential increase in the time required to detect and close loops was for the full
3D method [15] and made it intractable for real-time operation. Although calculating
this per-point analysis of ICP matching stability is computationally expensive and
also unrealistic for real-time applications, it can be used to develop constant time
segmentations for real-time use. In the mining case, we observe that stability lies
around the horizontal plane and choose to segment a band that captures this stability.
An additional benefit of this method is that feature detection becomes very repeatable.
In mining environments we can guarantee that two downsampled scans will retain
overlap provided the thickness of the band selected is large enough to account for
the uneven floors. Other methods are sometimes unable to sample the same regions
over large perspective or point density changes.

4.2 Band-based Mapping

We estimated poses and created maps using band-based (described in Sect. 3.1), as
well as 2D, 3D, uniform downsampled, and constant density down- sampled methods
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and compared the relative runtimes and root mean square errors of each. Uniform
downsampling reduces the number of points by only retaining every nth point in a
scan; constant density downsampling achieves this by using an octree structure to
prune out points that are close together. It does this by selecting a leaf-size, binning
all the points based on which octree node they reside in, and storing the mean x, y,
z coordinate of all the points in each bin.

The band parameters were selected to meet a pre-determined maximum time
allotment for the initial laser scan match. This upper bound was found to be about
1 s per each scan, which was determined by timing the length of time the robot
took to complete a traverse and subtracting the time required for loop detection
and closure. A similar approach was taken to determine the downsample factor for
uniform downsampling as well as the desired point density for the constant density
approach. Care was taken to ensure that no algorithm was given an unfair advantage.
The distance between each 3D scan was determined by the speed of the robot and
the angular rate of rotation of the laser spinner. In our tests this distance was fixed at
approximately 1 m for all of the compared methods.

We found that a 10◦ horizontal band was sufficient to both meet the time require-
ment and for tracking 3D motion in this environment.

We compared accumulated drift from ICP matching these downsampled scans by
intentionally not closing loops under the assumption that the method that performs

Fig. 5 Top down view of Bruceton research mine with flag loop highlighted in blue and boot loop
highlighted in green
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Fig. 6 Top-down view of flag loop maps generated from 4 different methods

most like the 3D method is the most accurate method. This is a reasonable assumption
to make because the 3D match utilizes all of the data points from the scan and is
often used to calculate 6DoF transforms in many existing 3D SLAM algorithms.
Two trials were run on flag and boot shaped loops (blue and green, respectively in
Fig. 5). These two loops were chosen because, although they are from the same mine
facility, they exhibit different terrain features: the flag loop has train tracks, gunnite
walls and high ceilings supported by longitudinal beams whereas the boot loop has
natural floors, exposed coal faces and a low ceiling supported by steel mesh. Root
mean square error of the 3D euclidean difference between pose estimates from each
downsampling method and the full 3D match, average number of points in each
downsampled point cloud, and total execution time is tallied and summarized in
tables.

4.3 Flag Loop

Experimentation in this flag loop has shown a 1.9 times decrease in error over
an uninformed downsampling method (uniform downsampling) with a 1.69 times
increase in speed. The band-based method also outperformed the constant density
method in accuracy and speed as well as the 2D method in just accuracy. We find that
the 2D method that assumes 0 z-displacement and 0 roll and pitch angles does better
than both other real-time downsampling methods because of the relative flatness of
this mine loop. It does not, however, track x and y as accurately as the other meth-
ods Fig. 6. These results suggest that using computationally expensive probabilistic
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Fig. 7 Top-down view of estimated robot pose from the 5 different methods on flag shaped loop
(Black 3D, Green Band, Blue 2D, Solid Red Uniform, Dotted Red: Constant Density)

3D Band 2D Uniform Constant Density
RMS Error (m) N/A 2.220 3.813 4.150 9.380
Average Number of Points 29444.102 1975.154 361.195 2587.325 2593.517
Computation Time (s) 1518.458 117.045 59.600 198.580 230.908

Fig. 8 Table comparing RMS error, average number of points, and runtime on flag loop

methods to make informed choices for segmentation can aid ICP matching accuracy
and speed of convergence (Figs. 7, 8).

4.4 Boot Loop

We further applied the same band-based segmentation to another mining dataset
while retaining the same horizontal band. This simulates the effect of a change in
environment midrun that may alter the location of stable bands.

Experimentation in the boot shaped loop has shown that band-based matching
produces comparable results to those from the band downsampled run of the flag
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Fig. 9 Top-down view of estimated robot pose from the 5 different methods on boot shaped loop
(Black 3D, Green Band, Blue 2D, Solid Red Uniform, Dotted Red Constant Density)

3D Band 2D Uniform Constant Density
RMS Error (m) N/A 1.0940 3.5768 1.0295 4.320
Average Number of Points 29722.391 3588.055 360.401 2972.274 2949.371
Computation Time (s) 1926.296 343.099 59.128 359.883 284.459

Fig. 10 Table comparing RMS error, average number of points, and runtime on boot loop

shaped loop (Figs. 9, 10). While these two loops exhibit different sets of features the
band down-sampled point clouds still produce accurate ICP alignments. This demon-
strates that band based downsampling can be applied to varying mine environments
successfully. In addition, the uniform downsampling method does remarkably better
in this dataset than it did on the flag loop data. While not significantly better than
comparable lightweight alternatives, the band based approach is at least a good the
alternatives tested.
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Fig. 11 Flag loop without loop closure (top) and with closure (bottom)

4.5 Loop Closure

The matched band segments are then used to predict and close loops. Reducing the
size of each scan by nearly 15-fold reduces the time it takes to perform loop closures
exponentially [15]. The benefit that this method has over methods that further reduce
the number of points by recalculating stable or salient regions is that this is both faster
and also guarantees that the same regions will be preserved regardless of orientation
or scale changes. This speedy loop closure, in conjunction with efficient band based
ICP alignment, is demonstrated on the two loops above. Figures 11 and 12 show
both flag and boot loops after the loop closure step.

5 Conclusion

As robots continue to explore vast and unfamiliar worlds, smart decimation algo-
rithms will be required for a robot to create on-the-fly maps that aid navigation
and autonomy. This approach proves that accurate, constant time decimation can be
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Fig. 12 Boot loop and partial flag loop with closure

achieved by using computational expensive stability analysis to learn good segmen-
tations ahead of time. Trials have shown that in subterranean environments a band
based matching approach is able to match with an accuracy approaching that of a
full 3D solve but with runtimes similar to that of a 2D one.
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Featureless Visual Processing for SLAM
in Changing Outdoor Environments

Michael Milford and Ashley George

Abstract Vision-based SLAM is mostly a solved problem providing clear, sharp
images can be obtained. However, in outdoor environments a number of factors such
as rough terrain, high speeds and hardware limitations can result in these condi-
tions not being met. High speed transit on rough terrain can lead to image blur and
under/over exposure, problems that cannot easily be dealt with using low cost hard-
ware. Furthermore, recently there has been a growth in interest in lifelong autonomy
for robots, which brings with it the challenge in outdoor environments of dealing
with a moving sun and lack of constant artificial lighting. In this paper, we present
a lightweight approach to visual localization and visual odometry that addresses the
challenges posed by perceptual change and low cost cameras. The approach com-
bines low resolution imagery with the SLAM algorithm, RatSLAM. We test the
system using a cheap consumer camera mounted on a small vehicle in a mixed urban
and vegetated environment, at times ranging from dawn to dusk and in conditions
ranging from sunny weather to rain. We first show that the system is able to provide
reliable mapping and recall over the course of the day and incrementally incorporate
new visual scenes from different times into an existing map. We then restrict the
system to only learning visual scenes at one time of day, and show that the system
is still able to localize and map at other times of day. The results demonstrate the
viability of the approach in situations where image quality is poor and environmental
or hardware factors preclude the use of visual features.
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1 Introduction

Visual mapping and navigation on robots has advanced rapidly in the last decade.
There are now many vision-based techniques including FAB-MAP [1], MonoSLAM
[2], FrameSLAM [3], V-GPS [4], Mini-SLAM [5] and others [6–10] that are com-
petitive with or superior to range sensor-based algorithms, with routes as long as
1,000 km being mapped [1]. The majority of these systems have been developed
and demonstrated largely under certain conditions: high quality imaging sensors
have been used, on relatively stable vehicle platforms and in bright illumination
conditions, minimizing problems such as motion blur and changes in appearance.
However, these are restrictive constraints, especially as robots are expected to oper-
ate over longer periods of time and with lower hardware costs. Many growing fields
such as environmental monitoring could benefit greatly from the availability of a
small, low cost robot platform with an all-day, all weather mapping and navigation
capability that is not reliant on GPS or environmental beacons. Towards that aim,
in this paper we seek to address two of the major challenges facing visual mapping
systems:

1. The difficulty of obtaining high quality images required by feature-based tech-
niques, when using low cost hardware at speed on off-road terrain and in poor
lighting.

2. The problem of achieving reliable place recognition in an outdoor environment
over the course of a day and during all types of weather.

Figure 1 illustrates these two challenges using camera images. Large changes in
illumination (compare panels of Fig. 1a, d) or changes in the weather (see rain drops
on lens in Fig. 1c) can radically alter the types of features detectable by a state
of the art algorithm such as Scale-Invariant Feature Transforms (SIFT) [11] and
Speeded Up Robust Features (SURF) [12]. Furthermore, in poor lighting with low
cost hardware and on off-road terrain, image blur is hard to avoid (Fig. 1c, also
Figs. 4–8). Motion blur affects both the place recognition and odometry components
of a mapping system, while change in appearance over the course of a day primarily
affects place recognition.

To some degree these problems can be reduced by using more capable sensing
equipment and implementing techniques such as high dynamic range [13]. However,

Fig. 1 Visual change in an environment over the course of a day and in varying weather—a dawn,
b morning, c rain and d dusk. As well as changing illumination other challenges are present such
as motion blur from the jerky motion of the platform when travelling off-road



Featureless Visual Processing for SLAM in Changing Outdoor Environments 571

high dynamic range techniques degrade in viability as the speed of the platform
increases. Without active illumination of an environment, even long exposure images
can look very different to an image obtained in sunlight during the day. Motion
estimation from motion blurred images can be achieved by tracking edges, but is more
difficult to incorporate into a mapping process [14]. More capable sensors and lenses
are expensive, usually bulkier and heavier to accommodate larger imaging sensors
and lenses, and require more power. While this approach is viable on large expensive
platforms where the sensor cost is relatively small, there is an increasing interest
in cheap robot platforms for large scale operations such as ecology monitoring.
On these platforms size and cost considerations make such an approach unfeasible.
Ultimately, even with sophisticated hardware, there are physical limits to optics
which are unlikely to be solved in the near future.

In this paper, we describe research towards enabling any-time vision-based SLAM
for outdoor robots in changing environments equipped with cheap consumer-grade
cameras. The focus is on scenarios where, due to the combination of cost limita-
tions, illumination changes and challenging terrain, the ability to reliably recognize
traditional visual features is limited. We present a lightweight visual recognition
algorithm based on patch normalization techniques that provides a high degree of
invariance to changes in environment conditions such as lighting. A patch tracking
algorithm provides visual odometry information, while the pose and visual filtering
is provided by the biologically inspired RatSLAM system. We demonstrate the sys-
tem working at real-time speed in a mixed off-road and urban environment at four
different times of day with different environmental conditions—at dawn, during the
morning, during a rain shower, and in fading light at dusk. The visual recognition
algorithm is able to consistently recognize familiar places despite the changes in
conditions. The visual odometry system is able to provide “good enough” motion
information to perform reliable mapping and localization over all the datasets when
combined with the visual loop closures. We also demonstrate the system is able to
map and localize off all the datasets even when restricted to learning visual templates
only at one time of day, showing that a single exposure to the environment is enough
to enable navigation at the other times of day.

The work presented here builds on previous research including mapping of a
suburban road network at different times of day [15, 16] and sequence-based local-
ization on road networks [17, 18]. Unlike the highly constrained nature of a road
network, this system is applied in a mixed urban and vegetated environment with
off-road areas. The degree of perceptual change encountered in the datasets pre-
sented here is qualitatively larger than in [15]. We present a featureless approach to
visual matching, rather than the feature and intensity profile-based techniques used
in [15]. In contrast to [17, 18], which were localization only studies, we implement
a full SLAM solution that calculates and uses motion information to build a map and
localize within that map.
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2 Approach

In this section we describe the visual recognition and visual odometry algorithms,
and give a brief overview of the RatSLAM system.

2.1 RatSLAM System

Processing of the data output by the visual recognition and visual odometry algo-
rithms is performed by the RatSLAM system. RatSLAM is a robot SLAM system
based on models of the navigation processes thought to occur in the rodent brain,
specifically the rodent hippocampus [19]. RatSLAM has been demonstrated map-
ping a large road network in static conditions [20] and a smaller road network with
moderately varying illumination [15].

The RatSLAM system consists of three modules, shown in Fig. 2. The local view
cells encode visual scenes in the environment, with cells incrementally recruited to
represent new distinct visual scenes as they are encountered. The pose cells are a
network of highly interconnected neural units connected by both excitatory (posi-
tive or reinforcing) and inhibitory (negative) connections. They encode an internal
representation of the robot’s pose state, and filter both the place recognition and
self-motion information provided by the visual recognition and visual odometry
processes. Finally, the experience map is a graphical map made up of nodes called
experiences that encode distinct places in the environment, and connected by tran-
sitions that encode odometry information. A graph relaxation algorithm [20] is run

Fig. 2 The RatSLAM system. The local view cells encode distinct visual scenes, while the pose
cells encode an internal representation of the robot’s pose and perform filtering of place recognition
estimates and self-motion information. The experience map is a graphical map formed by the
combination of the output from the local view cells, pose cells and self-motion information
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continuously on the experience map, resulting in the continuous map evolution seen
in the video accompanying the paper and also shown in Figs. 9 and 11. Further
information on the RatSLAM system can be found in [20, 21].

2.2 Patch-Based Visual Odometry

The visual odometry system is a modified version of the system deployed on a quad
rotor in [22]. The system tracks movement of two image patches to calculate transla-
tional speed and yaw of the platform, as shown in Fig. 3a. The primary assumptions
are that of a non-holonomic platform at a consistent height above the ground surface.
Frame to frame motion of the top patch provides the yaw information and bottom
patch motion provides the translational speed. The odometry gain was calibrated
by running the car along a known length of ground and calculating the required
gain constant, given in Table 2. Patch comparisons were performed by calculating
the mean of the intensity difference between each pixel in the patch compared to
the corresponding pixel in the previous image. Further implementation details are
provided in [22].

2.3 Patch-Normalized Visual Template Learning and Recognition

The visual place recognition process is illustrated in Fig. 3b. Camera images are
captured and the bottom half removed. While the ground is useful for patch-based
visual odometry, its proximity means that its appearance, when using a “whole of
image” based recognition process, is sensitive to slight changes in vehicle pose when
closing the loop, which tends to make place recognition brittle.

Once cropped, the image is resolution reduced to 48×24 pixels. Patch normal-
ization is applied to the image in discrete square patches (rather than continuously
over the image). Patch normalized pixel intensities, I ◦, are given by:

Fig. 3 a Patch-based visual odometry and b patch-normalized template matching
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I ◦
xy = Ixy − μxy

σxy
(1)

where μxy and σxy are the mean and standard deviation of pixel values in the patch of
size Psize that (x, y) is located within. Mean image differences between the current
visual scene and all the learnt visual templates are calculated using a normalized sum
of intensity differences, performed over a range of horizontal offsets:

D j = min
θx∩[−σ,σ] g (θx, i, j) (2)

where σ is the template offset range, and g() is given by:

g (θx, i, j) = 1

s

∑

x = 0

∑

y = 0

(
pi

x+θx,y − p j
x,y

)
(3)

where s is the area in pixels of the template sub frame. If the minimum difference
across all existing templates and relative offsets is larger than a threshold Dt , a new
template is learned. Otherwise an existing template is matched, leading to activation
of pose cells associated with that visual scene and a possible loop closure event.
The range of horizontal offsets provides (assuming the majority of objects in the
image are relatively distal) some invariance to camera pose. This invariance enables
loop closure even when routes are repeated at slightly different lateral offsets or at
different orientations. This capability is important for off-road motion (in contrast
to movement along a road network) where repeated paths vary due to environmental
change or variation in the path executed by the human or autonomous navigation
system.

3 Experimental Setup

This section describes the testing platform, camera, environment and datasets used
for this work.

3.1 Testing Platform and Camera

The testing platform was a Team Losi Mini-LST2 remote control car with a
Contour + camera mounted facing forwards. The camera has a fisheye wide-angle
lens (2.8 mm focal length, approximately 170∈ field of view) and logged GPS data.
Figure 4a shows the platform, while Fig. 4b shows an autonomous version under
development. Due to the risk of water damage during the rain dataset and extreme
nature of some of the off-road terrain (small logs, deep leaf litter) the non-autonomous
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platform was used. The video feed and GPS coordinates were logged onboard and
processed offline. To reduce the effect of vibration and jerkiness due to the rough
terrain and small size of the vehicle, videos were run through a stabilizing filter (Vir-
tualDub Deshaker filter, available at [23], default values used). The use of a stabilizer
introduces a one frame lag between image capture and the image being available to
the localization and odometry routines, equivalent to 33 ms at real-time speed.

3.2 Testing Environment and Datasets

Experiments were run over a 1-week period in an area including the Queensland Uni-
versity of Technology campus and the City Botanic Gardens in Brisbane, Australia
(Fig. 4c). The testing area measures approximately 200× 200 m and contains a mix-
ture of open grass, pathways, gravel baths, shrubbery, garden beds and buildings.
The car was remotely driven by an operator following the vehicle.

A set of four datasets were gathered under a range of environmental conditions
and at different times of the day (Table 1). Each dataset repeated the same route,
although minor deviations were inevitable due to pedestrian traffic, construction
work and the difficulty of the terrain in sections. A single traverse of the route was

Fig. 4 a Testing platform, a small but capable off-road enthusiast hobby car with mounted consumer
camera, and b an autonomous version under development. c The vehicle path, with order indicated
by the letter sequence. The numbers show the sample frame match locations from Fig. 8. Aerial
photos from google maps
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Table 1 Dataset descriptions. Times in Australian Eastern Standard Time (AEST)

Dataset name Time and comments

Dawn 5:45 am. Sun just above local horizon, most areas in shade, excessive
sun flare in sections.

Morning 10:00 am. Sun high up in sky, large ground areas in bright sunlight.
Rain 10:30 am. Rain drops on lens, wet ground, overcast and dark.
Dusk 6:45 pm. Sun setting, extremely dark in heavily vegetated areas,

significant motion blur and lack of ground texture.

Table 2 Parameters

Parameter Value Description

r 32 pixels Odometry patch size
ς 0.375∈/pixel Yaw gain constant
ν 0.0125 m/pixel Translational speed constant
ρ 10 pixels Odometry patch offset range
s 48×24 pixels Template sub frame size
Dt 0.06 pixel Template learning threshold
σ 4 pixels Template offset range

approximately 1,310 m in length (calculated by tracing the route on an aerial map)
and took an average of approximately 15 min to complete. The car was jammed twice
by branches and leaf litter and was stopped temporarily to remove the obstructing
objects. These sections of video were cut, resulting in several discontinuous jumps in
the footage. Frames were logged at 30 frames per second, with every frame processed
by the visual odometry system but only every 5th frame processed by the visual
template system, due to the high degree of overlap between neighboring frames. The
four datasets are available online.1

An attempt was made to use GPS tracking (CEP 10 m) as a ground truth measure.
However, due to the heavily vegetated and urban canyon nature of much of the
environment, the quality of the GPS tracking was too poor to be useful (far worse
than specifications), as shown in Fig. 5.

Fig. 5 GPS was unreliable especially under tree cover and around buildings

1 https://wiki.qut.edu.au/display/cyphy/Michael+Milford+Datasets+and+Downloads

https://wiki.qut.edu.au/display/cyphy/Michael+Milford+Datasets+and+Downloads
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4 Results

In this section we present the visual odometry, place recognition and mapping results
as well as computational statistics.

4.1 Visual Odometry

Figure 6 shows the trajectory output by the patch-based visual odometry system for all
four datasets, for the common starting pose of (x, y, θ) = (0 m, 0 m, 0 ∈). Although
the trajectories clearly do not match on a global scale, subsections of the route are
similar for all four datasets, such as the small loop (sequence EFGEF) in Fig. 4. The
differences in the odometry-only trajectories were primarily caused by underesti-
mation of yaw angles and translational speeds in the rain dataset, probably due to
reflections in the water lying on the ground, and underestimation of the translational
speed in the dusk dataset, due to the poor illumination and consequent lack of ground
textures. The differences in translational speed calculations are most easily seen by
looking at the length of the first section of each trajectory starting at (0, 0) leading
up to the first right turn.

4.2 Visual Place Recognition

Figure 7 displays a graph of the active (recognized or just learnt) visual template
versus frame number over all four datasets in the order they were processed, starting
with the dawn dataset. The area of the graph below the dashed line is the area in

Fig. 6 Vehicle trajectories
calculated by the patch-based
visual odometry system for
the four datasets
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Fig. 7 Visual template learning and recognition over the four datasets

which visual templates learned during the first dawn traverse of the environment
were recognized during the subsequent datasets. The system was able to recognize
places from the dawn dataset at regular intervals throughout the other three datasets.
However, the graph also shows additional templates representative of the subsequent
datasets being learnt in parallel and bound to those locations in the map. Learning
of new templates was due to the zigzag nature of much of the robot’s movement
through the environment, resulting in different image sequences each time a section
was traversed.

4.3 Matched Frames

Figure 8 shows a selection of ten pairs of frames that were matched by the visual
template system for locations throughout the entire route. The original video frames
are shown for clarity purposes, although the actual processed images were 48×24
pixel patch-normalized images. The corresponding locations are shown in Fig. 4.
The visual system was able to match frames with significantly varying appearance
due to (1, 3) sun flare, (2) obscuring leaf litter, (4) motion blur, (5–7) major shadow
change, (3, 6, 9–10) large overall illumination change and (10) water on the camera
lens. The frames also show the challenge faced by the visual odometry system due
to jerky vehicle motion (4) and lack of ground texture in low light (1, 3, 6–10).

4.4 Experience Maps

The final test of the system was to create a map of all four datasets. Figure 9 shows
the evolution of the experience map after running through each dataset in order. The
map is topologically correct after the dawn and morning datasets, although glob-
ally it is warped. The map shrinks slightly, primarily due to the underreporting of
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Fig. 8 Matched visual templates over the four datasets. Corresponding locations are shown in Fig. 4

Fig. 9 Experience map evolution over time. Experience maps are from after the a dawn, b morning,
c rain and d dusk datasets

translational velocity in the dusk dataset and to a lesser extent the rain dataset. How-
ever, the constant loop closure within and across datasets ensures the map topology
remains correct. The final map layout, although not metrically precise, has the correct
topology. A video of the experience map and frame matching processes is available
online. 2

2 https://wiki.qut.edu.au/display/cyphy/Michael+Milford+Datasets+and+Downloads

https://wiki.qut.edu.au/display/cyphy/Michael+Milford+Datasets+and+Downloads
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4.5 SLAM with Only Visual Templates from a Single Time

To test the ability of the system to map and localize with only the visual templates
learned at one particular time of day, we conducted an additional experiment where
template learning was disabled after the first dawn dataset. From that point onwards
the visual template system either recognized a familiar template or reported no match,
but did not learn any additional templates (Fig. 10). Figure 11 shows the evolution
of the experience map under these conditions. There are three locations where place
recognition failed briefly, all at places where the vehicle was turning corners and
actual physical paths varied significantly. Although successful loop closures were
achieved surrounding these points, the variation in visual odometry meant that the
graph relaxation process was not able to draw these trajectories together to cor-
rectly overlap. The local topology in these areas is incomplete but correct, meaning
navigation could still be achieved but might be suboptimal.

4.6 Compute and Storage

To demonstrate the feasibility of real-time performance on low cost hardware, we
present some pertinent computational statistics. The primary storage requirements
come from the visual template library. Over all four datasets, a total of 3,353 templates
were learned, taking up 5.8 MB of storage. Compute wise, the system performs

Fig. 10 Visual template recognition performance with learning only enabled for the dawn dataset.
Non-matches where a template would normally be learned appear as number zero templates

Fig. 11 Experience map evolution with template learning disabled after the first dataset. Map
shown after the a dawn, b morning, c rain and d dusk datasets
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all computation on a fixed time basis, except for visual template comparison and
experience map graph relaxation which are both order O(N) (experience map graph
relaxation approximates to order O(N) in a typical sparsely interconnected map).
Each of these two processes was run on a separate CPU on a standard desktop PC. At
the end of the dusk dataset when the system was at maximum load the visual template
system was performing 104 million pixel to pixel comparisons per second of data,
which ran at real-time speed in unoptimized Matlab code. Experience map graph
relaxation is performed with leftover compute cycles. At the end of the experiment,
an average of 156 global graph relaxation iterations were performed per second of
real-time. This figure can be compared with the 8 iterations per second performed at
the end of a previous indoor mapping experiment [24], which was still sufficient to
maintain a map that was used for robot navigation. A low power onboard CPU (such
as the 1 GHz processor on the robot shown in Fig. 4b) should be capable of running
the entire system in real-time for an environment of this size. The RatSLAM system
used as the mapping backend has had lightweight versions implemented on a Lego
Mindstorms NXT [25] and a small mobile robot called the iRat [26], demonstrating
the feasibility of running the system on a cheap platform.

5 Discussion

This paper presents a study into the feasibility of using a lightweight, “whole of
image” approach to vision-based SLAM on small, low cost vehicles expected to
operate in a wide range of environments and in highly varied conditions. The visual
processing techniques require no prior training3, and are demonstrated to enable
topological mapping in a varied vegetated and urban environment. Furthermore, the
results demonstrate the viability of the approach in a wide range of conditions such
as varying time of day and weather. Lastly, the techniques are able to create and
consistently localize within a topological map even when it is not possible to obtain
high quality visual odometry, such as during the rain and dusk datasets, and when
traditional visual features are not available in blurred or very dark images. Here we
discuss the limitations of the presented approach and areas for future work.

We used a forward facing camera only, and hence had no ability to close the loop
when retracing a route in the opposite direction. However, past work has demonstrated
that such a forward facing system can be adapted to utilize omnidirectional imagery
[24, 27]. The ability of the system to function with low resolution imagery would
also be likely to enable the combination of cheap and compact panoramic imaging
rigs with a low cost camera (the mirror could be mass produced with loose specifi-
cations). In contrast, much current robot research makes use of high end panoramic
imaging setups such as the Point Grey Ladybug 2 (⊂ 10, 000 USD). Alternatively,
two perspective cameras mounted in opposite directions along the primary vehicle
axis would provide forward-backwards recognition capability.

3 No training is required to generate a topological map. To obtain a map with absolute scale, a short
calibration of the translational gain constant is required.
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The visual template system is not suited to open-field operation in large open
environments where movement is unrestricted and paths are not necessarily repeated.
However, this restriction is also present in many vision-based SLAM systems devel-
oped to date. One common approach to overcoming this limitation is to combine a
SLAM system with absolute positioning information provided by GPS, when avail-
able. It is interesting to note that GPS availability and visual SLAM viability tend to
be complementary, at least in the system presented in this paper. In the mixed urban
and vegetated environment, when GPS was unavailable the vehicle was usually trav-
elling along urban canyons or off-road paths where paths are constrained, situations
in which the presented approach works well.

Future work will pursue a number of research directions beyond those mentioned
above. The first will be to pursue optimization of the template matching algorithm,
which is predicted to be the computationally limiting factor as environments get
larger. Secondly, we will investigate how best to add a feature-based mapping tech-
nique such as FAB-MAP; FAB-MAP will provide a higher degree of pose invariance
when features are detectable, while the visual template method will bind together
map locations where features are not reliably detected. Lastly, the quality of the maps
exceeds that of those used successfully for robot navigation previously [24], suggest-
ing navigation using these maps is feasible. We will investigate combining state of
the art local obstacle avoidance techniques with RatSLAM navigation algorithms
[24] in order to enable navigation under challenging and changing environmental
conditions.

Acknowledgments This work was supported by an Australian Research Council Discovery Early
Career Researcher Award DE120100995 to MM.
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Gold-Fish SLAM: An Application of SLAM
to Localize AGVs

Henrik Andreasson, Abdelbaki Bouguerra, Björn Åstrand
and Thorsteinn Rögnvaldsson

Abstract The main focus of this paper is to present a case study of a SLAM solution
for Automated Guided Vehicles (AGVs) operating in real-world industrial environ-
ments. The studied solution, called Gold-fish SLAM, was implemented to provide
localization estimates in dynamic industrial environments, where there are static
landmarks that are only rarely perceived by the AGVs. The main idea of Gold-fish
SLAM is to consider the goods that enter and leave the environment as temporary
landmarks that can be used in combination with the rarely seen static landmarks
to compute online estimates of AGV poses. The solution is tested and verified in
a factory of paper using an eight ton diesel-truck retrofitted with an AGV control
system running at speeds up to 3 m/s. The paper includes also a general discussion
on how SLAM can be used in industrial applications with AGVs.

1 Introduction

Simultaneous localization and mapping (SLAM) have been a main research topic in
mobile robotics [4]. SLAM algorithms can be run either online or offline. An online
SLAM algorithm computes a robot pose estimate at runtime while at the same time
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computing a map of the environment. Offline algorithm on the other hand operate
on previously recorded sensor data.

Despite the abundance of various SLAM approaches, the number of reported
real world applications for online SLAM methods is small [5]. Offline SLAM, also
denoted surveying, is on the other hand used in many applications, for example,
for creating a map of reflectors in a factory environment [1]. Another more recent
example is reported in [8] where autonomous driving in a parking garage was made
possible by first creating a 3D map.

In this chapter we address a different setup where there exists a predefined map
with static landmarks that is used at run-time in combination with an online dynamic
SLAM approach to localize vehicles in real industrial environments. The main con-
tribution lies in using dynamic features of the environment to compute reliable
estimates even when the static features are not seen for longer periods of times.
The dynamic features that are utilized in this work are basically goods manipulated
by the vehicle. The approach has been implemented and tested on an eight tons diesel
forklift providing pose estimates used by the on board AGV controller to smoothly
and reliably follow predefined paths at speeds of up to 3 m/s.

1.1 Applications of Online SLAM

The main purpose with online SLAM is to determine a localization estimate within
a incrementally generated map. This estimate (and map) could either be provided to
a human operator or to an autonomous agent.

One application area that requires online SLAM is exploration of unknown envi-
ronments such as in urban search and rescue or surveillance tasks [2]. For a human
operator an online and up to date map is a valuable source of information to tele-
operate a vehicle in a safe manner [16].

From an industrial perspective, exploration needs to be safe which means different
(possibly expensive) sensors would be needed to detect different type of obstacles in
the environment. The major problem for industrial vehicles is the increased cost for
perception. For most AGVs the perception typically consists of a safety classified 2D
laser scanner facing the direction of travel mounted at a height less than 10 cm about
ground level to be able detect a person lying flat on the ground to follow the required
safety regulations (EN 1525 - Safety of industrial trucks - Driverless trucks and their
systems). The map will also require further manual intervention and fitted with outer
properties, which typically include, predefined paths and loading/unloading areas.

2 Related Work

There is a large amount of different approaches to perform SLAM and the area is
simply too wide to cover in this Sect. 3. The work presented here is a classical SLAM
approach, where landmark observations and ego-motion estimates are combined to
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create a map. Landmarks are also used in extended Kalman Filter (EKF) based
SLAM approaches [13]. The main drawback, however, of an EKF based approach
is the computational complexity O(n2), where n is the number of landmarks, which
makes the method only applicable online for smaller sized maps. Another drawback
with an EKF approach is errors due to linearization.

Other landmark based methods are, for example, FastSLAM [12], a particle filter
approach where each particle consists of a robot trajectory and where each land-
mark is treated independently. SEIF based SLAM [15] utilizes the sparseness of the
information matrix instead of the full correlation matrix used in EKF. The Treemap
algorithm by Frese [6], is an efficient approach O(log(n)), which uses a hierarchical
treelike structure to subdivide the map into different regions which allows for an
efficient update. Graph-SLAM approaches addresses the full-SLAM problem and
are typically only used for offline mapping, however, there are some works (see, for
example, Kretzschmar [7]) which enable Graph-SLAM approaches to be used over
long time periods.

The work reported in Meyer et al. [10], is related to our work where they use
a particle filter based SLAM approach that combines a predefined static map of
buildings close to a parking lot and online dynamic map containing parked cars to
facilitate the task of localization.

3 Gold-Fish SLAM

This paper presents an approach of how SLAM can be used in a scenario where
semi-dynamic landmarks (stacks of paper reels) are used in combination with static
landmarks estimated (concrete pillars) to localize an eight ton diesel truck retrofitted
with an AGV system. The environment used for evaluation is a warehouse for paper
reels with an area of approximately 8,000 m2.

The key idea is that the vehicle position is initially known with respect to the static
map and observations which can be related to the static map are used to correct the
vehicle pose estimate and the position estimate of the semi-dynamic landmarks.

Besides improving odometry between areas with sparse static landmarks, SLAM
is used to limit the pose uncertainty if the robot operates in the same area without
seeing any static landmarks. In addition, landmarks might consists of objects that the
vehicle manipulates, in our specific context: paper reels, therefore it is indeed useful
to estimate their position and to have them in a map.

The vehicle does not have to keep track of all seen dynamic landmarks. It only
needs to keep a limited set of them, which is reminiscent of the popular belief of a
gold-fish memory.

3.1 Requirements from the AGV Systems

AGVs require very good absolute localization estimates, which is used by the on
board controller to follow paths. If an obstacle occurs, the AGV will stop and wait
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until the path is free. Therefore there is no requirement of path re-planning or obstacle
avoidance behavior. Accuracy in providing localization estimate is very important
for safe navigation, since industrial environments are cluttered with goods and other
vehicles. It is also important for productivity because bad localization estimates can
lead to unnecessary stops, for example, if a fleet of AGVs are used, other AGVs
could be detected as obstacle and together cause ‘dead locks’. On the other hand,
on research platforms the inaccuracy of the absolute position localization estimates
can be taken care of by the obstacle avoidance module, for example, vector field
histogram (VFH) [17] or nearest diagram (ND) [11]. A popular localization approach
used in research is Monte Carlo based localization [3], which often has a rather low
update rate and where the output is typically not smooth enough to be directly fed
into a control system. The output is instead used to determine if the goal state of the
obstacle avoidance has been achieved where as the actual control are performed by
the obstacle avoidance mechanism.

Just taking any SLAM approach and applying it directly in an industrial envi-
ronment would simply not work. Firstly, the pose estimates has to be given within
a specific coordinate system and bounds. This makes it clear that we also have to
“anchor” the global localization into the SLAM representation and also to bound the
uncertainty independently on the distance traveled.

Secondly, smooth pose estimates needs to be provided all the time, however, this
is indeed related to loop closure. Unless the localization estimate are ‘on the spot’,
jumps in the pose estimates will occur. Depending on the environment, the sensors,
and the performance of the data association this jump could be large. This all comes
down to the same conclusion as above; that the uncertainty in the pose estimate has
to be bounded.

The uncertainty in the pose estimate is directly affected if the robot sees statical
landmarks. In case the robot pose uncertainty grows beyond a predefined application
specific threshold the vehicle will stop.

3.2 Overview and Difference Compared to Online SLAM

An overview of the proposed method is depicted in Fig. 1 where input (static
landmark maps, initial pose estimate and sensory data) are shown in rounded shaped
boxes. The output fed into the control system is the estimated pose X pose and the
output of the “Safety stop” box. In the following we give more details about the
functionalities of the main boxes.

• Incremental Pose Estimator: Integrates the odometry data to estimate the relative
pose and its covariance.

• Prediction: Progresses the current pose estimate according to the kinematic model
of the vehicle.

• Static Submap Selection: Based on the current pose estimate selects a subset of
static landmarks that can be potentially observed by the system.



Gold-Fish SLAM: An Application of SLAM to Localize AGVs 589

PREDICTION

Static land−
mark map

DATA ASSOCIATION
(MATCHING)

INIT LANDMARKS

INCREMENTAL POSE
ESTIMATOR

Sensory
data

AND UPDATE
CORRECTION

LANDMARK SELECTOR
(unmatched landmarks)LANDMARK

EXTRACTION

LANDMARK
REMOVAL

Initial pose
estimate

SELECTION
STATIC SUBMAP

LANDMARK SELECTOR
(matched landmarks)

X_Slmk, P_Slmk

X_pose, P_pose

X_lmk, P_lmk

Σ

X_Elmk, P_Elmk

<lmk, Slmk>.... , <lmk,Elmk>... 

<Elmk>...

<Elmk>... <lmk, Slmk>.... , <lmk,Elmk>... 

X_pose,P_poseX_Epose, P_Epose

X_lmk, P_lmk

X_pose, P_pose

X_lmk, P_lmk

X_Ipose, P_Ipose

X_pose, P_pose

SELECTION

NON−STATIC SUBMAP

subselection of (X_lmk, P_lmk)

X_pose, P_pose

X_Nlmk, P_Nlmk

X_pose, P_pose

X_lmk, P_lmkX_pose, P_pose

Safety stop
P_poseP_pose

Fig. 1 Schematic overview of the system. The rounded shaped boxes indicates inputs to the system.
The arrows indicates the flow of the state variables X and the corresponding parts in the correlation
matrix P . The notation pose, I pose, Epose corresponds to the current predicted/estimated robot
pose, initial pose, incremental pose estimate (from odometry) respectively; lmk, Elmk, Slmk, Nlmk
corresponds to the current predicted/estimated landmark position, the extracted landmarks, static
landmarks and newly initiated landmarks

• Data Association: find the correspondence between landmarks (static and dynamic)
and their observations.

• Init Landmarks: creates new dynamic landmarks for observations that were not
matched in the data association step.

• Correction and Update: Corrects the estimates of both the vehicle pose and land-
marks positions based on the observations.

• Landmark removals: Removes landmarks from the dynamic map based on age,
uncertainty, size of the map and the max number of landmarks that can be kept.

• Non-static submap selection: Based on the current pose estimate selects a subset
of dynamic landmarks that can be potentially observed by the system.

To avoid that the size of the static map influences the computational complexity
of the system, static landmarks can be added/replaced/removed from the SLAM
backend by looking at the current estimated pose. Static landmarks that are simply
invisible or out of range for the sensors can safely be removed. Whether a static
landmark should be added can be determined from the data-association step. The
central advantage here is that the size of the sum of dynamic and static landmarks
will be bounded independently on the size of the environment. One key requirement,
however, is that the global pose of the vehicle is approximately known when the
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Table 1 Comparison of the proposed method against a standard online SLAM approach

Online SLAM vs Gold-Fish SLAM

Predict Predict based on dead reckoning Same
Observe Use extracted landmarks, perform data

association (either create a new land-
mark or assign the observation to an
existing landmark)

Same, but in addition perform data asso-
ciation to the used static landmarks (to
be able to bound the error)

Update Incorporate the observation, update the
pose estimate and landmark estimates

Same, but determine if any landmarks
should be removed from the non-static
map, do not update the static land-
marks (position/uncertainty), and deter-
mine if any static landmarks should be
added/replaced/removed in the SLAM
backend based on the current pose esti-
mate - this simply to keep the compu-
tational complexity independent on the
static map size)

proposed localization system starts. In Table 1 the proposed idea is compared with
an online SLAM approach to better illustrate the differences.

3.3 Landmark Extraction

Two types of landmarks are extracted from the 2D laser scanner data: paper reels and
corners. Paper reels are the dynamic landmarks, while the pillars, created from a set
of corners forms the static landmarks, see Fig. 2. Another major problem utilizing
reflectors apart from the need to install additional infrastructure etc. in this type of
environment (see Fig. 4) is they will be occluded by stacks of paper reels, therefore
using reflectors alone is simply not feasible, but could be used as a static landmark
in the proposed method.

3.3.1 Paper Reel Extraction

Paper reels appear as sets of point of a circular arc, note that paper reels are in our
settings always standing upright. To determine the position as well as the radius of
each reel, a method based on Taubin’s work for fitting a circle to data points [14] is
used.

To validate the extracted reels, all segments with too few points are ignored.
Moreover, if the estimated reel radius is not within a predefined interval or the mean
square fit (MSE) is above a threshold, the reel is rejected. To avoid to fit reels into
a concave area, the estimated reel position has to be located further away than the
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Fig. 2 The predefined paths
used in the autonomous local-
ization experiment (blue). The
(green) dots represents the
location of the installed reflec-
tor and the enclosed (red) area
is where the reflector based
localization potentially be
used depending on how many
reflectors are visible due to
occlusions of paper reel stacks

Fig. 3 The utilized arc angle
α of the fitted circle, which
could be interpreted how
much of the actual circle was
seen in the laser data. This
measure is also useful to reject
wrong estimates. A small
value indicates that the data
typically do not come from
a reel (or a heavily occluded
reel). A large value indicates
that a corner like object are
fitted instead

α

mean position of the segment. The utilized arc angle on the circle, see Fig. 3, has to
be located in a specified interval. Basically, a small value indicates that this is not
likely to be a reel or that it is heavily occluded. A high value instead indicates that
this is a corner like object.

An uncertainty estimate is calculated based on the distance between the laser
points and the fitted circle along the radial direction.

3.3.2 Pillar Extraction

Segments that were not detected as reels are further processed to check if they form
corners. We do not explicitly extract pillars as landmarks but instead use corners
directly. A corner is defined as an intersection of two walls (or lines in 2D) at an
intersection of 90◦ . The first step is to check that the size of the segment corresponds
to a pillar and are within a specified interval. The segment is split into to two sub
parts Sa and Sb at the location of the highest curvature. For both segments (Sa and
Sb) a line is obtained using least square fit to each segment resulting in two lines La

and Lb. If the MSE of the line fit is less than a predefined threshold for both segments
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an orthogonal check is performed to assure that the two lines are approximately 90 ◦
apart ± another predefined threshold. The corner position is set to be the intersection
of La and Lb, whereas the orientation is set using the normalized mean angle of the
heading of La and Lb. The extracted corner consists of both a 2D position and an
orientation.

The uncertainty is calculated based on the distance between the data and two
orthogonal lines at ± 45◦ relative to the orientation of the corner.

3.4 Obtaining the Static Map

The static map was created by manually driving the truck around in the warehouse
while collecting odometry, laser data from the safety sensor and also from the reflector
based localization laser. The latter was used to more easily align the predefined map
used in the AGV controller consisting of reflector poses and predefined paths. After
the map was built, only the corners were saved to the static map.

4 Platform Description and Environment

4.1 The Truck Platform

The platform is based on a modified Linde H 50 D diesel forklift truck that
has a load capacity of 5,000 kg (see Fig. 4). The standard version of the truck was
modified by shortening the mast and replacing the forks with a clamp. The truck
was retrofitted with an off-the-shelf AGV control system developed by Kollmorgen.
The AGV control system comprises a set of hardware and software components
(PC, IO modules, field bus controller, rotating laser ranger, etc.). The control system
interfaces the actuators and sensors of the truck through the already built-in local

Scanning Laser

Scanning Laser

Scanning Laser

Encoders

AGV Controller

Reflector based Localization Laser

Fig. 4 Left The industrial truck used in the MALTA project. The truck is retrofitted with an AGV
controller. The bottom lasers are used as safety sensors and in this work also for landmark detection.
Right Stacked paper reels waiting to be loaded and one of the concrete pillars
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CAN network. To detect paper reels, other landmarks and obstacles, three extra
SICK laser rangers were incorporated into the truck (see Fig. 4), in the following
experiments only the low mounted front and rear lasers were used.

The main functionality of the AGV controller is to navigate the truck from an
initial location to a goal location. To do so, an operator defines and uploads a layout
of drivable paths specified as collections of line segments and B-splines, see also
Fig. 2. The controller achieves navigation tasks by following an appropriate path.
The position of the truck can be tracked using a spinning laser (installed on the top
of the truck) and reflective markers installed in the environment or by specifying
external pose estimates, which in these experiments were provided with the SLAM
based localization system. Here it was found to be very critical to give a smooth and
fast update rate (10Hz) to the AGV controller.

5 Experiments

The environment used in the experiments are paper reel warehouses, see Fig. 4.
Due to the lack of ground truth data, the comparison is done towards an

autonomous run where the platform was controlled using localization estimates from
the proposed system.

For the experimental evaluation two approaches were used. Treemap [6] and a
standard EKF based method. Treemap operates on a very efficient tree-structure and
have good computational properties. Treemap is a generic backend for any least
square problems, however, in this approach the Treemap method is used in a sim-
ilar way as a standard EKF method would be used by marginalizing out all robot
poses except the last one. Input to the method are: odometry estimates with uncer-
tainty and relative observation to landmarks with uncertainty, where as the output
consists of an estimate of the robot pose including estimates of all landmarks. Due
to the dependency between already added landmarks it is not straight forward to
remove landmarks in Treemap therefore an EKF based approach was used in some
evaluations.

The classical drawbacks of an EKF based approach are partly avoided in the
proposed approach. The linearization error will not be problematic since the bounding
of the error in the estimate and the complexity is somewhat covered by having a
bounded map size.

5.1 Relating SLAM Estimates to a Predefined Map

Even though the estimates and the map are consistently built, the problem is to
express the current estimates in the reference frame of the predefined map. Typically
any reasonable offset in x and y directions do not cause any problem, however, only a
very minor offset in orientation θ will give tremendous problems even if the distance
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Fig. 5 Trajectories of using a ‘plain’ SLAM method without any pre existing landmarks and the
proposed method. Left A complete loop. Right Using a pick‘n’place scenario

Table 2 Difference in positions and heading in the proposed method while changing the amount
of used dynamic landmarks

Distances/max nb landmarks 0 10 20 30 40 60 80 100

avg. abs. position error 0.20 0.19 0.19 0.17 0.15 0.16 0.15 0.16
avg. abs. angular error 0.95 0.71 0.69 0.56 0.42 0.40 0.38 0.38

is rather short, which can be seen in Fig. 5 where the truck was autonomously driven
around in a predefined path consisting of a loop with a path length of 204 m and the
position difference is up to 2.5 m.

In a pick‘n’place scenario (see Fig. 5) paper reels were moved from a loading zone
to an unloading zone using relative measurements to determine the path to drive to
each reel and where each reel should be placed. Here one could argue that, given
an initial estimate of the pose a plain-SLAM method would work, however, here
instead the globally defined loading/unloading zones needs to be transferred into the
plain-SLAM coordinate frame.

5.2 Changing the Amount of Dynamic Landmarks

The proposed method ‘Gold-fish SLAM’ implies that we need to constantly forget
parts of the dynamic landmark map. To evaluate the impact of the number of dynamic
landmarks used, one of the autonomous runs was evaluated offline. The system was
rerun using recorded raw sensor data approximately in real-time for each evaluation.
The results are presented in Table. 2.

In the evaluated data set the number of seen static landmarks is enough to create
a consistent map, however due to the smoothness criteria this approach would cause
difficulties as seen in Fig. 6 where the avg. absolute position and angular error are
shown using 0, 40 and 100 dynamic landmarks. From this figure it is clear that



Gold-Fish SLAM: An Application of SLAM to Localize AGVs 595

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

D
is

ta
nc

e 
di

ffe
re

nc
e 

(m
et

er
s)

Time (seconds)

Distance difference using different numbers of dynamic landmarks

Only static lmks
Max 40 dynamic lmks

Max 100 dynamic lmks

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

A
ng

ul
ar

 d
iff

er
en

ce
 (

de
gr

ee
s)

Time (seconds)

Angular difference using different numbers of dynamic landmarks

Only static lmks
Max 40 dynamic lmks

Max 100 dynamic lmks

Fig. 6 Absolute difference between the estimated pose in an autonomous run with different number
of dynamic landmarks. Left distance difference. Right angular difference

despite the rather accurate average error, there is significant difference especially in
the angular estimate, which was an important control input in our platform.

5.3 Using Sparser Static Landmark Maps

In the previous section, the complete static landmark map was used in the evaluation.
Here, the number of static landmarks used are instead decreased to check the system
dependency on the amount of static landmarks. To simplify the presentation, the
max number of dynamic landmark used was always 40. The accuracy of the system
depends on the amount of observed static landmarks and their location rather than the
number of landmarks in the static map. Therefore the evaluation also contains the ratio
r of observation containing at least one static landmark (showing the number of static
observation we have) and the number of unique static landmarks observed (indicating
the map size actually used). In the evaluation 12 submaps were randomly created
by subsampling the full static map. In Fig. 7, the angular and position difference are
shown toghether with the number of static landmarks observed at each time for two
different static sub-maps. The key difference is that in the left figure static landmarks
are not seen for a longer period despite roughly the same map size.

Another result is depicted in Fig. 8, where the ratio r , the angular and position
difference are plotted with the number of used static landmarks. One interesting
aspect is that the angular difference seems not to depend on the number of observed
static landmarks. This indicates that even using few static landmarks the orientation
of the vehicle can be determined, whereas to correctly determine the position is more
sensitive to the density of static landmarks and preferable that the multiple landmarks
are visible at the same time.
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Fig. 7 Absolute difference between the estimated pose compared to an autonomous run using
40 dynamic landmarks with sub-sampled static landmarks maps. Left Sub-map 1 with 12 used
landmarks (position/angular difference : 0.3 m/0.46). Right Sub-map 2 with 14 used landmarks
(position/angular difference : 0.20 m/0.33◦)
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Fig. 8 Absolute difference between the estimated pose compared to an autonomous run using
40 dynamic landmarks with sub-sampled static landmarks maps. Left Sub-map 1 with 12 used
landmarks. Right Sub-map 2 with 14 used landmarks

5.4 An Autonomous Localization Loop

One critical aspect was to get the complete system to run in real-time on the platform
traveling up to 3 m/s. A movie of one of the autonomous localization runs is located
at the projects web page [9]. This utilized Treemap as a backend without limiting
the number of dynamic landmarks.
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6 Conclusions and Future Work

This paper presents an online SLAM approach to localize an AGV in a warehouse
or factory with static and dynamic landmarks. The results are so far preliminary and
rather show a proof of concept. The evaluation should be extended with data covering
larger areas, longer operational time and with reasonable ground truth. Future work
includes investigation of methods regarding selection of relevant dynamic landmarks.
An interesting work would be to evaluate the approach on other types of environ-
ments.
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Design, Development, and Mobility Test
of an Omnidirectional Mobile Robot
for Rough Terrain

Genya Ishigami, Elvine Pineda, Jim Overholt, Greg Hudas and Karl
Iagnemma

Abstract Omnidirectional vehicles have been widely applied in several areas, but
most of them are designed for the case of motion on flat, smooth terrain, and are not
feasible for outdoor usage. This paper presents an omnidirectional mobile robot that
possesses high mobility in rough terrain. The omnidirectional robot employs four sets
of mobility modules, called active split offset caster (ASOC). The ASOC module has
two independently-driven wheels that produce arbitrary planar translational velocity,
enabling the robot to achieve its omnidirectional mobility. Each module is connected
to the main body of the robot via a parallel link with shock absorbers. In this paper,
a design and development of the ASOC-driven omnidirectional mobile robot for
rough terrain are described. Also, a control scheme that considers a kinematics of
the omnidirectional mobile robot is presented. The omnidirectional mobility of the
robot regardless of ifs heading direction is experimentally evaluated based on a metric
called omnidirectional mobility index.

1 Introduction

An omnidirectional vehicle is capable of moving in any arbitrary direction and
performing complex maneuvers that cannot be achieved by typical Ackermann
steered wheeled vehicles. Omnidirectional vehicles have been investigated and
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widely applied in many practical areas, such as mobile robotic bases for research,
materials handling vehicles for logistics, and wheelchairs [1–3]. Most omnidirec-
tional vehicles to date have employed specialized wheel designs, including roller,
Mecanum, or spherical wheels [4–10] (Fig. 1). These wheels, however, are not prac-
tical for the use in rough terrain because of the following reasons: small rollers may
be easily clogged with debris or dirt. They also have a constraint on wheel diameter
and width relative to the small slender rollers, and thus they cannot tolerate with
large loads or cannot produce enough thrust power.

This paper introduces an omnidirectional mobile robot in rough terrain driven by
active split offset caster (ASOC), which was initially proposed in [11] for indoor use.
The ASOC module employs two independently drivable wheels. The ASOC modules
are integrated in the robot main body with suspension mechanism, enabling an agile
traversability on uneven terrain (Fig. 2). In this paper, design and development of the
ASOC-driven omnidirectional mobile robot for rough terrain are described. A kine-
matic control scheme that can coordinate each ASOC module (i.e., wheel velocities)
to achieve a desired maneuver of the omnidirectional robot is also presented. Exper-
imental tests with different configurations of the robot were performed to evaluate
the omnidirectional mobility of the robot regardless of ifs heading direction.

Fig. 1 Examples of roller wheels [9] and Mecanumm wheels [10]

Fig. 2 ASOC-driven omnidirectional mobile robot
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This paper is organized as follows: Sect. 2 introduces the design analysis of the
ASOC module and the omnidirectional mobile robot; Sect. 3 describes the kinematic
control of the robot; the experimental test for the mobility evaluation of the robot is
presented in Sect. 4

2 ASOC-driven Omnidirectional Mobile Robot

2.1 Active Split Offset Caster: ASOC

Figure 3 shows the ASOC module developed in this work. The module has
independently-driven dual wheels that are attached to the chassis of the module.
The chassis is connected with the battery housing via a freely rotatable joint (around
the roll axis of the assembly). The roll axis works to let the wheel pair maintain its
contact on sloped or bumpy terrain surfaces. Another freely rotatable axis, which is
located at the top of the battery housing, enables the module to rotate 360◦ around
the pivot (yaw) axis of the module assembly. The angle of rotation of the roll and
pivot axes can be measured by the potentiometers.

The ASOC module can produce arbitrary (planar) translational velocities at a
point along its pivot axis, by independently controlling each wheel’s velocity. Two
or more ASOC modules attached to a rigid robot body can thus produce arbitrary
translational and rotational robot velocities. A control scheme is introduced in Sect. 3.

2.1.1 Kinematic Isotropy for ASOC Design

All omnidirectional mobile robots are able to travel in any planar direction instan-
taneously. However, while some omnidirectional mobile robots exhibit preferred

Battery 
housing

PIC 
(behind)

Motor driver

DC motors

Pivot axis

Roll axis

Chassis

Lsplit

Loffset

r

vy

vx

Pivot axis

Fig. 3 Assembly of ASOC (left) and its schematic illustration (right)
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directions of travel, others exhibit equal mobility characteristics in all directions,
i.e., “isotropic mobility”. Hence, a kinematics isotropy metric is used to quantify the
system’s omnidirectional mobility.

Kinematic isotropy is defined as the condition in which a robot possesses a constant
input velocity/output velocity ratio for all possible output velocity directions [12].
An isotropy metric is a measure of how close a robot is to the isotropy condition,
and increases from 0 for a singular configuration (i.e., purely anisotropic, or non-
omnidirectional) to 1 for kinematic isotropy. Ideally, an omnidirectional robot should
possess a metric value of 1 for any configurations (i.e., wheel allocation with respect
to the robot body), and thus not have a preferred direction of travel.

To evaluate the effect of the ASOC module parameters on the isotropy, the kine-
matic parameters of the module such as Lof f set , Lspli t , and wheel radius r were
selected. As illustrated in Fig. 3, the Jacobian between the wheel angular velocities
(ωL and ωR) and the translational velocities of the ASOC module is given as follows:

[
vx

vy

⎧

= r

[
1/2 1/2

−Lof f set/Lspli t Lof f set/Lspli t

⎧ [
ωL

ωR

⎧

(1)

where vx and vy are the longitudinal and lateral translational velocities of the ASOC
at the pivot axis, respectively. From the above equation, the wheel radius can be
neglected for calculating the ratio of the eigen values, and therefore, the module
isotropy is independent of the wheel radius.

Figure 4 shows an isotropy values over a range of Lspli t/Lof f set . It can be seen
that the isotropy depends on both Lof f set and Lspli t and has a maximum value when
Lspli t/Lof f set ratio is equal to 2.0. For the practical design of the ASOC module, the
ratio of Lspli t/Lof f set becomes 2.07 (Lspli t = 0.228 m, and Lof f set = 0.110 m).

Fig. 4 Average isotropy for
a robot driven by ASOC
modules as a function of
Lspli t/Lof f set (from [13])
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2.1.2 ASOC Components

The ASOC is a self-sustained “robotic” module, comprised of a power supply, two
actuators, a microcontroller, a wireless device (Xbee), and a motor driver. The total
weight of the module is 5.6 kg.

An off-the-shelf rubber coated wheel is used; the wheel radius is 0.085 m and width
is 0.086 m. Two actuators (MAXOS RE35) with planetary gear heads are located
vertically between the wheels (see Fig. 3). The motor torque is transferred to each
wheel via bevel gear. The maximum speed of the ASOC module is approximately
2.2 m/s (8.0 km/h).

A microcontroller, PIC18F4431 (40 MHz), executes a local feedback control of
wheel angular velocity. The wheel angular velocity is measured by a tachometer
mounted on the tip of actuator. The angle of rotations around the pivot and roll are
measured by potentiometers on their axes. These sensory data are handled by the
microcontroller and sent to the onboard computer mounted on the robot body via
Xbee wireless communication device.

A serially connected 6 cells of Li-Ion batteries (3.2 Ah) allocated inside the battery
housing activates each module up to approximately two hours for continuous driving.
The supplied voltages are conditioned by DCDC converters.

2.2 System Overview of Omnidirectional Mobile Robot

The omnidirectional mobile robot developed in this work consists of a main body and
four ASOC modules. The ASOC modules, that are evenly spaced with 90◦ intervals
one another, are connected to the main body via parallel links with shock absorbers
(Fig. 5). The suspension mechanism allows the robot to operate on rough terrain with
moderate terrain adaptability. The total weight is 35 kg.

Fig. 5 The ASOC-driven
omnidirectional mobile robot GPS Antenna

Onboard 
Computer

Shock absorbers

Xbee

802.11g 
Antenna
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The onboard computer, Gumstix Overo Earth (600 MHz) running Linux, super-
vises all ASOC modules via Xbee wireless links such that the onboard computer
kinematically coordinates ASOC modules to achieve the omnidirectional maneuver.
The GPS data is collected as ground truth data for outdoor experiments. These data
are sent to an operator via IEEE 802.11 g, along with ASOC motion data.

To avoid the interference between neighboring ASOCs, the distance D between
the centroid of the main body and the ASOC pivot axis must be more than the
square root of two times of the ASOC module workspace, rworkspace (Fig. 6). This
workspace radius is the length from the pivot axis to the most distal point of the wheel
edge. Therefore, the geometric constrains of the robot configuration is as follows:

D >
√

2rworkspace =
⎨

2(Lof f set + r)2 + (Lspli t + b)2/2 (2)

where b is the wheel width. The distance D can be regulated by the length of the
parallel links and stiffness of the shock absorbers. The geometric constraint in the
above equation determined the dimension of the robot: 1.05 × 0.96 × 0.39 m in its
traveling configuration and 0.81 × 0.81 × 0.39 m in its stowed configuration (Fig. 7).

Fig. 6 ASOC module
workspace. The circles rep-
resent the boundaries of the
workspace

rworkspace
D

Loffset + r

(Lsplit + b) / 2
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0.96 m

1.05 m

Stowed configuration

Traveling configuration

0.81 m

0.81 m

Fig. 7 CAD model of the ASOC-driven omnidirectional mobile robot. Top figures show the stowed
configuration, and bottom ones show the traveling configuration

3 Kinematic Control of the Omnidirectional Mobile robot

Figure 8 illustrates a kinematic model of the ASOC-driven omnidirectional mobile
robot. The coordinate frame for the main body θb is fixed on the centroid of the
body and defined as the right-hand frame, depicting the longitudinal direction as x .
The coordinate frame for each ASOC module θi (i = 1 · · · 4) is defined such that
the z axis is aligned to the pivot shaft and fixed at a point along its pivot axis (θi

does not rotate along with the ASOC rotation around its pivot axis). D and ξi locate
each ASOC module with regard to the main body. Table 1 summarizes kinematic
parameters that are used in the experiments described later.

The kinematic control explained here calculates all wheel angular velocities that
satisfy desired body translational and rotational velocities, which are defined in an
inertial coordinate frame. First, the relationship between the planer velocity vector
at the i-th ASOC coordinate frame ẋi and that at the body frame ẋb = (ẋb, ẏb) can
be represented as:
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Fig. 8 Kinematic model of
the ASOC-driven omnidirec-
tional mobile robot

vi,x xb

yb

xb

D

xi

vi,y

Lsplit

Loffset

r

Table 1 Kinematic
parameters for the
omnidirectional mobile robot

Symbol Value

D 0.353 m
Lof f set 0.110 m
Lspli t 0.228 m
r 0.085 m
ξ [0, 0.5π, π, 1.5π]

ẋi =
[

vi, x

vi, y

⎧

= ẋb + φ̇D

[
cos ξi

sin ξi

⎧

(i = 1 · · · 4) (3)

where φ̇ is the yaw rate of the main body. The distance D is assumed as constant value
in the experiment because the shock absorbers installed are relatively stiff enough
so that the displacement of D is negligible. Here, ẋi is also formulated based on the
kinematic relationship with the wheel angular velocities:

ẋi =
[

vi, x

vi, y

⎧

= r

[
cos αi − sin αi

sin αi cos αi

⎧ [
1/2 1/2
−L L

⎧ [
ωi, L

ωi, R

⎧

= r

2

[
cos αi + 2L sin αi cos αi − 2L sin αi

sin αi − 2L cos αi sin αi + 2L cos αi

⎧ [
ωi, L

ωi, R

⎧

= C i · r · ⎡
ωi, L ωi, R

⎣T
(i = 1 · · · 4) (4)

where αi is the angle of the pivot axis measured by the potentiometer, and L =
Lof f set/Lspli t . The desired wheel angular velocities of each ASOC module that
satisfies the given body velocity and the yaw rate are then obtained by substituting
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Eqs. (3)-(4):

[
ωi, L

ωi, R

⎧

= C−1
i

r

[
1 0 D cos ξi

0 1 D sin ξi

⎧
⎤

⎦
ẋb

ẏb

φ̇



 = 1

r
· C−1

i · J · u (5)

For the kinematic control, u is the control input variables given by an operator. The
control method described above aligns the velocity vector of each ASOC in the
desired direction of travel, minimizing energy loss due to internal forces.

4 Experimental Tests for Omnidirectional Mobility

In this section, first, an evaluation metric for an omnidirectional mobility of the robot
is introduced. The experimental results are also presented along with the mobility
evaluation based on the metric termed as the omnidirectional mobility index.

4.1 Omnidirectional Mobility Index

Several metrics have been studied for the mobility analysis of mobile vehicles in
rough terrain. For example, a mobility index of an off-road vehicle was considered
as a function of contact pressure, vehicle weight, and wheel load [14]. In addition, a
tractive efficiency (ratio of input and output powers) of vehicle has been employed
for the comparison of off-road vehicle performance. These indices basically consider
a dynamic interaction between vehicle and terrain. Another metric related to a body
motion (i.e., velocity, acceleration, or jerk) is commonly used to evaluate the mobility
of conventional passenger vehicles or mobile robots.

Focusing on the mobility of an omnidirectional mobile robot, a particular require-
ment for its mobility is to achieve a high agility for a near-arbitrary omnidirectional
maneuver. In the case of the ASOC-driven omnidirectional mobile robot, each ASOC
needs to be kinematically coordinated to follow a given maneuver. Therefore, in this
work, a metric related to the ASOC motion is employed for the mobility evaluation.
The metric, termed as an omnidirectional mobility index, is defined as a root mean
square error between the desired profile of the ASOC pivot angle and its actual profile
measured by the potentiometer on its axis (Fig. 9). The index has a unit of degrees.
Higher agility of the omnidirectional robot decreases the magnitude of the index. In
the experiment, a gross omnidirectional mobility index of the robot is calculated as
a mean value between the indices obtained from four ASOCs.
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Fig. 9 Schematic graph of
a time history of pivot angle
of an ASOC. The solid line
is the desired profile (given
maneuver) and the dotted
line is the measured profile
(actual maneuver). The region
surrounded by these two lines
indicates an error between
desired and measured pivot
angles
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Fig. 10 Two configurations
tested in the experiment. The
arrows indicate the given
velocity vectors. The direction
of these vectors changes by
90◦ in every 5 s for square
motion

Configuration 1 (Cross-shape) Configuration 2 (X-shape)

1

2

3

4

1

2

3

4

4.2 Experimental Description

Two different configurations of the robot have been experimentally tested as shown
in Fig. 10: in Configuration 1, the velocity vector of the robot is always aligned with
the ASOC module orientation (i.e., a cross-shape configuration); in Configuration
2, the velocity vector is diagonal (45◦) with regard to the ASOC module orientation
(i.e., X-shape configuration).

In the experimental test, the robot changes its velocity vector by 90◦ in every 5 s,
drawing a square motion path. The kinematic control method presented in Sect. 3
calculates the wheel angular velocities that are required for the maneuver. The trav-
eling body velocity of the robot is controlled to maintain a constant value of 0.36 m/s.
During each run, the pivot angle and wheel velocities at each ASOC are measured
and sent to the onboard computer for the mobility evaluation of the robot.

4.3 Results and Discussion

Figures 11 and 12 show time histories of the ASOC pivot angle in different configu-
rations with and without compliant suspension, respectively. Table 2 summarizes the
omnidirectional mobility index for each configuration.
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Fig. 11 Time history of the pivot angle for mobility evaluation (Configuration 1)
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Fig. 12 Time history of the pivot angle for mobility evaluation (Configuration 2)

From the figures and table, the omnidirectional mobility indices between the two
configurations are negligible: the difference between them is less than 0.1◦ in the
case of the robot without the compliant suspension, and 1.6◦ with. This indicates
that the ASOC-driven omnidirectional robot possesses relatively high agility that is
independent of its configuration.

In addition, it can be seen that the omnidirectional mobility of the robot with rigid
links (without compliant suspension) is better than the robot with compliant suspen-
sion. This is due to the fact that the shock absorbers for the compliant suspension
mitigate sudden velocity change. The shocks absorbers also reduce thrust energy
generated at the wheel contact patch while turning, resulting in a less agile turning
maneuver. On the other hand, the robot with the rigid links can efficiently coordinate
each ASOC with less energy loss, enabling more agile maneuver. This result implies
that a trade-off between high terrain adaptability with compliant suspension and high
omnidirectional mobility with rigid links is necessary.
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Table 2 Omnidirectional mobility index at each configuration with and without compliant suspen-
sions (Unit is degrees)

Configuration 1 Configuration 2
w/o compliant w/ compliant w/o compliant w/ compliant
suspension suspension suspension suspension

ASOC 1 31.67 34.19 29.61 34.39
ASOC 2 29.68 37.05 30.95 35.77
ASOC 3 27.83 29.46 28.19 27.51
ASOC 4 30.46 33.02 30.60 29.62
Average 29.91 33.43 29.84 31.82

5 Conclusions

This paper has presented a design and development of the ASOC-driven omnidirec-
tional mobile robot. The system overview of the robot has been described, along with
the kinematic isotropy analysis for ASOC design as well as the geometric constraints
of the robot. The findings from the analyses were then used for the practical design
of the robot. Additionally, the kinematic control method, which can coordinate each
ASOC motion for a desired maneuver of the robot, has been addressed.

The mobility of the omnidirectional mobile robot with different configurations
has been experimentally evaluated based on the omnidirectional mobility index. The
experimental results confirm that the robot has an ability to move in any directions
regardless of its configuration. Also, the result implies that an optimization of the
suspension properties (i.e., length, stiffness) will be necessary to satisfy better terrain
adaptation as well as high agility of omnidirectional motion.
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A Vector Algebra Formulation of
Mobile Robot Velocity Kinematics

Alonzo Kelly and Neal Seegmiller

Abstract Typical formulations of the forward and inverse velocity kinematics of
wheeled mobile robots assume flat terrain, consistent constraints, and no slip at the
wheels. Such assumptions can sometimes permit the wheel constraints to be substi-
tuted into the differential equation to produce a compact, apparently unconstrained
result. However, in the general case, the terrain is not flat, thewheel constraints cannot
be eliminated in this way, and they are typically inconsistent if derived from sensed
information. In reality, the motion of a wheeled mobile robot (WMR) is restricted to
a manifold which more-or-less satisfies the wheel slip constraints while both follow-
ing the terrain and responding to the inputs. To address these more realistic cases, we
have developed a formulation ofWMRvelocity kinematics as a differential-algebraic
system—a constrained differential equation of first order. This paper presents the
modeling part of the formulation. The Transport Theorem is used to derive a generic
3Dmodel of the motion at the wheels which is implied by the motion of an arbitrarily
articulated body. This wheel equation is the basis for forward and inverse velocity
kinematics and for the expression of explicit constraints of wheel slip and terrain
following. The result is a mathematically correct method for predicting motion over
non-flat terrain for arbitrary wheeled vehicles on arbitrary terrain subject to arbitrary
constraints.We validate our formulation by applying it to aMars rover prototypewith
a passive suspension in a context where ground truth measurement is easy to obtain.
Our approach can constitute a key component of more informed state estimation,
motion control, and motion planning algorithms for wheeled mobile robots.
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1 Introduction

Wheeled mobile robots (WMRs) are perhaps the most common configuration of ter-
restrial mobile robot, and although decades of research are behind us, little has been
revealed about how to model them effectively in anything other than flat floor envi-
ronments. The motion model of the robot is nonetheless central to pose estimation,
control, and motion planning.

Unlike for their predecessors, manipulators, modeling the articulations of the
mechanisms involved is not the fundamental issue. WMRs need to know how they
move over the terrain and such models are intrinsically differential equations. For
WMRs, these equations are also constrained, the constraints are nonholonomic, the
system is almost always overconstrained to some degree, and even if it was not, the
constraints are typically violated in ways that are only partially predictable. In this
light, it is perhaps less surprising that so little has beenwritten on this problem.While
its importance is clear, its solution is less clear.

Our own historical approaches to the problem [6] have avoided the issues by for-
mulating inputs in state space, where constraints (and constraint consistency) are not
an issue. Terrain following was treated after the fact by integrating the unconstrained
dynamics and then forcing the constraints to be satisfied in a separate optimization
process. While this was adequate, it was hardly principled.

While service robots may operate exclusively in flat floor environments, almost
anyuseful field robotwill have to operate competently onuneven, sloped, and slippery
terrain for extended periods of time. The first step toward competent autonomy in
these conditions is the incorporation of faster-than-real-time models that predict the
consequences of candidate actionswell. Fast and accurateWMRmodels are therefore
a fundamental problem and we propose a general approach to designing such models
in this paper.

1.1 Prior Work

Muir andNewmanpublishedoneof the earliest general approaches to kinematicmod-
eling ofwheeledmobile robots [10]. FollowingSheth-Uicker conventions they assign
coordinate systems and derive a graph of homogenous transforms relating wheel and
robot positions. By differentiating cascades of transforms, Jacobian matrices are
computed for each wheel (relating wheel and robot velocities) which are combined
to form the “composite robot equation”. They provide a “sensed forward” solution (in
which the robot velocity is determined from sensed steer angles andwheel velocities)
as well as an “actuated inverse” solution.

Several researchers extended this transformation approach to WMR kinematics
modeling. Alexander and Maddocks proposed an alternative forward solution when
rolling without slipping is impossible, derived from Coulomb’s Law of friction [1].
Rajagopalan handled the case of inclined steering columns [11]. Campion et al.
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classifiedWMR configurations into five mobility types based on degrees of mobility
and steerability, which they define [2]. Yet others proposed geometric approaches to
WMR kinematics modeling [5, 7].

However, these earlier approaches and analyses are limited to planar motion.
More recently in 2005, Tarokh and McDermott published a general approach to
modeling full 6-DOF kinematics for articulated rovers driving on uneven terrain
[13]. Their approach resembles Muir and Newman in requiring the derivation of
homogenous transformgraphs and the differentiation of transforms to computewheel
Jacobians. Others have derived and simulated full-3DWMRkinematics on rough ter-
rain with specific objectives, such asmechanisms that enable rolling without slipping
[3, 4], precise localization [8], and control of passively-steered rovers [12].

In contrast to prior transformation and geometric approaches, we derive the kine-
matics and constraint equations for WMR using vector algebra. This new approach
is intuitive and, unlike [13], does not require differentiation. Our method for prop-
agating velocities forward through a kinematic chain is a classical one that has also
been used in robot manipulation [9].

2 Kinematics of Wheeled Mobile Robots

In the general case, a wheeled mobile robot may be articulated in various ways and
it may roll over arbitrary terrain with any particular wheel lying either on or above
the nominal terrain surface. Assuming terrain contact is assured by geometry or a
suspension, there are two principal difficulties associated with wheeled mobile robot
(WMR) kinematic modeling: nonlinearity and overconstraint. Nonlinearity occurs
in steering control because trigonometric functions of the steer angles appear in the
mapping between body and wheel velocities. Overconstraint can occur in estimation
contexts where the set of m > n measurements of velocities and/or steer angles
lead to an inconsistent solution for the n degrees of velocity freedom available in
the vehicle state vector. This section develops solutions for both the control and
estimation problems using a vector algebraic formulation.

We will first develop the basic kinematic relationships between a) the linear and
angular velocity of a distinguished coordinate frame on the body of the mobile robot
and b) the linear velocity of an arbitrarily positioned point corresponding to a wheel.
In contrast to all prior work, we will formulate the transformation using vector
algebra, leading to a very straightforward expression for even the general case.

2.1 Transport Theorem

The key element of the technique is a basic theorem of physics, commonly used in
dynamics and inertial navigation theory. Known either as the Coriolis Equation or
the Transport Theorem, it concerns the dependence of measurements in physics on
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the state of motion of the observer. The notation
θ
u

b
a will mean the vector quantity

u of frame a with respect to frame b. Let the letter f refer to a frame of reference
associatedwith a fixed observer, whereasm will refer to one associatedwith amoving

observer. Due to their relative, instantaneous angular velocity θ
ς

f
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would compute (or measure) different time derivatives of the same vector
θ
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related as follows:
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2.2 Velocity Transformation

Now, let these two frames have an instantaneous relative position of
θ
r

f
m . Suppose

that the moving observer measures the position
θ
r

m
o and velocity θ

v
m
o of an object o,

and we wish to know what the fixed observer would measure for the motion of the
same object. The position vectors can be derived from vector addition thus:
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The time derivative of this position vector, computed in the fixed frame is:
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Now we can apply the Coriolis equation to the first term on the right to produce the
general result for the transformation of apparent velocities of the object o between
two frames of reference undergoing arbitrary relative motion:

θ
v

f
o = θ

v
m
o + θ

v
f
m + θ

ς
f
m × θ

r
m
o (4)

We have used the fact that, for any frames a and b, d
dt

∣
∣
∣
b
(
θ
r

b
a) = θ

v
b
a .

2.3 Wheel Equation

We define a wheel frame (w) and a vehicle frame (v). We allow the point around
which a wheel may steer (frame s) to be offset from the contact point (frame c)
between the wheel and the ground (Fig. 1). In such a case, we can write the position
vector for the wheel contact point as follows:

θ
r

w

c = θ
r

w

v + θ
r

v

s + θ
r

s
c (5)
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Fig. 1 Frames for WMR
Kinematics. The four frames
necessary for the relation of
wheel rotation rates and to
vehicle speed and angular
velocity

Next, we associate any ground-fixed framewith the fixed observer and the body-fixed
frame with the moving observer and we can use the above velocity transformation
to write a kinematic equation for each wheel. Differentiating the position vector in
the world frame, substituting the Coriolis equation, and using θ

v
v

s = 0 yields:

θ
v

w

c = θ
v

w

v + θ
ς

w

v × θ
r

v

s + θ
ς

w

v × θ
r

s
c + θ

ς
v

c × θ
r

s
c (6)

This is important enough to give it a name: the wheel equation. In the case of no
offset, the last two terms vanish and the steer velocity (

θ
ς

v

s or θ
ς

v

c ) no longer matters.
The formula is valid in 3D and it also applies to cases with arbitrary articulations
between the v and s frames because only the vector

θ
r

v

s is relevant. In other words,
this is the general case.

2.4 Inverse Velocity Kinematics: Body to Wheels

Let the term inverse kinematics refer to the problem, relevant to control, of computing
the wheel velocities from the body velocity. Given the above, the problem is solved
by writing a wheel equation for each wheel. To do so, the physical vectors

θ
u must

be expressed in a particular coordinate system. Let cub
a denote the vector quantity u

of frame a with respect to frame b, expressed in the coordinates of frame c (and let
ub

a imply bub
a). Then, if Rv

s is the rotation matrix that converts coordinates from the
steer frame to the vehicle frame, it becomes possible to express the wheel equation
for any wheel in the vehicle frame where many of the vectors are typically known:

vvw
c = vvw

v + vςw
v × rv

s + vςw
v × Rv

s r s
c + ςv

c × Rv
s r s

c (7)
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2.5 Wheel Steering and Drive: Control and Estimation

In a control context, the wheel equation cannot be used directly as written to find
wheel controls because the matrix Rv

s depends on the steer angle, which is one of the
unknowns. However, the steer angle can be found by expressing the wheel velocity
in wheel coordinates and enforcing the constraint that the lateral (y) component of
the terrain relative velocity in the wheel frame must vanish. For the geometry in
Fig. 1, the result is intuitive, the steer angle can be determined from the direction of
the s frame because its velocity is parallel to that of c, though not necessarily of the
same magnitude. The velocity of frame s is simply the first two terms of the wheel
equation. Then, the steer angle for the wheel is:

π = atan2[ (vvw
s )x , (vvw

s )y ] (8)

Once the steer angle is known, the wheel velocity along the forward (x) axis of the
wheel frame can be determined from the x component the wheel equation in wheel
coordinates. Then the drive velocity (around the axle) can be computed using the
wheel radius.

For the opposite problem of wheel sensing, measurements of wheel rotation rate
provide thewheel velocities along the x axis of the wheel frame. Then ameasurement
of steer angle provides the rotation matrix needed to convert to a vector expressed in
the vehicle frame.

2.6 Forward Velocity Kinematics: Wheels to Body

Let the term forward kinematics refer to the problem, relevant to estimation, of
computing the body velocity from the wheel velocities. The wheel equation can
be written in matrix form by using skew symmetric matrices to represent the cross
products as a matrix products (specifically, a × b = −b × a = −[b]×a = [b]T×a):

vvw
c = vvw

v + [rv
s ]T×(vςw

v ) + [vrs
c]T×(vςw

v ) + [vrs
c]T×(ςv

c ) (9)

For multiple wheels, stacking all the equations and grouping the first three terms
together produces a matrix equation of the form:

vc = Hv(π)

⎧
vvw

v
vςw

v

⎨

+ Hπ (π)ςv
c = Hv(π)V + Hπ (π)π̇ (10)

where vc representswheel velocities, and V represents the linear and angular velocity
of the vehicle with respect to the ground. Both vc and V are in body coordinates. π
is the steer angles and it can include other articulations if desired. The last term in
(10) is the increment to wheel velocity due to the steering rates.
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Fig. 2 A four wheel steer
vehicle. Arbitrary motions are
possible

2.7 Example: Four Wheel Steer

While the equations are linear in velocity, there can easily be more of them than there
are degrees of freedom, making the problem overconstrained. Control will typically
try to steer the wheels to be consistent with a single instantaneous center of rotation
but errors can never be completely eliminated. A straightforward way to estimate the
vehicle linear and angular velocity is to use the pseudoinverse—after removing the
effect of steering rates. Such an approach minimizes the squared residual of wheel
velocities and weights them equally:

V = Hv(π)+(vc − Hπ (π)π̇) (11)

This case (Fig. 2) presents a particularly difficult example of a vehicle with four
wheels which are both driven and steered (from an offset position). The equations
were implemented and tested on such a vehicle. Let the velocities of the body frame in
body coordinates be denoted V = [Vx Vy ς]T and the steer angles π = [π1 π2 π3 π4]T .
Unlike a car, this vehicle is not constrained to move in the direction it is pointed.
Indeed, it can drive with any linear and angular velocity that is consistent with the
wheel speed and steering limits. The steer frame centers are positioned relative to
the body frame as follows:

rv
s1 = [L W ]T , rv

s2 = [L − W ]T , rv
s3 = [−L W ]T , rv

s4 = [−L − W ]T (12)

The contact point offsets in the body frame depend on the steer angles. They are:

vrs1
c1 = d[−s1 c1]T , vrs2

c2 = d[s2 − c2]T , vrs3
c3 = d[−s3 c3]T , vrs4

c4 = d[s4 − c4]T

(13)
where (s1 in the vector denotes sin(π1) etc.). If we denote the elements of these
position vectors as rv

s = [x y]T and vrs
c = [a b]T , the set of wheel equations is as

follows:
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⎧
v1x

v1y

⎨

=
⎧
1 0 −(y1 + b1)
0 1 (x1 + a1)

⎨

V +
⎧−b1 0 0 0

a1 0 0 0

⎨

π̇

⎧
v2x

v2y

⎨

=
⎧
1 0 −(y2 + b2)
0 1 (x2 + a2)

⎨

V +
⎧
0 −b2 0 0
0 a2 0 0

⎨

π̇ (14)

⎧
v3x

v3y

⎨

=
⎧
1 0 −(y3 + b3)
0 1 (x3 + a3)

⎨

V +
⎧
0 0 −b3 0
0 0 a3 0

⎨

π̇

⎧
v4x

v4y

⎨

=
⎧
1 0 −(y4 + b4)
0 1 (x4 + a4)

⎨

V +
⎧
0 0 0 −b4
0 0 0 a4

⎨

π̇

3 Wheel Constraints

So far, we have proposed control and estimation mechanisms that satisfy wheel
slip constraints in both the forward and inverse kinematics describing the motion of
the vehicle in the instantaneous terrain tangent plane. Steering and propulsion are
actively controlled in a vehicle, so somemeasures can be taken to try to satisfy wheel
slip constraints. Doing so enhances controllability and avoids the energy loss that
would be associated with doing (sliding) work on the terrain.

On non-flat terrain, another constraint of interest is terrain following. Assuming
an adequate suspension, wheels should neither penetrate nor rise above the terrain.
Such constraints determine altitude (z), and attitude (pitch and roll). These constraints
are satisfied passively by the suspensions of most vehicles, so the inverse kinematic
problem of active suspension occurs less often. We will now present methods to
incorporate both types of constraints in the context ofmotion prediction: the problem
of estimating or predicting position and attitude by integrating the system differential
equation.

3.1 Constrained Dynamics

We will find it convenient to formulate the WMR motion prediction problem as the
integration of a differential-algebraic equation (DAE) where the constraints remain
explicit. We will use a nonstandard formulation of the form:

ẋ = f (x, u)

c(x) = 0 (15)

d(x)T ẋ = 0

The m constraint equations in c and d are understood to be active at all times. Each
element of d is a particular form of nonholonomic constraint known as a Pfaffian
velocity constraint. Each specifies a disallowed direction restricting the admissible
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values of the state derivative. The equations in c are holonomic constraints that restrict
the admissible values of the state x and therefore, through the differential equation,
they ultimately restrict the state derivative as well.

Both forms of constraints are ultimately treated identically because, as is com-
monly performed inDAE theory, the gradient of c produces the associated disallowed
directions of the holonomic constraints. It will turn out that terrain following will be
expressible as holonomic constraints and wheel slip will be nonholonomic.

3.2 Wheel Slip Constraints

In the case of rolling without lateral slipping, the disallowed direction for the wheel
is clearly aligned with the y axis of the contact point c frame. However, to use the
constraint in a DAE, it must be converted to an equivalent disallowed direction in
state derivative space. The simplest way to do so is to write (10) in wheel coordinates
thus (assuming Rs

v = Rc
v):

cvw
c = Rs

v Hv(π)V + Rs
v Hπ (π)π̇ (16)

Note that V is exactly the relevant components of the state derivative, so the first
row of Rs

v Hv(π) is both the gradient of the lateral wheel velocity with respect to
the state derivative, and the associated disallowed direction. Note that in full-3D,
a transformation from Euler angle rates to angular velocity may be required (see
Sect. 4.1). As long as the steer angles π are not in the state vector, the second term
is irrelevant, but if they are, the first row of the gradient can be extracted for these
as well. If there were any other articulations in the kinematic chain from the body
frame to the wheel contact point frame, they can be treated similarly.

3.3 Terrain Following Constraints

It is tempting to extract the z component of the wheel velocity in an analogous
manner to produce a terrain following constraint, but the problem is slightly more
complicated. It is a basic assumption that the location of the wheel contact point
is known. This point is on the bottom of the wheel on flat terrain and it must be
computed for uneven terrain. In any case, the axes of the c frame are aligned with
the wheel by assumption.

A terrain following constraint can be generated by noting that the terrain normal
at the contact point is the other disallowed direction for wheel motion. Indeed, to be
precise, the wheel y axis should ideally be projected onto the terrain tangent plane
for lateral slip constraints as well. We can enforce terrain following by requiring the
dot product of the terrain normal and contact point velocity vectors to equal zero:
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Fig. 3 Zoë’s axles are free to rotate in both the steer and roll angles

n̂ · θ
v

w

c = 0. Accordingly, the gradient of out-of-terrain wheel motion with respect to
the state derivative V is:

d(x)T = v n̂T Hv(π) (17)

where v n̂ is the terrain normal expressed in vehicle coordinates.
The more common approach (proposed by [16]) is to differentiate the holonomic

constraints c(x)with respect to the state to obtain the gradient cx . The holonomic con-
straints are then enforced to first order by requiring that cx ẋ = 0. Here we computed
the disallowed gradient cx using vector algebra and avoided the differentiation.

4 Results

We present results on the Zoë rover, which previously surveyed the distribution of
microscopic life in Chile’s Atacama desert [15]. Zoë has four independently driven
wheels on two passively articulated axles. The axles are free to rotate in both the
steer (π ) and roll (ϕ) angles, as seen in Fig. 3. A roll averaging mechanism constrains
the front and rear axle roll angles to be symmetric (ϕ f = −ϕr ).

One of the authors previously developed a transform-based 3D kinematic model
for the Zoë rover and applied it to control [12]. Here we re-derive the kinematic and
constraint equations using the new, vector algebra formulation and apply them to
estimation and simulation.

4.1 Zoë Forward Velocity Kinematics

Here we present Zoë’s forward velocity kinematics. We begin by defining variables
in the wheel equation, arranged according to (10):
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Fig. 4 A diagram of Zoë’s coordinate systems, dimensions, and steering/suspension angles

vvw
c =

⎡
I [rv

c ]T×
⎣ ⎧

vvw
v

vςw
v

⎨

[vrs
c]T×ςv

c (18)

The vector rv
c is the position of the wheel contact point with respect to the vehicle,

expressed in vehicle coordinates:

rv
c = rv

s + vrs
c (19)

= rv
s + Rv

s r s
c (20)

=
⎤

⎦
±L
0
0



 + Rotx (ϕ)Rotz(π)

⎤

⎦
−rw sin(φ)

±d
−h − rw cos(φ)



 (21)

Refer to Fig. 4 for the meaning of dimensions L , rw, d, and h. The dimension L
is positive for front axle wheels and negative for rear wheels. d is positive for left
wheels (1, 3) and negative for right wheels (2, 4). The contact angle, φ, specifies
where along circumference of the wheel contact with the terrain is made.

To simulate the constrained dynamics according to (15) we must define the state
vector:

x = [
x y z δ Δ ∂ π f ϕ f πr ϕr

]T (22)

The first three states are the position of the vehicle in world coordinates (rw
v ). The

second three are Euler angles (roll, pitch, and yaw), which specify the orientation of
the vehicle with respect to the world frame. Let ζ denote the vector of Euler angles:
ζ = [δ Δ ∂]T . The last four states are the steer (π ) and roll (ϕ) angles for the front
and rear axle joints.

We can compute ẋ from (18), but we must first transform the angular velocities
to Euler and axle angle rates as follows:
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vςw
v = Tςv

⎤

⎦
δ̇

Δ̇

∂̇



 , Tςv =
⎤

⎦
1 0 −sΔ
0 cδ sδ cΔ
0 −sδ cδ cΔ



 (23)

sςv
s = Tςs

⎧
π̇

ϕ̇

⎨

, Tςs =
⎤

⎦

⎤

⎦
0
0
1





⎛

⎝Rs
v

⎤

⎦
1
0
0





⎞

⎠



 (24)

The matrix Tςv (for the Euler angle convention where Rw
v = Rotz(∂)Roty(Δ)Rotx (δ ))

iswidelyused innavigation [14].Given the transforms in (23) and (24) and combining
wheel equations for all four wheels, we obtain:

vc = Hv(π)V ◦ + Hπ (π)π̇ (25)

⎤


⎦

vvw
c1
...

vvw
c4




 =

⎤


⎦

Rv
w[rv

c1]T×Tςv

...
...

Rv
w[rv

c4]T×Tςv






⎧
vw

v

ζ̇

⎨

+

⎤



⎦

[vrs
c1]T× Rv

s Tςs 03×2

[vrs
c2]T

× Rv
s Tςs 03×2

03×2 [vrs
c3]T× Rv

s Tςs

03×2 [vrs
c4]T× Rv

s Tςs







⎤



⎦

π̇ f

ϕ̇ f

π̇r

ϕ̇r







(26)

Each wheel corresponds to three rows of (26). Note that V ◦ differs from V as defined
in (10) because it contains linear velocities inworld coordinates and Euler angle rates
ζ̇. Note also that variables containing s in the superscript or subscript are different
for the front and rear axles, i.e. for wheels (1, 2) and (3, 4).

Because Zoë’s steering and suspension joints are passive, it is necessary in simu-
lation (or prediction) contexts to solve for the joint angle rates π̇ simultaneously with
the vehicle velocity V ◦:

vc = [
Hv(π) Hπ (π)

]
⎧

V ◦
π̇

⎨

= H(π)ẋ . (27)

The system is overdetermined and can be solved for ẋ using the pseudoinverse.

4.2 Zoë Constraint Equations

As formulated, there are nine total constraints on Zoë’s forward kinematics. As
explained in Sect. 3.2 the nonholonomic, no-lateral-slip constraints are enforced by
disallowingwheel velocity along the y axis of the c frame for eachwheel. To compute
the constraint for a single wheel, we extract the corresponding 3 rows of (27) and
left multiply by Rs

v(= Rc
v) to convert to wheel coordinates:

cvw
c = Rs

v Hc(π)ẋ (28)
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Fig. 5 Photographs and screenshots of the Zoë rover captured during (from left to right) a physical
experiment, Lagrangian dynamics simulation, and kinematic simulation

where Hc denotes the three rows of H corresponding to the chosen wheel. The
disallowed direction in state space d(x)T is simply the second row of Rs

v Hc(π).
Because, in this case, left and right wheels on the same axle generate identical no-
lateral-slip constraints, one redundant constraint may be eliminated per axle.

As explained in Sect. 3.3, the four holonomic terrain following constraints are
enforced, to first order, by disallowing wheel velocity in the terrain-normal direction
for eachwheel.Given that the dot product v n̂·vvw

c must be zero,where v n̂ is the terrain
normal vector expressed in vehicle (or body) coordinates, the disallowed direction
in state space is v n̂T Hc.

The roll-averagingmechanism generates one additional holonomic constraint that
ϕ f + ϕr = 0. This is enforced to first-order by constraining

dϕ f
dt + dϕr

dt = 0.

4.3 Terrain Following Experiment

Here we present the results of a terrain-following experiment. Zoë is commanded
to drive straight at 0.15 m/s while its left wheels traverse a ramp obstacle (1.71 m
length× 0.41m height, 36∩ slope) that causes the body to roll. A simple proportional
controller drives the front and rear steer angles to zero degrees (Fig. 5).

Results are shown (from left to right in Fig. 6) for a physical experiment, a
Lagrangian dynamics simulation (implemented using Open Dynamics Engine), and
a kinematic simulation using the vector algebra formulation presented here. Note
that all three plots match closely; the same changes in suspension and steer angles
are observed as the front and rear wheels encounter the obstacle, and both simula-
tions correctly predict a terminal heading error of approximately 2.5∩. The kinematic
simulation, however, is computationally much cheaper than the full dynamics simu-
lation. Surface contact parameters were tuned to minimize wheel slip in the dynamic
simulation. Minor disagreements between the physical experiment and simulations
are due to unmodeled peculiarities in Zoë’s construction, such as hysteresis in the
roll-averaging mechanism.
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Fig. 6 Plots of steering (π), suspension (ϕ), and vehicle yaw angles versus time recorded dur-
ing (from left to right) a physical experiment, Lagrangian dynamics simulation, and kinematic
simulation using our presented vector algebra model

5 Conclusion

This paper has shown how the Transport Theorem provides the basis for modeling
the kinematic relationships between the body velocities and the wheel velocities of
a wheeled mobile robot. Our formulation produces the solution for the general three
dimensional case for arbitrary robot articulations and arbitrary terrain. In contrast
to all prior work in WMR kinematics, we use an intrinsic velocity transformation
in coordinate system independent form. This approach has the key advantage of
eliminating the need to differentiate the relevant pose transforms in order to produce
a mechanism Jacobian for each wheel. Furthermore, the resultant equation for wheel
motion also provides a very convenient basis for imposing constraints for wheel
slip and terrain following in a differential-algebraic system. Although we have not
justified it here, this turns out to enable efficient predictor-corrector integration.

We have also shown advantages relative to a full second order dynamics model.
Our formulation needs to be integrated only once but it satisfies the same constraints
and those constraints ultimately determine the trajectory followed. Furthermore,
because we express our constraints explicitly, our formulation permits them to be
arbitrary. We have shown how to model an example of passive articulations here, but
we can also accommodate models of how wheels are actually slipping both longitu-
dinally and laterally. In short, ease of derivation, faster-than-real-time computation,
and highly realistic motion make our formulation a natural choice for the modeling
of any wheeled mobile robot in arbitrary terrain.
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A Self-Learning Ground Classifier Using
Radar Features

Giulio Reina, Annalisa Milella and James Underwood

Abstract Autonomous off-road ground vehicles require advanced perception
systems in order to sense and understand the surrounding environment, while ensur-
ing robustness under compromised visibility conditions. In this paper, the use of
millimeter wave radar is proposed as a possible solution for all-weather off-road per-
ception. A self-learning ground classifier is developed that segments radar data for
scene understanding and autonomous navigation tasks. The proposed system com-
prises two main stages: an adaptive training stage and a classification stage. During
the training stage, the system automatically learns to associate appearance of radar
data with class labels. Then, it makes predictions based on past observations. The
training set is continuously updated online using the latest radar readings, thus mak-
ing it feasible to use the system for long range and long duration navigation, over
changing environments. Experimental results, obtained with an unmanned ground
vehicle operating in a rural environment, are presented to validate this approach.
Conclusions are drawn on the utility of millimeter-wave radar as a robotic sensor for
persistent and accurate perception in natural scenarios.
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1 Introduction

Research in mobile robotics aims to develop technologies that allow vehicles to travel
longer distances with limited human supervision in unstructured environments. One
of the main challenges toward this objective is accurate and robust scene understand-
ing to perform important tasks including environment segmentation and classifica-
tion, mapping and identification of terrain regions that can be safely traversed [1,
2]. In field scenarios, these tasks are even more difficult due to variable visibility
conditions. Day/night cycles change illumination. Weather phenomena such as fog,
rain, snow and hail impede visual perception. Dust clouds rise in excavation sites and
agricultural fields, and they are expected during planetary exploration. Smoke also
compromises visibility in fire emergencies and disaster sites. Laser and vision are
common imaging technologies, but they are known to have difficulties under com-
promised visibility [3]. Sonar is a sensor that is not affected by visibility restrictions.
However, it is considered of limited utility for field robots due to high atmospheric
attenuation, noise, and reflections by specular surfaces.

As an alternative or complementary sensor to conventional range devices, radar
can be employed to develop persistent and accurate perception systems in field sce-
narios. Radar operates at a wavelength that penetrates dust and other visual obscu-
rants. Furthermore, it can provide information of distributed and multiple targets that
appear in a single observation, whereas other range sensors are generally limited to
one target return per emission, although last pulse-based lasers solve this problem to
some extent, and are becoming more common.

The ability of radar to perceive the environment in low visibility conditions was
demonstrated in numerous papers, for example in [4] and [5]. This aspect is not explic-
itly considered in the context of this paper. Nevertheless, radar has shortcomings as
well, such as a large footprint, specularity effects, and limited range resolution, all
of which may result in poor environment survey or difficulty in interpretation. Rel-
atively limited research has been devoted to investigate explicitly millimeter-wave
radar for short-range perception and scene segmentation, and three-dimensional ter-
rain mapping. For example, previous work presented the implementation of radar-
based obstacle avoidance on large mining trucks [6]. In other work, a millimeter-wave
radar-based navigation system detected and matched artificial beacons for localiza-
tion in a two-dimensional scan [7]. Millimeter-wave radar has been used on a large
AGV for cargo handling [8]; the radar is scanned horizontally, and measures range
and bearing to a set of trihedral aluminum reflectors. The reflectors may be covered
by a polarising grating to enable discrimination from other objects. Radar capability
was demonstrated in an Arctic environment [9] and for mining applications [10].
Mullane et al. [11] used a millimeter-wave (MMW) radar for occupancy mapping
within a probabilistic framework.

In this research, we propose an adaptive self-learning ground segmentation
approach using data acquired by a MMW radar. Self-supervised systems have
been recently proposed by many to reduce or eliminate the need for hand-labeled
training data, thus gaining flexibility in unknown environments. Typically, with
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self-supervision, a reliable classification module (such as a laser-based classifier)
provides labels to train another classifier (such as a visual classifier). An example
can be found in Milella et al. [12, 13], where a visual classifier was trained by radar-
driven labels. Brooks et al. [14] proposed a self-supervised framework that predicts
the mechanical properties of distant terrain based on a previously-learned associa-
tion with visual appearance. Self-supervised learning helped to win the 2005 DARPA
Grand Challenge: the winning approach used a probabilistic model to identify road
surface based on color information extracted immediately ahead of the vehicle as it
drives [15]. Stavens and Thrun [16] used self-supervision to train a terrain roughness
predictor.

In the context of this paper, “self-learning classification” refers to the automatic
training of a ground classifier using features extracted from radar images of the
ground. First, the system automatically learns to associate the appearance of radar
data with class labels during a training stage. Then it makes predictions based on
past observations, classifying new data in two broad categories, namely ground and
non-ground. The ground class corresponds to returns from the terrain, whereas the
non-ground class corresponds to all other returns, including reflections from above
ground objects (i.e., obstacles), occluded areas, or sensor misreadings. Since the
characteristics of the ground may change geographically and over time, the system
is continuously retrained in every scan: new automatically labeled data are added to
the ground model replacing the oldest labels in order to incorporate changes in the
ground appearance.

In this investigation, a mechanically scanned MMW radar, designed for percep-
tion and navigation in low visibility conditions, is employed. Although the sensor is
custom-built at the Australian Centre for Field Robotics (ACFR) [10], it is similar
in performance to other commercially available systems.1 It is a 95-GHz frequency-
modulated continuous wave (FMCW) MMW radar that reports the amplitude of
echoes at ranges between 1 and 120 m. The wavelength is λ = 3 mm, and the 3 dB
beamwidth is about 3.0◦ in elevation and azimuth. The antenna scans across the angu-
lar range of 360◦ at a scan frequency of about 3 Hz. The raw range resolution is about
0.32 m at 20 m. The radar is integrated with the CAS Outdoor Research Demonstrator
(CORD): an eight-wheel, skid-steering all terrain unmanned ground vehicle (UGV)
(see Fig. 1), which has been employed for the testing and the field validation of the
system. The robot’s sensor suite is completed by four 2D SICK laser range scan-
ners, a mono-charge-coupled device (CCD) color camera, a thermal infrared camera,
and a real-time kinematic/differential global positioning system/ inertial navigation
system (RTK DGPS/INS) unit that provides accurate pose estimation of the vehicle.

The rest of the paper is organized as follows. Section 2 illustrates the radar per-
ception system used for this research. Section 3 describes the proposed radar-based
classifier, and experimental results are presented in Sect. 4. Conclusions are drawn
in Sect. 5.

1 http://www.nav-tech.com/Industrial%20Sensors2.htm

http://www.nav-tech.com/Industrial%20Sensors2.htm
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Fig. 1 The CORD UGV
employed in this research.
The sensor suite can be seen,
attached to a rigid frame

2 Radar Perception System

In the proposed configuration, the radar is directed at the front of the vehicle with
a fixed nodding angle to produce a grazing angle γ of about 11◦, so that the center
of the beam intersects the ground at a look-ahead distance approximately of 11.4 m
in front of the vehicle, as shown in the explanatory scheme of Fig. 2. The origin
of the beam at the center of the antenna is O. The proximal and distal borders of
the footprint area illuminated by the divergence beam are denoted with A and B,
respectively. The height of the beam origin with respect to the ground plane is h, the

Fig. 2 Scheme of the radar
configuration used for envi-
ronment survey
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Fig. 3 A sample radar image
acquired from a large, flat area:
a scan angle-range image. b
Camera image approximately
colocated with the radar. Note
the rich information content
of the radar map due to its
ability to sample reflectivity
at multiple ranges for a single
scan angle

slant range of the radar bore sight is R0, and the scan angle is α. With a single sweep
of 360◦, the sensor produces an intensity map or radar image of the environment in
front of the robot. As an example, a radar image, acquired from a large, relatively
flat area is shown in Fig. 3a, along with its approximately colocated visual image
shown in Fig. 3b. The abscissas in Fig. 3a represent the scan angle with an effective
horizontal field of view (HFOV) of about 120◦. The ordinates represent the range
measured by the sensor. Amplitude values above the noise level suggest the presence
of objects with significant reflectivity. Amplitude close or below the noise level
generally corresponds to the absence of objects.
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A radar image can be thought of as composed of a foreground and a background.
The background is produced by the ground echo, i.e., the intensity return scattered
back from the portion of terrain that is illuminated by the sensor beam. The ground
echo typically appears as a high-intensity parabolic sector (see Fig. 3a). Radar obser-
vations belonging to the background show a wide pulse produced by the high incident
angle to the surface. Conversely, obstacles present in the foreground appear as high-
intensity narrow pulses.

The ability to automatically identify radar data pertaining to the ground and to
obstacles present in the scene and project them onto the vehicle body frame results
in an enabling technology for all visibility-condition navigation systems. In previous
research by the authors [5], a theoretical physics-based model of the ground echo
was proposed along with a method to automatically extract the background from
radar images based on an edge-detection strategy. In this work, the ground model is
compared against single background observations to asses their membership to the
ground class within a self-learning classification framework.

3 Radar-based Ground Classifier

The first step of the classifier is the extraction of a set of features from radar images.
The features provide a training set for the construction of a multivariate Gaussian
model of the ground. The training set is automatically initialized at the beginning
of the robot’s operation via a bootstrapping approach and progressively updated, so
that in every newly acquired radar scan, the latest training set is used to retrain the
classifier. The latter consists of a Mahalanobis distance-based one-class classifier. It
aims to generalize from training data to unseen situations in order to identify single
new observations as ground or non-ground. In the rest of this section, first the feature
extraction stage is discussed, then the radar-based classification system is presented.

3.1 Extraction of Radar Features

Radar features are extracted based on the ground echo model. We recall here the
important properties of the model and refer the reader to [5] for more details. The
power spectrum of the ground return can be expressed for a given scan angle as a
function of the range R

Pr (R) = k
G(R, R0)

2

cos γ
(1)

where k is a constant quantity, R0 is the slant range, G is the antenna gain (usually
modeled as Gaussian) and γ is the grazing angle, as explained in Fig. 2. Figure 4
shows a simulated wide pulse of the ground return obtained using (1).
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Fig. 4 Simulated power
return of the ground echo
for a given scan angle: the
following parameters were
adopted in the simulation:
k = 70 dB, R0 = 11.3 m,
h = 2.2 m, γ = 11◦

The appearance of the ground is constructed upon a set of intensity and shape
features that are obtained by fitting the ground model (1) to data belonging to the
radar background. The underlying hypothesis is that a good match between the
parametric model and the experimental data attests to a high likelihood of ground.
Conversely, a poor goodness of fit suggests low likelihood due, for example, to the
presence of an obstacle or to irregular or occluded terrain.

From (1), it can be seen that Pr(R) is a function defined by the parameters k and
R0. Both parameters can be estimated by data fitting for the given scan angle.

The parameter k can be interpreted as the power return at the slant range R0 and
it is chosen as the first feature defining the ground appearance. A non-linear least
squares approach using the Gauss-Newton-Marquardt method is adopted for data
fitting. Output from the fitting process are the updated parameters R0 and k as well
as an estimate of the goodness of fit. The coefficient of efficiency was found to be
well suited for this application and it is chosen as the second feature for our model:

E = 1 −
∑

(t − y)2
∑

(t − t̄)2 (2)

t being the data point, t̄ the mean of the observations, and y the output from the
regression model. E ranges from −∞ to 1, as the best possible value. Typical results
are shown in Fig. 5. Specifically, in Fig. 5a, the model matches the experimental
data very well, with a high coefficient of efficiency E = 0.98 and k = 74.89 dB,
thus attesting to high confidence of ground. Conversely, Fig. 5b shows an example
where the goodness of fit is poor (E < 0); for this case a low confidence in ground
is expected. However, relying on the first two features may be misleading in some
cases. Figure 5c shows an example where a radar observation appears as a ground
label due to the high coefficient of efficiency (E = 0.91), when there is actually no
ground return. In order to solve this issue, a shape factor can be defined as
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Fig. 5 Feature generation by
model fitting: a good fit with
high confidence in ground, b
poor fit with low confidence
in ground, c seemingly good
fit with a high value of shape
factor

S =
∣
∣
∣
∣

I0 − Iend

I0

∣
∣
∣
∣ (3)

where I0 and Iend are the initial and final intensity value of the ground echo. Our
hypothesis is that a normal ground echo should have similar initial and final intensities
due to the physical interaction between the radar emission and the ground. High
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values of S (for example S = 80.7 % in Fig. 5c) indicate a discrepancy and suggest
low confidence that the signal is a ground echo.

In summary, three main features define the ground model: the intensity associated
with the slant range, k, the goodness of fit, E , and the shape factor, S. This set of
features expresses our physical understanding of the problem and is used within a
self-learning classification framework, as follows.

3.2 Algorithm Description

The ground model problem is formulated as a one-class classifier [17]. One-class
classification techniques are particularly useful for two-class classification problems
where one class, referred to as the target class is well-sampled, while the other class,
named the outlier class is under-sampled. This is the case for our application where
most of the radar background readings are reflected by ground with sparse instances of
non-ground. Typically, the objective of a one class-classifier is that of constructing
a decision boundary that separates the instances of the target class from all other
possible objects. In our case, ground samples constitute the target class, while non-
ground samples (i.e., obstacles) are regarded as the outlier class. Nevertheless, in
open rural environments non-ground samples are typically sparse; in addition, the
variation of all possible non-ground classes is unlimited. That makes it difficult to
model the non-ground class, whereas, although it changes geographically and over
time, the ground class is generally less variable in appearance than random objects.
Furthermore, our objective is that of building a model of the ground. Therefore, it
is reasonable to formulate the problem as one of distribution modeling, where the
distribution to estimate is the ground class. Specifically, we adopt a multivariate
Gaussian distribution to model positive ground samples. A Mahalanobis distance-
based classifier [18] is then applied to estimate the membership likelihood of a given
observation to the ground class following an outlier detection strategy. Looking at
the Mahalanobis distance (MhD) and its distribution, it is possible to predict if this
radar reading has an extremely low probability of belonging to ground and may be
suspected to be an outlier.

Let Xt be an n × m data table representing a sample of xi vectors with i =
1, 2, . . . n, each characterized by m traits (scalar features): Xt = {x1, . . . , xn}. These
vectors constitute the training set at a given time t . If we compute the sample mean
μt and the sample covariance Σt of the data in Xt , we can denote the ground model
at this time as Mt (μt ,Σt ), where μt describes the location, and Σt the scale (shape)
of the distribution. Then, in the next radar scan acquired at time t +1, the single new
observation z can be classified by estimating its squared Mahalanobis distance from
the ground model:

d2 = (z − μt )Σ
−1
t (z − μt )

t (4)

Assuming that the vectors xi are independent and have Gaussian distribution, it can
be proved that the squared Mahalanobis distance is asymptotically distributed as the
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m degrees of freedom chi-square distribution χ2
m . Then, we can use the quantile β of

the m degrees of freedom chi-square distribution as the delimiter (cutoff) for outlying
observations. Let β denote a constant probability level: 0 < β < 1. Let χ2

m;β denote
the appropriate quantile of the distribution. Then, it holds that

p(d2 ≥ χ2
m;β) = 1 − β (5)

which means that values of d2 greater than (or equal to) the value χ2
m;β appear with

a probability equal to 1 − β. Now we define the cutoff for the Mahalonobis distance
as

Lβ =
√

χ2
m;β (6)

Any radar observation with Mahalanobis distance d satisfying the inequality d ≥ Lβ

may be suspected to be an outlier. In other words, the pattern is an outlier, i.e. it
is defined as a non-ground observation, if d2 is greater than a threshold, which is
computed as the β quantile χ2

m;β of the m degrees of freedom chi-square distribution.
At the beginning of the robot’s operation, the training set is initialized under the

assumption that the vehicle starts from an area free of obstacles, so that the radar
“looks” at ground only. Successively, the ground model is continuously updated
during operation: the new ground feature vectors labeled in the most recent radar
scans are incorporated, replacing an equal number of the oldest ground instances.

4 Experimental Results

In this section, experimental results are presented to validate our approach for ground
segmentation using radar data. The system was integrated with the CORD UGV (see
Fig. 1) and tested in a rural environment at the University of Sydney’s test facility
near Marulan, NSW, Australia. The test field features three wooden buildings and
two stationary cars. The whole area is bounded by a fence and is characterized by
relatively flat ground with sparse low grass. During the experiment, the CORD vehicle
was remotely driven with an average speed of about 0.5 m/s and a maximum speed of
1.5 m/s. Variable yaw rates were achieved with a maximum of 1.12 rad/s (i.e., 64◦/s)
and roll and pitch angles of up to 4◦. In this experiment, the RTK DGPS/INS unit
and a high-precision 2D SICK laser range scanner provided the ground truth. The
full data set is public and available online [19]. The path resulted in a total distance
of 170 m traveled in about 5 min.

Figure 6 shows a typical result obtained during the experiment at the instant
T= 47 s, when the vehicle moves toward the eastern area of the path, delimited by two
lateral buildings with a car in front of the robot. Figure 6a shows the radar intensity
image overlaid with the results obtained from the radar-based classifier. Ground labels
are denoted by black dots, a black cross marks non-ground, and obstacles detected
in the foreground as high-intensity narrow pulses are denoted by a black triangle.
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Fig. 6 Results obtained from
the radar-based classifier for a
scenario delimited by two side
buildings and a frontal car: a
output of the system, b results
overlaid on the camera image,
c and on the laser-generated
ground-truth map

In Fig. 6b, the results are projected over the image plane of the camera for visual-
ization purposes. Note that only the observations common to the field of view of
both sensors are shown. Finally, a comparison with laser-generated ground truth is
provided in Fig. 6c, showing the effectiveness of the proposed approach for ground
segmentation.
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Overall, the radar-based classifier was tested over 778 radar images, each con-
taining 63 azimuth observations for a total of 48,960 classifications [20]. In order to
provide a quantitative evaluation of the system performance, we measured the true
positive and false positive rates of the classifier for the radar observations that fall
within the camera field of view and that we can hand-label by visual inspection (i.e.,
ground truth). A receiver operating characteristic (ROC) curve was constructed by
adjusting the cutoff value for terrain detection (i.e., by varying the β-quantile value
in the range [0–1]).

The ROC curve for the proposed classifier is shown in Fig. 7 denoted by a black
line. It plots the true positive rate (i.e., the fraction of ground patches that were
correctly classified as ground) on the y-axis against the false positive rate (i.e., the
fraction of non-ground samples, which were erroneously classified as ground by
the system) on the x-axis. A diagonal line at 45◦ (shown by a black dotted line
in Fig. 7), known as the line of chance, would result from a test which allocated
observations randomly. In order to establish the optimal threshold value or cutpoint
for the Mahalanobis distance-based classifier, we can use the ROC curve. In general, a
good cutpoint is one which produces a large true positive rate and a low false positive
rate. An intuitive method, therefore, is to maximize their difference. This approach
assumes that true positive rate and a false positive rate are equally important. This is
referred to as the Youden index [21], which can be interpreted as choosing the point
on the ROC curve with the largest vertical distance from the line of chance. For our
system, the point of maximum difference between the true positive rate and the false
positive rate is reached at β = 0.992, and it corresponds to a true positive rate of
88.0 % and a false positive rate of 11.9 %. For this point, the overall accuracy, i.e. the
fraction of correct detections with respect to the total number of classifications is of
87.8 %.

To evaluate the efficacy of the model adaptability, a static model was also con-
structed, whereby the initial appearance model built during the bootstrapping process

Fig. 7 ROC curve for the
radar-based classifier. Black
line: adaptive algorithm. Grey
line: static algorithm. Dotted
line: line of chance
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was fixed and not further modified. The advantage of using an adaptive learning
approach with respect to a batch training system can be shown by obtaining the ROC
curve of the “static”, where the ground model was constructed at the beginning of
the sequence, and it was never updated. The ROC curve of the “static” classifier is
denoted by the grey line in Fig. 7. The comparison between the two implementa-
tions can be performed in terms of the total area under the ROC curve (AUC). The
larger the AUC, the better the overall performance of the test to correctly identify
ground and non-ground observations. Therefore, the adaptive algorithm outperforms
the static one, and the curve is closer to the perfect discrimination.

5 Conclusions

In this paper, a self-learning classifier was described for ground segmentation by
an autonomous vehicle using MMW radar. Experimental results obtained using an
UGV in field scenarios showed that the proposed radar-based classifier leads to
good classification performance with the following main advantages: (a) enabling
technology for all visibility-condition navigation systems, (b) self-learning training
of the system, where the radar allows the vehicle to automatically acquire a set
of ground samples, eliminating the need for time-consuming manual labeling, (c)
continuous updating of the system during vehicle operation, thus making it adaptive
and feasible for long range and long duration navigation applications.
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Abstract In this paper, we outline a low cost multi-robot autonomous platform for a
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and depth buoy verification. By working cooperatively, fleets of vessels can cover
large areas that would otherwise be impractical, time consuming and prohibitively
expensive to traverse by a single vessel. We describe the hardware design, control
infrastructure, and software architecture of the system, while additionally presenting
experimental results from several field trials. Further, we discuss our initial efforts
towards developing our system for water quality monitoring, in which a team of
watercraft equipped with specialized sensors autonomously samples the physical
quantity being measured and provides online situational awareness to the operator
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1 Introduction

Understanding and monitoring complex natural systems is critical to our ability
to use the resources provided by those systems while ensuring the systems stay
healthy over long periods of time. Ecologically sensitive marine areas are large and
remote, making it difficult to see impacts from threats such as climate change and
pollution. Scientists and governments are interested in tracking contaminants in the
water, assessing environmental change, monitoring sea levels, surveying the coastline
and understanding biodiversity. Unfortunately, monitoring and understanding large
spatially distributed systems is difficult due in part to partial observability, complex
dynamics, high cost, and the diversity of data that must be collected. Radically new
approaches to sampling and monitoring that enable collection of collecting large
amounts of data over large areas and extended periods are required if we are to
balance economic development with conservation for future generations [6].

Since the 1990 s Unmanned Surface Vehicles (USV) or Autonomous Surface Craft
(ASC) have been demonstrated to work in a broad set of applications such as bathy-
metric mapping, environmental sampling, defense and robotics research, yet there
has been very little commercialization or adoption in these domains. Unlike ground
or aerial vehicles, the extremely dynamic and frangible environment in which ASC’s
are deployed make the task of developing these machines far more complex. For
example, in applications such as monitoring pollution around coral reefs, the system
has to operate in a manner that does not damage the delicate ecosystem. For long
range deployments, communication range and data transmission bandwidth are also
important considerations. Although a few commercial ASC’s have been developed
in the past few years, the high cost of these systems has prevented many agencies
from adopting them. Most of these vehicles are fitted with expensive navigation sys-
tems and sensors, thereby bringing the cost of the entire vehicle to several thousand
dollars. These are only some of the challenges that the ASC community is facing
today (Fig. 1).

Fig. 1 Team of CRW sampling at Taal lake in Philippines
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In this paper we present our work on developing a multi-robot ASC platform which
addresses some of these challenges. We present the Cooperative Robotic Watercraft
(CRW) platform, a commercial smartphone based solution that leverages the built-in
inertial and visual sensors of modern mobile devices for navigation and localiza-
tion. In recent years, smartphones have redefined the notion of mobile computing
platforms. Unrelenting advances in mobile processors, low power sensors, and bat-
tery technology have made smartphones more powerful, affordable, and portable,
opening up a number of interesting novel applications. By using a combination of
WiFi and 3G, we improve communication reliability, extend the range of system
deployments beyond the limited range offered by standard 802.11 networks and take
advantage of existing infrastructure while maintaining a low development cost for
each craft—below $500. The reduced vehicle cost allows for development of a fleet
of boats, which can cooperate to perform tasks and achieve goals more efficiently
and expediently than a single craft. We envision very large fleets of CRW, perhaps
even numbering in the hundreds, autonomously exploring large bodies of water un-
der the supervision of a small number of operators. Previous work has detailed the
challenges involved in such coordination from a multi-agent perspective, including
challenges in task allocation, information sharing, and adjustable autonomy [3].

The overarching goal of our work is to develop a low-cost multi-robot marine
surface platform that is easy to deploy and versatile enough to be used for a wide
range of applications. This results in several unique design constraints that have not
previously been explored. Section 3 outlines these considerations and describes the
specific design choices that we made. We then discuss our validation experiments in
cooperative adaptive water sampling, where a suite of sampling algorithms ranging
from random to highest uncertainty tracking were developed and the system per-
formance in different operating environments (lakes, rivers, and floods) as well as
for varying team sizes were compared. The results from several field trials and sub-
sequent analysis is presented in Sect. 4. Finally, Sect. 5 provides a brief conclusion
along with a description of our plans for future research.

2 Related Work

Although there has been considerably less work done on ASC’s compared to AUV’s,
there are still some notable platforms that have made significant contributions to this
field. One of the first ASC’s that was developed was the ARTEMIS platform, which
was was used to perform bathymetry and test control algorithms [10]. After several
iterations of the ARTEMIS platform, a new platform known as AutoCat [5] was
developed to improve upon the shortcomings of its predecessors. Tele-supervised
Adaptive Ocean Sensor Fleet [1] is a deep sea multi-robot science exploration system
that combines a group of robotic boats to enable in situ study of phenomena in the
ocean-atmosphere interface as well as on the ocean surface and sub-surface. The
NAMOS project [9] developed an airboat which works in conjunction with static
nodes that are to be deployed prior to sampling. The static nodes provide temporal
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coverage while the airboat samples a good spatial resolution of data. The OASIS
platform is a long-duration solar-powered autonomous surface vehicle, designed for
autonomous global open-ocean operations [7]. Recently there has also been some
work on developing a unique ASV which runs on the energy harnessed from waves.
This ASV known as the Wave Glider [2] is also equipped with solar panels and has
been demonstrated to work well for long distance as well as extended deployments.
There has also been some exciting work in developing multi-robot systems with a
wide variety of capabilities [4], but under tightly controlled conditions.

Although these platforms are extremely capable and engineered specific to the
requirements of the operating domain, the large associated cost with these platforms
make them infeasible for large scale deployment.

3 Cooperative Robotic Watercraft

The primary objective of our work is to design, develop and test an application
independent low cost, multi-robot platform that can be used for collecting scien-
tific data and to monitor dynamic spatial phenomena over large distributed areas
with minimal human supervision. In this chapter we discuss five challenging areas
that impact the process of developing autonomous watercraft teams. These include:
hardware design, sensing and autonomy, user interface, communication and coor-
dination, and exploration and coverage.

As the system is equipped with a smartphone, the CRW platform has the capability
to use either WiFi or 3G for communications. Application specific algorithms decide
where the vessels need to go and determine which is best for each required location.
In the future, we anticipate making this is a distributed process, but it has not been
required until now as good wireless connectivity has been available. The exploration
and coordination aspects are handled according to the application specific tasks. The
following sections describe the other key areas.

3.1 Hardware Design

For the design of individual craft we chose that of a traditional airboat, which is
ideally suited for navigating shallow or ecologically sensitive areas such as reefs
and estuaries without damaging the marine ecosystem due to its flat bottom and
absence of operating components below the waterline. Another advantage of this
design is that it can be used in urban floods where debris filled water often hinders
rescue operations. Throughout the development process, several design iterations of
various sizes ranging from 40 to 70 cm long were fabricated and tested to achieve
our desired performance characteristics.

The main design criteria was to develop a system that is low-cost as well as easy
to manufacture and repair. Unlike other expensive autonomous marine vehicles, the
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CRW platform was designed to work cooperatively in large teams to accomplish
a task that would otherwise be impractical by a single vessel, which placed a few
unusual constraints on the physical design of the vehicle. Simplicity and ease of
fabrication were critical to keeping the cost of the craft as low as possible, however
overall system robustness and modularity was also highly desired. Since even a
relatively low failure rate for a large team would result in a cost-prohibitive amount of
time for repairs, the individual airboats were designed with modular, interchangeable
components, which can easily be swapped in the field.

The hull of the vessel is fabricated from multiple sheets of extruded polystyrene
foam to be resilient and inexpensive. The sheets are bonded together into a single
volume and carved using a heated nichrome wire setup. The hull is then sanded,
painted, and coated with sealants for weatherproofing. An important feature of the
platform is the self containment of the system components: the propulsion and steer-
ing system is bolted to a single deck plate which is mounted on top the vessel’s hull,
the electronics box slots into a dedicated compartment in the hull and is secured to
the deck plate, and the smartphone is mounted to the deck plate at the bow of the
craft. Any of these components can be easily detached and replaced within a couple
of minutes.

3.1.1 Propulsion and Steering

The propulsion and steering system is one of the most important components of
the watercraft. Our initial design was based on that of a conventional airboat, in
which a shrouded propeller powered by a brushless motor is mounted at the rear
end of the vessel and a pair of rudders is used to direct thrust in order to steer the
vehicle. Despite the tried and true nature of the traditional design, the production
and maintenance of the rudder mechanism was cumbersome and its complexity did
not support our vision of a modular system. After experimenting with several initial
prototypes, we designed a rudder-less steering system where the entire propulsion
assembly is actuated to steer the vehicle. In our design, the motor is mounted within a
close-fitting PVC duct, which serves to decrease thrust losses and noise due to the tip
vortices of the propeller. The duct is mounted to a circular acrylic base, which is free
to rotate on bearings within a larger acrylic retaining ring. A servo is top-mounted to
the circular base, with its horn protruding below the assembly where it can engage a
matching cutout on the deck plate. Using the servo, the entire duct can pivot allowing
for more efficient thrust vectoring than the traditional rudder system, particularly at
rudder angles further from the neutral position. At full charge the propulsion system
is capable of producing up to 8.2 Newtons of thrust, which can be entirely directed
along any vector to the rear of the vessel, facilitating a small turning radius. An
exploded model of the propulsion assembly is shown in Fig. 2a.

The primary material used in the propulsion and steering system is weather and UV
resistant acrylic, which is cut from sheets using a laser cutter. The acrylic components
are then assembled and bonded together with a special adhesive before installing the
PVC ducting, motor, propeller, and protective mesh. Once templates were created
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(a) (b)

Fig. 2 CAD models of the CRW platform a Exploded model of the propulsion and steering system.
b Cooperative robotic watercraft

for these acrylic components, manufacturing was seamless and many propulsion
assemblies could be produced in a matter of hours. This new design proved not only
to be more robust and efficient but also improved the overall maneuverability of the
vehicle and could easily be swapped out in case of failure.

3.1.2 Electronics

The onboard electronics are decomposed into two major components: a phone as-
sembly which houses the smartphone and orients it to best align its sensors with
the vessel, and an electronics assembly that contains the main power source and
actuation drivers for the vehicle as well as embedded electronics to interface with
additional external sensors. The heavier electronics assembly is placed close to the
center of mass of the vessel and is partially recessed into the deck. The assembly
is powered by a 10 Ah NiMh battery, which provides about 150 min of continuous
operation. An Arduino Mega provides a fast and flexible array of digital and analog
I/O for controlling the propulsion system and external sensor modules. Sensors such
as fluorometers and sonars are directly plugged into the Arduino through analog,
digital, or serial channels. Bluetooth is used as an interface between the smartphone
and the electronic components, enabling us to keep the two components decoupled
physically and architecturally. Figure 3 shows the system architecture diagram.

3.2 Sensing and Autonomy

At the core of the CRW platform design is an Android smartphone which pro-
vides computing and inertial sensors in an integrated package. This design decision
allows us to avoid the cost-prohibitive process of integrating sensory, computing, and
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Fig. 3 System architecture diagram

communication components in a comparable form factor. Modern smartphones also
provide access to multiple modes of communication such as 3G, WiFi and bluetooth.
The phone is enclosed in a watertight case that is mounted upright on the deck of the
vessel to best utilize the camera’s field of view. The Google Nexus S makes an ideal
candidate due to its powerful open source Android development environment.

Computationally intensive tasks and high-level controls are performed on the
phone, while low-level sensor interfacing and high-speed control loops execute on
the Arduino. The primary issue to overcome pertains to the quality of obtained data
from the embedded sensors required for control, specifically the GPS, gyroscope,
and compass. Layers of filters are required to smooth the data to extract sufficiently
clean information to effectively control the boat.

At times throughout sampling it becomes desirable to collect a physical sample
to verify sensor readings or for more detailed analysis than the onboard sensors
can provide. A water sampling mechanism provides this capability, allowing for
up to six unique samples to be collected before its storage must be emptied. The
sampler is loaded with evacuated glass vials, which are punctured by needles affixed
to individual rubber intake hoses leading beneath the boat. The vacuum in the vials
is held by pinching the hoses against rounded pins from a tumbler lock, which ride
against a central cam. A single actuator is then used to rotate the cam, leveraging the
elasticity of the hoses to displace the tumbler lock pins and selectively draw samples
into each vial. By using individually sealed vials and a unique hose for each sample,
cross contamination between samples is minimized without requiring any additional
actuators.

As all the computation is performed on the Android smartphone, local intelligence
for each boat resides on the phone. Layers of functionality separate general modules
from application specific modules. An end-user interface provides a single operator
with an overview of the state of the boats and provides high and low level commands
for interacting with them. The boat executes the core functionality via the boat
server. Client applications and additional modules running on the phone provide
the domain specific functionality. This design allows us to make subtle changes for



650 A. Valada et al.

specific domains without modifying previously tested and reliable code. For example,
the behavior to be exhibited by the vessel when it loses communication with the
base station varies significantly depending on the domain. When doing testing, the
vessel should immediately attempt to go back to home base; in a flood response, it
may only return at regular intervals to provide data to first responders. This domain
specific logic is captured in the client applications without adversely affecting the
core functionality that implements the actions.

The top level intelligence of the boat, the reasoning about where and what the
boat should do, is encapsulated in a proxy. Currently the proxy runs on an operator’s
machine and has relatively low-overhead in terms of communication with the boat.
The proxy is responsible for path planning to implement high-level operator directives
about areas to visit or search.

3.3 Operator Interface

A centralized operator interface provides an enhanced situational awareness about
the multi-robot teams and the operating domain. The interface displays information
about the locations of all the vessels, overlaid on a map of the environment. Using
the interface the operator can specify high-level objectives either as waypoints, paths
or areas to search, or low-level direction commands to the boats. The watercraft also
transmit images captured from the on-board camera at approximately 1 Hz. An image
queue on the operator’s side receives and reorders the images, allowing the operator
to observe, discard, or save images for later use. The operator interface emphasizes
simplicity and reliability over complex functionality. A snapshot of the main panel
of the interface is shown in Fig. 4. The interface is also composed of subpanels that
display application specific information. For example, the water sensing subpanel
displays the sampling grid cells with the current mean of observations within each
cell as well as buttons to modify the number cells and sensor channels. The debug
subpanel displays additional vital information about the vehicle such as the yaw rate,
coordinates of the current position and waypoints positions, controller gains and
tuning sliders.

4 Experimental Results

The CRW platform is designed as an application independent fleet of ASV’s. In order
to evaluate the designed system, we performed experiments in different domains
such as water quality monitoring, depth buoy verification, flood disaster mitigation
and bathymetry. In this chapter we will focus on water quality monitoring as this
application has attracted much attention in the recent years.
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Fig. 4 Main panel of the operator interface

4.1 Water Quality Monitoring

Investigating surface pollution is a difficult and complex task that can be challeng-
ing even for an autonomous watercraft. Pollutants such as petroleum hydrocarbons,
heavy metals, polycyclic aromatic hydrocarbons, pesticides, and some toxic organic
compounds are the common contaminants of concern. Even though there are several
protocols for safely disposing such compounds, the lack of efficient monitoring tech-
niques has lead to illegal dumping in water bodies. Using cooperative ASC’s we can
drastically improve the management of water resources by using intelligent tech-
niques such as adaptive sampling to analyze the trend of contamination and identify
the sources of pollution. Analysis of surface water also gives us information on the
interaction between the atmosphere and hydrosphere, which is of scientific inter-
est. While performing sampling with an autonomous watercraft, our main objective
is to collect measurements of interest in a way that best explains the hydrological
processes. Different sampling applications require either spatial or temporal reso-
lution of data; while sampling to identify the sources of pollution, it is desirable
to sample at locations having greater variance, whereas while sampling to map a
hydrological process, the main objective is to obtain the highest resolution possible.
In either of these applications the vehicles paths have to be planned and replanned
according to the measurements obtained. Sampling of the entire field has to be per-
formed before the field varies significantly, hence the use of a single vehicle to
monitor large areas is impractical.

During our initial sampling efforts using the CRW system, we implemented a high-
est uncertainty tracking cooperative sampling algorithm and compared the results to
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those obtained using random search and lawnmower patterns. We chose temperature
and specific conductivity as the quantities to be sampled, as conductivity gives us a
measure of the total dissolved salts (TDS) in the water and temperature is an impor-
tant factor that influences biological activity in the water. The sample space is then
discretized into grid cells where the number of cells are configurable. Determining
the number of cells to use is a critical task as there will be an optimal number of cells
for the selected sampling space for which an algorithm will work most efficiently,
and choosing more or less cells than necessary might lead to over or under-sampling.

vi, j = σ2 × αc

α < 1.0 (1)

In random search sampling, the vehicle is given random cells to sample one
after the other until the sampling time expires, while in lawnmower sampling, the
vehicle sweeps the area in a lawnmower fashion. These two algorithms give us a good
reference for comparison. As we use multiple vehicles for sampling, it was necessary
to divide the sample space into sub regions and assign each vehicle to a specific
subregion for the lawnmower sampling approach. For the random search approach,
dividing the sampling region was not required since each vehicle is assigned a random
cell to sample. In the maximum uncertainty tracking algorithm, each cell is assigned
a value based on the variance and the number of times that cell has been visited. The
standard deviation of all the observations in each cell is calculated and the new value
of the cell is given by Eq. 1, where c is the number of times that cell has been visited,
σ2 is the variance and α is a constant. A path is then planned to the cell which has the
greatest v. Initially when the count of all the cells are zero, v is assigned a high sensor
value so that the vehicle visits all the cells at least once, this gives an opportunity to
the vehicle to explore the area before sampling for the maximum uncertainty.

For this algorithm to work efficiently the standard deviation at each cell should
not vary very significantly from another. The time taken for the algorithm to con-
verge directly correlates with the difference in the standard deviation between the
cells. Other factors such as number of cells also influences the performance of the
algorithm. After sampling the entire field, the surface is reconstructed using inter-
polation. The fidelity of the reconstruction is then determined using the estimation
error obtained at different periods of time.

4.1.1 Experimental Domain I: Taal Lake

The Taal lake in Philippines is famous for many reasons. It is the largest fish farm
in the Philippines and rather uniquely, the world’s largest lake on an island on a lake
on an island. In May 2011 however, it became infamous for another reason: it was
the site of one of the largest fish kills in the world. About 956 metric tons of fish
appeared dead on the surface of the lake, costing the fish farming industry nearly 70
million PHP (1.6 million USD) in lost revenue. One of the major reasons cited for
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(a) (b)

Fig. 5 Surface temperature variation before and after rainfall in Taal lake a Before rainfall. b After
rainfall

this disaster is the sudden rise in temperature of the lake followed by rainfall that
prevented the adequate exchange of oxygen on the surface. A team consisting of five
CRW was deployed in Taal lake to observe the changes in the surface temperature
before and after a tropical rainfall. Plots shown in Fig. 5 displays an overlay of
the surface temperatures obtained by the CRW team and an image captured during
deployment is shown in Fig. 1. It was observed that the average surface temperature
varied from 31.81 ◦C before the rainfall to 29.96 ◦C after the rainfall.

4.1.2 Experimental Domain II: Gowanus Canal

The Gowanus Canal is one of the most polluted bodies of water in the United States
and was recently named a superfund site by the Environmental Protection Agency.
Effluents from chemical and manufacturing plants along the canal are the major
source of contamination of the waterbody. A team of CRW was used to autonomously
map the specific conductivity distribution in the area to analyze the spatial variation
in the field. Significant spatial variation suggests manual sampling is not viable as
several hundred points would have to be sampled to get a low estimation error.
Figure 6c shows a plot of the sample space discretized into 10 × 10 cells with the
standard deviation of each cell and the number measurements obtained in them
indicated by red circular markers. It can be seen that even though a large number
of samples are taken in most of the cells, there is a high variation in the measured
value. The mean of the observations in the cells varied from 7.7050 to 7.5607 dS/m
across the sensing field and the variance was calculated to be 0.0023. The spatial
distribution of the specific conductivity of a section of the Gowanus Canal is shown
in Fig. 6a. The average measured specific conductivity was 7.6387 dS/m, which is
well above safe limits.
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(a) (b) (c)

Fig. 6 Specific conductivity variation in a section of the Gowanus canal a Specific conductivity
overlay. b Path traversed by CRW during sampling. c Plot of the standard deviation of each cell
with the number of observations shown using red markers

4.1.3 Experimental Domain III: Allegheny River

A more rigorous experimental validation of the random sampling, lawnmower
pattern, and the highest uncertainty algorithms were performed on a branch of the
Allegheny river shielded from the main flow, located by Washington’s Landing in
Pittsburgh, PA. All three sampling algorithms were evaluated using a team of CRW
consisting of three vessels equipped with sonars as well as conductivity and temper-
ature sensors. The sampling area was about 6510 m2, discretized into 10 × 10 cells
and the sampling time for each algorithm was 30 min. To quantify the performance
of the highest uncertainty tracking adaptive sampling algorithm, we calculated the
normalized error and compared it with that of the random sampling and lawnmower
patterns. The error was calculated by subtracting the value of each cell at the end
of 30 min to that at each sampling interval. This process also gives us the rate of
convergence to the final measurements. It is assumed that the field does not vary
significantly for the period of sampling and the values of the cells at the end of the
sampling time are an approximate measure of the ground truth. To analyze the final
field estimation error, the sum of errors of all the cells at discrete sampling intervals
was plotted. The graph in Fig. 7a shows the trend obtained from testing using one

Fig. 7 Error comparison between random, lawnmower pattern and highest uncertainty sampling a
Team consisting of one CRW. b Team consisting of two CRW
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CRW. With the random sampling, more measurements end up being taken in the
cells that are in the center of the grid, as the vessel traverses to random waypoints
from one end of the sample space to another. In the case of the lawnmower pattern, a
more uniform trajectory is followed, hence exploration is sequential and slow. With
the highest uncertainty algorithm, priority is first given to exploration of the sample
space and then to tracking the cells with highest variance. It can be seen in Fig. 7a that
this algorithm has more of a uniform downward trend and the final value converges
faster than both random and lawnmower patterns.

The time taken to converge to the final value can be improved by cooperatively
sampling the area, thereby reducing the time required for exploration and maximizing
coverage. To demonstrate the performance of the algorithms using multiple vessels,
experiments on the algorithms were performed using teams of two and three CRW.
In Fig. 7b, the lawnmower pattern sampling has the least initial error, this can be
attributed to the fact that each vessel samples only the subregion assigned to it,
hence the initial explorative sampling is fast and even, but the convergence to the final
value slows down as the vessels follow a fixed pattern. With the highest uncertainty
algorithm, fast convergence is achieved as the observations from both the vessels are
used to calculate the uncertainty and plan the next waypoint accordingly. With a single
CRW, convergence was achieved in 15.6 min, whereas with two CRW, convergence
was achieved in 10.4 min. A comparison of the error for the lawnmower pattern
with varying team sizes is shown in Fig. 8. With a team consisting of three vessels,
convergence to the final value was achieved within 10.5 min, which is still higher
than the result achieved using two vessels with the highest uncertainty algorithm.

Bathymetric mapping is one of the most successful applications for ASV’s and
AUV’s as bathymetric maps are an important navigational aid for all marine vehi-
cles. A team of CRW equipped with sonars were used to map the river bed near
Washington’s Landing. To create a three dimensional surface model, a grid is first

Fig. 8 Error comparison for lawnmower patten sampling with CRW teams of varying sizes
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Fig. 9 Terrain model of a section of the Allegheny riverbed

Fig. 10 Countour map of a section of the Allegheny river bed

Table 1 Deployment
statistics

Experimental domain Team size Time in water (Hours)

Taal lake 5 95
Gowanus canal 2 15
Allegheny river 3 70

constructed using the range of the obtained values and interpolation is performed
on the measured data. Gaussian smoothing is applied to smooth any noise in the
measured data and a surface is fit on it. A map developed from sampling portraying
the isobaths and the terrain model for the same area is shown in Fig. 9a, b.
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5 Conclusion and Future Work

In this paper we described the design and architecture of a team of CRW and analyzed
its performance in the water quality monitoring application. The integrated smart-
phone solves many inherent problems associated with ASV’s relating to long range
communication, situational awareness, system integration, and cost effectiveness.
The custom designed propulsion assembly not only increased the efficiency of steer-
ing of CRW but also remarkably improves the fault tolerance of the entire system
while compared to the traditional design. Additionally, by incorporating multiple
layers of communication and a centralized coordination protocol, we ensure effi-
cient and robust operation of the autonomous system. We compared the estimation
error of the highest uncertainty tracking algorithm with random sampling and lawn-
mower patterns for teams of varying sizes. The highest uncertainty algorithm not
only has lower average error but also converges faster than the random sampling
and lawnmower patterns. Our experiments totaling to more than 180 boat hours in
different operational and environmental conditions and with with teams of up to five
CRW have confirmed the versatility and the serviceability of our platform. A table
detailing the approximate testing time in water at each location along with the team
size is shown in Table 1.

Ongoing work is focused on system modeling and development of a nonlinear
controller with an integrated planner for this underactuated system. Unlike con-
ventional airboats, the actuated propulsion assembly enables the CRW to perform
extremely tight turns, thereby allowing for very accurate tracking by planning paths
using the system dynamics. Future work includes developing more intelligent multi-
robot adaptive sampling algorithms that reduce the estimation error and improve the
spatial resolution of surface reconstruction. Another promising application for our
work is depth buoy verification, where a team of CRW is used to visually identify
the depth buoys which are placed in river channels to mark the safe passage of ships
and barges, a process that is currently performed manually at a considerable expense
(Fig. 10).
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