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Preface

This book contains the Proceedings of the seventh International Workshop on
Computational Kinematics (CK2017) sponsored by IFToMM, the International
Federation for the Promotion of Mechanism and Machine Science.

CK 2017, IFToMM International Workshop on Computational Kinematics, is
the seventh event of a series that started in 1993 as a specific conference on
computational kinematics. The first event was held at the International Conference
and Research Center for Computer Science (IBFI), Germany, in October 1993; the
second was held at INRIA Sophia Antipolis, France, in September 1995; the third
was held in Seoul, South Korea, 2001; the fourth was held at the University of
Cassino, Italy, in May 2005; the fifth was held at the University of Duisburg-Essen,
Germany, in May 2009; and the sixth was held in Barcelona, Spain, in May 2013.

The aim of CK workshop is to bring together researchers from the broad range of
disciplines related to computational kinematics in an intimate, collegial, and
stimulating environment, where they can present and exchange their newest sci-
entific results.

The seventh CK workshop comes to Poitiers, taking place from 22 to 24, May
2017. The workshop received 78 papers. After peer-reviewed evaluation, 69 papers,
from 24 different countries, have been accepted for presentation. The topics of the
papers are related to computational kinematics, including kinematic design and
synthesis, computational geometry in kinematics, motion analysis and synthesis,
theory of mechanisms, mechanism design, kinematical analysis of serial and par-
allel robots, kinematical issues in biomechanics, kinematical motion analysis and
simulation, geometric constraint solvers, deployable and tensegrity structures, robot
motion planning, applications of computational kinematics, education in compu-
tational kinematics, and theoretical foundations of kinematics.

The community of kinematicians, thus, continues to exhibit its traditional
vitality. The reader will find here a representative sample of the most modern
techniques available nowadays for the solution of challenging problems arising in
computational kinematics. In light of its contents, this book should be of interest to
researchers, graduate students, and practicing engineers working in kinematics or
related areas. The researchers gathering in Poitiers on the occasion of CK2017 will
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continue to make this truth and to show how their results have an important impact
in several different domains.

We thank the authors who have contributed with very interesting papers on
several subjects, covering many areas linked to computational kinematics and
additionally for their cooperation in revising papers in a short time in agreement
with the reviewers’ comments. We are grateful to the 65 reviewers for the time and
efforts they spent in evaluating the papers with a tight schedule that has permitted
the publication of this Proceedings volume in time for the workshop.

We thank the University of Poitiers, in particular, the Fundamental and Applied
Science Faculty, for having hosted the CK 2017 event.

We also thank the support of International Federation for the Promotion of
Mechanism and Machine Science (IFToMM). The symposium received generous
support from local sponsors, namely the University of Poitiers, the Grand Poitiers,
the Nouvelle Aquitaine region, and the Aquitaine Robotics cluster, which were
critical to make this workshop possible.

We thank the publisher Springer and its editorial staff for accepting and helping
in the publication of this Proceedings volume within the book series on Mechanism
and Machine Science (MMS).

Saïd Zeghloul
Lotfi Romdhane

Med Amine Laribi
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Inherently Balanced Double Bennett Linkage

Volkert van der Wijk(B)

Department of Precision and Microsystems Engineering,
Mechatronic System Design, Delft University of Technology,

Delft, The Netherlands
v.vanderwijk@tudelft.nl

Abstract. For fast moving mechanisms shaking force balance is impor-
tant to reduce base vibrations. When mechanisms are force balanced,
they are also gravity balanced which is important for reduced actuation
effort and increased safety. It has been shown that from planar inherently
balanced linkage architectures a variety of new and interesting force bal-
anced mechanism solutions can be synthesized. The goal of this paper
is to derive the balance conditions of one special solution consisting of
two similar 4R four-bar linkages connected by a parallelogram, based
on two sets of principal vectors. It is shown that also here the balance
conditions can be derived from the linear momentum equations of each
relative degree of freedom. Subsequently it is shown how the planar ver-
sion can be transformed into a spatial version becoming an inherently
balanced linkage of two similar Bennett linkages connected by a planar
parallelogram. The balance conditions for both the planar and spatial
version are exactly equal.

Keywords: Inherent force balance · Bennett linkage architecture ·Mass
motion · Principal vectors

1 Introduction

When mechanisms (i.e. robotic manipulators) move at high-speeds, base vibra-
tions due to the dynamic reactions on the base (the so called shaking forces and
shaking moments) are generally significant. These vibrations limit the perfor-
mance of mechanisms which cannot run as fast and precise as desired. Contrary
to common solutions to minimize the influence of base vibrations such as damp-
ing and advanced control, it is also possible to design a mechanism such that
it does not produce any base vibrations at all. The mechanism then is designed
dynamically (shaking force and shaking moment) balanced [2,3].

The main challenge in designing balanced mechanisms is to limit the increase
of mass, inertia, and complexity of the design for an advantageous application
[6]. Instead of balancing a pre-existing mechanism, an approach where dynamic
balance forms the starting point of the design based on which suitable mechanism
architectures are synthesized has shown to lead to a variety of new balanced
mechanism. This approach is named inherent dynamic balancing [3].
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 1



4 V. van der Wijk

The inherent dynamic balance approach is based on the method of principal
vectors, describing the motion of link masses relative to the center of mass (CoM)
of the complete linkage in a specific decoupled way. In [5] for the first time a ‘grand’
inherently balanced linkage architecture was presented, with the novelty that it is
not based on solely one principal vector set, but on the combination of all possible
principal vector sets. From this highly overconstrained but movable architecture it
was shown that a variety of new and interesting balanced linkages could be found.

In this paper it is shown how the balance conditions can be derived of one
of the inherently balanced mechanism solutions which is based on two principal
vector sets. The mechanism consists of two similar four-bar linkages that are
connected with a parallelogram. It is shown also how from this planar linkage a
spatial inherently balanced double Bennett linkage is found.

First the planar linkage is explained and the force balance conditions are
derived from the linear momentum equations of each DoF independently. Here
one element in each closed chain is modeled mass equivalently. Subsequently it
is shown how the spatial inherently balanced Bennett linkage architecture can
be obtained from the planar version.

2 Planar Inherently Balanced Linkage with Two Similar
Four-Bars

Figure 1 shows the basic inherently balanced linkage solution that was derived
in [5] from the so called ‘grand 4R four-bar based inherently balanced linkage
architecture’, a highly overconstrained but movable architecture including all
principal vector links of the four different principal vector sets. The linkage is
drawn to scale for a realistic impression and consists of eight links which are
organized as two similar four-bar linkages A0A1A2A3 and D4B7SB6 with solely
revolute pairs. The four-bar linkages move synchronously for all motion which is
induced by the parallelogram A0P12D4P43 of which P12D4 is part of link P12B6

and D4P43 is part of link B7P43. The links of four-bar A0A1A2A3 have lengths
li whereas the inner links have lengths a2, a3, a4, and a5. Joints P12 and P43,
which are two principal points, are located at a distance a1 and a6 from A0,
respectively as illustrated. The parameters ai are principal dimensions of two
different sets of principal vectors in the grand architecture. The conditions for
similarity of the two four-bars can be described as:

l1
a2 − a1

=
l2
a3

=
l3
a4

=
l4

a5 − a6
(1)

with a2 − a1 = |B7D4| and a5 − a6 = |B6D4| = h4. Each link i has a mass
mi of which the CoM is located along the lines through the joints (i.e. all links
are assumed mass symmetric with respect to these lines) defined by parameters
ei for the outer four-bar and by pi for the inner four-bar as illustrated. The
common CoM of all links together is in joint S for all motion of the linkage. By
choosing joint S as the pivot with the base, the common CoM is stationary for
which for all motion the linkage is shaking force balanced and gravity balanced.
About S the linkage has two-degree-of-freedom (2-DoF) motion.
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Fig. 1. Inherently balanced 2-DoF planar 4R four-bar based linkage with 8 links from
[5], drawn to scale for a realistic impression. Four-bar A0A1A2A3 is similar to four-bar
D4B7SB6 and moves synchronously for all motion with the common CoM S stationary
in the base pivot.

Fig. 2. To derive the force balance conditions, links A1A2 and SB7 are modeled with
equivalent masses ma

2 , m
b
2, m

a
8 , and mb

8 in joints A1, A2, S, and B7, respectively. The
closed chains then are modeled as mass equivalent open chains.
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Also for a mechanism based on multiple sets of principal vectors such as the
mechanism under investigation, the force balance conditions or conditions for
which the common CoM is in joint S for all motion can be derived from the
linear momentum equations of each relative DoF individually as explained in
[3,4]. Then first one element in each closed loop is modeled mass equivalently
as shown in Fig. 2 to obtain an open-loop mass equivalent linkage. The mass
m2 of link A1A2 is modeled with equivalent masses ma

2 and mb
2 in joints A1

and A2, respectively, with the conditions for mass equivalence ma
2 + mb

2 = m2

and ma
2e2 = mb

2(l2 − e2). Similarly for link SB7 the mass m8 can be modeled
with equivalent masses ma

8 and mb
8 in joints S and B7, respectively, with the

conditions for mass equivalence ma
8 + mb

8 = m8 and ma
8p8 = mb

8(a3 − p8).

Fig. 3. The force balance conditions are derived from the linear momentum equations
of each relative motion individually: (a) DoF 1, (b) DoF 2, and (c) DoF 3

Since the linkage is based on a 3-DoF principal vector linkage, it has three
relative DoFs which can be analyzed individually [4]. Figure 3a illustrates the
first relative DoF θ1 where links A2A3 and A3A0 are immobile while link A0A1

solely rotates about A0. Then link P43B7 solely rotates about P43 while links
P12B6 and B6S solely translate. The linear momentum L1 of this motion can
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be written with respect to reference frame x1y1, which is aligned with A0A1 as
illustrated, and must equal the linear momentum of the total mass moving with
S, which writes:

L1

θ̇1
=

[
m1e1 + ma

2 l1 + (m5 + m7 + ma
8)a1 + m6(a2 − p6) + mb

8a2

0

]
=

[
mtota1

0

]
(2)

with total mass mtot = m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 and the
equivalent masses ma

2 = m2(1−e2/l2), ma
8 = m8(1−p8/a3), and mb

8 = m8p8/a3.
Figure 3b illustrates the second DoF θ2 where link A0A3 rotates about P42,

link P12B6 rotates about B6, link SB6 is immobile and the other three links
solely translate. The linear momentum L2 of this motion can be written with
respect to reference frame x2y2, which is aligned with A0A3 as illustrated. Since
for this motion the total mass in S is not moving, the linear momentum must
equal zero and is written as:

L2

θ̇2
=

[−(m1 + ma
2)a5 + (mb

2 + m3)(l4 − a5) + m4d4 − m5p5 − (m6 + mb
8)h4

0

]
=

[
0
0

]
(3)

with mb
2 = m2e2/l2 and d4 = l4 − a5 − e4.

Figure 3c illustrates the third DoF θ3 where links SB6 and A2A3 solely rotate
about B6 and A3, respectively, and all other links are immobile. The linear
momentum L3 of this motion can be written with respect to reference frame x3y3,
which is aligned with A2A3 as illustrated, and must equal the linear momentum
of the total mass moving in S writing:

L3

θ̇3
=

[
mb

2l3 + m3e3 + m7(a4 − p7) + ma
8a4

0

]
=

[
mtota4

0

]
(4)

From the linear momentum equations the three force balance conditions are
readily obtained as:

m1e1 + ma
2l1 + (m5 + m7 + ma

8)a1 + m6(a2 − p6) + mb
8a2 − mtota1 = 0

−(m1 + ma
2)a5 + (mb

2 + m3)(l4 − a5) + m4d4 − m5p5 − (m6 + mb
8)h4 = 0 (5)

mb
2l3 + m3e3 + m7(a4 − p7) + ma

8a4 − mtota4 = 0

and after substituting mtot, d4, and h4 they can be rewritten as:

(m1 + m2 + m3 + m4 + m6 + mb
8)a1 −m1e1 −ma

2 l1 −m6(a2 − p6) −mb
8a2 = 0 (6)

(m1 + m2 + m3 + m4 + m6 + mb
8)a5 − (mb

2 + m3)l4 −m4(l4 − e4) + m5p5

− (m6 + mb
8)a6 = 0 (7)

(m1 + m2 + m3 + m4 + m5 + m6 + mb
8)a4 −mb

2l3 −m3e3 + m7p7 = 0 (8)

These three balance conditions together with the conditions for similarity
Eq. (1) give in total six equations. This means that there are six dependent
parameters to be calculated with the others given. One option can be to use the
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equations to calculate a1, a2, a3, a4, a5, and a6. The sequence of solving the
equations then becomes:

I. a4 = mb
2l3+m3e3−m7p7

m1+m2+m3+m4+m5+m6+mb
8

(from Eq. (8))
II. a3 = l2

l3
a4 (from Eq. (1))

III. a1 =
m1e1+ma

2 l1−m6p6+(m6+mb
8)

l1
l3

a4

m1+m2+m3+m4
(from Eq. (6))

IV. a2 = l1
l3

a4 + a1 (from Eq. (1))

V. a5 =
(mb

2+m3)l4+m4(l4−e4)−m5p5−(m6+mb
8)

l4
l3

a4

m1+m2+m3+m4
(from Eq. (7))

V I. a6 = a5 − l4
l3

a4 (from Eq. (1))

(9)

3 Spatial Inherently Balanced Linkage with Two Similar
Bennetts

The planar inherently balanced linkage in Fig. 1 can easily be transformed into
a spatial inherently balanced linkage. When the two four-bar linkages are made
parallelograms with l1 = l3, l2 = l4, a2 − a1 = a4, and a5 − a6 = a3 then the
resulting planar linkage becomes as shown in Fig. 4a. With the conditions for
similarity Eq. (1) and the balance conditions Eqs. (6–8) the common CoM S
is stationary in the fixed pivot for all motion. Then by twisting the revolute
pairs of each similar four-bar out of plane according to the Bennett conditions
for which the mechanism remains mobile [1], the spatial inherently balanced
linkage in Fig. 4b is obtained. Twisting the revolute pairs does not affect the
balance and balance conditions, they remain exactly the same with equal values
as for the planar version. This is since the principal vectors on which the linkage
is based, do not change and are always valid for spatial motion [3]. Only of
importance is that the Bennett conditions for the inner and outer four-bar are
chosen equal such that the inherently balanced linkage has two similar 4R four-
bar Bennett linkages. The parallelogram connecting the two Bennett four-bars
remains planar.

Although in this paper all links were assumed mass symmetric, in the out-
of-plane direction the links and linkage does not need to be mass symmetric. All
links can have a general mass distribution in this direction, comparable to the
planar linkage where the out-of-plane mass distribution does not affect the force
balance as well. For any out-of-plane mass distribution the common CoM S will
be a stationary point on the rotational axis of the fixed joint. In practice this
is useful, since especially for producing Bennett linkages with sufficient range of
motion without intersecting links, advanced link designs are needed. It is also
possible to have all links in this paper have a general CoM, i.e. without mass
symmetry in any direction. The balance conditions can be derived with the same
shown approach, however it will be more extensive. Then also in general P12 and
P43 will be located off their line through the link joints.
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Fig. 4. An inherently balanced double Bennett linkage with common CoM S as fixed
joint in (b) can be obtained from the planar version of the linkage where all links are
in parallel in (a) by twisting the revolute pairs out of plane. The balance and balance
conditions are maintained.

Since twisting the revolute pairs does not affect the force balance, the inher-
ently balanced double Bennett linkage has potential as a reconfigurable and
deployable inherently balanced linkage. By actuating the twists the linkage can
be altered from planar to spatial, vice versa.

4 Conclusions

In this paper it was shown how a spatial inherently balanced double Bennett
linkage could be obtained from a planar inherently balanced linkage of two similar
4R four-bar linkages connected with a parallelogram. Twisting the revolute pairs
out of plane according the Bennett conditions does not affect the balance and the
balance conditions. The resulting linkage consists of two similar Bennett linkages
connected with a planar parallelogram. The balance conditions were derived
from the planar linkage by linear momentum equations of each relative degree
of freedom individually, showing that this method applies also to inherently
balanced linkages that are based on multiple sets of principal vectors.

The approach in this paper can be regarded as an approach to synthesize
spatial inherently balanced mechanisms from planar linkage architectures with
the advantage to not have to consider complex spatial kinematics. As a bonus,
it leads spontaneously to a variety of inherently balanced reconfigurable and
deployable spatial linkages, as was shown for the example in this paper.
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Abstract. The aim of this paper is to understand the influence of radial
and axial clearance in the revolute joints on the overall performance of
a circuit breaker. A circuit breaker mechanism is made of seven links,
seven revolute joints with clearance in both radial and axial direction,
four unilateral contacts with friction, and it has forty-two degrees of free-
dom. The Moreau-Jean nonsmooth contact dynamics (NSCD) numerical
method is used to perform the simulations. The numerical results are val-
idated by careful comparisons with experimental data.

Keywords: Joint clearance · Unilateral constraints · Coulomb’s
friction · Impacts · Circuit breaker

1 Introduction

A miniature circuit breaker is a device that switches and/or protects the lowest
common distributed voltage in an electrical system. It is designed to protect con-
ductors and insulation from damage due to overload and short circuit. Usually,
the performance of these mechanisms is not as desired, due to the manufactur-
ing tolerances on links, clearances in the joints and the assembly tolerances. The
spatial revolute joint with clearance in both axial and radial direction adds five
extra degrees of freedom into the system. Compared to planar mechanisms, spa-
tial mechanisms can generate more complicated functions with the same number
of links. Most of the previous work is focused on the radial clearance in the pla-
nar and spatial revolute joints [8,10,11]. However more recently the influence of
the axial clearance in the revolute joint has been studied in [15,17].

Most of the mechanisms in the Schneider Electric company use frictional
contacts and the compliant models cannot correctly model the sticking condition.
In the nonsmooth contact dynamic (NSCD) approach, the interaction of the
colliding bodies is modeled with multiple frictional unilateral constraints [12,13].
The unilateral constraints are described by set-valued force laws in normal and
tangential directions. The normal contact law is based on Signorini’s condition
while the tangential contact law is based on Coulomb’s friction law. Careful
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 2
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comparisons between numerical results obtained with the NSCD approach, and
experimental data are reported in [14,16], while the use of the NSCD approach
for systems with clearances is also advocated in [5,9]. They demonstrate that
the numerical schemes and the model used in this article, though they can be
improved, possess very good forecast capabilities.

Our objective is to study the influence of initial conditions and the out-of-
plane motion, i.e. the polarization effect1 in the three dimensional case. Another
objective is to develop a time efficient virtual test bench using the INRIA open-
source simulation software siconos2. Our aim is to understand the influence of
clearance in the revolute joints on the overall behavior of the C-60 miniature cir-
cuit breaker where human safety must be guaranteed. To validate the simulation
model, experiments are carried-out on the prototype samples and the results are
compared with the simulations.

2 Formulation of the Nonsmooth Dynamical Systems

2.1 Normal and Tangential Contact Laws

Let us consider two non overlapping bodies (see Fig. 1), a potential contact point
between two bodies is given by the closest points CA and CB . A local frame is
defined at the potential contact point by (N,T1,T2). The gap gN is defined a
the signed distance between the two potential contacting points CA and CB .
The contact force, denoted by r = (rN, rT)� ∈ IR3. Due to the impenetrability
assumption one has gN � 0. We also neglect adhesive effects so that rN � 0. If
rN > 0 then we impose gN = 0, and when gN > 0, the normal contact force must

Fig. 1. Contact local frame. Fig. 2. 3D Coulomb’s friction cone,
sliding case.

1 The polarization effect is created by two aspects: the presence of radial clearance in
the revolute joint and the forces acting on the parts.
Definition 1. Polarization is the contact position between the two parts under the
influence of an external force in an equilibrium stage.

2 http://siconos.gforge.inria.fr/.

http://siconos.gforge.inria.fr/
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vanish, i.e. rN = 0 (no magnetic or distance forces) [1,3,6]. These conditions
yield a complementarity condition denoted compactly as:

0 � gN ⊥ rN � 0. (1)

The normal contact law at the velocity level is expressed as:

0 � uN ⊥ rN � 0, if gN = 0. (2)

The tangential contact law is the Coulomb friction that constrain the contact
force r in the the friction cone (see Fig. 2)

r ∈ K = {r ∈ IR3, ||rT|| � μrN}. (3)

The scalar μ � 0 is the coefficient of friction. In case of sliding the tangential
force rT acts in direction opposite to the relative tangential velocity uT. If the
relative tangential velocity uT is zero then the bodies stick to each other (rolling
without slipping). We introduce the modified relative velocity û := u + μ‖uT‖N,
then the Coulomb friction can be equivalently expressed as a second–order cone
complementarity condition [4,7] if gN = 0:

K∗ � û ⊥ r ∈ K. (4)

The cone K∗ = {v ∈ IR3|rT v � 0, ∀r ∈ K} is the dual cone of K.

2.2 Newton-Euler Formulation of the Equation of Motion

Let us consider a mechanical system subjected to m constraints, with me holo-
nomic bilateral constraints hα(q) = 0, α ∈ E ⊂ IN , mi unilateral constraints
gα
N(q) � 0, α ∈ I ⊂ IN and Coulomb friction. The Newton-Euler formulation of

such a system is given as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q̇ = T (q)v,

Mv̇ = F (t, q, v) + H�(q)λ + G�(q)r,
Hα(q)v = 0, α ∈ E
uα = Gα(q)v, ûα = uα + μα‖uα

T‖Nα

rα = 0, if gα
N(q) > 0,

Kα,∗ � ûα⊥ rα ∈ Kα, if gα
N(q) = 0,

uα,+
N = −eα

r uα,−
N , if gα

N(q) = 0 and uα,−
N � 0,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

α ∈ I

where q is the vector of coordinates of the position and the orientation of the
body, v is the velocity, the operator T (q) ∈ IR7×6 links the time derivatives of
the coordinates to the velocities, M is the total inertia matrix, F (t, q, v) ∈ IR6

collects all the forces and torques applied to the body. The operators H ∈ IRme×n

and G ∈ IR3mi×n link the local velocity variables in the joints, and at contacts
respectively, to the velocity vector of the bodies.
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2.3 The Numerical Integration Method

In this paper we use the event–capturing method based on the Moreau–Jean
time-stepping scheme [3,12,13], where the constraints are solved at the velocity
level and thereafter named the NSCD method. It is well–known that veloc-
ity level treatment of constraints yields violations of constraints with the drift
phenomenon. When we simulate mechanisms with small clearances, this is not
tolerable since we have to keep the violation as small as possible with respect
to the characteristic length of the clearances. To overcome this limitation of the
standard Moreau–Jean time-stepping scheme, we use the combined projection
scheme as proposed in [2].

3 The C-60 Miniature Circuit Breaker Mechanism

Miniature circuit breaker construction is simple, however very precise. In fact,
a miniature circuit breaker has no replacement parts. It is not designed to be
maintained. When a unit goes bad, it is simply replaced. A typical miniature
circuit breaker mechanism is depicted in Fig. 3(a).

Fig. 3. C-60 circuit breaker mechanism - ON position.

Mechanism working principle: All the mechanism parts are enclosed in-
between the case and cover parts. These parts are connected to each other
through a revolute joint or frictional contact. In the following section we will
see the detailed description of these joints and contacts. In the first step, the
primary function of a mechanism is usually formulated in terms of kinematical
quantities (link geometry, kinematic constraints, etc). Also the various geomet-
rical relations resulting from the kinematical analysis of the linkage mechanism
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are an essential ingredient for the dynamic analysis. The kinematical analysis of
a miniature circuit breaker mechanism (hereafter called the C-60 mechanism) is
of great importance. The C-60 mechanism consists of seven links, seven revolute
joints with clearance in both radial and axial direction and four frictional con-
tacts (see Fig. 3(b)). It has 42 degrees of freedom. The operating mechanism in
the ON position is explained as follows:

The close operation leads to ON position of the breaker. In close opera-
tion (see Fig. 3(b)), the operating handle (A) is rotated clockwise which closes
the contacts C5 and C4 through the revolute joints J1, J5, J6, J3 and J4. The fric-
tional contacts C5 and C4 have a specific wedge shape profile, which enables the
locking between the hook and tripping bar. After the activation of the contacts
C5 and C4 the motion has been transferred to the moving contact through the
plate by revolute joints J2 and J7, which ensure closing of the contact between
the moving and the fixed contact. During close operation the handle spring (P1)
and the mechanism springs (P2 and P3) get charged, which will be used for the
trip operation of the breaker.

3.1 Revolute Joint Between the Case, the Cover and the Handle: J1

The revolute joint between the case, the cover and the handle is J1. The protru-
sion on the case and cover acts as a journal and the cavity on the handle acts as a
bearing. In our modelling approach the ideal revolute joint is replaced by a jour-
nal and two circular rings at the extreme ends of the bearing (see Fig. 4) which
acts as a spatial revolute joint with clearance. The axial and radial clearances
in the revolute joint are modeled by introducing six degrees of freedom between
the bearing and the journal. The relative motion between them is restricted by
the internal surface of the bearing and the flanges of the journal. The radial
clearance can be varied by changing the internal diameter of the bearing. The
contact between the flange and the bearing top/bottom surface is a plane-plane
contact. In reality, a plane-plane contact is impossible due to the presence of sur-
face roughness and waviness. However the plane-plane contact can be completely
described by three contact points. Few limitations of the plane-plane contacts
are: more simulation time is required (numerically costly) as the contact detec-
tion is done on the entire area, and in return it gives only one contact point

Fig. 4. Revolute joint with clearance J1. Fig. 5. Modeling of plane–plane contact.



16 N. Akhadkar et al.

between the plane-plane contact which is practically not correct. The contact
between the flange and the bearing face is modeled by considering the plane
surface of the flange, while the plane surface of the bearing is replaced by three
semi-circular equidistant rings (see Fig. 5).

4 Experimental Validation: Contact Force Versus
Displacement

In this section we report comparisons between numerical results obtained with
the NSCD method, and experimental data obtained on physical prototypes built
by Schneider Electric. The radial clearance in the revolute joints is given as:
J1 = 0.085mm, J2 = 0.05mm, J3/J4 = 0.06mm, J5/J6 = 0.045mm and J7 =
0.055mm. Referring to the arrow in Fig. 3, the comparisons are made by record-
ing force and displacement histories at the moving contact. The test bench con-
sists of the fixture to mount the C-60 breaker and the moving table which com-
prises a pair of linear motion guide, see Fig. 6. The load cell is mounted on the
moving table to measure the force and the bi-axial movement of the moving table
is measured by two position sensors. The contact force of the moving contact
C7 (see Fig. 3(b)) is measured with the help of load cell, and is recorded by the
computer programme. We have followed a similar methodology for the virtual
testing (virtual test bench) of the C-60 product using the simulation.

Fig. 6. Experimental test bench for contact/tripping force measurement.

1. In case of experimental test, the effect of polarization of the joints is approx-
imately less by 50% when compared to the total displacement of the mov-
ing contact. At the static equilibrium (at the end of forward motion) of the
sample-1, the recorded contact force is 15.28N and the total displacement is
2.0mm, see Fig. 7(a). The results of the experimental test are compared with
the numerical simulation. In case of the numerical test the effect of polar-
ization is similar to that of the experimental test, see Fig. 7(b). However the
trajectory of the contact force in both the experiment and numerical tests are
not identical, this may be due to the fact that the geometrical variations on
the contacting surfaces of the parts are not considered in the case of numer-
ical simulation. In reality the geometrical variations always exist and these
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Fig. 7. Sample-1: Contact force versus displacement.

variations may change the polarization of the parts (contact points between
the parts). In case of the numerical simulation, the contact force at the sta-
tic equilibrium is 14.96N. The percentage relative error in the contact force
between the experiment and numerical test is 2.08%.

2. The trajectory of the contact force in case of forward motion is lagging behind
the backward motion of the moving contact. This is due to the effects of
friction (change in the direction of the frictional forces) in the joints. In case
of the numerical simulation, the coefficient of friction between the plastic-
plastic materials is considered to be μ = 0.3, and between the steel-plastic
materials μ = 0.1 In case of experimental test the real values of the coefficient
of friction are not known. This may be one of the reasons behind the slightly
different behaviour of the contact force trajectories between the experiment
and virtual test.

5 Conclusions

This paper is devoted to the numerical simulation of the C-60 circuit breaker
built by Schneider Electric, using the so-called Moreau-Jean NSCD event-
capturing numerical scheme. It relies on rigid body assumptions, with set-valued
Coulomb’s friction, and constant kinematic restitution coefficients. Emphasis is
put on the modeling of three dimensional revolute joints with axial and radial
clearance. Moreover detailed comparisons with experimental date obtained at
the Schneider Electric laboratory, prove the very good prediction capabilities of
the NSCD approach, for this type of mechanisms.
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Abstract. The paper presents an eight-bar linkage derived from a rotat-
able kaleidocycle, a hinged ring of eight regular tetrahedra with revolute
joint axes along common edges. A simplified derivation of the kinematics
closure equation of the mechanism is proposed. The bifurcations of the
two-dimensional configuration space of this two-degree-of-freedom link-
age is analyzed by screw theory and the different modes of operation are
described.

Keywords: Twofold-symmetric linkage · Closure equation ·
Bifurcation · Singularity · Kaleidocycle

1 Introduction

A kaleidocycle is a ring of an even number of tetrahedra hinged along common
edges skew in every body [6,9]. With eight or more tetrahedra, there is a contin-
uous twisting inward-outward motion of the ring, displaying all the faces when
the ring is viewed along its axis [4].

Kaleidocycles have been a known subject in recreational mathematics [2].
They are also of interest to mechanism theory [5,8]. The equivalent linkage is a
2k-bar hinged loop with skew revolute-joint axes in every link. For example, the
kaleidocycle composed of six regular tetrahedra can be thought of as a realization
of the threefold-symmetric Bricard linkage [1].

In this paper, we study a twofold-symmetric eight-bar linkage derived from the
kaleidocycle consisting of eight regular tetrahedra. In Sect. 2, the closure equation
of the eight-bar linkage is derived in a new and simplified way. The mobility and
bifurcations [10] are analyzed in Sect. 3. The article concludes with Sect. 4.

2 Kinematics

The sketch of the Twofold-symmetric 8-bar linkage is shown in Fig. 1. It is com-
posed of eight equal links connected with eight revolute joints. These joint axes
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 3
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Fig. 1. Twofold-symmetric 8-bar
linkage

Fig. 2. Equivalent spherical four-bar
linkage

are denoted by A,B, . . . ,H respectively. The axes of every two adjoining hinges
are perpendicular, A ⊥ B ⊥ C ⊥ . . . ⊥ H ⊥ A. When referring to a “link”,
e.g., AB, we will usually mean the common normal line or segment between two
adjoining axes.

In the configuration in Fig. 1, the axes B, D, F , and H intersect at point O,
while points Q1 and Q2 are the intersections of A, C and E, G, respectively.

The distance from O to link i is

l2i = l2(i+1) = L tan
θ2i+1

2
(i = 1, 2, 3) (1)

Thus,
l2 = l4 = l6 = l8 ; θ1 = θ3 = θ5 = θ7 (2)

Suppose we now replace each link pair HA − AB, BC − CD, DE − EF ,
and FG − GH by a single rigid body, HB, BD, DF and FH, respectively.
(I.e., we fix the value of every second joint angle.) Then, the eight-bar can move
as the spherical four-bar linkage shown in Fig. 2. As its four link lengths are
identical, measured by the constant angle α, there are two perpendicular planes
of symmetry π1(OBF ) and π2(ODH). The points Q1 and Q2 are reflections in
the plane π2.

The joints values of the eight-bar in this spherical-four-bar mode can be
given as

θ1 = θ3 = θ5 = θ7 = π − α

θ2 = θ6 = γ ; θ4 = θ8 = β
(3)

where β and γ are variable (and only one is independent).
For a general spherical four-bar linkage, it can be located on a spherical

surface, as shown in Fig. 3, where these links are denoted by the arcs of AB,
BC, CD and DA. Axes of their joints are OA, OB, OC and OD, and they
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intersect into the center O of the sphere. αij is the central angle of the arc link
and φi is the angular displacement between two links.

The mathematical mapping between the parameters of geometric link and
the angular displacements can be given as [7],

c12(c34c41 − c4s34s41) − s12(c1(c4c41s34 + c34s41) − s1s34s4) − c23 = 0 (4)

where
sij = sin αij , cij = cos αij , si = sinφi, ci = cos φi

Fig. 3. Mode of spherical four-bar linkage

Because of symmetry, the geometric link parameters and the revolute joints
variables of the spherical four-bar linkage in our case satisfy the following
conditions:

α41 = α12 = α23 = α34 = α

φ1 = φ3 = β ; φ2 = φ4 = γ
(5)

Substituting Eq. (5) into Eq. (4), the closure equation of the 8-bar linkage
can be written as

sin2 α(sin β sin γ − (cos β + 1)(cos γ + 1) cos α) = 0 (6)

We now note that the initial configuration in Fig. 1 can be for a general value
of α. For any given α and β, Eq. (6) determines the value of γ. (Equation (6) is
symmetric in β and γ, so we can consider β to be the dependent variable.) We
thus obtain a two-dimensional set of configurations, obtained from the initial
one by varying α and β (or α and γ).

3 Mobility and Bifurcation

The distance between points Q1 and Q2 in Fig. 2 can be derived as

w = 2L sin
β

2
(cot

β

2
− cot

γ

2
) (7)
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Let w = 0, i.e., Q1 and Q2 coincide and so the axes of A, C, E, and G
intersect in one point. Then,

β = 0 or β = γ (8)

Substituting β = γ into Eq. (6), the closure equation can be rewritten as

sin2 α(sin2 γ − cos α(1 + cos γ)2) = 0 (9)

Therefore

α = 0 or cos α = tan2 γ

2
(10)

When Q1 and Q2 coincide, the instantaneous mobility of the 8-bar linkage
increases. Indeed, since each of the eight hinge axes passes through one of two
points, the rank of the screw system spanned by all zero-pitch joint screws is
at most five. Therefore the mobility of the loop is at least three, violating the
conventional mobility formula for an 8-bar.

3.1 General Configuration

We use a global reference frame OXY Z (fixed in space but not in any of the
rigid links) with the symmetry planes π1 and π2, chosen as OY Z and OXZ,
respectively. In the figure, the OX and OY axes point down and to the right.

The screw coordinates of H and B, expressed in the global frame, are

S8 = (m1, 0, n1, 0, 0, 0)T

S2 = (0, m2, n2, 0, 0, 0)T
(11)

We denote by si a unit vector directed as the axis of the i-joint screw S i. As
adjoining axes are perpendicular, axis A is normal to axes B and H and so
s1 = s2 × s8. From (11), s8 = [m1, 0, n1]T and s2 = [0, m2, n2]T. Hence,

S1 = (m2n1, m1n2, − m1m2, − kp, kq, kr)T (12)

where

p = m1(m2
2 + n2

2 + n1n2), q = m2(m2
1 + n2

1 + n1n2), r = m2
1n2 − m2

2n1

k =
l

√
m2

1 + m2
2 + (n1 + n2)2

and l is the distance from O to axis A.
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The coordinates of the eight joint screws can now be written as follows,

Sl1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1 = (m2n1, m1n2, − m1m2, − kp, kq, kr)T

S2 = (0, m2, n2, 0, 0, 0)T

S3 = (−m2n1, m1n2, − m1m2, − kp, − kq, − kr)T

S4 = (−m1, 0, n1, 0, 0, 0)T

Sl2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S5 = (−m2n1, − m1n2, − m1m2, kp, − kq, kr)T

S6 = (0, − m2, n2, 0, 0, 0)T

S7 = (m2n1, − m1n2, − m1m2, kp, kq, − kr)T

S8 = (m1, 0, n1, 0, 0, 0)T

(13)

To analyze the mobility of the linkage we consider it as a parallel mechanism
with two leg chains composed of joints, 1 to 4 and 5 to 8, respectively, and we
follow the methodology described in [3]. The motion systems of this parallel
mechanism are generated by the screws in (13), while the constraint systems are
spanned by

S
r
l1

⎧
⎪⎪⎨

⎪⎪⎩

S r
11 = (0, − kr

m2n1
,

kq

m2n1
, 0, 0, 0)T

S r
12 = (x, y, z,

kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

S
r
l2

⎧
⎪⎪⎨

⎪⎪⎩

S r
21 = (0,

kr

m2n1
,

kq

m2n1
, 0, 0, 0)T

S r
22 = (x, − y, z, − kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

(14)

where

x = −km1

L
, y = − (k − l2)m2

L
, z =

k(n1 + n2) − l2n2

L
, l2 =

√
l2 − L2

and L is the length of link AB.
This shows that dim(Sr) = card 〈Sr〉 = 4. So the mobility of the 8-bar linkage

calculated from the mobility criterion in [3] is m = 8 − 6 + 4 − 4 = 2.

3.2 Singular Configurations

When the distance |Q1Q2| equals to zero (Q1 = Q2 as shown in Fig. 4), a span-
ning set of constraint screws of the 8-bar linkage can be derived as
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S
r
l1 =

⎧
⎪⎪⎨

⎪⎪⎩

S r
11 = (0, 0,

kq

m2n1
, 0, 0, 0)T

S r
12 = (x, y, z,

kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

S
r
l2 =

⎧
⎪⎪⎨

⎪⎪⎩

S r
21 = (0, 0,

kq

m2n1
, 0, 0, 0)T

S r
22 = (x, − y, z, − kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

(15)

Obviously, dim(Sr) = 3, card 〈Sr〉 = 4. So in this configuration, the mobility
of linkage, calculated as in [3], is m = 8 − 6 + 4 − 3 = 3.

Fig. 4. 8-bar linkage in a singular configuration

3.3 Discussion

Figure 5 illustrates the geometric nature of the bifurcation and the different
modes of motion. There are two sheets (two-dimensional regions) of the configu-
ration space where no links or joints coincide. In the first region, exemplified by
Fig. 5(a), the axes of the revolute joints A, C, E and G intersect in one point.
On the second sheet, Fig. 5(c), B, D, F and H are concurrent instead. On both
sheets, the linkage has mobility two and two planes of symmetry. In the singular
configuration, Fig. 5(b), the axes of two pairs of revolute joints intersect in one
point simultaneously. The mobility of the 8-bar linkage changes to three with
four symmetry planes.



Kinematics and Bifurcation of a Twofold-Symmetric Eight-Bar Linkage 25

Fig. 5. Geometry of the bifurcation

Fig. 6. Two configurations with higher instantaneous mobility

From Eqs. (8) and (10), there are two other special cases: β = 0 and α = 0.
In the first, Fig. 6(a), the axes of revolute joints A, H and G are collinear with
C, D and E, respectively, while B, D, F and H intersect in one point. In this
configuration the mobility of the mechanism is four and the 8-bar linkage enters a
3-DOF region where it operates as a 3R serial chain. In the second case, Fig. 6(b),
the axes B, D, F and H coincide. Also here the mechanism can now move as a
3R serial chain, but with coincident hinge axes.

In both cases, a general motion of the 3R serial chain reduces instantaneous
mobility to three. While in some special cases, the mobility can stay the same
if some condition is met. In Fig. 6(a), all the links should be coplanar and B,
D(H), F intersect in one point. In Fig. 6(b), there should be two perpendicular
symmetric planes. In these cases, the mobility is always four and there exists a
motion to come back to the non-overlapping configuration.

In both cases configurations with higher instantaneous mobility can be
obtained when more axes become coincident. And these cases can be repro-
duced after any cyclic permutation of A,B, . . . ,H. These multiple regions have
intersections in configurations where even more revolute joints become coinci-
dent. The detailed analysis of the topology of the configuration space is rather
complex and is omitted here due to lack of space. Moreover, in many of these
cases the two-fold symmetry is not maintained. We should note, however, that
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although these configurations like the ones in Fig. 6 appear exotic, they consti-
tute “most” of the points in the configuration space, as they form regions with
dimensions higher than the “normal” 2-DOF operation modes.

4 Conclusions

This paper presents a two-fold symmetric 8-bar linkage evolved from a kaleido-
cycle with 8 equilateral tetrahedra. As there are four axes intersecting in one
point at all time, the 8-bar linkage is treated as an equivalent spherical four-bar
linkage. The closure equation is then obtained easily using methods of spherical
four-bar analysis. Screw-system-based analysis identifies the singular configura-
tion and reveals the bifurcation process. As the 8-bar linkage moves from one
region of the configuration space to another, the four intersecting axes of revolute
joints will switch.
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Abstract. A novel kinematic model of spatial four-bar linkage RSPS is firstly
presented for accuracy testing of R-pairs. During accuracy testing, the kinematic
chain SPS of the ball bar and the R-pair constitute a RSPS mechanism, while the
structure parameters of the RSPS mechanism correspond to the mounting
parameters of the ball bar. Thus, the mounting position errors of the ball bar are
identified by using the kinematic synthesis of the RSPS mechanism, based on the
discrete data measured by the ball bar. Furthermore, the relationships between the
measured errors and the mounting parameters of the ball bar are analyzed, by
using the solutions of the kinematic equations of the RSPS mechanism.

Keywords: Spatial four-bar linkage � Kinematics � Ball bar � Error
identification � Accuracy

1 Introduction

The ball bar is a widely used instrument for accuracy testing of machine tools. It was
invented by Bryan, and firstly used to measure the errors of the simultaneous motion of
two prismatic pairs [1, 2]. Then, a lot of ball bar methods are presented to measure the
geometrical errors of the machine tools and robots [3–5]. These methods improved the
efficiency of error testing and calibration, especially for multi-axis motions.

For a rotary pair, or R-pair, the accuracy is often represented by radial and axial
runouts of the rotor [6, 7]. However, the runouts are influenced by the geometric errors
of the measured surface, and related with the mounting positions of the sensors and
work-pieces. Some precise artifacts are used as the work-pieces to reduce the influences
of geometric errors; these methods are high-precision but time consuming, because it is
difficult to mount the work-pieces to a suitable place.

As the ball bar is easy installation and efficient for motion measurement, some ball
bar methods are presented to measure the accuracy of R-pairs [8–11]. In these
researches, the mounting position errors of the ball bar are eliminated by adjusting
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devices, or separated from the measured results by least square circle fitting. The
former is time-consuming and the later is based on the assumption of planar motion. In
fact, the motions of the ball bar are spatial motions during accuracy testing, and
measured results are related with the mounting position of the ball bar. Therefore, how
to identify the mounting position errors from the measured data? What are the rela-
tionships between the measured data and the mounting positions? These questions are
discussed in this paper. A novel method, based on the spatial four-bar linkage RSPS, is
firstly presented to identify the mounting errors of the ball bar, and the relationships
between the measured errors and the mounting parameters are analyzed by using the
geometrical model of the RSPS mechanism.

2 Accuracy Testing of R-Pairs with Ball Bar

A ball bar is composed of two master balls and a precise linear displacement sensor, as
shown in Fig. 1. Thus, the result measured by the ball bar is the distance between the
centers of the two balls.

During accuracy testing of an R-pair, the fixed ball SA is mounted on a base and the
moving ball SB is mounted on the rotor, as shown in Fig. 2a. In most cases, the
displacement sensor is possibly located at the sensitive direction of the rotary errors,
such as the axial and radial directions [10]. As the rotor rotates, the ball bar records the
distances s(i) between the centers of the two balls at every rotary position. For example,
the measured results for one round are shown in Fig. 2b.

Generally, the ball SA is expected to be mounted on the rotational axis of the
R-pair, and the measured results are desired to be pure error motions caused by the

Fig. 1. A ball bar with two master balls and one displacement sensor

Fig. 2. Accuracy testing of an R-pair with ball bar and the measured data
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R-pair. Unfortunately, the mounting position errors of two balls are inevitable.
Sometimes, the mounting position errors are much bigger than the rotary errors of the
R-pair, which make the results measured distribute as a trigonometric function, as
shown in Fig. 2b. Thus, it is necessary to eliminate the influences of the mounting
position errors.

In the existing researches [10], the mounting errors, or the eccentric motions, are
often separated by using the least square circle fitting. As shown in Fig. 3, the motion
of the ball bar is assumed as a planar motion, and the mounting errors of the ball bar are
equivalent to the eccentricity (u, v) of the center point A relative to the rotary axis.
Then, the eccentric motions caused by the mounting errors and the rotary error motions
of the center point B will be separated. The results are shown in Fig. 4.

3 Mechanism Model of Ball Bar for Testing R-Pair

The kinematic chain SPS of the ball bar and the R-pair constitute a spatial RSPS
mechanism, while the structure parameters of the RSPS mechanism correspond to the
mounting parameters of the ball bar. The output motions of the prismatic pair corre-
spond to the motions caused by the mounting positions errors of the ball bar, if the
rotary pair rotates without errors. Thus, the mounting positions errors can be identified
by kinematic synthesis of the RSPS mechanism.

In order to analyze the motions of the mechanism, a fixed frame C; i1; j1; k1f g is
employed and fixed to the base of the R-pair. Meanwhile, a moving frame

Fig. 3. The least square circle fitting of the measured results

Fig. 4. The eccentric motions and rotary error motions separated by least suquare fitting
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D; i2; j2; k2f g is employed and attached to the moving ball SB. In the fixed frame, the
displacement equation of the RSPS mechanism can be written as

RAB ¼ RCD þRDB � RCA ð1Þ

where, RAB denotes the vector from the center points A to B, whose length RABj j ¼ s is
the distance measured by the ball bar. The Eq. (1) can be rewritten as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ h21 � 2l2h1 cosðh1 � h0Þ

q
ð2Þ

where, l1, l2, h1 and h0 are the structure parameters of the RSPS mechanism, as shown
in Fig. 5. The parameters h1, h0 and l1 locate the position of the center A, and the
parameter l2 determines that of the center B. h1 is the rotary angle.

Currently, the distances measured by the ball bar, denoted by s ið Þ� i ¼ 1; 2; . . .; nð Þ,
contain both the motion caused by the mounting errors and the error motion of the
R-pair. In order to identify the mounting position errors, a mathematic model of
kinematic synthesis of an RSPS mechanism is set up, in which the mounting param-
eters are equivalent to the structure parameters of RSPS, that is

Ds ¼ min
x

max
1� i� n

DðiÞðxÞ
n o

¼ min
x

max
1� i� n

sðiÞ� � sðiÞ
�� ��� �

s:t: l1; l2; h1 2 �1; þ1ð Þ; h0 2 0; 2pð Þ
x ¼ ðl1; l2; h1; h0ÞT

8><
>: ð3Þ

where, Ds is the maximum deviation between the distances measured by the ball bar
and those calculated by the RSPS mechanism. n is the number of the discrete rotary
positions. The output motions s(i) at the rotary position i is

sðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ h21 � 2l2h1 cosðhðiÞ1 � h0Þ

q
ð4Þ

Based on the measured data, a four-bar linkage RSPS with parameters (l0, l1, h0,h0)
can be optimally calculated by the Eq. (3), shown in Table 1.

Fig. 5. The spatial RSPS mechanism and its parameters
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The output displacements s(i) of the RSPS mechanism can be calculated by Eq. (4)
with the identified parameters, as shown in Fig. 6a; and the remained rotary errors of
the center point B in the measuring direction are shown in Fig. 6b.

4 RSPS Mechanism and Mounting Errors

In order to discuss the relationships between the mounting parameters of the ball bar
and the measured results, the geometrical model of the RSPS mechanism is set up, as
shown in Fig. 7. The center-line AB of the ball bar traces a conical surface RAB in the
fixed frame [11]; the parameters are the same as the RSPS mechanism.

For convenience, the Eq. (2) is divided by l2 to avoid the influences caused by the
rotary radius, that is

s
l2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1
l2

� �2

þ h1
l2

� �2

þ 1� 2
h1
l2
cosðh1 � h0Þ

s
ð5Þ

Based on Eq. (5), the relationships between the mounting parameters and the
measured results are discussed as follow.

Table 1. The parameters of RSPR corresponding to the ball-bar testing

l1/um l0/um h0/um h0/rad Ds/um

63198.6 135798.9 1063.8 2.3114 6.7

Fig. 6. The output displacements of RSPS mechanism and the rotary errors

Fig. 7. The geometrical model the RSPS mechanism
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(1) s/l2 and l1/l2

The parameter l1/l2 is inversely proportional to the cone angle of the conical sur-
face, shown in Fig. 7. s/l2 and l1/l2 represent the influences of the mounting direction of
the ball bar. The curves in Fig. 8 show that the amplitude of s/l2 is proportional to the
cone angle and the mean value of s/l2 is inversely proportional to the cone angle.

In particularly, if the parameter l1/l2 is zero, the spatial RSPS mechanism degen-
erated to be a planar mechanism. In this case, the axial mounting position errors of
center points A and B are eliminated; the results measured by the ball bar are radial
run-out of the R-pair. The Eq. (2) can be written as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ h21 � 2l2h1 cosðh1 � h0Þ

q
ð6Þ

There are three parameters h1, l2 and h0 in Eq. (6), corresponding to the radial
mounting errors of center points A and B, which are the same as the least square circle
fitting discussed in Sect. 2.

(2) s/l2 and h1/l2

The parameter h1/l2 is proportional to the eccentricity of the conic node A, shown in
Fig. 7. The relationships between s/l2 and h1/l2 represent the influences of the mounting
position errors of the ball SA. The calculated results, shown in Fig. 9, reveal both of the
amplitude and mean value of s/l2 are proportional to the eccentricity of the conic node.

In particularly, if the parameter h1/l2 is zero, the radial mounting position error of
the center point A is eliminated. The Eq. (2) can be written as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22

q
ð7Þ

Two parameters l1 and l2 in Eq. (7) correspond to the position of the center point A
and the rotary radius of the center points B.

(3) s/l2 and l2

The parameter l2 corresponds to the rotary radius of the center point B, thus, the
relationships between s/l2 and l2 represent the influences of the mounting position of

Fig. 8. The relationships between s=l2 and l1=l2
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the moving ball SB. The calculated results, shown in Fig. 10, express that the amplitude
and mean value of s/l2 is proportional to the rotary radius.

(4) s/l2 and h0

As known in Eq. (2), the amplitude and mean value of s/l2 is independent of the
parameter h0, but the phase of s/l2 is. In particularly, if the parameter h0 is zero, the
Eq. (2) can be written as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ h21 � 2l2h1 cos h1

q
ð8Þ

Three parameters l1, l2 and h1 in Eq. (8) correspond to the axial and radial errors of
the center points A and B.

5 Conclusions

(1) The kinematic model of an RSPS mechanism is presented for accuracy testing of
R-pair with ball bar. The structure parameters of the RSPS mechanism correspond
to the mounting parameters of the ball bar, and the mounting errors can be
identified by kinematic synthesis of an RSPS mechanism.

(2) The amplitude of s/l2 is proportional to the cone angle, and the mean value of s/l2
is inversely proportional to the mounting angle of the ball bar.Both of the
amplitude and mean value of s/l2 are proportional to the eccentricity of the balls
SA and SB.

Fig. 10. The relationships between s=l2 and l2

Fig. 9. The relationships between s=l2 and h1=l2
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Abstract. A hyper-redundant shaft concept based on unique binary,
electromagnetic tilting actuators was proposed for various examination
tasks of difficultly accessible areas. Its specific design combines two
important aspects required in endoscopic applications: it provides good
path following capabilities in combination with high resistance against
manipulation forces due to its kinematics and its actuation principle.
For endoscope-like exploration, a commonly known follow-the-leader
idea is adapted to the binary actuation. It is an efficient and intuitive
path planning algorithm promising high path following accuracy. How-
ever, classical follow-the-leader approaches are designed for continuously
adjustable joints. Hence, their applicability to binary actuated systems
is limited. To achieve good path following capabilities optimal switch-
ing sequences during forward motion are necessary, resulting in a high
computational effort. Therefore, this paper aims to analyze occurring
deviations with respect to kinematic relations and proposes based on
these results reduced models, i.e. simplified cost functions, for an effi-
cient calculation of optimized switching sequences.

Keywords: Hyper-redundant robot · Binary actuation · Motion
planning · Follow-the-leader

1 Introduction

The field of applications for endoscopes has been growing rapidly over the past
years, spanning from maintenance of technical systems like turbines to minimally
invasive surgery. The systems allow for servicing vastly and lead in this way to a
huge saving in related expenses. However, systems have to overcome the discrep-
ancy between flexibility to maneuver in crooked spaces and sufficient stiffness
to withstand manipulation forces. In this context, many approaches have been
proposed in literature, e.g. [1]. In [8] we proposed a serial chain design of a large
number of electromagnetically actuated, one degree of freedom tilting joints.
By utilizing electromagnetic actuation, huge holding torques can be provided
resulting in a practically rigid system. Furthermore, its hyper-redundancy leads
to good adaptation potential with respect to convoluted paths. The kinemat-
ics and dynamics model, as well as the analysis of hyper-redundant and binary
c© Springer International Publishing AG 2018
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actuated systems, have been studied in detailed in [2]. Regarding path-following
strategies, several concepts for achieving snake-like locomotion based on mimick-
ing nature have been presented, see e.g. [5,10]. A follow-the-leader approach for
base-fixed robots has been introduced in [11]. In this method, the foremost part
of the robot defines a reference path while advancing through its surroundings.
The rest of the robot follows the tip and stays as close as possible to the reference
path by adjusting the continuous joint angles accordingly, see [3]. Therefore, the
follow-the-leader concept is an intuitive way of controlling a robot. It has been
adapted to various robot kinematics, see e.g. [4,6,7].

Since binary actuated robots have no prospects of continuous interpolation
of its joint angles, optimal switching patterns are needed to provide best path-
following capabilities. Therefore, [9] introduces motion planning of a binary
snake-like robot in two-dimensional space without obstacles based on optimized
switch-on times. Constructively, this paper focuses on two main aspects of the
follow-the-leader control strategy for binary actuated structures: first, the adap-
tion of the follow-the-leader motion to spatial manipulators with discrete actu-
ation is introduced and occurring deviations based on kinematic relations are
analyzed for the definition of a reduced cost function. Secondly, an efficient tip
optimization with decreased parameter space is outlined and compared to exist-
ing methods presented in [9].

2 System Concept

The presented model-based approach of analyzing the deviations during follow-
the-leader motion of a hyper-redundant binary actuated robot is defined with
respect to a unique electromagnetic snake-like robot. Therefore, the system con-
cept, i.e. its kinematic design, is presented briefly in this section.

The employed system is a hyper-redundant snake-like robot, based on a ser-
ial chain of a large number of equally built, electromagnetically driven tilting
actuators. Each actuator is composed of four half rings made of ferromagnetic
material, connected with aluminum joints for magnetic separation. Two indi-
vidual magnetic circuits are created with pairs of coils arranged on either side
of the tilting axis, see Fig. 1(a). By reason of beveled iron cores fixed tilting
angles can be achieved, see [12]. With this unique concept, the bistable actua-
tor can reach only two fixed tilting positions on each side. Therefore, it can be
denoted as binary. It is not capable of reaching any intermediate positions. For
the endoscopic shaft equal tilting actuators are combined to a serial chain. Spa-
tial movements are achieved by twisting the actuators against each other with a
fixed twisting angle. The kinematic design and modeling are described in detail
in [8]. A picture of the prototypical set-up with ten actuators and the related
schematic representation of Denavit Hartenberg (DH) coordinate frames for a
generalized model of n actuators is shown in Fig. 1. To achieve endoscope-like
exploration, the snake is additionally attached to a prismatic joint, moving the
serial chain linearly with adjustable feeding speed.
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Fig. 1. (a) CAD Model of a single electromagnetic tilting actuator, (b) prototype
(without feeding unit) of the hyper-redundant manipulator with n = 10 assembled
actuators and (c) the related schematic representation of the generalized DH coordinate
frames for n actuators with a height of h and a constant twisting angle of t = 90◦.

3 Tip Optimization Strategy for Follow-the-Leader
Motion

A follow-the-leader (FTL) control strategy is used to advance the robot along
a reference path. This reference path can either be commanded online based on
user inputs during exploration or, desired joint angles can be given beforehand
based on fitting the snake to a given reference, see [8]. Regardless of how desired
postures are determined, the FTL procedure remains the same. Therefore, the
general idea and related considerations can be developed independently. Based
on the proposed method in [9], the general FTL idea for spatial systems, its
mathematical representation, and the associated optimization strategy is pre-
sented in the following sections.

3.1 General Follow-the-Leader Procedure for Spatial Systems

When the robot advances stepwise along a path, the serial chain needs to change
from one configuration Kj to the following Kj+1, see Fig. 2(a). In each step, the
serial chain is moved forward by a specific feeding increment Δs and necessary
joint angles are determined based on the snake’s tip. However, for every tran-
sition, some actuators need to perform a tilting movement with respect to the
status of its preceding actuators and the applied feeder movement. As binary
actuation does not allow for continuous interpolation of the joint angles, a corre-
sponding set of switching sequences tsw,j need to be identified with the help of an
optimization, for ensuring good path-following performance, see Fig. 2(b). In this
context tsw,j describes the individual times of the beginning of the distinctive
tilting movements.

In contrast to planar systems (see [9]), one actuator is unable to reach the
state of its direct predecessor when applying a constant twist between the actua-
tors in the serial chain, because their tilting axes are rotated and, therefore, point
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Fig. 2. (a) Exemplary configuration Kj for the jth = 2nd step of the spatial FTL
control as well as the previous Kj−1 and subsequent Kj+1 configuration for a manipu-
lator with n = 10 actuators and a twisting angle of t = 90◦ (colors indicating actuators
forming one unit) and (b) flowchart of the general FTL procedure. (Color figure online)

into different directions (see Fig. 1(c)). Taking this into account and considering
the symmetric design of the actuators, we propose to regard k = 180◦/t actua-
tors as one unit, where t is the constant twisting angle between all actuators (e.g.
for t = 90◦: k = 2). Each unit can reach the pose of the corresponding preceding
unit when the feeding increment Δs between two configurations correlates to
the height of a whole unit. However, due to the continuously twisted actuators,
desired joint angles need to be negated when transferring them from one unit to
the subsequent. A schematic representation of FTL steps for an actuator chain
with t = 90◦ is shown in Fig. 2(a). Inactive joints, i.e. joints being inside the
feeding unit, are mechanically held in a neutral position. For reaching a stable
state when leaving the feeding tube, the switch-on times of these actuators are
fixed with respect to the feeding speed.

3.2 Mathematical Formulation of a Follow-the-Leader Transition

A general serial chain with a linear feeding device for providing forward motion
(joint coordinate q1 with q1 ∈ [−n · h, 0]) and n equal actuators (a1, . . . , an, joint
coordinates q2, . . . , qn+1) with a height of h and a tilting angle of ±qmax are
subdivided into u units. Each unit includes k actuators. For the following section
the jth step of a general FTL procedure is considered. Without loss of generality,
the start configuration Kj and the end configuration Kj+1 for an incremental
advancement of Δs = k · h can be defined based on the kinematic parameters:

Kj = (q1,j ,q1,j , . . . ,qu−1,j ,qu,j)T, (1)

Kj+1 = (q1,j+1,q1,j+1, . . . ,qu−1,j+1,qu,j+1)T (2)

= (q1,j + Δs,−q2,j , . . . ,−qu,j ,qu,j+1)T, (3)



Model Reduction Methods for the Follow-the-Leader Movement 39

with the vector

qp,j = (qi, . . . , qi+k−1)T,with i = (p − 1)k + 2, (4)

specifying the joint angles of the pth unit in step j with

q{2,...,n+1} ∈ {−qmax, qmax}. (5)

Comparing the two subsequent configurations Kj and Kj+1, a vector

asw,j = (ax1 , ax2 , . . . , axc
)T, xi ∈ {1, . . . , n}, (6)

representing all actuators, needing to change their configuration in the jth step,
can be determined, with c being the total number of switching actuators.

Based on the elements of K position and orientation of each segment can be
calculated with the help of homogenous transformation matrices. For minimal
deviation of the snake to the reference path, optimal switching sequences toptsw,j

have to be derived based on the minimization problem

toptsw,j = arg min
tsw,j

f(asw,j , tsw,j), (7)

with the cost function f , e.g. being the maximal occurring deviation of the snake
to the reference path as a function of asw,j and tsw,j based on the robots direct
kinematic. The elements of toptsw,j represent optimal switch-on times for each of
the tilting actuators in asw,j , describing the instant of time, when the specific
actuator needs to start its individual tilting process. Especially for large robotic
chains with many actuators, an additional benefit in terms of computation time
can be achieved by only considering an appropriate subset of actuators within
the cost function of the optimization. For best representation of the original cost
function, covering all actuator deviations, different methods exemplary shown in
Fig. 3 are developed and evaluated for a serial chain of n = 60 actuators based
on a detailed analysis of the kinematic design. Best balance of computational
effort and representation of occurring errors is generated with an adequate mea-
sure combining two main aspects: first, taking always the first actuators from a
set of consecutive tilting actuators (marked with red arrows) and the end effec-
tor (highlighted in green) into account. They cover the main deviation in most
practical cases. To additionally monitor the errors within groups of not changing
actuators, further elements are considered with a step width Δ (illustrated in
blue). Exemplary evaluation of Δ in Fig. 4 shows, that best representation of
the originally occurring errors under consideration of achievable time savings is
reached with Δ = 5. Similar results were achieved for all considered reference
paths.

3.3 Tip Optimization Strategy

Instead of optimizing switching sequences for all actuators in asw,j , as proposed
in [9], a combined tip optimization strategy is chosen to decrease necessary
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Fig. 3. Example for a reduced number of actuators evaluated in the cost function of
the optimization for a serial chain with n = 20. Gray boxes indicate switching actuators
and arrows mark considered joints within the cost function. (Color figure online)

Fig. 4. Results for the achievable accuracy of the reduced cost function for an exem-
plary reference path compared to the all embracing cost function (left) and achievable
savings in computation time (right) for different step width Δ.

computation times, see Fig. 5. The tip optimization strategy aims to optimize
only the switch-on time tsw,red,j of the manipulator tip unit with asw,red,j =
(axc−u+1 , . . . , axc

)T, while reusing switching sequences toptsw,j−1 from the previous
transition for the remaining actuators ax1 , . . . , axc−u

. The proposed optimized
switching sequence is described by

toptsw,j = (toptsw,j−1
T, toptsw,red,j

T)T. (8)

Fig. 5. Flowchart of the tip optimization strategy, reusing optimal switching sequences
from previous transitions.

Since the configuration of the tip unit of the snake-like robot has no effect on
the deviations of the body, the maximal error of the body joints to the reference
path remains unchanged. Under the hypothesis that the time sequence toptsw,j−1

from the previous transition j −1 is optimal, the errors to the reference path are
minimized, if the maximal deviation dred,j of the tip unit based on the newly
obtained time sequence toptsw,red,j is less than the error resulting sorely from the
body joint dj−1.
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However, it cannot be neglected, that the actuators being close to the robot
base have a huge impact on the occurring deviations. Minor increase of errors
(≤1%) might be tolerated, as they are conditioned through the reference path,
but it is possible that sorely optimizing the tip leads to a significant higher
overall error. In this case, a new set of optimized switching sequences toptsw,j for
all actuators in asw,j is determined and the achievable accuracy dj is compared
to dred,j . The sequence leading to best proximity to the reference is used to
proceed. By combination of these two steps it can be assured, that remaining
errors will not be increased significantly compared to the method from [9].

The results for the achievable path following accuracy and related computa-
tion time for the proposed tip optimization strategy compared to the technique
proposed in [9] are depicted in Table 1. Results are obtained by pattern search
optimization for a serial chain of n = 60 actuators with a height of 16 mm and
tilting angle of qmax = 6◦ twisted by t = 90◦ following the three exemplary
considered spatial reference paths shown in Fig. 6. All paths differ in terms of
curvature as well as pitch and, therefore, in the number of switching actuators.
It is shown, that time savings with a further decrease of remaining errors can
be achieved for all considered cases. In 60–70% of the steps time sequences cal-
culated for asw,red are used to proceed, as the reduction of the parameter space
by sorely optimizing the tip joints lead to better converge and, therefore, less
deviation. However, in some cases the optimization for asw is performed, but is
not bringing further enhancements of accuracy. Therefore, an revised selection
criteria might bring a further improvement of time savings and is, hence, part
of future work.

Fig. 6. Exemplary paths used for
evaluation of tip-following method.

Table 1. Characteristics of the tip optimization
strategy and comparison to the method presented
previously.

Characteristics of tip
optimization

Path

Blue Gray Green

Max. error [mm] 40.7 41.4 33.8

Computation time [s] 361.7 175.7 106.4

No. of decisions

dred,j ≤ 1.01 · dj−1 [%] 41.4 34.5 44.8

dred,j ≤ dj [%] 20.7 34.5 27.6

dred,j > dj [%] 37.9 31.0 27.6

Comparison to [9]

Error improvement 26.1% 10.2% 0.3%

Time saving 44.2% 13.2% 39.5%
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4 Conclusion

This paper proposed a follow-the-leader approach for binary actuated spatial
snake-like robots, evaluated for a hyper-redundant serial system based on unique
electromagnetic tilting actuators. The general procedure, as well as the math-
ematical formulation of the motion planning algorithm, was introduced. It was
outlined, that optimized switching sequences are necessary to obtain good prox-
imity to a reference path to overcome restrictions due to the discrete kinematic
set-up. The optimization idea was adapted in a time efficient way, considering
sorely the manipulator tip joints within the optimization. Only if the maxi-
mal overall error is further increased through the selected switching sequences,
an optimization regarding all switching actuators is performed to improve the
proximity to the path. Results showed, that an increase in accuracy, as well as a
significant decrease of computation time, were achieved thanks to the proposed
approach. Future work will include the improvement of the selection criteria and
the experimental evaluation.
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Abstract. This paper deals on the design method applied to create a new useful
robot for a lighting operating room.We present the specifications for this particular
medical application, the proposed kinematic solutions as well as the topological
and dimensional syntheses performed to choice the optimal solution. The work
presented in this paper was conductedwith a closely industrial collaboration, and a
patent application of the chosen kinematic solution has been filed.

Keywords: Medical design � Kinematics � Mechanism syntheses

1 Introduction

A lighting for operating room is a poly articulated medical arm. During the surgical
operation, the optical axis of the lighting must be focused towards the desired surgical
zone. The lighting is pre-positioned by the surgeon (or medical staff) before starting the
operation. When the operation begins, the surgeon must not move the lighting arm for
aseptic reasons, i.e. he cannot accede to the sterile zone. Therefore, the surgeon must
ask to a medical assistant to move the arm, which is much less optimal than in the case
of direct manipulation.

The study presented in this paper is developed in the context of the SMILE1French
regional project, whose goal is to design a lighting robotic arm and control them using
a touchless system based on hand gesture recognition [3–6]. The project is composed
of two main parts: robotic and imaging parts, respectively. Moreover, only the robotic
design study is presented here.

The paper is organized as follows. In Sect. 2 we present the robotic and ergonomic
specifications given by the industrial partner project Maquet SAS2 to design the
mechanism. The different topological solutions developed are presented and compared
according to the industrial specifications in Sect. 3. Then, a dimensional synthesis is
described in Sect. 4. Conclusions about the proposed approach are presented in the last
section.

1 SMILE: Sterile Manipulation Interface of Lighting Equipment.
2 http://www.maquet.com/fr/.
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2 Specifications

Maquet SAS Company builds manual lighting arms for operating room. For SMILE
project, the company defined some specifications for a robot charged of positioning the
lighting. Different criteria are specified: kinematic (DoF, workspace), dynamic, envi-
ronment, aseptic, ergonomic, safety, cost, compatibility with existent system and so on.

For a first step, certain criteria are used to limit the kinematic solutions, e.g. the DoF
of the robot for positioning the lighting. Moreover, in this step other specifications are
qualitatively analyzed. For defined the specifications, several studies about the posi-
tioning of the lighting during surgeries are carrying out, as shown in [9, 11].

2.1 Surgical Scenes and Movement

According to the type of surgery and the needs of the medical staff, it is necessary that
the dome of lighting moves towards different positions around the medical scene.
Generally three scenes were identified (Fig. 1(a)). In the first scene, the dome is
localized behind the surgeon’s head, avoiding that the beams of light are pointed
towards his eyes. A second scene exists when a vertical projection of the beams of light
towards the patient becomes necessary. Finally, in some cases, the dome must turn
around a target position, creating a remote center of motion.

Moreover, the lighting dome must be capable to move in the horizontal plane
(X, Y); movements in Z-axis are suitable but not mandatory (Fig. 1(b)).

2.2 Medical Gesture

From the observations made by the company, three medical cases of displacement of
the dome are specified, denoted by C1, C2 and C3:

C1: the dome moves or turns following a desired surgical trajectory.
C2: the dome turns around a desired surgical position.

The third case (C3) is a combination between C1 and C2.

Fig. 1. (a) Operating scenes, (b) 3D movement
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From precedent experiments conducted by the Maquet SAS Company, C1 repre-
sents 8% of medical surgery cases, C2 and C3 correspond to 36% and 56% of medical
surgical procedures, respectively. After studying the specifications given by the com-
pany, the topological synthesis is carried out to propose kinematic structures adapted to
the needs presented above.

3 Topological Synthesis

In this part, we present the topological synthesis of mechanism carried out in the
project context. In literature, there are few papers on topological robotics. There are
often focused on specific kinematic structures and not linked to a particular application.
Tuttle et al. [15] proposed a method of topological synthesis based on finite symmetry
of group theory, Mitrouchev [13] used combinatory analysis for topological robotic
parallel mechanisms. This method allows to obtain all the possible solutions to the
position end-effector and actuators in parallel kinematic chains. Laribi [12] used a
method based on a genetic algorithm for the synthesis of plane, spatial and parallel
robots. We choose a multi criteria analysis based on a decision matrix to obtain the
optimal solution, allowing to include quantitative but also qualitative industrial expert
reviews.

3.1 Kinematic Structures

In order to accomplish the overall specifications given by the company, the robot
should have at least 4 DoF: 2 DoF for the translation allowing to move the lighting in
the horizontal plane and 2 DoF allowing the orientation of the lighting dome. It is
important to note that the existent non-robotized arm has only 3 Dof [9].

Based on the specifications presented above, nine kinematic structures have been
proposed, as presented in Table 1.

Certain of these solutions have only 3 DoF, limiting the robot movements but
giving the advantages of lightweight of the overall structure as well as in terms of price.

Table 1. Kinematic structures proposed

Solution
A B C D E F G H I

4 DoF 4 DoF 3 DoF 3 DoF 3 DoF 3 DoF 4 DoF 5 DoF 4 DoF
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This step of seeking solutions allows us to propose two structures based on parallel
chains. In terms of manufacturing, the parallel robot is more complex than the serial
one but it offers a better mechanical balancing, a great accuracy and it guarantees a
higher velocity of the manipulated tool [2]. Even if the velocity criterion is not essential
for our application, the control of the mechanical balancing is a point of great
importance. Nevertheless, the workspace/compactness ratio is often less important than
in the case of serial solutions.

3.2 Decision Matrix

After having proposed different kinematic structures, we have compared them to find
the optimal/more adapted robot based on the specifications defined by the company.
Thus, we defined a decision matrix to classify the kinematic solutions, an example is
presented in Table 2 for Solution A (The reference frame is the same used in Fig. 1(b)).
This decision matrix is composed of two parts. First, all the solutions are evaluated
qualitatively from the criteria defined in the specifications. There are three possibilities
of qualification: Yes (if the robot always verify this criterion) or Possible (if the robot
comply the criterion under conditions) or not possible (the robot has not level of
flexibility). If the last qualification is given, the solution is then penalized for the second
part of the decision matrix. Moreover, if a solution obtain “Not possible” for a criterion
flexibility “none”, then the solution is automatically annulled.

In the second part, see Table 3, the performance criteria are defined to differentiate
the solutions validated in the first part.

Table 2. Comparison of proposed solutions – first part

Criterion Criterion
flexibility

Required
value

Solution
A

Maximum displacement of the center of mass
(CoM) of the dome in the (X, Y) plane along X-axis
and Y-axis

None 30 cm Possible

Maximum rotation of the dome around the two
directions of the horizontal plane (X, Y)

Possible ± 90° Not
possible

Maximum rotation of the dome around the vertical
axis (Z-axis)

Possible 360° Possible

Number of links None Unlimited Yes
At least one posture must allow the coincidence
between the CoM and the first vertical axis

None Yes Possible

The supporting link designed by the company can
attach the solution

None Imperative Yes

The solution must not disturb the lighting
functionalities

None Imperative Yes
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Each criterion has a weight-coefficient characterizing the priority scale. Each
kinematic solution is evaluated by assigning a grade between 0 and 1.

The total score of a solution is defined by adding all the weight-grade products. The
ranking of the solutions is presented in Table 4.

From these results, the solution G can be defined as the optimal kinematic solution.
Nevertheless, in agreement with Maquet SAS Company, a further analysis will be
performed for the parallel solutions H and I, considering their performance in terms of
mechanical balancing and accuracy.

3.3 Comparison of Parallel Solutions

We compare the two parallel solutions in four criteria: presence or not of singularity in
the workspace (circle with R = 30 mm), forces supported by the robot (the light has a
mass of around 20 kg), frictions in joints, and workspace/compactness relation. The
Solution H is based on a Delta-robot kinematics with 5 DoF [2] whereas the Solution I
is based on a 3RRR planar robot with 4 DoF [1, 8].

3.3.1 Singularities
Usually parallel kinematics have more singularity cases than serial solutions [1].
Singularities are positions where the robot cannot be controlled. From the specifications

Table 3. Comparison of proposed solutions – second part

Criterion Weight Quantification Grade (Solu. A)

Number of DoF lost in case of motor failure 2 <= 1 (1) / >=1
(0)

1

Possibility to control the vertical translation
of the lighting dome

1 Yes (1) / Not
(0)

0

Possibility to control the movement of the
lighting dome along the horizontal plane
while focusing on the target zone

1 Yes (1) /
Limited (0.5) /
Not (0)

0.5

Similarity with the existent non-robotized
system

2 Yes (1) / Not
(0)

0

Kinematic complexity (number of links,
type of joints, number of actuators) [10]

4 Between 0 and
1

0.27

Table 4. Final ranking of the proposed solutions

Solution
A B C D E F G H I

Score 5.39 8.07 7.69 5.25 5.69 7.69 8.12 2.64 3.12
Rank 6 2 3 7 5 3 1 9 8
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given above, the workspace can be considered like a disk with 30 mm radius. For the
two parallel solutions, singularity positions must be localized outside the disk. By
adjusting some geometric parameters, singularities can be moved outside of the
workspace in both cases.

3.3.2 Forces
An analysis concerning the forces supported by the robots was carried out. Delta-robot
(Solution H) was typically designed for “pick-and-place” tasks [2]. It uses one DoF for
a vertical movement carrying the load and two DoF to move in the horizontal plane.
Thus, the configuration of the actuators on the Delta-robot allows to support the weight
load naturally. On the other hand, the 3RRR robot (Solution I) is a planar robot
designed for horizontal displacements [1, 8]. In this case, the actuators are not posi-
tioned to move a weight along the horizontal plane or even to support a weight with
natural movement of joints. From this point of view, the Solution H looks more adapted
for our application.

Finally, some joint frictions are produced when supporting the weight of the
lighting dome. Furthermore, these frictions damage passive joints (without actuators).
In the case of Solution H, joint movements are naturally generated by the direction of
the lighting weight force, transmitting that force to the actuators and generating low
passive joint frictions. However, the Solution I is the opposite case, because the weight
force is not transmitted to the actuators, producing higher passive joint frictions.
A summarized table of this analysis is presented below (Table 5).

A last analysis of the parallel solutions was performed comparing the
workspace/compactness relation. For the two robots, an adjustment of geometrical
parameters was made to obtain the necessary workspace (disk/cylinder of radius
30 mm). CATIA software was used to reproduce all the possible robot movements into
the workspace, determining their compactness. The workspace of the Solution H is a
cylinder of ratio 30 mm. Figure 2 shows the compactness superposition of the two
robots. It is clear that Solution H is more compacted than Solution I.

To conclude, the analysis presented above allows to conclude that Solution H is the
more adapted parallel solution to satisfy the specifications of the application.

Nevertheless, in order to reduce the prototype cost and to produce a structure close
to the already existent arm, the company decides to develop the serial solution G,
whose dimensional phase is presented in the next section.

Table 5. Comparison of the two parallel kinematics

Model Singularities Forces axis Friction

Solution
H

Outside of the
workspace

Torques from weight force are
transmitted to the actuators

Low passive
joint frictions

Solution
I

Outside of the
workspace

Torques from weight force are not
transmitted to the actuators

High passive
joint frictions
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4 Dimensional Synthesis (Dynamics Analysis)

A dynamic analysis has been performed in Solution G, in order to know the motor
characteristics needed in each actuated joint, as well as the torsional and bending forces
applied in every link. The goal of this analysis is to find the joint configurations for
which the motor torques are maximum. The Newton-Euler algorithm [7] was applied to
the Solution G for every possible joint combination. In order to take into account
inertial effects, joint velocities and accelerations were considered maximum.

The Solution G presents 4 DoF, two mobility in the horizontal plane (X and Y) and
two rotations mobility. Therefore, this solution has 4 revolute joints q4; q5; q6; q7ð Þ, as
shown in Fig. 3.

The dimensions, velocities and accelerations of links used for the dynamic analysis
are presented in Table 6. Moreover, a maximum joint speed _qi ¼ p=32 rad � s�1½ � and
acceleration €qi ¼ p=32 rad � s�2½ � for i ¼ 4 to 7 were used.

The Newton-Euler’s algorithm is applied for all the articular combinations
according to the robot workspace:q4 ¼ 0

�
; 0

� � q5 � 31
�
;�90

� � q6 � 90
�

and
�90

� � q7 � 90
�
. The obtained results don’t take into account motor weights because

they are not chosen yet. Thus, we must apply the algorithm two times, the first one to
obtain the characteristics of the motors and choose them, and the second one to include
the motor weights. If the results of motor torque and axial forces found in the second
step exceed the motor capacities, we must choose another actuator.

Fig. 2. Comparison of workspace/compactness relation for solution H and I

Fig. 3. Solution G – kinematic chain and 3D printed prototype
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For the first step of calculation, the results are summarized in Table 7. The second
step is omitted in this paper, further details of this analysis will be provided in a next
paper.

5 Conclusions

In this paper, we present the design method applied to create a lighting robotic arm for
operating room. This study was carried out in the context of the SMILE regional
project in collaboration with Maquet SAS Company. Some kinematic solutions were
proposed based on the specifications of the industrial partner. A topological synthesis
was then carried out through a decision matrix, combining quantitative and qualitative
criteria. A particular analysis was made to the parallel solutions, even if a serial solution
was resulted as the optimal in the decision matrix. The chosen solution was then
defined in dimensional synthesis, where the maximum torque motors were provided.
A patent application [14] for the chosen solution was filed, in order to protect the
kinematic design of this robotized lighting arm for operating room. Moreover, a scaled
3D printed prototype was first built and some experiments in operating room using pigs
are planned once a motorized real-scale prototype will be produced.

Acknowledgments. This research was supported by the Region Centre Val-de-Loire, France, in
the context of the SMILE project.

Table 7. Results obtained in the first step (without motor weights)

Joint 4 Joint 5 Joint 6 Joint 7

Maximum radial force [N] 1.2356 1.2464 208.33 197.60
Maximum axial force [N] 220.85 211.77 0.82 197.61
Maximum bending moment [Nm] 46.86 85.79 73.73 69.98
Maximum motor torque [Nm] 0.49 0.61 4.44 3.71

Table 6. Details for dynamic analysis

S4 S5 S6 S7 (Lampe)

Material Aluminum
q ¼ 2710Kg � m�3ð Þ

Plastic q ¼ 1050Kg � m�3ð Þ

Section £ext ¼ 50mm;£int ¼ 45mm –

Weight 0.926 kg 0.351 kg 1.094 kg 20.16 kg
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Abstract. Eco-design of industrial robots is a field of research which
has been rarely explored in the past. In order to considerably decrease
the environmental impact of robot during the design phase, metal or car-
bon composite parts can be replaced by bio-sourced materials, such as
wood. Indeed, wood has interesting mechanical properties, but its per-
formance/dimensions will vary with the atmospheric conditions/external
solicitations and with the conditions in which trees have grown. In order
to be able to design a stiff industrial robot, robust design approaches
must be used. These approaches must be fed with elastostatic models
that are able to predict the variability in the robot deformations due to
the variability of the wood mechanical properties.

In this paper, we develop an elastostatic model for a wooden parallel
robot which is able to cope with the variations of the wood mechanical
properties. The prediction of this model in terms of deformations are
compared with experimental measurements made on a wooden parallel
robot mockup. Results show that there is a good correlation between the
measurement displacements and the computed ones.

Keywords: Eco-design · Parallel robot · Elastostatic model · Wood

1 Introduction

The Climate Change Mitigation (CCM) has become a priority in the world,
as shown during the COP21. It becomes urgent to decrease the Environmental
Impact (EI) of the human activities. Robotics, which takes an increasing place
in our everyday life, must also be part of this effort.

A recent study [2] shows that, contrary to what could be imagined, a large
percentage (around 50%) of the EI during the entire robot life is due to the use
of metallic materials (steel or aluminum, even if they are recycled) for the design
of their links. The percentage is even worth if carbon composites are used. The
rest of the EI is globally due to the robot energy consumption during use.
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 7
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A method to reduce EI of robot design, that is rarely used, is to replace
the polluting metals and carbon composites with bio-sourced materials (BSM)
that have a little (even no) EI [12,16]. Moreover, BSM have good stiffness perfor-
mance, and their quantity is only limited by their growing time [10]. In this work,
developed in the scope of the French project RobEcolo [3], we are interested in
using wood instead of metals to design the robot links.

Using wood in machines is not a new idea. For instance, it is used in chassis
of cars [1]. It found also applications in the design of buildings due to its stiffness
and low cost [10]. It is also used in Robotics for the design of mock-ups and proof-
of-concept prototypes [14,15]. However, a detailed study of these works shows
that wood is never used in critical parts ensuring accuracy. Indeed, the wood per-
formance/dimensions will vary with the atmospheric conditions/external solici-
tations and with the conditions they have grown [10,17]; thus, new robot design
issues appear: How to be sure that an industrial robot made with wood can be
accurate and stiff even if wood properties vary?

A first attempt to introduce wood in industrial robot design was presented
in [12]. The results showed that the approach was valid enough to compete with
usual materials. However, this study did not deal with the aforementioned issues.

Indeed, the accuracy issue can be treated through proper control approaches:
external sensors combined with proper controllers can be used to accurately
control the platform pose [4]. Regarding the robot stiffness, we believe that this
issue can be handled through robust design approaches [18]. However, these
design approaches must be fed with stiffness models which are able to predict
the variability of the robot deformations due to the variability in the material
properties.

In this vein, the present paper aims at proposing an elastostatic model
of a wooden parallel robot being able to predict the deformations and their
variability.

2 Mechanical Properties of Wood

Wood is an organic product structure of infinite variation of detail and design. It
is on this account that no two types of wood are alike: in reality no two specimens
from the same log are identical [11]. Several studies giving the mechanical prop-
erties (e.g. Young’s modulus, Poisson’s ratios) for different pieces of wood can
be found in the literature [9,10]. The properties are defined by repeated tests,
that provide mean values and rarely the standard deviation (it is known that
the coefficient of variation can reach up to 30% for some characteristics [10]).

We are investigating the wood in the design of industrial parallel robots,
hence it is necessary to know the mechanical properties of the wood to define the
elastic deformation of the robot due to the loads applied on it. However wood is
subject to a scale effect: impact of singularities (e.g. knots, direction of grain) are
linked to the size of the pieces of wood. Therefore new tests have to be performed
to define the mechanical properties corresponding to the dimension of the robot
links. Indeed, values given in [9,10] are usually obtained for beams of large
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Fig. 1. Experimental setup to define the mechanical properties of Accoya Pine

dimensions unlike the links of our robot which will be much smaller. Moreover,
unlike usual material used in robot design, wood is an orthotropic material.
The three different directions are longitudinal L, radial R, and tangential T .
According to the theory of elasticity, the wood is parameterizes by three Young’s
moduli (EL, ER and ET ), six Poisson’s ratios (νLR, νLT , νRT , νRL, νTL, νTR)
and three moduli of rigidity (GLR, GLT , GRT ).

The links of parallel robots have cross-sections with smaller dimensions than
the link lengths [13], and can be modeled according to the beam theory (Euler-
Bernoulli model). For this reason, in this work only the longitudinal Young’s
modulus EL and Poisson’s ratio ν = (νLR+νLL)

2 are necessary.
In order to decrease the dimensional variability of wood due to humidity, we

decided to design our links with a novel type of acetylated wood [7,17] named
Accoya Pine. This wood is known to have many advantages over raw wood
species in terms of durability and dimensional stability. This choice implied that
we had to make mechanical tests because no data are provided in literature for
this new type of wood. Hence, to define the Young’s modulus EL of Accoya Pine,
bending tests were made (testing for the Poisson’s ratio is not useful, as it has a
relatively small impact on the bending strain [9]). Thirty specimens are used, the
dimensions of the specimens are the same as the dimensions of a standard link of
the robot we plan to build (length of 30 cm and square section of 3 cm× 3 cm).

Cantilever tests were performed using loads of 1 kg, 2 kg and 5 kg (Fig. 1(a))
and the measure of the deflection is used to compute EL (the computation was
inspired by the usual EN 408 standard). It is very important to mention that
the preconditioning of the specimens was made at a temperature of 20 ◦C and
at a relative humidity of 65%, which for this specific acetylated wood implies a
moisture content of 3.1%.

As shown on Fig. 1(b), we obtain a variable Young’s modulus which follows a
normal distribution with mean value equal to 9732 MPa and a standard deviation
of 2462 MPa. This data will be used as input of the model presented in the next
section.
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3 Estimation of the Robot Elastic Displacement

3.1 Stiffness Modeling of a Five-Bar Mechanism

The planar five-bar mechanism (Fig. 2(a)) is a two degrees-of-freedom (dof ) par-
allel robot able to achieve two translations in the plane (x0Oy0). The end-effector
is located at point C.

The analytical stiffness model presented in this section is based on matrix
structural analysis method. This model was used in [6] in order to calculate
the displacement of the end-effector of a parallel robot, under some external
loadings.

The five-bar mechanism under study is modelled with four 3D flexible beams,
each beam having two nodes at their extremity corresponding of the character-
istic points (Fig. 2(b)). Nodes 1 and 8 are clamped onto the ground while some
kinematic constraint relations will be imposed to the other nodes in order to
parameterize the free rotations of the passive revolute joints.

The stiffness matrix iKi associated with the beam i (i = 1 to 4 (Fig. 2(b)))
and expressed in its local frame Ri is a 12-dimensional constant square symmet-
ric matrix which depends on the geometrical and mechanical parameters [8].

Fig. 2. The five-bar mechanism and its stiffness model

iKi can be expressed in the base frame of the mechanism R0 by using the
following relation:

0Ki = T−1 iKi T with: T =

⎡
⎢⎢⎣
R 03 03 03

03 R 03 03

03 03 R 03

03 03 03 R

⎤
⎥⎥⎦ (1)
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where R is the rotation matrix from the local frame Ri to the base frame R0,
and 03 is a (3 × 3) zero matrix. 0Ki can be decomposed into the four following
(6 × 6) sub-matrices:

0Ki =
[
0Ki

11
0Ki

12
0Ki

21
0Ki

22

]
(2)

Stiffness assembly [8] is a technique used to define the stiffness matrix of the a
whole structure. For the five-bar mechanism, all the beam stiffness matrices are
assembled in the base frame according to the nodes as follows:

0Kt =

⎡
⎢⎢⎢⎢⎢⎢⎣

0K1
22 06 06 06 06 06

06
0K2

11
0K2

12 06 06 06

06
0K2

21
0K2

22 06 06 06

06 06 00
6 K3

11
0K3

12 06

06 06 06
0K3

21
0K3

22 06

06 06 06 06 06
0K4

11

⎤
⎥⎥⎥⎥⎥⎥⎦
(36,36)

(3)

The structure of the mechanism is composed of three passive revolute joints, the
characteristics of a revolute joint is that all movements of two adjacent nodes
are the same except the rotation around joint axis. Those joint properties can be
described by using the kinematic relation between two nodal displacements [6].

Assembling all these kinematic relations into a unique expression gives:

0AtΔxt = 0(36,1) (4)

where, in our problem, At is of dimension (15 × 36) and Δxt =
[ΔxT

1 ,ΔxT
2 , ...,ΔxT

7 ]T is the vector gathering all the nodal displacement Δxi

with i = 1, 2, ..., 7.
In the same way we defined Δxt, the corresponding vector that gathers all

the nodal wrenches is given by ft = [fT
1 , fT

2 , ..., fT
7 ]T , where fj is the wrench

applied at node j. Taking into account the constraint expressed in Eq. (4), the
displacement of the structure can be obtained using the stiffness relation (relation
wrench/displacement) [8]:

KG ΔxG = fG (5)

where: KG =
[
0Kt AT

t

At 015

]

(51,51)

, ΔxG =
[
Δxt

λt

]

(51,1)

, and fG =
[

ft
015

]

(51,1)

(6)
λt is the Lagrange multipliers vector necessary to take into account the kinematic
constraints. The displacement is calculated as follows:

ΔxG = K−1
G fG (7)

from which the nodal displacement Δxt can be extracted.

3.2 Predictive Model for the Wooden Robot Deformation

At this step, we have introduced the stiffness model of the five-bar mechanism
considering that the Young’s modulus and Poisson’s ratio are known. However
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the experimental results described in Sect. 2 showed how important is the vari-
ability of the mechanical properties of the wood. Monte Carlo method [5] can be
used to solve any problem having random variables as inputs. The main purpose
of this model is to study the influence of the variation of the mechanical proper-
ties of the wooden links onto the robot deformation. As robot stiffness depends
on its configuration, the study of the displacement in different configurations
of the robot is necessary. Hence, we decided to test the robot properties in the
workspace which is discretized by the grid shown in Fig. 2(a). For each point of
the grid, the method is performed as follows:

1. For each link of the robot, a value of Young’s modulus is randomly generated
based on the normal distribution identified in Sect. 2.

2. External wrenches are applied on the end-effector. Then the end-effector dis-
placement is obtained through relation (5).

3. The previous two steps are repeated n = 40000 times which ensure the sta-
bility of the results (identical mean value at 0.1µm).

4. Finally, the mean, standard deviation, minimum and maximum values for the
40000 values of the displacements are calculated.

5. The process is then repeated for the other points on the grid.

This method is applied on a case study in the next section. A MATLAB code
was written to compute the robot displacement using the modeling procedure
presented in Sect. 3.1. The computation of all displacements took around 35 s
per robot configuration (for a Pentium 4 2.70 GHz, 16 GB of RAM).

4 Case Study

4.1 Description of Wooden Five-Bar Mechanism Mockup

To validate the model proposed, a wooden five-bar mechanism mockup was devel-
oped (Fig. 3). The mockup is composed of four identical links (length of 28 cm
and square cross section of 3 cm × 3 cm) made of Accoya Pine wood connected
with three passive revolute joints. The distance between the fixed axes on the
base is equal to 27 cm.

4.2 Experiments

The experimental measuring setup is made of two micrometers of 0.01 mm resolu-
tion as presented in Fig. 3. A force of 10 N acting along x and y axis respectively
is applied on the end-effector, and the resulting displacements at the end-effector
along x, y are measured. Tests were carried out for the nine configurations of the
robot shown in Fig. 2(a). For a given configuration the experiment is repeated
10 times. Then all the experimental results are compared to the results obtained
with a numerical analysis.

The results are summarized in Fig. 4. Concerning the displacements along
x-axis and y-axis, the graphs show that the maximum and minimum experi-
mental displacements are in the range of deformations predicted by the model.
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Fig. 3. Experimental setup

Results show that the deflections predicted by the model are in a much wider
range than the experimental measurements. This was expected because numer-
ically, 40000 values of rigidity were simulated while, experimentally, only one
robot could be produced. Experimental results are globally in between the
numerical limits. Nevertheless, few predicted displacements do not match with
the measurement. The theoretical and experimental results may differ because
of unmodelled phenomena, like:

• The passive joint stiffness was not considered.
• Viscoelasticity characteristics of the wood was not taken into account.

However, from those experiments, we can claim that the theoretical model is
satisfactory and the proposed modeling procedure is efficient for predicting a
realistic behavior of the wooden parallel robot.

Fig. 4. Measured and simulated displacements
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5 Conclusion

Robot eco-design is a field of research in Robotics that should be deeper inves-
tigated: this could contribute to the Climate Change Mitigation.

In order to considerably decrease the environmental impact of robot during
the design phase, we proposed to replace metal or carbon composite parts by
bio-sourced materials, such as wood. Wood has interesting mechanical properties
but also drawbacks: its mechanical performance encounters a large variability.
In order to be able to design a stiff industrial robot, robust design approaches
must be used. These approaches must be fed with elastostatic models that are
able to predict the variability in the robot deformations due to the variability of
the wood mechanical properties.

In this paper, we developed an elastostatic model for a wooden parallel robot
which was able to cope with the variations of the wood mechanical properties.
The prediction of this model in terms of deformations were compared with exper-
imental measurements made on a wooden parallel robot mockup. Results have
shown that there is a good correlation between the measurement displacements
and the computed ones. However, differences occured between the theoretical
and experimental results that may differ because of unmodelled phenomena.

Our future works will concern the refining of the proposed elastic model,
the computation of the natural frequencies and the definition of a robust design
methodology for wooden industrial robots.
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Abstract. Commercialy available (UAVs) rely on the Global Posi-
tioning System (GPS) to define their flight plan, while assuming an
obstacle-free environment. The work presented on this article aims to
set the foundation towards an autonomous airborne agent, capable of
locating itself by means of computer vision, modeling its environment,
planning and executing a three dimensional trajectory. On the first stage
of development we solved the localization problem using artificial mark-
ers and tested a PID controller to make the vehicle follows a given tra-
jectory (a lemniscate); as results, we show flight data captured during
real flights. This development would facilitate the integration of far more
complex flight behaviors than GPS only guided flight plans.

1 Introduction

In order to make an autonomous agent out of a UAV, it is required to locate
the vehicle with respect to a fixed reference frame, to know its environment and
to command it to navigate autonomously. So, given a fully functional UAV with
an onboard camera, we aimed to: (a) guarantee a safe operation of the UAV
(b) locate it with respect to a fixed reference frame on the ground, using visual
feedback and (c) control the vehicle so it can execute flight patterns.

The following sections describe the accomplished intellectual developments,
the architecture of the control application, its capabilities and further possible
developments.

2 Related Work

A robot consists of a series of highly heterogenous systems that are complex
in nature and require an orchestrated integration to function properly, some of
those features to name a few are: multi-robot coordination, collision avoidance,
human interaction and planning. Therefore, control architectures are proposed
to organize by hierarchies the modules providing different functionalities; among
one of the most important, the possibility to have a digital representation of the
environment on the computer controlling the robot.
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 8
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The hierarchical architecture of the control application is based on designs
already tested in mobile robotics, such as the one proposed by Chen et al. [1]
(see Fig. 1). The architecture consists of three layers: (a) the Low level control
layer allows to directly manage and access all hardware peripherals in real-time.
(b) the planner is the process that gives the current status of the robot and
its environment, creates a plan for the robot to achieve a certain goal, (c) the
sequencer is the intermediate layer between the low level control and the planner
that implements a set of well-tested [7] behaviors that can be used in sequence
to execute the plan created by the planner.

Fig. 1. The three-layer software architecture for an autonomous robot.

Similar architectures to the one shown on Fig. 1 have been used for service
robotics, industrial robots interacting with humans [2] and a group of identical
robots [5,10]; their description may differ, but all of their corresponding soft-
ware architectures can be shaped to a three layer architecture so the objective
would remain the same: to provide sensing, planning, supervision and execution
capabilities to fulfill a task. As an example, the ability layer on a service robot
mentioned by Luna-Gallegos et al. [7] can be grouped into the sequencer layer
mentioned on this paper as a set of well-tested behaviors.

On the field of UAVs, control architectures have been tested following a
reactive approach, i.e. they act proportionally to an error metric, usually defined
by finding and tracking an object with computer vision [11,12]. On this article,
we describe how we plan to develop a three layer architecture for the control of
UAVs and the first steps we have taken.

3 Hardware Description

This work was successfully tested with two different vehicles, for which we had to
use two different versions of the Low level control layer. The first UAV we tested
was the Solo from 3D Robotics, which is compatible with the MAVLink protocol
[8] and the second vehicle we tested was the AR-Drone v2. Both platforms are
ready-to-fly UAVs and feature an onboard monoscopic camera and a WiFi link.

To connect to the AR-Drone, we used the package created to control it with
ROS. The software development was based on the Linux operating system and
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the Robotic Operating System (ROS) [9]. For the Solo (see Fig. 2b) we used
Gstreamer1 to receive the video feed and Dronekit (the python library created
to interface with UAVs compatible with MAVlink) to gain access to the vehicle.
For each vehicle we have a hardware remote control, the pilot has the option
to intervene or not in basic maneuvers such as take-off and landing. We gave a
bigger priority to pilot commands over autonomous control; in case of unfore-
seen situations, the pilot can bypass the autonomous control immediately by
operating the hardware controller.

The approach we tested was implemented into a three layer architecture on
Robotic Operating System (ROS), this simplified its development and looking
into the future it will make possible two things: the creation of a swarm of UAVs
and its migration onboard the UAV. Increasing the independency of the UAV
from the Ground Control Station (GCS).

Fig. 2. The two drones tested.

4 Proposed Approach and Methodology

The overall disposal of all components, according to the three layer architec-
ture structure is shown in Fig. 3. The hardware interface to the AR-Drone was
the only component fully functional and running on ROS when this develop-
ment started. From top to bottom we show the Ground Control Station(GCS)
and the planner node, the planner remains as future work. The trajectory plan-
ner generates the lemniscate trajectory and defines the desired position for the
drone rd(t). The low level control consists on several nodes, the first one being
a hardware interface to the flight controller of the drone and the camera. The
current state estimation is accomplished with the computer vision and kalman
filter nodes, the current state is then used to define a proper control command
in the error estimation and PD controller nodes.

As mentioned before, we aimed to locate the UAV using visual feedback to
command it and describe a certain trajectory. The proposed scenario is shown
on Fig. 4, the UAV overflies artificial markers fixed on the ground, pointing its

1 Webpage: http://gstreamer.freedesktop.org/.

http://gstreamer.freedesktop.org/
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Fig. 3. The three-layer architecture for the UAV

camera downwards, the video feed and navigation data are sent to the Ground
Control Station(GCS) for processing. Figure 4 also shows the reference frames
attached to the monoscopic camera C, the world reference frame W , the center
of gravity of the vehicle B and the NED frame (X: North, Y: East, Z: Down).

Dealing with spatial relationships between reference frames is a very common
task in robotics, expressed as homogeneous transformations W

CT the rigid body
transformation from reference frame C to W is denoted by:

W
CT =

(
W
CR

W
Ct

0 1

)

where W
CR ∈ SO(3) and W

Ct are the rotation and translation components, respec-
tively. We used the work from Foote [3] to manage all rigid body transformations.
Note that by solving W

CT, we can locate B with respect to W . Because the cam-
era is rigidly mounted on the UAV B

CT is known beforehand and the location
of B with respect to W can be computed with B

WT = B
CT

W
CT

−1. To compute
W
CT we used the technique developed by Garrido et al. [4]; which consists on
segmenting from the images taken by the camera the artificial markers located
on the ground, because the size of every marker is known, the pose of the camera
is estimated from all the detected corners.

We added a Kalman filter [6] over B
WT to improve the resilience to errors

caused by inaccuracies in inertial measurements, camera parameters, corner
detection, image rectification and pose estimation. The state vector for the
Kalman filter was defined as x = [x, y, z, ψ, ẋ, ẏ, ż, ψ̇], it defines the position
and velocities of the XYZ coordinates and the yaw around the z-axis angle with
respect to W . From the inertial sensors onboard the UAV, we receive the hori-
zontal velocity components with respect to the B reference frame, current flight’s
height and orientation zI = [vx, vy, h, Ψ ]k,B at 200 Hz; the a priori estimate of
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Fig. 4. The use case scenario for the 3DR Solo. For every reference frame, the color
convention is: X axis red, Y axis green and Z axis blue. Notice the orientation of B is
similar to the NED reference frame. (Color figure online)

the Kalman filter was updated using the inertial measurements with respect to
W by rotating Ψ radians around the yaw ψ axis. The state transition model is:

[
x
y

]
k+1

=
[
x
y

]
k

+ ΔtRz(ψ)
[
vx

vy

]
k

żk+1 =
hk − zk

Δt

zk+1 = hk

[
ẋ
ẏ

]
k+1

= Rz(ψ)
[
vx

vy

]
k

ψ̇k+1 =
Ψk − ψk

Δt

ψk+1 = Ψk

The a posteriori step runs at 24 Hz, a slower rate than the a priori, using as
measurement the pose of the camera zC = [x, y, z, ψ]k, estimated by computer
vision [4]. After the update process in the Kalman filter, state vector x defines
the latest estimation for the pose of the UAV with respect to W , i.e. B

WT.
For now, the trajectory to be described by the vehicle is a lemniscate, defined

as a parametric function rd(t) that defines the desired position and pose (Euler
angles: roll θd, pitch φd and yaw ψd, see Fig. 6b):

rd(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

xd(t)

yd(t)

zd(t)

ψd(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a sin( t
ε )

b sin(2t
ε )

c sin(3t
ε )

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)
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Fig. 5. The graph representing the rigid body transformation between frames.

Figure 5 shows the resultant directed graph using nodes as reference frames
and labels on edges as the processes that update the spatial relationship between
two reference frames. The direction of every edge represents the origin and target
frames of the homogeneous transform. Then, the error measurement is given by:

rd

BT =
[
Re te

0 1

]
= rd

WT B
WT−1

After decomposing (θ, φ, ψ)e = Re on its three Euler angles we can compute
a control command using a Proportional-Derivative controller:

u = Kp

[
rd(t) − x

ψe

]
+ Kd(ṙd − ẋ)

where x = [x, y, z, ψ] and ẋ = [ẋ, ẏ, ż, ψ̇] are estimated by the Kalman filter
described before.

5 Results

The proposed approach was tested with the AR-Drone 2.0 and the 3DR Solo. The
AR-Drone was modified, so the front camera pointed downwards and we could
get a higher quality image from above the ground level. The Solo had a gimbal
installed, as a result, we dynamically had to compute B

CA using the navigational
data we received from the UAV. The camera settings for the GoPro are very versa-
tile, for this exercise, we used a narrow field of view with a resolution of 1028×720
pixels. The AR-drone was flown indoors at a maximum altitude of 1.4 meters, the
Solo flew outdoors and gained altitude to 5 meters above ground level.

The computer vision algorithm was set to track a board of artificial markers
with different sizes; for the Solo the board measured 1.4 × 2.4m and 2 × 5
artificial markers, for the AR-Drone we used a board 4×4m and 20×21 markers
(see Fig. 6a). The application here described creates a virtual representation of
the world on Rviz, an standard tool on ROS; what is shown on Fig. 6b is an
screenshot of Rviz displaying: the location of the vehicle, the trajectory to follow
and the detected board.
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Fig. 6. The software architecture working, creating a virtual representation of the real
world and locating the drone with resect to the center of the ArUco board.

On Fig. 7, we display the results as measured by the computer vision system
while executing the lemniscate maneuver in x and y coordinates with respect to
W . The rd plot is the desired trajectory, corresponding to the lemniscate, for
completeness, we also display the error plot. The maximum measured error was
30 cm. The parameters for the lemniscate trajectory with the AR-Drone were:
a = 1.0, b = 0.8, c = 0.2, ε = 30.0, with a height offset of z = 1.2.

Fig. 7. Navigation data of an actual flight of the vehicle describing the lemniscate
trajectory. On both graphs we display the desired trajectory, the estimated position
and the error metric.

6 Conclusions and Future Work

We have discussed a three layer architecture intended for the control of UAVs,
that successfully guided the vehicle to describe the spline trajectory. Because the
framework we used for this development runs on multiple platforms, including
ARM on embedded computers, it is plausible to execute it onboard the UAV.
Further development on the Sequencer and Planner layers would make the UAV
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and autonomous agent and leads the way towards a swarm of UAVs. Addition-
ally, the planner that defined the waypoints will be extended with a path-finding
algorithm. This architecture will make possible to integrate far more complex
flight plans and do not only rely on GPS for positioning.

This document shows the results from the first step on our development and
implementation roadmap. The next step is to execute it onboard the UAV. We
are currently looking forward to extending the computer vision system with an
visual odometry approach.
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Abstract. This article proposes an autonomous control scheme for the march of
a humanoid robot applied to virtual reality environments. The control laws
proposed for the autonomous displacement of a humanoid robot are based on
their kinematic modeling, for which it is considered that the lower extremities of
the robot have as reference the midpoint between the separation distance of the
right and left leg, the same, what is related to the sacred bone of people. In order
to validate the proposed control scheme, a virtual reality simulation environment
is implemented, for which it is used as the Unity3D graphics engine.

Keywords: Path control � Tracking control � Virtual environment � Humanoid
robot � Kinematic model

1 Introduction

In the last decades, advances in industrial and service robotics have increased, being of
great importance the creation of robots that can operate quickly, autonomously and
with greater precision [1]. In accordance to the locomotion capability the robots can be
moved in various adverse environments, which can be mobile manipulator robots
equipped with wheel-based displacement systems, or when the medium arrangement
requires, legs, e.g., humanoid robot, spider robot and hexapod robot [1–3].

The humanoid is a robot designed to assimilate the body and movements of a
human being and able to perform various functions, e.g., open doors, remind a person
to take their medicine, play soccer or dance [3], these are some of the functions that
humanoid robots can perform at the moment, these actions can be done through a
control scheme or with a programming software [4].

Researchers worldwide have worked on the development of humanoid robots in
order to resemble humans and work together [5], therefore a direct and inverse kine-
matic model has been determined, for the legs of a humanoid robot Bioloid Premium
with 12DOF in order to simulate the cycle of the march. The model starts from the
selection of main and secondaries coordinates: main for the foot support and secondary
for each joint of the links [6], in addition it is tried to develop a robot that allows to give
it of mobility and autonomy, able to walk and to raise tiers, this project specifically
focuses on the generation of trajectories, starting from an elementary scheme of a
kinematic control system [7]. On the other hand, through the kinematic analysis is

© Springer International Publishing AG 2018
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intended to present a humanoid robot with basic movement capabilities and with a
minimum of actuators to walk, in this case a single motor to generate the movement
path of the mechanism. Kinematic synthesis is based on the trajectories described by
human movement [8].

This document establishes a control scheme which is composed of a path controller
which allows the humanoid robot to have a high degree of autonomy at the moment of
following the desired path; while the gait controller determines the step that each leg of
the robot must perform, the control scheme is validated using a virtual reality tool,
performing bilateral communication between mathematical software and virtual reality
software.

2 Virtual Reality Environment

Virtual reality is a tool that can be used for the simulation of control schemes. The 3D
modeling of the humanoid robot is done in a tool (CAD). The structure of the
humanoid robot presents an imitation of the human being so it has upper and lower
limbs, which allow the autonomous march of the robot to be more real. The humanoid
robot uses the geometric solid model that contains all the geometry of the surface,
detailing the edges and faces of the model, [8] see Fig. 1.

The process to implement the 3D model of the proposed robot in a virtual reality
environment is divided into the following stages: (i) obtaining the 3D model,
(ii) adding hierarchies, (iii) generation of the movement, and finally (iv) animation of
the humanoid robot for autonomous march control in a virtual reality environment, [8]
see Fig. 2.

1l

2l

1l

2l

12q
11q

21q22q

Fig. 1. Humanoid robot developed in solidworks
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3 Legs Kinematic Model

To determine the kinematic model of the legs of the humanoid robot with 2 DOF, it is
considered as a reference the midpoint between the distance of the right leg and the left,
the sameWhich is denoted as Gf g. This reference point is related to the sacral bone of the
people, which is themoving point used for positioning andmodeling each of the leg joints
with respect to Gf g. The analysis of the mechanism is performed as shown in Fig. 3.

where, a represent the separation distances from a midpoint Gf g to the position of the
right and left leg joint; l1 is the length of the thigh and l2 the length of the leg; w defines
its orientation with respect to the Z axis of the inertial reference system Rf g. Therefore
the kinematic model of the right leg is given by,

hxr ¼ xþ aSw þ l2Cq1r ;q2rCw þ l1CwCq1r
hyr ¼ y� aCw þ l2Cq1r ;q2r Sw þ l1Cq1r Sw
hzr ¼ hþ l2Sq1r ;q2r þ l1Sq1r

8<
: ð1Þ

where, q1r and q2r represents the position of the links of the right leg; hr ¼
hxr hyr hzr½ �T corresponds to the position of the end of the right leg. Further,
Sab ¼ Sen aþ bð Þ, Sa ¼ Sen að Þ, Cab ¼ Cos aþ bð Þ, Ca ¼ Cos að Þ. Deriving, the rep-
resentation in matrix form is represented by,

_hr tð Þ ¼ Jr qrð Þ _qr tð Þ ð2Þ

 

*.igs *.max *. bx

 

Fig. 2. Process diagram

Fig. 3. Kinematic of the legs of the humanoid
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where, _hr tð Þ ¼ ½ _hxr _hyr _hzr �T represents the velocities in the working space of the

right foot; _qr tð Þ ¼ ½ _q1r _q2r _w �T where, _q1r and _q2r are the angular speeds of

maneuverability of the right leg; while _w it is the change of orientation regarding the time
of the hip with respect to Rf g; and Jr qð Þ represents the Jacobian matrix that relates the
movement velocities of the joints.

Remark 1. According to the above, to determine the kinematic model of the left leg is
obtained with (1) and (2), but with the value of a sign changed. So the kinematic model is,

_hl tð Þ ¼ Jl qlð Þ _ql tð Þ ð3Þ

4 Control Scheme

In this section is present a control scheme composed of a path controller, which allows
the robot to follow a desired path; and a march controller that determines the step of
each leg of the robot, see Fig. 4.

Remark 2. In a sampling period k the right leg reaches the desired position through
the tracking controller, while with the path controller the left leg performs the gait; at
the moment kþ 1 the controllers are inverted, i.e., the right leg performs the march
while the left reaches a desired position of the road.

4.1 Track Tracking Control

As shown in Fig. 5, the way forward is called PðsÞ. The desired position is described
with, Pd ¼ ðPxd;PydÞ this point is defined as the closest point to PðsÞ, The unit vector
tangent to the path at point Pd is denoted by T ; wd is the orientation of T with respect to
the X axis of fRg; ~hxp ¼ Pxd � x is the position error in the X direction; ~hyp ¼ Pyd � y
is the position error in the Y direction; therefore q represents the distance between the
position of the humanoid robot hðx; yÞ and the desired point Pd . Where the position
error in the direction q is ~q ¼ 0� q ¼ �q, i:e:; The desired distance between the

Fig. 4. Control subsystem in parallel in the k instant
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position of the robot hðx; yÞ and the desired point Pd must be zero; wq is the orientation
of the error ~q with respect to fRg.

To solve the problem of tracking path in the plane X � Y of Rf g only the direct
kinematics of the position in the axis is considered X � Y of the right leg. The kine-
matic model that is determined for the robot to reach the path is represented by,

hxrp ¼ xþ aSw þ l2Cq1r ;q2rCw þ l1CwCq1r
hyrp ¼ y� aCw þ l2Cq1r ;q2r Sw þ l1Cq1r Sw

�
ð4Þ

Deriving (4), the representation in matrix form is presented by,

_hrp tð Þ ¼ Jrp qrp
� �

_qrp tð Þ ð5Þ

where _hrp tð Þ ¼ _hxrp _hyrp
� �T

represents the speeds in the plane X � Y of the system
Rf g; and Jrp represents the Jacobian matrix that relates the velocities of _q1rp tð Þ with

respect to the linear speeds in the plane X � Y of Rf g.
The proposed control law to solve the path-tracking problem is based on the inverse

kinematics of (5).

Vr tð Þ ¼ J#rp Vxyd þKp tanh ~hp
� �� � ð6Þ

where, J#rp is the pseudoinverse Jacobian matrix on the right; Vxyd ¼
v cos wdð Þ vsen wdð Þ½ �T is the desired velocity vector of the path; Kp is the diagonal
matrix of positive gain for the compensation of the error generated; tanh :ð Þ limits the

reference speeds, thus avoiding the saturation of the speed of the robot; ~hp ¼
~hxp ~hyp

� �T
is the vector of errors defined with, ~hxp ¼ Pxd � x, ~hyp ¼ Pyd � x; Vr tð Þ ¼

_q1rp _q2rp _w
� �T

represents the maneuverability vector of the system.

Fig. 5. Orthogonal projection of the point of interest over the trajectory.
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Remark 3. According to the above, for K þ 1 the law of road control for the left leg is
obtained with,

Vl tð Þ ¼ J#lp Vxyd þKp tanh ~hp
� �� � ð7Þ

4.2 Control of the March

For control of the march of the humanoid robot, a reference system is determined with
respect to Llf g, which is located in the center of the thigh of the left leg, see Fig. 3.
According to the axis of reference the kinematic model is determined in order to
determine a control law based on its kinematics. The kinematic model of the left leg
with respect to Llf g this given by,

hxrm ¼ l1Cq1lm þ l2Cq2lm;q1lm
hzrm ¼ l1Sq1lm þ l2Sq2lm;q1lm

�
ð8Þ

where, q1lm and q2lm represent the position of the left leg for the march, l1 is the length
of the thigh and l2 the length of the leg. The trajectory that is generated is related to the
end of the left leg in the position hzr of the kinematic model (3), the parameters of the
generated parabola are varied in amplitude and angular frequency according to the
desired step. Performing the derivate of (8) the matrix form of the kinematic model is
represented by,

_hlm tð Þ ¼ Jlm qlmð Þ _qlm tð Þ ð9Þ

where _hlm tð Þ ¼ _hxlm _hzlm
� �T represents the velocities in the working space of the left

foot with respect to Llf g; _qlm tð Þ ¼ ½ _q1lm _q2lm �T where, _q1lm and _q2lm are the angular
velocities of maneuverability of the left leg; and Jlr represents the Jacobian matrix of
the left leg that relates the joint movement velocities.

The control law proposed according to the kinematic model of the left leg of the
humanoid robot is given by,

_qlm tð Þ ¼ J�1
lm

_hdm þKm tanh ~hm
� �� � ð10Þ

where, J�1
lm is the inverse Jacobian matrix of the left leg; _hdm tð Þ ¼ _hxdt _hzdt

� �T
is the

vector of the desired velocities, i.e., the left leg foot; Km is the gain constant for the
compensation of the error generated; tanh :ð Þ limits the reference speeds, thus avoiding
the saturation of the speed of the robot; ~hm tð Þ ¼ ~hxm ~hzm

� �
is the vector of errors

defined as ~hzm ¼ hzd � hzr, while to determine the error ~hxm is considered

~hxm ¼ Vj j f þ Ej jg, where Vj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vxð Þ2 þ vy

� �2q
, Ej j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~hxp
� �2 þ ~hyp

� �2q
, f y g, are

constant of error adjustment.
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Remark 4. According to the above, the kinematic model of the right leg respect Lrf g
of the humanoid robot with (9) is,

_hrm tð Þ ¼ Jrm qrmð Þ _qrm tð Þ ð11Þ

In addition, the law of march control that is presented for the right leg of the
humanoid robot is obtained with (11).

_qrm tð Þ ¼ J�1
rm

_hdm þKm tanh ~hm
� �� � ð12Þ

Remark 5. From the analysis of the errors of the controllers, previously exposed, they
are concluded that they tend asymptotically to zero when t ! 1, as demonstrated in [9].

5 Results

Figure 6 shows strobe motion in a virtual reality environment, which allows verifying
the autonomous functioning of the humanoid robot.

According to the proposed control scheme, Fig. 7 illustrates the path made by each
leg of the humanoid robot and shows the path tracking of the robot when it reaches the
desired position.

Fig. 6. Stroboscopic movement of the humanoid robot

Fig. 7. Path of the step and track of road
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Figure 8 (a) shows position and orientation errors of the path controller at the
midpoint fGg, while Fig. 8 (b) illustrates the path controller errors that are generated at
the time of the gait step is done.

6 Conclusions

In this article, a control scheme is presented which includes (i) a control algorithm for
the path tracking so that the humanoid robot follows a desired path; and (ii) a tra-
jectory tracking control algorithm which allows the robot to perform the march at the
moment it travels to the path. The controllers presented are based on the kinematics of
the robot, which fulfill the purpose of generating movement and displacement. In
addition, simulations were implemented in a virtual reality environment in order to
evaluate the performance of the proposed control scheme, which shows the develop-
ment od the movement of the lower extremities of the humanoid robot towards the path
and the gait that it executes int the instant of movement, through Which can be verified
that it is possible that the humanoid robot carries out the autonomous march.

References

1. Ramon, J., Camarillo, K., Monsiváis, J., Castillo, G., Pérez, G.I., Pámanes, J.: Kinematic
Modeling of a Humanoid Soccer–Player: Applied to BIOLOID Premium Type A Robot, vol.
376, pp. 49–63, Springer (2013)

2. Andaluz, V., Sanchez, D., Bucay, C., Sanchez, C., Morales, V., Rivas, D.: Nonlinear
controller of arachnid mechanism based on theo jansen, vol. 9979, pp. 328–339. Springer
(2016)

3. Barrietos, A., Peñin, F., Baleguer, C., Aracil, R.: Fundamentos de Robótica. S.A
MCGraw-Hill, España (2007)

4. Chevallereau, C., Bessonnet, G., Abba, G., Aoustin, Y.: Bipedal Robots. Wiley ISTE, Great
Britain (2009)

5. Paladines, R.: Direct and inverse kinematic model for the legs of the humanoid robot Bioloid
Premium. Final career work, Faculty of Engineering in Mechanics and Production Sciences,
ESPOL, Guayaquil (2015)

Fig. 8. (a) Errors of the road, (b) errors in the trajectory of the march

Autonomous March Control for Humanoid Robot Animation 77



6. Samaniego, F.: Vision algorithms for competitive mini-humanoid platforms with increased
capacities. Master thesis, Department of Systems Engineering and Automation, Carlos
University III of Madrid, Leganés (2013)

7. Govea, E., Gonzales, G., Rocha, J., Hernández, S., Chávez, A., Castillo, J.: Kinematic design
and construction of a humanoid robot with basic walking movements. IEEE, Biennial
Congress of Argentina (2014)

8. Andaluz, V., Sánchez, J., Chamba, J., Romero, P., Chicaiza, F., Varela, J., Quevedo, W.,
Gallardo, C., Cepeda, F.: Unity3D virtual animation of robots with coupled and uncoupled
mechanism, vol. 9768, pp. 89–101. Springer (2016)

9. Andaluz, V., Roberti, F., Toibero, J., Carelli, R.: Passivity-based visual feedback control with
dynamic compensation of mobile manipulators: Stability and L2-gain performance analysis.
Robot. Autonom. Syst. 66, 64–74 (2015)

78 V.H. Andaluz et al.



Control Based on Linear Algebra
for Mobile Manipulators

Víctor H. Andaluz(&), Edison R. Sásig, William D. Chicaiza,
and Paola M. Velasco

Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
{vhandaluz1,erssigs,wdchicaiza1,

pmvelasco1}@espe.edu.ec

Abstract. This paper presents a control algorithm based on linear algebra for
trajectory tracking of mo-bile manipulator robots. The proposed control algo-
rithm considers the kinematics of the robot, which is approximated by the Euler
method, the control actions for an optimal operation of the system are obtained
solving a system of linear equations. In addition, the stability of the system is
analyzed by concepts of linear algebra, where it is shown that the control error
tends asymptotically to zero. Simulation results show the good performance of
the proposed control system.

Keywords: Mobile manipulator � Model � Controller design � Linear algebra �
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1 Introduction

Mobile manipulator is nowadays a widespread term that refers to robots built with a
robotic arm mounted on a mobile platform. This kind of system, which is usually
characterized by a high degree of redundancy, combines the manipulability of a
fixed-base manipulator with the mobility of a wheeled platform. Such systems allow
the most usual missions of robotic systems which requiere both locomotion and
manipulation abilities. They are useful in multiple applications in different industrial
and productive fields, such as mining, construction, rescue missions or for people
assistance [1, 2].

In the literature different control strategies have been proposed. Work [3] solves the
trajectory tracking problem by combining neural networks and robust control. The
nonlinear mapping characteristic of neural networks and robust control are integrated in
an adaptive control algorithm for mobile manipulator robots with non- linearities,
perturbations and non-holonomic constraints all at the simulation level. The project
carried out in [4] suggests a fuzzy PD controller to adjust the parameters in line
depending on the state of the dynamic system. Other advanced control strategies are
implemented for example in [5] introduces a constrained predictive control algorithm
for a holonomic mobile manipulator robot. Restrictions such as acceleration, velocity,
position, and avoiding obstacles are considered.

The control based on linear algebra is a novel technique whose main feature is that
there is no need for complex calculations to achieve control signal and simplicity in
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performing mathematical operations [6–8]. In addition, the algorithm is easy to
understand and implement, allowing direct adaptation to any microcontroller without
the use of an external computer [9]. Because it is not a complex algorithm it can run on
controllers with low processing capacity [10].

In this work the control based on linear algebra is applied for tasks of tracking of
trajectories in mobile manipulator robots. The controller is based on the kinematics of
the system formed by a robotic arm mounted on a mobile platform. The structure of the
control law consists of a particular solution that meets the raised objective. Addi-
tionally, the stability is proved through linear algebra concepts. To validate the pro-
posed control algorithms, experimental results are included and discussed.

This article is organized into 5 Sections. Section 2 presents the robot kinematic
model for the mobile manipulator robot. The design of the control algorithm is pre-
sented in Sect. 3. The discussion of results is shown in Sect. 4, and finally the con-
clusions of the paper are presents in Sect. 5.

2 Mobile Manipulator Modeling

In this section, the kinematic model of the mobile manipulator is presented. For this
purpose, the mobile manipulator configuration is defined by a vector q ¼ q1 q2 . . .½
qn�T ¼ qTp qTa

h iT
of n independent coordinates called generalized coordinates of the

mobile manipulator, where qa represents the generalized coordinates of the arm, and qp
the generalized coordinates of the mobile platform. The location of the end-effector of
the mobile manipulator is given by the m-dimensional vector of operational coordinates
h ¼ h1 h2 . . . hm½ �T [11].

The kinematic model of a mobile manipulator gives the location of the end-effector
as a function of the robotic arm configuration and the platform location [11]. The
instantaneous kinematic model of a mobile manipulator gives the derivative of its
end-effector location as a function of the derivatives of both the robotic arm configu-
ration and the location of the mobile platform.

_h tð Þ ¼ J qð Þv tð Þ ð1Þ

where _h ¼ ½ _h1 _h2 . . . _hm �T is the vector of end-effector velocity, v ¼
½ v1 v2 � � � vdn �T ¼ ½ vTp vTa �T is the vector of mobile manipulator velocities in
which contains the linear and angular velocities of the mobile platform and contains the
joint velocities of robotic arm and J qð Þ is the Jacobian matrix that defines a linear
mapping between the vector of the mobile manipulator velocities v tð Þ and the vector of
the end-effector velocity [12].
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3 Controller Design

In this section, the control law based on linear algebra theory and numerical methods is
presented. Futhermore, the stability is proved through linear algebra concepts.

3.1 Kinematic Controller

Through the Euler’s approximation of the kinematic model of the mobile manipulator
(1), the following kinematic model discrete is obtained

h kþ 1ð Þ ¼ h kð Þþ T0J q kð Þð Þv kð Þ ð2Þ

where, values of h at the discrete time t ¼ kT0 will be denoted as hðkÞ, T0 is the sample
time, and k 2 0; 1; 2; 3; 4; 5. . .f g. Next by the Markov property and to adjusting the
performance of the proposed control law [13], the states vector hðkþ 1Þ is replaced by,

h kþ 1ð Þ ¼ hd kþ 1ð Þ �W hd kð Þ � h kð Þð Þ ð3Þ

where, W is a diagonal matrix and its values are obtained in Sect. 3.1, these constants
satisfy 0\diag whx;why;whz

� �
\1 , allowing to reduce the variations in state variables

and hd is the desired trajectory.
Then, from (2) and (3), the following system of linear equations is obtained, which
allows at each sampling instant to calculate the control actions.

Jv ¼ b ð4Þ

where v ¼ u kð Þ x kð Þ _q1 kð Þ _q2 kð Þ _q3 kð Þ½ �T and

b ¼ 1
T0

hxd kþ 1ð Þ � whx ehxðkÞð Þ � hxðkÞ
hyd kþ 1ð Þ � why ehyðkÞ

� �� hyðkÞ
hzd kþ 1ð Þ � whz ehzðkÞð Þ � hzðkÞ

2
4

3
5

From (4), which is a set of three equations with five unknown variables, its solution
by least squares is obtained by solving the normal equations.

vref ¼ JT JJT
� ��1 1

T0

hxd kþ 1ð Þ � whx ehxðkÞð Þ � hxðkÞ
hyd kþ 1ð Þ � why ehyðkÞ

� �� hyðkÞ
hzd kþ 1ð Þ � whz ehzðkÞð Þ � hzðkÞ

2
4

3
5 ð5Þ
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4 Simulation Results

In order to assess and discuss the performance of the controller based on linear algebra.
It’s developed a simulation platform for mobile manipulator on Matlab© platform. This
is an online simulator, which allows users to view three-dimensional environment
navigation of a mobile manipulator.

To check the performance of the control system presents in (5). Two tests are
implemented: the first desired trajectory for the end-effector of the mobile manipulator
is described by hd ¼ hxd hyd hzd½ �T, where hxd ¼ 0:1t, hyd ¼ 0:3 sin 0:3tð Þ and
hzd ¼ 0:5, the mobile platform starts at qp ¼ 0m �0:2m 0 rad½ �T; the robotic arm
at qa ¼ 0 rad p

4 rad �p
2 rad½ �T, Figs. 1 to 4, represent the experimental results.

Figure 1, shows the desired trajectory and the current trajectory of the end-effector.
It can be seen that the proposed controller presents a good performance. Figure 2,
shows the evolution of the tracking errors, which remain close to zero, while Figs. 3
and 4 show the control actions.

The second desired trajectory is described by hd ¼ hxd hyd hzd½ �T, where
hxd ¼ 0:7þ sin 0:4tð Þ, hyd ¼ sin 0:2tð Þ and hzd ¼ 0:37þ 0:1 sin 0:2tð Þ. In this experi-
ment, the mobile platform starts at qp ¼ 0:8 m �0:1 m p rad½ �T; the robotic arm at

qa ¼ 0 rad p
2rad �p

2 rad½ �T, The following figures illustrate the simulation results.
Figure 5, shows the desired trajectory and the current trajectory of the end-effector.

It can be seen that the proposed controller presents a good performance. Figure 6,
shows the evolution of the tracking errors, which remain close to zero, while Figs. 7
and 8 show the control actions.

Fig. 1. Stroboscopic movement of the mobile manipulator in the trajectory tracking experiment
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Fig. 2. Control errors of the mobile manipulator
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Fig. 3. Velocity commands to the mobile platform
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Fig. 5. Stroboscopic movement of the mobile manipulator in the trajectory tracking experiment
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Fig. 6. Control errors of the mobile manipulator
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5 Conclusions

In this work it was proposed a control algorithm based on concepts of linear algebra
and numerical methods for trajectory tasks of mobile manipulators robots. The struc-
ture of the control algorithm consists of a particular solution that meets the stated
objective. The stability and performance of the proposed control algorithm was
demonstrated analytically through concepts of linear algebra. The simulation results
obtained show the good performance of the proposed control algorithm.
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Abstract. This work proposes a kinematic modeling and a kinematic nonlinear
controller for an autonomous aerial mobile manipulator robot that generates
saturated reference velocity commands for trajectory tracking problem. In the
kinematic modeling is considered through of a quadcopter-inner-loop system to
independently track four velocity commands: forward, lateral, up/downward,
and heading rate; and arm-inner-loop system to independently track angular
velocity commands. Stability and robustness of the complete control system are
proved through the Lyapunov method. Finally, simulation results are presented
and discussed, which validate the proposed controller.

Keywords: Aerial mobile manipulators � Kinematic modeling � Nonlinear
controller � Lyapunov

1 Introduction

The area of Robotics has evolved presenting new technologies that allow to improve the
intelligence and mobility of robots. Mobile manipulators have been one of the main
topics of academic research in recent years and allowing more sophisticated tasks,
especially for unmanned aerial vehicles (UAVs), the mobility of these is not limited to
displacement on flat surfaces. Expanding tasks such as: (i) construction of high plat-
forms [1]; (ii) cargo transport to unaffordable areas [2]; (iii) aplicaciones en lineas de alta
tension [3]; (iv) tasks that are dangerous or monotonous to humans, among others [4, 5].

For the mobility of the robots, platforms have been developed that can work in
environments: terrestrial, aquatic and air, for this are used wheels/legs, propellers and
propellers [6–8]. The combination of mobile platforms with robotic arms are denom-
inated as mobile manipulators, these allow to increase the workspace and applications
in the domestic, commercial, military area, among others [9–12]. There are several
ways of performing the study and control of these systems, (i) one of them is to do it
separately, i.e., the kinetic model is made of the mobile platform as the manipulator,
also the control is made to each of these parts. The point of interest of the kinematic
analysis of the mobile platform is done with respect to the center of mass and the point
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of interest of the kinetic analysis of the manipulator is done with respect to the oper-
ating end; (ii) the kinematic study is done together, i.e., kinematic modeling and control
is done from the system together, for the modeling and control of this system is done
with respect to the end effector of the mobile manipulator.

This paper presents a non-linear control strategy for resolving the trajectory
tracking problem of a aerial mobile manipulator. Which is constituted by an quadcopter
mounting a robotic arm of 3 degrees of freedom mounted on back of base. For the
design of the controller, the kinematic model of the aerial mobile manipulator is used
which has as input the velocity and orientation, this controller is designed based on
seven velocities commands of the aerial mobile manipulator, four corresponding to the
aerial platform: forward, lateral, up/downward and orientation, the last three are those
who command the manipulator robot. It is also pointed out that the workspace has a
single reference that is located in the operative end of the aerial mobile manipulator
\Rðx y zÞ[ . The stability of the controller is analyzed by the Lyapunov’s method
and to validate the proposed control algorithm, experimental processes are presented
and discussed in this paper.

2 Aerial Mobile Manipulators Model

The mobile manipulator configuration is defined by a vector q of n independent
coordinates, called generalized coordinates of the aerial mobile manipulator, where

q ¼ q1 q2 . . . qn½ �T¼ qTh qTa
� �T

where qa represents the generalized coordi-
nates of the robotic arm, and qh the generalized coordinates of the aerial mobile
platform. We notice that n ¼ nh þ na, where nh and na are respectively the dimensions
of the generalized spaces associated to the aerial mobile and to the robotic arm. The
configuration qw is an element of the aerial mobile manipulator configuration space;
denoted by N . The location of the end-effector of the aerial mobile manipulator is
given by the m–dimensional vector h ¼ h1 h2 . . . hm½ �T , where h define the
position and the orientation, respectively, of the end-effector of the aerial mobile
manipulator in R. Its m coordinates are the operational coordinates of the aerial
mobile manipulator. The set of all locations constitutes the aerial mobile manipulator
operational space, denoted by M.

The location of the aerial mobile manipulator end-effector can be defined in dif-
ferent ways according to the task, i.e., it can be considered only the position of the
end-effector or both its position and its orientation.

2.1 Aerial Mobile Manipulator Kinematic Modeling

The kinematic model of an aerial mobile manipulator gives the location of the
end-effector h as a function of the robotic arm configuration and the aerial mobile
location (or its operational coordinates as functions of the robotic arm’s generalized
coordinates and the mobile aerial’s operational coordinates).
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f : N a � Mh ! M
ðqh; qaÞ 7! h ¼ f ðqh; qaÞ

where, N a is the configuration space of the robotic arm, Mh is the operational space
of the aerial mobile.

The instantaneous kinematic model of an aerial mobile manipulator gives the
derivative of its end-effector location as a function of the derivatives of both the robotic
arm configuration and the location of the aerial mobile platform,

_h ¼ @f
@q

qp; qa
� �

v

where, _h ¼ ½ _h1 _h2 . . . _hm �T is the vector of the end-effector velocity, v ¼
½ v1 v2 . . . vdn �T ¼ ½ vTh vTa �T is the control vector of mobility of the aerial mobile
manipulator. Its dimension is dn ¼ dnh þ dna, where dnh and dna are respectively the
dimensions of the control vector of mobility associated to the aerial mobile platform
and the robotic arm, respectively.

Now, after replacing J qð Þ ¼ @f
@q qh; qað Þ in the above equation, we obtain

_h tð Þ ¼ J qð Þv tð Þ ð1Þ

where, J qð Þ is the Jacobian matrix that defines a linear mapping between the vector of
the aerial mobile manipulator velocities v tð Þ and the vector of the end-effector velocity
_h tð Þ. The Jacobian matrix is, in general, a function of the configuration q tð Þ.

2.2 Case Study: Quadcopter and Robotic Arm

The kinematic model of the aerial mobile manipulator is composed by a set of seven
velocities represented at the spatial frame\H[ . The displacement of the aerial mobile
manipulator is guided by the three linear velocities ul, um and un defined in a rotating
right-handed spatial frame \H[ , and the angular velocity x, as shown in Fig. 1.

Each linear velocity is directed as one of the axes of the frame \H[ attached to
the center of gravity of the quadcopter: ul points to the frontal direction; um points to
the left-lateral direction, and un points up. The angular velocity x rotates the referential
system \H[ counterclockwise, around the axis HZ (considering the top view).
While the maneuverability of the robotic arm is defined by three angular velocities with
respect to the reference system \H[ , i.e., _q1 rotates with respect to the axis n, and
_q2, _q3 rotate with respect to the axis m of the reference system \H[ . In other words,
the Cartesian motion of the aerial mobile manipulator at the inertial frame \R[ is
defined as,

_hx ¼ ulCw � umSwþ l2Sq2Cwq1 _q2 þ l2Cq2Swq1ð _wþ _q1Þþ l3Sq2q3Cwq1ð _q2 þ _q3Þþ l3Cq2q3Swq1ð _wþ _q1Þ
_hy ¼ ulSw � umCwþ l2Sq2Swq2 _q2 � l2Cq2Cwq1ð _wþ _q1Þþ l3Sq2q3Swq1ð _q2 þ _q3Þ � l3Cq2q3Cwq1ð _wþ _q1Þ
_hz ¼ un � l1 � l2Sq2 � l3Sq2q3

8<
: ð2Þ
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where hx, hy, hz and w are all measured with respect to the inertial frame \R[ ;
Ca ¼ cos að Þ; Cab ¼ cos aþ bð Þ; Sa ¼ sin að Þ and Sab ¼ sin aþ bð Þ. The point of
interest (whose position is being controlled) is the end/effector of the aerial mobile
manipulator. Also the equation system (2) can be written in compact form as
_h ¼ f h; qð Þu, i.e.,

_h tð Þ ¼ J q;wð Þv tð Þ ð3Þ

where, J q;wð Þ 2 <mxn with m ¼ 3 and n ¼ 7 represents the Jacobian matrix that
defines a linear mapping between the velocity vector of the aerial mobile manipulator
v 2 <n where v ¼ ul um un w _q1 _q2 _q3½ �T and the velocity vector of the

operative end _h 2 <m where _h ¼ _hx _hy _hz
� �T

.

3 Controller Design and Stability Analysis

As represented in Fig. 2, the trajectory is given time-varying trajectory hd tð Þ and it’s
successive derivatives _hd tð Þ which respectively describe the desired velocity of the
robot. That’s, the desired trajectory for the end-effector of the aerial mobile manipulator
is defined by a vector hd tð Þ ¼ ½ hxd hyd hzd �T in \RðX ; Y; ZÞ[ . The desired
trajectory doesn’t depend on the instantaneous position of the end-effector of the aerial
mobile manipulator, but it’s defined only by the time varying trajectory profile alone.

The controller proposed to solve the trajectory tracking problem of the aerial
mobile manipulator, the proposed kinematic controller is based on the kinematic model
of the aerial mobile manipulator (3). Hence following control law is proposed,

Fig. 1. Schematic of the aerial mobile manipulator.
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v ¼ J# _hd þLK tanh L�1
K K ~h

� �� � ð4Þ

where _hd is the velocity of the aerial mobile manipulator for the controller; J# is the
matrix of pseudoinverse kinematics for the aerial mobile manipulator where

J#¼ W�1JT JW�1JT
� ��1

with W being a definite positive matrix that weighs the
control actions of the system; while that lx [ 0, kx [ 0, ly [ 0, ky [ 0, lz [ 0 and
kz [ 0 area gain constants of the controller that weigh the control error respect to the
inertial frame \R[ ; and the tanh(.) represents the function saturation of manio-
brability velocities in the aerial mobile manipulator.

The other hand, the behaviour of the control error of the end-effector h tð Þ is now
analyzed assuming perfect velocity tracking. By substituting (4) in (3) it is obtained the
close loop equation,

_hd þL tanh ~h
� � ¼ 0 ð5Þ

For the stability analysis the following Lyapunov candidate function is considered

V ~h
� � ¼ 1

2
~h
T~h: ð6Þ

Fig. 2. Problem of control of the trajectory tracking.
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Its time derivative on the trajectories of the system is, _V ~h
� � ¼ �~h

T
LK

tanh L�1
K K ~h

� �
. A sufficient condition for _V ~h

� �
\0 to be negative definite is,

~h
T
LK tanh L�1

K K ~h
� �

[ 0 ð7Þ

Hence, according to (4) and recalling that K is diagonal positive definite, the
control error vector lim

t!0
~h tð Þ ¼ 0 asymptotically.

4 Results and Discussions

This section presents the simulation results of the waypoint tracking flight task in the
3D space using the kinematic nonlinear controller designed in the previous section. The
goal of the simulations is to test the stability and performance of the proposed con-
troller. Figure 3 represents the block diagram of the simulation system. The quadcopter
model considers not-ideal dynamics, such as flapping, drag, and actuator dynamics, and
it describes accurately the system’s dynamics both for hovering and for low speed
translational flights.

In order to assess and discuss the performance of the proposed controller, it was
developed a simulation platform for aerial mobile manipulators with Matlab interface,
see the Fig. 4. This is an online simulator, which allows users to view three-dimensional
environment navigation of the robot.

For the simulation presented below the trajectory tracking to be followed is a saddle
described by, hxd ¼ 0:07t; hxd ¼ 0:2þ 0:7 sin 0:2tð Þ and hxz ¼ 3þ 0:2 sin 0:4tð Þ. The
desired velocity of the end-effector of the aerial mobile manipulator will depend of the
desired traejectory. Figure 5 shows the stroboscopic movement on the X � Y � Z
respect to the inertial frame \R[ . It can be seen that the proposed controller works
correctly. The position error ~hx; ~hy; ~hz of the aerial mobile manipulator is illustrated in
Fig. 6, where it can seen the error ~h tð Þ ! 0 asymptotically (Figs. 7 and 8).

Fig. 3. Block diagram of the simulation system.
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Fig. 5. Stroboscopic movement of the aerial mobile manipulator in the trajectory tracking
problem.

Fig. 6. Control errors of the end-effector of the aerial mobile manipulator.

Fig. 4. Aerial mobile manipulator robot used by simulation platform developed
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5 Conclusions

A kinematic controller -responsible to accomplish the task of trajectory tracking- is
here proposed to solve the 3D trajectory tracking problem for a miniature aerial mobile
manipulator. The main advantage of the control laws here proposed lies in their sim-
plicity and easiness of implementation, when compared to other yet available in the
literature. In addition, the system stability has been analytically proven. The simula-
tion’s results have proven the controller’s ability to globally and asymptotically drive
the controlled state variables to zero and simultaneously prevent any saturation in the
flight commands. As future work, the implementation of such control system onboard a
real aerial mobile manipulator will be tested, whose results are expected to confirm the
effectiveness of the proposed control system.
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Abstract. This paper presents an algorithm for path planning in which the
evasion of fixed and mobile obstacles is considered in order to be followed by an
unmanned land vehicle; path planning is based on visual feedback through an
unmanned aerial vehicle. In addition, a path planning algorithm is proposed for
the ground vehicle in which a non-constant velocity is considered that is a
function of the control error, of the curvature of the road to be followed. The
stability of the control algorithm is tested through the Lyapunov method. Finally
the experimental results are presented and discussed in which the proposal is
validated.

Keywords: Path planning � Robots cooperation � UGV � UAV

1 Introduction

Path Planning determines the path that an autonomous mobile robot must follow for
moving from one place to another. For Therefore it is necessary to create a map of the
environment where the fixed and moving obstacles coordinates are defined to be
evaded by the robot [1–5]. Path Planning has a wide range of application fields, e.g.,
network routing, videogames, gene sequencing, and others [2, 3].

There are several ideas to execute path planning, one is proposed by mapping the
environment by means of sensory devices in order to avoid collision with fixed and
movable obstacles [4]. Some of the most common algorithms are: (i) artificial potential
fields that are implemented with proximity sensors; (ii) probabilistic maps, which dis-
tribute a set of points (nodes) randomly in the collision-free configuration space by
joining each point and thus reaching the desired goal; (iii) RRT algorithm which
operates by constructing a T spanning tree composed of nodes and links that increase
gradually and randomly from a point of origin until reaching the finish point [6];
(iv) Fuzzy logic methods, these are a convenient tool for handling uncertain data in
automatic decision-making systems in static and dynamic environments [16]; and
(v) FNN algorithm is built with robustness, controllability, experience in fuzzy control
and Neural Network, the traditional neural provides diffuse input signals and structure
weights, whose learning algorithm is always the neural network learning algorithm [17].
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The techniques for constructing the Path Planning map are made through laser and
vision sensors. Vision sensors focus on the use of cameras e.g. a webcam that collect
data and information from the environment for navigation purposes which allows
determining the path that the unmanned ground vehicles (UGV) will follow. The vision
system is able to detect fixed and moving obstacles and provide position information
from the environment image [7–9, 15]. Laser devices attached to mobile robots make
navigation easier. One advantage of laser sensors is that they provide exact measure-
ments (length, depth) of the environment where it works [10].

With the development of unmanned aerial vehicles, (UAV), heterogeneous systems
of robots composed of an UAV and a UGV allow several applications which facilitate
the activities to the human being, for wich they are important in different fields as the
exploration, surveillance and navigation. Each robot has specific tasks over an objec-
tive sharing information to perform the implementation of cooperation tasks [11–13].

That said, the present work proposes the cooperative control between an UAV and
an UGV. The control scheme is made up of 4 layers each working as an independent
module, (i) Layer I is made up by an offline planning that has the responsibility of
setting up the initial coordinates of the robot and a task planning responsible for setting
up the coordinates of the target point that the robot must reach; (ii) Layer II is in charge
of obtaining the images of the workspace by means of a camera attached to the bottom
of the UAV, this emulates the eyes of the terrestrial robot. Objects are identified owing
to image processing; this is fulfilled thanks to previously defined features. Path Plan-
ning is created by a heuristic algorithm, this is generated by aleatory paths that set a
path in order to reach a desired goal in the shortest time; (iii) Layer III is in charge of
generating the control signals to the system, so that the UGV fulfills the task defined in
the planning layer; and finally (iv) Layer IV represents the environment where all fixed
and moving objects are found.

2 Robot’s Cooperation

The heterogeneous cooperation that exists between the UGV and the UAV allows
execute of cooperative way the translation task in big workspace. A fundamentally task
has purpose to arrive an finish point from a start point without colliding with fixed
and/or moving objects that are located in the workspace, in this context the UAV is in
charge of obtaining the images of the environment and processing them in order to
generate a path planning, which will be followed by the UGV in order to execute the
planned task [13].

As represented in Fig. 1, the path to be followed is denoted as P. The actual desired
location Pd¼ ½Pxd Pyd �T is defined as the closest point on P to the UGV, with a
desired orientation wd . In Fig. 1, q represents the distance between the UGV position h
and Pd , and ~w is the error orientation between wd and w.
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Given a path P in the operational space of the UGV and the desired velocity
module t for the robot, the path following problem for the UGV consists in finding a

feedback control law vref tð Þ ¼ s; t; q; ~w
� �

, such that

lim
t!1 q tð Þ ¼ 0 and lim

t!1
~w tð Þ ¼ 0 ð1Þ

The error vector of position and orientation between the UGV and the point Pd can
be represented as, ~h ¼ Pd � h and ~w ¼ wd � w. Therefore, if lim

t!1
~h tð Þ ¼ 0 then

lim
t!1q tð Þ ¼ 0 and lim

t!1
~w tð Þ ¼ 0, as it will be explained in the following sections.

Hence, the desired position and desired velocity of the UGV on the path P, are
defined as hdðs; hÞ ¼ Pdðs; hÞ and vhdðs; hÞ ¼ tpðs; hÞ. Where tP is the desired velocity
of the UGV at location Pd . Note that the component of tP has to be tangent to the
trajectory due to kinematics compatibility [14].

2.1 Mobile Platform Modeling

This work is based in Unicycle-like mobile platform. A Unicycle-UGV is a driving
robot that can rotate freely around its axis. The term unicycle is often used in robotics
to mean a generalized cart or car moving in a two-dimensional world; these are also
often called unicycle-like or unicycle-type vehicles [15].

The unicycle-like mobile platform position is defined by a point located in front of
the wheels axis center; hence the configuration instantaneous kinematic model of the
holonomic mobile platform is defined as,

Fig. 1. Path following problem for a mobile robot
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_x ¼ u cos w� ax sin w
_y ¼ u sin wþ ax cos w
_w ¼ x

8<
: ð2Þ

where the control (of manoeuvrability) of the UGV is defined by vp ¼ u x½ �T in
which u and w represent respectively the linear and angular velocities of the UGV. Also
the equation system (2) can be written in compact form as

_hp¼ Jp wð Þvp
_w ¼ x

ð3Þ

2.2 UAV Modeling

On the other hand, the kinematic model of the UAV is composed by a set of four
velocities represented at the spatial frame \Q[ . The displacement of the UAV is
guided by the three linear velocities uql, uqm and uqn defined in a rotating right-handed
spatial frame \Q[ , and the angular velocity xq, as shown in Fig. 1.

Each linear velocity is directed as one of the axes of the frame\Q[ attached to the
center of gravity of the UAV: uql points to the frontal direction; uqm points to the
left-lateral direction¸ and uqn points up. The angular velocity xq rotates the referential
system \Q[ counterclockwise, around the axis Zq (considering the top view). In
other words, the Cartesian motion of the UAV at the inertial frame\R[ is defined as,

_xq
_yq
_zq
_wq

2
664

3
775 ¼

cos wq � sin wq 0 0
sin wq cos wq 0 0

0 0 1 0
0 0 0 1

2
664

3
775

uql
uqm
uqn
xq

2
664

3
775

_hq ¼ J wq

� �
uq ð4Þ

where _hq 2 <n with n ¼ 4 represents the vector of axis velocities of the

\R;X ;Y;Z[ system and the angular velocity around the axis Z; J wq

� �
2 <nxn is a

singular matrix; and the control of maneuverability of the UAV is defined uq 2 <n.

2.3 UGV’s Controller Design

The problem of control is to find the control vector of maneuverability of the UGV
vc tð Þjt 2 ½t0; tf �
� �

to achieve the desired operational motion. Thus, the proposed
kinematic controller is based on the kinematic model of the unicycle-like UGV (3), i.e.,
_h ¼ f hð Þv. Hence the following control law is proposed,
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vc¼ J�1 tP þLtanh L�1K ~h
� �� � ð5Þ

where ~h ¼ ½ ~hx ~hy �T represents the position error of the robot defined as ~hx ¼ Pxd � x

and ~hy ¼ Pyd � y; tP ¼ ½ t cos wd t sin wd �T is the desired velocity vector on the
path; L and K are definite positive diagonal matrices that weigh the control error. In
order to include an analytical saturation of velocities in the UGV, the tanh(.) function,
which limits the error ~h, is proposed. The expression tanh ðL�1K ~hÞ denote a com-
ponent by component operation.

Remark 1. The control algorithm presented in Subsect. 2.3 is applicable for the
autonomous kinematic control of the UAV. The control law structure (5) will be the
same considering the kinetic model (4) presented in Sect. 2.1. i.e., it must be consid-
ered that the workspace of the UAV will be in the three axes of the reference system
\R;X ;Y;Z[ . The path to be followed by the UAV is determined in Layer I
according to the task to be executed.

3 Image Processing

For image processing, the acquisition of images is performed by means of a vision
camera installed in the lower part of the UAV, parallel to the X � Y plane of the
reference system R. The images are processed in order to identify the fixed and mobile
objects that exists in the workspace, recognizing the environment and position of the
elements so that the UGV can move from a start point to a finish point without colliding
with the objects that are in the environment. The implemented image processing is
described in Fig. 2 so much for to identify fixed and moving objects, each block
performs a specific function at the time of image processing.

According to Fig. 2 captured from the workspace image for fixed objects the
grayscale transformation is performed, a Gaussian filter is used in order to eliminate
noise in the image. Also, binarization of the image plane is performed in order to
differentiate objects from the UGV workspace, once this is done, the edges of the
objects are detected, see Fig. 3(a), then the image dilates for the purpose of that UGV
don’t collide with them, Fig. 3(b).

Capture of image 
in real me

Transforma on in gray 
scale Gaussian filter Binarized image Detec on of object 

edges

Search for characteris cs 
of mobile objects

Dila ng of the 
edges

Detec on of the 
centroids

Fig. 2. Block diagram for identification and treatment of fixed and mobile objects.
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Mobile objects are defined by an established color, the same to be searched within
the matrices of R, G, B of the image allowing to find objects, Finally the centroids of
the objects are found in order to make a distance comparison with the path generated by
the Path Planning and prevent the UGV from colliding.

4 Path Planning

Figure 4 shows the flowchart for generating the route planning to be followed by the
UGV. To trace a path between the start point and the finish point, is verified there is not
exist any obstacles. If not, a new aleatory path is generated from a start point to the
finish point along the workspace, -procedure image-until there is exist a line of sight
between the two points. The path generated must not intersect with any fixed or mobile
obstacle.

The aleatory path is constructed as follows: A point is thrown in the image plane of
the workspace, if this is in a pixel of value 1 that point is valid, otherwise it is
discriminated against looks for a new point until it is in a valid position. With the valid
point found, a line with the same direction and course is sent from the start point to the
generated point. The new point takes the faculty of being the start point, and the whole
process is carried out indefinitely to construct a random trajectory always with refer-
ence to the finish point.

(a) Binarized image (b) Edges dilation

Fig. 3. Dilation process of objects
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of the robot to finish 

point 

Fig. 4. Flow diagram of the path planning algorithm
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Figure 5 shows the Path Planning constructed from a start point to a finish point. If
there are moving objects in the outskirts of the route generated by the Path Planning, the
UGVmoves to a point close to the position of the moving object; in the following periods
of sampling new images of the workspace are acquired that allow to verify that the
obstacle is not over the wanted path and thus to be able to move to the UGV. If there are
more mobile objects, this process is carried out indefinitely until reaching the end point.

5 Experimental Results

This section presents the simulation results of the proposed algorithm for path planning
that will be followed by the UGV without colliding with fixed and mobile obstacles.
The objective of the simulation is to test the path planning, stability and performance of
the proposed controllers. For the communication a TCP/IP protocol is used, the master
system is the PC and the slave system is the UAV, the camera installed in the UAV will
send the information of the workspace, this data will be processed by the master station
in order to generate a path that will be followed by UGV from a start point to a finish
point. The first image in Fig. 6(a) shows the workspace captured by the camera
installed on the bottom of the UAV. In Fig. 6(b) presents the binarization of the
workspace. The Fig. 6(c) shows the dilation result of the objects. In Fig. 7 it shows the
Path Planning generated from a start point to a finish point. Figure 8 shows the
improved Path Planning that will be followed by the UGV.

(a) Lines of various colors                              (b) Red line, final path from a start point 
        are aleatory paths                                              to a finish point 

Fig. 5. Path planning

(a) Real image                           (b)   Binarization                           (c) Dilation

Fig. 6. Workspace image processing
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The Fig. 9(a) indicates the identification of the mobile object this is in the vicinity
of the generated Path Planning, where by the UGV will be moved to a point close to the
position of the object as shown in Fig. 9(b). New images are acquired to check that the
moving obstacle is not over the desired path and thus to move the UGV to the finish
point, see Fig. 9(c).

Finally, in Fig. 10 shows the evolution of the velocity of the UGV, it is diminished
in the presence of large control errors.

Fig. 7. Path planning Fig. 8. Enhanced path planning

(a) Mobile object     (b) UGV movement to                   (c) UGV movement to finish  
      identification      the vicinity of the mobile object          point 

Fig. 9. Path planning process

Fig. 10. UGV velocity
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6 Conclusions

In this paper a multilayer scheme was presented in order to solve the problem of
heterogeneous cooperation between UAV and UGV for displacement tasks in relatively
large work spaces. It was proposed a path planning algorithm based on visual feedback
with the objective of determining the path to be followed by the UGV avoiding the
collision of fixed and mobile obstacles, finally was proposed a control algorithm for the
tracking of roads in which it is considered a velocity not constant the same that can
depend on the curvature of the road, error or other factors of control.
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Abstract. In this work, we propose the use of a hybrid serial/cable driven robot
for lower limb rehabilitation of disabled patients. The robot consists of an
exoskeleton actuated via cables. A strategies to calculate and keep the values of
the tensions in the cables positive during the motion is investigated. We show
that the Null Space method yields good results and is less demanding in com-
putational time; hence it is a good choice for real-time implementations. The
human walking were simulated to show the effectiveness of the proposed
method. The simulation results show that the values of the tensions in the cables
can be maintained positive during the motion. The presented work shows that
this hybrid parallel-serial cable robot could be used for rehabilitation of the
lower limb.

Keywords: Rehabilitation robot � Hybrid serial/Cable robot � Positive
tensioning � Dynamic modeling � Stiffness

1 Introduction

Robotic Rehabilitation is getting more and more popular during the last few years [1].
This increase is mainly due to its relative effectiveness, in general [2–4], and in medical
applications [5], in particular. Rehabilitation is used to recover from any movement
disorder and mainly as a movement therapy for stroke and spinal cord injury.
According to [6, 7] strokes are the second cause of disability, 15 million people
worldwide suffer a stroke every year. Almost, six million died and another five million
are left permanently disabled. Rehabilitation can be the best and maybe the only way to
regain movement for these patients.

Robotic rehabilitation can be seen as a robot-assisted medical rehabilitation, where
the robot is not meant to replace the handicapped member, but rather assist the patient
to boost his autonomy. [8].
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The emergence of robotic therapy as treatment for both upper and lower extremities
has revealed a numerous challenges like modeling [9] of both the exoskeleton and the
limb, dynamic identification [7, 10], controller design [11, 12] and adaptive control [7],
sensing and measurement [13],. Two different devices have been studied in the liter-
ature. The first one is an exoskeleton, where the extremity of the patient is actively
driven by the robot. This type of devices is mainly used for patients that cannot recover
their autonomy. The second device is robotic rehabilitation, where the patient is trained
by the robot, in order to improve the strength of his extremity. The final objective is to
have the patient recover his autonomy after a certain number of training sessions.

Actuation is also a challenging problem. Rather than using electric motors, in [14]
the authors suggested the use of a pneumatically actuated prosthesis which helps to
reduce the cost and provides a higher power-to-weight ratio. In this work, we consider
solving the problem of lower limbs rehabilitation by the means of a hybrid serial/cable
robot, which benefits from both the stiffness of serial manipulators and the higher
power-to-weight ratio of cable robots, making it a good candidate for rehabilitation
applications. As joints are not directly actuated, the use of cables reduces greatly the
cost and the complexity of the mechanical construction. On the other hand, the uni-
directional nature of the force that can be applied by cables suggests the use of a
specific control scheme to keep a positive tension in the cables. The problem becomes
more challenging when a given dynamic response of the exoskeleton is needed.

The used robot [15, 16] consists of an exoskeleton actuated via cables. First, we
start by studying the control problem of a special case where cables are attached to the
feet, then we generalize the study to all possible attachment points between the fixed
frame and the mechanical passive serial support.

2 Modeling

The exoskeleton proposed in this work can be thought of as a hybrid serial/cable robot
(See Fig. 1). Because a total control over the lower limbs is needed, a planar, fully
constrained and fully actuated robot is used. It has three degrees of freedom, and it
moves in a vertical plane. The robot includes a serial support composed of three links
and three passive joints. The actuation is provided by the mean of 4 cables attached to
the exoskeleton and windings around four pulleys which are actuated using four
motors. The three links undergo the effects of gravity, which are the only external
forces applied to the system, along with the four torques of the actuators. The geometric
parameters of the system are defined in Fig. 1.

Hybrid serial/cable robot is a combination of a serial passive arm actuated via
cables. A full study of the kinematics of the cable robot can be found in [15].

The upper body weight is considered to be completely compensated by the force
applied by the spring since the patient legs are tightly attached to the exoskeleton which
is fixed in the center O of the reference frame R0.
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One can express the dynamics of the system according the Lagrange formulation:

d
dt

dL
d _q

� �
� dL

dq
¼ s� C _q ð1Þ

M qð Þ �qþ n q; _qð Þþ p qð Þ ¼ s� C _q ð2Þ

s ¼ s1s2s2½ �T; Where s the generalized torque applied to the robot joint. ci is the
viscos friction of the exoskeleton joints qi.

The 3 � 3 matrix M qð Þ is the mass matrix, the 3 � 1 vector n q; _qð Þ is the cen-
trifugal and Coriolis forces vector and the 3 � 1 vector p qð Þ is the gravity force vector.

The tension exerted by cables 1 and 2 is T12 ¼ T1 T2½ �T in the same way T34 ¼
T3 T4½ �T is the tension of cable 3 and 4. Hence, the relationship between joint torques
and cable tensions can be expressed as:

J2 qð ÞTS h1; h2ð ÞT12 þ J1 qð ÞTS h3; h4ð ÞT34 ¼ s ð3Þ

Where S hij
� � ¼ � cos hið Þ

sin hið Þ
cos hj

� �
sin hj

� �� �
:

The dynamics of the pulleys and the actuators cannot be neglected, however, and
the following expression represents their dynamics, where j is moment of inertia and c
the Coulomb friction:

sm � Im �b� Cm
_b ¼ rT ð4Þ

Fig. 1. Hybrid parallel/serial rehabilitation robot
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Where T ¼ T1 T2 T3 T4½ �T and sm is the motor torque.
Let bi be the pulley’s angular position, one can express the system dynamics as

M qð Þ �qð Þþ n q; _qð Þþ p qð Þ ¼ J qð ÞTS hð Þ
sm � Im �b� Cm

_b
� 	

r
� C _q ð5Þ

For more convenience we define M� q; hð Þ ¼ rS�1 hð ÞJ qð ÞþTM qð Þ and

n� q; _q; h; _b; �b
� 	

¼ rS�1 hð ÞJ qð ÞþT n q; _qð Þþ p qð ÞþC _qð Þ � Im �b� Cm
_b

We get:

M� q; hð Þ �qþ n� q; _q; h; _b; �b
� 	

¼ sm ð6Þ

Finally we simulate the robot according to Eq. (6).
The actuator friction and inertia are taken into account according to Eq. (4). The

simulation relies on the dynamics of the exoskeleton, which is defined by the mass
matrix M� and the force vector n�. The solution is obtained using the ordinary def-
erential equation numerical solver ode23t in MATLAB.

3 Task Space Control and Positive Cable Tensioning

The control strategy needs to track the positions of both X1 and X2 simultaneously in
the task space [17] and also be able to keep positive and bounded tensions. To track

X ¼ X1

X2

� �
. We use the inverse dynamics to get the desired motors torque.

sm ¼ M� q; hð ÞJþ �X� _J_q
� �þ n� q; _q; h; _b; �b

� 	
ð7Þ

Where �q ¼ Jþ �X� _J _q
� �

.
Through a PID controller Fig. 2, the desired torques for a given motion can be

calculated as follows:

Fig. 2. Proposed controller scheme
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smjd¼ M� ~q; hð ÞJþ �XdþKvd _XþKpdXþKI
Z
dX� _J _q

� 	
þ n� q; ~_q; h; _b; �b

� 	
ð8Þ

Where M� ~q; hð Þ and n� q; ~_q; h; _b; �b
� 	

are estimation of M� and n� and smjd¼
sm1 sm2 sm3 sm4½ �Td the desired torques to control X2 by the mean of motor 1 and
2 through cable 1 and cable 2 respectively X1 by the mean of motor 3 and 4 through
cable 3 and cable 4. To track X1 and X2 simultaneously, the desired torque applied to
the joints is:

sd ¼ M qð Þ Jþ �Xd þKvd _XþKpdXþKI
Z
dX� _J_q

� 	n o
þ n q; _qð Þþ p qð ÞþC _q ð9Þ

The minimum cable tension is given by:

bT ¼ �Sþ hð ÞJ qð ÞþTsd ð10Þ

To optimize the cable tension, we could add N J qð ÞT�S hð Þ
� 	

k so that

bTþN J qð ÞT�S hð Þ
� 	

k becomes positive (Fig. 3). Where k is a positive vector.

And finally:

sm ¼ rbT � Im �bþCm
_b

� 	
ð11Þ

4 Simulations Results

There is an infinite number of variations to where one could attach the cables both in
the exoskeleton and the fixed frame. In fact, some cable attachment point configura-
tions will yield a better dynamic response and more importantly, will keep positive and

Fig. 3. Real time approach to find k
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bounded cable tensions. To avoid going through elaborated optimization strategies, we
simply selected one configuration, based on some trial and error tests. This
configuration is illustrated in Fig. 4.

The two phases of a typical human walk on a treadmill are presented in Fig. 5a and
b. In the first phase the path describing the heel and the toe movement is defined by a
set of discrete points.

The second phase uses two points, the initial and final pose of the heel and toe. The
trajectory is a straight line and described by a quintic polynomial profile.

Figure 6 shows the tensions in the four cables and along the whole trajectory. We
control the stiffness of the robot by varying the internal forces, which depend on in the
value of c a scalar describing the stiffness of the system.

As c increases, tensions increase in average, except for cable 4 Fig. 6 which
decreases in our case from 40 N to less than 5 N.

Fig. 4. Cable attachment configuration chosen for the simulations.

(a) (b) 

Fig. 5. human walk (a) first phase; (b) second phase.
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5 Conclusion

In this work, we demonstrated the effectiveness of using a hybrid cable-driven robot
with a serial passive exoskeleton for lower limbs rehabilitation. Two control strategies,
i.e., the linear programming method and the null space method, were investigated and
compared. The null space method was shown to be more effective for real-time control.
Two different trajectories, simulating the human walking were analyzed. The tensions
in the cables were calculated and the simulations showed that it is possible to keep
positive tensions in the cables, at all times. The presented work showed that this hybrid
parallel-serial cable robot could be used for rehabilitation of the lower limb.
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Abstract. Active Ankle is a novel 3 DoF parallel mechanism which
works in an almost spherical manner. Its geometry provides various
advantages like good stress distribution, low link diversity and robust
construction. Determining all the solutions to the direct kinematics prob-
lem is an important and challenging step in kinematic analysis of any
newly invented parallel manipulator due to the coupled nature of the
constraint equations. In this paper, we make use of powerful methods in
computational algebraic geometry to provide a rational univariate rep-
resentation of direct kinematics solution in the form of a 40◦ univariate
polynomial. In the presented analysis, up to 16 real solutions of the direct
kinematics problem for this mechanism have been obtained. In addition,
the results of its torsional motion analysis are presented and singularities
of the mechanism are highlighted during this motion. Also, the assembly
modes where this mechanism behaves as an almost-spherical device are
identified, which is the main contribution of the paper.

Keywords: Parallel manipulator · Kinematic analysis · Direct
kinematics · Algebraic geometry

1 Introduction

A novel, almost-spherical parallel manipulator (ASPM) Active Ankle (Fig. 1)
and its comparison with similar mechanisms like Agile Eye has recently been
introduced in [5,6]. Due to its unique, simple and compact 3[R 2 [SS]] design
(topological equivalent of Delta robot), the constraint of moving the end-
effector about an exact center (of rotation) in case of spherical parallel manipu-
lators (SPM) is relaxed to almost spherical motions that includes a shift of the
end effector about a tolerated, very small domain. Due to the presence of a closed
c© Springer International Publishing AG 2018
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loop in each leg, the mechanism offers high stiffness and orientation accuracy.
The mechanism features a low link diversity and its simple, robust and mod-
ular design makes it highly suitable for many applications. While the primary
application of the Active Ankle is an active ankle joint in an exoskeleton or a
humanoid, it could also be integrated as a submechanism into a regional manip-
ulator for obtaining precise six DOF motions if the constrained translations of
the ASPM are compensated by the previous joints of the overall device.

Solving the direct kinematics of any newly invented parallel manipulator is
usually challenging. Since the last few decades, increasingly sophisticated com-
putational tools are being developed for numerical algebraic geometry that can
assist derivation and solution of polynomial systems which describe the mecha-
nism geometry [1,2]. This paper aims to provide the solution to direct kinemat-
ics problem (DKP) of the Active Ankle mechanism using powerful tools from
computational algebraic geometry. The motivation stems from the desire to iden-
tify those DKP solutions, i.e. the assembly modes, that have the lowest deviation
from a perfect spherical motion. In particular, we are interested in exploring the
upper bounds on the number of solutions of its DKP and identifying assem-
bly modes where the mechanism behaves in an almost-spherical manner. The
torsional motion of this mechanism corresponds to adduction-abduction move-
ments when employed as an ankle joint (see [6] for foot interface unit) and hence
analysis of this movement is of practical interest.

The paper is organized as follows: Sect. 2 presents the manipulator’s archi-
tecture and constraint equations. Section 3 presents the solution to the direct
kinematics problem by first deriving an upper bound on the total number of
solutions and later exploring the number of real solutions by discretizing the
configuration space. Section 4 presents the torsional motion analysis of this mech-
anism and highlights some of the singularities. Section 5 concludes the paper by
summarizing new insights into the mechanism’s geometry.

Fig. 1. Active Ankle prototype Fig. 2. ASPM architecture
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2 Architecture and Constraint Equations

The mechanism Active Ankle shown in Fig. 2 comprises of three legs each of
which consist of a revolute joint and a spatial quadrilateral linkage with four
spherical joints. The motors actuate the three revolute joints whose axes are
aligned along the vectors î, ĵ and k̂. The fixed global coordinate frame G is chosen
such that it is coincident with moving end effector coordinate frame E when the
mechanism is in its zero configuration. The position vectors of the spherical
joint centers are ci (on the crank) and ei (on the end-effector), i = 1, 2, ..., 6.
The vector e = (ex, ey, ez)

T

indicates the position of the moving coordinate
frame E. The connecting rod length, l, crank radius, r and half-length of end
effector segment d (= ||e−ei||) constitute the design parameters. For input joint
variables qx, qy and qz, the homogeneous coordinates of ci in the ground frame
G and ei in the end-effector frame E are written as follows:

cG1 = [1, 0, rcos(qx), l + r sin(qx)]T eE1 = [1, 0, d, 0]T

cG2 = [1, 0,−r cos(qx), l − r sin(qx)]T eE2 = [1, 0,−d, 0]T

cG3 = [1, l + r sin(qy), 0, r cos(qy)]T eE3 = [1, 0, 0, d]T

cG4 = [1, l − r sin(qy), 0,−r cos(qy)]T eE4 = [1, 0, 0,−d]T

cG5 = [1, r cos(qz), l + r sin(qz), 0]T eE5 = [1, d, 0, 0]T

cG6 = [1,−r cos(qz), l − r sin(qz), 0]T eE6 = [1,−d, 0, 0]T

(1)

To express ei in the global frame, a coordinate transformation is used as
follows:

eGi = M eEi (2)

where, M is the transformation matrix algebraically described by unit quater-
nions and position coordinates. With this choice, we obtain a formulation in
terms of 7 parameters which further eases the Gröbner basis computation.

M =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
ex x0

2 + x1
2 − x2

2 − x3
2 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

ey 2x0x3 + 2x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2x0x1 + 2x3x2

ez −2x0x2 + 2x1x3 2x0x1 + 2x3x2 x0
2 − x1

2 − x2
2 + x3

2

⎤
⎥⎥⎥⎥⎦

(3)
where, ex, ey and ez represent the position of the end effector center in the global
frame. The parameters xi (i = 0, ..., 3) are the orientation quaternions satisfying:

g1 := x0
2 + x1

2 + x2
2 + x3

2 − 1 = 0 (4)

The distance between ci and ei is fixed and equal to rod length l (see Fig. 2).
Thus, we can set up six constraint equations for this mechanism:

||ei − ci||2 = l2 i = 1, ..., 6 (5)
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The six constraint equations after simplifications along with orientation quater-
nion normalization equation (g1 = 0) form an ideal I = 〈g1, g2, g3, g4, g5, g6, g7〉,
where:

g2 := (−4ezr + 4lr) sin qx − 4r cos qxey − 8exd(x0x3 − x1x2)

+ 4eyd(x2
0 − x2

1 + x2
2 − x2

3) + 8ezd(x0x1 + x2x3) − 8dl(x0x1 + x2x3) = 0
(6)

g3 := (−4eyr + 4lr) sin(qz) − 4r cos(qz)ex − 8ezd(x0x2 − x1x3)

+ 4exd(x2
0 + x2

1 − x2
2 − x2

3) + 8eyd(x0x3 + x1x2) − 8dl(x0x3 + x1x2) = 0
(7)

g4 := (−4exr + 4lr) sin(qy) − 4r cos(qy)ez − 8eyd(x0x1 − x2x3)

+ 4ezd(x2
0 − x2

1 − x2
2 + x2

3) + 8exd(x0x2 + x1x3) − 8dl(x0x2 − x1x3) = 0
(8)

g5 := (−8drx0x1 − 8drx2x3) sin(qx) + 2e2x + 2e2y + 2e2z − 4ezl + 2d2 + 2r2

+ (−4drx2
0 + 4drx2

1 − 4drx2
2 + 4drx2

3) cos(qx) = 0 (9)

g6 := (−8drx0x3 − 8drx1x2) sin(qz) + 2e2x + 2e2y + 2e2z − 4eyl + 2d2 + 2r2

+ (−4drx2
0 − 4drx2

1 + 4drx2
2 + 4drx2

3) cos(qz) = 0 (10)

g7 := (−8drx0x2 − 8drx1x3) sin(qy) + 2e2x + 2e2y + 2e2z − 4exl + 2d2 + 2r2

+ (−4drx2
0 + 4drx2

1 + 4drx2
2 − 4drx2

3) cos(qy) = 0 (11)

3 Solving Direct Kinematics

The sine and cosine in Eqs. (6) to (11) are replaced with the tangent half-angle
expressions: sin(qi) = 2ti

1+t2i
cos(qi) = 1−t2i

1+t2i
where, ti = tan( qi2 ), i = x, y, z.

To this end, tx, ty and tz are the inputs and x0, x1, x2, x3, ex, ey and ez are the
outputs to be solved for in the seven equations gi = 0, i = 1..7. The design
parameters are substituted as l = 10 cm, d = r = 3.5 cm.

3.1 Rational Univariate Representation of DKP Solution

A Gröbner basis of the ideal I = 〈g1, g2, g3, g4, g5, g6, g7〉 is calculated over the
field K[x0, x1, x2, x3, ex, ey, ez]. It was possible to compute the Gröbner basis only
after substituting certain values to the inputs qx, qy and qz and to the design
parameters. For the lexicographic ordering x0 <lex {ej , xi} and xi <lex {ej , x0}
(i = 1, 2, 3; j = x, y, z), the univariate polynomial in x0 and xi turned out to be
of degree 28 and 75, respectively which should be halved to find unique solutions
due to Eq. (4). For ej <lex xi (i = 0, 1, 2, 3; j = x, y, z), the polynomial in ej
was of degree 40. Hence, a bound on the maximum number of solutions can be
found as max{28/2, 75/2, 40}. Thus, the Active Ankle can have a maximum
of 40 direct kinematic solutions.
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3.2 Finding Real Solutions

For tx = ty = tz = tan(30
◦

2 ), the RootFinding[Isolate] function of Maple is
used to find out all the real solutions for the set of constraint equations. The
algorithm behind this function finds out the rational univariate representation
of the set of polynomials and isolates the real roots of these univariate polyno-
mials based on Descartes’ rule of sign and the bisection strategy in a unified
framework [4].

A total of 32 direct kinematic solutions are obtained for qx = qy = qz = 30◦.
Due to Eq. (4), this number is to be halved to discard repeated roots. Thus, there
are 16 unique assembly modes for the given input. For each assembly mode, the
end effector position (ex, ey, ez) and the axis-angle representation (ax, ay, az, θ)
are expressed as follows: ax = x1√

1−x2
0

, ay = x2√
1−x2

0

, az = x3√
1−x2

0

, θ =

2 cos−1(x0). The configuration of these assembly modes is listed in Table 1.

Table 1. Overview of 16 solutions for the DKP with qx = qy = qz = 30◦.

No ex (cm) ey (cm) ez (cm) ax ay az θ (deg)

1 1.69 1.69 1.69 −0.57 −0.57 −0.57 159.1◦

2 4.93 4.93 4.93 −0.57 −0.57 −0.57 148.7◦

3 0.06 0.06 0.06 −0.57 −0.57 −0.57 44.3◦

4 6.6 6.6 6.6 −0.57 −0.57 −0.57 23.6◦

5 0.69 2.12 2.59 −0.28 0.12 −0.94 139.4◦

6 2.12 2.59 0.69 0.12 −0.94 −0.28 139.4◦

7 2.6 0.69 2.12 0.94 0.28 −0.12 139.4◦

8 1.82 3.47 3.78 −0.16 0.32 −0.93 157◦

9 3.78 1.82 3.47 0.93 0.16 −0.32 157◦

10 3.47 3.78 1.82 0.32 −0.93 −0.16 157◦

11 0.63 0.89 1.43 −0.57 0.22 −0.78 107.3◦

12 0.89 1.43 0.63 0.22 −0.78 −0.57 107.3◦

13 1.43 0.63 0.89 0.78 0.57 −0.22 107.3◦

14 5.16 5.88 5.37 0.52 0.06 −0.84 86.1◦

15 5.88 5.37 5.16 −0.06 0.84 −0.52 86.1◦

16 5.37 5.16 5.88 0.84 −0.52 −0.06 86.1◦

Among them, No. 3 and 4 are shown in Figs. 3 and 4. The points correspond-
ing to the position vector ci can move on the circumference of those circles
drawn. The points ei form a spatial cross, the center of which represents the end
effector point (shown as black sphere). No. 1 – 4 show the assembly modes where
ex = ey = ez and ax = ay = az. Since, qx = qy = qz, the other twelve assembly
modes are observed in triplets with the same axis angle θ and permuted values
of (ex, ey, ez) and (ax, ay, az). Four such triplets are observed in solutions 5 to 7,
8 to 10, 11 to 13 and 14 to 16 in Table 1. This pattern may not be visible when
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ti �= tj ∀i, j = x, y, z. In addition, this method is used to record the percentage
of number of real solutions to DKP by varying qx, qy and qz from −180◦ to 180◦

in finite increments [3]. For convenience, the configuration space is partitioned
into 1331 permutations of input angles and the results are shown in Table 2. It
may be noted that the number of real solutions for any configuration can only be
an even number due to an even upper bound on the total number of solutions.

Table 2. Overview of the solvability of the DKP for q = (qx, qy, qz)
T ∈ S3 with

discretization S = [−180◦, 180◦] in 11 steps (|S| = 11 and |S3| = 1331).

Real solutions 0 2 4 6 8 10 12 14 16
∑

Complex solutions 40 38 36 34 32 30 28 26 24

Number of poses 204 282 237 222 287 83 12 0 4 1331

Fraction of poses 15.33 21.19 17.80 16.68 21.56 6.24 0.90 0 0.30 100%

4 Torsional Motion Analysis

The torsional motion of this manipulator is of practical interest because it corre-
sponds to the adduction-abduction movement when employed as an ankle joint.
The torsional motion can be characterized by substituting ex = ey = ez = e and
tx = ty = tz = t in seven constraint equations. The Gröbner basis for the ideal
I, now defined over a reduced field K[x0, x1, x2, x3, e], is calculated with pure
lexicographic order e <lex x3 <lex x2 <lex x1 <lex x0 using Maple software.
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This yields a Gröbner basis consisting of five polynomials, out of which the first
one is an input (t) – output (e) agnostic description of the mechanism.

G1 := (9t8 + 36t6 + 54t4 + 36t2 + 9)e4 + (−1347t8 − 441t7 − 4359t6 − 1029t5

− 5877t4 − 735t3 − 4065t2 − 147t − 1200)e3 + (74251t8 + 14700t7

+ 142899t6 + 44296t5 + 139207t4 + 54096t3 + 98701t2 + 24500t + 47350)e2

+ (−1710100t8 + 980000t7 + 220500t6 + 19600t5 + 1239700t4 − 19600t3

+ 739900t2 − 980000t − 490000)e + 12005000t8 − 24010000t7 − 12005000t6

+ 48020000t5 − 12005000t4 − 24010000t3 + 12005000t2 = 0
(12)

It shows that a maximum of four assembly modes and a maximum of eight
working modes (solutions to the inverse kinematics problem) are possible on
the subvariety defined by ex = ey = ez. The implicit plot of Eq. (12) after
substituting t = tan(q/2) is shown in Fig. 5 for e = 0, ..., 7 cm and q = qx = qy =
qz = −180◦, ..., 180◦. For a value of q = qx = qy = qz = 30◦, four values of e
observed in this figure match with the values noted in Table 1. From Fig. 5, one
could also note that the assembly modes shown in Figs. 3 and 4 were actually the
almost-spherical assembly modes for this mechanism because in these assembly
modes the change in end effector’s position is minimal.

The second equation of Gröbner’s basis in e, t and x0 is found out to be:

G2 :=
(
9 t4 + 18 t2 + 9

)
e2 +

(−600 t4 − 294 t3 − 906 t2 − 600
)
e

+
(
9800 t4 − 9800

)
x0

2 + 4900 t4 − 14700 t2 + 9800 = 0
(13)

Eliminating e from Eqs. (12) and (13) and substituting t = tan(q/2) and x0 =
cos(θ/2) results in an implicit equation in terms of the axis angle θ (representing
the rotational workspace) and the actuated variable q. Figure 6 shows the implicit
plot of q vs. θ for θ = −180◦, ..., 180◦ and q = qx = qy = qz = −180◦, ..., 180◦.

A Jacobian matrix J of dimension 5 × 5 is calculated by partially differenti-
ating the constraint polynomials with respect to the variables of the considered
field. When the determinant of this Jacobian vanishes, the mechanism reaches
a singularity. Considering the Gröbner basis equations and det(J) = 0, other
variables are eliminated to obtain the Eq. (14) only in terms of tx = ty = tz =
t = tan(q/2).

det(J) := (t − 1)(t + 1)(t2 + 1)(2601t12 − 408t11 − 55370t10 + 54732t9

+ 240101t8 − 491700t7 + 771464t6 − 925624t5 + 751804t4

− 497200t3 + 259600t2 − 80000t + 10000) = 0

(14)

Solving for t and hence q results in six unique solutions which are noticeable
as cusps in Figs. 5 and 6. For instance, q = 90◦ is one of the singularities when
e reaches a value of 6.6 cm. Since, other values of e are indeed possible for an
input angle of 90◦, it is important to mention the magnitude of the pair {e, q}
or {θ, q} while representing these singularities.
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5 Conclusion

This paper presents some global insights into the geometry of the Active Ankle
mechanism through its direct kinematics analysis using tools from computational
algebraic geometry. It is established that the upper bound to the number of
unique solutions to direct kinematics problem is 40 which supports our obser-
vation that once the actuator angles are fixed in the three legs, Active Ankle
behaves as a special instance of 6−6 Stewart platform. In practice, a maximum
of 16 real solutions of the direct kinematics problem were found. In addition, the
results of the torsional motion analysis which is of practical interest is presented
and some singularities of the mechanism are highlighted. Moreover, the assembly
modes where the mechanism behaves as an almost-spherical device are identified.
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Abstract. Serial spherical linkages have been used in the design of a number of
robots for minimally invasive surgery, in order to mechanically constrain the
surgical instrument with respect to the incision. However, the typical serial
spherical mechanism suffers from conflicting design objectives, resulting in an
unsuitable compromise between avoiding collision with the patient and pro-
ducing good kinematic and workspace characteristics. In this paper we propose a
redundant serial spherical linkage to achieve this purpose and present a
multi-objective optimization for achieving the aforementioned design goals. The
sensitivity of the solution to uncertainties in the design parameters is investigated.

Keywords: Serial spherical mechanism � Redundant linkage � Surgical robot �
Minimally invasive surgery

1 Introduction

In minimally invasive surgery, the instruments are inserted through small incisions,
which thereafter serve as kinematic constraints allowing four degrees of freedom
(DOF) per instrument (three rotations centered at the incision point, often referred to as
the remote center of motion [3], and one translation through the incision) [18]. Various
spherical mechanisms have been proposed in the surgical robotics literature for
mechanically constraining the instruments to avoid motions that would cause trauma to
the tissue at the incision location [1, 5, 6, 11, 14, 15]. Among these are serial spherical
linkages, either actuated at each joint [2, 16] or powered by actuators on a fixed base
with motion transmitted through gearing [17, 18], cables [7], or other means.

The typical serial spherical mechanism has three intersecting rotation axes fixed in
two links, providing the three rotational DOF mentioned previously. The lengths of the
two links must be chosen carefully in order to provide adequate workspace (usually
considered as a cone whose apex half-angle is at least 30° [12]) without interference
(collision) between the robot and the patient. However, these two primary design
objectives are in opposition, as the larger links required to increase workspace also
increase the impingement of the robot in the space occupied by the patient.
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In this paper, we propose solving this problem by introducing an additional (re-
dundant) link. We present a multi-objective optimization considering the workspace
requirements, the kinematic performance, and the collision constraint.

2 Methods

The proposed robot architecture is a classic serial spherical linkage (two links and three
joints with intersecting axes) with a redundant link (and joint) added, as shown in
Fig. 1. Singularities (well know for this type of robot) are avoided by restricting the
motion of each joint to avoid alignment of adjacent links. We similarly avoid internal
collisions within the robot itself. Thus the robot remains in a single operating mode
throughout its used workspace. The problem consists of finding the optimal link
parameters, expressed as angles ai, which satisfy the objectives and constraints men-
tioned previously.

The task-based synthesis and optimization of medical robots is a rich topic area in
the literature [3, 4, 8]. Building from classical performance indices in robotics, spe-
cialized indices have been proposed to account for workspace requirements in this type
of robot [9, 17]. However, it is less common to see optimization approaches in medical
robotics which account for the avoidance of collisions between the robot and the
patient.

We adopt a multi-objective optimization approach considering workspace, kine-
matic performance, and robot compactness as criteria. For the workspace criterion, we
recognize that the actual workspace will not be exactly equal to the conical section of a
spherical surface described previously, so we base the optimization on a conservative
measure of such an idealized workspace inscribed within the actual workspace. The
actual workspace is directly calculated by forward kinematics, discretizing the joint
space within the limited range of motion previously mentioned. Collision avoidance is

Fig. 1. Redundant serial spherical arm
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directly accounted for within the optimization subroutine by throwing out any work-
space points at which any part of the robot penetrates a planar boundary passing
through the surgical incision and orthogonal to the neutral axis of the surgical trocar.
Such cases are shown in Fig. 2. For the kinematic performance criterion, we use the
improved indices proposed by Olds [10], which give worst-case measures of position
error (max) and velocity (min) in the two-dimensional workspace. Compactness is
measured as the sum of the link angles ai.

As inputs, we use the three joint angles (h1,2,3), and as outputs the pan (left-to-right)
and tilt (down-to-up) angles intuitive to surgeons in the context of laparoscopic camera
orientation. The joint angle h4 is not used as an input since it is for instrument
self-rotation and does not affect tool position. Based on a neutral position with all robot
links aligned and extended in the positive tilt direction,

p ¼ a1 sin h1 þ a2 sin h1 þ h2ð Þþ a3 sin h1 þ h2 þ h3ð Þ ð1Þ

t ¼ a1 cos h1 þ a2 cos h1 þ h2ð Þþ a3 cos h1 þ h2 þ h3ð Þ ð2Þ

where p is the pan angle and t is the tilt angle, and the Jacobian is

J ¼ J11 J12 J13
J21 J22 J23

� �
ð3Þ

J11 ¼ a1cosh1 þ a2cos h1 þ h2ð Þþ a3cos h1 þ h2 þ h3ð Þ
J12 ¼ a2cos h1 þ h2ð Þþ a3cos h1 þ h2 þ h3ð Þ
J13 ¼ a3cos h1 þ h2 þ h3ð Þ
J21 ¼ �a1sinh1 � a2sin h1 þ h2ð Þ � a3sin h1 þ h2 þ h3ð Þ
J22 ¼ �a2sin h1 þ h2ð Þ � a3sin h1 þ h2 þ h3ð Þ
J23 ¼ �a3sin h1 þ h2 þ h3ð Þ

Fig. 2. Robot/patient collision cases (circle indicates area of collision)
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Because the robot is redundant, the Jacobian matrix is not square. Therefore, we
adapt the indices [10] to include the pseudoinverse:

lmin ¼
1

max J�ik k2
ð4Þ

lmax ¼ max
J _h

�� ��
2

_h
�� ��

1
ð5Þ

with the pseudoinverse of the Jacobian expressed as

J� ¼ JT JJT
� ��1 ð6Þ

and J�i indicating the ith row of J�. Here lmin represents the worst-case velocity, and
lmax represents the worst-case position error. As suggested in [10], we allow the
velocity vector to take on its various possible extreme values in the calculation of lmax:

_h ¼
1
1
1

8<
:

9=
;;

1
�1
1

8<
:

9=
;;

1
1
�1

8<
:

9=
;;

1
�1
�1

8<
:

9=
; ð7Þ

The kinematic performance is expressed as the worst of these two metrics (lmin and
lmax) at each point in the workspace and averaged across the entire feasible workspace
(as sampled in the joint space).

The fgoalattain() function in MATLAB was used to carry out the optimization.
This function is an implementation of the sequential quadratic programming
(SQP) method and allows multiple objectives to be weighted within a single objective
function. In contrast to the Pareto approach, in which no criterion is allowed to get
worse from one iteration to the next, the fgoalattain() function provides better con-
vergence by allowing the search direction to experience “tradeoffs” between the
individual criteria in order to optimize the global criterion.

The redundant serial arm was optimized using allowable ranges of the link
parameters a and joint variables h as indicated in Table 1, and weights of 0 on
workspace and collision avoidance, 0.3 on kinematic performance, and 0.5 on com-
pactness (where 0 indicates a hard constraint and 1 represents an unenforced objective).
These weights were chosen to enforce the need for safety and adequate workspace
without completely neglecting the other desirable characteristics.

Table 1. Parameter values used in optimization

Parameter Lower bound (°) Upper bound (°)

a1,2,3 9 120
h1 −85 85
h2 5 175
h3 −175 −5
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3 Results and Discussion

The serial arm parameters obtained through optimization were S : a1 ¼ 46:7�;f
a2 ¼ 44�; a3 ¼ 18:9�g. The resulting robot is shown in Fig. 3. The workspace and
collision avoidance criteria are fully satisfied, and the kinematic performance of the
robot can be seen in Fig. 4. As allowed by the fgoalattain() function, neither the per-
formance nor the compactness criteria were fully satisfied; this is to be expected, as the
robot is not expected to be perfectly small nor fully isotropic throughout the workspace.

The obtained result indicates that the algorithm performs in a stable manner and
provides consistent results. Next, the variability of the optimized redundant serial
spherical linkage performance generated by the design parameters will be estimated.
Thus, the case of optimal solution S, given at the beginning of this section, will be
studied.

Fig. 3. The obtained redundant serial spherical mechanism: (left) computer rendering; (right)
pan-tilt workspace – red area is excluded based on collision (Color figure online)

Fig. 4. Performance of optimized manipulator: the distribution of lmin in joint space for
h1 ¼ �87�.
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Each uncertain design parameter is represented by a statistical distribution. For a
normal distribution this requires a mean value and a standard deviation. A Monte Carlo
simulation [13] is performed for every design parameter where each evaluation consists
of a specified number of runs as shown in Fig. 5.

For each Monte Carlo simulation, all the deterministic design variables, ai, are fixed
at their nominal values and the uncertain design variables, ~ai, are selected randomly
from their statistical distributions assumed to vary within ±5% of the specified nominal
values. With the Monte Carlo simulation, we perform n ¼ 104 simulations to determine
the mean value �f ¼ �f1;�f2;�f3;�f4

� �
as well as the respective standard deviations

rf ¼ rf1 ; rf2 ; rf3 ; rf4
� �

. The evolution of each performance is presented in Fig. 6. The
sensitivity study result of the optimal solution S is shown in Table 2.

We observe through these data the high sensitivity of the structure on the first two
criteria, respectively workspace and collision avoidance. The variation around the
optimal values of the design parameters leads to a large violation of the performance
criteria in relation with the workspace and collision avoidance. This first observation
justifies the choice of the very strict condition on the respective weights at the definition
of the optimization problem.

Create a normal distribution of the 
design parameter 

For i=1 to n
Randomly generate 

according to their normal distribution

Compute 

Compute of and

n>1E4

Fig. 5. Monte carlo simulation flowchart

Fig. 6. Effect of the design parameters’ uncertainty on the objective functions
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In contrast, the last two criteria, respectively kinematic performance and com-
pactness, are less sensitive to the disturbance of the design parameters. The calculated
sensitivity is of about 15%.

Consequently, by considering the uncertainties of the design parameters the
workspace and collision avaidance given by the optimal solution S are no longer
guaranteed. These two performances should be defined as constraints and not as cri-
teria. Therefore, the optimal solutions, obtained by the multi-objective optimization
presented previously, are not robust due to the design parameter uncertainties. This
problem merits further work.

4 Conclusions

In this work a redundant serial spherical linkage has been presented to cope with the
problems of the classic serial spherical mechanism for medical robots. Four design
objectives have been presented and adapted to the proposed redundant mechanism:
workspace, kinematic performance, avoiding collision and compactness. A mul-
ti-objective optimization problem is formulated in this aim and solved using the
fgoalattain() function. The obtained optimal solution perfectly satisfies the workspace
criterion as well as the collision avoidance requirement. However, neither the perfor-
mance nor the compactness criteria were fully satisfied and this is due to the tradeoffs
allowed by the optimization method. This type of result facilitates the designer’s choice
of a suitable solution by generating a specific solution without going through a Pareto
front. A sensitivity study is performed based on the Monte Carlo method which shows
that the deterministic optimal solutions can be strongly affected by the uncertainties in
the design parameters. A robust multi-objective optimization will be addressed in
future work to cope with this sensitivity problem.

Acknowledgments. This work is sponsored by the French government research program
Investissements d’avenir through the Robotex Equipment of Excellence (ANR-10-EQPX-44)
and by a faculty development fellowship from the University of Nebraska-Lincoln.

Table 2. Sensitivity of the optimal solution.

Objective function Mean value �fi Standard deviation rfi Sensitivity si
Workspace: f1 0.0483 0.0232 144.28%
Collision: f2 0.0815 0.0232 85%
Kinematic performance: f3 0.5697 0.0057 3%
Compactness: f4 0.4133 0.0169 12%
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Abstract. The paper presents the forward kinematics computation for a parallel
robotic system designed for prostate biopsy using Study parameters. The
manipulator is analyzed on its smaller kinematic chains to facilitate the com-
putation, in a way that no information is lost from the robotic system func-
tionality. Kinematic solutions examples are presented based on numerical values
given for the robot geometric parameters and active joint position.

Keywords: Parallel robot � Study parameters � Forward kinematics

1 Introduction

Computations regarding the kinematics and singularities of robotic structures are of
great interest since they provide valuable information about the manipulator func-
tionality. This information has the capability to reduce the risk factor of using a robotic
structure in various procedures, which is especially important in medical applications
where the patient and medical staff safety is a priority [1]. Image guided prostate biopsy
is one procedure where the benefit of using a robotic system outweighs the risk [1, 2].
One particular way to access the prostate tissue is transperineally, guided by a tran-
srectal ultrasound (TRUS) probe inserted into the patients’ rectum, were the advantages
are that the entire prostate volume can be sampled, and lesser infection risk [3–5].

The focus of this paper is the computation of the forward kinematics of the BIO –

PROS 3 robotic system, using Study parameters. BIO – PROS 3 robotic system
kinematics and singularities were studied in previous work, using a classical method
where the kinematics are derived from the robot geometric model, and the singularities
are studied from the vanishing points of the determinants of the Jacobi matrices A and
B [4]. It has been pointed out in [6] that the singularity analysis using the Study
parameters method may provide more singular configurations than the analysis of the
Jacobi matrices. Study parameters method for solving the forward kinematics,
parameterize the Euclidean displacement using quaternions, and computes a set of 8
parameters as shown in [7–9]. Computations based on the method were done to
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describe mechanisms such as: the Stewart-Gough platform [7], 3-RPS manipulator [8],
and a medical robot (PARA-BRACHYROB) for brachytherapy [6].

The complexity of the BIO-PROS 3 robot did not allow the kinematic computation
of the whole mechanism using the Study parameters. As an alternative, a geometric
parameter was introduced, in a way that the kinematic results were not affected, but
Maple managed the computation.

The following sections of this paper are structure as follows. Section 2 presents the
BIO – PROS 3 robotic system, and the forward kinematics computation using Study
parameters, and illustrates examples based on numerical values (for active joints and
structural parameters). Section 3 presents the conclusions and proposed further
research.

2 BIO-PROS 3 Parallel Robot

BIO-PROS 3 is a robotic system (Fig. 1) from the parallel robots family [10] designed
for transperineal prostate biopsy, which contains two independent modules, one for
biopsy gun guidance (Fig. 2a), and one for transrectal ultrasound (TRUS) probe
guidance (Fig. 2b) [4]. For transperineal prostate biopsy the insertion of both TRUS
probe and biopsy needle follow a linear path (±10o needle angulation is preferred
relative to TRUS probe insertion axis [2]). The positioning and insertion of the TRUS
probe is achieved by the module active joints, while for the biopsy gun, the position is
obtained by the module active joints and the needle insertion is realized with a
redundant DOF from an insertion instrument (such as [5]) to increase precision.

2.1 Robotic System Description

Each module has 5 active joints, qi for the TRUS probe guiding module, and q0
i
for the

biopsy gun guiding module, which leads in turn to 5 DOF manipulators. By defining a
fixed coordinate frame OXYZ placed in the robotic systems base (see Fig. 2), a moving
frame O0X0Y0Z0 is introduced (placed on the manipulators end effector). The two
modules are similar in functionality and architecture, the difference being that the

Fig. 1. BIO-PROS 1 parallel robot CAD representation [4] on left; 3D printed model on right.
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kinematic chain actuated by q4�5 (of the TRUS guidance module) lies on a plane
orthogonal to the plane in which q1�3 are constrained, in opposition to the biopsy gun
guiding module, where the kinematic chain actuated by q04�5 lies in the same plane with
the active joints q0

1�3
. For the TRUS guidance module, the end effector represents

(mechanically speaking) a link between two cardan joints (rf1 and rf2 on Fig. 2), and its
motion is obtained from the motion of a platform with constant orientation linked with
rf1, working in Cartesian coordinates (actuated by q1�3), combined with the motion of
a kinematic chain (linked in rf2 and actuated by q4�5) that works in cylindrical coor-
dinates and has a free rotation rf0 around an axis defined by the translation axis of both
active joints q4�5 (see Fig. 3).

Fig. 2. BIO-PROS 3; biopsy gun module on left; TRUS module on right.

Fig. 3. Kinematic representation of BIO-PROS 3.

Kinematic Analysis for a Prostate Biopsy Parallel Robot Using Study Parameters 137



2.2 Forward Kinematics

Study parameters are used to compute the forward kinematics of the robotic system,
since the Study method is free of parameterization singularities [6]. Two distinct
kinematic chains are defined (chain 1 and chain 2) that intersect in the mobile coor-
dinate frame O0X0Y0Z0 (for each module) as shown in Fig. 3. The kinematic chain 1 has
at its basis a type R-2PRR mechanism with 3 DOF (one being a free rotation), and the
kinematic chain 2 is type P-2PRR with 3 translational DOF.

A computation of the kinematics regarding the whole mechanism (as sketched in
Fig. 3a) was not possible in Maple using an Intel i7 3.6 GHz with 16 GB of RAM
computer configuration. For this reason, the computation was performed on separated
kinematic chains as described further in this section. Figure 3b illustrates the simplest
way to sketch the kinematics of the manipulator by taking into account how each joint
influences the mobile coordinate frame position and orientation. Since a point
Nðx; y; zÞ ¼ fðq1; q2; q3Þ (fixed on the platform with constant orientation) is introduced
as a way to facilitate the computation, Fig. 3b illustrates the kinematics of both TRUS
and biopsy gun modules. Were D represents a displacement on X and Y axes for the
needle module, and a displacement on X for the TRUS module. Hereafter the paper is
focused on describing the TRUS module since the computation is identical for both
modules.

To find the Study parameters of a moving frame O0X0Y0Z0 relative to the fixed
frame OXYZ, the Denavit–Hartenberg (DH) parameters are written for each joint/link,
and the matrices are multiplied to obtain the constraint conditions:

C1 ¼ Td � T1 � R2 � T3 � R4 � Te � R5 �M
C2 ¼ N � Te0 � R0

2 � R0
3 �M0 ð1Þ

Table 1 contains the parameters for each DH matrix transformation, where ri (and
r0i) represent free rotation parameters derived from the Ri (and R0

i) using the half angle
tangent formulae.

Table 1. Parameters for the DH transformation matrices

C1/C2 Parameter Description Type

Td/N dx/Xn, Yn Zn Displacement on X/XYZ Geometric parameter/active translation
T1 t1 Displacement on Z Active translation
R2=R0

2 r2=r02 Rotation around Z Free rotation

T3=Te0 t3/e2 Displacement on Y Active translation/geometric parameter
R4 r4 Rotation around Z Free rotation
Te e Displacement on Z Geometric parameter
R5=R0

3 r5=r03 Rotation around X Free rotation

M/M0 m Displacement on Y Geometric parameter
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From C1 and C2 the Study parameters are computed (as described in [7]) yielding
Eqs. (2) and (3). Regarding Study parameters as algebraic varieties, two polynomial
ideals are generated, I for Eq. (2) and I 0 for Eq. (3). Maple software was not able to
generate aGröbner basis for I (on the computer previouslymentioned), therefore the linear
implicitization algorithm (also used in [9]) was used before computing a Gröbner basisG.

x0
x1
x2
x3
y0
y1
y2
y3

2
66666666666664

3
77777777777775

¼

2 � r2 � 2

2ðr2 � r4 � 1Þr5
�2ðr4 þ r2Þr5
�2ðr4 þ r2Þ

r2ðr5 � dx � r4 � t1 � eþm � r5 þ t3 � r5Þþ r4ð�t1 � eþm � r5 � r5 � t3Þ � dx � r5
r2ðdx � r4 � t1 � r5 þm� e � r5 � t3Þþ r4ð�e � r5 þ t3þm� r5 � t1Þþ dx

r2ðe � r5 � r4 þ t3 � r4 þm � r4 � r5 � r4 � t1 � dxÞ � dx � r4þ r5 � t1 � mþ e � r5 þ t3
r2ð�t1 � r4 � e � r4 þm � r4 � r5 � r5 � t3 � r4 þ r5 � dxÞþ r5 � r4 � dxþ e� r5 � mþ t1 � t3 � r5

2
66666666666664

3
77777777777775

ð2Þ

x00
x01
x02
x03
y00
y01
y02
y03

2
66666666666664

3
77777777777775

¼

2

2r03
2r02 � r03
3r02

r03 � r02 � Ynþm � r03 � r02 þ r02 � r03 � e2 þXn � r03 þ r02 � Zn
r02 � r03 � Zn� e2 � r02 � Yn � r02 þm � r02 � Xn

�r03 � Znþ r02 � Xn� e2 � Yn� m

�r02 � r03 � Xnþ Yn � r03 þ r02 � r03 � r03 � m� Zn

2
66666666666664

3
77777777777775

ð3Þ

In the case of I 0 Maple returned a Gröbner basis (denoted G0). The mentioned
Gröbner bases contain polynomials with Study parameters as variables. Solutions for
the forward kinematic problem must be solutions both G and G0. Maple was able to
compute a basis G� with the information from both G and G0 after providing numerical
values for some geometric parameters (in this example e ¼ 10; e2 ¼ 10; dx ¼
350; m ¼ 50). The basis G� has a univariate polynomial (in x3) of degree 8. By
inputting numerical values for the active joints in G� and solving for xi; yi, numerical
values for Study parameters are obtained. For a numerical example the following
values were used: t1 ¼ 100; t3 ¼ 300; Xn ¼ 300; Yn ¼ 250; Zn ¼ 120f g; all the
dimensions are expressed in mm. The computation yields 8 solutions but only 4 are of
interest (the other 4 the first 4 multiplied by −1). The numerical values obtained are
included in Table 2, and a kinematic representation of two solutions is illustrated in
Fig. 4. The other two solutions represent the same displacement but with different
orientation (a rotation around Z0 axis combined with a rotation around X0 axis by a
value of p).

Table 2. Numeric solutions for Study parameters

x0 x1 x2 x3 y0 y1 y2 y3
−0.035 0.705 −0.706 0.035 −0.151 −4.080 −3.155 18.222
0.028 −0.559 −0.827 0.414 −20.968 −5.819 3.545 6.361
−0.827 0.041 −0.028 0.559 3.545 6.361 20.968 5.819
0.706 −0.035 −0.035 0.705 3.155 −18.222 −0.151 −4.080
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Since a generalization was used to compute the forward kinematics (using the
simplest kinematic representation illustrated in Fig. 3b), the forward kinematics for the
2PRR mechanism is also computed using Study parameters. Following the kinematic
representation from Fig. 5, the Study parameters were computed (after multiplying the
matrices according to DH parameters) for three kinematic paths (illustrated as a, b, c in
Fig. 5) yielding the Study parameters denoted xa;b;ci : ya;b;ci (Eqs. 4–7).

After computing three Gröbner bases (one for each ideal generated by Study
parameters xa;b;ci : ya;b;ci ) Maple Software was able to compute a base that contain the
information from all three previous bases. Six distinct solutions, four of them being real
(the remaining 2 complex solutions are not of interest) were returned after the following
numerical values were input in the computation: q1 ¼ 100; q2 ¼ 200; q3 ¼ 100; B1 ¼f
150; e ¼ 10g. Table 3 displays the numerical values for the solutions, and Fig. 6
illustrates a sketch of these solutions (with only solution 1 being of interest due to the
robot functionality).

Fig. 4. Solutions for the forward kinematic problem.

Fig. 5. Kinematic sketch for the 2PRR
mechanism

Fig. 6. Kinematic solutions for the 2PRR
mechanism
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xa;b;c0

xa;b;c1

xa;b;c2

xa;b;c3

ya;b;c0

ya;b;c1

ya;b;c2

ya;b;c3

2
6666666666664

3
7777777777775

¼

2 � r4 � r5 � 2
0
0

2 � t4 � 2 � t5
�ðr5 þ r4Þq3

ya;b;c1

ya;b;c2
�ðr4 � r5 � 1Þq3

2
66666666664

3
77777777775

ð4Þ

ya1 ¼ ðB1r5 � 2er5 � eþ q1Þr4 � er5 þ q1r5 þ 2eþB1

ya2 ¼ ð�q1r5 � er5 þB1Þr4 þ q1 þ e� r5B1
ð5Þ

yb1 ¼ ðB1r5 � 2er5 � eþ q2Þr4 � er5 þ q2r5 þ 2eþB1

yb2 ¼ ð�q2r5 þ er5 þB1Þr4 þ q2 � e� r5B1
ð6Þ

yc1 ¼ ðB1r5 � 2er5 � 3eþ q2Þr4 � 3er5 þ q2r5 þ 2eþB1

yc2 ¼ ð�q2r5 þ er5 þB1Þr4 þ q2 � e� r5B1
ð7Þ

3 Conclusions

The forward kinematics computation presented in this paper was conducted using
Study parameters. Due to computing limitations the manipulator kinematic chains were
treated independently but no global information of the manipulator functionality was
lost. A detailed (mathematically speaking) representation of kinematic solutions was
presented, with two possible (mechanically speaking) solutions for the manipulator,
and one possible solution for the 2PRR mechanism. Based on the results of this paper,
future research is planned to achieve a complete singularity analysis using Study
parameters. Furthermore, the inverse kinematics analysis is planned, in order to
practically validate the robotic system for its particular task (transperineal prostate
biopsy under TRUS guidance).

Table 3. Numeric solutions for Study parameters for the 2PRR mechanism

x0 x1 x2 x3 y0 y1 y2 y3
1 0 0 0 0 −82.284 −75 −100
1 0 0 0 0 62.284 −75 -100
0.510 0 0 −0.859 −85.970 85.161 26.351 −51.079
0.510 0 0 0.859 85.970 −95.376 26.351 −51.079
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Abstract. Amethod is presented in this paper to determine optimal values of the
parameters for the gait of a humanoid robot. These parameters are relevant for a
stable walking of the robot when this one follows a rectilinear path. By applying
such optimal parameters the set of zero moment points of the support foot,
corresponding to a step in the walking, is located as close as possible to the center
of the footprint of the support foot. The computation of the optimal parameters is
accomplished by minimization of a nonlinear objective function that describe the
distance from the center of the footprint to a typical remote zero moment point
(ZMP) estimated from a sample of such points generated during a step. A study
case is presented to illustrate the efficacy of the proposed method. This one
provide some advantages compared with other approaches in the literature.

Keywords: Bioloid robot � Biped robots � Optimum walking � Humanoid
walking

1 Introduction

High instability during the walking is characteristic in humanoid biped robots. Rela-
tively slow perturbations may cause that the robot falls during the walking. Thus, great
challenges exists in designing, motion planning and control of humanoids in order to
reduce the instability as much as possible. The main goal of studies developed on biped
locomotion is to get a stable walking. The criterion of stability of biped robots applied
in most of research works is based on the notion of the Zero Moment Point (ZMP),
proposed by Vukobratovic [1]. Indeed, Shi et al. [2], for instance, proposed to minimize
the deviation between the center of the stable region and the ZMP by defining the
optimal trajectory of the hip of a biped. The authors studied a 12 degree of freedom
(DOF) robot and they specified the pelvis motion by using sinusoidal functions. These
kind of functions, however, produces impact forces during the landing of the free foot.
In other work [3] the maximization of the stability margin of a biped was proposed by
using optimal values of two parameters. The gait of the robot is based on third order
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spline functions. In this case the impact forces aren’t neither avoided. Other authors [4],
based on a human walking, specify an ideal trajectory of the ZMP and then the pelvis
motion of the robot is determined such that the real trajectory of the ZMP is near to the
ideal one.

In more recent works, others criteria were applied in synthesizing walking patterns.
To reduce the instability, in [5] the motion planning was oriented to compensate the
yaw moment of the robot during the walking. On the other hand, a method was
proposed in [6] to generate walking patterns that require the lowest friction forces.

In the present paper an approach is introduced to establish the optimal values of
walking parameters that maximize the stability margin of the robot during the simple
support phase of the walking. The proposed method is applied to the Bioloid humanoid
robot with 12 DOF in legs. The gait of the humanoid is based on the cycloidal
functions proposed in [7].

The next section describes the main features of the gait applied for the robot. The
formulation of the optimization problem and the process to solve it are presented in
third section. Then, this method is applied for walking optimization of the Bioloid
robot for a rectilinear path. Finally the conclusion of the work is presented.

2 Specification of a Walking

In the walking pattern of a biped robot, the desired poses for both the pelvis and the
oscillating (or free) foot are specified with respect to a world’s frame (xW-yW-zW) as
time functions. The points for position specification of these bodies are Op (pelvis) and
Of (free foot), showed in Fig. 1. The positions are given in Cartesian coordinates. For
orientation with respect to the world’s frame, the Bryant angles k, l and m are applied to
frames xp-yp-zp and xf-yf-zf attached to the pelvis and the free foot, respectively. Both
frames and the world’s frame are shown in Fig. 1. The Bryant angles correspond to
successive rotations applied in the order x-y-z to a frame whose orientation initially
matches the world’s frame in order to obtain the desired orientations. The equations
that define all the coordinates as time functions are those proposed in [7]. Some of the
main walking parameters are appreciated in Fig. 2.

The cycle of a step is composed by two phases: single support phase (SSP) and
double support phase (DSP). The first one is achieved during a period TS, when only
one foot is in contact with the floor while the other foot is moving forwards. DSP is
accomplished in a period TD and starts when the moving foot lands and both feet keep
the contact with the floor. DSP finishes when the rear foot leaves the floor to start the
next step. In SSP both the hip and the free foot move. In DSP only the hip moves. Each
step period is T = TS + TD. The SSP is the most instable one during the walking and
requires of a suitable motion planning.

The walking process is achieved in 3 stages: stage 1 or starting (completed in one
step), stage 2 or cruising (completed in np steps) and stage 3 or stopping (completed in
one step). In stage 1, the pelvis accelerates on direction xW from zero velocity by using
a starting semi-cycloidal motion until cruising speed (Vmax). This stage occurs in the
period T1 of the first step. The x coordinates of position for both feet when the walking
begins (t=0) are zero. The period of each step in cruising stage is T2 with the pelvis
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moving in direction xW with speed Vmax. In stage 3 the speed of the pelvis decreases
by using a stopping semi-cycloidal motion, from Vmax to zero, in the time T3 of the last
step. A step at each stage has one single support phase (SSP) and one double support
phase (DSP). In rectilinear walking in direction xW, both feet finish their motion having
the same x coordinate. The total time is TT = T1 + npT2 + T3 for the walking The main
parameters of the walking equations are shown in Fig. 2.

Fig. 1. Kinematic scheme of legs of the Bioloid humanoid

Fig. 2. Paths and main parameters for motion of pelvis and feet
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3 Optimization Problem

The geometry of a path of the ZMP that is generated on a footprint during the walking
of a humanoid robot is determined by the dynamics of the robot’s motion. The features
of such a motion depends on the parameters of equations that define the walking. Thus,
the coordinates of the ZMP are implicit functions of the parameters of the walking
pattern. Consequently, the optimal values of such parameters must be computed for the
best behavior of the ZMP.

The criterion used in this work for optimization of walking consists in the location
of the set of ZMP associated to a step in SSP as close as possible to the center of the
sole of the support foot. The following procedure is proposed to solve this problem.

For an arbitrary set of walking parameters, the coordinates corresponding to a
sample of npm zero moment points Pi are taken (i = 1, 2…, npm), which correspond to a
single step in SSP during the walking. Such coordinates are obtained in a simulation
process by using the Webots© software. Then, the distances di are computed between
each one of the Pi of the sample and the centroid C0 of the sole of the support foot. The
zero moment points of the set and C0 are schematized for the sole of the humanoid in
Fig. 3, and a distance di is also indicated. We compute the mean �d and the standard
deviation dr of the set of distances and replace them in the following objective
function:

f ¼ �dþ dr ð1Þ

where

�d ¼ 1
npm

Xnpm

i¼1
di ð2Þ

dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
npm

Xnpm

i¼1
di � �dð Þ2

s
ð3Þ

It can be observed that f represents a typical large distance of the set of distances di.
Therefore, a set of distances as close as possible to the centroid C0 corresponds to the
minimum value of f. Such a set can be obtained by using optimal values of some
significant parameters of the walking pattern. When f is minimized, then the stability
margin of the robot will be maximized.

diC0

Centroid of the footprint

Footprint of the support foot
Path of the ZMP

Pnpm

P1 Pi

Fig. 3. Sample of zero moment points Pi for a step of a walking.
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Because of f is not an explicit function of parameters of the walking pattern, the
optimal values of such parameters cannot be computed in a conventional way. Thus,
we use a regression model to obtain an approximative function f* whose independent
variables are the parameters of the walking pattern. In a first assessment of our
approach we use only two parameters of walking as optimization variables, and pro-
pose the following quadratic function as a regression model:

f � ¼ b0 þ w1 � b1ð Þ2 þ w2 � b2ð Þ2 ð4Þ

The coefficients b0, b1, b2 are the parameters of the function (4), and w1, w2 are the
independent variables of walking. Thus, the values of the coefficients b0, b1 and b2
must be determined in such a way that f � approaches to f as much as possible for a
sample of sets of the independent variables. Such values of coefficients will be optimal.

To compute the optimal values of coefficients of function (4), the method starts with
an arbitrary set of values of b0,b1 and b2. Then the function f � is evaluated by Eq. (4)
for six different sets of values of parameters w1 and w2 chosen by the user. The greater
the number of sets is, the better optimal coefficients we obtain. In this work we chose
six sets of values of w1 and w2 and suitable results were obtained.

On the other hand, for the same sets of variables w1 and w2 used in evaluation of
the approximative function f �, we additionally evaluate the exact function f of Eq. (1).
The specific values of f evaluated for the set of variables w1 and w2 will be termed fw.
Clearly, for each set of w1 and w2, there will exists an error of f � with respect to fw,
which is defined as

e ¼ f � � fwj j ð5Þ

When this error is evaluated for the six sets of values of w1 and w2, we have six
errors that must be globally minimized in the process of optimization of coefficients b0,
b1 and b2. For this optimization we propose the following objective function:

fe ¼ �eþ er ð6Þ

where �e is the mean error, and er the standard deviation, of the set of errors evaluated
by Eq. (5).

To evaluate the functions fw that are employed in Eq. (5) during the process of
minimization of (6), numeric experiments must be achieved by using the sets of
variables w1 and w2. Such experiments consists in simulations of walking of the robot
by using the current values of w1 and w2 and the other walking parameters that are
constant. In Table 1 the values given for these parameters are displayed. The values of
those parameters not included in this Table are zero.

On the other hand, the two walking parameters that will be considered as inde-
pendent variables w1 and w2 must be choosen for computation of b0, b1 and b2. In
previous experimental studies on the walking of the Bioloid robot [8] it was observed
that the balancing of the robot was more sensitive to changes in values of the lateral
displacements dyp of the pelvis. Consequently, in this work we use the displacements
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dyps and dypd of point Op of the pelvis in direction yW, associated to the single support
phase and double support phase, respectively. Thus, we define:

w1 � dyps ð7Þ

w2 � dypd ð8Þ

The meaning of these independent variables in the motion of the biped can be
appreciated in Fig. 4. The six sets of dyps and dypd considered are given in Table 2.

Table 1. Parameters specified for
the numerical experiments

Parameter Units Value

np steps 6
TSS sec 1
TDS sec 1
zpini m 0.125
dxp m 0.030
dzp m 0.005
dxf m 0,030
dyf m 0.010
dzf m 0.015
lp in deg 15

Table 2. Sets of independent variables considered
for the numerical experiments

Experiment dyps(m) dypd f(m)

1 0.010 0.025 0.0241
2 0.010 0.030 0.0238
3 0.012 0.026 0.0208
4 0.013 0.028 0.0202
5 0.015 0.025 0.0229
6 0.015 0.030 0.0209

Fig. 4. Independent variables of
functions (1) and (4)

Fig. 5. Plot of function (4) with optimal values of b0, b1
and b2
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Thus, minimizing function (6) by using the function fmincon of Matlab© for these sets
of parameters we obtain b0 ¼ 0:020, b1 ¼ 0:015 and b2 ¼ 0:085. The function fmincon
is based on the Interior Point algorithm [9]. Such a function minimize constrained
non-linear functions.

The plot of function (4) with the obtained values of b0, b1, b2 is shown in Fig. 5.
The optimal values of w1 and w2 are gotten by using the partial derivatives of (4) with
respect to w1 and w2. Making equal to zero such derivatives we obtain:

w1Opt ¼ b1 ¼ 0:015m

w2Opt ¼ b2 ¼ 0:085m

Therefore, we have dypsOpt ¼ 0:015m and dypdOpt ¼ 0:085m as the values of the
independent variables which minimize the objective function. Finally we achieve a
simulation by using these values for displacements of the pelvis, in single and double
support phases, in order to obtain the optimum path of the ZMP on the footprint of the
support foot during the walking. The obtained optimum paths are shown in Fig. 6 for 6
steps of walking, and a sample of postures of the robot during the walking is presented
in Fig. 7.

Fig. 6. Paths of the ZMP obtained by using optimal parameters of walking

Fig. 7. Simulation of one step for the optimum walking in Webots©
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4 Conclusion

A method was proposed in this paper to obtain the values of parameters that optimize
the gait of the Bioloid humanoid robot during a rectilinear walking. The set of zero
moment points of the support foot, corresponding to a step in the walking, is located as
close as possible to the center of the footprint of the support foot. Consequently, the
stability margin of the robot is maximized during the walking.

The considered walking pattern is based on cycloidal motions of the pelvis and free
foot, as proposed in [7]. The equations of this pattern are explicitly expressed in
function of geometric parameters such as the lateral and vertical displacements of the
pelvis, size of the steps, amount of rotations of the torso and the free foot, etc. This
feature of the walking pattern allows to identify the relevant parameters for opti-
mization of the gait. The study case presented in the paper shows the efficacy of the
proposed method. Indeed, by applying the obtained optimal parameters the greatest
stability margin is obtained compared with those corresponding to sets of parameters in
Table 2.

In future work, an experimental validation of the results in this study will be
accomplished. Besides, curvilinear paths and more parameters will be considered for
optimization. In following curvilinear paths, and taking into account centrifugal forces,
different optimal parameters will be required for lateral displacements of the pelvis in
motions from the right to the left than those required from the left to the right, as
previously observed in a preliminar study [10].
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Abstract. The purpose of this work is to estimate changes in the knee flexion
angle in response to modifications in the human walking. We developed an
experimental application divided into two parts: the first one serves to supply
visual instructions projected on the ground to be followon by a patient during
walking trials and the second measures certain biomechanical parameters.
A number of healthy subjects are recruited for walking trials. Our first objective
was to ask a subject to follow a number of visual instructions during modified
walking trials and then check if he properly followed the instructions. The set of
the instructions drawn on the ground represent certain spatial parameters. Every
candidate follows in real time a specific walking pattern based on his recorded
natural walking in the way that gait parameters, i.e., step width, stride length and
foot progression angle, are varied. Therby, effects of these variations on the knee
flexion angle are identified.

Keywords: Knee flexion angle � Stride length � Step width � Foot progression
angle � Video projection

1 Introduction

The gait analysis evaluates pathologies and helps clinicians to establish effective
rehabilitation programs. Secondly, it allows to quantify objectively the effectiveness of
rehabilitation or treatment protocols. Changes in gait parameters were studied in several
pathologies [1–5]. Step width, stride length and foot progression angle are among the
most important spatial parameters of walking. These fundamental parameters allow to:
have a global representation of walking, measure the performance of an individual and
quantify the effectiveness of a treatment [6–10].
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All changes in the spatial parameters can be seen as coping mechanisms to reduce
patients’ pain during pathological walking [11]. These variations are the result of the
adaptation of the lower limbs’ kinematics.

Again, changing the spatial parameters is considered among the important tech-
niques for walking rehabilitation. In the literature, only few systems were developed for
modification of gait parameters in real-time walking with visual and tactile feedback
[12–14]. The disadvantage of these systems is that they don’t provide real-time
instruction. So far, the commercial-available systems project spatial parameters on
treadmills, but not on the ground [15].

Altogether, this suggests that we need a multi-sensorial feedback system for gait
training capable of projecting the instructions (modifications of spatial parameters) on
the ground during walking analysis in real time with multi-sensorial feedback.

Regarding the analysis process, the majority of researches has investigated the
effect of walking speed on the kinematics of the lower limbs. In contrast, we study the
effects of spatial parameters. However, there is a paucity of studies that assess the
relationship between lower limb kinematics and spatial parameters when walking. This
information is required to build rehabilitation protocol.

Therefore, the first objective of this study was to develop a multi-sensorial feedback
system in order to modify the spatial parameters of walking (stride length, step width
and foot progression angle) through the combination of: a motion capture system, a
protocol management unit and a ground projection device. This study aims at assessing
the potential of these new techniques by quantifying the errors at which healthy sub-
jects can follow gait modification instructions projected on the floor (i.e., the errors
between target and subject footsteps). Finally, this research points the effect of varia-
tions in spatial gait parameters on sagittal-plane angles of the lower limbs.

2 Experimental Setup

Our experimental system consists of two parts synchronized with each other in real
time and managed by a central processing unit. Motion tracking of human walking is
ensured by a VICON system. The measures will be sent to the processing unit to
calculate certain biomechanical parameters. The second part of processing is the def-
inition of a protocol that applies modifications with reference to data of recorded
normal gait. A system introduced by a two video projectors, is used to project visual
instructions, provided by the processing unit on the floor where the patient is asked to
follow them during tests of guided walking (Fig. 1).

During experimental tests, the VICON system (16 infrared cameras) is used to
measure and record the trajectories of 26 markers placed on the body of the candidate.
Then using an inverse kinematic model we calculate the angle of knee. To perform a
guided walking, the projection system provides visual cues to the candidate. These
indications represent the spatial parameters that the subject is asked to follow during a
walk test. For our purposes we are interested in the following gait parameters: step
width LsetSW

� �
, stride length LsetSL

� �
, and foot progression angle hsetFPA

� �
(Fig. 2).
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2.1 Recruited Subjects

Ten healthy subjects participated in this study after providing informed consent
(6 male; 25.2 ± 6 years old; 21.61 ± 1.85 kg/m2).

2.2 Baseline Gaits

For every candidate, a specific model with 26 markers was developed: 1 on the upper
manubrium point, 1 on the first thoracic vertebra calcaneus, 4 on the pond, 4 on thigh, 2
on the knee, 4 on the shank, 2 on both malleolus, 1 on heel, 1 on metatarsal and 6 on
the left lower limb. Markers placed on the knee and on the internal malleolus of the
ankle are used for calibration. The others are used during motion tracking.

Fig. 1. Illustration of the augmented-reality gait retraining system

Fig. 2. Illustration of the step width LsetSW

� �
, stride length LsetSL

� �
and foot angle hsetFPA

� �
variables.
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Static tests were made for the calibrations which aim to identify the reference
positions for every markers and the anatomical centers of the articulations.

The subjects achieve five trials of natural walking with their own speeds on two
instrumented platforms of strengths. Trajectories of markers were recorded with the 16
cameras of the Vicon system. Then, the processing unit computes in real time the knee
flexion angle.

2.3 Protocol of Gait Training

In addition to 5 tests of normal walking, a protocol was defines where 3 spatial
parameters are varied (step width, stride length and foot progression angle). The subject
performs the trials of the modified walking by referring to its natural one.

Twenty-seven gait trials were collected for each participant. They consisted of all
combinations of modifications (27 = 3 * 3 * 3) in step width (decreased, normal, and
increased), stride length (decreased, normal, and increased), and foot progression angle
(decreased, normal, and increased). During the trials, a subject is asked to keep its
natural walking speed. The visual instructions are shown on the ground, along the zone
of test, with arrows indicating the target movement for every test.

To control the quality of the walking realized by the candidate, our system shows
the real tracks as feedback information. The errors of the parameters is calculated by
comparing desired and real tracks (Fig. 3).

Analysis of results was carried out relying on four descriptive kinematic features of
the knee flexion angle (Table 1 and Fig. 4).

The first part of the statistical analysis consisted of characterizing the modifications
in step width, stride length and foot progression angle performed by the subjects. This
analysis is a three-way repeated ANOVA test on the 270 data points (27 repeats for 10
participants), for each gait variable we determine if the instructions to modify step
width, stride length and progression angle were significant factors for the variations

Fig. 3. Illustration of the real step width LrealSW

� �
; stride length LrealSL

� �
and foot angle hrealFPA

� �
variables.
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observed in each gait variable. The significance level for this analysis was set a priori to
a = 0.05. Next, post-hoc analysis was done for each significant factor and consisted of
paired t-tests to compare the gait variables (step width, stride length and foot pro-
gression angle) among levels of modifications (decreased, normal, and increased). To
account for multiple comparisons a Bonferroni-corrected a = 0.005 and a = 0.001was
used for post-hoc analysis. The second part of the analysis aimed to determine if the 4
descriptive kinematic features of knee flexion angle (KFA1, KFA2, KFA3 and KFA4)
varied relative to the instructions to modify gait. This analysis was done using similar
three-way repeated ANOVA tests and post-hoc t-tests as described above.

Table 1. Description of gait kinematic features.

Joint Kinematic feature Description

1 Knee KFA1 Maximum knee extension around heel-strike
2 KFA2 Maximum knee flexion during midstance
3 KFA3 Maximum knee extension during terminal stance
4 KFA4 Maximum knee flexion during swing

Fig. 4. Knee flexion angle throughout the gait cycle.
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3 Results

When asked to walk normally, participants walked with a step width of 0.09 ± 0.02 m,
stride length of 1.58 ± 0.15 m (mean ± standard deviation), and progression angle of
2.6 ± 3.7°. During all tests of training walks, subjects atteined to follow instructions
with errors 0.00 ± 0.01 m of step width, 0.00 ± 0.01 m, stride length, 0.1 ± 2.2°, and
foot progression angle.

Participants successfully followed the instructions to modify gait, as they signifi-
cantly decreased and increased their step width (mean changes of −0.09 ± 0.02 m
narrower and 0.16 ± 0,03 m wider), stride length (mean changes of −0.14 ± 0.02 m
shorter and 0.15 ± 0.02 m longer) and progression angle (mean changes of
−10.1 ± 3.9° toe-in and 9.5 ± 2.9° toe-out) when they were instructed to do so (main
diagonal of plots in Fig. 5). For the three instructions tomodify gait, it was noted that they
haven’t an effect to induce cross-talk (plots out of the main diagonal in Fig. 5), except for
instructions to modify progression angle which they have an effect on step width.

Analyzing the first peak of knee flexion angle (KFA1) relative to the instructions to
modify gait using repeated three-way ANOVA showed that only the stride length had a
significant effect on this variable (p = 0.002). As reported in Figs. 6 and 7, shorter

Fig. 5. Mean ± standard deviation of the step width (1st row), stride length (2nd row), and foot
progression angle (3rd row) variables divided according to the levels of the instructions of
modify gait (1st column: step width, 2nd column: stride length, and 3rd column: foot progression
angle). Each of the 9 graphs is based on 270 data points (27 trials from 10 subjects) either divided
into three levels. The symbols ((*) and (**)) at the top of the bars correspond to the post-hoc
analysis of the three-way repeated ANOVA, indicating significant differences between levels
(p < 0.001 for (**) and p < 0.005 for (*)).
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stride length increased the KFA1 by 2.8 ± 3.8° and longer stride length decreased the
KFA1 by −0.4 ± 2.8° compared to normal stride length.

The ANOVA for the second peak of knee flexion angle (KFA2) indicated that step
width (p = 0.001), stride length (p < 0.001), and progression angle (p = 0.021) had an
effect on this gait variable. Specifically, narrower step width and shorter stride length
decreased the KFA2 by −0.8 ± 3.2° and -0.6 ± 3.7° compared to walking with nor-
mal step width, normal stride length, and normal progression angle, respectively
(Figs. 6 and 7). Wider step width, longer stride length, toeing-in and toeing-out
increased the KFA2 by 2.3 ± 3.3°, 3.2 ± 3°, 1 ± 3.3° and 0.1 ± 3.3° compared to
normal step width, normal stride length and normal progression angle.

The ANOVA for the third peak of knee flexion angle (KFA3) indicated that neither
instructions to modify gait had an effect on this gait variable.

The repeated three-way ANOVA for the fourth peak of knee flexion angle (KFA4)
showed that only step width (p = 0.003) had an effect on this variable. The analysis
also indicated a significant interaction term between step width and stride length
(p = 0.047). Narrower step width increased the peak by 1.4 ± 2.5° and wider step
decreased the peak by −1.2 ± 2.7° compared to walking at normal step width (Figs. 6
and 7).

Fig. 6. Mean ± standard deviation of the first KFA peak (1st row), second KFA peak (2nd
row), third KFA peak (3rd row), and forth KFA peak (4th row) variables divided according to the
levels of the instructions of modify gait (1st column: step width, 2nd column: stride length, and
3rd column: foot progression angle). Each of the 12 graphs is based on 270 data points (27 trials
from 10 subjects) either divided into three levels. The symbols ((*) and (**)) at the top of the bars
correspond to the post-hoc analysis of the three-way repeated ANOVA, indicating significant
differences between levels (p < 0.001 for (**) and p < 0.005 for (*)).
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4 Discussion

In this study we have developed a multi-sensorial feedback system to modify the spatial
parameters of walking. A set of gait parameters, i.e., step width, stride length and foot
progression angle were measured and modified individually for each subject. The
visual instructions of gait parameters are provided such that subjects are asked to
follow them during the walking tests. Much appreciation was noticed by the subjects
during the experimental trials due to the availability of visual cues.

This study showed that errors between the values of visual cues and the real
measurements are minimal when all subjects reached to follow faithfully the indica-
tions projected on the floor.

For the three instructions to modify gait, the system allowed a minimal cross-talk.
Only the instructions to modify progression angle had an effect on step width.

This study highlighted the interaction of a general combination of gait changes
(step width, stride length and angle progression) associated with changes in the 4
descriptive kinematic features of knee flexion angle (KFA1, KFA2, KFA3 and KFA4).
These interactions are particularly important because, as shown in this study, some
kinematic walk variables are difficult to change, without causing unintended side
changes in other kinematic gait variables. The results showed that only KFA2 has
relationship with variations of the three parameters (step width, stride length and foot
progression angle) (Fig. 7 and Table 2). KFA1 and KFA4 have relationships with one
parameter (step width for KFA1 and stride length for KFA4). Contrariwise, the vari-
ations of three parameters have no effect on KFA3. Again, this study showed that stride
length is the most influential parameter on the kinematic parameters, in second round
comes the step width and in last place comes the foot progression angle.

Moreover, in this study it was found that the increase or decrease of a parameter
(step width, stride length and progression angle) had a single effect. We noticed
toeing-in and-out Increased the KFA2.

Fig. 7. Comparison graph of knee flexion angle for the normal walking condition (solid line)
and for the combination of modifications: decreased step width, decreased stride length and
decreased foot progression angle (dashed line), and increased step width, increased stride length
and increased foot progression angle (dotted line).
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5 Conclusion

The present study also brought new insight by testing changes of kinematic gait
parameters (step width, stride length and foot progression angle), parameters not often
taken into account in studies of the modification of walking to reduce the knee moment
adduction [14, 16–19].

A limitation in this study was that the tests were carried out on healthy young
subjects. It is not clear whether the visual instructions (step width, stride length and
angle progression) will be respected during tests performed by older subjects or sub-
jects with articular or neuronal pathologies, because these people have limitations of
visual sensations, proprioception, stability and learning abilities.

In the future, the system can be extended to include other gait parameters and to
autoadapt the instructions in order to bring the patient to predefined walking patterns.
Future research could focus on patients with various conditions: OA [18, 19],
amputation [20], ACL [21] or older subjects.
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Abstract. In this paper, we investigate an inverse dynamic study of an upright
unloaded walking. This motion is produced through a gait training machine that
emulates the overground walking through: a body weight support device and a
cable driven legs trainer. The input motion is the kinematics of a normal gait and
the output information is the required actuation wrench to drive the lower limb
during gait simulation. The dynamic study is carried out using two methods:
Newton-Euler approach and Matlab SimMechanics model. The effect of gait
simulation parameters on the behaviour of the actuation wrench is discussed.
These results are very useful in estimating optimal gait training parameters and
also to design the gait trainer.

Keywords: Gait training � Partial unloaded walking � Newton-Euler � Matlab
SimMechanics

1 Introduction

Human gait simulation has been widely investigated in various applications: design of
humanoid robot, identification of gait anomalies, therapy designing for impaired sub-
jects, enhance performance of able-bodies, design of orthoses and prosthetics [1–3] …

In our case, we are interested to the design of a gait training machine called the
Cable Driven Legs Trainer (CDLT). Such devices are used to rehabilitate subjects
having a gait disorders. Gait rehabilitation consists in the simulation of walking motion
within robotized machines. Intense and task-specific practice of the gait stepping
motion allows to recover independent over-ground walking [4].

Our first objective is to conduct an inverse dynamic simulation of a gait within the
CDLT. The input motion is the kinematics of a normal gait and the target output
information is the required wrench to move the lower limb during a gait cycle. This
dynamic study is achieved using two methods: Newton-Euler approach [5] and Matlab
SimMechanics model. Afterwards, the second purpose is to study the effect of some
gait simulation parameters on the actuation wrench, every parameter is varied in turn
and its effect is discussed. Further, two simulation scenarios are presented: on ground
and off-ground walking.

© Springer International Publishing AG 2018
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The paper is organized as follows. In Sect. 2, a dynamic modeling of the human
body is presented. Then, free-body diagram and dynamic equations are given in
Sect. 3. A dynamic simulation using MATLAB Simmechanics is investigated in
Sect. 4. In the last Sect. 5, the results of a case study using the two simulation
approaches are shown. Further, the effect of gait simulation parameters on the actuation
wrench is discussed.

2 Dynamic Modeling

The CDLT is a cable robot-based gait training machine shown in Fig. 1. It includes:
(i) a Body Weight Support Device (BWSD) to suspend the patient in vertical posture
while applying a certain amount of unloading, (ii) a Cable Driven Legs Manipulator
(CDLM) to move the lower limb in the sagittal plane through the leg’s orthosis, which
is controlled by four cables and (iii) a Treadmill to emulate the forward movement of
walking.

As depicted in Fig. 2(a), the body is represented by a planar four-link mechanism:
the upper body (known also as HAT segment [6]), the thigh, the leg and the foot. The
linkage between the trunk and the fixed frame is modeled as a prismatic joint. For the
hip, knee and ankle, they are modeled as revolute joints.

Based on anthropometric specifications [7], length and inertia specifications of each
segment are written in function of the of the mass m and/or the height h of the body
(see Fig. 2).

Fig. 1. Diagram of the Cable Driven Legs Trainer (CDLT)
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It is substantial to mention that the following assumptions were made: (i) All the
joints are considered passive, (ii) No relative motion between the orthosis and the leg
and (iii) Lower limb kinematics are the same as during normal walking. Hereafter, the
main external loads acting on the human body are (Fig. 2(c)): Fun, the unloading force
produced by the BWSD, Rgr, the ground reaction force applied at the sole of the foot,
Flr, the footlifter force acting between the leg’s orthosis and the foot which can be
neglected and, Fcdr and Mcdr, the resultant force and moment, which are the actuation
unknowns of the inverse dynamic simulation.

3 Newton-Euler Approach

One shall note that the equilibrium equations are written in relation to the CoM of each
segment, thus moments of the weight forces are zero. Furthermore, the transmitted
torque from one segment to another is regarded as zero since the joints are assumed to
be passive.

The free-body diagram of the human body is shown in Fig. 3. It depicts all exerting
forces on the upper body, the thigh, the leg and the foot.

Fig. 2. Dynamic modeling of the human body (SI unit)

Fig. 3. Free-body diagrams of body segments
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The upper body is assumed to be translating along the vertical direction and it is
subjected to: the unloading force Fun, the upper body weight Wub, the thigh force Fth

and the thigh weight of the opposite lower limb:

Fun � ð1=aÞ:Fub þWub þWoth ¼ ðmub þmthÞ: aub ð1Þ

Note, we consider that the opposite leg and foot are balanced by the opposite
orthosis. In addition, the unloading force is computed based on: body mass m, spring
constant K, the gravity intensity g, the amount of unloading BWS and the vertical
motion y0:

Funy ¼ ðk=2Þ:ðy0 þDy=2Þ such that y0 ¼ ðBWS:g:mÞ=ðk=2Þ ð2Þ

Further, a is a coefficient that defines the participation of one limb to support the
body weight (Fig. 4): a is equal to 1 during single limb stance and zero during swing
time. Throughout double support phases, it varies from 0 to 1 based on the ratio
between left and right vertical reaction of the feet: a ¼ ðNRvright þNRvleftÞ=NRvright.

Forces applied on the thigh are: the upper body force Fub, the thigh weightWth, and
the force of the leg -Fth:

Fub � Fth þW th ¼ mth: ath
Mub �Mth ¼ Ith: _xth

ð3Þ

For the foot segment, exerting forces are: the ground reaction force Rgr, the foot
weight Wft, the thigh force -Fft and the foot-lifter force Flr.

�Fft � Flr þRgr þWft ¼ mft: aft
�Mft �Mlr þMgr ¼ Ift: _xft

ð4Þ

The ground reaction is calculated based on the normalized ground reaction (see
Fig. 5(b)):

Fig. 4. Curve of a coefficient.
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Rgr ¼ Wn:NRgr such thatWn ¼ m:g� Funy andNRgr ¼ NRv NRapð ÞT ð5Þ

Considering the leg segment, its equilibrium is marked by the term of the actuation
wrench Fcdr and Mcdr:

Fth þFft þW lg þWor þFlr þFcdr ¼ ðmlg þmorÞ: alg
Mth þMft þMlr þMcdr ¼ ðIlg þ IorÞ: _xlg

ð6Þ

The investigated Newton-Euler equations are solved recursively as follows: the
upper body, the thigh, the foot and finally the leg in order to get the actuation wrench.

One shall note that linear and angular accelerations are obtained by numerical
derivation of the pose equations of body segments using the kinematics of a normal gait
(see Fig. 5(a)).

4 Matlab SimMechanics Model

In this section, we present the manner through which the inverse dynamic problem is
conducted employing MATLAB SimMechanics Software.

The first step in model development is the creation of body parts and the definition
of joints. The developed SimMechanics model is shown in Fig. 6. As well as the
kinematic model of Fig. 2: the “Upper body” has a prismatic joint with the fixed frame
“Base” and the body segments (“Upper Body”, “Thigh”, “Leg + Orthosis” and “Foot”)
are articulated with 3 revolute joint blocks: “Hip joint”, “Knee joint” and “Ankle joint”.
Moreover, geometric and inertia specifications are, carefully, written into body blocks.

Next, the external forces are applied according to the formulation investigated in
Sect. 3. The unloading force “Fun” is computed in the block “BWSD” in relation to a
desired unloading “BWS” using Eq. (2). Knowing the position of placement points P1

and P2, The footlifter force “Flr” is computed based on moment equilibrium of the foot
weight about the ankle joint. The ground reaction force “Rgr” is computed using
Eq. (5) and it is applied on the foot segment. Lastly, by inputting the curve of a

Fig. 5. Gait kinematics and dynamics
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coefficient (Fig. 4), the action of the upper body force on the thigh is computed inside
the block “Upper body”.

Lastly, in order to obtain the actuation wrench, the used method is to actuate the
lower limb through an active joint “3 DOF planar joint” placed at the leg center of
mass, for the other joints, they are kept passive. This custom joint has two linear and
one rotational DOFs taking place in the saggital plane. The data of the block “Lower
limb kinematics” are fed to the block “leg pose trajectory”, in which the leg trajectory is
computed using the gait kinematics (Fig. 5(a)) and then sent to the leg segment for
actuation.

By running the simulation, the actuation wrench (Fcdr, Mcdr) is computed inside the
“3 DOF planar joint” block and this information is collected from the block “Actuation
wrench (Fcdr, Mcdr)”.

5 Results and Discussion

For illustration, we consider the example of a body having a mass m = 100 kg and a
tall h = 1.7 m. Based on anthropometric specifications presented in Fig. 2, all the
geometric and inertia data were obtained. Furthermore, the amount of unloading is
BWS = 50% and the gait cycle time is tgc = 1.5 s. Figure 7 visualizes the curves of the
actuation wrench using the two solving approaches, i.e., Newton-Euler equations (N-E)
and SimMechanics model (SM). Results of both approaches are consistent, only few
differences can be observed.

In the sequel, the effect of varying the gait training parameters (tgc, m, h, BWS) will
be discussed. Figure 8 shows the curves of actuation wrench while the training
parameters are varied: time of gait cycle (tgc = 1.0 s, 1.5 s and 2.0 s), body mass
(m = 80 kg, 100 kg and 120 kg), body height (h = 1.5 m, 1.7 m and 1.9 m) and
unloading percentage (BWS = 30%, 50% and 70%). Note, each parameter is varied
each time, and the others are kept for the following values (tgc = 1.5 s, m = 100 kg,
h = 1.7 m, BWS = 50%).

Observing the effect tgc, the actuation wrench components increases as well as the
walking speed, note that gait cycle time is scaled to 100% since the duration is in
relation to the tgc. Also the same remark can be concluded for the raise of the body

Fig. 6. Matlab SimMechanics model
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Fig. 7. Curves of the actuation wrench during on-ground walking using Newton-Euler and
SimMechanics

Fig. 8. Curves of actuation wrench in response to variation of gait training parameters
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mass m. the latter observations confirms that mass and acceleration are determinant
factors in dynamics. Considering the impact of changes in the body tall h, Fcdrx

increases slightly and Fcdry is practically invariant, only Mcdrz varies little remarkably
in response to height augmentation. Now examining the effect of the weight unloading
BWS, Fcdry is almost remaining unchanged, in contrast, Fcdrx rises notably and Mcdrz
increases greatly. For the last case, one can observe that the wrench is exactly the same
during the swing phase (t > 0.9 s) since the current lower limb is above the ground,
thus there is no unloading.

Moreover, it is worth mentioning that for gait training, two scenarios are involved:
the off-ground and the on-ground walking. The first happens at the beginning of a
training session when some cycles of an off-ground walking are achieved for famil-
iarization. Afterward, the on-ground walking occurs.

One may remark that over the swing phase (t > 0.9 s), the on-ground and
off-ground curves have almost the same behavior since in both simulations the limb is
above the ground. The pelvic motion, which is only active for the on-ground case,
induces a small difference between the two curves. When comparing both actuation
moments Mcdrz, it is clear that the required torque is higher for the on-ground walking
due to the need to resist the effect of the ground reaction. Conversely, Fcdrx isn’t
sensitive to the ground reaction. In addition, for the off-ground case, the Fcdry com-
ponent is always positive, an upward force is required to maintain the leg in the air.
Therefore, this force is more influenced by the off-ground walking (Fig. 9).

The obtained results are very helpful for clinicians in estimating the optimal gait
training parameters. Some effects may be estimated, for example the effect of the BWS
amount or the gait speed on muscular activity [8], or also their effects on patient with
Knee Osteoarthritis [9]. In addition, results will be used in the design of the CDLT.

6 Conclusions

A dynamic analysis of an unloaded walking within the CDLT was investigated and
described. The target information was the wrench required to drive the lower limb. Two
approaches were implemented to solve the dynamic problem: Newton-Euler and

Fig. 9. Curves of actuation wrench for on-ground and off-ground walking
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SimMechanics model. The gait simulation parameters: walk speed, body weight,
patient tall and unloading amount are varied in order to observe their influence on the
curves of the actuation wrench. Furthermore, the effect of the on-ground and off-ground
walking are also presented.

Ongoing works are carried out to the development of musculoskeletal models,
which allows to estimate activity or contribution of muscles. In addition, development
of foot–ground contact model is very essential for a precise prediction of intersegmental
forces.
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Abstract. The paper presents the development of a mechatronic sys-
tem composed by a cable-driven robot and a vision system to be used for
upper limb rehabilitation. It is inspired by the mirror therapy that is a
valuable method for enhancing motor recovery in post stroke hemiparesis
making use of the mirror-illusion created by the movement of a sound
limb that is perceived as the paretic limb. In particular, a software has
been developed and it is able to acquire images of a target, i.e. the hand
of an individual, and after image processing, reproduces the target move-
ment by a cable-driven manipulator. More specifically, the end-effector
of the manipulator can be fixed to the paralyzed hand of the individual.
The development of a planar 4-2 cable-driven parallel robot by low-cost
mechanical design and easy control can be effective for the home-care
of individuals for continuous training and recovering. First experimental
tests are provided to show the feasibility of the system.

Keywords: Cable-driven parallel robot · Rehabilitation · Mechatronics

1 Introduction

Stroke is the leading cause of disability among adults in developed coun-tries
and leaves a significant number of individuals with motor, cognitive, or language
deficits. The paralysis of the upper limb is the most frequent conse-quence of
brain injury, and very often the rehabilitation procedures deal with repetitive
passive movements, with the aim to restore if possible the damaged functions,
or alternatively to teach how to handle differently those functions.

Although for long time it was assumed that after a brain injury, a patient has 3
to 6 months for maximizing the effects of recovery, recent studies show that a long-
term stroke rehabilitation has very positive benefits to individuals in the chronic
stage of stroke [15]. Intensive stroke rehabilitation is associated with enhanced
and faster improvements, in particular, the intensity of exercise therapy has great
effect on daily-life, gait, and dexterity in patients with stroke [9]. In addition daily
practice sessions can significantly improve complex motor tasks [6,7].
c© Springer International Publishing AG 2018
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Modern rehabilitation therapy is in the most cases supported by technical sys-
tems. The Mirror Therapy (MT) induces a visual illusion that appears to mimic
the movement of the paretic part [4,13] in which the perception, more than being
a simple feedback mechanism, enhance motor recovery of the impaired part [1,2].

In recent years, Robotics has been applied to rehabilitation [11] and assistive
tasks, as in [8,12]. In the end-effector devices, the hand or the whole human
forearm is fixed on an end-effector of a robot, either made of rigid links as in [5], or
operated by cables [11]. The exoskeletal devices encloses the shoulder, the elbow
and the hand and allows a better guidance of all articulations of the upper limb
[10]. Another classification deals with the use of both upper limbs (bimanual) or
the use of the affected part only (unilateral). In this paper we present the design
and operation of a cable-driven robot, which has been inspired by the MT, for
long-term stroke rehabilitation to be performed daily at home having bimanual
characteristics. In particular, the motion of the unaffected upper limb is followed
by a camera and reproduced by a cable robot that drives the affected upper limb.
The paper is organized as follows: in Sect. 2, the design of a cable-driven robot
is described with the motion capture system, Sect. 3 reports experimental set-up
and tests, finally conclusions are outlined.

2 The Design of a Cable-Driven Robot RehaBot

The system proposed is a cable driven robot that acts in a plane, so that it
can be used for a planar mirror therapy. The robot Fig. 1 consists of a frame,
which is of rectangular shape, four stepper motors connected to the rectangular
end effector board via four cables. The motion of the non-paralyzed limb should
be transferred to the paralyzed limb. Therefore, the robot guides the paralyzed
arm on a trajectory, which is the mirrored trajectory of the non-paralyzed limb.
A motion capturing system is used to observe the motion of the non-paralyzed
arm. This robot can be classified as a proximal, bimanual end-effector robot.

Fig. 1. Basic principle of the cable-driven robot for rehabilitation tasks: (a) lay-out;
(b) scheme.
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2.1 A Model for the Cable-Driven Robot

Let us consider a cable-driven manipulator with m cables and n DOFs in Fig. 2,
and denote with OXYZ a global reference frame attached to the fixed base, and
a reference frame is attached to the moving platform at point K.

A commonly used model for the kinematic analysis is based on the assumption
of mass less inextensible cables, with the hypothesis that they are always in tension
and can thus be treated as line segments representing bilateral constraints.

Inverse kinematics consists in computing the vector connecting each cable
attachment point Ai, to the ending point of the cable attached to the mobile
platform Bi. Vectors Bi are given in the K reference frame and Ai are given in
the O coordinate frame. ORK is the rotation matrix between the two frames.

The vectors representing the cable lengths can be evaluated in the form
Oli = OAi −

(
ORK

KBi + Or
)

(1)

The Jacobian matrix associated to the Inverse Kinematics can be written as

J =

⎛

⎜
⎜
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⎜
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⎜
⎜
⎝
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⎟
⎟
⎠

(2)

l̂Ti being the transpose of the unity vector in cable directions.

Fig. 2. A scheme for the kinetostatic analysis and workspace of the 4-2 planar cable-
driven robot.

The Jacobian is a linear mapping between the rotation and translation veloc-
ity of the end effector and the joint velocities, The transpose of J in Eq. 2 maps
the cable forces t to the external forces F and torques M and it is used to check
the cables forces distribution, and the static equilibrium for each pose, i.e. all
tensions must be strictly positive [3]. The resulting robot work-space is shown
in Fig. 2 (right).
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)
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2.2 Motion Capture System

The motion capture system is based on a single camera and an optical marker.
The camera stream is analyzed to find the optical marker. The result is filtered
by Kalman, which has been implemented for this application. Then, the motion
is computed by solving a back-projection problem using homography, which is
fundamental for the motion capturing system of the robot [14]. It is a planar cable-
driven robot, and for the motion capturing, a single camera is used. Therefore, the
constraints of the homography are satisfied without the knowledge of the intrinsic
and the extrinsic parameters. Detailed description is reported in [14].

2.3 Control and programming

Basic idea for the development of the control strategy is inspired by the principles
of the mirror therapy, in particular using the master-slave principle. The trajec-
tory is given by tracking a marker fixed on the unaffected body part (the hand)
that acts as target. Then the end-effector of the cable-robot corresponds to the
slave with the task of following the mirrored configuration of the master, as shown
in Fig. 3. When the master moves, then the slave forces the paralyzed hand fixed
to it to follow the mirrored trajectory. Therefore, knowing the pose of the marker
fixed to the non-paralyzed hand from the motion capturing system, through the
actuation and control of the system, the end-effector is driven on the mirrored tra-
jectory. The blue marker is the master with vector rm. A“virtual end-effector” is

Fig. 3. Principle of control
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Fig. 4. A scheme of the operations of the rehabilitation cable-robot.

considered to evaluate cable lengths lmi indicated by dashed lines in the Fig. 3.
The cable lengths of the slave are in an actual pose lsi. Knowing the real lengths
of the cables of the end-effector, we know the lengths, which the end effector has in
the position of the master. Therefore, the information is used to drive the motors
to the target position, i.e. the mirrored position of the master.

The control of the system is performed using a master-slave principle. The
position of the hand is tracked. This defines the position, which the end effector
has to reach. Moving the hand causes an offset between the end effector and the
master. This offset is used to calculate the steps that each stepper motor has to
drive. A scheme of the rehabilitation robot operations is given in Fig. 4. Figure 5
shows a scheme for the robot connections. It has to be mentioned that the motion

Fig. 5. A scheme of connections for the rehabilitation cable-robot.
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of the non-paralyzed hand should not interfere with the robot frame during the
rehabilitation task. Therefore, the rehabilitation robot will be designed according
to Fig. 1 to avoid collisions, interference, and cables wrapping. In this paper we
have used an available prototype, as it will be shown in Sect. 3.

3 Experimental Tests

Experimental tests were carried out with an available laboratory prototype as
shown in Fig. 6. In particular, given trajectories were reproduced i.e. a circle

Fig. 6. Experimental tests: (a) laboratory set-up; (b) mirrored trajectory
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Fig. 7. Experimental tests: (a) master (red) slave (blue) trajectories; (b) x and y com-
ponents; (c) differences between master and slave. (Color figure online)
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Fig. 8. Experimental tests: (a) master (red) slave (blue) trajectories; (b) x and y com-
ponents; (c) differences between master and slave. (Color figure online)

and a square, as shown in Figs. 7 and 8. Nevertheless, a set of experiments have
been performed also with natural trajectories and that the associated motion
was followed precisely. In particular, during the experiments, the trajectories of
the master in red, and the slave in blue, were recorded for further analysis.

Data processing allows evaluating differences in trajectories giving a measure
of the repeated exercises for continuous training and verification of recovery.

4 Conclusions

In this paper, we presented the mechatronic design and implementation of a
rehabilitation system based on a cable-driven manipulator inspired by the mir-
ror therapy. Experimental tests showed encouraging performance of the system
developed for the home-care and continuous training during the upper limb reha-
bilitation.
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Abstract. Finding the workspace of cable driven parallel robots
(CDPR) with sagging cables (i.e. elastic and deformable cables) is a
problem that has never been fully addressed in the literature as this is
a complex issue: the inverse kinematics may have multiple solutions and
the equations that describe the problem are non-linear and non alge-
braic. We address here the problem of determining an approximation of
the border of horizontal cross-sections of the workspace for CDPR with
6 cables. We present an algorithm that give an outline of this border but
also rises several theoretical issues. We then propose another algorithm
that allow to determine a polygonal approximation of the workspace bor-
der induced by a specific constraint. All these algorithms are illustrated
on a very large CDPR.

Keywords: Cable-driven parallel robots · Kinematics · Workspace

1 Introduction

Since a few year there has been a significant renewal in the interest for cable-
driven parallel robots (CDPR) who use coiling cables as actuators instead of rigid
linear actuators. Beside the classical advantages inherent to a parallel structure
(improved accuracy, excellent load/weight ratio) CDPR have the huge advan-
tage to possibly provide a very large workspace with excellent lifting capacity:
our MARIONET-CRANE robot with a lifting capacity of 2.5 tons has been
deployed outdoor over a 75 m × 35 m × 25 m workspace. But having such large
workspace requires having very large cable lengths so that the elasticity and own
mass of the cables affect the performances of the platform (positioning accuracy,
stiffness, . . . ). The purpose of this paper is first to identify the factors that may
limit the robot workspace and then to propose an algorithm for computing the
border of horizontal cross-section of this workspace, assuming a given altitude
and orientation of the platform. Workspace calculation for parallel robots with
rigid legs is a well-addressed subject [7,15] but the unilateral action of the cables,
that can only pull but cannot push, introduces new workspace limiting factors.
Numerous works have addressed the problem of workspace calculation of CDPR
[1–6,8,10,12,17,20,22] but most of them assume non deformable and non elastic
c© Springer International Publishing AG 2018
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cables. Discretisation-based method has been proposed for elastic cables [11] and
for a simplified sagging cable model [18]. But this approach requires to assume
that the inverse kinematics problem has a single solution, which is not true for
a complete sagging cable model [14]. In this paper we will propose a preliminary
algorithm for computing cross-sections of the CDPR workspace using a realistic
cable model, assuming that the orientation and altitude of the platform is fixed
and that the robot has 6 cables.

2 Notations

We will assume that the output of the coiling system for cable i is a single
point Ai, while the cable is connected at point Bi on the platform. We define a
reference frame R with an arbitrary origin O whose z axis is the local vertical
and a frame attached to the platform (the mobile frame) with G, the center of
mass of the platform, as origin and arbitrary x, y, z axis. We then consider the
vertical plane that includes the i-th cable and we define another frame Ri

c for
the i-th cable with origin at Ai, the same z axis than R and a y axis that is
perpendicular to the plane. The length at rest of the i-th cable will be denoted
Li
0.

3 Cable Model

In this paper we will use the Irvine sagging cable model that is valid for elastic
and deformable cable with mass [9]. Experimental works have shown a very good
agreement between this model and the behavior of cables classically used for
CDPR [19]. This model is established in the Ri

c frame in which the coordinates
of Ai are (0, 0, 0) while the coordinates of point Bi are (xb ≥ 0, 0, zb). In this
frame vertical and horizontal forces Fz, Fx are exerted on the cable at point Bi.

The coordinate x, z of a point on this cable at the curvilinear coordinate s
(in the range [0, L0]) is given by [9]:

x =
Fx s
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where E is the Young modulus of the cable material, μ its linear density, A0 the
surface of the cable cross-section and Fx > 0. The coordinates of B are obtained
for s = L0 and are related to the forces Fx, Fz by:
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4 Workspace Limitations

4.1 Cable Tension Limit and Cable Sagging

An evident reason that may limit the workspace is the maximal allowed tension
in the cable. The maximal tension τA in a cable is obtained at point A and
should be lower than the maximal allowed tension for the cable τlim i.e. τA =√

F 2
x + (Fz + μgL0)2 ≤ τlim.
A less obvious reason that may limit the workspace of a CDPR is that the

sagging of some cable(s) may lead to have the cable on the ground. Deriving
the cable model equation shows that z is extremal for s0 = L0 + Fz/(μg). If s0
lie in the range [0, L0] then the cable is sagging and its minimal altitude zm is
obtained by substituting s by s0 in Eq. (1). If zg is the ground altitude, then we
should have zg ≤ zo. If s0 �∈ [0, L0], then the lowest point of the cable is B and
we will assume that this point cannot reach the ground.

4.2 Inverse Kinematics and Singularity

A necessary condition for a pose to belong to the workspace of a CDPR is that
the inverse kinematics (IK) for this pose has at least one solution in the L0’s. We
thus consider the IK of a CDPR with n cables. Being given a pose of the platform
(2, 3) provide 2n equation while having 3n unknowns (the Fx, Fz, L0 for each
cable). Additional equations are obtained by considering the mechanical equilib-
rium of the CDPR. Let fi be the force exerted by the cable at point Bi by the
i-th cable. We have already seen that the components of fi in the reference frame
Ri

c are (F i
x, 0, F i

z). For a given location of Bi it is easy to calculate a rotation
matrix Ri corresponding to a rotation around the z axis so that the components
of fi in R are obtained by Ri(F i

x, 0, F i
z)

T . The mechanical equilibrium equations
may thus be written as:

j=n∑

j=1

fj = mg

j=n∑

j=1

GBi × fj = 0 (4)

where m is the platform mass. These equations provide 6 additional constraints
without increasing the number of unknowns. Hence we end up with 2n + 6 for
3n unknowns. As we assume a CDPR with n = 6 cables the IK amounts to
solve a square system of 18 equations in 18 unknowns, a problem that has been
addressed in [14]. It has been shown that the system may have from 0 to multiple
solutions. Hence a pose may not belong to the workspace simply because it has
no IK solution or because the IK equations are singular. We will not make any
distinction between a singular pose or a pose that has no IK solution as both
forbid a pose to be part of the workspace. We will denote by outside conditions
all limiting conditions that always include singularity and no IK solution while
the other limiting conditions presented in Sect. 4.1 may or may not be taken into
account.
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5 Workspace Calculation

As determining the workspace of CDPR is a complex issue we will simplify the
problem by determining only 2D horizontal cross-sections of this workspace,
assuming that both the altitude and the platform orientation are fixed.

A possible strategy to determine such a cross-section has been proposed
in [13]. This strategy first relies on the solving of the IK at a given pose X0,
assuming that we are able to find a pose at which the IK has at least one solution.
Then for a given IK solution Sj at X0 it has been shown that it is possible to
determine an ε such that for all pose X such that ||X − X0||∞ ≤ ε there is
a single solution S of the IK such that ||S − Sj ||∞ ≤ ε. Furthermore it was
also shown that the solution for a particular X can be safely calculated with
the Newton-Raphson scheme, using Sj as initial guess. With this result we can
calculate a square surrounding X0 that is part of the workspace. The process is
then repeated recursively starting from the corners of the square, while a pose
is rejected if the ε for this pose is lower than a fixed threshold. We thus get an
approximation of the workspace as a list of boxes that are guaranteed to be part
of the workspace. Although this procedure is safe, trials have shown that the
maximal value of ε was very small, leading to a very large computation time for
CDPR with large workspace.

5.1 Approximate Border Calculation

We now describe another approach, called the approximate border calculation,
which focus on determining only the border of the workspace.

First let us define a pose as out if at least one of the outside condition is
satisfied. Conversely a pose will be denoted in if none of these conditions are
fulfilled. We now define the α set of a pose X (called the heart of the α set) with
coordinates (x, y) as the set of 8 poses whose coordinates (xu, yu) are defined
as xu = x + k1α, yu = y + k2α with k1, k2 ∈ [−1, 0, 1] excluding the case where
k1 = k2 = 0. A pose X and its α set are part of the approximate border if:

• at least one pose of its α set or the pose itself is in
• at least one pose of its α set or the pose itself is out

If these conditions are fulfilled, then the pose X will be called an α part of the
border to indicate that X and its α set are part of the approximate border.
Our objective is now to compute poses that are part of the approximate border.
For that purpose we assume that α is chosen small enough so that the Newton-
Raphson (NR) scheme used with as initial guess one the IK solution for X may
be used to determine if

• the IK has no solution or is singular (NR does not converge)
• the pose is in or out if the NR converges

Under these conditions we may determine if a pose X and its α set are part
of the approximate border, provided that we have an IK solution for this pose.
Note that we associate to each pose of the α set an IK solution except that for
the singular one we attach the IK solution of one of the in pose of the α set.
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5.2 Propagation

Assume that we have determined a X and its α set that are part of the approx-
imate border (AB). Our objective is now to find other poses that belong to the
AB. For that purpose we will consider each pose Xi of the α set of X and check
if Xi is an α part of the border. Note that we have already checked the in or out
status of some of the poses of the α set of Xi but this set includes new poses,
the status of which has to be determined. As soon as a new α part of the border
is discovered this process is repeated. In this way we propagate the approximate
border. All poses that are an α part of the border are stored, together with
their IK solution and in/out status. The propagation algorithm also maintain a
list L of poses that have to be processed for completing the propagation. This
propagation stops when this list is empty.

5.3 Initialization

As mentioned in the previous section it is necessary to determine at least one
pose that is inside the workspace and has at least one pose in its α set that is
out. For that purpose we will assume that we have been able to determine one
pose Xin of coordinates (xin, yin) that has at least one IK solution, possibly
using the algorithm proposed in [14]. We then consider the pose of coordinates
(xin + kα, yin) where k is an integer. We start with k = 0 and increment k by 1
until the pose is out (the NR scheme is used with the IK solution obtained for
k − 1 as initial guess of the solution for k). With this approach we will find k1
such that the pose of coordinates (xin +(k1 − 1)α, yin) is in and (xin + k1α, yin)
is out: we have hence obtained a starting point for the propagation. Note that k1
may depend on the choice of the IK solution for Xin. Other starting poses for the
propagation may be obtained similarly by considering the poses (xin − kα, yin),
(xin, yin + kα), (xin, yin − kα). All these poses are stored in the list L of the
propagation algorithm.

After having obtained these starting poses we run the propagation algorithm
for computing the approximate border. This algorithm may raise some theoret-
ical issues but before mentioning them we will consider an example.

6 Examples

We consider as example our large scale robot MARIONET-CRANE [16]. This
robot is a suspended CDPR (i.e. there is no cable pulling the platform downward)
with 6 cables, whose Ai, Bi coordinates are given in Table 1. The cables charac-
teristics are E = 1009N/m2, μ = 0.079 kg/m and their diameter is 4 mm. The
maximal tension in the cables is 13734 N. We start by assuming that the platform
mass is 100 kg. We assume that the center of mass of the platform is at a height of
200 cm and that the platform orientation is such that the mobile frame axis coin-
cide with the reference frame axis. Our previous work have shown that the pose
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Table 1. Coordinates of the Ai and Bi points on the base and on the platform (in cm,
by rows)

x y z x y z x y z x y z

−325.9 −47.5 882.6 942.1 −348.2 1155.5 −10 −93 −3 10 −93 −3

953.8 379.7 1153.3 557.0 2041.4 870.4 27 50 −7 27 50 −7

−250.5 1681.0 864.9 −334.2 942.1 878.8 −27 50 −7 −27 50 −7

Fig. 1. Approximate border for m = 100 and a detailled view (Color figure online)

with coordinates (300,800) has a single IK solution and we use it as the initializa-
tion point. First we assume that the only outside condition is the singularity for
the NR scheme. Figure 1 shows the approximate border in that case.

It can be seen that an outside border has been determined but there are
several regions within the inside of the workspace. A detailed view is presented
in Fig. 1 for x ∈ [0, 1.58](m), y ∈ [10.4, 13.4](m). It can be seen that the inside
regions are of two different types: either in (for which the point on the border
are in, in black on the figure), labeled I on the drawing, or out (the pose on the
border are singular, in blue), labeled O. However there may be singular poses
that are included in the in region. For the poses on the border the maximal
tensions are 237762, 94687, 588078, 643676, 481622 and 468928 N while the
maximal L0 are 129613, 221416, 1517647, 236185, 445492 and 1210157 m.

If we assume now that the cable tensions cannot exceed 13734 N we get the
workspace presented in Fig. 2. It may be seen that the approximate workspace
is reduced because of the tension constraint (pose that do not respect this con-
straint are in black in the drawing). In that case the maximal L0 are 5959, 6331,
11817, 11613, 11815 and 11813 m. Although these values are much less than in
the previous case, it may be seen that they are still very high and well over
reasonable values.
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Fig. 2. On the left approximate border for m = 100 and τ ≤ 13734N and on the right
approximate border for m = 100 and 0 as minimal height for the cables (Color figure
online)

If we impose now that the minimal height of the cable cannot be lower than
0 we get the workspace presented in Fig. 2 where 3 of the 4 border components
are obtained because of this constraint (in red in the drawing) while one element
is due to singularity (in blue). In that case the maximal tension in the cable are
592, 470, 377, 705, 669 and 493 N while the maximal L0 are 13.96, 19.09, 19.25,
20.31, 17.90 and 13.59 m.

7 Conclusions

In this paper we have shown that the exact determination of the border of the
workspace of CDPR with sagging cables is a complex issue even if only workspace
cross-sections are to be determined. We have proposed preliminary algorithms
that give insights on the workspace but also raise several theoretical issues that
need to be furthermore considered. Other extension will be to consider cable
interference and the possibility of having more (or less) than 6 cables.
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Abstract. The workspace is an important property in the design of
every cable-driven parallel robot. As the workspace is a complicated
geometric object, it is difficult to describe changes in shape and size of
the workspace when varying the design parameters of the robot. In this
paper, we present an efficient method called differential workspace hull
to describe and compute the workspace properties. The method is based
on a triangulation of the surface of the robot’s workspace. Furthermore,
we establish an algorithm that allows to compute the influence of small
changes in the design parameters on the workspace shape. A numeri-
cal example underlines the computational efficiency and accuracy of the
presented method.

Keywords: Cable-driven parallel robots · Workspace boundary ·
Differential · Parameter design

1 Introduction

The workspace W of a robot is the set of all poses that may be generated by this
robot. For analysis and application planning, the workspace is one of its main
characteristics. As the general workspace is a six dimensional volumetric object,
its characterization is difficult. Merlet [5] introduces a couple of concepts to for-
mulate meaningful descriptions such as the constant orientation workspace WCO

or the total orientation workspace WTO. These workspaces are three-dimensional
subsets of the general workspace and can be represented as geometric objects
e.g. in CAD software and stored using conventional file formats.

The determination of the workspace for cable-driven parallel robots attracted
some attention. The key workspace criterion for a cable robot is its ability to
control the mobile platform with positive tension in the cables which is called
wrench-feasibility [3,13] and to exert wrenches with the end-effector [1]. Other
restrictions include the consideration of limited capabilities of the actuators
in terms of velocities and accelerations as well as the avoidance of cable-cable
collisions [7] and singularities.

c© Springer International Publishing AG 2018
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Different methods were proposed to compute the workspace of cable robots.
Interval analysis allows to make volumetric computation of the workspace.
Bruckmann [2] developed an interval test for wrench-feasibility allowing for a
guaranteed and continuous workspace computation. Gouttefarde [4] uses inter-
val analysis to determine the wrench-feasible workspace. The interval algorithms
are rigorous in numerical evaluation but unsensitive to small changes in its input
parameters.

As a way of pragmatic representation of the workspace, one can consider
only the surface or boundary of WCO and WTO. Thus, its geometric representa-
tion is a surface in space and a convenient representation is triangulation [8]. An
analytical formula for the determination of the boundary of the workspace is pre-
sented by Verhoeven [12] and it is found to be a system of univariate polynomial
inequations. Unfortunately, the general expression is so complex that it seems
out of reach to deal with these equations even when using advanced computer
algebra systems. However, it provides insight into the structure of the wrench-
closure workspace boundary that consists of pieces of polynomial surfaces with
degree n where n is the degree-of-freedom of the robot. Recently, this structure
is exploited in a symbolic-numeric scheme to identify its components [11] and
Merlet presented a similar approach for the wrench-feasible workspace of sus-
pended robots [6]. Both results motivate this work to employ an approximation
through triangles.

2 Numeric Determination of the Workspace Boundary

In this paper, we recall a method to compute the boundary of the workspace
based on triangulation [8]. It is assumed that a compact region of the workspace
is sought where disconnected other regions are neglected. This assumption is
justified for the design of cable robots where one usually seeks robots with a
compact and connected workspace. The computation of the workspace bound-
ary aims at speed and precision rather than rigorous results or insight into the
mathematical structure of the workspace.

In the following, we assume that a quality index is used in terms of a func-
tion g(r,R). The function g yields a positive value if the pose described by the
position vector r and the orientation matrix R of the mobile platform belongs to
the workspace. For cable robots, such functions can be implemented by testing
if the pose is wrench-feasible e.g. by computing a force distribution [9,10]. If the
workspace test yields a Boolean result, true is associated with a value of 1 and
false is interpreted as −1.

The workspace for a given orientation of the cable robot is represented by a
triangulation of its boundary. The idea for the determination of the workspace is
to start with a unity sphere around the estimated center m and to successively
extend this sphere in radial direction. Clearly, this assumption may lead to an
underestimation of the workspace and the estimation depends on the chosen
value of m. The surface of the sphere is approximated by triangles which are
created from nS iterative subdivisions of the faces of an octahedron [8] (Fig. 1).
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Fig. 1. (a) Unit octahedron (b) subdivision step for triangles

By making iterative subdivisions from the triangular faces of this octahedron,
two sets are derived. Firstly, the set of the vertices V = {v1, . . . ,vnV} of the
triangular mesh, and the set of triangles L = {F1, . . . , FnT} with triples of
vertices indicating which triples form a triangle of the mesh. Each triangle has the
form Fi = (v3i+1,v3i+2,v3i+3). Thus, we have a set L containing nT = 22nS+3

triangles.
In the second step, the vertices of the triangles are projected onto the bound-

ary of the workspace. Starting from the estimated center m of the workspace,
the line

Li : v(h)
i = m + λivi λi ∈ [0 . . . rMax] (1)

is searched for the boundary of the workspace, which is defined by a given max-
imum search range rMax. For each position r generated by the iterations of the
line search, we can compute an arbitrary workspace criterion such as wrench-
closure, wrench-feasibility, reachability, intersection, or feasible deflection using
the function g(r,R). The numerical results presented in this contribution are
computed with a regula falsi method as it is simple and efficient for Boolean
criteria. If the workspace criterion evaluates to a continuous function, methods
such as Newton iteration can speed up the computation of the roots of the func-
tion. If multiple roots are found, the smallest λi is a conservative value for the
boundary. Also rigorous search methods such as interval analysis can be used to
find the first root of the workspace criterion. Furthermore, sampling or interval
evaluation of a set of orientations R ⊂ SO3 allows to generalize the method to
compute the total orientation workspace (see Sect. 2.1).

Finally, one ends up with the vertex v(h)
i = m+λivi approximating the hull of

the workspace with an accuracy εL. The corresponding triangles are rendered into
a new set L (h). Such data can be easily stored in a file such as stereo-lithography
data file format (STL) or virtual reality modeling language (VRML) according
to ISO 14772 which can be loaded and visualized with most CAD tools.

The rational behind this generation of the triangular grid is to separate the
structure of the grid from the actual geometry. Having generated the directions
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vi for the line search, one can store the direction and the length λi of these ver-
tices in separated data structure. The direction vectors vi can be pre-computed
as a grid of a given resolution (i.e. iteration depth nS). Thus, if the robot under-
goes small changes in its geometry, one can re-compute the length of its vertices
λi and perform a one-to-one comparison to the values of the original robot.

2.1 Boundary Computation for Different Types of Workspace

Having defined the data model and search strategy, one can compute the different
types of the workspace. The strategy described above is straightforward to use for
computing the constant orientation workspace WCO simply by setting one specific
orientation R for the platform. If one is interested in the maximum workspace
WMax, one has to modify the evaluation of the function g(r,R). A position is said
to belong to the maximum workspace WMax, if any one orientation in a set R =
SE3 belongs to the workspace. Thus, in the performance criterion, the function
g(r,R) tests a discrete grid or an interval range of orientations to be checked
after the other, until an orientation is found that belongs to the workspace or
until all are found to be invalid. In this case, the g(r) is treated to be valid. This
can be understood as a Boolean disjunction (logical: or) between the evaluation
of all g(r,R),R ∈ SE3. If no orientation was found to be valid, then the pose
and thus g(r) is invalid.

Computing valid positions for the total orientation workspace WTO is done
respectively but instead of searching for at least one entry in a subset R ⊂ SO3

where the workspace test is valid, one cancels the test if one element fails. In
this case, g(r) evaluates to invalid for that position. In contrast, successfully
completing the full list R evaluates to valid. This is equivalent to the Boolean
conjunction (logical: and) of all single tests g(r,R),R ∈ R.

2.2 Computing Properties of the Workspace from the Boundary

The triangulated boundary allows for geometric characterizations of the
workspace. It is straightforward to calculate the surface S(W ), the volume V (W ),
and the center of gravity c(W ) of the workspace from the vertices as follows

S(W ) =
1
2

L∑
||(vA − vB) × (vA − vC)||2 (2)

V (W ) =
1
6

L∑
((vA − m) × (vB − m)) . (vC − m) (3)

c(W ) =
1

4V (W )

L∑
(vA + vB + vC + m). (4)

For the volume, one can find a convenient shortcut if one substitutes vi−m =
λiui in the parametric form with the direction ui and its length from the line
search λi. Then, the equation for the volume becomes

V (W ) =
1
6

L∑
λAλBλC(uA × uB) .uC, (5)
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where the scalar value of the product (uA × uB) .uC is equal for all triangles and
depends only on the number of subdivisions nS done. This simplification holds
true if a regular solid such as the octahedron is used to generate the grid. Thus,
one finds the simple form

V (W ) =
(uA × uB) .uC

6

L∑
λAλBλC, (6)

with the constant factor V
(nS)
i = (uA × uB) .uC.

The accurate determination of these numbers is useful for designing of cable
robots, especially if one wants to take derivatives of these indices. For computing
derivatives (see Sect. 2.3), one can seldom compute the expressions in closed-
form. If one has to rely on numerical approximation through finite differences, the
computation for neighboring values should be as accurate as possible. Therefore,
one has to balance the accuracy used in the line search with the step width of
the finite difference such that the results are meaningful.

2.3 Differential Hull

When analyzing the workspace of a cable robot, an interesting aspect is how the
workspace depends on the geometrical and technical parameters or more generally
speaking how it depends on the assumptions made and the algorithm settings. In
general, the computed workspace will be changed if the parameters are differen-
tially altered. Therefore, doing a sensitivity analysis on the parameters influencing
the result of the workspace computation is revealing and can be done efficiently
based on the workspace hull model proposed above. Mathematically speaking,
one may ask for the derivations of the workspace caused by infinite changes of
the describing parameters such as the positions of the winches ai, the geometry
of the platform bi or the feasible forces in the cables fMin, fMax (see also Table 1).
One may also ask for the sensitivity of the constant orientation workspace WCO

for changes in the orientation R0. Since the workspace is a continuous set, the
changes in shape and size mainly happen on its boundary. Here, the possibility
is neglected that the parameter change generates a hole in the workspace which
would change the workspace’s topological structures. Therefore, the change in the
parameters will only influence the hull of the workspace. As we have already seen
when computing the workspace, it is difficult to find a closed-form solution of the
workspace, hence, for computation we cannot compute the derivations symboli-
cally. Clearly, numerical approximation using finite differences is a possible way.
If we compute the workspace using discretization or interval techniques, the solu-
tion is insensitive in terms of small changes in the parameters unless one uses very
small thresholds for the discretization. This problem applies both for simple dis-
cretization as well as for interval analysis. In contrast, the approximation of the
workspace boundary through the hull algorithm separates the granularity of the
used grid from the accuracy in the computation. Once the number of triangles
is chosen, the points on the hull can be efficiently computed with high accuracy
yielding sensitivity to parameter changes.
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Table 1. Overview of the parameters to be studied with the differential hull.

Geometry Technology Algorithm setting

Proximal anchor points ai

Distal anchor points bi

Pulley radius rR

Cable force limits fMin, fMax

Cable length limits lMin, lMax

Applied wrench wP

Maximum cable velocity l̇Max

Maximum cable acceleration l̈Max

Settings of the force
distribution algorithm
(e.g. max. iterations)
Platform orientation R
(for constant
orientation workspace)

If we now consider small changes in the geometry of the robot, we can accu-
rately track the change in the workspace boundary with moderate computational
burdens. To better understand the approach, it is important to note that the
steps for determining the search directions vi for the hull determination can be
completed before computing the values for λi for each vertex. Therefore, one
changes the robot model by an increment Δp and compute the resulting value
for λ′

i. A suitable approximation is

δP ≈ λ′
i − λi

Δp
. (7)

The concept of the differential workspace can be extended to compute the
influence of the parameters on the shape of the workspace, i.e. to compute the
derivatives of the vertices of the workspace or on the derive of the properties sur-
face S(W ), volume V (W ), center of gravity c(W ) of the workspace, i.e. through
finite differences, one computes the derivation or sensitivity

∂S(W )
∂p

, (8)

where p is any numerical parameter of the geometry of the robot, the robot’s
technical parameters, or an algorithm parameter. An overview of parameters
applicable for the sensitivity analysis is given in Table 1.

3 Results

In this section, an example of the differential hull approach is presented. The
case study is based on the IPAnema 1 robot and the differential hull is computed
for the partial derivations of the workspace hull for changes in the x-component
of the first proximal anchor point a1. Using the differential hull, the change in
the shape and size of the workspace is determined. Therefore, the algorithm
computes a finite difference approximation for the differential

δa1X =
∂W (a1X)

∂a1X
, (9)
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where the differences in the vertex vi are actually expressed as differences dλi

in the length of vertex vi. The results are visualized in Fig. 2. Red lines in the
diagrams indicate regions with positive values of the derivatives dvi and thus a
growth in the workspace. In contrast, blue lines represent negative derivatives
which correlate with a local decrease in workspace volume. In Fig. 2b, the same
results are shown in order to highlight the region with negative derivatives that
are occluded by the hull in the left plot since the negative derivatives are pointing
inwards from the surface of the workspace. To compute the hull, the threshold for
the line search is ε = 10−6 and the finite difference in a1X was Δa1X = 10−3. The
absolute values of the finite differences range between −0.001418 and 0.001277
which indicates at maximum a one-to-one relation between the changes in the
geometry and the changes in the workspace.

a) hull visible b) hull invisible

Fig. 2. Differential hull of the constant orientation workspace WCO of the IPAnema 1
robot computed with closed-form method for a finite difference in the x-component of
the first proximal anchor point aiX. The magnitude of the differences is amplified to
make the effect of the change visible. (a) The plot shows the hull with the normal lines
indicating magnitude and sign of the finite difference. (b) The same analysis but with
an invisible hull. (Color figure online)

The computation of the differential hull is very fast; the determination of the
case study took around 30 ms on a Core i5-3320M with 2.6 GHz. Therefore, all
partial derivatives of the workspace volume, surface, and bounding box can be
determined in less than one second making the evaluation of these differences
an interesting tool for the design of cable robots.

4 Conclusions

In this paper, we proposed a scheme to compute triangulations of the constant
orientation workspace as well as of the total orientation workspace for cable-
driven parallel robots. The presented form for this triangulation allows to deter-
mine properties such as volume and surface both in a fast and accurate way.
As changes in length of the vertices are sensitive to small changes in the geom-
etry of the robots, it is proposed to numerically estimate the derivatives of the
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workspace geometry with respect to changes in the geometry parameters. This
presents a useful tool in the design procedure of cable robots as one can establish
relations between geometry and robot properties to perform targeted manipula-
tion of the geometry, e.g. to determine geometric parameters that lead to a local
growth of the workspace.
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Simulation Technology (EXC 310/1) at the University of Stuttgart.
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Abstract. Kinematics and dynamics of cable-driven parallel robots are
affected by the cables used as force and motion transmitting elements.
Flexural rigidity of these cables is of major interest to better understand
dynamics of these systems and to improve their accuracy. The approach
for modeling spatial cable dynamics, as presented in this paper, is based
on the modified rigid-finite element method using rigid bodies and spring-
damper elements. With this, a simulation of a planar 3 degrees of free-
dom cable-driven parallel robot is constructed as a multi-body dynamics
model. Under consideration of holonomic constraints and Baumgarte sta-
bilization, a simulation framework for the simulation of cable-driven par-
allel robots including dynamics of the cables is developed and presented.

Keywords: Parallel kinematics · Multi-body dynamics · Flexible
joints · Holonomic systems · Model order reduction

1 Introduction

Cable-driven mechanisms have been known for thousands of years starting in
ancient Egypt and reaching all the way till modern centuries. Such systems, like
mooring, supporting, or lifting devices in offshore engineering, cable-suspension
bridges, or cranes are very likely known to the reader. Another field of applica-
tion comes from replacing rigid links usually found in Gough-Stewart platforms
(see Fig. 1a) with cables, yielding a cable-driven parallel robots (shortened cable
robot, see Fig. 1b). This enables such systems to outperform their rigid-link coun-
terparts by magnitudes when it comes to dynamics, workspace, or payload. On
the downside, these benefits come at a cost stemming from the use of flexible
links as force and motion transmitting elements as these introduce unilateral
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Fig. 1. Comparative display of a general Gough-Stewart platform (a) and a cable
robot (b).

constraints into the system: cables can only exert tensile forces i.e., can only
pull. Additionally, their resistance to transversal forces i.e., perpendicular to
the cable’s neutral axis, is negligible. This effect is very prominent when jerky
motions or sharp changes in the direction of motion along a trajectory occur.

Industrial application of the cable robot technology was first studied by Albus
et al. for the NIST RoboCrane [2]. To foster research, cables were assumed ideal
i.e., to be forming a straight line between two points without any longitudinal
flexibility or inherent dynamics. However, mechanical properties of cables differ
from rigid links thus modeling of cables was further extended. Besides considering
cable longitudinal flexibility by means of linear [10] or non-linear models [5,8],
the dynamics were researched in only very limited extend. In [7], the authors
employed XDE to simulate cable robots with discretized cables allowing for
coiling, yet the Reissner beam for cable modeling with a resolution of 0.02 m
makes for very slow simulation and induced oscillations. The cable robot analysis
and simulation framework CASPR [6] provides tools for designing cable robots,
yet simulation also allows for only state of the art cable models. A multi-body
approach for large-span suspended cable robots was introduced in [3], neglecting
extensibility of the cables as well as bending stiffness, yet the authors explicitly
consider winding of the cables.

In this contribution, the well-established finite element discretization method
for cables based on the modified rigid finite element method derived by [1],
accounting for both bending and longitudinal flexibility, is applied to simulation
of cable robots. The model is extended such that it allows for attaching multiple
cables to arbitrary points on a rigid body that is assumed to represent the mobile
platform of cable robots. To account for expensive evaluation of the extended sys-
tem dynamics, model order reduction techniques are further employed reducing
the computational complexity and enabling efficient simulation of the system.

The structure of this paper is as follows: in Sect. 2, the model of a single
cable is derived as well as the synthesis for a multi-cable setup including the
cable robot mobile platform is shown. Analysis of the model is performed and
numerical results are given, including application of model order reduction tech-
niques since calculation of the equation dynamics is time-consuming. After a



200 P. Tempel et al.

discussion of the combined model in Sect. 3 highlighting its applicability to sim-
ulation of cable robots, a conclusion is drawn in Sect. 4 also pointing out further
steps to improving the model.

2 Model Synthesis and Analysis

In this section, we derive the dynamics of the system used for simulation of a
cable robot. The model is based on the modified rigid finite element approached
presented by Adamiec–Wójcik et al. [1]. Since our coordinate system and nota-
tion differ and due to the importance of several components to the work presented
here, we will briefly reproduce the derivation.

Fig. 2. Planar cable model used with division of the cable (a) into s segments composed
of two rfes adjoined through linear sde shown in (b).

2.1 Cable Dynamics

We assume a planar cable model as shown in Fig. 2 comprised of stretching and
bending stiffness. The cable is fixed at Ai and split into s rigid finite elements
(rfes) with generalized coordinates strain Δi and angle ϕi in qi = [Δi, ϕi]

T. Each
segment, denoted with (1) and (2), is composed of two rigid bodies of mass mi

and moment of inertia Ji connected via a linear spring-damper element (sde).
The full system state is

q =
[
Δ1, ϕ1, Δ2, ϕ2, . . . , Δs, ϕs

]T =
[
q1

T, q2
T, . . . , qs

T
]T

. (1)

The coordinate of each rfe segment can be readily derived to read

ri = r0 +
i∑

k=1

(l0 + Δk)
[

sin ϕk

− cos ϕk

]
, i = 1, . . . , s, (2)

where l0 = L/s is the unstrained length of each segment. Furthermore, the
position of the distal point of the cable is to be given by rend (t), which translates
to the holonomic constraint Φ (t) ≡ 0 with
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0 ≡ Φ (t) = rs (t) − rend (t) t ≥ 0. (3)

The governing system dynamics are established through Lagrangian
mechanics

d
dt

∂L

∂q̇i
− ∂L

∂qi
+

c∑

j=1

λj
∂Φj

∂qi
=

∂P

∂q̇i
+

s∑

j=1

Fj · ∂rj

∂qi
, i = 1, . . . , 2s (4)

in which L =
∑s

i=1 Ti − Ui is the Lagrangian, Φj is the jth component of
the geometric constraints vector from Eq. (3) (in planar case c ≡ 2) and λj are
Lagrange multipliers. Additional external forces Fj = [Fj,x, Fj,z]

T at the massless
sde rj (cf. Eq. (2)) are also considered. Kinetic energies Ti, potential energies Ui,
and dissipative energies Pi of the ith segment are

Ti =
mi

2

(
‖ṙ

(1)
i ‖2 + ‖ṙ

(2)
i ‖2

)
+

1
2

(
J
(1)
i + J

(2)
i

)
ϕ̇i

2, (5a)

Ui =
cL
2

Δ2
i +

cR
2

(ϕi − ϕi−1)
2 + mig

(
r
(1)
i,z + r

(2)
i,z

)
, (5b)

Pi =
dL
2

Δ̇2
i +

dR
2

(ϕ̇i − ϕ̇i−1)
2
, (5c)

considering spring and damper elements with respective linear and angular
spring coefficients cL, cR, and linear and angular damper coefficients dL and
dR, respectively.

The system dynamics can be described through the index-3 differential alge-
braic equation system

M(t, q, q̇) · q̈ = f(t, q, q̇) + B(t, q, q̇) · F (t) − Φq(t, q)T · λ , 0 = Φ(t, q). (6)

Stable numerical simulations without induced drift requires index reduction to
receive an index-1 system, which is achieved by applying Baumgarte stabilization
technique (compare [4]):

[
M Φq

T

Φq 0

] [
q̈
λ

]
=

[
f + B · F

γ − 2αΦ̇ − β2Φ

]
, γ ≡ − (Φqq̇)qq̇ − 2Φqtq̇ − Φ̈ (7)

2.2 Multi-cable Dynamics with Platform

We extend the model derived in Sect. 2.1 such that it is applicable to simulation
of cable robots consisting of a platform and m cables. To begin with, we assume
the platform to be of rectangular shape with width and height w and h, respec-
tively, mass mP, and moment of inertia JP. The platform can be described by the
generalized coordinates qp = [xp, zp, Θp]

T with Cartesian position rp = [xp, zp]
T

and angle of rotation Θp. Further stating the cables are attached to the platform
at the cable attachment points bi w.r.t. the platform’s coordinate system, the
holonomic constraints according to Eq. (3) for the distal point of the ith cable
ri,end (t) and the cable attachment point on the platform rbi (t) yield

r
(i)
end (t) = rp (t) + Rbi, rbi (t) = r(i)

s (t) . (8)
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where R = R(Θp) is the rotation matrix for the current platform rotation. The
dynamics of the platform can be easily derived from Lagrangian mechanics under
consideration of holonomic constraints similar to Eqs. (4) and (7), respectively.

2.3 Model Order Reduction

The nonlinear DAE system Eq. (7) contains functions that are costly to evalu-
ate. This is due to the complex trigonometric couplings and interactions within
all nodes in the system. The overall computational demands might thus be too
high to allow for efficient simulations. Model order reduction (MOR) techniques
can help to overcome the above mentioned limitations by replacing the compu-
tationally expensive model with cheap yet accurate surrogates. For this purpose
we employ the so-called trajectory-piecewise-linear approach (TPWL-approach),
which was first introduced in [9]. By using this technique, the complex non-linear
functions are replaced by a weighted linear combination of linearizations around
several well-chosen points in the state space: We hence choose a set of lineariza-
tion points {t̄i, q̄i}i∈I for a preferably small set I = {1, . . . , NI}, and replace the
non-linear functions by linearizations of the following form:

f(t, q, q̇) ≈
∑

i∈I

ωi(q)
(
f(t̄i, q̄i, ¯̇qi) + Df(t̄i, q̄i, ¯̇qi)(q − q̄i)

)
. (9)

The weightings ωi(q) are chosen in such a way that
∑

i∈I ωi(q) = 1 and are
calculated in order to switch and interpolate between the linearized models,
depending on where in the state space the simulation currently is located. More
sophisticated techniques and dimension reduction via projection can further-
more yield significant speedups as discussed in [9]. In our case, we apply the
TPWL approach to the equations for f only, and keep the nonlinear holonomic
constraint equations to guarantee that the cables are correctly linked.

3 Discussion

For numerical simulation, we choose two cables with length L0 = 3 m and a
platform of size 1m × 0.3m. The cables are suspended at r

(1)
0 = [0, 0]T and

r
(2)
0 = [1,−0.25]T and are attached at b1 = [−0.5, 0.15]T m and b2 = [0.5, 0.15]T m,

respectively. We choose s = 20 segments for the discretization of either cable,
resulting in a DAE system of dimension 170, including the algebraic equations
and Lagrange multipliers. All functions in the DAE formulation from Eq. (6) are
derived analytically by utilizing the symbolic calculation techniques of MAPLE,
and are then exported to optimized MATLAB functions. The resulting DAE
system is solved by using MATLAB’s builtin ode15s solver with default accuracy.

As a test case, we simulate the system for T = 15 s, where we apply a time-
dependent force on the center of the platform as depicted in Fig. 3. With this setup
we aim to investigate the transition of the cables from tensed to non-tensed and
back to tensed state. For such, the external force on the platform is applied in
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Fig. 3. The simulation setting for our experiments (left). The solid line shows the
system at t = 0 s, the dashed line at t = 4.3 s. The right plots show the x-deflection of
the platform (top) for the full (Δx) and linearized (Δxlin) simulations, as well as the
applied external force (bottom).

the positive z-direction i.e., negative direction of gravity to make the cables slack.
During increasing force, the platform is being pushed up and the cables go slack.
With the external force decreasing, the cables get tensed again yet apply different
forces onto the platform. Comparing this behavior with the standard cable model
of straight lines, the platform’s bouncing motion looks more realistically since the
flexural rigidity of the cables is no explicitly considered.

The simulation was run with the full non-linear model and took 39.1 s. By
using the proposed TPWL-approach for f only, where we choose the initial con-
figuration and the true solution at times t ∈ {4.2 s, 5 s, 5.5 s} as linearization
points, we can simulate the system in 20 s and thus gain almost 53% speedup
while making a relative error of only 4.1%, measured in the space-time norm

‖q‖ :=
(∫ T

0
‖q(t)‖2 dt

)1/2

. Automatic techniques for the choice of the lin-
earization points and projection-based MOR techniques yield more accurate and
efficient results.

4 Conclusions

A cable model based on the modified rigid finite element method, as presented
in this paper, shows reasonable results for the motion of the cables and the
platform. Using the approach given in this work, cables can be attached to a rigid
body representing the mobile platform. Due to the time-consuming evaluation
of the system dynamics, advanced mathematical techniques are employed to
accelerate the calculations. A combination of the proposed linearization ansatz
and a projection-based technique will lead to even larger speed-ups.
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Currently, the dynamics of the platform can only be simulated very limitedly,
despite the model allowing for additional dynamics of the platform to simulate
cable robots with up to 6 degrees of freedom and additional cables. To further
improve numerical results, the mechanical properties of the cable need to be
more closely obtained. As is known by related contributions, elasticity of the
used fiber cables is non-linear thus applying Hooke’s law for tension may not be
accurate enough. Additionally, initial investigations make assuming a progressive
bending stiffness of the cable with very small resistance more accurate. With the
modularity of the model, all of these approaches can easily be integrated in the
presented simulation framework and thus will be investigated in future work.
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1. Adamiec-Wójcik, I., Awrejcewicz, J., Brzozowska, L., Drg, L.: Modelling of ropes
with consideration of large deformations and friction by means of the rigid finite
element method. In: Awrejcewicz, J. (ed.) Applied Non-Linear Dynamical Systems.
Springer Proceedings in Mathematics & Statistics, vol. 93, pp. 115–137. Springer
International Publishing, Cham (2014). doi:10.1007/978-3-319-08266-0 9

2. Albus, J.S., Bostelman, R.V., Dagalakis, N.G.: The NIST RoboCrane. J. Res. Nat.
Inst. Stand. Technol. 97, 373–385 (1992)

3. Collard, J.F., Lamaury, J., Gouttefarde, M.: Dynamics modelling of large sus-
pended parallel cable-driven robots. In: 2011 ECCOMAS Thematic Conference on
Multibody Dynamics, pp. 1–13 (2011)

4. Flores, P., Pereira, R., Machado, M., Seabra, E.: Investigation on the
Baumgarte stabilization method for dynamic analysis of constrained multibody
systems. In: Ceccarelli, M. (ed.) Proceedings of EUCOMES 2008, pp. 305–312.
Springer, Dordrecht (2008). doi:10.1007/978-1-4020-8915-2 37

5. Kozak, K., Zhou, Q., Wang, J.: Static analysis of cable-driven manipulators with
non-negligible cable mass. In: IEEE Conference on Robotics, Automation and
Mechatronics, vol. 2, pp. 886–891 (2004). doi:10.1109/RAMECH.2004.1438035

6. Lau, D., Eden, J., Tan, Y., Oetomo, D.: CASPR: a comprehensive cable-robot
analysis and simulation platform for the research of cable-driven parallel robots.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3004–3011 (2016). doi:10.1109/IROS.2016.7759465

7. Michelin, M., Baradat, C., Nguyen, D.Q., Gouttefarde, M.: Simulation and con-
trol with XDE and Matlab/Simulink of a cable-driven parallel robot (CoGiRo).
In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots. Mechanisms
and Machine Science, vol. 32, pp. 71–83. Springer International Publishing, Cham
(2015). doi:10.1007/978-3-319-09489-2 6

8. Miermeister, P., Kraus, W., Lan, T., Pott, A.: An elastic cable model for cable-
driven parallel robots including hysteresis effects. In: Pott, A., Bruckmann,
T. (eds.) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol.
32, pp. 17–28. Springer International Publishing, Cham (2015). doi:10.1007/
978-3-319-09489-2 2

http://dx.doi.org/10.1007/978-3-319-08266-0_9
http://dx.doi.org/10.1007/978-1-4020-8915-2_37
http://dx.doi.org/10.1109/RAMECH.2004.1438035
http://dx.doi.org/10.1109/IROS.2016.7759465
http://dx.doi.org/10.1007/978-3-319-09489-2_6
http://dx.doi.org/10.1007/978-3-319-09489-2_2
http://dx.doi.org/10.1007/978-3-319-09489-2_2


Rigid Finite Element Method for Cable-Driven Parallel Robots 205
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Evaluating the Knot Vector to Synthesize
the Cam Motion Using NURBS

T.T.N. Nguyen(B), S. Kurtenbach, M. Hüsing, and B. Corves
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Abstract. A Non Uniform Rational B-Spline (NURBS) is used for syn-
thesizing the motion curve of cam mechanisms because it is flexible
and satisfies arbitrary boundary conditions from the working require-
ment of machinery systems. For using NURBS curve as motion curves
of cam mechanisms, selecting the knot vector is very important. This
work presents the effect of the knot vector on the displacement, velocity,
acceleration, and jerk curves. The linear system of equations for solving
the cam motion is also presented. A general computation of the knot
vector of NURBS for synthesizing the motion curve is presented. Several
examples illustrate this research.

Keywords: Parameterization method · Knot vector · NURBS · Cam
motion synthesis

1 Introduction

The synthesis of motion curves for cam mechanisms depends on working require-
ments and application situations of machinery systems. The boundary conditions
of the displacement function are not only displacement constraints but also the
velocity, acceleration, and jerk constraints. Frequently, designers must refine the
displacement functions, where their derivatives can reduce the maximum values
of acceleration and jerk.

There are several standard functions such as harmonic, cycloidal, trapezoidal,
and polynomial [1–3]. The disadvantage of these functions is limited by a number
of boundary conditions. For motion curves, polynomial functions are commonly
used in cam design. However, displacement curves can be oscillating with the
high order of polynomial if the number of boundary conditions becomes large.
Therefore, acceleration and jerk curves can occur peak values.

In several recent decades, spline functions, B-spline and NURBS curves, have
been used to synthesize motion curves of cam mechanisms [8–13]. The main
advantage of using these curves for displacement functions is unlimited bound-
ary conditions from working requirements. Moreover, these curves and their
derivatives can be controlled by several parameters such as the knot vector,
control points, and weights. The knot vector is one of the important parameters
c© Springer International Publishing AG 2018
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since it is directly connected with the shape of these curves. The uniform spacing
method is commonly used for calculating the knot vector as shown in [8–11]. This
method is very comfortable to calculate the knot vector. Other researches used
the knot vector that is specified in the increasing direction of the independent
cam rotation [12,13].

Until now, the knot vector is still interesting to calculate the shape of curves.
In this paper, we present the effect of the knot vector on the kinematics of the
cam motion. Several methods for computing the knot vector are used for NURBS
curve. Here, the study cases with a large number of boundary conditions of the
displacement, velocity, acceleration, and jerk are considered to synthesize of the
motion curve of cam mechanisms.

The organization of this paper is as follows. Section 2 shows the description of
NURBS and briefly presents a general synthesis of motion curves with NURBS.
The linear system of equations is established. The computation of the knot vector
for synthesizing motion curves is present in Sect. 3. Section 4 shows the effect of
knot vector to motion curves by two examples. Conclusion is presented in Sect. 5.

2 Description of NURBS Curve for Cam Motion

2.1 NURBS Curve Formulation

A detailed introduction to Non-Uniform Rational B-Spline (NURBS) curve can
be found in [4]. A NURBS curve of degree, p, is defined by n + 1 control points
Pi, i = 0, ..., n and the knot vector U. A NURBS curve is expressed as

C(u) =
∑n

i=0 Ni,p(u)wi Pi∑n
j=0 Nj,p(u)wj

, u ∈ [a, b]. (1)

Here, wi are weights and they are positive. Ni,p are the B-spline basis func-
tions that are defined over the knot vector U

U = {u0, u1, u2, ..., um}, (2)

with m = n+p+1. The knot vector is a nondecreasing sequence of real number,
and ui are called knots. The knot vector is also expressed as

U = {a, ..., a
︸ ︷︷ ︸

p+1

, up+1, ..., um−p−1, b, ..., b
︸ ︷︷ ︸

p+1

}. (3)

From Eq. (1), the basis functions Ni,p are calculated by using the knot vector
as

Ni,0(u) =
{

1 for ui ≤ u < ui+1

0 otherwise

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u).

(4)
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Setting

Ri,p(u) =
Ni,p(u)wi∑n

j=0 Nj,p(u)wj
, (5)

they are called the rational basis functions. Thus, the Eq. (1) can be written as

C(u) =
n∑

i=0

Ri,p(u)Pi. (6)

Furthermore, the kth derivative of NURBS curve can be computed as

Ck(u) =
n∑

i=0

Rk
i,p(u)Pi. (7)

2.2 Cam Motion Using NURBS Curve

The derivative of NURBS curve with degree p is continuous up to (p−1). There-
fore, in this paper, the NURBS curve with degree p = 5 is used for synthesizing
the motion curves because its derivative is continuous up to jerk function.

With the cam motion using NURBS curve, we denote u as the angle of cam
shaft. The given boundary conditions of the displacement, velocity, acceleration,
and jerk are respectively C(uj), C1(uk), C2(ul), and C3(uh) at uj , uk, ul, and
uh. For the number of boundary conditions, n + 1 = d + e + f + g, the linear
system of equations can be written as

C = RP , (8)

where the matrix C with size (n + 1) × 1 can be expressed by

C =
[
C(uj) C1(uk) C2(ul) C3(uh)

]T
, (9)

for j = 1, ..., d, k = 1, ..., e, l = 1, ..., f , and h = 1, ..., g.
Here, the matrix R with size (n+1)× (n+1), presents the values of rational

basis functions, the first derivative, the second derivative, and the third derivative
at uj , uk, ul, and uh respectively. R can be written as

R =
[
Ri,p(uj) R1

i,p(uk) R2
i,p(ul) R3

i,p(uh)
]T

, for i = 0, ..., n. (10)

From Eq. (8), P can be presented by

P =
[
P0, P1, ..., Pn

]T
. (11)

As mentioned above, Pi are control points.
Solving the linear system of equations as shown in Eq. (8), we obtain the

control points. It means that the motion curve of cam mechanisms is established.
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3 Computation of the Knot Vector for Synthesizing Cam
Motion

3.1 Parameterization Method to Generate the Knot Vector

According to Eq. (4), the basis functions are established by the knot vector U
as shown in Eq. (3). For the number of boundary conditions at uj , uk, ul, and
uh, the input angle vector of camshaft, denoted by D, is arranged from small to
big value of the cam rotation in the order uj , uk, ul, and uh. Thus, for n + 1
input angles, D can be written as

D = [D0, D1, ..., Dn] . (12)

The vector, denoted by t = [t0, t1, ..., tn], has n + 1 parameters. To compute
these parameters, we present three methods such as the uniformly space method,
the chord length method, and the centripetal method. From Eq. (1), the angle
of camshaft as u is in the parameter domain [a, b], with a = D0 and b = Dn.

The uniformly space method has been presented in [6]. With the end para-
meters t0 = a and tn = b, the remaining parameters are computed by

⎧
⎪⎨

⎪⎩

t0 = a

ti = a + i
b − a

n
for i = 1, ..., n − 1.

tn = b

(13)

The detail of chord length parameterization method can be found in [14].
The end parameters are t0 = a and tn = b. The other parameters are calculated
by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t0 = a

ti = a +

k∑

i=1

|Di − Di−1|
n∑

i=1

|Di − Di−1|
(b − a) for k = 1, ..., n − 1.

tn = b

(14)

Respectively, the centripetal parameterization method can be found in [7].
The first and the end parameters are t0 = a and tn = b. The remaining parame-
ters are expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t0 = a

ti = a +

k∑

i=1

|Di − Di−1|α
n∑

i=1

|Di − Di−1|α
(b − a) for k = 1, ..., n − 1

tn = b

, (15)

with the positive power as α is in [0, 1]. Selecting the value α affects the shape
of the displacement, velocity, acceleration, and jerk curves. In this paper, we
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do not discuss the effect of the parameter α. For calculating the parameters ti
according to the centripetal method, we choose the value α = 1/2 that is the
square root of chord length method.

3.2 Knot Vector Generation

To generate the knot vector for NURBS after a set of parameters ti is obtained.
Using NURBS with degree p for motion curves, we need to compute m + 1
knots from n + 1 parameters in t, where m = n + p + 1. According to the
knot vector in Eq. (3), we have p + 1 knots with u0 = u1 = ... = up = a
and um−p = um−p+1 = ... = um = b. The remaining n − p interval knots
(up+1, ..., um−p−1) are computed from the parameters ti.

The uniformly spaced knot vector can be calculated by [6]
⎧
⎪⎨

⎪⎩

u0 = u1 = ... = up = a

uj+p = t0 +
j

n − p + 1
(b − a) for j = 1, 2, ..., n − p.

um−p = um−p+1 = ... = um = b

(16)

For the chord length and centripetal method, knots are computed by the
average method [5]

⎧
⎪⎪⎨

⎪⎪⎩

u0 = u1 = ... = up = a

uj+p = t0 +
1
p

j+p−1∑

i=j

ti for j = 1, 2, ..., n − p.

um−p = um−p+1 = ... = um = b

(17)

4 Results and Discussions

This section presents two examples with a large number of boundary conditions.
In the first example, the follower of the cam mechanism satisfies 20 boundary
conditions (see in [8]) of the displacement, velocity, and acceleration as shown by
start signs in Fig. 1. From the given angles of camshaft, the input angle vector
is expressed as D = [0, 0, 0, 0.7854, 0.7854, 1.5708, 1.5708, 1.5708, 2.3562,
2.3562, 2.6180, 3.1416, 3.1416, 3.1416, 3.6652, 3.9270, 3.9270, 4.7124,
4.7124, 4.7124]. The knot vectors for the uniform space, chord length and cen-
tripetal methods are computed in Sect. 3.

From the knot vector, basis functions Ni,p and rational basis functions Ri,p

are established (see Eqs. (4) and (5)). The displacement function is computed
from calculating the control points in Eq. (8). The results of the displacement,
velocity, acceleration, and jerk diagram (SVAJ diagram) show in Fig. 1. It is seen
that the difference of the displacement curves is not changed much. However, the
velocity, acceleration, and jerk curves are much different. The maximum values
of velocity, acceleration, and jerk using chord length method are much smaller
than others.
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Fig. 1. Comparison of motion curves for three cases of knot vector

As the second example, we consider the cardiovascular mock loop where the
motion of the human heart is simulated. The measurement of the displacement
follower is shown by star signs in Fig. 2 with 27 values of the displacement.
Because of the discontinuity of the velocity and acceleration, the infinite values
of the acceleration and jerk will occur, respectively. Thus, to avoid the discontinu-
ity of the velocity, acceleration, and jerk, some boundary conditions are added at
the start and the end points of the velocity, acceleration, and jerk, such that their
values are equal to zero. Respectively, the input angle vector with 33 elements is
written as D = [0, 0, 0, 0, 0.2417, 0.4833, 0.725, 0.9666, 1.2083, 1.45, 1.6916,
1.9333, 2.1749, 2.4166, 2.6583, 2.8999, 3.1416, 3.3833, 3.6249, 3.8666, 4.1082,
4.3499, 4.5916, 4.8332, 5.0749, 5.3165, 5.5582, 5.7999, 6.0415, 6.2832, 6.2832,
6.2832, 6.2832].

Figure 2 shows SVAJ diagram in one cycle of the cam mechanism. The dis-
placement, velocity, acceleration, and jerk curves in case of the chord length
and the centripetal method are coincided because of the same as vector t,
also the knot vector U. As D above, the difference between two elements,
|Di − Di−1| (i = 5, ..., 30), does not change, and the remaining elements are
equal to zero. In this case, the parameters ti are not affected by the power
α of the centripetal method. Thus, they have similar values in both the
chord length method and the centripetal method, likewise the value of knots
ui. As shown in Fig. 2, the displacement for the uniformly spaced method
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Fig. 2. SVAJ diagram comparison of uniform, chord length, and centripetal methods

is slightly oscillating. Therefore, the peak values of the velocity, accelera-
tion, and jerk curves occur. The maximum values of velocity, acceleration,
and jerk with the chord length and the centripetal methods are much smaller
than the uniformly spaced method.

5 Conclusions

Using NURBS curve for cam motion synthesis is flexible and robust because it
satisfies arbitrary boundary conditions of displacement, velocity, acceleration,
and jerk constraints. Furthermore, NURBS curve and its derivative are con-
trolled by several parameters such as knot vector, control points, and weights.
The evaluation of effecting the knot vector on the displacement, velocity, acceler-
ation, and jerk curves is presented in this paper. Several methods for computing
the knot vector of NURBS used to synthesize the motion curves are presented.
The results show that the maximum values of acceleration and jerk in case of
the chord length method are smaller than the other methods. Especially, these
values for chord length method are much smaller than the uniform method.
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Abstract. In the present paper, the biplanetary gears are analysed. They have
complex layouts and their functioning is not too easy to recognize based upon these
general schemes. However, it has been proved that two methods i.e. Willis and
Kutzbach could be useful for their detailed kinematical analysis, enclosing e.g.
directions of rotation of particular geared wheels. The exemplary gears analysed
e.g. kinematical ratios have been calculated. The analysis of these gears could be a
good training for mechanism understanding by students and researchers.

Keywords: Biplanetary gear � Kinematical gear ratio � Willis equation �
Scheme of velocities

1 Introduction

Planetary gears are mechanisms consisting – among other – of geared wheels, in which
at least the symmetry axis of one wheel encircles the main symmetry axis of the
system. The wheel, which is going round, is called a planetary wheel or even just a
planet or a satellite gear. In practice, more frequently the mechanical system is a
three-shaft-gear which consists of a central geared wheel (sun wheel) 1, an outer ring
(annulus) with inward-facing teeth that mesh with the planet gear 3 and (at least) three
planet gears are joined and displaced regularly in the space by means of an arm (carrier)
h (Fig. 1a). In this gear, the arm h and two central geared wheels 1 and 3 consists the
set of the basic elements. It is described by a code 2WH (2 wheels i.e. W plus an arm
H). Depending on fixing or braking of one of its elements, the gear can work as a
mechanism of one degree of freedom (1 DOF) however it represents three possible
variants of operation. In case when all three basic gear parts are movable, then a
planetary gear has two degrees of freedom and there is a demand for driving of two

© Springer International Publishing AG 2018
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different basic elements. Therefore, in such a case, a system serves as a differential
gear. This case was analyzed by the authors in [6]. Besides Willis method, graph-based
approaches were there effectively utilized.

In case, when the satellite gears 2 and 3 - for the gear described as 2WH-EI (in
Fig. 1b) - are connected via an additional kinematic chain, called the internal planetary
mechanism. Moreover, we obtain the double planetary gear (biplanetary gear). The
biplanetary gears are described e.g.: in books [1, 3, 5], some of them have been edited
recently so there is an interest in this type of mechanisms not only in teaching curricula
but also in industry. Namely, just recently it has been described special applications of
biplanetary gears [2, 7] in power transmissions and chemical equipment. The exem-
plary scheme of this gear is presented in Fig. 2. It consists of one main planetary gear
having the sun wheel 1 geared with the planetary gears 2, the outer arm is denoted by h.
Moreover, the system has the second pair of wheels consisting of planetary
wheels/number 3 in Fig. 1b/geared with braked central wheel 7 (number 4 in Fig. 1b).
The additional kinematic chain is created by the planetary gears 2 and 6 which create

Fig. 1. Schemes of planetary gears - 2WH type (a) and 2WH-EI (b)

Fig. 2. Front view and scheme of biplanetary gear [5]
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an epicyclic gear called as an internal planetary mechanism. It consists of the ring gear
3, planet 4, sun wheel 5 and an inner arm H. The arm H drives the planetary wheel 6 –

belonging however to the main gear sub-mechanism. The sun wheel 5, belonging to the
inner planetary sub-mechanism, is simultaneously in the considered design variant –
the arm h of the main planetary gear.

The value of DoF can be calculated based on the following Kutzbach criterion:

W ¼ 3 � n� 2 � p5 � p4 ¼ 3 � 5� 2 � 5� 4 ¼ 1; ð1Þ

where: n ¼ 5 - number of moving links, p5 ¼ 5 - number of kinematic pairs of 5-th class
(bearings), p4 ¼ 4 - number of kinematic pairs of 4-th class (described as: meshing,
geared, in mesh or in gear). Characteristic feature of this gear is that the satellite gears of
the epicyclic satellite sub-mechanism performs a complex movement rotating around
three axes – own, central of planetary sub-mechanism and central of the main planetary
gear. Therefore, the kinematical analysis of the whole system is difficult and complex.
These gears – due to the character of their internal movements – are utilized mainly in
mine machines (cross-cutters, shearer) as well as agricultural machinery.

2 Kinematic Ratio of Biplanetary Gear

2.1 Calculations Performed by Means of Willis Formula

According to the definition of kinematical ratio, we consider the ratio i71;h (from pinion
1 to arm h, in case when the wheel 7 is braked/in general immobilized/). The ratio is
expressed by means of the following formula:

i71;h ¼
n1
nh

� �
n7¼0

; ð2Þ

where:
n1 ¼ nin velocity of pinion 1 - i.e. an input velocity of the considered gear,

nh ¼ nout velocity of arm h - i.e. an output velocity of the gear (Fig. 2).
Aiming for determination of kinematic ratio i 71; h, at the beginning, the basic ratio of

the inner gear have to be calculated - in case when the rotational speed is equal to �nh
(i.e. considerations of kinematics in relation to the arm h). In this case, the relative
angular velocities of particular wheels of the gear are equal to: nhj ¼ nj � nh for j ¼
1; 2; . . .; 7 (Fig. 2). Similarly, the relative angular velocity of the internal (inner) arm H
in relation to the external arm h is equal to: nhH ¼ nH � nh (Fig. 2). The basic ratio of
the inner planetary gear consisting of the wheels 3, 4, 5 and arm H, in case of known
relative velocities: nh3; n

h
4; n

h
5 and nhH- the ratio could be calculated by means of the

Willis formula:

iH3;5 ¼
nh3 � nhH
nh5 � nhH

ð3Þ
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additionally, based on the formulas for ratios related to the set of wheels 3, 4 and 5 in
relations to arm H, we obtain the underneath relationship, depending on adequate teeth
numbers:

iH3;5 ¼
nh3 � nhH
nh4 � nhH

� �
� nh4 � nhH

nh5 � nhH

� �
¼ nh3 � nhH

nh5 � nhH

� �
¼ � z4

z3

� �
� � z5

z4

� �
¼ z5

z3

� �
; ð4Þ

optionally it could be expressed by means of other considered notions:

iH3;5 ¼
z5
z3

� �
¼ nh3 � nhH

�nhH
; ð5Þ

because nh5 ¼ n5 � nh ¼ 0 in case when n5 ¼ nh (Fig. 2).
Furthermore, aiming for determination of the unknown ratio of the biplanetary gear

– the unknown relative angular velocities nh3 and nhH /utilized in the formula (5)/ - have
to be determined as functions of: nh and/or n1. It could be done upon two conditions
related to the ratio iH;7 (i.e. ratio from the arm H to the wheel 7) as well as the ratio i 3;1
(i.e. ratio from the wheel 3 to the wheel 1):

ihH;7 ¼
nhH
nh7

¼ nh6
nh7

¼ � z7
z6
; ð6Þ

Because nH ¼ n6, therefore additionally we can write
nhH ¼ nH � nh ¼ n6 � nh ¼ nh6, in turn, therefore consecutive formulas can be
calculated:

nhH ¼ nh7 � � z7
z6

� �
¼ nh � z7z6 ; ð7Þ

Because nh7 ¼ n7 � nh ¼ �nh in case n7 ¼ 0, moreover

i h3;1 ¼
nh3
nh1

¼ nh2
nh1

¼ � z1
z2
; ð8Þ

Because n3 ¼ n2 and the following equalities can be considered as proper for the
considered scheme and the assumption made: nh3 ¼ n3 � nh ¼ n2 � nh ¼ nh2. More-
over, taking into account the former considerations–the underneath formula can be
obtained:

nh3 ¼ nh1 � � z1
z2

� �
¼ n1 � nhð Þ � � z1

z2

� �
: ð9Þ
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Therefore, for the ratio of teeth numbers z5=z3 considered in the formula (5) – after
some transformations/e.g. considering formula (9)/ - can be expressed by the following
relationship:

z5
z3

� �
¼

n1 � nhð Þ � � z1
z2

� �
� nh � z7z6

�nh � z7z6
¼

n1
nh
� 1

� �
� � z1

z2

� �
� z7

z6

� z7
z6

; ð10Þ

Finally, the formula(2) for determination of the ratio of the biplanetary gear– can be
written in the following form:

i71;h ¼
n1
nh

� �
n7¼0

¼ 1� z7
z6

� z2
z1

� 1� z5
z3

� �
¼ 1��108

24
� 132
36

� 1� 42
�90

� �
¼ 25:20: ð11Þ

The calculations were done for the assumed number of teeth for the biplanetary
gear: z1 ¼ 36, z2 ¼ 132, gear module m1;2 ¼ 1, z3 ¼ �90, z4 ¼ 24, z5 ¼ 42, gear
module m3;4;5 ¼ 1; 5, z6 ¼ 24, z7 ¼ �108, m6;7 ¼ 2. The notation style has been uti-
lized that teeth number of geared rings are considered as negative.

2.2 Schemes of Velocities of Particular Gear Elements

An analysis of tangential velocities of the biplanetary gear could be done independently
on the other calculation methods via graphical approach. In the considered case, we
introductory assume the value of the rotational velocity xh of the arm h (e.g.:
xh ¼ 1 rad=s) for the main planetary gear [1, 5]. In this case, it is possible to determine
the tangential velocity vh of the arm– via the following formula:

vh ¼ xh � rh ¼ 1 � 84 � 10�3 ¼ 0:084m=s; ð12Þ

where: rh -radius of the arm h, in the main planetary gear:

rh ¼ 0:5 � d1 þ d2ð Þ ¼ 0:5 � m1;2 � z1 þ z2ð Þ ¼ 0:5 � 1 � 36þ 132ð Þ ¼ 84 mm: ð13Þ

Vector of this velocity is graphically determined in the way shown in (Fig. 3). Point
of gearing (meshing) of the satellite 6 with the immobilized wheel 7 is the temporary
central point of rotation of the wheel 6; i.e. the tangential velocity of the wheel 6 in this
point is equal to v6;7 ¼ 0. Therefore, the vector vH (i.e. velocity of the arm H) is
determined by the straight line going from the end of the vector vh via the point relevant
to the zero velocity of the wheel 6, in the temporary center of rotational movement. Its
value is derived from the proportion:

vh
r6

¼ vH
rH � r6

; vH ¼ vh � rH � r6
r6

¼ 0:084 � 49:5� 24
24

¼ 0:08925 m=s ð14Þ
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where: rH - radius of the external arm H and r6 - pitch radius of the satellite 6:

rh ¼ 0:5 � d5 þ d4ð Þ ¼ 0:5 � m3;4;5 � z5 þ z4ð Þ ¼ 0:5 � 1:5 � 42þ 24ð Þ ¼ 49:5 mm; ð15Þ

r6 ¼ 0:5 � m6;7 � z6 ¼ 0:5 � 2 � 24 ¼ 24mm: ð16Þ

The sun wheel 5 creates a common element with the arm h, therefore the vector of
velocity v5;4 of the sun wheel 5 in the point of meshing with the satellite 4 is determined
by the straight line going from the point O i.e. the center of rotation of the arm h via the
endpoint of the velocity vector vh. The value of velocity v5;4 ¼ v4;5 can be calculated
upon the proportion:

vh
rh

¼ v5;4
rh þ r5

; v5;4 ¼ vh � rh þ r5
rh

¼ 0:084 � 84þ 31:5
84

¼ 0:1155m=s ð17Þ

where: r5 - pitch radius r5 of the sun wheel 5:

r5 ¼ 0:5 � m3;4;5 � z5 ¼ 0:5 � 1:5 � 42 ¼ 31:5mm: ð18Þ

Knowing the velocity v4;5 ¼ v5;4 of the satellite 4 in the touch point with the sun
wheel 5 and velocity vH of the central point of the satellite 4;- it is possible to establish
velocity v4;3 of the satellite 4 in the touch point with the ring gear 3. In consequence,
the value of vector v4;5 is analytically determined based upon the proportion:

v4;5 þ vH
r4

¼ v4;3 � vH
r4

; ð19Þ

therefore:

v4;3 ¼ v4;5 þ 2 � vH ¼ 0:1155þ 2 � 0:08925 ¼ 0:294m=s; ð20Þ

where: r4 ¼ 0:5 � m3;4;5 � z4 ¼ 0:5 � 1; 5 � 24 ¼ 18mm - pitch radius of the satellite
wheel 4.

Fig. 3. Scheme of tangential velocities
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Based on relationships form vector analysis v3;4 ¼ v4;3 and v2;1 ¼ v1;2 we have;

v2;1 � vh
r2

¼ v3;4 þ vh
r3j j ; ð21Þ

we have the formula:

v2;1 ¼ v3;4 þ vh
� � � r2

r3j j þ vh ¼ 0:294þ 0:084ð Þ � 66
�67:5j j þ 0:084 ¼ 0:4536m=s;

ð22Þ

where: r2; r3 - pitch radiuses of the satellite wheel 2 and the ring 3, respectively:

r2 ¼ 0:5 � m1;2 � z2 ¼ 0:5 � 1 � 132 ¼ 66mm; ð23Þ

r3 ¼ 0:5 � m3;4;5 � z3 ¼ 0:5 � 1; 5 � �90ð Þ ¼ �67:5mm: ð24Þ

Finally, the searched (unknown) angular velocity x 1 of the sun wheel 1, for the
assumed angular velocity xh ¼ 1 rad=s of the external (outer) arm H, is equal to:

x1 ¼ v1;2
r1

¼ 0:4536
18:5

� 103 ¼ 25:20 rad=s; ð25Þ

where: r1 ¼ 18mm -pitch radius of pinion (i.e. sun wheel).
Finally it was obtained the same value of kinematic ratio:

i71;h ¼
x1

xh

� �
x7¼0

¼ 25:20
1

¼ 25:20: ð26Þ

The analysis was performed for an exemplary gear but the applied approach could
be used in analysis of these types of planetary gear, in general.

3 Conclusions

The discussed methods i.e.: Willis’s and Kutzbach’s belong to the most effective and
general approaches. Therefore, they are useful for an analysis of velocities (kinematics)
of biplanetary gears which are rarely considered, despite the applications in control and
chemical devices. Based on the utilized methodology, it is not only possible to
established velocities of particular parts but also one can calculate the kinematic ratio(s)
as well as directions of rotation of all wheels. Furthermore, these approaches are useful
– in general, for other complex planetary gears [6].
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Abstract. This paper proposes a dynamic synthesis of a flexible multibody
systems, mainly, a slider crank mechanism incorporating a flexible connecting
rod. Differently to classical synthesis, the mechanism design variables are iden-
tified by means of the mechanism dynamic responses such as, the velocity and the
acceleration of the slider, and the flexible connecting rod transversal deflection.
A comparative study between two optimization techniques, the genetic algorithm
(GA) and the Particle Swarm Optimization (PSO), has been established. The two
approaches employ different strategies and computational effort to find a solution
to a given objective function. Thus, we are interested in the comparison of their
implementation. The comparative study asserts that the PSO technique is more
suitable for the dynamic synthesis.

Keywords: Flexible slider crank mechanism � Dynamic synthesis � PSO � GA

1 Introduction

Synthesis of multibody systems presents a stiff problem. Thus, regard to the tremen-
dous constraints required for this problem resolution, representing a burdensome task to
handle with. For some industrial applications, such as medical applications, welding
and manufacturing robot, the mechanism reliability is highly required. Usually, the
multibody synthesis is established by means of a kinematic modelling. Thereby, the
described path of the mechanism is optimized subject to a desired path. Consequently,
the mechanism parameters, involved in the described path, are optimized in order to
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handle as maximum as possible with the desired path. However, for the applications
mentioned above, the kinematic synthesis presents many shortcomings. This is referred
to the non consideration of the inevitable clearance in the joint, also, the elastic
behaviour of its different components. For high velocity, the clearance has a significant
impact on the mechanism response [1]. Thus, the mechanism synthesis deploying
simply the generated path has major drawbacks.

Many works has been completely devoted to multibody synthesis by means of
optimization techniques. Laribi et al. [2] have focused on a four bar mechanism syn-
thesis. An hybrid algorithm coupling the genetic algorithm to the fuzzy logic has been
developed for this aim. Recently, Essomba et al. [3] have deployed the genetic algo-
rithm for a spherical parallel mechanism, used in medical applications, synthesis.
Kucuk [4] has used the particle swarm optimization in order to reduce the consumed
energy for a 3-RRR parallel manipulator.

This work deals with a dynamic synthesis of a flexible slider crank mechanism. The
optimal mechanism design variables are defined based on a desired dynamic response
for more reliability. The main advantage of the dynamic synthesis is that, it take into
account the real imperfections subsumed in a real mechanism and involve them in the
optimization process.

A comparative study between two optimization techniques is presented in this
work. The genetic algorithm and the particle swarm optimization have been performed
for the mechanism synthesis. The slider velocity and acceleration, as well as, the
transversal deflection of the connecting rod have been chosen as dynamic responses
deployed for the mechanism identification.

2 Mathematical Modelling

The dynamicmodelling of themultibody systems has been the object of numerous works.
The differential algebraic equations combine both, ordinary differential equations

(ODE) and algebraic equations. Ordinary differential equations describe the multibody
systems responses. Thereby, algebraic equations are responsible for geometrical
modelling of the mechanism.

In this work, a flexible slider crank mechanism is used as a demonstrative example.
The synthesis of the mechanism design variables is carried out based on the mechanism
dynamic response.

Lagrangian coordinates for the used mechanism are depicted in Fig. 1.

Fig. 1. Flexible slider crank mechanism
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The Hamilton principle yields:

M UT
q

Uq 0

� �
€q
k

� �
¼ Qe þQv

Qc

� �
ð1Þ

Uðq; tÞ ¼ 0 ð2Þ

Qvi ¼
X2
j¼1

kj
@uj

@qi
ð3Þ

Wherein, Qv, Qe are respectively The total constrained forces and The total applied
forces.

The constraint equations, for the slider crank mechanism, which are a system of one
degree of freedom, with holonomic constraints based on general coordinates, is as
follow:

U q; tð Þ ¼ u1 q; tð Þ
u2 q; tð Þ

� �
¼ l2 cos h2 þ l3 cos h3 � xc

l2 sin h2 þ l3 sin h3

� �
¼ 0

0

� �
ð4Þ

3 Objective Function

The synthesis problem, is formulated as an optimization problem. Thus, the design
parameters (the crank and flexible connecting rod lengths) involved in the dynamic
response are obtained in order to reduce the error between the desired response and the
optimal one, by mean of the used optimizations techniques.

The mechanism response, mainly the slider velocity or the acceleration or the
midpoint transversal deflection of the connecting rod, has been represented for, about
two crank revolutions.

The error is measured between every point of the optimal solution obtained with the
optimization technique and the target one.

The objective function is presented in the following form:

F ¼ min ðErrorÞ ð5Þ

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
i

xi � xi t arg et=Maxðxi Þ �Minðxi Þ
� �2s

ð6Þ

Where, xi, xitarget and n represent respectively the proposed design variables
response, the target response and the number of measured points in the response.

The error value is dimensionless, therefore, the proposed objective function can be
applied for different dynamic responses involved along the identification process.
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4 Optimization Approaches

In this work, two optimization techniques have been carried out. A comparative study
has been made between the genetic algorithm and the particle swarm optimization.

The genetic algorithm has been the most used heuristic optimization technique for a
long time, mainly due, to the simplicity of its implementation. It is divided into the
following steps:

Initial population choice:
The initial population in this work is constituted of 20 individuals. Each individual

is a vector of two parameters. These parameters are the crank length and the flexible
connecting rod length.

Evaluation and selection:
All the initial chosen individuals are evaluated by means of the objective function.

A selection probability will be then affected to each individual referring to its per-
formance [5]. Consequently, a high selection probability will be attributed to better
individual to favourite their selection for the crossover. However, the selections of low
performance individuals remain possible.

Crossover:
Along the crossover process, the two selected individuals exchange each other

some characteristics. The crossover probability is equal to 0.9 in this work.
Mutation:
The mutation aim to ensure that the proposed solution is a global optimum. Thus

through modifying just a single component of the design variables vector, the indi-
vidual can be situated in a position far away to its vicinity in the search space. This lead
to investigate a broader area of potential global optimum. The mutation probability is
equal to 0.3.

The PSO (particle swarm optimization) technique is inspired from the swarm
displacement phenomenon. It has been proved that, for a swarm, every particle moves
beyond and toward particles in its neighbourhood. Thus, these particles are called
informers. Referring to these informers, the velocity and position can be updated. In
accordance to the natural swarm, for the optimization using PSO, every particle is
matched to her own informers. A confidence coefficients are involved for the com-
munication as well as, the particles positions and velocities update. In fact, thanks to
informants, all the swarm particles are connected together. Thus, the swarm is similar
to a network allowing the communication between the leader of the swarm (best
located particle) with the rest of the swarm. The evolution of every particle perfor-
mance contributes for the swarm guidance in order to reach the best existent position.
Indeed, every particle contains a number of parameters to optimize. In this work, the
crank and the connecting rod length are the parameters to optimize. Each position
represents a solution, and the swarm moves among the defined search space. In every
iteration for the PSO algorithm, the positions and the velocities of all particles are
updated as the following equation [6]:
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vd ¼ c1vd þ c2ðpd � xdÞþ c3ðgd � xdÞ ð7Þ
xd ¼ xd þ vd ð8Þ

Where, c1, c2 and c3 are confidences coefficient, xd , vd , are respectively the position
and the velocity pd , gd are respectively the best position found by the particle and the
best position found by informants of the particle.

5 Results and Discussion

The dynamic synthesis has been carried out by means of three different dynamic
responses. Two design variables are involved in the mechanism synthesis, mainly, the
crank and the flexible connecting rod lengths. An enlarged search interval has been
chosen for the aforementioned design variables. The synthesis is made regard to a
reference mechanism of a crank length of 50 mm and a flexible connecting rod of
350 mm.

Genetic algorithm results
The interval search has been chosen as [10; 90] and [100; 900] respectively for the
crank and the flexible connecting rod lengths. A set of 20 individuals has been ran-
domly considered from the search interval mentioned above.

Based on the mechanism response, the design variables identification has been
established. In each iteration, the algorithm evaluates the proposed design variables (l1,
l2) performance, and error between the proposed and the reference mechanism
responses is measured thanks to the objective function.

As illustrated in Fig. 2a the minimization evolution of the objective function
subject to iteration number reaches an error of about 6.68 10−3. The proposed lengths
after 250 iterations, are 49.09 and 361.2 mm, respectively for the crank and the con-
necting rod. Using an intel I7 3.4 GHz with 8 Gb of RAM, the CPU time is about
909 s.

(a) (b) (c)

Fig. 2. Optimization error evolution: (a) based on the velocity, (b) based on the acceleration,
(c) based on the transversal deflection
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It is worth mentioning that the mechanism synthesis can be also conducted using
the slider acceleration. As it can be seen in Fig. 2b, an error of 5.105 10−3 has been
reached after 250 iterations. The algorithm proposes a couple of 49.292 mm and
339.06 mm respectively for the crank and the connecting rod lengths for a CPU time of
1092 s. The mechanism synthesis deploying the transversal deflection of the con-
necting rod presents the most onerous synthesis for the proposed algorithm. Thus,
based only on a single body elastic deformation (due to eigenmode excitation), doesn’t
allow to the mechanism to carter for the required reliability. Therefore, the algorithm
reaches an error of 1.99 10−2 after 250 iterations as shown in Fig. 2c. Otherwise, a
couple of 47.54 mm and 363.18 mm respectively for the crank and the connecting rod
lengths are proposed for a CPU time of 1148 s.

As it can be drawn, for the proposed interval search, the genetic algorithm doesn’t
match perfectly with high accuracy, in spite of, an exhibited convergence (Table 1).

A higher performance optimization technique should be investigated to overcome
the genetic algorithm weakness, in order to propose better accurate results.

PSO optimization results

This section is completely devoted to the dynamic synthesis using the particle swarm
optimization.

In order to perform a comparative study between the GA and PSO, a set of 20
particles as well as 250 iterations has been fixed along the particle PSO algorithm
execution. As evident in Fig. 3a, for the PSO optimization, the algorithm converges in
almost 50 iterations beside 170 for the genetic algorithm. Moreover, the proposed
design variables are exactly the same ones of the reference mechanism in about 5.19
103 s. However, the required CPU time is significantly higher than time consumed for
the GA. This represents an interesting trade off accuracy/CPU time.

Similarly to the dynamic synthesis deploying the GA, the PSO synthesis is able
also to identify the mechanism response, based on the slider acceleration. Figure 3b
exhibits the mechanism synthesis based on the slider acceleration. The algorithm
convergence is reached in about 25 iterations. Beside an error of 5.105 10−3 for the GA,
the PSO guarantees an error of 5.851 10−9, matching perfectly with the reference
mechanism dimensions.

Table 1. Proposed design variables using the genetic algorithm optimization

The crank
length (mm)

The connecting rod
length (mm)

Error CPU
time (s)

Acceleration
synthesis

49.29 339.06 5.105 10−3 1092.7

Velocity synthesis 49.09 361.2 6.68 10−3 909.54
Transversal
deflection synthesis

47.54 363.18 1.99 10−2 1148.9
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Regarding to the most burdensome synthesis type for the GA, based on the
transversal deflection of the connecting rod, the PSO algorithm overcomes the diffi-
culties faced, proposing exactly the same design variables as these of the reference
mechanism. As illustrated in Fig. 3c, for an error of 1.6193 10−8 beside 1.995 10−2 for
the GA, the PSO presents a very performant tool for the mechanism optimization in
spite of its high consumed calculation time (Table 2).

6 Conclusion

This work denotes an insight into the multibody system synthesis. For this purpose, the
flexible slider crank mechanism has been deployed as a demonstrative example. Some
conclusions can be drawn:

• For an enlarged interval search, the mono-objective optimization using the genetic
algorithm do not provide reliable results for the dynamic synthesis, mainly, for the
transversal deflection synthesis. The genetic algorithm provides the best design
variables results based on the slider acceleration.

• The PSO optimization provides more accurate results comparing to the GA.
Moreover, the algorithm convergence is reached in almost few iterations, and the
algorithm converges exactly to the reference mechanism parameters.

It is observed that, from an evolutionary point of view, the performance of the PSO
is better than that of GA. The PSO seems to arrive at its final parameter values in fewer
generations than the GA. Compared to GA, the advantages of PSO are that it is easy to
implement and there are few parameters to adjust.

(a) (b) (c)

Fig. 3. Optimization error evolution: (a) based on the velocity, (b) based on the acceleration,
(c) based on the transversal deflection

Table 2. Proposed design variables using the PSO optimization

The crank
length(mm)

The connecting rod
length(mm)

Error CPU
time (s)

The velocity synthesis 50 350 2.7345e-08 5.19 103

The acceleration
synthesis

50 350 5.851e-09 7.27 103

The transversal
deflection synthesis

50 350 1.6193e-08 7.29 103
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Abstract. In the present work, a robust design methodology is presented for
topologically optimized components. An integrated methodology combining
design of experiment and reliability based topology optimization is proposed to
capture the performance of optimized components in realistic environment
including various uncertainties. In the present work, Mechanical Advantage,
output displacement and the maximum von-Mises stress values are considered as
performance functions. Volume fraction, force and aspect ratio are set as
design-factors. The uncertainties of design factors are incorporated in the design
using reliability method. The uncertainties of non-controllable factors are sim-
ulated by creating random field of material properties. Considering uncertainties,
the performance of the topology optimization problem is simulated for a space of
design factors. The simulated results are analyzed using statistical tools such as,
analysis of mean. This technique helps to identify statistical significance and the
effect on the performance variations. The proposed methodology is illustrated on
a Force inverter. This analysis provides a design methodology in a realistic
environment that helps in achieving targeted performance and robust design.

Keywords: Topology optimization � Robust design � Uncertainty � RBTO �
Design of experiments � Reliability

1 Introduction

Topology optimization is a useful tool for minimization of structural and machine
components [1, 2]. This is done taking into consideration a set of boundary conditions
with an objective to maximize the performance of the component.

The performance of a topologically optimized structure is characterized by the
mechanical advantage, output displacement and the maximum stress developed. These
factors depend on parameters like input force, volume fraction, elasticity of the
workpiece, dimension of the material etc. However, in reality there is a considerable
amount of uncertainty involved. Consequently, this would affect the performance of the
structure. Therefore to deal with this problem, Reliability based Topology Optimization
(RBTO) is utilized.

In this paper we consider input force, volume fraction and aspect ratio as the input
factors. These are controllable input factors, since they can be modified after each
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experiment. The elasticity of the material is an non-controllable input factor. The
general approach followed in RBTO is to consider the uncertainty in design factors and
to generate the performance values for the worst case scenario. In this approach
however, it is difficult to take into account the uncertainties in the non-controllable
factors. In addition, it is difficult to conduct the performance analysis of the experiment
for all values of the design factors. Hence, to simplify these issues we integrate the
method of Design of Experiment (DOE) with Reliability based Topology Optimization
(RBTO) [6, 7, 14, 16]. Using DOE helps us to establish the relation between the
performance function values and the input factors. It also enables us to perform the
simulations in the created design factor domain systematically, thereby reducing the
number of simulations. The performance function values are analyzed using statistical
techniques like Analysis of Mean (ANOM). In the present work, all the
above-mentioned techniques have been carried out for a force inverter.

The manuscript is organized in following manner. The descriptions of DOE and
RBTO are presented in Sects. 2 and 3 respectively. The overall methodology of sim-
ulation is given in Sect. 4. The analyses of the simulated results are discussed in
Sect. 5. The performance values are verified for the structure in COMSOL and finally a
conclusion is drawn.

2 Design of Experiments

Design of Experiments (DOE) is a systematic process to frame efficient experiments
[10]. The objective of the experiments would be to analyze the effects of several factors
on the response or performance of a product or a process. Factors are the parameters
that affect the performance of the process or product. These are initially set by the
designer while commencing his study. Using the normal experimental process, the
number of experiments may be very large to generate the factor-response relation in a
generalized way. Here, the DOE offers a scientific way to choose numbers and type of
experiment to reduce the cost of experiment without any loss in efficiency. This is
achieved by merging several design factors in one study in spite of conducting separate
study of each factor. In this way, number of experiments decreases and detailed
understating of the product performance is got. In addition to the above, DOE approach
helps in steering performance in a desired direction. Therefore, statistically significant
factors can easily be identified, and the treatment combinations that have reduced
variations in the performance can be identified.

We have chosen input force, volume fraction and aspect ratio as the input
parameters. Their uncertainties are selected based on the literature available [11]. Since
we have chosen three factors there are a total of 27 combinations possible. From these
values we have selected 9 combinations to perform the simulation based on Taguchi
method [12]. The uncertainties in the non-controllable factors are also included while
carrying out the simulation.

The overall framework of a DOE is represented in Fig. 1. Here, the overall
experiment is designed by DOE approach and simulations of performance functions are
carried by RBTO method [4, 13]. The responses (performance) corresponding to this
combination will be the outcome of this experiment. Using the available ANOM,
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ANOVA, SNR and Response Surface method the analysis of the simulated result can
be performed. The detailed discussions on each of these techniques, with the actual
results are given in subsequent sections. As mentioned earlier, the approach of DOE as
integrated with the RBTO method is discussed in the next section.

3 Design of Experiments Integrated to Reliability Based
Topology Optimization

In the present work, DOE method is integrated with RBTO. The overall experiment is
designed by DOE approach and simulations of performance functions carried by
RBTO method. The responses (performance) corresponding to this combination will be
the outcome of the experiment (Fig. 1).

The probability of failure of the design [3, 15] is included through the extra
probability constant, typical of any RBTO problem. Different types of optimal
topologies can be generated based on the type of RBTO approach [4, 13]. However, we
follow the approach proposed by Kharmanda et al. [8, 9], since this method minimizes
the computation time involved in solving RBTO problems. Thus the present investi-
gation of simulating the compliance and deflection values of reliable optimal topology,
employing the Kharmanda [8, 9] approach would involve the following steps.

The design variables are represented by means of variables x and the random
variables are represented as y. The reliability index ðbÞ is introduced with a normalized
vector U that defines the relation between x and y [5]. The variables x and y can be
related to each other by the normalized vector U. The vector U is used to relate random
values with mean and also random values with spread (or standard deviation).

The spread S is related to the standard deviation r as S = 6r.
The next step is to evaluate the reliability index b. This is done by solving a

constrained optimization problem shown below. The solution of this is called the
design point.

Fig. 1. Framework of integrated DOE and RBTO approach
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min : b ¼ UT
g Ug

� �1
2

subject to : b� b�

Now the reliability index when used with the normalized vectorU, defines the change
in the value of the design variables. Using these values the topology optimization
problem is carried out, with an additional constraint to satisfy a target reliability index b.

4 Methodology

In the present work as explained in Sects. 2 and 3, we follow the procedure given
below to analyze the performance of the topology optimized component with respect to
different levels of factors, including uncertainties.

The set of controllable factors for the problem in our study are applied force,
volume fraction and aspect ratio. Using the reliability index and spread values the
uncertainties are calculated. Taking these uncertainties into consideration the optimal
topology is generated and the performance functions namely compliance, output dis-
placement and von- Mises stress values are determined. Compliance is calculated
taking the ratio of the reaction force at the output point to the force exerted at the input.
Von Mises stress is calculated by taking the deflection in each direction and substi-
tuting it in Eq. (1), where 1, 2, 3 are the stresses in individual directions.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ r23 � r1r2 � r1r3 � r2r3

q
ð1Þ

The above mentioned steps are carried out taking the problem of a force inverter
and simulated using MATLAB.

4.1 Reliability Based Topology Optimization for a Force Inverter

To illustrate this work we use a force inverter. The design domain for a force inverter is
shown in Fig. 2. Force inverter is an example of a compliant mechanism. For certain
applications in MEMS there is a need to convert contraction forces to expansion forces.
We us a force inverter for this.

Fig. 2. Design domain with load scheme for force inverter
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The goal of the optimization problem is to maximize the mechanical advantage so
that the energy stored as strain energy is minimum. Strain energy uses a portion of the
input energy hence the output energy reduces making the force inverter less efficient.
A spring is attached at the output and the input port to simulate the resistance offered by
the workpiece. The optimal topology for the force inverter is to be generated for a
required material volume so that the mechanical advantage is maximum.

As shown in the figure the dimensions of the design domain is 300 µm � 300 µm
and the thickness is 10 µm. We take the material of the mechanism as silicon which has
Young’s modulus 160GPa and poison ratio 0.22. An input force is applied at the
middle of the left edge and an output force is obtained at the middle of the right edge.
The left top and the left bottom corners are fixed. Now for a given volume constraint
we have to maximize the mechanical advantage. Let us say we require only 30% of the
total volume of the domain. We assume the spring constant (elasticity) of the work-
piece as 30 N/µm. The maximum allowed displacement at the input end is set as 2 µm.
The values of the design factors which we employ to generate the optimized topology
and to calculate the value of performance functions are given.

5 Analysis

This analysis helps us identify the mutual interaction of the factors and their relative
influence on the performance functions. It can also be used to decide the value of the
factor for which the targeted performance can be achieved [10].

5.1 Analysis of Mean

The analysis of mean (ANOM) is carried out by calculating the mean of the perfor-
mance functions for each level of factors. These values are then plotted. The Figs. 3(a)–
(c) shows the level versus the plotted performance values for different values of reli-
ability index (b), and the spread (S). In engineering applications the preferred values of
reliability index are chosen as 3 or 3.8 which is 99.99% and 99.97% reliable [10].
Therefore we have chosen 3 and 3.8 as the reliability index for illustration. The spread

Table 1. Level of factors

Force (Newton) Volume fraction Number of elements in the x-direction

0.001 0.30 30
0.001 0.35 32
0.001 0.40 34
0.002 0.30 34
0.002 0.35 30
0.002 0.40 32
0.003 0.30 32
0.003 0.35 34
0.003 0.40 30
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values chosen are 10% and 20% of the nominal value of the factor. To keep the
manuscript short, all curves are not included.

Figures 3(a), (b) and (c) show the ANOM for the force inverter. It is observed that
all three factors are dependent on one another. It is observed that the influences of the
factors on performance functions are varying significantly, from deterministic to the
reliable cases. These changes are observed because of the significant change in the
optimal topologies for reliable case. However, within the reliable cases, the factor
influences remain same. As a whole, aspect ratio is observed as the highly influencing
factor leaving few exclusions. The ANOM analysis depicts the complex nature of the
force inverter problem. It also reflects the lack of similarity in the performance for
different cases of deterministic and reliable values.

Fig. 3. (a) For force inverter, ANOM of Mechanical Advantage considering, (i) deterministic,
(ii) b = 3, S = 10%, (iii) b = 3.8, S = 20% (b) For force inverter, ANOM of deflection (lm),
considering, (i) deterministic, (ii) b = 3, S = 10%, (iii) b = 3.8, S = 20% (c) For force inverter,
ANOM of Von-Mises stress (N/m2), (i) deterministic, (ii) b = 3, S = 10%, (iii) b = 3.8, S = 20%
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In addition to these observations, it is also seen that with the increased values of
reliability index and spread, the effects of aspect ratio and force come closer, when
compliance is the performance function. While for deflection, the effect of aspect ratio
and force became more distinct. This can be attributed to factor values that come from
reliability index and spread. The observations made here can therefore be taken as
guidelines to design a topologically optimized structure. It shows the different char-
acteristics of factors under uncertainties.

5.2 Targeted Value Performances

From a designer’s perspective, it is desired to achieve a targeted value of performance
with high reliability. However, when the selected RBTO scheme is applied to topology
optimization problem, the value of performance functions are altered. In such a sce-
nario, the intended performance cannot be achieved with desired reliability. To achieve
a targeted performance with reliability, the design factor must be selected properly.
This selection of controllable factors is done using mean performance value analysis.
The mean values of performances are computed for each combination of factors. In
Fig. 4, the mean Mechanical advantage values with respect to the different combina-
tions are shown. The mean compliance values are computed corresponding to the
different values of reliability index and spread.

Fig. 4. Values of mechanical advantage for different values of s,b

Fig. 5. Values of output displacement for different values of s, b
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In Fig. 4, variation of Mechanical advantage value with respect to different b and S
can be seen corresponding to each combination. It can be observed that for a desired
value of Mechanical advantage or deflection, there are different combination of factors
available. A targeted performance value can be achieved by selecting the available
combination of controllable factors, reliability index, and spread value.

From Fig. 5, the variation of deflection value with respect to different b and S is
seen corresponding to each combination. All observations are similar to that of com-
pliance. It is observed that with increased b and S values, the mean deflection also
varies similar to the previous case. In order to observe the behavior of stress variations
the mean values of maximum Von-Mises stress is presented in Fig. 6.

Fig. 6. Values of von Mises stress for different values of s, b

Table 2. Optimal topologies along with the performance function values for b = 3.8
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From Fig. 6, it is observed that the variation of stress over the different combina-
tions is similar to that of mechanical advantage and deflection.As discuss earlier, the
varying optimal topologies at different values, are the reason such variations. Similar to
the previous performance function, few observations are also made here. The changes
in performance values are lesser with respect to b, compared to that with respect to S.
In addition, the effect of change of S value is high when b = 3.8 compared to that of at
b = 3. The observation regarding the performance verses b and S are because of their
level values and the specific characteristic of RBTO method.

The optimal topologies along with the performance function values are shown in
Table 2 for s = 10%, b = 3.8

6 Validation of Results with COMSOL

The maximum von Mises stress in the force inverter is found to be 2.3 � 104 when
calculated using the MATLAB code. The optimal topology generated using MATLAB
was imported to COMSOL

For the same design factor values the force inverter was simulated in COMSOL.
The results are shown in Figs. 7 and 8. The maximum stress as obtained in COMSOL
is 2.6 � 104 MPa, which is close to the value computed using MATLAB.

7 Conclusions

The RBTO method assures the design of structural members against the realistic
environment. However, to select the input parameter efficiently, the sensitivities of the
factors are required to be known. In addition, the performance of the topology-optimized
structure varies from its deterministic value, when RBTO is applied. In the present work,
a methodology based on DOE and RBTO has been integrated to simulate the

Fig. 7. Von-Mises stress diagram in
COMSOL

Fig. 8. Displacement diagram in COMSOL
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performance in realistic scenarios, in a desired domain of factors including the uncer-
tainties of controllable and non-controllable factors. Current work also addresses the
issues of achieving targeted performance for a given problem. The methodology has
been illustrated using force inverter. The results are analyzed using ANOM. The sen-
sitivity and the statistical significance of the factors are obtained. Present analysis will be
helpful to predict the behavior of performance function in realistic scenarios and to
identify the relative robustness of the factor-combinations. Especially in the case of
complex real time problems, where the input factor and uncertainties are difficult to
directly relate with the output performances, this analysis can also be used to carry out
targeted performance function problems of topology optimization.
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Abstract. This paper deals with the kinematic analysis, dynamic mod-
eling and base inertial parameter determination of a member of mul-
tipteron parallel manipulator family, namely, Quadripteron. First, as a
prerequisite for dynamic analysis, kinematic relations are obtained. By
using a new geometric approach, the solution of the inverse kinematic
problem is made equivalent to solve the problem of determining the
intersection of two circles within a plane. Compared to other proposed
methods, this approach yields more compact and closed-form solutions.
The instantaneous kinematic problem is solved via employing the screw
theory. Based on foregoing kinematic relations and the concept of link
Jacobian matrices, the dynamic model is formulated by means of the
principle of virtual work. Furthermore, in order to obtain a more com-
pact formulation for the dynamic analysis, a reduced dynamic model is
obtained by determining the base inertial parameters of the under study
manipulators.

Keywords: Parallel robots · Kinematics · Screw theory · Dynamic
model · Base inertial parameters

1 Introduction

It is well known that, compared to serial robots, parallel manipulators can
offer several advantages in terms of better rigidity, higher precision and better
dynamic performances. Due to the widespread application of industrial robots
performing Schönflies motion pattern, several researches have been conducted
on the synthesis and prototyping of parallel or hybrid manipulators featuring
the Schönflies motions.

The H4 robot, a fully parallel Schönflies motion generator, was introduced [1].
Also, the (fully parallel) Kanuk and the (hybrid) Manta architectures were pro-
posed [2]. All of the aforementioned architectures were developed mainly based
on intuition. In [3], a synthesis method based on screw theory was presented
and a large number of other new architectures were discovered. In [4], a quasi-
decoupled 4-DOF Schönflies motion generator was proposed, based on the type
c© Springer International Publishing AG 2018
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synthesis presented in [3]. This architecture, referred to as the Quadrupteron, is
of the 4-PRRU type. Here and throughout this paper, in order to represent the
kinematic arrangement of a limb, P, R and U stand for a revolute, prismatic and
universal joints, respectively, where the actuated one is underlined.

Several studies concerning the Quadrupteron have been carried out over the
last decade, however, most of researches are related to their kinematic prop-
erties, namely, direct and inverse kinematics, workspace and singularity analy-
sis [4–6]. While the kinematic analysis is an essential and indispensable step
in studying a multibody system, in many applications such as simulation and
model-based control strategies, an accurate knowledge of the dynamic behavior
of the manipulator is a definite asset. To the best knowledge of the authors, as
far as Quadrupteron is concerned, there is still a gap on the dynamic analy-
sis of this type of mechanism. There are several approaches for formulating the
dynamic model of a multibody system, some of which are: Newton-Euler, the
Euler-Lagrange formulation, the principle of virtual work, Kane’s method and
Natural Orthogonal Complement (NOC) approach [7].

While the mathematical structure of the dynamic model can be formulated
with the above-mentioned approaches, one of the main factors affecting the accu-
racy of the results, is the exactness of the values of the physical parameters used
in the model. It is well-known that not all the inertial parameters have a direct
effect on the dynamic response of the system. Therefore, only a set of identifi-
able parameters can be estimated. The minimal set of identifiable parameters,
which are often referred to as base inertial parameters, can be determined sym-
bolically or numerically [8,9]. The determination of the base inertial parameters
also contributes in reducing the computational cost of the dynamic models, as
it eliminates or groups the original inertial parameters [8].

The main contribution of the this paper can be regarded as: (1) Propos-
ing a new geometric approach to solve the position analysis of the under study
manipulators which leads to a compact solution for the inverse position problem.
(2) Obtaining the dynamic model of a member of multipteron parallel manipula-
tor family, namely, Quadrupteron, in a closed and unified form. (3) Minimizing
the computational cost of the dynamic model by obtaining the base inertial
parameters of the under study manipulator and reducing the dynamic models
without loosing the accuracy of the models.

2 Position Analysis

The Quadrupteron, represented schematically in Fig. 1(a), is a 4-DoF parallel
mechanism capable of producing the Schönflies motions. The Quadrupteron is
composed of 4 legs of the PRRU type attached to an end-effector. In one of the
legs (Leg 1 in Fig. 1)(a), the last U joint degenerates into an R joint.

In this section, as the first step of obtaining the kinematic relation-
ships, the Inverse Displacement Problem (IDP) is addressed. Even though the
Quadrepteron have been studied before [5,6], a simple closed-form analytical
solution is clearly preferred. Such a solution is not only more efficient with regard
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Fig. 1. The Quadrupteron: a 4-DOF Schönflies-motion parallel mechanism.

to computational cost, but also gives a valuable geometric insight for the design.
In this regard, a new geometrical method is proposed which results in a gen-
eral closed-form solutions for the IDP. Before proceeding with the analysis, the
following lemma is presented:

Lemma 1. Suppose d̂ is a known unit vector and u, lu and ll are vectors in a
plane perpendicular to d̂, satisfying lu + ll = u. Assuming that u and length of
lu and ll are known, there are two possible solutions for lu and ll:

lu =
1

2 ‖u‖
{ (

‖u‖2 + lu
2 − ll

2
)
û±

√
(‖u‖ + lu + ll) (− ‖u‖ + lu + ll) (‖u‖ − lu + ll) (‖u‖ + lu − ll)

(
d̂ × û

)}

(1)

ll =
1

2 ‖u‖
{(

‖u‖2 + ll
2 − lu

2
)
û∓

√
(‖u‖ + lu + ll) (− ‖u‖ + lu + ll) (‖u‖ − lu + ll) (‖u‖ + lu − ll)

(
d̂ × û

) }

(2)
where lu and ll are respectively the length of lu and ll1.

Remark 1: The solution given in Lemma 1 is the same as finding the intersection
of two circles in given plane with known diameters.

Remark 2: If the expression under the radical sign in Eqs. (1) and (2) become
negative there is no real solution for lu and ll. From a geometrical standpoint,
this condition takes place when the two circles have no intersection.

1 This lemma can be easily verified by substituting Eqs. (1) and (2) into lu + ll = u,
d̂.lu = d̂.ll = d̂.u = 0 and lu

‖lu‖ = ll
‖ll‖ = 1. To the best knowledge of the authors,

content of this lemma is not available in the literature.
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In what follows, we will illustrate how Lemma1 is used to solve the IDP of
the under study manipulators. Referring to Fig. 1(b), the following equation can
be established for the ith leg:

ri + ρid̂i + ui = p + si (3)

By dot multiplying both sides of Eq. (3) with d̂i and considering the fact that
ui is perpendicular to d̂i, the following equation is obtained:

ρi = (p + si − ri) .d̂i (4)

The latter equation represents the relationship between the pose of the end-
effector and position of the ith actuated P-joint. In addition, by substituting
Eq. (4) into Eq. (3), ui can be obtained as:

ui =
(
13×3 − d̂id̂T

i

)
(p + si − ri) (5)

According to Fig. 1(b), ui, lui and lli are vectors in a plane perpendicular to d̂i,
satisfying lu + ll = u. Hence, by using Lemma 1 one can obtain lui and lli as:

lui =
1

2 ‖ui‖
{(

‖ui‖2 + lui
2 − lli

2
)
ûi±

√
(‖ui‖ + lui + lli) (− ‖ui‖ + lui + lli) (‖ui‖ − lui + lli) (‖ui‖ + lui − lli)

(
d̂i × ûi

)} (6)

lli =
1

2 ‖ui‖
{(

‖ui‖2 + lli
2 − lui

2
)
ûi∓

√
(‖ui‖ + lui + lli) (− ‖ui‖ + lui + lli) (‖ui‖ − lui + lli) (‖ui‖ + lui − lli)

(
d̂i × ûi

)} (7)

3 Instantaneous Kinematics Analysis

One of the requirements for obtaining the dynamic model by using the virtual
work principal, is to derive the relationship between the twist of all of the manip-
ulator’s parts with a suitable reference, such as twist of the end-effector. In this
section, by employing the screw theory, the instantaneous twist of each link and
the input velocities will be calculated with respect to end-effector’s twist.

Fig. 2. Screw axes associated with PRR(RR) kinematic structure.
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According to Fig. 2, which depicts a kinematic chain with PRR(RR) structure
which resembles the ith leg of Quadrupteron, the unit joints screws of the ith leg
can be written as:

$̂Pi =
[
0
d̂i

]
; $̂R1,i =

[
d̂i

(si − lui − lli) × d̂i

]
; $̂R2,i =

[
d̂i

(si − lli) × d̂i

]

$̂R3,i =
[

d̂i

si × d̂i

]
; $̂R4,i =

[
ĉi

si × ĉi

]
;

(8)

Now, considering each branch as an open-loop chain and expressing the instan-
taneous twist of the end-effector, $E , in terms of the joint screws, gives:

$E = $̂Piρ̇i + $̂R1,iθ̇R1,i + $̂R2,iθ̇R2,i + $̂R3,iθ̇R3,i + $̂R4,iθ̇R4,i (9)

In order to obtain the relationship between the output twist, $E , and the input
joint velocities, one should eliminate the passive joint screws from Eq. (9). To do
so, both sides of Eq. (9) is left multiplied by a wrench, reciprocal to the passive
joints, i.e., ξT

i =
[
(si × d̂i)

T
d̂T
i

]
. Hence, the relationship between the twist of

the end-effector and the linear velocity of the prismatic joints can be obtained as:

⎡
⎢⎣

ρ̇1
...

ρ̇4

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

d̂T
1

(
d̂1 × ĉ1

)
.s1

...
...

d̂T
4

(
d̂4 × ĉ4

)
.s4

⎤
⎥⎥⎥⎦

[
ṗ
φ̇

]
= J

[
ṗ
φ̇

]
(10)

where J is called the input-output Jacobian matrix.
Also, taking the time derivative of Eq. (3) and dot multiplying both sides of the
resulting equation by lli and lui results in:

[
vUi

θ̇uid̂i

]
=

⎡
⎢⎣

d̂id̂T
i d̂id̂T

i (ĉi × si)
d̂illiT

(lui × lli) .d̂i

d̂isiT (lli × ĉi)
(lui × lli) .d̂i

⎤
⎥⎦

[
ṗ
φ̇

]
= Jui

[
ṗ
φ̇

]
(11)

[
vLi

θ̇lid̂i

]
=

⎡
⎢⎣

13×3 k̂ × si
d̂iluiT

(lli × lui) .d̂i

d̂isiT (lui × ĉi)
(lli × lui) .d̂i

⎤
⎥⎦

[
ṗ
φ̇

]
= Jli

[
ṗ
φ̇

]
(12)

where Jui and Jli are respectively the ith upper and lower link Jacobian matrices.
Also, θ̇ui and θ̇ui are respectively the magnitude of angular velocities of the ith

upper and lower link.

4 Dynamics Analysis

In this section, the dynamic model of the under study manipulators are formu-
lated by means of d’Alembert’s form of the principle of virtual work. Figure 3
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Fig. 3. Local coordinate frames assigned to each link.

depicts the coordinate frames attached to the ith upper and lower links. The
position of the center of mass of the ith upper link, lower links and end-effector
relative to their reference points are respectively denoted by γui, γli and γe.
Assuming that the friction forces and torques at the joints are negligible, using
the principle of virtual work, referring to the manipulator Jacobian matrix, given
in Eq. (10), and link Jacobian matrices given in Eqs. (11) and (12), dynamics of
the under study manipulator can be stated as:

Fa = −F̃p − J−T(
4∑

i=1

Jui
TFui +

4∑
i=1

Jli
TFli + Fe) (13)

where Fa =
[
Fa1 · · · Faj

]T is the vector of input forces and F̃p is:

F̃p =
[
mp1(d̂1.g − ρ̈1) . . . mpj(d̂4.g − ρ̈4)

]T
(14)

And Fui, Fli and Fe represent the resultant of applied and inertia forces exerted
to the reference point of the ith upper link, ith lower link and the end-effector.

Equation (13) denotes the relation between the actuators’ forces and the
applied and inertia wrenches acting on the manipulator.

Now by using a method based on principle of virtual work [10], the dynamic
model given in Eq. (13) is rewritten in a linear form:

Fa = J−T
[
JTΩp Ju1

TΩu1 · · · Juj
TΩuj Jl1

TΩl1 · · · Jlj
TΩlj Ωe

]
P (15)

where Ωp, Ωui, Ωli and Ωe are matrices which are functions of kinematic prop-
erties of the manipulator and P =

[
pp pu1 . . . puj pl1 . . . plj pe

]
in which the

entries are defined as:

pp =
[
mp1 · · · mpj

]T; pui =

⎡
⎣

mui

mui
Uiγui

UiIui(z)

⎤
⎦ ; pli =

⎡
⎣

mli

mli
Liγli

LiIli(z)

⎤
⎦ ; pe =

⎡
⎣

me

me
Pγe

P Ie(z)

⎤
⎦ ;

(16)
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Table 1. Base inertial parameters of the Quadrupteron parallel manipulator.

Base
inertial
parameters

Linear combination Base
inertial
parameters

Linear combination

Pb1 mp1 + mu1 + 20.11L1Il1(z) Pb14
U4Iu4(z) + 0.91L4Il4(z)

Pb2 mp2 + mu2 + 38.58L2Il2(z) Pb15 ml1 − 20.11L1Il1(z) + ml4 −
38.58L4Il4(z) +
12.5me

P γe(x) −
12.5me

P γe(y) + 312.5P Ie(z)

Pb3 mp3 + mu3 + 35.86L3Il3(z) Pb16 ml1
L1γl1(x) + 4.48L1Il1(z)

Pb4 mp4 + mu4 + 38.58L4Il4(z) Pb17 ml1
L1γl1(y)

Pb5
U1Iu1(z) + 0.83L1Il1(z) Pb18 ml2 − 38.58L2Il2(z) − ml4 +

38.58L4Il4(z) − 25me
P γe(x)

Pb6 mu2
U2γu2(x) + 5.94L2Il2(z) Pb19 ml2

L2γl2(x) + 6.21L2Il2(z)

Pb7 mu2
U2γu2(y) Pb20 ml2

L2γl2(y)

Pb8
U2Iu2(z) + 0.91L2Il2(z) Pb21 ml3 − 35.85L3Il3(z) + ml4 −

38.58L4Il4(z) +
12.5me

P γe(x) +
12.5me

P γe(y) + 312.5P Ie(z)

Pb9 mu3
U3γu3(x) + 5.99L3Il3(z) Pb22 ml3

L3γl3(x) + 5.99L3Il3(z)

Pb10 mu3
U3γu3(y) Pb23 ml3

L3γl3(y)

Pb11
U3Iu3(z) +

L3Il3(z) Pb24 ml4
L4γl4(x) + 6.21L4Il4(z)

Pb12 mu4
U4γu4(x) + 5.94L4Il4(z) Pb25 ml4

L4γl4(y)

Pb13 mu4
U4γu4(y) Pb26 me − 625P Ie(z)

5 Base Inertial Parameter Determination

The dynamic model given in Eq. (15) is linear with respect to inertial parameters
and it can be rewritten as τ = DP, where P is the vector of inertia parameters
and D is called the dynamic matrix. As aforementioned, not all of the parame-
ters will directly affect the dynamic model. Thus, by eliminating or grouping
the parameters, one can reduce the number of inertial parameters. This reduced
set of parameters is known as the base inertial parameters. In this section, the
SVD-based approach given in [8] was used to determine the base inertial para-
meters of the Quadrupteron manipulator. The relation between the base inertial
parameters and the original parameters is shown in Table 1. It should be noted
that, the parameters given in the aforementioned tables are not the only possible
set for base inertial parameters and any invertible linear combination of them
can be regarded as a new set of base inertial parameters.

By using the base inertial parameters, the dynamic model represented by
Eq. (15) is reduced to τ = DredPred, where Dred is the reduced dynamic matrix
after eliminating and grouping the inertial parameters and Pred is the vector
containing the base inertial parameters. It is worth mentioning that by compar-
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ing the computational time of the reduced dynamic model with the complete
dynamic model, it follows that the reduced dynamic model is approximately
41% faster than the original virtual work model.

6 Conclusion

In this paper, the kinematic and dynamic model of Quadrupteron parallel manip-
ulator was derived. As a prerequisite to dynamic analysis, the kinematic analysis
was performed which was investigated by resorting to the screw theory. The rea-
son for which screw theory was adopted as kinematic investigation tool is that
it provides a Jacobian-base formulation for mapping of the time rate changes of
all joints, including passive and actuated, which is essential for dynamic analy-
sis based on virtual work concept. Also, a new geometrical approach based on
the intersection of two circles within a plane, was presented which resulted in
a compact closed-form solution for inverse kinematic problems. The dynamics
of the manipulator was modeled using virtual work principle. Expressing the
dynamic model in a linear form with respect to inertial parameters enabled us
to determine the base inertial parameters and reduce the dynamic model which
reduced the computation time by 41%.
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Abstract. Distance-based formulations have successfully been used to
obtain closure polynomials for planar mechanisms without relying, in
most cases, on variable eliminations. The methods resulting from previ-
ous attempts to generalize these techniques to spatial mechanisms exhibit
some limitations such as the impossibility of incorporating orientation
constraints. For the first time, this paper presents a complete satisfac-
tory generalization. As an example, it is applied to obtain a closure
polynomial for the general triple-arm parallel robot (that is, the 3-RPS
3-DOF robot). This polynomial, not linked to any particular reference
frame, is obtained without variable eliminations or tangent-half-angle
substitutions.

Keywords: Triple-arm parallel robot · Distance-based formulations ·
Forward kinematics

1 Introduction

The distance-based formulation introduced in this paper generalizes the ideas
developed in [1] for the position analysis of planar kinematic chains to solve the
position analysis of spatial mechanisms. The methods resulting from previous
attempts to attain this generalization were limited in scope [2], or were unable to
obtain closure polynomials of minimum degree for mechanisms with orientation
constraints [3]. The proposed formulation permits the incorporation of this kind
of constraints so that it can be applied to general spatial linkages. Besides being
general, it is shown how it highly simplifies the algebraic manipulations needed
to obtain closure polynomials up to the point in which no variable eliminations
are needed in many non-trivial cases. As an example, it is applied to obtain
a closure polynomial for the general triple-arm parallel robot (see Fig. 1). This
robot consists of a moving platform connected to a fixed base through three
revolute-prismatic-spherical kinematic chains, the prismatic joint of each chain
being actuated. The forward kinematics problem of this robot consists in finding
the possible poses of the moving platform, with respect to the fixed base, for
specified values of the actuated prismatic joints. Several researchers have studied
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 29
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this problem (e.g., [4–7]), but their solutions assume that the axes of the revolute
joints attached to the fixed base are arranged forming a triangle. In this paper,
using the aforementioned distance-based formulation, the forward kinematics of
the triple-arm parallel robot with skew revolute joints is solved. It will be shown
how this formulation allows obtaining a closure univariate polynomial that is
not linked to any particular reference frame, and is straightforwardly obtained
without variable eliminations or tangent-half-angle substitutions.

P1

P2

P3

P4

P5

P6

P7

P8

P9

Fig. 1. Triple-arm parallel robot in which the axes supporting the segments P1P2,
P3P4, and P5P6 are skew and its corresponding bar-and-joint framework model.

The rest of this paper is organized as follows. Section 2 introduces the basics of
the distance-based formulation and its corresponding properties and operations.
These ideas are then applied to obtain a closure polynomial for the general
triple-arm robot in Sect. 3 which is then applied to solve, in Sect. 4, its forward
kinematics for a particular instance. Finally, we conclude in Sect. 5.

2 Preliminaries

In what follows, Pi will denote a point in E
3, pi,j =

−−→
PiPj , pi,j,k = pi,j ×pi,k,

and si,j = ‖pi,j‖2. Vector coordinates will be arranged as column vectors.
Vectors pi,j , pi,k, and pi,j,k represent, in general, a non-orthonormal refer-
ence frame which will be denoted by the column vector of nine components
qi,j,k =

(
pT
i,j pT

i,k pT
i,j,k

)T
.

The tetrahedron defined by Pi, Pj , Pk, and Pk will be denoted by i,j,k,l, and
it will be said that its origin is located at Pi, its base is given by then triangle

i,j,k, its base vectors are pi,j (first) and pi,k (second), and its output vectors
are pi,l, pj,l, and pk,l.
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2.1 Trilateration in Matrix Form

Given the tetrahedron i,j,k,l, its output vector pi,l can be expressed as a func-
tion of the base vectors pi,j and pi,k and its squared edge distances as follows
(see [8] for details):

ai,j,k pi,l = bi,j,k,l pi,j + ci,j,k,l pi,k + σi,j,k,l di,j,k,l pi,j,k, (1)

where

ai,j,k = − 1
4

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1
1 0 si,j si,k
1 si,j 0 sj,k
1 si,k sj,k 0

∣
∣
∣
∣
∣
∣
∣
∣

,

ci,j,k,l = − 1
4

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1
1 0 si,j si,l
1 si,j 0 sj,l
1 si,k sj,k sk,l

∣
∣
∣
∣
∣
∣
∣
∣

,

bi,j,k,l =
1
4

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1
1 0 si,k si,l
1 si,j sj,k sj,l
1 si,k 0 sk,l

∣
∣
∣
∣
∣
∣
∣
∣

,

di,j,k,l =

√√
√
√
√
√
√
√
√

1
8

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 si,j si,k si,l
1 si,j 0 sj,k sj,l
1 si,k sj,k 0 sk,l
1 si,l sj,l sk,l 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and σi,j,k,l accounts for the two possible locations of Pl with respect to the plane
supporting j,k,l such that σi,j,k,l = +1 if | pi,j pi,k pi,l |> 0, and σi,j,k,l = −1
otherwise.

Equation (1) can be expressed in matrix form as

pi,l = Wi,j,k,lqi,j,k, (2)

where Wi,j,k,l =
(

bi,j,k,l

ai,j,k
I ci,j,k,l

ai,j,k
I di,j,k,l

ai,j,k
I
)
, I being the 3 × 3 identity matrix.

Thus, the output vector pj,l can be expressed as

pj,l = pi,l − pi,j = (Wi,j,k,l − KIOO)qi,j,k, (3)

where KIOO =
(
I O O

)
, O being the 3 × 3 null matrix. Similarly, for the case

of the output vector pk,l we have that

pk,l = pi,l − pi,k = (Wi,j,k,l − KOIO)qi,j,k, (4)

with KOIO =
(
O I O

)
.

Since qi,j,k represents, in general, a non-orthogonal reference frame, any vec-
tor v can be expressed as v = Ω qi,j,k, where Ω =

(
ω1I ω2I ω3I

)
with ωi being

a scalar. Moreover, it can be checked that ‖v‖2 = qT
i,j,k ΩT Ω qi,j,k.

2.2 Reference Frame Change

Let us suppose that v can be expressed in the reference frame defined by ql,m,n

as v = Ω1 ql,m,n, where Ω1 =
(
ω1
1I ω1

2I ω1
3I

)
. Let us also assume that the base
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vectors of ql,m,n, pl,m and pl,n, can be expressed in the reference frame defined
by qi,j,k as pl,m = Ω2 qi,j,k and pl,n = Ω3 qi,j,k, where Ω2 =

(
ω2
1I ω2

2I ω2
3I

)
,

and Ω3 =
(
ω3
1I ω3

2I ω3
3I

)
, respectively. Then, it is possible to express v in the

reference frame defined by qi,j,k as:

v = Ω1 ql,m,n = Ω1 ΛΩ2Ω3
i,j,k qi,j,k, (5)

where

ΛΩ2Ω3
i,j,k =

⎛

⎝
ω2
1I ω2

2I ω2
3I

ω3
1I ω3

2I ω3
3I

k1I k2I k3I

⎞

⎠ ,

with

k1 = 1
2 (ω2

1ω
3
3 − ω2

3ω
3
1)(si,j + si,k − sj,k) + (ω2

2ω
3
3 − ω2

3ω
3
2)si,k,

k2 = − ((ω2
1ω

3
3 − ω2

3ω
3
1)si,j + 1

2 (ω2
2ω

3
3 − ω2

3ω
3
2)(si,j + si,k − sj,k)),

k3 =ω2
1ω

3
2 − ω2

2ω
3
1 .

ΛΩ2Ω3
i,j,k is defined as a reference frame change matrix. In the particular case

in which ω2
1 = 1, ω2

2 = ω2
3 = 0, this matrix will be explicitly denoted as ΛKIOOΩ3

i,j,k .
Likewise, if ω3

2 = 1, ω3
1 = ω3

3 = 0, this matrix will be denoted as ΛΩ2KOIO
i,j,k .

3 Deriving a Closure Polynomial for the General
Triple-Arm Robot

A link connecting two skew revolute axes can be modeled by taking two points
on each of these axes and connecting them all with edges to form a tetrahedron.
Similarly, a link connecting a revolute axis and a ball joint can be modeled by
taking two points on the axis and the center of rotation of the spherical pair and
connecting them all with edges to form a triangle, and a link connecting two
ball joints can be modeled by connecting the centers of rotation of the spherical
pairs by an edge. Thus, a triple arm mechanism with skew revolute joints can be
modeled as the bar-and-joint framework shown in Fig. 1. The geometry of this
robot is then completely determined by 9 points, namely P1 . . . P9; 24 squared
distances, namely s1,2, s1,3, s1,4, s1,5, s1,6, s1,7, s2,3, s2,4, s2,5, s2,6, s2,7, s3,4, s3,5,
s3,6, s3,8, s4,5, s4,6, s4,8, s5,6, s5,9, s6,9, s7,8, s7,9, and s8,9; and the orientation
of 3 tetrahedra, namely 1,2,3,4, 1,2,4,5, and 1,2,5,6.

According to the notation of Fig. 1, and applying the operations introduced
in Sect. 2, next we derive a closure condition for this particular robot. To this
end, we are going to express s6,9 as a function of s3,7. In other words, s3,7 is
going to be used as a parameter in terms of which the configuration of the robot
can be expressed.
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For the fixed base, which involves points P1 . . . P6 and tetrahedra 1,2,3,4,
1,2,4,5, and 1,2,5,6, we have

p1,4 =W1,2,3,4 q1,2,3, (6)

p1,5 =W1,2,4,5 q1,2,4 = W1,2,4,5Λ
KIOOW1,2,3,4
1,2,3 q1,2,3, (7)

p1,6 =W1,2,5,6 q1,2,5 = W1,2,5,6Λ
KIOOW1,2,4,5
1,2,4 Λ

KIOOW1,2,3,4
1,2,3 q1,2,3. (8)

Equations (6), (7), and (8) correspond to a representation of the vectors p1,4,
p1,5, and p1,6 in the non-orthonormal reference frame defined by q1,2,3. Now, we
derive a representation of p1,7 and p7,9 in the same reference frame to compute
the closure vector equation p6,9 = −p1,6 + p1,7 + p7,9. For the case of vector
p1,7, we straightforwardly have

p1,7 = W1,2,3,7 q1,2,3. (9)

For the case of vector p7,9, we first compute

p7,3 = −p3,7 = − (W1,2,3,7 − KOIO)q1,2,3 = Ω73 q1,2,3. (10)

Similarly, from Eqs. (6) and (9), we get

p7,4 = −p1,7 + p1,4 = (W1,2,3,4 − W1,2,3,7) q1,2,3 = Ω74 q1,2,3. (11)

Then,

p7,8 = W7,3,4,8 q7,3,4 = W7,3,4,8Λ
Ω73Ω74
1,2,3 q1,2,3 = Ω78 q1,2,3. (12)

Moreover, from Eqs. (7) and (9), we obtain

p7,5 = −p1,7 + p1,5 =
(
W1,2,4,5Λ

KIOOW1,2,3,4
1,2,3 − W1,2,3,7

)
q1,2,3 = Ω75 q1,2,3,

(13)

and from Eqs. (7), (9), and (12),

p5,8 = −p1,5 + p1,7 + p7,8

=
(
−W1,2,4,5Λ

KIOOW1,2,3,4
1,2,3 + Ω78 + W1,2,3,7

)
q1,2,3 = Ω58 q1,2,3. (14)

Then, using Eqs. (12) and (13), we have

p7,9 = W7,8,5,9 q7,8,5 = W7,8,5,9Λ
Ω78Ω75
1,2,3 q1,2,3. (15)

Using Eqs. (8), (9), and (15), we can now write p6,9 in the reference frame
defined by q1,2,3 as:

p6,9 = −p1,6 + p1,7 + p7,9 = Ω69 q1,2,3, (16)

with

Ω69 = −W1,2,5,6Λ
KIOOW1,2,4,5
1,2,4 Λ

KIOOW1,2,3,4
1,2,3 + W7,8,5,9Λ

Ω78Ω75
1,2,3 + W1,2,3,7.
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Thus, we finally conclude that

s6,9 = qT
1,2,3 ΩT

69 Ω69 q1,2,3. (17)

The right hand side of the above equation is a function of the unknown squared
distances s3,7, s4,7, s5,7 and s5,8. However, from Eqs. (11), (13), and (14), we
have that

s4,7 = qT
1,2,3 ΩT

74 Ω74 q1,2,3, (18)

s5,7 = qT
1,2,3 ΩT

75 Ω75 q1,2,3, (19)

s5,8 = qT
1,2,3 ΩT

58 Ω58 q1,2,3. (20)

Then, the substitution of these expressions in (17) yields a scalar radical equa-
tion in a single variable: s3,7. The real roots of this closure condition determine
the assembly modes of the analyzed robot. These roots can be computed, for
instance, from the univariate polynomial resulting from clearing the radicals in
this expression, as explained in [9]. For each real root, we can determine the
location of the three points of the moving platform by computing, for example,
the following sequence of trilaterations: obtaining p1,7 from p1,2 and p1,3, then
p3,8 from p3,7 and p3,4, and finally p5,9 from p5,7 and p5,8. This leads to up to
eight locations for P9. At least one of them necessarily satisfies the distance
constraint imposed by s6,9 and hence corresponds to a valid assembly mode.

4 Numerical Example

According to the notation of Fig. 1, let us consider the triple arm mechanism with
the following known squared lengths: s1,2 = 1, s1,3 = 17, s1,4 = 10, s1,5 = 26,
s1,6 = 20, s1,7 = 101, s2,3 = 16, s2,4 = 11, s2,5 = 19, s2,6 = 13, s2,7 = 102,
s3,4 = 3, s3,5 = 11, s3,6 = 13, s3,8 = 126, s4,5 = 20, s4,6 = 18, s4,8 = 101,
s5,6 = 2, s5,9 = 145, s6,9 = 123, s7,8 = 10, s7,9 = 26, and s8,9 = 10; with
σ1,2,3,4 = +1, σ1,2,4,5 = −1, and σ1,2,5,6 = +1. Substituting these values in (17),
using the expressions for s4,7, s5,7 and s5,8 in terms of s3,7, and clearing radicals,
we obtain the following polynomial:

4.3635 · 1012s163,7 − 1.1184 · 1016s153,7 + 1.3683 · 1019s143,7 − 1.0517 · 1022s133,7
+ 5.6413 · 1024s123,7 − 2.2259 · 1027s113,7 + 6.6546 · 1029s103,7 − 1.5332 · 1032 · s93,7
+ 2.7456 · 1034 · s83,7 − 3.8296 · 1036 · s73,7 + 4.1433 · 1038 · s63,7 − 3.4390 · 1040s53,7
+ 2.1463 · 1042s43,7 − 9.7358 · 1043s33,7 + 3.0275 · 1045s23,7 − 5.7676 · 1046s3,7
+ 5.0725 · 1047. (21)

This polynomial has six real roots: 126.00, 140.93, 186.75, 190.26, 193.73, and
198.13. The corresponding robot configurations for the case in which P1 is located
at the origin, and p1,2 = (1, 0, 0)T , p1,3 = (1, 4, 0)T , p1,4 = (0, 3, 1)T , p1,5 =
(4, 3,−1)T , and p1,6 = (4, 2, 0)T , appear in Fig. 2.
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s3,7 = 126.00 s3,7 = 140.93 s3,7 = 186.75

s3,7 = 190.26 s3,7 = 193.73 s3,7 = 198.13

Fig. 2. The six real solutions to the forward kinematics of the analyzed triple-arm
robot.

5 Conclusion

Solving the position analysis of kinematic chains based on the idea of obtaining
closure conditions using n-laterations and constructive geometry arguments has
been quite successful for the planar case. However, the extension of this app-
roach to three dimensions, to solve the position analysis of spatial mechanisms,
remained elusive despite the efforts to generalize the planar techniques. The main
drawbacks of these previous attempts include the impossibility of dealing with
orientation constraints, the limited range of mechanisms that can be analyzed
using them, and the complexity of the algebraic manipulation needed to solve
even relatively simple problems. This paper has introduced the basic concepts
and properties of a distance-based matrix formulation that clears all these dis-
advantages. The technique has been applied to solve the forward kinematics of
the triple arm mechanism with skew revolute joints.
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Abstract. Cayley-Klein parameters are an alternative to Euler para-
meters for describing the spherical motion group. Based on Study’s and
Kotelnikov’s “Principle of Transference” one can use dual Cayley-Klein
parameters for the motion study of oriented lines in Euclidean 3-space.
In this paper we focus on the transformation of points in terms of dual
Cayley-Klein parameters and show that these parameters imply a very
compact symbolic expression of the sphere condition, which is the central
equation for computational algebraic kinematics of parallel manipulators
of Stewart-Gough type. Moreover it is shown that the compactness of this
formulation is passed on to the symbolic expression of the singularity loci.
We also adopt our results to the analogue in planar kinematics and point
out the difference to the well-known approach of isotropic coordinates.

Keywords: Dual cayley-klein parameters · Sphere condition · Circle
condition · Singularity loci

1 Introduction

It is well-known that planar displacements of the Euclidean plane can be written
as: (

x
y

)
�→

(
x0

y0

)
=

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

) (
x
y

)
+

(
m
n

)
, (1)

where (x0, y0)T (resp. (x, y)T ) are the coordinates of a point P with respect to
the fixed frame (resp. moving frame), ϕ is the angle of rotation and (m,n)T

the translation vector. By interpreting the Euclidean plane as Gaussian plane,
Eq. (1) can be rewritten as:

x + yi �→ x0 + y0i = eiϕ(x + yi) + (m + ni), (2)

where i denotes the complex unit. In addition one can set:

p0 := x0 + y0i, p0 := x0 − y0i (3)

and replace the original coordinates x0 and y0 by:

x0 = (p0 + p0)/2, y0 = (p0 − p0)/(2i). (4)
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 30
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The obtained pair (p0, p0) are the so-called isotropic coordinates of P with respect
to the fixed system. Analogously one gets the isotropic coordinates (p, p) := (x+
yi, x − yi) of P with respect to the moving system and the isotropic coordinates
(τ, τ) := (m + ni,m − ni) of the translation. Thus Eq. (2) equals p �→ p0 =
eiϕp + τ . In order to make this formulation algebraic, we replace eiϕ by the
complex number κ, which has to fulfill the normalizing condition κκ = 1. Hence
we get the compact notation:

p �→ p0 = κp + τ with κκ = 1. (5)

A historical overview on planar kinematics based on isotropic coordinates
is given in the work [21] by Wampler, in which these coordinates are used to
determine the degree and circularity of curves traced by planar linkages. Further
references and historical remarks can be found in the book of Wunderlich [23]
where these coordinates are called minimal coordinates. Beside [18] most of the
recent work using isotropic coordinates was done by Wampler (cf. [22] and all
self-references therein).

1.1 Motivation and Outline of the Paper

Based on the algebraic formulation Eq. (5) we can derive the basic equation for
the study of planar parallel manipulators with RPR legs (Fig. 1 left); namely
the condition that a point P of the moving system is located on a circle with
radius R centered at the point B with fixed coordinates (u0, v0)T . This so-called
circle condition reads as follows:

(κp + τ − b0)(κ p + τ − b0) − R2 = 0, (6)

where (b0, b0) := (u0 + v0i, u0 − v0i) denote the isotropic coordinates of B with
respect to the fixed system. Expanding this equation shows that it has 10 terms
and that it is inhomogeneous quadratic in the motion parameters κ, κ, τ, τ .

Nevertheless the symbolic expression of Eq. (6) is very compact, a lot of
recent publications (e.g. [2,7,9,11,19]) use the circle condition formulated in
terms of Blaschke-Grünwald (BG) parameters, which has 26 terms. A motive
for doing this is that one ends up with a homogenous quadratic equation in the
BG parameters, thus methods of projective algebraic geometry can be applied.
This gives reason to ask for a formulation, which has both benefits (compactness
and homogeneity). We present such a formulation as a special case of a more
general approach taken for spatial kinematics. In detail the paper is structured
as follows:

We close Sect. 1 by giving a very brief review on the quaternionic formulation
of displacements in Euclidean spaces of dimension 2 and 3. In Sect. 2 we discuss
the transformation of points with respect to dual Cayley-Klein (CK) parameters
and use them in Sect. 3 for presenting the most compact symbolic expression of
the sphere condition and the singularity loci of Stewart-Gough (SG) manipula-
tors (Fig. 1 right), which is known to the author. Moreover, the obtained results
can easily be adopted for planar kinematics, thus we also get a solution to our
motivating question; namely a homogenous circle condition with only 10 terms.
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Fig. 1. (Left) 3-dof RPR planar parallel manipulator: The platform is connected via
three RPR-legs to the base. (Right) SG manipulator: The platform is connected via
six SPS-legs to the base. For the planar as well as the spatial mechanism the anchor
points of the legs are denoted by P and B, respectively, and in both cases only the
prismatic joints are active.

1.2 Quaternionic Formulation of Displacements

Q := q0 + q1i + q2j + q3k with q0, . . . , q3 ∈ R is an element of the skew field of
quaternions H, where i, j, k are the so-called quaternion units. The conjugated
quaternion to Q is given by Q̃ := q0 − q1i − q2j − q3k. Moreover, Q is called
unit-quaternion for q20 + q21 + q22 + q23 = 1.

Displacements in spatial kinematics can be formulated in terms of dual
quaternions H + εH, where ε is the dual unit with the property ε2 = 0. An
element E+εT of H+εH with E := e0+e1i+e2j+e3k and T := t0+t1i+t2j+t3k
is called dual unit-quaternion if E is an unit-quaternion and following condition
holds:

e0t0 + e1t1 + e2t2 + e3t3 = 0. (7)

It is well-known (e.g. [10, Sect. 3.3.2.2]) that displacements of points in the
Euclidean 3-space can be expressed by dual unit-quaternions E + εT as follows:

P �→ P0 = E ◦ P ◦ Ẽ + (T ◦ Ẽ − E ◦ T̃), (8)

where ◦ denotes the quaternion multiplication and P := xi + yj + zk (resp.
P0 := x0i+ y0j+ z0k) is the embedding of a point P with Cartesian coordinates
p = (x, y, z)T (resp. p0 = (x0, y0, z0)T ) with respect to the moving (resp. fixed)
frame into H.

As both dual unit-quaternions ±(E+ εT) correspond to the same Euclidean
motion, one considers the homogeneous 8-tuple (e0, . . . , e3, t0, . . . , t3)R, which
are the well-known Study parameters [20] of the Euclidean motion group SE(3).
Note that (e0, . . . , e3)R are the so-called Euler parameters of the spherical motion
group.

Restricting the Study parameters to planar Euclidean displacements within
the plane x3 = 0 implies e1 = e2 = t0 = t3 = 0 (cf. [10, Remark 3.38]), thus one
ends up with the homogenous quadruple (e0, e3, t1, t2)R, which are the already
mentioned BG parameters [1,6].
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2 Dual Cayley-Klein Parameters

According to the recently published work [17], which also contains a historical
overview and a detailed list of references on CK parameters, the formulation of
spherical displacements of points based on Euler parameters (e0, . . . , e3)R; i.e.

P �→ E ◦ P ◦ Ẽ with e20 + e21 + e22 + e23 = 1 (9)

can be rewritten in terms of CK parameters α, β ∈ C as follows:

P �→ EPE∗ with αα + ββ = 1, (10)

where

P :=
(

z p
p −z

)
, E :=

(
α −β

β α

)
and E∗ :=

(
α β

−β α

)
. (11)

Note that the upper index ∗ denotes the transposed conjugate of a matrix.
Moreover, P is the embedding of the point P with Cartesian coordinates p =
(x, y, z)T into the set of complex 2 × 2 matrices, which can be seen as a spatial
generalization of isotropic coordinates according to [17]. The introduction of CK
parameters can be completed by giving their relations to the Euler parameters,
which read as follows:

α := e0 + e3i and β := e2 + e1i. (12)

Remark 1. Note that their exists the alternative formulation P �→ E∗PE, where
the matrix P of Eq. (11) and the formula for β of Eq. (12) are replaced by:

P :=
(

zi pi
−pi −zi

)
and β := −e2 + e1i. (13)

We prefer the other convention, as the connection with the isotropic coordinates
in case of planar kinematics is straightforward. Moreover, one can compute ‖p‖2
simply as −detP. �

Due to the “Principle of Transference”, which dates back to Kotelnikov [12]
and Study [20], this formulation of a spherical displacement of points can also be
applied to the spatial displacements of oriented lines by dualizing the complete
framework; i.e. complex numbers are substituted by dual complex numbers. Up
to the author’s knowledge the resulting dual CK parameters have only be used
for this purpose [3,17], but never for the description of displacements of points
in Euclidean 3-space. For doing this, we use the relation to quaternions and a
more detailed formulation of Eq. (8), which reads as follows (cf. [10, page 498]):

1 + εP �→ 1 + εP0 = (E + εT) ◦ (1 + εP) ◦ (Ẽ − εT̃). (14)

A straightforward translation into terms of complex 2 × 2 matrices yields:

(Ii + εP) �→ (Ii + εP0) = (E + εT)(Ii + εP)(E∗ − εT∗), (15)
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where I denotes the 2 × 2 identity matrix and

P0 :=
(

z0 p0
p0 −z0

)
, T :=

(
γ −δ

δ γ

)
with γ := t0 + t3i, δ := t2 + t1i. (16)

Expanding and simplifying Eq. (15) implies:

(Ii + εP) �→ (Ii + εP0) = Ii + ε(EPE∗ + iTE∗ − iET∗). (17)

In order that our later obtained symbolic expressions (e.g. Eq. (26)) are free of
the complex unit i we make the following redefinition:

S := iT =
(

λ μ

μ −λ

)
and S∗ := −iT∗ =

(
λ μ
μ −λ

)
(18)

with
λ := t3 + t0i and μ := t1 + t2i, (19)

thus we finally get the desired representation, which is summarized next.

Theorem 1. Any spatial displacement of points P can be written as:

P �→ P0 = EPE∗ + SE∗ + ES∗, (20)

where the four involved parameters α, β, λ, μ ∈ C fulfill the normalizing condition
Φ = 1 with

Φ := αα + ββ (21)

and the analogue of the Study condition (7), which is given by Ψ = 0 with

Ψ := (αλ − αλ) + (βμ − βμ). (22)

Moreover, the mapping of Eq. (20) is a spatial displacement of points for each
quadruple α, β, λ, μ ∈ C fulfilling Φ = 1 and Ψ = 0.

For the planar case we get β = 0 and λ = 0 due to e1 = e2 = 0 and t0 = t3 = 0,
respectively (cf. end of Sect. 1.2). Therefore the following corollary holds:

Corollary 1. Any planar displacement of points P can be written as:

p �→ p0 = α(αp + 2μ) with α, μ ∈ C and αα = 1. (23)

Moreover, the mapping of Eq. (23) is a planar displacement of points for each
bituple α, μ ∈ C fulfilling αα = 1.

Remark 2. Based on Corollary 1 we can point out the relation

κ = α2 and τ = 2αμ (24)

between the parameters κ, τ ∈ C of Eq. (5) and the parameters α, μ ∈ C of
Eq. (23), which is a non-linear one. �
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3 Application to Parallel Manipulators

For symbolic computations in robotics, we consider α, β, λ, μ as independent
variables; i.e. they are uncoupled from α, β, λ, μ. Under this assumption Study’s
kinematic mapping (e.g. [16, Sect. 2]) can be reformulated as follows:

Corollary 2. There is a bijection between SE(3) and 8-tuples of complex num-
bers (α, β, λ, μ, α, β, λ, μ)R fulfilling Ψ = 0 with (α, β, α, β) �= (0, 0, 0, 0) and the
condition that the quadruple (α, β, λ, μ) is the conjugate quadruple of (α, β, λ, μ).

Based on this result the sphere condition, that the platform point P is located
on a sphere with radius R centered in the base point B with fixed coordinates
b0 = (u0, v0, w0)T , can be computed as (cf. end of Remark 1):

Φ2R2 + det(P0 − B0) = 0 with B0 :=
(

w0 b0
b0 −w0

)
, (25)

where the coefficient Φ2 of R2 homogenizes the equation. Doing the correspond-
ing tricky summation of Husty [8] (see also [15]) by adding Ψ2 to the left hand-
side, shows that Φ factors out. The remaining quadratic factor Σ reads as follows:

α2pb0 − β2pb0 + α2pb0 − β
2
pb0 + (αα + ββ)(R2 − z2 − w2

0 − b0b0 − pp)

+ 2(αα − ββ)zw0 − 2αβpw0 + 2αβzb0 + 2αβzb0 − 2αβpw0

− 2(βμ + βμ)(w0 + z) + 2(αλ + αλ)(w0 − z) + 2(α μ + βλ)b0
+ 2(αμ + β λ)b0 + 2(βλ − αμ)p + 2(βλ − αμ)p − 4(λλ + μμ).

(26)

Therefore the sphere condition Σ = 0 has only 38 terms in contrast to its
formulation based on Study parameters, which has 80 terms (cf. [8]). An example
for pointing out the beneficial effects of this reduction of terms is the symbolic
elimination process in the direct kinematics of SG platforms.

Example 1. As each leg imply a sphere condition we get six sphere equations
Σi = 0 with i = 1, . . . , 6. It is well-known [8] that the differences of two sphere
conditions are only linear in the translational parameters. Therefore the system
of five equations Ψ = Σ5 − Σ1 = Σ4 − Σ1 = Σ3 − Σ1 = Σ2 − Σ1 = 0 linear
in λ, μ, λ, μ can only have a non-trivial solution if the determinant of the 5 × 5
coefficient matrix vanishes. This determinant splits up into Φ and a factor with
53 280 terms, which is homogenous of degree 4 in α, β, α, β. In contrast, the
corresponding quartic expression based on Study parameter has 258 720 terms
(cf. [5, Sect. 3.2]). �

By setting z = w0 = β = β = λ = λ = 0 we get from Eq. (26) the circle
condition, which can be written similarly to Eq. (6) as:

(αp + 2μ − αb0)(α p + 2μ − αb0) − ααR2 = 0. (27)

This equation has both benefits; i.e. the compactness of the isotropic formulation
and the homogeneity of the approach based on BG parameters (cf. Sect. 1.1).
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In the following we show that the compactness of the proposed formulation
passes on to the symbolic expression of the singularity loci of SG platforms.
Therefore we compute the Plücker coordinates of the line spanned by the base
anchor point and the corresponding platform anchor point. The direction vector
l = (l1, l2, l3)T is given by (p0 − Φb0), where the coefficient Φ is again used for
homogenization, and the moment vector m := (m1,m2,m3)T reads as b0 × l.
Thus each entry of the 6-tuple (l,m)R fulfilling the Plücker condition 〈l,m〉 = 0
is homogenous of degree 2 in the dual CK parameters α, β, λ, μ, α, β, λ, μ. By
defining:

l := l1 + l2i = α2p − β
2
p − ααb0 − ββb0 + 2αβz + 2λ β + 2μα,

m := m2 + m1i = (α2p − β2p)w0 + (βαp + βαp)b0 + (ββ − αα)zb0

+ 2(αβz + α μ + βλ)w0 + (βμ + βμ − αλ − αλ)b0,

n := 2m3i = 2(αμ + β λ + αβz0)b0 − 2(α μ + βλ + αβz0)b0

+ (α2b0 + β2b0)p − (α2b0 + β
2
b0)p,

(28)

we can replace (l,m)R by the more compact 6-tuple f := (l, l, l3,m,m, n)R with

l3 = αα(z − w0) − ββ(z + w0) − αβb0 − αβb0 + αλ + αλ − βμ − βμ (29)

fulfilling lm − lm + l3n = 0. As each leg of the SG platform implies such a 6-
tuple, we get f1, . . . , f6. As a consequence the manipulator is in a singular pose
(cf. [14]), if and only if:

det(F) = 0 with F := (f1, . . . , f6). (30)

The expression det(F) splits up into Φ2 and a homogenous octic factor F in the
dual CK parameters. Moreover, F has 542 496 terms if the platform and base
anchor points are chosen as follows with respect to the moving and fixed frame:
the first anchor point is located in the origin, the second one on the x-axis and
the third one in the xy-plane. In contrast, F reformulated in Study parameters
has 1 748 184 terms.

Note that F = 0 can be seen as an alternative singularity locus expression
to [4,13]. Finally, the singularity loci of the planar analogue (Fig. 1 left) can be
computed as the determinant of a 3×3 matrix (cf. [9]), as m = m = l3 = 0 hold.

4 Conclusion

We discussed the transformation of points in terms of dual CK parameters
(Sect. 2) and showed that these parameters imply a very compact symbolic
expression of the sphere condition and the singularity loci of SG platforms
(Sect. 3). These parameters cannot only be restricted to planar motions, but
they can also be extended for kinematics in Euclidean 4-space according to [16].
The proposed representation is especially of interest for the determination of
SG platforms with self-motions (e.g. [5]), but maybe it is also beneficial for the
symbolic study of other mechanisms.
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Abstract. This paper presents a simple and illustrative approach for type
synthesis of a family of overconstrained parallel mechanisms having one
translational and two rotational movement capability. This family features a
spatial limb plus a member of a class of planar symmetrical linkages, connected
by a revolute joint either with the machine frame at the base link or with the
platform at the output link. Criteria for selecting suitable structures among
numerous candidates are proposed by considering the realistic and practical
requirements of reconfigurability, movement capability, component design
rationality, etc. Exploiting the structures obtained and examined by the criteria
proposed leads to a novel 5-DOF hybrid module named TriMule, which offers a
lightweight, cost effective, and flexible design particularly suitable for config-
uring various robotized manufacturing cells.

Keywords: Parallel robots � Conceptual design � Type synthesis

1 Introduction

Overconstrained 1T2R (T-translation; R-rotation) parallel mechanisms can have several
advantages over their counterparts that lack overconstraints: higher stiffness, greater
cost-effectiveness, and easier-to-obtain explicit inverse/forward kinematics, for exam-
ple, because the common constraints allow fewer joints to be used. However, type
synthesis for parallel mechanisms of this kind is by no means an easy task because the
Grübler–Kutzbach formula is unable to identify the virtual constraints produced by the
special geometric arrangements of joint axes, and is thereby no longer valid to deter-
mine the number of degrees of freedom (DOF) in the structure.

The last few decades have seen tremendous efforts towards type synthesis of lower
mobility overconstrained parallel mechanisms in general [1, 2] and those having 1T2R
movement capability in particular [3, 4]. Methods currently available include those
based upon screw theory [1, 5], group theory [3, 4, 6], linear transformation [7], and
many others [8]. These methods are general by first creating individual limbs and then
setting the assembly conditions at the final step. However, the procedures are not easily
understandable due to their abstraction and/or complicated mathematics. Therefore, it is
highly beneficial to develop a simple, illustrative and effective approach that is easily
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understood not only by academia but also and even more importantly by design
engineers. Another challenging issue encountered in type synthesis is that although a
large number of structures have been generated, there is a lack of criteria to evaluate
which are the better ones even if they have the same 1T2R movement capability [3].
Therefore, the development of criteria to select suitable structures for specific appli-
cations is also an open issue to be investigated.

This paper presents a simple, easily visualized yet effective approach for type
synthesis of a family of overconstrained 1T2R parallel mechanisms. By fully exploiting
the common constraints provided by a plane, Sect. 2 presents a methodology to syn-
thesize 1T2R overconstrained parallel mechanisms featuring a spatial limb plus a
member of a class of planar symmetrical linkages, resulting in two subfamilies with and
without a properly constrained non-actuated limb. Focused on realistic mechanism
design, Sect. 3 investigates the criteria for selecting suitable structures among
numerous candidates. Exploiting the structures obtained and equipped with the criteria
proposed, Sect. 4 presents a novel 5-DOF hybrid PKM module before the conclusions
are drawn in Sect. 5.

2 Methodology

Viewed in terms of kinematic inversion [5], Fig. 1 demonstrates a general structure of
the proposed family of overconstrained 1T2R parallel mechanisms. Members
belonging to this family feature a spatial limb plus a planar linkage lying in a plane
denoted by

Q
. The two end links of the spatial limb are represented by Body I and

Body III, whilst those of the planar linkage are denoted by Body II and Body III,
respectively. Body I and Body II are connected by a revolute joint, denoted by R, with
its joint axis n-n parallel to

Q
. In addition, there are actuated prismatic joints for

achieving high rigidity, each denoted by P, in the spatial limb and in each of two
identical limbs of the planar linkage. The planar linkage may also have one properly
constrained non-actuated limb. The term ‘properly constrained’ here means that the
number and type of degrees of freedom of the limb is exactly the same as those of the
output link.

Body 

Body 

Body 
Spatial limb 

Planar parallel linkage

Π

n

n

Fig. 1. General structure of a family of overconstrained 1T2R parallel mechanisms
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Using these descriptions, two subfamilies of overconstrained 1T2R parallel
mechanisms can be synthesized by giving Body I (or Body III) either of two roles in the
system. In the first subfamily, Body I is taken as the machine frame, and Body III
thereby as the output link of the planar linkage to which the platform is attached,
leading to Body II being the base link of the linkage. Kinematic inversion produces the
second subfamily where Body I is taken as the platform, Body II as the output link, and
Body III as the machine frame to which the base link is attached. Hence, 1T2R
platform motion arises from 1T1R internal motion of the output link and 1R motion of
the platform about the axis n-n with respect to either the output link or the machine
frame.

As shown in Fig. 2(a), assume that the planar linkage has a basic form represented
by a six-bar linkage with a single-loop closure. In each actuated limb, the joint con-
necting the limb to the output link is an R joint, while the inner joint and the joint
connecting the limb with the base link are either a P or an R joint. Then, the axis n-n is
confined to be parallel to the common normal to the two R joints at either the base link
or the output link as shown in Fig. 1. Note that the output link in the basic form has
2T1R internal mobility. Hence, a 1T internal motion must be restricted by imposing
one additional constraint wrench $wc (a pure force) with its axis parallel to

Q
. Then,

1T2R movement capability of the platform can be achieved by simultaneously adding a
1R motion about the axis n-n. The required constraint wrench can be generated by
either of two ways: (i) the use of a properly constrained non-actuated limb embedded
between two actuated limbs for achieving structural symmetry as shown in Fig. 2(b), or
(ii) the use of a 5-DOF spatial limb as shown in Fig. 2(c). Consequently, two classes of
overconstrained 1T2R parallel mechanisms in each subfamily can be generated with
ease using the procedures introduced as follows.

)c()b(

Output link 

Base link (a) 

wc$

Π

Π

Properly constrained 
non-actuated limb 

wc$
Π

Platform 

Fig. 2. (a) A basic form of planar linkage, (b) A properly constrained non-actuated limb, (c) A
5-DOF spatial limb
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Class A: mechanism using a properly constrained non-actuated limb
Members belonging to this class feature a 6-DOF spatial limb plus a stand-alone 1T1R
planar parallel mechanism containing a properly constrained non-actuated limb, con-
nected by an R joint to the machine frame at the base link in the first subfamily, or to
the platform at the output link in the second. Two types of such constrained limbs,
denoted by RP and PR (P stands for a non-actuated prismatic joint), are available for
achieving structural symmetry. Both provide the output link with a constraint wrench (a
force) $wc lying in

Q
, passing through the R joint axis, and being normal to the P joint

direction as depicted in Fig. 3. As a result, the 1T internal motion of the output link
parallel to the wrench axis is restricted. This class uses a 6-DOF spatial limb to provide
the platform with an actuation to generate 1R motion about the axis n-n. Considering
only those structures simultaneously actuated by three internal or external P joints,
Fig. 4 shows four overconstrained 1T2R parallel mechanisms, where S and U denote a
spherical and universal joint.

Class B: mechanism without properly constrained non-actuated limb
Members belonging to this class generally feature a 5-DOF spatial limb plus the 2T1R
six-bar under-constrained planar linkage as shown in Fig. 2(a), connected by an R joint
as discussed in Class A. Numerous 5-DOF spatial limbs are available to do this [5], but
we here consider only those having four R joints and one P joint for practical use.
Within this category, the location and direction of the constraint wrench can uniquely
be determined by the conditions: (i) the axis of one R joint, denoted by R1, is parallel to
the wrench axis, (ii) the axes of the other three R joints, each denoted by R2, intersect
the wrench axis at a common point, and (iii) the axis of the P joint is normal to the
wrench axis, namely normal to the R1 joint axis. By sequentially ordering all joints
from the machine frame to the platform and utilizing joint substitutions, these condi-
tions reveal four possible limb structures, denoted respectively by SPR1, UPR2R1,
R1PS and PR1S.

To assemble the spatial limb with the planar linkage, the direction of the R1 joint
axis must be placed correctly with respect to its location and the direction of the
permitted 1T internal motion of the output link. For example, if the R1 joint connects
the spatial limb with the platform, the joint axis should be parallel to the common
normal of the axes of the two R joints connecting the output link as shown in Fig. 5(a).

Output linkOutput link

Π

wc$

(a) RP limb 

Π
wc$

Output link 

(b) PR limb 

Fig. 3. Constraint wrench imposed by a properly constrained non-actuated limb
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But if the R1 joint connects the spatial limb with the machine frame, the joint axis
should be parallel to

Q
and normal to the direction of the 1T permitted motion as

shown in Fig. 5(b). Similarly, if the P joint connects the spatial limb with the machine
frame, the P joint axis should be parallel to the direction of the 1T permitted motion and
the R1 joint axis parallel to

Q
as shown by the dashed line in Fig. 5(b). Figure 6 shows

some typical overconstrained 1T2R parallel mechanisms, all integrating three R2 joints
into an S joint to achieve a two-link limb design and only considering those simul-
taneously actuated by three internal P joints though many other possibilities exist.

3 Criteria for Selecting Suitable Structures

Selecting suitable structures for 1T2R parallel mechanisms from among the huge
number of candidates is a challenging issue in developing 5-DOF hybrid robotized
modules where high rigidity, high dynamic responses are the essential requirements.
By considering the realistic and practical requirements of reconfigurability, movement
capability, component design rationality, etc., four important criteria are proposed as
follows.

• Criterion 1: A suitable structure should have a relatively large ratio of workspace
volume against footprint so that the relevant PKM can be integrated into a rigid yet
compact module, as exactly exhibited by the Sprint Z3 head, the Tricept as well as
the Exechon, for configuring various manufacturing cells.
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Π
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Π
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Fig. 4. Typical overconstrained 1T2R parallel mechanisms of class A
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• Criterion 2: A suitable structure should have identical or nearly identical actuated
limbs (due to the overconstraints). This not only leads to cost effective designs but
also is valuable for achieving an appropriate movement capability.

• Criterion 3: A suitable structure must allow the main body of all lower mobility
limbs to be given shapes having high bending and/or torsional stiffness/mass ratios.

• Criterion 4: A suitable structure should have an explicit solution to its inverse
kinematics, an important issue for CNC control. An explicit solution to the forward
kinematics is not essential, but is very useful for rapid online monitoring of the
platform poses.

4 An Example

Exploiting the structures obtained in Sect. 2 and the criteria presented in Sect. 3, we
propose a novel 5-DOF hybrid module, named TriMule [9], shown in Fig. 7(a). Its
essential structure is the overconstrained 1T2R parallel mechanism shown in Fig. 4(a).
A critical feature is that this base link is elaborately designed into a three-in-one part
that locates the rear R joints of the two actuated RPR limbs, and the R and P joints of
the RP limb. Compared with the non-constrained 1T2R parallel mechanism used in the
Tricept (see Fig. 7(b)), the new design can theoretically save up to six R joints. This
can be done by replacing the front S joints of two UPS limbs by R joints, and
integrating the rear U joints of the two UPS limbs and the U joint of UP limb into the
three-in-one component. However, by the criteria proposed in Sect. 3, it is preferable in
practice to use two RPS limbs instead of two RPR limbs in the planar linkage. This is
because constraint bending and torsional moments imposed on these limbs can then be
avoided completely though these loads will anyway be carried to a great extent by the
properly constrained non-actuated RP limb. A significant potential advantage of the
TriMule over the Tricept arises from its integration of the joints connecting the base
link and the machine frame into a three-in-one part supported at each side by a roller
bearing requiring only a small outer frame. It is this novelty that indeed offers a
lightweight, cost effective and flexible design of a 5-DOF hybrid module particularly
suitable for configuring various robotized manufacturing cells.

Three-in-one part 

)b()a(

Fig. 7. 3D view of (a) TriMule and (b) Tricept
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5 Conclusions

An approach is proposed for type synthesis of overconstrained 1T2R parallel mecha-
nisms, resulting in a family comprising a spatial limb plus a member of a class of planar
linkages, connected by a revolute joint. By considering the realistic and practical
requirements of reconfigurability, movement capability, component design rationality,
etc., four important criteria are proposed for selecting suitable structures from
numerous candidates, leading to a lightweight, cost effective and flexible design of a
novel 5-DOF hybrid module named TriMule.
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Abstract. This paper investigated the motion/force transmission qual-
ity for a class of parallel Schönflies-motion generators built with four
identical RRΠRR-type limbs. It turns out that the determinant of
the forward Jacobian matrices for this class of parallel robots can be
expressed as the scalar product of two vectors, the first vector being
the cross product of the four unit vectors along the parallelograms, the
second one being related to the rotation of the mobile platform. The
pressure angles, derived from the determinants of forward and inverse
Jacobians, respectively, are used for the evaluation of the transmission
quality of the robots. Four robots are compared based on the proposed
method as illustrative examples.

Keywords: Schönflies motion · Jacobian · Pressure angle ·
Transmission

1 Introduction

Parallel robots performing Schönflies motions are well adapted to high-speed pick-
and-place (PnP) operations [4,10], thanks to their lightweight architecture and
high stiffness. A typical robot is the Quattro robot [1] by Adept Technologies Inc.,
the fastest industrial robot available. Its latest version can reach an acceleration
up to 15G with a 2 kg payload, allowing to accomplish four standard PnP cycles
per second. Its similar version is the H4 robot [9] that consists of four identical
limbs and an articulated traveling plate [6]. Recently, the Veloce. robot [2] with
a different articulated platform that is connected by a screw pair has been devel-
oped. Besides, the four-limb robots with single-platform architecture have also
been reported [13,14]. Four-limb parallel robots with an articulated mobile plat-
form are displayed in Fig. 1. It is noteworthy that the H4 robot with the modified
c© Springer International Publishing AG 2018
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mobile platform can be mounted vertically instead of the horizontal installation
for the reduced mounting space, to provide a rotation around an axis of vertical
direction, which is named as “V4” for convenience in the following study.

In the design and analysis of a manipulator, its kinematic Jacobian matrix
plays an important role, since the dexterity/manipulability of the robot can be
evaluated by the condition number of Jacobians as well as the accuracy/torque
capability [8] between the actuators and end-effector. On the other hand, a prob-
lem usually encountered in this procedure is that the parallel manipulators with
mixed input or/and output motions, i.e., compound linear and angular motions,
will result in dimensionally inhomogeneous Jacobians, thus, the conventional per-
formance indices associated with the Jacobian matrix, such as norm or condition
number, will lack in physical significance [7]. As far as Schönflies-motion gener-
ators are concerned, their end-effector generates a mixed motion of three trans-
lations and one rotation (3T1R), for which the terms of the kinematic Jacobian
matrix do not have the same units. A common approach to overcome this prob-
lem is to introduce a characteristic length [3] to homogenize the Jacobian matrix,
whereas, the measurement significantly depends on the choice of the characteris-
tic length that is not unique, resulting in biased evaluation, although a “best” one
can be found by optimization technique [5]. Alternatively, an efficient approach
to accommodate this dimensional inhomogeneity is to adopt the concept of the
virtual coefficient, namely, the transmission index, which is closely related to the
transmission/pressure angle. The pressure angle based transmission index will be
adopted in this work.

This paper presents a uniform evaluation approach for transmission quality of
a family of four-limb 3T1R parallel robots with articulated mobile platforms. The
pressure angles, derived from the forward and inverse Jacobians straightforward,
are used for the evaluation of the transmission quality of the robots. The defined
transmission index is illustrated with four robot counterparts for the performance
evaluation and comparison.

2 Manipulator Architecture

Figure 2(a) depicts a simplified CAD model of the parallel Schönflies-motion gen-
erator, which is composed of four identical RRΠRR1-type limbs connecting the
base and an articulated mobile platform (MP). The generalized base platform and
the different mobile platforms of the four robots are displayed in Figs. 2(b) and (c),
respectively.

The global coordinate frame Fb is built with the origin located at the geomet-
ric center of the base platform. The x-axis is parallel to the segment A2A1 (A3A4),
and the z-axis is normal to the base-platform plane pointing upwards. The moving
coordinate frameFp is attached to the mobile platform and the origin is at the geo-
metric center, where X-axis is parallel to segment C2C1 (C3C4). Vectors i, j and k
represent the unit vectors of x-, y- and z-axis, respectively. The axis of rotation of
1 R and Π stand for revolute joint and parallelogram (Π joint), respectively, and the

underlined letter indicates the actuated joint.
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(a) (b) (c) (d)

Fig. 1. The four-limb PnP robots with different base and mobile platforms:
(a) Quattro [1]; (b) H4 [9]; (c) Veloce. [2]; (d) “V4” [12].

Fig. 2. The parameterization of the four-limb robots: (a) simplified CAD model;
(b) a generalized base platform; (c) three different mobile platforms for the four robots.

the ith actuated joint is parallel to unit vector ui = Rz(αi)i, where R stands for
the rotation matrix, and α1 = −α2 = α − π/2, α3 = −α4 = β + π/2. Moreover,
unit vectors vi and wi are parallel to the segments AiBi and BiCi, respectively,
namely, the unit vectors along the proximal and distal links, respectively.

3 Kinematics and JacobianMatrix of the Robots

The Cartesian coordinates of points Ai and Bi expressed in the frame Fb are
respectively derived by

ai = R
[
cos ηi sin ηi 0

]T (1)
bi = bvi + ai; vi = Rz(αi)Rx(θi)j (2)

where ηi = (2i − 1)π/4, i = 1, ..., 4, and θi is the input angle.
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Let the mobile platform pose be denoted by χ =
[
pT φ

]T , p =
[
x y z

]T , the
Cartesian coordinates of point Ci in frame Fb are expressed as

ci =

⎧
⎨

⎩

sgn(cos ηi)rRz(φ)i + sgn(sin ηi)cj + p, Quattro (H4)
−sgn(cos ηi)rRy(φ)i + sgn(cos ηi)cj + p, V4
rRz(ηi)i + mod(i, 2)hφ/(2π)k + p, Veloce.

(3)

where sgn(·) stands for the sign function of (·), and mod stands for the modulo
operation, h being the lead of the screw pair of the Veloce. robot.

The inverse geometric problem has been well documented [10]. It can be solved
from the following the kinematic constraint equations:

(ci − bi)T (ci − bi) = l2, i = 1, ..., 4 (4)

Differentiating Eq. (4) with respect to time, one obtains

φ̇rwT
i si + wT

i ṗ = θ̇ibwT
i (ui × vi) (5)

with

wi =
ci − bi

l
; si =

⎧
⎨

⎩

sgn(cos ηi)Rz(φ)j, Quattro (H4)
sgn(cos ηi)Ry(φ)k, V4
mod(i, 2)hφ/(2π)k, Veloce.

(6)

Equation (5) can be cast in a matrix form, namely,

Aχ̇ = Bθ̇ (7)

with

A =
[
e1 e2 e3 e4

]T ; χ̇ =
[
ẋ ẏ ż φ̇

]T
(8a)

B = diag
[
h1 h2 h3 h4

]
; θ̇ =

[
θ̇1 θ̇2 θ̇3 θ̇4

]T
(8b)

where A and B are the forward and inverse Jacobian matrices, respectively, and

ei =
[
wT

i rwT
i si

]T ; hi = bwT
i (ui × vi) (9)

As along as A is nonsingular, the kinematic Jacobian matrix is obtained as

J = A−1B (10)

According to the inverse Jacobian matrix, each limb can have two working
modes, which is characterized by the sign “−/+” of hi. In order for the robot not
to reach any serial singularity, the mode hi < 0, i = 1, ..., 4, is selected as the
working mode for all the robots.
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4 Transmission Quality Analysis

Our interests are the transmission quality, which is related to the robot Jacobian.
The determinant |B| of the inverse Jacobian matrix B is expressed as

|B| =
4∏

i=1

hi = b4
4∏

i=1

wT
i (ui × vi) (11)

sequentially, the pressure angle μi associated with the motion transmission in the
ith limb, i.e., the motion transmitted from the actuated link to the parallelogram,
is defined as:

μi = cos−1 wT
i (ui × vi), i = 1, ..., 4 (12)

namely, the pressure angle between the velocity of point Bi along the vector of
ui × vi and the pure force applied to the parallelogram along wi, as shown in
Fig. 3(a).

Fig. 3. The pressure angles of the four-limb robots in the motion/force transmission:
(a) μi for all robots; (b) σ for Quattro.

Likewise, with the Laplace expansion, the determinant |A| of the forward
Jacobian matrix A is simplified as

|A| =

⎧
⎨

⎩

−2r(w14 × w23)T s, s = Rz(φ)j; Quattro (H4)
2r(w14 × w23)T s, s = Ry(φ)k; V4
hφ/(2π)(w13 × w24)Tk; Veloce.

(13)

where wmn = wm × wn. Taking the Quattro robot as an example, the pressure
angle σ amongst limbs, namely, the force transmitted from the end-effector to
the passive parallelograms in the other limbs, provided that the actuated joints
in these limbs are locked, is derived below:

σ = cos−1 (w14 × w23)T s
‖w14 × w23‖ (14)
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where the of angle σ can be interpreted as the angle between the minus Y -axis
(s is normal to segment P1P2) and the intersection line of planes B1P1B4 and
B2P2B3, where plane B1P1B4 (B2P2B3) is normal to the common perpendicular
line between the two skew lines along w1 and w4 (w2 and w3), as depicted in
Fig. 3(b). To illustrate the angle σ physically, (w14 × w23)T s can be rewritten in
the following form:

(w14 × w23)T s = wT
14[w3(w2 · s) − w2(w3 · s)] (15)

= wT
23[w4(w1 · s) − w1(w4 · s)]

The angle σ now can be interpreted as the pressure angle between the velocity in
the direction of w1 ×w4 and the forces along w2 ×w3 imposed by the parallelo-
grams in limbs 2 and 3 to point P , under the assumption that the actuated joints
in limbs 1 and 4 are locked simultaneously. The same explanation is applicable for
the case when the actuated joints in limbs 2 and 3 are locked.

By the same token, the pressure angle for the remaining robot counterparts
can be defined. Consequently, the motion κ and force ζ transmission indices (TI)
in a prescribed configuration are defined as the minimum value of the cosine of
the pressure angles, respectively,

κ = min(| cos μi|), i = 1, ..., 4; ζ = | cos σ| (16)

To this end, the local transmission index (LTI) [11] is defined as

η = min{κ, ζ} = min{| cos μi|, | cos σ|} ∈ [0, 1] (17)

The larger the value of the index η, the better the transmission quality of the
manipulator. This index can also be applicable for the detection of robot singu-
larity, where η = 0 means a singular configuration.

5 Transmission Evaluation of PnP Robots

In this section, the transmission index over the regular workspace, for the Quattro,
H4, Veloce. and V4 robots, will be mapped to analyzed their motion/force trans-
mission qualities. According to the technical parameters of the Quattro robot [1],
the parameters of the robots’ base and mobile platforms are given in Table 1,
and other parameters are set to R = 275mm, b = 375mm and l = 800mm,
respectively.

The LTI isocontours of the four robots with different rotation angles of mobile
platform are visualized in Fig. 4, from which it is seen that the minimum LTI of the
Quattro and Veloce. robots are much higher than those of H4 and V4. Moreover,
the volumes of the formers with LTI ≥ 0.7 are larger, to formulate larger oper-
ational workspace with high transmission quality. This means that the four-limb
robots with a fully symmetrical structure have much better transmission perfor-
mance than the asymmetric robot counterparts. Another observation is that the
transmission performance of the robots decreases with the increasing MP rotation
angle.



288 G. Wu et al.

Table 1. Geometrical parameters of the base and mobile platforms of the four-limb
robots.

Robots Base Mobile platform

Quattro α = −π/4, β = 3π/4 r = 80 mm, c = 70 mm

H4, V4 α = 0, β = π/2 r = 80 mm, c = 70 mm

Veloce α = −π/4, β = 3π/4 r = 100 mm, γ = (2i − 1)π/4, h

As displayed in Fig. 4(a), the transmission index of the Quattro robot have
larger values in the central region, which admits a singularity-free workspace with
rotational capability φ = ±45◦. Similarly, Fig. 4(c) shows that the Veloce. robot
can also have a high-transmission workspace free of singularity with smaller lead

Fig. 4. The LTI isocontours of the robots: (a) Quattro, φ = 0 and φ = 45◦; (b) H4,
φ = 0 and φ = 45◦; (c) Veloce. with φ = 2π, screw lead h = 20 and h = 50; (d) V4,
φ = 0 and φ = 45◦.
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of screw pair, which means that this type of mobile platform allows the robot to
have high performance in terms of transmission quality and rotational capabil-
ity of full-circle rotation. By contrast, the asymmetric H4 and V4 robots result
in relatively small operational workspace and relatively low transmission perfor-
mance, as illustrated in Figs. 4(b) and (d), but similar mechanism footprint ratio
with same link dimensions and close platform shapes.

6 Conclusions

This paper presents the transmission analysis for a class of four-limb parallel
Schönflies-motion robots with articulated mobile platforms, closely in connection
with two pressure angles derived from the forward and inverse Jacobian matrices,
wherein the determinant of the forward Jacobian matrices was simplified in an
elegant manner, i.e., the scalar product between two vectors, through the Laplace
expansion. The cosine function of the pressure angles based indices are defined to
evaluate the transmission quality. It appears that the robot with the screw-pair-
based mobile platform, namely, the Veloce., is the best in terms of transmission
quality for any orientation of the mobile-platform.
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Abstract. Due to their high precision and dynamic properties, parallel kinematic
manipulators (PKM) are particularly suited for high-speed and high-accuracy
object handling. In order to improve their stiffness, their payload capacity and
their accuracy PKM can be optimized using a redundant actuator configuration.
Accordingly, additional actuators are added to PKM to generate an optimized
performance. The objectives, in this context, are highly task oriented and can
involve a wide range of the robot’s topological and morphological parameters.
Based on different tasks and optimization objectives, robots with unique specifi-
cations can be designed. In this study redundancy is used to show the effect of
topological parameters of redundantly actuated DELTA-type parallel manipula-
tors on general performance characteristics, such as the energy consumption of
the robot. The topological characteristics of n-RRPaR manipulators in combina-
tion with actuator capabilities are considered as variables. It is shown that optimal
torque distribution, chosen a proper topology, would enhance the manipulator’s
performance and may result in a more efficient energy consumption.

Keywords: Actuation redundancy · PKM · n-RRPaR · DELTA-type Robot ·
Force capability

1 Introduction

The quality and performance of industrial robots and manipulators commonly is mea-
sured by their maximum payload, maximum handling velocity or by their precision in a
given workspace. In terms of accuracy in fast object handling, parallel kinematic manip-
ulators (PKM) are preferred to their serial counterparts due to their excellent precision,
dynamics characteristics and stiffness, regardless of their relatively small workspace
[1]. Generally, these manipulators are equipped with a task-depended number of actua-
tors represented by the required degree of freedom (DoF) [2]. In contrast, redundantly
actuated parallel kinematic manipulators (RA-PKM) use more actuators than needed
(over-actuated) in trade-off for a higher stiffness resulting in a higher precision and a
more homogeneous and efficient torque distribution.

Over actuating parallel kinematic manipulators can be achieved by means of branch
and in-branch actuation redundancy [3,4]. In the context of the current study, an n-
RRPaR (n ≥ 3) structure is analyzed, which is also known as a DELTA-type branch-
redundant PKM. n-RRPaRs are able to execute motion tasks in three translational
c© Springer International Publishing AG 2018
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degrees of freedom (DoF) as a result of their specific structure including parallelogram
members [5].

Time-based characterization of the manipulator is of importance to optimize their
performance in many aspects, such as object handling and assembly [6]. For the pre-
sented manipulator, the inverse kinematics and dynamics are elaborated in Sects. 2
and 3.

The objective to be pursued in current study is the effect of redundancy on general
performance characteristics, such as the force capability of n-RRPaRs. Two topologies
with one and three degrees of redundancy (DoR = n− 3) are introduced [4], of which
the one with four arms is supposed to be reconfigurable. There are different methods to
study the force capability of (redundant)-PKM in which the screw theory is widely used
[7–9]. The procedure used in this contribution is mainly bottomed on the one introduced
by [4].

2 Inverse Kinematics

Determining the joint space parameters qi of the n-RRPaR given operational space posi-
tion of the end-effector is discussed in this section. The special case of n = 3 with uni-
formly distributed arms characterises the conventional DELTA robot. The joint space
parameters q of the manipulator can be extracted in the same way as DELTA robot. The
kinematic parameters of the active and passive joints are as (see Fig. 1):

φ3,i = cos−1 (
iri,y
l2,i

) (1a)

φ2,i = cos−1

(
ir2
i,x +

ir2
i,y +

ir2
i,z − l21,i − l22,i

2 l1,i l2,i sin(φ3,i)

)
(1b)

qi = tan−1
(−κ iri,x + ζ iri,z

ζ iri,x + κ iri,z

)
with:

{
ζ = l2,i sin(φ3,i) cos(φ2,i) + l1,i
κ = l2,i sin(φ3,i) sin(φ2,i)

(1c)

Fig. 1. Kinematic description of n-RRPaR
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The time differentiation of closed form equation of the end-effector position can be
exploited to determine the angular velocity of the crank and forearms of linkages:

Pee = l1,i + l2,i + a − b ∴ Ṗee = q̇i × l1,i + ω2,i × l2,i, (2)

where q̇i and ω2,i are the rotational velocities of the crank and forearm of branch i
respectively. The vector ω2,i × l2,i turns to zero by post dot multiplying both sides of
(2) by l2,i due to perpendicularity. Using the equation for angular velocity of the active
joint (Ri is the rotation matrix of branch i of the manipulator to the global coordinate
system and Ri|2 represents the second column of matrix Ri):

q̇i = Ri q̇i [0 , 1 , 0]T = q̇iRi|2, (3)

and replacing the cross multiplication by the asymmetric matrix product (represented
by [•]c), (2) can be rewritten in algebraic form:

lT2,i · Ṗee = lT2,i
(
q̇i[Ri|2]c l1,i

)
. (4)

Stacking (4) for different linkages results in (the dimensions are inserted for clarity):[ [
lT2,r

]
(1,3) ⊗ 1(n,1)

]
(n,3)

· Ṗee(3,1) =
[
q̇r ⊗ In

]
(n,n)

·
[ [

lT2,r
]
(1,3) ,⊗In

]
(n,3n)

·
[
[Ri|2]c ⊗ In

]
(3n,3n)

·
[
[ l1,r ](1,3) ⊗ 1(n,1)

]
(3n,1)

,

(5)
where the operator ⊗ represents the Kronecker product and the subscript r determines
the row-index of the succeeding matrix. In order to simplify (5), the auxiliary matrix
[Jaux] can be introduced as:[ [

lT2,r
]
(1,3) ⊗ 1(n,1)

]
(n,3)

· Ṗee(3,1) = [ q̇r ⊗ In ](n,n) · [Jaux](n,1) . (6)

Since the relation between workspace and joint space velocities is of interest, the right
hand side of (6) is rearranged according to:[ [

lT2,r
]
(1,3) ⊗ 1(n,1)

]
(n,3)

· Ṗee(3,1) = [Jaux(r,1) ⊗ In ](n,n) · [
q̇r ⊗1(n,1)

]
(n,1) . (7)

The matrix [Jaux(r,1) ⊗ In ](n,n) in (7) is a full rank diagonal matrix. Therefore, pre-

multiplying both sides of (7) by [Jaux(r,1) ⊗ In ]
−1
(n,n) results in the Jacobian matrix:

[
q̇r ⊗1(n,1)

]
(n,1) = [Jaux(r,1) ⊗ In ]

−1
(n,n)

[ [
lT(2,r)

]
⊗ 1(n,1)

]
(n,3)

· Ṗee(3,1), (8)

[
Q̇

]
(n,1) = [Jv](n,3) · Ṗee(3,1). (9)
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3 Inverse Dynamics

Considering the n-RRPaR as a time-invariant holonomic mechanical system, the prin-
ciple of virtual works can be used to generalize the inverse dynamic. Acceleration of
active and passive joints can be derived by second time derivation of (2):

P̈ee = q̈1,i × l1,i + q̇i × (q̇i × l1,i) + ω̇2,i × l2,i + ω2,i × (ω2,i × l2,i) . (10)

Post dot-multiplying (10) by l2,i and performing algebraic simplifications, the joint
space acceleration given work space acceleration can be presented:

q̈i =
lT2,i

(
P̈ee + (q̇i · q̇i) l1,i + (q̇i · q̇i) l2,i

)
lT2,i [Ri|2]c l1,i

∴ q̈1,i = q̈iRi|2. (11)

The angular acceleration of the forearm can be obtained, rearranging (10).
After defining the velocity and acceleration vectors, the force and moments associ-

ated to the end-effector and linkages can basically be driven in the same manner as the
one for conventional topology of DELTA structures (for details see [10]):

0 = δ [Q]T(1,n) [τ](n,1) + δ [Xee]T(1,3) [mee
(
g − P̈ee

)
](3,1)

+
n

∑
i=1

(
δ i[Xl1,i ]

T
(1,6)

[
ml1,i

(
ig− ia1,i,c

)
iI1,i

iq̈1,i+ iq̇i ×
(
iI1,i

iq̇i
)]

(6,1)

+ 2 δ i[Xl2,i ]
T
(1,6)

[
ml2,i

(
ig− ia2,i,c

)
iI2,i

iω̇2,i+ iω2,i ×
(
iI2,i

iω2,i
)]

(6,1)

)
. (12)

In (12) τ is the vector of manipulator torques, g represents the gravity, I is the inertia
matrix, a stands for accelerations and subscript c refers to the center of mass. δ [Xee],
δ i[Xl1,i ] and δ i[Xl2,i ] refer to infinitesimal deviations of the end-effector and the center
of mass of the cranks and forearms respectively. δ [Xee] can be defined by means of the
system Jacobian matrix as shown in (9). The link Jacobians J∗

v1 and J∗
v2, which relate the

velocities of each link’s center of mass to the work space velocity vector, are deployed
for simplification:

{δ [Q], δ i[Xl1,i ], δ i[Xl2,i ]} = {[Jv] , [J∗
v1] , [J

∗
v2]} δ [Xee] . (13)

Shortening the summation (∑ ) part of (12) as link dynamics (LD) results in:

0 = δ [Xee]
T
(1,3) [Jv]

T
(3,n) [τ](n,1) + δ [Xee]T(1,3) [mee

(
g − P̈ee

)
](3,1) + δ [Xee]

T
(1,3) LD.

(14)
Thus, the dynamic burden of actuators can be concisely formulated as:

[τ](n,1) = − [Jv]
+T
(3,n)

(
[mee

(
g − P̈ee

)
](3,1) + LD

)
, (15)

where [ ]+ symbolizes the pseudo inverse.
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4 Force Capability

The topological structure of the n-RRPaR can be optimized with regard to different
tasks considering an appropriate objective function. One of the possible objectives can
be considered as the applicable force of the manipulator. In this section, the overall
procedure in order to compute the force capability of the manipulator, with a concise
formulation for the general structure, is sketched and discussed.

The classical relation between torque and force can be written for the cranks:

iMi = il1,i × iFi. ∴ iFi = − 1

l21,i

il1,i × iMi. (16)

In (16), iFi represents the resultant force of the actuator in the local coordinate system
and:

il1,i = l1,i
[
c (qi), 0, s (qi)

]T
, iMi = Ti

[
0, 1, 0

]T
, (17)

with Ti the applicable torque of the ith actuator. To transfer the equation to algebraic
form, cross multiplication is replaced with the asymmetric matrix product. Simultane-
ously, the forces are transferred to the global coordinate system:

Fi = − 1

l21,i
Ri

[il1,i]c iMi = JF,i iMi, (18)

where JF,i refers to the force Jacobian.
Considering the rods of the forearm as rigid bodies, which prevents the energy loss,

the contribution of each actuator to the end-effector’s force capability is equal to Fi.
Thus, summing the individual forces up, the force capability of the manipulator on the
end-effector results from:

F(3,1) =
[
I3 ⊗ 11,n

]
(3,3n)

·
[
JF,r ⊗ In

]
(3n,3n)

·
[
Conversion Matrix

]
(3n,n)

·
[
τ
]
(n,1)

,

(19)
where index r in JF,r refers to the row index of the succeeding matrix and
[Conversion Matrix] is a sparse matrix containing ones at the indices (3(i−1)+2 , i)
with i = 1, . . . , n.

The method of scaling factors can be used to compute the maximum force capability
of the manipulator [4,7,8]. In this method, the required torque to impose a force in a
predefined direction of interest is computed by means of (19). The computed torques
can be scaled by the factors resulting from the ratio of maximum applicable torques to
the required amount and lastly the force is to be recalculated by (19). In the present
study, the Jacobian’s null-space resolution is also used to optimize the maximum force
as introduced in [9].

5 Results

To examine the presented idea two types of structure topologies are introduced in this
section. The first structure is a 4-armed manipulator with varying torque capacity of
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actuators and adjustable configuration. The second structure is a 6-armed manipulator
and considered to have a variable torque capacity of actuators. Different topologies and
actuator capacities are listed in Table 1. The 4-armed manipulators in the three scenar-
ios 4n−1 to 4n−3 have evenly distributed branches (i .e. α in Fig. 1) and are supposed
to have actuators with different torque capacities (the nominal torque of actuators are
supposed to be 100 Nm). The remaining scenarios involve manipulators with varying
topological configurations, with all actuators working with 100% capacity. The topol-
ogy of the 6-armed manipulator is supposed to be unique (with evenly distributed arms)
with varying capacities of actuators. For clarity, manipulators of the cases 4n− 3 to
4n−6 are shown in Fig. 2.

Table 1. Percentage of applicable torque of actuators in different simulation configurations

α 0 π
8

π
4

π
3

3π
8

π
2

5π
8

2π
3

3π
4

7π
8 π 9π

8
5π
4

4π
3

11π
8

3π
2

13π
8

5π
3

7π
4

15π
8

4n−1 100 10 100 10

4n−2 50 50 50 50

4n−3 100 100 100 100

4n−4 100 100 100 100

4n−5 100 100 100 100

4n−6 100 100 100 100

6n−1 100 10 100 10 100 10

6n−2 50 50 50 50 50 50

6n−3 100 50 100 50 100 50

6n−4 100 100 100 100 100 100

Figure 2 shows the force distribution of a 4-armed manipulator, in which all the
actuators are working with full capacity, in a plane in the middle of the workspace
(z = −0.775 m). Two main topologies are selected, which are oriented complimentary
to each other (i .e. 4n−3 with 4n−5 and 4n−4 with 4n−6). A preliminary examination
exhibits choosing an appropriate orientation of the manipulator in a specific application
can enhance the force capability of the manipulator in a direction of desire consider-
ably. For instance, although the manipulators of cases 4n−3 and 4n−5 have a similar
topology and the actuator capacities are the same, with a same z-force capability, there
is an almost 42% improvement in x and y-force capabilities for 4n− 5. The fact also
holds for the manipulator with non-homogeneously distributed arms.

The force capabilities for the 4-armed manipulators are also computed all over the
workspaces. The force expectations in different directions are shown in Fig. 3. A com-
parison between 4n−1 and 4n−2 emphasizes the importance of a well torque distrib-
ution and proves the advantages of task-oriented manipulator design.

The statistical study of the cases with 6 arms are also presented in Fig. 3. The results
are obtained from the examination of force capabilities in the effective workspace of
the manipulator. Cases 6n− 1 and 6n− 2 show comparable force capabilities with a
smoothly distributed torque capacity in case 6n− 2. Doubling the actuation of three
actuators in 6n− 2 results in almost 50% higher force capability in case 6n− 3, but
further doubling the actuation of remaining actuators would result in almost 32% more
improvement (the force capability of 6n−4 is twice as 6n−2).
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Fig. 2. 4-armed manipulators with configurations 4n−3 to 4n−6

Fig. 3. Statistical examination of selected structures presented in Table 1

6 Conclusions

This study intends to examine the effect of actuation redundancy and topological con-
figuration of a DELTA-type parallel manipulator on its kineto-statics performance. It
is shown that a task-oriented topological design of the robot can remarkably enhance
its force capability. Furthermore, over-actuated manipulators proved to have a smooth
torque distribution for specific performances, which may lead to a more resource-
efficient processes.

Further research in this field is accomplished by examining the manipulator flex-
ibility by different topologies. Optimizations are performed to achieve high precision
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manipulators, adhering a high performance and energy-efficient task-oriented manipu-
lation. Furthermore, corresponding control strategies in terms of actuation redundancy
have to be implemented in order to avoid inner tensioning.
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Abstract. This paper deals with the optimization of the 3-RRR Spherical
parallel Manipulator SPM. In addition to workspace constraints and dexterity
performance; singilarity positions and distribution appeared to have consider-
able effects when treating control issues. Thus, this additional parameter is
integrated in a Genetic Algorithm (GA) Based synthesis process. A multi
objective problem is then formulated and results were analysed. The effect of
self rotation u was also explored throught three differentsvalues. Results were
finally discussed.

Keywords: SPM � Optimization � Dexterity � Singularity � GA � Self rotation

1 Introduction

Multiple criteria were considered in sphericalparallel Manipulator (SPM) design such
as workspace [1], dexterity [2], precision [3], and singularity free space [4].

In addition to serial singularities; the 3-RRR SPM has parallel singularities within
its workspace [5], this generates many control problems and has negatives effects on
the dexterity. The serial singularities could be avoided by enlarging the workspace
through bigger manipulator in order to largely cover the desired workspace. However;
singularities inside the workspace have to be treated differently by optimizing the
manipulator design parameters. For a teleoperation application [2], a 3-RRR archi-
tecture (Fig. 1) was adopted in order to realize surgical tasks through the reproduction
of a surgery expertmotion. This application needs a high precision; dexterity and
especially an optimal control of the system. This can be only with a free singularity
workspace.

In this scope; this paper presents an optimization process of the 3-RRR SPM in
order to obtain the design parameters that give high level dexterity and a singularity
free workspace.

In the next section, the kinematics of the SPM is presented and the design
parameters are identified the Optimization problem is then detailed and multiple iter-
ations with different conditions were realized. The first optimization aimed a prescribed
workspace with maximum dexterity; the second one considered additionally obtaining
a singularity free workspace. Results were finally discussed.

© Springer International Publishing AG 2018
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2 Kinematics of the 3-RRR

The 3-RRR SPM is based on a mobile platform over three identical open kinematic
chains or legs (Fig. 1). Every chain is composed of three revolute joints with axes
intersecting in one point called center of the robot. The axes of the base joints are
orthogonal while, on the mobile platform, they are at a 120° angle.

The orientation of the platform is given by the ZXZ configuration of the EULER
angles: w; h; u½ �.(Boudreau, 2004)

For a leg k the three joints are distributed as shown in Fig. 2 with Zik the axe of the
ith joint and ZE axe of the platform given by

ZE ¼
sin Wð Þsin hð Þ

� cos Wð Þsin hð Þ
cos hð Þ

2
4

3
5 ð1Þ

The joints parameters of each leg are h1kh2k; h3k k ¼ 1; 2; 3ð Þ.

2.1 Inverse Geometric Model

The inverse geometric model of the SPM developed previously in (A. Chaker, 2012)
was obtained through the relation:

Z3K :Z2K ¼ cosðbÞ ð2Þ

A three equations system was then derived:

f1 ¼ A1:cos h1Að ÞþB1: sin h1Að ÞþC1

f2 ¼ A2:cos h1Bð ÞþB2: sin h1Bð ÞþC2

f3 ¼ A3:cos h1Cð ÞþB3: sin h1Cð ÞþC3

8<
: ð3Þ

Fig. 1. Kinematics of 3-RRR Fig. 2. One Leg parame-
ters of 3-RRR
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With Ci: as constants (i ¼ 1::3). The solutions of this system are conditioned with
the relation that defines workspace frontiers:

C2
i

A2
i þB2

i

� �
� 1 ð4Þ

2.2 Kinematics Model

The kinematic formulation is derived from Eq. 2 (A. Chaker, 2012):

_Z2K : _Z3K þ _Z3K : _Z2K ¼ 0 ð5Þ

The following system is then obtained:

B: _q ¼A:x ð6Þ

With _q ¼ ½ _h1A _h1B _h1C�T the joints velocity and
B = diag [ðZ1A ^ Z2AÞ.Z3AðZ1B ^ Z2BÞ.Z3BðZ1C ^ Z2CÞ.Z3C]
A = [(Z3A ^ Z2AÞTðZ3B ^ Z2BÞTðZ3C ^ Z2CÞT �T
And x the angle velocity of the platform defined in the global basis
The kinematics of the robot can be written as function of the jacobian matrix J as

follow

x ¼ ðA�1:BÞ: _q ¼ J: _q ð7Þ

3 Optimization

The optimization is realized for a desired workspace having the platform axis ZE able
to evoluate on a cone with a 30° half angle.The considered objective functions in this
optimization process are: the prescribed workspace accessibility function, the power
function, the dexterity function and the singularity function.

3.1 The Accessibility Objective Function

This function is based on the accessibility constraint and helps verifying either the
platform position belongs to the desired workspace or not. It is described as:

F1 ¼
XN

j

X3

i
xiðY,PjÞ ð8Þ

With xiðY;PjÞ ¼ 0 si CDi Y;Pj
� �� 0

cf si CDi Y;Pj
� �

[ 0

�
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Y is the design vector Y ¼ ½ab�, CDi Y; Pjð Þ ¼ C2
i � A2

i þB2
i

� �� �
Pj is a given orientation of the platform
j ¼ 1::N: the number of orientations of the platform defined by Pj ¼ w; h; u and cf

a high value constant attributed as penalty to candidate manipulate or enable to reach
the prescribed conic workspace.

3.2 The Power Objective Function

This function is used to evaluate the distance between the SPM reachable workspace
and the prescribed one. Minimizing this function leads to a manipulator which
workspace is as close as possible to the desired one. It is formulated as follow:

F2 ¼
XN

j

X3

i

C2
i ðY,PjÞ

A2
i Y,Pj
� �þB2

i Y,Pj
� �

�����
����� ð9Þ

3.3 Dexterity Objective Function

The dexterity traduces the capacity of a robot to realize, with high precision, small and
arbitrary displacements around a position in a desired workspace. The inverse of the
local condition number of the Jacobian matrix K Jð Þ is used as index to measure
dexterity

K Jð Þ ¼ Jk k: JT
�� �� ð10Þ

The manipulator dexterity is then represented as function of the sum of the con-
dition numbers:

F3 ¼
XWmax

Wmin

Xhmax

hmin
1=KðY,P W;hð ÞÞ ð11Þ

With Wmin, Wmax the limit values of the W angle range; hmin; hmax: the limit values
of the h angle range;

3.4 Singularity Objective Function

This function ensures the requirement of a singularity free desired workspace. They are
tolerated only outside of the prescribed workspace where kinematic performance has to
be optimal. We focus on parallel singularities defined as orientations distance that
reduces the Det(A) to zero. The function F4 calculates the number of singularity
positions for every candidate manipulator by verifying the condition (Det(A) = 0). This
function is written as follow:

F4 ¼
XWmax

Wmin

Xhmax

hmin
SðY;P W;hð ÞÞ ð12Þ
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with: S(Y;P W;hð ÞÞ ¼ 0 if Det Að Þ 6¼ 0
1 if Det Að Þ ¼ 0

�

4 First Optimization : Dexterity

The first optimization, named Optimization 1, is operated with the three objective
functions F1, F2etF3. The aim is to have an optimal structure able to cover all the
desired workspace and guarantee a high level of local dexterity. The optimization
problem is then written as:

Min f ¼ min f 1ð Þ f 2ð Þ½ �

� f 1ð Þ ¼ F1þF2

� f 2ð Þ ¼ F3

Optimization 1 with u ¼ 0�

We obtain the design parameter vector: Yopt ¼ 38:86� 31:07� 17:31�½ �

Figure 3 shows the dexterity distribution in the workspace. The maximum dexterity
value is 0.42 with a mean value of 0.2127. The desired workspace, represented in
yellow on the Fig. 4, is completely reachable and is free of singularities.

Other self rotation angles were tested with the resulting manipulator, for a value of
u ¼ 50� we have the workspace in Fig. 5. We notice the reduction of the manipulator
workspace size which affects the prescribed workspace accessibility and the appearance
of a consistent singularity zone (in red) in the center of the workspace.

Local dexterity falls to a maximum of 0.22 and a dissymmetrical distribution
appears with very low values in the center of the workspace Fig. 6. This corresponds
clearly to the singularity zone.

These results make clear the effect of self rotation angle on the SPM performance.
Examining the effect of this parameter on the optimization results is then a necessity.
Two symmetrical values were taken: u ¼ �50� in order to enlarge the range of
optimization and find better design vector candidates with angles a; betc leading to
better dexterity performance and singularity free workspace

Optimization 1 pour u ¼ 50�

The design vector resulting is Yopt ¼ 38:76� 37:76� 29:99�½ �
With a maximum value of dexterity 0.39 and 0.1357 as mean value (Fig. 7)
We notice also a dissimitrical distribution of the dexterity;but we have a desired

workspace competely reachable (Fig. 8).

Optimization pour u ¼ �50�

In this case; the resulting vector is Yopt ¼ 39:79� 39:7� 29:16�½ �. The maximum dex-
terity value is 0.5 with a mean of 0.2830 (Fig. 9) and a resulting workspace covering
the entire desired one (Fig. 10).
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Fig. 3. Dexterity distribution for
u ¼ 0

Fig. 4. Workspace for u ¼ 0.
(Color figure online)

Fig. 5. Workspace for u ¼ 50.
(Color figure online)

Fig. 6. Dexterity distribution for
u ¼ 50

Fig. 7. Dexterity distribution
for u ¼ 50�

Fig. 8. Workspace for u ¼ 50�
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5 Second Optimization: Dexterity

The second optimization, named Optimization 2, is launched considering the three
objective functions to minimize F1, F2 and F4.we formulate the problem as follow:

Min f ¼ min f 1ð Þ f 2ð Þ½ �

� f 1ð Þ ¼ F1þF2

� f 2ð Þ ¼ F4

the same desired workspace is aimed and the three self rotation values u ¼
0�; 50�;�50� are considered.

Optimization 2 for u ¼ 0�

The optimum solution resultis Yopt ¼ 38:88� 38: 6� 20:58�½ �

Considering Fig. 11, dexterity reaches a maximum of 0.49 and the mean value is
0.2452. Figure 12 shows that the prescribed workspace is totally covered and singu-
larity zones were discarded out of the useful workspace.

Fig. 9. Dexterity for optimiza-
tion 1 and tu ¼ �50 Fig. 10. Workspace for

optimization 1 u ¼ �50�

Fig. 11. Dexterity for opti-
mization 2, u ¼ 0

Fig. 12. Workspace for opti-
mization 2, u ¼ 0
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Optimization 2 for u ¼ �50�

The optimum solution obtained is: Yopt ¼ 39:77� 39:61� 27:34�½ �

The dexterity distribution regain in symmetry with a maximum value of 0.49,
(Fig. 13). Figure 14 shows the prescribed workspace covered by the manipulator

6 Conclusion

This paper discussed the optimization process if a 3-RRR SPM. We concluded that all
the three parameters have to be considered: the prescribed task workspace; the dexterity
and avoiding singularity zones. Design vectors were determined for the two first
parameters and performances were discussed. A clear effect of the self rotation angle on
the dexterity and the singularity zone was noticed. The optimization process where then
reconducted for three values of u: The optimum design vector showed better perfor-
mance by reaching the desired workspace with better dexterity and a singularity free
workspace. Otherwise, discarding singularity out of the useful workspace induces a rise
of the design parameters and then a bigger manipulator.
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Abstract. This paper introduces a novel kinematic of 4 d.o.fs haptic
device based on Delta architecture. A fourth leg is added to the Delta
structure to convert translations into rotations and to provide translation
of the handle allowing 3 rotations and 1 translation of the end effector.
The fourth leg is linked to the base and to the moving platform by
two spherical joints. The kinematic model of the new structure, called
4haptic, is presented. The novel device has a better dexterity distribution
compared with previous developped master device based on spherical
parallel manipulator architecture. The 4haptic device offers a singularity
free useful workspace which makes it a suitable candidate to perform
tele-operated Minimally Invasive surgery.

Keywords: Delta robot · Haptic devices · Minimally Invasive surgery ·
Teleoperation system

1 Introduction

Haptic devices are developed to simulate interaction between the user and a
virtual environment, by applying force and torque feedback on a master device.
Such devices are widely used in virtual reality [1], gaming [2] and tele-robotics
[3]. In medicine, haptic devices are used for training in virtual environment the
practice of surgical techniques [4,5] or for tele-operation [6,7].

A previous study [8] highlights that Minimally Invasive Surgery (MIS) gesture
requires at least four degrees of freedom (d.o.fs) to perform a suture. Therefore,
the haptic controller should have three rotations around the Remote Center of
Motion (RCM) and a translation along its self rotation axis.

A previous haptic interface based on spherical parallel architecture has been
developed for MIS procedure. This Spherical Parallel Manipulator (SPM) suffers
from the presence of the singularity inside the useful workspace. The solution
proposed is to use a Delta structure to convert 3 translationals d.o.fs to 2 rota-
tionals d.o.fs. The third rotation as well as the translation along the self rotation
axis is provided by the fourth leg.

This paper focuses on the kinematic model and the kinematic performances
of this new interface based on Delta structure called 4haptic since it has 4 d.o.fs.
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 35
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This paper is organized as follows. In Sect. 2, an overview of a tele-operation
system for MIS is presented. The kinematic model of the new device is explained
in Sect. 3. Section 4 compares the dexterity of the new interface to the one of the
previous structure. Section 5 concludes this paper.

2 Gesture in Minimally Invasive Surgery and
Teleoperation

The main goal of tele-surgery is not to develop an autonomous system but to
assist the surgeon during his task by adding accuracy, safety and comfort. Teleop-
eration systems consist of a slave surgery robot controlled by a master interface
(with or without haptic feedback).

Minimally Invasive Surgery uses instruments inserted into patient’s body
through tiny incisions points. Unlike open surgery which generally requires up to
six d.o.fs, minimally invasive procedure requires only four d.o.fs: three rotation
around incision point and one translation along the instrument axis (Fig. 1).
This is due to the constraints imposed by the trocar.

Fig. 1. Minimally Invasive surgery motions

A previous study of MIS gesture using a motion capture system has reveal
the useful workspace needed by a surgeon to perform arterial anastomosis [8].
Using these results a slave robot (Fig. 2) was designed and optimized to perform
MIS tasks. To reach the useful workspace, the slave robot was design with a serial
spherical architecture. To implement haptic feedback on the master interface, a
six-axis force sensor has been inserted between the effector and the slave robot.

A master interface (see Fig. 3) has been designed based on a spherical parallel
architecture. Multiple prototypes of the interface have been developed. The first
prototypes (see Fig. 3) suffers from the presence of parallel singularity in its
workspace. This singularity is located in the center of useful workspace and
depends on the self rotation of the moving platform. It induces errors during
Forward Kinematic Model (FKM) evaluation and requires high motor torques
for haptic feedback [9]. Due to this singularity and a lack of dexterity, the first
prototype doesn’t allows us to properly control the slave robot.
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Fig. 2. MIS slave robot Fig. 3. 1st prototype of master
interface

To reduce effects of the singularity on haptic feedback, a redundant actuator
has placed on the moving platform [10,11]. This setup allows to obtain the
needed torques for haptic feedback, however it increases the weight of the moving
platform. The interface is not transparent anymore, it’s not a suitable solution
to control the slave robot.

A novel kinematic architecture based on Delta structure is proposed in this
work in order to cope with these drawback.

3 4haptic Device Architecture

3.1 A New Kinematic Structure

The intended MIS procedure requires three rotational and one translational
d.o.fs. However, classical Delta device allows three translational d.o.fs. To convert

Fig. 4. New Kinematic based on Delta robot architecture
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translation into rotations, a fourth leg is added to the structure. This extensible
leg is linked thanks to two spherical joints on the base and the moving platform.
The three rotational d.o.fs are given by the orientation of the fourth leg with
respect to the base. The translational d.o.fs is given by a prismatic joint located
in the fourth leg as shown in Fig. 4.

The spherical joint on the base is composed of an universal joint and a rev-
olute joint which allows to control self-rotation ϕe.

A CAD model and a 3D printed prototype have been designed to validate
the kinematic behavior.

3.2 Forward Kinematic Model

To evaluate the position of the moving platform, we have to determine the coor-
dinates of vector OD = [xd, yd, zd] in R0 where O is the origin of the fixed frame
attached to the base of the Delta and D is the center of the moving platform.

Fig. 5. Geometric parameters of Delta
robot

Fig. 6. Orientations of the 4th leg
(vector OD)

The geometric parameters of Delta structure are L1,L2,ra,rd and αi as
described in the Fig. 5. θi

1 defines the active joint angle while θi
2, θ

i
3 define the

passive joint angles of each leg. The coordinate of the moving platform (point
D) are given by the FKM written as follows for each leg of the Delta:

⎧
⎪⎨

⎪⎩

xd = Cαi(r + L1Cθi
1 + L2Cθi

3Cθi
12) − L1SαiSθi

3

yd = Sαi(r + L1Cθi
1 + L2Cθi

3Cθi
12) + L1CαiSθi

3

zd = L1Sθi
1 + L2Cθi

3Sθi
12

for i = 1, 2, 3 (1)

with r = ra − rd and CΘ = Cos (Θ) ;SΘ = Sin (Θ) ;CΘ12 = Cos (Θ1 + Θ2).
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The forward model determines the position xd,yd,zd of the moving platform
for any given configuration of actuated revolute joints θi

1. The position of point
D can be obtained by solving the following equations (for i = 1, 2, 3):

(xd − xi)2 + (yd − yi)2 + (zd − zi)2 = L2
2 (2)

where

⎧
⎪⎨

⎪⎩

xi = cos(αi)(r + L1cos(θi
1))

yi = sin(αi)(r + L1cos(θi
1))

zi = −L1sin(θi
1)

(3)

The orientation of the handle created by the fourth leg and the two spherical
joints is described using Euler ZYZ angles (ψe, θe, ϕe). A fourth active joint θ4
is introduce to control the self-rotation (ϕe).

One can describe the coordinates of vector OD using ψe, θe, ϕe and Ld as
follows (see Fig. 6):

OD = Ld · Rz(ψe) · Ry(θe) · Z = Ld ·
⎡

⎣
cosψesinθe

sinψesinθe

cosθe

⎤

⎦ =

⎡

⎣
xd

yd

zd

⎤

⎦ (4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ld = ‖ OD ‖=
√

x2
d + y2

d + z2d
θe = a cos( zd

Ld
)

ψe = a tan 2(− yd

Ld sin θe
,− xd

Ld sin θe
)

ϕe = θ4

(5)

The self rotation ϕe is directly given by the fourth active joint θ4.
These two models combined gives the FKM model of the 4haptic interface

using θ11, θ
2
1, θ

3
1, θ4 as input to evaluate θe, ψe, ϕe and Ld.

4 Dexterity Analysis and Comparison Between SPM and
4haptic Devices

Kinematic performances evaluate the ability of moving and applying forces to the
handle. In order to measure the kinematic performances we use dexterity criteria.
The dexterity describes the amplification of the errors due to the kinematic and
static transformations between Cartesian and joints spaces. The dexterity is
evaluated using the Condition number of Jacobian matrix κ (J) that describe
the kinematic of the master device [12].

The dexterity is evaluated as follows:

η (J) =
1

κ (J)
where κ (J) = ||J || . ∣∣∣∣J−1

∣
∣
∣
∣ (6)
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4.1 SPM Dexterity

The Spherical Parallel Manipulator (SPM) dexterity has been evaluated in pre-
vious work [9–11]. On this architecture, the distribution of dexterity depends on
self rotation ϕ.

For MIS task, the center of the workspace is the most important region.
According to the previous study of the SPM interface [9], for ϕ = 0◦, the dex-
terity is maximum on the center of the workspace but still low (about 0.4, see
Fig. 7), however for ϕ = 50◦, the dexterity on the center of the workspace van-
ishes (see Fig. 8). The presence of this singularity in the workspace amplifies
the error during FKM evaluation and requires high actuator torque for haptic
feedback. Due to this singularity, the self-rotation is not controllable anymore
when the dexterity is too low.

Fig. 7. Dexterity distribution for ϕ = 0◦ Fig. 8. Dexterity distribution for ϕ = 50◦

A solution with a redundant actuator installed on a joint of the platform has
been studied [10,11]. This modification of the device improves the dexterity of
the interface (up to 0.5), however it increases the weight of the moving platform.
For this reason, the solution is not suitable.

4.2 4haptic Dexterity

By differentiating Eq. (2), the Jacobian matrix of the 4haptic device can be
obtained. The fourth d.o.f. (self rotation ϕe) is excluded from the study since
this rotation is totally decoupled from the rest of the system.

ẋd(xd −xi)+ ẏd(yd −yi)+ żd(zd −zi) = ẋi(xd −xi)+ ẏi(yd −yi)+ żi(zd −zi) (7)

This equation can be written as follows:

Jυvd = Jθ q̇ (8)

Where vd = [ẋd, ẏd, żd]T (platform velocity) and q̇ = [θ̇11, θ̇
3
1, θ̇

3
1]

T (joints
velocities)

Jυ =

⎡

⎣
xd − x1 yd − y1 zd − z1
xd − x2 yd − y2 zd − z2
xd − x3 yd − y3 zd − z3

⎤

⎦ Jθ =

⎡

⎣
J1

J2

J3

⎤

⎦ (9)
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with

Ji = −L1CαiSθi
1(xd −xi)−L1SαiSθi

1(yd −yi)−L1cθ
i
1(zd −zi) for i = 1, 2, 3

(10)
The global Jacobian matrix used to evaluate dexterity is defined by J =

(Jυ)−1Jθ.
The dexterity of the new interface has been evaluated (Fig. 9) using different

fixed values of the fourth leg length Ld, which correspond to the fourth joint
parameter.

Fig. 9. Dexterity distribution of the 4haptic device in Cartesian space for Ld = 100mm

The new haptic interface has a maximum dexterity of 0.7. This value is
greater than the one obtained for previous SPM [9], which was limited to 0.4.
The dexterity is maximum in the center of workspace. Unlike SPM, it doesn’t
depends on the self-rotation ϕ since this rotation is decoupled from the rest. This
makes the new architecture better and suitable haptic interface for the intended
surgical task.

5 Conclusion

This paper presents a novel kinematic architecture of a 4 d.o.fs haptic interface
based on Delta structure, called 4haptic. A fourth leg is added to the Delta
structure to convert translations into rotations and translations. This solution
provides 3 rotations and 1 translation of the handle. The kinematic model as
well as the dexterity distribution of the novel architecture has been evaluated
in this paper. For the intended task, the dexterity of this device is higher than
the existing haptic controller (Spherical Parallel Manipulator) [9]. In addition,
the new interface has no singularity in the useful workspace. A higher dexterity
and absence of singularity in the workspace will improve the force feedback of
the novel device, which will be a suitable haptic interface for MIS teleoperation
system. In future works, a prototype will be designed and built based on the
results of this study in order to control efficiently a surgical slave robot.
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Abstract. This paper presents an analytical error prediction model of a 3PRP
planar parallel manipulator using the screw theory. This analytical approach is
used to find the effect of mechanical inaccuracies contributing to the end-effector
pose errors and their sensitivity coefficients. Finally, parameter sensitivity analysis
of non-compensable errors of two different configurations based on their fixed
base shape namely D-shape and U-shape fixed bases are analysed and compared.

Keywords: Planar parallel manipulator � Error modelling � Sensitivity
analysis � Non-compensable errors � Mechanical inaccuracies

1 Introduction

Planar parallel manipulators (PPMs) are having higher attention in the recent years due
to their simplicity in design and other potential advantages over serial manipulators [6].
In specific, manipulators having first joint as active prismatic joint in each leg has
several advantages than others [5]. In this respect, one of the commercially available
manipulators namely Hephaist [3] is a 3PRP U-shape PPM and the manipulator pro-
posed by Damien Chablat et al. is a D-shape 3-PRP PPM [1], both of them are promising
in terms of their kinematic and dynamic performances. This 3PRP configuration has
shown potential advantage in industrial usage but which of these two base configura-
tions is better in terms of accuracy in presence of mechanical inaccuracies are yet to be
explored. Accuracy analysis of these configurations due to the actuator inaccuracies
using the geometric approach is presented by Yu et al. [8], but in this work, effect of
other non-compensable errors and kinematic parameter errors are not included. It is
significant to quantify the sources of errors which are contributing the end-effector pose
errors in order to find the quality of task performed by the manipulator, which directly
affects the positional accuracy of the manipulator. These pose errors can be of three
kinds: kinematic errors, encoder errors and the errors due to joint clearances.
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The kinematic errors are due to the misalignments and the manufacturing imperfections
and tolerances. These kinematic errors for manipulators can be estimated and many
researches has found methods to quantify and compensate them [3, 4]. Encoder errors
can be of two types, the first one is due to least count of the encoders and other one is due
to incorrect index of the encoder reading. Index errors can be corrected by zero point
confirmation, but least count errors are non-compensable. Similarly, error due to joint
clearances and backlashes are also non-compensable in nature.

Therefore, in this paper, a complete error prediction model considering all possible
errors i.e., due to mechanical inaccuracies (including the kinematic parameter errors
and error due to joint clearances in the rotary and prismatic joints which are
non-compensable in nature) based on screw theory [2] is derived and presented. This
technique is already been utilized and verified by G. Wu et al. [7] for modelling the
error prediction model for 3-PPR configuration. This configuration has a simple model
due to its forward kinematics relationship, which is independent of its end-effector
orientation. But, in case of 3-PRP configuration, the kinematic relationship is depen-
dent on the end effector orientation. The proposed mathematical error model has
incorporated all these changes and used it for the error sensitivity analysis. This errors
estimation is done for the xy-plane only, the error z-axis is not derived in this model as
manipulator functioning is restricted to xy-plane only. Further, the effects of the
non-compensable errors are compared to identify the best configuration among
U-shape and D-shape fixed base configurations (which one is less susceptible to the
non-compensable errors).

2 Kinematic Model of the Manipulator

Here in this section, a generalized kinematic solution for the 3PRP configuration is
presented. This kinematic model is established on the basis of screw theory. The
kinematic arrangement of the 3PRP configuration is presented in Fig. 1. In Fig. 1, the
point T is the position of the end-effector and u is its orientation angle, the point O
represents the origin of the frame of reference, points Gi, Pi, Ri and Fi represent the
beginning limit of the linear actuators, the current position of the linear actuators, the
point where the passive prismatic joint starts and the point at which the prismatic link
connects to the end effector of the ith link, respectively. The vectors i i, j i, k i, l i and m
i are the vectors leading from the fixed reference frame (origin) to the end-effector
(moving reference frame). Representation of the each vector for the first kinematic
chain (leg) is shown in Fig. 1, and it is similar to the other kinematic chains with
corresponding index number. These vectors are characterized by the angles ai, bi, ci, hi,
u and wi, where angles ai, bi, ci, hi and u are with respect to the origin reference frame
while wi is with respect to end-effector’s reference frame and i = 1,2,3, which is the
index of the kinematic link chain.

From the closed looped kinematic chain O� Gi � Pi � Ri � Fi � T � O
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Forward kinematics equation for the position vector of the end-effector,T, is given as:

T ¼ aiii þ biji þ ciki þ dili þ eimi; i ¼ 1; 2; 3 ð1Þ

With; ii ¼ cos ai sin ai½ �T ; ji ¼ cos b
0
i sin b

0
i

h iT
; ki ¼ cos c

0
i sin c

0
i

h iT
;

li ¼ cos h
0
i sin h

0
i

h iT
; mi ¼ cos /þwið Þ sin /þwið Þ½ �T and

b
0
i ¼ ai þ bi; c

0
i ¼ ai þ bi þ ci þ/; h

0
i ¼ ai þ bi þ ci þ/þ hi

The inverse kinematics solution for the manipulator can be derived from Eq. (1)

bi ¼ lTi Eji
� ��1

lTi E T� aiii � ciki � eimið Þ
di ¼ jTi Eli

� ��1
jTi E T� aiii � ciki � eimið Þ

ð2Þ

where, E is the right angle rotation matrix and defined as: E ¼ 0 �1
1 0

� �

Geometric parameters for the U-shape and D-shape fixed base 3-PRP manipulators
are given in Tables 1 and 2. The CAD models are presented in Fig. 2.

Fig. 1. Generalized kinematic parameter diagram for 3PRP manipulator
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3 Jacobian and Singularities of the Manipulator

Velocity expression can be derived from the Eq. (1) by taking time derivative and
eliminating the coefficient of l i, as below:

A _T _/
� �T¼ B_b ð3Þ

where, A and B are the forward and inverse Jacobian of the manipulators, respectively.
These matrices are analytically given as follows:

A ¼
lT1 E

T �d1 � c1lT1 k1 � e1lT1m1

lT2 E
T �d2 � c2lT2 k2 � e2lT2m2

lT3 E
T �d3 � c1lT1 k1 � e1lT2m2

2
4

3
5;B ¼

lT1 E
T j1 0 0
0 lT2 E

T j2 0
0 0 lT3 E

T j3

2
4

3
5

Table 1. Geometric parameters for the U-shape fixed base 3PRP manipulator

Parameters ai (in degrees) bi (in degrees) ci (in degrees) hi (in degrees)

i = 1 180° −90° −90° + / 0°
i = 2 0° +90° +90° + / 0°
i = 3 90° −90° −90° + / 0°

Table 2. Geometric parameters for the D-shape fixed base 3PRP manipulator

Parameters ai (in degrees) bi (in degrees) ci (in degrees) hi (in degrees)

i = 1 0° 120° −90° + / 0°
i = 2 0° 60° +90° + / 0°
i = 3 90° −90° −90° + / 0°

Fig. 2. CAD models of the U-shape and D-shape fixed base 3-PRP manipulators
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The kinematic Jacobain of the manipulator is given as:

J ¼ A�1B ð4Þ

where, Matrix A is never singular while matrix B is singular only when the angle
/ ¼ � 90�, which is not possible for the manipulator within workspace, so neither
serial nor parallel singularity is present in the manipulator. So this configuration is a
singularity-free within its given workspace.

4 Error Modelling

In order to include the effect of joint clearances, the rotary joint the clearance is
characterized by using a small distance dqi between the points Pi and P0

i in the ith link
as shown in Fig. 3. To obtain the error for the end effector at point T Eq. (1) is
differentiated to obtain Eq. (5).

dT ¼daiii þ aidaiEii þ dbiji þ bidb
0
iEji þ dqini þ dciki þ cidc0iEki þ ddili

þ didh
0
iEli þ eiðd/þ dwiÞEmi; i ¼ 1; 2; 3

ð5Þ

db0i ¼ dai þ dbi
dc0i ¼ dai þ dbi þ dci þ d/

dh0i ¼ dai þ dbi þ dci þ d/þ dhi

ð6Þ

where, dT and d/ are the positioning and orientation error at the end effector.

Fig. 3. Error variables in the joint parameters of 3PRP manipulator
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Other variables namely, dai, dai, dbi, dbi, dci, dci, ddi, dhi, dei and dwi show the
variations in the geometric parameters of the link arrangement. Other than these effects,
it is also introduced a joint distance which represents the joint clearance of a rotary joint
and denoted as dqi. The associated vector with this distance variable is
n i = cos fi sin fi½ �T , by substituting the values of Eq. (6) in Eq. (5) and eliminating
the variable ddi, it gives

lTi E
TdT ¼ dailTi E

Tii þ dai lTi aiii þ biji þ cikið Þþ di
� �þ dbilTi E

Tji
þ dbi l

T
i biji þ cikið Þþ di

� �þ dqil
T
i E

Tni þ dcilTi E
Tki þ dci cil

T
i ki þ di

� �

þ didhi þ d/ cilTi ki þ di þ eilTi mi
� �þ deilTi E

Tmi þ dwieil
T
i mi

ð7Þ

If substituting the values of i ¼ 1; 2; 3 in Eq. (7) and arrange it in vector form as:

A

dx

dy

d/

2
64

3
75 ¼ Ha

da1
da2
da3

2
64

3
75þHa

da1
da2
da3

2
64

3
75þB

db1
db2
db3

2
64

3
75þHb

db1
db2
db3

2
64

3
75þHq

dq1
dq2
dq3

2
64

3
75

þHc

dc1
dc2
dc3

2
64

3
75þHc

dc1
dc2
dc3

2
64

3
75þHh

dh1
dh2
dh3

2
64

3
75þHe

de1
de2
de3

2
64

3
75þHw

dw1

dw2

dw3

2
64

3
75

ð8Þ

By multiplying A�1 on both sides, using Eq. (4) and replacing Jq with A�1Hq,
where q 2 a; a; b; q; c; c; d; h; e;wf g. The error sensitivity equation for the manipulator
is given as:

dx

dy

d/

2
64

3
75 ¼ Ja

da1
da2
da3

2
64

3
75þ Ja

da1
da2
da3

2
64

3
75þ J

db1
db2
db3

2
64

3
75þ Jb

db1
db2
db3

2
64

3
75þ Jq

dq1
dq2
dq3

2
64

3
75

þ Jc

dc1
dc2
dc3

2
64

3
75þ Jc

dc1
dc2
dc3

2
64

3
75þ Jh

dh1
dh2
dh3

2
64

3
75þ Je

de1
de2
de3

2
64

3
75þ Jw

dw1

dw2

dw3

2
64

3
75

ð9Þ

The coefficients of the error vectors in the above relation are the corresponding
sensitivity matrices related to each error variables. These analytical expressions are
validated using the virtual prototype with the help of MSC ADAMS software. Further,
these relations are used for accuracy and sensitivity analyses in the following section.

5 Error Sensitivity Analysis

Errors due to joint (bearing) clearances and the actuator inaccuracies (least count errors)
may cause alteration in the end-effector’s pose which cannot be compensated. Other
structural parameter errors related to the link lengths and actuator indexing errors can
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be compensated by the help of the calibration techniques or parameter identification
methods suggested for parallel manipulators. But the error caused due to the presence
of clearances, actuator inaccuracies and encoder least count errors are non-compensable
by such calibration techniques. Therefore, pose errors are estimated due to the joint
clearances, actuator inaccuracies and encoder least count errors using commercially
available data for rotary and prismatic joints and, encoder resolution. For the rotary
joint, joint clearances are assumed as:

0mm � dqi � 0:016mm and the contact angle fi can vary from 0 to 2p radians,
where dqi is the center to center distance of the mating bodies of the rotary joints. The
error variable dhi depends on the joint clearance of the prismatic joint and angular
deviation because of that which is �0:04� � dhi � 0:04� and the least count error is
taken as half of the least count which cannot be detected by the encoders here taken as
0mm � dbi � 0:025mm. The analytical error prediction model is solved simultane-
ously as an optimization problem using the genetic algorithms. For numerical com-
putation, the Matlab function namely, “ga” an in-build genetic algorithms optimization
solver is used. The test region for the error sensitivity analysis is considered as a square
area of 80 mm � 80 mm for the given actuator span of 200 mm in all three legs. To
compare the effect of the non-compensable errors in U-shape and D-shape fixed base
parallel configurations the data for joint clearances and encoder resolutions are taken
from the industrial product catalogues [7]. Local maximum possible pose errors of the
end-effector are obtained through the optimization code for the given workspace region
for the constant end-effector orientation. Error contour plots are presented in Figs. 4
and 5.

The local maximum position errors due to the non-compensable errors in U-shape
and D-shape fixed base parallel configurations are presented in Figs. 4 and 5, respec-
tively. The result shows that the pose errors due the non-compensable errors for the
selected workspace region are varying from 110 lm to 150 lm for U-shape 3-PRP
PPM and 70 lm to 95 lm for D-shape 3-PRP PPM. From the results, it is observed that
D-shape (symmetric shape) fixed base configuration performs better than U-shape fixed
base configurations in presence of non-compensable errors for 3-PRP kinematic
arrangement.

Fig. 4. Non-compensable error contour plots of the U-shape fixed base 3-PRP PPM
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6 Conclusions

In this paper, an analytical error prediction model for the planar 3PRP parallel con-
figuration is derived by considering all possible mechanical inaccuracies. Solution for
the joint parameter’s dependency on the orientation angle of the end-effector is solved
and demonstrated. From the results, it is found that the D-shape fixed base configu-
ration is less sensitive to the non-compensable errors. These non-compensable errors
cannot be compensated by the offline calibration method. But, it can be minimized or
compensated by using a task-space motion control strategy in trajectory tracking, which
would be considered as a future work.
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Abstract. In this paper, we present a Monte Carlo simulation based
method to determine the workspace of spatial parallel and hybrid manip-
ulators. The method does not need the solution of the forward kinemat-
ics problem which is often difficult for spatial multi-degree-of-freedom
parallel and hybrid manipulators. The method uses the solution of the
inverse kinematics problem, which is often much simpler. The method
can also readily incorporate joint limits and obtain the well-conditioned
workspace. The approach is illustrated with a six-degree-of-freedom
hybrid parallel manipulator which is a model for a human hand with
three fingers. A typical human hand geometry and the range of motion
at the joints are incorporated and the inverse kinematics equations for
each finger is derived and used to obtain the volume of the hybrid parallel
manipulator.

Keywords: Workspace of parallel manipulators · Monte Carlo method ·
Human hand inspired hybrid parallel manipulator

1 Introduction

The workspace of a parallel or a hybrid manipulator is much more difficult
to find in comparison to that of a serial manipulator. In a serial manipulator,
the workspace is determined by the geometry of the manipulator, its Denavit-
Hartenberg parameters and the limits on the actuated joints. In a parallel or
hybrid manipulators, in addition, the ranges of the motion of the passive joints
need to be determined by solving the forward kinematics problem – if there are
no real solutions to the forward kinematics problem, then the parallel manipula-
tor cannot be assembled for the given actuated joint variables. Additionally, the
self collisions of the links of the robot and the singularities which may split the
workspace thereby restricting the motion across them increase the complexity of
determining the workspace. Merlet [11,12] summarizes the approaches for deter-
mining the workspace of parallel manipulators. These approaches are search based
– an estimated region in space is discretized, the inverse kinematics is solved at
discrete points to obtain the joint variable and then the joint variables are check
for joint limit constraints. To obtain better resolution, the 3D workspace is dis-
cretized finer. One can also obtain the orientation workspace [7,13] and also obtain
c© Springer International Publishing AG 2018
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regions where the manipulator Jacobian is not rank deficient [8]. In this work we
use a Monte-Carlo based approach to obtain the well-conditioned workspace of
a parallel hybrid manipulator. The main advantage of using Monte-Carlo based
approach as described later, involves solving only the inverse kinematics problem
for a manipulator and various other checks may be accommodated to ensure that
the well-conditioned workspace is obtained without violating any joint limits. To
illustrate the Monte-Carlo method based approach, we use a model of the human
hand where the palm, the thumb, the index and the middle finger, grasping an
object, is modeled as a hybrid parallel manipulator. There exists several models
of multi-fingered human hand (see, for example, Stanford-JPL hand [15], Utah-
MIT hand [9], DLR hand [1] and Metahand [2]). In this paper we present a six-
degree-of-freedom model of a three-fingered hand, each finger with three degrees
of freedom, with two joints actuated in each finger. For the kinematic model we use
the anatomical dimensions of a typical human hand from available literature. The
joint limit constraints in the fingers are also used in determining the workspace
boundary and the volume. The Monte-Carlo based approach also uses the con-
dition number of the Jacobian to determine the well-conditioned workspace. The
paper is organized as follows. Section 2 gives a brief overview of the Monte-Carlo
method and discusses why it may be useful for obtaining workspaces of manipu-
lators. Section 3 describes the kinematic model of the hybrid parallel manipula-
tor modeling the three-fingered human hand. In Sect. 4 we describe two general
results pertaining to the workspace of the manipulator and conclude with Sect. 5
by summarizing the paper and proposing a possible avenue for future extension
of the current work.

2 A Review of the Monte Carlo Method

The Monte-Carlo method can be used to evaluate integrals of arbitrary func-
tions (vector or scalar, smooth or non-smooth) over an arbitrary domain [5].
The integral

I =
∫
[0,1]d

f (x) dx

where f(·) is a bounded real valued function, can be obtained as E(f(U)) where
E(· ) is the expectation of a variable taking a particular probabilistic value,
and U = [u1, u2, ..., ud]T a 1 × d vector taking random values of ui ∈ [0, 1]
∀i = 1, 2, ...d. From the strong law of large numbers the average,

SN =
1
n

n∑
i=1

f (Ui) (1)

converges to E(f(U)) as n −→ ∞ with probability 1.0.
We use the Monte Carlo method to obtain the well-conditioned and reachable

workspace of a parallel manipulator, by recognizing that it is an integration
problem in �d where d is the dimensionality of the joint space of the parallel
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Fig. 1. Demonstration of the Monte Carlo method

manipulator. For this we formulate a function f(j) =
{

0
1 , where j = {θi, φj}T ,

∀i = 1, 2, ..n actuated joint variables and ∀j = 1, 2, ...m passive joint variables
and m + n = d. At a given position and orientation of a chosen end-effector of
the manipulator, the function f assumes either 0 or 1 depending on whether the
said position and orientation of the parallel manipulator is well conditioned1 and
inverse kinematics of the manipulator is possible at that position and orientation
with all the joint values within permissible joint limits.

We demonstrate the above by the following example. We assume that the well
conditioned reachable workspace of a certain manipulator is a sphere with center
at the origin {0, 0, 0} and of radius r units. Therefore, the function f(p), p =
{x, y, z}T is used to classify whether a randomly selected point p is in, on or
outside the permissible workspace. For this case, the check is very simple being,

f(p) =
{

1 ∀ x2 + y2 + z2 ≤ r2

0 otherwise
. We test the method by fixing r = 2units

and searching uniformly through a cube of sides a = 5units, centered at the
origin. A schematic view of the workspace and search-space is given in Fig. 1a.
An approximation of the probability that a uniformly selected random point lies

in or on the workspace is
Nin

Ntotal
where Nin is the total number of points in/on

the workspace (selected by ensuring f(p) = 1), and Ntotal is the total number
of points searched through. Since, by assumption, the points were randomly dis-

tributed, the volume of the workspace can be approximated by VW =
Nin

Ntotal
×a3.

A comparison of Monte Carlo methods with different iteration depths is given
in Fig. 1b. We observe that the Monte Carlo method with Ntotal = 10 × 56 =
156, 250 samples is quite accurate (accuracy is ≥ 99.8%) and takes fairly low
computation time2 of less than 2 s.

1 We have used a definition of the condition number which encompasses both linear
and angular motion of the manipulator at the said position and orientation. The
well conditioned-ness is ensured by restricting the condition number to be less than
100 at all times.

2 The CPU times are for Matlab� R2015a running on a Windows 7 PC with an Intel
XEON quad core processor at 3.10 GHz and 16 GB of RAM.
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3 Description of the Parallel Manipulator

In this section, we first consider an anatomical representation of the human hand
(see Fig. 2a) and then present a schematic representation of the proposed manip-
ulator (see Fig. 2b). For the kinematic model, we consider only the thumb, index
and middle finger. In Fig. 2a and b, all the joints of interest are labeled. For the
index and middle fingers, the labels with a suffix 0, i.e. B0

1 & B0
2 represent the

metacarpo-phalangeal joints, B0
3 is the trapezium joint between the carpals and

metacarpal bone of the thumb. For the index and middle fingers, the joints with
suffix one, i.e. B1

1 & B1
2 are the joints between the proximal and intermediate pha-

langes, for the thumb, the joint B1
3 indicates the joint between the metacarpal

and the proximal phalanx bone. Finally, B2
1 & B2

2 indicate the joints between the
intermediate and distal phalanges, for the thumb, the joint B2

3 indicates the joint
between proximal and distal phalanx of the thumb. The main difference between
the proposed model and that of the Salisbury hand (see [15]) is that we are con-
sidering the metacarpo-phalangeal joint for the index and middle fingers to be a
two degree of freedom joint, as opposed to a single revolute joint, as considered
by Salisbury and co-workers. The joint was realized by 2 intersecting orthogonal
revolute joints. To obtain analytical solutions of the inverse kinematic problems
of all the joint values during a given motion of the manipulator, we realize that we
can have at most 9 joints with 6 active joints for the targeted 6 degrees of freedom
and 3 passive joint, distributed as one passive joint per finger.

Fig. 2. Anatomical and schematic representation of the human hand

Kinesiological studies (see the work by Nakamura et al. [14] and the references
contained therein for more details) have shown that all the joints in the human
finger do not equally participate in the prehensile movements of the human hand.
For a given grasping task, the motion is generally started from the proximal joints
B0

1 , B
0
2 & B0

3 and end in the distal joints B2
1 , B

2
2 & B2

3 , with the proximal joints
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being active for most of the time. Therefore, we choose the proximal joints to
be actuated and we fix the distal joints of the index and middle fingers B2

1 , B
2
2

and make B2
3 passive.

Table 1. Joint notations in Fig. 2b and permissible motions

Joint center Joint variable Nature Range of motion/Joint value

B0
1 and B0

2 θ1 and θ2 Active 0◦ to 90◦

B0
3 θ3 Active −45◦ to 45◦

B1
1 and B1

2 φ1 and φ2 Active 0◦ to 90◦

B1
3 ψ3 Active 0◦ to 90◦

B0
1 and B0

2 ψ1 and ψ2 Passive 0◦ to 15◦

B2
3 φ3 Passive 0◦ to 90◦

B2
1 and B2

2 γi and γm Fixed 0◦

B0
3 γt Fixed γt = 45◦

S1, S2 and S3 {ξiX , ξiY } ∀i = 1, 2, 3 Passive ±45◦

We conservatively choose the joint limit ranges to be ranging from 0◦ to 90◦.
This is somewhat less to that specified by Lin et al. [10], Degeorges and Oberlin
[4], and Degeorges et al. [3]. This was done to exclude the joint values greater
than 0◦ and less than 90◦, which may be introducing singularities, and increasing
the computational time by checking the equivalent condition number for more
number of points.

A brief formulation and solution of the inverse kinematics (IK) problem is
given in Appendix A. It maybe noted that the inverse kinematics of the manip-
ulator, for the index, middle and thumb, can be solved analytically since the
eliminant obtained is a quartic function of the angle ψi (see, Ghosal [6]). The
solution of the direct kinematics problem requires the solution of a sixteenth
degree polynomial.

4 Results: Workspaces of the Manipulator

For simulation we use the following dimensions measured off the right hand of an
adult male individual. The dimensions shown in Table 2, along with the abbre-
viations used correspond to the same in Fig. 2b. For determining the workspace
of the manipulator, we have considered 200,000 random points in the Cartesian
space bounded by X ∈ [0, 80]mm, Y ∈ [0, 80]mm and Z ∈ [0, 80]mm. At each
of these points we have assigned a random configuration of the object, 	S1S2S3

in Fig. 2b and checked the inverse kinematics solution of the manipulator. If the
IK problem was solvable by satisfying the joint limits in Table 1, the equivalent3

was less than 102 and the motions of the S joints were within the prescribed
limits, the point is counted and used for the representation as shown in Fig. 3a.
3 Obtained by combining the linear and angular velocity Jacobian matrices by scaling

the lengths by {l11 + l12 + l13} as shown in Fig. 2b.
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Table 2. Sample finger and hand segment lengths

Hand part Symbols in Fig. 2b Values in mm.

Index finger {l11, l12, l13} {35.45, 23.92, 17.6}
Middle finger {l21, l22, l23} {41.33, 22.3, 18.26}
Thumb {l31, l32, l33} {45.7, 36.23, 20.52}
Palm {d, h} {15, 68.83}

Fig. 3. Position and orientation workspaces of the manipulator

Using the data from Table 2 we obtain the volume of the workspace of the
manipulator as 1.4×103 mm3. The orientations workspace, in terms of X−Y −Z
Euler angles, at a point (marked by a black dot) is shown in Fig. 3b. The shape
and volume of the workspaces shown in Fig. 3 was obtained in less than 50 s. It
may be noted that the range of the Euler angles are chosen to be ±90◦. The
top part of Fig. 4 shows the workspace of the Salisbury hand ([15]) for the same

Fig. 4. Comparison of well-conditioned workspaces between the proposed manipulator
and the Salisbury hand (see [15])
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set of parameters and it can be seen that the well conditioned workspace for the
proposed manipulator is larger than the workspace of the Salisbury hand.

5 Conclusions

In this paper, we have used the Monte-Carlo method to determine the workspace
of a six-degree-of-freedom hybrid-parallel manipulator. The hybrid-parallel
manipulator is a model of a three-fingered human hand grasping an object with
the contact between the object and the fingers modeled with spherical joint
which implies that there is no rolling at the contact. Each finger has two actu-
ated and one passive joint. The dimensions of the link, the geometry and the
joint limits of the hybrid-parallel manipulator are derived from a typical human
hand. The general shape and measure of the workspace has been obtained using
the Monte Carlo method. However, a majority of dexterous manipulation tasks
are realized by rolling type of contact between the finger-tips and the object, and
we are attempting to extend this approach to include rolling contact between
the fingers and the object.

A Appendix I: Solution of the IK Problem of the
Proposed Manipulator

For the most general case, the position vector of the point S1 (see Fig. 2a) is
given as the expressions of X, Y and Z below. From the expressions in Eqs. 2,
3 and 4 we obtain E1 = X2 + (Y + d)2 + (Z − h)2 as given in Eq. 5. Using the
expressions for E1 and Z from Eqs. 4 and 5, in Sylvester’s dialytic method we
can obtain the eliminant for ψ1 as a quartic function of the angular variable.
The value of θ1 may be obtained by solving the expression for −X + (Y + d)
symbolically and the value of φ1 is obtained by using terms from the expressions
of Z and E1 as discussed in [6].

X =
1

2
(l11 cos (ψ1 − θ1) + l11 cos (ψ1 + θ1) + l12 cos (φ1 − ψ1 + θ1)

+ l12 cos (φ1 + ψ1 + θ1) + l13 cos (γi + φ1 − ψ1 + θ1) + l13 cos (γi + φ1 + ψ1 + θ1)) (2)

Y =
1

2
(l11 sin (ψ1 + θ1) + l11 sin (ψ1 − θ1) + l12 sin (φ1 + ψ1 + θ1)

− l12 sin (φ1 − ψ1 + θ1) + l13 sin (γi + φ1 + ψ1 + θ1) − l13 sin (γi + φ1 − ψ1 + θ1))

− d (3)

Z = − sin (φ1 + γi + θ1) l13 − sin (θ1 + φ1) l12 − sin (θ1) l11 + h (4)

E1 = (2 cos (γi) l11l13 + 2 l12l11) cos (φ1) − 2 l13 sin (γi) sin (φ1) l11

+ 2 l13 cos (γi) l12 + l11
2 + l12

2 + l13
2 (5)
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Abstract. This paper presents a HEXA parallel robots with reconfig-
urable platforms of Schönflies motion and its kinematic study. Four limbs
of the robot forms a fully parallel Schönflies-motion robot, with a six-
bar linkage to locate the second end-effector. The second end-effector is
constrained by a four-bar linkage subject to a prescribed pose of the first
end-effector as well as the two remaining limbs. The kinematic issues of
the robot, i.e., the inverse geometry, kinematic constraints of the reconfig-
urable platforms and Jacobian matrices, are studied. Some transmission
indices are defined to investigate the robot performance and the reach-
able workspace for both end-effectors are identified. The isocontours of
the transmission indices over the regular workspace are visualized for
graphical presentation of the robot’s transmission performance.

Keywords: Pick-and-place robot · Schönflies motion · HEXA ·
Reconfigurable platforms

1 Introduction

High-speed parallel robots with Schönflies motion are dedicated to fast pick-
and-place (PnP) operations, serving in the light industries of food handling and
electronic board assembly, etc. Amongst this type of robots [3,7,10,14], most
of them inherit the architecture from the Adept Quattro robot [1], which has a
symmetrical base platform and four identical limbs.

With the increasing requirement on grasping capabilities of this type of
robots, a number of fully parallel robots were modified and improved for per-
formance enhancement. For instance, the FANUC M-3iA/6A robot [2] adopts
the structure of the translational Delta robot, with three actuators mounted on
the ends of the three actuated links to actuate its wrist-mechanism end-effector.
To reduce the dynamic inertia, a double Delta robot was proposed by fixing all
the actuators [12], towards high acceleration. This design concept was inspired
by the approach of coupling two planar parallel translational robots to generate
the Schönflies motion [6]. Actuation redundancy was also considered as a way
to enhance the acceleration capability of the PnP robots [5] as well as recon-
figuration [4]. The previous robots were improved in the kinematic or dynamic
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 38
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aspects, resulting in one end-effector. To improve the PnP efficiency, a strategy
is to make the robot have reconfigurable platforms to install multiple grippers.
A 5-dof RRΠRR robot [8], with two translational end-effectors, was developed
for electric board assembly, for which the connecting bars of the mobile plat-
forms constitute a six-bar linkage. Sequentially, architectural modifications can
be made to the previous reconfigurable platforms to generate an additional rota-
tion around an axis of vertical direction for each end-effector, as the Schönflies
motion is more and more popular in material handling.

On the basis of the design of reconfigurable platforms [8], this paper will
present a HEXA [9] base 6-RUU parallel robots with reconfigurable platforms
of Schönflies motion as shown in Fig. 1(a) and preliminary kinematic study. The
displacement group of the mobile platforms is studied. Moreover, the reachable
workspace is identified and some transmission indices are defined to investigate
the robot’s performance, where the isocontours of the transmission indices over
the regular workspace are visualized to show the robot’s transmission perfor-
mance.

2 Manipulator Under Study and Displacement Group

The parameterizations of the robot are depicted in Figs. 1(b) and (c). Limbs 1
and 6 are connected by a sub-platform as well as limbs 2 and 3, which behaves
similar to the articulated platform of Quattro robot [1], the rotation of the end-
effector 1 being realized by their relative movements. Moreover, limbs 4 and 5
are coupled by the end-effector 2 that is located in a six-bar linkage formed by
limbs 1, 2, 3 and 6.

The global coordinate frame Fb is built with the origin located at the geo-
metric center of the base platform, namely, point O, where the x-axis is parallel
to the axes of rotation of the first two actuated joints. The moving coordinate
frames F1 and F2 are located at the geometric centers of the two end-effectors,
namely, points P1 and P2, where x1 and x2-axes are parallel to the segments
C2C1 and C4C5, respectively. The angle between ui and x-axis is represented by
μi, μ1 = μ2 = 0, μ3 = μ4 = 2π/3, μ5 = μ6 = −2π/3. Moreover, unit vectors vi

and wi are parallel to the segments AiBi and BiCi, respectively, namely, the unit
vectors along the active link and parallelogram in the ith limb. Here and after,
vectors i, j and k represent the unit vectors of x-, y- and z-axis, respectively. In
the following study, the vertical offsets in the platforms are supposed to be zero
for convenience, as they do not affect the planar motion of the end-effector.

Figure 2(a) depicts the joint-and-loop graph of the robot, wherein the gray
and white boxes represent the actuated and passive joints, respectively. With
the Group Theory, the kinematic bond Li of the RUU chain in ith limb, as
displayed in Fig. 2(b), is the product as below:
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Fig. 1. The 6-RUU robot: (a) CAD model; (b) parameterization; (c) top view of the
platform.

Li = R(Ai) · R(Bi) · T (ni) · R(Ci) = X (ui) (1)

and the kinematic bonds of the joint 1st and 6th limbs L16 is

L16 = T · R(N, k) = X (k) (2)

Similarly, the kinematic bonds of the 2nd and 3rd limbs L23 is X (k). Subse-
quently, the intersection of the subgroups for platform 1 results in a Schönflies
subgroup X (k), namely, the Schönflies motion.

On the other hand, the kinematic bonds L45 of the closed loop A4–B4–C4–
C5–B5–A5 is

L45 = T · S (N) (3)

and the subgroups of the coupler in the closed loop six-bar linkage is X (k)·G (k),
where G (k) is the planar motion subgroup. Therefore, the intersection of all the
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Fig. 2. The loop structure of the robot: (a) joint-and-loop graph; (b) one limb with
rotational input.

subgroups for platform 2 leads to X (k) · G (k) ∩ T · S (N) = X (k), meaning
that platform 2 performs the Schönflies motion.

3 Kinematic Modeling of the Robot

3.1 Inverse Geometry

The inverse geometry problem of the robot can be readily solved from the fol-
lowing kinematic constraint equation:

‖ci − bi‖ − l = 0 (4)

To this end, the angular displacement of the ith actuated joint is solved as

θi = 2 tan−1 −Ii ± √
I2i + J2

i − K2
i

Ki − Ji
where

⎧
⎨

⎩

Ii = −2bmiz

Ji = 2b(mix sin μi − miy cos μi)
Ki = ‖mi‖2 + b2 − l2

(5)
where mi =

[
mix miy miz

]T = ci − ai, and ai and ci, respectively, are the
Cartesian coordinates of points Ai and Ci in Fb:

ai = Rz(μi)[(−1)i+1ai + Rj] (6a)

ci =

⎧
⎨

⎩

p1 + (−1)i+1r1Q1i, i = 1, 2
p1 + (−1)ir1Q1i − r2[(−1)i+1 cos γ sin γ 0]T , i = 3, 6
p2 + (−1)i+1r5Qi, i = 4, 5

(6b)

and pj =
[
xj yj z

]T , j = 1, 2, are the Cartesian coordinates of points Pj , i.e.,
the end-effector position, and Qj = Rz(φj) are the rotation matrices of the
end-effectors.
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Moreover, the poses of the two end-effectors are kinematically constrained:

k1 + k2 cos β − k3 cos α − cos α cos β − sin α sinβ = 0 (7a)
c3 + Rη [r3Rz(α)i + r4Rz(ψ)i] − p2 = 0 (7b)
c6 + Rη [r3Rz(β)i − r4Rz(ψ)i] − p2 = 0 (7c)

with

Rη =

⎡

⎣
cos η sin η 0
sin η − cos η 0

0 0 1

⎤

⎦ , k1 =
‖c6 − c3‖2 + 2r23 − 4r24

2r23
, k2 = k3 =

‖c6 − c3‖
r3

(8)

3.2 Kinematic Jacobian Matrix and Transmission Index

Differentiating Eq. (4) with respect to time leads to

Aχ̇ = Bθ̇ (9)

with

A =
[
eT
1 ... eT

6

]T ; χ̇ =
[
ẋ1 ẏ1 ż φ̇1 ẋ2 ẏ2 φ̇2

]T
(10a)

B = diag
[
h1 h2 ... h6

]
; θ̇ =

[
θ̇1 θ̇2 ... θ̇6

]T
(10b)

where A and B are the forward and inverse Jacobian matrices, respectively, and

ei =
{[

wT
i wT

i si 01×3

]
, i = 1, 2, 3, 6[

01×2 wiz 0 wix wiy wT
i si

]
, i = 4, 5 ; hi = bwT

i (ui × vi) (11)

here, wi =
[
wix wiy wiz

]T
= (ci − bi)/l, s1(6) = −s2(3) = r1Q1j, s5 = −s4 = r5Q2j.

From Eqs. (10a) and (10b), it is seen that the number of output parameters
is not equal to that of input ones, for which the reason lies in the kinematic
constraints of the two end-effectors.

For performance evaluation, some transmission indices will be defined, in
order to accommodate the dimensional inhomogeneity of the forward Jacobian
matrix due to the mixed linear and rotational motions of end-effectors.

From the determinant |B| of the inverse Jacobian matrix B below:

|B| =
6∏

i=1

hi = b6
6∏

i=1

wT
i (ui × vi) (12)

the input transmission index λi of the ith limb is defined as [13]

λi = | cos ϑi| = |wT
i (ui × vi)| ∈ [0, 1], i = 1, ..., 6 (13)

where ϑi is the pressure angle [11] associated with the motion transmission, i.e.,
the motion transmitted from the actuated link to the parallelogram.
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The limbs 1, 2, 3, 6 and the end-effector 1 determines a fully Schönflies-
motion robot, for which the input and output twists are mapped by the following
equation:

A1χ̇1 = B1θ̇1; A1 =

⎡
⎢⎢⎣

w1 r1wT
1 s1

w2 r1wT
2 s2

w3 r1wT
3 s3

w6 r1wT
6 s6

⎤
⎥⎥⎦ , χ̇1 =

⎡
⎢⎢⎣

ẋ1

ẏ1
ż

φ̇1

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

h1

h2

h3

h6

⎤
⎥⎥⎦ , θ̇1 =

⎡
⎢⎢⎣

θ̇1
θ̇2
θ̇3
θ̇6

⎤
⎥⎥⎦ (14)

With the Laplace expansion, the determinant of the forward Jacobian A1 is [13]:

|A1| = 2r1(w1 × w6) × (w2 × w3) · s1 (15)

then the output transmission index σ for the end-effector 1 is defined as

σ = | cos ω| =
|(w1 × w6) × (w2 × w3) · s1|
‖(w1 × w6) × (w2 × w3)‖ ∈ [0, 1] (16)

where ω is the pressure angle amongst limbs, namely, the force transmitted from
the end-effector to the passive parallelograms in the other limbs, provided that
the actuated joints in these limbs are locked.

Moreover, the output transmission index for limbs 4 and 5 are defined by [14]

ξk =
|$̂Ok ◦ $̂Tk|

|$̂Ok ◦ $̂Tk|max

∈ [0, 1]; $̂Ok =
[

k
r5Q2i

]
, $̂Tk =

[
wk

bvk × wk

]
, k = 4, 5

(17)
where $̂Ok and $̂Tk are the unit output twist screw (OTS) and transmission
wrench screw (TWS) of the ith limb, respectively.

The larger value of the indices defined in Eqs. (13), (16) and (17) indicates
better transmission quality and while index value 0 means singular configuration.

4 Workspace and Transmission Analysis of the Robot

The workspace of the robot under study can be obtained from Eqs. (4) and (5),
either by CAD approach or numerical searching method. Here, the numerical
searching method is adopted, where the geometric parameters are given in mm:
R = 200, a = 60, b = 260, l = 550, r1 = r2 = r3 = r4 = r5 = 60.

With a prescribed position of point P1, the maximum reachable positions
of the end-effector 2, namely, point P2, are displayed in Fig. 3(a). The reach-
able workspace of the end-effector 1 (green) and the end-effector 2 (red) of the
mobile platforms with a constant orientation φ1 = φ2 = 0 are shown in Fig. 3(b)
together with a fitted regular common workspace for the two end-effectors.

Figure 4 shows the transmission indices defined in previous section over the
regular workspace with constant orientations. From these figures, it can be seen
that the input transmission indices are larger than 0.2, which are relatively larger
than the output transmission indices of both end-effectors. The output transmis-
sion indices of end-effector 1 which are close to 0 appear in the workspace bound-
aries, while some smaller indices ξ of end-effector 2 occurs inside the workspace,
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Fig. 3. The workspace of the robot with φ1 = φ2 = 0: (a) possible positions of end-
effector 2 relative to end-effector 1; (b) reachable workspace of both end-effectors.
(Color figure online)

Fig. 4. Transmission indices of the robot over the regular workspace with constant
orientations: (a) φ1 = φ2 = 0; (b) φ1 = −φ2 = π/4.

showing that the transmission quality for end-effector 1 are better than end-
effector 2 in most region of the workspace. This means that the end-effector 2
will encounter parallel singularities inside the workspace, thus, the motors of
the robot needs to be arranged for singularity-free design. Another observation
is that the robot can have better transmission with Cartesian coordinates of
y ≤ 0. Moreover, the first end-effector admits a relatively larger operational
workspace with transmission indices larger than LTI ≥ 0.7 for high transmission
quality.



338 G. Wu and H. Dong

5 Conclusions

This paper presents a HEXA parallel robots with reconfigurable platforms, of
which both end-effectors perform Schönflies motions. Four limbs of the robot
constitute a fully parallel Schönflies-motion robot and the second end-effector
is kinematically constrained by the former. The Jacobian matrices are derived
to define the transmission indices and the corresponding isocontours are plot-
ted to show the transmission quality of the translational workspace with rota-
tional capability ±45◦. The first end-effector is almost free of singularity within
the identified regular workspace, while the second one will encounter parallel
singularities inside the workspace. In the future, singularity-free design will be
conducted.
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Abstract. The motion and force transmission is highly important for the
analysis and design of parallel manipulators. Recent advances in research have
led to generally applicable formulations for transmission indices based on the
notion of power coefficient. Analyses of limited-dof parallel manipulators
however require separate consideration of constraint characteristics. Conversely,
the design parameters of parallel manipulators are highly coupled. Thus, such
separation may distort the performance evaluation and optimization of parallel
manipulators. In this context, indices based on pressure angles of fully parallel
manipulators are revisited and applied to the performance evaluation of the
Delta robot, one of the lower-dof parallel robots. The resulting index is physi-
cally appropriate and allows for simultaneous assessment of both, the motion
and force transmission and the constraint characteristics.

Keywords: Transmission indices � Pressure angle � Power coefficient �
Constraint singularity � Delta parallel robot

1 Introduction

The geometries of parallel manipulators can be optimized such that specified work-
space requirements are met. Manipulators that were optimized by workspace and
occupied space requirements only may however suffer from poor kinematic and
dynamic characteristics. Thus, kinematic and dynamic performance measures are
commonly taken into account for the optimization of manipulators. The main kinematic
concepts for performance measurement are the concepts of condition number,
manipulability, and motion/force transmissibility and constrainability [1].

Both measures, the condition number as well as the manipulability, are based on the
characteristics of the Jacobian. The condition number [2] is a local measure of the
Jacobian-induced distortion of the motion and force transmission from the active joint
to the end-effector space. The product of the singular values of the Jacobian matrix
corresponds to the volume of the so-called manipulability ellipsoid [3]. However,
information on the directionality get lost. In addition, for translational and rotational
dof of the moving platform, the Jacobian matrix contains inhomogeneous units and
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further modification, e.g. normalization or separate analyses of position and orientation
[4], is required. Moreover, for limited-dof manipulators the input-output Jacobian may
not be sufficient to predict all possible singularities [5]. Finally, Jacobian-based indices
are frame-dependent. As a result, the values of the indices vary with the choice of
coordinates [6]. To overcome the aforementioned problems, the performance of parallel
manipulators can alternatively be assessed analyzing the quality of transmissibility and
constrainability.

Analyses of transmissibility date back to Alt [7] proposing the transmission angle in
planar mechanisms. Following the theory of screws [8], the first transmission indices of
spatial manipulators were proposed by Yuan et al. [9] using the virtual coefficient
between the transmission wrench screw (TWS) and the output twist screws (OTS).
Sutherland and Roth [10] normalized the initial approach. Shimojima et al. [11] pro-
posed a unique definition of TWS, which is dependent on the output link’s load
condition. Further generalizations were proposed by Tsai and Lee [12] taking into
account a generalized transmission wrench screw (GTWS) and the related virtual
coefficients to the input and output screw. Later Chen and Angeles [13] proposed the
generalized transmission index (GTI). The three approaches can be distinguished by the
different definitions of the maximum value of the virtual coefficient (as used for
normalization).

Takeda and Funabashi [14] proposed a transmission index (TI) taking into account
the virtual power transmitted from the input links to the output link. In their approach,
single-dof mechanisms are generated by fixing all input links except one and analyzed
in respect of the resulting pressure angles at the connection between input and output
link. The approach is only feasible for TWS with a zero pitch (i.e. a transmission force
line) and thus represents a special case of the GTI. In other words, in order to define the
pressure angle in a simple definition, the TWS can be represented at a (spherical) joint
where no moment is applied as constraint. This approach was extended to cable driven
parallel mechanism [15] and spherical parallel mechanism [16]. Briot et al. [17]
investigated the determination of the maximum reachable workspace of planar parallel
manipulators based on the transmission angle and the position of the instantaneous
center of rotation.

Based on the concept of virtual coefficient and following Takeda’s approach of
fixing all inputs except one, Wang et al. [18] proposed a general procedure for
non-redundant spatial parallel manipulators including new transmission indices based
on the input transmission index (ITI) and output transmission index (OTI), where the
normalized virtual coefficient is called power coefficient. Additionally, the minimum of
all indices are defined as local transmission index (LTI). The concept was extended for
redundant and/or overconstrained parallel manipulators [6, 19]. Further indices are e.g.
the global transmission index (GTI) ensuring good performance throughout the entire
workspace of a manipulator and the good-transmission workspace (GTW) defined by a
minimum value for the LTI [20]. In fact, the proposed indices are able to detect a
manipulator’s closeness to actuation (transmission) singularities, but cannot be applied
to measure the closeness to constraint singularities [21, 22]. Thus, constraint trans-
mission indices (CTI) were developed as shown in [21, 23] and further refined and
discussed extensively in [24]. At the same time, Liu et al. [25] proposed a novel
approach for the derivation of the maximum value of the virtual coefficient.
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In the present paper, transmission indices based on the approaches of both the
pressure angles and the power coefficient for the Delta robot, one of the lower-dof
parallel robots, are formulated. Assessments are given to support the kinematic design
of the Delta robot with high transmission and constraint capability.

2 Transmissibility of Delta Parallel Robots

The Delta robot is one of the best known and most widely spread parallel robots in
academia and industry [26]. The output link or moving platform of the Delta robot is
restricted to purely translational dof. Usually, the architecture is represented by three
symmetric kinematic chains of the type R(SS)2. Accordingly, the parallelogram con-
tains four spherical joints and four links pairwise of the same length. With this, the
connecting rods only need to transmit axial forces allowing for light-weight design.
Figure 1 shows the schematic representation of the Delta robot and the related kine-
matic relations. The vector rF;i denotes the position of the revolute joint of the i-th
kinematic chain on a circle with radius rF . Similarly, the attachment point of the
parallelogram on the output link is denoted by rP;i. The distance Ds between the
spherical joints is the same for all joint pairs. The vectors lPL;i and lDL;i point along the
i-th proximal and distal links, respectively. The workspace prescribed for the following
analyses is represented by a cylindrical base (with radius D1 and height Z1) and a
conical portion (with radius D2 and height Z2) adjacent to it. The centre of their
connecting surface determines the relative position P0 ¼ 0; 0; Z0½ � of the workspace to
the origin of frame O. Table 1 summarizes the related parameters. The fundamentals
are presumed to be known.
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Fig. 1. Schematic representation and definition of kinematic parameters

Table 1. Parameters: delta robot and prescribed workspace

Parameter rF;i rP;i Ds lPL;i lDL;i D1 D2 Z1 Z2 Z0
Value [m] 0.20 0.05 0.10 0.40 0.80 1.00 0.80 0.25 0.05 -0.80
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2.1 Transmission Indices Based on Pressure Angles

The two connecting rods j within a chain i solely transmit axial forces denoted by the
unit vector f̂ j;i. Hence, the direction of these forces is given by the vector lDL;i (Fig. 1b).
The angle between the velocity vB;i of the spherical joint Bj;i and the direction of the
force transmitted to the output link along the distal link can be interpreted as pressure
angle ci of the input transmission. Its cosine value is thus

ki;PA ¼ cos cið Þ ¼ vTB;i f̂ j;i= vB;i
�� �� ð1Þ

Accordingly, the best transmission occurs when the directions of velocity and force
coincides. The input transmission index ITI is given as the minimum of the absolute
pressure angles’ cosine among all three kinematic chains, i.e.

ITI ¼ min ki;PA
�� ��� �8i ¼ 1; 2; 3f g ð2Þ

In respect of the output transmission, a transmission wrench screw (TWS) can be
introduced at each of the six spherical joints Cj;i where no moment is applied as
constraint [14, 27]. With this a simple definition of an output-related pressure angle is
obtained. The TWS of rod j; ið Þ with respect to Ck;m are then given by

$̂TWS;j;i ¼ f̂ j;i
rP;j;i � rP;k;m
� �� f̂ j;i

" #
ð3Þ

Imagine the virtual motion of a single-dof mechanism by removing one of the six
connecting rods k of a chain m (Fig. 2b, k ¼ 1) [14]. The instantaneous motion of the
output link is the given by

k;mð Þ$OTS ¼
k;mð Þx
k;mð Þvj;i

� �
ð4Þ
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Fig. 2. Pressure angles of input and output transmission (with six supporting links)
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with k;mð Þx as angular velocity and k;mð Þvj;i as translational velocity at joint Cj;i of the

output link. Among $̂TWS;j;i, all except $̂TWS;k;m are constraint wrenches applying no
work to the output link [18]. Then, the virtual power can be derived as

dWj;i ¼ $̂TWS;j;i � k;mð Þ$OTS ¼ $TWS;j;i �
k;mð Þx
k;mð Þvj;i

� �
¼ 0 ð5Þ

where one entry of k;mð Þ$OTS can be chosen arbitrarily. Finally, the instantenous velocity
k;mð Þvj;i at joint Ck;m can be extracted to compute the pressure angle ak;m of the output
transmission. The angle can be physically interpreted as pressure angle at the respective
connection point to the output link (Fig. 2b). Its cosine value is given by

gk;m;PA ¼ cos ak;m
� � ¼ k;mð ÞvTk;m f̂ k;m=

k;mð Þvk;m
�� �� ð6Þ

The output transmission index can then be derived as

OTIPA;6 ¼ min gk;m;PA
�� ��� �8m ¼ 1; 2; 3f g; 8k ¼ 1; 2f g ð7Þ

2.2 Transmission Indices Based on Power Coefficients

Alternative approaches are based on the notion of power coefficient. In general, the
orthogonal product of a wrench and twist screw ($WS and $TS) related to a body is called
virtual coefficient and can be interpreted as instantaneous power caused by the wrench
acting on the moving body [24]. The higher the virtual coefficient, the better is the
kinematic performance or the less wrench is required to transmit power [25]. The
power coefficient is the normalized virtual coefficient

q ¼ $̂WS � $̂TS
���

���= $̂WS � $̂TS
���

���
max

ð8Þ

Following this definition, the input transmission index corresponds to Eq. (1).
For the output transmission index, the unit output twist screw (OTS) is related to the

TWS. The general derivation in [25], and in particular the derivation of the maximum
characteristic length, can be simplified for the Delta robot. The axis of the TWS passes
through the spherical joint for any configuration. More importantly, presuming that the
output link performs translational motion only, the angular velocity of the OTS is set to
zero (disregarding potential constraint singularities). Then, for infinite pitch screws
(pure translation), the maximum virtual coefficient is simply given by the maximum
value of the dot product of the wrench and twist axes, which is one in this case [13].

Delta-related analyses of the output transmission based on power coefficients can,
for example, be found for the four-legged 4-dof-variants X4 [28] and Ragnar robot
[29]. Presuming three supporting links and translational motion of the output only, the
system of Eq. (5) can be solved releasing one input link while blocking the other two.
For instance, if the first chain is removed the output link might move in the direction
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$OTS;1 ¼ 03
v1

� �
¼ 03

f̂ 3 � f̂ 2= f̂ 3 � f̂ 2
�� ��

� �
ð9Þ

Then, an alternative formulation for the output transmission index is given as

g1;PC;3 ¼ $TWS;1 � $OTS;1
�� �� ¼ f̂T1 f̂ 3 � f̂ 2

� 	���
���= f̂ 3 � f̂ 2
�� �� ð10Þ

which, since the maximum virtual coefficient is one, corresponds to the orthogonal
product of wrench and twist screw. The same applies for the second and third chain. As
mentioned before, the orientation of the output link cannot be kept constant if one
complete chain is removed since one constraint moment is removed as well. Compared
to the OTI taking into account all six supporting links, cf. Eq. (3), Eq. (10) disregards
the constraint moment and thus prevents a physically appropriate definition as pressure
angle. Still, in recent Delta-related studies (e.g. [21, 30, 31]) the index is introduced as
pressure angle among the three supporting links where three unit forces f̂i apply to the
output link from the three chains. Then, for the 3-dof variant, the absolute value of the
cosine of the pressure angle among the links corresponds to Eq. (10). Inevitably, the
constraint singularities must be tackled separately using constraint transmission indices
as shown in [23].

3 Results and Discussion

The transmission characteristics are analyzed based on the parameters as shown in
Table 1. The input transmission characteristics (ITI) are unequivocal, whereas two
distinct approaches are found for the output transmission. These are (A1) based on
physically appropriate pressure angles of six supporting links covering constraint
singularities (OTIPA;6) and (A2) based on the power coefficient presuming translational
(virtual) motion of the output link with three supporting links (OTIPC;3). Figure 3a)
displays the distributions of ITI for the symmetry planes of the prescribed workspace
and the Z ¼ Z0-plane. Figure 3b) shows the distribution of the OTI for Z ¼ �0:24 and
unrestricted swing angles. Regions where OTI become less than 0.1 are highlighted in
red. Here, based on the relationship between the output pose error and the transmission
index (TI) for the 6-SPS mechanism in [32], the threshold value to identify the
neighborhoods of singularity is set to 0.1.

For (A1), the OTIPA;6 are close to zero in neighborhoods where actuation (dashed
line) or constraint (dotted line) singularities occur. Accordingly, (A2) fails to detect the
internal (constraint) singularities. However, minimal values (OTIPC;3 � 0.1) correspond
to singular point-curves of actuation. Thus, for thorough analyses with (A2) separate
investigations of constraint transmission indices are unavoidable. Then, the same sin-
gular point-curves can be obtained as for OTIPA;6. Nonetheless, in contrast to OTIPA;6,
the definition of OTI and CTI is based on virtual situations which are not physically
appropriate. For instance, for the CTI, the relation between the constraint wrench
moment and the (virtual) rotational motion of the output link is evaluated. In practice,
such situation does not exist. Moreover, difficulties may arise for the determination of a
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unique index, which may be the minimum or the product of OTI and CTI including
weigthings. Accordingly, the distributions of the OTI on the Z ¼ Z0-plane within the
prescribed workspace are different (Fig. 3c). In summary, (A1) seems to be the most
appropriate approach for the analyses and understanding of the motion/force trans-
missibility and constrainability of Delta parallel robots.

4 Conclusions

This study demonstrated different approaches to assess the transmission and constraint
capabilities of Delta robots. Recent advances based on the power coefficient can be
used for the analyses with three supporting legs. However, for lower-dof parallel
manipulators, constraint characteristics must be assessed together with actuation
(output transmission) characteristics. Therefore, an alternative approach based on
pressure angles is introduced. The resulting index is physically meaningful and
simultaneously takes into account actuation as well as constraint characteristics.
Moreover, using this index, the distance between the spherical joints in a parallelogram
of the distal links can be considered as an additional design parameter in future
kinematic optimization of Delta parallel robots. Future work includes the generalization
of the proposed approach based on the pressure angles for the evaluation of the
transmission and constraint characteristics of lower-dof parallel robots.
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Abstract. Identifying singularity manifolds of parallel manipulators analyti-
cally is a hard task due to their complex kinematics and passive joints. This
study proposes to use the geometrical conditions of singularities in order to
identify the singularity manifolds for a 3-RRS parallel manipulator. The sin-
gularity surfaces for both inverse and forward kinematics singularities are
obtained and plotted.

Keywords: Parallel manipulators � Jacobian analysis � Singularity analysis �
Singularity surfaces

1 Introduction

At a singular configuration of a manipulator, the end effector loses its rigidity or has
uncontrollable degrees-of-freedom (dof) [5]. When considering the parallel manipu-
lators (PM), it should be noticed that the singular configurations can be observed inside
the workspace and it is highly undesirable to loose the stiffness or gain an uncon-
trollable dof while performing a task with the PM [9].

For the case of closed loop kinematic chains, the velocity input-output relationship
is defined in [3] as A _xþB _h ¼ 0, where _x represents task space velocities and _h
represents joint space velocities. Using the velocity input-output relationship equation,
3 types of singularities are defined. The first type occurs when det(B) = 0. For this type
of singularity, the mechanism reaches either its internal or external limit of the
workspace. This type of singularity is called as inverse kinematic singularity (IKS) or
loss type singularity. The second type of singularity is observed when det(A) = 0. This
type of singularty occurs within the workspace, rather than at the boundary, and it is
called as forward kinematic singularities (FKS) or gain type singularities. The third
type of singularity is observed when det(A) = det(B) = 0. This type of singularities are
called as combined singularities.

The PM investigated in this study is a 3-dof manipulator which can achieve 1 dof
translational and 2 dof rotational motion (1T2R). All the limbs have same kinematic
structure and they are symmetrically connected to the base and moving platforms. In
the literature, there are several studies investigating the singularities of PMs which have
the same motion chracteristics. For a 3-PRRU PM (the P3 Robot) the singularity
analysis is performed in [2] by evaluating the determinants of the Jacobian matrices.
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The singularity conditions were issued in [6] by obtaining the Jacobian matrices of a 3-
PSP PM. They mention the difficulty of analytically determining the singularity
equations for PMs by using the Jacobian matrices. So, instead of evaluating the
Jacobian matrices, they provide the geometrical condition for the singularities. The
singularities of a 3-PRS PM were investigated in [4]. Instead of evaluating the deter-
minants of the Jacobian matrices, they investigated the geometrical conditions for the
singularities of the PM. For platform type multiloop spatial mechanisms, several
mechanisms were examined in [1], providing the geometrical conditions of the
mechanisms at which the gain type singularities will occur.

This study investigates both IKS and FKS of a 3-RRS PM. To achieve this, firstly
the geometry of the PM is explained. Then the Jacobian matrices for the inverse and
forward kinematics are formulated. Using the Jacobian matrices, the singularity con-
ditions of the PM and their physical meaning are examined. Finally, using the geo-
metrical singularity conditions, both IKS and FKS surfaces in terms of the independent
task space parameters are constructed using Mathematica® software.

2 Manipulator Geometry

The manipulator investigated in this study is a 3-dof PM located at Izmir Institute of
Technology and it has 3 identical limbs. All the limbs have an active revolute (R) joint,
a passive R joint and a spherical (S) joint. In Fig. 1, active R joints are shown with O0i,
passive R joints shown with Oij and S joints are shown with O7j for i = 1, 2, 3 and
j = i + 3. The R joint axes on each limb are parallel to each other, and therefore each
limb has a planar motion. hi and /i are respectively the active and passive R joint
variables on the ith link. The length of the bottom and upper links are l1 = 0.7 m and
l2 = 0.775 m, respectively.

Fig. 1. Geometry of the 3-RRS parallel manipulator
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Both base and platform are in the shape of an equilateral triangle with circumcircle
radii b = p = 0.544 m. The axes of the active R joints are tangential to the base
circumcircle. The centers of the base and platform circumcircles are shown with O0 and
O7, respectively. A fixed coordinate frame (O0-xyz) is attached to O0 and its x-axis is

along O0O01
���!

direction. A moving coordinate frame (O7-uvw) is attached to O7 and its

u axis is along O7O74
���!

direction. The limbs are attached to the corners of the base and
platform triangles such that a11 = a44 = 0°; a12 (∠O01O0O02) = a45 (∠O74O7O75) =
120°; a13 (∠O01O0O03) = a46 (∠O74O7O76) = 240°.

The position of the moving platform origin O7, with respect to (O0-xyz) is defined
with a position vector:

~O7 ¼ O7;x O7;y O7;z½ �T ð1Þ

To define the platform orientation, a rotation matrix is generated using x-y-z Euler
rotation sequence with orientation angles wx, wy and wz of the platform:

R ¼
cwycwz

swxswycwz þ cwxswz
swxswz � cwxswycwz

�cwyswz
cwxcwz � swxswyswz
swxcwz þ cwxswyswz

swy
�swxcwy
cwxcwy

2
4

3
5 ð2Þ

where c and s stand for sine and cosine, respectively. Since the PM has 3-dof, three of
the pose parameters given in Eqs. (1) and (2) are selected as independent task space
parameters and the remaining three are found by solving the constraint equations.
Considering the motion characteristics of the 3-RRS PM, the independent pose
parameters are selected as O7,z, wx and wy. The constraint equations to obtain the
dependent task space parameters are given in [8].

3 Jacobian Analysis

For the ith limb of the PM, the platform location can be expressed as:

O0O7
���!þO7O7j

���! ¼ O0O0i
���!þO0iOij

���!þOijO7j
���! ð3Þ

By differentiating Eq. (3), the velocity loop equation for the ith limb is obtained:

vO7
�!þ xp

�!� O7O7j
���! ¼ ~yi � O0iOij

���!� �
_hi þ ~yi � OijO7j

���!� �
_/i ð4Þ

where yi
!¼ ½�sa1i ca1i 0�T , vO7

�! is the linear velocity of O7 and xp
�! is angular velocity

of the moving platform. The passive joint velocity on ith limb, _/i, should be eliminated
from Eq. (4) in order to obtain the relation between input and output velocities. Taking

the scalar product of both sides of Eq. (4) with OijO7j
���!

and rearranging:

OijO7j
���! �~vO7 þ O7O7j

���!� OijO7j
���!� �

� ~xP � O0iOij
���!� OijO7j

���!� �
�~yi _hi ¼ 0 ð5Þ
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Three of the velocity components, vO7,x, vO7,y, xz, depend on the task space
velocities xx, xy (there is no dependency on vO7,z) as [7]:

vO7;x ¼ gxxxx þ gxyxy ¼ � pcwyswy cwx þcwyswxswyð Þ
2 1þcwxcyð Þ2 xx � pcwyswx cwx þcwy þ swxswyð Þ

2 1þcwxcyð Þ2 xy

vO7;y ¼ gyxxx þ gyyxy ¼ � pcwyswy cwx þcwyð Þ
1þcwxcyð Þ2 xx þ

pswx

s2wxs
4wy � c4wy þ c2wxc2wy�

cwx

4
5cwy þ 3c3wy

� �
0
@

1
A

2 1þcwxcyð Þ2 xy

xz ¼ gzxxx þ gzyxy ¼ �swy

1þcwxcy xx � swx
1þcwxcy

xy

ð6Þ

Substituting Eq. (6) in Eq. (5) for all limbs results in:

JX
vO7;z
xx

xy

2
4

3
5þ JQ

_h1
_h2
_h3

2
4

3
5 ¼

0
0
0

2
4

3
5 ð7Þ

where

JQ ¼
O01O14
����!� O14O74

����!� �
�~y1 0 0

0 O02O25
����!� O25O75

����!� �
�~y2 0

0 0 O03O36
����!� O36O76

����!� �
�~y3

2
6664

3
7775
3x3

ð8Þ

JX ¼
Az
1 Ax

1gxx þAy
1gyx þBx

1 þBz
1gzx Ax

1gxy þAy
1gyy þBy

1 þBz
1gzy

Az
2 Ax

2gxx þAy
2gyx þBx

2 þBz
2gzx Ax

2gxy þAy
2gyy þBy

2 þBz
2gzy

Az
3 Ax

3gxx þAy
3gyx þBx

3 þBz
3gzx Ax

3gxy þAy
3gyy þBy

3 þBz
3gzy

2
4

3
5 ð9Þ

with OijO7j
���! ¼ Ax

i A
y
i A

z
i

� �T
and O7O7j

���!� OijO7j
���! ¼ Bx

i B
y
i B

z
i

� �T
.

4 Inverse Kinematics Singularities

The inverse kinematics singularity condition is satisfied if det[JQ] = 0, or equivalently

if O0iOij
���!� OijO7j

���! ¼~0 for any limb i. This configuration refers to the positions when the

bottom O0iOij
���!� �

and upper OijO7j
���!� �

links on limb i are collinear. Such a configuration

is obtained when a double root is obtained during the inverse kinematics solution where
two different assembly modes of a limb converges to each other. Instead of working
with the determinants of Jacobian matrices, the IKS can geometrically be expressed in
terms of the task space parameters using the collinerarity condition of the limbs. Since
all limbs of the PM have a planar motion, local planar coordinate frames (O0-x

iz) can be
attached to each limb i (Fig. 2).
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The global coordinates of any point P on the PM can be projected onto the local
planar coordinates as:

OP
�! ¼ OP;x OP;y OP;z½ �T! Oi

P

�! ¼ OP;xca1i þOP;ysa1i OP;z½ �T ð10Þ

The lengths pi and k (projections of O7O7j
���!

and O0iO7j
���!

on the xiz-plane), and the
angle c in Fig. 2 can be expressed in tems of task space parameters as:

pi ¼ Oi
7O

i
7j

���!			 			; k ¼ Oi
0iO

i
7

���!			 			; cos c ¼ Oi
7O

i
7j

���! � Oi
7O

i
0i

���!
 ��
pik ð11Þ

The collinearity condition of the bottom and upper links of limb i can geometrically
be expressed by making use of the cosine theorem for Oi

0i O
i
7j O

i
7 triangle:

cos c ¼ p2i þ k2 � l1 þ l2ð Þ2
h i.

2pikð Þ ð12Þ

Equation (12) is written for the extended dead-center configuration of the links. For
the folded dead-center configuration, l1 + l2 in Eq. (12) should be replaced by l2 – l1,
but this case never occurs for our manipulator due to link collisions. Combining
Eqs. (11) and (12), the inverse kinematics singularity equation for the 3-RRS PM can
be formulated in terms of the task space parameters as:

2Oi
7O

i
7j

���! � Oi
7O

i
0i

���!þ l1 þ l2ð Þ2�p2i � k2 ¼ 0 ð13Þ

Equation (13) represents a surface in the task space parametrized by wx, wy and O7,z.
Using Mathematica®, the IKS surface given by Eq. (13) for all the limbs of the 3-RRS
PM can be constructed (Eq. (13) is written three times for i = 1, 2, 3). Considering the
motion characteristics of the PM, it is preferred to plot the surface in spherical

Fig. 2. Geometry of the 3-RRS parallel manipulator
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coordinates: O7;z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
(in meters), wx ¼ atan2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; y

� �
and

wz ¼ atan2 z; xð Þ. The IKS surface of the 3-RRS PM is presented in Fig. 3a.
The singularity manifold has mirror symmetry about the xz-plane. In order to illustrate
the contours inside, a cross section for z = 1 is given in Fig. 3b.

5 Forward Kinematics Singularities

The forward kinematic singularities of the 3-RRS PM are obtained det[JX] = 0. It is not
straightforward to extract the geometrical conditions which make the determinant zero.
However, when the det[JX] = 0 is formulated and plotted, it is seen that the singular
configurations correspond to the cases where at least one of the upper links of a limb is

coplanar with the platform plane, i.e. O7O7j
���!� OijO7j

���! ¼~0, or equivalently Bx
i ¼ By

i ¼
Bz
i ¼ 0 for any i = 1, 2, 3. Coplanarity of an upper link and the platform corresponds to

a double root during the forward kinematics solution. Instead of evaluating the
Jacobian determinant, the coplanarity condition can be expresses in the local coordinate
frame of the ith limb using cosine theorem for Oi

0iO
i
ijO

i
7 triangle (Fig. 2):

cos c ¼ pi þ l2ð Þ2 þ k2 � l21
h i.

2k pi þ l2ð Þ½ � ð14Þ

Singularity also occurs when the upper link is folded on the platform, in which case
the l2 + pi term should be replaced by l2 – pi. Combining Eqs. (11) and (14), the FKS
equation for a limb can be formulated in terms of the task space parameters as:

2 pi þ l2ð Þ Oi
7O

i
7j

���! � Oi
7O

i
0i

���!
 �
� pi pi þ l2ð Þ2 þ k2 � l21

h i
¼ 0 ð15Þ

ba

Fig. 3. IKS surface: (a) Full view, (b) z = 1 section view
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Using Mathematica®, the singularity surface for all limbs is constructed in sphrecial
coordinates (Fig. 4). Although the FKS surface is plotted in the task space, it is possible
to plot the surface in the joint space using inverse kinematics formulation.

6 Conclusions

This study presents a geometrical approach to determine the inverse and forward
singularity manifolds of a 3-RRS PM. For the IKS, the Jacobian matrix JQ is a diagonal
matrix and each diagonal element being equal to zero corresponds to IKS configura-
tions due to one of the limbs of the PM. However, it is not straightforward to express
the diagonal elements in terms of the task space parameters. On the other hand, using
the physical interpretation of the singularity condition and by simply writing a cosine
theorem for each limb, the singularity surfaces can be very easily obtained in terms of
the task space parameters.

In general, for the FKS of PMs, it is an hard task to relate the phisycal interpretation
of the singular configurations with the determinant of the Jacobian matrix JX. For the 3-
RRS manipulator issued in this study, although each of the three limbs independently
contribute to the FKS, decomposing the Jacobian determinant into three is a chal-
lenging task. Instead of using the Jacobian matrix, the FKS surfaces due to each limb is
constructed independently in this study by making use of the geometrical conditions
which result in singularities.

Another contribution of this study is expressing the singularity surfaces of a 1T2R
PM in spherical coordinates.

Acknowledgments. The authors acknowledge the discussions with Prof. Sandipan
Bandyopadhyay from IIT Madras, India.
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Fig. 4. FKS surface: (a) Full view, (b) z = 1 section view
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Abstract. Parallel robots, despite many kinematic features, generally
have limited workspace. Therefore, it is paramount importance to obtain
the workspace by considering the mechanical interference. In this paper,
the mechanical interference, including collision of links, collision of links
with obstacles, collision of the end-effector with obstacles, are investi-
gated by using a new geometrical reasoning. For this purpose, a new
geometric method is proposed which is based on the segment to segment
intersection test. This method can be well extended to a wide range
of robotic mechanical systems, including, among others, parallel robots.
Moreover, in this paper, an index is introduced which can be used to
examine the workspace with respect to mechanical interference. Further-
more, the aforementioned index provides some insight into obtaining a
well-conditioned workspace. For the sake of validation, as case study,
the proposed method is implemented to a spatial 3-DOF parallel robot,
known as the Tripteron.

Keywords: Mechanical interference · Parallel robot · Collision-free
workspace · Performance index

1 Introduction

The workspace of parallel robots is more constrained compared to their serial
counterparts. Some of the contributing factors rendering a significant amount
of workspace useless are collision of links to each other, collision of links with
obstacles, collision of the end-effector with obstacles and also mechanical limi-
tations of the joints [2]. Researches conducted on this subject are limited and
most of them are concerned with avoiding collision with obstacles, on mobile
robots or the end-effector of serial manipulators [4]. Despite its significance, there
have been few studies examining the workspace and the mechanical interference
among the links and between the links and the end-effector with obstacles; the
reason might be that in most simulations the volume and mass of the robot’s
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
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components are ignored, in order to simplify the problem. The significance of
such collisions is highlighted during implementation and use of the robots, where
without appropriate collision prevention measures between the components, the
robot might sustain serious damages. The present study aims at improving the
workspace, by taking into account the problem of collision-free workspace. This
can be achieved by eliminating those parts of the workspace wherein any kind
of mechanical collisions might happen. This method is applied to the so-called
Tripteron robot, which is a linearly independent 3-DOF parallel robot perform-
ing translational motion. The parameters used for implementing the proposed
approach are based on the parameters of the actual prototype in the Human
and Robot Interaction Laboratory, University of Tehran. The remainder of the
paper is organized as follows. In Sect. 2, the Tripteron parallel robot is intro-
duced. As the main contribution of this paper, a new algorithm is presented in
Sect. 3 which can identify mechanical collisions of the robot. In Sect. 4, the col-
lisions in the workspace of the Tripteron is examined and the proportion of the
practical to theoretical workspace is calculated as an index. Finally, the paper
concluded with some remarks and hints as ongoing works.

2 Tripteron

The Tripteron, as shown in Fig. 1, is a 3-DOF translational parallel mechanism,
whose end-effector is connected by three kinematically identical chains. From
the type synthesis performed for this kind of mechanisms, it follows that all the
revolute joints and the prismatic actuators have parallel axes in each arm which
together form an orthogonal set. One of the remarkable kinematic features of the
Tripteron consists in its decoupling properties among its DOF. The latter leads
to have an identical Jacobian matrix which results in having a singularity-free
workspace [3,5].

3 A New Algorithm Based on Segments Collision

The mechanical collisions depend on design properties, such as dimensions of the
links, the fixed frame, and the end-effector. Moreover, if there is an obstacle in
the workspace, it can influence the movement of the end-effector considerably.
In fact, existence of one or more obstacles in the workspace can limit not only
the end-effector but also the movement of the links. Under such circumstances,
the detection of collision of links with an obstacle is as important as the collision
of end-effector with an obstacle. The obstacles may have different shapes, which
they can be inscribed inside a polyhedron.

By dividing the workspace into its constituent parts (meshing), placing the
end-effector in all these points, and calculate the inverse kinematics for all these
positions, all possible configurations of the robot are obtained. Upon determining
the configuration, as shown in the first to the 15th line of Algorithm 1, and after
checking the condition of the angel between robot mechanical components, if the
angle is not within the allowable range, the robot end-effector is not allowed to
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Fig. 1. The 3-DOF Tripteron parallel robot, built at the Human and Robot Interaction
Laboratory, University of Tehran.

go to that part of the workspace and check collision is not necessary, based on
lines 16 to 20 of Algorithm 1. However, if the angle is within the allowable range
and there is at least one mechanical collision among the links, end-effector, and
obstacles, the corresponding coordinate will be considered as a non admissible
point for the end-effector. Thus the robot’s end-effector is not allowed to go to
that part of the workspace, as indicate in lines 22 to 32 of Algorithm 1. By
repeating this algorithm for all points of the workspace, a set of coordinates
will be obtained for which a collision will take place. Then, this set can be
eliminated from the workspace, or considered as an obstacle. From the outset,
the geometrical examination of mechanical collisions, can be solved readily using
one of the following approaches:

1. Examining the intersection of two line segments in space at any given time;
2. Calculating the common perpendicular of two line segments and comparing

it to a permissible value that equals the total radius of the two links.

However, since in this method the space is meshed, the configuration of the
robot at any moment is one step apart from its next and previous moment.
In other words, the positions are discreted. In such a discrete space, it is not
possible to calculate all the collision points, because a collision might happen
between two selected points. As presented in Fig. 2a, a discrete space will cause
L1 to be on the edge of collision at a given moment t but at the moment t + 1
it will leave the collision position behind and the collision will not be detected.
Moreover, in this case, one cannot take into account the thickness of the links;
therefore, the first approach is rejected. The second approach can not be regarded
as a comprehensive method. As shown in Fig. 2b, when the line segments are
part of the two intersecting lines and do not collide, the length of the common
perpendicular is zero, and it seems that there has been a collision. Therefore, it
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Fig. 2. Two failed conventional approaches.

Fig. 3. Two cases which arise by projecting two lines in space.

is important to provide a comprehensive algorithm which can be generalized to
any line segment in the space, and consider the thickness of the links and other
mechanical parts.

In the proposed geometrical method, for detecting the collision among the
links, the first line segment is projected into a plane that includes the second
line segment and is parallel to the first line segment (the surface normal is the
common perpendicular of the two lines). Now, two cases arise:

1. The projection of the first line segment does not collide with the second line
segment, Fig. 3a, where the two lines do not collide;

2. The projection of the first line segment collides with the second line segment;
as shown in Fig. 3b. Obviously, the former situation does not necessarily mean
collision of the links and it is necessary to calculate the length of the common
perpendicular, if it was less than the permissible value (sum of the thickness
of both links), it can be concluded a collision occurs.

As it was claimed and shown in lines 33 to 42 of Algorithm 1, this algorithm
can be generalized to all relative positions of the lines. If two lines intersect,
the plane in which the collision is examined is their common plane; and if the
two line segments are parallel, upon projecting, they should be matched and
the second condition (the length of common perpendicular), should be analysed.
Therefore, through analysis of the two geometrical conditions, the collision of
two mechanical components or lack thereof, with arbitrary thickness and length
at any position in the space is obtained. The collision of links is not the only
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mechanical limitation in robots. For instance, in the prismatic joints, the slider
can move in a specified range, and most of the revolute joints do not support
360◦ orientation.

The Collision-Free Workspace (CFW) index is defined as the ratio of practical
workspace to theoretical workspace after calculating the available workspace of
the parallel robot in every configuration. The index is used for identification of
the most effective factor in designing and ultimately improving the workspace
of parallel robots. In fact, this index, η, ranged between 0 and 1 stands for the
ratio of collision-free workspace to the theoretical workspace [1]:

η =
Wp

Wt
≈ nWp

nWt

(1)

In the above relation, Wp is the practical workspace, Wt is the theoretical
workspace, and n is the number of discrete workspaces of the parallel robot.

Fig. 4. Collision within the workspace of the Tripteron robot.

Fig. 5. Joint limitation in the workspace of the Tripteron robot.
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input : l1 and l2: Length of links.
dxy, dyz and dzx: Distance between axis of prismatic joints and coordinates

axis.
R: Radius of end-effector.
w: Allowed threshold between links.

output: modified workspace.

1 F: Collision matrix.

2 i ← 0
3 for Whole of possible space do

4 for 3 kinematic chains do

5 Check kinematic constraints
6 if The conditions holds. then

7 i ← i + 1
8 [X(i), Y (i), Z(i)]: Save (x, y, z)T as the coordinates point of the workspace.

9 end

10 end

11 end

12 for j = 1 : i do

13 Solve IK for X(j), Y (j), Z(j).
14 Results are: θ1, θ2,θ3 and ρ1, ρ2,ρ3.

15 So obtained configuration of robot.

16 end

17 Check angle.
18 Calculate the angle between the segments by using law of cosines.

19 if Angel isn’t in allowable angle range. then
20 Save X, Y, Z in a new matrix.
21 F (j, 1) ← X(j), F (j, 2) ← Y (j), F (j, 3) ← Z(j).
22 else
23 Check collision.
24 Lines collision detection by using ,collisioncheck, function.

25 [OUTPUT ] = collisioncheck(2segment).
26 Returns 〈1〉 if at least there is a collision. If not, returns 〈0〉 by default.

27 Check every 2 segments (include links to each other, links to end-effector,
end-effector to obstacle and links to obstacle) in robot.

28 if There is atleast a collision. then

29 Save X, Y, Z in a new matrix.

30 F (j, 1) ← X(j), F (j, 2) ← Y (j), F (j, 3) ← Z(j).

31 end

32 end

33 end
34 Function [OUTPUT ] = collisioncheck(2segment)
35 OUTPUT ← 0

36 L1: First segment.
37 L2: Second segment.

38 L1 Project on the plate that is parallel to L1 and includes L2 which is labelled as L′
1

39 if Intersection occur between L′
1 and L2 then

40 if Common perpendicular ≤ w then

41 OUTPUT ← 1
42 end

43 end

Algorithm 1. Collision detection algorithm.
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Fig. 6. All types of collisions in a horizontal section at z = 0.

Table 1. The effect of collisions in the useless space of the Tripteron in z = 0. In
link(i, j), i and j stand for the number of link and kinematic chain, respectively.

Involved components Percentage

a link(1,1) to link(2,1) 26.94

b link(2,3) to EE 25.55

c link(3,1) to link(3,2) 11.22

d link(2,1) to EE 13.39

e link(2,2) to EE 44.67

f link(1,1) to link(2,2) 3.68

g link(2,1) to link(2,1) 6.60

4 Results

In this section, the performance of the proposed collision algorithm is examined
for different kinds of mechanical collisions in the workspace, the limitation of
revolute joints and the CFW index in the Tripteron robot is presented. Use-
less parts of the robot’s workspace has been detected by collision algorithm. If
the end-effector is placed in this space, collision will occur between mechanical
components of robot with each other and with obstacle. The 3D appearance
of this space in the primary workspace, is illustrated in Fig. 4a and b, respec-
tively. In this case, the considered obstacle is a rectangular cube, located at
Po(635, 370, 160)T , length, width and height of this rectangular cube are 100,
100 and 400, respectively. It should be noted that, from a practical stand point,
since a revolute joint can not rotate freely, thus for a given working mode a range
of motion is considered less than 160◦ for all the revolute joints of the Tripteron.
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The latter leads to have a restricted range of motion for the end-effector, as
shown in Fig. 5. The index of practical workspace to theoretical workspace ratio,
η, in this case is 0.734 without an obstacle and 0.498 with obstacle.

In Fig. 6, each area represents a type of collision or mechanical limits of
the joints in the robot’s workspace. Table 1 provides some information about the
percentage of collision occurred within the workspace by each components. From
the foregoing Table 1 it can be inferred that which parts of the robots have a
greater percentage of collision and should be subject of further investigation to
be improved for an optimum design of this robot.

5 Conclusions

This paper proposed a new geometrical algorithm which can be used for all
serial, parallel, and cable-driven robots. Previously, this problem was solved by
meshing and final elements, which was far more complicated, required large
quantities of data for comparison and was slower. The provided CFW index
is very useful for design stage. For instance, measuring the value of this index
for each component of the robot, provides a clear understanding of the relation
between these variations and the collision-free workspace of the robot which can
be regarded as a definite asset in practice. In this way, an optimum design for
workspace could obtained. In addition, the forbidden coordinates can be used
as fixed obstacles in the obstacle avoidance algorithms. As ongoing work, this
approach will be merged with optimization algorithms to synthesis collision-free
workspace parallel robot for a prescribed workspace.
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Abstract. By using the topological structure synthesis theory and method based
on POC (Position and Orientation Characteristic) equations, a novel 4-DOF
3T1R parallel manipulator (PM) with low coupling degree, 2PaRSS, is pre-
sented. First, the modeling and numerical solutions for forward and inverse
position of the PM is established. Then, the workspace and rotation capacity of
the PM are analyzed based on inverse solutions. This work shows 2PaRSS has
simple structure, larger workspace and rotation capacity comapered to H4, I4 etc.

Keywords: Parallel manipulator � POC � Coupling degree � Kinematics � SOC

1 Introduction

On type synthesis of three-translation and one-rotation (3T1R) PMs, F. Pierrot and
O. Company et al. proposed a class of famous 4-DOF parallel robots that have been
widely industrial used such as H4 [1], I4L [2], I4R [3], Par4 [4] and Heli4 [5], all of
those are composed of four identical complex chains containing a parallelogram
between the static and moving platform. Meanwhile, the coupling degrees of all these
PMs mentioned are larger, which are k = 2 [6].

The coupling degree is used to describe the complexity of the topological structure
of a mechanism [7]. It is represented by k (k� 0) that reflects the independence of the
kinematic variables among loops of a PM, and also reflects the complexity of kine-
matics and dynamics solutions for the mechanism. It has been proved that the larger the
value k, the higher of the complexity will be [6–8]. Therefore, the forward position
solutions of all these existing 3T1R PMs are very difficult, which influences their
real-time control and path planning.

By using topological structure synthesis theory and method for PMs based on POC
equations [6, 8], the authors proposed a class of novel 4-DOF 3T1R PMs [6]. Among
them, one is a novel 2PaRSS PM presented in this paper. The PM features simple
structutre, large workspace and rotational ability. But its coupling degree is low, i.e.,
k = 1. The PM is composed of only two parallelogram complex chains containing 4S
and two nonconstraint RSS chains(S-spherical joint, R-rotation joint). Therefroe, the
PM is not only simpler in the structure but also easier both in the solutions for

© Springer International Publishing AG 2018
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kinematics and dynamics and in manufacturing as well as assembly than that of H4 etc.
The reason is that these existing PMs contain four parallelogram complex chains
containing 4S and their coupling degrees are larger (k = 2) [6].

2 Structural Analysis

As shown in Fig. 1, the 2PaRSS PM [6, 9] consists of a moving platform 1, a static
platform 0, two nonconstraint RSS chains and a hybrid chain whose end link 2 pro-
duces three-translation output.

The hybrid chain has two parallelogram sub-chains III and IV which have four
spherical joints (Sa,Sb,Sc,Sd) connected by the link 2. A rod with two rotating joints Ra

and Rb shall be in the parallelogram configuration to make the four joints Sa, Sb, Sc, Sd
in the same plane. The length of the rod RaRb is equal to SaSb or Sc,Sd. The axis of the
rotation pair R3 must be perpendicular to the moving platform 1. Joint R11, R21, R31

and R41 are four actuated joints, and they are located in the midpoint of each side in the
static platform 0. Two parallelogram sub-chains should satisfy R31?R41, while two
nonconstraint RSS chains may take any arrangement relation, say R11?R21. “⊥” stands
for perpendicular. Thus, the moving platform 1 can realize three translations and one
rotation around the R3 axis [6].

The topological analysis for the 2PaRSS PM can be found in [6], which shows that
the PM contains only one Assur Kinematic Chain (AKC) and its coupling degree is
only 1. Therefore all of the numerical solutions for the forward position can be found
by using one dimensional search method.

Fig. 1. A novel 2PaRSS PM and kinematic modeling
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3 Position Analysis

3.1 The Coordinate System and Annotation

Given the input angles ða1; b1; c1; d1Þ of the actuated joints, the forward position
solution is to solve the position ðx; y; zÞ and the attitude angle ðcÞ of the moving
platform 1, as in Fig. 1.

The static coordinate system O-XYZ is in the geometric center of the static platform
0, X axis is collinear with the connection line between R11 and R31, Y axis is collinear
with the connection line between R21 and R41, and the direction of Z axes are deter-
mined by the law of the right hand. The origin of the coordinate o’-X’Y’Z’ is located in
the midpoint of the hypotenuse (S13S23) of the platform 1, X’ axis is parallel to the
connection line between S13 and R3, and Y’ axis is parallel to the connection line
between S23 and R3. Since the static platform 0 is rectangular, its length and width are
2a and 2b respectively. Moving platform 1 is isosceles right triangle and the length of
the right side is 2m2.

The orientation angle c is the rotation angle of the moving platform 1 around the
rotation pair R3, which is expressed by the angle between the OX axis and the con-
nection line from R3 to o’. The counter-clockwise direction of the angles is positive.
The point B3’ is the midpoint of the rod BaBb. Let R3B3 = q1, BaBb = l. The angle
between the BaBb and the rod of SaSb or Sa1Sb1 is u, respectively. Let R11S12 =
R21S22 = la1, S12S13 = S22S23 = lb1, R31P3 = R41P4 = la, P3Ba = P4Bb = lb.

The angles between the parallelogram plane and the static platform plane are a2 and
b2 respectively, while the interior angles of two parallelograms are respectively a3 and
b3, as shown in Fig. 1.

The position of the rod S13S12 and S23S22 in the space are expressed by three angles
between them with the X, Y, Z axes in the static platform 0 respectively, which are
c2; c3; c4 and c5; c6; c7, as shown in Fig. 2.

3.2 Forward Position Modeling

The principle of modeling of forward position analysis based on SOC mthod can be
found in [8].

a chain I       b chain II

Fig. 2. Calculation model of chain I and II
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3.2.1 The Modeling of the SOC1

(1) The first SOC, i.e.SOC1, of the PM is composed of two sub-chains III and IV,
joint R3 and S13-S12-R11 chain, as in Fig. 1. By SOC1, the coordinates of point O’,
S13, S23 can be obtained by D-H matrix as follows

xO0

yO0

zO0

2
4

3
5 ¼

a� la cos a1 � lb sin a3 cos a2 � l=2 cos u� ffiffiffi
2

p
m2 cos ðp=4þ cÞ

lb cos a3 � l=2 sinu� ffiffiffi
2

p
m2 sinðp=4þ cÞ

la sin a1 þ lb sin a3 sin a2 þ q1

ð1Þ

xO0

yO0

zO0

2
4

3
5 ¼

lb cos b3 þ l=2 cos 450 � ffiffiffi
2

p
m2 cos ðp=4þ cÞ

�la cos b1 � lb sin b3 cos b2 � l=2 sin 450 � ffiffiffi
2

p
m2 sinðp=4þ cÞ

la sin b1 þ lb sin b3 sin b2 þ q1Þ
ð2Þ

xS13
yS13
zS13

2
4

3
5 ¼

a� la cos a1 � lb sin a3 cos a2 � l=2 cos u� 2m2 cos c
lb cos a3 � l=2 sinu� 2m2 sin c
la sin a1 þ lb sin a3 sin a2 þ q1

ð3Þ

xS23
yS23
zS23

2
4

3
5 ¼

a� la cos a1 � lb sin a3 cos a2 � l=2 cos u� 2m2 cos c
lb cos a3 � l=2 sinu� 2m2 sin c
la sin a1 þ lb sin a3 sin a2 þ q1

ð4Þ

By using Eqs. (1) and (2), we have the equation as

kþ t1ð Þk21 þ 2t3k1 þ k � t1 ¼ 0

Then we get

k1 ¼ �t3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23 � k2 þ t21

p
kþ t1

where

k1 ¼ tan a2=2 ð5Þ

t1 ¼ a� la cos a1 � l cos u; t2 ¼� la cos b1; t3 ¼ la sin a1 � la sin b1

k ¼ t21 þ t22 þ t23 � 2t2lb cos a3
2lb sin a3

We assign the angle a3 as the virtual variable, i.e. a�3. Then, by Eq. (5), a2 is a
function of the virtual variable a�3.

(2) By the chain I, as in Fig. 2, the coordinates of S12 can be easily obtained.

Further, by Eq. (3) and the link-length constraint S12S13 ¼ lb1, we can obtain
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A1 sin c þ B1 cos c þ C1 ¼ 0

Where

A1 ¼ �4m2ðlb cos a3 � l=2 sinuÞ
B1 ¼ �4m2ða� la cos a1 � lb sin a3 cos a2 � l=2 cos uþ la1 cos c1Þ;
C1 ¼ ða� la cos a1 � lb sin a3 cos a2 � l=2 cos uþ la1 cos c1Þ2 þ

ð2m2Þ2 þðlb cos a3 � l=2 cos uÞ2 þðla sin a1 þ lb sin a3 sin a2 þ q1 � la1 sin c1Þ2 � l2b1;

And let

k2 ¼ tanðc=2Þ ð6Þ

We have

k2 ¼ �A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þB2

1 � C2
1

p
C1 � B1

ð7Þ

It is known from Eqs. (6) and (7) that angle c� is also a function of virtual
variable a�3.

3.2.2 The Modeling of SOC2

The second SOC, i.e., SOC2, is S23-S22-R21, as in Fig. 2, by which the coordinates of
S22 are easily obtained. Further, according to Eq. (4) and the link-length constraint
S22S23 ¼ lb1, we have

f a�3
� � ¼ a� la cos a1 � lb sin a�3 cos a�2 � l=2 cos uþ 2m2 sin c�

� �2

þ lb cos a�3 � l=2 sinu� 2m2 cos c� � la1 cos d1
� �2 þ la sin a1 þ lb sin a�3 sin a

�
2 þ q1 � la1 sin d1

� �2�l2b1
ð8Þ

By continuously changing a�3 from 0 to 360 until f a�3
� � ¼ 0; the value of a3 is the

real value. Then, the coordinates of point O’, o
0
x; y; zð Þ; can be obtained when the real

a3 is substituted into Eqs. (1) and (5). Further, by taking into Eq. (6), the real angle c of
the moving platform 1 can be obtained.

When the position ðx; y; zÞ and angle c of the moving platform 1 are known, the
input angle a1; b1; c1; d1 of the driving arm is easily solved, which is the inverse
position solutions for the PM. Both the forward and inverse position solutions of
2PaRSS PM have been testified to be correct by using an numerical example, which is
omitted for the limited space.
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4 Workspace and Rotation Capacity Analysis

The method of limit boundary searching based on inverse position solutions [10] is
used to analyze the workspace of the 2PaRSS PM. Namely, the height in the Z
direction of the workspace is pre-determined, the boundary of workspace will be found
by changing the search radius q and angle h. This paper chooses the parameters such as
550� z� 1200 and Dz ¼ 10; �p� h� p; 0� q� 1000: The range of the input angle
a1; b1; c1; d1 are 0; p½ �.

4.1 Workspace Analysis

Using the MATLAB, the three-dimension graph of the workspace of the 2PaRSS is
shown in Fig. 3, and each X-Y cross-section is shown in Fig. 4. We find:

(a) When 400 mm � z � 550 mm, the internal space has an empty hole. The empty
hole will disappear while increasing height Z.

(b) When z 2 ½550; 1000�; the X-Y cross-section of the workspace is symmetric about
the T-T line.

(c) The workspace is a regular one, while increasing Z, the cross-section area will
decrease.

(d) Without considering the interference of the links, the workspace is bigger than
that of I4R (H4) etc. in the same parameters and the search scope. The specific
data are as follows:

① Using the parameters of [11] and giving the search scope such as 0� q� 1000
and 500� z� 1150; the workspace volume of I4R is 6.1668*108(mm3), and that
of 2PaRSS is 7.0070*108(mm3). Therefore, the workspace of 2PaRSS is
increased by 13.6% compared to I4R robot.

Fig. 3. Workspace of 2PaRSS Fig. 4. X-Y section of workspace when
Z = 850 mm
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② Using the parameters of [12], the workspace volume of CrossIV-3 is
4.4274*108(mm3) and that of the 2PaRSS is 4.6464*108(mm3). Therefore, the
workspace of 2PaRSS is increased by 4.95% compared to CrossIV-3 robot.

4.2 Rotation Capacity Analysis

The rotation capacity of the moving platform is defined as the rotation range of the end
effector in the workspace [13]. Its size is also an important indicator to measure the
rotating performance of the 2PaRSS PM.

Considering the scope of z 2 ½550; 1000�; at any X-Y cross-section, we can get the
rotation ability of the moving platform. For clarity, we use z = 1000 mm as an
example. Then the X-Y cross-section of the 2PaRSS is got as shown in Fig. 5. And the
rotation capacity of H4 is shown in Fig. 6, from which we observe as follows.

(a) (b)

Fig. 5. Rotational capacity of 2PaRSS when Z = 1000 mm (a) Distribution of cmax
(b) Distribution of cmin

(a) (b)

Fig. 6. Rotational capacity of H4 when Z = 1000 mm (a) Distribution of cmax (b) Distribution
of cmin
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The rotation range of the 2PaRSS in the X-Y plane is �1400 � c� þ 1400 when
z = 1000, while the rotation range of H4 is �1200 � c� þ 1100. Comparing with H4,
the distribution of cmax is increased by 30º, and the distribution of cmin is increased by
20º. Therefore, the total value of 2PaRSS will increase by 21.74% relative to H4.
Specific comparisons are given as follows:

When using the point A �100;�237; 1000ð Þ as an example, the rotation output of
the H4 is cmax ¼ 400 and cmin ¼ �200, while 2PaRSS is cmax ¼ 400 and cmin ¼ �600.
Therefore, it is easy to find that rotation capacity of the 2PaRSS is larger than that of H4.

5 Conclusions

A novel 4-DOF 3T1R 2PaRSS manipulator with simple structure and low coupling
degree is presented.

The modeling of the forward position solutions based on the SOC method is
established. A position constraint equation (Eq. (8)) with only one variable is derived,
from which all numerical solutions of forward position are obtained by using
one-dimension search method.

Based on inverse position solutions, the performance of the workspace is also
analyzed. It is proved that the workspace of the 2PaRSS is increased by 13.6% and
4.95% respectively compared with that of H4(I4) etc. The rotation capacity of the
2PaRSS is increased by 21.74% compared with that of H4. This work shows the
2PaRSS PM has potential applications.
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Jiangsu Key Development Pro-ject (No.BE2015043) and Jiangsu Scientific and Technology
Transformation Fund Project (No. BA2015098).
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Abstract. This paper presents themulti-objective optimization of a three-degree-
of-freedom parallel manipulator. First, the geometry of the mechanism is descri-
bed and its kinematic and static performance is characterized with closed-form
expressions of workspace volume and force efficiency. These indices are used as
objective functions of the optimization, which is then conduced in order to
compute the optimal design of the manipulator. Finally, the results of the
multi-objective optimization are reported and discussed.

Keywords: Multi-objective optimization � Robot design � Leg mechanisms �
Parallel robots

1 Introduction

Parallel mechanisms in robotic legs are seldom used, since they usually have a smaller
workspace than serial mechanisms of the same size. However, parallel architectures
perform better in accuracy and payloads [1, 2] and therefore they can substitute serial
mechanisms when they fulfil workspace requirements. Some examples of parallel
mechanisms used as robot legs can be found in [3–6]. The novel tripod architecture that
is analysed in this paper is proposed in [7–9] while its kinematics is briefly described in
Sect. 2. In order to find an optimal design for the mechanism, a multi-objective opti-
mization is proposed in this work. The objective functions for the optimization of
parallel mechanisms are discussed in many research works, such as [10–16]. In these
studies, several indices have been proposed in order to characterize the workspace of
the manipulator, its kinematic and dynamic performance and its stiffness. Among them,
the workspace volume and the efficiency in force transmission are the most relevant
ones for a robotic leg mechanism. Therefore, these two functions are evaluated in their
closed-form expressions in Sect. 3 for the proposed structure, while Sect. 4 shows the
multi-objective optimization solution by mapping the objective functions in the
parameter space and discussing the results in order to find an optimal design.
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2 Mechanism Description

The subject of the paper is the 3 degrees-of-freedom mechanism shown in Fig. 1 and
introduced in [7–9]. It is composed by a fixed frame and by an end-effector body that
are connected by three UPR chains. Referring to Fig. 1a, each chain consists of a linear
actuator with length li that is connected to the fixed frame by a universal joint in Ai and
to the end-effector by a revolute joint, in H. The structure is characterized by the fact
that the three revolute joints are located at the end-effector point H thanks to the
mechanism shown in Fig. 1b: link 1 rotates around the x-axis of the end-effector
mechanism, while link 2 and link 3 can only rotate around the Y-axis. The position of
point H can be found as the intersection of three spheres centred in Ai with radius equal
to li, for i = {1, 2, 3}. Thus, this particular configuration of the end-effector notably
simplifies the kinematics of the structure. According to this, if the frame is an equi-
lateral triangle with side length a and characterized by Eq. (1),

0A1 ¼
0
0
0

0
@

1
A; 0A2 ¼

a
0
0

0
@

1
A; 0A3 ¼

a=2p
3 a=2
0

0
@

1
A; ð1Þ

the direct kinematic problem of the structure is solved as Eq. (2),

x ¼ 1
2a

l21 � l22 þ a2
� � ð2Þ

y ¼ 1

2
ffiffiffi
3

p
a

l21 þ l22 � 2l23 þ a2
� �

z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l41 � l42 � l43 � a4 þ l21l

2
2 þ l21l

2
3 þ l22l

2
3 þ a2 l21 þ l22 þ l23

� �
3a2

s
:

where x, y, z are the coordinates of the end point H.

a.                                                          b.

Fig. 1. Kinematic diagrams of the proposed mechanism: a. tripod structure; b. end-effector
mechanism
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This paper analyses and gives the optimization for a configuration with an equi-
lateral triangle as base frame. Non-equilateral configuration for the base frame have
also been investigated but held worse results. The kinematic problem of the structure is
written in position only and not in orientation because the end-effector is analytically
described as a punctiform body. Since the end-effector is the mechanism in Fig. 1b, it is
possible to evaluate its orientation with Euler angles as Eq. (3),

a ¼ tan�1 l21 þ l22�2l23 þ a2ð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l41�l42�l43�a4 þ l21l

2
2 þ l21l

2
3 þ l22l

2
3 þ a2 l21 þ l22 þ l23ð Þp

b ¼ arctan l21�l22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2l23�l42�l41 þ 2l21l

2
2

p
c ¼ 0

ð3Þ

where a is the rotation angle of the end effector around the X-axis, b is the intrinsic
rotation around the Y-axis and c is the one around the Z-axis.

Nevertheless, its Jacobian can be written as a 3 � 3 matrix as Eq. (4).

Jp ¼
l1
a � l2

a 0
l1ffiffi
3

p
a

l2ffiffi
3

p
a

� 2l3ffiffi
3

p
a

l1 �2l21 þ l22 þ l23 þ a2ð Þ
3a2z

l2 l21�2l22 þ l23 þ a2ð Þ
3a2z

l3 l21 þ l22�2l23 þ a2ð Þ
3a2z

2
664

3
775 ð4Þ

The inverse Jacobian can be computed from Eq. (4) as Eq. (5).

J�1
p ¼

x
l1

y
l1

z
l1

x�a
l2

y
l2

z
l2

x�a
2

l3

y�
ffiffi
3

p
a

2
l3

z
l3

2
64

3
75 ð5Þ

The singularities of the mechanism are evaluated by using Eq. (4). The Jacobian
matrix is singular only in the plane z = 0 that the end-effector cannot physically reach
because of the angular limitations of the universal joints on the base frame. Therefore,
the reachable workspace of the mechanism can be obtained by computing Eq. (6),

H ¼ x; y; zð ÞT for l1; l2; l3 2 l0; l0 þ s½ � ð6Þ

and it is coincident with its singularity-free workspace.

3 Kinematic and Dynamic Performance

In order to optimise the mechanism design, kinematic and dynamic performances have
to be evaluated. Several functions have been proposed as numerical indices to compute
both kinematic and dynamic performances of parallel mechanisms [1, 10–16]. Basic
performance for the optimal design of the proposed mechanism can be evaluated in
terms of workspace and force transmission, since these two parameters are the most
important ones for the application of the manipulator as a robotic leg.
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3.1 Workspace Volume

The workspace volume is the first parameter that can be used as objective function for
optimization [1]. For the proposed 3-DoF manipulator the workspace can be evaluated
as maximal or reachable workspace, which includes all the points that can be reached
by the end-effector with at least one orientation. An example of reachable workspace
for the proposed mechanism can be computed by discretising the actuation variables [2]
and it is shown in Fig. 2.

The shape of the reachable workspace of the mechanism, however, is irregular and
its implementation in control algorithm for particular trajectories can be difficult.
Therefore, a workspace formed of simple geometrical shapes is preferred. Since the
proposed mechanism has axial symmetry, it is possible to obtain the operational
workspace as part of a circular trajectory on the XY plane that is contained in the
workspace itself. Figure 3 illustrates an example of operational workspace for the
particular geometry that was already used for Fig. 2.

a.                                                                    b.

Fig. 2. Reachable workspace of the mechanism for a = 1, lmin = 2a, lmax = 3a; a. upper view; b.
lateral view.

a.                                                                  b.

Fig. 3. Workspace as maximum circular trajectories of the mechanism for a = 1, lmin = 2a,
lmax = 3a; a. upper view; b. lateral view
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3.2 Force Transmission

In order to evaluate the static performance of the manipulator, it is necessary to write
the actuation forces and the reaction forces on the foot respectively as Eq. (7).

s ¼ s1 s2 s3ð ÞT ; w ¼ f1 f2 f3ð ÞT ð7Þ

It is possible to define an index to evaluate the efficiency of the leg as Eq. (8).

g ¼ wP3
i¼1 si

ð8Þ

This efficiency index is position dependent and it allows to evaluate the ratio
between a force applied on the end-effector and the actuation needed to balance it. In a
static condition, the reaction force vector can be defined as Eq. (9),

ws ¼ 0 0 Rð ÞT ð9Þ

where the only non-zero component is the reaction force between end-effector and
ground, which is along the z-axis. Thus, it is possible to compute Eq. (8) for the
proposed leg mechanism as Eq. (10).

g ¼ a2zj jP3

i¼1
likij j

with k1 ¼ �2l21 þ l22 þ l23 þ a2; k2 ¼ l21 � 2l22 þ l23 þ a2;
k3 ¼ l21 þ l22 � 2l23 þ a2:

ð10Þ

4 A Multi-objective Optimization Design Procedure

A multi-objective optimization is the search of an optimal set of parameters, which are
subject to constraint functions, with regards to two or more objective functions. The
problem can be defined as Eq. (11),

minF rð Þ ¼ min f1 rð Þf2 rð Þ � � � fn rð Þ½ �T ; r ¼ r1r2 � � � rm½ �T
with F : Rm ! R

n; F rð Þ ¼ f1 rð Þf2 rð Þ � � � fn rð Þ½ �T ð11Þ

subject to Eq. (12),

g rð Þ� 0; h rð Þ ¼ 0
g rð Þ ¼ g1 rð Þg2 rð Þ � � � gp rð Þ� �T
h rð Þ ¼ h1 rð Þh2 rð Þ � � � ht rð Þ½ �T

ð12Þ

where F is the vector that contains the objective functions fi, r is the vector of the
design parameters of the entire system, g is the disequality constraint function vector
and h the equality constraint function vector. The numbers n, m, p and t describe
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respectively the number of objective functions, design parameters, disequality con-
straints and equality constraints. The problem is solved by finding the optimal solutions
to the problem, which are called Pareto-optimal or non-dominated and are those
solutions which cannot be improved in any of the objectives without degrading at least
another one. The objective functions that are chosen for the analysis are operational
workspace volume and force efficiency as in Eq. (10).

The multi-optimization problem only has two parameters: the ratio of the stroke of
the actuator s over the base dimension a and the ratio of the minimum length of each
leg l0 over the base dimension a. Thus, it is possible to employ an exhaustive method
that directly generates all the solutions by computing all the objective functions for
each possible combination of the design parameters.

The constraint functions for the attached problem can be written as Eq. (13),

l0;min
a

� l0
a
� l0;max

a
;

smin
a

� s
a
\

l0
a

ð13Þ

where the maximum length of the stroke is limited by the minimum length of the
actuator for feasibility reasons. Given the numerical constraints

0:9� l0
a
� 2; 0:9� s

a
\

l0
a

ð14Þ

it is possible to map the values of each objective function in the whole parameter space.
Figure 4 illustrates how the objective functions vary with regards to different config-
urations by mapping their displacement from the mean value, computed as Eq. (15).

Fig. 4. Objective functions in the parameter space: a. Operational workspace volume; b. Force
efficiency from Eq. (10)

Multi-objective Optimization of a Tripod Parallel Mechanism 379



Dfi
l0
a
;
s
a

� �
¼ fi

l0
a ;

s
a

� �
fi;mean

ð15Þ

As shown in Fig. 4, objective functions are influenced in different ways by the two
optimization parameters.

In particular, the efficiency function presented in Eq. (10) is characterized by a
maximum variation of 20% from its average value (Fig. 4c), workspace volume varies
over 100% of its average value in the parameter space, as shown in Fig. 4a and b.
Furthermore, the optimum of each objective function is located in a different region of
the parameter space. A good efficiency can be found for small values of the stroke but it
does not show a strong dependency on the minimum length of the link. The workspace
volume is optimized in a different region, characterized by high values of both the
optimization parameters. Therefore, optimal solutions should be studied in order to find
a compromise between the different objectives.

The influence of the design parameters on the operational workspace volume is too
different to the one on the force efficiency index to detect a proper set of solutions on
the Pareto front, which is characterized by points scattered in the whole parameter
space. Therefore, another kind of solution has been chosen. The diagram in Fig. 5 maps
the number of objective functions above their average value in each region of the
parameter space. In particular, a black region is characterized by 0 objective functions
above average, a grey region has one objective function above average and a white
region is characterized by both objective functions above their average. Therefore, two
optimal solutions for the mechanism design can be found in the two white regions
around points (1.46; 1.30) and (1.96; 1.24).

Fig. 5. Map of the parameter space with number of objective functions above average – black
region: 0; grey region: 1; white region: 2
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5 Conclusions

This paper describes the procedure for the optimization procedure of a parallel leg
mechanism. First of all, the mechanism is introduced and its kinematics and dynamics
are described. Then, its performance is evaluated in terms of workspace volume and
force transmission. Finally, the main variables of the design are chosen as parameters
and an optimization procedure is presented in order to select a set of solutions with the
optimal performance indices. Furthermore, the performance of the mechanism is
evaluated and mapped in the whole parameter space.
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Robust Optimization of the RAF Parallel
Robot for a Prescribed Workspace
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Abstract. This paper deals with the optimal synthesis of the RAF robot for a
prescribed workspace. The RAF (Romdhane-Affi-Fayet) robot is a three trans-
lational parallel manipulator (3TPM). A method based on the genetic algorithm
is used to solve the optimization problem. A multi-objective function, based on
the mathematical concept of the power of a point with respect to a surface, is
formulated. The suggested method is simple and effective in defining the
geometry of the robot having the smallest workspace that includes a specified
volume and the best kinematic performance.

Keywords: Optimal design � Synthesis � RAF parallel robot � Genetic
algorithm � Workspace � Power of a point � Dexterity index

1 Introduction

Theinterest inparallelmanipulators (PM)arisesfromthefact that theyexhibithighstiffness
in nearly all configurations and a high dynamic performance. The RAF (Romdhane-
Affi-Fayet) parallel manipulator is also a 3TPM and it consists of a mobile platform con-
nected to the base by three active legs and two passive kinematics’ chains [1–3].

The design problem has been addressed in many previous works [6, 11–14, 16–19].
In [9], we showed using the mathematical concept of the power of a point, how to
design a DELTA robot for a prescribed workspace. In this paper, we will solve the
problem of designing the three translational dof RAF robot to have a specified
workspace and the highest dexterity. A multi-objective genetic algorithm (MOGA) is
used to solve the optimization problem, because of its robustness and simplicity.

This paper is organized as follows: Sect. 2 presents the architecture of the RAF
robot. Section 3, is devoted to the kinematic analysis and the determination of the
workspace of the RAF parallel robot. The dexterity index of the robot is presented in
Sect. 3. In Sect. 4, we carry out the formulation of the optimization problem using the
genetic algorithm. Section 5 contains the results and discussion. Finally, Sect. 6 con-
tains some conclusions.

© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9_44



2 Architecture of the RAF Parallel Robot

The RAF robot consists of a mobile platform connected to the base by 3 legs. These
three legs constitute the actuators of the manipulator, whereas two other kinematic
chains with passive joints are used to eliminate the three rotations of the mobile
platform with respect to the base (Fig. 1) [1, 2].

Let Rb ðOB; xB; yB; zBÞ and RP P; xP; yP; zPð Þ represent two references frames, which
are fixed on the base and on the platform, respectively (see Fig. 1). The active legs are
connected to the base through spherical joints. These spherical joints are centered in
points Bi, i ¼ 1; 2; 3; with the base and in points Ci, i ¼ 1; 2; 3; with the platform.

In this work, a standard configuration is selected for the active legs as follows :

• rBi ¼ rB; rCi ¼ rC i ¼ 1; 2; 3ð Þ which means that the centers of the spherical joints
relating the three legs to the base, respectively the platform, are located on a circle
centered in OB, respectively P, and with a radius rB, respectively rC.

• hC1 ¼ hB1 ¼ h1 ¼ 0; hC2 ¼ hB2 ¼ h2 ¼ 2p
3 ; hC3 ¼ hB3 ¼ h3 ¼ 4p

3 which means that
the three centers are arranged at 120� from each other.

The parameters of the active kinematics’ chains are:

• lmax: The maximum extension of the active legs.
• lmin: The minimum extension of the active legs.

Figure 1 shows the architecture of one of the passive kinematics chains [2]. Each
kinematic chain is made of an arm 1ð Þ connected to the base 0ð Þ by a revolute joint.
More details on the RAF architectrure are presented and discussed in [1–3].

The parameters of the passive kinematics’ chains are L1 and L2 (see Fig. 1). We
will take the case where L1 ¼ L2 ¼ L. Points Aj, respectively Dj ðj ¼ 1; 2Þ, are located
on a circle with a radius rA, respectively rD. We also have ð dA1OBA2Þ ¼ 120� (see
Fig. 1).

bx

by

bz
Ob

i

P

pz
px

py

r Aj 
r 
Bi 

li

A j 
B i 

D j 

C i 

r 
Ci 

r 
Dj 

Actif  
Passif  

L1

L2

Fig. 1. The RAF robot parameters.
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3 Workspace of the RAF Robot

The workspace of the RAF robot is the intersection of two workspaces of the two
imbricated robots, respectively, the passive part and the active part.

3.1 Active and Passive Workspaces of the Platform

The active workspace of the RAF robot is defined by a volume, in the Cartesian space,
reachable by the center of the platform P XP; YP; ZP½ �. The geometrical model of the
active kinematic chain is described by the following equation for each actuator (for
i ¼ 1; ::; 3):

Rcoshi � XPð Þ2 þ Rsinhi � YPð Þ2�Z2
P � l2i ¼ 0 ð1Þ

It is assumed that the actuators are identical and their lengths vary between the
minimal value, lmin, and the maximum value, lmax ðlmin ¼ lmax=3Þ. The reachable points
of each one of these legs are confined within a volume delimited by two concentric
spheres given by (for i ¼ 1; ::; 3):

Rcoshi � XPð Þ2 þ Rsinhi � YPð Þ2�Z2
P � l2max ¼ 0 ð2Þ

Rcoshi � XPð Þ2 þ Rsinhi � YPð Þ2�Z2
P � l2min ¼ 0 ð3Þ

The intersection of the three volumes delimited by the three pairs of concentric
spheres, represents the active workspace of the manipulator for a given orientation.

A slice of the active workspace at z ¼ zk is shown on Fig. 2. This space is similar to
that presented by [10] in the case of a Stewart platform of the 6-SPS type. However,
our problem is less complex, since we have only three actuators instead of six.

Considering the same point P XP; YP; ZP½ � on the platfom. The kinematic model for
the passive chains can be written as, with j ¼ 1; 2:

Fig. 2. Slice of the active workspace at XY plane
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OBP ¼ OBAj þAjCj þCjDj þDjP ð4Þ

OBP¼
r cos aj
r sin aj

0

2
64

3
75þ

L2 cosu1j cos aj
L2 cosu1j sin aj
�L2 sinu1j

2
64

3
75þ

L1 cosu3j cosðu1j þu2jÞ cos aj
L1 cosu3j cosðu1j þu2jÞ sin aj

L1 cosu3j sinðu1j þu2jÞ

2
64

3
75

þ
�L1 sin aj sinu3j

L1 cos aj sinu3j

0

2
64

3
75

where, u3j is the angle between the direction of the 2 forearms and the plane generated
by the direction of z-axis and that of the arm, u2j is the angle between the projection of
the forearms on the previously defined plane and the direction of the arm, and u1j is the
angle between the direction of the arm and that of the straight line through O and Aj. In
order to eliminate the passive joint variable, we square and add these equations

rþ L2cosu1j

� �
cosaj � XP

� �2 þ rþ L2cosu1j

� �
sinaj � YP

� �2
þ ½L2sinu1j � ZP�2 � L21 ¼ 0

ð5Þ

where, r ¼ rA � rD. Equation (5) can be expressed as a function of cosu1j and sinu1j,
as follows:

2rL2 � 2L2XPcosaj � 2L2YPsinaj
� �

cosu1j � 2rXPcosaj þ 2L2ZPsinu1j � 2rYPsinaj
þX2

P þ r2 þ L2 þ Z2
P þ Y2

P � L21 ¼ 0

ð6Þ

which can be written as:

ljcosu1j þmjsinu1j � nj ¼ 0 ð7Þ

where,
uj ¼ 2rL2 � 2L2XPcosaj � 2L2YPsinaj; mj ¼ 2L2ZP; nj ¼ �2rYPsinaj þX2

P þ r2 þ
L22 þ Z2

P þ Y2
P � L1 � 2rXPcosaj

Equation (7) can have a solution if and only if for j ¼ 1; 2:

njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j þm2

j

q
�������

�������� 1 , n2j � u2j þm2
j

� 	
� 0 ð8Þ
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3.2 Workspace of the RAF Robot

The workspace of the RAF parallel manipulator is defined by the intersection of the
active workspace and the passive one. (see Fig. 3).

• Point P is inside the active workspace then, for i ¼ 1; 2; 3:

hamax
i Pð Þ ¼ Rcoshi � XPð Þ2 þ Rsinhi � YPð Þ2�Z2

P � L2max � 0 ð9Þ

hamin
i Pð Þ ¼ Rcoshi � XPð Þ2 þ Rsinhi � YPð Þ2�Z2

P � L2min � 0 ð10Þ

• Point P is inside the passive workspace then, for j ¼ 1; 2:

hpj Pð Þ ¼ ðXPcosaj þ YPsinaj � rÞ2
þðXPcosaj þ YPsinajÞ2 þ Z2

P þ L22 � L21Þ2
�4L22ð XPcosaj þ YPsinaj � rÞ2 þ Z2

P

� 	
� 0

ð11Þ

4 Singularity Analysis of the RAF Robot

Due to the complexity of the kinematic model of parallel mechanisms, most of the
authors proposed numerical methods to analyze their singularities. The approach
proposed by Romdhane et al. [2] to analyze the singularity of the 3-translational-DOF
parallel manipulator, is a combination of vector analysis and geometric analysis.
Romdhane shows that this method allows to elucidate and physically explain the
different singular configurations. The platform can only translate due to the two passive
chains even in the absence of the active legs. The architecture of the passive chains is
made such that the axis of the revolute joint with the platform is always parallel to the
axis of the revolute joint with the base, i.e., the line maintains a constant orientation.
The velocity of any point of the platform is the same, i.e.,

V C1 2 }=Bð Þ ¼ V C2 2 }=Bð Þ ¼ V C3 2 }=Bð Þ ¼ V M 2 }=Bð Þ ð12Þ

Passive 
workspace 

Active 
workspace 

Fig. 3. Workspace of the RAF robot
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We can also write that :

_li ¼ V M 2 }=Bð Þ � BiPT
i

k BiPi k ¼ uTi � V M 2 }=Bð Þ ð13Þ

where ui is a unit vector along the leg i and _li is the velocity of the linear actuator
located between Ci and Bi. Using matrix representation, we obtain:

_l1
_l2
_l3

2
4

3
5 ¼ uT1u

T
2u

T
3

� �
V M 2 }=Bð Þ½ � ¼ JT V M 2 }=Bð Þ½ � ð14Þ

where J is a jacobian matrix whose columns are the unit vectors u1; u2; u3ð Þ. We have
the following relation

BiCi ¼ liui ð15Þ

Where for i ¼ 1; 2; 3,

BiCi ¼ BiOB þOBPþPCi ¼
xP � Rcosai
yP � Rsinai

zP

2
4

3
5 ð16Þ

with OBBi ¼
rBcosai
rBsinai

0

2
4

3
5, OBP ¼

xP
yP
zP

2
4

3
5, PCi ¼

xP þ rCcosai
yP þ rCsinai

0

2
4

3
5

Using Eq. 17 the unit vector ui can be expressed as follows :

ui ¼ BiCi

k BiCi k ð17Þ

To evaluate the kinematic performances of robot, researchers have introduced
several criteria. The dexterity is a measure reflecting the amplification of error due to
the kinematic and statistic transformations between the joints and the Cartesian space.
It is of utmost importance that the proposed robot maintains a certain level of dexterity
over its workspace. Several criteria were proposed in the literature to quantify the
dexterity of robot manipulators. In this work, we propose the most used one, which is
the condition number j Jð Þ of the Jacobean matrix that describes the overall kinematic
behavior of a robot [15]. The problem of non homogeneity of the Jacobean matrix is
not encountered in our case since the 3-translational-DOF parallel manipulator has only
translation degrees of freedom. The local dexterity is defined as :

j Jð Þ ¼ Jk k � Jk kT ð18Þ
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The Jacobian describes the overall kinematic behavior of the considered robot. We
adopted for the representation the inverse of the condition number, g ¼ 1

j Jð Þ, ranging
between 0 and 1 (isotropy is reached when g ¼ 1).

The manipulator under study is in a singular configuration if and only if the set of
the three vectors B1C1;B2C2;B3C3ð Þ are linearly dependent [2]. This condition depend
only on the value of the geometric parameter, the radius R, which appears in the
expression of the unit vector ui. In order to explore the evolution on the local dexterity
for a given design vector and over the manipulator workspace, Fig. 4 illustrates the
distribution of the inverse of the condition number in the x; yð Þ plane and for a given
value of the radius R:

5 Synthesis of the RAF Robot for a Prescribed Workspace

5.1 Formulation of the Problem

The aim of this section is to formulate the multidimensional optimization problem of
selecting the design variables for the RAF robot having a specified workspace with the
best kinematic performance distribution. The desired workspace is given by a volume
X in space.

The optimization problem can be formulated as follows:
Given: A specified volume in space X:
Find: The parameters of the RAF robot having the smallest workspace that

includes the specified volume and best kinematic performance.

The general associated optimization problem, with n parameters for a suitably
chosen objective function F I;Pð Þ, can be stated as:

minF I;Pð Þ ¼ f1 f2½ �T ð19Þ

Subject to,
hamax

i I;Pkð Þ� 0; i ¼ 1; ::; 3; k ¼ 1; ::;Npt : for active workspace constraints.
hamin

i I;Pkð Þ� 0; i ¼ 1; ::; 3; k ¼ 1; ::;Npt : for active workspace constraints.
hpj I;Pkð Þ� 0; j ¼ 1; 2; k ¼ 1; ::;Npt : for passive workspace constraints.

Fig. 4. The local dexterity distribution for R ¼ 5 and z ¼ 5
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For all the points P inside the specified workspace X
where I ¼ x1; x2; . . .; xn½ � is the unknown vector of parameters, and xi 2
xlmin; xlmax½ �; i ¼ 1; 2; ::; n specify the allowable parameters range for each variable.

In this work, we will take the case where X is a cube given by Npt ¼ 8 points (see
Fig. 5).

For every workspace to be generated by the RAF robot, the independent design
variables are:

I ¼ r; lmax; L;R;H½ � ð20Þ

where, r ¼ rA � rD : The difference in radius of the passive kinematic chain. R ¼
rB � rC : The difference in radius of the active kinematic chain. lmax: The maximum
length of the actuator. L: The length of the leg. H: is a parameter defining how far is the
specified volume from the base of the RAF robot. The center of the cube is taken on the
z axis because of the symetry of the workspace.

5.1.1 Power Function Ratio
In a previous work [8], the performed optimization proved that one of the passive
workspace or the active workspace can have a great influence on the quality of the
optimal solution. This formulation ensures that the desired workspace is obtained but
leads to a cumbersome structure. A large difference between the dimensions of the two
chains, passive and active, should be noted. Indeed, the two obtained design vectors for
the RAF robot present a large base or a large platform. The quality of the obtained
results depends on the choice of the value of the aggregation coefficient used in the
definition of the objective function. In order to overcome this formulation problem and
to obtain the passive and active workspaces with similar sizes, a new formulation based
on the use of power function ratio, is proposed. This ratio is defined as:

fp
fa
’ 1

Fig. 5. The scheme of the prescribed workspace
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The corresponding objective function is defined as follows:

f1 I;Pkð Þ ¼ fp
fa
� 1

����
����

where,

fa ¼
P3

i¼1 hamax
i I;Pkð Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1 hamax
i I;Pkð Þð Þ2

q þ
P3

i¼1 hamin
i I;Pkð Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1 hamin
i I;Pkð Þð Þ2

q and fp ¼
P2

j¼1 hpj I;Pkð Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
j¼1 hpj I;Pkð Þ� �2q

5.1.2 Dexterity
veral methods and dexterity indices can be found in the literature, e.g., Yoshikawa [1],
Angeles [2], and Gosselin [3]. To compute the kinematic performance of a structure,
we chose the global dexterity method proposed by Gosselin as it characterizes the
isotropy of the robot. A commonly used criterion to evaluate this kinematic perfor-
mance is the global conditioning index gG, which describes the isotropy of the kine-
matic performance. The index, for a given structure described by the design vector I, is
defined over a workspace X as:

gG ¼
R
X gLdwR
X dw

¼
R
X 1=j Jð ÞdwR

X dw
ð21Þ

Where gL is the local dexterity and j Jð Þ is the condition number of the kinematic
Jacobian matrix (19). The corresponding objective function is defined as follows:
f2 Ið Þ ¼ gG

5.2 Results

The objective is to find the smallest set of parameters, given by I�, that can yield a RAF
robot having a workspace with smallest passive/active workspace that includes the
given volume in space X, while, simultaneously, achieving the best kinematic per-
formances over the whole workspace. The methodology followed here to solve this
problem is based on minimizing the multiple design objectives. This minimization
problem is solved using the Multi-Objective Genetic Algorithm (MOGA) method. The
solutions are called Pareto-optimal solutions when an improvement in one objective
requires a degradation of another. Figure 6 shows the surface representing the Pareto
front. Each point represents the values of the two objective functions, respectively f1
and f2, obtained by a given design vector.
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6 Conclusions

In this work, the workspace of the RAF parallel manipulator having three linear
actuators, was determined. An optimal dimensional synthesis method suited for the
RAF robot was presented and solved. In this approach, two objective functions were
considered. The first one aims at finding the smallest robot having a desired workspace
and the second one is to ensure the best overall dexterity over this workspace. The first
objective function is based on the concept of the power of a point, which was used to
calculate the ratio of the passive to the active workspaces. The optimum value of the
ratio is unity, which ensures the two workspaces having similar sizes. The second
objective function is based on the condition number of the jacobian matrix.
The MOGA method was used to find the optimal solutions represented by the Pareto
front. Two extreme solutions from the Pareto front were taken and their CAD models
were presented.

It was shown that favoring the dexterity could lead to a bulky robot and a robot
with similar workspaces could have a relatively low dexterity. However, the presented
solutions all have a value of dexterity ranging from 0.3 to 0.35, which is relatively low.
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Abstract. In this paper, we present the optimal design of N-UU (U
stands for universal joints) parallel mechanisms (PM) with general geom-
etry, for the achievement of maximal singularity-free tilt angle. We first
briefly recall the synthesis condition and constraint analysis of the gen-
eral N-UU PM, showing that static singularities may be factorized into
active and passive constraint singularities. We then formulate the opti-
mal design problem as the maximization of the end-effector tilt angle
subject to closeness to active and passive constraint singularities. We
conclude the paper by illustrating how an angle-equalizing device on the
inner revolute pairs of the UU legs may help avoiding passive constraint
singularities and increasing the maximal tilt angle.

Keywords: Symmetric subspace · Parallel mechanism · Singularity
analysis · Workspace optimization

1 Introduction

It is well known that N-UU PMs are kinematically equivalent to a well known
class of constant-velocity couplings with two rotational degrees of freedom (DoF)
[8]. A special-geometry N-UU PM was first proposed in [6], followed by several
rediscoveries of the same mechanism until recently [10–12]. Carricato [4] made
a further clarification of the synthesis condition of the N-UU PM, which may be
summarized as follows:

(C1) The two U joints in each UU leg must be identical and remain in a mirror
symmetric configuration during full-cycle motion; see Fig. 1(b).

(C2) all UU legs share the same plane of symmetry and the revolute axes of
the proximal (distal) U joints of all legs intersect at one point s+ (s−); see
Fig. 1(c).

A comprehensive kinematic and singularity analysis of general-geometry N-UU
PMs is conducted in [14]. In this paper, instead, we study the optimal design of
these mechanisms for the maximization of the end-effector singularity-free tilt
angle (simply referred to as tilt angle hereafter).

The paper is organized as follows. Section 2 recalls the most relevant results
presented in [14]. We show that N-UU PMs may equivalently be studied as purely
spherical mechanisms, so that their static singularities may be factorized into
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 45
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(a) (b)

(c) (d)

Fig. 1. Schematic of a general 3-UU PM: (a) components of the PM; (b) synthesis
condition of the PM: the two U joints in each leg are mirror symmetric about the
xy-plane, and the revolute axes of all proximal (or distal) U joints in all legs intersect
at a point s+ (or s−); (c) geometry of the first leg; (d) end-effector angular velocity
wEE under an instantaneous symmetric movement (θ̇+

1j = θ̇−
1j = θ̇1j , j = 1, 2).

the degeneracy of a force bundle (active constraint singularity) and a torque
bundle (passive constraint singularity). In Sect. 3, we propose two formulations
for the optimal design of N-UU PMs; in particular, results for 3- and 4-UU PMs
are presented. Finally, Sect. 4 presents a simple yet effective way of generating
additional constraints for avoiding passive constraint singularities, namely by
applying an angle-equalizing device on the inner revolute joints of each UU leg.

2 Constraint and Singularity Analysis of N-UU PMs

In reference to (C1) and (C2) in Sect. 1, the most general N-UU PMs may have
a geometry as illustrated in Fig. 1(c). Without loss of generality, we assume that
the mechanism has N-fold axial symmetry about the z-axis (the fixed reference
frame o-xyz is shown in Fig. 1, with xy being the symmetry plane in the home
configuration). The direction vectors of the revolute joints in leg i will be denoted
as w+

i1,w
+
i2,w

−
i2 and w−

i1, and their joint angles will be correspondingly denoted
as θ+i1, θ

+
i2, θ

−
i2 and θ−

i1. Due to mirror symmetry, the two pairs (w+
i1,w

−
i1) and
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(w+
i2,w

−
i2) intersect on the symmetry plane at si1 and si2, respectively. As long

as only rotational motion is concerned, a total of three angular parameters,
namely α, β and γ, are needed to specify the kinematics of the mechanism.

It was proved in [15] that the N-UU PM is a zero-torsion mechanism [3], so
that its rotation matrix has the form e2ψŵ, where w = x cos φ + y sin φ, φ ∈
[0, 2π], ψ ∈ [0, π/2] and ŵ is a 3 × 3 skew-symmetric matrix satisfying ŵv =
w×v,∀v ∈ R

3. We refer to e2ψŵ as the tilt motion about the tilt axis w, with the
tilt angle being 2ψ. By utilizing symmetric space theory [16], we characterized the
geometric properties of the N-UU motion in [14], as follows. The symmetric chain
(w+

i1,w
+
i2,w

−
i2,w

−
i1) generates the tilt motion under the symmetric movement

condition
θ+ij = θ−

ij = θij , i = 1, . . . ,N, j = 1, 2 (1)

i.e., for any tilt axis w = xcφ + ysφ, φ ∈ [0, 2π] and half-tilt angle ψ (within a
singularity-free workspace), there is a unique pair (θ11, θ12) ∈ [0, 2π]2 such that

eθi1ŵ
+
i1eθi2ŵ

+
i2eθi2ŵ

−
i2eθi1ŵ

−
i1 = e2ψŵ (2)

The symmetry plane passes through o, the instantaneous location of o, and is
perpendicular to eψŵz at a generic configuration e2ψŵ. The distal center s−

rotates about the fixed proximal center s+, with unit direction w of the end-
effector, but with a magnitude ψ being half that of the end-effector; o remains
the center of the line segment s− − s+ = eψŵ(2dz) (with a fixed length of 2d)
under full-cycle motion (see Fig. 2(a)).

Each UU leg contributes to a 2-D constraint wrench system spanned by two
zero-pitch wrenches, with one (denoted ζi1) passing through si1 and si2 and
the other (denoted ζ2) passing through s+ and s−; ζ2 is identical for all legs [4].

(a) (b)

Fig. 2. (a) displacement kinematics of the 3-UU PM; (b) twists (green), constraint
wrenches (blue) and actuation wrenches (red) of the 3-UU PM. (Color figure online)
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The constraint wrenches are denoted by blue arrows in Fig. 2(b). When choosing
w+

11 and w+
21 as the actuation joints, the actuation wrenches ζa1 and ζa2 may

be chosen as the zero-pitch wrenches lying on s12s− and s22s− respectively, as
illustrated by the red arrows in Fig. 2. For convenience, we shall denote the unit
force vector of a constraint wrench ζ(·) by f(·). More details can be found in [14].

Using the aforementioned notation for active and passive constraint wrenches,
we can formulate the static singularity (leading to a loss of control of the PM,
[5]) of a N-UU PM as

σ1

(

ζ11 ζ21 . . . ζN1 ζ2 ζa1 ζa2

)

= 0 (3)

where σ1 denotes the smallest singular value of a matrix. Since all constraint and
actuation wrenches have zero pitch, we can readily apply the Grassmann-Cayley
Algebra (GCA) techniques [1,9] to further decompose the static singularity. It
is proved in [14] that the static singularity may be decomposed into an active
constraint singularity (ACS) characterized by:

σ1

(

f2 fa1 fa2
)

= 0 (4)

and a passive constraint singularity (PCS) characterized by:

σ1

(

τ 11 τ 21 . . . τN1

)

= 0 (5)

where τ i1 is the normalized torque (about s−) generated by ζi1, and therefore
is given by w−

i1 × w−
i2/‖w−

i1 × w−
i2‖.

3 Optimal Design of General Geometry N-UU PMs

As shown in Sect. 2, ACS and PCS may be characterized by the rank degeneracy
of a bundle of forces and a bundle of torques, respectively. Geometrically, this
corresponds to the force or torque bundles degenerating to a pencil. In the former
case, there exists a vector v ∈ R

3 (perpendicular to the pencil) such that

vT fa1 = vT fa2 = vT f2 = 0 (6)

The closeness to an ACS may then be measured by the following index:

ia � σ1

(

fa1 fa2
√

Nf2
)

= min
‖v‖=1

(

vT

(

fa1fT
a1 + fa2fT

a2 +
N

∑

i=1

f2fT
2

)

v

)1/2

= min
‖v‖=1

(

(vT fa1)2 + (vT fa2)2 +
N

∑

i=1

(vT f2)2
)1/2

(7)

which equals the minimum value, over all possible choices of v, of the root sum
square of the projected length of fa1, fa2 and (N copies of) f2 onto v (see Fig. 3(a))
[13]. Similarly, the PCS measure, denoted as ip, can be defined as:

ip � σ1

(

τ 11 τ 21 . . . τN1

)

= min
‖w‖=1

(

wT

(

N
∑

i=1

τ i1τ
T
i1

)

w

)1/2

(8)
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(b)(a)

Fig. 3. (a) Least square approximation of a subbundle of unit vectors fi’s to a degen-
erate pencil with normal v; (b) sequential scan over the workspace of a 3-UU PM for
maximal PCS-free tilt angle.

The advantage of adopting the above singularity measures is two-fold. First,
their definition is independent of the number of UU legs in the PM. Second,
since only pure forces or pure torques are involved, it is obviously frame and
scale independent.

The optimal design may be formulated as follows:

(O1) Maximization of the tilt angle subject to a singularity margin
constraint:

max
(α,β,γ)

2ψS (9)

where
2ψA = max {2ψ | iA(φ, ψ) ≥ ithr, ∀φ ∈ [0, 2π]}
2ψP = max {2ψ | iP (φ, ψ) ≥ ithr, ∀φ ∈ [0, 2π]}
2ψS = min {2ψA, 2ψP }

(10)

Once a singularity margin ithr is designated, we may proceed with (O1)
as follows. First, we set the parameter space {(α, β, γ)} to a bounded cube
[αmin, αmax] × [βmin, βmax] × [γmin, γmax], and discretize it to a reasonably fine
grid. Next, for a particular point (α, β, γ) on the grid, we may sequentially scan
a grid of configurations (φ, ψ) for a minimal tilt angle 2ψ that violates the ACS
or PCS margin ithr for a certain φ. This value corresponds exactly to 2ψA or
2ψP . To accelerate the scan process, we utilize the N-fold symmetry of the PCS
(resulting from that of the N-UU PM) by restricting φ to [0, 2π/N] (see Fig. 3(b)).
The distribution of 2ψA, 2ψP and 2ψS versus (β, γ) ∈ [−50◦, 50◦]2, α = 90◦ are
illustrated in Fig. 4 for the case N = 3. Note from the UU leg geometry that
(α, β, γ), (α,−β,−γ), (π − α, β,−γ) and (π − α,−β, γ) all lead to the same
singularity behavior (as can be observed in Fig. 4). To resolve such redundancy,
we shall hereafter narrow down the parameter space to α ∈ [45◦, 90◦], β ∈
[−45◦, 45◦] and γ ∈ [0, 45◦]. It may be inferred from Fig. 4(a) that a larger ACS-
free tilt angle is achieved with β and γ taking values closer to zero. However, such
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parameter values lead to a very low PCS-free tilt angle (Fig. 4(b)). A compromise
is achieved with β remaining close to and γ substantially deviating from zero
(Fig. 4(c)).

(a) (b) (c)

Fig. 4. Distribution of maximal tilt angle of a 3-UU PM over (β, γ) ∈ [−50◦, 50◦]2 with
α fixed at 90◦ and ithr = 0.1. (a) 2ψA; (b) 2ψP ; (c) 2ψS .

We emphasize that an optimal design for N-UU PMs following (O1) should
be based on a physically meaningful (see [13] for some discussion) singularity
margin value ithr, which are usually not available at conceptual design stage [2,
Ch. 6]. Alternatively, we may seek to maximize the minimal singularity measure
over a fixed prescribed workspace (e.g. 2ψ ∈ [0, π/2]):

(O2) Maximization of the minimal singularity measure over a pre-
scribed work-space:

max
(α,β,γ)

ithr

s.t.

⎧

⎪

⎨

⎪

⎩

ithr ≤ min
(φ,ψ)

iA(φ, ψ)

ithr ≤ min
(φ,ψ)

iP (φ, ψ)

{

0 ≤ φ ≤ 2π

0 ≤ 2ψ ≤ π/2

(11)

(O2) can be solved with an approach similar to that of (O1). The optimal margin
value and corresponding parameters for 3- and 4-UU PMs are given in Table 1.

4 Angle-Equalizing Device

According to the symmetric movement condition (1), each revolute joints pair
(w+

ij ,w
−
ij) is instantaneously equivalent to a single revolute joint along w+

ij +w−
ij

(see Fig. 1(d)). However, as the symmetric movement condition is enforced by
the loop-closure constraint of the N-UU PM, such equivalence does not hold in
constraint analysis.
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Table 1. Optimal design results of 3- and 4-UU PMs for formulation (O2).

Number of legs Angle-Eq. device max ithr α β γ

3 No 0.210 90 0 29

Yes 0.454 90 0 14

4 No 0.521 82 12 20

Yes 0.637 88 −2 13

(a) (b)

Fig. 5. (a) A configuration of PCS for a 3-UU PM (α = 90◦, β = 0◦, γ = 20◦); (b)
avoidance of the PCS configuration by imposing angle-equalizing devices.

Motivated by the above observation, we consider imposing an angle-
equalizing device onto the inner revolute pair (w+

i2,w
−
i2) of each leg i, via

for example a bevel gear pair. This does turn each UU leg into a 3-DoF leg
that is instantaneously equivalent to a RRR leg with unit direction vectors
(w+

i1,wi2,w−
i1), wi2 = (w+

i2 + w−
i2)/‖w+

i2 + w−
i2‖. It is easy to verify for each

UU leg that an additional constraint wrench, denoted as ζi3, emerges, and it
can be identified as the zero-pitch wrench along osi1. Since ζi3, i = 1, . . . ,N
all lie in the symmetry plane, they help to avoid PCSs. Figure 5(a) illustrates a
3-UU PM at a configuration of PCS. In this particular case, s21, s22, s31 and s32
become collinear and therefore ζ21 and ζ31 become linearly dependent. With the
imposition of an angle-equalizing devices on the PM, as illustrated in Fig. 5(b),
the PCS is avoided with the presence of three extra passive constraint wrenches
ζ13, ζ23 and ζ33. Consequently, the definition for the PCS measure given in Eq.
(8) may be changed to:

ip � σ1

(

τ 11 τ 13 τ 21 τ 23 . . . τN1 τN3

)

= min
‖w‖=1

(

wT

(

N
∑

i=1

(

τ i1τ
T
i1 + τ i3τ

T
i3

)

)

w

)1/2 (8′)
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where τ i3 is a normalized torque (about s−) generated by ζi3, and is given by
(si1−o)×(s− −o)/‖(si1−o)×(s− −o)‖. The optimal design results, for (O2), of
3- and 4-UU PMs with angle-equalizing devices are also presented in Table 1. The
4-UU PM with or without angle-equalizing device has higher singularity margin
than its three-legged counterpart. Second, since the angle-equalizing device helps
to avoid PCSs, γ is allowed to take a smaller value to increase the ACS margin
(Cf. the discussion about Fig. 4).

5 Conclusions

We conclude our paper with two remarks. First, the optimal parameter values
of general-geometry N-UU PMs listed in Table 1, to some extent, agree with
those acquired with a special geometry (α = 90◦, β = 0◦; see [14]). Second, the
actual workspace of N-UU PMs is also limited by potential link collisions. In
practice, this issue may be solved by iterative design/collision checking in CAD
modeling software. Otherwise, a systematic solution may be derived by following
the approach proposed in [7].
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Abstract. This paper deals with the robust design optimization of the 3-UPU
translational parallel manipulator. An approach, that regroups the genetic
algorithm multi-objective optimization and the Krawczyk operator (GAMOK),
is used to represent the optimal design vector of parameters and their uncer-
tainties. This optimization leads to minimize the position error and relax the
parameters intervals of tolerance. Based on this GAMOK algorithm, the
designer can pick out the optimal design vector according to the desired accu-
racy in the workspace of the manipulator.

Keywords: Interval analysis � Krawczyk operator � Genetic algorithm �
Uncertainties � Optimization

1 Introduction

Parallel manipulators have many advantages such as, greater rigidity, higher stiffness
and essentially higher accuracy compared to serial ones. There are several types of
parallel manipulators; the translational robot, the rotational robot and the mixed ones
[9, 10]. The position error of parallel manipulator caused by design parameters
uncertainties cannot be neglected. Therefore, it is quite important to optimize the
design parameters and their uncertainties as function of the robot performances. Several
optimization methods have been used. Genetic algorithm (GA) is an evolutionary
algorithm inspired from natural evolution, used to solve optimization problems [1]. The
main advantages of the genetic algorithm are the capability to escape local optima and
its powerful searching ability. Laribi et al. proposed a combined GA-fuzzy algorithm in
order to find the optimal dimensions of a five bare mechanism for a desired closed
curve [5]. El Kribi et al. developed a multi-objective genetic algorithm of a mechatronic
system with continuous and discrete variables [2].

In this paper, an approach that couples the genetic algorithm and the “Krawczyk”
method used for the robust design optimization of the 3-UPU TPM. In fact, the robot

© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9_46



optimal design vector is given simultaneously by the design parameters nominal values
(DPNV) and the parameters uncertainties. The rest of this paper is organized as follow:
in Sect. 2, the structure of the manipulator is described and its kinematic modeling is
presented. In Sect. 3, an hybrid GA-”Krawczyk” algorithm is presented. A case study
is finally presented which shows the efficiency of the proposed algorithm. In Sect. 4,
some concluding remarks are presented.

2 Architecture of the Manipulator

The 3-UPU translational parallel manipulator (Fig. 1) is composed of three kinematic
chains of type UPU (U and P stand for universal and prismatic joint respectively) that
connect the base to the platform. This manipulator has extensible legs which are
connected to the base by universal joints. Each universal joint comprises two revolute
pairs with intersecting and perpendicular axes. To restrict the platform motions to only
translations, the following conditions have to be satisfied [4, 8]: the axes of the two
intermediate revolute pairs are parallel to each other and the axes of the two ending
revolute pairs are parallel to each other.

2.1 Modeling of the 3-UPU Translational Manipulator

Let SbðOb; xb; yb; zb Þ and SpðOp; xp; yp; zp Þ two reference systems fixed on the base
and the platform, respectively. The origin Ob (Op) corresponds to the reference point of
the base (platform). The first axis xb goes through point B1; zb axis is normal to the
plane defined by the points Bi and pointing from the base to the platform, while yb axis
is taken according to the right hand rule. The position of the moving platform
expressed in the reference system Sb is given as:

x ¼ bi þ li�Qpi i ¼ 1; 2; 3 ð1Þ

where:

bi ¼ ObBi½ �Sb ; pi ¼ ObPi½ �Sb ; li ¼ BiPi½ �Sb ; x ¼ ObOp
� �

Sb
ð2Þ

Fig. 1. Architecture of the 3-UPU translational parallel manipulator
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Q is the rotation matrix that takes Sp to Sb. Since the 3-UPU manipulator has only
translations, the rotation matrix Q is constant and can be considered as the identity.
According to Eq. (1), the inverse kinematic model is given by:

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� rb � rp

� �
: cos aið Þ� �2 þ y� rb � rp

� �
: sin aið Þ� �2 þ z2

q
ð3Þ

where li is the length of the i-th leg; ai is the angular position of the i-th leg; x, y and
z are the coordinates of the reference point of the platform Op in Sb.

2.2 Prediction of the Position Error

In this section, the method of intervals is applied to predict the upper and lower bounds
of the orientation error of the manipulator. The interval operations are implemented
using Matlab library INTLAB [6]. To reduce the overestimation, several contractors
based on fixed-point iteration can be used. In this work, the “Krawczyk” contractor will
be used. Let f be a function with variables (position error of the manipulator) and
parameters given by vector q. The variables and the parameters intervals are presented
by [x] and [q] respectively. The solution of the system of equation fðq; xÞ ¼ 0 is given
as:

X
f; p½ �; ~xð Þ ¼ x 2 R

n : 9p 2 p½ �; f p; xð Þ ¼ 0f g ð4Þ

These solutions are closed to the nominal solution when the values of the param-
eters changes in its intervals. To avoid the overestimation, we will use the inverse
kinematic model in its quadratic form:

l2i � x� rb � rp
� �

: cos aið Þ� �2� y� rb � rp
� �

: sin aið Þ� �2�z2 ð5Þ

The system of equation given above takes the following form fðq; xÞ ¼ 0:
Let ð~q; ~xÞ be a nominal solution of the equation given above. The linearization of

the function in the neighborhood of the nominal solution is given as:

fð~q; ~xÞþ fxð~q; ~xÞðx� ~xÞþ fqð~q; ~xÞðq� ~qÞ ¼ 0 ð6Þ

where fx and fq are the derivative of the function f with respect to x and q, respectively.
Thus, the solution of fðq; xÞ ¼ 0 can be computed by the following equation:

x ¼ ~x� C:fð~q; ~xÞ � ðC: fxðq; xÞ � IÞðx� ~xÞ � C: fqðq; ~xÞðq� ~qÞ ð7Þ

where C is a preconditioning nonsingular matrix [3, 7]
The mathematical concept of the “Krawczyk” operator can be written as:

Kf;½q� x½ �ð Þ ¼ ~x� C: X½ � � Ið Þ: x½ � � ~xð Þ � Y½ � ð8Þ
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where:

C ¼ mid X½ �ð Þ�1; A½ � ¼ ½df
dq

� ½q�; ~xð Þ; Y½ � ¼ C: f½ � ~q; ~xð ÞþC: A½ �: q½ � � ~qð Þ ð9Þ

3 Multi-objective Design Optimization

A combined GA-“Krawczyk” algorithm will be used to determine the (DPNV) and
their relative uncertainties that guarantee a good accuracy (Ep) with the maximal tol-
erance intervals of design parameters (IT). The population is evaluated by the interval
linearization method: In fact, the position error of each design vector of the population
is calculated with the “Krawczyk” algorithm (Fig. 2).

Inputs: -Parameters research intervals
- Maximum number of generation: gmax
- Upper bound of the position error: Ep max
- Lower bound of intervals tolerance: IT min

Generate the initial population

NO

Evaluate the position error: Ep

Arrangement of the population

g < gmax
YES

Ep < Ep max
IT>IT min

YES

Crossover

Mutation

New population

Optimal solution

NO

Fig. 2. Scheme of optimization process with genetic algorithm
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Let the vector q regroups the (DPNV) and their uncertainties:

½q�¼ ~r þDrbmax
b�Drbmin

; ~rþDrpmax

p�Drpmin
; ~a1

þDa1min
�Da1max

; ~a2
þDa2min
�Da2max

; ~a3
þDa3min
�Da3max

h i
ð10Þ

where ~qi is the nominal value of the corresponding design parameter and Dqi max and
Dqi min are the upper and lower uncertainties values. The uncertainties of the design
parameters nominal values are defined by an interval vector ½q� and the position error of
the manipulator by ½X�:

The optimization problem can be formulated as:

minFðXÞ ¼ min½fjðXÞ�T ; ðj ¼ 1::nÞ ð11Þ

Subjected to

gðXÞ\0 ð12Þ

where T is the transpose operator, n is the number of objective functions, X is the
vector of design variables, FðxÞ is the vector of objective functions and gðXÞ is the
vector of constraint functions [11].

The goal of this work is to minimize the robot position error and maximize the
design parameters tolerances’ intervals simultaneously within a given workspace. The
first objective function f1 to be minimized corresponds to the platform position error,
given by:

f1 ¼ Max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
px þE2

py þE2
pz

q� �
ð13Þ

where: Epx ¼ Max xmin � xj j; xMax � xj jð Þ, Epy ¼ Max ymin � yj j; yMax � yj jð Þ,

Epz ¼ Max zmin � zj j; zMax � zj jð Þ ð14Þ

where xmin, ymin and zmin are the lower bounds of the interval vector [x], xmax, ymax and
zmax are the upper bounds of the interval vector [x].

The second objective f2 to be minimized corresponds to the inverse of normalized
interval tolerance some. This objective function can be expressed as:

f2 ¼ 1
Drbmin þDrbMax

rb
þ Drpmin þDrpMax

rp
þ Da1min þDa1Max

a1
þ Da2min þDa2Max

a2
þ Da3min þDa3Max

a3

ð15Þ

To avoid the singularity related to the manipulator architecture, the following
constraints have to be fulfilled:

rb [ rp; ai 6¼ aj ; i 6¼ j; i; j ¼ 1; 2; 3 ð16Þ

To avoid the problem of normalization of a1, we choose a configuration where the
angle first axe a1 6¼ 0:
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4 Case Study

The desired workspace of the manipulator is a cube defined by:

�150� x; y½mm� � 150 and 100� z½mm� � 400 ð17Þ

The uncertainties of the actuators lengths is chosen to be constant even the actuator
lengths are variables: Dli min ¼ Dli max ¼ 0:01mm: The bounds of the design parameters
and their uncertainties are defined in Table 1.

A predefined function of genetic algorithm ‘gamultiobj’ is used to minimize the
position error of the manipulator and to maximize the uncertainties of the design
parameters. The parameters of the optimization algorithm are the population size Np ¼
200; the maximum generation number gmax ¼ 100; the crossover probability Pc ¼ 0:8
and the mutation probability Pm ¼ 0:2: The Pareto front is used to represent the optimal
solutions of the problem for the two competitive objective functions f1 and f2. The main
difficulty of a multi-objective problem is that the notion of optimal solution does not
exist. The designer can simply accept the fact that one solution is preferable to another,
so it is a question of finding satisfactory solutions. The Pareto front is given by Fig. 3.

Hence, the designer can choose an optimal robust design vector from the Pareto
front that suite his application. For example, if the designer chooses the solution P as
presented in Fig. 3, the allowed magnitude of the position error will be 4.66 mm. In

Table 1. Bounds of the design parameters and their uncertainties

Design parameters Bounds Uncertainties of the parameters Bounds

rb [mm] [250 350] Drb [mm] [−0.3 0.3]
rp [mm] [20 80] Drp [mm] [−0.05 0.05]
a1 [degree] [80 100] Da1 [degree] [−1 1]
a2 [degree] [210 230] Da2 [degree] [−1 1]
a3 [degree] [320 340] Da3 [degree] [−1 1]

Fig. 3. The optimal design vectors
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this case, the chosen solution of design parameters nominal values and their uncer-
tainties is given by:

½q� ¼ ½271; 28mmþ 0:17
�0:23 ; 53:59mm

þ 0:03
�0:04 ; 87:64

� þ 0:58
�0:57 ; 203:07

� þ 0:24
�0:24 ; 330:0

� þ 0:13
�0:2 �

ð18Þ

For the chosen solution P, the distribution of the position error of the manipulator is
presented in two sections of the workspace defined by y = 0 and z = 200. As it is
shown in Fig. 4, the maximum position error does not exceed 4.66 mm in the defined
workspace.

5 Conclusion

In this paper, an hybrid GA-“Krawczyk” has been developed. The proposed method
aims to determine the optimal design vector composed of the nominal design param-
eters and their uncertainties in order to minimize the position error of the manipulator.
The proposed method is tested on the 3-UPU translational parallel manipulator and has
proved its efficiency by determining the manipulator’s design vector, in order to
guarantee a better accuracy of the manipulator.
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Abstract. Most of existing works on the optimal design of balanced
four-bar linkages deal essentially with the minimization of their inertia
or input torques under balancing constraints. These approaches are not
suitable to include constraints based on the elastic behavior of the mecha-
nism. In order to solve this issue, we propose in this paper to perform the
topology optimization of a reactionless four-bar linkage. Conditions for
balancing the mechanism are first recalled and a topology optimization
algorithm is run in order to maximize the first natural frequency while
ensuring the balancing and constraining the mechanism compliance. We
show that in order to obtain an interesting design solution, it is necessary
to modify the balancing constraints in order to penalize them. Interesting
design solutions are obtained in a rather short computational time.

Keywords: Four-bar linkage · Shaking force and shaking moment
balancing · Optimal design · Topology optimization

1 Introduction

Transmitting no reactions to the ground is very appealing in many applications
such that space robotics or high-speed manipulation [10]. However, complete
shaking force and shaking moment balancing is usually obtained by using both
counterweights and counter-rotations, thus leading to an increase in the design
complexity and to noise and backlash issues due to the use of gears [10].

In order to avoid the drawbacks in using counter-rotations, a reactionless
four-bar linkage without them was proposed in [12]. For obtaining this property,
conditions on both the geometry and the mass distribution of the linkage must
be respected. It was later shown in [9] that this reactionless linkage can be used
as an elementary block in order to design reactionless robots.

In [10], the optimal design of the reactionless four-bar linkage was carried out
for minimizing its input torques under balancing conditions constraints only. In
this work, the shape of the links and counterweights is fixed and the authors focus
on the optimal positioning of the counterweights. Other works deal with the opti-
mal design of balanced four-bar linkages for allowing the full [8] or partial [5,7]
dynamic balancing while optimizing energy consumption or input torque ampli-
tude. More complete list of reference can be found in [1].
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 47
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The main issue with the aforementioned methods comes from the fact that
the shape of the links is already fixed (the design variables are their dimension)
and deformation or vibration constraints may lead to an unfeasible design in
practice (bulky mechanism to resist to the external efforts while ensuring the
balancing conditions). For avoiding this issue, it is necessary to optimize the
shape of the links. This was done in [5] for the partial balancing of the four-
bar linkage, however the approach proposed allows for finding only the external
shape of the links. No voids can be included, which is not optimal w.r.t. the
minimization of the link deformation while ensuring the decrease of the link
mass.

Performing a Topology Optimization (TO) of the linkage can solve this
issue [15]. This technique aims at optimizing the material distribution in a
link in order to satisfy performance criteria including deformations or vibration
constraints.

Our contribution in the present paper is to perform the TO of the reaction-
less four-bar linkage for ensuring its full balancing conditions while constraining
elastic performance criteria. To the best of our knowledge, this is the first time
that the TO of a fully force and moment balanced mechanism is performed.
Furthermore, we show that balancing constraints must be partially penalized in
order to obtain meaningful designs.

2 Problem Formulation

The general scheme of the four-bar linkage is given in Fig. 1(a). In what follows,

• body B1 is the body between joints at O1 and O2, body B2 is the body
between joints at O2 and O′

2 and body B3 is the body between joints at O3

and O′
2,

• �1 is the distance between O1 and O2, �2 is the distance between O2 and O′
2

and �3 is the distance between O3 and O′
2, �4 is the distance between O1 and

O3,

Fig. 1. A general four-bar linkage.
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• ri is the distance between Oi and Si (i = 1, 2, 3)
• for body i, Si is the center of mass, mi is its mass, zzi is the moment of

inertia expressed at Oi, mxi (myi, resp.) is the static moment around x i (y i,
resp.), i.e. [

mxi

myi

]
=

∫
Bi

−−−−→
OiMij dm = miri

[
cos ψi

sin ψi

]
. (1)

2.1 Shaking Force and Shaking Moment Balancing Conditions

The conditions given in [12] for achieving the full shaking force and shaking
moment balancing of the four-bar linkage without counter-rotations involve both
constraints on the mechanism geometry and mass distribution. Three different
set of links lengths are possible: Set 1: �1 = �3 and �2 = �4; Set 2: �1 = �2 and
�3 = �4; Set 3: �1 = �4 and �2 = �3.

In what follows, we focus only on mechanisms designed with the first set of
geometric constraints, which is the set most often studied in the papers (see for
instance [9,10]) and corresponds to the anti-parallelogram linkage. In this case,
the conditions on the mass distribution given in [12] for the full balancing can
be rewritten as:

my1 = 0 and my2 = 0 and my3 = 0 (2)

mx1/�1 + m2 − mx2/�2 = 0 and mx3/�3 + mx2/�2 = 0 (3)

zz1 − mx1�1 + zz2 − mx2�2 = 0 and zz3 − mx3�3 + zz2 − mx2�2 = 0 (4)

2.2 Modeling of the Linkage Elastic Behavior

Topology optimization uses the same physical model as in the finite element
method for modeling bodies and linkages: each body is meshed using finite ele-
ments. The presence or absence of an element ij (i.e. the element j of the body
Bi) is parameterized with a material density variable ρij which can take values
between 0 (which represents the absence of material) and 1 (which represents
the presence of material).

Based on these density variables, we use an interpolation scheme in order to
define an artificial material. This method is called the Solid Isotropic Material
with Penalization (SIMP, [2]) and is known to be the most effective and the
most widely used material interpolation scheme. This interpolation scheme is
adopted in order to avoid having optimization results with too much intermediate
material density, i.e. in order to have a final design solution with densities only
equal to ρij = 1 or ρij = 0 without too many intermediate values (0 < ρij < 1)
that are difficult to manage by the designer.
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The SIMP scheme is used to parameterize the Young’s modulus associated
with the stiffness matrix of the element ij and it is defined as follows:

Eij = Emin + ρpij(E0 − Emin), with ρij ∈ [0, 1] (5)

where E0 is the Young’s modulus of the material, Emin is a very small stiff-
ness value assigned to void regions in order to prevent the stiffness matrix from
becoming singular, p (typically p = 3) is the penalization factor, and Eij is the
Young’s modulus of element j of the body i corresponding to the density variable
ρij .

Then, based on this definition of the Young’s modulus for the element ij,
we build its stiffness matrix. Finally, once all elementary matrices are defined,
the computation of the body and linkage stiffness matrices is the same as in the
traditional methodology [13].

The computation of the body and linkage mass matrices (necessary for the
computation of the elastodynamic performance) is also based on the use of ele-
mentary mass matrices Mij equal to

Mij = ρijM0
ij (6)

where M0
ij is the mass matrix of the element ij computed for a density ρij = 1.

Once the linkage stiffness and mass matrices are obtained, the elastic perfor-
mance of the mechanism can be defined, such that the deformations or natural
frequencies [13].

It should be mentioned that, in order to decrease the time for computing
the elastic performance of the linkage, a Craig-Bampton model reduction tech-
nique [6] is applied on each body independently, as done in [4].

2.3 Optimization Problem

The general formulation of a mono-objective TO problem is given by:

(7)

where

• is the decision variable vector containing all element densities ρij ,
• f , g and h are functions of characterizing performance indices or structure

constraints.

Several optimization algorithms can be used, among which we can cite the Opti-
mality Criteria method [17], the Method of Moving Asymptotes [16] or the
Linearization Method [11] (LM) only recently used in the context of TO in [4].
We used the latter in this work. All these techniques have the same specificity:
they require the symbolic computation of the functions and their gradients.
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Here, we decided to maximize the first natural frequency for the linkage under
the following constraints:

• the balancing equalities (2) to (4) must be respected. As shown in [4], the
inertial parameters used in these equalities are all linear with respect to the
decision variables in .

• the compliance (i.e. twice the potential elastic energy or also the dot product
of the nodal wrenches by the nodal displacements) must be lower than a given
threshold under a given loading (as often done in TO, see for instance [15]).

For computing the compliance and natural frequency, we consider that the body
B1 is actuated in O1 and that the computation of these performances is made
for θ1 = π/2 (Fig. 1(a)).

3 Topology Optimization

3.1 Initial Domain

The initial design domain for the proximal and distal links is represented in
Figs. 2(a), (c) and (e). Four-bar geometric parameters are taken at �1 = �3 =
60 mm and �2 = �4 = 200 mm. Each link has got two holes (voids) in which

Fig. 2. Initial design domain and first temptative optimal design for all bodies (black
elements correspond to ρij = 1, white elements to ρij = 0, and gray elements to
0 < ρij < 1)
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the joints will be inserted. Bodies B1 and B3 external shapes are rectangles of
dimension (150×40) mm and thickness of 10 mm, while body B2 external shape
is a rectangle of size (220 × 20) mm and thickness of 1 mm. For the meshing of
the links, QUA4 finite elements (i.e. four-nodes rectangular planar elements) of
size 1 × 1 mm. Links are considered to be made of steel with Young’s modulus
E0 = 210 GPa, Poisson’s ratio ν = 0.3 and density of 7800 kg/m3. As a result,
6000 elements are used for meshing the bodies B1 and B3 while the body B2

is made of 4400 elements (Figs. 2(a), (c) and (e)).

3.2 Optimization Results

We run the TO algorithm with a fixed threshold for the compliance value of
1.6 · 10−3 Nm for the assembled linkage under the following loading:

• at O2: a force of 15 N along x 0, a force of 15 N along y0, a moment of 2 Nm
around z 0 on body B1, a moment of 1 Nm around z 0 on body B2,

• at O′
2: a force of 15 N along x 0, a force of 15 N along y0, a moment of 2 Nm

around z 0 on body B3, a moment of 1 Nm around z 0 on body B2,
• at O3: a moment of 2 Nm around z 0 on body B3.

As usually done in TO, in order to obtain a smoother layout without checker-
boards problem, we modified the density variables assigned to the elements with
the information of its neighborhoods as was proposed in [3].

All functions have been encoded with Matlab in the Windows 7 environment.
The LM optimization algorithm is available under request to the second author.

The optimization process is run and we considered that the algorithm con-
verged when the maximal change between two sequential iterations for any com-
ponent of the density vector is lower than 0.01. First results of optimization
are shown in Figs. 2(b), (d) and (f). The algorithm stopped after 524 iterations,
with a maximal constraint violation of 5 · 10−3 %1. In totality, the optimization
procedure took 28 minutes with a Pentium 4 2.70 GHz, 16 GB of RAM. How-
ever, the algorithm had difficulty to converge (large oscillations in the value of
the objective function, not displayed for reasons of page limitations) and finally
attained a first natural frequency of 67 Hz (which is quite low, as will be shown
below).

Obtained results showed that on the left-hand area of the points O1 and
O3, the material density for bodies B1 and B3 is between 0 and 1 (gray ele-
ments), thus leading to bodies which are not easy to design by engineers [14].
We increased the number of allowed optimization iterations and obtained no
improvement: These portions of materials are mostly here to fulfill the balancing
constraints and have less impact on the compliance constraint or the frequency
of the full linkage.

We propose here a way to improve this solution which is based on a par-
tial penalization of the balancing constraint equations. As said in Sect. 2.3, the
1 Constraints are normalized using their values computed for the initial design, except
for Eq. (2) whose initial values are null.
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equality constraints (2), (3) and (4) are linear, i.e. they can be written under
the form:

(8)

in which contains the decision variables associated with the elements on the
left-hand side of the gray lines in Figs. 2(a) and (e) for bodies B1 and B3 while

contains all other variables, including those of the body B2. Thus, the vector
contains the variables associated with the portions of materials which are

almost here to fulfill the balancing constraints, which have few impacts on the
linkage elastic performance, and which takes intermediary values for density.

In order to force the values of the variables in to be only 0 or 1, we modify
the balancing equality (8) by raising the variables at the power of q as follows:

(9)

In our code, we put q = 2 or 3. To the best of our knowledge, this is the first time
that penalization method is applied in order to achieve balancing constraints.
Based on this new formulation, condition (9) does well represent the balancing
equality (8) if all elements in are equal to 0 or 1. Thanks to this penalization
of the variables , a small removal of material has a considerable impact on the
balancing of the system, thus forcing the algorithm to impose 0 or 1 values to
the variables in order to counterbalance the effect of the variables . The
optimization results by taking into account the constraints (9) instead of (8)
are shown in Figs. 3(a), (c) and (e) (results obtained in 20 min, objective: first
natural frequency of 646 Hz, constraint violation of 1.4 · 10−4 %). Results were
obtained without any instability of the optimization algorithm and it can be
observed that gray elements have been removed from the design solution.

Figures 3(b), (d) and (f) show the same optimization problem but the differ-
ence comes from a change in the initial domain for body B2 which was increased
(body’s height is now of 30 mm instead of 20 mm). Final objective was of 763 Hz
and was attained in around 10 h. It can be observed that a slight change in the
design domain may lead to a totally different design solution.

3.3 Discussion

This work was made in order to show that TO can be used in order to obtain
solutions in a rather short time of a complicated design problem which was to
balance a four-bar linkage while ensuring deformation, compliance or frequency
constraints.

However, in this paper, some issues have not been solved, which should be
investigated later. First, the optimization is performed for compliance and fre-
quency computed at θ1 = π/2. Thus, our optimization will be local by default.
A more global optimization procedure ensuring the performance for any linkage
configuration could be used (see [4] for instance) and some other optimization
problems could be envisaged: objective and constraints could be changed.
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Fig. 3. Optimal design of bodies B1, B2 and B3 in two cases; case 1: the initial design
domain of body B2 is the one depicted in Fig. 2; case 2: the initial design domain of
body B2 is changed: the body’s height is now of 30 mm instead of 20 mm as in case
1 (black elements correspond to ρij = 1, white elements to ρij = 0, and gray elements
to 0 < ρij < 1)

It should be finally mentioned that our simulations have shown that the
convergence of the algorithm is considerably sensitive by the threshold on the
inequality constraints. In case all constraints are not achievable (i.e. there is no
solution to the problem), the algorithm may become unstable.

4 Conclusion

Most of existing works on the optimal design of balanced four-bar linkages deal
essentially with the minimization of their inertia or input torques under balanc-
ing constraints. These approaches are not suitable to include constraints based
on the elastic behavior of the mechanism. In order to solve this issue, we per-
formed in this paper the topology optimization of a reactionless four-bar linkage.

In our paper, a topology optimization algorithm was run in order to maximize
the first natural frequency while ensuring the balancing and constraining the
mechanism compliance. We showed that in order to obtain an interesting design
solution, it was necessary to modify the balancing constraints in order to penalize
them. Interesting design solutions were obtained in a rather short computational
time.

Future works include solving the problem in 3-D and also carrying out multi-
material topology optimization in order to ensure the balancing conditions by
partially using materials with higher density leading thus to smaller mechanism
footprint. The design of a prototype is also envisaged.
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Abstract. Tensegrity mechanisms have several interesting properties that make
them suitable for a number of applications. Their analysis is generally chal-
lenging because the static equilibrium conditions often result in complex
equations. A class of planar one-degree-of-freedom (dof) tensegrity mechanisms
with three linear springs is analyzed in detail in this paper. The kinetostatic
equations are derived and solved under several loading and geometric condi-
tions. It is shown that these mechanisms exhibit up to six equilibrium config-
urations, of which one or two are stable. Discriminant varieties and cylindrical
algebraic decomposition combined with Groebner base elimination are used to
classify solutions as function of the input parameters.

Keywords: Tensegrity mechanism � Kinetostatic model � Geometric design �
Algebraic computation

1 Introduction

A tensegrity structure is an assembly of compressive elements (struts) and tensile
elements (cable, springs) held together in equilibrium [1–3]. Their inherent interesting
features (low inertia, natural compliance and deployability) make them suitable in
several applications. They can also be used as preliminary models in musculo-skeleton
systems to analyze animal and human movements [4, 5]. A spine can be modelled by
stacking a number of suitable tensegrity modules. Accordingly, the frame of this work
is a preliminary step of a large collaborative project with the Museum National
d’Histoire Naturelle (MNHN) to model bird necks.

A tensegrity mechanism can be obtained by actuating one or several elements. Most
results on tensegrity mechanisms have been published recently, see for example [6–8]
and references therein. Deriving the input/output equations of a tensegrity mechanism
needs to solve the equilibrium conditions. They are generally obtained by minimizing
the potential energy, which often leads to complex equations. Planar tensegrity mech-
anisms (PTM) are simpler to analyze and are more suitable for algebraic computations.
A 2-DOF PTMwas analyzed by Arsenault [6] in terms of its kinetostatics, dynamics and
workspace. Recently, Boehler [8] proposed a more complete definition of the workspace
of that 2-DOF PTM, along with a method with higher-order continuation tools to
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evaluate it. This work focuses on a one-DOF PTM made of one base telescopic rod, two
crossed fixed-length rods and three connecting springs (see Fig. 1). This mechanism
was studied in [9] in the particular case of symmetric geometric and loading conditions.
The equilibrium configurations were solved for a set of geometric parameters and for
one actuator input value. Here, this class of PTM is analyzed in a more systematic way
and in more details, with the goal of understanding in depth the evolution of the number
of stable and unstable solutions as function of the geometric parameters, the loading
conditions and the actuated joint inputs. It turns out that the algebra involved in the
stability analysis may prove very complicated while the PTM at hand is rather simple.
Discriminant varieties and cylindrical algebraic decomposition are used to classify the
number of stable solutions as function of some input parameters. It is shown that there
are always up to six equilibrium solutions, of which at most one or two are stable.

2 Mechanism Description and Basic Equations

The studied mechanism is shown in Fig. 1. It is composed of two rigid rods A1A3 and
A2A4 of lengths L1 and L2 and three identical linear springs of stiffness k connecting
A1A4, A2A3 and A3A4, respectively. A reference frame is attached to point A1 with the
x-axis oriented along A1A2. Point A1A2 is fixed and A2 can be translated along the
x-axis by a prismatic actuator. This mechanism has three dof, one is controlled by the
actuator (q) and the other two result from the compliant rotations of the two struts about
A1 and A2 denoted by h1 and h2, respectively.

Two vertical forces F3 and F4 are applied at nodes A3 and A4, respectively. We first
consider the case of zero free length springs. This is not a purely theoretical hypothesis
since equivalent zero free lengths springs can be designed as shown for example in
[6, 9]. Assuming no friction and infinite stiffness in the rods and in the prismatic joint,
the potential energy U of this mechanism can be written as:

U ¼ k
2

X3
i¼1

l2i � F3y3 � F4y4 ð1Þ

A4
A3

A2A1

l2

l3

l1
L1

L2

F4
F3

Fig. 1. Planar tensegrity mechanism
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where y3 and y4 are the ordinates of A3 and A4, respectively. After expressing the spring
lengths li as function of the other geometric parameters,U can be shown to take the form:

U ¼ k
2
ð3q2 � 4L1q cos h1ð Þþ 2L21 þ 2L22 � 4L2q cos h2ð Þþ 2L1L2 cos h1 þ h2ð Þ

� F3L1q sin h1ð Þ � F4L2q sin h2ð Þ
ð2Þ

The mechanism is in equilibrium when the two derivatives of U with respect to h1
and h2 vanish simultaneously, which yields the following two equations:

L1 sin h2 þ h1ð Þ � 2qsin h2ð ÞþF0
4 cos h2ð Þ ¼ 0 ð3Þ

L2 sin h2 þ h1ð Þ � 2qsin h1ð ÞþF0
3 cos h1ð Þ ¼ 0 ð4Þ

where F0
4 ¼ F4=k and F0

3 ¼ F3=k. The solutions to the direct kinetostatic problem
(DKSP) of the mechanism for a given input q, are obtained by solving Eqs. (3) and (4)
for h1 and h2. Note that both stable and unstable solutions will be obtained at this stage.

3 Solutions to the DKSP

Equations (3) and (4) above are transformed into polynomial equations by resorting to
the tan-half-angle substitutions t1 = tan(h1/2) and t2 = tan(h2/2):

F0
3t
2
1t

2
2 þ 2L2t21t2 þ 2L2t22t1 þ 4qt22t1 þF0

3t
2
1 � F0

3t
2
2 � 2L2t1 � 2L2t2 þ 4qt1 � F0

3 ¼ 0 ð5Þ

F0
4t
2
1t

2
2 þ 2L1t21t2 þ 2L1t22t1 þ 4qt21t2 þF0

4t
2
1 � F0

4t
2
2 � 2L1t1 � 2L1t2 þ 4qt2 � F0

4 ¼ 0 ð6Þ

After elimination of one of the variables (say t1) in the above two equations, a
polynomial of degree 6 is obtained after clearing the factor (1 + t1

2). For each root,
Eqs. (5) and (6) can be combined to eliminate the terms of degree 2 and t2 is then solved
with a linear equation. Thus, the mechanism may have up to 6 solutions to the DKSP.

It is clear that not all the solutions are stable equilibrium configurations in general.
Stable solutions can be sorted out by verifying that the 2 � 2 Hessian matrix H is
definite positive, namely, if its leading principal minors are greater than zero: H
(1,1) > 0 and det(H) > 0.

We now inspect particular conditions that lower the degree of the above polynomial
or lead to interesting special cases.

3.1 No External Loading (F3 = F4 = 0)

When F3 = F4 = 0, Eqs. (3) and (4) simplify to:

L1 sin h2 þ h1ð Þ � 2qsin h2ð Þ ¼ 0 ð7Þ

L2 sin h2 þ h1ð Þ � 2qsin h1ð Þ ¼ 0 ð8Þ
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Thus, hi = 0 or p, i = 1,2 are solutions to the above system, which give four
singular configuration (the mechanism is fully flat and cannot resist any force along the
vertical direction). There are two more solutions of the form:

ðh1 ¼ arctanðQ=R1Þ; h2 ¼ arctanðQ=R2ÞÞ;
ðh1 ¼ �arctanðQ=R1Þ; h2 ¼ �arctanðQ=R2ÞÞ

ð9Þ

Moreover, when the coordinates of A3 and A4 are calculated with the above solu-
tions, it is found that y3 = y4 and x3 – x4 = q, which means that the mechanism remains
always in a parallelogram configuration, even when L1 6¼ L2.

3.2 Symmetric Design and Equal Forces

When L1 = L2 and F3 = F4, the system is fully symmetric. This situation was studied
by Arsenault [9] under the assumption that all solutions satisfy h1 = h2. Accordingly,
the DKSP was solved with only one equation (the derivative of U w.r.t. h = h1 = h2),
resulting in a 4th degree polynomial equation. In fact, it is not proven that the solutions
are always of the form h1 = h2 and the DKSP is solved here with h1 6¼ h2 a priori.
Thus, we use the two Eqs. (7) and (8). To get simpler expressions, the second equation
is subtracted to the first one. Then the tan-half substitution is done in this new equation
and the following new system is obtained:

ðt1 � t2ÞðF4ðt1 þ t2Þþ 2kqð1� t1t2Þ ¼ 0 ð10Þ

F4ðt21t22 � 1Þþ 2L1kðt21t2 þ t1t
2
2Þþ 4kqðt21t2 þ t2ÞþF4ðt22 � t21Þ � 2L1kðt1 þ t2Þ ¼ 0 ð11Þ

The first factor (t1 – t2) appearing in (10) confirms that solutions h1 = h2 exist but the
second factor indicates that solutions with distinct angles may also appear. Eliminating
t1 from the second factor of (10) and (11) leads to a polynomial of degree 2 in t2:

4F4k
2t22ðLqþ q2Þþ 16k3q3t2 þF3

4ðt22 � 1Þþ 4F2
4kqt2 þ 4F4k

2ðLq� q2Þ ¼ 0 ð12Þ

Since t1 can then been solved linearly using the second factor of (10), there are up
to two solutions of h1 6¼ h2. Moreover, the two solutions are of the form (t1, t2) and (t2,
t1) since the same polynomial as (12) could have been obtained in t1 by eliminating t2
instead of t1. The equal solutions obtained from the first factor in (10) are calculated by
substituting t2 = t1 in Eq. (11), which yields up to 4 distinct solutions.

3.3 Stability Analysis

The leading principal minors of the Hessian matrix H must be calculated and their sign
must be positive for an equilibrium solution to be stable. Their expression is large and
is not reported here.
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In the symmetric case, (L1 = L2 and F3 = F4), the symbolic calculation of det
(H) for the solutions h1 6¼ h2 is tractable. Solving the second factor of (10) for t2 and
replacing the solution in det(H) leads to the following expression:

detðHÞ ¼ � 4ðt22 þ 1Þ2ð4k2q2 þF2
4Þ2ð�kqt22 þF4t2 þ kqÞ2

ð�2kqt2 þF4Þ4
ð13Þ

which is always negative. Thus, the two equilibrium solutions satisfying h1 6¼ h2 are
always unstable.

For the unloaded case (F3 = F4 = 0), it can be easily shown by reporting h1,2 = 0 or
p into det(H) and H(1,1) that three solutions of the four flat ones are always unstable.

Regarding the other cases, symbolic calculations did not succeed and no general
results could be obtained at this stage.

In the next section, the number of solutions according to the inputs parameters is
investigated using more sophisticated tools, namely, cylindrical algebraic decomposi-
tion (CAD).

4 Solutions Classification Using CAD

In this section the number of stable equilibrium solutions is classified as function of the
geometric and physical parameters of the PTM. The algebraic problem relies on solving
a polynomial parametric system of the form:

E ¼ v 2 R
n; p1ðvÞ ¼ 0; . . .; pmðvÞ ¼ 0; q1ðvÞ[ 0; . . .; qlðvÞ[ 0f g ð14Þ

Such systems can be solved in several ways. Discriminant varieties (DV) [10, 12,
13] and CAD [11–13] are used here. They provide a formal decomposition of the
parameter space through an algebraic variety that is known exactly. These tools have
already been applied successfully in similar classes of problems [12, 13]. Roughly
speaking, DV generate a set of separating hyper-surfaces in the parameters space of the
parametric system at hand, such that the number of solutions in each resulting connected
components or cells is known and constant. The DV can be computed with known tools
like Groebner bases using the Maple sub-package RootFinding[Parametric]. Once the
DV are obtained, an open CAD is computed to provide a description of all the cells.
The number of solutions in each cell is determined by solving the polynomial system for
one arbitrary point in each cell. Finally, adjacent cells with the same number of solutions
are merged.

The equilibrium solutions depend on three geometric parameters (the rod lengths L1
and L2 and the input variable q) and two physical parameters (the spring stiffness k and
the forces F3 and F4). However, the lengths parameters can be normalized with L1 and
F3 and F4 can be replaced by F3/k and F4/k, without loss of generality. Finally our
system depends on 4 independent parameters only. In what follows, L1 and k are fixed
to 1 and 100, respectively.
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4.1 No External Loading

We starts with the simplest situation were F3 = F4 = 0.
We were able to show in the preceding section that three of the four flat solutions

were unstable but no general information regarding the two non-flat solutions could be
obtained. Since F3 = F4 = 0, the parameter space is a plane (L2, q). Computing the DV
and the CAD for this case leads to the existence of a region in the parameter plane
where the PTM has two stable solutions. Outside this region, the PTM has one stable
solution. Figure 2 (left) shows a representation of the CAD for L2 and q in [0, 4]. The
2-solution region is the red one. The DV that bound the regions are defined by 2q −
L2 −1 = 0, 2q −L2 + 1 = 0 and 2q + L2 −1 = 0. Here it can be easily verified with
geometric arguments that these boundaries correspond to the fully flat (singular)
configurations of the PTM. In the 1-solution regions, the PTM has one stable fully flat
solution and in the 2-solution regions, it has two stable (non-flat) solutions, one being
the mirrored image of the other as shown in Fig. 2 (right). The 2-solution region is of
constant width equal to 1 (in fact L1) when L2 > 1, while it decreases linearly with L2
when L2 < 1.

4.2 Fully Symmetric Case

We now study the case L1 = L2 and F3 = F4. We could show in the preceding section
that the two solutions h1 6¼ h2 are always unstable but we could not conclude for the
four solutions h1 = h2. Here the parameter space is the plane (q, F4). The computed DV
and CAD is illustrated in Fig. 3 (left) for 0 < q<2 and −10< F4<0 (a symmetric pattern
is obtained for 0< F4<10).

L2

2

1.5

1

0.5

0
0 0.5 1 1.5 2

A4

A4

A3

A1 A2

A3

Fig. 2. Unloading case: CAD (left) and stable solutions for q = 1, L2 = 3/2 (right)
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It reveals that there exists a region with two stable solutions in the parameter plane.
Figure 3 (right) shows two stable solutions for q = 3/4 and F4 = −10.

The boundaries here are two curves of degree 6 defined by:

F6
4 þ 12� 104F4

4q
2 þ 48� 108F2

4q
4 þ 64� 1012q6 � 16� 108F2

4q
2 ¼ 0 ð15Þ

F6
4 þ 12� 104F4

4q
2 þ 48� 108F2

4q
4 þ 64� 1012q6 � 12� 104F4

4 þ 336� 108F2
4q

2

� 192� 1012q4 þ 48� 108F2
4 þ 192� 1012q2 � 64� 1012 ¼ 0

ð16Þ

In the 1-solution region, it can be shown that the PTM operates always in a reverse
configuration, namely, y3 and y4 are negative. Assuming that the mechanism starts from
a configuration with y3 and y4 positive, the operation range for a given F4 is thus
determined by the 2-solution region. The operation range decreases when the external
force increases (in magnitude). It can be verified that for F4 = 0, the operation range
reaches its maximal value, which is equal to 1 (or L1) in accordance with the preceding
result. Note that in the presence of pulling forces (F4 > 0), the operation range of the
PTM would be full because in this case y3 and y4 turn out to be positive in the
one-solution region.

4.3 General Case

The parameter space is now defined by (q, L2, F3, F4). Two parameters are first
assigned in order to have a parameter space of dimension 2. Accordingly, the DV and
the CAD are computed for F3 = F4 = −10. Figure 4 (left) shows the obtained partition
of the parameter plane (q, L2) for 0 < q<2 and 0< L2<2. It looks similar to the unloaded
case but the boundaries here are three curves of degree 12 in q and in L2. Their
equations contain hundreds of terms. There are two stable solutions in the red region
and only one in the blue regions. Figure 4 (right) shows two stable solutions for
L2 = 3/2 and q = 7/10.

Like in the preceding case, the operation range is determined by the 2-solution
region if the PTM starts with y3 > 0 and y4 > 0. The operation range reaches its
maximal width for L2 = 1, which is the fully symmetric case (it can be verified that this
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Fig. 3. Symmetric case: CAD (left) and stable solutions for q = 3/4, F4 = −10 (right)
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range is exactly the same as the one calculated from the DV above for F4 = −10). The
operation range decreases slowly when L2 increases from 1 but the decrease is much
more significant when L2 decreases from 1.

We now compute the DV and the CAD with F3 = −10 and L2 = 3/2 in the
parameter plane (q, F4). The result is shown in Fig. 5 for 0 < q <2 and -30< F4<0,
where the red region contains 2 stable solutions and the blue region only 1. The
boundaries are defined by curves of degree 12 in q2 and in F4.

5 Discussion on More General Cases

5.1 Adding Horizontal Force Components

When horizontal force components F3x and F4x are added, it can be shown that this
does not change the global nature of the algebraic equations and of the results. Indeed
the only changes are the additional term 2F3x (resp. 2F4x) appearing in the coefficients
of t22t1 and of t1 in Eq. (5) (resp. of t21t2 and of t2 in Eq. (6)). Globally one comes up
with a system yielding 6 solutions, of which 1 or 2 are stable like above.

L2
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1
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0
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A4

A4

A3
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A3

A1

Fig. 4. General case with F3 = F4 = −10: CAD (left) and stable solutions for L2 = 3/2 and
q = 7/10 (right)
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Fig. 5. CAD for the general case with F3 = −30 and L2 = 1 (Color figure online)
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5.2 Springs with Non-Zero Free Lengths

Zero free length springs have been assumed so far. It is interesting to investigate the
changes induced on the algebraic complexity of the systems when non-zero free
lengths are introduced in the springs. Crane et al. reported an amazing increase in
complexity for a planar pre-stressed parallel manipulator made of a triangular base and
platform connected by one extensible RPR leg and two springs [7]. When a free length
l0 is introduced in all springs, Eq. (1) becomes:

U ¼ k
2

X3
i¼1

ðli � l0Þ2 � F3y3 � F4y4 ð17Þ

The point is that li is calculated using a square root, which disappears if l0 = 0 but
remains when l0 6¼ 0. The two derivatives of U now contain several square roots,
which can be cleared after squaring two times. As a result, Eqs. (5) and (6) become
extremely complex and their degree is now 28. Due to the complex algebra, parameters
must be specified before proceeding to the elimination. We could keep q as such and all
remaining parameters were assigned arbitrary values. The univariate polynomial after
elimination of t1 turned out to be of degree 328 in t2 but could be divided by ð1þ t22Þ56,
thus reducing the degree to 272. Attempts to solve the polynomial for some values of q
resulted in 12 to 30 real solutions. After verification of the vanishing of the two
derivatives of U to eliminate all spurious solutions, no more than 6 solutions remained.
Note that for a solution to be acceptable finally, the lengths of all springs must be
verified to be greater than l0 in addition to the stability condition. Deeper investigations
will be the subject of future work to obtain more results but it is clear that a classifi-
cation study as in the case l0 = 0 will be difficult because of high calculation times.

6 Conclusions

The goal of this paper was to investigate in depth the direct kinetostatic solutions of a
family of planar tensegrity mechanisms composed of a prismatic base, two crossed rods
and three springs. With zero-free length springs, the problem can be treated using
computer algebra tools like for the direct kinematics of parallel manipulator. We have
used discriminant varieties and cylindrical algebraic decomposition to study the evo-
lution of the number of solutions as function of the input parameters. Basically, a
univariate polynomial of degree 6 must be solved in the general case, resulting in one
to two stable solutions. In the unloaded case, there are always two stable symmetric
solutions for a range of the input prismatic joint which is of constant width and whose
limits vary with the rod lengths. Moreover, the mechanism remains always in a par-
allelogram configuration even when the two rod lengths are different. The mechanism
can also reach one flat stable solution, which is singular. Such a stable flat solution
might be of interest to store the mechanism when it is not used. When the two external
forces and the two rod lengths are equal, there are still 6 solutions, including 4 unstable,
non-symmetric solutions. The case of springs with non-zero free lengths was discussed
and shown to lead to very large equations with high degree but no more than 6
solutions were found in our numerical experiments.
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Abstract. This paper addresses the dimensional synthesis and design opti-
mization of a three-degree-of-freedom planar U-shape fixed base 2PRP-PRR
parallel manipulator to maximize its workspace. Two kinematic design solutions
are proposed and their link parameters are optimized to maximize the work-
space. Furthermore, accuracy analysis of the optimized manipulator configura-
tions for the actuator inaccuracies is performed and the results are compared
with the well-known planar 3PRP and 2PRP-PPR parallel configurations.

Keywords: Design optimization � Planar parallel manipulator � 2PRP-PPR �
Workspace � Accuracy analysis � Error analysis

1 Introduction

Planar parallel manipulators are getting great attention and interest for industrial
applications namely positioning and tracking in recent years. Although planar parallel
manipulators have several advantages such as higher accuracy, speed, rigidity and
payload capability, they have shortcomings due to smaller workspace and presence of
singularities [1, 2]. Therefore, several researchers are working towards identifying the
best possible (optimal) configuration to overcome these shortcomings [2]. In order to
identify the optimal configuration, there are several methods applied and quantifiers
used in the literature [2–4]. For example, the dexterity or isotropy index, global con-
ditioning index, payload index, accuracy measures, etc. are being used to quantify the
performance of the manipulator [2–4]. From the literature, it is found that usage of
unsymmetrical fixed base (U-shape fixed base) provides larger singularity-free work-
space and simple kinematic relations rather than symmetrical fixed base (D-shape fixed
base) [4, 7]. Furthermore it is found that planar parallel manipulators having their first
joint actuated and prismatic arranged in a U-shape fixed base provide better perfor-
mance and few advantages over other configurations [4, 7]. The detailed kinematic and
dynamic performance analyses of this particular family was performed and it was
found that the planar 2PRP-PRR parallel configuration has better performance in terms
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of isotropy and payload indices [4]. The 2PRP-PRR manipulator kinematics and its
kinematic performance measures were presented in [5]. In [5], the optimum kinematic
design of the configuration, i.e., the optimal link parameters were not considered, but
the performance results confirmed the influence and sensitivity of the link parameters in
overall performance. During the initial design procedure, the analysis of the perfor-
mance sensitivity to uncertainties is an important task and sensitivity analysis of planar
parallel manipulators was performed using the screw theory [8]. In [8], the end-effector
pose errors due to dimensions and actuators errors were calculated and compared for
different configurations.

Therefore, in this paper the design optimization of the planar 2PRP-PRR parallel
configuration is performed with two cases namely the PRR leg connections with and
without offset distance between active prismatic joint (slider block) to the RR link. The
configurations of these cases are given in Figs. 1(a) and (b). Furthermore the optimal
configuration workspaces are compared with well-known planar 3PRP and 2PRP-PPR
parallel configurations. In addition, accuracy analyses of the optimal configuration for
the actuator inaccuracies are performed and compared through the help of analytical
approach [7] based on forward kinematic relations. For the accuracy measure analysis,
the local maximum position errors of the end-effector for a given actuator inaccuracies
and a common test region within the singularity-free workspace are considered.

The remainder of this paper is arranged as follows: the next section presents the
mathematical background which includes kinematic relations of the manipulator whose
workspace will be studied in this paper. Section 3 presents the design optimization
results obtained from the genetic algorithms and Sect. 4 presents the accuracy measure
in terms of error analysis which computing the local maximum position errors for the
given actuator inaccuracies. Conclusions and scope of future work are given in the last
section.

(a) Case 1: without an offset distance (b) Case 2: with an offset distance  

Fig. 1. Schematic arrangements of the planar 2PRP-PRR parallel manipulator
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2 Mathematical Background

The kinematic arrangements (both cases) of the manipulator are shown in Figs. 1(a)
and (b). The fixed base, 0, and the moving platform (end-effector), 7 are connected
through three legs. In these three legs: two of them have prismatic, revolute and
prismatic joints and the third leg has prismatic, revolute and revolute joints. In all three
legs, the starting prismatic joint is actuated and other joints are passive. The vector of
actuator coordinates (joint displacements) is q ¼ r1 r2 r3½ �T and these joint dis-
placements are considered as positive values, i.e., r1 � 0; r2 � 0 and r3 � 0. The vector
of task coordinates of the end-effector is l ¼ x y h½ �T. The forward kinematic
relation of the manipulator is as follows:

l ¼
x
y
h

2
4
3
5 ¼

r1 þ l4 cos h4 þ l10 cos h1
r2 þ r3�r2

s

� �
r1 þ l4 cos h4 þ l10 cos h1ð Þ
tan�1 r3�r2

s

� �

2
4

3
5 ð1Þ

where, h4 ¼ atan2 y�l10 sin h1
l4

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y�l10 sin h1

l4

� �2r !
, s is the longitudinal span. l10 and l4

are the link lengths of link 1′ and link 4.
The inverse kinematic relations of the manipulator are given as follows:

q ¼ r1 r2 r3½ �T¼ x� l4 cos h4 � l10 cos h1 y� x tan h yþ s� x½ � tan h½ �T ð2Þ

Velocity relations can be obtained by differentiating (2) with respect to time, as

_q ¼ J lð Þ _l ð3Þ

where, J lð Þ is the Jacobian matrix of the kinematic configuration and given as:

J lð Þ ¼
1 tan h4 0

� tan h 1 �x sec2 h
� tan h 1 ðs� xÞ sec2 h

2
4

3
5 ð4Þ

where, J lð Þ is singular at 1� tan h tan h4ð Þ ¼ 0, in other words, singularity is
encountered whenever rod 4 is perpendicular to rods 7′ and 7″. In this case the moving
platform can perform infinitesimal translation motions along the direction of 7′ and 7″.
Therefore singularity-free workspace computation is performed and described in the
next section.

3 Design Optimization and Workspace Analysis

Manipulator design is one of the complex subjects and the overall performance heavily
depends on the manipulator geometry and the performance quantifiers are almost
depend on the geometry as well [2, 6]. Therefore, design optimization is an essential
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process in manipulator design and this is an iterative process. In this paper, the
manipulator’s geometry is optimized by maximizing the singularity free workspace.
One of the design parameters can be fixed without loss of generality. Here the lon-
gitudinal span (s) is assumed to be 0.2 m. The design optimization of the configuration
1 (without offset distance) is performed with the help of a simple scanning method. In
this method, the link length (LAE) is varied from 0.05 m to 0.2 m and the area of the
singularity-free workspace is calculated for the constant end-effector orientation in
[−15°, +15°]. That is, the set of points reachable for any orientation within [−15°,
+15°]. The area of the singularity-free workspace as function of the link length is
plotted in Fig. 2. It shows that the largest area is obtained for LAE = 0.148 m and its
numerical value is 0.0136 m2. This value still decreases when increasing the value of
LAE above 0.2 m. However, it is limited to the longitudinal span of the manipulator.

Design optimization of configuration 2 is not as simple as the earlier. This con-
figuration has three design variables namely, h1, LAD and LDE. The influence of each
parameter’s variations on the workspace is presented in Fig. 3. It shows that each
design variable has a significant contribution. Therefore, in this work the design
optimization is performed with the help of genetic algorithms for maximizing the
workspace. The area of the singularity-free workspace is calculated for the given entire
stroke length of each joints (it is considered as 0 to 0.2 m for all joints) and finding the
points which give non-zero determinant value of the Jacobian matrix. Here for the
optimization, the end-effector positions, x and y are varied from −0.1 m to 0.3 m and
the end-effector orientation h is varied from −15° to +15°. The genetic algorithm
optimization toolbox in matlab is used for the numerical computation. The optimized
values of design variables for the constant end-effector orientation in [−15°, +15°] are
obtained as follows: h1 = 47.15°, LAD = 0.1376 m and LDE = 0.1045 m. The area of
singularity-free workspace is 0.0239 m2. The constant workspace optimization process
is also performed for different orientations of the end-effector. The variations in the
optimized design values are very minimal. These configurations based on their opti-
mized design values are compared with well-known planar 3PRP and 2PRP-PPR

Fig. 2. Area of the workspace of the 2PRP-PRR (case 1) as function of the link length variations
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manipulators and, their kinematic arrangements are presented in Figs. 4 and 5. For
better comparison, the span (s) is considered as 0.2 m for all manipulators. The
singularity-free constant orientation workspaces of these configurations are presented
in Fig. 6. Areas of the singularity-free workspace of the manipulators are given in
Table 1.

Fig. 3. Contour plots of the workspace area of the 2PRP-PRR (case 2) configuration for the
parameter variations

Fig. 4. Schematic arrangement of the planar
3PRP parallel manipulator

Fig. 5. Schematic arrangement of the planar
2PRP-PPR parallel manipulator
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4 Error Analysis

Most of the kinematic performance measures depend on the Jacobian matrix which may
not be appropriate for overall performance comparison and they are generally not
appropriate to manipulators with mixed units. Therefore, accuracy measure based on
kinematic error analysis is performed. In this error analysis, the end-effector position
errors due to actuator inaccuracies (index errors) are only considered [7]. Since the
end-effector position error of the 2PRP-PPR is constant in its entire workspace for a given
end-effector orientation [7], the error analysis is carried out only for 3PRP and 2PRP-PPR
(case 2) configurations. The test regions are chosen within the singularity-free workspace
and presented in Fig. 7. The limit of actuator inaccuracies (maximum) of all active joints
are considered to be equal to ±50 lm. For obtaining the local maximum end-effector
pose errors based on the above range of error parameters is considered as a maximization
(optimization) problem. In this paper, the maximization of local position and orientation
errors of the end-effector is carried out using one of the popular optimization methods
namely genetic algorithms. In this method, the local position errors are maximized based
on the forward kinematic model, actuator inaccuracies range. To find the maximum value
of the pose error, the in-build MATLAB function namely ‘ga’ is used. The error contours
of these manipulators for different end-effector orientations are presented in Fig. 8. The
maximum, minimum and mean values of local maximum end-effector position errors of
the manipulators are given in Table 2.

From the results, it is found that 2PRP-PRR configuration is better in terms of
accuracy in all three cases as compared to 3PRP configuration. Not only smaller values
but also the range of smaller values is much larger as well. Further, error values of
2PRP-PRR depend on the location of the end-effector in the workspace.

Fig. 6. Singularity-free workspace plots of planar parallel manipulators
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Further, an experimental study on energy consumption with payload of these three
manipulators was carried out in [4]. The values of energy consumption for a
circular-path tracking task with full payload (50 N) of the 3PRP, 2PRP-PPR and 2PRP-
PRR (case 2) are 0.846 Wh, 1.349 Wh and 0.739 Wh [4]. The 2PRP-PPR configuration
is better in terms of accuracy but the PPR leg has a moving passive prismatic joint which
requires more energy and driving force compare to PRR leg [4]. Therefore, in overall, it
is found that the optimized 2PRP-PRR configuration with the offset distance is could be
better as compared to other configurations.

Table 1. Singularity-free workspace of the planar parallel manipulators

Configuration Singularity-free workspace in m2

h = 0° h = +30° h = [−15°, +15°]

3PRP 0.0400 0.0127 0.0185
2PRP-PPR 0.0400 0.0169 0.0240
2PRP-PRR (case 1) 0.0196 0.0122 0.0137
2PRP-PRR (case 2) 0.0400 0.0175 0.0239

Fig. 7. Singularity-free workspace for [− 15°, +15°] along with the accuracy test region

Fig. 8. Contour plots of the maximum position error (in lm)
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5 Conclusions

In the present paper, the design optimization of the planar 2PRP-PRR parallel
manipulator was performed. Two different configurations were considered and their
parameters were optimized. The constant orientation workspaces of these configura-
tions were found and compared. Based on workspace results, it was found that con-
figuration 2 (with offset distance) has better performance than the configuration 1
(without offset distance). Further error analysis was performed for the configuration 2
and compared with well-known 3PRP and 2PRP-PPR configurations. From the overall
results, the optimized 2PRP-PRR design could be a better planar parallel platform for
precise and accurate positioning applications. The use of the proposed optimum
2PRP-PRR manipulator in conjunction with the mechanical error compensation motion
control would be the next research objective.
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Abstract. The planar 3-RRR parallel manipulator is known to have six
assembly modes. However, analysing it in the framework of spatial kine-
matics reveals that it has a total of twelve assembly modes, six in each of
the two possible operation modes. The modes are derived using a Study
parameter formulation first, and later confirmed in another formulation
in the joint-space, and finally visualised in terms of the planar constraint
curves generated by the sub-chains of the manipulator. Numerical results
show that all the twelve modes can be real for certain inputs.

Keywords: Operation modes · Study’s kinematic mapping · Discrete
Screw Axis (DSA) · Forward Kinematic Univariate (FKU)

1 Introduction

The planar 3-RRR manipulator has six assembly modes, as mentioned in many
existing reports, e.g., Gosselin et al. [1]. However, if the forward kinematic analy-
sis of this manipulator is performed in the joint space, it shows twelve assembly
modes. In this work, this problem is investigated from multiple perspectives,
namely: the kinematic mapping of Study; the constraints in the joint space; and
the constraints generated by the sub-chains of the manipulator. This work is
similar to the study of the 3-RPR manipulator by Husty [3], using the Study
parameter representation of SE(2). However, in the current work, the full spatial
setup is used in the kinematic modelling, as in [4], which leads to results that are
strikingly similar. On the other hand, this work is also motivated by [6], where
the kinematic analysis is performed on the basis of the constraint equations in
the joint-space of the 3-RPS. Analogous results are obtained in this case as well,
and nice inferences can be drawn based on these to present a consistent inter-
pretation of the results obtained from various approaches. The main results are
that the manipulator has six assembly modes in each of the two of its operation
modes, though only one mode is apparent at a time, as unlike in the 3-RPS,
a transition between the modes is not (physically) possible in this case. It is
(mathematically) possible for all the assembly modes to be real at the same
time, as shown with the help of a numerical example. Also, the solutions can
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be explained geometrically in terms of the intersections of the constraint curves
generated by the sub-chains of the manipulator.

The rest of the paper is presented as follows: Sect. 2 describes the forward
kinematic analysis of the problem in the task space while Sect. 3 discusses the
same problem in the joint space. Section 4 concludes the paper.

2 Forward Kinematic Analysis Using Study Parameters

The forward kinematic problems of planar 3-degrees-of-freedom parallel manip-
ulators have been studied using the planar kinematic mapping (see, e.g., [3] in
case of 3-RPR manipulator). In the following, spatial kinematic mapping is used
to study the planar 3-RRR manipulator, leading to certain new and interesting
observations.

2.1 Kinematic Model

The manipulator is shown in Fig. 1. The fixed base b1b2b3 and the moving plat-
form p1p2p3 are both equilateral triangles, of side lengths b and a respectively.
Three limbs of R-R-R architecture, each having an actuated link of length l and
a passive link of length r, connect the two platforms. The active joint angles are
given by θ = [θ1, θ2, θ3]�, and the passive joint angles by φ = [φ1, φ2, φ3]�.
The frame {A}, given by OA-XAYAZA, serves as the global frame of ref-
erence. Likewise, frame {B}, attached to the moving platform, denotes the
moving frame. The vertices of the two platforms are expressed in projective

coordinates: Bp1 = [0, 0, 0, 1]�, Bp2 = [a, 0, 0, 1]�, Bp3 =
[

a
2 ,

√
3 a
2 , 0, 1

]�
, and

Fig. 1. Planar 3-RRR parallel manipulator
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Ab1 = [0, 0, 0, 1]�, Ab2 = [b, 0, 0, 1]�, Ab3 =
[

b
2 ,

√
3 b
2 , 0, 1

]�
, where the fourth

coordinate, 1, is the projective coordinate, and the leading superscripts A and B
indicate the frame of reference. The frame {B} is related to {A} through a
4 × 4 homogeneous transformation matrix, A

BT , expressed in terms of the Study-
parameters. The Study parameters, namely, x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3,
represent spatial motions of a rigid-body via the kinematic map κ : P7 → SE(3),
when they satisfy the following constraints (see, e.g., [5]):

Equation of the Study quadric: x0y0 + x1y1 + x2y2 + x3y3 = 0, (1)

Normalisation constraint: x2
0 + x2

1 + x2
2 + x2

3 = 1. (2)

2.2 Kinematic Constraint Equations and the Operation Modes

The loop-closure constraints are derived from the fact that the passive links are
rigid, and have a constant length r each:

‖Api − Asi‖2 − r2 = 0, i = 1, 2, 3, (3)

where Asi locate the tip of the active links, given by As1 = [l cos θ1, l sin θ1, 0, 1]�,
As2 = [b + l cos θ2, l sin θ2, 0, 1]�, As3 = [ b

2 + l cos θ3,
√
3 b
2 + l sin θ3, 0, 1]�.

Equations (3) locate each of the points pi on a sphere centered at si. To
incorporate the planar nature of the manipulator, additional constraints are
generated, by setting the Z component of Api − Asi to zero, and manipulating
them a little:

η1 : x3y0 + x2y1 − x1y2 − x0y3 = 0, (4)
η2 : x1x3 − x0x2 = 0, (5)
η3 : x0x1 + x2x3 = 0. (6)

The forward kinematic problem is represented by the set of Eqs. (1– 6). An analy-
sis of the planarity constraints (Eqs. (4–6)) along with the Study quadric equa-
tion (Eq. (1)) and the normalisation constraint (Eq. (2)) lead to two distinct
operation modes (see [4] for a similar analysis of the 3-RPS manipulator):

• Mode 1, characterised by x1 = x2 = 0, x2
0 + x2

3 �= 0:
From Eqs. (1) and (4), one finds that y0 = y3 = 0, as the non-trivial
solution leads to x2

0 + x2
3 = 0, which cannot be admitted. Thus, the vari-

ables x1, x2, y0, y3 are eliminated from the equations in this mode, and the
normalising constraint (in Eq. (2)) gets reduced to x2

0 + x2
3 = 1.

• Mode 2, characterised by x0 = x3 = 0, x2
1 + x2

2 �= 0:
Using a similar argument, it can be established that y1 = y2 = 0 in this
operation mode; the normalising constraint (Eq. (2)) becomes x2

1 + x2
2 = 1.

It may be noted that the two modes described above cover all the possible solu-
tions of the forward kinematics problem. Furthermore, the two modes are dis-
joint, as their intersection would lead to the exceptional generator, characterised
by x0 = x1 = x2 = x3 = 0, which is physically inadmissible.
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2.3 Derivation of the Forward Kinematic Univariate (FKU)

In the following, the loop-closure equations are reduced to a univariate polyno-
mial equation (termed as the Forward Kinematic Univariate (FKU) [6]) follow-
ing a sequence of elimination of variables. For the sake of brevity, only mode 1
is explained.

In mode 1, Eqs. (2 and 3) reduce to:

g1 : l2 − r2 + 4l sin θ1(x0y2 + x3y1) + 4l cos θ1(x0y1 − x3y2) + 4(y2
1 + y2

2) = 0, (7)
g2 : (a − b)2 + l2 − r2 + 2l cos θ2

(
a
(
2x2

3 − 1
)
+ b + 2x0y1 − 2x3y2

)
+ 4abx2

3

− 4x3y2(a + b) + 4l sin θ2(−ax0x3 + x0y2 + x3y1) − 4ax0y1

+ 4bx0y1 + 4(y2
1 + y2

2) = 0,

(8)

g3 : (a − b)2 + l2 − r2 + l sin θ3(a
(√

3
(
2x2

3 − 1
)− 2x0x3

)
+

√
3b + 4x0y2

+ 4x3y1) + l cos θ3
(
a
(
2x3

(√
3x0 + x3

)
− 1
)
+ b + 4x0y1 − 4x3y2

)

+ 4abx2
3 + 2x3(a + b)

(√
3y1 − y2

)
− 2ax0y1 − 2

√
3ax0y2 + 2bx0y1

+ 2
√
3bx0y2 + 4(y2

1 + y2
2) = 0,

(9)

g4 : x2
0 + x2

3 − 1 = 0. (10)

Therefore, mode 1 is represented by the ideal 〈g1, g2, g3, g4〉. The steps to
derive the FKU from this are:

1. Compute h1 = g2 − g1, and h2 = g3 − g1, which are linear in y1, y2.
2. Obtain y1, y2 from h1 = 0, h2 = 0.
3. Substitute the values of y1, y2 in g1 = 0, to obtain the equation g′

1 = 0 in x0

and x3. The polynomial g′
1 is of degree six in x3.

4. Divide the polynomial g′
1 by g4, treating both as polynomials in x3, and obtain

an expression for x3 by solving the linear equation resulting from setting the
remainder to zero.

5. Substitute x3 back in g4 to obtain the univariate in x0.

The FKU is of degree 6 in x2
0, hence there are a maximum of 6 real assembly

modes, as each root is counted twice due to the nature of the kinematic map. A
similar analysis leads to analogous results in mode 2.

2.4 Numerical Results and Interpretations

The above formulation is demonstrated via a numerical example, for the archi-
tecture parameters1 l = 6/7, r = 13/14, a = 11/14 and b = 1. The set of input
joint angles given by θ = [π/4, 5π/4, 3π/2]� is found to produce 6 real solutions
for each of the modes, which are listed in Table 1.

1 All the linear dimensions are scaled by the base length, b, and are therefore unit-less;
all angles are in radians.
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Table 1. Twelve real solutions to forward kinematics

Operation mode Assembly mode x0 x1 x2 x3 y0 y1 y2 y3

Mode 1 1 −0.985 0 0 −0.172 0 −0.057 0.025 0

2 −0.941 0 0 0.338 0 0.379 −0.033 0

3 −0.852 0 0 0.523 0 −0.360 0.353 0

4 −0.381 0 0 0.925 0 0.060 −0.011 0

5 −0.350 0 0 −0.937 0 −0.058 −0.299 0

6 −0.169 0 0 0.986 0 −0.116 0.795 0

Mode 2 1 0 −0.983 −0.185 0 −0.155 0 0 0.178

2 0 −0.941 0.338 0 0.278 0 0 −0.335

3 0 −0.845 0.535 0 −0.456 0 0 −0.127

4 0 −0.369 0.930 0 0.028 0 0 −0.835

5 0 −0.341 −0.940 0 −0.099 0 0 0.544

6 0 −0.172 0.985 0 −0.133 0 0 −0.083

It is of interest to study the operation modes of the manipulator in terms of
the finite screw motions generated by them. In mode 1, the motion is equivalent
to a pure rotation about the discrete screw axis (DSA) [4], which is parallel to
the Z axis and intersects the X Y plane at x = y2/x3, y = −y1/x3. The pitch
of the screw is null, as expected. Figure 2a shows the screw motion, using the
numerics corresponding to assembly mode 2 of operation 1 from Table 1.

(a) Mode 1: The triangle B p1
B p2

B p3 rep-

resented in local frame, when rotated about

the DSA, transforms to the final posi-

tion A p1
A p2

A p3 (filled triangle), indicating a

pure-rotation.

(b) Mode 2: The interim position (dashed)

is reached through π -rotation about the DSA

from the home position B p1
B p2

B p3 .The final

position A p1
A p2

A p3 (filled) is then attained

through translation along theDSA.

Fig. 2. Screw motion characteristics of the operation modes
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The motion generated in mode 2 is not physically realisable without a disas-
sembly of the manipulator, as it involves a rotation through π about a horizontal
DSA. The equation of the DSA in the plane is found to be y = (x2x + y3) /x1.
Such screws have been termed as the π-screws in [4]. Figure 2b depicts the motion
and the corresponding DSA for the assembly mode 3 of operation mode 2 listed
in Table 1.

3 Forward Kinematic Analysis in the Joint Space

In this section, the forward kinematic analysis is performed in terms of the
passive joint angles. Existence of the operation modes is brought out and the
relationship between the two modes is established in terms of certain properties
of the FKU.

3.1 Derivation of the FKU and Its Interpretation

In this case, the end-points of the passive links are expressed in terms
of the active and the passive joint angles as follows: Ap1 = As1 +
[r cosφ1, r sinφ1, 0, 1]�, Ap2 = As2 + [r cosφ2, r sinφ2, 0, 1]�, Ap3 = As3 +
[r cosφ3, r sinφ3, 0, 1]�, where Asi, i = 1, 2, 3 are given in Sect. 2.2. Equat-
ing the distance between each distinct pair of vertices of the moving platform to
the known value a, the loop-closure constraints are obtained as:

f1(φ1, φ2) �(Ap1 − Ap2) · (Ap1 − Ap2) − a2 = 0, (11)

f2(φ2, φ3) �(Ap2 − Ap3) · (Ap2 − Ap3) − 2a2(1 − cos γ) = 0, (12)

f3(φ1, φ3) �(Ap3 − Ap1) · (Ap3 − Ap1) − a2 = 0, (13)

where γ = π/3 is the interior angle of the triangular moving platform. The
parameter γ is retained in its symbolic form to facilitate certain inferences drawn
later in the paper. Equations (11–13) are linear in the sine and cosine of each of
the passive angles, from which an FKU in t2 = tan(φ2/2) can be obtained easily
following the elimination/transformation sequence depicted below2:

f1 (φ1, φ2) = 0
f3 (φ1, φ3) = 0

)
×φ1−→ u(φ2, φ3) = 0

φ3→t3−−−→ v1(t3, φ2) = 0

f2(φ2, φ3) = 0
φ3→t3−−−→ v2(t3, φ2) = 0

⎞
⎠ ×t3−→ w(φ2) = 0.

The notation ‘ ×x−→’ denotes the elimination of the variable x from two algebraic

equations preceding it, while ‘
φi→ti−−−→’ indicates the conversion of an equation

in φi to its polynomial equivalent in the variable ti = tan(φi/2). The equation
w(φ2) = 0, when converted to a polynomial in t2 = tan(φ2/2), is of degree 12,
2 The derivation of this FKU is neither difficult, nor novel; hence the details are

omitted for the sake of brevity.
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indicating the possibility of existence of 12 real assembly modes—a result that
matches with the previous analysis. The FKU decomposes into two factors as
follows:

w(γ, t2) = j1(γ, t2)j2(γ, t2), where j1(γ, t2) = j2(−γ, t2). (14)

Equation (14) confirms the relation between the two modes, as mode 2 corre-
sponds to a moving platform that has been flipped up-side down, or equivalently,
one in which the sequence of the vertices have been changed from CCW to CW.
Also, it has been verified symbolically, that ji(γ, t2) = 0 is the FKU for the
mode i, i = 1, 2.

3.2 Geometric Interpretation of the Operation Modes

It is well-known that the forward kinematics of certain planar three degrees-of-
freedom parallel manipulators is equivalent to the problem of intersection of the
coupler curve of a four-bar mechanism and a circle, which leads to a maximum of
six assembly modes (see, e.g., [2]). In Fig. 3a, the dotted (blue) curve is the locus
of p3 as a part of the four-bar sub-chain s1p1p2s2s1, with s1s2 as its ground
link, corresponding to mode 1 of operation, superimposed over the assembly
mode shown in Fig. 2a. The circle represents the locus of p3 as a part of the
sub-chain b3s3p3, once the input θ3 is given. The solid (red) curve in Fig. 3b
corresponds to the mode 2, and is obtained by rotating the coupler link p1p2

about the axis XB by π-radians, and then performing a similar analysis. The
solutions marked on Fig. 3b correspond to the numerics presented in Sect. 2.4.
These figures can be thought of as a visual interpretation of Eq. (14).

Fig. 3. Location of p3 as the intersection of the two planar curves. (Color figure online)
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4 Conclusion

This paper analyses the planar 3-RRR manipulator, to establish its two oper-
ation modes, and the six assembly modes in each. This result is first derived
using the Study parameters, and then corroborated with the results obtained
from the study of the kinematics of the manipulator in its joint space. Finally,
the results are unified using a graphical visualisation of the assembly modes, in
terms of the intersection of the constraint curves generated by the sub-chains
of the manipulator. It is shown, that mathematically all the twelve assembly
modes can be real at the same time, though physically it is impossible for the
manipulator to transit from one operation mode to the other, and hence only
one operation mode is apparent any time.
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Abstract. Parallel manipulators present drawbacks such as singulari-
ties inside their workspace. In order to measure these drawbacks, the
condition number of the Jacobian matrix can be used either as a mea-
surement of the distance between the end effector and singularities or
as an isotropy index. In this paper, a study of the impact of kinematic
redundancies on the improvement of a planar manipulator’s isotropic-
ity and on the reduction of singularities is presented. In order to do so,
conditioning maps are exploited for the non-redundant 3RRR and for
the kinematically redundant 3PRRR manipulators. The outcome of this
evaluation supports evidences in favor of kinematic redundancies regard-
ing kinematic characteristics.

Keywords: Parallel kinematic manipulator (PKM) · Kinematic redun-
dancy · Singularity avoidance · Conditioning maps · Isotropy index

1 Introduction

Parallel kinematic manipulators (PKMs) can be promising industrial alternatives
to serial manipulators due to their higher dynamic capabilities, higher accuracy
and better payload/self-weight ratio [4]. Nevertheless, they present important
drawbacks regarding real applications [5]. Some of these drawbacks are caused
by the presence of singularities in the parallel manipulator’s workspace. For
instance, the accuracy of a PKM may rapidly decrease near singularities during
a task. Kinematic redundancy can be applied to avoid or attenuate this problem.
It consists in the introduction of an active joint in a kinematic chain allowing the
self-motion of the manipulator. Due to the inclusion of the redundant actuator,
the inverse kinematic model of kinematically redundant PKMs presents infinite
solutions. A proper selection of a solution may enforce the avoidance of unde-
sirable behaviour. In fact, kinematic redundancy has been used not only for the
singularities’ avoidance but also for the improvement of manipulator’s kinematic
and dynamic characteristics [2,3,6].

Additionally, PKMs present highly coupled dynamics which can become an
issue for designing and implementing real-time control strategies for industrial
c© Springer International Publishing AG 2018
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applications [7]. The coupling of the mechanism can be measured by an isotropic
index that can be defined by the condition number of the Jacobian matrix as
described by [8]. This index is also exploited as a measurement of the distance
between the end effector and singularities [1].

In this manuscript, a study of the impact of kinematic redundancies on the
enhancement of the manipulator’s isotropy and on the reduction of singular
regions. This is accomplished by identifying the behaviour of the condition num-
ber of the Jacobian matrix of planar parallel kinematic manipulators with kine-
matic redundancy. In order to do that, the non-redundant manipulator, the
3RRR, and the kinematically redundant manipulator, the 3PRRR are investi-
gated. These manipulators, illustrated in Fig. 1, present three kinematic chains
composed of one active revolute joint (R) and two passive revolute joints (RR).
The inclusion of extra active prismatic joints (P) is responsible for the kinematic
redundancies.

The comparison of the behaviour of the condition number of the Jaco-
bian matrix for predefined tasks could yield misleading interpretations, since
this outcome is task dependent. In this way, conditioning maps are proposed
and depicted over the manipulator’s workspace. In this proposal, the kinematic
redundancy is properly treated.

This paper is organized as follows. The kinematic model of the 3PRRR
manipulator is described in Sect. 2. Section 3 presents the methodology address-
ing the conditioning maps. The results are presented and discussed in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

(a) (b)

Fig. 1. Illustrations of (a) the non-redundant manipulator 3RRR and (b) the kinemat-
ically redundant manipulator 3PRRR.

2 Kinematic Model

In this section, the kinematic model of the 3PRRR manipulator is presented.
This model can be used to represent the non-redundant manipulator 3RRR
by imposing the input values of the redundant actuators. Figure 2 illustrates
a scheme of the geometry of the 3PRRR. The subscript i = 1, . . . , 3 describes
the kinematic chain. There are revolute joints in Ai, Bi and Ci, where Ai is
active and Bi and Ci are passive. The angles θi and βi represent the orientation
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of the links AiBi and BiCi, respectively. The lengths of links AiBi and BiCi

are, respectively, l1 and l2. Active prismatic joints can modify the position of
the point Ai. Using this linear actuators the position of Ai can be modified
according to the position δi and the orientation γi (see Fig. 2b). The distance
between the manipulator’s center and the central position of the linear actuators
is represented by a. The Cartesian position of the end effector is (x, y) with
orientation α. The distance of Ci to the center of the end effector is h. Details
on this description can be found in [3].
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Fig. 2. Model parameters of the redundant manipulator 3PRRR: (a) points and link
lengths; (b) angles and coordinate system.

2.1 Inverse Kinematics

The inverse kinematic model is used to determine the active joints’ inputs
Θ = [θ1, θ2, θ3, δ1, δ2, δ3]T that yield a desired end effector’s pose X = [x, y, α]T .
Due to the kinematic redundancies, this task is not simple since the mechanism
presents six actuators while the end effector presents only three DOFs. As a
consequence, this problem, usually denoted as redundancy resolution, presents
infinite solutions. So, considering that the values of the redundant actuators’
inputs δ1, δ2 and δ3 are known, the inverse kinematics of the manipulator is
defined.

First, the variables ρxi and ρyi are introduced as:[
ρxi
ρyi

]
=

[
x
y

]
+ h

[
cos(α + λi)
sin(α + λi)

]
− δi

[
cos(γi)
sin(γi)

]
− a

[
cos(λi)
sin(λi)

]
. (1)

The following geometrical constraint can be imposed according to the length
of the links: ∥∥∥∥

[
ρxi − l1cos(θi)
ρyi − l1sin(θi)

]∥∥∥∥ = l2. (2)

Expanding the norm in Eq. 2 and rearranging its result, the following relation
can be obtained:

ei1 + ei2 cos(θi) + ei3 sin(θi) = 0, (3)
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where

ei1 = −2l1ρyi, (4)
ei2 = −2l1ρxi (5)

ei3 = ρ2xi + ρ2yi + l21 − l22 = 0. (6)

The tangent half-angle substitution is employed to solve Eq. 3 for θi yielding:

θi = 2 tan−1

(
−ei1 ± √

e2i1 + e2i2 − e2i3
ei3 − ei2

)
. (7)

Using Eq. 2 and the result of θi, the angle βi can also be determined by

βi = tan−1

(
ρyi − l1 sin(θi)
ρxi − li cos(θi)

)
. (8)

2.2 Jacobian Matrix

The Jacobian matrix J, which relates Ẋ = [ẋ, ẏ, α̇]T with Θ̇ =
[θ̇1, θ̇2, θ̇3, δ̇1, δ̇2, δ̇3]T , needs to be determined as well for the calculation of the
manipulators’ conditioning. This relation is defined as

Ẋ = JΘ̇ (9)

One way to determine it is by taking the time derivative of the constraint
relation described by Eq. 3. This approach yields:

ẋ[l2 cos(βi)] + ẏ[l2 sin(βi)] + α̇[l2h sin(βi − λi − α)] = (10)
= θ̇i[l1l2 sin(βi − θi)] + δ̇i[l2 cos(βi − γi)].

Equation 10 can be rewritten in a matrix form yielding

AẊ = BΘ̇. (11)

The matrices A and B can be defined as:

A =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ and (12)

B =

⎡
⎣b11 0 0 b14 0 0

0 b22 0 0 b25 0
0 0 b33 0 0 b36

⎤
⎦ . (13)

where ai1 = l2 cos(βi), ai2 = l2 sin(βi), ai3 = l2h sin(βi−λi−α), bii = l1l2 sin(βi−
θi) and bii+3 = l2 cos(βi − γi).
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3 Conditioning Map

The mathematical definition of singularities in PKMs is described by the deter-
minant of the Jacobian matrices A and B [4]. Singular Jacobian matrices indicate
singularities. Nevertheless, regions near to singularities can also be problematic
for real applications and should be avoided. According to [1], the inverse of the
condition number of the matrix A can be used to evaluate the closeness between
the end effector and singularities.

From the kinematic model, one can notice that the matrix A is heterogeneous,
thus its condition number has no physical meaning. This characteristic is due
to the presence of translational and rotational DOFs. Therefore, in order to
compensate and homogenize the matrix A, [1] have proposed a new homogenized
matrix Ā defined as:

Ā =

⎡
⎣a11 a12 a13/Lc

a21 a22 a23/Lc
a31 a32 a33/Lc

⎤
⎦ , (14)

where Lc =
√

2h is the manipulator’s characteristic length.
The condition number κ of the matrix Ā can be defined as

κ(Ā) =
max σ(Ā)
min σ(Ā)

, (15)

where σ(Ā) is the vector of singular values of the matrix Ā.
By definition, the index κ−1 is bounded, (0 ≤ κ−1 ≤ 1). And, the following

physical interpretation can be realized: κ−1 = 0 means that the manipulator is
on a singularity and κ−1 = 1 means that it is on an ideal isotropic configuration.
In this way, [1] have demonstrated that the index κ−1 indicates the distance
between the end effector and the singularities.

Since the index κ−1 is dependent on the manipulators’ configuration, its
value is not constant over the manipulators’ workspace. In this way, the values
of the index κ−1 can be calculated in a mesh over the manipulator’s workspace.
Conditioning maps can be depicted by plotting these values over the workspace.

For non-redundant manipulator, the 3RRR manipulator, a single kinematic
configuration is derived by the inverse kinematic model. In this way, a single
value of the index κ−1 is found for each configuration defined by the mesh.
For the kinematically redundant manipulator, the 3PRRR manipulator, infinite
configurations can be derived for a single pose of the end effector. In this work,
the conditioning map for the redundant manipulator is derived by dividing each
input of the active prismatic joints (the redundant actuators, δi) in k possible
positions. The best inputs are found by extensive search for the higher value
of the index κ−1. The higher values of the index κ−1 are depicted yielding the
conditioning maps for the redundant case.
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4 Results

In this comparison, the parameters for both manipulator are the same. Moreover,
these values have been selected in order to match a real setup built by our
research group [9]. The lengths of each link l1 and l2 are 0.191 m and 0.232 m,
respectively. The limits of the linear actuators are δmin = −0.3 m and δmax =
0.3 m. The lengths ai and hi are the same for all kinematic chains and are equal
to 0.260 m and 0.060 m, respectively.

Figure 3 depicts the conditioning map of the 3RRR manipulator. There are
three unreachable circles inside the workspace due to the difference in the lengths
of links l1 and l2. Moreover, the dark blue areas near to these circles present low
condition numbers. This indicates that these regions are close to singularities.
In general, the conditioning map of the 3RRR shows that the manipulator con-
ditioning is lower than 0.8 in a large amount of the workspace. Conditioning
values higher than 0.8 can only be found at regions near to the center of the
workspace.

Fig. 3. Conditioning map of the non-redundant manipulator 3RRR. (Color figure
online)

Figure 4 illustrates the conditioning map of the 3PRRR manipulator. One can
notice that there is no unreachable area inside the workspace, which is consider-
able larger than the 3RRR’s workspace. Moreover, there is no area that presents
a conditioning index lower than 0.2 and there is a wide area with conditioning
index higher than 0.8 in the center of the workspace.

Comparing Figs. 3 and 4, one can notice that the region with index values
higher than 0.8 (yellow area) presents the same size of the 3RRR workspace. This
suggests that kinematic redundancy promotes the improvement of the manip-
ulator’s conditioning, since the 3PRRR manipulator generally presents higher
conditioning values than the 3RRR manipulator.

Although the redundant manipulator has shown a better conditioning map,
these aforementioned values can only be achieved in specific inputs of the active
prismatic joints (the redundant actuators 1, 2 and 3). These optimal inputs are
depicted in the workspace in Figs. 5(a), (b) and (c). One can observe that there
are some important discontinuities regions in these maps leading to unfeasible
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Fig. 4. Conditioning map of the redundant manipulator 3PRRR. (Color figure online)

trajectories for the redundant actuators. Indeed, this fact shows that the proposal
of a strategy to design smooth optimal position maps can be helpful for the design
of redundant manipulators. These maps can be useful for deriving redundancy
resolution scheme for real applications.

(a) (b) (c)

Fig. 5. Optimal inputs for the redundant actuators (a) δ1, (b) δ1 and (c) δ1.

5 Conclusions

In general, PKMs present singularities in the workspace. In order to avoid these
drawbacks, kinematic redundancy can be applied as stated in the literature.
In this manuscript, the impact of kinematic redundancy on the conditioning of
PKMs was addressed. In order to do that, two manipulators were compared: the
non-redundant 3RRR and the redundant 3PRRR manipulators. This comparison
was carried out by contrasting the conditioning maps of both manipulators.
These maps were depicted by plotting the inverse of the condition number of
the homogenized Jacobian matrix in the manipulator’s workspace.

The results demonstrated a considerable increase in the area where the con-
ditioning index is larger than 0.8 when kinematic redundancies are considered.
This indicates that kinematic redundancies can be an alternative for improving
the performance of PKMs. Finally, the authors believe that these conditioning
maps could be applied to the development of a redundancy resolution scheme
improving the conditioning of redundant manipulators for real applications.
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Abstract. This paper shows that new opportunities and areas of devel-
opment arise from using a module-based layer synthesis and description
of mass properties combined with a domain spanning system simulation
software. That allows for a holistic mechanism synthesis with a contin-
uous analysis-synthesis-parameter-adjustment (ASPA). Hence, the user
may perform both mechanism analysis and synthesis employing one sin-
gle program interface with, what is also possible, an identification of the
ideal mechanism in terms of dynamics during an optimization process.

Keywords: Modular multilayer synthesis · Planar linkages · Parame-
terized mass properties · Rigid body dynamics

1 Introduction

For applying state of the art techniques to determine a dynamically favorable
design of nonlinear mechanisms, it is necessary to know their characterizing
parameters, such as structure related dimensions, mass, stiffness and damping
matrices. In order to optimize a preferred nonlinear drive assembly by using
high-performance programs (e.g. PTC Creo Elements/Mechanism, ESI ITI Sim-
ulationX or Altair HyperWorks) today’s methods offer solutions like mass or
power balancing. Despite their certain functions, these software tools sparely
answer typical synthesis questions to fulfill arbitrary motion demands or dynam-
ical boundary conditions. Therefore, a new method has been developed based
on a local cross-linking of an analysis, synthesis and optimization to close the
gap between the demands and already existing functions within a chosen soft-
ware environment as shown in Fig. 1. In order to obtain this cross-linking, one
main objective was to create a flexible method for everyday engineering practice.
Hence, the principle of module based system engineering (as used in the software
ITI SimulationX) was retrieved [1] which posed two main challenges. Firstly, it
was necessary to develop a library of standardized synthesis modules that can
easily be implemented within the aforementioned software environments and
that provides the geometrical dimensions of a mechanism. The mathematical
concept of this library is described in Sect. 2.
c© Springer International Publishing AG 2018
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Fig. 1. Principle of an interactive analysis-synthesis-parameter-adjustment

A holistic mechanism synthesis with dynamical boundaries, like changing
natural frequencies or reducing the foundation excitation, requires a proper
description of all mass properties depending on the level of system discretization
(established by Dresig [2]) shown in Fig. 1. Therefore, Sect. 3 offers a suitable way
to determine these parameters by approximating data sets gained from design
studies of predefined solids or assemblies.

2 Modular Geometrical Synthesis

As mentioned before, it is necessary to create randomly connectable synthesis
modules as shown in Fig. 2, that are able to communicate and interact with each
other. Furthermore, they have to solve the synthesis and provide all relevant
information for the computation of mass properties, explained in Sect. 3.

Fig. 2. Exchange of information within a connected modular synthesis
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Therefore, each module uses point positions, lengths, angles and scalars to
calculate the missing parameters describing every position of each point or plane.
Each module returns a standardized data set including the missing positions,
lengths, angles or scalars, such as the installation position of a joint point or
other design factors. All modules are classified into five categories, shown in
Fig. 3. The module V103, for example, is the third (03) variation of the four
layer synthesis to compute a revolute joint within a moving frame of reference.
This module can be used to find a coupler point on a moving link that is linked
to a rocker. Furthermore, this module fulfills the boundary condition that in
three out of four linkage positions the rocker does not rotate. Section 4 contains
further details on how to use the library.

Fig. 3. Classification used within the new modular synthesis library

In order to implement such a library in any MBS or math software, it was
necessary to find a suitable way to mathematically describe the solution for a
given motion task. Accordingly, the basic approaches were vector analysis and
complex numbers. During several studies it appeared that using complex indica-
tors within the program language Modelica, which is the library language used
in SimulationX, led to a significant increase of the effective calculation time.
Despite this, it is a suitable way to compute the solution with mathematical
software (for example Mathcad, Matlab or HyperMath). The following example
of a three layer synthesis with a moving frame of reference explains the mathe-
matical description. The module defines the revolute joint B in its three positions
shown in Fig. 4.

Fig. 4. Input and output of the synthesis module D103
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The ingoing parameters of this module are the frame points A0 and B0 (given
by xA0, yA0, xB0 and yB0), the link length l2, the angles α1, α12, α13, β12 and
β13. A0 is calculated with complex numbers and so is analogous to Eq. (1) B0.
The first step is to calculate the positions A1,2,3 of the revolute joint point A
according to Eqs. (2) and (3). In order to calculate the center point B1, it is
necessary to transform the positions of A back into position one of the frame of
reference which is the rocker 4. Therefore Eq. (4) is used to rotate the points A2

and A3 around B0.

A0 = xA0 + yA0 · i i =
√−1 (1)

A1 = A0 + l2 · e(α1·i) (2)

An = A0 + l2 · e([α1+α1n]·i) n = [2, 3] (3)

A1
n = B0 + (An − B0) · e(−β1n·i) n = [2, 3] (4)

The next step is to calculate the position of B1 as the intersection point using
the two perpendicular bisectors on the sides A1 −A1

2 and A1 −A1
3 by employing

Eq. (5)1.

B1 =
(A1

2 − A1
3)|A1|2 + (A1

3 − A1)|A1
2|2 + (A1 − A1

2)|A1
3|2

(A1 − A1
3)(A

1
2 − A1) − (A1 − A1

2)(A
1
3 − A1)

(5)

Calculating the positions B2 and B3 by rotating them around B0 as shown in
Eq. (6) is a faster way than applying the law of cosine due to the fact that the
layer synthesis guarantees the adherence of all the three positions.

Bn = B0 + (B1 − B0) · e(β1n·i) n = [2, 3] (6)

Finally, the missing module outputs are defined through Eqs. (7) to (9). Equa-
tion (7) calculates β1 (start angle) of the rocker. Equation (8) delivers the rocker
and link length and Eq. (9) is used to define whether the installation position
factor kB is positive (+1) or negative (−1). This last factor is an important
information for the module based analysis of the synthesized linkage according
to VDI 2729 [3].

β1 = Im(ln(B1 − B0)) (7)

l3 = |B1 − A1| l4 = |B1 − B0| (8)

kB =

{
1, if Im

(
ln

[
B1−A1
B0−A1

])
> 0

−1, otherwise
(9)

As a result of these calculations, the module D103 returns the exact positions
of A1,2,3 and B1,2,3, the angle β1, the link lengths l3, l4 and the installation
position factor kB . That information allows the modules to be included in a
complex mechanism simulation. Furthermore, it is now possible to compute mass
parameters with those synthesis solutions to achieve further analysis.
1 The vinculum within the denominator is used for the conjugated complex vector.
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3 Parameterized Mass Properties

Anticipating nearly exact mass properties during a layer synthesis to determine
the dynamical behavior of a drive assembly combined with its optimization leads
to the issue dealt within this section. There are several different ways to compute
mass properties from solids with or without the CAD environment. Typically,
a CAD software continuously calculates the moment of inertia J according to
Eq. (10) by knowing all the relevant model parameters (constant density ρ, the
position vectors r) and especially the bounds of integration due to the design
process. Bearing that in mind, it would be necessary to create CAD features
within typical MBS or math software if it was necessary to compute mass prop-
erties in the exact same manner.

J = ρ

∫
V

(
(r · r)I − r ⊗ r

)
dV I . . . identity tensor (10)

However, there are five ways to describe the unknown mass parameters which
can easily be implemented:

1. Co-simulation with parametric models and a continuous exchange of
parameters

2. Parameter identification based on a CAD design study
3. Manipulation of triangulated solids from STL files
4. Determination of mass properties by using primitive solids
5. Using discrete mass points for a compensatory moment of inertia

Referring to number 2, links in non linear mechanisms can be standardized
by typically used design strategies shown in Fig. 5. Therefore, it is suitable to
create a data set through a design study (VC) of predefined solids or assemblies
within the CAD environment.

Fig. 5. Typical designs of linkages within mechanisms drawn by Volmer [4]

Such a data set contains the moment of inertia (JS) about the polar axis, the
position of the center of gravity (S) and the mass (m) of the solid. Furthermore, it
contains all varied parameters, as for example a length or an angle. It occurs that
using the Gauss method of least squares is also a practical way to approximate
those mass parameters through a p-dimensional polynomial approach function.
A ternary link, for example, can be described by three variable parameters: its
two lengths lAB , lAC and the angle γBAC . This leads to a one, two or three
dimensional polynomial approach function depending on the number of used
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variables. Equation (11) represents such a p-dimensional polynomial approach
function of the order n that can be used for the Gauss method.

Pn(x1, . . . , xp) =
∑

n1+...+np<n

bn1,...,np
· xn1

1 · · · xnp
p (11)

Therefore, the minimization problem for a data set with m entries per dimension
p is defined by Eq. (12). In this equation, b represents the coefficient vector, xi

the ith p-dimensional variable vector from the data set and yi the attached mass
parameter.

min
b

m∑
i=1

(
f(xi,b) − yi

)2

(12)

Solving Eq. (12) leads to the polynomial coefficients of a p-dimensional function,
in this case an area function as shown in Fig. 6. In this example, the two para-
meters γBAC and lAC of the ternary link A-B-C were varied. The polynomial
regression led to one area function for each mass parameter vector from the
data set.

Fig. 6. Example of a design study with a polynomial regression approximating the
data

Applying these polynomial functions to describe all the mass parameters
gives the opportunity to investigate dynamical characteristics through a modal
analysis or the distribution of the total energy of the mechanism.

4 Example of a Parameterized Multilayer Synthesis

This section deals with an example of a synthesis task based on a mechanism
promoted by Socha in 1967 [5] that consists of 8 links. In Fig. 7 only the lower,
and for this section relevant part of the complex mechanism, is shown. With
the help of the introduced modular synthesis and description of link mass para-
meters it is possible to calculate the system behavior and study sensitivities by
varying free parameters. Usually, a geometrical layer synthesis leads to a variety
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Fig. 7. Section of a coupler mechanism with a position variation on the Burmester
curves [6]

of possible link lengths and angles, all fulfilling given motion demands. From
such a variety of solutions the designer has to choose his favorable parameter
set according to recommendations from the literature. Unfortunately, those are
usually based on geometrical parameters like the transmission angle (see Fig. 7)
which is not enough for meeting stronger boundary conditions on its dynamical
behavior.

A variation of the position of C on the circle-point curve2 during the layer
synthesis directly affects the required drive torque based on the mass and energy
distribution in the mechanism. By having a closer look on the drive torque curves
from Fig. 8 it occurs that even within a small interval this variation has a huge
impact on the maximum torque. The upper and lower border are defined through
the given boundary conditions, that can be looked up in [6].

Comparing the hodograph of the required maximum drive torque with the
hodograph of the transmission angle from Fig. 8 shows that a dynamical optimum

D
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 to
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  [
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m
]

Drive angle [°]le 

Driv. torque curve at the lower border

Driv. torque curve at the upper border 
Optimal drive torque curve within the intervall

Driving torque curve within the intervall

Fig. 8. Torque curves resulting from a parameter study within the given interval in
Fig. 7

2 The circle- and center-point curves are also known as Burmester curves in a four
layer synthesis.
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not necessarily has to be a geometrical optimum. The optimal drive torque curve
can be reached by choosing a position on the circle-point curve close to the
geometrical optimum. Further explanations on this example can be found in [6].

5 Conclusion

Determining a dynamically favorable design of a nonlinear mechanism usually
leads to an iterative method based on experience and some imprecise recom-
mendations from the literature. Thus, the classical geometrical layer synthesis
often cannot meet the given dynamic boundaries. Referring to Fig. 7, a geomet-
rical based optimization of a linkage could result in a dynamical disadvanta-
geous mechanism. Trying to close the gap between dynamics and classical layer
synthesis led to two challenges. The first objective was to develop a modular
synthesis library based on algorithms that easily can be implemented in various
MBS software. The second and more challenging objective was to find a suit-
able way to determine mass properties that are necessary for proper modeling.
The shown approach of using design studies combined with a polynomial regres-
sion provides the opportunity to investigate the dynamical behavior during the
synthesis. Based on an exact description of the mechanism mass parameters, it
is now possible to improve the mechanism model. Especially when it comes to
further studies on the mechanical system behavior, it is inevitable to know the
exact moment of inertia (JS) about the polar axis, the position of the center of
gravity (S) and the mass (m). Further investigations on this issue will answer
the following questions:

1. How can a variation of a design parameter from the layer synthesis pos-
itively influence the interchange of energy between the links, regarding
the total amount of energy?

2. How does the variation of design parameters interfere with the response
to parametric excitation, based on bearing play or stiffness?
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Abstract. We show that a map defined by Pfurner, Schröcker and
Husty, mapping points in 7-dimensional projective space to the Study
quadric, is equivalent to the composition of an extended inverse Cayley
map with the direct Cayley map, where the Cayley map in question is
associated to the adjoint representation of the group SE(3). We also ver-
ify that subgroups and symmetric subspaces of SE(3) lie on linear spaces
in dual quaternion representation of the group. These two ideas are com-
bined with the observation that the Pfurner-Schröcker-Husty map pre-
serves these linear subspaces. This means that the interpolation method
proposed by Pfurner et al. can be restricted to subgroups and symmetric
subspaces of SE(3).

Keywords: Motion interpolation · Lie triple systems · Symmetric sub-
spaces · Cayley map

1 Introduction

There is a very large number of methods and procedures for interpolating rigid-
body motion as this is an important problem not only in robotics but also in
computer graphics. See the review paper by Röschel [6].

Recently [5], a new simple method was presented for interpolating motions
based on the embedding of the group of rigid-body displacements SE(3) in
the seven dimensional projective space P

7 as a non-singular quadric, known as
the Study quadric QS . This method is reminiscent of a method proposed by
Belta and Kumar where interpolation was carried out on matrices and then the
matrices mapped back to the group of rigid-body displacements, see [9] and
references therein.

Here we show that this new interpolation method is equivalent to using the
Cayley map associated to the adjoint representation of the group. That is, the
rational map, used by Pfurner, Schröcker and Husty to map points in P

7 to QS is
equivalent to performing the composition of the inverse Cayley map, extended to
all of P7, followed by the Cayley map sending points in P

6 to the Study quadric.
In another recent work [13], a method for interpolating motions in symmetric

subspaces of SE(3) was given. Symmetric subspaces of SE(3) are important in
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 53
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many practical applications, see [11]. In [14], it was observed that these sym-
metric subspaces lie in the intersection of the Study quadric with some linear
space. Below we make this statement precise. We also verify that the map defined
in [5] respects these linear subspaces; a point in P

7, not on the Study quadric
but lying in a linear subspace which defines a subgroup or symmetric subspace,
will be mapped to a point in the intersection of the subspace and QS . So the
interpolation method of Pfurner, Schröcker and Husty (PSH method) is ideally
suited as an interpolation method on the symmetric subspaces. Finally, we give
a couple of simple examples of the method.

2 Cayley Maps

Given a matrix representation of se(3), the Lie algebra to the group of rigid-body
displacements, we can map the Lie algebra to the group itself using the map,

Cay(A) = (I + A)(I − A)−1, (1)

where A is the matrix representing an element in se(3) and I is the identity
matrix. The result is a group element in SE(3) represented as a matrix of the
same dimension. These maps, unlike the exponential map, depend on the partic-
ular representation used. Here, the adjoint representation of SE(3) is used and
the corresponding Cayley map will be written Cay6.

Now a general dual quaternion is given by,

g = (a0 + a1i + a2j + a3k) + ε(c0 + c1i + c2j + c3k) (2)

where i, j and k are the unit quaternion generators and ε is the dual unit which
commutes with the quaternions and squares to zero, ε2 = 0.

A rigid-body displacement is given by a dual quaternion with elements sat-
isfying the equation,

a0c0 + a1c1 + a2c2 + a3c3 = 0. (3)

Taking (a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) as homogeneous coordinates in a P
7,

the above quadratic equation determines the Study quadric QS .
In [10] the map Cay6 and its inverse were described in terms of dual

quaternions. An element of se(3) can be written as a pure dual quaternion;
s = (w1i + w2j + w3k) + ε(v1i + v2j + v3k). In the algebra of dual quaternions
the Cayley map based on the adjoint representation can be written as,

Cay6(s) =
1

2(w2
0 + μ2)3/2

(
(2w2

0 + 3μ2)w0 + (2w2
0 + 3μ2)s + w0s

2 + s3
)
, (4)

where μ2 = w2
1+w2

2+w2
3. The variable w0 has been included to make the equation

homogeneous. In this way the map can be viewed as a map from the projective
space P

6, with homogeneous coordinates, (w0 : w1 : w2 : w3 : v1 : v2 : v3) to Qs.
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In order to give a compact but explicit formula for this map we introduce the
following notation. Let,

a = (a0, a1, a2, a3)T , c = (c0, c1, c2, c3)T ,

and also
w = (w0, w1, w2, w3)T , v = (0, v1, v2, v3)T .

Now, the powers of s can be expanded in Eq. (4) and in terms of the above
notation the Cayley map can be written,

a = w(w · w), c = v(w · w) − w(v · w). (5)

Note that, since the codomain of the map lies in a projective space, any common
factors can be ignored. It is simple to check, using Eq. (3), that the image of the
transformation is indeed the Study quadric. The map clearly has degree 3 in the
homogeneous coordinates of P6. The exceptional set for the map consists of the
2-plane w0 = w1 = w2 = w3 = 0 and the 4-dimensional intersection of the 2
quadrics w2

0 + w2
1 + w2

2 + w2
3 = 0 and w1v1 + w2v2 + w3v3 = 0.

The inverses of these maps were also found in [10]. Given a group element g
satisfying (3), the inverse map is,

Cay−1
6 (g) =

−1
2a2

0

(
g2 − 4a0g + (3a2

0 + a2
1 + a2

2 + a2
3)

)
. (6)

If we assign w0 = −2a2
0, the common denominator, then the other coordinates

of s = Cay−1
6 (g) are given by expanding the polynomial in g and simplifying

using the Study quadric, (3) and cancelling common factors:

w = a0a, v = a0c − c0a. (7)

This is a quadratic transformation with exceptional set consisting of the 5-plane
a0 = c0 = 0 and the 3-plane a0 = a1 = a2 = a3 = 0. The 3-plane is the A-plane
of ideal elements in the Study quadric, the points which do not correspond to
any rigid-body transformation. The intersection of the 5-plane with the Study
quadric is the set of half-turns, that is rotations by π radians about some axis.
This pair of maps can be viewed as a birational transformation between the
six-dimensional projective space P

6 and the Study quadric QS in P
7.

Notice that the definition of the inverse of Cay6, can be extended to all points
of P

7, using the same definition as above. The extended map will be denoted
C̃ay

−1

6 .
In [5] Pfurner et al. introduced a simple method for interpolating rigid-body

motions. The algorithm consists of writing the control points of the motion
as dual quaternions and then performing the interpolation in the ambient P

7.
Finally, the motion is found by projecting the curve into the group. The map
given in [5] takes an arbitrary point of P

7 to QS in P
7, so let us write the

coordinates in the first P
7 as ā and c̄, so the map can be written as,

a = ā(ā · ā), c = c̄(ā · ā) − ā(ā · c̄). (8)
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It is straightforward to check that the image of this map satisfies the equation
defining the Study quadric and hence the image of the map is indeed QS . Notice
that this map is the analogue in P

7 of the map in P
5 which maps a screw to its

axis: a line in the Klein quadric.

Theorem 1. The Pfurner-Schröcker-Husty map (PSH map), given in (8), is

equivalent to the composite map Cay6 ◦ C̃ay
−1

6 .

Proof. The proof is by direct computation. First the effect of the extended inverse
Cayley map will be,

w = ā0ā, v = ā0c̄ − c̄0ā (9)

Now we can easily substitute into the definition for the Cayley map to get,

a = w(w · w) = ā3
0ā(ā · ā) (10)

and
c = v(w · w) − w(v · w) = ā3

0c̄(ā · ā) − ā3
0ā(ā · c̄). (11)

Clearly, apart from the common factor ā3
0, which is irrelevant in a projective

space, this gives the same result as the PSH map. ��

3 Subgroups and Symmetric Subspaces

Loos [3], defines symmetric spaces as spaces with a multiplication defined on
the points of the space. The map defined by left-multiplication by a particular
point x, is an involutive automorphism of the space with isolated fixed point
x. Loos also shows that any Lie group, with Lie multiplication xy, becomes a
symmetric space when the multiplication is modified to σ(x, y) = xy−1x. Here,
by a symmetric subspace of SE(3), we mean a proper subspace of SE(3) closed
under σ. There is a correspondence between Lie triple system (LTS) of the Lie
algebra and symmetric subspaces of the group.

In SE(3) linear subspaces of the Lie algebra are known as screw systems.
Screw systems were classified up to rigid-body transformations by Gibson and
Hunt [2], see also [1]. The Gibson-Hunt type (GH type) of a screw system distin-
guishes between type II systems, which contain screws with the same pitch, and
type I systems which contain screws with different pitches. The number of infi-
nite pitch screw in the system is given by a letter, A for no infinite pitch screws,
B for 1 infinite pitch screw, C for a line of infinite pith screws, and so forth.
These basic classes split into finer classes, characterised by invariants, often a
characteristic pitch or set of pitches.

The Lie triple systems of se(3) were classified in [4,7,12], details of symmetric
subspaces of SE(3) can also be found in [14]. It was observed in [4], that most
of the symmetric subspaces of SE(3) are linear spaces or the intersection of the
Study quadric Qswith a linear subspace. We state this as a theorem here.
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Theorem 2. Algebraic subgroups of SE(3) and algebraic symmetric subspaces
of SE(3) lie on linear spaces contained in the Study quadric or on the intersection
of the Study quadric with a linear subspace of P7.

By an algebraic subgroup or symmetric subspace we mean a subspace that
can be generated by exponentiating linear combinations of only zero pitch or
infinite pitch twists.

Proof. The theorem can be proved by straightforward inspection of all possible
cases. All possibilities were found in [4,7,12]. To find points in the symmetric
subspaces we need to be able to exponentiate elements of the Lie triple system.
This can be done using the Rodrigues-like formula,

es =
1
2
(
2 cos θ + θ sin θ

) − 1
2θ

(
θ cos θ − 3 sin θ

)
s

+
1
2θ

(
sin θ

)
s2 − 1

2θ3
(
θ cos θ − sin θ

)
s3. (12)

where s is a dual quaternion of the form, s = (θxi+θyj+θzk)+ε(uxi+uyj+uzk)
and θ2 = θ2x + θ2y + θ2z . A derivation of this formula can be found in [10]1.

So for example, if we take a general twist from a IIB (p = 0) 3-system,
s = ai + bj + cεk the exponential of this is,

es = cos θ +
a

θ
sin θi +

b

θ
sin θj +

c

θ
sin θεk (13)

where θ2 = a2 + b2. Clearly, whatever the values of the parameters a, b and c,
the exponential lies in the 3-plane a3 = c0 = c1 = c2 = 0. This 3-plane is a
generator plane of the Study quadric.

In this way, all possible subalgebras and Lie triple systems can be examined.
Tables of canonical forms for the possible subalgebras and Lie triple systems
can be found in Tables 1 and 2 respectively, together with the linear equations
satisfied by the subspaces they generate. ��

1 Note, reference [10] contains a couple of errors. Equation (8.6) for the log of a dual
quaternion should read,

log(g) =
1

4 sin3(θ)

((
2θ − sin(2θ)

)
g3 +

(
2 sin(3θ) − 6θ cos(θ)

)
g2

− (6θ cos(θ) − 2 sin(3θ)
)
g − (3θ cos(θ) − θ cos(3θ) + sin(θ) − sin(3θ)

))
.

Thanks to J. Bookshire for pointing this out. The formula in Sect. 5 for the quasi-
pitch of the dual quaternion Cayley map should read,

hq =
a · b

a · a
=

θ/2

sin θ/2

( p

2π

)
.
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Table 1. Canonical forms for the connected subgroups of SE(3). GH type denotes the
class of the screw system in the Gibson-Hunt classification of screw systems.

Dim GH type Subgroup Sub. Alg. basis Linear equations Description

1 IA (p = 0) SO(2) {i} a2 = a3 = c0 = c1 = c2 = c3 = 0 Line in QS

1 IA (p �= 0) Hp {i + pεi} Not algebraic -

1 IIB R {εi} a1 = a2 = a3 = c0 = c2 = c3 = 0 Line in QS

2 IB0 SO(2) × R {i, εi} a2 = a3 = c2 = c3 = 0 3-plane

2 IIC R
2 {εi, εj} a1 = a2 = a3 = c0 = c1 = 0 2-plane in QS

3 IIA (p = 0) SO(3) {i, j, k} c0 = c1 = c2 = c3 = 0 A-plane

3 IIC (p = 0) SE(2) {i, εj, εk} a2 = a3 = c0 = c1 = 0 A-plane

3 IIC (p �= 0) Hp � R
2 {i + pεi, j, k} Not algebraic -

3 IID R
3 {εi, εj, εk} a1 = a2 = a3 = c0 = 0 B-plane

4 IIC SE(2) × R {i, εi, εj, εk} a2 = a3 = 0 5-plane

Table 2. Canonical forms for the connected symmetric subspaces of SE(3). LTS basis
denotes a basis for the Lie triple system.

Dim GH type LTS basis Linear equations Description

2 IIA (p = 0) {i, j} a3 = c0 = c1 = c2 = c3 = 0 2-plane in QS

2 IIB (p = 0) {i, εj} a2 = a3 = c0 = c1 = c3 = 0 2-plane in QS

2 IIB (p �= 0) {i + pεi, εj} Not algebraic -

3 IIB (p = 0) {i, j, εk} a3 = c0 = c1 = c2 = 0 B-plane

3 IC0 {i, εi, εj} a2 = a3 = c3 = 0 4-plane

4 IB0 {i, j, εi, εj} a3 = c3 = 0 5-plane

5 IIB {i, j, εi, εj, εk} a3 = 0 Hyperplane

4 Interpolation

Finally the two parts can be combined. The idea is to interpolate the motion
in the subgroup or symmetric subspace using the Study coordinates. The result
may not lie in the Study quadric but will lie in a linear subspace defining the
subgroup or symmetric subspace. Now use the PSH map to send the curve back
to the Study quadric. For this to work we must check that the PSH map preserves
the linear spaces. A point in the linear space, not on the Study quadric must be
mapped to a point on QS but still in the linear space.

If the linear spaces lies entirely within the Qs there is nothing to check since
points in QS are not changed by the map. This leaves 5 cases to check, the
cylindrical subgroup (IB0), the Schönflies subgroup (IIC), and the last three
rows in Table 2, (IC0, IB0 and IIB). The checks are not difficult and all do
satisfy the required condition. For example, the linear space for the canonical
Schönflies group is given by ā2 = ā3 = 0, after the PSH map points satisfying
these equations will satisfy a2 = ā2(ā · ā) = 0 and similarly for a3. For the
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canonical cylindrical subgroup ā2 = ā3 = c̄2 = c̄3 = 0 and after the PSH map,
a2 = a3 = 0 and also c2 = c̄2(ā · ā) − ā2(ā · c̄) = 0 and similar for c3. Since the
results hold for the canonical forms of the subgroups and symmetric subspaces,
they hold for all subgroups and symmetric subspaces by symmetry.

As a first example, consider linearly interpolating between the identity in the
group and a 2θ screw motion with pitch p, note that linear interpolation was
also considered in [5]. We can choose coordinates so that the screw axis is the
x-axis and then the group element will be,

g1 = c + si − pθsε + pθcεi (14)

where s = sin(θ) and c = cos(θ). Now the interpolated motion will be given in
terms of a parameter t as,

g(t) = (1 − t) + tg1. (15)

Then the PSH map takes this to a twisted cubic curve in the group,

PSH
(
g(t)

)
=

(
1 + 3(c − 1)t + 2(c − 1)(c − 2)t2 − 2(c − 1)2t3

)

+ st
(
1 + 2(c − 1)t − 2(c − 1)t2

)
i

− pθst2
(
c + (1 − c)t

)
ε + pθt

(
c + (c − 1)2t − (c − 1)2t2

)
εi (16)

The two group elements lie in a cylindrical subgroup, hence so does the twisted
cubic curve. So the result is a vertical Darboux motion, in agreement with the
results of [10].

Next we look at a slightly more complicated example, we interpolate between
three group elements with a conic. The three group elements will be,

g0 = 1, g1 =
1
2

+
√

3
2

k − π

4
√

3
ε +

π

12
εk, g2 =

√
3

2
+

1
2
k +

3
2
εj (17)

so that the points lie in the symmetric subspace generated by the IC0 3-system.
A conic through these points can be given by,

ḡ(t) =
1
2
(1 − t)(2 − t)g0 + t(2 − t)g1 − 1

2
t(1 − t)g2. (18)

Note that there are many other conics through these three points, however, this
is the unique conic passing through the knot points at time t = 0, 1 and 2
respectively. The PSH map then gives a degree 6 curve in the Study quadric.

5 Conclusion

We were not able to find an algebraic proof that the subgroups and symmet-
ric subspaces lie on linear subspaces in P

7. However, it is clear that such an
explanations should exist, this fact cannot be a coincidence.

Acknowledgements. Many thanks to the anonymous reviewers whose suggestions
have greatly improved this work.
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4. Löwe, H., Wu, Y., Carricato, M.: Symmetric subspaces of SE(3). Adv. Geom.

16(3), 381–388 (2016)
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Abstract. Computation of intersection of right truncated cylinders of
revolution and stationary distances, including least and greatest, between
conics and quadrics will be re-examined using classical geometry. Solu-
tions are provided by formulating simultaneous polynomial constraint
equations that represent 3D surfaces. Previous investigations in this
regard claim that the work is useful in preventing interference between
rigid bodies in joint articulated mechanical systems. No such claim is
made herein. Indeed the intent was to have fun by indulging in elemen-
tary “geometric thinking”.

Keywords: Rigid body · Collision · Conics · Quadrics · Shortest
distance

1 Introduction

A great deal has been written about this topic. Not long ago Agarwal, Srivatsan
and Bandyopadhyay [1] published the definitive article. There is little that I can
add to this and to the literature mentioned in its comprehensive bibliography.
Rather I will concentrate on some of the piecemeal sub-problems and expose
some not-widely-known, possibly novel, methodology.

• Since our cylinders kP , kQ are sectioned by axis-normal planes let us represent
a pair by their centreline end points A{1 : a1 : a2 : a2}, B{1 : b1 : b2 : b3} and
C{1 : c1 : c2 : c3},D{1 : d1 : d2 : d3} and respective radii r, s.

• A key sub-problem is to find on the cylinder axes, lines P and Q, their
common normal end points P on AB and Q on CD. The closest distance
between surfaces, if lengths are indefinite, is simply |PQ|−r−s. Line geometry
will be applied.

• To find if an end disc intersects another, these are represented, e.g., the one
of four on A, by sphere kA : (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 − r2 = 0
and plane with coordinates a{A0 : b1 − a1 : b2 − a2 : b3 − a3}1. Contact or
intrusion occurs if the line of intersection between the two planes intersects
both spheres on real points.

1 A0 = −a1(b1 − a1)− a2(b2 − a2)− a3(b3 − a3).

c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 54
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• To find if an end disc intrudes into a cylinder flank, say, ka′′ = kA′′ ∩ a′′, and
that of kQ′′ : x2

2 + x2
3 − s2 = 0. (′′) indicates all three elements are displaced

so C is on the origin and D on the x1 axis. Then the four points X(x1, x2, x3)
of intersection of a′′ ∩ kA′′ ∩ kQ′′ , if real, are checked to see if 0 ≤ x1 ≤ |CD|.

• Finally a line geometric approach to finding the octic univariate that describes
stationary distances between a pair of spatial circles will be described. One
of these is the shortest. Distance criteria were used by Agarwal et al. [1]
to avoid collision. My three sub-problem collision, as opposed to their four
sub-problem distance, method seems simpler and sufficiently secure if actual
cylindrical pieces are buffered by increase in length and radius.

2 Common Normal Cylinder Centreline End Points

Cylinder centrelines Pr,Qr are represented by their radial Plücker coordinates
directly computed with point pairs A,B and C,D (Fig. 1).

qp

P

Q

Fig. 1. Common normal R

Pr{p01 : p02 : p03 : p23 : p31 : p12}, Qr{q01 : q02 : q03 : q23 : q31 : q12}
Pencils p, q of planes normal to P,Q respectively are used to define axial line
Ra.

p{P0 : p01 : p02 : p03}, q{Q0 : q01 : q02 : q03}
P0 and Q0 are the two unknowns necessary to find end points P and Q of
common normal axial line Ra on lines Pr and Qr using intersections

Ra{R01 : R02 : R03 : R23 : R31 : R12}, Pr·Ra = 0, Qr·Ra = 0

P = p ∩ Pr and Q = q ∩ Qr, e.g., pi =
∑3

j=0 pijPj thus, where Pj = p0j .

p0 = p01P1 +p02P2 +p03P3

p1 = −p01P0 +p12P2 −p31P3

p2 = −p02P0 +p12P1 +p23P3

p3 = −p03P0 +p31P1 −p12P2

(1)
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If |PQ| − r − s ≤ 0 to establish collision we check that P is on either or between
A and B and that Q bears similar relation to C and D. This can be done, e.g.,
directly with A0

2 and B0, the constant coefficients of equations of normal planes
on A and B, by verifying that A0 ≤ P0 ≤ B0 or A0 ≥ P0 ≥ B0.

3 Collision or Intersection of Cylinder Ends

To check if cylinder ends on points, say, A,C interfere we apply Eq. 2.

a : A0 + A1x1 + A2x2 + A3x3 = 0
c : C0 + C1x1 + C2x2 + C3x3 = 0

kA : (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 − r2 = 0
kC : (x1 − c1)2 + (x2 − ac)2 + (x3 − c3)2 − s2 = 0

(2)

Consider Fig. 2. Cylinder end discs will have a line segment, or at least a point,
in common if simultaneous solution of the first three of Eq. 2 and the first two
and the last both yield real X at P and Q. Note how descriptive geometry and
judicious choice of view pair provide clear visualization of the process.

k A

k C

a

c

Front

Top

a   c

U

P

Q

P,Q

k C

k A

Ua

Uc

Fig. 2. Line on cylinder end planes intersect both spheres

4 Collision or Intersection of a Cylinder Surface
with an End

First the cylinder, radius s, with ends on C,D is displaced so C is on origin O
and D is along x1-axis, x1 > 0. Then the translation C → O is imposed upon
plane a and centre A of sphere kA followed by the rotation necessary to make
A → B parallel to x1-axis. So a,A, kA → a′, A′, kA′ → a′′, A′′, kA′′ .

2 In this case, as opposed to that mentioned in the introduction, A0 = −p01a1 −
p02a2 − p03a3.
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4.1 Translation

A → A′ :

⎡

⎢
⎢
⎣

1 0 0 0
c1 1 0 0
c2 0 1 0
c3 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
a1

a2

a3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
c1 + a1

c2 + a2

c3 + a3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
a′
1

a′
2

a′
3

⎤

⎥
⎥
⎦ (3)

Although the translation of point A via Eq. 3 is obvious, plane coordinates, being
of dual species, are transformed by the cofactor of the translation matrix as in
Eq. 4.

a → a′ :

⎡

⎢
⎢
⎣

1 −c1 −c2 −c3
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

A0

A1

A2

A3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A0 − c1A1 − c2A2 − c3A3

A1

A2

A3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A′
0

A′
1

A′
2

A′
3

⎤

⎥
⎥
⎦

(4)

4.2 Normed Quaternion and Rotation Matrix

The normed quaternion v or rotation matrix [V] that rotates direction C → D
as required must premultiply A′, a′. A neat property of [V] is that it is identical
to its cofactor. v and [V] are introduced in Eq. 5.

v =

⎡
⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(φ/2)
cosα sin(φ/2)
cosβ sin(φ/2)
cos γ sin(φ/2)

⎤
⎥⎥⎦ , [V] =

⎡
⎢⎢⎣

r00 0 0 0
0 r11 r12 r13
0 r21 r22 r23
0 r31 r32 r33

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

v2
0 + v2

1 + v2
3 + v2

3 0 0 0
0 v2

0 + v2
1 − v2

2 − v2
3 2(v1v2 − v0v3) 2(v1v3 + v0v2)

0 2(v2v1 + v0v3) v2
0 − v2

1 + v2
2 − v2

3 2(v2v3 − v0v1)
0 2(v3v1 − v0v2) 2(v3v2 + v0v1) v2

0 − v2
1 − v2

2 + v2
3

⎤
⎥⎥⎦

(5)

Elements vi of a normed quaternion are also called Euler-Rodrigues parameters.
[cos α cos β cos γ]� is the unit vector –expressed in terms of direction cosines–
in the direction of the rotation axis while φ is the rotation angle in a right-
hand screw sense. To get quaternion from rotation matrix –except for half-turns
which I won’t mention here– we use the diagonal elements rii to get v2

i as shown
in Eq. 6. ⎡

⎢
⎢
⎣

r00 0 0 0
0 r11 r12 r13
0 r21 r22 r23
0 r31 r32 r33

⎤

⎥
⎥
⎦ →

v2
0 = (r00 + r11 + r22 + r33)/4

v2
1 = (r00 + r11 − r22 − r33)/4

v2
2 = (r00 − r11 + r22 − r33)/4

v2
3 = (r00 − r11 − r22 + r33)/4

(6)
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4.3 Rotation

The rotation sought turns C ′D′, C ′ ≡ C ′′ ≡ O, onto the x1-axis through rotation
through φ about O via unit vector n = [n1 n2 n3]� into x = [1 0 0]�.
The unit vector ρ in the rotation axis direction is given by Eq. 7.

n =

⎡

⎣
n1

n2

n3

⎤

⎦ = 1√
(d1−c1)2+(d2−c2)2+(d3−c3)2

⎡

⎣
d1 − c1
d2 − c2
d3 − c3

⎤

⎦

ρ =

⎡

⎣
cos α
cos β
cos γ

⎤

⎦ = n×x

|n×x| =

⎡

⎣
n1

n2

n3

⎤

⎦×
⎡

⎣
1
0
0

⎤

⎦ /|n×x| = 1√
n2
2+n2

3

⎡

⎣
0
n3

−n2

⎤

⎦

(7)

To complete the computation of the quaternion elements cum Euler-Rodrigues
parameters we need cos(φ/2) and sin(φ/2). Imagine vectors n and x placed tail-
to-tail on O, a line segment joining their tips, its mid-point M , the tip of vector
m from O. Consider that |m| = cos(φ/2) and |x − m| = sin(φ/2). All this is
illustrated in Fig. 3.

cos
φ

2
=

1
2

√
(1 + n1)2 + n2

2 + n2
3, sin

φ

2
=

1
2

√
(1 − n1)2 + n2

2 + n2
3 (8)

n

u

m
M

cos
2

sin
2

Fig. 3. Rotation and significance of half-angle sine and cosine

As an exercise the reader may reformulate the problem of Eq. 9 as a∩kA∩kQ
by displacing k′′

Q → kQ instead of a → a′′ and kA → kA′′ .

4.4 Constraint Equations

The implicit equations of plane a′′, sphere kA′′ and the cylinder kQ′′ , to be solved
simultaneously to yield points X, appear in Eq. 9.
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a′′ : A′′
0 + A′′

1x1 + A′′
2x2 + A′′

3x3 = 0
kA′′ : (x1 − a′′

1)2 + (x2 − a′′
2)2 + (x3 − a′′

3)2 − r2 = 0
kQ′′ : x2

2 + x2
3 − s2 = 0

(9)

Figure 4 contains two views showing the plane a′′ in edge or line view at
upper left and the circle of cylinder kP ′′ circular end disc together with the
elliptical plane section of cylinder kQ′′ The existence of real points X indicate
encroachment of the surfaces. If radius r is so small as to place the disc entirely
within kQ′′ without triggering the common normal length criterion this condition
is checked via the distance between disc centre point A and centre line Q on
CD being less than radius s.

k Q’’

X

A’’

A’’

a"

X

k A"

Fig. 4. Line on cylinder end planes intersect both spheres

5 Stationary Distances Between Spatial Circles

In the article [1] the shortest distance between two circles is made use of to
account for impending contact between cylinder end edges and an octic solution
is referred to. Although the approach introduced in Sect. 3 handles this situation
automatically it is of interest to reveal how these distances can be computed
using a line R that intersects circle axis lines M and N on respective points
M,N . R will be defined by points P,Q on circles ka and kc, respectively, as
shown in Fig. 5. Line R, shown in Fig. 5, depicts a typical line belonging to two
line congruences. One contains all lines on points on circle ka and normal to the
circle tangent at that point, P . This property is ensured by the intersections
P ∈ ka, P ∈ R, M ∈ R, M ∈ M , i.e., ∃M ∩ R and ∃N ∩ R. The other
congruence on circle kc gives rise to similar relationships, viz., Q ∈ kc, Q ∈ R,
N ∈ R, N ∈ N . Dissecting these relations yields six equations, Eq. 10, in six
Cartesian points coordinates, P (p1, p2, p3), Q(q1, q2, q3).
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A

M

k a

k A

k C

k c

P

C
N

Q

Fig. 5. Congruence of normal lines on circles

x 1

A

x 2

x 3

x 1

C

C

c

c{(-33/16):3/2:0:1/4}

C{1:3/2:0:-3/4}

{3/2:0:1/4:0:3/2:0}

{0:0:1:0:0:0}

A

k a

k c

(a) 4 Joining Lines on Plane of Axes

x 1

A

x 2

x 3

x 1

C

C

c

e{(-33/16):3/2:0:1/4}

M{1:3/2:0:-3/4}

{3/2:0:1/4:0:3/2:0}

{0:0:1:0:0:0}

A

k a

ck a

(b) 4 Joinings Symmetric to Plane of Axes

Fig. 6. Eight connections between circles

Using Gröbner basis and an arbitrary pair of spatial circles these simulta-
neous equations yield an octic univariate in one of the pi, qi and the basis pro-
vides a systematic way to compute the remaining five. I.e., each successive basis
polynomial contains one linear unknown in terms of those already evaluated.
In general, there are only four real stationary distances among the eight solutions.
Are there circle dispositions that admit eight real solutions? Again, geometric
thinking and descriptive geometry reveal in Fig. 6 eight connecting segments that
satisfy Eq. 10.
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ka = kA∩a, P ∈ ka, kc = kC ∩ c, Q ∈ kc
A0 + A1p1 + A2p2 + A3p3 = 0

(p1 − a1)2 + (p2 − a2)2 + (p3 − a3)2 − r2 = 0
C0 + C1q1 + C2q2 + C3q3 = 0

(q1 − c1)2 + (q2 − c2)2 + (q3 − c3)2 − s2 = 0
∃M = M ∩ R, ∃N = N ∩ R

m01R01 + m02R02 + m03R03 + m23R23 + m31R31 + m12R12 = 0
n01R01 + n02R02 + n03R03 + n23R23 + n31R31 + n12R12 = 0
Mr{A1 : A2 : A3 : a2A2 − a3A2 : a3A1 − a1A3 : a1A2 − a2A1}
Nr{C1 : C2 : C3 : c2C2 − c3C2 : c3C1 − c1C3 : c1C2 − c2C1}

Ra{p2q3 − p3q2 : p3q1 − p1q3 : p1q2 − p2q1
: p0q1 − p1q0 : p0q2 − p2q0 : p0q3 − p3q0}

(10)

6 Conclusions

Using implicit sphere, plane and cylinder equations, some geometric thinking
and descriptive geometry I’ve tried to unify the computational sub-problems
pertinent to collision and intrusion between two cylinders and use a consistent
nomenclature among them. Have any special cases been overlooked? Yes, a small
end disc can intrude into a large cylinder undetected. Do you see how to overcome
this using sphere centre A′′? Was this case covered in [1]? Apologies for my, in
places, didactic tone. Furthermore why should I cite more than one article? If
it’s the right one, clutter is undesirable.

Acknowledgements. Jean-Pierre Merlet taught me in 1995 when he was at the sec-
ond CK in Milano –the first was at Schloß Dagstuhl in 1993– that if you can formulate
an algebraic problem with eight solutions, an upper bound, and can construct an exam-
ple, a lower bound, with that number the issue is then settled.
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Abstract. This paper looks at the forward kinematics problem of the
3-RPS manipulator from a geometric perspective. It shows that the prob-
lem is equivalent to finding the intersection of a pair of quad-circular octic
curves with a circle. The results explain all the known algebraic results in
this regard, and provide an intuitive insight into the nature of the solu-
tions, as regards the operation modes, and the assembly modes inside
each. The theoretical results are illustrated with a numerical example,
where all the 16 assembly modes are real.

Keywords: 3-RPS manipulator · Forward Kinematic Univariate
(FKU) · Operation modes · Constraint surfaces · Quad-circular octic
curve

1 Introduction

Forward kinematic (FK) problem of the 3-RPS manipulator has been studied
in detail in the past [2,7]. In a recent contribution, Schadlbauer et al. present a
detailed algebraic analysis using the Study parameter representation of SE(3),
leading to the identification of the two operation modes of the manipulator. In
this paper, a novel geometric approach to the problem is proposed, in which
the manipulator is decomposed into two kinematic sub-chains, namely, a spatial
RSSR chain, and a planar RP chain. The FK problem reduces to the intersection
of the circle generated by the second chain with the surface generated by the first
one, once all the inputs are given. While this idea has been mentioned in [3],
the authors were not able to find any published reports using this approach.
The authors retrieve the fact that there are up to 16 possible assembly modes,
counting the pair-wise mirrored modes at the base plane. Also, the two operation
modes reported in [6] show up in these results, in a new and interesting manner.
The geometric interpretation of the FK could lead to an intuitive understanding
of the singularities of the manipulator, which is yet to be studied.

The rest of the paper is organised as follows: the geometric formulation of the
FK problem, followed by a numerical example is presented in Sect. 2. The new
results are interpreted geometrically and corroborated with the existing results
in Sect. 3. Finally, the conclusions are presented in Sect. 4.
c© Springer International Publishing AG 2018
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2 Geometric Formulation of the FK Problem

The FK problem is formulated below, as a geometric problem of finding the
intersections of a surface and a circle in R

3.

2.1 Geometry of the 3-RPS Manipulator

The 3-RPS manipulator consists of three legs, each of which is an RPS-serial
chain connected to the fixed platform b1b2b3 by a revolute joint, and to the
moving platform p1p2p3 by a spherical joint, as shown in Fig. 1a. The said
platforms are equilateral triangles in shape, with circumradii b and a respectively.
The manipulator has three degrees-of-freedom (DoF), which are activated by
the prismatic actuators denoted by l = [l1, l2, l3]�, while the revolute joints are
passive. These joint angles, denoted by φ = [φ1, φ2, φ3]� form the unknowns to
be obtained as a result of the FK problem. The fixed frame of reference {A},
given by oA-XAYAZA, is attached to the centre of the base platform, while the
moving frame of reference {B}, by oB-XBYBZB , is attached at the centre of
the moving platform. The vertices of the fixed and moving platforms are found

as: Ab1 = [b, 0, 0]�, Ab2 =
[
− b

2 ,
√
3b
2 , 0

]�
, Ab3 =

[
− b

2 ,−
√
3b
2 , 0

]�
; and Ap1 =

Ab1 + [−l1 cos φ1, 0, l1 sin φ1]
�, Ap2 = Ab2 +

[
l2
2 cos φ2,−

√
3l2
2 cos φ2, l2 sin φ2

]�
,

Ap3 = Ab3 +
[

l3
2 cos φ3,

√
3l3
2 cos φ3, l3 sin φ3

]�
, respectively.

The objective of the FK problem is to determine the position and orientation
of the moving platform. This can be achieved if the unknown passive angles, φi,
can be obtained from the knowledge of the inputs lj . Three independent equations
need to be formed, relating φi to lj , which is accomplished below using the
concept of kinematic sub-chains.

2.2 Derivation of the Constraints

The manipulator is hypothetically decomposed into two sub-chains, by removing
the spherical joint at point p1, as shown in Fig. 1. This leads to two hypothetically
distinct points: ps1 , which is a coupler point of the spatial RSSR mechanism
b2p2p3b3; and pc1 , which is the tip of the serial chain b1p1. Obviously, the
points ps1 and pc1 must coincide to form the original point p1 in the manipulator.
Equivalently, the locus of ps1 , which is a surface, must intersect the locus of pc1 ,
i.e., a circle in the plane oAb1p1 (see Fig. 1).

2.2.1 Derivation of the coupler surface, S = 0
Let Aps1 = Apc1 = Ap1 = [x, y, z]�. Once the inputs l2, l3 are frozen, the locus
of ps1 , which can be interpreted as the coupler surface of the said RSSR chain,
is described in terms of five unknown variables, namely, φ2, φ3, x, y, z. These
variables need to satisfy the following constraints:
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Fig. 1. 3-RPS manipulator decomposition into sub-chains

• The first constraint is derived from the closure of the RSSR loop. This is
equivalent of noting that the distance between Ap2 and Ap3 is equal to

√
3a:

g1(φ2, φ3, x, y, z) � (Ap3 − Ap2) · (Ap3 − Ap2) − 3a2 = 0. (1)

• The other two constraints are derived from the fact that the locus of ps1 , with
respect to the points p2p3, is a circle, in a plane that bisects p2p3 perpendic-
ularly. In effect, this defines a virtual rigid link p23ps1 , which has a rotary
joint at p23, with an axis aligned with p2p3. Orthogonality of the virtual link
to p2p3 is captured by the constraint:

g2(φ2, φ3, x, y, z) � (Ap23 − Aps1) · (Ap3 − Ap2) = 0. (2)

Rigidity of the virtual link leads to the third and final constraint:

g3(φ2, φ3, x, y, z) � (Ap23 − Aps1) · (Ap23 − Aps1) − 9a2

4
= 0. (3)

The unknown φ2 is easily eliminated from Eqs. (1, 3), which are linear in sinφ2

and cos φ2. This leads to the eliminant h1(φ3, x, y, z) = 0, while substitution of
sin φ2 and cos φ2 into Eq. (2) leads to h2(φ3, x, y, z) = 0. The function h1 is of
degree four in cos φ3, sin φ3, while h2 is linear in these. Converting hi = 0 to their
algebraic forms in t3 = tan(φ3/2) one obtains the equations si(t3, x, y, z) = 0,
i = 1, 2. The equation of the coupler surface, S(x, y, z) = 0, which is of degree 20
in x, y, z and even powered in z, is obtained by eliminating t3 between the last
two equations. The process of elimination is depicted in schematic (4) below:

h1(φ3, x, y, z) = 0
φ3→t3−−−→ s1(t3, x, y, z) = 0

h2(φ3, x, y, z) = 0
φ3→t3−−−→ s2(t3, x, y, z) = 0

⎞
⎠ ×t3−→ S(x, y, z) = 0. (4)
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The symbol ‘
φ3→t3−−−→’ denotes the conversion of the equations preceding it, into

their algebraic form in t3 = tan(φ3/2). The symbol ‘ ×t3−→’ represents the elimi-
nation of the variable t3 from the equations preceding it.

2.2.2 Derivation of the Circular Constraint, C = 0
The point pc1 describes a circle in the plane oAb1p1, by virtue of the rotary
joint at b1. This can be captured in terms of algebraic equations as follows.

• Rigidity of leg 1 (given the input l1), expressed in terms of the leg-length
constraint, describes a sphere of radius l1, centered at b1:

ζ1(x, y, z) � (Apc1 − Ab1) · (Apc1 − Ab1) − l21 = 0. (5)

• Axis of the rotary joint at b1 is along eYA
= [0, 1, 0]�, which leads to the

planarity constraint:

ζ2(y) � (Apc1 − Ab1) · eYA
= 0 (6)

⇒ y = 0. (7)

The locus of the point pc1 is established as a circle of radius l1 centered at b1,
by cutting the sphere in Eq. (5) by the plane y = 0. The equation of the circle,
denoted as C(x, z) = 0, is obtained by substituting y = 0 in Eq. (5).

2.3 Derivation of the Forward Kinematic Univariate (FKU)

The FK problem may be solved by computing the intersections of the surface
S = 0 with the circle C = 0. However, the same may also be reduced by first
cutting the surface S = 0 by the plane y = 0 to obtain the curve C ′ = 0 in
the XAZA plane, and then obtaining the intersections of C ′ = 0 with C = 0.
An advantage of this approach is that the curve C ′ = 0 decomposes into three
components (see Fig. 2 for an illustration, and Sect. 3 for a detailed interpretation
of the same), as shown in schematic (8):

S(x, y, z) = 0
y→0

−−−→ C ′(x, z) = C ′
0(x, z)C ′

1(x, z)C ′
2(x, z) = 0. (8)

The component C ′
0(x, z) = ((x + 2b)2 + z2)2 = 0 admits a real solution iff

x = −2b and z = 0. For these values of x, z the constraint equations given by
Eqs. (1, 2, 3, 5) in Sects. 2.2.1 and 2.2.2 are consistent iff the input parameters
satisfy the following conditions:

l22 = l23 = 3a2 − 3b2, l21 = 9b2. (9)

The conditions in Eq. (9) correspond to the finite self-motion of the manipulator
reported in [5]. Hence, the factor C ′

0 is ignored in the following analysis. The
implications of the said factor in relevance to the sub-chains have been discussed
in [1]. The components C ′

i, i = 1, 2 are of degree 8 in x, z and they describe the
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two operation modes of the manipulator. Bézout limit puts the possible number
of intersections with a circle at 16. However, the components of C ′

i describe
very special octic curves—these are quad-circular in nature. Therefore, 4 pairs
of points of intersection lie in the plane at infinity, thus limiting the number of
finite complex solutions to only 8, per mode.

Vanishing of the resultant of C ′
1(x, z) with C(x, z) w.r.t. x leads to the

desired FKU equation, namely, ξ1(z) = 0, for the mode 1.

C ′
1(x, z) = 0

C(x, z) = 0

)
×x−→ ξ1(z) = 0 ,

C ′
2(x, z) = 0

C(x, z) = 0

)
×x−→ ξ2(z) = 0.

A similar computation leads to ξ2(z) = 0, the FKU equation for the second mode.
These equations have been derived in closed-form, whereupon it is observed that
the FKUs are both of degree four in z2, and they maintain the relationship:

ξ1(a) = ξ2(−a), (10)

where a is the circumradius of the moving platform.

2.4 Numerical Example

The formulation presented above is illustrated for the following set of numerical
values: a = 1/2, b = 1, l1 = 11/5, l2 = 23/10 and l3 = 12/5.

The length dimensions are scaled by the radius of the circum-circle of the base
triangle, b, rendering them unit-less, while all angles are measured in radians.

Table 1. Sixteen real solutions to forward kinematics problem

Operation mode Assembly mode z x φ1 φ2 φ3 x0 x1

Mode 1 1 2.197 0.889 1.520 0.899 0.860 0 −0.268

2 −2.197 0.889 −1.520 −0.899 −0.860 0 −0.268

3 1.721 −0.371 0.898 1.465 0.831 0 −0.393

4 −1.721 −0.371 −0.898 −1.465 −0.831 0 −0.393

5 1.660 −0.443 0.855 0.829 1.386 0 −0.540

6 −1.660 −0.443 −0.855 −0.829 −1.386 0 −0.540

7 1.627 −0.480 0.833 0.853 0.912 0 −0.987

8 −1.627 −0.480 −0.833 −0.853 −0.912 0 −0.987

Mode 2 1 2.178 0.687 1.428 0.781 1.264 −0.469 0

2 −2.178 0.687 −1.428 −0.781 −1.264 −0.469 0

3 2.165 0.609 1.392 1.298 0.754 −0.400 0

4 −2.165 0.609 −1.392 −1.298 −0.754 −0.400 0

5 2.139 0.485 1.335 1.355 1.355 −0.993 0

6 −2.139 0.485 −1.335 −1.355 −1.355 −0.993 0

7 1.597 −0.513 0.812 1.390 1.320 −0.565 0

8 −1.597 −0.513 −0.812 −1.390 −1.320 −0.565 0
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It may be noted that the rational values of the numeric parameters help in
retaining the exact nature of the computation up to the values of the coefficients
of the FKU equations. The monic forms of these, for the given values, are1:

ξ1 = u4 − 13.193u3 + 63.689u2 − 134.113u + 104.347,

ξ2 = u4 − 16.554u3 + 101.072u2 − 268.351u + 259.275, where u = z2.

Each operation mode contains 8 real assembly modes for these numbers. The
results have been tabulated in Table 1. The solutions are visualised as the points
of intersection of the constraint curves C ′

i = 0 and C = 0, as seen in Fig. 2.

Fig. 2. Constraint geometries in the plane XAZA: C′
i = 0 and C = 0

3 Interpretation of the Results and Correlation with
Existing Ones

The algebraic properties of the FKU of the 3-RPS manipulator have been studied
and reported at length. Yet, there has been no attempt to bring out the coher-
ence between these results, and to visualise them geometrically. For instance, [6]
reports the two operational modes, each characterised by the vanishing of one
of the two Study parameters, x1 and x0. In physical terms, this means that
in the latter case, the moving platform rotates through π about a horizontal
axis. In [4], the FKU is derived from the constraint equations in the joint-
space, and it is found that the FKU factors in two components, g1 and g2,
where g1(a) = g2(−a), a being the circum-radius of the moving platform. It may
be noted that this is consistent with the findings in [6], since a going to −a is

1 Though the coefficients are obtained as exact rational numbers, their real approxi-
mations are presented here for the want of space.
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identical in effect with the flipping of the moving platform up-side down, which is
same as the π-screw motion described in [6]—in either case, a CCW distribution
of the vertices p1, p2, p3 changes into a CW one.

The results of the present work corroborate and unify all of the results on FK
reported in [4,6]. The relationship with the results in [4] is captured by Eq. (10),
where ξi play the roles of gi in [4]. Also, the FKU is found to have only the even
powers in either mode, signifying the manipulator poses are reflected pairwise
at the base platform. On the other hand, as seen in Table 1, the vanishing of x0

and x1 in one of the two modes confirm the corroboration with the results of [6].
Figure 2 presents a visual summary of the algebraic results, which can be

considered as a new contribution of the present work. The curve C ′(x, z) = 0
decomposes into its components C ′

1(x, z) = 0 and C ′
2(x, z) = 0, signifying the

two modes. Also, the reflections of each mode at the z = 0 line are obvious
in the figure. Thus, these pictures provide a complete understanding of all the
operations modes, and the assembly modes therein. These interpretations can
be extended easily into the domain of singularity analysis and design.

4 Conclusion

This paper presents a geometric analysis of the 3-RPS manipulator. The manip-
ulator is decomposed into two kinematic sub-chains, and the forward kinematic
problem is formulated as the geometric problem of finding the intersections of
the constraint varieties generated by the individual sub-chains. A new result is
revealed in the process, that the problem is equivalent to the intersection of a
circle with a pair of quad-circular octic curves in the plane of the circle. All
the existing algebraic results reported in [4,6,7] are explained from the same
geometric perspective. The results show striking similarities with those known
in the case of the planar 3-RRR manipulator, whose forward kinematic prob-
lem is equivalent to the intersection of a tri-circular sextic curve with a circle.
On the other hand, other spatial manipulators, such as the 3-RRS, which have
architectural similarities with the 3-RPS, may be analysed in the same geomet-
ric framework, leading, hopefully, to analogous results. Also, these geometric
interpretations may lead to a better understanding of the singularities of these
manipulators, which is to be studied next.

Acknowledgment. The last author expresses his sincere gratitude to Professor
Manfred L. Husty, University of Innsbruck, Austria, for all the learnings he has received
from the latter through various formal and informal interactions, without which this
work would not have been possible!
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Abstract. A lot of different kinematic chains have been investigated
focusing on constraint equations, singularities, assembly modes and
motion capabilities. The approach to obtain constraint equations via
inverted chains however is rarely considered. We provide a detailed look
on the constraint varieties of inverted chains, beginning with the basics
of quaternion conjugation. The transformation of the Denavit- Harten-
berg parameters needed for the quaternion conjugation is discussed in
the paper. The quaternion conjugation is a fast way to obtain the variety
corresponding to the inverted kinematic chain. Geometrically the conju-
gation is a reflection in the kinematic image space P

7 with respect to a
line and a five- dimensional subspace. Some examples of constraint equa-
tions of kinematic chains and their inverted chains complete the paper.

Keywords: Kinematic chains · Inverted kinematic chains · Constraint
equations · Dual quaternion conjugation

1 Introduction

In recent years the description of kinematic chains and parallel or serial mecha-
nisms by systems of polynomial equations has become more and more popular
because of its success in describing the direct and inverse kinematics, a global
analysis of singularities, workspaces and operation modes (see e.g. [4,6,10,11]).
The main reason for this success is the availability of more and more sophis-
ticated algebraic manipulation systems that can deal with large systems of
polynomial equations, the advance in the implementation of algorithms devel-
oped in algebraic geometry in such systems, but also the advances in the global
numerical solution methods of these equations (see e.g. [13]). Therefore it makes
sense to search for polynomial descriptions of all thinkable kinematic chains with
the goal to use these descriptions in the synthesis and analysis of mechanisms
and robots that are designed by combinations of different kinematic chains.
This is the goal of a joint research program between IRCyNN Nantes and the
University of Innsbruck. In the course of this project the question arose how
the constraint equations of a kinematic chain change when base and endeffector
are interchanged. A quick - but wrong- answer to this problem would be that
one obtains the inverse of the motion and this yields the same motion. The mis-
take in this assumption can be seen immediately when one studies simple planar
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 56
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motions like the Cardan and its inverse, the Oldham motion. It is well known
that the degree of these two motions differ. How the two simple motions are
linked was already discussed in [1]. That inverted parallel manipulators behave
quite differently was recently shown in [6].

When displacements are described in Study parameters or dual quaternions,
then it is well known that the inverse displacement can be described by sim-
ple conjugation of the dual quaternion. The effect of inverting the motion of
a mechanism - like a parallel manipulator - on its set of polynomial constraint
equations is less known. It is the goal of this paper to shed some light on this issue
with the basic idea to simplify the necessary work in finding the constraint equa-
tions of inverted kinematic chains. In [15], the so called implicitization algorithm
was developed, which always can be used to derive the constraint equations of
a kinematic chain. This algorithm essentially computes the implicit constraint
equations by eliminating the motion parameters of the classical forward kinemat-
ics of the chain. It is obvious that this algorithm could be applied to the inverted
chain to obtain the constraint equations. But it is desirable to avoid this compu-
tationally laborious algorithm whenever possible. It will be shown explicitly in
this paper that quaternion conjugation of the set of constraint equations yields
the same result as the implicitization algorithm.

The paper is organized as follows: In Sect. 2 the geometric interpretation
of quaternion conjugation in the kinematic image space will be discussed, in
Sect. 3 the effect on the design parameters (Denavit-Hartenberg parameters) of
the chain is studied, which is necessary to compare the implicitization algorithm
with the conjugation of the set of constraint equations. In Sects. 4 and 5 the
theory is applied to RP– (revolute-prismatic-chains) and PR– as well as RRP -
and PRR-chains.

2 Conjugation of Quaternions

In the following 3D-Euclidean displacements (SE(3)) are described in a point
model, which is obtained via kinematic mapping1. In this mapping every Euclid-
ean displacement corresponds to a point with homogeneous projective coordi-
nates (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) located on the Study quadric
S2
6 : x0y0 +x1y1 +x2y2 +x3y3 = 0, which is a six dimensional quadric in a seven

dimensional projective space P
7. This space is called kinematic image space,

sometimes also Soma space. The projective point coordinates can also be inter-
preted as the components of a dual quaternion. Both interpretations will be used
simultaneously in the following.

The scope of this chapter is to investigate the constraint equations of an
inverted serial chain without using the implicitization algorithm but with the
use of conjugate quaternions. Before this can be done some basic properties of
kinematic chains and the image space P

7 must be recalled. The kinematics of a
serial chain is described with respect to (arbitrarily chosen) coordinate frames
in the base and the end-effector. All possible locations of the end-effector with
1 Due to space limitation this mapping cannot be explained in detail, but a compre-

hensive introduction can be found in [4] or [3].
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respect to the base correspond to algebraic varieties which are described by
sets of polynomial equations in P

7. Coordinate transformations in the base and
the end-effector frame induce linear mappings T in P

7 that preserve several
interesting geometric objects:

1. the Study quadric S2
6 ,

2. the Null cone defined by N : x2
0 + x2

1 + x2
2 + x2

3 = 0, which is quadric in
P
7, that has only complex points with exception of its 3-dimensional vertex

space E : x0 = x1 = x2 = x3 = 0 . E is entirely contained in S2
6 and is called

exceptional generator space,
3. the exceptional quadric Y : y2

0 + y2
1 + y2

2 + y2
3 = 0 ∈ E ,

4. all quadrics Q = λS2
6 + μN , λ, μ ∈ R in the pencil spanned by the Study

quadric and the Null cone.

A detailed derivation and proofs for these statements and some interesting exam-
ples can be found in [9]. The invariant objects essentially govern the kinemat-
ics of 3D-Euclidean displacements2. The mapping of a dual quaternion with
components [x0, x1, x2, x3, y0, y1, y2, y3] to [x0,−x1,−x2,−x3, y0,−y1,−y2,−y3]
implies a mapping in P

7 which does not effect the line (s : 0 : 0 : 0 : t : 0 : 0 : 0)
with projective parameters s and t nor the five-dimensional subspace (0 : t1 : t2 :
t3 : 0 : t5 : t6 : t7) with projective parameters ti. These properties can be shown
as follows: The conjugation of a quaternion corresponds to a linear mapping,
more precisely a collineation, in P

7 described with the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

The characteristic equation (1 − λ)2(−1 − λ)6 = 0 of A yields the double eigen-
value λ1 = 1 and a sixfold eigenvalue λ2 = −1. The corresponding eigenspaces
v (λ1 = 1) and w (λ2 = −1) are simply found to be

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s, w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t2 + . . . +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t6, with t, s, t1, t2, . . . t6 ∈ R

(2)
2 The kinematic images of planar and spherical displacements subordinate completely

to this description because both cases are obtained by three dimensional sub-spaces
of P7. The corresponding geometry of their image spaces and the algorithms to derive
these geometries can be found in [1] p. 393ff. resp. [5] p. 60ff.
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Equation 2 shows that v can be characterized by the relations x1 = x2 = x3 =
y1 = y2 = y3 = 0 which define a line in P

7 and the second eigenspace w is given
by x0 = y0 = 0 which is a five- dimensional subspace of P

7. The intersection
of the line v and S2

6 yields two characteristic points, namely the point I = (1 :
0 : 0 : 0 : 0 : 0 : 0 : 0) which correponds to the the identity in SE(3) and an
ideal point Id = (0 : 0 : 0 : 0 : 1 : 0 : 0 : 0) in the exceptional space E . It is
obvious that the identity is fixed under quaternion conjugation. The line v is
a fiber in the fiber projectivity ϕ defined in [8,9], that can be used to define a
non-injective “extended kinematic map”. The second eigenspace w is the span of
the six points P1 = (0 : 1 : 0 : 0 : 0 : 0 : 0 : 0), . . . , P6 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).
Intersecting w with S2

6 yields the quadric P : x1y1 + x2y2 + x3y3 = 0. Points
on this quadric are characterized by the equations x0 = y0 = 0 and define
displacements which have the property that the inverse of the displacement
is the same as the displacement itself. These displacements are well known in
the kinematics, Study ([14], p. 178) calls them “Umwendungen” (π-turns). In
the one parametric case (curves on P) the corresponding motions are called
line-symmetric motions and have been studied by Krames synthetically (see [1],
Chap. 9, Sect. 7) and analytically in [12].

The planar kinematic mapping and also the effect of conjugation was devel-
oped in [1] (Chap. 11, Sect. 14). To show how the planar case fits into the theory
developed above, lets have a brief look into this case. Planar displacements are
characterized by the equations x2 = x3 = y0 = y1 = 0. The intersection of
these four hyperplanes yields a three-dimensional subspace E ⊂ P

7, which is a
generator space of S2

6 . The intersection of E with the Null cone N yields the
quadric x2

0 + x2
1 = 0 which can be factorized into

V1 : x0 + ix1 = 0, V2 : x0 − ix1 = 0, i . . . complex unit. (3)

V1 and V2 are two complex conjugate 2-planes intersecting in a real line u. On the
other hand this line intersects the exceptional quadric in two complex conjugate
points J1 = (0 : 0 : 1 : i) and J2 = (0 : 0 : 1 : −i). Alternatively one could provide
the following arguments: According to the dimension formula (dim(v ∩ E) =
dim(v) + dim(E) − dim(P7) = 5 + 3 − 7 = 1) the 5-dim subspace w and the
3-space E must intersect in a one dimensional linear subspace which is of course
the line u. The intersection of the fixed space v (Eq. (2)), the Study quadric and
the three- dimensional subspace T yields an intersection point, which is exactly
the origin [1,0,0,0] of the planar displacements. Applying the linear map

[x0, x1, y2, y3] �→ [x0,−x1,−y2,−y3] (4)

to the 2-planes x0 ± ix1 = 0 one can see that they are interchanged x0 ∓ ix1 = 0
fixing their intersection line u. The linear map (Eq.(4)) also does not effect the
origin. The map is a reflection into the origin. These results are exactly the same
as in the classical planar case but within the bigger setting of spatial kinematic
mapping ([1], p. 433).
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3 Denavit-Hartenberg Parameters

The investigation of inverse kinematic chains and a comparison of their con-
straint equations obtained by different methods requires an adaption of their
Denavit- Hartenberg parameters when base and end-effector coordinate systems
are interchanged (Fig. 1). This change has to be observed when one wants to
compare the constraint equations obtained by simple dual quaternion conjuga-
tion and the constraint equations obtained by applying the implicitization to
the forward kinematics equations of the inverted chain. A simple considerations
shows that the transformation can be written as

a0+j → −an−j a, d, α . . . DH- parameters,
TDH : d0+j → −dn−j j < n . . . number of the joint to be changed

α0+j → −αn−j n . . . total number of joints (5)

emarFesaBemarFgnivoM

−a1,−d1−a2,−d2

−α1

−α2

−αn−1

−an−1,−dn−1

Σ1

Σ2

Σ3

Σn−1

Σn

Fig. 1. Interchanged frames [7, p. 49]

Interchanging base and end-effector frames and applying the transformation
TDH on the DH- parameters one can now apply quaternion conjugation and
thereby obtain the constraint equations of the inverse kinematic chain having the
former end-effector frame as base frame. It is easy to see that this general method
also can be used when a manipulator is composed of several (even different)
kinematic chains. In the next sections this method will be used to obtain the
constraint equations of some kinematic chains and compare it with the results
of the linear implicitization algorithm (LIA).

4 RP- and the PR-chains

To show that LIA and quaternion conjugation followed by the TDH transforma-
tion yield the same solution set (the same variety), the constraint equations for
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the RP- and the inverse PR-chain are computed at first via LIA. For both chains
the Gröbner bases of the ideal corresponding to the set of constraint equations
are computed and denoted by B1 and B2. Onto one set of constraint equations,
for example B1, the quaternion conjugation and TDH are applied resulting in a
set of equations B̄1. Then one has to show that the variety represented by B2

is the same as the one of B̄1. Note that the ideals (the set of equations) do not
necessarily have to be identical but the represented varieties have to be identical.
To check if the same variety is represented by the two different ideals, the radical
membership has to be checked.

According to Cox, Little and O’Shea [2] the necessary and sufficient condition
can be formulated,

“Let k be an arbitrary field and let I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn] be
an ideal. Then f ∈ √

I if and only if the constant polynomial 1 belongs
to the ideal Ĩ = 〈f1, . . . , fs, 1 − yf〉 ⊂ k[x1, . . . , xn, y] (in which case,
Ĩ = k[x1, . . . , xn, y]).”

This algorithm is applied to the ideals B2 and B̄1. Taking a polynomial f1 of one
basis, adding 1−yf1 to the second basis and computing the Gröbner bases of the
ideal yields in general a remainder. If there is no remainder the polynomial f1 is
already included in the first basis. This has to be done with all polynomials of
the first basis and then the same procedure is applied reversely. As expected the
computation shows that the varieties of the RP- and the conjugated PR-chain
are identical because no single remainder shows up. Although the equations
describing the variety of the RP-chain as well as the conjugated set of constraints
describing the PR-chain are simple, they still differ in some signs, as it can be
seen in Eqs.(6) and (7). But the application of the radical membership test shows
immediately that they are describing the same variety.

CmRP−con = [
(
α1

2a1 − a1

)
x3 − 2 y2 − 2 α1 y3,

(
α1

2a1 − a1

)
x2 − 2 α1 y2 − 2 α1

2y3,(
α1

2a1 − a1

)
x1 + 2 α1

2y0 − 2 α1 y1,
(
α1

2a1 − a1

)
x0 − 2 α1 y0 + 2 y1,

α1 y0
2 +
(−α1

2 − 1
)
y0 y1 + α1 y1

2 + α1 y2
2 +
(
α1

2 + 1
)
y2 y3 + α1 y3

2]

(6)
CmPR = [

(
α1

2a1 − a1

)
x3 + 2 y2 − 2 α1 y3,

(
α1

2a1 − a1

)
x2 − 2 α1 y2 + 2 α1

2y3,(
α1

2a1 − a1

)
x1 − 2 α1

2y0 − 2 α1 y1,
(
α1

2a1 − a1

)
x0 − 2 α1 y0 − 2 y1,

α1 y0
2 +
(
α1

2 + 1
)
y0 y1 + α1 y1

2 + α1 y2
2 +
(−α1

2 − 1
)
y2 y3 + α1 y3

2]

(7)

5 RRP- and the PRR-chains

The investigation of the relation between the RRP- and its inverse, the PRR-
chain is not as straightforward as in the previous section. The used computer
system Maple is not able to compute the radical membership for the RRP- and
the PRR-chain in general coordinates. But it is possible to provide an alternative,
remarkably simple algorithm. The LIA comes up in both cases with a set of nine
constraint equations, which are quadratic in xi and yi. These sets are denoted
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by H1 and H2. Four out of the nine equations are linear in yi and are used to
solve for these parameters. Because of lack of space only one of the resulting yi

is displayed, all the others look similar

y0 = − a1 (α1 α2 − 1) (α1 α2 + 1) x1
2

2α1 (α2
2 + 1) x0

−
(
α1

2α2 a1 − α1 α2
2a2 − a2α1 + α2 a1

)
x1

2α1 (α2
2 + 1)

− (8)

a1 (α1 α2 − 1) (α1 α2 + 1) x2
2

2α1 (α2
2 + 1) x0

−
(
α1

2 + 1
)

α2 a1x2 x3

α1 (α2
2 + 1) x0

+
α2 d2x2

α2
2 + 1

+ 2
α2

2d2
(
α1

2 + 1
)
x3(

α2
1 − α2

2

)
(α2

2 + 1)

Back substitution into H1 results in only one quadratic equation in each set.
Applying the dual quaternion conjugation and the TDH transformation yields
exactly the equation H1 describing the rotation capability of the inverted chain
and this equation is identical to the equation H2 obtained by performing the
LIA on PRR-chain

H1 :
(

α1
2
α2

2 − 1
)
(x1

2
+ x

2
2) + 2

(
α1

2
α2 + α2

)
(x2 x3 + x1 ) +

(
α1

2 − α2
2
)
(x3

2
+ 1) = 0

H1 = H2 :
(

α1
2
α2

2 − 1
)
(x1

2
+ x

2
2) − 2

(
α2

2
α1 + α1

)
(x2 x3 − x1 ) +

(
α2

2 − α1
2
)
(x3

2
+ 1) = 0

(9)

Figure 2 shows the two quadrics H1 and H2 and one point and its inverse
connected by a mirroring line colored in blue for the parameter values a2 =
−5, a1 = −7, d2 = −3, d1 = 0, α1 = −3/2, α2 = −7/5 (αi denote the algebraic
values of the angles).

Fig. 2. Quadrics, points and connection line (Color figure online)

6 Conclusion

In the paper it was shown that the constraint equations of an inverted kine-
matic chain can be obtained by simply applying quaternion conjugation to the
constraint equations of the original chain. The effect of quaternion conjugation
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in the kinematic image space was shown to be a reflection with respect to a
line and a five- dimensional subspace. Furthermore it was explicitly shown, that
quaternion conjugation and the much more complicated linear implicitization
algorithm yield the same result. Those displacements that are fixed in conjuga-
tion are on the intersection of a five dimensional space x0 = y0 = 0 with the
Study quadric. The provided algorithm can be applied not only to any thinkable
kinematic chain but also to any mechanism and its inverted which are composed
of (even different) kinematic chains.

Acknowledgements. The authors acknowledge the support of the FWF project I
1750-N26 “Kinematic Analysis of Lower-Mobility Parallel Manipulators Using Efficient
Algebraic Tools”.
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Abstract. This paper aims to shed light on the determination of the
true mobility for a 3-RPS-3-SPR series-parallel manipulator, which was
claimed to be six in [6] without any proof, and shown to be five in [3,4]
with an erroneous proof. Screw theory is used to derive the kinematic
Jacobian matrix and the twist system of the mechanism, leading to the
determination of its local mobility. I turns out that this local mobility
is found to be six in several arbitrary configurations, which indicates a
full-cycle mobility equal to six. This full-cycle mobility is confirmed by
calculating the Hilbert dimension of the ideal made up of the set of con-
straint equations. It is also shown that the mobility drops to five in some
particular configurations, referred to as impossible output singularities.

Keywords: Series-parallel manipulator · Mobility analysis · Jacobian
matrix · Screw theory · Hilbert dimension

1 Introduction

A series-parallel manipulator (S-PM) is composed of parallel manipulators
mounted in series and has merits of both serial and parallel manipulators. The
3-RPS-3-SPR S-PM is such a mechanism with the proximal module being com-
posed of the 3-RPS parallel mechanism and the distal module being composed
of the 3-SPR PM. Hu et al. [6] analyzed the workspace of this manipulator.
Hu formulated the Jacobian matrix for S-PMs as a function of Jacobians of the
individual parallel modules [5]. In the former paper, it was assumed that the
number of local dof of the 3-RPS-3-SPR mechanism is equal to six, whereas
Gallardo et al. found out that it is equal to five [3,4]. As a matter of fact, it
is not straightforward to find the local mobility of this S-PM due to the third-
order twist systems of each individual module. It is established that the 3-RPS
PM performs a translation and two non pure rotations about non fixed axes,
which induce two translational parasitic motions [7]. The 3-SPR PM also has the
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 57
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same type of dof [12]. In addition, these mechanisms are known as zero-torsion
mechanisms. When they are mounted in series, the axis about which the tor-
sional motion is constrained, is different for a general configuration of the S-PM.
Gallardo et al. failed to consider this fact but only those special configurations in
which the axes coincide resulting in a mobility equal to five. This paper aims at
clarifying that the full-cycle mobility of the 3-RPS-3-SPR S-PM is equal to six
with the help of screw theory and some algebraic geometry concepts. Although
the considered S-PM has double spherical joints and two sets of three copla-
nar revolute joint axes, the proposed methodology to calculate the mobility of
the manipulator at hand is general and can be applied to any series-parallel
manipulator.

The paper is organized as follows: The manipulator under study is described
in Sect. 2. The kinematic Jacobian matrix of a general S-PM with multiple mod-
ules is expressed in vector form in Sect. 3. Section 4 presents some configurations
of the 3-RPS-3-SPR S-PM with the corresponding local mobility. Section 5 deals
with the full-cycle mobility of the 3-RPS-3-SPR S-PM.

2 Manipulator Under Study

The architecture of the 3-RPS-3-SPR S-PM under study is shown in Fig. 1. It
consists of a proximal 3-RPS PM module and a distal 3-SPR PM module. The
3-RPS PM is composed of three legs each containing a revolute, a prismatic
and a spherical joint mounted in series, while the legs of the 3-SPR PM have
these lower pairs in reverse order. Thus, the three equilateral triangular shaped
platforms are the fixed base, the coupler and the end effector, coloured brown,
green and blue, respectively. The vertices of these platforms are named Ai, Bi

and Ci, i = 0, 1, 2. Here after, the subscript 0 corresponds to the fixed base,
1 to the coupler platform and 2 to the end-effector. A coordinate frame Fi is
attached to each platform such that its origin Oi lies at its circumcenter. The
coordinate axes, xi points towards the vertex Ai, yi is parallel to the opposite
side BiCi and by the right hand rule, zi is normal to platform plane. Besides,
the circum-radius of the i-th platform is denoted as hi. pi and qi, i = 1, ..., 6
are unit vectors along the prismatic joints while ui and vi, i = 1, ..., 6 are unit
vectors along the revolute joint axes.

3 Kinematic Modeling of Series-Parallel Manipulators

Keeping in mind that the two parallel mechanisms are mounted in series, the
end effector twist (angular velocity vector of a body and linear velocity vector
of a point on the body) for the 3-RPS-3-SPR S-PM with respect to base can be
represented as follows:

0t2/0 =0 tPROX
2/0 +0 tDIST

2/1 =⇒
[

0ω2/0
0vO2/0

]
=

[
0ωPROX

2/0
0vPROX

O2/0

]
+

[
0ωDIST

2/1
0vDIST

O2/1

]
(1)
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Fig. 1. A 3-RPS-3-SPR series-parallel manipulator

Module 1

Module 2

Module n

Fig. 2. n parallel mech-
anisms (named modules)
arranged in series

where 0tPROX
2/0 is the end effector twist with respect to the base (2/0) due to the

proximal module motion and 0tDIST
2/1 is the end effector twist with respect to

the coupler (2/1) due to the distal module motion. These twists are expressed
in the base frame F0, hence the left superscript. The terms on right hand side
of Eq. (1) are not known, but can be expressed in terms of the known twists
using screw transformations. To do so, the known twists are first noted down. If
the proximal and distal modules are considered individually, the twist of their
respective moving platforms with respect to their fixed base will be expressed as
a function of the actuated joint velocities:

APROX
0tPROX

1/0 = BPROX ρ̇13 =⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

(0rO1A1 ×0 p1)T 0pT
1

(0rO1B1 ×0 p2)T 0pT
2

(0rO1C1 ×0 p3)T 0pT
3

(0rO1A1 ×0 u1)T 0uT
1

(0rO1B1 ×0 u2)T 0uT
2

(0rO1C1 ×0 u3)T 0uT
3

⎤
⎥⎥⎥⎥⎥⎥⎦

[
0ωPROX

1/0
0vPROX

O1/0

]
=

[
I3×3

03×3

]⎡
⎣

ρ̇1
ρ̇2
ρ̇3

⎤
⎦

(2)

ADIST
1tDIST

2/1 = BDIST ρ̇46 =⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

(1rO2A1 ×1 q1)T 1qT
1

(1rO2B1 ×1 q2)T 1qT
2

(1rO2C1 ×1 q3)T 1qT
3

(1rO2A1 ×1 v1)T 1vT
1

(1rO2B1 ×1 v2)T 1vT
2

(1rO2C1 ×1 v3)T 1vT
3

⎤
⎥⎥⎥⎥⎥⎥⎦

[
1ωDIST

2/1
1vDIST

O2/1

]
=

[
I3×3

03×3

]⎡
⎣

ρ̇4
ρ̇5
ρ̇6

⎤
⎦

(3)
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where, 0tPROX
1/0 is the twist of the coupler with respect to the base expressed

in F0 and 1tDIST
2/1 is the twist of the end effector with respect to the cou-

pler expressed in F1. APROX and ADIST are called forward Jacobian matrices
and they incorporate the actuation and constraint wrenches of the 3-RPS and
3-SPR PMs, respectively [9]. BPROX and BDIST are called inverse Jacobian
matrices and they are the result of the reciprocal product between wrenches of
the mechanism and twists of the joints for the 3-RPS and 3-SPR PMs, respec-
tively. ρ̇13 = [ρ̇1, ρ̇2, ρ̇3]T and ρ̇46 = [ρ̇4, ρ̇5, ρ̇6]T are the prismatic joint veloc-
ities for the proximal and distal modules, respectively. krPQ denotes the vec-
tor pointing from a point P to point Q expressed in frame Fk. Considering
Eq. (1), the unknown twists 0tPROX

2/0 and 0tDIST
2/1 can be expressed in terms of

the known twists 0tPROX
1/0 and 1tPROX

2/1 using the following screw transformation
matrices [2,11].

[
0ωPROX

2/0
0vPROX

O2/0

]
= 2Ad1

[
0ωPROX

1/0
0vPROX

O1/0

]
(4)

with 2Ad1 =
[

I3×3 03×3

−0r̂O1O2 I3×3

]
, 0r̂O1O2 =

⎡
⎣ 0 −0zO1O2

0yO1O2
0zO1O2 0 −0xO1O2

−0yO1O2
0xO1O2 0

⎤
⎦

2Ad1 is called the adjoint matrix. 0r̂O1O2 is the cross product matrix of vector
0rO1O2 = [0xO1O2 ,

0 yO1O2 ,
0 zO1O2 ], pointing from point O1 to point O2 expressed

in frame F0.
Similarly, for the distal module, the velocities 1ωDIST

2/1 and 1vDIST
O2/1

can be trans-
formed from frame F1 to F0 just by multiplying each of them by the rotation
matrix 0R1 from frame F0 to frame F1:[

0ωDIST
2/1

0vDIST
O2/1

]
= 0R1

[
1ωDIST

2/1
1vDIST

O2/1

]
with 0R1 =

[
0R1 I3×3

I3×3
0R1

]
(5)

0R1 is called the augmented rotation matrix between frames F0 and F1.
Consequently from Eqs. (4) and (5),

0t2/0 = 2Ad1
0tPROX

1/0 + 0R1
1tDIST

2/1 (6)

Note that Eq. (6) amounts to the twist equation derived in [5] whereas Gallardo
et al. add the twists of individual modules directly without considering the screw
transformations. It is noteworthy that Eq. (11) in [4] is incorrect, so are any
further conclusions based on this equation. Following Eqs. (2) and (3), with the
assumption that the proximal and distal modules are not in a parallel singularity1

or in other words, matrices APROX and ADIST are invertible,

1 Parallel singularity can be an actuation singularity, constraint singularity or a com-
pound singularity [1,10,13].
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0t2/0 = 2Ad1 A−1
PROX BPROX ρ̇13 + 0R1 A−1

DIST BDIST ρ̇46

=
[
2Ad1 A−1

PROX BPROX
0R1 A−1

DIST BDIST

] [
ρ̇13
ρ̇46

]

= JS-PM

[
ρ̇13
ρ̇46

] (7)

JS-PM is the kinematic Jacobian matrix of the 3-RPS-3-SPR S-PM under study.
The rank of this matrix provides the local mobility of the S-PM.

Equations (6), (7) and (8) can be extended to a series-parallel manipulator
with n number of parallel mechanisms, named modules in this paper, in series
as shown in Fig. 2. Thus, the twist of the end effector with respect to the fixed
base expressed in frame F0 can be expressed as follows:

0tn/0 =
n∑

i=1

0R(i−1)
nAdi

(i−1)tMi

i/(i−1) = J6×3n

⎡
⎢⎢⎢⎣

ρ̇M1

ρ̇M2

...
ρ̇Mn

⎤
⎥⎥⎥⎦

with 0Ri =
[
0Ri I3×3

I3×3
0Ri

]
, nAdi =

[
I3×3 03×3

−(i−1)r̂OiOn
I3×3

]
and

J6×3n =
[

nAd1 A−1
M0

BM0
0R1

nAd2A−1
M1

BM1 ... 0Rn A−1
Mn

BMn

]

(8)

where, J6×3n is the 6 × 3n kinematic Jacobian matrix of the n-module hybrid
manipulator. Mi stands for the i-th module, AMi

and BMi
are the forward and

inverse Jacobian matrices of Mi of the series-parallel manipulator, respectively.
ρ̇Mi

is the vector of the actuated prismatic joint rates for the i-th module.

4 Twist System of the 3-RPS-3-SPR S-PM

Each leg of the 3-RPS and 3-SPR parallel manipulators are composed of three
joints, but the order of the limb twist system is equal to five and hence there
exist five twists associated to each leg. Thus, the constraint wrench system of
the i-th leg reciprocal to the foregoing twists is spanned by a pure force W i

passing through the spherical joint center and parallel to the revolute joint axis.
Therefore, the constraint wrench systems of the proximal and distal modules are
spanned by three zero-pitch wrenches, namely,

0WPROX =

3⊕
i=1

0W i
PROX = span

{[
0u1

0rO2A1 ×0 u1

]
,

[
0u2

0rO2B1 ×0 u2

]
,

[
0u3

0rO2C1 ×0 u3

]}

1WDIST =

3⊕
i=1

1W i
DIST = span

{[
1v1

1rO2A1 ×1 v1

]
,

[
1v2

1rO2B1 ×1 v2

]
,

[
1v3

1rO2C1 ×1 v3

]}

(9)
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Due to the serial arrangement of the parallel mechanisms, the constraint
wrench system of the S-PM is the intersection of the constraint wrench systems
of each module. Alternatively, the twist system of the S-PM is the direct sum
(disjoint union) of the twist systems of each module. Therefore, the nullspace
of the 3 × 6 matrix containing the basis screws of 0WPROX and 1WDIST

leads to the screws that form the basis of the twist system of each module,
0TPROX = span{0ξ1, 0ξ2,

0ξ3} and 1TDIST = span{1ξ4, 1ξ5,
1ξ6}, respec-

tively. The augmented rotation matrix derived in Eq. (5) is exploited to ensure
that all the screws are expressed in one frame (F0 in this case). Therefore, the
total twist system of the S-PM can be obtained as follows:

0TS-PM = 0TPROX

⊕
0TDIST

= span{ 0ξ1,
0ξ2,

0ξ3,
0R1

1ξ4,
0R1

1ξ5,
0R1

1ξ6}
(10)

The order of the twist system 0TS-PM yields the local mobility of the whole
manipulator.

Some general and singular configurations of the 3-RPS-3-SPR S-PM with
h0 = 2, h1 = 1 and h2 = 2 are considered and its mobility is listed based on the
rank of the Jacobian and the order of the twist system in Table 1. For general
configurations like 2 and 3, the mobility is found to be six. The mobility reduces
only when some singularities are encountered. For a special configuration when
the three platform planes are parallel to each other as shown in the first row
of this table, the rotations of the coupler generate translational motions of the
end effector. Yet, the torsional axes of both mechanisms coincide and hence,
the mechanism cannot perform any rotation about an axis of vertical direction
leading to a mobility equal to five.

Moreover, a configuration in which any revolute joint axis in the end effec-
tor is parallel to its corresponding axis in the fixed base results in a mobil-
ity lower than six for the S-PM. For instance, for the 4th configuration in the
table, there exists a constraint force f , parallel to the two parallel revolute joint
axes resulting in a five dof manipulator locally. Configurations 1 and 4 are the
impossible output singularities as identified by Zlatanov et al. [15]. It should be
noted that if one of the modules is in a parallel singularity, the motion of the
moving-platform of the manipulator becomes uncontrollable. A detailed singu-
larity analysis of series-parallel manipulators will be performed in a future work
for a better understanding of their behaviour in singular configurations.

5 Full-Cycle Mobility of the 3-RPS-3-SPR S-PM

The full cycle mobility can be obtained by calculating the Hilbert dimension of
the set of constraint equations of the mechanism [8]. Two Study transformation
matrices are considered: 0X1 from F0 to F1 and 1Y2 from F1 to F2 composed
of Study parameters xi and yi, i = 0, 1, ..., 7, respectively. Thus, the coordinates
of points Aj , Bj and Cj , j = 0, 1, 2 and vectors uk and vk, k = 1, 2, 3 can
be represented in F0 to yield sixteen constraint equations (six for the 3-RPS
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Table 1. Mobility of the 3-RPS-3-SPR S-PM in different configurations
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PM, six for the 3-SPR PM, Study quadric and normalization equations for each
transformations). It was established that the 3-RPS and the 3-SPR parallel
mechanisms have two operation modes each, characterized by x0 = 0, x3 = 0 and
y0 = 0, y3 = 0, respectively [12,14]. For the S-PM, four ideals of the constraint
equations are considered: K1, when x0 = y0 = 0, K2, when x3 = y0 = 0, K3,
when x0 = y3 = 0 and K4, when x3 = y3 = 0. The Hilbert dimension of these
ideals over the ring C[h0, h1, h2] is found to be six2 and hence the global mobility
of the 3-RPS-3-SPR S-PM.

dimKi = 6, i = 1, 2, 3, 4. (11)

6 Conclusions and Future Work

In this paper, the full-cycle mobility of a 3-RPS-3-SPR PM was elucidated to be
six. The kinematic Jacobian matrix of the series-parallel manipulator was cal-
culated with the help of screw theory and the result was extended to n-number
of modules. Moreover, the methodology for the determination of the twist sys-
tem of series-parallel manipulators was explained. The rank of the Jacobian
matrix or the order of the twist system gives the local mobility of the S-PM.
Global mobility was calculated as the Hilbert dimension of the ideal of the set
of constraint equations. In the future, we intend to solve the inverse and direct
kinematics using algebraic geometry concepts and to enlist all possible singu-
larities of series-parallel mechanisms. Additionally, it is challenging to consider
n-modules (n > 2) and to work on the trajectory planning of such manipulators
as the number of output parameters is equal to six and lower than the number
of actuated joints, which is equal to 3n.
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Centrale de Nantes and the French National Research Agency (ANR project number:
ANR-14-CE34-0008-01).
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Abstract. Different motion modes of mechanisms often correspond to
irreducible components of the configuration space (c-space), and singu-
larities of the c-space often (but not necessarily) happen at the intersec-
tions of irreducible components, i.e. motion modes, of the configuration
space. Frequently mechanisms are required to perform different tasks on
different motion modes of the mechanism connected by c-space singu-
larities. This means that in order for the mechanism to switch between
motion modes it has to pass through a c-space singularity. Although sin-
gularities may not be avoided, it is desirable to design the mechanism
in such a way that the transition motion through the singularity is as
smooth as possible. In this paper we propose using the theory of intersec-
tions of algebraic varieties as a tool from algebraic geometry that allows
investigating this situation. Modern computational algebra provides the
necessary algorithms. The theory and its implications are demonstrated
for two simple examples.

1 Introduction

Most mechanisms comprise ‘algebraic joints’, i.e. kinematic pairs whose geomet-
ric constraints can be described by polynomial equations f1 = 0, . . . , fk = 0.
These generate the constraint ideal I = 〈f1, . . . , fk〉 ⊂ A in the polynomial
ring A. Thus the c-space is an algebraic variety V(I), and algebraic geometry
and commutative algebra provide a framework for the analysis, and potentially
the design, of the c-space. The goal of this paper is to recall the relevant con-
cepts from algebraic geometry facilitating the analysis of c-space singularities of
mechanisms and robots. This gives us computational tools to analyze c-space
singularities.

In general singularities are not desirable since the differential mobility of a
mechanism changes impairing their stability and making their control difficult.
However if a mechanism contains closed loops and is designed to go from one
motion mode to another it has to go through a singularity. Also the simulation of
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 58
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the mechanism dynamics becomes difficult since standard numerical integration
methods for differential algebraic (DAE) system can not handle singularities. In
fact these types of mechanisms and their constraints are often used when testing
and comparing different DAE-solvers [7]. If a mechanism is to perform several
tasks where each one corresponds to irreducible components/motion modes Vi

of the c-space variety V, then the mechanism must pass through a c-space sin-
gularity. It is thus important that the singularities and their nature are known
a priori. An interesting question in this regard is whether there are tangential
intersections of motion modes that allow for smooth transitions between different
modes [1,12].

To study these questions we propose to use the concept of multiplicity. If
at a point in the intersection of two varieties the multiplicity of intersection
is greater than one, then at the intersection there are at least some common
tangent direction to both varieties, and hence a smooth transition between dif-
ferent modes is possible at least in principle. From an engineering perspective
it would be desirable to be able to design regular/tangential intersections of
mechanisms performing tasks in several motion modes that are connected by
singularities since then the mechanism would not have to stop at singularity
in order to change to another motion mode. Another interesting aspect about
multiplicity is that it may provide a good quantitative model of what has been
intuitively called the shakiness of the mechanism. This aspect will be treated
more thoroughly in a forthcoming paper. A similar approach is used also in [14].
The singularity analysis is therefore particularly important, but at the same
time also a difficult area of mechanism design [2,3,8,11,13,16]. The advantage
of using algebraic geometry instead of the differential geometric approach is that
in algebraic geometry one can obtain global as well as local results.

Computations in this paper were performed with the program Singular [10].

2 Mathematical Preliminaries

2.1 Rings, Ideals and Singularities

We recall some basic facts and refer to [5,9] for more details. The polynomial
ring with coefficient field K and variables xi is denoted by A = K[x1, . . . , xn].
The following facts about ideals I ⊂ A in A are fundamental

(i) Every ideal is finitely generated, i.e. it has a basis with a finite number of
generators.

(ii) Every radical ideal can be decomposed to a finite number of prime ideals:
This gives the decomposition of the variety into irreducible components:

V(I) = V(
√

I) = V(I1) ∪ · · · ∪ V(Is).

Definition 2.1 (Tangent space). Let I = 〈f1, . . . , fk〉 be an ideal and let us
denote by f = (f1, . . . , fk) the map defined by the generators. The differential
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(or Jacobian) of f is then denoted by df , and its value at q is dfq. Let us suppose
that I is a prime ideal. Then the tangent space of the variety V = V(I) at q is

TqV = {z ∈ K
n | dfqz = 0}. (1)

Note that by definition TqV is a vector space, so its dimension is well defined.

Definition 2.2 (Singular points). A point q ∈ V is singular if dim(TqV ) >
dimq(V ). Otherwise the point q is regular. The set of singular points of V is
denoted by Σ(V ).

Recall that Σ(V ) is itself a variety whose dimension is less than dim(V ).
Hence almost all points of a variety are regular.

Throughout the paper the constraint ideal (the ideal associated with the
constraints) is assumed to be prime.

Let V = V1 ∪ · · · ∪ V� be the decomposition to irreducible components. Then
there are basically two ways of a point q of a general variety V to be singular:
either q is a singularity of an irreducible component Vi or it is an intersection
point of two components. That is, the variety of singular points is

Σ(V ) =
�⋃

i=1

Σ(Vi) ∪
⋃

i�=j

Vi ∩ Vj . (2)

Once we have the irreducible decomposition it is easy to compute the inter-
sections (the second term in (2)). To compute the singular points of irreducible
components (the first term in (2)) one needs the concept of Fitting ideals [9].

Let M be a matrix of dimension k × n with entries in A. The �th Fitting
ideal of M , F�(M), is the ideal generated by the � × � minors of M . Let now
f = (f1, . . . , fk) : K

n 	→ K
k be a map corresponding to the prime ideal I =

〈f1, . . . , fk〉 and let V = V(I) be the corresponding irreducible variety. Let us
suppose that dim(V ) = n − �.

Theorem 2.1 (Jacobian criterion). The singular variety of V is

Σ(V ) = V
(I + F�(df)

)
= V

(I) ∩ V
(
F�(df)

)
.

In particular if I + F�(df) = A then V is smooth.

One can now ask how does the variety ‘look like’ locally. Unlike manifolds
varieties don’t have to be smooth or even locally Euclidean. If q is a smooth
point then naturally the tangent space TqV can be thought of as the best local
approximation. In case of singular points we need the concept of tangent cone
[4,15]. Let us suppose that q is the origin. Then each polynomial f ∈ I(V ) can
be written as a sum of its homogeneous components. Let us denote by f(q,min)

the component of lowest degree.

Definition 2.3 (Tangent cone). Suppose that V(I) ⊂ R
n is an algebraic vari-

ety and I = 〈h1, . . . , hl〉 and let q ∈ V . The Tangent cone of V at q, denoted by
Cq(V ), is the variety

Cq(V ) = V(f(q,min) | f ∈ I(V )). (3)
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The tangent cone has the following basic properties:

• q is a smooth point if and only if CqV = TqV
• dim(CqV) = dimq(V).

The tangent cone is the simplest possible approximation of V in the neigh-
borhood of q and thus dim(CqV) = dimq(V). The generators of the tangent cone
can be obtained efficiently using Gröbner basis techniques.

2.2 Intersection Multiplicity and Singular Points

Let q be a point of a subvariety V ⊂ K
m. We denote by OV,q the local ring

of V at q. Consider an ideal I ⊂ OV,q with dimK(OV,q/I) < ∞. Then the
Hilbert-Samuel function of I is

HI(n) = dimK(OV,q/In) (n ∈ N). (4)

It is known that there exists a polynomial PI(n) such that HI(n) and PI(n)
coincide for large n. This polynomial is called the Hilbert-Samuel polynomial of
I. It is of degree d = dim OV,q. The leading coefficient is e(I)/d!, where e(I) is
an integer. We say that e(I) is the Hilbert-Samuel multiplicity of I.

Let V1, V2 ⊂ K
n be subvarieties. Then one can define the intersection multi-

plicity of V1 and V2 at an irreducible component of the intersection V1 ∩ V2. We
restrict to the special case where the irreducible component is a point q ∈ V1∩V2.
The definition is based on the idea of ‘reduction to the diagonal’ [6]. Let us define
the diagonal embedding and the ideal corresponding to it:

Δ : Kn → K
n × K

n , (a1, . . . , an) 	→ (a1, . . . , an, a1, . . . , an)
δ = (x1 − y1, . . . , xn − yn) ⊂ K[x, y] , V(δ) = Δ(Kn)

In this way we have an isomorphism V1 ∩ V2
∼= Δ(Kn) ∩ (V1 × V2). We now

consider δ as an ideal of the local ring OV1×V2,(q,q).

Definition 2.4 (Intersection multiplicity). The intersection multiplicity of
V1 and V2 at q is

iq(V1, V2) = e(δ). (5)

A fundamental theorem connecting multiplicities of points of V to its tangent
cone says that the tangent cone CqV and the variety V have the same multiplicity
at q. The tangent cone gives the geometric picture of the variety near its singular
points.

Gröbner basis techniques can be extended to local rings, hence the multi-
plicity can actually be computed. The drawback with this approach is that the
number of variables is artificially doubled, making the computations potentially
very time consuming. However, it is possible to do the computations in such a
way that this inconvenience is avoided. This will be explored in another paper.
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3 Examples

3.1 Slider-Crank Mechanism with Circular Constraints

Figure 1(a) shows a planar slider-crank mechanism whose slider is constrained
to move on the union of two circles with radius 1/2 and centers at (1, 1/2)
and (1,−1/2), respectively (This can also be regarded as a planar 2R serial
manipulator that must perform motion on the circles). The constraint equations
are pi = 0, i = 1 . . . 5 where

p1 = c1 + c2 − x, p2 = s1 + s2 − y, p3 = c21 + s21 − 1 = 0, p4 = c22 + s22 − 1

p5 = ((x − 1)2 + (y − 1/2)2 − 1/4)((x − 1)2 + (y + 1/2)2 − 1/4)

where si := sin xi, ci := cos xi. The equation p5 = 0 restricts the slider to move
on the circles. Analyzing the constraint ideal I = 〈p1, p2, p3, p4, p5〉 yields

I =
√

I = I1 ∩ I2 ⊂ Q[c1, s1, c2, s2, x, y]

The singular points of V(I) are the intersections of two modes V(I1) = V1 and
V(I2) = V2 which represent the motion where the end effector is constrained to
move on either circles. Checking the Jacobian criterion proves that both modes,
V(I1) and V(I2), are smooth. The singular points are thus

Σ(V ) = V(I1 ∩ I2) = V(I1 + I2)

= V(y, x − 1, 4s22 − 3, 2c2 − 1, s1 + s2, c1 + c2 − 1) = q+ ∪ q−

Fig. 1. (a) Slider-Crank mechanism with circular constraints. (b) 4-bar linkage with
equal link lengths
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where q± = (1/2,∓√
3/2, 1/2,±√

3/2, 1, 0). Now we make a coordinate transfor-
mation so that q+ is the origin and then double the number of variables. In this
way the ideals corresponding to I1 and I2 to can be written as

i1 = 〈b1 + b2 − y1, a1 + a2 − z1, y
2
1 + z21 − y1,

2b2y1 + 2a2z1 + 2a2 − (
√

3 + 1)y1 − z1, a
2
2 + b22 + a2 −

√
3b2〉

i2 = 〈e1 + e2 − y2, d1 + d2 − z2, y
2 + z22 + y2,

2e2y2 + 2d2z2 + 2d2 − (
√

3 − 1)y2 − z2, d
2
2 + e22 + d2 −

√
3e2〉

Hence the sum J = i1 + i2 is an ideal in the ring

A = Q(
√

3)[a1, b1, a2, b2, d1, e1, d2, e2, z1, y1, z2, y2]

Let us now consider the quotient ring A/J corresponding to the variety V =
V(J ). This construction is needed when one does actual computations in the
local ring OV,q. Hence the ideal in Definition 2.4 is now also interpreted as

δ = 〈a1 − d1, b1 − e1, a2 − d2, b2 − e2, y1 − y2, z1 − z2〉 ⊂ A/J .

The Hilbert polynomial of δ is now Pδ(n) = 1 + 2n and hence the multiplicity is
iq+(V1,V2) = 2. Since V1 and V2 are smooth we must have tangential intersection
of modes V1 and V2 at q+.

The tangent cone at q+ can be computed as

C0V = V(a1 + a2 − z, b1 + b2 − y, 2a2 − z −
√

3y, 6b2 −
√

3z − 3y, y2) = (L1)2

which is a ‘doubled’ tangent line y2 = 0 in the plane

T = V(6b2 −
√

3z, 2a2 − z, 6b1 +
√

3z, 2a1 − z),

and indicates the same result, i.e. that the multiplicity is two.

3.2 Four-Bar Mechanism with Equal Link Lengths

The constraint equations for the mechanism in Fig. 1(b) can be formulated by
using joint 4 as cut-joint as

p4 = c1 + c2 + c3 − 1 = 0, p5 = s1 + s2 + s3 = 0

pi = c2i + s2i − 1, i = 1, 2, 3.

Analyzing the constraint ideal I = 〈p1, p2, p3, p4, p5〉 leads to

I =
√

I = I1 ∩ I2 ∩ I3 ⊂ Q[c1, s1, c2, s2, c3, s3].

The singular points are again intersections of three smooth motion modes V(I1),
V(I2) and V(I3). The singular points then consists of three points:

Σ(V ) = V(I1 ∩ I2 ∩ I3) = V(I1 + I2 + I3) = {q0, q1, q2}.
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The mechanism is, for example, analyzed at the point

q0 = (1, 0,−1, 0, 1, 0) = V(I1) ∩ V(I2) = V1 ∩ V2.

A coordinate transformation such that q0 is the origin yields the ideals

i1 = 〈a2
2 + b22 − 2a2, b3, a3, b1 + b2 + b3, a1 + a2 + a3〉

i2 = 〈d23 + e23 + 2e3, d2 + d3, e2 + e3, d1 + d2 + d3, e1 + e2 + e3〉,

corresponding to I1 and I2 after the transformation. As above the sum J =
i1 + i2 is considered in the ring

A = Q[a1, b1, a2, b2, a3, b3, d1, e1, d2, e2, d3, e3]

and then we need to consider the quotient ring A/J . Computing as before we
obtain in this case iq0(V1,V2) = 1. Hence the intersection is not tangential in
this case as expected. If we compute the tangent cone at q0 we get

Cq0V = V(a1 + a2 + a3, b1 + b2 + b3, 2a2, 2a3, 2b2b3 + 2b23)

= V(a1, b1 + b2, a2, a3, b3) ∪ V(a1, b1, b2, a3, b2 + b3) = L1 ∪ L2 ⊂ R
6

Now L1 and L2 clearly represent two different lines in R
6:

L1 ∪ L2 = {t(0,−1, 0, 1, 0, 0) | t ∈ R} ∪ {t(0, 0, 0, 1, 0,−1) | t ∈ R}

The lines intersect at a nonzero angle which implies that multiplicity is one.

4 Conclusion

The ability to treat the c-spaces of mechanisms and robots as algebraic varieties
has many advantages. Most importantly essential properties, like singularities
and mobility, can be algorithmically computed and possibly designed. In this
paper we have introduced the concept of intersection multiplicity in order to
investigate the ‘order of tangency’ of intersections of different motion modes
of a mechanism. This is demonstrated for two simple examples. The presented
method has been applied to larger systems as well that cannot be presented here.
It was observed that the complexity scales up well. Tangential intersections in
particular are of practical importance since a mechanism could transit regularly
between motion modes, i.e. not have to stop when switching between motion
modes, which also reduces constraint forces.
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Abstract. A linear pentapod is a parallel manipulator with five
collinear anchor points on the motion platform (end-effector), which are
connected via SPS legs to the base. This manipulator has five controllable
degrees-of-freedom and the remaining one is a free rotation around the
motion platform axis (which in fact is an axial spindle). In this paper we
present a rational parametrization of the singularity variety of the linear
pentapod. Moreover we compute the shortest distance to this rational
variety with respect to a suitable metric. Kinematically this distance
can be interpreted as the radius of the maximal singularity free-sphere.
Moreover we compare the result with the radius of the maximal singular-
ity free-sphere in the position workspace and the orientation workspace,
respectively.

Keywords: Pentapod · Kinematic singularity · Rational variety ·
Singularity-free zone

1 Introduction

The Stewart-Gough platform (sometimes called simply Stewart platform) can
be defined as a six degree-of-freedom (DOF) parallel manipulator (PM) with
six identical spherical-prismatic-spherical (SPS) legs, where only the prismatic
joints are active. This parallel robot is merely used in flight simulation where a
replica cockpit plays the role of the moving platform.

Although the Stewart platform is the most celebrated PM, some of its sub-
assemblies with a lower number of legs are of interest from theoretical and practi-
cal points of view. Sometimes these sub-assemblies are referred to as components
[9]. In this paper we study the so-called line-body component, which is a rigid sub-
assembly of a Stewart PM consisting of a linear motion platform (end-effector)
named � and five SPS legs, where the base anchor points can have position in
R

3. Here this component is referred to as linear pentapod, which is an alternative
to serial robots for handling axis-symmetric tools (see Fig. 1). Moreover we use
the following notations:

1. The position of � is given by the vector p = (px, py, pz)T and the orientation
of � is defined by a unit-vector i = (u, v, w)T .

c© Springer International Publishing AG 2018
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2. The coordinate vector bj of the platform anchor point of the jth leg is
described by the equation bj = p + rji for j = 1, . . . , 5.

3. The base anchor point of the j-th leg has coordinates aj = (xj , yj , zj)T .

Note that all vectors are given with respect to a fixed reference frame, which
can always be chosen and scaled in a way that the following conditions hold:

x1 = y1 = z1 = y2 = z2 = z3 = 0 and x2 = 1. (1)

According to [13, Theorem 12] one possible point-model for the configuration
space C of the linear pentapod reads as follows: There exists a bijection between
C and all real points C = (u, v, w, px, py, pz) ∈ R

6 located on the singular quadric
Γ : u2 + v2 + w2 = 1. Based on this notation we study the singularity loci of
linear pentapods and the distance to it in the paper at hand, which is structured
as follows:

We close Sect. 1 by a review on the singularity analysis of linear pentapods
and recall the implicit equation of the singularity variety. In Sect. 2 we give a
brief introduction to rational varieties and present a rational parametrization
of the singularity loci of linear pentapods. In Sect. 3 we compute the minimal
distance to the singularity variety with respect to a novel metric in the ambient
space R

6 of the configuration space C . We also compute the closest singular
configuration under the constraint of a fixed orientation and a fixed position,
respectively. Finally a conclusion and a plan for future research is given.

Fig. 1. Linear pentapod with the following architectural parameters: a1 = (0, 0, 0)T ,
a2 = (5, 0, 0)T , a3 = (−4, −3, 0)T , a4 = (3, 7, −6)T , a5 = (9, −5, 4)T , (r1, r2, r3, r4,
r5) = (0, 2, 4, 5, 10). Moreover it should be noted that in the illustrated design the
linear platform � consists of five parts, which are jointed by four passive rotational joints
(a zoom of this detail is given in the box). This construction enlarges the workspace
by compensating some joint limits of the platform S-joints.
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1.1 Singularity Variety of the Pentapod

Singularity analysis plays an important role in motion planning of PMs.
For linear pentapods the singularities as well as the singular-invariant leg-
rearrangements have been studied in [5] for a planar base and in [3] for a non-
planar one. A complete list of architectural singular designs of linear pentapods
is given in [14], where also non-architecturally singular designs with self-motions
are classified (see also [12]).

Kinematical singularities occur whenever the Jacobian matrix J becomes
rank deficient, where J can be written as follows (cf. [3]):

J =

(
l1 . . . l5
l̂1 . . . l̂5

)T

with lj =

⎛
⎝px + rju − xj

py + rjv − yj

pz + rjw − zj

⎞
⎠ , l̂j =

⎛
⎝zj(py + rjv) − yj(pz + rjw)

xj(pz + rjw) − zj(px + rju)
yj(px + rju) − xj(py + rjv)

⎞
⎠ .

This 5 × 6 Jacobian matrix J has a rank less than five whenever the determi-
nants of all its 5 × 5 sub-matrices vanish. So by naming the determinant of the
5 × 5 sub-matrix, which results from excluding the jth column, with Fj the sin-
gularity loci equals V (F1, . . . , F6); i.e. the variety of the ideal spanned by the
polynomials F1, . . . , F6. It can easily be checked by direct computations that this
variety equals the zero-set of the greatest common divisor F of F1, . . . , F6. This
singularity polynomial F has the following structure:

F := (A1py + A2pz)u2 + [(A3px + A4py + A5pz + A6)v + (A7px + A8py

+ A9pz + A10)w + (A11py + A12pz)px + A13py
2 + (A14pz + A15)py

+ A16pz
2 + A17pz]u + (A18px + A19pz + A20)v2 + [(A21px + A22py

+ A23pz + A24)w + A25px
2 + (A26py + A27pz + A28)px + (A29pz

+ A30)py + A31pz
2 + A32pz]v + (A33px + A34py + A35)w2 + [A36px

2

+ (A37py + A38pz + A39)px + A40py
2 + (A41pz + A42)py + A43pz]w

(2)

where the coefficients Ai belong to the ring R = R[x3, x4, x5, y3, y4, y5, z4,
z5, r1, . . . , r5] which evidently makes F a polynomial with the total-degree of
3 belonging to R[u, v, w, px, py, pz]. Note that for a specified orientation (u, v, w)
the equation F = 0 determines only a quadric surface Ω(u, v, w) in the space of
positions. This property is of great importance later on.

Remark 1. It can easily be checked that the polynomial F is identical with the
determinant of a 7 × 7 matrix given in [3, Eq. (4)]. �

2 Rational Parametrization of the Singularity Variety

In this section we rationally parametrize the singularity variety, which is given
by the implicit equation F = 0. But before stepping into the computations, the
presentation of a formal definition of this parametrization seems necessary.
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Definition 1. Let K be a field and V ⊂ K
m and W ⊂ K

n be irreducible affine
varieties. A rational mapping from V to W is a function φ represented by

φ : V ��� W with φ(x1, . . . , xm) =

(
f1(x1, . . . , xm)

g1(x1, . . . , xm)
, . . . ,

fn(x1, . . . , xm)

gn(x1, . . . , xm)

)
(3)

where fi
gi

∈ K(x1, . . . , xm) and satisfies the following properties:

1. φ is defined at some point of V .
2. For every (a1, . . . am) ∈ V where φ is defined, φ(a1, . . . am) ∈ W .

Definition 2. Two irreducible varieties V and W are said to be birationally
equivalent if there exist rational mappings φ : V ��� W and ψ : W ��� V such
that φ ◦ ψ and ψ ◦ φ be equal to idW and idV respectively.

Definition 3. A rational variety is a variety that is birationally equivalent
to K

n.

One can find the extensive discussion of above definitions in [16, Chaps. 1 and 2].
Having a rational parametrization of a variety has numerous advantages:

If the coefficients of the polynomials fi and gi of Eq. (3) belong to Q and if
(x1, . . . , xm) is an element of Q

m, then one obtains points with rational coor-
dinates on the singularity variety [16, p. 3]. This is a matter, which is of high
importance to computer aided designs, as computers can calculate rational coor-
dinates at a much faster rate.

Moreover the rationality of the singularity variety implies that it is path
connected, which means that every singular pose can be connected to any other
singular pose by a continuous singular motion [7]. This property can be used
for a computationally efficient approximation of the singularity-free workspace
by hierarchical structured hyperboxes, where only their boundaries have to be
checked to be free of singularities. Beside the rationally parametrized singularity
loci of the planar 3-RPR PM [7], only the one of Stewart PMs with planar
platform and planar base [6] (see also [1,2]) are known to the authors (in the
context of PMs of Stewart-Gough type).

For the computation of the rational parametrization of the linear pentapod,
we exploit the idea used in [6]: By homogenizing the singularity polynomial F
of Eq. (2) by the extra variable p0 with respect to the position variables px, py
and pz, we obtain a homogeneous polynomial Fh ∈ R(u, v, w)[px, py, pz, p0] in
the projective 3-space P

3 with homogeneous coordinates (px : py : pz : p0). It
turns out that the point B with homogeneous coordinates (u : v : w : 0) is a
point of the singularity variety; i.e. B ∈ V(Fh) ⊂ P

3. Note that B is the ideal
point of the linear platform � with orientation vector i.

The side condition on the vector i = (u, v, w)T to be of unit-length, can be
avoided by using the stereographic parametrization of the unit-sphere S2:

x : (t3, t4) �→
(

2 t3
t3

2 + t4
2 + 1

,
2 t4

t3
2 + t4

2 + 1
,
t3

2 + t4
2 − 1

t3
2 + t4

2 + 1

)
. (4)
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Based on this we can parametrize the lines of the bundle B with vertex B in the
finite space R

3 of positions with coordinates (px, py, pz) as follows:

B :

⎛
⎝px

py
pz

⎞
⎠ = ax(t3, t4) + t1

∂x(t3, t4)
∂t3

+ t2
∂x(t3, t4)

∂t4
. (5)

Note that the bituple (t1, t2) fixes the line of the bundle B and the parameter
a determines the point on this line. By varying (t1, t2) ∈ R

2 and setting a = 0
one obtains the plane through the origin, which is orthogonal to i.

Plugging B(a, t1, t2, t3, t4) into F = 0 shows that the resulting expression is
only linear in a, as the ideal point B is always one of the two intersection points of
a line belonging to B with the quadric Ω(x(t3, t4)). By solving this linear condi-
tion we get a(t1, t2, t3, t4). Now the singular configurations X = (ξ1, . . . , ξ6) ∈ R

6

of the linear pentapod can be rationally parametrized by (ξ1, ξ2, ξ3) := x(t3, t4)
and

ξ4 = 2
a (t1, t2, t3, t4) t3

t32 + t42 + 1
− 2

t1
(
t3

2 − t4
2 − 1

)
(t32 + t42 + 1)2

− 4
t2 t3 t4

(t32 + t42 + 1)2
,

ξ5 = 2
a (t1, t2, t3, t4) t4

t32 + t42 + 1
− 4

t1 t3 t4

(t32 + t42 + 1)2
+ 2

t2
(
t3

2 − t4
2 + 1

)
(t32 + t42 + 1)2

,

ξ6 =
a (t1, t2, t3, t4)

(
t3

2 + t4
2 − 1

)
t32 + t42 + 1

+ 4
t1t3

(t32 + t42 + 1)2
+ 4

t2t4

(t32 + t42 + 1)2
.

(6)

This parametrization covers the singular variety with exception of two low-dimensional
sub-variety: A missing 3-dimensional sub-variety is defined by the denominator of
a(t1, t2, t3, t4). In this case the residual intersection point ∈ R

3 of the line belong-
ing to B with Ω(x(t3, t4)) is not determined uniquely; i.e. the complete line belongs
to Ω(x(t3, t4)). As the orientation (0, 0, 1) cannot be obtained by the stereographic
parametrization, also the 2-dimensional sub-variety Ω(0, 0, 1) is missing.

Moreover for a given singular pose X = (ξ1, . . . , ξ6) ∈ R
6 we can trivially compute

t1, . . . , t4 in a rational way from ξ1, . . . , ξ6, thus the singularity variety is a rational one
(according to the Definitions 1, 2 and 3).

3 Distance to the Singularity Variety

In singularities the number of DOFs of the mechanism changes instantaneously and
becomes uncontrollable. Additionally the actuator forces can become very large and
cause the break down of the platform [10]. Henceforth knowing the distance of a given
pose G = (g1, . . . , g6) ∈ R

6 from the singularity variety is of great importance.

Fixed Orientation: We ask for the closest singular configuration O having the same
orientation (g1, g2, g3) as the given pose G. As G and O only differ by a translation,
we can define the distance between these two poses by the length of the translation
vector. Therefore O has to be a pedal-point on Ω(g1, g2, g3) with respect to the point
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Ω
ω

Fig. 2. Illustrations are done for G = ( 3
5
, 4
5
, 0, 2, 3, 4) of the linear pentapod displayed in

Fig. 1. Fixed orientation (Left): O has only four real solutions where the closest one O =
( 3
5
, 4
5
, 0, 2.5517, 2.6374, 0.1144) has a distance of 3.9412 units. Fixed position (right): P

has only two real solutions where the closest one P = (0.3701, 0.5523, 0.7468, 2, 3, 4)
has a spherical distance of 48.4178◦.

(g4, g5, g6). The set O of all these pedal-points equals the variety V ( ∂L
∂px

, ∂L
∂py

, ∂L
∂pz

, ∂L
∂λ

)

where λ is the Lagrange multiplier of the Lagrange equation

L(px, py, pz, λ) = (px − g4)
2 + (py − g5)

2 + (pz − g6)
2 + λF. (7)

It is well known (see [15, Appendix A]) that in general O consists of six points over C,
where the closest one to (g4, g5, g6) implies O (see Figs. 2 and 3).

Fixed Position: Now we ask for the closest singular configuration P, which has the
same position (g4, g5, g6) as the given pose G. As G and P only differ in orientation,
the angle ∈ [0, π] enclosed by these two directions can be used as distance function.
Note that this angle is the spherical distance function on S2.

By intersecting the singularity surface for the given position (g4, g5, g6) with S2

we obtain a spherical curve ω(g4, g5, g6) of degree 4. Then P has to be a spherical
pedal-point on ω(g4, g5, g6) with respect to the point (g1, g2, g3) ∈ S2 (see Fig. 2). By
replacing the underlying spherical distance by the Euclidean metric of the ambient
space R

3, one will not change the set P of pedal-points on ω(g4, g5, g6) with respect
to (g1, g2, g3). Therefore P can be computed as the variety V ( ∂L

∂u
, ∂L

∂v
, ∂L

∂w
, ∂L

∂λ1
, ∂L

∂λ2
)

where λ1 and λ2 are the Lagrange multipliers of the Lagrange equation

L(u, v, w, λ1, λ2) = (u − g1)
2 + (v − g2)

2 + (w − g3)
2 + λ1F + λ2G (8)

with G = u2+v2+w2−1. It can easily be proved (see [15, Appendix B]) that in general
P consists of 8 points over C, where the one with the shortest spherical distance to
(g4, g5, g6) implies P (see Fig. 3).

Remark 2. For the practical application of this spherical distance to the singularity,
we recommend to locate the position vector p in the tool-center-point of �. �

General Case: In contrast to the two special cases discussed above, the general case
deals with mixed (translational and rotational) DOFs, thus the question of a suitable
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Fig. 3. Comparison of the different configurations G (green), O (blue), P (yellow) and
the red-colored M = (0.5559, 0.7274, 0.4021, 2.2966, 3.4794, 1.8357) with d(M,G) =
1.4791. In contrast d(O,G) = 3.9412 and d(P,G) = 4.4142. For this example only 16
out of 80 pedal-points are real. (Color figure online)

distance function arises. As the configuration space C equals the space of oriented
line-elements, we can adopt the object dependent metrics discussed in [13] for our
mechanical device as follows:

d(L,L
′
)2 :=

1

5

5∑
j=1

‖bj − b
′
j‖

2
(9)

where L and L
′

are two configurations and bj and b
′
j denote the coordinate vectors

of the corresponding platform anchor points. Note that the ambient space R
6 (of C )

equipped with the metric d of Eq. (9) is a Euclidean space (cf. [13]).
With respect to this metric d we can compute the closest singular configuration M

to G in the following way: We determine the set M of pedal-points on the singularity
variety with respect to G as the variety V ( ∂L

∂u
, ∂L

∂v
, ∂L

∂w
, ∂L

∂px
, ∂L

∂py
, ∂L

∂pz
, ∂L

∂λ1
, ∂L

∂λ2
) where

λ1 and λ2 are the Lagrange multipliers of the Lagrange equation

L(u, v, w, px, py, pz, λ1, λ2) := d(M,G)2 + λ1G + λ2F. (10)

Random examples (see [15, Appendix C]) indicate that M consists of eighty points
over C, where the one with the shortest distance d to G equals M (see Fig. 3).

Remark 3. Note that these minimal distances can be seen as the radii of maximal
singularity-free hyperspheres [10] in the position workspace (see also [11]), the orien-
tation workspace (see also [8]) and the complete configuration space. Moreover the
distance d(M,G) to the singularity variety can also be interpreted as quality index
thus it is an alternative to the value of F proposed in [4]. �

4 Conclusions and Future Research

We presented a rational parametrization of the singularity variety of linear pentapods
in Sect. 2 and computed the distance to it in Sect. 3 with respect to the novel metric
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given in Eq. (9), which can easily be adopted for e.g. Stewart PMs as well. As this
distance is of interest for many tasks (e.g. quality index for path planning, radius
of the maximal singularity-free hypersphere, . . . ) a detailed study of it (e.g. efficient
computation of M, proof of #M = 80, . . .) is dedicated to future research.
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Inverse Kinematics of Anthropomorphic Arms
Yielding Eight Coinciding Circles

B. Bongardt(B)

Robotics Innovation Center, DFKI GmbH,
Robert-Hooke-Str. 1, 28359 Bremen, Germany

bertold.bongardt@dfki.de

Abstract. In this paper it is demonstrated that the solution space of the
inverse kinematic problem of an anthropomorphic, redundant 7R chain
for a given pose does consist of eight different coinciding circles instead
of a single circle that has been reported as of today. By modeling the
structure using the convention by Sheth and Uicker, the displacements
within the kinematics of the chain are partitioned in time-invariant dis-
placements along rigid links and time-variant displacements along the
seven rotative joints. In particular, the subchains of shoulder, elbow,
and wrist are preserved. By respecting the ‘flips’ of these three substruc-
tures the eight-fold occupancy of the redundancy circle is obtained. The
result corresponds to the eight IK solutions for regional-spherical arms
and provides a prerequisite for using all capabilities of respective robots
in practical applications.

Keywords: Kinematic analysis · Anthropomorphic robot arm · Redun-
dant manipulator · Cyclic law of cosines · Virtual joints

1 Introduction

The inverse kinematic problem (IKP) of a redundant robot is seeking for an
infinite set of joint configurations for a given orientation and position of its
endeffector. Since robotic chains with seven degree of freedom (DOF) possess a
kinematic redundancy of degree one in the six-dimensional space of poses SE(3)
the solution space of the IKP of chains with seven rotative joints (7R) is char-
acterized by one-dimensional manifolds: each containing ∞1 points representing
certain joint configurations. Kinematic 7R chains with intersecting axes of the
first and the last three joints (shoulder and wrist) are called anthropomorphic
arms. Their structure can be grouped in two spherical submechanisms and one
rotative (elbow) element and thus be called an SRS structure. The self-motions
[5,9] or null-space motions [7] – those joint configuration changes that let the
endeffector’s pose remain constant – of an anthropomorphic 7R arm can be char-
acterized by the redundancy circle [1,6,9]. The solution set for a given pose has
been computed [12] as specific interval sets for the redundancy angle (circle seg-
ments for the elbow position) that depend on minimally and maximally feasible
values of the seven joints.
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 60
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Fig. 1. Overview of used notation for links, joints, and joint groups of the 7R chain.

The approach of this paper is based on the works by Shimizu et al. [12]:
the robot redundancy is parametrized by the elbow angle with respect to redun-
dancy circles. The modeling here employs the kinematic convention by Sheth and
Uicker [11], instead of the convention by Denavit and Hartenberg [8]. Due to the
advantageous properties of this convention [4], the kinematic SRS structure of
the robot is well reflected and the analytic solution procedure is simplified. As
main contribution, the approach yields the insight that a complete solution of the
inverse kinematics does not incorporate one but eight different one-parameter
sets in parameter space which each represent eight circles coinciding in R

3, the
Euclidean workspace [2,3].1

The structure of the paper reads as follows: In Sect. 2 the robot model is
introduced and the forward kinematics is computed. Section 3 presents geomet-
ric analysis within three planes of the robot’s geometry. Section 4 contains the
computation of the inverse kinematics, including a brief example. The paper is
concluded in Sect. 5.

2 Forward Kinematics

The eight links of the 7R chain are enumerated by a simple index from the index
set IL =

(
1, 2, . . . , 8

)
. The seven joints are equipped with a double index from

IJ =
(
(1, 2), (2, 3), . . . , (7, 8)

)
. The first and the last three joints are referred

by s (shoulder) and by w (wrist). The elbow is denoted by u (cubital). The
reference location at the first link is called b (basis) and the reference location
of the last link is called e (endeffector), see the sketch in Fig. 1.

The description of the geometry of an anthropomorphic arm (Mitsubishi
PA10) is given in Table 1 in terms of its Sheth–Uicker parameters. The values
b = 0 in each row reflect that each sequential pair of joint axes is intersecting.
The spherical constellation of the first three and last three joint axes is reflected
by zeros of the translative parameters in the rows 2–3 and 6–7. The reference
posture of the robot in Table 1 represents a fully-stretched configuration (as
displayed in Fig. 4a).
1 In terminology of [12], the complete solution reported here incorporates the inversion

of the three cosine-type into the solution procedure. In comparison to the recent
work [10] which employs a parametrization with respect to the second joint, the
parametrization via the redundancy angle permits the direct interpretation as eight
coinciding elbow circles.
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Table 1. Sheth–Uicker parameters of an anthropomorphic 7R arm with sequentially-
orthogonal joint axes. The numerical lengths base–shoulder, shoulder–elbow, elbow–
wrist, and wrist–effector are lbs = 31.7 cm, lsu = 38.0 cm, luw = 48.0 cm, and lwe =
12.28 cm for the Mitsubishi PA10.

Link qij dij γj cj βj bj αj aj

1 – – – lbs / 2 – – – lbs / 2

2 q12 – – – −π / 2 – – –

3 q23 – – – +π / 2 – – –

4 q34 – – lsu / 2 −π / 2 – – lsu / 2

5 q45 – – luw / 2 +π / 2 – – luw / 2

6 q56 – – – −π / 2 – – –

7 q67 – – – +π / 2 – – –

8 q78 – – lwe / 2 – – – lwe / 2

By means of the Sheth–Uicker specification, the forward kinematics of the
7DOF kinematic chain for a configuration vector qqq = (q12, q23, q34, q45, q56, q67, q78),
with qqq = qqq(t) for a certain time t, as the chain of matrix multiplications

DDDbe = FK(qqq) = LLL1 ·JJJ12 ·LLL2 ·JJJ23 ·LLL3 ·JJJ34 ·LLL4 ·JJJ45 ·LLL5 ·JJJ56 ·LLL6 ·JJJ67 ·LLL7 ·JJJ78 ·LLL8. (1)

Each link displacement LLLk is given as a time-invariant displacement parametrized
by a dual Euler angle (γ̃k, β̃k, α̃k) as LLLk = LLL(γk, ck, βk, bk, αk, ak) for all k ∈ IL

and each joint displacement JJJij = JJJ(qij) = DDDz(qij) is given as time-variant z-
rotation for all (i, j) ∈ IJ [2,4].

For the rotative part RRRbe = EEEe of DDDbe =
(

RRRbe tttbe
000 1

)
=

(
PPP e pppe

000 1

)
= PPPe, the

forward kinematics of Eq. 1 is simplified to

RRRbe = RRR1︸︷︷︸
=III

· ZZZ12 · RRR2 · ZZZ23 · RRR3 · ZZZ34︸ ︷︷ ︸
=..SSS14

·RRR4 · ZZZ45 · RRR5 · ZZZ56 · RRR6 · ZZZ67 · RRR7 · ZZZ78︸ ︷︷ ︸
=..SSS58

· RRR8︸︷︷︸
=III

= III · SSS14 · RRR4 · ZZZ45 · RRR5 · SSS58 · III = SSS14 · RRR4 · ZZZ45 · RRR5 · SSS58.
(2)

Here, the simplifications RRR1 = III and RRR8 = III follow from the first and last row
in Table 1 and the compact forms SSS14 and SSS58 represent the spherical subchains.

3 Geometry

Three planes are introduced to describe the possible postures of an SRS arm
with a specific end-effector pose: the circle plane Hc orthogonal to the shoulder-
wrist vector dddsw contains the current elbow position; the elbow plane Hb is that
affine subspace containing the positions of shoulder, elbow, and wrist; one of the
elbow planes is distinguished as the reference (anchor) plane Ha. See Fig. 2 for
three-dimensional sketches.
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Fig. 2. Sketches of an anthropomorphic 7R arm.

Circle plane Hc. For one endeffector pose DDDbe =
(

RRRbe tttbe
000 1

)
, the wrist pppw = ppps+dddsw

is constant since shoulder ppps = (0, 0, lbs)T and dddsw are constant:

dddsw = pppw − ppps = (pppe − dddwe) − dddbs = (dddbe − [
RRR

]
be

· [
dddwe

]
e
) − dddbs

= tttbe − RRRbe ·
(

0
0

lwe

)
−

(
0
0

lbs

)
.

(3)

Thus, a redundant arm motion only involves the elbow position. Since lsu and
luw are constant, the elbow is constrained to a circle given as the intersection
of the shoulder sphere Ss = (ppps, lsu) and the wrist sphere Sw = (pppw, luw). The
intersecting circle Cu = Ss ∩ Sw is called the circle of redundancy. The situation
is indicated in Fig. 2a. The normal direction n̂̂n̂nc of the plane Hc containing the
redundancy circle Cu ⊂ Hc is contained is given as n̂̂n̂nc = dddsw/‖dddsw‖. The circle
midpoint pppm is computed by solving the Pythagorean relations κ2 + r2

u = l2su and
(‖dddsw‖−κ)2+r2

u = l2uw of the triangle � = �(ppps, pppu, pppw) for κ = 1
2·‖dddsw‖ ·(‖dddsw‖2+

l2su − l2uw

)
. The center pppm of the redundancy circle Cu is then determined as

pppm = ppps+κ·n̂̂n̂nc. Via κ, the radius ru of the circle is computed with ru =
√

l2su − κ2

(see Fig. 3a).

Elbow plane Hb. In contrast to � = �(S,U,W ) (Fig. 3a), the two triangles,
�+ = �(S,U+,W ) and �− = �(S,U−,W ), in Fig. 3b reflect the orientation of
the axis of the elbow joint J45. For such oriented triangles, the cyclic form of the
law of cosines [2] can be applied providing the trigonometric identities

cos(γ) = + cos(α) · cos(β) − sin(α) · sin(β)
sin(γ) = − sin(α) · cos(β) − cos(α) · sin(β),

(4)
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Fig. 3. Triangles spanned by shoulder, elbow, and wrist.

which are used to compute to determine the oriented2 angles υπ̄ and υ+π. The
solutions for elbow joint q45+ and q45− are then derived [2] with the oriented
triangles �+ and �− with the compact expression

q45+, q45− = ± acos
(
cos(ϕ) · cos(ς) − sin(ϕ) · sin(ς)

)
. (5)

The trigonometric values for ϕ are given with sin(ϕ) = ru / luw and cos(ϕ) =
(‖dddsw‖ − κ) / luw (Fig. 3a). The values for ς are given with sin(ς) = ru / lsu and
cos(ς) = κ / ‖lsu‖. Using the previously computed expressions, κ = 1

2·‖dddsw‖ ·
(‖dddsw‖2 + l2su − l2uw

)
and ru =

√
l2su − κ2, and simplifying the terms, the two

possible elbow angles from Eq. 5 are determined as3

q45+, q45− = ± acos
( l2su + l2uw − ‖dddsw‖2

2 · lsu · luw

)
. (6)

2 Given the triangle � in Fig. 3a with interior angles ς, υ, ϕ ∈ [0, π], the oriented angles
of the positive-elbow triangle �+ on the right hand side of Fig. 3b are given as the
supplementary angles ϕπ̄, ς π̄, υπ̄ (with φπ̄ ..= π − φ). The angles of the negative-
elbow triangle �− on the left hand side of Fig. 3b are given as the π-shifted angles
ϕ+π, ς+π, υ+π (with φ+π

..= π + φ).
3 In [12] only one solution is reported. Note, that the two solutions are not covered

by an elbow rotation of π: while rotating along the circle, the elbow angle remains
constant. However, the elbow configuration q45− is the negative of the configuration
q45+: apart from any ‘stretched-out’ posture, where the two values coincide q45+ =
q45− = 0, they differ in general postures. In Fig. 3b, this distinction is reflected by
the counter-clockwise orientations of all six angles.
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Fig. 4. Two sketches of arms in reference posture.

Reference plane Ha. Each of the two triangles, �+ and �−, can be rotated
around the axis (ppps, dddsw). For parametrization of all points on the (two instances
of the) redundancy circle, the angle ψ is defined. While the rotation axis is
defined with n̂̂n̂nc = ddd⊕

sw, an ‘x-axis’ is not given a priori by the manipulator’s
geometry. As shown in the article [12], by fixing q34 to zero – for a given target
pose PPPe and a deduced elbow configuration q45 – values, q12 and q23, for the
first two shoulder joints, J12 and J23, can be determined by means of using the
rotative forward kinematics from Eq. 2 and dddsw from Eq. 3 by solving

dddsw = pppw − ppps = (ppps + dddsu + ddduw) − ppps =
[
RRR

]
14

· [
dddsu

]
4
+

[
RRR

]
15

· [
ddduw

]
5

= SSS14(q12, q23, 0) ·
((

0
0

lsu

)
+ RRR4 · ZZZ(q45) ·

(
0
0

luw

))
.

(7)

The position of the elbow joint pppu = ppps +dddsu for the reference angles q�
12 and q�

23,
fulfilling Eq. 7, is used to define ψ = 0. According to Eq. 6, two elbow positions
in the elbow plane Hb realize the endeffector pose. For ensuring uniqueness, the
elbow position pppu+ for the positive value q45+ is selected to define direction of
the ‘x-axis’ and the circle angle ψ = 0. The elbow plane Hb is thus equipped
with an interior, oriented basis by the indicator axis b̂bbx = (pppu+ −pppm)/‖pppu+ −pppm‖
and by the normal direction b̂bby = n̂̂n̂nc = (pppw −ppps)/‖pppw −ppps‖, providing its oriented
normal direction, n̂̂n̂nc

..= b̂bbx ×b̂bby (see Fig. 2b). The reference plane Ha is defined as
the elbow plane Hb in this specific configuration. While the orientation of ψ is
induced by the normal direction of the circle plane n̂̂n̂nc

∼= dddsw, its identity ψ = 0
is fixated by the introduced reference plane Ha.

4 Inverse Kinematics

In the first step of the inverse kinematics computation, the IKP is solved for a
given endeffector pose PPPe with a ‘reference configuration’ for the joints. In the
second step, the modifications of this configuration for (i) swapping to a different
instances of the circle and (ii) letting the elbow travel along the redundancy circle
are outlined.
First Step. A feasible elbow angle q�

45 can be selected from Eq. 6. A feasible
reference configuration for q�

12, q
�
23, q

�
34 is determined with Eq. 7. For such selected

four angles q�
12, q

�
23, q

�
34, q

�
45, a configuration for the joints of the spherical shoulder,
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J56, J67, J78, can be computed by solving Eq. 2 for

SSS58(q56, q67, q78) = RRRT

5 · ZZZT (q�
45) · RRRT

4 · SSST

14(q
�
12, q

�
23, q

�
34) · RRRbe. (8)

In total, one feasible solution q�q�q� = (q�
12, q

�
23, q

�
34, q

�
45, q

�
56, q

�
67, q

�
78)

T to the Inverse
Kinematics Problem is obtained.
Second Step. Given a feasible configuration qqq� selected in the first step, the
second step consists of modifying this configuration in such way that the elbow
travels along (one of the eight instances of) the redundancy circle. The selected
reference configuration qqq� fulfills the forward kinematics Eq. 1, and in particular,
the rotative pendant RRRbe = SSS�

14 · RRR4 · ZZZ�
45 · RRR5 · SSS�

58, Eq. 2, with the shoulder
matrix SSS�

14 = SSS�
14(q

�
12, q

�
23, q

�
34) = ZZZ(q�

12) ·RRR2 ·ZZZ(q�
23) ·RRR3 ·ZZZ(q�

34), the elbow matrix
ZZZ�

45 = ZZZ(q�
45), and the wrist matrix SSS�

58 = SSS�
58(q

�
56, q

�
67, q

�
78) = ZZZ(q�

56)·RRR2 ·ZZZ(q�
67)·RRR3 ·

ZZZ(q�
78). The change of the elbow position on the redundancy circle is expressed

by introducing the virtual joints J0̃1̃ and J8̃9̃ into the chain (Fig. 2c) as

RRRbe = RRR0̃ · ZZZ 0̃1̃(ψ) · RRR1̃ · SSS�
14 · RRR4 · ZZZ�

45 · RRR5 · SSS�
58 · RRR8̃ · ZZZ 8̃9̃(−ψ) · RRR9̃.

Here, RRR0̃ maps the z-axis of the base frame to the direction n̂̂n̂nc, and RRR1̃ describes
the inverse rotation RRR1̃ = RRRT

0̃ . Similarly, RRR8̃ maps the z-axis of the endeffec-
tor frame to the direction n̂̂n̂nc, and RRR9̃ describes the inverse rotation RRR9̃ = RRRT

8̃

(Fig. 2c).
A configuration qqq that realizes a certain redundancy angle ψ is computed by

‘pushing’ the displacement of the two virtual joints into the joint configuration
qqq�. A shoulder configuration (q12, q23, q34) is computed so that the wrist displace-
ment SSS14 = SSS14(q12, q23, q34) compensates for the rotation ZZZ 0̃1̃(ψ) of the virtual
joint J0̃1̃ as

SSS14 = RRR0̃ · ZZZ 0̃1̃(ψ) · RRR1̃ · SSS�
14 = exp(ψ · n̂̂n̂n⊗

c ) · SSS�
14 (9)

(+,+,+) (+,−,+) (−,+,+) (−,−,+)

(+,+,−) (+,−,−) (−,+,−) (−,−,−)

Fig. 5. Example of eight different joint configurations corresponding one endeffector
pose and one elbow position. The links of the robot are marked with black lines to
distinguish the postures.
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Table 2. Matrix-to-zyz-angle conversion method

with aaa⊗ ..=
(

0 −a3 a2
a3 0 −a1

−a2 a1 0

)
. For the wrist, a spherical displacement SSS58 =

SSS58(q56, q67, q78) compensating for the rotation ZZZ 8̃9̃(−ψ) of the virtual joint J8̃9̃ is
computed with

SSS58 = SSS�
58 · RRR8̃ · ZZZ 8̃9̃(−ψ) · RRR9̃ = SSS�

58 · [
RRR

]
eb

· exp(−ψ · n̂̂n̂n⊗
c ) · [

RRR
]

be

= SSS�
58 · [

exp(−ψ · n̂̂n̂n⊗
c )

]
ee

.
(10)

For augmenting the computation with the second solution,4 the modeling via
Sheth–Uicker parameters (Table 1) offers a straightforward approach: The link
displacement rotations RRR2, RRR3, RRR6, and RRR7, defined by β2, β3 and β6, β7 from
Table 1, are quarter-turn matrices with coordinates

RRR2 = RRR6 = RRRx

(−π
2

)
=

(
1 0 0
0 0 +1
0 −1 0

)
RRR3 = RRR7 = RRRx

(
+π

2

)
=

(
1 0 0
0 0 −1
0 +1 0

)
.

With these properties and RRRx(−π/2) · RRRx(+π/2) = III, it is observed that the
shoulder displacement SSS14 = ZZZ(q12) · RRR2 · ZZZ(q23) · RRR3 · ZZZ(q34) and the wrist dis-
placement SSS58 = ZZZ(q56) · RRR6 · ZZZ(q67) · RRR7 · ZZZ(q78) feature the shape of an Euler
rotation matrix in zyz-convention. For this reason, the joint configurations for
the matrices SSS14 and SSS58,

SSS14 = exp(ψ · n̂̂n̂n⊗
c ) · SSS�

14 SSS58 = SSS�
58 · [

exp(−ψ · n̂̂n̂n⊗
c )

]
ee

, (11)

from Eqs. 9 and 10 can be computed with Table 2. Since the conversion method
returns two solution for the shoulder triplet (q12, q23, q34) and for the wrist triplet
4 For determining the shoulder angles and wrist angles from the matrices SSS14 and SSS58,

the method in [12] is based on orthogonal decomposition of rotation matrices and
solving for (q12, q23, q34) and (q56, q67, q78), by coefficient comparison with respect to
ψ. For the shoulder, the equation

with , and the coefficients of SSS are analyzed. For the wrist, a similar app-
roach is chosen. In both cases, the coefficient analysis only reports one of the two
feasible solutions.
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(q56, q67, q78), and considering the two solutions for the elbow joint q45 (Eq. 6),
the size of the solution space (for a nonsingular configuration) is determined as

| Configs | = | Shoulder | · | Elbow | · | Wrist | · | Circle | = 2 · 2 · 2 · (∞1) = 8 · (∞1)

coherent to eight IKP solutions of a corresponding regional-spherical arm
(Fig. 4b).

Example. An example for solutions to the inverse kinematics problem on eight
different circles is shown in Fig. 5. The signum triplets in the captions indicate
the flips of the subchains shoulder, elbow, and wrist.

5 Conclusion and Outlook

The paper documents eight coinciding circles with 8 · (∞1) solutions for the
inverse kinematics problem of anthropomorphic arms and provides an essential
step for using all capabilities of such manipulators. For this goal, the interval
analysis [12] can be combined with the presented modeling and computation in
the future.
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Unit Geometry and CAD, University of Innsbruck,
Technikerstraße 13, 6020 Innsbruck, Austria

{tudor-dan.rad,hans-peter.schroecker}@uibk.ac.at

Abstract. The paper presents an optimal synthesis of overconstrained
linkages, based on the factorization of rational curves (representing one
parametric motions) contained in Study’s quadric. The group of Euclid-
ean displacements is embedded in a affine space where a metric between
motions based on the homogeneous mass distribution of the end effec-
tor is used to evolve the curves such that they are fitted to a set of
target poses. The metric will measure the distance (in Euclidean sense)
between the two resulting vectors of the feature points displaced by the
two motions. The evolution is driven by the normal velocity of the curve
projected in the direction of the target points. In the end we present an
example for the optimal synthesis of an overconstrained 6R linkage by
choosing a set of target poses and explaining in steps how this approach
is implemented.

Keywords: Optimal mechanism synthesis · Curve evolution ·
Kinematic mapping · Motion factorization · Overconstrained linkage

1 Introduction

A linkage is a mechanism which generates a complex motion. The synthesis of
a linkage means determining its geometric structure such that it generates a
predetermined motion or trajectory and satisfies some structural restrictions.
Fulfilling the previous requirements puts a lot of limitations on the linkage. This
gave rise to optimal synthesis which aims at approximating these requirements.
Some of the optimization techniques used in optimal synthesis of linkages are:
interior-point methods [13], Gauss constraint methods [11], genetic algorithms
[3] and evolution [12].

The paper also takes an evolutionary approach to synthesis. The novelty con-
sists in using the factorization of motion polynomials [4] synthesis process. We
demonstrate that it is particularly well-suited for evolution techniques because
it allows to construct (overconstrained) linkages directly from a given approxi-
mated rational motion.

The factorization of motion polynomials is a process that generates a linkage
which performs a one parametric motion (the functions of the joint angles share
the same parameter). This motion must be defined by a rational curve in the
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 61
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kinematic image space. The motion curve is constructed by starting from a set of
target points in this space that resemble the poses needed to be achieved by the
linkage. Using curve evolution methods [1], the initial motion curve will converge
and approximate the specified poses.

For the evolution process to work for such curves the group of Euclidean
displacements SE(3) is embedded in 12-dimensional affine space R

12. A metric
between two motions is used by equipping the end effector of the linkage with
a homogeneous mass distribution or a set of “feature points” whose barycenter
is the tool center point (TCP) [8]. The metric will measure the distance (in
Euclidean sense) between the two resulting vectors of the feature points displaced
by the two motions.

The paper is structured as follows Sect. 2 explains the Euclidean metric in
the affine space R

12 and offers a quick glimpse into motion factorization and
overconstrained linkage construction, Sect. 3 presents the evolutionary design
of the motion curve. Section 4 follows up with an example and in Sect. 5 some
conclusions are drawn.

2 Preliminaries

The group of special Euclidean displacements SE(3) represents rigid body dis-
placements and is used to map a point p to a new position p′ in Euclidean
three-dimensional space:

γ : R3 → R
3, p′ = Ap + a. (1)

The matrix A is a 3 × 3 special orthogonal matrix representing an element
of the rotation group SO(3) and the vector a is a translation vector. Because
displacements incorporate multiple distance concepts defining a metric between
them can be problematic. In the past the concept was addressed for example
by [10] but due to the nature of motion design used in this paper we have
chosen the method proven in motion design by [6]. This approach embeds SE(3)
in a 12-dimensional affine space by mapping the entries of A and a to a 12-
dimensional vector. In an object oriented metric the gripper is given by a set of
“feature points” fpi and the Euclidean metric is defined by the inner product
〈α, β〉 :=

∑
i〈α(fpi), β(fpi)〉 for any α, β ∈ SE(3). The corresponding squared

distance is ‖α − β‖2 = 〈α − β, α − β〉. It is well-known [8] that this metric only
depends on the barycenter and the inertia tensor of the set of feature points and
is capable of representing more general mass distributions in a computationally
simple way.

Motion factorization is a method developed by Hegedüs, Schicho and
Schröcker in [4] and can be used to synthesize linkages with one degree of free-
dom joints whose end link motion is defined by a rational curve on Study’s
quadric. By combining multiple factorizations overconstrained linkages can be
constructed as was demonstrated in [4].

For further understanding of the synthesis process a quick introduction to
the kinematic image space and Study’s quadric is necessary. Study’s kinematic



Optimal Synthesis of Overconstrained 6R Linkages by Curve Evolution 537

mapping maps the group SE(3) to a quadric in seven dimensional projective
space P

7 with the equation x0y0 +x1y1 +x2y2 +x3y3 = 0 called Study’s quadric
and denoted by S . A more detailed explanation is given by Husty and Schröcker
in [9]. The points of P7 are represented by the skew ring of dual quaternions DH,
denoted as q = x0+x1i+x2j+x3k+ε(y0+y1i+y2j+y3k) with the multiplication
properties:

ε2 = 0, i2 = j2 = k2 = ijk = −1, εi = iε, εj = jε, εk = kε.

The conjugate of a dual quaternion is given by replacing i, j and k with −i, −j,
and −k, respectively. A dual quaternion on S is characterized by qq ∈ R.

The motion factorization algorithm of [4] starts with a rational curve of
degree n on S given by the polynomial P (t) = c0t

n + c1t
n−1 + · · · + cn where

c� ∈ DH and PP ∈ R[t]. Generically (only generic cases are relevant for evolution
based synthesis), it can be factored as P (t) = (t − h1) · . . . · (t − hn). The linear
factors t − h� are computed by polynomial division over the dual quaternions
using the quadratic irreducible factors Mi of PP = M1M2 · . . . · Mn one at a
time in the following manner: By polynomial division, polynomials Pn−1, R are
attained with Pn = Pn−1Mi + R and R = r1t + r2. In [4] it was proven that
the unique dual quaternion zero hn = −r−1

1 r2 of R gives the rightmost factor
t − hn in a possible factorization of Pn. To obtain the remaining linear factors,
another quadratic factor Mk is chosen and the process is repeated with Pn−1

instead of Pn.
Each of the n linear factors represent a revolute displacement around an axis

and by consecutive multiplication to the right they form a linkage whose leftmost
factor is the fixed joint and the rightmost factor is the distal joint. There are, in
general, n! different possibilities for the selection order of the M�’s. This leads
to the synthesis of n! different open chains that perform the same motion. As
it was shown in [4] an overconstrained linkage can be constructed by combining
multiple kinematic chains to form a closed structure.

3 Curve Evolution on Study’s Quadric

Curve evolution is a widely used procedure in image processing and design and
of late is also used in motion generation [7]. Our evolutionary approach is based
on curve fitting to a set of data points driven by the normal velocity of the curve
in the direction of the target points [2]. By mapping the desired poses to S
is obtained the set of target points TPm which need to be approximated by a
rational curve C also contained in S , that is, satisfying CC ∈ R[t]. The validity
of this condition is ensured throughout the evolution process by writing C in
factorized form C = (t − h1) · · · (t − hn) where each linear factor represents a
rotation about an axis in space. The linear factors are defined in (2) where the
Plücker coordinates of the revolute axes are (di,mi):

t − hi =
t − h0i − di − εmi

‖di‖ . (2)
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By fluctuating the shape parameters Sp1, . . . ,Spk (coefficients of C) in time
a family of curves Ck is obtained such that the target points TP1, . . . ,TPm are
optimally approximated. The moving velocity of a curve point C(tj) is given by
the amount of change in time of the shape parameters ˙Spk:

vCj =
k∑

l=1

∂C(tj)
∂Spl

˙Spl (3)

We are interested in moving the points on C(t) which are closest to the target
points. These points are computed as the foot-normals between the TPm and
C(t) using the Euclidean structure given by the inner product defined in Sect. 2:

〈TPm − C(t), C ′(t)〉 = 0 � {tm1, . . . , tml}, (4)

tm = arg min(‖TPm − C(tmi)‖2 : i ∈ {1, . . . , l}). (5)

Note that the involved computations essentially boils down to finding the zeros
of a univariate polynomials because the motion is given by a polynomial C. This
is one of the advantages inherent to our approach.

The foot-points FPm = C(tm) are computed using relations (4) and (5)
and so the ideal velocity vector d̂ of the foot-points should be TPm − FPm.
Comparing coefficients of both vectors in an orthonormal basis (with respect to
the given scalar product) and using (3) results in an overconstrained system of
linear equations for Ṡpl that can be solved in least square sense. The new shape
parameters of the curve are computed as: Spl = Spl + λ ˙Spl where λ is a scaling
parameter used such that the curve doesn’t overshoot. In time as the distance
between the curve C(t) and the target points TPm decreases, the system will
converge to a local minimum.

4 Numeric Example

For the example, a set of 11 target poses is chosen as shown in Table 1. With-
out loss of generality, the first pose is the identity. A cubic curve C(t) =
(t − x)(t − y)(t − z) is chosen to approximate the target poses. We limit our-
selves to polynomials of degree three because the end goal of the example is to
construct a 6R overconstrained linkage. More explicitly, the linear factor t − x
is of the shape

t − x0 + x1i + x2j + x3k− ε((x2x7 − x3x6)i + (x3x5 − x1x7)j + (x1x6 − x2x5)k)
√

x2
1 + x2

2 + x2
3

,

(6)

and similar for t − y and t − z, resulting in a total of 21 shape parameters.
The special shape of (6) is crucial. It ensures validity of the Study condition
for each factor and hence also for C(t) throughout the whole evolution process.
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Table 1. Target poses

TP Study parameters

1 1

2 i(−( 337
7

)ε − 79
968

) + j(( 22
379

)ε + 3
5066

) + k(( 67
161

)ε + 55
509

) − ( 108
53

)ε + 79
41

3 i(−( 2533
19

)ε − 73
328

) + j(( 92
105

)ε + 8
3103

) + k(( 46
89

)ε + 41
128

) − ( 313
29

)ε + 119
44

4 i(−( 949
4

)ε − 30
77

) + j(( 163
43

)ε + 7
815

) + k(−( 51
128

)ε + 153
245

) − ( 528
19

)ε + 95
29

5 i(−( 1696
5

)ε − 110
201

) + j(( 247
21

)ε + 11
456

) + k(−( 89
24

)ε + 906
907

) − ( 660
13

)ε + 165
46

6 i(−( 2939
7

)ε − 79
119

) + j(( 1279
46

)ε + 19
358

) + k(−( 1449
145

)ε + 100
71

) − ( 816
11

)ε + 18
5

7 i(−461ε − 487
682

) + j(( 575
11

)ε + 10
101

) + k(−( 557
32

)ε + 135
76

) − ( 185
2

)ε + 257
78

8 i(−( 1364
3

)ε − 115
167

) + j(( 864
11

)ε + 31
212

) + k(−( 347
14

)ε + 291
145

) − ( 705
7

)ε + 191
70

9 i(−( 1226
3

)ε − 44
73

) + j(( 957
10

)ε + 181
1018

) + k(−( 817
27

)ε + 75
37

) − ( 694
7

)ε + 390
191

10 i(−( 1713
5

)ε − 85
173

) + j(( 1921
20

)ε + 20
109

) + k(−( 713
22

)ε + 106
57

) − ( 715
8

)ε + 38
27

11 i(−( 8831
32

)ε − 77
201

) + j(( 248
3

)ε + 52
311

) + k(−( 458
15

)ε + 73
46

) − ( 1476
19

)ε + 109
119

The linear factors are normalized to avoid numeric fluctuation of C(t) without
any geometric change.

A suitable initial guess for the shape parameter can found by interpolating
four poses [5] or, as we did in our example, by assigning random values to
the shape parameters. Several attempts might be necessary in order to ensure
good convergence. Once the evolution runs smoothly little effect on the local
minimum has been observed. In the first iterations, the scaling factor λ needs
to be small enough in order to compensate for large amount of changes ˙Spl in
the shape parameters. For the evolution to have a good flow, we found λ :=
max{10‖ ˙Spl‖−1

∞ , 1} to be a good choice. With this initial setup we arrive at
the computation of the foot points on C(t) as described in the previous section.
From relation (4) we obtain an equation of degree at most 10. Its zeros are found
numerically and we can use (5) to find the parameter value of the closest point.
Here, we also impose some constraints on the foot point computation in order
to ensure that the poses are visited in successive order. To achieve this, after a
provisional curve is evolved, two target points are chosen which are approximated
best. Next interval constraints are applied to the remaining foot points such that
their respective parameter values tm are in successive order. If the computed
values of foot points do not fit the constraint interval, the boundary point with
the minimal distance is chosen.

The evolution rule consists of comparing coordinates of the curve velocity
(3) with respect to some orthonormal basis of R12 with the coordinates of the
difference vector from foot point to target point. This produces an overcon-
strained system which is solved in least square sense. Hence the shape parame-
ters Sppl approximately change with the corresponding amount and the process
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Table 2. Final shape parameters

x0 x1 x2 x3 x5 x6 x7

5.822 −0.213 0.2 −0.337 −329.055 82.644 −100.544

y0 y1 y2 y3 y5 y6 y7

6.084 0.051 −0.244 0.287 −8.987 −749.392 937.288

z0 z1 z2 z3 z5 z6 z7

4.926 0.061 0.181 0.384 −99.5 −423.666 34.386

Fig. 1. TCP trajectory and orientation during the evolution process

Table 3. Variation of angle (in radians) and distance

TPs TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10

φ 0.061 0.102 0.125 0.139 0.124 0.106 0.08 0.061 0.151 0.421

t 0.922 1.488 1.38 1.182 1.522 2.689 4.914 8.26 3.736 4.336

is repeated again starting with the foot point computation. The final results are
presented in Table 2 with a three decimal digit precision. The evolution process
itself is visualized in Fig. 1. The target poses are labelled from 1 to 10, the
angles and distances to the respective target poses are given in Table 3. It can
be seen that the distances are quite good while the orientation seems to be
hard to match. The reasons for this are under investigation. We conjecture an
inappropriate distribution of feature points.

After the motion curve C(t) = (t − x)(t − y)(t − z) is obtained we can start
the synthesis of the overconstrained 6R linkage using motion factorization [4] as
explained in Sect. 2. First the quadratic factors Mi are computed by multiplying
the curve with it’s quaternion conjugate:

CC = (t2 − 12.165t + 37.143)(t2 − 11.648t + 34.116)(t2 − 9.853t + 24.456) (7)
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By selecting the first quadratic factor from (7) polynomial division (a variant
of Euclid’s algorithm taking into account the non-commutativity of quaternion
multiplication) is used to divide C(t) and single out the remainder

(−59.057iε − 0.191i − 9.9jε + 0.036j − 13.531kε + 0.134k − 16.841ε

+ 0.352)t + 347.317iε + 1.143i + 70.062jε − 0.222j + 80.891kε

− 0.667k + 94.976ε − 2.208
(8)

The constant term h13 in the rightmost factor is computed as a unique root of
this linear remainder polynomial:

h13 = i(30.463ε + 0.135) + j(16.643ε + 0.135) + k(19.361ε − 0.329) + 6.084 (9)

After the first root is computed C(t), is divided by t − h13 and the process is
iterated with the quotient and with one of the remaining quadratic factors from
(7). After the second root is computed the quotient will be the last linear factor.
All the possible combinations in which the quadratic factor can be chosen will
produce six different open 3R kinematic chains. Suitable combinations [4] then
give overconstrained 6R linkages. Four examples are depicted in Fig. 2.

Fig. 2. Four different 6R linkages obtained
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5 Conclusions

We used properties of the factorized representation of rational motions to set-up
an evolution process for optimal design of corresponding linkages. The evolution
gives an open kinematic chain that, if desired, can be combined with other chains
obtained from different factorizations to produce overconstrained linkages. From
a mechanical point of view, overconstrained linkages are robust, need minimal
control elements and they are ideal for repetitive motions in an interval. In Sect. 4
we illustrated this process for an overconstrained 6R linkage. So far, position
matching is good while matching orientations should be improved.

The construction relies on the factorized representation which helps to ensure
validity of the Study condition throughout the evolution and automatically
relates the rational motion to kinematic chains. Moreover, rationality allows
efficient and stable computation of footpoints which is a crucial part in any
evolution based mechanism synthesis.

Acknowledgements. The research was supported by the Austrian Science Fund
(FWF): P 26607 (Algebraic Methods in Kinematics: Motion Factorisation and Bond
Theory).
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Abstract. In the velocity analysis of mechanisms the instantaneous
screw axes and the corresponding axodes play an important role. The
instantaneous screw axis is computed via the velocity operator, this is
the skew-symmetric matrix ȦAT, where A is the transformation matrix.
From this operator the Plücker coordinates of the instantaneous screw
axis are known. When the Study parameters of a one parametric motion
are given a direct computation of the instantaneous screw axis would
be more convenient. Without computing A and its derivative first, this
paper shows a way of computing the instantaneous screw axis directly
from the Study parameterization of the one parametric motion.

Keywords: Kinematic mapping · Axodes · Plücker coordinates · Veloc-
ity operator

1 Introduction

In kinematics the velocity operator for a given motion in Euclidean three-space
is a well-known concept. In some applications it is important to determine the
velocity distribution and the axodes, these are the ruled surfaces representing
the instantaneous screw axis in the fixed and the moving frame of one parametric
motions. Let A(t) be the homogeneous 4 × 4 matrix description of such a one
parametric motion in E

3. The matrix representation of the velocity operator is
then given by the skew-symmetric 4 × 4 matrix

Ω = AȦ =

⎛
⎜⎜⎝

0 0 0 0
τx 0 −ωz ωy

τy ωz 0 −ωx

τz −ωy ωx 0

⎞
⎟⎟⎠ . (1)

The matrix representation in Eq. (1) is often rearranged to the vector notation,
the so-called velocity screw v = (ωx, ωy, ωz, τx, τy, τz)ᵀ, as stated by Bottema
and Roth [2] or Husty et al. [4]. Its entries determine the linear and angular
velocities.

In the last centuries Study parameters, a point model for Euclidean dis-
placements, were of great benefit in the investigation of kinematic properties of

c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 62
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mechanisms [5]. In this model one parameter motions are curves in the so-called
Study quadric S2

6 , which carries all points in the kinematic image space that
correspond to Euclidean displacements. Recently it turned out that S2

6 can be
neglected for some problems [6], for example for motion design in P 7.

To the best of the authors knowledge until now there exists no such veloc-
ity operator in the kinematic image space, not for curves on nor off the Study
quadric. Therefore one has to map the curve from P 7 back to the matrix descrip-
tion in E

3 and compute the velocity screw and the axodes there.
The scope of this paper is to investigate an operator that acts on the Study

parameters directly to compute the linear and angular velocities and furthermore
the instantaneous screw axes. These facts are shown for some examples.

The paper is organized as follows: In Sect. 2 a brief introduction to the used
notations and theories will be stated, which will be applied in Sect. 2.1 for curves
in the Study quadric and Sect. 2.2 for curves not included in the Study quadric.
The final Sect. 3 will show examples, such as the well-known RPRP and the
Bennett mechanism, and finally for a motion given by a line not included in the
Study quadric, which corresponds to a vertical Darboux motion.

2 Velocity Operator in Kinematic Image Space

Let the coordinates in kinematic image space P 7 be denoted by the homogeneous
coordinates (x,y)ᵀ, with x = (x0, x1, x2, x3)ᵀ and y = (y0, y1, y2, y3)ᵀ. For the
following computations (x,y)ᵀ is defined as column vector. Since [6] it is known
that curves in kinematic image space correspond to Euclidean motions in the task
space E

3, nevertheless if they are in the Study quadric, which can be written as

x0y0 + x1y1 + x2y2 + x3y3 = 0 ⇔ 〈x,y〉 = xᵀ · y = 0 (2)

or off the Study quadric.
In the following m(t) = (p(t),q(t))ᵀ, where p(t) = (p0(t), . . . , p3(t))ᵀ and

q(t) = (q0(t), . . . , q3(t))ᵀ, should describe a curve (or a one parameter motion)
in P 7. For brevity the parameter t is avoided in the notation and ṁ denotes
the derivative with respect to t. The curve m∞ = (0,p)ᵀ lies in the exceptional
generator of the Study quadric, this is the three space represented by x0 = x1 =
x2 = x3 = 0 and is connected with the original curve via the fibrization in [6]. A
fiber through an arbitrary point (x0 : . . . : y3) outside the exceptional generator
is defined by the straight line

(x0 : x1 : x2 : x3 : y0 + tx0 : y1 + tx1 : y2 + tx2 : y3 + tx3), (3)

where t is the parameter of the line. The intersection points with the Study
quadric correspond to the parameter values t1 = ∞ and t2 = −〈x,y〉/〈x,x〉
Note that the point of intersection with t = ∞ lies in the exceptional generator.

For the following inspections we use normalized coordinates, which means
that x2

0 + x2
1 + x2

2 + x2
3 = 1, which is no loss of generality.



546 M. Pfurner and J. Schadlbauer

2.1 Curves in the Study Quadric

At first we restrict the curve m = (p,q)ᵀ to be contained in the Study quadric.
Then it is straight forward to compute the operator Σ by collecting the coeffi-
cients of the derivatives in the vectorial version of the velocity screw AȦ. It can
be written as

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−p1 p0 −p3 p2 0 0 0 0
−p2 p3 p0 −p1 0 0 0 0
−p3 −p2 p1 p0 0 0 0 0
q1 −q0 q3 −q2 p1 −p0 p3 −p2
p2 −q3 −q0 q1 p2 −p3 −p0 p1
q3 q2 −q1 −q0 p3 p2 −p1 −p0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
(
P 0
Q −P

)
(4)

and this yields via

v = Σ · ṁ = (ωx, ωy, ωz, τx, τy, τz)ᵀ (5)

the velocity screw. Using the notation v∞ = (0, 0, 0, ωx, ωy, ωz)ᵀ the Plücker
coordinates of the instantaneous screw axis can be written as

SI = v − 〈ṗ, q̇〉
〈ṗ, ṗ〉 · v∞ (6)

where the coefficient 〈ṗ, q̇〉/〈ṗ, ṗ〉 is the instantaneous pitch, which is zero for
instantaneous rotations. Combining Eqs. (4), (5) and (6) yields

SI = Φ · ṁ =

(
P 0

Q − 〈ṗ,q̇〉
〈ṗ,ṗ〉P −P

)
· ṁ. (7)

Equation (7) yields an operator, which computes the Plücker coordinates of the
instantaneous screw axes in the fixed frame using the motion m and its derivative
ṁ, as long as m lies in the Study quadric. The matrix Φ is a 6 × 8 matrix.
Geometrically SI are the Plücker coordinates of the fixed axode. Note that SI

really represent Plücker coordinates [8], because they fulfill the Plücker relation.
Using the embedding of those line coordinates of P 5 in the kinematic image
space P 7 like described in [9] the moving axode can be computed with the
inverse transformation.

2.2 Curves Not Contained in the Study Quadric

Lets consider m∗ = (p∗,q∗)ᵀ to be a curve in P 7 /∈ S2
6 , i.e. 〈p∗,q∗〉 �= 0. The

derivative of m∗ with respect to t is denoted by ṁ∗. Because of the fibrization
shown in Eq. (3) the curve m∗ and its derivative ṁ∗ are pulled onto S2

6 and its
tangent space, respectively, by

m = Π · m∗, ṁ = Π · ṁ∗ (8)
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where

Π =
(

I4 04

−〈p∗,q∗〉I4 I4

)
(9)

and

Π =
(

I4 04

〈p∗,q∗〉(2p∗ · p∗ᵀ − I4) − p∗ · q∗ᵀ I4 − p∗ · p∗ᵀ

)
. (10)

Note, that Π = Π = I8 if m∗ ∈ S2
6 . This can be computed by using the

equation 〈p∗, q̇∗〉 + 〈ṗ∗,q∗〉 = 0, which is the derivative of 〈p∗,q∗〉.
To compute the instantaneous screw axes SI of the motion given by m∗,

Eq. (7) has to be applied to the projected curve m and the projected derivative
ṁ computed in Eq. (8).

3 Examples

To illustrate this process, the fixed and the moving axode will be computed for
some one parametric motions.

3.1 The RPRP Mechanism

The RPRP is a single-loop four bar mechanism with two revolute (R) and two
prismatic (P) joints (see for example [3]). The motion of the coupler [7] is given
by

m =
1
Δ

(
0,−6t, 6, 0, 0,

√
3(12t + 5

√
3),

√
3t(12t + 5

√
3),−12(t2 + 1)

)ᵀ
(11)

where Δ = (−2 +
√

3)/
√

(7 − 4
√

3)(t2 + 1), which is a curve in S2
6 . Therefore

we can use the theory in Sect. 2.1 to compute

Φ =
1
Δ

⎛
⎜⎜⎜⎜⎜⎜⎝

t 0 0 1 0 0 0 0
−1 0 0 t 0 0 0 0
0 −1 −t 0 0 0 0 0

1
6

√
3δ1 0 −2t2 − 2 − 1

6

√
3δ2 −t 0 0 −1

1
6

√
3δ2 2t2 + 2 0 1

6

√
3δ1 1 0 0 −t

−2t2 − 2 1
6

√
3δ2 − 1

6

√
3δ1 0 0 1 t 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

with δ1 = (−12t3 + 5
√

3) and δ2 = (24t2 + 12 + 5t
√

3). Then the instantaneous
screw axis, and therefore the Plücker coordinates of the fixed axode are

SI = Φ · ṁ = (0, 0, 1, 4t, 2(t2 − 1), 0)ᵀ. (13)

The moving axode can be computed via the inverse transformation and can
be written as

(
0, 0, t2 + 1, 4(t3 − t2s + ts2 + s), 2(t2s2 − 3t2 + 4ts − s2 − 1), 0

)ᵀ
(14)

where t is the parameter of the motion and s is the parameter on the surface.
Figure 1 shows the fixed axode and some discrete copies of the moving axode (in
the base frame) during the motion.
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Fig. 1. Fixed axode (red) and some discrete copies of the moving axode (blue) of the
RPRP (Color figure online)

3.2 Bennett Mechanism

Despite the spherical or planar four-bar, the Bennett mechanism is the only
spatial single-loop closed four bar with revolute joints only [1]. The motion of
the coupler [7] is given by

m =
1

Δ
√

t2 + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(2 − √

2)t√
2/2(t2 − 2

√
2 + 3)

−1/2(
√

3
√

2 − 2
√

3 − 2
√

2 + 2)(t2 + 1)
0

3/2(
√

3
√

2 − 2
√

3 − 2
√

2 + 2)t
3/4(3

√
3
√

2 − 4
√

3 − 4
√

2 + 6)(t2 + 2
√

2 + 3)
−3/4(2 − √

2)(t2 + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

with Δ =
√

(t2 + 1)(3
√

3
√

2 − 4
√

3 − 5
√

2 + 8) − 6
√

2 + 8 and the instanta-
neous screw axis is

SI =

⎛
⎜⎜⎜⎜⎜⎜⎝

−8(
√

2 +
√

3)t
−4(

√
2 +

√
3)(t2 − 1)

−4(1 +
√

2)((
√

2 − 1)2 − t2)
−6/δ((

√
3 + 1)2 − 2t2)((

√
2 − 1)2 − t2)t

−3/δ((
√

3 + 1)2 − 2t2)((
√

2 − 1)2 − t2)(t2 − 1)
3/δ((

√
3 + 1)2 − 2t2)(

√
3
√

2 − √
3 − √

2 + 2)(t2 + 1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

with δ =
√

3
√

2t2 + t4 − √
3t2 +

√
2t2 − 2

√
3
√

2 − t2 + 3
√

3 − 4
√

2 + 6.
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Although computation with the operator Φ is quite simple the expressions,
also in this simple example, are too complicated to be displayed here. The cor-
responding axodes are plotted in Fig. 2.

Fig. 2. Fixed axode (red) and some
discrete copies of the moving axode
(blue) of the Bennett (Color figure
online)

Fig. 3. Some point paths during the
motion given by m∗

3.3 Straight Line in P 7

As an example for a curve not included in the Study quadric, consider the
connecting line m = a1 ∨ a2 of the two arbitrarily chosen points a1 =
(5, 6, 7, 8, 13, 7, 9, 2)ᵀ and a2 = (9, 3, 1, 7, 13, 5, 13, 17)ᵀ. A parameterization of
this line is given by

m∗(t) =
1
Δ

(−4t + 9, 3t + 3, 6t + 1, t + 7, 13, 2t + 5,−4t + 13,−15t + 17)ᵀ, (17)

with Δ =
√

62t2 − 28t + 140.
As an example of a curve not contained in S2

6 the theory developed in Sect. 2.2
is applied. At first the line m∗ has to be pulled to the Study Quadric using Π
of Eq. (9). This yields

m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(9 − 4t)/Δ
3(t + 1)/Δ
(6t + 1)/Δ
(t + 7)/Δ

−(132t3 − 923t2 − 1097t + 556)/Δ3

(223t3 + 488t2 − 517t − 92)/Δ3

−(50t3 − 1221t2 + 2463t − 1556)/Δ3

−(897t3 − 1750t2 + 2525t − 532)/Δ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

with Δ =
√

62t2 − 28t + 140.
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In the second step ṁ∗ has to be mapped to the tangent space of S2
6 using Π

of Eq. (10) to compute

ṁ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2(251t + 217)/Δ3

−6(38t − 77)/Δ3

−2(73t − 427)/Δ3

−14(32t − 17)/Δ3

−2(25841t3 + 102195t2 − 188607t − 65114)/Δ5

−2(19811t3 − 75468t2 − 73257t + 38122)/Δ5

−18(4089t3 − 14851t2 − 999t + 15526)/Δ5

−2(35413t3 + 44070t2 − 177849t + 165578)/Δ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

As shown in [6] the resulting motion m is a vertical Darboux motion, i.e. a
rotation around a fixed axis combined with a harmonic oscillation along the
same axis. In this motion all point paths are ellipses, as shown in Fig. 3 for some
points. Therefore the fixed and moving axodes have to be fixed lines in this
example. They can be written as

SI = (−1414, 53732, 36764,−2560,−70279, 102617)ᵀ. (20)

4 Conclusions

This article shows how to compute the instantaneous screw axis directly from
curves on the Study quadric. Furthermore it was shown how to pull a curve and
its derivative onto the Study quadric and its tangent space, respectively, via a
fibrization of the kinematic image space.

A developed operator in this publication can be used to directly compute the
axodes of a given motion in P 7.

The benefit of this work is that all the operators can be used on normal-
ized Study parameters and there is no need to use the matrix representation of
Euclidean displacements.
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Abstract. Based on the condition for four points to lie on the unit
sphere, derived using Distance Geometry, a new mathematical formu-
lation for the coupler curves of the RCCC linkage is presented. The
relevance of this formulation is not only its simplicity, but the elegant
way in which we can obtain the derivative of any variable with respect
to any other, and the simple way in which intervals of monotonicity
can be detected. All these results are compactly expressed in terms of
Gramians and, as a consequence, they have a direct geometric meaning
contrarily to what happens with previous approaches based on kinematic
loop equations.

Keywords: RCCC linkage · Coupler curves · Distance geometry

1 Introduction

The RCCC linkage is the most general spatial four-bar linkage with mobility
one [1]. This linkage has been proved to be a good testbed in which to try and
evaluate new ideas concerning the analysis of spatial linkages [2]. The spatial
coupler curves of the RCCC linkage were studied in [3] using an analytic approach
based on 3 × 3 orthogonal transformation matrices with dual number elements.
This approach has become the standard formulation in most subsequent analysis
of this linkage [4,5].

In Fig. 1 shows a CCCC linkage from which an RCCC linkage can be derived
by blocking the sliding motion of any of its cylindrical joints. In this linkage,
the two parameters which describe the kinematics of the joint i; namely, the
angular displacement denoted as θi and the joint offset denoted as di, can be
combined into the dual angle θ̂i = θi + εdi. The two parameters describing
the geometry of link i (i = 1, . . . , 4), namely, the twist angle denoted as θi,i+1

and the link length denoted as di,i+1, can be combined into the dual angle
θ̂i,i+1 = θi,i+1 + εdi,i+1 where ε stands for the dual unit which is defined as
ε2 = 0, ε �= 0. Observe that θ(d), with only a subindex, denotes the angular
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 63
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Fig. 1. Notation associated with the joints of a CCCC linkage.

displacement (joint offset) of the joint defined by the subindex; and, with two
subindices, denotes the twist angle (link length) between the two axes defined
by the two subindices. This notation does not comply with the standard, but
it simplifies the formulation given below and avoids possible confusions between
standard and modified DH parameters. The axes I1, I2, and I3, and I4 can be
transferred to the dual space as the four points P1, P2, P3 and P4, respectively,
all lying on the dual unit sphere. Therefore, the position analysis of the CCCC
linkage in the Euclidean space is equivalent to solving the position analysis of
the corresponding single-dof spherical four-bar linkage in the dual unit sphere.
To this end, it is possible to derive the loop equation of this spherical four-bar
linkage as the product of 3 × 3 orthogonal transformation matrices with dual
number elements. By developing this matrix product, a system of nine nonlinear
equations in four unknowns (θ̂i, i = 1, . . . 4) is obtained [3,6,7]. Alternatively,
we could also use dual quaternions in which case we would get four equations.
Nevertheless, only three independent scalar equations are required to solve this
position analysis because a four-bar linkage on the sphere has 1 dof. In this
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paper we depart from these standard formulations based on a loop equation by
deriving, using Distance Geometry on the sphere [8,9], a single scalar equation in
two unknowns. The relevance of this equation is not only its simplicity, but the
elegant way in which we can obtain the devivatives of any of the variables with
respect to any other, including the geometric interpretation of local extrema, in
terms of Gramians.

The rest of this paper is organized as follows. Section 2 concisely describes
the new formulation and its basic properties. Section 3 gives the main clues on
how this new formulation can be applied to a particular example. Finally, Sect. 4
gives some conclusions and prospects for future research.

2 Deriving a Single Scalar Closure Condition

In spherical geometry, the shortest distance between two points, also known as
the geodesic distance, is the length of an arc of a great circle containing both
points. This great circle is the result of intersecting the plane passing through
the origin and the two points with the sphere. Then, the distance between two
points on the unit sphere is d(Pi, Pj) = cos−1〈pi,pj〉, the angle between the
vectors from the origin to the points Pi and Pj which will be denoted by θij .
Here 〈pi,pj〉 is the standard Euclidean inner product.

The triangle inequality between three points on a sphere holds provided that
the distance between any two points is the lowest of the two arcs of great circle
with them as endpoints. Then, if we assume that 0 ≤ θi,j < π, the mapping
between θi,j and cos θi,j becomes one-to-one. Observe that a link with twist angle
θi,j is kinematically equivalent to a link with twist angle 2π−θi,j . Therefore, in
what follows and as a matter of convenience, we will indistinctly use θij or cos θij
when referring to the distance between Pi and Pj .

Given the location vectors, p1, . . . ,pn, of points P1, . . . , Pn, the Gram deter-
minant, or Gramian, is the determinant defined as

G(1, . . . , n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

〈p1,p1〉 〈p1,p2〉 . . . 〈p1,pn〉
〈p2,p1〉 〈p2,p2〉 . . . 〈p2,pn〉

...
...

. . .
...

〈pn,p1〉 〈pn,p2〉 . . . 〈pn,pn〉

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (1)

which, in the particular case in which all points lie on the unit sphere, reduces to

G(1, . . . , n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 cos θ1,2 . . . cos θ1,n
cos θ1,2 1 . . . cos θ2,n

...
...

. . .
...

cos θ1,n cos θ2,n . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2)

Gramians are zero if, and only if, the involved coordinate vectors are linearly
dependent, and strictly positive otherwise [10, p. 251]. Negative Gramians only
arise in those situations in which the given interpoint distances do not correspond
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to any configuration of real points. Since we limit our analysis to a sphere in
three dimensions, a Gramian of four points necessarily vanishes. For the same
reason, a Gramian of three points lying on a great circle also vanishes. Next, we
analyze the four-point case in more detail.

If we have four points, say Pi, Pj , Pk and Pl, then

G(i, j, k, l) =

∣
∣
∣
∣
∣
∣
∣
∣

1 cos θi,j cos θi,k cos θi,l
cos θi,j 1 cos θj,k cos θj,l
cos θi,k cos θj,k 1 cos θk,l
cos θi,l cos θj,k cos θk,l 1

∣
∣
∣
∣
∣
∣
∣
∣

(3)

vanishes if, and only if, the four points lie on the three-dimensional unit sphere.
Then, in what follows, G(i, j, k, l) will be referred to as the closure condition for
Pi, Pj , Pk and Pl.

Using a computer algebra system, it can be verified that (see [11] for details)

G(i, j)G(i, j, k, l) = −(

G(i, j) cos(θk,l) + B(i, j, k, l)
)2 + G(i, j, k)G(i, j, l), (4)

where

B(i, j, k, l) =

∣
∣
∣
∣
∣
∣

1 cos θi,j cos θi,k
cos θi,j 1 cos θj,k
cos θi,l cos θj,l 0

∣
∣
∣
∣
∣
∣

. (5)

Now, since G(i, j, k, l) = 0, we can easily conclude that

cos θk,l =
−B(i, j, k, l) + σk,l

√

G(i, j, l)G(i, j, k)
G(i, j)

, (6)

where

σk,l =

⎧

⎨

⎩

−1, if Pk and Pl lie on the two different hemispheres defined by
the great circle containing Pi and Pj

+1, otherwise
(7)

If G(i, j, k)G(i, j, l) = 0, there is only one solution for θk,l. Clearly, this only
happens when any of the two triangles PiPjPk and PiPjPl degenerate (i.e., when
either Pk or Pl lies on the great circle defined by Pi and Pj) (Fig. 2).

If we derive (4) with respect to cos θk,l, we conclude, using (6), that

∂G(i, j, k, l)
∂ cos θk,l

= 2 sk, lvG(I, j, k)G(I, j, l). (8)

Similar expressions are obtained when deriving G(i, j, k, l) with respect to
the cosine of any other angle. Then, since G(i, j, k, l) = 0, using the theorem of
implicit differentiation, we have, for example, that

∂ cos θi,j
∂ cos θk,l

= −∂G(i, j, k, l)/∂ cos θk,l
∂G(i, j, k, l)/∂ cos θi,j

= −σi,jσk,l − si, jsk, lv

√
G(i, j, l)G(i, j, k)

G(i, k, l)G(j, k, l)
. (9)
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Pi PiPj Pj

Pk Pk

Pl

Pl

θij θij

θjk θjk
θik θik θil

θil

θjl

θjl

θ+kl

θ−kl

Fig. 2. Given four points on the unit sphere, Pi, Pj , Pk, and Pl, the distance between,
say Pk and Pl, is determined by all other interpoint distances. In general, two solutions
are possible which corresponds to the cis (left) and trans configuration (right).

It follows from this expression that the variation of θi,j with respect to that of
θk,l is monotone provided that no three points involved in the Gramians inside
the squared root get aligned (they lie on a great circle).

The derivative in (8) is also very helpful to obtain the dual component of the
closure condition G(i, j, k, l) = 0 when extending it to dual angles. Let us denote
this extension as Ĝ(i, j, k, l) = 0. Then, Ĝ(1, 2, 3, 4) = 0, in the dual variables
θ̂i,j = θi,j − εdi,j , for 1 ≤ i ≤ j ≤ 4, can be expressed using the chain rule as
follows:

Ĝ(1, 2, 3, 4) = G(1, 2, 3, 4) + ε
∑

1≤i<j≤4

di,j
∂G(1, 2, 3, 4)

∂ cos θi,j

∂ cos θi,j
∂θi,j

. (10)

This allows us to conclude, using (8), that the dual component of the closure
condition can be expressed as

∑

1≤i<j≤4

σi,jdi,j sin θi,j
√

G({1, 2, 3, 4}\i)G({1, 2, 3, 4}\j) = 0, (11)

an elegant expression for the dual component of Ĝ(1, 2, 3, 4) = 0 of great com-
pactness when compared with the results obtained using loop equations.

3 Example

Let us consider the CCCC linkage in Fig. 1 for which we want to obtain the
coupler curve relating θ4 as a function of θ1. This problem corresponds to the
second example in [3]. In this particular case,

θ̂1,2 = 30◦+ε2cm, θ̂2,3 = 120◦+ε3cm, θ̂3,4 = 105◦+ε4cm, θ̂1,4 = 45◦+ε3.5cm,

and where the input joint offset, d1, is set to 6 cm.
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If we only consider the real part of the closure condition Ĝ(1, 2, 3, 4) = 0, i.e.
G(1, 2, 3, 4) = 0, we can readily plot θ13 as a function of θ24 using (6). The result
appears in Fig. 3. In this plot, the Cartesian region defined by [−1, 1] × [−1, 1]
can be divided into subregions attending to the signs of the Gramians resulting
from taking all subsets of three points. Only the part of the curve inside the

G
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,4

)=
0

G
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,4
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0

D
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)=
D

(1
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cos θ24
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s
θ 1
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σ13 = −1, σ24 = +1

σ13 = −1, σ24 = −1

σ13 = +1, σ24 = +1

Non-physically realizable
solutions

Fig. 3. Plot of cos θ1,3 as a function of cos θ2,4 (it can also be seen as the root locus of
G(1, 2, 3, 4) = 0). The dots in red correspond to the linkage configurations reported in
[3]. (Color figure online)
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Fig. 4. Left: Curve relating cos θ4 and cos θ1 obtained from the curve in Fig. 3 using (13)
and (12). Right: Coupler curve relating θ1 and θ4. Again, the dots in red correspond
to the linkage configurations reported in [3]. (Color figure online)
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region where all these Gramians are positive has physical meaning. The bound-
aries between all these regions correspond to configuration where three points
get aligned. The curve itself can also be subdivided into monotonic segments
attending to the signs of σ1,3 and σ2,4. The points separating these segments
also correspond to points where three points get aligned. As a consequence,
these points are necessarily located on the boundary of the feasibility region.
In general, we can have up to four such segments, but in this particular exam-
ple we just have three because this mechanism has a configuration in which
G(1, 3, 4) = G(1, 2, 3) = 0 which corresponds to the limiting position reported
in [3]. At this position θ1 = π and the coupler link and the output link are
collinear, i.e., θ3 = π (see [3] for more details). This mechanism has no config-
urations where σ1,3 = +1 and σ2,4 = −1, that is, configurations where P1 and
P3 are located on the same hemisphere defined with respect to the great circle
containing P2 and P4, and where P2 and P4 are located on different hemispheres
defined with respect to the great circle containing P1 and P3.

Each point of the obtained curve gives a value for cos θ24 and cos θ13 from
which we can obtain the values of cos θi, i = 1, . . . , 4, using the law of cosines
for suplementary angles. In the particular case of cos θ1 and cos θ4 we have that:

cos θ1 = (− cos θ2,4 + cos θ1,4 cos θ1,2)/(sin θ1,4 sin θ1,2)
= (− cos θ2,4 + 0.61237)/0.35355 (12)

cos θ4 = (− cos θ1,3 + cos θ3,4 cos θ1,4)/(sin θ3,4 sin θ1,4)
= (− cos θ1,3 − 0.18301)/0.68301 (13)

Now, we can obtain the plot expressing cos θ4 as a function of cos θ1 that appears
in Fig. 4(left). Since (12) and (13) are affine relations, the monotonicity of the
three segments is preserved.

Finally, the coupler curve relating θ4 and θ1 can be obtained by computing
the ± arccos of both coordinates of each point of the curve in Fig. 4(left). This is
a 1-to-4 mapping. Two of these images are not solutions of the problem because
they do not satisfy the original kinematic constraints, i.e. the signs of θ1,2, θ2,3,
θ3,4, and θ1,4. As with many problems solved in a distance space, when mapping
the obtained solutions to an Euclidean space, they should be checked to satisfy
some consistency constraints [12].

4 Conclusion

The position analysis of a RCCC linkage in the Euclidean space is equivalent
to solving the position analysis of a spherical four-bar linkage in the dual unit
sphere. If we try to solve this problem using Distance Geometry directly in the
Euclidean space using Cayley-Menger determinants, the formulation becomes
quite involved. In this paper, we have shown how the problem can be solved
using Distance Geometry in the dual unit sphere. This result opens the possi-
bility of using Cayley-Menger determinants with dual arguments to compactly
formulate other geometric problems. This is a point that certainly deserves fur-
ther attention.
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Abstract. Various approaches to solving inverse kinematics implicitly
rely on computing forward kinematics in order to obtain an approxi-
mate solution. This work proposes an optimised data structure to effi-
ciently compute these equations by avoiding redundant transformations
and calculations. This is particulary relevant for highly articulated kine-
matic models and multiple end effectors with shared joints along their
kinematic chains. By integrating the developed OFKT (Optimised For-
ward Kinematics Tree), less computation time within each iteration
is required, which contributes to a significant speedup in convergence.
Experiments were conducted using a novel evolutionary approach which
was designed for handling complex kinematic geometries.

Keywords: Forward kinematics · Inverse kinematics · Data structures ·
Computational efficiency · Evolutionary optimisation · Robotics ·
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1 Introduction

A rigid body kinematic system can be described by a set of kinematic chains, each
consisting of a consecutive set of segments and joints from the root to the end
effectors. Each end effector results in a certain Cartesian configuration X given
a specific joint variable configuration θ. Together, the motion axes of the joints
define the DOF (Degree of Freedom) and thus the computational complexity of
the whole kinematic system. [1]

While forward kinematics (FK) is straightforward to compute by a consecu-
tive set of coordinate transformations, obtaining solutions for inverse kinematics
(IK) in contrast is not as easy. For any given IK query, a varying or even infinite
number of solutions can exist, and it is not generally clear which one to prefer.
However, IK takes an important role in various applications such as robotics,
including object manipulation and grasping with anthropomorphic hands, as well
as for character animation in computer graphics. Since analytical approaches to
this problem are not generally available as they must be derived individually for
specific kinematic structures, numerical algorithms for obtaining approximate
solutions have become more popular. In order to optimise an appropriate solu-
tion for IK, such methods rely on calculating the FK equations using the known
c© Springer International Publishing AG 2018
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kinematic structure. Then, sampling-based joint variable updates are generated
using gradient-based or probabilistic techniques, and the Cartesian end effector
configurations are calculated individually for each objective. Multiple end effec-
tor systems—such as the finger tips of an arm—usually contain many shared
joints along their kinematic chains, and the FK equations then become par-
tially equivalent. As a result, most computation time is typically required for
repeated FK computation, and many transformations become redundant when
only small joint variable changes are applied. This is especially the case for evolu-
tionary approaches, for which the genetic operators—such as recombination and
mutation—cause most joint variable configurations to be only slightly modified
within each generation. Given the joint variables which correspond to the genes
of an individual, the resulting end effector configurations X1,...k can be obtained
by evaluating the FK function. Based on this, it is then possible to define the
multi-objective fitness function Ω to be minimised as the root-mean-square error
over all individually weighted objectives L1,...k with end effector targets Y1,...k.

φ = Ω(x) =

√
√
√
√1

k

k∑

i=1

wiL 2
i (Xi,Yi) (1)

Repeated evaluation of the fitness φ of each individual within the population
then drives the evolutionary optimisation. Hence, efficient computation of the
FK is essential for the overall performance and convergence of the IK algo-
rithm. Figure 1 demonstrates solving articulated IK of the Kyle humanoid, with
the OFKT (Optimised Forward Kinematics Tree) data structure integrated to
achieve higher computational efficiency for repeated and only slightly varying
joint variable queries.

Fig. 1. Kinematic geometry from the pelvis to the head and finger tips of the Kyle
humanoid (28 DOF). Inverse kinematics is solved by evolutionary computation while
efficiently calculating forward kinematics using the OFKT data structure.
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2 Background and Related Work

Solving IK is a fundamental problem which is relevant in very different fields of
research, such as robotics, computer graphics or human-computer interaction.
Typical scenarios include control of virtual characters and runtime manipulation
of underlying animations, grasping with anthropomorphic hands, teleoperation
tasks as well as motion planning and trajectory generation. Therefore, numerous
sophisticated approaches have been developed that tackle the problem by the
specific requirements of their applications, typically regarding computational
efficiency, accuracy or flexibility. The numerical methods can be categorised into
four groups: gradient-based, probabilistic, geometric or learning. In this work,
we will primarily focus on the former two as they require generating FK samples
for IK optimisation.

Considering the FK calculation for a given a kinematic structure, homoge-
neous coordinate transformations in robotics are commonly represented using
Denavit-Hartenberg parameters, which can achieve a considerable reduction in
the required amount of calculations [4,5]. Implementing rotations by quaternions
rather than matrices is slightly more efficient from a computational perspective,
and also offers a unique representation for the resulting orientations. Further-
more, information about axis alignments in serial or parallel mechanisms can be
incorporated [2,3]. However, those computational optimisations are only appro-
priate for specific geometries and must be derived individually. It is also possible
to learn the FK equations by neural networks which can be used to create a func-
tional relation between joint and Cartesian space [6]. Nevertheless, this method
introduces an additional inaccuracy for the numerical IK optimisation due to
the inherent learning error.

Gradient-based Jacobian or SQP methods optimise an IK solution by slightly
modifying each joint variable to obtain the gradient [7–9]. These methods are
often applied in robotics as they can achieve a fast convergence, but can suffer
from multiple local extrema in the search space. In this regard, genetic algorithms
(GA) perform a more robust search space exploration by means of biologically
inspired probabilistic optimisation, and offer better scalability for higher DOF
[10,11]. The key idea is to encode joint variable configurations as individuals,
and to iteratively evolve new solutions until convergence. The fitness is obtained
by the resulting end effector errors using the FK equations. However, traditional
methods require many parameters to be tuned, or the required computation
time or attainable accuracy might remain insufficient. In our prior work, a novel
evolutionary hybridisation of GA and swarm intelligence achieved promising
results both in accuracy and computation time, with adaptive parameter control
for varying dimensionality and kinematic geometries [12,13]. As each fitness
evaluation for every individual requires a FK pass in order to obtain the resulting
errors in position and orientation, it was observed that most of the computation
time was due to the required coordinate transformations. More specifically, many
of those were redundant as with increasing accuracy, fewer genetic mutations
were applied, and partially shared kinematic chains for multiple end effectors
were computed repeatedly.
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3 Algorithmic Approach

The main purpose of our OFKT data structure is to avoid calculating repeating
or redundant consecutive transformations. Given a single joint variable config-
uration θ = (θ1, ..., θn) as input, the individual Cartesian transformations for
end effectors X1,...,k can be obtained as denoted by (2). Hence, calculating FK
becomes processing a tree of single kinematic chains with either individual or
partially shared joints.

f(θ) = X1,...,k (2)

For each kinematic chain (3), the end effector configuration is computed by
consecutive transformations starting from its root.

rootTee =root T1
1T2 ... n−1Tee (3)

According to (4), these transformations between the single relevant segments
can be grouped into reference and local transformations, Ri and Li respectively.

Ri = Ri−1 Li Li = Si T (θj) (4)

However, not every segment of the kinematic chains is necessarily connected
to a joint. Thus, the static transformation Si denotes the constant transformation
between the segment’s preceding non-static segment to the segment’s local trans-
formation with θj = 0. Note that Si only needs to be computed once, and is then
stored to avoid recalculating non-changing transformations. The OFKT itself is
then represented by a linked list of segments, one for each moveable part of the
kinematic structure. Within each node, Ri and Li are individually computed and
stored, together with the currently assigned corresponding joint variable θj . While
the former depends on the preceding reference and the current local transforma-
tion, the latter is calculated using the segment’s static transformation Si modified
by θj . Algorithm 1 summarises building the OFKT data structure which can then
be used for efficiently processing multiple successive FK queries.

Algorithm 1. Building the Optimised Forward Kinematics Tree
Input : Geometry, Root, End Effectors

1 OFKT = CreateLinkedList(Root, End Effectors);
2 Chains = GetChains(Root, End Effectors);
3 foreach Segment in Chains do
4 if Segment.HasJoint() then
5 Node = OFKT.Insert(Segment);
6 Node.ComputeAndStoreStaticTransformation();
7 Node.StoreJointVariable();
8 Node.ComputeAndStoreLocalTransformation();
9 Node.ComputeAndStoreReferenceTransformation();

10 end

11 end
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When performing a FK query, a joint variable configuration is given as input
to the OFKT. The goal is to perform kinematic queries efficiently by using the
stored variables for the current transformation and the joint value within each
node. As described by Algorithm 2, the update procedure is started at the root
node of the linked list, and is recursively called for all childs. Also, a boolean
parameter is recursively passed which initially assumes that no update would
be required. The flag is set in case of joint variable changes, as otherwise the
stored local transformation can be reused. As soon as one local update occured
during the FK calculation, a relative update is also necessary for all subsequent
nodes. Note that transformation updates in local and reference space are treated
independently by propagating the boolean flag. After the tree traversal, the
resulting end effector transformations can be returned in world space using (5),
where the additional worldTroot transformation is prepended to handle movement
in world space. Thus, the OFKT keeps all transformations in reference to the
kinematic model while representing only non-static connections.

Wi =world Troot Ri (5)

Algorithm 2. Querying the Optimised Forward Kinematics Tree
Input : Joint Variable Configuration
Output: End Effector Transformations

1 Function UpdateFK(Node, RequireUpdate):
2 if HasJointVariableChanged() then
3 Node.StoreJointVariable();
4 Node.ComputeAndStoreLocalTransformation();
5 RequireUpdate = true

6 end
7 if RequireUpdate then
8 Node.ComputeAndStoreReferenceTransformation();
9 end

10 foreach Child of Node do
11 UpdateFK(Child, RequireUpdate);
12 end
13 return ;

14 UpdateFK(OFKT.Root, false);
15 foreach End Effector Node do
16 return Node.ComputeWorldTransformation();
17 end

Intuitively, the OFKT data structure is optimised to efficiently process multi-
ple FK queries by caching transformations from preceding calculations, assuming
that only a few joint values will change between successive queries. Consider-
ing the genetic evolutionary IK algorithm which was our original motivation,
only some genes (joint angles) of an individual are usually modified during one
generation, and many reference as well as local transformations can be reused,
resulting in a large performance increase.
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4 Evaluation and Results

First, a theoretical evaluation for the OFKT data structure is done regarding the
total required transformations in four scenarios, summarised in Table 1. Given a
n-dimensional serial joint variable configuration, one FK pass requires calculat-
ing n local transformations which are then concatenated by n transformations,
and 1 further from world to root — this will be used as baseline for performance
comparison.

1. FK computation by updating a (random) number of values along a serial
kinematic chain: This is the typical query after evolving the genes of an
individual. In general, 2n + 1 calculations would be needed for independent
FK queries. Using the OFKT, previous results can be reused efficiently, and
the required amount of local transformation updates becomes equivalent to
the number of changed joint values j < n. Traversing the single segments
then results in n − i instead of n reference transformations, where i is the
first modified index along the serial kinematic chain.

2. Predicting the end effector world transformation by modifying exactly one
joint value: This is helpful for determining or estimating the error gradient.
Only 1 local L

′
i as well as 3 further transformations Ri−1 L

′
i R−1

i Ree are
necessary for calculating the end effector transformation, followed by 1 addi-
tional world transformation. In particular, the required transformations of
the single segments are already available, and enable to directly obtain the
relative end effector change.

3. Iteratively updating exactly one joint value while maintaining information
about all segment transformations: This is particularly important for enabling
efficient further computation of relative transformations within the kinematic
tree. n queries are performed iteratively, requiring n(2n + 1) calculations.
Using the OFKT, each of the n queries automatically avoids recalculating
unchanged transformations, resulting in n local updated segments and a total
of n(n+1)

2 calculations for the affected reference transformations.
4. FK calculations on different chains with multiple end effectors of an anthropo-

morphic arm: This is relevant in terms of scalability for complex geometries.
A 27 DOF anthropomorphic geometry is considered, starting with a 7 DOF
arm and splitting up into a hand with five 4 DOF fingers — giving rise to
k = 5 chains with 11 DOF each. Hence, calculating all end effectors individu-
ally would require k(2n + 1) transformations, while the OFKT automatically
avoids recalculating the shared s = 7 joints along the arm.

Table 1. Comparison of the required amount of transformations in different scenarios.

Scenario Standard OFKT

Random modifications 2n + 1 n− i + j + 1

End effector computation 2n + 1 5

Single iterative modifications 2n2 + n n2

2
+ 5n

2

Multiple end effectors k(2n + 1) k(2n + 1) − 2(k − 1)s
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In order to put the previous FK evaluations into practical context, exper-
iments were conducted in performing IK on an articulated 10 DOF kinematic
model using the presented algorithm in [12,13]. It was observed that ≈ 103 gen-
erations in average were required for solution convergence. In this regard, Fig. 2
demonstrates the computational improvement at each generation during one IK
query (left) and in average for increasing DOF (right) when using the OFKT.
In particular, note that less computation time per generation is required since
fewer genetic changes are applied as the population scores progress over several
generations. It can be observed that this computational improvement scales sig-
nificantly for more complex geometries, reaching a cost reduction per generation
by a factor of ≈ 8 for 30 DOF.

Fig. 2. Computational cost per generation for one IK query (left) and for increasing
DOF (right).

Ultimately, we investigated the speedup in solving evolutionary IK on different
robot geometries of 6 to 10 DOF. The results are shown in Fig. 3 and are averaged
over 10.000 randomly generated samples using full pose objectives. In particular,

Fig. 3. Computational cost in solving random reachable IK queries on different robots.
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a considerable computational improvement can be observed by requiring approxi-
mately one third of the original time for convergence onall testedkinematicmodels.

5 Conclusions

This work proposed a method to efficiently compute the FK equations for mul-
tiple consecutive queries with only slightly varying joint variable configurations.
The developed OFKT data structure caches results that were computed in
preceding calls, and only updates the transformations along the kinematically
affected segments within the whole kinematic tree. Hence, the required amount of
costly calculations for sampling-based IK optimisation on complex and multiple
end effector geometries can be reduced. Integrating the OFKT into our evolu-
tionary IK algorithm, one third of the original computation time for solving full
poses on typical lower DOF industrial robots was required, with significantly
larger improvements obtained for increasing DOF. This work will be further
investigated applied to dexterous manipulation, humanoid robots and character
animation.
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Abstract. This work presents the results concerning the modeling and sensi-
tivity analysis of the serial ABB IRB 6660 robot in a dedicated workspace. In
this sense, this study is a first step to define a geometrical modeling method. The
proposed method is based on the introduction of one parameter for each defect
which affects the orientation and position of each robot joint and end-effector.
Then, the parameters selection is realized with a sensitivity analysis with regard
to the workspace and needed accuracy. This work is illustrated on an ABB IRB
6660 robot. The final aim of this approach is to improve the accuracy of a robot
during the following of a tool path in a given workspace.

Keywords: Sensitivity analysis � Direct kinematic analysis � Serial robot �
Geometric modeling

1 Introduction

The use of serial robots for machining operations has become a robot development
issue in recent years. The aim is to propose an alternative to machine tools. Thus, 6-axis
heavy-duty robots are offered by robot manufacturers and designers. However,
developed robots have toolpath following accuracy only near 0.1 mm, although their
stiffness has been improved compared to robots used for less demanding operations.
Indeed, the geometrical, static and dynamic behaviors of these robots do not allow
machining to be performed with great accuracy and, finally, only 3% to 4% of
industrial robots are dedicated to machining [1, 2].

The geometric model is the mathematical description of the geometrical behavior of
the robot. This model expresses the pose of the center of the tool in the robot coordinate
system with regard to the pose of the active joints [3]. The geometric models of robots
are generally based on a set of mathematical equations allowing computing the pose of
the final end-effector with regard to the values of the articular variables and geometric
parameters. The most widely used modeling methods are generally based on the
Denavit-Hartenberg (DH) formalism [4]. This formalism is enriched by various sci-
entific works in order to be more adapted to the studied structure behavior [5].
However, the complexity of the models developed does not guarantee the improvement
of robot geometric accuracy. Indeed, the addition of geometric parameters makes the
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model more sensitive to identification errors [6]. It is necessary to limit the number of
geometric parameters to influential and identifiable parameters.

Similarly, in order to improve the accuracy of task realisation, it is necessary to
study the influence of each geometrical parameter on the task and to identify its
parameters under the conditions of realization of the task [6]. The objective is not to
guarantee absolute accuracy of the robot throughout its working space but to focus on
the task accuracy. In other words, it is necessary to focus only on the end-effector poses
which have an influence on the accuracy of task realization in the task workspace. In
the case of machining, the accuracy of the machined part is linked to the robot accuracy
during the toolpath following in the part coordinate system.

We propose in this work to make a contribution on the definition of the number and
the nature of the geometric parameters of a serial robot equipped with a spindle with
regard to the needed workspace.

First, we introduce the ABB IRB 6660 robot and its characteristics. Then, methods
for geometric modeling are presented. Finally, we perform the sensitivity analysis to
select the most influential parameters and proposed a geometrical model adapted to a
given workspace.

2 Presentation of the ABB IRB 6660 Robot

The robot IRB 6660 is composed of a serial structure with a parallelogram structure to
improve the overall rigidity of the robot [7, 8]. The robot is composed of six motorized
joints (from 1 to 6) and three passive joints (7, 8 and 9) (Fig. 1). Axes 3, 7, 8 and 9
composed the parallelogram structure.

This robot is a 6 dof serial robot with a simple closed kinematic chain. It is thus
considered by Khalil as a complex robot [5] because it has at least one solid positioned
by more than two joints.

The robot studied is also equipped with a spindle fixed at the last joint in order to
carry out pre-machining operations. This spindle is a spindle MFW-1412 from Precise
France Fisher.

(a) (b)

link

joint

Fig. 1. (a) Joints of the ABB IRB 6660 robot. (b) Kinematic diagram of the robot.
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A first analysis of the architecture of the robot is realised in order to determine the
overconstrained degree of the mechanism [9]. The aim is to determine the dimensional
and geometrics constraints which ensure to guarantee good working condition of the
system [10].

According to this study, the robot IRB 6660 has an overconstrained degree of 3 [9].
This overconstrained degree is due to the parallelogram mechanism behavior. Indeed,
the mechanism is in parallelogram the axes of joint 3, 7, 8, and 9 have to be parallel to
transmit the movement from joint 3 to joint 9.

This mechanical constraint must be taken into account during the definition of the
geometric parameters used in the geometric model of the robot. Thus, we consider that
the orientation defect between the joints 3, 7, 8, and 9 are not taken into account in the
geometrical model of the robot as their parallelism is controlled by the manufacturing
and assembly constraints and we also considered joint 2 is independent of joint 3, 7, 8
and 9.

This first analysis of the structure of the robot ensure us to realize geometric models
closer to the mechanical behavior of the architecture of the robot.

3 Direct Kinematic Model Analysis

The initial realized model is a 6-parametric model defined from DH method for serial
robot (Fig. 2). This model does not take into account the transformation of motion
generated by the parallelogram mechanism and it is composed with the minimal
number of parameters. The coordinate system linked to each active joint is defined and
noted RiðXi;Yi;ZiÞ except for joint 9 which is R3ðX3;Y3;Z3Þ. The DH parameters are
then: RL1, d2, d3, d4, RL4, RL6.

Fig. 2. Geometrical model of the robot.
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However, this model has to be completed by taking into account the parallelogram
mechanism behavior in the movement transmission between joint 3 to joint 9.

Figure 2 presented the parameters used to described the geometrical behavior of the
parallelogram mechanism.

The articular variable q3 is located at the articulation 3, the relation between q3, the
geometrical parameters of the parallelogram and the angle h3 of the articulation 9 must
then be determined.

Figure 3 illustrates the modeling of the parallelogram mechanism and the rela-
tionship between the values of the articular variables q2, q3, h3 and the introduced
geometrical parameters (L1, L2, L3) of the parallelogram. We assume from the over-
constrained analysis that the system is plane and that all the axes of the bonds are
parallel. Thus, the modelling hypothesis are consistent with the hypotheses of the
Denavit-Hartenberg method.

This model is thus completed to express geometric models taking into account each
defect between non-overconstrained joints and the spindle coordinate system. Thus, 6
parameters are taken into account to express the position and orientation of ith joint
coordinate system with regard to (i-1)th joint coordinate system:

0T6 ¼ 0T1
1T2

2T3
3T4

4T5
5T6 ð1Þ

0T1 ¼

cosðq1Þ � sinðq1Þ 0 0

sinðq1Þ cosðq1Þ 0 0

0 0 1 RL1
0 0 0 1

2
6664

3
7775

1T2 ¼

cos q2 � p=2ð Þ � sin q2 � p=2ð Þ 0 d2
0 0 1 0

� sin q2 � p=2ð Þ � cos q2 � p=2ð Þ 0 0

0 0 0 1

2
6664

3
7775

2T3 ¼

cos h3 � q2ð Þ � sin h3 � q2ð Þ 0 d3
sin h3 � q2ð Þ cos h3 � q2ð Þ 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

3T4 ¼

cosðq4Þ � sinðq4Þ 0 d4
0 0 1 RL4

� sinðq4Þ � cosðq4Þ 0 0

0 0 0 1

2
6664

3
7775

4T5 ¼

cosðq5Þ � sinðq5Þ 0 0

0 0 �1 0

sinðq5Þ � cosðq5Þ 0 0

0 0 0 1

2
6664

3
7775

5T6 ¼

cos q6 þ pð Þ � sin q6 þ pð Þ 0 0

0 0 1 RL6
� sin q6 þ pð Þ � cos q6 þ pð Þ 0 0

0 0 0 1

2
6664

3
7775

Fig. 3. Parameter relations of the parallelogram.
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Where j�1Tj is the homogeneous transformation matrix to i articulation to j artic-
ulation. Then, 3 parameters are added to define the position and orientation of the
spindle coordinate system with regard to the 6th joint coordinate system (xef, yef and zef)
Jtool is the length of the tool used:

6Tspindle

0 0 1 xef ¼ xspindle þ Jtool
0 1 0 yef ¼ yspindle
�1 0 0 zef ¼ zspindle
0 0 0 1

2
664

3
775 ð2Þ

A model with 45 parameters are then considered by taking into account errors of
position and orientation of the coordinate systems of each non-overconstrained joints
and the parallelogram mechanism parameters, these 45 parameters takes into account
the position and orientation errors of each pivot link (6 � 6 parameters), the position
and orientation errors of the final effector (6 parameters) and the 3 parameters of the
parallelogram. These parameters are nomed tix, tiy and tiz for translations errors on the
x, y and z axe respectively of the i link; titi, psii and alfi for angulars errors on the x, y
and z axe respectively of the i link i; tbx, tby and tbz for translations errors on spindle
and titb, psib and alfb for angulars errors on spindle.

4 Sensitivity Analysis

The sensitivity analysis will enable us to evaluate the influence of the geometric
parameters on the position of the end effector of the robot. It will also allow us to
discuss the number of optimum parameters to introduce. In the case of our study, we
carry out the sensitivity analysis on the most complete model, the geometric model
with 45 parameters. The MGD is represented by:

X ¼ MGDðQ; nÞ ð3Þ

Where X is the pose vector which corresponds to the coordinates of the piloted
point of the robot end-effector and its orientation in the robot base coordinate system
and n the 45 parameters.

Q is the vector of the articular variables of the robot (q1, q2, q3, q4, q5 and q6).
In our case, we study the influence of the geometric parameters on the position of

the tool for given values of the motor set points. Thus, if we consider the articular
instruction to be perfectly repeatable, the sensitivity matrix S is then:

S ¼ dX
dn

¼ @MGDðQ; nÞ
@n

ð4Þ
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The matrix of sensitivity is a matrix of 3*45 elements where the term Sij represents
the influence of the parameter i on the coordinate j of the tool position.

In this first part we will carry out the sensitivity analysis on a given workspace
which is used to realize the identification (Fig. 4). After an analysis of the sensitivity
matrix transformed with the Gaussian pivot method, we observe that the parameters
t2z, t3z, t4z, t5z, t6z, tbx, tby, tbz and psi5 are redundant parameters and we can
establish relations between these parameters and the model parameters (Associated
parameters). The maximum influence in this space is shown in Fig. 5.

On the basis of these results, we propose a new model without the redundant and
zero parameters, that is to say without the parameters t2z, t3z, t4z, t5z, t6z, tbx, tby, tbz,
alf6, titb, psib and alfb. The new model contains 33 parameters.

5 Identification of Geometric Parameters

To see, the impact of this model adapted to the workspace, a process of identification is
realized. The identification phase of the robot consists of determining the values of the
geometrical parameters related to the structure of the robot and the spindle.

For the identification of the 33 parameters model, the identification of the proposed
model is carried out with 60 positions measured with a Laser Tracker measurement
system, Leica ATD-901 with accurate performance measurement of the position of the
test pattern of �15 lmþ 6 lm/m and compared with the positions simulated with the
direct kinematic model (Fig. 6). Thus, by minimizing the cost function with Matlab’s
lsqnonlin function, we obtain the identified geometric parameters of the model.

After the measurement of 60 points the maximum residual error values are:
0.09566 mm on the X-axis, 0.1222 mm on the Y-axis and 0.09191 mm on the Z-axis,
with a maximum spatial position error of 0.1803 mm for the model with 33 parameters
sans compensation de la gravité.

Fig. 4. Workspace used to the identification.
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6 Conclusions

The goal of this study is to analyze the influence of the geometrical parameters use to
define the ABB IRB 6660. A new approach for the identification of the influential
geometric parameters of a serial robot is developed. Despite the sensitivity study and
the reduction of the model of 45 parameter to 33 parameters the error of position
remains always important. Indeed, taking into account parameters of a different nature
in the parameter model can explain this deviation as well as the fixed orientation of the
tool in the space under consideration. However, the proposed modeling method can be
applied to different working spaces in position and orientation.

Redundant Parameters t2z t3z t4z t5z t6z tbx tby tbz alf6

Associated Parameters t1y t1y t3y t4y t5y t5y t6y t6x psi5

Fig. 5. Maximum influence of parameters in the X, Y and Z axis for 60 points and the redundant
parameters and associated parameters.

Fig. 6. Reconfiguration of reference system.
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Abstract. Higher-order derivatives of kinematic mappings give insight
into the motion characteristics of complex mechanisms. Screw theory
and its associated Lie group theory have been used to find these deriv-
atives of loop closure equations up to an arbitrary order. However this
has not been extended to the higher-order derivatives of finite motion as
given by the inverse or forward kinematic model of closed loop mecha-
nisms. In this paper, a recursive algorithm is presented, consisting solely
of matrix multiplications, which is capable of giving these higher-order
derivatives of kinematic models of closed loop linkages. It depends on
a simplified representation of the higher-order derivatives of an open
chain. From these higher-order derivatives a Taylor expansion of a finite
motion becomes available. The evaluation of this method on a Taylor
approximation (up to 5th order) of the inverse kinematic model of a 5-
bar mechanism shows a good approximation in a large part of workspace
around the evaluation point.

Keywords: Higher-order kinematics · Taylor approximation · Screw
theory · 5-bar mechanism

1 Introduction

Geometric insight of infinitesimal motion of spatial kinematics can be obtained
with the differential analysis of screw theory. This theory gives the kinematic
relations between the general velocities of bodies (twists) and general constraint
forces (constraint wrenches) acting on a system. This instantaneous analysis is
only available in the pose of inspection, and in general does not give an under-
standing of the possible finite motion of a mechanism. For synthesis and analysis
purposes, attempts have been made to extend the infinitesimal screw analysis.
The finite forward kinematic model of open loop chains is given by Brockett’s
products of exponents (POE) [1]. It consists of the products of exponential matri-
ces of the instantaneous screw axes. Derivatives up to an arbitrary order of
loop closure equations can be found by taking Lie brackets of instantaneous
screw axes, which can be expressed as matrix multiplications of twists [2,3].

c© Springer International Publishing AG 2018
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This paves the way for an algorithmic differentiation-free derivatives of the loop
closure equations [4].

However, higher-order derivatives and approximations of the finite motion
of these closed loop mechanisms were not yet found. These higher-order deriva-
tives of finite motion can be used for finding conditions for invariant properties of
kinematics and dynamics such as required for balancing, synthesis and analysis
of rigid body motions. Moreover, such an approximation is advantageous since
closed form kinematic mappings are not always available for the more complex
mechanisms. Unfortunately, processing these higher-order, multivariate deriva-
tives require elaborate bookkeeping, as can be seen in the implementation of the
higher-order chain rule, the Faa di Bruno’s rule [5].

In this paper a simplified representation of the higher-order derivatives of
the screw systems is presented which has a structure similar to the Brockett’s
POE. With Vetters method for managing higher order matrix derivatives [6] this
enables us to obtain a recursive, differentiation-free algorithm for higher-order
derivatives of the solution to the closure equations. Using the resulting higher-
order closure Jacobians, a Taylor approximation of the closed loop kinematics is
performed. The steps taken are exemplified with an approximation of the inverse
kinematic model of a 5-bar mechanism.

Before we introduce the higher-order derivatives of the loop closure solution,
the screw algebra theory is revisited and applied to an open chain. Based on
this a simplified representation of higher-order derivatives of an open chain is
presented Sect. 2.2. After this the loop closure equations and the matrix deriva-
tives are revisited Sects. 2.3 and 2.4. Using these rules finally the algorithm for
determining the higher-order derivatives and its Taylor expansion is presented
Sect. 2.5 and its implementation shown for a 5-bar mechanism Sect. 2.6.

2 Method

2.1 Concepts and Notation

In the notation of screw theory as used in this paper, a reference frame (ψi) is
associated to each rigid body i. Points in space (a) can be expressed with respect
to this reference frame (denoted with superscript ai). A change of reference frame
follows from the homogeneous transformation matrix which consists of a rotation
matrix (R) and a translation vector (o). In the homogeneous representation the
ai-vector is appended with a 1.

aj = Hj
i a

i Hj
i =

[
Rj

i oj
i

0 1

]
Ḣj

i =
[[

ωj
i ×

]
vj
i

0 0

]
Hj

i =
[
tj,ji ×]

Hj
i (1)

The time derivative of the transformation matrix is given by the twist (tk,ji ), the
generalized velocity, of body i with respect to body j expressed in frame k. For
clarity reasons the subscript and second superscript are omitted when possible.
The twist is a vector containing the angular (ω) and translational (v) velocity.
The

[
ω×]

denotes the skew symmetric matrix form of ω. The twist’s frame of
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expression changes with the adjoint transformation matrices here denoted with
Ad

(
Hj

i

)
.

tj = Ad
(
Hj

i

)
ti Ad

(
Hj

i

)
=

[
Rj

i 0[
oj
i×

]
Rj

i Rj
i

]
(2)

The time derivative of adjoint transformation matrix is given in terms of instan-
taneous transformation matrix ad

(
t
)
.

d

dt

(
Ad

(
Hj

i

))
= ad

(
tj,ji

)
Ad

(
Hj

i

)
ad

(
t
)

=
[[

ω×]
0[

v×] [
ω×]

]
(3)

This matrix itself can be expressed in an other reference frame according to a
nested transform:

ad
(
tj

)
= ad

(
Ad

(
Hj

i

)
ti

)
= Ad

(
Hj

i

)
ad

(
ti

)
Ad

(
Hi

j

)
(4)

Using these twists, a concise formulation for the forward kinematic mapping of
an open chain is available in the form of Brockett’s product of exponentials [1]:

Ad
(
H0

n(q)
)

=
n∏

i=1

Ad
(
Hi−1

i (qi)
)

=
n∏

i=1

ead
(
t̂0i

)
qiAd

(
H0

n(0)
)

(5)

In here, the instantaneous screw vector i0, denoted with a hat, specifies the
amount of twist generated by the instantaneous motion of joint i, and is there-
fore a pure geometric entity. As this screw vector is always with respect to the
previous body in the chain, the second superscript is omitted. The instanta-
neous screw vector of lower kinematic pairs are constant when expressed in the
connecting frames e.q. d

dt

(
t̂i−1
i

)
= d

dt

(
t̂ii

)
= 0.

2.2 Derivatives of Twist Systems (open Chain)

For an open chain, the higher-order partial derivatives can be found using the
transformations of the previous section. A chain of transformations can be
decomposed into constant and varying part of which the derivative is avail-
able. The nested transform (4) of the twist gives a concise formulation of the
derivative of a chain, provided that i ≤ n.

d

dqi

(
Ad

(
H0

n

))
= Ad

(
H0

i−1

) d

dqi

(
Ad

(
Hi−1

i

))
Ad

(
Hi

n

)
(6)

= Ad
(
H0

i−1

)
ad

(
t̂i−1
i

)
Ad

(
Hi−1

i

)
Ad

(
Hi

n

)
(7)

= ad
(
t̂0i

)
Ad

(
H0

n

)
(8)

For the second-order, such a concise representation also exists. For the con-
secutive derivative with respect to joint j there exist two possibilities, either it
is after body i in the chain (case 1.) or before i in the chain (case 2).
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1. Case 1. (i ≤ j) In the case that joint j is higher in the chain than i, the
twist is unaffected ( d

dqj

(
ad

(
t̂0i

))
= 0). Therefore, the second partial derivative

becomes:
d

dqj

d

dqi

(
Ad

(
H0

n

))
= ad

(
t̂0i

)
ad

(
t̂0j

)
Ad

(
H0

n

)
(9)

2. Case 2. (i ≥ j) In the case that j is below i in the chain we use the nested
transform property to split the chain into a dependent and independent part.
It may be verified that d

dqj

(
ad

(
t̂ji

)
Ad

(
Hj

n

))
= 0. Therefore:

d

dqj

d

dqi

(
Ad

(
H0

n

))
=

d

dqj

(
Ad

(
H0

j

)
ad

(
t̂ji

)
Ad

(
Hj

n

))
(10)

=
d

dqj

(
Ad

(
H0

j

))
ad

(
t̂ji

)
Ad

(
Hj

n

)
(11)

Using (8) a matrix chain can be found and collected again using the nested
transform:

d

dqj

d

dqi

(
Ad

(
H0

n

))
= ad

(
t̂0j

)
ad

(
t̂0i

)
Ad

(
H0

n

)
(12)

Leaves us with an expression similar to (9), with the difference that sequence of
multiplication is swapped. This also follows from the symmetry (commutativity)
property of mixed partial derivatives: d

dqj
d
dqi

(
Ad

(
H0

n

))
= d

dqi
d

dqj

(
Ad

(
H0

n

))
.

A consecutive application of (9), and (12) gives us the geometrical higher-
order partial derivatives for any order, supplied in multi-index α1, which is
ordered from the base to the end-effector.

D(α)
q

(
Ad

(
H0

n

))
=

n∏
i=1

((ad
(
t̂0i

)
)α(i))Ad

(
H0

n

)
(13)

This result is similar to that of [3], with the difference that the index ranges to
distinguish between the sequence of derivatives are taken into account by the
ordering of α. From the commutative property of mixed partial derivatives it fol-
lows that for whatever sequence of differentiation the same results are obtained.
Furthermore, it can be seen that (13) resembles the structure of the Brock-
ett’s formula (5) in the sense that the matrix multiplications follow the physical
ordering of the chain.

2.3 Loop Closure Equations

The open-loop chain derivatives (13) can be used for closed loops, as a closed
loop can be seen as a connection of multiple open-loops. E.g., a simple loop

1 D
(k)
x (A) denotes the matrix collection of all k-th order partial derivatives of A

with respect to x. D
(α)
x (A) denotes the mixed partial derivative with respect to the

elements of x. A sequence of derivatives to each xi with an order of the corresponding
αi value. This assumes that the mixed partial derivative are commutative.
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can be seen as a open chain of with the last link fixed to the base. The loop
closure equation (f) states how the members of the loop are constrained. It
can be written in terms of independent (u) and dependent coordinates (v),
also termed input and output, respectively. The total set of coordinates we call
s� =

[
u� v�]

. The solution to this problem is denoted by c, which can be the
inverse, forward, or any other kinematic model giving an exact relation between
independent and dependent coordinates.

f(u,v) = 0 v = c(u) (14)

The solution (c) to the loop closure is usually not available for complex mecha-
nisms. Therefore, we are looking for a Taylor expansion using higher-order deriv-
atives of the constraint formulation using the open loop derivatives of Sect. 2.2.
We start with the first order. This reads:

0 = Dt (f) = Du (f) u̇ + Dv (f) v̇ = Uu̇ + V v̇ (15)

This gives rise to the Jacobians (C) and (K), respectively linking v̇ and ẇ to u̇.

v̇ = −V −1Uu̇ = Cu̇ = Du (c) u̇ ṡ = Ku̇ =
[
C
I

]
u̇ (16)

We already have seen that closure equations can be written as a function of
transformation matrices of the open chain. Therefore, the higher-order partial
derivatives of D

(α)
s (U) and D

(α)
s (V ) are available. Now we are looking for a

method of writing the higher-order closure Jacobian Ck = D
(k)
u (c).

2.4 Multivariate Matrix Derivatives Using Kronecker Product

The higher-order partial derivatives of matrices can be managed with the use
of the Kronecker product [6]. Here the partial derivative version of the product
rule, the chain rule and the inverse matrix derivative are given.

• Product rule of A(x) ∈ R
n×m, B(x) ∈ R

m×q, for x ∈ R
r, and I is an identity

matrix:

Dx (AB) =
[
Dx (a1) B . . . Dx (am)B

]
+ ADx (B) (17)

= Dx (A) (B ⊗ Ir) + ADx (B) (18)

• Chain rule:
Dc (A(b(c))) = Db (A) (Im ⊗ Dc (b)) (19)

• Derivative of matrix inversion:

Dx

(
A−1

)
= −A−1Dx (A) (A−1 ⊗ Ir) (20)

Recursive applications of these rules allow the extension of these derivatives to
higher orders.
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2.5 Higher-Order Closure Jacobians and Taylor Approximation

Using the rules of the previous section, the second-order derivatives (Hessian) of
the solution to the constraint equations are found. This is done by consecutive
application of the chain rule, the product rule, and the inverse matrix derivative
to the Jacobian (16).

Du (C1) = C2 = −[Ds

(
V −1

)
(U ⊗ I) − V −1Ds (U)](I ⊗ K) (21)

= −V −1[Ds (V ) (C1 ⊗ I) + Ds (U)](I ⊗ K) (22)

After reordering and combination of the Kronecker products, we can find a
concise formulation of the Hessian matrix.

C2 = −V −1
[
Ds (V ) Ds (U)

]
(K ⊗ K) = −V −1F2G2 (23)

A further derivation is applied to show that a similar structure as the Hessian can
be found for the 3rd derivative. For higher orders this process can be repeated
until the desired order is reached, giving us a recursive algorithm.

Du (C2) = −V −1
[
Ds (V ) Ds (F2) F2

]
⎡
⎣C2 ⊗ K

G2 ⊗ K
Du (G2)

⎤
⎦ = −V −1F3G3 (24)

This algorithm consist of three steps: (1) The higher-order derivatives of V ,
and U are filled into the proper location of Fk. These can be found a priori by
higher-order screw derivatives of the open-loop equivalent. (2) The Gk matrix
is filled with precursory, lower-order results. (3) The combination of the three
matrices give the subsequent partial derivative of the closure Jacobian (Ck).
The derivatives of the Gk matrix involves permutation for the derivatives of the
Kronecker product [6]. The exact nature of this permutation is outside the scope
of this paper.

The Taylor approximation of the loop closure solution can now be written
using the partial derivatives of the closure Jacobians up to the k-th order. We
assume that at the evaluation point the closure constraint is satisfied, and that
s = 0 such that the Taylor series becomes a Maclaurin series. The input for the
independent variables is given as a power (denoted with the ⊗i) of Kronecker
products [6]:

v(u) = 0 + C1u +
1
2!

C2(u ⊗ u) +
1
3!

C3(u ⊗ u ⊗ u) + . . . ≈
k∑

i=1

1
i!

Ciu
⊗i (25)

2.6 Approximate Solution of a 5-Bar Mechanism

The higher-order derivatives and Taylor expansion is applied to approximate
the inverse kinematic model of a 5-bar mechanism. We choose to describe the
5-bar as a connection of two open chains (a, and b) with joints q1, q2 and q3, q4
respectively. The connection point is the end-effector x0. This point has to satisfy
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the constraint equation from both sides (a, b) calculated using the connection
point in the local frame (x2 and x4). The closure equation can be written as:

x0
a = H0

2 (q1,2)x2 x0
b = H0

4 (q3,4)x4 f : 0 =
[
x0 − x0

a

x0 − x0
b

]
(26)

Using the end-effector coordinates (u = x0) as input and the 4 joint angles
(v =

[
q1 . . . q4

]�) as output, the first-order partial derivatives of the closure
equation become:

Du (f) = U =
[
I
I

]
Dv (f) = V =

[
[t̂01×]x0

a [t̂02×]x0
a 0 0

0 0 [t̂03×]x0
b [t̂04×]x0

b

]
(27)

The higher-order partial derivatives can be found by using the twist derivatives
of Sect. 2.2 and recursive equations of Sect. 2.5.

3 Results

The Taylor approximation, up to the 5-th order, is done for 200 positions of
the end-effector (x0) forming 4 trajectories through the workspace with the aim
to find an approximation of the corresponding joint displacement of the joints
(q1 . . . q4). For evaluation of the quality of the Taylor approximation, the end-
effector position approximation from the left (x0

a) and right (x0
b) side are plotted

together with input trajectories.

x(m)

-4 -3 -2 -1 0 1 2 3 4

y(
m
)

-3

-2

-1

0

1

2

q4

q3

xxx

q1

q2

2b a4 b3

4b

5a

5b
Input

3a

Fig. 1. The Taylor approximation of the IKM of a 5-bar (solid black) around evaluation
point at x0 = [0, 0] up to the 5th order for 4 different trajectories. It shows the left
(solid colored) and right (dashed colored) estimation of end-effector trajectory (dashed
black). The insert shows convergence for higher-order estimation far from the evaluation
point.
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The result of the Taylor approximation (Fig. 1) shows that in a large por-
tion of the workspace around the evaluation point (x0 = 0) the approximation
converges to input indicating a correct estimation of finite joint displacement.
However, further from the evaluation point the accuracy is less as can be seen
in the insert.

4 Discussion and Conclusion

For the calculation of higher-order partial derivatives, this method uses Kro-
necker products of matrices, which can lead to very large matrices for larger
systems and higher orders. This possibly poses practical limits on applicability
of this procedure. Sparse matrices and the aggregation of mixed partial deriv-
atives can be used to mitigate the memory usage and reduce the number of
matrix operations. It is worth investigating what determines the validity of the
Taylor approximations in kinematics, such as the radius of convergence and the
closeness to singularities.

In this paper, a recursive method was presented which gives the higher-order
partial derivatives of closure Jacobians of open and closed loop mechanisms
consisting of lower kinematic pairs. This method relied on a simplified represen-
tation of the higher-order twist derivatives, also presented here, and the matrix
derivatives of Vetter [6]. This enabled the Taylor approximation of a kinematic
mapping over a given trajectory, as exemplified the 5-bar mechanism.
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Abstract. Recently, the authors presented a new over-constrained manipulator
with six degrees of freedom, based on a modified Gough-Stewart platform, and a
solution for its direct position analysis. In this paper, a different solution is
proposed based on a different parameterization that leads to a reduced system of
four closure equations. The new method simplifies the analytical derivation and
the geometrical interpretation of the results.
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1 Introduction

Several types of Gough-Stewart (GS) platforms were proposed in the literature [1].
A new mechanism has been recently presented [2], together with its direct position
analysis (DPA). The new manipulator is an evolution of a previous type of GS platform
[3] and has several interesting characteristics [2] with respect to the classic GS: it
features a lower number of kinematic pairs thus simplifying the mechanical design; it is
an over-constrained mechanism, giving the opportunity to remove clearance in kine-
matic pairs; it features a larger workspace, free from kinematic singularities for prac-
tical mechanism dimensions.

In this paper a new solution of the DPA is presented. The closure equations of the
mechanism have been found relying upon a technique, known as “open loop chain”,
that was presented in [4] and used to solve the DPA of many mechanisms.

Differently from the classical approach, we show in this paper that the core of the
DPA can be reduced to a system of four equations in four unknowns. The full analytical
derivation is reported here and the new solution is discussed.

© Springer International Publishing AG 2018
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2 Modified Gough-Stewart Manipulator

A full description of the new mechanism and of its characteristics is presented in [2]:
only its general features are reported here for the sake of clarity. The mechanism
(Fig. 1) is composed of a mobile platform (1) (defined by the points Ci, i = 1, 2, 3, that
define the plane r), with six degrees-of-freedom with respect to the fixed base
(2) (defined by the points Ai,j, i = 1, 2, 3, j = 1, 2), that are connected by means of
three kinematic chains i = 1, 2, 3 (Fig. 2), defined by the points Ai,1, Ai,2, Bi,2, Bi,1. The
mobile platform is connected to the upper link Bi,2Bi,1 of each kinematic chain by the
universal joints centered at points Ci. The two axes of the universal joint must not be
parallel to the normal to the plane ci passing through the points Ci, Ai,1, Ai,2, as to avoid
redundancy. In each kinematic chain, Bi,j and Ai,j denote the connection points of the
linear actuators with the upper link and the fixed base, by revolute and universal joints
respectively. These joints must comply with some geometrical conditions: the revolute
joint axes and the mobile axes of two universal joints must be parallel, while the other
universal joint axes must be collinear (Fig. 2). Because of the linear constraints, the i-th
kinematic chain lies on the plane ci for any configuration of the mobile platform.

A1,2

A1,1

A3,2

A3,1

A2,1

A2,2

B1,1

B3,2

B3,1

B1,2

B2,2

B2,1

SP

SB

Fig. 1. Schematic representation of the manipulator.
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3 Direct Position Analysis

The DPA problem is to find the configuration of the mobile platform, given the lengths
of the legs. For the sake of simplicity, the points Ai,j of the base will be considered on
the same plane, though the mechanism allows a more general geometry also. However,
the DPA presented in this paper can be easily generalized to the general geometry by a
few adjustments. Two Cartesian coordinate systems are defined (Fig. 1). The first one
(SB) is attached to the fixed base: its center is located at the centroid O of the fixed base,
x axis parallel to the vector A1,1A1,2, z axis orthogonal to the plane on which the fixed
base lies, y axis as a consequence. The second coordinate system (SP) is attached to the
mobile platform: it has center on the point C1, y axis coincident with the direction
C1C3, z axis orthogonal to the plane r, x axis as a consequence. The mechanism
geometry is defined as follows: ai,j is the position vector of the point Ai,j in SB; ci is the
position vectors of the point Ci in SP; ri is the vector that identifies the frame link of the
i-th kinematic chain (i.e., ri = Ai,2Ai,1); li,j is the length of the j-th link of the i-th
kinematic chain (i.e., li,j = ||Ai,jBi,j||); k is the unit vector normal to the plane r (i.e., the
unit vector of the z axis of the SP); ui is the unit vector normal to the plane ci; ti is the

Fig. 2. Detailed representation of the first kinematic chain.
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unit vector that defines the direction of the vector Bi,1Bi,2 (i.e., ti = Bi,1Bi,2/|| Bi,1Bi,2||),
and l is its norm (i.e., l = || Bi,1Bi,2||).

The position of the points C1 and B1,j can be described with respect to the SB by the
four parameters wi (i = 1,2,3,4) (Fig. 3): w1 is the angle between the vector r1 and the
vector A1,1B1,1, w2 is the angle between the plane c1 and the plane identified by the
fixed base, w3 is the angle between the vectors k and u1, and w4 is the angle between
the unit vector obtained as the cross product between the vector k and t1 and the y axis
of the SP. In particular, the position of the point C1 can be expressed as a function of w1

and w2 and the lengths l1,1 and l1,2 only, as it will be clarified further on. Moreover, it is
worth noting that the kinematic chain A1,1B1,1B1,2A1,2 is a four bar mechanism if the
prismatic joints are locked, and the angle h (i.e., the angle between the upper and the
lower links) can be expressed as a function of the angle w1 and the lengths l1,1 and l1,2,
according to the well-known relation [5]:

h = 2 tan�1 �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

 !
ð1Þ

SB

t1

k

Fig. 3. Representation of the four parameters used for the DPA.
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where

a ¼ �h1 þ (1þ h2) cos (w1)þ h4
b ¼ �2 sin (w1)

c ¼ h1 � (1� h2) cos (w1)þ h4

ð2Þ

and

h1 ¼ r1
l1
, h2 ¼ r1

l
, h4 =

�r21 � l21 � l2 + l22
2 � l � l1 ð3Þ

The position vector of the point C1 can be thus written as:

OC1 ¼ a1;1 þA1;1B1;1 þ B1;1B1;2

2
ð4Þ

Where the vector Bi,1Bi,2, can be express in SB as:

B(B1;1B1;2) ¼ l
cos h

sin h cosw2
sin h sinw2

0
@

1
A, B(A1;1B1;1) ¼ l1;1

cos w1
sin w1 cos w2
sin w1 sin w2

0
@

1
A ð5Þ

The position vector OCi (i = 2, 3) can be expressed as a function of the four parameters
as follows:

B(OCi) = B(OC1) + BRP
Pci i = 2, 3 ð6Þ

where

BRP = Rr1 (w2)Ru1 (h)Rt1 (w3)Rk(w4) ð7Þ

In (7), each R is the 3 � 3 orthonormal matrix that represents a rotation defined by the
angle in brackets about the axis specified in the subscript.

The expression of the point Bi,j (i = 2, 3; j = 1, 2) with respect to the SB can be
determined without adding new variables. In particular, it is worth noting that the
direction ti is obtained as the intersection between the two planes r and ci (Fig. 4). In
fact, the joint centered in Ci allows the upper link of the i-th kinematic chain to rotate
about the axis k, so as the direction ti lies on the plane r. Furthermore, the direction ti
lies on the plane ci, since the vector Bi,1Bi,2 identifies the upper link of the i-th
kinematic chain. Thus, the vector ti can be found as the cross product between k and ui:

ti =
k�ui
k� uij j ð8Þ
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Since:

ui ¼ ri � Ai;1Ci

ri � Ai;1Ci

�� �� ð9Þ

Finally, ti can be expressed without adding new variables:

ti ¼ k� (ri�Ai;1Ci)
k� (ri � Ai;1Ci)
�� �� ð10Þ

Fig. 4. Definition of the line that passes through the upper link of the kinematic chain
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where

Ai;1Ci ¼ OCi � ai;1 ð11Þ

The position vector Bi,j with respect to the SB can be written as:

OBi;j ¼ ai;j þAi;jBi;j ¼ OCi � l
ti
2

ð12Þ

Thus, a system of four equations in the four unknowns wn, n = 1,…,4, can be obtained:

(Ai;jBi;j)T (Ai;jBi;j) ¼ l2i;j ¼ (OCi � l
ti
2
� ai;j)T (OCi � l

ti
2
� ai;j)

i ¼ 2, 3; j = 1, 2;
ð13Þ

This system represents the final solution of the DPA, since it makes it possible to obtain
the values of the parameters wn that describe the platform pose, when the mechanism
geometry and the actuator lengths are given.

4 Numerical Example

As an example, a specific geometry of the mechanism is considered in this section and
its configuration is determined with the proposed DPA method for three representative
combinations of actuator lengths (Table 1). The points Ai,j are on a circle with diameter
db = 840 mm; position vectors of consecutive points Ai,j belonging to different kine-
matic chains form an angle of u = p/9 (Fig. 5); the points Ci of the mobile platform
form an equilateral triangle inscribed in a circumference of diameter dp = 280 mm; the
length of the upper link is l = 100 mm. In the first considered combination the actuators
have all the same length (corresponding to the initial configuration of the platform); in

Fig. 5. The three considered mechanism configurations.
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the second one, the actuators have the same length three by three that provide a con-
figuration in which the platform is rotated about the z axis); in the third configuration,
the actuators have length that provide a configuration in which the platform is rotated
about the y axis.

5 Conclusions

In this paper, a new solution for the DPA of a recently proposed over-constrained
parallel manipulator is presented. The mechanism is a modified version of the
Gough-Stewart manipulator, in which the platform is connected to the base by three
kinematic chains that behave as four bar linkages when the actuator lengths are fixed.
The new DPA solution is based on a parameterization that leads to a system of four
equations in four unknowns, thus reducing the classic system of six equations in six
unknowns. This parameterization makes it possible to represent the platform pose
through the configuration of a single kinematic chain, thus simplifying the analytical
derivation and the geometrical interpretation of the results.
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[l1,1 l1,2 l2,1 l2,2 l3,1 l3,2] W1 W2 W3 W4
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[891.6, 847.8, 891.6, 847.8, 891.6, 847.8] 1.21866 1.37925 −1.37925 1.183130
[973.3, 969.8, 1004.2, 1002.9, 939.5, 941.6] 1.17517 1.43822 −1.47862 0.438011
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Abstract. The main goal of this work is present a comparative study on several
methodologies to solve the equations of motion of constrained spatial multibody
systems taking into account the problem of constraints violation. In the sequel of
this process, the two main categories of methods to eliminate or reduce con-
straints violation are revisited, namely those that are based on constraint stabi-
lization approaches and direct correction formulations. Particular attention is
given to the most popular approaches, that is, Baumgarte stabilization formu-
lation, penalty method, Augmented Lagrangian formulation and a direct cor-
rection approach. Finally, several examples of application are considered to
compare the accuracy and efficiency of the different methods used throughout
this study.

Keywords: Constraints violation � Baumgarte method � Penalty approach �
Augmented Lagrangian formulation � Direct correction � Multibody dynamics

1 Introduction

By and large, the methods to deal with the problem of constraints violation for
dynamics of constrained multibody mechanical systems can be divided into three main
groups, namely: (i) constraint stabilization approaches; (ii) coordinate partitioning
methods and (iii) direct correct formulations [1]. The constraint stabilization approa-
ches are the most popular due to their simplicity and easiness for computational
implementation [2]. The coordinate partitioning methods have the great merit of
allowing the rigorous resolution of the constraint equations at the position, velocity and
acceleration levels. However, they suffer from poor numerical efficiency due to the
requirement for the iterative solution for dependent generalized coordinates in the
Newton-Raphson method [3]. Finally, the direct formulations have physical meaning,
computational efficiency, but they can exhibit some numerical instability [4].

The main focus of this study, which closely follows the recent work by Flores and
his coauthors [1], is on the elimination of the constraints violation in dynamic analysis of
spatial mechanisms. For this, body coordinates formulation is utilized to describe the
system components and the kinematic joints. The equations governing the dynamic
behavior of the systems incorporate corrective terms that are added to the position and
velocity vectors in order to satisfy the corresponding constraint equations. These cor-
rective terms are expressed in terms of the Jacobian matrix and kinematic constraint
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equations. The corrective terms are added and considered during the numerical reso-
lution of the dynamic equations of motion. Results for spatial mechanisms are presented
and utilized to discuss the assumptions and procedures adopted throughout this work.

2 Methods to Handle Constraints Violation

The translational and rotational equations of motion for dynamic analysis of con-
strained spatial mechanisms can be expressed in the form [5]

M DT

D 0

� �
_v
k

� �
¼ g

c

� �
ð1Þ

Applying any method suitable for the resolution of linear algebraic equations can
solve this linear system of equations. The existence of null elements in the main
diagonal of the leading matrix and the possibility of ill-conditioned matrices suggest
that methods using partial or full pivoting are preferred. In a simple way, Eq. (1) is
solved for the accelerations then, the velocities and positions can be obtained by
numerical integration. This procedure must be repeated until the final time of analysis is
reached. This manner to solve the dynamic equations of motion is commonly referred
to as the standard Lagrange multipliers method [5].

It is known that Eq. (1) does not use explicitly the position and velocity equations
associated with the kinematic constraints. Consequently, during the simulations, the
constraint equations start to be violated. In order to keep the constraint violations under
control, the Baumgarte stabilization method can be considered [2]. This method allows
constraints to be slightly violated before corrective actions can take place, in order to
force the violation to vanish. Thus, using the Baumgarte approach, the equations of
motion for a system subjected to kinematic constraints can be stated in the following
form

M DT

D 0

� �
_v
k

� �
¼ g

c� 2a _U� b2U

� �
ð2Þ

If a and b are chosen as positive constants, the stability of the general solution of
Eq. (2) is guaranteed. Baumgarte [2] highlighted that the suitable choice of the
parameters a and b can be performed by numerical experiments. Hence, the Baumgarte
method has some ambiguity in determining optimal feedback gains. The improper
choice of these parameters can lead to unacceptable results in the dynamic analysis of
the multibody systems [6].

The penalty method constitutes an alternative way to solve the dynamic equations
of motion. In this method, the equations of motion are modeled as a linear second-order
differential equation that can be written in the form [7]

mc
€Uþ dc _Uþ kcU ¼ 0 ð3Þ
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Taking into account the second derivative of the algebraic constraint equations,
then Eq. (3) yields

mcðD _vþ _DvÞþ dc _Uþ kcU ¼ 0 ð4Þ

Pre-multiplying Eq. (4) by the transpose of Jacobian matrix, DT, and after math-
ematical treatment, results in

mcDTD _v ¼ �DTðmc _Dvþ dc _Uþ kcUÞ ð5Þ

Let consider now the Newton-Euler equations of motion for a system of uncon-
strained system and written here as [5]

M _v ¼ g ð6Þ

Summation of Eqs. (5) and (6), and after some basic mathematical manipulations
yields

ðMþ aDTDÞ _v ¼ g� aDTð�cþ 2lx _Uþx2UÞ ð7Þ

where

a ¼ mc; dc ¼ 2lxmc and kc ¼ x2mc ð8Þ

Equation (8) is solved for the accelerations. This method gives good results if a
tends to infinity. Typical values of a, x and l are 1 � 107, 10 and 1, respectively [9]. It
should be noted that with this penalty method, multibody systems with redundant
constraints or kinematic singular configurations could be easily solved.

The augmented Lagrangian formulation penalizes the constraints violation, in the
same form as the Baumgarte stabilization method. This is an iterative procedure that
presents a number of advantages relative to other methods because it involves the
solution of a smaller set of equations, handles redundant constraints and still delivers
accurate results in the vicinity of singular configurations [7]. The augmented Lagran-
gian formulation consists of solving the system equations of motion by an iterative
process. Let index i denote the i-th iteration. The evaluation of the system accelerations
in a given time step starts as

M _vi ¼ g; ði ¼ 0Þ ð9Þ

The iterative process to obtain the accelerations proceeds with the evaluation of the
following equations obtaining the accelerations

ðMþ aDTDÞ _viþ 1 ¼ M _vi � aDTð�cþ 2lx _Uþx2UÞ ð10Þ

A Study on Constraints Violation in Dynamic Analysis 595



This iterative process continues until

_viþ 1 � _vik k ¼ e ð11Þ

Where e is a specified tolerance.
In what follows, an approach to deal with the elimination of the constraints vio-

lation at both position and velocity levels is briefly described [1]. For this, let consider
that during the numerical resolution of the dynamic equations of motion, the vector of
generalized coordinates needs to be corrected due to the constraints violation. Thus, the
corrected positions can be expressed in the form

qc ¼ qu þ dq ð12Þ

where qu denotes the uncorrected positions and dq is the set of corrections that
eliminates the constraints violation. This means that the corrective term has to be added
to vector qu in order to ensure that the constraint equations are satisfied, i.e.

UðqcÞ ¼ UðquÞþ dU ¼ 0 ð13Þ

The term dU in Eq. (13) can be understood as the variation of the constraint
equations and can be expressed as [8]

dU ¼ @U
@q1

dq1 þ
@U
@q2

dq2 þ . . .þ @U
@qn

dqn ¼ Ddq ð14Þ

Combining now Eqs. (13) and (14) yields

UðquÞþDdq ¼ 0 ð15Þ

which ultimately leads to

dq ¼ �D�1UðquÞ ð16Þ

In general, the Jacobian matrix, D, is not square, therefore, D−1 does not exist.
However, the concept of the Moore-Penrose generalized inverse matrix, D+, can be
employed as [1]

Dþ ¼ DTðDDTÞ�1 ð17Þ

such that

DDþD ¼ D DþDDþ ¼ Dþ ð18Þ
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and both D+D and DD+ are symmetric matrices. Consequently, it is possible to
establish the following mathematical relation [1]

DTðDDTÞ�1 ¼ DTðDþ ÞTDþ ¼ ðDþDÞTDþ ¼ DþDDþ ¼ Dþ ð19Þ

Thus, Eq. (16) can be rewritten in the following form

dq ¼ �DTðDDTÞ�1UðquÞ ð20Þ

Finally, introducing Eq. (20) into Eq. (15) yields

qc ¼ qu � DTðDDTÞ�1UðquÞ ð21Þ

that represents the corrected generalized coordinates in each integration time step. It
must be noticed that the kinematic constraint equations at the position level are, in
general, nonlinear, then Eq. (21) must be solved iteratively by employing a numerical
algorithm, such as the Newton-Raphson method.

A similar analysis can be performed at the velocity level, resulting in

vc ¼ vu � DTðDDTÞ�1 _Uðqc; vuÞ ð22Þ

that represents the corrected generalized velocities in each integration time step.
The described methodology can be easily incorporated in the standard method to

solve the dynamic equations of motion. The approach described above does not con-
sider weighting factors to the coordinates and velocities variables. In order to take into
account different weighting factors, some works have been proposed to include inertia
of bodies, which allow for the adjustments to be made in an inverse manner to the
system inertia. The basic idea of this approach is that the more massive bodies are
moved the least if the constraints allow that [8].

3 Results and Discussion

In order to examine the effectiveness of the approaches briefly presented in the previous
section, a spatial four bar mechanisms is considered as an example of application.
Figure 1 depicts the initial configuration of this mechanism, which includes three
moving bodies, a non-moving body (the ground), two revolute joints and two spherical
joints. The revolute joint that connects the crank to the ground is along the x-axis, while
the revolute joint that connects the follower to the ground is in the xy plane and makes a
45º angle with the y-axis. At the initial time, the crank is along the z-axis and the other
two moving bodies are in the yz plane. A spring element is also considered in this
multibody system model in which the spring stiffness and the natural length are equal
to 50 N/m and 0.8 m, respectively. Governing properties of the four bar mechanism are
presented in Table 1. The initial conditions necessary to characterize this multibody
model are obtained from a kinematic analysis for an input constant crank speed equal to
2p rad/s.
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Long time computational simulations are performed to test and compare the
accuracy and efficiency of use different methods to solve the dynamic equations of
motion. For this purpose, five approaches are considered, namely the standard method
based on the technique of Lagrange multipliers, the Baumgarte method, the penalty
method, the augmented Lagrangian formulation and the described methodology. The
quantitative measure of the efficiency of these approaches is drawn from the constraints
violation as UTU, as well as from the computation time of the dynamic simulations.
Table 2 gives the parameters used for the different models, necessary to characterize
the problem.

Figure 2 shows the constraints violation at the position level for the four bar
mechanism. It should be noticed that different scales are used for the results plotted in
Figs. 2a–b, in order to clearly observe the effect of the method used to solve the system
dynamics on the constraints violation. By analyzing the diagrams of Figs. 2, it can be
observed that when the standard method is utilized the violation of the constraint
equations grows indefinitely with time. As it was expected, the standard method based
on the Lagrange multipliers technique produces unacceptable results because the
kinematic constraint equations are rapidly violated due to the inherent errors and
instability that develop during computations. With the stabilization methods, the

Rocker

Crank

x

y

z

Coupler

k

Fig. 1. Spatial four bar mechanism modeled

Table 1. Governing properties for the four bar linkage

Body Length [m] Mass [kg] Moment of
inertia [kgm2]
Inn Igg Iff

Crank 0.020 0.50 0.03 0.03 0.03
Coupler 0.064 1.50 0.02 0.02 0.02
Rocker 0.070 0.15 0.02 0.02 0.02
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behavior of the different methods is significantly different, in the measure that the level
of the constraints violation is kept under control during the dynamic simulations.
Indeed, with the Baumgarte approach, the penalty method and the augmented
Lagrangian formulation experience tells that the numerical results do not diverge from
the exact solution, but oscillate around it. Magnitude and frequency of the oscillations
depend on the values of the penalty parameters used. Finally, when the described
methodology is utilized to solve the dynamic equations of motion, the constraints
violation is eliminated as it can be observed in Figs. 2. In fact, with the described
approach the average of the constraints violation is of order 1.0 � 10−16.

Figure 3 depicts the computation time consumed in dynamic simulations for the
four bar mechanism, which can be used to have an idea about the computational
efficiency of the different methods used to solve the system dynamics. The most
efficient method to deal with the constraints violation is the Baumgarte approach. It can
be observed that the described approach does not penalize the total amount of com-
putation time when compared with the other methods to solve the dynamic equations of
motion. It must be stated that the standard method is, in fact, the most efficient
approach, however, it does not take into account the problem associated with the
constraints violation.

The efficiency of the described method can be understood by its nature, in the
measure that the two additional blocks are added to the standard solution of the
equations of motion [1]. The elimination of the constraints violation for positions needs
an iterative scheme, because the corrective terms are dependent on the positions.

Table 2. Parameters used for the dynamic simulations

Final time of simulation 5.0 s Baumgarte - a 5
Integrator algorithm ode45 Baumgarte - b 5
Reporting time step 0.02 s Penalty - a 1 � 107

Relative tolerance 1 � 10−6 Penalty - x 10
Absolute tolerance 1 � 10−9 Penalty - l 1
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Fig. 2. Constraints violation UTU of the four bar mechanism
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However, based on the computational tests performed, this process requires at most
three iterations to eliminate the constraints violation at the position to an acceptable
level. The constraints violation for velocities are eliminated with a single step, since
constraints at the velocity level are linear and the corrective terms are computed as
function of the corrected positions performed previously.

4 Conclusions

A comparative study on the several methodologies to handle the problem of constraints
violation in forward dynamics of constrained spatial mechanical systems has been
presented in this work. For this, the most commonly used method to deal with reso-
lution of the equations of motion and constraints violation have been revisited, namely
the Baumgarte stabilization method, the penalty approach and the augmented
Lagrangian formulation. In addition, an alternative approach to eliminate the violation
of the kinematic constraint equations in the framework of forward dynamics of con-
strained multibody systems has been described. The basic idea of the described
approach is to add corrective terms to the position and velocity vectors with the intent
to satisfy the corresponding kinematic constraint equations. These corrective terms are
evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix
and of the kinematic constraint equations. Finally, a spatial four bar mechanism has
been considered as a demonstrative example of application to show that the effec-
tiveness of the several approaches utilized in this study. From the obtained results, it
can be drawn that the described approach is effective in eliminate the constraints
violation at both positions and velocities levels without penalizing the computational
efficiency.

Acknowledgments. This work has been supported by FCT with the reference project
UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional
Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-
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Fig. 3. Computation time for the four bar mechanism
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Abstract. Inverse kinematics is a very important issue in the field of mecha-
nisms and robotics, which is the fundamental problem in kinematical analysis,
design and synthesis for both serial mechanisms (SMs) and parallel mechanisms
(PMs). The objective of inverse kinematics is to formulate computable kine-
matic equation at the given pose of end-effector of a SM or moving platform of a
PM and then solve all the joint parameters (variables). Solving analytical
solution of inverse kinematics is the prerequisite for trajectory planning, precise
control and manipulation of mechanisms. This paper presents a generalized
method to analytically do inverse kinematics of PMs using finite screw theory.
Firstly, the kinematic equation of PM is algebraically formulated through
describing finite motions generated by the PM, its limbs and joints employing
finite screws. Then, the general procedures to analytically solve the finite screw
based kinematic equation are given. Finally, a PM with three translational and
one rotational Schoenflies motion is taken as an example to verify the validity of
the proposed method.

Keywords: Parallel mechanisms � Inverse kinematics � Screw theory � Finite
screw

1 Introduction

Inverse kinematics, which is also called inverse position problem, is aimed at formu-
lating kinematic equation of a mechanism at the given pose and solving all the joint
parameters (variables). It is a fundamental problem in kinematical analysis, design and
synthesis for both serial mechanisms (SMs) and parallel mechanisms (PMs) [3, 7].
Solving analytical solution of inverse kinematics is the prerequisite for trajectory
planning, precise control and manipulation of mechanisms. Because all the joint
parameters of a PM can be obtained through solving the joint parameters in each of its
limbs sharing the same moving platform, inverse kinematics of a PM can be decom-
posed into several inverse kinematics problems of SMs. According to the mathematical
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tools that are used to formulate kinematic equations, the existing methods to deal with
inverse kinematics can be classified into two categories, i.e., vector chain based method
and exponential matrix based method.

In vector chain based method, three-dimensional position vectors are used to for-
mulate the kinematic equations through building the mapping between the positions
and orientations of the given pose. In the formulated position equations, all joint
parameters are independent and decoupled. Hence, the equations can be solved by
means of elimination. The vector chain based method can be traced back to the early
research of theoretical kinematics, and detailedly discussed and concluded by Wampler
[8] and Craig [1]. Based upon this, inverse kinematics of SMs constituted by six
revolute (R) joints are solved by Raghavan and Roth [5] through engine value and
vector analysis of several univariate polynomial equation with high-order. Because
lower mobility SM can be regarded as the sub-chain of six degree-of-freedom
(DoF) SM, and six DoF SM can be regarded as the sub-chain of SM with higher DoFs,
this method can be extended to solve any SM. It should be noted that nonlinear
equations relating the joint parameters and the given orientations needed to be solved
when the number of DoFs of the SM is more than three. This brings huge difficulties to
analytical solution of inverse kinematics. Thus, numerical methods are usually needed
when solving higher DoF SMs.

Using exponential matrix with joint parameter to describe pose transformation
between adjacent links, the kinematic equation can be obtained by multiplying these
matrices together. In the formulated kinematic equation, all the joint parameters are in
the exponents, the algebraic operations can only be carried out using
Baker-Campbell-Hausdorff formula or Taylor series expansion. Because there are too
many terms in the expanded matrix polynomials, the kinematic equations are hard to be
analytically solved. Thus, solution of inverse kinematics mostly relies on numerical
methods [2]. For the kinematic equations formulated by exponential matrix based
method, inverse kinematics can also be solved by geometrical methods. Based upon
Kahan’s research work, Paden [4] decomposed the inverse kinematics of SMs into
several typical sub-problems through concluding the common structure units of SMs.
The analytical solution of each sub-problem is given by geometrical and algebraic
derivations. It should be noted that the Paden-Kahan sub-problems do not cover all the
possible structure units of SMs. Hence, some SMs cannot be solved applying these
sub-problems.

From the above analysis, it can be concluded that the existing methods cannot
obtain analytical solution of inverse kinematics for arbitrary SMs because of the
mathematical tools used. Both vector chain and exponential matrix have some limi-
tations in describing finite motions and formulating kinematic equations of mecha-
nisms. Hence, the clear algebraic mapping between all the joint parameters and the
given pose has not been built. As the concise and non-redundant description of finite
motions with analytical composition screw triangle product [6], finite screw has the
potential to overcome the limitations of vector chain and exponential matrix. As shown
in the authors’ previous work [6, 9, 10], the algebraic structures of finite screws were
revealed and the derivative mapping between finite and instantaneous screws was built,
resulting in a general and consistent method to unify type synthesis and kinematic
analysis under the umbrella of screw theory. In this paper, inverse kinematics will be
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carried out employing finite screws, which leads to a systematic and thorough theo-
retical framework that unifies topological, position and orientation (pose), velocity
modeling and analysis together.

Based upon the authors’ previous work, this paper presents a generalized method to
analytically do inverse kinematics of PMs using finite screw theory. The paper is
organized as follows. Having a brief review of the state-of-the-art of the existing
methods for inverse kinematics in Sect. 1, Sect. 2 presents the new method to alge-
braically formulate kinematic equations of a PM and its limbs employing finite screws.
In Sect. 3, the general procedures to analytically solve the finite screw based kinematic
equation are given. A PM with three translational and one rotational Schoenflies
motion is taken as an example to verify the validity of the proposed method in Sect. 4
before the conclusions are drawn in Sect. 5.

2 Finite Screw Based Kinematic Equations

A finite motion of a rigid body from its initial pose to arbitrary pose can be presented as
a rotation about the Chasles’ axis followed by a translation along that axis, which can
be described by a finite screw Sf in quasi-vector [6] form as

Sf ¼ 2 tan
h
2

sf
rf � sf

� �
þ t

0
sf

� �
ð1Þ

where sf and rf denote the unit vector and position vector of the finite motion axis, h
and t are the angular and linear displacement about/along that axis.

A SM constituted by n one-DOF joints (R joints and prismatic (P) joints) is shown
in Fig. 1. Using finite screws to describe the finite motions generated by R and P joints,
the finite motions realized by the end-effector can be expressed by screw triangle
product [6]. Thus, the kinematic equation of a SM at a given pose can be formulated as

Base

,SM,1fS
Joint 2

Joint n-1

Joint 1

End-effector
Joint n

,SM,2fS

,SM, 1f n−S

,SM,f nS

z

y
O

x

Fig. 1. Finite motions of a SM
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Sf ;SM;nMSf ;SM;n�1M � � �MSf ;SM;1 ¼ Sf ;SM ð2Þ

Sf ;SM;k ¼
2 tan hSM;k

2
sSM;k

rSM;k � sSMk

� �
R joint

tSM;k
0

sSM;k

� �
P joint

; k ¼ 1; 2; � � � ; n

8>><
>>:

where Sf ;SM denotes the given pose of the SM, the denotations of the symbols in
Eq. (2) can be referred to those in Eq. (1).

For a PM composed of l limbs, each limb is a SM sharing the same end-effector, i.e.
the moving platform of the PM. Hence, all the joint parameters can be obtained through
solving l kinematic equations relating l limbs in form of Eq. (2).

Sf ;i;niMSf ;i;ni�1M � � �MSf ;i;1 ¼ Sf ;PM ; i ¼ 1; 2; � � � ; l ð3Þ

where Sf ;i;k (k ¼ 1; 2; � � � ; ni) denotes the finite screw generated by the kth joint in the
ith limb, Sf ;PM is the given pose of the PM.

Equation (3) can be equivalently rewritten using screw triangle product, resulting in
clear algebraic mappings between the joint parameters hi;k, ti;k and the given pose Sf ;PM.
In this way, the joint parameters can be solved by algebraic derivations.

3 Generalized Method to Solve Kinematic Equations

According to Reference [6], the resultant finite screw composited by several finite
screws has the quasi-vector form of Eq. (1). Thus, the left side of Eq. (3) can always be
rewritten into the following form

Sf ;i;niMSf ;i;ni�1M � � �MSf ;i;1 ¼ 2 tan
hi
2

sf ;i
rf ;i � sf ;i

� �
þ ti

0
sf ;i

� �
ð4Þ

where sf ;i, rf ;i, hi and ti of the ith limb are functions of the joint parameters hi;k, ti;k of
that limb.

If the pose of the PM is given as

Sf ;PM ¼ 2 tan
hPM
2

sf ;PM
rf ;PM � sf ;PM

� �
þ tPM

0
sf ;PM

� �
ð5Þ

the following equations can be derived based upon Eqs. (3)–(5)

tan
hi
2
¼ tan

hPM
2

; sf ;i ¼ sf ;PM ð6Þ

rf ;i � sf ;i þ ti
2 tan hi

2

sf ;i ¼ rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM ð7Þ
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Equation (6) is the mapping between the joint parameters relating rotational
motions of the ith limb and the orientation of the moving platform. Equation (7) is the
mapping between the joint parameters relating translational motions of the limb and the
position of the moving platform. When Sf ;PM is given, all joint parameters can be
analytically solved using Eqs. (6) and (7). The detailed steps of inverse kinematics for
PMs are listed as follows:

Step 1: Formulate kinematic equations of each limb as Eq. (3) (Eqs. (6) and (7));
Step 2: Solve rotational parameters of each limb using Eq. (6);
Step 3: Solve translational parameters of each limb using Eq. (7).

4 Examples

A PM with Schoenflies motion is for example, this PM is composed of four limbs in
which every two limbs placed oppositely have the same structures, i.e., P1P2P3RaRb

and P1P2RaRaRc. Given Sf ;PM, we solve one limb P1P2P3RaRb and one limb P1P2Ra

RaRc in this Section.

Limb P1P2P3RaRb:
The kinematic equation can be formulated by Eqs. (3), (6) and (7)

2 tan
hb
2

sb
rb � sb

� �
M2 tan

ha
2

sa
ra � sa

� �
MtP3

0
sP3

� �
MtP2

0
sP2

� �
MtP1

0
sP1

� �
¼ Sf ;PM

ð8Þ

tan
hba
2

¼ tan ha
2 sa þ tan hb

2 sb þ tan ha
2 tan

hb
2 sa � sbð Þ�� ��

1� tan ha
2 tan

hb
2 s

T
a sb

¼ tan
hPM
2

;

sba ¼
tan ha

2 sa þ tan hb
2 sb þ tan ha

2 tan
hb
2 sa � sbð Þ

tan ha
2 sa þ tan hb

2 sb þ tan ha
2 tan

hb
2 sa � sbð Þ�� �� ¼ sf ;PM ð9Þ

pba þ
t� sba

2
þ t

2 tan hba
2

¼ rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM ð10Þ

where

pba ¼
tan ha

2 ra � sað Þ þ tan hb
2 rb � sbð Þ þ tan ha

2 tan
hb
2 sa � rb � sbð Þ þ ra � sað Þ � sbð Þ

tan ha
2 sa þ tan hb

2 sb þ tan ha
2 tan

hb
2 sa � sbð Þ�� �� ;

t ¼ tP1sP1 þ tP2sP2 þ tP3sP3
The two rotational parameters ha and hb can be solved from Eq. (9) as

ha ¼ 2 arctan
sTf ;PM sa � sbð Þ

sTf ;PMsb � sTa sbs
T
f ;PMsa

 !
; hb ¼ 2 arctan

sTf ;PM sa � sbð Þ
sTf ;PMsa � sTa sbs

T
f ;PMsb

 !
ð11Þ

The three translational parameters tP1 , tP2 and tP3 can be solved from Eq. (10) as
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tP1 ¼
tT sP2 � sP3ð Þ
sTP1 sP2 � sP3ð Þ ; tP2 ¼

tT sP1 � sP3ð Þ
sTP2 sP1 � sP3ð Þ ; tP3 ¼

tT sP1 � sP2ð Þ
sTP3 sP1 � sP2ð Þ ð12Þ

where

t ¼ E3

2 tan hba
2

� ~sba
2

 !�1

rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM � pba

 !
;

E3 is a unit matrix of order three, ~sba is the skew matrix of sba.

Limb P1P2RaRaRc:
The kinematic equation can be formulated

2 tan
hc
2

sc
rc � sc

� �
M2 tan

ha2
2

sa
ra2 � sa

� �
M2 tan

ha1
2

sa
ra1 � sa

� �
MtP2

0

sP2

� �
MtP1

0

sP1

� �
¼ Sf ;PM ð13Þ

The two rotational parameters ha1 þ ha2 and hb can be solved in the similar manner
as Eqs. (9) and (11). The three translational parameters ha1 , tP1 and tP2 can be solved
from the position part of Eq. (13)

t ¼ E3

2 tan hca
2

� ~sca
2

 !�1

rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM � pca

 !
ð14Þ

where

pca ¼

tan
ha1 þ ha2

2 ra2 � sað Þþ tan hc
2 rc � scð Þ

þ tan
ha1 þ ha2

2 tan hc
2 sa � rc � scð Þþ ra2 � sað Þ � scð Þ

 !

tan
ha1 þ ha2

2 sa þ tan hc
2 sc þ tan

ha1 þ ha2
2 tan hc

2 sa � scð Þ
���

���

t ¼ exp ha1~sað Þ � E3ð Þ ra2 � ra1ð Þþ tP1sP1 þ tP2sP2

The solution of Eq. (14) is

ha1 ¼ 2 arctan
A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þB2 � C2
p

BþC

 !
;

tP1 ¼
t� exp ha1~sað Þ � E3ð Þ ra2 � ra1ð Þð ÞT sP2 � sP1 � sP2ð Þð Þ

sTP1 sP2 � sP1 � sP2ð Þð Þ ;

tP2 ¼
t� exp ha1~sað Þ � E3ð Þ ra2 � ra1ð Þð ÞT sP1 � sP1 � sP2ð Þð Þ

sTP2 sP1 � sP1 � sP2ð Þð Þ ð15Þ
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where

A ¼ sa � ra2 � ra1ð Þð ÞT sP1 � sP2ð Þ; B ¼ ra2 � ra1ð ÞT sP1 � sP2ð Þ

C ¼ tþ ra2 � ra1ð ÞT sP1 � sP2ð Þ

In this way, all the joint parameters of this PM can be analytically solved.

5 Conclusions

This paper presents a generalized and analytical method to solve inverse kinematics of
SMs and PMs using finite screw theory. The main merits of this method are:

(1) The method can be applied to get analytical solution of inverse kinematics for
arbitrary SMs and PMs.

(2) The main advantage of this method is accuracy and the analytical solution can be
directly used in trajectory planning, precise control of mechanisms.

(3) United with the authors’ previous work, all topological, position and orientation
(pose), velocity modeling and analysis can be unified into the systematic and
consistent framework of screw theory.
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