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Chapter 1
Introduction

Generating a defined motion is one of the fundamental tasks for a machine. By
definition, a robot is a universal machine dedicated to creating motion that can be
freely programmed. A large variety of mechanisms are known that are capable of
creating different kinds of motion which can be characterized by the degree-of-
freedom of the motion, its dynamic characteristics such as velocity and acceleration,
and its accuracy.Whenever objects aremoved ormanipulated, the payload or strength
of the machine becomes an additional topic of interest. Once a technology to achieve
the desired effect is known, the technological development aims at optimizing the task
in some sense, for example by increasing the payload, velocity, or accuracy. At the
same time, economical factors drive the development into decreasing costs for the
machine while maintaining the performance level. Therefore, there is a persistent
trend in robotics to develop technical solutions that are superior in some of these
aspects.

In the field of robotics and motion generators, the idea of a robot that is purely
suspended and driven by cables was introduced in the 1980s. Since then, some
researchers all over the world have taken up the idea to create a new generation of
robotic systems that exploit the outstanding potentials of using cables to actuate a
robot. The use of cables to constrain a mobile platform in space offers a number of
promising advantages that mostly follows from the ultra light-weight design of the
robot.

1.1 From Serial Robots to Cable Robots

Serial robots are inspired by the structure and function of the human arm which
consists of a series of joints and bones connecting the torso with the hand. Using the
muscles as actuators, the hand can be freely moved in space to manipulate objects in
the environment. For a robot as technical system, muscles and bones are replaced by

© Springer International Publishing AG, part of Springer Nature 2018
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a) industrial robots b) Stewart-Gough platform c) Delta robot

Fig. 1.1 Conventional robot architectures: Industrial robots, Stewart–Gough platform, and delta
robot

links and actuated joints in order to mimic the human’s motion capacities (Fig. 1.1a).
Theoverall kinematic chain is called serial,meaning that there is oneunique sequence
of links and actuated joints that create the desired motion. Serial robots are often
referred to as robotic arms or articulated robots due to their kinematic similarity
with the human arm.

The difference of a parallel robot with respect to a serial robot is to add more
kinematic chains to connect the end-effector with the base (see Fig. 1.1b, c). In order
to allow for independentmobility in such a structure,most of the joints are left passive
without motors. Although there are many possible choices to distribute the motors on
the parallel robot, a beneficial solution is to put one motor on each kinematic chain
to distribute the load amongst all kinematic chains. Again, this concept of parallel
actuation can be found in the human body. Although the overall kinematic structure
of human arms and legs is serial, the actuation of the joints has a parallel topology.
This becomes evident especially for multi degree-of-freedom joints such as the hip
or the shoulder, where a number of muscles drive the joint in parallel. The actuation
of the human arms is done through muscles and sinews, where both elements are
only able to generate and transmit tensile forces and thus cannot push. Therefore,
all joints are driven by an antagonistic principle requiring two actuators, one for
each direction of motion. This unilateral actuation scheme was adopted in robots for
hands, serial, and parallel robots. However, a cable robot is not a bionic approach
since both structure and actuation are achieved through the cables.

When discussing the differences between serial and parallel robots, it is important
to note that parallelism relates to the topological structure of the robot and not to
its geometry (Fig. 1.2). The difference can be understood when comparing the robot
structure with electrical networks. A parallel circuit as an electrical network has
nothing to do with geometrical parallelism of the elements on the board but with
the electric current divided amongst the resistors, whereas the current flows through
all resistors in a series connection (Fig. 1.3). If we exchange the resistor with joints
and the current with force, respectively, the terms serial robot and parallel robot
become clear; parallel and serial relate rather to the topology of the system than to
its geometry.
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serial tree parallel

Fig. 1.2 Comparison between the topological structure of serial, tree, and parallel robots

Fig. 1.3 Analogy to
electrical networks
concerning serial and parallel
topology with current i and
resistance R1, R2

R1 R2

i i

R1 R2

i

i

serial parallel

1.1.1 Cable Robots as Intelligent Cranes

The idea of using cables to manipulate loads is very old. Even in the ancient world,
cables were used to lift loads in construction and similar applications. Until today,
cranes are widely used in construction and industrial production since they are ver-
satile and cost efficient machines. When looking closely at typical handling and
large-scale assembly scenarios, the seed for using cable robots can be found: When
the load needs to be placed accurately or even assembled, human workers fix some
handy ropes on the load to drag the load into position, to suppress swaying of the
load, or to counteract perturbation caused by wind (Fig. 1.4). Every cable added to
the platform constrains one degree-of-freedom and in practice, it is common that
some workers cooperate by dragging a load into position. Having noticed that a
coordinated motion of the additional cables grants control over the load’s motion, it
is only a small step to use motor winches to do the dragging. In the second step, a
computer is applied to synchronize the motion of the winches and to perform pre-
defined motions with the winches such that the load is moved in the desired way. A
computer controlled crane is nothing else but a cable-driven parallel robot.
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Fig. 1.4 Extending a mobile crane towards a cable-driven parallel robot. Adding one winch allows
to control one direction of the load’s motion. Using some winches the motion can be fully-
constrained

1.1.2 Cable Robots as Ultra Light-Weight Designs

The weight of a robot mostly results from the weight of its actuators as well as from
the weight of the robot structure. For most serial robots, the weight of electric cables,
sensors, and tools comes second to themachine structure and the drive-trains.Amajor
advantage of parallel robots is that each of the legs is driven by a single actuator and
therefore no actuator has to support the weight of any other actuator. Moreover, there
are different designs where the actuators can be fixed on the machine frame and thus,
only the passive machine structure must be lifted, balanced, and accelerated. The
advantage of this design is twofold: One can use smaller actuators and lighter links.

The weight of the robot’s structure depends on the load case that has to be used
for dimensioning. Serial robots are mostly driven by the torque in their joints and
therefore the armsof serial robots are subject to bending (left in Fig. 1.5). Towithstand
bending, large cross sections have to be used leading to heavy machine parts. This
limits, in turn, the dynamic performance as well as the maximum payload. The
structure of parallel robots like Stewart–Gough-platforms orDelta robots can ease the
load case used to dimension their parts. The critical load case changes from bending
to buckling, which allows to reduce the weight of the robot’s legs compared to serial
robots. Delta robots impressively demonstrate the effectiveness of this approach and
achieve very high accelerations [103]. The basic idea of cable-driven parallel robots
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Fig. 1.5 Comparison of the critical load case in the design of a robot. Serial robots have to be
designed for bending, Stewart–Gough-platforms are designed to withstand buckling of the legs,
and cables are subject to pure tension

is to use a structure where the load case on the structure elements is optimal, i.e. pure
tension is applied to the elements which allows the minimization of the transmission
element’s weight. This can be achieved by thin bars, belts, chains, and cables. Cables
offer the advantage that they can be coiled for both actuation and transport. From the
point of view of the structural design, cable robots are probably themost light-weight
structure for a manipulator.

1.2 State of the Art

So far, although cable robots are hardly used in practical applications, there are a
number of prototypes. In the following, an overview of the development of cable
robots is presented along with a list of many laboratory prototype systems. As far
as possible, the targeted application and related literature are presented. Clearly, the
overview has to be concise and details of the robot system are omitted due to limited
space here.

1.2.1 History and Prototypes

As early as 1984, Landsberger and Sheridan presented some first ideas on cable-
controlled parallel linked robotic devices in the master thesis [280], as well as in
[281, 282]. Their robots were completely actuated by cables but rely on an additional
strut. Around the same time, the patent of the famous cable-based camera system



6 1 Introduction

Skycam was filed by Brown [67, 100] which is at the same time one of the few
commercial applications of cable robots. A first kinetostatic study of Skycam-type
systems was presented by Tanaka [456] and Higuchi [209] proposed to use such
multi-cable cranes as robots for construction.

Later, the RoboCrane system at NIST [106] was presented in 1989, and it seems
to be the first larger prototype. A first patent on the RoboCrane was filed already in
1988 by Albus [5]. The RoboCrane was inspired by the structure of the well-known
Stewart–Gough-platform where the arrangement is somewhat inverted: To keep the
cables under tension, the mobile platform is located under the fixed anchor points.
Therefore, only pulling forces have to be exerted by the connecting legs and cables
can be used instead of rigid struts. RoboCrane was evaluated for large-scale handling
and one targeted application was ship building [6, 7, 106]. At the same time, a cable
robot was proposed as haptic interface in space robots [290]. Kurtz [267] studied the
problemof force distribution already in 1991 and proved that n+1 cables are required
to fully constrain a rigid body with n degrees-of-freedom. Kawamura [238] outlined
first ideas of a seven cable parallel robot for teleoperation. At this time, Ming and
Higuchi [349] introduced a classification for cable robots to characterize different
designs depending on the number of cables and degrees-of-freedom. The prototype
Falcon was published some years later by Kawamura [237]. Already in 1995, it
was experimentally shown that accelerations > 400 m/s2 can be generated by cable
robots. Kawamura designed the Falcon system for fast pick-and-place operations
to take advantages of outstanding dynamic capabilities of cable robots. Some years
later, Tadokoro developed a mobile cable robot system for rescue after earthquakes
[305, 452] and underlined the possibility to build a relatively light and portable robot.

The research on cable robots broadened with the turn of the millennium. Beside
the works in Japan and the USA, groups in Europe, China, and Iran also started their
research. Lafourcade applied the ultra-light structure of a cable robot for motion
generation in wind tunnels [270, 271]. A light-weight prototype named Segesta was
developed at the University of Duisburg-Essen, Germany [68, 139, 210, 473], as a
research system for kinematics, control, and design studies. For a small payload of
150g an acceleration of up to 200m/s2 was experimentally realized.At the same time,
the under-constrained robot Cablev was developed as scaled prototype for handling
and automated container cranes at the University of Rostock, Germany [206, 306].
When parallel robots were intensively analyzed in a priority program in Germany
for machine tools, some efforts were undertaken to build a cable robot to be used as
machine tool [258, 467]. A bit later, the robot String-Man was used at Fraunhofer
IPK (Berlin, Germany) for gait rehabilitation with focus on force control and safety
considerations [448, 449]. At INRIA in France, the robot family Marionet included
a small size prototype for high-speed applications, a portable crane for rescue, and
components for person assistance [324]. There are a couple of recent works from
Canada where Otis developed a locomotion system [372, 374]. A motion simulator
for sport devices was developed at the ETH Zurich, Switzerland [411, 531, 532].
In China, researchers are building the world’s largest cable robot for positioning the
reflector of the telescope FAST (Five hundred meter Aperture Spherical Telescope)
[27]. In Iran, the KNTU cable robots were studied [15]. Beside these, many other
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prototypes have been developed that we cannot discuss here in detail. An overview
of systems that have been identified is given in Table1.1 and a detailed overview of
applications is presented in Sect. 2.4.

1.2.2 Overview

Most works on cable robots were published as contributed papers or as theses. Cur-
rently, some 700 contributions in journals and on conferences have been identified.
Taking into account the difficulty to find all contributions, it is estimated that around
1000 papers might exist. The available literature mostly deals with specific aspects
such as kinematics, statics, dynamics, and control of cable robots rather than giving
a thorough introduction to the topic. The early works mentioned above deal with
most of the basic effects. However, their approach and terminology are frequently
difficult to understand and mostly not in line with recent publications. Especially
in the first papers, cable robots are often considered as special forms of collabora-
tive cranes [106] or parallel robots [267, 281]. Merlet’s reference book on parallel
robots [322] contains many aspects that hold true for cable robots but only slightly
touches the topic of which theorems on conventional parallel robots need extension
to cable robots and which aspects are completely different. Longer introductions
related to a whole field of problems can be found in a number of PhD theses, by
e.g. Verhoeven [473] (statics, force distribution, and workspace), Maier [306] (con-
trol of under-constrained robots), Bosscher [45] (kinematics and workspace), Fang
[139] (control of fully-constrained robots and motion planning), Heyden [206] (con-
trol of under-constrained robots), Arsenault [16] (tensegrity), Pusey [405] (design,
workspace, and control of suspended robots), Diao [115] (HIL simulation), Tavolieri
[461] (rehabilitation), Bouchard [59] (wrench set, interference, and design), Otis
[371] (haptic interface), Borgstrom [41] (force distribution), Bruckmann [68] (stat-
ics and application), and Gouttefarde [178] (workspace), Liu [292] (design, statics,
and dynamics), Riehl [415] (design),Azizian [19] (parameter design), Lamaury [274]
(force control), Nguyen [361] (kinematics and cable modeling), Berti [34] (kinemat-
ics of under-constrained robots), Yuan [513] (stiffness and sagging), Kraus [259]
(force control), Schmidt [431] (kinematisc and accuracy), and Wehr [488] (fatigue
of synthetic fiber cables). In contrast, little was published on practical issues such as
themechatronic design of the hardware, procedure for planning a cable robot system,
or on economical feasibility studies.

Only a small number of contributions presented the framework of cable robots in a
somewhat introductive andoverview style [72, 73].A recent reviewonopenproblems
was given by Gosselin [170] and Merlet [329] as well as by Kino and Kawamura
[247]. Therefore, a major goal of this work is to provide a solid foundation of the
theoretical framework with the latest results in some domains.
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Table 1.1 Overview of cable-driven parallel robot prototypes and demonstrators

Prototype Researcher,
Affiliation, Country

Classification Application

Cable master robot Kawamura/Ito,
Ritsumeikan
University, Japan

Redundantly
constrained

Master-slave
teleoperation

Cablecam N/A, Cablecam Inc.,
USA

Incompletely
constrained

Aerial cameras at sport
or entertainment
events

Cablev Woernle, Rostock
University, Germany

Incompletely
constrained

Precise handling at
construction sites and
shipyards

CALOWI Ottaviano, University
of Cassino, Italy

Incompletely
constrained

Hospital applications

CAREX Mao/Agrawal,
University of
Delaware, USA

Unknown Neural rehabilitation

CaTraSys Ceccarelli et al.,
University of Cassino,
Italy

Completely
constrained

Tracking devices

CaTraSys II Tavolieri, University
of Cassino, Italy

Incompletely
constrained

Tracking devices

CHARLOT-TE N/A, McDonnell
Douglas Corporation,
USA

Unknown Space and terrestrial
applications

CoGiRo Gouttefarde et al.,
LIRMM, Montpellier,
France

Redundantly
constrained

Handling

Copacabana Pott et al., ISW,
Stuttgart, Germany

Redundantly
constrained

Manufacturing

CSHI Williams et al., Ohio
University, USA

Various Haptic interface

DeltaBot Khajepour, AEMK
Systems, Waterloo,
Canada

Fully-constrained Handling,
Pick-and-place

Expo robots Pott et al., University
of Stuttgart, Germany

Redundantly
constrained

Entertainment

Falcon-7 Kawamura,
Ritsumeikan
University, Japan

Redundantly
constrained

Ultra fast assembly

FAST Duan et al., Xidian
University, China

Completely
constrained

Next generation large
radio telescope

FeRiBa3 Gallina/Rosati,
University of Padova,
Italy

Redundantly
constrained

Haptic display

Flight simulator Bülthoff et al., MPI for
Cybernetics,
Tubingen, Germany

Completely
constrained

Motion simulation

(continued)
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Table 1.1 (continued)

Prototype Researcher,
Affiliation, Country

Classification Application

iFeel6 Hu et al., Beihang
University, China

Redundantly
constrained

Haptic interface

IPAnema family Pott et al., Fraunhofer
IPA, Germany

Redundantly
constrained

Handling, assembly,
haptic, inspection

LAR Bouchard et al., Laval
University, Canada

Various Next generation large
radio telescope

LCDR Alikhani et al.,
Amirkabir University
of Technology, Iran

Redundantly
constrained

Automated machining
of large workpieces,
material handling,
construction

MACARM Mayhew et al., IAI and
RIC, USA

Redundantly
constrained

Upper limb
neuro-rehabilitation

Mantis Duo N/A, Mimic
Technologies, USA

Unknown Haptic interface

MariBot Rosati/Rossi,
University of Padova,
Italy

Redundantly
constrained

Rehabilitation

Marionet-Assist Merlet, INRIA, France Completely
constrained

Lifting crane for
assistance robotics at
home

Marionet-Crane Merlet, INRIA, France Completely
constrained

Rescue operations and
manipulation of large

Marionet-Rehab Merlet, INRIA, France Completely
constrained

Rehabilitation tasks
and fast
pick-and-place
operation

Marionet-VR Merlet, INRIA, France Completely
constrained

Virtual reality (motion
provider and haptic
device)

NeReBot Rosati/Rossi,
University of Padova,
Italy

Fully-constrained Neural rehabilitation

NIMS3D Borgstrom, University
of California, USA

Completely
constrained

3-dimensional
actuated sensing
device for different
environments

NIMS-PL Borgstrom, University
of California, USA

Redundantly
constrained

Planar actuated
sensing device for
aquatic environments

NIMS-RD Borgstrom, University
of California, USA

Unknown Actuated sensing
device

Flying carpet Bostelman et al.,
National Institute of
Standards and
Technology (NIST),
USA

Redundantly
constrained

Positioning system for
large manufacturing

(continued)
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Table 1.1 (continued)

Prototype Researcher,
Affiliation, Country

Classification Application

RoboCrane Bostelman/Albus,
National Institute of
Standards and
Technology (NIST),
USA

Completely
constrained

Construction, lunar
mission, metrology,
large scale
manufacturing

Reactive rope robot von Zitzewitz, ETH
Zurich, Switzerland

Various Haptic interface for
sport simulation

Robot calibrator Bostelman, National
Institute of Standards
and Technology
(NIST), USA

Unknown Calibration of position
of PUMA robots

SACSO-7/-9 Lafourcade,
ONERA-CERT,
France

Redundantly
constrained

Wind tunnel
suspension system for
aircraft models

Segesta Hiller et al., University
of Duisburg-Essen,
Germany

Redundantly
constrained

Vibration testing

Shelf robot Bruckmann et al.,
University of
Duisburg-Essen,
Germany

Completely
constrained

Warehousing

Skycam N/A, Skycam, USA Unknown Aerial camera at sport
or entertainment
events

Sophia-3/4 Rosati et al.,
University of Padova,
Italy

Redundantly
constrained

Post-stroke upper limb
rehabilitation

SPIDAR-G Kim et al., Tokyo
Institute of
Technology, Japan

Redundantly
constrained

Haptic interface

SpiderBot Capua/Shapiro, Ben
Gurion University,
Israel

Incompletely
constrained

Imitation of fictional
Spiderman

Spydercam N/A, Spidercam
GmbH, Austria

Incompletely
constrained

Aerial camera at sport
or entertainment
events

String-Man Surdilovic et al.,
Fraunhofer IPK,
Germany

Various Gait rehabilitation

String-Pot 1/2 Bostelman/Ferguson,
National Institute of
Standards and
Technology (NIST),
USA

Various Metrology system for
sculpting assistance

(continued)
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Table 1.1 (continued)

Prototype Researcher,
Affiliation, Country

Classification Application

Texas 9-String Kawamura et al.,
Ritsumeikan
University, Japan

Redundantly
constrained

Haptic interface

VIDET Melchiorri et al.,
University of Bologna,
Italy

Various Mobility assisting
system for visually
impaired users (partly
haptic interface)

WARP Tadokoro, Kobe
University, Japan

Redundantly
constrained

Creation of virtual
acceleration by
illusion

WDPSS Zheng, Xiamen
University, China

Redundantly
constrained

Wind tunnel
suspension system for
aircraft model

WireMan Bonivento et al.,
University of Bologna,
Italy

Completely
constrained

Haptic interface

N/A Ko et al., Robot
Research Initiative,
Korea

Completely
constrained

Handling

N/A Carricato et al.,
University of Bologna,
Italy

Completely
constrained

N/A

1.3 Scope of this Book

The aimof thiswork is to consolidate the state of the art in cable-driven parallel robots
by presenting a consistent theory and well-defined terminology. Based on this foun-
dation, an overview of the latest and ongoing research fields is given. Additionally,
in-depth results are presented on selected topics.

The presentation of the theoretical and practical results are intended to allow for
building and operating cable robots for real world applications. However, since the
field of cable robots is quickly evolving, not every aspect of cable robots is considered
at length. Most aspects of the closed-loop control of cable robots are not considered
in this book. The remaining chapters of the book are structured as follows:

Chapter2 introduces the terminology used for cable robots and also defines the
technical terms used throughout this book. Then, different categories of classification
are presented for cable robots.As reference for the following chapters, some reference
designs from the literature are presented which are used for the experimental and
simulation examples. Finally, the chapter gives an overview of existing and foreseen
fields of application for cable robots.
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In Chap.3, the so-called standard model for statics and kinematics is introduced
together with the assumptions made. For the standard model, most problems in the
field of kinetostatics are solved and a consolidated theory is presented. A special
emphasis is placed on methods to compute force distributions for over-constrained
cable robots which is a rather specific challenge for cable robots.

Chapter4 dealswith algorithms to compute the kinematics transformation of cable
robots. When considering over-constrained cable robots, the inverse kinematics is
trivial for the standard model. In contrast, forward kinematics for over-constrained
robots is involved to dealing with. The chapter aims at presenting numerical algo-
rithms called kinematic codes to efficiently solve the task.

In Chap.5, the workspace of the cable robot is considered. Firstly, different types
ofworkspace are defined and criteria for determining theworkspace are discussed.An
overview of existing methods to compute the workspace is introduced and the used
data models to describe the computed workspace are discussed. Then, algorithms
based on interval analysis are presented to compute the workspace in a continuous
way. This method is very reliable but may be slow. Contrary, discretization methods
for grids, cross sections, or hulls are straightforward and fast but may be inaccurate
for special designs. Detailedworkspace studies are presented that unveil the influence
of typical criteria such as payload, workspace criterion, orientation, and force limits
on the shape as well as on the size of the workspace.

Chapter6 presents the modeling of the dynamics of a cable robot. Therefore, the
dynamics of the platform, the cables, and the winches are considered. Some exten-
sions are made with respect to the standard model which leads to the consideration of
dynamic effects caused by pulleys and linear elastic cables. To complete the dynamic
model of the robot, the control cascade and the electrodynamics of the actuators must
be considered. To facilitate further use, parameters of the dynamic model that have
been validated on the prototypes are presented.

Based on the kinematic foundation presented before, Chap.7 aims at advanced
cable models and their respective use in kinematic codes. Some of the assumptions
made in the standardmodel are relaxed. Firstly, robots with pulleys are addressed and
kinematic codes to compute forward and inverse kinematics are presented. Secondly,
the effect of the mass of the cables is addressed and the resulting sagging cable is
modeled. Finally, the effect of elastic cables is considered for inverse and forward
kinematics.

In Chap.8, different aspects in the design of cable robots are considered. An
approach is introduced to design an entire robot to fulfill a given task. Then, different
structural architectures for cable robots are described and compared. A parameter
design approach using interval analysis and optimal design is proposed to perform
parameter synthesis. Finally, the mechanical design of cable robots is discussed
including the construction of winches as actuation units, cable end-point connec-
tors, and pulley systems for cable guidance. Also, specific design aspects for the
integration of force sensors are addressed.

The last Chap. 9 is dedicated to practical aspects of cable robots. Initially, calibra-
tion of cable robots is discussed. The focus lies on issues that arise from experimental
work with the IPAnema robot family as well as related cable robots. Therefore, the
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hardware and controller design of some reference robots are discussed and experi-
mental results are compiled.

In the appendix, the notation used for the mathematical expressions is introduced
and a short introduction to interval analysis (AppendixB) is given for better reference.
Some additional parameters are provided in tables.



Chapter 2
Classification and Architecture

Abstract This chapter deals with terminology and criteria for the classification of
cable robots. Different architectures which have been proposed in the literature and
presented prototypes are described. Fields of application are presented at the end of
this chapter.

2.1 Terminology

Cable-driven parallel robots belong to the large group of multi-body systems. This
includes, beside robots, also other mechanisms with coupled motion of their bodies.
Within the multi-body system, robots or manipulators are a subgroup designed to
generate motion that can be defined by a program. The norm ISO 8373 [125] defining
industrial robots states that a robot has at least three degrees-of-freedom, the motion
generated by the robot is programmable, and the robot is universal with respect to
the application. Disregarding variants of robots which are kinematically redundant,
over-, or under-actuated, the degree-of-freedomof the end-effectormotion is (roughly)
equal to the number of actuators. In other words, in a nonsingular configuration, each
actuator contributes a mostly unique part to the generation of the motion at the end-
effector.

Based on the topology, robots are subdivided into serial and parallel manipulators.
Serial manipulators consist of a sequence of joints and links, where every articulated
joint is actuated. Such mechanical structures are called open kinematic chains. If one
connects more than one kinematic chain to the end-effector, the resulting mechanism
is called a parallel robot.

If the number of chains is equal to the number of actuators, the robot is called fully
parallel [322]. Cable-driven parallel robots are a special kind of parallel kinematic
machines or parallel robots. There is no unique or standardized technical term for
cable robots in the literature but a number of different wordings with synonymical
meaning can be identified:

© Springer International Publishing AG, part of Springer Nature 2018
A. Pott, Cable-Driven Parallel Robots, Springer Tracts in Advanced
Robotics 120, https://doi.org/10.1007/978-3-319-76138-1_2
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Table 2.1 Common terminology for cable-driven parallel robots extracted from the titles of 578
papers. For the common terms, the number of found instances is given in percent, for the seldom
used terms the absolute numbers are given

Transmission element Actuation principle System

Cable (64%) Driven Robot (48%)

Wire (23%) Based Manipulator (22%)

Tendon (22) Suspended Mechanism (11%)

Rope (4) Actuated (Stewart–Gough) platform

String (6) Crane

• Cable-controlled parallel link manipulator [280]
• Parallel link robot crane [106]
• Positioning mechanism using wires [349, 350]
• Robot using wire drive system [237]
• (Parallel) wire (driven) robot [97]
• Cable-driven parallel manipulator [451]
• Cable suspension robot [307]
• Tendon-driven Stewart(-Gough) platform [474, 477]
• Cable-driven parallel robot [305]
• Cable direct driven robot [492]
• Cable array robot [160, 468].

The frequently used terminology was analyzed based on 578 paper titles.1 Most
authors (64%) used the term cable for the transmission element where another 23%
papers prefer wire. Only a very small number of authors call the cable tendon (22),
string (6), or rope (4). However, it seemsworthwhile to remark thatmaterial scientists
working on synthetic fibers often use the technical term ropewhich was hardly taken
up by the robotics community. For the system, the term robot is used by 48% of
the papers where another 22% call it manipulator instead. Only 11% of the works
refer to mechanisms, whereas platform and crane are each used by less than 4% of
the authors. An overview of the terminology can be found in Table2.1. In newer
contributions, there is an increasing tendency towards the term cable-driven parallel
robot or, as a handy shortcut, cable robot which we will use throughout this work.
Also, the abbreviation CDPR (cable-driven parallel robot) is wide-spread (Fig. 2.1).

A cable robot can be decomposed into amobile platform,2 a fixedmachine frame,
m cables attached to the mobile platform on their distal end and attached to the

1Although this analysis is based on a relative large number of papers, it is not necessarily statisti-
cally significant. There are some reasons that could decrease the quality of the data base in terms
of representation. The papers in the used data base reflect the author’s research interests and the
selection may thereby be biased. Also, the assumptions on the used terminology influence the liter-
ature research. Furthermore, rarely cited publications might be overseen in the review of literature
because of their differing terminology.
2The mobile platform is sometimes called traveling platform or end-effector, although the end-
effector is only the part that performs the actual process.
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winch

machine frame

guiding pulley

distal anchor point

servo motor

gearbox

mobile
platform

cable

proximal
anchor point

Fig. 2.1 Concept and components of a cable-driven parallel robot

machine frame on their proximal end. The lengths of the cables (and sometimes also
the positions where the cables are attached to the frame) are changed by an actuation
system which is called winch for simplicity although there are other mechanisms for
actuation. For most robots, the winches are fixed to themachine frame to simplify the
electric connection with the power and control system. However, designs where the
winches are located on themobile platformwere proposed [6].Many cable robots use
sensors to indirectly measure the effective length of the cables: e.g. through encoders
on the drum or with a linear measurement system on a pulley tackle. The direct
determination of the cable length is difficult to practically achieve. Alternatively,
the position and orientation of the mobile platform are directly measured [108]. For
a couple of applications, it is necessary to determine the tension in the cables as
well. This is mostly done by force sensors that are connected to one end of the
cable or to some pulleys in between. When using a winch with a drum, one can also
measure the cable force with a torque sensor in the drive-train. Finally, one can rely
on internal sensors such as current sensors of the electric motor to estimate the cable
forces. The sensor signals are connected to a controller system which generates the
set values (typically positions, velocities, or forces) for the actuation system. Typical
controller systems canbedecomposed into the closed-loop control for current, torque,
velocity, and position. The set values for position, velocity and/or force are generated
in an open-loop controller structure that deals with trajectory generation and path
planning. Higher level controller functions such as task or process control are often
also included into the open-loop control system.

The mobile platform may largely vary in its size. On the one hand, the platform
may have a weight of some grams and dimensions of a couple of millimeters. Con-
trary, there are examples of huge platforms, e.g. the collector of theArecibo telescope,
with a size of some dozens of meters and a weight of more than 800 tons. For cable
robots, the most important properties of the platform are the relative location of the
distal anchor points with respect to the reference point of the platform, the center of
gravity, the mass, and the inertia tensor.

The machine frame is the mechanical structure that carries the winches or the
proximal anchor points. In many laboratory and industrial setups, the machine frame
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is a closed framework structure made from steel or aluminum bars. Especially for
larger robots, thewinchesmight aswell be attached to decentralized structures such as
towers or buildings. Itwas also proposed to usewinches or cables onmultiple flying or
swimming structures such as helicopters [370], balloons, ships, off-shore platforms
[135], and submarines [315]. Integrated cable robots use whatever is appropriate
from the surrounding machinery or building as supporting structure [223].

The cables (or wires, tendons, seldom ropes, or strings) can be made of different
materials. The most widely used materials for the cables are steel and synthetic fibers
such as high-modulus polyethylene fiber, aramid (kevlar), or polyester. However,
other materials such as hemp can also be employed. Lately, so-called smart cables
with integrated electric wires were proposed and used in prototype in order to supply
the mobile platform with electric energy or fieldbus signals.

2.2 Classification

There is not one unique classification of cable-driven parallel robots.Moreover, cable
robots can be classified by means of the following criteria:

• The number of cables m and degrees-of-freedom n of the mobile platform: This
kinematic classification was proposed by Ming and Higuchi [349] to distinguish
between under-constrained, fully-constrained, and over-constrained cable robots
(see Sect. 2.2.1).

• Degree-of-parallelism: A cable robot might by fully or partially constrained
through the cables. Fully-constrained cable robots solely employ cables to con-
nect the mobile platform with the base, whereas partially constrained or hybrid
cable robots have passive joints to connect some or all degrees-of-freedom of the
mobile platform to the base. There is a related family of serial mechanisms which
are actuated by cables as well as robotic hands, that are driven by cables. However,
serial cable-driven robots and robot hands are out of the scope of this book.

• The Motion pattern or mobility of the mobile platform characterize the kind of
independent motions of the platform and were proposed by Verhoeven [473] (see
Sect. 2.2.2).

• The concept of the actuation system, e.g. winches, pulley tackles, linear actuators,
can be used to distinguish different types of cable robots. Also, more exotic con-
cepts such as twisting the cables to change the length were described (Sect. 2.2.3).

• The function of the cable robots, e.g. as programmable positioning system,
as a force generating system, or as measurement system for position or force
(Sect. 2.2.4).

In the following sections, we detail the different classifications. The classification
is very important for many methods and algorithms described in this work, since
many methods are limited to a subset of cable robots.
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2.2.1 Kinematic Classification

An obvious criterion for classification is to consider the number of cables denoted
by m and the controllable degrees-of-freedom of the mobile platform denoted by n.
The first classification of this type was introduced by Ming and Higuchi [349]. Fur-
thermore, the degree-of-redundancy r = m − n is introduced. One can distinguish
between the following classes:

• m < n ≤ 6: The robot is under-constrained and in general cannot withstand arbi-
trary applied wrenchesw P. Taking into account gravity or other applied forces and
torques, one or more poses in which the robot is in stable or unstable equilibrium
may exist. Still, some degrees-of-freedom cannot be controlled through the cables
in general. The number and direction of the controllable degrees-of-freedom vary
throughout the workspace. This class of robots is called incompletely restrained
positioning mechanism (IRPM) [349], see Fig. 2.2a.

• n = m: The robot is kinematically fully-constrained but the force equilibrium
depends on the applied forces such as gravity. There is a limited range of forces
and torques the robot can withstand depending on the magnitude and direction of
the applied force. In Ming and Higuchi’s classification, these robots also belong to

Fig. 2.2 Examples of the different kinematic classes
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the IRPM class since they also rely on external forces. Other authors [139] define
an own class for such robots.

• n + 1 = m: The robot can be fully-constrained through the cables in certain poses.
Different types of motion patterns are possible (see Sect. 2.2.2). The forces that the
robot can withstand depend on the minimum and maximum forces in the cables
that can be generated by the robot, see Fig. 2.2b. Robots of this class are referred
to as completely restrained positioning mechanisms (CRPM).

• n + 1 < m: The robot is redundantly constrained and forces have to be distributed
between the cables. These robots are called redundantly restrained positioning
mechanisms (RRPM), see Fig. 2.2c. As pointed out by Merlet, these robots are not
kinematically redundant since they have only one solution to the inverse kinematics
problem. The redundancy relates to the number of kinematic constraints and thus
also to their actuation since there are more kinematic constraints than degrees-of-
freedom. Therefore, the static forces of the robot are generally undefined.

Beside this, let ui be the direction of the i th cable, then a pose of the platform is
called suspended, if for all cable i

ui · g < 0, i = 1, . . . ,m (2.1)

holds true, where g is the direction of gravity. If the robot is predominantly operated
in suspended configurations, it is common to also call the cable robot suspended or
in crane configuration, indicating that the robot relies on gravity to be balanced. The
attribute suspended provides a handy way of describing that the workspace of the
robot is mostly below the robot frame and the robot is operated in a crane-like way.
Therefore, a significant influence of gravity was taken into account in the design of
the robot, mostly to allow for a considerable workspace. A cable robot design itself is
hardly suspended but the attribute suspended depends on how the cable robot is used.
Some robot designs can only be operated in a suspended configuration while other
robots allow for both a fully-constrained and a suspended operation mode. Note, that
all classes of robots (IRPM, CRPM, and RRPM) listed above can be operated in a
suspended configuration.

2.2.2 Motion Patterns for Cable Robots

The motion pattern of a robot characterizes a subset of the generalized virtual dis-
placements δy that can be executed with the end-effector and that is consistent with
its kinematic constraints. In this general setting, a virtual displacement δy is some
superposition of translation and rotation of a rigid body motion in three-dimensional
space. In the spatial Euclidean motion group SE3, there exists six independent vir-
tual displacements and therefore, the maximum number of degrees-of-freedom n of
a mobile platform is six. In the following, a motion pattern is represented by an
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abbreviation of the form n RRn TT, where R represents n R rotational degrees-of-
freedom and T stands for n T translational degrees-of-freedom, respectively.

A robot may not be able to generate all six independent virtual displacements.
Simple examples of robots with less than six degrees-of-freedom are planar (n = 2
or n = 3) or spatial translational robots (n = 3). As it can be seen from these simple
examples, the degree-of-freedom is not a unique characteristic to distinguish between
themotion patterns of a platform.As an example, we consider n = 3 in the following.
We find, amongst others, the planar rigid body motion (1R2T) with two translational
and one rotational degrees-of-freedom, the motion of a point in space (3T) with
three translational degrees-of-freedom, and also the spherical motion (3R) which is
the special orthogonal group SO3.

The motion pattern of the platform is in general a pose-dependent property, i.e. it
can change throughout the workspace. A well-known defect in the motion pattern is
a singular configuration where the robot loses or gains degrees-of-freedom. Beside
changes in the number of degrees-of-freedom of the end-effector motion, the direc-
tion of the available virtual displacements may also depend on the configuration. In
practice this is not desirable and robot designers usually concentrate on designs with
a well-defined motion pattern.

The term motion pattern is quite general. Therefore, we restrict in the following
the discussion to motion patterns that can be expressed by superposition of the three
purely translational displacements and three purely rotational displacements, where
we arbitrarily identify these directions with translation along and rotation about the
axes of an Euclidian coordinate system.

In the notation, we abbreviate the translational motions with T and the rotational
motions with R, leading to shortcuts such as 1R2T for the planar rigid body motion
with one rotational degree-of-freedom and two translational degrees-of-freedom.

Verhoeven [473] created an exhaustive list of possible motion patterns for fully
parallel cable robots (Table2.2, Fig. 2.3) and proved that this list is complete. How-
ever, the underlying assumptions are strict since it is assumed that each cable is
independently actuated. Especially, it was shown that no designs without transla-
tional degrees-of-freedom exist (i.e. robots with the motion patterns 1R, 2R, and

Table 2.2 Complete list of all possible motion patterns for fully parallel cable-driven robots. T
represents translational degrees-of-freedom, while R represents rotational degrees-of-freedom in
the acronyms of the motion patterns

Symbol Description

1T Trivial one degree-of-freedom purely translational cable robot

2T Planar pure translational cable robot

3T Spatial pure translational cable robot

1R2T Planar cable robot with rotation

2R3T Spatial robot with two rotational degrees-of-freedom

3R3T Spatial robot with three rotational degrees-of-freedom
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Fig. 2.3 All possible motion patterns for fully parallel cable robots with the number of cables m
and the degree-of-freedom n
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3R are impossible) and that it is not possible to create Schönflies-motion (1R3T)
generators based on fully parallel cable robots.

Beyond the assumption ofVerhoeven, it is possible to add cableswithout actuation
to the robot to generate e.g. Schönflies-motion. This can be done either by appropriate
control schemes or by connecting two or more cables to one actuator. A simple way
of achieving this effect is by coiling two or more cables onto the same drum or
connecting them to the same linear drive. The motion can also be constrained with
mechanical elements such as prismatic joints, where in this case the robot is no longer
a fully cable-driven robot in the sense of the definition used in Verhoeven’s proof.
Fixing some cables to a constant length allows for a pure rotation without translation
(3R). To construct such a cable robot, one can combine the 3T and the 3R3T robot in
Fig. 2.3 into one robot with m = 11 cables. Now, we consider the four cables of the
3T robot to be of constant lengthwithout actuation. Using the remaining cables of the
3R3T robot, we can still change the orientation of the platform where no translation
is possible due to the fixed cable length of the 3T part.

2.2.3 Classification of Actuation

Most cable robots are actuated by winches which coil the cables on drums [6, 210,
238, 404]. This concept was adopted from cranes and it allows for dealing with
very long cables. Winches are well-established construction elements with a very
compact housing (Fig. 2.4). Their mechanical design is simple and cost-efficient. In
most winches used for cable robots, servo motors are used to control the cable length
in cascaded position control. Since the winches are normally fixed to some bigger
structure, there is nearly no upper limit on the size of the motors that can be applied,
except for cost reasons. Thus, winches are a good choice for high forces and long
cables.

Another straightforward concept to control the cable length is to use linear drives
coupled to a pulley tackle [324, 336, 448]. Either the end of the cable or one or more
pulleys are moved along a line generating the desired change in the length of the
cable. Examples of such actuation systems are shown in Fig. 2.5. Some kind of gear
can be implemented through the pulley tackles which also enables linear actuated
cable robots to realize a large workspace. Linear drives with cable tackles possibly
offer the highest velocities and accelerations of the cables where themaximum forces
may be limited due to available linear actuation systems.

It was also proposed [439] and patented [440] to change the cable length by
twisting the cables. This concept allows for very small increments of the changes
in the length of the cables where the maximum change in length is rather limited.
The twisting of the cables behaves like a very high gear reduction leading to very
high forces with relatively small velocities. Twisting the cables also involves very
high wear in the cables. Furthermore, it may be applicable to generate very precise
motion. Twisted cables generate aside from the contraction force also a torque on
the platform that might have to be taken into account.
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Segesta winch with one pulley with inte-
grated force sensing and a panning pulley as
cable guidance system. (Courtesy of Chair
of Mechatronics, University of Duisburg-
Essen, Germany)

Cable winch with pulleys for guiding the
cable. The second pulley is equipped with a
rotation sensor to estimate the direction of
the cable. (Courtesy of Chair of Mechanics,
University of Rostock, Germany)

M

T S

G

Conceptual draft of a winch system with an IPAnema1 winch with cable guidance system
servo drive (M), a gearbox (G), a single layer and a unidirectional pulley mechanism drum (T),
and a guidance system for the cable (S)

Fig. 2.4 Different concepts for actuation of cable robots with winches

Finally, kinematic concepts similar toDelta robots [98]were proposed. The cables
of fixed length are connected to rotating levers imitating the kinematic structure
of the Delta robot. Since Delta robots are mostly used for small design size and
small payloads, a telescopic strut with a spring is connected to the mobile platform
in order to maintain tension in the cables. Maeda [305] presented the well-known
demonstrator WARP that was actuated in this manner.
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Linear actuation of the IPAnema 2 planar (Bandroboter)
using linear direct drives along with a pulley system for
transmission and guiding of the cables. T: carriage, X: drag
chain, Y: drag chain holder, W: drag chain housing, U: lin-
ear motor’s primary part, Z: linear motor’s secondary part,
V: prismatic guideways

Linear actuation of the String-
Man (Courtesy of Fraunhofer
IPK, Berlin, Germany)

Fig. 2.5 Cable robot with linear actuator. Left: IPAnema planar with linear direct drives. Right:
String-Man used by Fraunhofer IPK for gait rehabilitation

There are also other methods for actuation. The Cablev system has winches that
aremovable on a guideway [306, 310, 496]. The planar IPAnema 2 system [404] uses
cable-driven pulleys combined with linear direct actuators to maintain an isotropic
configuration of the platform throughout a rectangular workspace [392]. Bruckmann
proposed a robotic system very similar to cable robotswhere the cableswere replaced
by slim rigid legs [77]. Here, the proximal anchor points of the winches are moved
with linear guideways. This architecture is well-known as Linaglide from parallel
robots but here the forces in the legs are kept positive or only very low pushing forces
are allowed. However, despite an encouraging result from a conceptual study, the
built machine employed cables and was used as manipulator in a wind-tunnel. A
cable robot consisting of restraining cables and linear springs was lately put forward
[131], where the springs were used to shape the workspace through an artificial
potential field.

2.2.4 Classification of Function

The name robot implies a device to handle or manipulate other objects. One can
distinguish between the following functions that can be performed by the cable
robot:
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• Motion generation: Most cable robots are designed to create a well-definedmotion
of the mobile platform in order to reach programmed positions and orientations in
a given sequence. Depending on the control system, the trajectories between these
poses are also well-defined in terms of velocity and acceleration. This is the typical
control scheme for robots and machine tools. Especially, fully- and redundantly
constrained cable robots usually have a well-defined motion behavior since the
control systems have to solve their over-constrained equations anyway (Fig. 2.6a).

• Force-torque generation: The robot can be controlled to generate defined forces
and torques at themobile platform, e.g. to performproduction tasks or act as a force
feedback system. The motion of the platform is then depending on the interaction
of the robot with its environment, especially the motion depends on the wrench
applied to the mobile platform (Fig. 2.6b).

• Force-torque measurement: The cable forces can be measured e.g. through the
motors, through additional sensors in the cables, or through the cables themselves.
These measurements can be used to derive the applied forces and torques to the
mobile platform creating a multi-directional force/torque sensor (Fig. 2.6c).

• Motion measurement: The platform of the robot can be moved around by a human,
by other machinery, or by the environment and the robot uses its sensors to esti-
mate the current pose of the platform. If the motors are replaced for example with
contracting springs, one can apply a position measurement system to the winches
in order to determine the length of the cables. Just using the forward transforma-
tion, one can reconstruct the pose of the mobile platform from the measurements.
Since cable robots can have a large workspace and the inertial mass of the mobile
platform is small, the robots can be used as large scale spatial measurement sys-
tems.Applications inmotion tracking and calibrationwere proposed, see Figs. 2.6d
and 2.22.

In practice, some of these functions may be leveraged at the same time. For
example, a positioning system used for an assembly task could use its force-torque
measurement capabilities for advanced process control.

2.2.5 Size, Payload and Dynamics

Next, we consider some limiting factors for size, payload, and dynamics. Ultimate
limits for the length of the cables are given by:

• The specific strength l R of the cable material gives an upper limit on length of a
suspended cable under gravity and is determined in meter. If a cable is longer than
l R, its weight is higher than its breaking load and it cannot carry any external load.
Zylon and Dyneema (polyethylene) have very high breaking lengths l R,PES, around
350 and 400km, respectively. Carbon fibers are somewhat weaker with 250km,
whereas the breaking length of steel is only around 25km. Compared to Dyneema,
roughly ten times higher values could eventually be reached using graphene and
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Fig. 2.6 Illustration of the four basic functions of a cable robot. li denotes the cable length, r is the
motion of the platform, fi are the cable forces, and w P is the wrench applied to the platform

carbon nano tubes (CNT). However, grapheme and CNT are rather expensive and,
to the best of the author’s knowledge, cables are currently not manufactured from
CNT.

• In contrast, cables made from Dyneema and Zylon are available on the market
at acceptable costs and it seems that this puts today’s practical limit on size to
around 350km as long as no additional payload needs to be supported and without
safety factors. Clearly, such limitation does not apply for space robotics application
where gravity is not an issue.

There is a cross relation between size, material, and dynamics when it comes to really
large robots. If the length of the cable is large compared to the sonic speed within
the cable material, there is a decreasing response time to fast motion at the actuator
since the cable is a spring and thus acts like a first order low pass filter.

Some key figures are depicted in Fig. 2.7 where the ultimate limits on the size
arising from the strength of the fibers are indicated with the grey zone. The zone is
increased by an order ofmagnitude to reflect the typically required safety factor of 10.

Concerning the maximum payload, today’s largest cranes allow for maximum
loads of some thousand tons which can be considered as a technological limitation.
Such huge loads are realized through pulley tackles with a high number of pulleys.
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Fig. 2.7 Comparison of
different robots and cable
structures with respect to
payload and size in
logarithmic scale. The region
of the right side is related to
the specific strength of
typical materials for cables.
The axis for the payload is
bounded by the largest cranes
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The operation of pulley tackles for the suspending cables of a cable robot makes the
construction of such a system involved and, to the best of the author’s knowledge, no
such design was presented in the literature. Therefore, effective limits for the payload
are expected to be lower.

Some limits on the maximum acceleration are given through the available motors.
Using standard servo drive acceleration in the range of 20 and 1000ms−2 can be
reached on the surface of the motor’s shaft. Theoretically, one can coil very light
cables directly onto this surface to achieve the given acceleration for the cables.
However, a realistic mechanical design adds additional inertia to realizing the drum.
Using larger drums also scales up the inertia of the motors although a larger diameter
increases the acceleration. Since the inertia of a solid cylinder rises to the fourth power
of the diameter where the velocities only scales linearly with the diameter, smaller
drums are to be preferable with respect to maximum acceleration.

2.3 Architectures

The geometry of a cable robot is mostly characterized by the relative position of its
anchor points on the fixedmachine frame and on themobile platform. Firstly, we will
distinguish between so-called generic and non-generic geometries. A non-generic
design is subject to geometric relations such as all points of the platform lie in a plane
or form a line. A generic design usually maintains its properties if its geometrical
parameters undergo infinitesimal changes. Contrary, a non-generic design only has
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certain properties as long as well-defined constraints are fulfilled. Typical examples
for such constraints are:

• All platform or base anchor points lie in a common plane
• Equal lengths or distances between the anchor points
• Point or axis symmetric designs
• Two or more coinciding anchor points on the platform or on the frame.

In mechanism analysis, such constraints can be very interesting. There are a lot of
special cases known where such constraints lead to simpler kinematic equations or
even closed-form solutions of equations that cannot be solved in the general case.
From a practical point of view, non-generic designs only exist in theory, since they
assume that the robot ismanufactured and assembledwithout errors. Furthermore, all
kinds of disturbance are neglected such as elasticity, clearance, wear of components,
and thermal effects. In contrast, non-generic designs can be very useful as design
templates, i.e. as initial guess that can be further adapted to the requirements.

Non-generic design imposes assumptions and, therefore, for algorithms it is desir-
able that they work with generic designs. Such algorithms are often more robust
against imperfect modeling or imperfect manufacturing and these algorithms can
be tuned by calibration in the widest sense. Methods for non-generic designs can
exploit more specific assumptions. Thus, as long as such assumptions hold true, the
resulting algorithms are easier to implement or faster.

2.3.1 Notation for Coinciding Anchor Points

As mentioned above, a widely spread assumption is that two or more cables share
a common anchor pointed either on the base or on the mobile platform. Such a
classification reflects important conditions used in kinematic analysis. To describe
configurations with common anchor points, the X − Y notation is used, meaning
that there exist X different points on the frame and Y different points on the platform
where X ≤ m and Y ≤ m, m being the number of cables. For example, an 8 − 4
robot is a typical design with eight different anchor points on the machine frame
and 4 different anchor points on the platform. Note that this notation is ambigu-
ous because it does not indicate which cables share a common anchor point and
how many cables share one point. In the example, the 8 − 4 configuration could be
realized, amongst others, by a two-to-one connection (Fig. 9.4) as well as by an
uneven distribution where five cables are connected to the first anchor point and the
remaining connections are connected in an one-to-one scheme between the base and
the mobile platform.

For cable robots, it is often assumed that common anchor points only occur on the
mobile platform. Again, a notation with hyphens is common indicating how many
cables share a common point on the platform. Without loss of generality, the number
can be put in descending order. For example, the Segesta robot (Fig. 9.16) has a
4-2-2 configuration for its platform, meaning that four cables share the first vertex of
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(a) picture of the IPAnema 1 platform

(b) drawing of the IPAnema 1.5 platform (c) picture of the IPAnema 1.5 platform

Fig. 2.8 Mobile platforms used with the first generation of the IPAnema robot. a The cables are
directly clamped to the IPAnema 1 platform so that two cables share a common anchor point.
b/c The cables are connected in a crossed cable configuration to the universal joints of the
IPAnema 1.5 platform

the triangular platform whereas the two other vertices are connected to two winches
each. Contrary, the IPAnema 1 system (Fig. 2.8) has a 2-2-2-2 configuration where
each of the four corners of the platform is connected to two different winches.
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2.3.2 Fixed Machine Frame

The anchor points of the winches are restricted to geometric primitives in most robot
prototypes. Prismatic forms have the advantage that they can be easily built as frame-
works and the bars made from aluminum or steel are well suitable to fix the winches.
As pointed out in a couple of publications, cable robots can be easily reconfigured.
Therefore, some test-beds allow to move the winches along the bars of the frame-
work. Frequently, the cable robot prototypes have a box-shaped frame (e.g. Segesta,
IPAnema, and CoGiRo), where all base anchor points are aligned on the surface of
the box or at least close to that surface to avoid the need for complicated fixtures.
Many of these designs restrict the position of the anchor points to the edges or even
to the corners of the box. Beside prismatic designs, polar arrangements are preferred
where the position of the anchor points is characterized by a radius and angles to
distribute the anchor points around a center. For example, a trisymmetric structure
called ReelAx 8 was presented by Izard [224], where all winches are mounted on
three or four vertical poles. Planar robots are mostly operated in a closed rectangular
frame.

2.3.3 Mobile Platform

For the mobile platform, it is common to use planar platforms, where some cables
share identical anchor points. As pointed out by Verhoeven [473], this signifi-
cantly reduces the influence of cable-cable interferences, and thus allows for larger
workspace. Furthermore, common anchor points affect the location of singularities
and simplify the computation of the forward kinematics [389, 465]. Spatial platforms
are often prismatic or cylindric. Star shaped platforms are also common.

2.4 Fields of Application

Cable robots have been proposed to be used in a very wide range of applications. As
many other robotic systems, the development of new ideas for applications is mostly
driven by replacing a mostly manual or mechanized process with a robotic solution
that allows for fully automatic operation. As proved in many industrial applications,
robot systems are well suited to reduce labor costs in production, increase the quality
of process execution, or shorten the cycle time. Thus, cable robots may open new
fields of application where industrial robots cannot be applied due to restrictions
with respect to the size of the workspace, the payload, or the required cycle time.

However, cable robots present some other advantages like minimal installa-
tion footprint, simple transportation and deployment, or improved quality. Thus,
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cable robots can be employed as assistant devices where other robotic systems are
inappropriate.

2.4.1 Production Engineering

Most robots installed worldwide are applied in the field of production and manufac-
turing, where robots succeeded in efficiently automating industrial processes, espe-
cially for handling, welding, painting, and assembly. Therefore, numerous research
projects on cable robots were dedicated to investigate production tasks.

At the University of Berlin, a machine tool was built from a cable robot [258].
The platform with the spindle was suspended to eight cables and moved around the
workpiece. The research aims at performing high-speed motion with the cable robot
but the system was found to lack the required stiffness for machining.

Bosscher proposed to use cable robots for counter crafting [49, 51] where a
mobile frame was designed to move between construction sites. In the filed patent
[51], Bosscher describes a cable robot with up to twelve cables where a group of
eight lower cables are mounted on vertical guideways. By continuously changing the
configuration, interferences between the lower cables and the currently built structure
are avoided.

A handling and assembly system for large-scale products, like collectors for con-
centrated solar power (CSP) plants, was studied by Pott [401] and presented during
the trade fair Automatica 2010 in Munich, Germany (Fig. 2.9).

A number of production tasks require the positioning of specialized equipment
around a large workpiece or product such as ships, airplanes, blades of windmills,
as well as steel structures such as motors, generators, and gearboxes. Typical tasks
to perform are painting, welding, grinding, or blast cleaning. Especially noncontact
processes seem very adequate for cable robots since takingmeasurements for inspec-
tion, maintenance, or quality control is easy to realize. Amongst others, the research
project CableBOT, founded by the European Commission3, proposed to use cable
robots for painting aircrafts (Fig. 2.11).

A conceptual study for additive manufacturing was undertaken by Pott and
Grzesiak and is depicted in Fig. 2.10. Such concepts were recently taken up due
to the increasing interest in 3-D printing.

2.4.2 Logistics

Handling and logistics are promising fields of application for cable robots. Two of the
main advantages of cable robots can be fully exploited: cost-efficient robot designs
for a very large workspace and very high dynamics allow for high throughput in

3The web site of the CableBOT project can be found under http://www.cablebot.org.

http://www.cablebot.org


2.4 Fields of Application 33

Fig. 2.9 Cable robot
IPAnema 2 for large-scale
handling of collector
modules shown at
Automatica 2010 trade fair,
Munich, Germany

Fig. 2.10 Concept for
additive manufacturing of
mockups using a large-scale
cable robot equipped with an
extruder. Source: Pott and
Grzesiak

handling, sorting, and (de-)palletizing. Already in the 1990s, the idea of building
ultra-high speed pick-and-place manipulators by means of a cable-driven robot was
addressed with the FALCON robot (Fig. 2.13) by Kawamura [237, 239], as well
as with the Warp system proposed by Tadokoro [305]. For very high payloads, the
connection to automated cranes showed up. The cable robot Cablev [206, 208] at the
University ofRostock,Germany, aimed at automatic performance of container cranes
using an under-constrained cable robot with additional linear axes for translating the
winches. The CABLAR system was developed by Bruckmann (Fig. 2.12) as storage
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Fig. 2.11 Application concept for painting, cleaning, andmaintenance of aircraftswith cable robots
(top) and using cable robots as modular handling devices for steel beams (bottom)

retrieval machine [70, 71, 273]. Later, Merlet proposed a portable crane for heavy
load handling and rescue where some kind of aerostat was employed to fix pulleys
in mid-air [338]. A civil engineering problem of transporting persons across a river
was addressed by Castelli [92–94].

Due to their light-weight structure, cable robots were proposed to be used as
sensor platforms in different scenarios. The patent proposed by Bauer [30] exploits
the huge workspace to move optical and radio sensors through shelf storage systems
in order to inspect and locate the stored goods.
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Fig. 2.12 The large-scale cable robots as storage retrieval machine CABLAR by University
Duisburg-Essen (Courtesy of Chair of Mechatronics, University of Duisburg-Essen, Germany)

Fig. 2.13 The cable robots Falcon (left) and Dolphin (right) from Kawamura (Courtesy of Sadao
Kawamura, Ritsumeikan University, Japan)

2.4.3 Construction

The requirements for construction are somewhat related to the demands of handling
applications. Again, cable robots benefit from the cost-efficient large scale systems.
However, for large scale systems, the potential of fast motion is secondary. Instead,
cable robots can profit from their build-in flexibility and can adapt to actual con-
struction tasks by geometrical configuration. One of the first application proposed
for the RoboCrane was ship building and bridge building [6, 7, 52–57].

Cable robots were proposed to be used as robotic cranes for the construction
of large scale solar power plants (Fig. 2.14) [401]. More recently, Izard studied the
installation of a cable robot on the facade of a building [223, 224]. Here, different
tasks were considered including cleaning and advertisement. A slightly different
approach was discussed by Voss [481, 482], where a cleaning or inspection unit
shall be moved over large glass surfaces. Emmens [136] proposed to use a surface
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Fig. 2.14 Vision of
assembly of parabolic
reflector panels with a
mobile large-scale
cable-driven parallel robot

constraint cable robot for cleaning facades and buildings. In order to avoid relative
motion between the cables and the surface, the motors are proposed to be installed
on the mobile platform. First results were received from a small scale mock up.

2.4.4 Motion Simulation

A cluster of applications aims at simulating or measuring motion. One field of appli-
cation is medical or rehabilitation applications, where a cable robot as ultra light-
weight system can be applied to guide and measure the motion of limbs. Also, the
stabilization of the upper body for gait rehabilitation is a promising application. Ishii
[219] introduced a simple robot with four cables as 3D haptic interface. Surdilovic
proposed the String-Man system [448] where the proband is held by a harness which
in turn is suspended by cables (Fig. 2.15). Advanced force control virtually reduces
the effective mass and allows gait training with smaller stress on the body and legs.
Furthermore, the cable robot hinders the patient to fall down. A similar idea was
later studied by Castelli [92, 93] who proposed a device for lifting elderly people for
standing up from awheel chair. Agrawal has studied the application of cable robots as
rehabilitation devices in a number of applications for more than one decade [64, 312,
313], where both cable robots and cable-driven exoskeletons were under investiga-
tion. Merlet performed a number of practical tests with the Marionet robot for lifting
elderly and disabled humans in an ambient assisted living environment (Fig. 2.16).
Using cable robots for motion generation and tracking of sportsmen while perform-
ing sports such as rowing was studied at the ETH Zurich by Zitzewitz and Rauter
[411, 531, 532]. A recently founded company offers a rail-based cable robot as an
assistant device for rehabilitation called the float (Free Levitation for Overground
Active Training) [302, 469].

Someauthors proposed to buildmotion simulator platforms fromcable robots. The
possibly large workspace along with high dynamic capacities have been identified as
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Fig. 2.15 The cable robot String-Man is designed for use in gait rehabilitation. The proband is held
by a harness and becomes part of the mobile platform of the robot (Courtesy of Fraunhofer IPK,
Berlin)

key benefits of cable robots over other structures. Motion generation and positioning
in aerodynamic and hydrodynamic test facilities also received attention. Lafourcade
proposed using a cable robot in a wind tunnel for airplanes [270] making use of the
very small disturbance in the airflow caused by the cables. The same approach was
later followed by Bruckmann, who presented a cable robot (Fig. 2.17) for positioning
hulls of ships [77]. Most recently, a cable robot is under design as motion base
of experimental research of human vestibular senses as well as for usage as flight
simulator (Fig. 2.18).

Using the cable robot both for motion measurement and force generation leads
to research on haptic displays and devices for virtual reality. Otis [373] proposed a
haptic interface for walking. Kraus [261] presents a control framework to allow for
different haptic interaction states between a cable robot and a human operator by
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Fig. 2.16 The cable robots
of the Marionet family for
rehabilitation from Merlet
(Courtesy of INRIA
Sophia-Antipolis, France)

Fig. 2.17 The large-scale
cable robots as manipulator
for wind tunnels (right) by
University Duisburg-Essen
(Courtesy of Institute for
Fluid Dynamics and Ship
Theory, Hamburg University
of Technology, Germany)
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Fig. 2.18 A large-scale motion simulator with a 12 by 12m footprint for tests with proband was
initially operated in 2015 atMax Planck Institute for Biological Cybernetics, Tubingen, Germany. A
passenger cabin is constrained by eight steel cables to perform flight maneuvers, e.g. for helicopter
training or for experimental measurements of human vestibular system. In contrast to most other
cable robots, a safety design was used for the basic control to allow for motion with persons on the
platform

means of admittance control on the IPAnema 3 Mini robot (Fig. 2.19). Use in virtual
reality was also proposed by Merlet as one of the applications of the Marionet robot
family.

2.4.5 Entertainment

The movement of a camera suspended by cables was already proposed in the 1920s
by l’Argent, who puts the camera along with its operator on a traveling platform sus-
pended by cables. Clearly, the cables were operated manually at this time. However,
the basic idea along with the benefits have been understood for almost one hundred
years. Much later, but still at an early state of the cable robots’ history, the patent
for the SkyCam [100] was filed by Brown [67]. Brown, also inventor of the famous
steady cam for stabilizing the motion of a camera, proposed a computer controlled
system for the original SkyCam. The patent describes a suspended camera system
with three cables and includes a sophisticated mechanism on the platform to orient
the camera to the desired direction. Therefore, the SkyCam is a 3T cable robot sys-
tem. Later, a family of patents was filed on the CableCam by the company CableCam
Limited (see e.g. [419, US5224426]).

Thrill rides based on cable robots were filed as patents from different parties such
as Disney [104, US8147344B2]. A draft of a thrill ride with a suspended cable robot
is depicted in Fig. 2.20 and a number of safety mechanisms for such systems were
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Fig. 2.19 IPAnema 3 Mini
for haptic interaction during
the Automatica 2014 trade
fair, Munich, Germany

Fig. 2.20 Concept for a
thrill ride with winches
moving along a track

described in a patent [479, EP2572766A1]. The passengers are sitting on the mobile
platform of the cable robot and the winches are mounted on bogeys moving along
roller coaster rails.

Recently, two large-scale cable robots were installed at the German Pavilion at the
EXPO 2015 in Milan (Fig. 2.21), which were flying above the heads of the visitors
[463]. The special achievement of these two cable robots is an advanced safety system
fulfilling recent norms which allows tomanipulate significant payloads over persons.



2.4 Fields of Application 41

Fig. 2.21 Two large-scale cable robots are core elements of the show at the German pavilion on
the Expo 2015 fair in Milan, 2015. c© German Pavilion Expo Milan 2015 / B. Handke

2.4.6 Measurement Devices

Already in the late 1990s, a position tracking system was proposed by Jeong [226,
227]. In order to improve the accuracy of this device, Jeong proposed to compensate
for the length error induced by sagging of the cables. Later, Ottaviano and Thomas
[465] studied the kinematics of a similar tracking system. A similar approach for
use in calibration of robots was followed by Pott [404] by proposing the IPAnema
measurement device built from industrial cable length sensors (see Fig. 2.22).

2.4.7 Other Applications

Due to their simple and light-weight structure, cable robots were proposed for use
in space robotics [82, 466]. Some authors studied the usage of cable robots for
radio astronomy. Lambert [278] proposed to use a somewhat inverted cable robot
for positioning an aerostat. Instead of relying on gravity, a helium-filled balloon
applies an ascending force on the platform and the ground located winches are used
to control the position of the aerostat. A project of building the world’s largest radio
telescope FAST (Five hundred meter Aperture Spherical Telescope) was proposed
in China in 1994 and became visible in the literature on cable robots around 2008
[27, 127, 130, 508]. The FAST has its dish suspended over a natural hollow. The
collector is suspended from six towers and can be moved by changing the length of
the suspending cables in order to target the telescope in the desired direction. The
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Fig. 2.22 Cable
sensor-based 6-D-pose
measurement system applied
to measure the pose of an
industrial robot: (1) base
with winch arrangement (2)
cable length sensors (3)
mobile platform (4)
embedded IPC with
real-time pose estimation

FAST is anticipated to be also the world’s largest cable robot in terms of size and
payload. The concept studies around the FAST telescope discuss a number of issues
related to large-scale systems including cable mass, additional loads on the cables,
and elasticity, as well as thermal effects and outdoor disturbances like wind.

In the 1990s, Tadokoro [452] studied using cable robots for rescue after natural
disasters such as earthquakes. Such considerations were also taken up by Merlet
[338] as shown in Fig. 2.23.

2.4.8 Summary

Cable robots have seen a wide area of possible usage. Three main performance
advantages allow radically new applications: Huge workspace, very high payloads,
and outstanding dynamic capacities. Depending on the field of application, individ-
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Fig. 2.23 The cable robots of the Marionet family for rehabilitation purpose and for rescue from
Merlet (Courtesy of INRIA Sophia-Antipolis, France)

ually balanced combinations of these three features can be realized with a relatively
simple and thus cost-effective mechanical design. Therefore, from customer’s point
of view, costs and simplicity might be seen as the key advantages for using cable
robots as a replacement for conventional solutions.

However, only a few products have made it into the market. Beyond special
purpose machinery such as the aforementioned telescopes, only the stadium cam-
era systems and a rehabilitation device for gait training showed some commercial
success. The demonstrator systems presented since around 2010 become more and
more mature in terms of mechanical designed and industrialization. Therefore, it is
foreseen that other fields of application will follow soon.



Chapter 3
Geometric and Static Foundations

Abstract This chapter deals with the geometric and static foundations for the stan-
dard model of the cable robot. Firstly, the geometric equations are derived and the
static equilibrium is considered. Afterwards, methods for computing force distri-
butions are extensively studied. Finally, the stiffness properties are introduced and
analyzed.

3.1 Introduction

Kinematics is closely related to the geometry of a robotic system and studies how
the motion of different parts of a robot is coupled and how forces in different parts
of the robot are related. However, in the kinematic analysis, it is disregarded how the
motion is generated as well as how forces are the cause of motion. These connections
are subject to the dynamics addressed in Chap.6.

For cable robots, the connection between kinematics and statics has to be con-
sidered closely compared to conventional robots like industrial robots or parallel
kinematic machines. Only if the cables are under tension, one can model them as
bilateral constraints because small changes in the cable force maintain the state of
inner tension in the robot. Thus, a feasible tension in the cables is a prerequisite also
for the kinematic modeling. If the cable tension is too low, the kinematic relations
change significantly and we may not expect that the rigid body model of the robot
provides a meaningful description at all. It must be underlined that this is an essential
condition: Aside from a well-defined tension state, the behavior of the robot is totally
different as soon as cables become slack and all methods discussed in this chapter
become invalid.

The geometric foundation of cable robots is straightforward.Although the solution
of the equations may be involved, the mathematical models can be easily set up in
terms of vector loops and algebraic constraints. Firstly, we discuss the standard
kinematic model which is used as basis of many recent works. The standard model
follows from the conventional assumption of a multi-body system with rigid bodies.
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In the standard model, the cables are idealized as exact linear distance between
two points in space, i.e. the proximal anchor point on the fixed frame and the distal
anchor point on themobile platform. Thus, it is assumed that the cable lengthmatches
exactly this distance. In the terms of multi-body systems, we model the cables to be
prismatic joints. Both ends of the cables are modeled by spherical joints. In practice,
these assumptions may be inaccurate due to the following effects that are neglected
by the standard model:

• Unilateral constraint: The cables can only pull, not push the platform. The same
applies on the position level since cables only limit the maximal distance between
the frame and the platform. If we take into account the unilateral character of the
cables, we have to deal with inequalities instead of equalities in kinematics and
statics. Still, the assumptions of unilateral constraints are based on infinite stiffness
of the cable.

• Elastic cables: The length of the cable depends on its tension. There might be also
elastic effects in the winch, that disturb the measurement of the exact length of the
cable.

• Temperature effects: The length of the cable varies with the temperature of the
cable, where changes in the temperature are caused both by the environment as
well as by friction in the winch and in the pulleys. Also, the bending of the cable
on pulleys and drums creates nonnegligible heat in some cases.

• Undefined cable guidance: Imperfect coiling of the cable onto the groove of the
drum, multi-layer winding on the drum, or misplacement of the cable on pulleys
in the winch cause perturbation in the effective length of the cable.

• Nontrivial winch and platform kinematics: The kinematic model of the winch or
platform may imply more complex kinematic relations than the ideal assumption
of a spherical joint that implies the simple distance between two points in space.
In this setting, the effective length of the cable may depend on the actual direction
of the cable with respect to the winch, on the orientation of the platform, and on
the current length of the cable. This occurs for example when pulleys are used to
guide the proximal end of the cable.

• Hefty cables: Due to the mass of the cables, the cables are subject to sagging
and get a curved form which can significantly differ from the straight line of the
standard model. This must be taken into account when modeling large-scale cable
robots with very long cables, when the cables are relatively heavy, when cables
are kept under low tension, or when high accuracy of the robot shall be achieved.

• Creeping and hysteresis effects in the material of the cables: Depending on the
material and type of the cables, changes in their lengths can occur that are not
caused by the current tension in the cable. This effect can also be induced by the
manufacturing method of the cables, such as binding. Many cables have been pre-
stretched after manufacturing to reduce this effect. However, creeping can show up
because of aging, wear, or humidity. Especially synthetic fiber ropes suffer from
creeping effects.

• Vibration of the cable: Both longitudinal and transversal vibrations cause a devia-
tion of the cable length from the effective geometric distance between the anchor
points. Especially for large-scale robots, vibration has a significant effect.
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• Coiling the cable with varying tension onto a drum results in a hysteresis effect
where the length of the cable depends on the history of the length-tension distribu-
tion when coiling the cable. The result of this effect is similar to hysteresis effects
although the physical origin is different. For relatively soft materials used for the
cables, one faces flattening and ovalization of the cable’s cross section on drums
and pulleys changing the effective radii of coiling and redirection.

• Elastic reactions of themobile platform or the fixed frame:With high performance
winches, one can easily apply very high forces to light-weight platforms to achieve
extreme accelerations. This leads to elastic deformations of the platform and some-
times also of the machine frame. Static displacements as well as vibrations can
be observed in practice in the presence of high forces and large jerks. Contrary,
large-scale automated cranes may consist of steel frames that will deform when
lifting loads in the range of several tons.

In this chapter, we study an idealized model of the cable robot and we refer to it
as the standard model. The standard model neglects all these effects listed above.
For the standard model, most of the kinematic, static, and dynamic problems have
been formulated and solved. Thus, it serves well to introduce the basic concepts
and as a starting point for taking into account the additional effects as listed above.
The standard model is relatively simple to study since the assumptions mostly sep-
arate the kinematic, static, and dynamic issues. Thus, the equations to be solved are
simpler sometimes allowing to reveal their structure and properties. For the more
involved effects as given in the list, some of the problems like forward kinematics
and workspace are still open issues. Many theoretical problems such as the number
of possible solutions are unknown and only a little number of algorithms is known
to efficiently compute solutions to numerical problems. Some advanced models to
cope with these effects are subject of Chap.7.

3.1.1 Literature Overview

Firstly, the state of the art in statics and kinematics for cable-driven parallel robots
is reviewed. In the late 1990s, Roberts [417, 418] presented necessary and sufficient
conditions for suspended cable robots to be in a static equilibrium. This is one of the
first works that presents clear conditions for static equilibrium based on nullspace
vectors of the structure matrix.

Verhoeven studied the problem of force distributions [475] and provides both the
theoretical basis aswell as algorithms for the computation of force distributions [473]
of CRPM and RRPM typed robots. His main result was a mathematical proof for a
theorem stating that optimizing p-norms of the force vector yields continuous force
distributions along a trajectory. Then, he focuses on numerical schemes for higher
p-values since the usage of higher p-norms allows for a larger workspace.

The possibly most comprehensive study on available wrench sets was presented
byBouchard, giving a detailed discussion on the structure of thewrench set [62]. This
contribution reveals the mathematical models of the available wrench set, i.e. shows
that the available wrench set is a convex set described by a zonotope or Minkowski
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sum. Both forms can be found by linear projection of a hypercube into a lower-
dimensional space. Furthermore, applicable algorithms for checking are presented if
a desired wrench set given by a hyper-ellipsoid is included in the available wrench
set.

Merlet [326] studied force distributions in redundantly actuated cable robots and
pointing out that it is not possible to control forces if the cables are perfectly rigid.
Furthermore, alternative approaches are presented how redundantly actuated cables
can be operated. The formal arguments in this paper are stringent if the cables are
perfectly stiff. However, the assumption that the stiffness of the cables is sufficiently
high to allow for force distribution without considering the geometric change may
justify the analysis presented in a number of other papers.

A good recent overview on the problem of force distributions using p-norms is
presented by Gosselin [168]. Later, a formula for the case of the p = 4 norm was
formulated as an optimization problem [174]. A remarkable series of contributions
related to force distribution was presented by Hassan [199–201], who used the Dyk-
stra method for computation of force distributions. Although the iterative scheme
can hardly be used in real-time, it serves well as reference for other methods.

Mikelsons [348] proposes a new approach to solve the cable force distribution
problem of RRPM. Instead of considering the problem as an optimization problem,
the full feasible nullspace is computed using triangulation. Then, a geometric proce-
dure was used to determine a unique force distribution by considering the barycenter
of the triangulated solution space. This approach was taken up by Lamaury [275,
277] with more efficient algorithm. The presented results are restricted to the case
of eight cables and six degrees-of-freedom.

An early work on using linear programming to compute force distributions can
be found in [438]. Two numerical schemes for force computation are introduced by
Borgstrom [43] using linear programming and also quadratic programming. Discon-
tinuities are reported for linear programming and an example is discussed. Experi-
mental results are shown both for the four cable planar NIMS-PL robot (2T, m = 4)
as well as for the WiRo-6.3 robot (3R3T, m = 9).

Aclosed-form formula to compute theminimumEuclidian norm force distribution
was proposed by Pott [396] for RRPMwith arbitrarily many cables allowing for easy
use in a real-time controller system and also straightforward implementation. An
improved version of that algorithm is presented in [392], where some shortcomings
in the feasible region are overcome.

Yi [504] presents some force considerations for planar robots with four cables.
Li [286] proposed a quadratic programming approach for cable force distribution
for under-constrained cable robots with six cables. In [386], a recursive dimension
reduction algorithm is introduced to check forwrench-closure andwrench-feasibility.
In [380], a linear complementarity formulation is proposed to deal with the unilateral
constraints of a cable robot.

An algorithm for the numerical evaluation of forward kinematics is presented
by Fang [139] that is based on an integral formulation. Merlet [324] deals with the
kinematics of cable robots driven by linear actuators and elastic cables. Furthermore,
an approach using interval analysis to solve the forward kinematics was adopted from
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conventional parallel robots [321] to cable robots [324]. Aref [13] proposes to use
a numerical scheme to solve the forward kinematics of the eight cable KNTU robot
with Gauss-Newton and Levenberg-Marquardt algorithms. However, no details are
given on the application of the numerical scheme. Pott [390] presents a real-time
capable kinematic code for over-constrained cable robots and its implementation
into the controller.

For special non-generic geometries, one can exploit the specific structure. Guilin
[191] presents an interesting idea for the kinematic analysis of a planar three degrees-
of-freedom robot with four cables. By exploiting the over-constrained nature of the
mechanism, a fourth order polynomial is derived that can be basically solved in
closed-form. Jaeung [225] presents a six cable-based pose measurement device with
its respective forward kinematics for 6-3 configuration with planar machine frame
where both sagging of the cables and elastic elongation are addressed. Ferraresi
[146] presents a closed-form solution of a suspended cable robot in 6-3 configuration,
where the geometry of the robot corresponds to the simplified symmetricmanipulator
(SSM) design that is well-known from conventional parallel robots.

It seems that relatively little work was done on experimental bases for revealing
the real conditions in cable robots. Kraus [262] performs an experimental study of
the influence of elastic cables on the force distribution. More experimental evalua-
tions can be found in [259] where especially the connections between measurable
performance of the robot and the control algorithms are investigated.

A more exotic approach was presented by Ghasemi [164] who employed neural
networks for forward kinematics. Later, neural networks [433] were used to estimate
the pose before iterating with conventional methods.

3.1.2 Effects beyond the Standard Model

The interaction between force distribution and disturbance in the structurewasmostly
neglected yet. Pott [391] analyzed the influence of pulleys on the force distribution
as well as on the workspace. Neglecting the effect of pulleys can significantly change
the tension for a pose although the size and shape of the workspace is hardly influ-
enced. Based on this pulley model, a real-time capable forward kinematics code was
presented [434].

Jeong considered the effect of sagging cables for his measurement device [226].
Su [446] presents a kinematic analysis of the FAST telescope with six cables taking
into account sagging of the cables where the shape of the sagging cables is assumed
to have a hyperbolic form. Kozak [256] addresses sagging of cables induced by
cable mass and analyzes the influence on the robot’s stiffness. The model used by
Kozak ismainly based on Irvine’s reference bookCable structures [218] and assumes
that the cables form a catenary. However, it seems that the catenary model known
from civil engineering was firstly applied to cable robots. Yao used a parabola as
estimation for the cable form tomodel huge robots [507].An extension to the catenary
model including nonuniform load on the cables was added later [506]. Here, also
experimental results from tests on a large robot were added. A stiffness model for
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robots with sagging cables was proposed by Arsenault and applied to a suspended
2T robot [18]. A kinetostatic model for inductile cables with mass using a catenary
line can be found in [179]. A more elaborated model on sagging of hefty cables also
takes into account elastic effects in the cables [360]. Lately, Gouttefarde combined
the modeling approach for elastic and hefty cables with the kinematic effects of
pulleys [189].

Capua [83, 84] presents the kinematic analysis and motion planning of a sus-
pended climbing cable robot where the actuation system is located on the mobile
platform and the proximal anchor points can be changed during operation in order
to perform climbing motions. Suspended robots present a number of challenging
problems and a series of contributions on this field was published. Merlet [337]
presents the kinetostatic modeling of spatial under-constrained cable robots with
four cables. For such robots, the inverse kinematics is more involved to solve than
the forward kinematics since the inverse kinematics in general does not have a stable
configuration. Carricato and Merlet [88] study both forward and inverse kinematics
of suspended cable robots with less than six cables using screws and a so-called
geometric-static model. Later, these authors analyzed the forward kinematics of
under-constrained robots with three cables showing that the problem has 156 com-
plex solutions [89]. Analysis of the equilibrium positions of an under-constrained
cable robot with three cables was studied by Abbasnejad [1]. This paper aims at
finding the upper bound for real solutions of this robot type. From theory, it is known
that the upper bound for complex solutions is 156 and it is conjectured that the upper
bound for real solutions is 54. According to this paper, a formal proof was not yet
found. A combined kinematic and static analysis with two to four cables in suspended
under-constrained configuration is discussed in [91]. Theworkwas extended in [2] to
under-constrained cable robots with five cables and a univariate polynomial of degree
140 is derived. Merlet [328] analyzed the kinematics of suspended cable robots with
three and four cables in 4-2 and 3-2 configurations, both where two or three cables
share a common anchor point on the platform.

Barrette [28] analyzed singular configurations for a planar cable robot. Bouchard
[60] presents a kinematic sensitivity analysis of the inverted cable robot LAR where
the platform is supported by an aerostat and the cables are suspended to the ground
to manipulate the platform. A kinematic analysis of the LAR robot is presented by
Taghirad and Nahon [454].

3.2 Standard Geometric Model

The fundamental geometric relations between the fixed base, the mobile platform,
and the cables are the foundation of the kinematic and static modeling. These non-
linear equations formulate velocity and acceleration transmission of the robot which
are employed to characterize the behavior of the robot. The transmission of forces
and torques is the basis to study the static equilibrium of the robot. Bymeans of kine-
tostatic duality, force transmission is closely coupled to the velocity transmission.
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Fig. 3.1 Geometry and
kinematics of a general cable
robot

ai

bi

ui

li

fP

τP

r,R

Ai

Bi

K0

KP

The geometric foundations summarized belowhave been developed and discussed
by many authors, see e.g. [72, 238, 418, 473]. Equations to solve the inverse kine-
matics were already given in the year 1984 by Landsberger in his pioneering work
[280]. In the following, we review the geometric modeling and introduce the relevant
symbols. Figure3.1 shows the structure of a spatial cable robot of general geome-
try, where the position vectors ai denote the proximal attachment points Ai on the
frame in world coordinates K0, the vectors bi are the relative positions of the distal
attachment points Bi on the mobile platform given in local coordinates of the frame
KP, and li denotes the vector of the cables inK0. In the standard model, it is assumed
that the cables are straight lines and under tension. Furthermore, it is assumed that
both ai and bi do not depend on the pose of the platform, i.e. the effect of possible
guiding pulleys or fixture elements on the platform is neglected. Applying a vector
loop as shown in Fig. 3.1, the closure constraint νi reads

νi : ai − r − Rbi − li = 0 for i = 1, . . . ,m , (3.1)

where the vector r ∈ IR3 is the Cartesian position of the mobile platform and the
rotation matrix R ∈ SO3 represents the orientation of the mobile platform with
respect to the world coordinate frame. Thus, the transformation between K0 and KP

is described by the pair (r,R) ∈ SE3 and we denote that pair the pose of the platform.
The closure constraint can be easily rewritten to

li = ai − r − Rbi for i = 1, . . . ,m (3.2)

and the unit vector ui along the cable becomes

ui = li
||li ||2

. (3.3)
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The unit vector ui is pointing from the platform towards the base by convention. This
convention is introduced by intuition and is used in most of the literature on cable
robots since pulling forces in the cables lead to positive values of the cable force.
Anyway, the convention for the unit vector ui implies that positive forces point into
the direction that shortens the cables and thereby reduces the value of the associated
generalized coordinate li . This leads to an uncommon situation compared to other
fields of robotics and caremust be takenwhen applying formulas from other domains
to cable robots.

3.3 Statics

In contrast to conventional serial or parallel robots, it is not clear if a cable robot
is statically stable for a given pose. In order to study the stability of different poses
where the platform can be statically balanced by the cables, we have to consider the
mechanical equilibrium of the mobile platform. Firstly, we study the most general
case of a spatial robot with 3R3T motion pattern. For force and torque equilibrium
(Fig. 3.1) of the mobile platform, one has to consider all forces and torques acting
on the platform. Thus, it holds true [349, 418, 473]

m∑

i=1

f i + f P = 0

m∑

i=1

bi × f i + τ P = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.4)

where f P, τ P are the applied forces and torques, respectively, and where the cable
forces are f i = fiui . Recall that we consider the cable’s normal vector ui pointing
from the platform towards the robot frame. From this intuitive definition for ui , it
follows that positive tension in the cables leads to positive values for fi . However,
the definition implies that the positive values for the cable force cause a motion that
reduces the cable length li . We address this unusual definition later when we consider
the connection between differential kinematics and statics. Rewriting Eq. (3.4) to
matrix form yield the linear system

[
u1 . . . um

b1 × u1 . . . bm × um

]

︸ ︷︷ ︸
AT(r,R)

⎡

⎢⎣
f1
...

fm

⎤

⎥⎦

︸ ︷︷ ︸
f

+
[
f P
τ P

]

︸ ︷︷ ︸
wP

= 0 , (3.5)

where f = [ f1, . . . , fm]T is the vector of the cable forces and thewrenchwP composed
from the applied force f P and the applied torque τ P. This can be abbreviated in a
compact matrix-vector form as
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AT(r,R)f + wP = 0 . (3.6)

The matrix AT is the transpose of the Jacobian matrix and referred to as structure
matrix in this work. In other publications, the matrixAT is also called wrench matrix
or simply Jacobian. It transforms cable forces from the actuator’s joint space into
the end-effector wrench in the operational space. As we will see in the following
sections and chapters, the structure matrix AT is of major importance for kinematic
analysis (Chap. 4), workspace analysis (Chap.5), and control as well as for dynamics
(Chap. 6).

At first glance, dealing with Eq. (3.5) seems to be rather simple: Depending on
the degree-of-redundancy e.g. r = m − n, one has an under-constrained (r > 0), a
fully-constrained (r = 0), or an over-constrained (r < 0) system of linear equations
and there is a rich library of mathematical tools and algorithms in linear algebra to
analyze the properties. If AT has full rank, in the over-constrained case, one expects
no solutions in general but only for special poses. In the fully-constrained case, the
system is quadratic and there is exactly one solution. In the under-constrained case,
there exist infinitely many solutions. Taking a closer look reveals a key challenge,
since only a subset of the well-known techniques can be applied because one must
also take into account the unilateral nature of the force transmission in the cables:
Obviously, we have to assume in general that the cable forces are positive f > 0.
Therefore, the structure equation is in general a kind of constrained linear system,
where the system is over-constrained for cable robots of IRPM type, fully-constrained
for cable robots withm = n, and under-constrained for both CRPM andRRPM cable
robots.

For some calculations, it is useful to separate the normalizing length ||li ||2 used
in Eq. (3.3) of the cables from the geometry dependent part of structure matrix (see
[473, p. 39]). Thus, we can decompose the structure equation as follows

ÂTL−1 f + wP = 0 , (3.7)

where L−1 = diag(|l1|−1, . . . , |lm |−1) is a diagonal positive-definite matrix contain-
ing the reciprocal cable lengths and the non-normalized structure matrix reads

ÂT =
[

l1 . . . lm
b1 × l1 . . . bm × lm

]
. (3.8)

Substituting the vector loop closure condition Eq. (3.1) into ÂT and simplifying the
expressions yields

ÂT =
[
a1 − r − Rb1 . . . am − r − Rbm
b1 × (a1 − r) . . . bm × (am − r)

]
. (3.9)

If we consider the product L−1 f as a correction factor for the cable forces, some
structural information can be derived from the ÂT. Since all diagonal elements ofL−1
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are positive, the product L−1 f is a scaling without changes in the sign of the cable
force. The non-normalized structure matrix is composed of simpler mathematical
expressions compared to AT. Especially, no divisions and square roots of the gener-
alized coordinates (r,R) of the mobile platform show up the equation. If we choose
e.g. a quaternion to parameterize the rotation matrix R, we find a representation of
the structure matrix which is even free of transcendental functions such as sin(·),
cos(·), and tan(·). Thus, it can be analyzed as a purely algebraic equation in the pose
parameters.

In the following sections, we investigate the structure equations for robots with the
remaining motion patterns that are restricted in some ways. The following consider-
ations are based on the assumption that the mobile platform can onlymove according
to the motion pattern. Often, it makes sense to consider a robot as if it could only
move according to some constraints e.g. perform only planarmotion. In the following
consideration of the motion pattern, it is ignored why the robot’s motion is restricted.
If the assumption does not perfectly hold true in practice, additional effects must be
expected. For example, planar cable robots tend to vibrate normal to their plane if
their motion is not constrained otherwise. For some robots (2T, 3T, and 2R3T), it is
assumed that two or more cables exactly share the same anchor point on the platform.
Since this cannot be fulfilled exactly in practice, parasitic motion can occur that is
neither described nor postulated with the specific models. Anyway, these models can
be very useful as approximation or as model system.

All motion patterns other than 3R3T can only be achieved by non-generic geome-
tries, i.e. special constraints must be fulfilled for the geometric parameters. In a
certain sense, all these robots are architecturally singular designs that lead to a very
specific degeneration of the robot’s motion pattern.

3.3.1 Purely Translational Robots (2T and 3T Case)

Firstly, the planar and spatial case for a point mass is addressed where no rotation
motion occurs (Fig. 3.2). To set up a planar or spatial robot without rotational motion,
the cables have tomeet in a common point on the platform.Without loss of generality,
we can assume that all vectors bi are equal and we can translate the platform’s
reference point such that all bi = 0. Thus, we consider a pure force equilibrium and
the structure matrix becomes

AT = [
u1 . . . um

]
, (3.10)

where the vectorsui = [ui,x , ui,y]T ∈ IR2 for the 2T case andui = [ui,x , ui,y, ui,z]T ∈
IR3 for the 3T case. The applied wrench becomes wP = [ fx , fy]T ∈ IR2 and wP =
[ fx , fy, fz]T ∈ IR3, respectively. The factorized matrix takes then the form

ÂT = [
a1 − r . . . am − r

]
. (3.11)
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Fig. 3.2 Statics of a cable
robot of type 2T with four
cables and 3T with purely
translational motion pattern
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Clearly, 2T and 3T robot can neither withstand nor generate torques. Still, this class
of robots is not a pure mathematical model but can be used in practice. These robots
can be used as pure actuation system on a mechanical structure that is capable to
withstand applied torques. Furthermore, one can connect a platform to the central
point of the cable robot and accept possible oscillations of the platform. Consider,
for example, a crane which hook is guided in all translational directions where the
load on the crane can sway under the hook. Finally, we can combine two or more
translational robots by connecting different points on a rigid platform each to such
a robot structure. Therefore, this class of robots can be an interesting module in a
multi-robot scenario or as a building block in structural synthesis.

3.3.2 Planar Robots (1R2T Case)

The 1R2T motion pattern equals the planar case where two translations and one
rotation of the platform are considered (Fig. 3.3). Without loss of generality, we
consider the xy-plane with rotations about the z-axis as reference. Thus, analyzing
the respective equilibrium conditions leads to

AT =
[
u1 . . . um

h1 . . . hm

]
, (3.12)

where vectors ui = [ui,x , ui,y]T ∈ IR2 and hi = bi,xui,y − bi,yui,x . The wrench takes
the form wP = [ fx , fy, M P

z ]T ∈ IR3.
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Fig. 3.3 Statics of 1R2T
planar cable robots
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Fig. 3.4 Statics of 2R3T
robots with m = 8 cables
and with a needle-shaped
mobile platform in an 8-2
configuration
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3.3.3 Spatial Robots (2R3T Case)

The 2R3T is a non-generic design, since the geometry of the platform has to follow
strict geometric relations. All distal anchor points bi have to lie on a common line
(Fig. 3.4). Thus, one can define the platform coordinate systems such that all points
are located on its z-axis and the vectors take the form bi = [0, 0, bi,z]T. Then, the
structure matrix takes the form

AT =
[
u1 . . . um

h1 . . . hm

]
, (3.13)
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where ui = [ui,x , ui,y, ui,z]T ∈ IR3 and hi = [−bi,zui,y, bi,zui,x ]T ∈ IR2. In contrast
to all other cases, we use the moving platform frame KP as reference frame for the
applied wrench to simply provide a non-redundant definition of the applied wrench.
In this moving frame, we maintain the decoupling between the two independent
torques. Thus, we have wP = [ fx , fy, fz, M P

x , M
P
y]T ∈ IR5.

3.4 Force Distributions

Determining the forces in the cables of over-constrained robots of the classes CRPM
and RRPM is a problem that is inherent to cable robots when one wishes to fully
control the motion. Amongst others, the problem of determining the cable forces
occurs in different tasks such as control, workspace determination, and design. In
this section, the following issues are addressed: Firstly, the general questions arising
for force distribution are discussed. Afterwards, the concepts of wrench-closure and
wrench-feasibility are introduced to characterize the static equilibrium of the plat-
form. Then, we derive in detail the convex set of force distributions that characterize
all robots withmore cables than degrees-of-freedom. Finally, the concept of available
wrench sets is discussed which is again a convex set with all wrenches a robot can
generate at a given pose.

Most of the robots are statically either under-constrained or over-constrained
making the determination of cable forces difficult. Only if the number of cables m
matches the degree-of-freedom n, the known solutions for rigid parallel robots can
be used. The problem of having positive tension in the cables is then only a matter
of determining the workspace.

For cable robots of the CRPM and RRPM type, the problem is related to over-
actuated parallel robots [112, 246] where rigid parallel robots also allow for negative
forces in their links. Therefore, additional restrictions must be introduced to apply
these techniques to cable robots. Ebert-Uphoff and Voglewede [134] pointed out that
the determination of cable forces for over-constrained cable robots is equivalent to
determining the forces in multi-fingered grasp planning. Both problems share the
over-determined mechanical structure (over-actuation) and the unilateral constraints
caused by cable and contact conditions, respectively. However, a cable robot has
no equivalent to the friction forces acting between robotic fingers and the grasped
object.

3.4.1 General Approach

The pioneers in cable robotics already identified that determining force distributions
is a key problem for cable robots. The classification from Ming and Higuchi [349]
revealed the problem of force distributions and gives criteria on the number of cables
and the degree-of-freedom to distinguish between different cases (see Sect. 2.2.1).
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Fig. 3.5 (a) Infinite region of allowed forces for force-closure and (b) the finite force-feasible
configurations for wrench-feasibility

An algorithm to solve this problem was already presented by Kawamura [238] to
determine feasible cable forces for his robot. Since then, a couple of methods and
algorithms have been presented. For over-constrained robots, there are a number of
steps to be taken:

• Identify the set F , i.e. the set of all feasible force distributions f for a pose (r,R):
By analyzing the mathematical structure of the underlying problem, it was found
that the solutions for the force distribution problem are defined from intersections
of the nullspace defined by the structure matrix AT and half-spaces defined by the
minimum and possibly also maximum cable force f min and f max, respectively (see
also Sect. 3.4.5). All sets F defined by these conditions are convex and therefore
specialized methods can be applied to analyze their structure [201, 475]. Both sets
are visualized in Fig. 3.5.

• Decide if the set F is nonempty: Proofing nonemptiness of the set F is equivalent
to determining if the pose belongs to the wrench-feasible workspace. This problem
is discussed in more detail in Chap.5.

• Determining any single solution f ∈ F : In general, it may be easier to compute
randomly any solution in the solution space than computing a solutionwith specific
properties.

• Choose a solution with given properties: Many authors studied methods to choose
a solution that is optimal or unique in a certain sense, where authors mostly tried
to minimize or maximize different norms on the chosen force distribution [43, 76,
168, 199, 396, 475]. Depending on the used norm, the optimization problem can
be solved in closed-form or with an iterative algorithm. Some authors propose to
choose the minimal cable tension in order to save energy in the system. Using the
maximum cable tension can increase the stiffness of the system, and maintaining
an average level of tension allows for robustness with respect to disturbance and
errors in the system. Other properties of interest may beminimal variance amongst
the components of the vector f .
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• Choose and track solutions along a trajectory such that force distributions are
continuous: In motion planning and force control, one has to ensure that there is a
smooth transition between the force distributions in neighboring poses. It turns out
that different methods to choose the force distribution may lead to discontinuous
forces along a continuous trajectory [473].

• Find numerically efficient or even real-time capable methods: Most work on effi-
cient algorithms and closed-form solutions are restricted to special cases like
degree-of-redundancy of one [475] or two [275, 277, 348]. Also, the degree-
of-redundancy of three was analyzed [356]. The closed-form solution presented
in [396] can be efficiently applied for any degree-of-redundancy r > 0 but may
fail to compute a solution although it exists.

In the literature, different approaches were introduced to calculate force distribu-
tions, and each one of them delivers force distributions with different characteristics
while requiring different computational effort, see [392] for an overview:

• General optimization using a p-norm [473]
• Interval analysis to optimize a p-norm [79]
• Optimization approach for p-norm with p = 4 [168]
• Constrained l1-norm optimization [441]
• Minimizing p-norm with Dykstra method [199]
• Closed-form solution for p = 2 [392, 396]
• Linear programming [43, 366, 438]
• Quadratic programming [79, 286]1

• Barycentric approach [348] and improved implementations [275]
• Kernel translation method [473] for r = 1
• Gradient projection onto the kernel [288]
• Weighted sum of solution space vertices [68]
• Available wrench set [62]
• Puncture method [80, 356]

In the following sections, we classify and define the conditions describing the
characteristics that are induced by using cables as transmission elements. Different
definitions have been introduced to characterize a pose [134] and the most important
concepts are reviewed below.

3.4.2 Wrench-Closure Poses

A pose (r,R) of a cable robot is said to be in wrench-closure [134, 183] or control-
lable [474] if for each wrench wP ∈ IRn there exists at least one distribution of cable
forces f ∈ IRm such that

AT(r,R)f + wP = 0 with f > 0 . (3.14)

1Li [286] only deals with the non redundant case r = 0, i.e. six cables and six degrees-of-freedom.
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Fig. 3.6 Example of a 1R2T robot: (a) Pose with force-closure (b) pose without force-closure.
Gravity forces are required to balance the platform

In other words, every wrench wP can be balanced with positive cable forces (see
Fig. 3.6a). In contrast, the structure equation for a pose (r,R) may be such that one
can only find solutions for special wrenches wP ∈ IRn (Fig. 3.6b). This property is
sometimes called force-closure when cable robots with purely translational motion
(2T and 3T) are considered.2

This concept of wrench-closure or controllability is a rather theoretical concept
disregarding any technical upper or lower limits on the cable force beside forces
being positive. The notion is a purely geometrical problem without the need for
introducing parameters for the desired wrenches on the platform and for the feasible
forces in the cables. The definition of wrench-closure yields some principle limits
of cable robots even when we accept infinitely large cable forces. The concept of
wrench-closure presents a handy formulation to introduce the unilateral nature of
force transmission through cables into the mathematical formulation of statics. The
problem of checking for the possibility of positive tension in the cables is connected
to solving linear systems that are subject to inequalities. Although this formulation
seems to be simple and one may expect to find ready to use methods in the literature
on linear algebra, it has kept robotic researchers busy for a decade to come up with
practical methods to perform the required computations.

3.4.3 Wrench-Feasible Poses

A pose (r,R) of a cable robot is called wrench-feasible3 [134, 188] or acceptable
[474] for a given applied wrench wP if

AT(r,R)f + wP = 0 for 0 < f min ≤ fi ≤ f max, i = 1, . . . ,m , (3.15)

2There is no need for defining torque-closure since there exists no cable robot with pure rotational
degrees-of-freedom, see Sect. 2.2.2.
3The term wrench-feasible originates from the multi-fingered grasping where a similar unilateral
problem of having positive contact forces between the fingers and the manipulated object is studied.



3.4 Force Distributions 61

where f min and f max are the lower and upper limits for the feasible forces in the cables,
respectively. A pose (r,R) is wrench-feasible for a set of wrenches Q, if Eq. (3.15)
holds true for every wP ∈ Q. Clearly, wrench-feasibility depends on the wP or Q.
Therefore, care must be taken to name the considered wrench wP or the considered
wrench setQwhen discussing thewrench-feasibility of a cable robot. Every pose of a
cable robot is wrench-feasible for somew0. This can be easily shown by substituting
an arbitrary cable force into the structurematrix. Consider, for example, theminimum
cable force f min and computew0 = −AT f min. Obviously, thiswrench exactly balances
the cable forces and therefore the robot is wrench-feasible for that special wrench
w0. This even holds true if the robot is in a singular configuration. In any case, if
the wrench is not specified, it is often assumed that wrench-feasibility relates to the
unloaded robot with wP = 0 or to the robot balancing its gravitational load. For the
latter case, the pose is called static equilibrium pose [134]. Wrench-feasibility is a
major practical criterion to evaluate the feasibility of a pose for applications.

3.4.4 Stability of Equilibrium

The concepts wrench-closure and wrench-feasibility address the problem whether
feasible cable forces exist. Such equilibrium can be unstable for a robot pose, if
the platform undergoes instability for infinitesimal changes in the cables forces, the
applied forces, and displacements. The effect that causes such instability depends
on the classification of the robot. For fully-constrained cable robots of the classes
CRPMandRRPM, instability can occur due to deficits in the stiffnessmatrix [33] and
depends on the current cable forces (see Sect. 3.8). In contrast, for under-constrained
cable robots, there exists only one cable force distribution and the kinematic and static
problems cannot be analyzed separately. As the influence of gravity is essential for
under-constrained cable robots, one has to take these forces into account to analyze if
the disturbance of the pose is stable or instable. The problem is tackled by Bosscher
[46] and more in detail by Carricato and Merlet [88]. The latter derive a form with
Lagrangian multiplier as well as a specific Hessian to explore stability of under-
constrained cable robots.

The problem of stability of a given pose is targeted in Sect. 6.3.5 where the con-
nection between kinematics, dynamics, and the energy of the cable robot is discussed.
In fact, the problem is related to the Hessian of the energy function which can be
employed for stability analysis (Sect. 6.3.5). Using appropriate cable models to set
up the system energy, one can handle both under-constrained and fully-constrained
cable robotswithin a common framework.However, this issue it not further discussed
in this chapter.
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3.4.5 Limits on Cable Forces

As pointed out above, the lower and upper limit on the forces of the cables must
be taken into account when considering a pose as wrench-feasible. A number of
authors [473] carried out that a minimum tension f min must be maintained to hinder
the cables from being slack and a maximum tension f max must not be violated to
prevent cables and motors from overload. Although there is a rich development for
algorithms to compute tension distributions for given limits [168, 199, 396], only
little was published on how to derive the actual limits f min and f max. In practice, it turns
out that there are much more limiting factors both for the minimum and maximum
force which are barely discussed in the literature [393]. Therefore, we dedicate the
following section to review and where possible quantify these limits. We investigate
what effects must be taken into account when choosing the lower f min and upper f max

bound for the cable force.
Analysis, design, and control of cable robots are mostly based on some simpli-

fications. Typical tasks to be solved are forward and inverse kinematics (Chap.4),
workspace computation (Chap.5), and tension distribution (Sect. 3.6) as well as con-
trol and calibration of cable-driven parallel robots. The basic approaches assume the
validity of the standard model where the cables are perfect line segments. During the
recent years, it becomes clear that such assumptions do not hold under some circum-
stances such as large-scale systems like IPAnema 3 [259], CoGiRo [276], or FAST
[286]. Therefore, it is a matter of design and configuration of the robot to choose
the tension f min and f max limits such that the error induced by the simplifications is
acceptably small.

3.4.5.1 Upper Bounds on the Tension

In this section, effects are investigated that must be taken into account when choosing
the upper bound f max for the cable force. To determine the maximum tension in the
cables, the following effects must be considered.

Mechanical Limits and Safety

A limitation is the static breaking load of the cable. Clearly, if the tension exceeds
the cable’s breaking load, the robot cannot be safely operated. For applications, one
has to additionally take into account a safety factor where relatively high factors are
typical in the magnitude around 10 in lifting applications such as cranes, elevators,
cable cars, and thrill rides.

We have also to take into account that the breaking load of the cable applies
to ideally applied forces at the end of the cable. Fixing the cable by clamping,
inappropriate knots, too small bending radii, etc. can significantly reduce the cable’s
breaking load, in some cases such as clamping and bending to less 2% (!) of its
nominal load.Note, that in presence of such extreme effects of the damagemechanics,
a safety factor of 10 does not prevent the robot from a failure. This effect can be seen
from the evaluation of the cable’s breaking load in Fig. 3.7.
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Fig. 3.7 Cable force f [N]
over the absolute elastic
elongation Δl [mm] for a
Dyneema cable D-PRO with
a diameter d = 2.5mm and a
probe length of
l0 = 300mm. The diagram
reveals the nonlinear
characteristics with a
progressive stiffness
behavior. The cable has a
specified breaking load of
f max = 5800N where around
3300N are measured in this
experiment. The reduced
load is often caused by
imperfect force transfer into
the cable at its ends
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Another mechanical limitation to consider is the maximum load on the winches
and pulley mechanisms used to guide the cable. Clearly, the cable may not damage
the mechanical structure. In typical applications, the frame, winches, and pulleys can
be appropriately dimensioned after the maximum tension of the cables was chosen.
Typically, the cable’s breaking load is chosen to be at least twice of the winches’
load.

The maximum forces exerted by cables on the mobile platform should not deform
or damage the platform. This is especially important for robots that can be reconfig-
ured by exchanging the platform. Different platforms may be designed for largely
different processes e.g. inspection with light sensors and handling heavy loads. A
light-weight sensor platform may get destroyed when applying crane-like forces
that are necessary for the handling operation. This effect is mostly a matter of the
configuration of the controller and the safety system.

Fatigue

Themaximum feasible dynamic tension of the cable and also of themachine elements
like the pulleys differs heavily from the static forces when fatigue is taken into
account. Even if the breaking load of a certain cable may be very high, one has to
take into account the conditions under which the robot is operated. While the robot
moves along a trajectory, the cable gets bent every time when it is guided around a
pulley or coiled onto the drum. For linear actuators with pulley mechanisms, each
motion cycle causes a multiple of bending cycles through the pulley tackle in the
cable. Given a certain lifetime for the cable, the maximum feasible tension in the
cable must be chosen to avoid failure due to fatigue. Since the fatigue of different
cables of the same type may heavily vary, a second safety factor must be chosen to
care for the statistical variations of the cable parameters. The first factor depends
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on mechanical and material properties of the cable, while the second safety factor
additionally depends on the level of safety required for the targeted application.
Today, figures on fatigue can only be determined by empirical studies [149, 489],
while models and simulations such as finite elements method are not reliable enough
to compute such data without experimental validation. Clearly, such experimental
data are cost intensive to generate. For steel cables, a wide range of data is available
in the literature, where for synthetic fibers very little is known.

Actuators

The maximum force of the motor often puts the effective upper limit of the cable
force since the actuators and their drive-trains are usually the most costly component
in the robot system. Industrial servo drives with integrated brakes are widely spread.
If the robot has an emergency braking system, one has to additionally consider
the maximum force that can be generated by the brakes for deceleration. From the
principles of a safety system, it is clear that the brakes must be stronger than the
motor, since the brakes must be able to stop the system even if the motors are still
in full operation. In case of an emergency stop, the forces generated by the brakes
can get significantly higher than the motors torque and thus present a severe danger
to break the cables. A general method to safely predict upper limits on the braking
forces is still an open problem, especially since the dynamic characteristics of the
robot also influence this behavior. Furthermore, brakes are subject towear. Therefore,
subsequent emergency stops show usually a reduced braking force. Summing up, it
must be stated that a significant safety margin between the rated breaking force of
the brakes and the static breaking load of the cables must be maintained.

Other Effects

Depending on the environment, other effectsmight interfere.A change in temperature
can contract the cables and thus increase the tension in the cables. Therefore, such
thermal effects must be taken into account to avoid overloading of the cables. For
synthetic fiber cables, humidity also effects the effective length and stiffness of the
cable. This may lead to slackness or overload. Additionally, one has to consider a
safety margin caused by control errors. The width of the safety margin depends on
the quality of the control systems and the safety requirements of the application.

Summary

Determining the maximum cable force is mostly a matter of mechanical design.
Since the costs for the drive-train presents often the highest costs in the robot design
(around 50%), this is in most cases the limiting factor due to economic reasons.More
precisely, the maximum force generated by the motor should be the limit because
the other criteria presented above have to be chosen in an appropriate relation to the
motor forces. However, if we reconfigure a cable robot and reuse a winch with a
different cable, the effective maximum force f max must be lowered according to the
criteria presented above.
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Fig. 3.8 Sagging s in the
middle of a horizontal cable
over distances l in
logarithmic scaling.
Different cable forces f [N],
for a diameter d = 2.5mm
of a Dyneema cable

s

d

3.4.5.2 Lower Bounds on the Tension

The lower limit on the cable force is considered in the next paragraph. On first sight,
one might consider any positive tension feasible. In practice, the following effects
require to keep a minimum pretension in the cables.

Slackness

Ensuring pretension and thus preventing the cables from slackness is a premise to
assume straight cables. However, every cable is subject to sagging under the effect of
gravity where the cable’s physical parameters length li , density �C, and tension f are
the main influence factors. If the tension in the cables is too low, sagging of the cable
cannot be neglected. This is often not acceptable because the effective length of the
cable and the distance between Ai and Bi heavily differ in this case. Furthermore, the
dynamic transition between a tensed and a slack cable induces transversal vibrations
in the cables. In the presence of large sagging s, the real direction ûi of the cable
force vector diverges from the ideal direction ui (Fig. 3.9). Furthermore, the robot
becomes insensitive to control changes in slack cables: Changes in the cable length
lead to smaller changes in the cable tension. Therefore, slack cables can hardly be
used to control the motion of the mobile platform. This effect can be observed in
some measurements taken on the IPAnema 2 robot (see Fig. 3.10). In the left part of
the plot, one can see a mostly linear decrease in the cable force. In a transition region
between 10 and 15mm, the curve falls mostly flat. Beginning from that point, one
observes a constant value on our sensor independently from the actual cable length.

To find the minimum cable tension, one has to define the maximum error for the
cable length or the maximum displacement from the ideal linear form. We consider
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Fig. 3.9 Sagging of a cable with the two major effects: The actual cable length is longer than the
straight line and the effective force direction ûi differs from the idealized direction ui
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Fig. 3.10 Raw data measured for the cable forces f from the force sensor of the IPAnema 2 system
over the relaxed cable length Δq

two criteria. Firstly, the minimum tension required to keep the maximum sagging
below a given upper bound. Secondly, the minimum tension required to limit the
deviation in the real and effective length by an upper limit.

A thorough consideration of the kinematics under sagging is subject in Chap.7.
In the following sections, we concentrate on some simplifications to derive the limits
on the cable force that are required to ignore sagging. If the computed lower force
yields too high values, one must use more involved models for cable and also for the
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control algorithms to cope with the additional effects. Some algorithms are presented
in Chap.7.

The maximum sagging s for a horizontal cable with a distance between the ends
of length l is

s = fH
gC

(
cosh

(
gCl

2 fH

)
− 1

)
, (3.16)

where fH is the horizontal cable force and gC is the gravity force caused by the cable’s
mass per length. Unfortunately, it is difficult to solve for the sought force fH but a
double logarithmic plot reveals simple figures (Fig. 3.8) and one can easily pick the
required pretension f min for a given length l, a given specific cable gravity force gC,
and an acceptable sagging of s max either from diagrams or by numerical solving the
implicit equation. Similar computations can be employed if the cable is not horizontal
but we restrict this consideration to the basic case.

The geometric deformation of the sagging cable also leads to different effective
length lS of the cable since the real curved shape of the cable is obviously longer than
the straight line between the end-points Ai and Bi . Considering the length error is
straightforward using the equation of the sagging cable. The actual length lS of the
cable from the catenary line can be solved in closed-form and we receive the simple
equation

lS = 2 fH
gC

sinh

(
gCl

2 fH

)
(3.17)

for the horizontal cable. For selecting theminimal force f min, one has to face the same
situation as above. While the equation for length can be written in closed-form, we
cannot solve in closed-form for the sought tension fH but numerical determination
is simple and robust.

We consider sagging of the cable in more detail in Sect. 7.3.1 and we present a
more elaborated derivation of the equations above taking into account the general
case without assuming horizontal cables.

Cable Weight

Even if sagging is acceptable, there is a lower bound for the cable force. Theminimum
tension depends on the weight of the cable and the tension cannot be reduced below
a value that is coupled to the density and length of the cable. Consider the following
situation: The distal end of the cable is fixed in space and the cable is uncoiled
starting from a perfect line. Then, the additional length of the cable increases the
overall effective weight of the cable acting on its anchor points. Therefore, the cable
force depends for large sagging only on the weight of the cable. For long cables, we
find the force to be proportional to the length of the uncoiled cable. In between, a
minimal positive cable force cannot be undercut. This limit depends on the distance
between Ai and Bi aswell as on the density of the cable. Clearly, this limit is important
for cable robots with a relatively small platform weight and long cables.
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Reliable Operation

Pretension is required for reliable operation of the winch. Without tension, the cable
can suddenly slide from the pulley or cross on the drum. There is also a tendency to
wrap around inner parts of the winch or to get jammed. If the tension of the cable is
very low, the bending stiffness of the cable cannot be neglected. The effect is more
important for steel cables but even fiber ropes have a finite bending stiffness that may
cause uncontrollable coiling errors in the winches. Also, for steel cables, a very low
tension causes the cables to leave the pulleys or drum grooves. Such coiling errors
also affect the accuracy of the robot. In the presence of low tension, the cable might
also leave the guiding pulleys which in turn causes severe safety problems when
cables get jammed at the pulleys or are subject to excessive abrasive wear while
sliding on machine elements such as housings.

Practical values are difficult to predict without considering themechanical design.
As reference, in the field of stage equipment for use in theaters 1–2% of the cables
breaking load is desirable as minimal tension for coiling.

Elasticity

The elastic elongation of the cables is in general nonlinear (see Fig. 3.7), even if
there is a nearly linear region around the operational point. To operate the cables
within this desired interval, a certain pretension is required and at the same time
a maximum tension may not be exceeded to stay within this preferred state. Since
little compensation techniques for nonlinear elongation of the cables can be found
in the literature, this presents a relevant limitation on the maximum ratio between
f min and f max.
Considering elastic relations in the cables, it is worth mentioning that only those

cables that are in tension contribute the robot’s stiffness (see Sect. 3.8). It the cables
are not sufficiently tensed, the stiffness is decreased. Thinking about the kinematic
constraints, a slack cable does not contribute to the kinematic equations. In this case,
a change in the classification and in the topology of the robot is triggered, i.e. a
RRPM robot may change to IRPM requiring large different control approaches.

Vibration

Tension in the cables can reduce the vibration of the cables by increasing the cable’s
first eigenfrequency. This effect is well known from string instruments. It was also
shown that pretension can be used to influence the vibration of the platform of planar
robots [450]. For an ideal string, the first eigenfrequency fE can be computed from
basic physics

fE = 1

2l

√
f

�CAC

, (3.18)

where �C is the density of the cable and AC is the cable cross section. The product
�CAC called specificweight is often given as parameter for a cable by itsmanufacturer.
We can easily compute the tension f min for a desired minimum first eigenfrequency
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f min( fE) = 4 f 2E l
2�CAC . (3.19)

To achieve higher eigenfrequencies fE for large robots, high pretension is required.
The contribution of the cable’s tension to the stiffness is discussed more in detail in
Sect. 3.8.2.

Cable Slip on the Pulleys

Pulleys have a finite inertia I R although their moment of inertia is mostly neglected.
When the cable is accelerated or decelerated, a fraction of the force is consumed
to accelerate the pulleys and in order to transmit this force, some pretension must
be applied to the cable in order to avoid slip between the cable and the pulley. Slip
between cable and pulley is not desired since it leads to additional wear of the cable
and possible errors in the measurement if for control purpose the rotation of the
pulley is tracked by a sensor. In the following, we compute the required pretension
to avoid slipping.

The dynamic cable force equilibrium is depicted in Fig. 3.11. To consider the
dynamic equilibrium, one has to take into account that the cable force on the winch
side fW differs from the cable force of the free cable fS. We can now consider torque
for the pulley as follows

τ R = I RaC

r R

, (3.20)

where τ R is the torque accelerating the pulley inertia I R, aC is the acceleration of
the cable, and r R is the radius of the pulley. If we consider the pulley to be a full
homogeneous cylinder, its moment of inertia is

I R = 1

2
m Rr

2
R with m R = r2Rπb R� R , (3.21)

with thewidth of the pulley b R and the average density of the pulley� R. If we consider
more complicated pulley geometries, one can replace the homogeneous cylinder by
more accurate values deduced e.g. from CAD data. According to Euler-Eytelwein’s

Fig. 3.11 Force equilibrium
for the pulley considering
pulley inertia and
cable-pulley friction
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formula (or capstan equation), one computes the maximum difference between fW
and fS that can be transmitted through friction by

fW = fSe
μ Rβ R , (3.22)

where μ R is the friction coefficient for the cable on the pulley and β R is the angle
around the pulley (Fig. 3.11). We can compute this angle using some advanced kine-
matic codes as carried out in Sect. 7.2.1. However, for the problem of computing
the pretension, one assesses the lowest allowed value for β R rather than using pose-
dependent values. Finally, torque equilibrium related to the center of the pulley yields

fW = τ R

r R

+ fS . (3.23)

Substituting all equations above in the latter, we find the minimum pretension f min

required to avoid the cable from slipping over the pulley to be

f min = 1

2

r2Rπb R� RaC

eμ Rβ R − 1
. (3.24)

The minimum cable force required to avoid slip depends on a number of parame-
ters. Firstly, we have some dependency with the geometry and inertia of the pulley
expressed by the parameters width b R, radius r R, and density � R. We find a linear
dependency for the cable acceleration aC, making slip an issue for dynamically oper-
ated robots. Finally, we have to note that the angle β R located in the exponential
function gives some importance to that parameter. If the cable is hardly deflected by
the pulley, one has a poor force transmission from the cable to the pulley leading to
high required pretensions.

Some example data are presented in Fig. 3.12. It can be seen that robots operated
with acceleration aC below gravitation acceleration g and with reasonable deflection
of at least a right angle β R > π

2 , sufficient pretension in the cable is rather low and
pretension can be chosen below 10N. However, if one want to exploit the excellent
dynamic performance of the cable robot, significant pretension must be ensured.

Requirements for Force Sensing

When using force sensors to measure the tension in the cables, it might be necessary
to maintain a minimum tension, since some force sensors provide low quality signals
close to zero tension. For very small forces, the measurement is also subject to errors
caused by mechanical parts for including the sensors. Therefore, small cable forces
are hard to distinguish from friction. Also, for the lower cable forces f min, one has
to consider a safety margin in order to prevent control errors to trigger one of the
effects listed above.

Summary

Taking all these above-mentioned effects into account, it becomes apparent that the
ratio between minimum and maximum cable forces may be large but cannot be



3.4 Force Distributions 71

Fig. 3.12 Required
pretension f min for different
values of the wrapping angle
β R and the desired cable
accelerations aC. The other
values have been chosen to
reflect the values of the
IPAnema 3 winch as follows:
μ R = 0.1,
� R = 2700kgm−3

(aluminum), b R = 20mm,
and r R = 35mm. The lines
in the diagram correspond to
minimum cable force f min ∈
{1, 2, 5, 10, 20, 50, 100, 200, 300}
respectively

increased to arbitrary values. As it will be apparent in the workspace studies subject
to Chap.5, the effective ratio from f min and f max has a nonnegligible influence on the
robot. Thus, the concept of wrench-feasibility must be applied rather than wrench-
closure in most practical cases.

3.4.5.3 Examples

The effective limits of the cable forces depend on a large number of physical parame-
ters, design decisions, and application requirements. Since a number of components
such as motors, cable material, and cable diameter are subject to a reflected design
procedure, we consider these parameters to be given. In the following, the consider-
ations on the cable force limits are exemplified based on case-studies performed for
some prototypes, i.e. the IPAnema family prototypes [391]. In particular, we consider
the use-cases described in Table3.1 which are applied on the following robot setup:

• IPAnema 1 spatial system, medium size robot used for a fast pick-and-place task.
• IPAnema 2 spatial system, medium size robot used for handling and assembly for
solar collectors.

• IPAnema 3mini spatial system, small size robot, high-dynamics laboratory system
for testing of kinematic codes, control algorithms, and calibration.

• IPAnema 3 spatial system, large size robot (16× 6× 5m), 5.0kW for handling in
a logistic scenario.
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Beside the application inspired scenario, we consider additionally the nominal design
parameter of the IPAnema 3 winches for 2.5mm cable (IPAnema 3 winch A) and
6.0mm cable (IPAnema 3 winch B). In order to compute feasible tension, we have
to fix some requirements. We checked the following criteria:

• The sagging s shall be smaller than 0.1% of the length of the cable or smaller than
the cable’s diameter (column 3 and 4 of Table3.2).

• The length error caused by sagging shall be smaller than 0.1% of the cable length
or smaller than 1mm (column 5 and 6 of Table3.2).

• The eigenfrequency of the cable should be at least 10Hz (column 7 of Table3.2).

The results are given in absolute numbers in Table3.2. The presented bounds shall
assure that the assumptions of the standard model are sufficiently fulfilled. Taking
all these issues into account leads to a surprisingly restricted interval for the feasible
cable forces in some applications. The use-cases presented above reveal significant
restriction. In optimistic use-cases, a ratio was found between minimum and maxi-
mum tension of 600.

It can easily be seen from the equations that tension limits are scale-dependent.
Therefore, we have to distinguish between small, medium, and large applications,
where the latter typically allow for a smaller ratio and thus for less workspace size
compared to the theoretical limits. However, since cable robots are evolving towards
commercial applications, such limitation needs to be taken into account to allow for
safe and reliable operation. Furthermore, some criteria discussed in this section are
pose-dependent. To the best of the author’s knowledge, it was not yet considered in
literature to adjust the cable force limits to the pose e.g. for workspace computation
or for control. Relaxing and tightening these bounds may have either positive or
negative influence on the workspace since it can present additional potentials at
some poses as well as the need for higher pretension in other poses. Pose-dependent
limits may also lead to different limits for each cable, since e.g. the actual length
depends largely on the current pose. In order to possibly exploit pose-dependent
force limits for each cable, force distribution tests need to be developed that work
efficiently for individual force limits in each cable.

3.4.6 Force Distributions for CRPM and RRPM

To study the static properties of cable robots of CRPM and RRPM type, one has
to analyze the structure equation (3.5) more in detail. In the following, we focus
on wrench-feasible configurations where we have positive lower f min and upper f max

force limits for the forces f in the cables. For redundant cable robots, there might
be infinitely many solutions for the force distribution in the cables [141]. It is a
well-known result from linear algebra that the solutions of an under-constrained
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linear system such as the structure equation form an r -dimensional linear vector
space S that is embedded in IRm and that contains all solution vectors. Let H =
[h1,h2, . . . ,hr ] ∈ IRm×r be a spanning vector basis of the nullspace or kernel of the
structurematrixAT. Then, each base vector hi fulfillsAThi = 0 and all vectors hi are
linearly independent. The vectors hi can be chosen such that they are perpendicular
to each other, i.e. hi . h j = 0 for any i �= j . Using this definition forH, we can write
all solutions of the structure equation in the parameter form

S = {
f = −A+TwP + Hλ | λ ∈ IRr

}
, (3.25)

where λ are the parameters of the solution space and A+T is the Moore-Penrose
pseudo-inverse A+T = A(ATA)−1. Then, −A+TwP is the projection of the applied
wrench wP onto the solution space S. On the other hand, we can easily define the set

C = {
f ∈ IRm | 0 < f min ≤ fi ≤ f max, i = 1, 2, . . . ,m

}
(3.26)

of all feasible force distributions that form an axis-aligned hypercube in the m-
dimensional space. The set F collecting all solutions of the structure equation is
given by the intersection (Fig. 3.13)

F = C ∩ S . (3.27)

A pose is wrench-feasible for a given wrenchwP if and only ifF is nonempty. IfF is
nonempty, it forms a convex polyhedron [473]. From the convexity, one can directly
conclude that if f A and fB are feasible solutions, than every solution

f = λf A + (1 − λ)fB ∀ λ ∈ [0; 1] (3.28)

is also a feasible solution.

3.4.7 Available Wrench Sets

For a given pose of the robot, it is interesting to study which wrenches can be
generated by the robot. Any cable robot is able to generate some wrenches. This
becomes clear when submitting an arbitrary cable force vector into the structure
equation. Take for example the maximum cable forces f max for each cable force.
Then, the robot clearly generates the wrench w max = −AT f max. This also holds true
both for over-constrained and under-constrained robots. If the robot is at a singular
pose, it still generates some wrenches although the dimension of the wrench set may
degenerate. Now, we investigate the wrench set that can be generated by a given
robot.
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Fig. 3.13 Illustration of the
intersection between the
solution space S of the
structure equation and the
cube C of feasible force
distributions

C

S

F

Given a structure matrixAT and bounds on the cable forces f min, f max, one can ask
for the set of wrenches Q that can be generated by the cable robot at this pose. This
problem was addressed in a couple of papers [47, 48] where the contribution from
Bouchard [62] is themost complete one.A detailed analysis of the structure equations
for feasible cable forces shows that the available wrench set, i.e. all wrenches wP

that can be exerted by a cable robot for a given pose are a convex set Q that can
be received by projecting the m-dimensional hypercube C into the n-dimensional
wrench space. Summarizing the findings of the paper [62], it is clear, that the linear
projection of a convex set transforms anm-dimensional space into an n-dimensional
space and the linearity of the transformation preserves the convexity of C after the
projection. Moreover, it turns out that the wrench set is a zonotope, i.e. it is bounded
by pairs of parallel (n − 1)-dimensional hyperplanes.

Therefore, the following properties hold true [62]:

• It follows from the convexity of the set Q that if a cable robot can generate two
wrenches w1 and w2 it can also generate every wrench

wP = λw1 + (1 − λ)w2 for λ ∈ [0; 1] (3.29)

on the connecting line segment. More generally speaking, if a discrete set Q =
{w1, . . . ,wn} of wrenches can be generated, every wrench wP in the convex hull
of the wrenches wi can also be generated.

• Thus, to check if a hypercube of wrenches can be generated, it is sufficient to check
all of its corners. Still, in n-dimensional space, the hypercube has 2n corners but
checking all corners is straightforward. Therefore, for the most general 3R3T
robot, one has to consider 64 corners.
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Fig. 3.14 For the zonotope
of the available wrench set
Q, we can check if the
ellipsoid E with the desired
wrenches is fully contained

Q

C

f1

f2

n

• In a similar way, one can check if every wrench wP within an ellipsoid E of
wrenches can be generated by the robot. To do so, one has to check only 2m
characteristic points on the surface of the ellipsoid (Fig. 3.14). The characteristic
points are determined on the surface of the ellipsoid E through the normals of the
hyperplanes which generate the zonotope [62].

• The zonotope defining the wrench set Q can be constructed from the Minkowski
sum of m generating lines (Fig. 3.15).

• Once the zonotope forming the wrench set has been calculated, it is simple to
check for wrench-feasibility for any given wrench by testing if the wrench wP or
a set of wrenches Q is fully enclosed by the zonotope.

• If the zonotope degenerates, i.e. does not span n dimensions, the robot is singu-
lar and it cannot generate or withstand wrenches in the direction in which the
degeneration occurs.

We have seen that the available wrench set Q is convex where for a given wrench
wP the possible force distributions are a convex set F . Although there are some
similarities between force distributions and available wrench sets, these are two
different properties of the robot. The set of possible force distributions F is a matter
of the configuration space where the wrench set Q is a concept in the operational
space. Based on this discussion about the structure of the statics, we devote the next
sections to the computation of actual cable force distributions from the set F .
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Fig. 3.15 Graphical scheme
to compute the Minkowski
sum of four line segments

3.5 Force Computation for CRPM

The determination of force distributions for completely constrained cable robots
is comparably simple. If the set F is nonempty, it forms a line segment that has
well-defined end-points. In this section, we review a method proposed by Verhoeven
[267, 268, 473] to compute force distributions for cable robots of the CRPM type,
i.e. for robots having exactly m = n+ 1 cables. It follows from the general structure
discussed in the previous section that all possible force distributions form a one-
dimensional subspace in the m-dimensional space of cable forces or, in other words,
all solutions are on a common line. The direction of the line is defined by the kernel
of the structure matrixAT and one finds a special point on that line using the pseudo-
inverse matrix A+T. The solution set given by Eq. (3.25) simplifies in this case to

S1 : f = −A+TwP + hλ = f0 + hλ , (3.30)

where h is any nonzero element of the kernel ofAT and f0 = −A+TwP is a particular
solution on the line. Note that λ is a scalar parameter in this case.



3.5 Force Computation for CRPM 79

Fig. 3.16 Illustration of the
feasible interval F for the
cable forces bounded by λ min

and λ max

C

S

F

max

min

To check wrench-closure (controllability), it is sufficient to consider the vector h:
A positive force distribution f exists, if and only if all elements of the vector h are
nonzero and have the same sign, i.e. if h > 0 or h < 0 holds true. Interestingly, the
value of the applied wrenchwP does not matter for checking force-closure.Whenever
the kernel fulfills the criterion above, one can choose λ sufficiently large (small if
h < 0) to shift all cable forces into the positive region (see Fig. 3.16).

If the robot is in a wrench-feasible (acceptable) configuration, then there must
be a range for the λ that leads to feasible cable force f . The conditions for wrench-
feasibility can be written as follows

max
1≤i≤m

f min − f0,i
hi︸ ︷︷ ︸

λ min

≤ λ ≤ min
1≤i≤m

f max − f0,i
hi︸ ︷︷ ︸

λ max

. (3.31)

If the interval [λ min; λ max] is empty, the pose is not wrench-feasible. Otherwise, all
solutions can be computed from Eq. (3.30) by substituting the feasible value for λ.

For numerical computations, one has to determine an element of the kernel ofAT.
This can easily be done using the singular value decomposition (SVD) that allows
to directly compute the vector h as the direction associated to the singular value 0.
Using SVD is a very robust but slow way to compute the kernel. Although SVD
is available in many powerful numerical libraries and computer algebra systems, it
might be tiresome to manually implement it for usage in other contexts such as in
a real-time system. Basically, any linear algebra algorithm that allows to solve a
homogeneous system can be applied to compute the nullspace.
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3.6 Force Computation for RRPM

The determination of feasible force distribution for redundantly constrained cable
robots is a major challenge for design and control of such robots. One has to distin-
guish two problems regarding force calculations for cable robots. The first problem
is, if at least one solution f to Eq. (3.5) exist. Secondly, if there are many solutions
how can one select one solution such that the cable force distributions are continuous
along a trajectory, i.e. under continuous changes in the platform pose (r,R).

3.6.1 Force Computation as Optimization Problem

Verhoeven [473] and Gosselin [168] showed that one can find trajectories with con-
tinuous force distributions if one converts the under-determined linear system with
constraints into an optimization problem using p-norms (Fig. 3.17) with p > 1. This
leads to the following constrained optimization problem

minimize g(f) = ‖f − f ref‖p = p

√√√√
m∑

i=1

( fi − f ref,i )p (3.32)

subject to f min ≤ fi ≤ f max (3.33)

linear constraints wP,i = −
m∑

j=1

AT
j,i f j , (3.34)

Fig. 3.17 Unit spheres for
different p-norms with
p = {1, 2, 4, 10, 40, 100}. It
can be seen that for higher
values of p the form
smoothly approximates the
enclosing box
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where f ref is the desired cable force to be optimally approached. Using p-norms
as objective function and the structure equation as constraints introduce a criterion
to choose an appropriate solution amongst the infinitely many possible solutions.
The p-norm can be understood a kind of potential field on the solution set that
allows to compare different solutions based on their p-norm (Fig. 3.18). Due to
the properties of the p-norm, the solution becomes unique and continuous along a
trajectory. Contrary, using p-norms also introduces some trade-off: low values of p
(especially using the Euclidian norm p = 2) allow for simple and numerically stable
computation. Unfortunately, the potential field introduced by the p-norm sometimes
favors infeasible solutions outside the allowed region over feasible solutions in the
corners of the force space (Fig. 3.17). In contrast, high values of the p-norm provide
a smooth mapping towards the corners of the box but introduce numerical problems
with computing the high exponents and sometimes rapidly changed values. This
can be seen from the comparison in Fig. 3.18 for p-norms between 2 and 100. In
each of the six plots, the isolines for {0.2, 0.4, 0.6, 0.8, 1.0} are shown for different
p-norms. The figure illustrates that choosing the p-norms makes a compromise
between numerical stability and coverage of the maximum volume of the hypercube
C. Furthermore, the chart for p = 1 unveils lack of differentiability where the isolines
cross the coordinate axes.

Some iterative procedures to solve this general problem have been proposed, such
as linear and quadratic programming, gradientmethods,Dykstramethod, and interval
analysis. Especially for real-time control purposes, non-iterative methods with an
acceptable amount of computation time were developed. A different approach for
choosing a unique solution is based on computing the barycenter of the solution
set F . The computation time is driven by triangulations in the r -dimensional space
[275, 277, 348]which becomemore complex for higher dimensionsm. Currently, the
barycentric algorithm has been implemented for redundancies up to r = m − n = 2.

3.6.2 Other Ways to Consider the Problem

Most authors address the minimization or maximization of the cable forces. Once
these extremal values are found, one can easily choose a compromise between these
distributions. Because of the convexity of the solution set, every weighted sum of
the extremal solutions is also a valid solution. Tracking such a linear combination
also leads to continuous force distributions.

Instead one may search for force distributions with minimal deviations amongst
the cable forces, i.e. force distributions that are homogeneous. This presents a slightly
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p = 1 p = 2

p = 4 p = 10

p = 40 p = 100

Fig. 3.18 Potential fields for different p-norms and values v = {0.2, 0.4, 0.6, 0.8, 1.0}. For high
p values, the potential fields extend to the very corners of the box but the isolines of the potential
field are compressed indicating an ill-conditioned numerical problem
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more complex objective function that can be expressed by minimizing the standard
deviations or higher moments. Minimizing the standard deviation can be achieved
by the objective function

g(λ) =
m∑

i=1

[
f (λ) − [Hλ]i

]2
(3.35)

where

f (λ) = 1

m

m∑

i=1

[Hλ]i (3.36)

is the mean value of Hλ.
The following consideration shall highlight the connection between the general

parameter form of the feasible force set S and the selection of a single solution.
Starting from the parametric form Eq. (3.25) of the nullspace, we can convert this
formula into an optimization problem. For this purpose, we take a closer look at
the structure of the parameter form. The homogeneous solution A+T wP is a con-
stant vector where the spanning base of the nullspace H and the scale vector λ are
the describing parameters of the optimization problem. Applying a p-norm for the
objective function gives a multivariate polynomial in λ1, . . . , λr which coefficients
are linear combinations of the coefficients ofH, i.e. of the spanning base of the kernel
of AT. This structure of the objective function must be kept in mind when looking
for a suitable optimization algorithm.

3.6.3 On the Influence of Higher p-Norms

As discussed earlier, the p-norm of the force vector introduces a single measure
on the cable force vector and in the context of optimization, we can interpret this
measure as a selection criterion. One can find a value ||f||p ≤ f̃ for every p-norm
such that all forces fulfilling the inequality are inside the cube C, i.e. are feasible
force distributions. A guaranteed region of existence and uniqueness for p-norms
can be described by a unit superquadric with the implicit equation

m∑

i=1

| fi |p = 1 . (3.37)

Now, the ratio between this unit superquadric and the volume of the unit hypercube C
reveals how much of the theoretically possible force limits can be correctly mapped
inside the hypercube by the respective p-norm. A closed-form formula was found
to compute the volume of the generalized m-dimensional superquadric [485] which
reads
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Fig. 3.19 Ratio of the unit
m-dimensional superquadric
defined by the p-norm and
the unit m-dimensional
hypercube (p-axis in
logarithmic scale)

V p
m = Γ (1 + 1

p )
m

Γ (1 + m
p )

2m , (3.38)

where m is the number of dimensions (cables), p is the chosen p-norm, and Γ

is Euler’s Gamma-function that generalizes the factorial function to real numbers
IR. The ratio between the volume of the hypercube and the superquadric is shown
in Fig. 3.19 for different p-norms and dimensions m. For the Euclidian norm with
p = 2, the volume can be simplified

V 2
m = Γ (1 + 1

2 )
m

Γ (1 + m
2 )

2m = π
m
2

Γ (1 + m
2 )

2m . (3.39)

It can be seen that the superquadrics almost exploit the hypercube for higher p-norms
of p > 25. Contrary for small p-norms (and especially for the 2-norm), the coverage
of the hypercube is rather limited. Therefore, one has to abstain from guaranteed
existence or analyze the respective algorithm more in detail. Although higher p-
norms are highly beneficial in terms of region of guaranteed convergency, they also
introduce severe numerical problems for implementation. This holds especially true
for real-time systems with little support for arbitrary-precision arithmetic.

In the following section,we explain anddiscuss a number of algorithms to compute
the force distributions.
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3.7 Algorithms for Force Distribution

In this section, awide variety of approaches for numerically solving the force distribu-
tion problem is presented and compared.Where possible, considerations on real-time
capability, convergency, continuity, and computational complexity are added.

3.7.1 Linear Programming

Linear programming is a special form of convex optimization [438] where the cost
function is linear in the parameters and the problem has linear constraints, i.e. equa-
tions and inequations in the independent parameters. A general form of a linear
program is

minimizeg(f) = cTf (3.40)

subject to Bf ≤ l (3.41)

with the linear constraints Qf = d (3.42)

where we chose cT = [1, . . . , 1]T to emulate the p = 1 norm.4 The matrices and
vectorsB,Q, l and d are chosen such that the conditions Eqs. (3.33) and (3.34) match
the structure of a linear program. Thus, one receives

B =
[

I
−I

]
(3.43)

l =
[

f max

−f min

]
(3.44)

Q = AT (3.45)

d = −wP . (3.46)

Linear programs aremostly solvedwith the simplex algorithm that is robust, efficient,
and well-understood. Anyway, also other algorithms are known to deal with linear
programs.

3.7.1.1 Existence and Uniqueness

The simplex algorithm searches the optimum by visiting the vertices of the polytope
defined by the constraints. The next vertex is selected such that the objective function
is reduced. The procedure continues until all vertices have been visited (worst case)

4Note, that by choosing the 1-norm, one does not fulfill the assumptions required to receive a
continuous solution along a trajectory. Instead, linear programs may generate steps in the force
signal from time to time.
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or no improvements can be found on a neighboring vertex. In general, it may happen
that all vertices must be visited before finding the optimum. It is unknown if this can
really happen for cable robots. Linear programs can be unbounded but this cannot
happen for cable robots since f min is always the smallest solution. Furthermore, it
may happen that no solution is feasible at all which happens if the current pose does
not belong to the wrench-feasible workspace.

If the optimization problem has solutions and is bounded, then the simplex algo-
rithm will find the global optimum which is not necessarily unique. Note this lack
of uniqueness is a source of discontinuity and it is inherent to linear programs. The
simplex algorithm always provides one of the vertices of F . Therefore, at least one
force in the solution vector is equal to f min or f max. When following a trajectory, it
may happen that the vertex changes that is optimal with respect to the linear program.
In this case, a discontinuity appears in the force distributions. Clearly, this drawback
hinders the usage of linear programming to compute set-point forces in most control
applications. Linear programs are widespread tools in optimization and solving the
linear program is sufficient to answer the question if a pose is wrench-feasible.

3.7.1.2 Computational Complexity

The computational time of the simplex algorithm can be strictly bounded. The worst
case computation time depends on the number of vertices of the polytope which
in turn is exponentially in the number of cables. Since the number of cables m is
constant for a given robot, a real-time capable implementation is basically possible.
Aside from solving the linear program, no further advanced linear algebra algorithms
are needed.Linear programs canbe employed for an arbitrarily large number of cables
m.

3.7.2 Nonlinear Programming

The discontinuities generated by linear programming are a consequence of the
implicit using the 1-norm as objective function. When extending the approach by
using high p-norms such as the Euclidian norm, linear programming is no longer
applicable. Instead, quadratic or other nonlinear methods have to be applied to solve
the optimization problem. A typical form of quadratic programming is given by

minimizeg(f) = 1

2
fT Cf + cT f (3.47)

subject to Bf ≤ l (3.48)

with the linear constraints Qf = d . (3.49)

To emulate the 2-norm in the objective function, we choose C = I for the quadratic
part in f and neglect the linear part by setting c = 0. The objective function becomes
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basically g(f) = ||f||2 but also fits the formal specifications of a quadratic program.
The values of B,Q, l, and d can be chosen as described in Sect. 3.7.1.

3.7.3 Verhoeven’s Gradient Method

Verhoeven [473] developed an optimization method highly specialized to cable
robots. This algorithm is designed such that it can be applied for different values
of p, especially for high values of p in order to approximate the infinite norm. The
gradient method uses an iterative solver to determine two feasible solutions called
f low and f high that are minimal/maximal with respect to the chosen p-norm (Fig. 3.20).
Due to the convexity of the set F , all points on the linear interpolation between the
low and the high solutions are also feasible. Therefore, it is straightforward to adjust
the level of internal tension in the robot by computing a weighted sum between f low

and f high. Since the method is designed for high values p (numerical examples are
given for up to p = 9 [473]), it uses a sophisticated method to internally scale the
magnitude of the intermediate results such that numerical errors due to canceling are
avoided. Furthermore, a method is developed to control the step size.

3.7.3.1 Existence and Uniqueness

The gradient methodmay fail to find solutions although they exist. Due to its iterative
structure, it is difficult to predict itsworst case computational time.Amajor advantage
of the method is that it can deal with large values for the p-norm as well as for highly
redundant robots with many cables. Some examples are presented including p = 9

Fig. 3.20 A selection of
force distributions is found
by a lowest f low and a highest
f high solution

C
Ff low

fhigh



88 3 Geometric and Static Foundations

norm and a planar robot withm = 25 cables. For both cases, it receives a large region
of convergency while maintaining the continuity of the computed force distributions.
Therefore, it serves well for analysis and research purpose but is rather limited for
application in force control.

3.7.3.2 Computational Complexity

A real-time capable implementation was not reported yet. From the simulation
results, it can be expected to be fast enough for real-time purpose where the worst
case computation time is not published or estimated.

3.7.4 Dykstra Method

Hassan uses the iterative Dykstra method to compute solutions of the structure equa-
tion and thus receives force distributions [199, 201, 203]. The idea is to perform an
alternating series of projections PS and PC where beginning from an initial guess of
the forces (e.g. f = 0). These forces are firstly projected onto the solution space S.
The resulting force distribution is projected back onto the cube C. Hassan showed that
the algorithm converges to a force distribution with a minimal distance between S
and C. If the sets are intersecting, this minimal distance is 0 and the desired solution is
found. If no improvement on the force distribution can be made by this two-step pro-
jection, then the set F is empty and thus no solution exists. The alternating projects
onto the cube C and the solution space S are illustrated in Fig. 3.21.

f1

f2

f3 C

F

S

f1

f2

f3 C

S

Fig. 3.21 Iterative projections computed by the Dykstra algorithm from C to S and back. Con-
vergency towards a feasible solution in F (left). Situation outside the wrench-feasible workspace
without convergency (right)
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The first projection PS from an arbitrary force f (i) onto the solution space S is
achieved by

PS : f (i+1) = (
I − A+TAT

)
f (i) − A+TwP . (3.50)

The second projection of theDykstra algorithm PC onto the cube C is simply achieved
by limiting each component f j of the vector f (i) to the force limits f min and f max,
respectively, as follows

PC : f (i+1) = [ f̂1, . . . , f̂m]T (3.51)

with

f̂ j =
⎧
⎨

⎩

f min f j < f min

f max f j > f max

f j otherwise
. (3.52)

Hassan shows that the algorithm converges in general but practical tests and also
the figures in Hassan’s paper indicate that the rate of convergency is very slow and
also a test implementation indicated a high number of iterations until convergency
was reached. Due to the projection steps, it seems that the convergency slows down
when the minimum is approached. Therefore, a good initial guess can speed up the
computation. In one implementation, the closed-form solution (see Sect. 3.7.5) was
used as initial guess rather than starting with f = 0. The general method proposed
in the older work [199, 429] is only able to any one solution on the cube C. Note
that for redundancy r > 1, there are in general still infinitely many solutions on the
cube. Therefore, this method cannot be used to compute force distributions that are
in general continuous along a trajectory.

3.7.5 Closed-Form Method

In the following, amethod is presented to compute force distributions for cable robots
with an arbitrarily large redundancy r = m − n > 0 of cables [396]. It is shown
how to calculate a solution for this problem in closed-form for p = 2 with simple
algebraic operations making an implementation in a real-time system straightfor-
ward. In order to find the solutions, the cable force vector f is split into

f = f M + f V , (3.53)

where the i-th component of the vector f M reads f M,i = ( f min + f max)/2 which
is the average feasible force and f V is an arbitrary force vector. In other words, a
coordinate transformation to the center of the cube C is performed. Thus, one can
rewrite Eq. (3.5) to

ATf V = −wP − ATf M︸ ︷︷ ︸
b

. (3.54)
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It follows from Verhoeven’s theorem [473] that a force distribution is continuous
along a trajectory of the mobile platform if the distance to a reference vector is
minimized. Here, we use the vector f M in the center of the feasible forces C as
reference and measure the distance using a p-norm with (2 ≤ p < ∞). A similar
definition of an optimal solution is [348]: In terms of reliability, a solution between
the force limits f min and f max is desired to stay away from the critical force limits
as far as possible, resulting in an average cable tension level. This assumption is
a reasonable compromise between the minimum and maximum cable force level.
The idea of the proposed method is to transform the problem using Eq. (3.53) such
that one has to determine bounded, least-square solutions rather than searching for
positive solutions, since the latter turned out to be a challenging problem.

Here, the Euclidian norm (p = 2) is used to determine the least-square solution
of the equation, which fulfills Eq. (3.5) and has a minimum 2-norm (Euclidian norm)
with respect to f M. This can be done by means of the Moore-Penrose generalized
matrix inverse which is defined for matrices with more columns than rows asA+T =
A(ATA)−1. Multiplying A+T from the left hand side of Eq. (3.54) gives

f V = −A+T(wP + ATf M) (3.55)

and substituting this into Eq. (3.53) yields

f = f M − A+T(wP + ATf M) . (3.56)

Finally, the resulting force distribution f must be checked to be feasible, i.e. tested if
it is consistent with the force limits. One can improve both the computation time and
the numerical stability by solving a linear system instead of computing the pseudo-
inverse matrix A+T explicitly. To do so, one has to solve the linear system

ATA︸︷︷︸
AS

f V = −wP − ATf M︸ ︷︷ ︸
bS

(3.57)

with the symmetric system matrix AS, the given right hand side bS, and the sought
force vector f V. This linear square system can be solved with known algorithms such
as Cholesky decomposition which is very fast by exploiting the symmetry of AS

but insensitive to singular cases. The general purpose LU-decomposition (Gaussian
elimination) is sensitive to singularmatrices but slower that Cholesky decomposition.
The Householder QR decomposition is sensitive to singular matrices and performs
orthogonalization where finally the Jacobi singular value decomposition (SVD) is
relatively slow but sensitive to singular cases and provides the highest numerical
stability especially for poorly conditioned cases. The linear problem is relatively
small and in general it holds true that dimAS ≤ n ≤ 6. Therefore, the numerical
performance largely depends on howmuch the used numerical solver is optimized to
dealwith small problemswhere the scalingwith the size of the linear system is second
for performance. A comparison amongst themethods is shown in Fig. 3.22 indicating
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Fig. 3.22 Comparison of
different numerical schemes
to compute the force
distribution. The benchmark
was computed for the
IPAnema 1 geometry at
229376 poses

a factor of six between the fastest method Cholesky and the slowest method Jacobi
SVD. If not stated otherwise, the computations in the result section were executed
using the Cholesky decomposition which showed sufficient numerical stability.

The closed-formmethod to compute the force distribution has the following prop-
erties:

• It satisfies exactly the structure equation (3.5).
• It satisfies Verhoeven’s theorem, i.e. ifAT andwP are continuous along a trajectory,
then the computed forces f are also continuous.

• The force distribution f can be computed explicitly, where for the numerical com-
putation only the operations matrix inverse, matrix transpose, and matrix multi-
plication are needed. Thus, computation time is strictly bounded allowing for use
in real-time systems.

• Feasibility ( fi ∈ C) can be checked straightforward simply by verifying that for
each component fi it holds true that f min ≤ fi ≤ f max.

• The algorithm fails if ATA is singular. This can be easily detected while inverting
this matrix and such poses do not belong to the workspace due to rank deficit of
the structure matrix AT.

3.7.5.1 Existence and Uniqueness of the Force Distribution

Note, that this algorithmmay also fail to find a feasible force distribution between the
force limits although such a distribution exists. Three basic cases can be distinguished
(Fig. 3.23) based on

f V = f − f M = −A+T(wP + ATf M) . (3.58)

Using the radii ri and ro of the inner and outer sphere, respectively, the following
cases must be distinguished:
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Fig. 3.23 Distinction of
cases for the closed-form
determination of feasible
force distributions

1. If ||f V||2 < ri = 1
2 ( f max − f min), then a feasible distribution exists and is bounded

by the minimum andmaximum forces in each cable. Furthermore, under this con-
dition, the force distribution is additionally differentiable along a differentiable
trajectory and applied wrench wP.

2. If ||f V||2 > ro = 1
2

√
m( f max − f min), then no feasible force distribution exists and

the pose does not belong to the wrench-feasible workspace for the given applied
wrench wP.

3. Elsewise the algorithmmight or might not fail to find a feasible solution although
it exists. In case 3a, no solution exists, thus it cannot be found. In case 3c, a feasible
solution outside of sphere ri is found. Although there are feasible solutions in case
3b (see Fig. 3.23), the algorithm determines a solution outside the feasible region.
Currently, we have no simple criterion to distinguish between 3a, 3b, and 3c but
the algorithm is robust in that way that if it rather misses an existing solution than
supplying an invalid solution.

To study the unique domains where the algorithm guarantees to determine the
solution, it is interesting to compare the volume of the inner m-hypersphere, the
outerm-hypersphere, and the hypercubes given by the force limits. The results of this
comparison are quite counter-intuitive for higher numbers of cables m. The volume
V 2
m of an m-dimensional sphere with radius r is given in Eq. (3.39). Figure3.24

shows the relative volume of the enclosing sphere (case 2) and inner sphere (case
1) in logarithmic scale. One can see from the diagram that the distinction of cases
between 3a, 3b, and 3c becomes an important issue when the number of cables
increases. For eight cables, the inner sphere that represents the region of guaranteed
convergency is only around 2.5% of the volume of the cube C. It seems that the
algorithm works out very well if the robot is in a fully-constrained position while
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Fig. 3.24 Comparison of the
volume of inner and outer
m-spheres with the volume
of the m-hypercube. The
relative volume is presented
on a logarithmic scale
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the case 3b occurs more often for suspended configurations. This may be explained
when considering that wrench-feasible poses of a fully-constrained robot are located
in a similar region as the force-closure poses. For force-closure poses, a subset of
the kernel of the structure matrix lie in the positive half-space of IRm .

As discussed in [473], this problem can be overcome when using higher p-norms.
The boundary of the hypercube is more accurately approximated for larger p leading
to a larger region of convergency. For p → ∞, convergency is achieved for the full
hypercube. Contrary only for p = 2, a closed-form solution is known. When setting
p > 2, one has to rely on an iterative algorithm and also numerical stability becomes
an issue.

3.7.5.2 Implementation Issues and Computational Complexity

Using the cable force f determined from Eq. (3.56), one can answer the important
questions of existence and value of the optimal solution by simply checking if it
is feasible, i.e. f ∈ [ f min; f max]. Thus, Eq. (3.56) renders a closed-form solution to
the problem which only involves matrix multiplications, matrix transpose, and one
matrix inversion. Thus, the computation time is well-defined and strictly bounded.
The latter is very important for applications in real-time control. Especially for a
high number of cables, the computation is relatively cheap.

For implementation in an algorithm, one has to carefully check, if the inverse
(ATA)−1 exists. Physically speaking, this inverse exists if the robot is in a nonsingular
configuration. Mathematically speaking, this can be checked ifAT has full row-rank.

A major advantage of the presented algorithm is its efficiency for higher degrees
of redundancy r = m − n. Since Eq. (3.56) presents the solution for any r > 0, one
can investigate the computational efforts for different r . The number of operations to
evaluate Eq. (3.56) is driven by the matrix multiplications and the matrix inversion.
Thus, the overall effort is O(n2m) + O(n3) (only O(n2m) if linear solving is used
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instead of the pseudo-inverse) and since in general the degree-of-freedom for robots
is bounded by n ≤ 6, the complexity for the algorithm is only O(m). This reveals
that the runtime for force calculation is acceptable also for highly redundant robots.

For efficient numerical computation, one can avoid the computation of the pseudo-
inverse matrixA+T as outlined in Eq. (3.57) by rewriting the closed-form equation to
a linear system. This system is in turn solved by Cholesky decomposition or Gauss
elimination which is of order O(n2m) and also for small m faster than inverting the
matrix.

3.7.6 Improved Closed-Form Solution

The method presented in the previous section can be improved by a recursive proce-
dure in order to overcome its limitations in terms of coverage of the wrench-feasible
workspace [392]. We present this algorithm in a new section since the closed-form
method above is also of use when applying it as initial guess for iterative schemes
such as the Dykstra method (see Sect. 3.7.4) or the puncture method (Sect. 3.7.9).

Based on our results in the previous section, we developed a formula to compute
a solution for the force distribution problem in closed-form [396]. The basic idea of
thismethod ismaintained andwe perform a coordinate transformation to themedium
feasible cable force f M = 1

2 (f min + f max). This also changes parts of the optimization
problem from constrained optimization to pure minimization. The cable forces f can
be computed as

f = f M + f V = f M − A+T(wP + ATf M) , (3.59)

As discussed above, this formula might fail to provide a feasible solution although
such a solution exists, if the magnitude of the variable part f V of the force distribution
is in the range

1

2
( f max − f min) ≤ ||f V||2 ≤ 1

2

√
m( f max − f min) . (3.60)

If ||f V||2 violates the upper limit, no solution exists and if it is below the lower limit
the distribution is feasible. This undefined case occurs amongst others close to the
boundary of the wrench-feasible workspace, for robots with many redundant cables,
and for redundant robots in suspended configuration.

In the following, we present an extension of the method such that feasible force
distributions are found in almost all caseswhere the originalmethod fails. The closed-
form solution is guaranteed to fulfill the force equilibrium but may violate the force
limits. The following approach is proposed:

1. Equation (3.59) is used to compute a force distribution. If this initial guess already
fulfills the cable force conditions, we have the sought solution and stop the
algorithm.
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2. Otherwise, let i be the cable with the largest force over (under) the maximum
(minimum) feasible cable force. If one moves from this distribution along the
spanning base of the structure matrix kernel, one must cross the value where fi
reaches its maximum (minimum) feasible value.

3. Therefore, it is assumed5 that a feasible force distribution minimizing the 2-norm
can only be found, if this cable force is fixed to itsmaximum (minimum) value f max

( f min). Using a constant value for cable force fi simplifies the force distribution
problem as follows

A′Tf ′ + w′
P = 0 with w′

P = f max

[
AT

]
i
+ wP,

(
w′

P = f min

[
AT

]
i
+ wP

)
,

(3.61)
where A′T is the structure matrix and f ′ the cable forces vector with the i-th
column/element dropped, respectively. [AT]i denotes the i-th columnof thematrix
AT. Thus, we have reduced the actuator redundancy r by 1.

4. Now, we compute the solution by recursively reducing the order and computing
the closed-form solution by going to step 1 until:

a. We find a feasible distribution,
b. The degree-of-redundancy becomes r = 0, or
c. Equation (3.60) proofs that no feasible solution exists because the computed

force violate Eq. (3.60).

Therefore, we find the desired cable force distribution (if it exists) with at most r
evaluations of the closed-form formula. This is to the best of the author’s knowledge
the fastest way to compute force distributions for robots with high redundancy, e.g.
robots with m = 12 cables.

3.7.7 Barycentric Force Distribution Method

The barycentric approach was developed by Mikelsons et al. [348]. Mikelsons
showed for the barycentric approach that the convex solution set F is continuous
along a trajectory. Therefore, its barycenter fB must also be continuous along a
trajectory and it must be an element of that set because the set F is convex. Further-
more, F is a polyhedron that can be decomposed by triangulation for any degree-of-
redundancy r > 0 through simplices. An algorithm for the case r = 2 was presented
and its real-time capability was demonstrated [348]. Later, Lamaury [275, 277] pro-
posed an improved algorithm that speeds up the computation by reducing the number
of considered vertices. Although the approach can be applied for arbitrary r > 0,
only implementations for r = 2 were reported in the literature.6 The challenge for

5Unfortunately, we have no formal proof that this holds true in general.
6Some algorithms for CRPM (r = 1) can be interpreted as special versions of barycentric method
but the triangulation degenerated to a trivial case for the one-dimensional kernel because only one
line segment needs to be considered and the sought solution is just the middle between the two
ends.
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higher redundancy r > 2 is the computation of the triangulation that becomes more
involved when simplices of general dimension must be considered.

3.7.7.1 Vertex Computation

There are two ways to compute the vertices of the solution set F . Firstly, one can
intersect the planes that generate the half-spaces of C with the kernel of the matrix,
e.g. fix r components in the structure equation to compute the solution of the thereby
fully defined linear system. Only if the remaining n computed forces are feasible, it
is a vertex of F .

Secondly, one can project the 2m hyperplanes of C into the r -dimensional ker-
nel of the structure matrix where the m-dimensional hyperplanes degenerate to r -
dimensional hyperplanes.7 Then, one computes all intersections of every permutation
of r lower dimensional hyperplanes.

Once the vertices of F are determined, one has to triangulate the set F . For
r = 2, one can compute the mean value of all vertices which must lie inside the
convex polygon F and connect two neighboring vertices with this central point.
Firstly, the area and barycenter is computed for each of these triangles and secondly
the common barycenter of all the triangles is computed.

3.7.7.2 Computational Complexity

A time consuming step in the computation of the triangulation is the determination
of the vertices of F . The vertices can be determined choosing r cable forces to be
minimal or maximal and solve the resulting linear n × n system. There are m over
r possible permutations to choose the constant cable forces and for each of these
choices there are 2r combinations to assign the minimum and maximum cable force
to the cables. Thus, the number of linear systems to solve is

n Systems =
(
m
r

)
2r = m!

r ! (m − r)!2
r = m! 2r

r ! n! = m! 2m−n

(m − n)! n! . (3.62)

The computational costs to solve a linear system with n equations is O(n2) and can
be considered constant since n is bounded by six in general.

We have to firstly project 2m planes into the kernel space where we receive
again 2m hyperplanes. Secondly, we have to compute all intersections of r from 2m
hyperplanes leading to

n kernel =
(
2m
r

)
= 2m!

r ! (2m − r)! (3.63)

7The projected hyperplanes have a dimension less than r in special degenerated cases.
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Table 3.3 Comparison of the number of linear systems to check when computing all vertices of
the solution space F for robots with n = 6 degrees-of-freedom

m r m-dimensional force
space

r -dimensional kernel
space

7 1 14 14

8 2 112 120

9 3 672 816

10 4 3360 4845

11 5 14784 26334

12 6 59136 134596

linear systems to be solved, where the dimension of the linear systems to solve is
r × r . Some reductions can be achieved when we can skip the intersection tests
for some combinations that involve the intersections between the pairwise parallel
planes.

In both cases, the computation time can be strictly bounded. Anyway, the actual
number of systems to check becomes quite large as can be seen from Table3.3.
When computing the intersections in kernel space, one has to check moderately
more systems.

3.7.8 Weighted Sums of Vertices

In order to receive a low tension level for the force distribution, Bruckmann [68] pro-
posed a weighted sum of the vertex points of the polytope F . The force distributions
received this way are almost continuous, because the volume ofF is continuous and
the distance between the vertices is introduced as additional weight that allows for
some smoothing whenever the number of vertices of F changes along a trajectory.
The algorithm is a four step procedure:

1. Compute all vertex points λ V,i of the set F (see also Sect. 3.7.7 above) and let k
be the number of vertices λ V,i .

2. Compute the weights

ai =
∑r

j=1 ||λ V,i − λ V, j ||p
||λ V,i ||p for 1 ≤ i ≤ k . (3.64)

3. Compute the weighted sum

λa =
∑k

i=1 λ V,i ai∑k
i=1 ai

. (3.65)
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4. Compute the force distribution f = H λ where the matrixH is the spanning basis
of the kernel and the vector λ = [λ1, . . . , λr ]T collects the weights computed
above.

Based on its design principle, the weighted sum method guarantees to find a
solution whenever such a solution exists since it relies on the vertices of the set
F . However, as explained above, the computation of all vertices is time consuming
and the weighted sum method suffers from this problem as well, especially if the
degree-of-redundancy is higher.

3.7.9 Puncture Method

The puncture method aims at computing a continuous series of force distributions
under real-time constraints where the forces in the cables are minimized [355,
356]. The basic idea of the puncture method is to take an initial guess f I inside the
solution set F which is computed by the closed-form solution (or possibly another
straightforward method). This solution is unique and continuous along trajectories.
Secondly, a solution f O of the structure equation in the kernel of the structure matrix
AT is computed which is close to the origin. Also, this estimation shall be unique
and continuous. Since the kernel S is a linear space, each point on the connecting
line between the f I and f O are solutions of the structure matrix. The idea of the
puncture method is to approach the feasible force distributions C from a point close
to the origin and thus to identify points on S with small forces. Using a connecting
line between a feasible solution in F and a reference point close to the origin, the
minimum force is computed.

Using the improved closed-formmethod as initial guess for the puncture procedure
above, it was shown that the region of convergency of the puncture method can
be increased [355] where the computational time is slightly increased due to the
dimension reduction technique. The computational time of the puncture method
mainly depends on the time for computing the (improved) closed-form solution;
therefore, its use in real-time applications is mostly the same as for the closed-form
method.

3.7.10 Comparison of the Methods

In the previous sections, a couple of methods were discussed to compute force dis-
tribution with different approaches and numerical techniques. In the following, we
compare these approaches and elaborate the differences and properties. A compari-
son of some force distributionmethods and their properties are given in Table3.4.We
briefly discuss the properties listed in the table. An algorithm is said to be real-time
capable if the computation time is reasonably short (in the scale of milliseconds on
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Table 3.4 Comparison of the different methods to compute force distributions

Method Real-time
capable

Force level Workspace
coverage

Continuity Max.
redundancy

Computation
time

Linear pro-
gramming

No Any Yes No Any Fast

Quadratic
program-
ming

Yes hi, lo N/A Yes Any Medium

Nonlinear
program-
ming

Part. hi, lo N/A Yes Any Medium

Gradient
method

No Param No Yes Any Medium

Projected
gradient

N/A N/A N/A Yes N/A N/A

Dykstra
method

No Any Yes No Any Slow

Closed-
form

Yes Any No Yes Any Fast

Improved
closed-
form

Yes Any Yes Yes Any Fast

Barycentric Yes mi Yes Yes r = 2 Fast

Weighted
sum

Yes mi Yes Mostly Any Medium

Kernel
translation

Yes hi, mi, lo Yes Yes r = 1 Fast

Available
wrench set

No hi, mi, lo Yes No Any Slow

Puncture
method

Yes lo No Yes Any Fast

an industrial PC). The worst case computation time can be strictly bounded and a
real-time implementation was reported in the literature. Some iterative methods were
successfully used for computation in real-time although their worst case computa-
tional time was not determined. The force level may be chosen, e.g. the algorithm
may aim at finding minimal (lo), maximal (hi), average (mi), or any solution (any).
Furthermore, there might be a parameter (param) that allows to smoothly adjust the
force level of tension between low and high. The property workspace coverage indi-
cates that the respective algorithms determine a force distribution if it exists. A couple
of authors [396, 473] reported approaches that may fail to find force distributions for
special poses of the wrench-feasible workspace. An algorithm is said to provide con-
tinuity, if continuous trajectories in the pose (r,R) as well as in the applied wrench
wP produce continuous trajectories in the cable forces f , except for crossing a singu-
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larity. Some methods are limited to a certain degree-of-redundancy r either because
they are specific or because their implementation can hardly be generalized to arbi-
trary r . The evaluation of the computation time is problematic because it requires
comparable implementations which are not available for all methods reported in the
literature. Anyway, it was tried to set up a basic ranking taking into account how
complex the underlying numerical methods are. For example, linear system solving
is considered to be faster than inverting a matrix, which in turn is faster than comput-
ing a singular value decomposition or solving an optimization problem. Designing a
real-time systemmight become involved if an advanced numerical algorithm such as
advanced optimization or singular value decomposition shall be used. This is due to
lack of appropriate real-time capable implementations of the algorithm although the
algorithm is part of every state of the art numerical toolbox. The computational speed
depends on the degree-of-redundancy in addition to the algorithm’s complexity. For
this assessment, a low degree-of-redundancy was assumed.

3.7.11 Simulation Results

In the following, some of the presented algorithms are evaluated and numerical
results are compared to other known approaches. As a reference, this provides some
guidelines for selecting a force calculation method for a specific purpose.

3.7.11.1 Barycentric, Optimizer and Closed-Form Results on Segesta

Here, the barycentric approach [348] as well as a nonlinear general purpose opti-
mization algorithm are compared to the closed-form solution. It is reasonable to
evaluate the methods by applying them to the real-time control system of the proto-
type Segesta.

Some of the methods listed above are profiled with respect to their application on
a real-time system. The prototype Segesta was developed at the Chair forMechatron-
ics, University of Duisburg-Essen, during the last decade [139, 210]. For this case
study, it was equipped with m = 8 cables and the winches were directly driven by
electronic commutated motors. A real-time control system DS1005 from dSPACE
(PowerPC 705, 480MHz) is usedwhichwas programmed in theMATLAB/Simulink
language. The geometrical properties of the Segesta prototype (Fig. 9.16) are given
in Table 9.12. The feasible forces were set to f min = 10N and f max = 1000N,
respectively.

To compare the three methods regarding the performance of the force calculation
a screw-shaped trajectory pictured in Fig. 3.25 was used. As shown in Fig. 3.26, the
optimizer approach delivers continuous solutions along the whole trajectory. Fur-
thermore, these force distributions lead to a relatively low tension level in the cables,
i.e. cable forces are optimal in the sense of minimality. The barycentric approach also
(Fig. 3.26) delivers feasible continuous force distributions along thewhole trajectory,
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Fig. 3.25 Screw-shaped trajectory in the workspace of Segesta

but the computed force distributions lead to a much higher tension level in the cables,
i.e. the force distributions are optimal in the sense of maximizing the distance to the
force limits. The closed-form approach delivers force distributions (Fig. 3.26) that
look very similar to the tensions calculated by the barycentric approach, but it fails
where the path lies very close to the workspace boundary. This is an example for the
case 3b (see Sect. 3.7.5), i.e. a feasible solution exists but is not found since it lies
outside the inner sphere. The calculation times measured on the real-time system are
given in Fig. 3.27, where for the closed-formmethod the slower implementation with
matrix inverse is used instead of the slightly faster implementation based onCholesky
decomposition. Therefore, the closed-form force calculation is suitable for real-time
control as long as the end-effector remains inside the (restricted) workspace, which
is covered by the closed-form approach. In this case, the closed-form approach is
superior to the others in terms of calculation time. This holds especially for caseswith
higher actuator redundancies r > 2, where no practical application of the barycentric
approach was reported and lower performance is expected due to difficult triangu-
lation in high dimensions. The usage of the optimizer approach is dangerous in
real-time control for all redundancies due to the in general non predictable worst
case runtime.

3.7.11.2 Comparison for IPAnema 1 Geometry

In the following, we present a case study for another robot geometry. The behavior of
different algorithms for force distribution is compared using a sample trajectory that
is depicted in Fig. 3.28. The way-points of the trajectory are indicated by numbers 0
to 8 and the following plots with cable forces against time t have additional marks
above the x-axis indicating the way-points for better reference. The positions were
linearly interpolated between the way-points. The trajectory was chosen so that the
robot moves in different regions of the workspace and finally crosses the boundary
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Fig. 3.26 Comparison of the
force distributions along the
shown screw-shaped
trajectory using three
different force calculation
algorithms
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of the wrench-feasible workspace between way-point 7 and 8. The force limits were
set to reference value f min = 1 and f max = 10N for the sake of simplicity. Inertia
effects of the platform were neglected.

Figure3.29 illustrates the proposed improved algorithms based on closed-form
estimation and correction for the remaining cables. From the diagram, one can see
that the force distribution is continuous along the trajectory and the magnitude of the
forces are on amedium level.When approaching the boundary of the workspace (e.g.
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Fig. 3.27 Computation time for different force distribution methods using a dSPACE system for
real-time control

Fig. 3.28 Test trajectory used for the evaluation. Left: spatial curve of the trajectory. Right: [x, y, z]
coordinates of the motion over time t

between t = 10.0 s and t = 17.0 s), one or two cable forces reach the minimum cable
force and remain constantly at the limit. It can be seen from the shape of the diagram
that the cable forces quickly increase after leaving the workspace. Anyway, the force
distributions remain continuous after crossing the boundary of the workspace.

In Fig. 3.30, the force distribution is shown for the original closed-form method
for comparison. When the platform remains in the inner region of the workspace,
the results match exactly with the force distributions computed with the improved
closed-form method. Close to the boundary of the workspace between t = 10 s and
t = 17 s, the closed-form formula fails to compute force distributions although such
distributions exist as it can be seen betweenway-point 2 and 5 and also between 7 and
8, where the closed-form solution is not able to prevent some cables from violating
the lower force limits. One can conclude that for such poses fixing one or two cable
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Fig. 3.29 Force distributions computed with the improved closed-form solution

Fig. 3.30 Force distributions computed with the closed-form method

forces to the lower limit f min is effective to compute feasible force distributions where
the conventional closed-form method fails.

Cable forces computed with the Dykstra method are presented in Fig. 3.31. For
the Dykstra method, it can be observed that some cable forces get limited to the
minimal values when the boundary of the workspace is approached. After crossing
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Fig. 3.31 Force distributions computed with Dykstra method

the workspace border between way-point 7 and 8, force distributions computed with
Dykstra show a different behavior compared to the proposed scheme.

In Fig. 3.32, the computed forces for the first cable f1 are compared for differ-
ent methods (closed-form, improved closed-form, Dykstra, and the weighted sums
method). Some methods like the uncorrected weighted summethod do not even pro-
vide continuous shapes for the forces which becomes evident between way-point 0
and 2. Other methods show discrete steps at certain points on the trajectory.

It is well-known that the solution set of the force distribution problem is a convex
polytope. The number of the vertices of the convex hull of the solution is determined
along the trajectory. It turns out that typically the number of vertices varies between
5 and 13 but for special poses on the trajectory the number of vertices may reach
high values above 30 (Fig. 3.33). Although the structure of the solution set undergoes
massive changes, no effects on the continuity of the presented method were found.

3.7.11.3 Computation of the Number of Vertices of F

The number of vertices of the solutions setF is further studied in the following. The
case study is exemplifiedwith the IPAnema1geometry, the force limitswere assumed
to be f ∈ [1; 10]N, and some xy cross sections of the workspace are considered
for z = 1m. Different wrenches wP are applied to the platform, where the forces
are between zero and half of the maximum cable force f max, i.e. ||wP||∞ ≤ 1

2 f max.
Results are shown in Fig. 3.34. The outer blue contour indicates that no vertex was
found at all which is equivalent to the boundary of the wrench-feasible workspace.
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Fig. 3.32 Comparison of the different methods for force distribution

Fig. 3.33 Number of vertices of the solution setF computed by a brute force approach, i.e. solving
for the homogeneous linear system where all permutations of two forces have been set to f min and
f max, respectively
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Fig. 3.34 The available cable force distributions F are computed from their vertices for different
applied wrencheswP. The plots show the number of vertices of F per pose for the IPAnema 1 robot
design in xy cross sections for z = 1m
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Table 3.5 Comparison of computation time on an Intel Core i5-3320M 2.6 GHz, Visual C++ 2010
for 344000 evaluations of the force distribution

Algorithm Calculation time [ms] Relative time (%) Evaluations per ms

Closed-form 1173 100 293

Improved closed-form 3359 286 102

Dykstra 71612 6103 5

Weighted sum 48512 4134 7

The regions where multiple vertices can be found inside the workspace have a quite
complex structure. The boundary of the workspace is mostly a smooth curve where
the inner regions frequently have cusp points.

3.7.12 Computation Time

A comparison of the computation time is difficult because the computation time
is influenced by the maturity of the implementation as well as by the underlying
numerical algorithms, the used compiler, the CPU of the real-time system, and the
operating system. In the performance tests presented here, four algorithms were
used for workspace computation with around 344000 evaluations on an Intel Core
i5-3320M. As reference, some numbers are given in Table3.5. The table lists both
absolute and relative computation time to allow for comparison amongst the algo-
rithms as well as to present an estimate on the usability in a real-time controller.
As expected, the closed-form solution works faster8 than its improved version but
the difference is comparably small. Both methods allow for many evaluations based
on a controller cycle time of 1 ms and their implementations only require matrix
multiplication and solving of a linear system.

3.8 Stiffness

After the intensive study of methods for computing feasible distributions in the cable
force, the following section is dedicated to investigate the effect on forces in cables on
the robot. Clearly, forces lead to elastic reaction in the cables and thus the platform
will undergo some motion if loaded with a force. This effect is pose-dependent
since the geometrical structure of the robots largely effects how much displacement
is contributed by each cable. The stiffness of a cable robot represents its ability

8In contrast to the numerical study using the dSpace system, the implementation used in this test
makes use of the linear solving with matrix decomposition rather than the slower computation of
the pseudo-inverse matrix A+T.
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to withstand forces and torques in any direction. Indeed, when cable robots were
developed as improved cranes, their unique property over cranes is their nonvanishing
stiffness [106]. Verhoeven describes a simple linear elastic stiffness model where the
cables are modeled to be linear springs [473]. Therefore, stiffness of cable robots is
closely connected to the concept of wrench-closure or wrench-feasibility [33] and
there is a connection between stiffness and stability. The cable tension contributes
asymmetrically to the stiffness matrix. Thus, the stability of a pose depends also
on the cable tension distribution. Behzadipour names conditions to analyze stability
of the cable robot. Williams [494] tackles the problem of computing the stiffness
matrix for a cable robot with twelve cables. Hassan [202] analyzes the stiffness
of a flat but large cable robot for storage retrieval and proposed to compute the
stiffness matrix from the cables and from the drive-trains. Furthermore, the lowest
eigenfrequency was expected be around 0.3Hz. Yu addressed the problem of actively
adjusting the stiffness of a cable robot through a feedback control [512]. Nguyen
[361, 362] discusses the homogenization of the stiffness matrix and the effect of
sagging cables and its interconnection with the stiffness of the robots is derived in
these contributions. Schmidt [432] shows experimentally that for a planar robot the
stiffness only depends on the geometric stiffness. The concept of geometric stiffness
[33] is lately investigated by Surdilovic [450] andKraus [259]. An interesting finding
of the latter work was that force control reduces the stiffness of an over-constrained
cable robot.

The stiffness of a cable robot is characterized by the infinitesimal displacements
δy of the mobile platform that are generated by infinitesimal wrenches δwP applied to
it (Fig. 3.35). Here, we restrict ourselves to the consideration of linear dependencies
leading to the mapping

δwP = KOS(y)δy , (3.66)

where KOS(y) is the pose-dependent stiffness matrix in the operational space. Some
considerations on nonlinear cable behavior are discussed in the literature [259]. If the
inverse mapping C(y) exists, it is called compliance matrix and it relates wrenches
δwP to displacements of the platform δy.

Fig. 3.35 Model of the
stiffness of a 3R3T robot



110 3 Geometric and Static Foundations

3.8.1 Cable Stiffness

The stiffness of cable robots is a primary result of elastic deformations of its com-
ponents, especially of the cables, the winches, the platform, the actuators, and the
machine frame. Firstly, the cables itself exhibit an elastic behavior. This holds true
especially for large-scale cable robots since the compliance of the cables is roughly
proportional to their length. If winches are used to move the robot, the stiffness
depends on the free length of the cables and therefore the stiffness of each cable
depends on the pose. For cable robots with linear actuators, the effective length of
the cables is constant and so is the stiffness of each cable. Let ki be the stiffness
coefficient of the i-th cable, then the stiffness in configuration space is [473]

δf =
⎡

⎢⎣
k1 0

. . .

0 km

⎤

⎥⎦ δl = KC δl , (3.67)

where KC is the diagonal actuator stiffness matrix in the generalized coordinates in
the direction of the cables. Even if the cables are considered to be linear springs,
we have to take into account, that the effective cable length and thus also the spring
constant of the cable may be variable since the coiled part of the cables does not
contribute to the stiffness. The spring constant ki for cable i becomes

ki = k ′

li + l0i
(3.68)

where k ′ is a material constant characterizing the stiffness of the cable material per
length unit. Furthermore, li is the variable length as determined from the inverse
kinematics and l0i is a cable robot design specific constant length of each cable, e.g.
inside the winches between the guiding pulleys, or for robots with linear drives the
total length of the cables in the pulley tackle. In the latter case, there is no variable
part li effective for the stiffness since the effective length for the stiffness does not
changes if the cable is in a pulley tackle. In general, the stiffness constant depends
on many technical details of the cable. As an estimation, the cable is assumed to be
homogeneous cylindrical strut. Then, we use

k ′ = ECAC , (3.69)

where EC is Young’s modulus for the cable material and AC is the cross section of the
cable. To compute the cross section AC = πνCr2C , we need the radius rC of the cables
and a constant νC ∈ [0; 1] that is a cable specific constant characterizing the amount
effective fibers in the cable cross section. In practice, the stiffness of a real cable is
therefore lower than the full cylinder computed from the radius and we come back
to this problem in Sect. 3.8.5.
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Using the structure matrix AT and its transpose, Eq. (3.67) is transformed into
operational space as follows

δf = AT

⎡

⎢⎣
k1 0

. . .

0 km

⎤

⎥⎦A

︸ ︷︷ ︸

δl (3.70)

δf = K O δl (3.71)

revealing the pose-dependent stiffness mapping with the stiffness matrix K O in
Cartesian coordinates in operational space.

The drive-trains with their actuators and gears are a second source of compliance.
They showan elastic behavior due to theirmechanical design and also as a response of
the control system to applied forces. The latter effect strongly depends on the control
algorithms and there is a strong dynamic influence. The linear elastic deformation
of the drive-train can be easily integrated into the stiffness mapping. Let k A be the
stiffness of the drive-train. Then, we can summarize the stiffness mapping for the
i-th cable as follows

1

ki
= 1

k A

+ li + l0i
k ′ . (3.72)

Using themodified coefficients, one computes the stiffness mapping fromEq. (3.66).
The frame of the robot may also be source of compliance in the system. For

small robots, the frame can be designed to be very stiff and react with negligible
displacements even for high static forces in the cables. Especially for larger robots
without a closed framework structure for attaching the proximal anchor points, the
stiffness and vibration in the frame became a severe source of disturbance since cable
robots apply very high impetus on the frame when accelerating and decelerating.
The stiffness of the frame can be computed with conventional finite element analysis
(FEA) techniques which depend on the mechanical design of the frame rather than
on something special for cable robots.

3.8.2 Geometric Stiffness

The following introduction to the geometric stiffness of cable robots is based on
the work by Surdilovic [450] and Kraus [259]. It takes into account the influence
of the geometric deviations in the displacement of the platform under external load.
The linear consideration of stiffness effects disregards the influence of a changing
structure matrix AT causing nonlinear effects even when considering a linear spring
model for the cables. The second order terms are well-known from elasticity theory
where these terms cause e.g. buckling effects for thin beams under axial stress. Taking
into account the influence of a changing structure matrix, the stiffness for a given
pose is characterized by
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δwP = −ATδf + −∂AT

∂y
fδy (3.73)

where the derivatives of the structure matrix AT have to be taken with respect to the
world coordinate y. As shown by Kraus [259], the equation for the stiffness matrix
becomes

KOS δy = −∂AT

∂y
f

︸ ︷︷ ︸
KG

δy + ATKCA︸ ︷︷ ︸
K O

δy (3.74)

and the stiffness of the robot is depending on the actual tension f in the cables. The
connection between the stiffness and thus the eigenfrequencies with the tension can
be observed at every string instrument such as guitars where an increase in the tension
leads to a higher tone. Thus, the stiffness becomes a function of the cable forces and
consists of two parts. Firstly, the pose-dependent cable stiffness matrix KC is the
structure matrix described above and represents the linear elongation of the cables.
If the cables have a nonlinear characteristic, the cable stiffness can also depend on the
tension [259]. Secondly, the geometric stiffness matrix KG(f) represents the second
order terms and depends both on the pose and on the tension in the cables. The cable
stiffness matrix is in general symmetric which becomes clear when considering
the equation K O = ATKCA. The geometric stiffness matrix adds in general an
asymmetric part to the overall stiffness KOS of the robot. Thus, static stability of the
robot depends in general on the tension in the cables.

3.8.3 Stability

The problem of stability is discussed by Behzadipour [33]. Within this contribution,
a theorem is set up stating that a cable-driven parallel robot can be stabilized in
the absence of external load if the structure matrix is regular and the active stiffness
matrix is positive definite. Following the derivation presented in [33]with the symbols
introduced in this book, one can analyze the stabilization if no external loads wP are
applied from the matrix Z

Z = −
m∑

i=1

fi (ui
. bi )I +

m∑

i=1

fi (bi uT
i ) . (3.75)

Then, one sets up the characteristic polynomial for the matrix Z as

det(Z − λI) = λ3 − z2λ
2 + z1λ − z0 = 0 (3.76)

where the coefficients z2, z1, z0 are given by
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z2 =
m∑

i=1

fi (ui bi ) (3.77)

z1 =
m∑

i=1

m∑

j=i+1

f j fi (bi × b j )(ui × u j ) (3.78)

z0 =
m∑

i=1

m∑

j=i+1

m∑

k= j+1

f j fi fk
(
bi (b j × bk)

) (
ui (u j × uk)

)
. (3.79)

With these expressions, one can check stability with the simple conditions [33]

z2 > 0 (3.80)

z22 + z1 > 0 (3.81)

z0 − z2z1 > 0 . (3.82)

In contrast, the matter of stability in the presence of a nonvanishing platform wrench
wP seems to be an open issue.

3.8.4 Stiffness Evaluation

The stiffness of a cable robot is both a pose- and direction-dependent phenomena.
Therefore, the computation of bounds for the stiffness is relevant. This is basically
possible by considering the eigenvalues λK,i of KOS where the smallest (largest)
eigenvalue corresponds to the smallest (largest) stiffness and its eigenvectors unveil
the directionwhere the extremal stiffness appears. If the smallest eigenvalue vanishes,
the robot is in a singular configuration and the robot becomes uncontrollable in the
respective direction.

For robots with the motion patterns 1R2T, 2R3T, and 3R3T, the stiffness matrix
consists of translation and rotation (force and torque). From the extensive study of
dexterity, it is known that measures involving rotation and translation are difficult to
compare [442]. To deal with this problem, it was proposed (see e.g. [322, 473]) to
introduce a normalizing length. Also, Nguyen [361, 362] discusses the homogeniza-
tion of the stiffness matrix. Accordingly, the singular values of the stiffness matrix
can be used to characterize the stiffness of the robot and the following relation holds
true [362]

σ min = 1

||K−1||2
≤ ||dwP||2

||dy||2
≤ ||K||2 = σ max ∀ dy �= 0 , (3.83)

where σ min, σ max are the smallest and largest singular values of K, respectively. In
order to derive a dimensional homogenization KH, it is proposed to transform the
stiffness matrix by
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KH = S−1
H KS−1

H , (3.84)

where the transformation matrix SH = diag(1, 1, 1, ||r M||2, ||r M||2, ||r M||2) intro-
duces the normalizing length ||r M||2 which represents a reference point r M of the
platform relative to the frame KP. It seems reasonable to choose this point such
that the stiffness is mapped to the hull of the platform, i.e. the length should be the
maximum distance from KP to the relevant operation point of the platform.

3.8.5 Cable Parameters

In general, the elastic behavior of cables is a highly complex phenomena: The book
from Feyrer treated the basic behavior of steel cables [149]. Even for quite simple
operation conditions like cables in static construction, one has to deal with complex
empirical data to predict the cable behavior. For dynamically stressed steel cables
like they are used in cable robots, the situation is even much more complex. Some
first results related to cable robots are presented by Weis et al. [489]. Many cables
used for cable robots are made of some kind of synthetic fibers such as polyethylene
and polyamide. Compared to steel cables, little is known about the behavior of these
materials under practical conditions. But even for steel cables, the typical operation
conditions of highly dynamic cable robots have been hardly investigated. In contrast
to common applications of running cables, bending with high velocities in different
and frequently changing directions are typical operation conditions for a cable robot.
Research on steel cables is still a mostly empiric science and little attention has been
paid to the conditions relevant for cable robots due to lack of applicability in other
fields.

One could expect that mechanical performance figures such as Young’s modulus
and the breaking load can easily be specified but unfortunately this is not true.Young’s
modulus EC of a steel cable depends amongst others on the number of strands in the
cable, the cable’s and the strand’s geometry, and the pretension of the cable. The same
holds true for durability, breaking load, and bending fatigue strength. In practice, one
has to rely onmore detailed computations, experimental results, aswell as sufficiently
large safety factors.

Therefore, Table3.6 can only provide some basic data rather than dependable
parameters. It must be emphasized that the presented datamust not be used for robot
for winch design without intensive experimental verification. Reviewing literature
on the topic reveals a broad width for the parameters and there seems to be signifi-
cant inconsistencies in definitions and parameter values. The values presented in the
tables are taken from Feyrer [149], Hearle [204], Mammitzsch [311], and Michael
[341]. The parameters are cross-checked with public sources in the internet (such as
Wikipedia) as well as parameters given by companies producing or processing syn-
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Table 3.6 Cable materials and related properties: Young’s modulus E , Young’s modulus for a
cable EC, tensile strength σ , density �C, and specific strength σS. Units: [MPa] = [Nmm−2]. The
overview is compiled from a number of sources: Mammitzsch [311], Hearle [204, p. 72, p. 96,
p. 105], Michael [341, p. 32], Feyrer [149, p. 92–94], Wikipedia: http://en.wikipedia.org/wiki/
specific_strength, kuraray: http://www.vectranfiber.com

Material E [MPa] EC [MPa] σ [MPa] �C [g/cm3] σS [km]

Steel 210000 110000 500 7.8 25–51

Copper 100000–
130000

220 8.92

High-modulus
polyethylene
(Dyneema)a

95000 3000 0.95–0.97 300–400

Aramid
(Kevlar)

59000–
127000

2800 1.45 235

Polyamide
(PA,
Perlon/Nylon)

2300 78 1.14 7.04

Polyester
(PES)

1000–5000 50–100 1.38 85

Polypropylene
(PP)

15000–18000 600-650 0.91 9.06

Polyethylene
(PE)

1000 20–30 0.96

LCP (Vectran) 65000 2900 1.41 79–215

PBO (Zylon) 270000 5800 1.52 384

Carbon 235000 3400 1.78 195

Silk 8000–15000 8000–12000 350 1.25–1.37 50

Hemp 69000 310–390 1.48 25–52
aalso known as HPPE: high-performance polyethylene, HMPE: high-modulus polyethylene,
Dyneema SK65

thetic fibers (LIROS,9 Kuraray,10 Suter11). Furthermore, in Table3.7, some reference
values can be found for friction according to Hearle [204].

3.8.6 Examples

In the following, some experimental data for the cable robot IPAnema 1 is presented,
which parameters are listed in Table 9.1. In the experimental setup, cables of type
LIROS D-PRO made from Dyneema were used. The diameter of the cables was

9LIROS GmbH, Berg, Germany. http://www.liros.com.
10Kuraray Co. Ltd., Chiyoda, Japan. http://www.vectranfiber.com.
11Suter Kunststoffe AG, Fraubrunnen, Switzerland, http://www.swiss-composite.ch/.

http://en.wikipedia.org/wiki/specific_strength
http://en.wikipedia.org/wiki/specific_strength
http://www.vectranfiber.com
http://dx.doi.org/10.1007/978-3-319-76138-1_9
http://www.liros.com
http://www.vectranfiber.com
http://www.swiss-composite.ch/
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Table 3.7 Friction coefficients for different synthetic fiber ropes on steel according to Hearle [204]

Material Dry friction coefficient μC Lubricated friction μ L

Polyamide (PA) 0.10–0.12 0.12–0.15

Polyester (PES) 0.12–0.15 0.15–0.17

Polypropylene (PP) 0.08–0.11 0.08–0.11

Aramid (Kevlar) 0.12–0.15 0.15–0.17

HMPE (Dyneema) 0.08–0.11 0.08–0.11

Steel cable 0.12–0.15 0.10–0.12

Table 3.8 Experimental determination of the stiffness and compliance matrix for the IPAnema 1
prototype. For seven poses of the platform, the translational stiffness was determined by applying a
load to the platform.Measurementswere takenwith andwithout the load. The static loadwas applied
through an attached cable with a mass element as counter weight. The Euclidian displacement of
the platform was measured with a laser tracker with high accuracy

Position r [mm] Compliance matrix C [μm/N] Stiffness matrix K [N/μm]

1

⎡

⎢⎣
0

0

1500

⎤

⎥⎦

⎡

⎢⎣
7.28 1.08 −0.69

−0.07 9.33 0.00

0.37 0.00 24.70

⎤

⎥⎦

⎡

⎢⎣
0.137 −0.015 0.003

0.001 0.107 0.000

−0.002 0.000 0.040

⎤

⎥⎦

2

⎡

⎢⎣
0

0

500

⎤

⎥⎦

⎡

⎢⎣
6.88 1.17 −0.62

−0.08 12.05 0.16

0.70 1.42 22.10

⎤

⎥⎦

⎡

⎢⎣
0.144 −0.014 0.004

0.001 0.082 −0.000

−0.004 −0.004 0.045

⎤

⎥⎦

3

⎡

⎢⎣
0

0

1000

⎤

⎥⎦

⎡

⎢⎣
6.57 1.19 −1.03

−0.05 9.81 −0.11

−0.28 1.70 22.31

⎤

⎥⎦

⎡

⎢⎣
0.152 −0.019 0.006

0.000 0.101 0.000

0.001 −0.008 0.044

⎤

⎥⎦

4

⎡

⎢⎣
−1200

0

1000

⎤

⎥⎦

⎡

⎢⎣
10.89 7.92 −1.71

−0.55 15.91 −0.36

−4.30 −0.26 20.49

⎤

⎥⎦

⎡

⎢⎣
0.092 −0.045 0.006

0.003 0.061 0.001

0.019 −0.008 0.050

⎤

⎥⎦

5

⎡

⎢⎣
−800

−300

600

⎤

⎥⎦

⎡

⎢⎣
7.04 2.17 −0.66

−2.38 12.59 0.29

−1.27 0.57 21.92

⎤

⎥⎦

⎡

⎢⎣
0.134 −0.023 0.004

0.025 0.075 −0.000

0.007 −0.003 0.045

⎤

⎥⎦

6

⎡

⎢⎣
−800

−600

1400

⎤

⎥⎦

⎡

⎢⎣
7.56 0.15 −0.74

−4.52 11.24 2.04

−2.00 2.14 21.77

⎤

⎥⎦

⎡

⎢⎣
0.131 −0.002 0.004

0.051 0.089 −0.006

0.007 −0.009 0.047

⎤

⎥⎦

7

⎡

⎢⎣
0

−900

1000

⎤

⎥⎦

⎡

⎢⎣
6.43 0.47 0.36

0.64 13.79 3.03

0.19 2.78 20.06

⎤

⎥⎦

⎡

⎢⎣
0.156 −0.004 −0.002

−0.007 0.075 −0.011

−0.000 −0.010 0.051

⎤

⎥⎦
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dC = 1.5 mm. The platform was moved to the measurement positions r. Then, an
additional cable was connected to a mass element of m L = 10 kg by means of a
pulley. Therefore, a static force f = m Lg was exerted on the mobile platform. For
each measurement position r, the pulley was located such, that the force acts along
each coordinate axis, both in positive and negative direction. For the measurement
positions 4–7, it was for practical reasons not possible to fix the pulley above the
platform. Therefore, in these cases only five rather than six forces were exerted on the
platform. TheCartesian displacementΔr of the platformwasmeasured using a Leica
Absolute Tracker AT901-MR with a certified absolute accuracy of less than 10μm.
For the magnitude of the force, the direction of the forces and the displacements
measured by the laser tracker, the stiffness matrix was computed. The results of the
stiffness determination are shown in Table3.8.

3.9 Conclusion

Based on the assumption of massless, straight, and perfectly stiff cables, this leads
to a purely geometric model for kinematics and statics. There exists a rich collection
of tools to deal the robot under these assumptions. The conditions for defining the
minimum andmaximum cable force outline the limitations of the standardmodel and
characterizes the transition to the advanced kinematic model that deal with the effect
of pulleys, elastic deformations, and hefty cables. These effects are subject inChap.7.
Since cable robots with more cables than degrees-of-freedom are kinematically over-
constrained and statically under-constrained, special methods are required to deal
with such robots. A broad collection of methods to test for existence and to compute
possible force distributions is discussed and compared in this chapter. Summing up
thefindings of this chapter on statics, one can state that there is not oneoptimalmethod
for force distribution but the method of choice depends on the main requirement of
the application. Some methods are efficient in terms of computation time especially
when considering the application in a real-time system. Other methods put emphasis
on simplicity, workspace coverage, and applicability for robot with higher degrees-
of-redundancy.

The stiffness of cable robots can be estimated based on the structure matrix. Three
main effects influence the actual stiffness of a cable robot. Firstly, the elastic stiffness
of the cables. Secondly, the effective stiffness of the winches includingmotors, gears,
and clutches has a direct influence on the stiffness. This also includes the closed-
loop servo control in the drives. Finally, the so-called geometric stiffness has an effect
on the cable robot’s stiffness which become particularly apparent for planar robots
and close to singular configurations. The sensitivity of a cable robot’s stiffness to
uncertainties in the cable’s physical parameters remains an open issue.



Chapter 4
Kinematic Codes

Abstract This chapter dealswith the kinematic transformation and its derivatives for
the standard model. Then, singularities are introduced for cable robots. An overview
of kinematic codes is given and algorithms for real-time capable codes are proposed.

4.1 Introduction

In the last chapter, we introduced the kinematic basics for cable robots where no
details on the actual computation on the kinematic functions were presented. Since
the algorithm that is used to solve the problem may be quite involved, it is worth-
while to discuss the issue within this chapter at length. In this setting, a kinematic
code is an algorithm to provide a numerical solution for the mathematical problem
described by the kinematic model. Therefore, kinematic codes have a clear focus on
how to compute the solution accurately and efficiently. Theoretical kinematics aims
at revealing and understanding themathematical structure of the underlying problem.
Clearly, the theoretical analysis of the kinematic problems provides essential proper-
ties such as the number of solutions that can be exploited to find algorithms for their
solutions. The kinematic codes are a building block in the robot motion controller or
are parts of the design procedure. Both applications demand for high computational
efficiency where the control system additionally requires a deterministic runtime
to fulfill real-time constraints in the controller. As it is carried out in this chapter,
the latter is challenging since the mathematical problem to be solved is involved.
Providing deterministic upper bounds on the computational time is possible but
needs special consideration for the worst case computational time. In contrast, if
kinematic codes are subjected to design and analysis procedures, one is usually only
interested in average computational time where worst case behavior is negligible.

When considering a cable robot where the number of cables equals the degrees-of-
freedom, i.e.m = n, and all cables are under tension, we can resort to a rich literature
on forward and inverse kinematics of rigid parallel robots, see Merlet [322] for an
overview of this subject. Since there are good reasons to build both kinematically
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configuration space
cable length l

operational space
platform pose
y (r R)IK

DK

Fig. 4.1 Relation between forward and inverse kinematics functions

over-constrained and under-constrained cable robots it is worthwhile to study their
kinematics in depth.

4.2 Kinematic Transmission Functions

The kinematic transmission functions or kinematic transformation relate the plat-
form pose y in operational space defined by the position of the platform r and the
orientation of the platform R to the length of the cables l in configuration space and
vice versa (Fig. 4.1). The function ϕ IK calculating the length of the cables from a
given pose of the platform is called inverse kinematics or backward transformation.
Contrary, the forward kinematic function ϕDK determines the pose of the platform
from given cable length. For some problems such as singularities and stiffness, it is
important to investigate the infinitesimal relations between platform pose and cable
length and thus, one has to study differential kinematics.

4.2.1 Inverse Kinematics

For inverse kinematics or backward kinematics transformation, the geometry of the
machine frame ai andmobile platformbi are known, the position r and the orientation
R of the mobile platform are given, and the respective cable lengths l are sought.
This is the typical situation in open loop position control, where the motion planner
provided the desired motion of the mobile platform and, in order to generate the
set-point values for the actuators, we have to compute the required length of the
cables. In the following, we will consider the pure kinematic relations for a given
pose disregarding their static or dynamic stability. Thus, one searches for a formula
to calculate the inverse kinematics function ϕ IK : IRn → IRm for a parameterization
of the pose y in the following form

l = ϕ IK(y) . (4.1)

In the context of inverse kinematics, the choice of the parameterization of the pose y
depends on the motion pattern. If orientations are involved, the parameterization of
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the rotation matrix R is of lesser importance but it is a matter of convenience which
convention is preferred by the user. For the standard model, it is trivial to derive a
relation in closed-form. Calculating the Euclidian norm from Eq. (3.2) yields

li = |li | = |ai − r − Rbi | for i = 1, . . . ,m (4.2)

where the desired cable length li is a function of the pose (r,R) of the platform
and of the geometrical parameter (ai ,bi ). As it can be seen from the equations, the
solution of the inverse kinematics function always exists, is always unique,1 and it
exists for arbitrary poses (r,R). The inverse kinematics function can be calculated
for any number of cables. Note that the existence of the inverse kinematics solution
does not guarantee that the determined configuration is mechanically stable or even
belongs to thewrench-closureworkspace. InChap.5, differentmethods are discussed
to characterize a pose in order to define the workspace.

The numerical efforts to calculate the inverse kinematics are low since the number
of operations is strictly limited and relatively small. Even little-endian hardware
such as micro-controllers can easily implement real-time capable inverse kinematics
codes. Using automatic code generation with a computer algebra system, one can
generate an efficient subroutine for the inverse kinematics. Using an Euler angle
parameterization for the rotation matrix R and the general geometry of an eight
cable robot, it requires only six trigonometric function evaluations and 242 arithmetic
floating point operations to compute the inverse kinematics. The computation time
for a general purpose implementation was determined2 to be around 0.067μs for a
cable robot with eight cables which allows for almost unrestricted use.

4.2.2 Forward Kinematics

The terms forward kinematics, direct kinematics, or direct geometric problem are
synonyms and aim at estimating the platform pose from the given length of the
cables. The main application of forward kinematics codes or the forward kinematics
transformation lies in the control system where the sensors of the robot deliver a
measurement for the cable length. In most systems, no direct measurement of the
platform pose is possible either because of high costs or because such measurement
systems have a significant lag in processing the measurement. In contrast, encoders
and resolvers provide the cable length without relevant delay. For the forward kine-
matics function or forward position problem, a mapping ϕDK : IRm → SE3 in the
following form

y = (r,R) = ϕDK(l) (4.3)

1More precisely, the solution is only unique if we ignore the solutions that provide a negative length
for the cable which is considered to be infeasible from a physical point of view.
2Computation time determined on an Intel Core i5-3320M 2.6GHz, Microsoft Visual C++ 2010.
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is sought. Computing this mapping is in general much more complicated than the
inverse kinematics problem we have dealt with in the previous sections. Depending
on the cable length l and the robot configurations, there might be no solutions, one,
multiple solutions, and even infinitely many solutions, possibly located in distinct
sets. In the setting of this work, we distinguish between the forward kinematics as the
general mathematical problem that studies the underlying structure of the kinematic
code or the transformation function which can be understood as computer programs
that provide numerical values. The former aims at mathematical insight. Therefore,
one is interested in the theoretical number of solutions, the actual number of real
solutions of a given robot family, and a classification of the equations. In contrast,
the kinematic code fulfills the needs of the control engineer and its application per-
spective by providing a dumb but efficient numerical solution. A couple of different
codes are addressed in Sect. 4.3.

For spatial cable robots with six cables and six degrees-of-freedom, the results
for conventional parallel robots hold true: In general, up to 40 poses may exist that
match given cable length for the standard model. If the robot is a generic design, i.e.
certain geometric relations hold for the mobile platform or machine frame geometry,
the maximum number of real solutions is typically reduced. However, for some non-
generic designs the robot may maintain its maximum forward kinematics solution
set [216, 217].

4.2.3 First-Order Differential Kinematics

Given the forward kinematics function y = ϕDK(l), one formally derives the forward
kinematics function with respect to time t

ẏ = ϕ̇DK(l, l̇) = ∂ϕDK(l)
∂t

= ∂ϕDK(l)
∂l

∂l
∂t

= JDK l̇ , (4.4)

where JDK is the Jacobian matrix of the kinematics function ϕDK and ẏ = [vT ωT]T
is the twist of the platform collecting the linear velocity v and the angular velocity
ω (Fig. 4.2). The equation presents a pose-dependent linear mapping between the
velocities of the mobile platform ẏ and the velocities l̇ of the cables. Due to kineto-
static duality, the transposed kinematic Jacobian matrix is identical to the structure
matrix AT that relates cable forces to the platform wrench and it holds true

JDK = −A . (4.5)

The minus in the equation above is due to the conventions used to define the cable
forces: By definition, the force vector for each cable points from the platform towards
the winches. This seems to be clear by intuition and leads to positive forces in the
cables. However, such positive forces lead to a contraction of the cables. Therefore,
positive tension is coupled to negative velocities in the cables and vice versa.
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Fig. 4.2 First-order
differential kinematics of
one cable

l̇i̇li
ui

Bi
KP

K0

bi

0b
.
i

v

When comparing and converting between Jacobian matrix J and structure matrix
AT, one must take into account that different parameterizations used to compute the
matrices may be incompatible. More precisely speaking, one can set up the matrices
in different coordinates. The simple relation expressed through Eq. (4.5) holds true
if, and only if, the wrench wP composed of forces and torques applied exactly in the
directions of the respective twist ẏ, i.e. the velocities of the generalized coordinates.
If rotations are involved in the computation, special care must be taken. The angular
velocity ω can be understood as the natural derivation of the orientation matrix R
with respect to time. However, if an angular model is used for the parameterization
of the orientation matrix, the angular velocity ω must be computed with a special
formula that maps the derivatives of the parameters. To highlight this problem, we
consider for example Euler angles ϕ,ψ, θ with R = RZ(ϕ)RX(ψ)RZ(θ) and their
respective velocities ϕ̇, ψ̇, θ̇ in the parameter model. Note that the effective angular
velocities of the parameter rotation model relate to their respective local coordinate
frame. Now, the angular velocity ω has to be computed using the kinematic Euler
equation and the angular velocity becomes ω = ϕ̇ + ψ̇ + θ̇ which expands to

ω = ϕ̇

⎡
⎣
0
0
1

⎤
⎦ + ψ̇

⎡
⎣
cosϕ

sin ϕ

0

⎤
⎦ + θ̇

⎡
⎣

sin ϕ sinψ

− cosϕ sinψ

cosψ

⎤
⎦ . (4.6)

Using the dualism for statics, the generalized forces relate to the instantaneous direc-
tion of the generalized forces. Therefore, the torques applied to the platform need to
be transformed into the respective direction.

For robots that do not have a closed-form forward kinematics the derivation of
the Jacobian matrix from the nonlinear forward kinematics mapping is not straight-
forward due to the lack of an equation to be differentiated. If no symbolic expressions
are available, one can approximate the Jacobian matrix through finite differences.
However, round-off errors from solving the nonlinear system make it difficult to



124 4 Kinematic Codes

compute accurate estimates. Furthermore, the ambiguity of the forward kinematics
mapping requires careful considerations to use numerical values from the same solu-
tion branch in the finite differences. For practical purpose, the Jacobian matrix J can
often be calculated from Eq. (3.5) rather than deriving the differentials in Eq. (4.4).

In the same way, in which one defines the Jacobian matrix JDK for the forward
kinematics mapping in Eq. (4.4), the derivation with respect to time t of the inverse
kinematics are taken

l̇ = ϕ̇ IK(y, ẏ) = ∂ϕ IK(y)
∂t

= ∂ϕ IK(y)
∂y

∂y
∂t

= JIK ẏ , (4.7)

where the Jacobian matrix JIK maps the platform twist to the velocities in the cables.
Following the discussion on kinetostatic duality, the transpose of JIK maps cable
forces to generate platform forces. If m = n, then both Jacobian matrices are square
and in a kinematically regular pose

JDK = JIK−1 (4.8)

holds true. An interesting effect in this formula is that one derives the forward Jaco-
bian matrix as a function of the cable length l where the inverse Jacobian matrix is
usually a function of the pose y.

According to Verhoeven [473], the velocity mapping per cable is given by

l̇i = − [
uT
i (bi × ui )

T]
[
v
ω

]
(4.9)

= −uT
i (v + ω × bi ) (4.10)

= −uT
i

0ḃi , (4.11)

where v and ω are the platform’s linear and angular velocities, respectively. This
formula is interesting since it depends only on the instantaneous geometric values
and thus allows for a geometric interpretation of the velocity mapping. Recall that
0ḃi is the absolute velocity of point Bi decomposed in the world coordinate frame
K0. Since the axis vector ui is a unit vector, we can apply the Euclidian norm in
order to estimate the maximum cable velocities

l̇ max = |l̇i | ≤ |0ḃi | , (4.12)

i.e. the maximum cable velocity l̇ max is in general equal or smaller than the maximum
absolute velocity of its respective distal anchor point. When considering only trans-
lational motion, the maximum velocity of the cable is in general smaller or equal to
the maximum translational velocity of the platform. The maximum velocity of the
cable is actually needed if (and only if) the platform is moving exactly towards or
away from the winch, i.e. when the platform moves in the direction ui of the cable.
When executing a realistic trajectory, this situation is rarely reached.
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4.2.4 Singularities

For fully-constrained parallel robots, the general approach to analyze singularities
was introduced by Gosselin and Angeles [171]. The implicit nonlinear loop closure
condition Eq. (3.1) can be written as a function of the pose parameters y and the
cable length l as

ν(y, l) = 0 , (4.13)

and differentiation yields

∂ν(y, l)
∂y︸ ︷︷ ︸
JA

δy + ∂ν(y, l)
∂l︸ ︷︷ ︸
JB

δl = 0 . (4.14)

The dimension of the matrix JA is IRm×n , whereas the matrix JB is in general square
IRm×m . Substituting the known expressions of the standard model into the closure
expression yields the i th column as block matrix

[JA]i = −
[

2(ai − Rbi − r)
2Rbi × (ai − Rbi − r)

]
(4.15)

and the diagonal matrix

JB =
⎡
⎢⎣
2l1 0 0

0
. . . 0

0 0 2lm

⎤
⎥⎦ = 2L , (4.16)

where the Jacobian matrix JB is proportional to the already known matrix L that
contains the cable lengths as diagonal elements and JA is proportional to the

A1 A2 A3

B1 B2 B3

A1 A2 A3

B1 B2 B3

A1 A2 A3

B1 B2 B3

serial singularity parallel singularity architectural singularity
(first kind) (second kind) (third kind)

Fig. 4.3 Examples of the three kinds of singular configurations for conventional parallel cable
robots
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non-normalized structure matrix ̂AT. Thus, the analysis reveals that singularities
depend on well-known matrices (Fig. 4.3).

If JA or JB is singular, then the robot is in a singular configuration. One can classify
three types [171]:

1. det JB = 0: In this case, the robot looses one or more degrees-of-freedom (under-
mobility or serial singularity). Theoretically, the length li of one cable could be
zero which means that in this pose the anchor point of the platform Bi coincides
with the base Ai . From a practical point of view, such configurations are infeasible
anyway because a collision between the distal and proximal anchor points occurs
before the kinematic degeneration can be reached. Such configurations can be
easily detected and characterized due to their simple geometric interpretation.

2. det JA = 0 or rank JA < n if m �= n: In this cases, the robot gains one or more
degrees-of-freedom (over-mobility or parallel singularity). This is the typical case
for parallel robots and there is no counterpart for this effect in serial robots. An
infinite motion of the platform is possible without moving the actuators. In such a
singular posture, the robot cannot withstand certain wrenches and thus undergoes
infinite motion even if all cable lengths l are fixed and all cables are under tension.
Furthermore, the stiffness of the robot arising from the stiffness of the cables drops
to zero in one or more directions.

3. det JA = det JB = 0: This is only possible with special (non-generic) robot
design parameters. If it holds true for any pose of the robot, the robot is called
architecturally singular. A well-designed robot should be free of architectural
singularities. Especially for cable robots, where we have seen that the first kind
of singularity is rather specific, architectural singularity has no impact in practice.

In case of m = nJA is quadratic. If JA is also regular, one derives

δy = −J−1
A JB δl (4.17)

and the Jacobianmatrix becomes JDK = −J−1
A JB. For cable-driven parallel robots, the

matrix JB is always a diagonalmatrix since eachwinch-cable system (leg of the robot)
has exactly one generalized coordinate li if the robot has no passive cables.As pointed
out by Ma and Angeles [303], one can also distinguish between three sources of
singularity. Firstly, configuration singularities relate to the type 1 and 2 singularities
described abovewhere lower-dimensional regions occur in either the configuration or
operational space. Secondly, architectural singularities are an effect of inappropriate
geometrical parameters and are inherent to a cable robot design. Finally, parameter
singularities are artificially introduced by the mathematical description of the robot
motion. The well-known singular configurations of Euler and Bryant angles are
typical examples for such singularities. The local of such singularities can be changed
by using another mathematical model for the robot. In the case of the orientation, one
can use e.g. quaternion for the parameterization to eliminate parameter singularities.

For IRPM,CRPM, andRRPMtyped robots, the JacobianmatrixJA is not quadratic
and thus cannot be inverted. For fully-parallel robots, we always have an equal
number of legs and generalized coordinates l. Furthermore, the matrix JB can easily
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be inverted and one gets the mapping

δl = −J−1
B JA δy . (4.18)

For cable robots, it is useful to generalize the concept since one usually often has to
deal with robots where the Jacobian matrix JA is rectangular and thus we cannot refer
to the classification based on the determinant. Contrary, for cable robots, only one
type of singularity is of practical importance, i.e. over-mobility [473]. A necessary
and sufficient condition for a pose y to be singular is that the structure matrix is rank
deficient which implies

rankAT(y) < n . (4.19)

Based on the considerations above, this is equivalent to a rank deficit in the matrix
JA. Verhoeven [473] gives an analysis of the conditions for singularities based on the
motion pattern of the platform. The purely translational systems 2T and 3T are free
of singularities if the design is not architecturally singular or in other words: Such
system cannot have a limited number of singular poses. Either all poses are singular
or they are free of singularities.

For complexmotion patterns such as 1R2T, 2R3T, and 3R3T, a general classifica-
tion becomesmore involved. There are some general aspects that seem clear. Generic
designs that share a proximal or distal anchor point tend to reduce the number of
singularities. Furthermore, singularities can be removed by adding redundant cables
to the system. The latter can be easily seen from Eq. (4.19): Adding a cable and thus
a column to the structure matrix AT gives additional opportunities to increase the
rank of the matrix to maximum of n.

A couple of othermethods for finding singular configurations beside this algebraic
approach exist. An exhaustive classification of singularities for parallel robots was
given byMerlet [317] through geometric considerations. In this approach, the legs of
the robot are represented by line coordinates (Plücker coordinates) and Merlet used
Grassmann geometry to characterize different singular configurations. It was shown
that singularities can be mapped to special geometric conditions of line coordinates
[317]. These geometric conditions can be used to geometrically construct the singular
locus of parallel robots.

As stated previously, for a fully-constrained cable robot, the structure matrix is
rectangular and therefore it is not possible to compute the determinant. However, we
can compute the singular values of the matrix. If the smallest singular value is 0, the
respective matrix is rank deficient and thus the robot is in a singular configuration. In
Figs. 4.4 and 4.5, the singular values of the structure matrix have been computed for
cross sections through the workspace of the IPAnema 1 robot (Table9.1). Note that
the singular values of the structure matrix AT can be easily and robustly computed
with singular value decomposition (SVD) without considering whether a pose is
wrench-closed or wrench-feasible. The minimum singular value is mostly uniformly
distributed around the central axis of the robot where the largest singular value has
a clear polarization, i.e. it is almost constant along the y-axis and strongly varying
along the x-axis.
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xy-plane, z 0 0

xy-plane, z 0 25

xy-plane, z 0 5

Fig. 4.4 Contour plots for the minimum (left column) and maximum (right column) singular value
of the structure matrix for horizontal cross section in the xy-plane of the IPAnema 1 robot. Cross
sections have been computed for the following values for z = {0.0, 0.25, 0.5}m and the wrench-
feasible workspaces are overlaid in black as reference
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xy-plane, z 0 75

xy-plane, z 1 0

Fig. 4.5 Contour plots for the minimum (left column) and maximum (right column) singular value
of the structure matrix for horizontal cross section in the xy-plane of the IPAnema 1 robot. Cross
sections have been computed for the following values for z = {0.75, 1.0}m and the wrench-feasible
workspaces are overlaid in black as reference

4.2.5 Second and Higher Order Differential Kinematics

Second order kinematics is used for dynamics since Newton’s axiom relates forces to
accelerations and inertia. We can drive the acceleration transmission function from
Eq. (4.9) by derivation with respect to time

l̈ = Jÿ + J̇ẏ . (4.20)

Rewriting this component-wise yields

l̈i = −uT
i

0b̈i − u̇T
i

0ḃi . (4.21)

Third order differentials become evenmore involved but it seems that third and higher
order derivatives are not needed for practical or theoretical computations for cable
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robots.3 Anyway, if such equations are required it is straightforward to compute these
equations from Eq. (4.20) by simple differentiation.

4.2.6 Kinematics for Under-Constrained Robots

According to the classification of cable robots by Ming and Higuchi [350], robots
with less cablesm than degrees-of-freedom n are called incompletely restrained posi-
tioning mechanisms (IRPM) or cable-suspended parallel mechanisms. Such robots
are always operated in a suspended configuration4 where the winches are located
above the mobile platform and gravity is additionally employed to keep the cables
under tension. The NIST RoboCrane [7] was based on this approach and a couple of
later works followed this design approach [173, 406]. Such suspended cable robots
are sometimes said to be in crane-configuration since applied wrenches are usually
considered second to the gravity force caused by the mass of the platform and its
possible payload. To model such robots, it was proposed to consider gravity as an
additional cable that is pointing in the direction of gravity, independent from the
current position of the platform [473]. The wrench wP produced by the robot is lim-
ited both in its directions and in its magnitude. Therefore, the possible accelerations
are also strictly bounded. Compared to fully-constrained robots, the wrench-closure
workspace of suspended robots may be empty.

If the cable robot is under-actuated m < 6 in addition to being suspended, a
number of properties differ from the fully-constrained case. As for any other under-
actuated manipulator, only m independent directions of motion can be generated
through the actuators. If the number of cables m is less than six, 6 − m linearly
independent directions exist in SE3 where no infinitesimal motion can be generated
although such motion may be consistent with the constrains imposed by the cables
[105, 175, 284, 516, 534]. New theoretical problems arise for such crane-like robots
since the determination of the static equilibrium poses requires a distinct approach
for modeling compared to the fully-constrained cable robots discussed so far. The
so-called geometrico-static modeling [88] involves both kinematic (geometric) con-
straints described by the position of the proximal and distal anchor points as well as
static equations arising for force equilibrium of the mobile platform. A simple planar
case was discussed by Jiang [228]. The general base for three cables is handled in
detail by Carricato and Merlet [89]. The underlying mathematical problem turns out
to be more complex as one would expect and the problem can be transformed to find-
ing the roots of a polynomial of degree 156. Using four cables is even more involved
and requires an univariate polynomial of degree 216 [86]. Since such equations are
difficult to handle with conventional numeric methods, Berti [34, 35, 37] approached

3At least, the author is not aware of a use-case.
4More precisely speaking, such robots are always in operation with a constantly applied external
wrench that is independent from the platform pose. Similarly, one can add springs to the robot in
order to create a pose-dependent artificial potential field as studied by Duan [131].
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Table 4.1 Maximum number
of solutions for the forward
kinematics of the standard
model

Number of cables m Number of solution

1 1

2 24

3 156

4 216

5 140

6 40

>6 40

the numerical solvingwith interval analysis to rigorously bound the numerical errors.
Collard [99] formulated the kinematic problem of under-constrained cable robots as
optimization problem and presented numerical examples for over-actuated but sus-
pended robots with a huge number of cables. An overview is shown in Table4.1.

For IRPM, one can evaluate the inverse kinematics given by Eq. (4.2) to compute
cable length l for a given pose (r,R) disregarding the insufficient number of cables.
However, for such under-constrained cable robots, the configuration space is a lower-
dimensional manifold compared to the operational space of the platform poses. This
becomes clear if one considers the Jacobian matrix JDK ∈ IRm×n from Eq. (4.4) that
describes the instantaneous mobility of the platform. At a regular pose, the rank of
the Jacobian matrix

rank JDK = m , (4.22)

since m < n and therefore, only m independent displacements can be generated by
the robot. Thus, there exist (n − rank JDK) > 0 linearly independent infinitesimal
displacements δti with

JDKδti = 0, i = 1, . . . , (n − rank JDK) (4.23)

that are instantaneously inaccessible through changes δl of the cable length at the
current pose (Fig. 4.6). Although the number of these independent displacements is
constant (except for singularities of second kind), the spanned subspace ker JDK is
pose-dependent. These displacements can only be generated if an additional wrench
is applied to the platform. Thus, an (n −m)-dimensional subspace of SE3 cannot be
reached with the robot being in force equilibrium.

To evaluate the inverse kinematics, one has to check if the platform is in static
equilibrium of the cable forces and external wrench. If the desired pose (r,R) is stat-
ically stable, one can apply the simple procedure for inverse kinematics as described
above. Since the workspace of such IRPM is a lower-dimensional manifold embed-
ded into the Euclidian motion group SE3, it is, in the presence of the unavoidable
uncertainties, rather unlikely that an arbitrarily chosen pose for the mobile platform
is stable and can be achieved with positive cable tensions. Therefore, the question of
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K0
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[JDK]1 [JDK]2

t1

Fig. 4.6 Mobility of under-constrained cable robots with two cables. Only some displacements
[JDK]1 and [JDK]2 can be generated by changing the length of the cables while the displacement δt1
is inaccessible through the actuators

how to deal with the situationwhen a desired pose relates to an unstable configuration
arises.

Inverse kinematics gets an involved problem if one expects the inverse kinematics
code to compute cable length for a stable pose y∗ that is close to the desired pose y.
To do so, one also has to take the effect of external wrenches into account including
gravity on the platform. Basically, one searches for a pose y∗ in the wrench-feasible
workspace (see Sect. 5.2.2) that is close to the given pose y. Here, we touch the well-
known problem that there is no unique way to measure proximity in the Euclidian
motion group SE3.One usually assumes that the externalwrench is caused by gravity.
Therefore, inverse kinematics of under-constrained cable robots depends on both
the geometric and the static properties of the robot. As a result, the behavior of
the robot depends both on its location of the anchor points given by ai and bi as
well as on its mass mP and its center of gravity rM. In the literature, the approach
is referred to as geometrico-static kinematics [35, 36, 87, 88, 90] and combines
kinematic (geometric) equations with static (force equilibrium) equations. In other
works, such approaches are called kinetostatic models. Another approach to this
problem is to find a trajectory where dynamic inertia forces can be used to balance
the robot also at poses where no static equilibrium can be reached [308]. In this case,
the kinematics equations have to be solved along with the dynamic equations and
kinematics becomes closely coupled to motion planning.
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The computation of forward kinematics remains challenging for IRPM. For point-
shaped platforms, the problem is rather simple. The planar case (2T) is trivial since
m < n relates to a cable robot with only one cable which kinematically restrict the
platform to a circle that has exactly one minimum point. In the spatial case (3T),
we have two cables constraining the platform onto a circle which is again easy to
deal with. A more involving problem occurs for finite platforms in the plane and
especially in space.

For a cable robot with two cables and 1R2T motion pattern, the center of gravity
is kinematically constrained to a curve that is equivalent to the coupler curve of a
four-bar mechanism [88]. To model the behavior of such a cable robot under gravity,
it was proposed to search for the minima of such a curve. Furthermore, it is shown
that this condition is equivalent to the results received for theminima of a constrained
optimization problem.

For the modeling of the geometrico-static model, Carricato et al. [35, 87, 88, 90]
used line coordinates. This modeling approach is equivalent to the notation used in
this work and the basic geometrico-static conditions reads

li = ||ai − r − Rbi ||2 for i = 1, . . . ,m (4.24)

0 = ATf + wP , (4.25)

which relates to m + 6 scalar equations that involve 6 + 2m variables which are the
six pose parameters used to parameterize y = (r,R), the m cable lengths li , and
the m cable forces fi . To compute the inverse kinematics, the six pose parameters
are given and one receives m + 6 equations for 2m unknown parameters. Thus, for
IRPM with m < n, one gets in general an over-constrained nonlinear system.

There is an interesting connection between the forward kinematics of IRPM and
the dynamic simulation presented inChap.6. Fromakinematic point of view, the cou-
pled geometrico-static equations present an involved mathematical problem. Inter-
estingly, from a dynamic point of view, there is little difference in modeling IRPM,
CRPM, and RRPM robots. Thus, using the dynamics formulation, one can integrate
the differential equations over a sufficiently long time period to find the pose (r,R)

where the dynamic system is at rest in equilibrium. Hence, the pose found in this
way also solves the forward kinematics problem. The connection between forward
kinematics and dynamics is further discussed in Sect. 6.3.5 in terms of energy.

4.3 Forward Kinematics Codes

Afundamental problem for parallelmechanisms including cable robots is the solution
of the forward kinematics. For serial robots, it is straightforward to calculate the pose
of the end-effector from given joint coordinates [114] and the result is always unique,
even if the robot has kinematically redundant articulated joints. For parallel robots,
this problem can be very complex and there exist quite simple examples for robots
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having more than one pose which can be related to one set of joint coordinates.
As late as 1992, it was shown that the maximum number of poses of spatial parallel
robots of the Stewart–Gough-type are bounded by 40 [283, 420], where some of these
poses may be in the imaginary plane. Later, Dietmaier found an example where all
40 poses are real [122]. An algorithm to solve the general kinematics was provided
by Husty [214], who applied kinematic mapping [58] to transform the kinematic
equations into a projective space. In this space, the equations are algebraic leading to
a polynomial of degree 40. Unfortunately, this algebraic approach seems inadequate
for real-time implementation. Furthermore, highly specialized numerical methods
are needed to cope with 40th order polynomial and numerical stability becomes an
important issue. Adding more constraints does not generally reduce the number of
solutions [216, 217] if some geometrical relations are satisfied. Lately, it was shown
that for robots with less than six legs, the equations may lead to some hundreds of
solutions where dozens of real solutions were found ad-hoc [314].

For less than six cables, the kinematic problem is surprisinglymore complex since
the geometric relations and the static equations get coupled making the underlying
mathematical problem more involved. The number of complex solutions for robots
with five cables is 140. For four cables, the number of solutions was found to be 216
[319] where some of these can be complex. For three cables, the maximum number
of solutions was found to be 156. For two cables, in total 24 solutions exist in two
sets with 12 solutions each. Only for robots with a single cable, the situation is trivial
and such crane-like robots have, as expected, a unique solution. An overview is given
in Table4.1 according to [34].

As discussed earlier, at least m = n + 1 cables are required to fully control the
motion for a mobile platform with n degrees-of-freedom [349]. Therefore, many
cable robots are under-determined or over-actuated with respect to the distribu-
tion of forces in the cables and over-determined with respect to forward kinematics
(Fig. 6.10a). For over-constrained cable robots, one could expect that the number of
solutions is reduced to atmost one due to the additional constraints but, unfortunately,
in general this is not the case [216, 217]. Special non-generic geometries maintain
this maximum solution set. At first sight, these results were considered to be only
relevant for theoretical considerations while the geometry of practically built robots
does not have this non-generic property. To solve the over-constrained equations,
Merlet used interval analysis to compute all solutions of the forward kinematics of
parallel robots [321] in a guaranteed way. A more specialized method was presented
for cable robots with linear drives and elastic deformation in the cables [324]. A
closed-form kinematic code for the so-called 3-2-1 configuration is well suitable for
real-time applications [389, 465] but relies on a special non-generic geometry where
at least three cables share a common distal anchor point. Bruckmann [72] presented
a method to cope with winches using pulley mechanisms to guide the cables. A real-
time capable code for generic over-constrained geometries was presented [390] and
extended by Schmidt [434]. Liwen recently used the same approach of minimizing
the potential energy but employed sequential quadratic programming [297].

For practical computations in the controller of the robot, one is mostly interested
in tracing one of these solutions inside the workspace. The solution at hand is the
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configuration that arises from the initial geometric conditionswhenfirstly assembling
the robot. Up to now, no method that guarantees to distinguish between the different
assembly modes is known. A common work-around is to start with one known pose
and use an iterative scheme to track that solution [68, 139]. In practice, forward
kinematics has to be used inside the controller to monitor the pose of the platform or
to determine the initial platform position after power on. Here, one has to deal with
small errors in the kinematic parameters due to disturbances in the measurement
and other uncertainties. This can result in finding no solutions which is related to
measuring too short cable length or infinitely many solutions which may result from
having too long cables. In both cases, additional assumptions have to be made to
keep the control system stable. The latter problem becomes really involved if first
and higher order derivatives are also needed.

4.3.1 Classification and Approaches

Firstly, one can classify the algorithms based on the number of cablesm and degrees-
of-freedom n:

• IRPM with more degrees-of-freedom n than cables m: Forward kinematics equa-
tions are under-constrained and we have most probably to deal with infinitely
many solutions. Furthermore, the set of solutions depends on applied forces such
as gravity.

• IRPM where the degrees-of-freedom n equal the number of cables m: Here, we
can apply some algorithms from conventional parallel robots. Still, we have to
check if the determined solution is stable.

• CRPMandRRPM:The robot is kinematically over-constrained and in the presence
of uncertainties no exact solution exists.

Secondly, the algorithms are classified with respect to the motion pattern of the
platform (see Sect. 2.2.2).We have to distinguish especially between point-platforms
with motion pattern 2T and 3T and bodies with 1R2T or 3R3T motion pattern.

Thirdly, specialized algorithms can be found for non-generic geometrical config-
urations of the robot, such as multiple cables that share a common point on the frame
or on the platform. Another typical type of constraints used to simplify the kinematic
equations are relations in the geometry such as all anchor points lying on a common
line or in a common plane. More exotic kinematic constraints on the geometry are
analyzed [217].

Another important criterion for a kinematic code is the computation time. Due
to continuously raising computation power, we will distinguish real-time codes that
determine the solution within a strictly bounded and relatively short time and general
methods, where it is not possible to give an upper bound of the computation time.
Somegeneralmethods can be used in real-time context if it is possible to configure the
algorithm in so far as that the computation time is strictly bounded, e.g. by providing
an upper limit on the number of iterations. In this setting, we may derive modified
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kinematic codes that allow to approximate the solution within a reasonable time and
with acceptable accuracy. Anyway, such trade-offs need intensive testing before they
can be applied in a controller.

Finally, we classify the algorithms based on the number of solutions they are able
to find. Local methods mostly use an initial estimate to determine a solution that is
close to that estimate, whereas global methods determine many or even all solutions.

The equations characterizing the forward kinematics for CRPM and RRPM form
an over-constrained system and for arbitrary cable length l one cannot find solutions y
that fulfill the constraint Eq. (3.1). In practice, uncertainties such as noise, systematic
errors from the measurement system, inaccuracies in the geometric parameters, and
simplifications in modeling lead to the situation that no exact solution can be found.
There are different approaches to deal with this problem:

• One can solve the forward kinematics using a general solver for six cables to
obtain one or more candidates for the pose yi . Then, it can be checked which
of these solutions are consistent with the redundant constraints. A couple of dif-
ferent solvers have been presented for the forward kinematics of Stewart–Gough
platforms including gradient methods, interval analysis, kinematic mapping, opti-
mization methods, and some closed-form solutions for non-generic geometries.
An overview can be found in [322].

• In the presence of actuator redundancy, the problem of forward kinematics can
be interpreted as an optimization problem, where the roots of Eq. (3.1) need to
be approximate best possible. The constraints are distance equations and can be
interpreted as the squared distance from an exact solution. Thus, summing up the
errors from each constraint leads to a least-square problem.

• Interpreting the constraints imposed by the cables as unilateral constraints, the
resulting problem of forward kinematics is a constraint satisfaction problem (CSP)
[196, 388] which has in general infinite solutions where a couple of disconnected
compact sets may exist. Interval analysis can be used to find all these regions in a
guaranteed way. This kind of solver is very slow and the approximations of the sets
are complicated to use for applications like controller design. Nevertheless, this
approach calculates the solutions in a very general way and can serve as reference.

• Using techniques like kinematic mapping [58], the constraints are transformed into
a univariate polynomial. This kind of equation may be inappropriate for solving
with numerical methods but provides insight into the structure of the underlying
mathematical problem. The order of the polynomial is an upper bound on the
number of solutions where in general the number of real solutions might be even
smaller. Furthermore, the coefficients of the polynomial provide information on
constraints for non-generic designs that may have a smaller solution set.

• One can formulate the forward kinematics in terms of quadratic distance equations
between the distal anchor points with limits on the distance between Ai Bi , 1 ≤ i ≤
m and exact distances between the platform anchor points Bi B j , 1 ≤ i, j ≤ m, i �=
j . This approach can be compared to the set of equations analyzed with interval
analysis for Stewart–Gough platforms [321] or with other numerical algorithms
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specialized on this specific type of equations. For example, such a solver was
proposed in [464] for a measurement device.

• An approach based on neural networks and interval analysis was presented by
Schmidt [433].

4.3.2 General Challenges with Forward Kinematics

One can use numerical schemes like Newton–Raphson or Levenberg–Marquardt
algorithms to numerically solve the closure constraints (3.1). Iterative solvers have
the drawback that their regionof convergency is limited anddifficult to predict. Ifmul-
tiple solutions exist, it is difficult but possible [321] to find all of them, e.g. by using
interval analysis. Furthermore, we consider the set of solutions YA = {y1, . . . , yk}A
that is calculated for a configuration A for a vector of cable length lA and the set of
solutions for a configuration B with solutions YB = {y1, . . . , yk}B that follows from
another vector of cable length lB. Now, there seems to be no simple way or it might
even be generally impossible to find a one-to-one correspondence between the ele-
ments of YA and YB. Practically, the robot is in a particular configuration yA,i and one
wants to receive only the corresponding solution yB,i from YB that can be physically
reached from that particular pose yA,i without disconnecting cables or crossing sin-
gularities. Some recent results [85, 215, 519] for conventional parallel robots even
suggest that corresponding configuration in YB depends on the path between lA and
lB since parallel robots are able to change their assembly mode without crossing a
singularity. It might even happen that the numbers of (real) elements in the sets YA

and YB do not match. To the best of the author’s knowledge, there is no solution to
this problem in the literature.

4.3.3 The 3-2-1 Configuration

Some cable robots have a generic geometry with only three distinct points on the
platform or, in other words, multi cables share a common anchor point on the plat-
form. Such generic designs have special kinematic properties and it is possible to
derive specialized but efficient algorithms in this case. Explicit formulas are desired
and the derived formulas are based on the work by Thomas [465] which takes robots
with a so-called 3-2-1 or, as discussed below, in a 3-2-2 configuration into account.
For parallel cable robots with seven cables, the distal attachment points B1, . . . , B7

can be written as three distinct attachment points on the platform which are called
BA, BB, BC. Furthermore, for the configuration it is assumed that either two or three
cables share a common distal anchor point on themobile platform. This configuration
is shown in Fig. 4.7 and was used for a couple of recently built cable robots, since it
minimizes the restrictions caused by cable interference elsewhere in the workspace,
see also [473].
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Fig. 4.7 Six
degrees-of-freedom parallel
cable robot with three
distinct attachment points on
the platform (the so-called
3-2-2 configuration)
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The presented calculation derives the equations in closed-form as they are used
for the controller. It is entirely based on a geometric procedure. Firstly, it is recalled
that the distal attachment points Bi have to be located on spheres Si with radii li that
center around the proximal attachment points Ai . If three attachment points on the
platform coincide as shown for BC in Fig. 4.7, their location in space can be calculated
from the intersection of these three spheres. Once BC on the platform is known, the
distances between BC and BA, BB can be used as distance constraint. Thus, one can
apply the same procedure to determine BA, BB as well. This provides a closed-form
solution for the forward kinematics of the robot. Therefore, the determination of the
intersection of three spheres is described in the next section.

An important step in solving this special forward kinematics problem is to com-
pute the intersection (Fig. 4.8) of the three given spheres S1, S2, S3 defined by their
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centers a1, a2, a3 and the radii l1, l2, l3, respectively.5 Generally, there are four possi-
bilities for the number of intersections. There might be no solution, one solution, two
symmetric solutions, or an infinite number of solutions. The latter case only occurs
if a1, a2, a3 define a line. From a kinematic point of view, one of the three constraints
degenerates and this happens only in a singular configuration. Firstly, intersection
occurs between the spheres only if

|li − l j | < ||ai − a j ||2 < li + l j for i, j ∈ 1, 2, 3, i �= j (4.26)

holds true. Otherwise, there is no solution because the distance between the spheres
is either too big or too small to allow for intersection. Now, let the plane E3 be defined
by the points a1, a2, a3. Then, its unit normal vector n0

3 is given by

n0
3 = (a1 − a2) × (a1 − a3)

||(a1 − a2) × (a1 − a3)||2
. (4.27)

Furthermore, the planes E1 and E2 defined by the intersection of S1, S2 and S1, S3,
respectively, are given by

E1 : x . n1 = a22 − a21 − l22 + l21
2

(4.28)

E2 : x . n2 = a23 − a21 − l23 + l21
2

(4.29)

where the normal vectors n1,n2 are constructed from n1 = a2 − a1, n2 = a3 − a1.
The sought intersection(s) xi of all three spheres is located on the line

L : x = x0 + λn0
3 , (4.30)

where x0 is the intersection of the planes E1, E2, E3. Therefore, one can compute x0
from the linear system

[
n1 n2 n0

3

]T
x0 =

⎡
⎢⎢⎢⎣

a22 − a21 − l22 + l21
2

a23 − a21 − l23 + l21
2

a1 . n0
3

⎤
⎥⎥⎥⎦ . (4.31)

The parameter λ is then determined from

λ = ±
√
l21 − (x0 − a1)2 . (4.32)

5Note that the indices 1, 2, 3 in this section relate to the three winches chosen with the common
point B on the platform. Without loss of generality, one can renumber the winches so that the first
three have the common point on the platform.
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Substituting λ into the parameter form of the line L , Eq. (4.30) yields the two points
of intersections, as expected.

Since the intersection of three spheres yields two solutions in regular configura-
tions of the robot, up to eight different sets of solutions BA, BB, BC exist. Finally,
one has to check which of these solutions is the sought-for by testing a redundant
constraint. This is done by testing if the distance between the points BA, BB matches
the known constant distance

||bA − bB||2 = const (4.33)

between these points. In the presence of uncertainties such as measurement and
tracking errors of the cable length, one has to use a threshold for the error of the
redundant constraint.

4.3.4 Numerical Methods for Redundantly Restrained Robots

In this section, we consider numerical methods to solve the forward kinematics of
CRPMandRRPM type robots. The algorithm is designed for the use in the controller.
Therefore, the geometry shall be generic and the algorithm must work under real-
time conditions. An algorithm in two steps for solving the forward kinematics of
redundant cable robots in general is presented. In the first step, interval techniques
are used to estimate guaranteed bounds on the pose. In the second step, the bounds
are used to calculate an estimate of the pose which is the initial value for an iterative
Levenberg–Marquardt solver.

4.3.4.1 Estimating an Initial Pose for Iterative Schemes

The algorithm assumes that the mobile platform is small compared to the measured
cable length li . In general, it holds true that for any orientation of the mobile platform
the coordinates of the TCP are inside the spheres around the anchor points of the
frame ai and with a radius equal to ||li ||2 + ||bi ||2. For practical calculations, a
transformation of the platform vectors bi that minimizes their lengths is useful to
increase the quality of the estimate, e.g. to transform the platform in a reference
point computed from the average of the points bi . It is straightforward to calculate
axis-aligned bounding boxes for each of the m spheres. Using only the intersection
of those m boxes yields guaranteed bounds r min = [x, y, z]Tmin and r max = [x, y, z]Tmax

for the position of the platform. Then, any point in the box can be used as starting
point for the iteration, whereas the center rM = 1

2 (r min + r max) of the box is used as
initial value of the iterative Levenberg–Marquardt algorithm.

This initial estimate can be improved if one computes the exact intersection of
the spheres that leads to a smaller region and thus to a better estimate. However, the
possible gains from such a procedure seem to be little compared to the significant
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efforts. Note that such improvements of the initial guess are essentially required only
to enter the region of convergency of the following iterative scheme.

4.3.4.2 Assumptions for Forward Kinematics

Here, we present an algorithm for forward kinematics to be used rather for real-
time control of a well-designed robot than for analysis of possibly ill-conditioned
or architecturally singular robots. The following assumptions were made taking into
account practical needs:

• The sought-for pose y of the mobile platform to be estimated belongs to the
workspace (positive tension in the cables) and the control error measured by the
length sensors is moderate. If the cable lengths are too short, it may cause either
overloading the motors or breaking the cables. If the cable lengths are too long, we
lose the control on the platform. In both cases, the control system must perform
an emergency stop rather than computing a theoretical solution that cannot be
generated by a real robot.

• The cables of the robot are elastic allowing for small changes in length around the
given length li . Nevertheless, the presented algorithm does not take into account
changes in the length due to the actual tension.

• The geometry of the mobile platform bi was chosen so that the rotation matrix
R = I3 is in the workspace or close to the workspace. This is a minor restriction
since cable robots only allow for relatively small orientation workspace and we
choose a pre-orientation of all ai and bi such that the workspace is somewhat
centered around R = I.

• The cable robot has more cables m than degrees-of-freedom n, i.e. it is kinemati-
cally over-constrained.

• The size of the mobile platform is small compared to the machine frame, i.e.
||bi − b j ||2 � ||ai − a j ||2 for i, j = 1, . . . ,m i �= j . This is fulfilled for most
cable robots.

• The robot is in a fully-constrained pose. For suspended robots at least, the initial
pose estimator needs tuning to exploit the minimum energy condition.

The algorithm should satisfy the following requirements:

• Real-time capability: the computation time of the algorithm must be strictly
bounded and in the range of milliseconds on available real-time hardware.

• The geometry of the robot is generic, i.e. no special constraints like linearity,
planarity, etc. are assumed for the mobile platform bi or the machine frame ai .
Nevertheless, it is assumed that the robot geometry is designed to avoid architec-
tural singularities and the like.

• Errors have to be reported reliably, e.g. if no solution is found because it does not
exist. Note that for the control system such conditions are exceptions requiring an
emergency stop of the robot and we must reliably detect such situations.

From Eq. (3.1), we receive m nonlinear equations for forward kinematics
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νi (l, r,R) = ||ai − r − Rbi ||22 − l2i = 0 for i = 1, . . . ,m (4.34)

that form an over-constrained system. Here, we consider the cables to be linear
springs. In general, we cannot expect to solve the above-mentioned equations exactly,
but we can minimize the error which can be interpreted as minimizing the potential
energy in pretensed cables. Let U = ∑

i Ui be the potential energy of the system
and the contribution from each cable reads

Ui = 1

2
kiν

2
i , (4.35)

where ki is the stiffness of the i th cables. We assume all cables to have the same
stiffness ki . Then, the minimum of the potential energy U of the system does not
depend on the specific value of the stiffness k ′ and the function for forward kinematics
yields

ϕDK(l) = min
r,R

m∑
i

ν2
i (l, r,R) , (4.36)

where the vector l = [l1, . . . , lm]T contains the given cable lengths. The function
ϕDK(l) yields the values r∗,R∗ that minimize the right side of Eq. (4.36). The idea of
finding the pose that minimizes the potential energy can be extended by weighting
the energy contribution of each cable to the length of the cable in order to reflect
the different spring constants that are reciprocally proportional to the cable’s length.
We have already discussed this issue in the context of stiffness in Sect. 3.8. Thus,
some further fine tuning can be achieved by adding offsets to the effective cable
length since there is usually also a certain part of the cable inside the winches or
between the winch and the last pulley that contributes to the spring constant but is
not kinematically effective. Furthermore, the minimization of the potential energy
also reveals an interesting connection between kinematics and dynamics as carried
out in Chap.6.

4.3.4.3 Real-Time Algorithm

In the literature, iterative schemes [72, 139] as well as interval methods [321, 324]
were proposed for forward kinematics where the first methods may suffer from not
converging, while the latter does not fulfill real-time constraints. Although the com-
putation time of intervalmethods can be strictly bounded, theworst case computation
time is typically so large that they are not applicable for real-time computation. In
practice, efficient heuristics are applied to the interval schemeswhere no specific time
bound can be guaranteed. In the following, both approaches are combined in two
process steps. Firstly, an initial solution for the pose of the platform y0 is estimated
together with guaranteed bounds through an interval analysis inspired technique.
Secondly, a Levenberg–Marquardt algorithm is used to iterate the platform pose
from this initial estimate through a least square approach of the over-constrained
nonlinear equations.
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In the first step of the proposed algorithm, an estimate of the pose y0 is determined.
To estimate the initial position of the platform, an interval analysis inspired approach
is adopted. Although inspired by interval analysis, the implementation performs the
computation with standard arithmetics since interval libraries are not available on all
real-time systems. The basic idea is to strictly bound the position of the TCP. This can
be done by axis-aligned bounding boxes that are placed around thewinches. For fully-
constrained cable-driven parallel robots, the anchor points ai are distributed around
the workspace. Therefore, the region of intersection of these boxes is relatively small
and can be used as an initial estimate for the position.

For the pose estimation, we proceed as follows: The vector loop expressed in
Eq. (3.1) can be rewritten to

ai − r = li + Rbi . (4.37)

Since rotation with the matrix R is conserving the length of an arbitrary vector bi , it
generally it holds true that

||Rbi ||2 = ||bi ||2 . (4.38)

Applying the triangle inequality and removing the rotation matrix yields

||ai − r||2 ≤ li + ||bi ||2 , (4.39)

where the vector li is replaced by its length li . Thus, the TCP lies inside a sphere with
radius li + ||bi ||2 around the anchor point ai . Using an interval estimation for this
sphere by enclosing the sphere with an axis-aligned box, one receives the bounds

r low
i = ai − (li + ||bi ||2)[1, 1, 1]T

r high

i = ai + (li + ||bi ||2)[1, 1, 1]T
}

. (4.40)

Then, the intersection of all m bounding boxes is calculated from

r low = max
i

r low
i and r high = min

i
r high

i . (4.41)

If r low > r high, then we have strictly proven that the forward kinematics function has
no solutions for the given cable length l. Otherwise, the center r0 = 1

2 (r
low + r high)

of this bounding box is used as initial estimate. Note that the equations above are
trivial to implement on a computer and highly efficient for any number of cables m.
If the forward kinematics has multiple solutions, all solutions are guaranteed to be
contained in the box.

In Fig. 4.9, a simplified example of a planar 1R2T cable robot with three winches
illustrates the geometrical interpretation of the procedure. The dashed circles are
centered around the proximal anchor points ai and have a radius of li + ||bi ||2. The
enclosing rectangles around the circle represent the interval estimate of these circles.
The light gray rectangle is the intersection of the boxes and is guaranteed to contain
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a1 a2

a3

b1

b2

b3

TCP

Fig. 4.9 Bounding of solution with axis-aligned boxes

the TCP. The dark gray region can be computed from the intersection of circles which
typically gives a better estimate but is also more complex to determine. For example,
using interval consistency methods, one can shrink the box to contain only the dark
gray region [196]. However, here we simply use the center of the light gray box to
start the iteration with the Levenberg–Marquardt method. Note that this bounding
technique exploits the over-constrained equations sincemore equations imposemore
restrictions on the box and thus produce more accurate estimates. Further improve-
ments can be achieved by additionally considering li − ||bi ||2 as minimum radius,
where the computations become more involved in this case. In particular, the com-
putation of the intersection of spherical shells can lead to disconnected regions with
possible solutions.

To determine the sought pose y of the cable robot, a Levenberg–Marquardtmethod
is applied [304]. Given a function ϕ : IRn → IRm with m ≥ n, the Levenberg–
Marquardt algorithm can be used for obtaining the argument y that minimizes
||ϕ(y)||2. This is done by an iterative procedure yi+1 = yi + hi where a step hi
of the Levenberg–Marquardt algorithm is determined by solving the linear system

[
Jν(yi )JTν (yi ) + μI

]
hi = JTν (yi )ϕ(yi ) , (4.42)

where μ is the damping parameter and Jν is the Jacobian matrix of constraints ν

defined as
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Jν =

⎡
⎢⎢⎢⎢⎢⎣

∂ν2
1

∂y1

∂ν2
1

∂yn
. . .

∂ν2
m

∂y1

∂ν2
m

∂yn

⎤
⎥⎥⎥⎥⎥⎦

. (4.43)

For the numerical scheme, two threshold parameters ε1 and ε2 are proposed [304].
The procedure is terminated if one of the following conditions is reached

||hi ||2 < ε2(||yi ||2 + ε2) (4.44)

||Jν(yi )ϕ(yi )||2 < ε1. (4.45)

The first condition relates to little improvements in the iteration due to a small step
size hi and the second condition relates to the derivative approaching a stationary
point which is hopefully a local minimum.

The computational effort for the bounding procedure is constant and negligi-
bly small. The effort for each iteration step is constant and a maximum number of
iterative steps is defined. Thus, the algorithm can be integrated into a real-time envi-
ronment, given that a reasonably small number of steps is needed. In Sect. 4.3.4.5,
the convergency of the algorithm is numerically investigated.

An interesting extension to thebasic scheme is to use abox-constrainedLevenberg–
Marquardt solver instead of the unconstrained version described above. It is possible
to assign strict bounds on the pose parameters y during the optimization process.
Since the pose estimation procedure provides guaranteed bounds on the position
through r low and r high and the angular model is restricted to the interval of [−π;π ]
anyway, the application of box constraints is straightforward. The LevMar imple-
mentation [301] provides both constrained as well as unconstrained versions of the
Levenberg–Marquardt methods. The application of the constrained version is slower
but bounds the pose to the pre-computed box, fully exploiting the pose estimation
procedure.

The typical application of these numerical methods is to compute the kinematic
transformation in the real-time controller of a cable robot. Thus, checking for appro-
priate geometry and tuning of algorithm parameters are acceptable if the numerical
performance is improved. The efficiency of the pose estimation procedure can be
improved by performing a rigid body transformation to the platform anchor points
bi . Firstly, the platform frame KP needs not to match the task-related TCP but the
geometric center of the platform. Thus, the platform frame KP is virtually translated
for the kinematic code to the geometric center of platform bc = 1

m

∑m
i bi . Then, the

platform anchor points are transformed by b′
i = bi − bc. Secondly, numerical con-

vergency is improved if the final orientationmatrixR is as close to the identity matrix
as possible. Thus, a rotation Rc is applied to the anchor points b′′

i = Rcb′
i so that the

orientationR = I3 is inside the workspace. Optimal values forRc can be determined
from a detailed analysis of the workspace. However, reasonable improvements can
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be achieved when determiningRc from intuition such that the home pose of the robot
has an orientation equal to the identity matrix.

Clearly, the determined pose computed with the kinematic code has to be trans-
formed back to the original coordinate system by rotating with RT

C and translating
along bc.

4.3.4.4 Implication for Convergency

To further characterize the optimization problem at hand, we consider the objective
function g : IRm → IR as follows

g(l, r,R) =
m∑
i

ν2
i =

m∑
i

(||ai − r − Rbi ||22 − l2i
)2

. (4.46)

In order to compute derivatives,we introduce aparameterizationof the rotationmatrix
R through an angular model with the angles a, b, c. These can be chosen to be e.g.
Euler angles or Bryant angles. The pose is thus denoted by y = [x, y, z, a, b, c]T.
Computing the gradient G of g yields

G = ∇g(y) =

⎡
⎢⎢⎢⎣

∂g

∂x
. . .
∂g

∂c

⎤
⎥⎥⎥⎦ , (4.47)

containing six partial derivatives of the objective function. Since the objective func-
tion g is differentiable, the sought optimum corresponds to the pose where ∇g = 0,
given exact cable lengths. Furthermore, we will consider the Hessian matrix Hν of
the function g in order to characterize the number and type of extremal values of g.
The Hessian matrix of g is given by

Hν = ∂2g

∂y2
=

⎡
⎢⎢⎢⎢⎣

∂2g

∂x ∂x
. . .

∂2g

∂x ∂c
...

. . .

∂2g

∂c ∂x

∂2g

∂c ∂c

⎤
⎥⎥⎥⎥⎦

, (4.48)

where the Hessian matrix is symmetric according to the theorem of Schwarz because
the function g is continuously differentiable in y.

Numerical studies as well as experimental results from several years of opera-
tion of the robot controller indicate that the kinematic code built from Levenberg–
Marquardt optimization of g performs both stable and reliable in practice. However,
little analysis has been made so far to elaborate a theoretical foundation. In the fol-
lowing section, we present some case studies for point-shaped platforms as well
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as for planar robots with one rotational degree-of-freedom and two translational
degrees-of-freedom (1R2T).

The 2T and 3T Cases

In this section, we analyze the procedure for the generalized robot geometry. We
consider the objective function g for robots of the 2T and 3T type. The geometric
condition for robots with these two motion patterns is that all cables are connected
to the same point on the platform and thus, all vectors bi are equal. Without loss
of generality, we can therefore assume bi = 0. Consequently, the equations of the
objective function are greatly simplified. To further characterize the optimization
problem at hand, we consider the objective function g : IRm → IR in 2T case as
follows

g(l, r) =
m∑
i

(‖r − ai‖22 − l2i
)2

(4.49)

and substituting the parameters of the position [x, y]T for the vectors into the
expression gives

g =
m∑
i

(
(x − aix )

2 + (y − aiy)
2 − l2i

)2
. (4.50)

Thus, the gradient G with respect to x and y is computed as follows

G =
m∑
i

[
4

(
(x − aix )2 + (y − aiy)2 − l2i

)
(x − aix )

4
(
(x − aix )2 + (y − aiy)2 − l2i

)
(y − aiy)

]
(4.51)

and the Hessian matrix Hν becomes

Hν =
[
Hxx Hxy

Hxy Hyy

]
, with (4.52)

Hxx =
m∑
i

12(x − aix )
2 + 4(y − aiy)

2 − 4l2i (4.53)

Hxy =
m∑
i

8(x − aix ) + 8(y − aiy) (4.54)

Hyy =
m∑
i

4(x − aix )
2 + 12(y − aiy)

2 − 4l2i (4.55)

where for the 3T case the gradient G is extended with the respective terms for the
z-coordinate and the Hessian matrix consists of some additional trivial derivatives.
A sufficient condition for the optimum of the function g to be unique is that the
gradient G = 0 and the Hessian matrixHν is positive definite. For a symmetric 2×2
matrix, this check can be done by testing if the determinant is positive. The eigen-
values of a symmetric matrix are real, therefore, both eigenvalues are positive if the
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Table 4.2 A example planar robot with 1R2T motion pattern: platform vectors bi and base
vectors ai
Cable i Base vector ai Platform vector bi
1 [−2.0, 2.0]T [−0.05, 0.1]T
2 [2.0, 2.0]T [0.05, 0.1]T
3 [2.0, 0]T [0.05,−0.0]T
4 [−2.0, 0]T [−0.05,−0.0]T

determinant is positive. To demonstrate the procedure, we use the geometric parame-
ters for ai given in Table 4.2. With actual numbers for the geometry, the determinant
ofHν becomes a multivariate polynomial in the position [x, y]T and the cable length
[l1, . . . , lm]T. This polynomial allows to consider the general relation for arbitrary
cable length. To remove the dependency from the cable length, the inverse kine-
matics equation is inserted into Hν . This corresponds to the ideal situation without
measurement errors or disturbances in the cable lengths. Executing the substitution
with computer algebra gives a surprisingly simple expression

detHν, Ideal = 1024(x2 + 4(y − 1)2 + 4) , (4.56)

where for the determinant ofHν, Ideal the geometric parametersai are listed inTable 4.2.
This expression is obviously always positive for all x and y. Therefore,wehave shown
for the example robot that the solution is always unique for the forward kinematics
by the energy method. The result is also illustrated in Fig. 4.10a that shows the
eigenvalues of the matrixHν, Ideal over the area covered by the frame and in Fig. 4.10b
we plot the determinant in the same region. From the positive definiteness of the
Hessian matrix, we conclude that the objective function is convex which means
that we can find a unique solution in the optimization problem to solve the forward
kinematics.

The Planar Case 1R2T

We apply the same approach to the 1R2T case where the equations are slightly
more complex. Again, we express the position of the platform with the coordinates
r = [x, y]T and the rotation is given by the rotation matrix R which is parame-
terized by the angle ϕ. Thus, for the 1R2T case, the geometry bi of the mobile
platform cannot be removed from the equation and we deal with the general case
of having arbitrary vectors bi . Substituting the known quantities into the general
over-constrained objective function g (4.46) yields

g =
m∑
i

((x + cos(ϕ)bix − sin(ϕ)biy − aix )
2

+(y + sin(ϕ)bix + cos(ϕ)biy − aiy)
2 − l2i )

2 . (4.57)

We compute the gradient G = [Gx ,Gy,Gϕ]T as follows
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Fig. 4.10 Evaluation of the
smallest eigenvalues and the
determinant of the Hessian
matrix Hν, Ideal within the
frame of the 2T robot

(a) smallest eigenvalue min(H ideal)

(b) determinant detH ideal

Gx =
m∑
i

4((x + cos(ϕ)bix − sin(ϕ)biy − aix )
2

(y + sin(ϕ)bix + cos(ϕ)biy − aiy)
2 − l2i )

(x + cos(ϕ)bix − sin(ϕ)biy − aix ) (4.58)
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Gy =
m∑
i

4((x + cos(ϕ)bix − sin(ϕ)biy − aix )
2

(y + sin(ϕ)bix + cos(ϕ)biy − aiy)
2 − l2i )

(y + sin(ϕ)bix + cos(ϕ)biy − aiy) (4.59)

Gϕ =
m∑
i

4[(x + cos(ϕ)bix − sin(ϕ)biy − aix )
2

+(y + sin(ϕ)bix + cos(ϕ)biy − aiy)
2 − l2i ]

[(x + cos(ϕ)bix − sin(ϕ)biy − aix )

(− sin(ϕ)bix − cos(ϕ)biy)

+(y + sin(ϕ)bix + cos(ϕ)biy − aiy)

(cos(ϕ)bix − sin(ϕ)biy)] (4.60)

Evaluating theHessianmatrix is possible by repeating the procedure of the case study
for the 2T type; however,wedonot reproduce the coefficients of thematrix here due to
space limitation. To study the expected convergency of the optimization problem, we
apply the procedure outlined above. Substituting both a geometry given by Table4.2
and the ideal cable length into the Hessian matrix provides the desired equations for
the determinant of theHessianmatrix. The evaluationwith computer algebra provides
an expression with around 250 operations to compute the determinant for a pose y =
[x, y, ϕ]T. Results from the computation of the determinant are shown in Fig. 4.11.
As one can see in the figures, the determinant is positive for two coordinate planes.
A numerical search also shows zero crossings within the workspace. Therefore, we
expect the solution to be unique inside the robot machine frame.

4.3.4.5 Implementation and Experimental Results

For this case study, the cable-drivenparallel robot IPAnema1 (Fig. 9.5, seeSect. 9.3.1)
is applied. On an industrial PC, the interpolation cycle time of the trajectory generator
is between 1 and 4ms depending on the robot and the version of the control system.
The kinematic code for inverse and forward kinematics described in Sect. 4.3.4.3 is
implemented into the control system in C language, where the implementation of the
Levenberg–Marquardt algorithm is based on the open implementation by Lourakis
[301] and lately also on cminpack.

The computation time was determined both on a desktop PC (Intel Core 2 Duo,
2.26GHz) andon aPC-based real-time controller system (IntelCore 2Duo, 2.4GHz).
For the following numerical study, the geometry of the IPAnema 1 system was
applied (Table9.1). In total, 5000 randomly chosen poses yi within the workspace
of the robot were tested and different magnitudes of noise were added to the cable
length, simulating measurement and control errors. The thresholds for termination
of the Levenberg–Marquardt algorithm were chosen to be ε1 = ε2 = 10−17 and the
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Fig. 4.11 Evaluation of the
determinant of the Hessian
matrix H Ideal within the
frame of the 1R2T robot.
The right plot shows the
value of the determinant for
ϕ = 0 in the xy-plane where
the left plot shows the value
of the determinant for
y = 0.5 in the xϕ-plane

initial damping parameterμ = 10−3. As a parameterization for the pose y, Cartesian
position r = [x, y, z]T and Bryant angles R = RZ(c)RY(b)RX(a) were used. The
maximum number of iterations was set to 100 which was never reached in practice.
On the desktop PC, the average computation time per evaluationwas determined to be
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Fig. 4.12 Numerical results for the forward kinematics using Levenberg–Marquardt algorithm.
Left column: Histograms of number of iterations for noise 0.1, 0.5, 1mm on the cable length. Right
column: Histograms of position error for noise 0.1, 0.5, 1mm on the cable length

97µs.6 Since the used Windows operating system lacks a high-precision timer with
a resolution less than one millisecond, the worst case computation time could not be
determined accurately. However, the measured average time and the distribution of
required iterations until convergency (Fig. 4.12 left) were encouraging. The number

6For comparison, a computation time of 47µs was determined on a more recent Core i5-3320M
with 2.6GHz.
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Table 4.3 Evaluation of the forward kinematics for the IPAnema 1 geometry using different imple-
mentations of the Levenberg–Marquardt algorithm. The resulting figures are average values for
52250 poses in the robot’s workspace. More details on the subject can be found in the literature
[431]

Algorithm/setting Cable length
error [mm]

Computation
time [µs]

Number of iterations [average (min–max)]

Analytic Jacobian N/A 19.5 6.86 (3–8)

Analytic Jacobian 0.1 42.1 8.61 (5–17)

Analytic Jacobian 0.5 42.8 9.02 (5–18)

Analytic Jacobian 1.0 49.1 9.60 (5–18)

Analytic Jacobian,
angle preconditioning

N/A 17.2 5.53 (3–6)

Without Jacobian N/A 29.7 7.94 (3–12)

Bounded, analytic
Jacobian

N/A 15.0 4.83 (2–6)

Bounded, without
Jacobian

N/A 59.6 4.83 (2–6)

of iterations was between seven and twenty for all poses tested where a typical
number of ten iterations is needed. The determined error between the nominal pose
yi and the determined pose were correlated to the noise in the cable length (Fig. 4.12
right). One can see that the average error of the poses is almost equal to the errors in
cable length.

Different variants of the Levenberg–Marquardt algorithm are compared in
Table4.3 with respect to computation time and number of iterations. All compu-
tation times are measured on an Intel Core i5-3320M 2.6GHz, Visual C++ 2010
using the so-called LevMar implementation [301] as solver. A regular grid with
values in the range

{
r ∈ IR3 | [−1.5,−1, 0.5]T ≤ r ≤ [1.5, 1, 1.5]T} (4.61)

was used for the evaluation. For each position of the grid, the nominal cable length
l = �IK(r, I) was determined and the resulting cable length l was fed into the for-
ward kinematics code computing the pose (r,R) = �DK(l)with different algorithms.
From the table, it can be seen that one receives rapid convergency with all algorithms
and that the use of the analytic Jacobian matrix can largely speed-up the computa-
tion. Introducing some disturbance in the scenario slightly decreases computational
performance and increases the required average number of iterations from around
6.9 up to 9.6. However, all computation times are in a range that can be achieved
with a PC-based real-time control system.

On the real-time controller system, it was not possible to measure the exact time
that was consumed for the kinematic transformation but one can only measure the
overall time consumed by the transformation and all other controller codes for each
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cycle. During some hours of operation, no violations of the cycle-time were reported
by the real-time control system and the computation time for the whole CNC-kernel,
including the kinematic transformation while moving along smooth trajectories, was
always less than 1ms.

4.3.5 Force-Based Forward Kinematics

An operational space formulation of the forward kinematics was presented in [342].
In this approach, an estimate of the stiffness matrix is used as basis for the forward
kinematics

̂f = KC Δl = k ′L−1(ϕ IK(y) − l) for i = 1, . . .m, (4.62)

where Δl is the deviation in the cable length, KC represents the stiffness model of
the cables as introduced in Sect. 3.8, L−1 is the diagonal matrix with the reciprocal
cable length, and k ′ is the stiffness coefficient of the cables (see also Sect. 3.8). The
n-dimensional objective function gOS to be minimized becomes

gOS(l, y) = W(AT̂f − w0) , (4.63)

where w0 is the applied wrench resulting from the mass of the platform and W
is a weighting matrix to relate rotational to translational displacement. The opera-
tional space formulation of the forward kinematics yields the following optimization
problem

ϕDK
OS (l) = min

y

n∑
i=1

(gOS(l, y))2 , (4.64)

which can be solved again with a Levenberg–Marquardt solver.

4.4 Conclusion

For fully-constrained cable robots, the inverse kinematics transformation is straight-
forward and can be easily implemented even on low-endian computers such as micro
controllers. In turn, forward kinematics is a challenging task and different special
purpose codes were proposed to solve it. For some non-generic cases, like the 3-2-
1 configuration, one can find closed-form solutions. However, for over-constrained
robots, one has to deal with the problem of an over-constrained system of equations.
In this setting, one can ease the problem by considering elastic cables which leads
to an optimization problem that minimizes the energy in the cables and thus the
deviations from the ideal cable length. An approach for rapid estimation of a guar-
anteed trust region for starting an iterative search is proposed. This method is simple
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to use and rigorous in its estimation. Different formulations are proposed and also
approaches to solve the optimization problem under real-time constrains are tackled.
The implementation shows a reasonable numerical performance and proves useful in
real-world application. Experimental tests suggest solid convergency and amethod is
proposed to test for stability of the convergency by considering the Hessian matrix of
the energy function. Open issues remain for redundant robots in crane configuration.
Here, both pose estimation and iteration are less stable since the heuristics proposed
here are less efficient.



Chapter 5
Workspace

Abstract This chapter deals with different types of workspace, the criteria used
for workspace determination, as well as with algorithms to actually calculate the
workspace. In the last part, the influence of the different criteria is compared.

5.1 Introduction

The workspace of a robot is an important property and its characterization is cru-
cial for planning the robot’s application. The workspace of some types of robots,
e.g. Cartesian gantry robots, can be described with simple geometric primitives such
as boxes or cylinders. For these robots, one can give simple but meaningful parame-
ters such as length, height, width, or radius to characterize the dimensions of interest.
The workspace description gets more involved when considering translation and ori-
entation. For ease of understanding, theworkspacemodel should be simple, however,
the topology of the rotation group is not isomorphic to the Cartesian space. Unfortu-
nately, the motion is more complex for parallel robots and especially for cable robots
where translation and orientation are strongly coupled. But since most application
engineers have a simple representation of the workspace in mind, one may have to
finally reduce the used workspace of a robot to a subset that can be represented by a
geometric primitive such as a box, a cylinder, or a sphere (see Fig. 5.1).

5.1.1 Literature Overview

Early studies of suspended cable robots including the consideration of the workspace
are presented by Albus [6]. A mathematical sound definition of force-closure,
workspace, stiffness, and intersection is presented by Verhoeven [476, 477].

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 5.1 The boundary of
the workspace of a parallel
robot is generally curved and
the largest axis-aligned box
may be significantly smaller

Fattah [141, 142] studies the workspace of suspended planar robots and derived
analytic formulations for the workspace [143]. Riechel [414] presents the structure
and force distributions for a point-mass cable robot in a suspended configuration.
Based on these ideas, analytic formulations for theworkspace are derived. Verhoeven
[473] shows that the wrench-closure workspace of CRPM and RRPM robots is
in general bounded by polynomial surfaces and also provides an explicit formula
to compute the polynomials. Rezazadeh [412] proposes a method to compute the
boundary of the workspace of cable-driven multi-body systems.

Gouttefarde [183, 185] shows that the wrench-closure workspace of planar robots
consists of conic sections and elaborated on techniques to determine the boundaries
of that workspace. Later, a technique to compute cross sections of thewrench-closure
workspace of cable robots is proposed and it is shown that the constant orientation
workspace is bounded by cubic surfaces [187]. Gouttefarde [184] provides some
theorems to characterize the boundary of the wrench-closure workspace for six
degrees-of-freedom robots with seven cables. Using other arguments, the results
from Gouttefarde are generalized to spatial robots by Stump [443, 444]. Hadian
[192] studies the wrench-feasible workspace of a specific 6-6 suspended cable robot
and derives explicit formulas for cross section of the translation workspace. Azizian
[23, 24] determines the boundaries of the wrench-feasible workspace for planar
robots. Afshari proposes a method to determine the Jacobian matrix in order to speed
up workspace computation [3]. The workspace is computed through cross sections.
Hassan [202] presents an analytical expression for the wrench-closure workspace for
the example of a storage retrieval machine. Therefore, the author exploits the sym-
metric geometry of six degrees-of-freedom robots with eight cables by essentially
considering a cross section of the workspace to simplify the statics consideration to
an equivalent of a planar root. Then, the separating hyperplane approach is used to
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compute the workspace. Recently, an analytic determination of the boundary of the
wrench-closure workspace is reported by Sheng [436].

Bosscher [45, 47, 48] introduces the concept of the available net wrench. The
boundaries of the wrench-feasible workspace are determined by the geometric prop-
erties of the available net wrench. Bouchard [61] studied the workspace of the Large
Adaptive Reflector (LAR), a concept for a very large spatial cable robot. As an exten-
sion, the concept of the available wrench set is developed and a test is described to
check if a set of applied wrenches can be generated for a specific pose [62].

Brau [65, 66] investigates the so-called tension capable workspace whose def-
inition matches the wrench-feasible workspace for a four cable three degrees-of-
freedom robot. Amongst others, the largest sphere which is fully enclosed in the
workspace is determined.

The author proposes a constraint satisfaction problem (CSP) formulation for
workspace determination of parallel robots that allows to take into account leg length,
limits on the passive joints, dexterity criterion, and leg interfaces [395, 397]. Based
on this approach, Bruckmann [78] developed an interval test for wrench-feasibility
allowing for a guaranteed and continuous workspace computation based on interval
analysis. Furthermore, a method for workspace analysis based on a CSP formula-
tion is presented [72]. Gouttefarde [182, 188] uses interval analysis to determine the
wrench-feasible workspace where a new test for wrench-feasibility based on Rohn’s
theorem [150] is used.

A performance index tomeasure the proximity to the boundary of theworkspace is
proposed by Verhoeven [473]. Pusey [405, 406] presents workspace studies based on
the so-called global condition index, which is the average of the condition number of
the structure matrix for the computation of total orientation workspace as well as for
parameter design studies. Hadian [192] also uses the global condition index for a 6-6
suspended IRPM robot. Guilin and Yang [190, 503] use the tension factor, which
is the pose-dependent ratio between the smallest and largest actual tension in the
cables, as performance index. The authors argue that for testing the total orientation
workspace it is sufficient to test if the upper bound and the lower bound of the
orientation range for each position. Lin [289] also uses the global condition index
for a suspended 6-6 robot and presents some numerical results for design studies
with different proportions of the robot geometry for a simplified symmetric machine
(SSM) geometry. Tang [458] proposes a quality index for the robot pose which is
essentially the standard deviation of the cable forces and, based on this index, also
a quality index for the workspace by averaging the pose index. Furthermore, the
volume for some example robots is estimated.

A couple of works developed special kinds of evaluation procedures to test for the
workspace. Ebert-Uphoff [134, 480] discovered the connection between the multi-
fingered grasping and cable-driven parallel robots and used the antipodal theorem as
tool for cable robot workspace computation. McColl [316] followed this approach
to test for wrench-feasibility and thus for workspace computation. Loloei [298] uses
a linear matrix inequalities formulation for the structure equation and applied the
projective method to test for wrench-closure of poses. For the proposed LMImethod,
a computation time per pose of around 15ms is reported. Another approach [299,
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300] based on the so-called set of fundamental wrenches is used to compute the
workspace as intersection of sub-workspaces. A unifying approach for workspace
determination is addressed by Liu [296] who proposes a common approach to deal
with the workspace of IRPM, CRPM, and RRPM. Alp presents some workspace
studies as part of his control considerations [4]. Oh [365] also deals with the feedback
control of a suspended robot with six cables and derives a workspace condition from
the stability of his controller. This approach is further extended to compute the
admissible workspace for the set-point controller [367].

Theworkspace of suspended robots is also analyzed byHamedi [193]who studied
the constant orientation workspace and total orientation workspace of suspended
spatial cable robots with six cables.

Pham [384] presents geometric parameter studies taking into account wrench-
feasibility and stiffness-based workspace computation for planar robots. Later, a
method for testing wrench-closure is proposed that is based on a dimension reduction
by projecting the spanning vectors of the structure matrix in order to test if the origin
is fully enclosed by the columns of the structure matrix [385].

Barrette [28] defines the concept of the dynamic workspace for planar robots and
extents the concept also to spatial workspace with six cables.

Ghasemi [161–163] computes the wrench-closure workspace of planar CRPM
and RRPM robots and given computation times for the workspace of around 10
seconds. The performance of workspace determination is especially important when
using workspace evaluations as parts of a design procedure. Gouttefarde [186] per-
forms workspace computing as part of the parameter synthesis procedure to create
a cable robot with a given workspace. An idea using interval analysis is proposed
by Bruckmann [68]. Arsenault [17] analyzed workspace of planar robots taking into
account the prestress of the cables for use in design.

A couple of works have been published on special robot configurations. Ferraresi
[146–148] analyzed theworkspace of a six degrees-of-freedom robotwith nine cables
using numerical methods where a specific method is proposed for testing if a pose
belongs to the wrench-closure workspace. Williams [494] proposes a concept for
a cable robot with twelve cables and linearly movable proximal attachment points.
The numerical studies of the workspace are encouraging in terms of size, shape, and
cable environment collisions at the price of a huge number of actuators. Zhang [521,
523] presents an analysis for wrench-closure workspace for a cable robot in 3-3-1-1
configuration.

The determination of the workspace becomes more involved if extensions to the
standard model are taken into account. Korayem [252] analyzed the workspace of
suspended robots with elastic and hefty cables, thus taking the effect of sagging
of the cables into account. Furthermore, a comparison between the workspace of a
planar IRPM for ideal cables and hefty cables is presented. Riehl [416] presents a
workspace analysis for a huge robot taking the effect of sagging cables into account.

Alikhani [11] presents the workspace of a special robot called BetaBot. The
authors state that the robot has a pure translation workspace. Diao and Ma [117,
118] propose a wrench-closure test for CRPM cable robots and compute the wrench-
closure workspace by testing a discrete six-dimensional grid of poses.
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5.1.2 Workspace Definitions

In general, the workspace of a robot is subset W of the Euclidian motion group
SE3 that can be generated by moving the robot’s end-effector frame and which is
measured for a characteristic frame KP fixed to the end-effector with respect to an
inertial world frame K0. The SE3 is represented as a pair (r,R) ∈ IR3× SO3 as
it is introduced in the previous sections. Some robots do not realize the full six-
dimensional motion pattern but nevertheless their workspace is embedded in the
most general Euclidian motion group. For some simple cases, e.g. pure translational
motion, one can easily separate the used from the unused degrees-of-freedom of the
motion group. This is in general not possible. Since this most general definition of
the workspace is quite abstract, there exist a couple of simplified definitions of the
workspace that address mostly application-driven restrictions to describe a subset of
the generally six-dimensional space.Many of the definitions reduce or project the six-
dimensional workspace onto a two or three-dimensional Cartesian space since this
workspace can be easier imagined and visualized. It is important to recall that each
of these workspace definitions imply certain assumptions which will be explained in
the following sections.

5.1.3 Geometric Descriptions

In the following, we give an enumeration of different commonly used subsets of the
generally six-dimensional workspace W (see also [322]):

• Translation Workspace (or constant orientation workspace)WCO: The translation
workspace is a slice of the general workspace for one fixed orientation R0 of the
platform defined by

W CO(R0) = {
r ∈ IR3 | y = (r,R),R = R0

}
. (5.1)

The dimension of this workspace is two for planar robots with motion pattern 2T
and 1R2T or three for spatial robots with motion pattern 3T, 2R3T, and 3R3T.
Therefore, the translation workspace can be easily visualized.

• OrientationWorkspaceWO: Contrary to the translation workspace, the orientation
workspace (or rotational workspace) is a slice of the general workspace for one
given position r0

WO(r0) = {R ∈ SO3 | y = (r,R), r = r0} . (5.2)

The dimension of this workspace is one for 1R2T robots, two for 2R3T robots
and three for 3R3T robots. In the latter cases, visualization might present some
problems since the orientation workspace of a 3R3T robot has the topology of the
special orthogonal group SO3 which is not an Euclidian space. Commonly used
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mappings like Euler angles always introduce some distortion and singularities to
the plots. Singularity-free parameterizations like quaternion are not intuitive to
understand and cannot be easily visualized in a three-dimensional plot.

• Inclusion Orientation Workspace WIO: at least one orientation R from a set of
orientations R0 ⊂ SO3 belongs to the workspace, i.e.

W IO(R0) = {
r ∈ IR3 | y = (r,R),R ∈ R0

}
. (5.3)

One has to define an orientation setR0 to distinguish theworkspace from the trans-
lation workspace, which can be understood as the inclusion orientation workspace
withR0 = R0.

• MaximumWorkspace: The maximumworkspaceWmax is the subset of the general
workspaceW that can be reached with at least any one orientation R ∈ SO3. The
maximum workspace is a special type of inclusion orientation workspace where
the orientation set R0 = SO3 includes all possible orientations, i.e.

Wmax = {
r ∈ IR3 | y = (r,R),R ∈ SO3

}
. (5.4)

It is a projection of the six-dimensionalworkspace to a three-dimensionalEuclidian
space for 2R3T and 3R3T robots. For planar robots of type 1R2T, it is a two-
dimensional plot.

• Total Orientation Workspace WTO: The total orientation workspace contains all
positions r where at each position all orientations R in a given set of orientations
R0 belong to the workspace, i.e.

W TO(R0) = {
r ∈ IR3 | y = (r,R) ∀ R ∈ R0

}
. (5.5)

The dimension is two for planar robots and three for spatial robots. One has to
provide the values of the orientation set R0 to make the workspace definition
meaningful (Fig. 5.2). The total orientation workspace is a handy and intuitive
description to define theworkspace requirements for the generally six-dimensional
workspace.

• Dextrous Workspace WD: The dextrous workspace consists of all positions r at
which every orientation R ∈ SO3 of the platform can be generated. The dextrous
workspace is a special kind of total orientation workspace where the set R0 =
SO3 includes all possible orientations, i.e.

W TO(R0) = {
r ∈ IR3 | y = (r,R) ∀ R ∈ SO3

}
. (5.6)

It seems unlikely that any cable robot has a nonzero dextrous workspace without
collisions between its cables.

Besides the workspace archetypes listed above, one can define other forms of
projection and reduction on the generally six-dimensional workspace such as cross
sections.
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Fig. 5.2 Example for the
total orientation workspace
WTO. Here the possible
angles ϕ are restricted to lie
within a cone with an
aperture of ϕmax. In a
practical application, this
means that the tool can be
tilted within a given angle by
any horizontal axis

In the following, the meaning of these definitions shall be exemplified by studying
a planar robot of the 1R2T type. The general workspace of these planar robots can be
visualized in three dimensions. Therefore, it serves well to highlight the projections
and reductions that are presented by the workspace definitions above.

In Fig. 5.3a, the general workspace of a 1R2T planar robot is visualized as a 3-D
plot where the orientation angle ϕ of the platform is included as third axis. For a
limited range of ϕ ∈ [−5◦; 5◦], a parallel projection is shown in Fig. 5.3b. If we
consider a slice of the general workspace by fixing the orientation of the platform
to a certain value (ϕ = 5◦), we receive the translation workspace WCO shown in
Fig. 5.3c as area in IR2. The maximum workspace is obtained if one projects the
general workspace in the direction of the orientation ϕ. The maximum workspace
(Fig. 5.3d) canbeunderstood as the 2-Dshadowcast by the general 3-Dworkspace if a
parallel light is cast in the direction of ϕ-axis. When computing the total orientation
workspace (Fig. 5.3e), we define an interval [ϕmin, ϕmax] and thereby an orientation
set R0 for the orientation of the platform. Then, one considers a certain position
r = [x, y]T to belong to the total orientation workspace WTO if every orientation
in the given setR0 belongs to the general workspace. This is much more restrictive
than for the maximum workspace where it is sufficient when at least one orientation
in the interval belongs to the workspace (Fig. 5.3e). Finally, the inclusion orientation
workspace W IO for the orientation set R0 is depicted in Fig. 5.3f.

The notion of workspace aspects for parallel robots is introduced by Chablat and
Wenger [95] and is useful to describe that the general workspacemay consist of sepa-
rated regions. Thus, Chablat and Wenger define an aspectWA of the workspace such
that an aspect is a connected, singularity-free region inside the general workspace
WA ⊂ W . The notion of aspects makes clear that the workspace consists of distinct
regions and the problem of connection between regions is essential in the under-
standing. Aspects play an important role in classification of multiple solutions of
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 5.3 Examples of the different types of workspace for a simple planar robot based on testing
wrench-feasibility. The orientation set is R0 ∈ {R ∈ SO3 |R = RZ(ϕ), ϕ ∈ [−5; 5]}

forward and inverse kinematics. However, the intuitive assumption that each branch
of the forward kinematic relates to exactly one aspect is wrong. In contrast, for con-
ventional parallel robots a singularity-free assembly mode change is possible [85,
519].

Octrees are found to be a suitable datamodel formodeling the connection between
regions. Also, the workspace hull (Sect. 5.5) essentially captures only the workspace
aspect around a given center. For conventional parallel robots, the aspects are sepa-
rated by singularity surfaces. For cable robots, one has additionally to consider the
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wrench-closure or wrench-feasibility. A frequent cause formultiple aspects occurs in
the orientation workspace where a 180◦ rotation of the mobile platform with respect
to the home position may allow to control the platform although no controllable path
can be found between these two aspects of the workspace. General properties and
methods to compute the number and shape of aspects are open problems for cable
robots.

5.1.4 Representation of the Workspace

Mathematically speaking, the workspace can be considered as a set W with (in
most cases) infinitely many poses. In practice, we have to compute some kind of
approximations of this set. To store and organize the resulting data, one has to choose
a data model. In the following, we give a list of typical data models ordered by
increasing complexity:

• Discrete forms: A very simplemethod just collects a finite number of poses belong-
ing to the workspace. Typically, these poses are taken from a regular or adaptive
grid. Also, random sampling can be used. The computation is simply done by sam-
pling the space and memorizing the poses that belong to the workspace (Fig. 5.4a).

• Mashed discrete forms: The basic idea is the same as for discrete forms. Addition-
ally, one stores the connection of the neighboring elements (Fig. 5.4b). A typical
data model for this is an octree or higher-dimensional triangulations. The dimen-
sion of the mashed discrete forms equals the dimension of the workspace.

• Solid geometry: A continuous representation of space that is capable to exhaus-
tively fill the space. This representation is more complicated to generate and ana-
lyze compared to the former ones. For computation schemeswhich evaluation cov-
ers full regions of space, one stores the information in solid geometry (Fig. 5.4c).
Typical geometries are boxes (as taken from intervals) or a simplex that fill higher-
dimensional spaces. Additionally, the connection to neighboring objects can be
stored in the data model. CAD file formats are mature data models of this kind.

• Hull representation: The hull, border, or boundary of the workspace is the n − 1-
dimensional surface of the original space. For the types of the workspace listed
in Sect. 5.1.3, the hull is either a surface or a curve that can be approximated by
triangles or line strips, respectively (Fig. 5.4d). Again, CADfile formats are a good
choice to store and process such workspace data.

• Polynomial form: The workspace is modeled by a set of multivariate polynomial
equations and the data model consists of the coefficients of these polynomials.
This approach is used in Sect. 5.6.

Conversion between the data model, listed above is essentially possible but may
be involved depending on the desired translation. As a rule of thumb, it is relatively
simple to convert a data model into the discrete form and difficult to receive the
polynomial form for other data models. However, in Sect. 5.6.3 a surprising method
is presented that allows to identify such a conversion from some special points.
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(a) regular discrete grid of points (b) mashed discrete grid of points (octree)

(c) solid geometry from interval computation (d) hull representation

Fig. 5.4 Data models to represent the workspace for the example of a planar 1R2T cable robot

5.2 Criteria for Workspace

There are different criteria to decide if a pose belongs to the workspace. The most
important criterion that is specific to cable robots iswhether the robot can be statically
balanced through positive tension in the cables. To do so, there are a couple of
sophisticated criteria to analyze the workspace based on the structure matrix (see
e.g. [187]). From a kinematic point of view, it is also important whether the platform
is in a singular configuration and if collisions with internal or external obstacles
occur. A problem which is mostly ignored in the literature is that it is very difficult to
construct anchor points for the cables which really allow for infinitely large angles.
In practice, one has to take into account such restrictions as limited deflection angles
both on the proximal and distal anchor points. Such problems have already been
addressed for conventional parallel robots and we can partly apply these techniques
to cable robots. Finally, the length of the cables and the spooling capacity of the
winch may limit the workspace. In the following, a number of tests are presented to
decide in a binary manner whether a pose belongs to the workspace or not.
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5.2.1 Wrench-Closure Workspace

A pose y belongs to the wrench-closure workspace WC [183] or controllable
workspace [474] if for every wrench wP ∈ IRn a distribution of cable forces
f > 0, f ∈ IRm , so that

AT(y)f + wP = 0 with f > 0 . (5.7)

Thus, the following method can be used to determine an index κ to check for
existence and quality of the workspace. If the matrixAT(r,R) has the maximal rank
equal to the degrees-of-freedom n of the mobile platform for a given pose (r,R), let
k be an arbitrary nonzero element of the one-dimensional kernel (or nullspace) of
AT, i.e. ATk = 0 with k �= 0. One can determine such an element k for example by
application of a singular value decomposition of the matrix AT. Then, the index κ is
defined as

κ =

⎧
⎪⎨

⎪⎩

min(k)

max(k)
if min k > 0

max(k)

min(k)
if max k < 0

0 otherwise.

(5.8)

For κ = 0, the pose (r,R) does not belong to the workspace and for κ = 1 the
forces in all cables are equal providing an optimal transmission. Note that the index
rates the distribution of forces within the cables. To check for the wrench-closure
workspace, one computes κ and compares it to a small constant εC that serves as a
threshold and defines the required quality of the workspace. If the robot is of CRPM
type, it is sufficient for the wrench-closure workspace to test if all components of k
have equal signs.

5.2.2 Wrench-Feasible Workspace

The concept of wrench-feasible poses is introduced in Sect. 3.4.3 and is extended
to the workspace here. The wrench-feasible workspace (WFW) is defined in [134,
188, 474] as follows: The wrench-feasible workspace is the setW of poses y of the
mobile platform for which for any wrench wP ∈ Q there exists a vector of cable
tension f in C so that

ATf + wP = 0 . (5.9)

The pose y is calledwrench-feasible if it allows at least one solution f ∈ C. However,
it is atypical to find exactly one solution if m > n. In most cases, either no solution
or infinitely many solutions exist. To test if a pose belongs to the wrench-feasible
workspace, any method introduced in Sect. 3.7 to compute a force distribution can be
employed. The closed-formmethod (Sect. 3.7.5) has been proven to possess excellent
numerical performance for fully-constrained robots but leads to finding only a subset
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of the workspace, especially when applied to suspended robots. The Dykstra method
(Sect. 3.7.4) in turn shows robust numerical performance in finding the fullworkspace
but requires significantlymore computation time.Thewrench setmethod (Sect. 3.4.7)
is also a good choice but suffers from poor numerical performance. For workspace
computation, it is not important to compute continuous solutions and, thus, linear
programming (Sect. 3.7.1) can also be employed.

5.2.3 Cable Length

The maximum length of cables on the winches or, to be more precise, the maximum
stroke that can be controlledwith thewinch limits theworkspace. A similar limitation
applies to cable robots using pulley tackles with linear drives. When designing a new
cable robot, it is simple to determine the necessary length of the cables a priori and
choose appropriate winches. Still, the problem of determining the restrictions caused
by limited length of the cables arises when the winches are given or the robot shall be
reconfigured. In the setting, it is also necessary to consider theminimum length of the
cables: Only the stroke of the winches is given by its mechanical design. Therefore,
one can use a longer cable on such a winch where a minimal cable length l0 is still
outside the winches if the winch is fully coiled and, thus, the platform cannot be
pulled closer to the proximal anchor point.

It is straightforward to check for a given pose for the minimum lmin and maximum
cable length lmax using the inverse kinematics. This is simply achieved through testing

lmin ≤ ϕ IK
i (r,R) ≤ lmax (5.10)

for each cable. For a constant orientation R0 and the limitation induced by the max-
imum length of the cable, the feasible region for each cable is a sphere and thus
is convex. Hence, the intersection for all m cables is also a convex set. To verify a
convex polyhedron such as a box, it is enough to test the vertices of this set. How-
ever, this simplification does not apply for theminimum criterion since the respective
constraints are not convex.

5.2.4 Dynamic Workspace

The concept of the dynamic workspace is introduced in [29] for planar cable robots
and has lately also been presented for two degrees-of-free robots [176] and for spatial
3T robots [169]. The problem of dynamic workspace is also tackled implicitly in the
motion planning for under-constrained robots [309, 310]. In the latter work, dynamic
effects are understood asmore restrictive limits of theworkspace rather than a concept
for enlarging the workspace.
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The concept of the dynamic workspace includes dynamic inertia forces and thus,
the dynamic workspace is also related to trajectory planning issues. Contrary to the
wrench-feasible workspace, the dynamic workspace cannot be defined for single
poses but is related to the robot’s ability to move along a path with defined velocity
and acceleration.Gosselin shows that there exist several parametric trajectorieswhere
the dynamic equilibrium is fulfilled in every point on the trajectory. Analyzing the
dynamics for a three cable 3T robot, Gosselin shows that the inequalities

(r × (a2 − a3) + (a2 × a3))T (r̈ − g) > 0 (5.11)

(r × (a3 − a1) + (a3 × a1))T (r̈ − g) > 0 (5.12)

(r × (a1 − a2) + (a1 × a2))T (r̈ − g) > 0 (5.13)

must hold true, where g = [0, 0,−g]T is the gravitational acceleration. Then, dif-
ferent parametric curves can be substituted into the inequalities above to test if the
motion can be generated by the robot without violating the force limits of the robot.
For the example suspended 3T robots in [169], circular and linear motions are pro-
posed as well as motions on the surface of a cylinder and on a sphere. From the
numeric examples presented in the paper [169], it becomes clear that the workspace
can be increased significantly beyond the footprint of the machine frame by exploit-
ing the platform’s inertia. This paper also addressed methods to reach such stable
trajectories from standstill by blending.

5.2.5 Singularities

The definition of singularities is introduced in Sect. 4.2.4. Using these criteria, one
can check whether a given pose is singular or regular. More advanced techniques
target at describing the geometric form of the singularities, e.g. using Grassmann
geometry [317, 322].

One can basically test for singular configuration by computing the rank of the
structure matrix and compare it to the maximum rank, i.e. if rankA(r,R)T < n,
the robot is in a singular configuration. Since singularities can be zero-dimensional
points in the motion group, it might be difficult to detect singular configurations.
Using interval analysis, it is basically possible to verify if any pose in a finitely large
region of the motion group is in a singular configuration.

5.2.6 Cable–Cable Interference

Under the topic cable interference, all kind of collision issues between two cables are
collected. Maeda [305] used a simple geometric pose-dependent test for interference
by computing the geometric distance between two cables for the control of theWARP
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demonstrator. Merlet [320] is the first to do workspace studies for cable interference
where cable-cable and cable-platform intersections were taken into account for the
computation of the constant orientation workspace. Perreault [382] presents criteria
forworkspace optimization basedonwrench-closure and interference between cables
as well as cables and moving bodies. This work is later [381] extended to a highly
efficient global method to compute the region of cable interferences for the constant
orientation workspace. Ghasemi [165] addresses the determination of the collision
freeworkspace of spatial cable robots taking into account both cable-cable and cable-
platform interferences. Aref [14] performs workspace computation for suspended
robot designs taking into account collision and restriction from workpieces in the
workspace. A guaranteed test for interference based on interval analysis is presented
by Blanchet [39]. Nguyen [361] describes a number of geometry based intersection
tests.

Wischnitzer [495] analyzes kinematics under the effects of cable collisions where
no friction is assumed to act on the cables in contact. Otis [374] takes up the idea of
allowing cables to cross. In contrast to the approach fromWischnitzer, Otis proposes
to release the forces in one of the colliding cables and to continue motion with one of
the colliding cables slack and without effective force on the platform while keeping
the other cable effective. Furthermore, strategies how to select the active and the
released cable are described.

Lahouar [272] analyzes aspects of collision-free path-planning for cable robots.
Collision is also tackled by Verhoeven [473] where especially the design aspect is
considered. It is advised as a design rule to connect as many cables as possible to the
same proximal or distal anchor point. Doing so clearly avoids collision between the
respective cables. However, such geometry can hardly be realized from amechanical
engineering point of view.

A very interesting technique to calculate the influence of cable interference within
the constant orientation workspace is presented by Perreault [381]. Through purely
geometric considerations, it is possible to determine the loci of cable-cable inter-
ference from the geometry of the frame ai and the relative geometry of the mobile
platform bi . The main concept of this approach is the simple fact that two cables can
interfere only if the corresponding anchor points ai , a j ,bi ,b j lie in a common plane.
Since the anchor points on the frame are fixed in space, the plane can be constructed
as follows: Calculate the normal vector n that is perpendicular to the lines Ai A j and
Bi B j

n = (a j − ai ) × (b j − bi ) . (5.14)

An implicit equation for a point r belonging to the plane E is then

E : (r − ai ) . n = 0 . (5.15)

As a model of the possible interference region, one can compute the normals of the
connection lines between proximal and distal anchor points from
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ai j = a j − ai
||a j − ai ||2

for i, j = 1, . . . ,m i �= j (5.16)

bi j = b j − bi
||b j − bi ||2

for i, j = 1, . . . ,m i �= j. (5.17)

If ai j and bi j are not parallel, one can construct two triangles

T+
i j : x = a j − bi + λai j + νbi j (5.18)

T−
i j : x = ai − b j − λai j − νbi j , (5.19)

with λ, ν > 0. Exploiting the normalized length of the vectors ai j and bi j , one
practically chooses a length for λ and ν in the range of the size of the robot to receive
finitely large triangles with the critical interference region. These triangles can be
used for visual or automatic detection of cable-cable interference. For many robot
designs, one can see from first glance if the triangles are within the workspace of
interest or outside. Further information on dealingwith the special cases with parallel
vectors can be found in [381].

5.2.7 Cable-Platform Collisions

Beside the limitations from the distal connection point, collisions between the cable
and the platform are generally possible. Given the shape of the mobile platform, e.g.
as CAD data, it becomes obvious that collisions between the mobile platform and the
cablesmight occur. An approach to detect such collisions has lately been proposed by
Tempel [463]. The idea is to convert approximate the CAD model through triangles,
which can be done with every modern CAD system, and to export such data, e.g.
as STL. Then, one has to compute a look-up table for each distal anchor point and
perform a polar decomposition of the triangles extracted from the CAD geometry.
Using the sorting method proposed for the cable span (see Sect. 5.5.6), one can find a
simple but efficient table to compare the actual cable direction vector with a look-up
table. Since the look-up table can be stored efficiently as a simple table with critical
deflection angles, it is convenient to test a given direction vector. In contrast to the
cable span approach, the direction vector ui is intended to lie outside of the region
described by the look-up table.

5.2.8 Restrictions on the Cable Anchor Point

An assumption made in many cable models is that cables are assumed to have no
bending stiffness and thus allow for an arbitrarily small bending radius. Real cables
suffer from significant fatigue if certain design rules are violated. Therefore, one has
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to consider the deflection angle of the cables both on the platform and on the base. In
a couple of robots, the distal ends of the cables are connected to universal or spherical
joints. Here, the limitations of these joints have to be taken into account instead. At
the proximal end of the cable, pivoting pulleys are typical to guide the cable when
leaving the winch. In many cases, we can model these limitations by considering
the cable direction represented by a vector ui in a local coordinate system KA,i and
KB,i . Now, let the proximal frame be arranged as introduced in the section on pulley
kinematics (see Sect. 7.2.1). One can compute the deflection and wrapping angles
as discussed in the section on inverse pulley kinematics and compare these values
against the feasible range for the angles β i and γ i which reflect the requirement to
have a minimum and maximum wrapping angle on the pulley and a limited rotation
capacity of the pulley. Geometrically speaking, the cable direction vector ui has to
fulfill a restriction that can be understood as being inside a cone or pyramid.

For the distal anchor point, the connection between the cable and the platform is
usually realized through a spherical joint, a universal joint, or a swivel bolt. Let the
platform frame KB,i with the transformation matrix RB,i be aligned so that the cable
direction vector without deflection coincides with the z-axis ofKB,i . It is straightfor-
ward to compute the pose (R, r) dependent deflection angle γB,i with respect to the
nominal angle from

cos γB,i = 0eZB,i
. ui = (RB,i eZ) .

ai − r − Rbi
||ai − r − Rbi ||2

. (5.20)

A remarkable distinction of the different mechanisms used to connect the cable to the
platform is that universal joints and spherical joints restrict the maximum feasible
value for γB,i to a specific valuewhich depends on the technical details of themachine
element and is around γmax = 45◦. In contrast, a swivel bolt has a kinematic singularity
for γB,i = 0 and the region around the extended position must be avoided. In turn,
this limits its use for cable robots. The maximum angle for cables can easily reach

Fig. 5.5 Feasible deflection angles for the cable on the platform for spherical joints and swivel
bolts
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γmax = 135◦ where collisions with other parts of the platform become more likely
than reaching this value. The effect is visualized in Fig. 5.5 where the feasible area
for the cable is shown both for a spherical joint and a swivel bolt.

5.3 Classification of Algorithms for Workspace
Determination

As defined above, the workspace W is a nontrivial set of poses. In this section, we
discuss how one can compute the workspace. There are different approaches for the
determination of the workspace of cable robots with exemplary references:

• Determination of points on a discrete spatial grid [477]
• Search strategies on dynamically generated grid [389]
• Determination of the boundary of the workspace with analytic or numeric methods
[24]

• Geometric methods [322]
• Validation of finite continuous sets such as intervals or higher-dimensional boxes
[68, 182].

• Closed-form methods [473].

Three main concepts can be distinguished: Discretization methods investigate the
workspace at a finite number of different poses which are basically zero-dimensional
entities. These can employ any of the discretization techniques discussed earlier in
Sect. 5.1.4.Continuous methods try to identify for a set of poses whether they belong
to the workspace. The set is usually described by ranges of values. The sets can be
inspired by geometric interpretation (e.g. boxes, spheres) or by formal approaches
such as interval analysis. Geometric methods belong to the continuous methods
and derive workspace-related properties on well-defined geometric objects. Then,
geometric computations, such as intersections and unions, are used to compose the
workspace. A main advantage of continuous methods is that if the patches used in
the continuous methods have the same dimension as the general workspace itself,
the workspace can be exhaustively covered in a finite number of computational
steps. Finally, one can determine the n− 1-dimensional workspace boundary. In the
following, we discuss the different approaches in more detail.

5.3.1 Discretization Methods

The discretization method for workspace determination is wide-spread and straight-
forward to apply on examples. Most authors used regular grids to approximate the
workspace. The basic idea is to test the workspace at a number of poses that are
nodes of a grid. This leads to a list of zero-dimensional objects. If the nodes are
generated from a regular grid (e.g. a Cartesian, spherical, or cylindrical grid, see
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Fig. 5.6a, b) there is a native connection to neighboring nodes. In regular grids, for
each considered parameter of platform’s pose, one defines a range from minimal to
maximal values. Then, this range is tested with a given step width. Other ways to
define the grid are random sampling of the workspace and adaptive methods where
additional poses are defined between known poses to refine the search.While regular
grids are relatively easy to analyze but numerically costly to compute, more general
structures allow for better computational efficiency but present additional challenges
to interpret the results.

Every property that can be calculated for a given pose can be used as criterion for
the discretization method. If any one neighboring node is not part of the workspace,
the current node belongs to the boundary of theworkspace. Anyway, there are numer-
ous situationswhere it is hard to determine the topological structure of theworkspace,
for example if there is a void close to the boundary. The advantages of discretization
methods are

• A straightforward implementation and also relatively simple visualization of the
results. Different grids can be used. More advanced methods produce data models
that cannot be visualized with standard software.

• No assumptions about the topological structure of the workspace are needed a pri-
ori. Anyway, if the topological structure of the workspace is actually complicated,
discretization delivers little insight into the structure.

• Little requirements for a pose property to be used for workspace calculation. Each
criterion that allows a Boolean evaluation can be used. No special assumptions
have to be made for the underlying mathematical or geometric structure.

• The volumeof theworkspace can be estimated by the number of samples belonging
to the workspace. Thus, measuring coverage compared to a desired shape and size
is straightforward.

Contrary the following disadvantages must be taken into account:

• The determination of the workspace boundary is complicated and inaccurate. Fur-
thermore, the boundary is usually not smooth.

• No information about the space between the nodes of the grid is gained.
• Time consuming computation. Especially refining the resolution of the grid is
expensive to compute when orientation is included.

• Poor sensitivity to changes in computation settings, such as changes in the geom-
etry as well as algorithm and technical parameters. Grid methods are especially
insensitive to infinitesimal changes in the parameters making it inappropriate to
compute the derivatives of the workspace under changes in the robot or algorithm
parameters.
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Fig. 5.6 Constant
orientation workspace of a
example 1R2T planar robot
computed with different
kinds of discretization grids

(a) regular grid

(b) polar grid

(c) random grid
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5.3.2 Analytical Methods for Determination of the
Workspace Boundary

To apply analytic methods for workspace computation is necessary to formulate
a connection between the pose and the parameters of interest. This is in general
quite difficult. When considering workspace criterions such as wrench-feasibility,
singularities, or interference, the decision if a pose belongs to the workspace is
derived from a lengthy algorithmic computation with iterations and distinction of
cases. This is straightforward to do in a computer program but analytic mathematical
tools cannot be applied in such situations.1

Verhoeven [473] proposes an analytical method for the determination of the
boundary of the workspace. Moreover, a formula is derived to calculate the boundary
of the wrench-closure workspace from a system of univariate polynomial inequa-
tions (see Sect. 5.6.1). Unfortunately, the general expressions of the equations are
so complex that it seems out of reach to deal with these equations even when using
advanced computer algebra systems. Beside the practical use of these equations, it
provides some insight in the structure of the workspace because it shows that the
wrench-closure workspace is bounded by polynomial surfaces which a degree of n.
Some methods to exploit the structure of special problems are detailed in Sect. 5.6.

A subset of the analytic methods reduces the mathematical description of the
workspace to lower-dimensional objects such as planes. Then, one can apply a math-
ematical tool to analyze the curves that are generated from the intersection of the
workspace with the plane. Perreault [381] uses such an approach to describe the
region of intersection with planes. The computation of the workspace hull by trian-
gulation [389] can be understood as practical example of this approach.

5.3.3 Geometrical Methods

Geometrical methods derive a geometric interpretation of the limitations of the
workspace. The limits that arise from the maximum cable length are good exam-
ples to understand the geometrical approach. We consider a cable robot of the 3T
type. The main limitation through the cable length implies that the distance between
the platform characteristic point and the anchor points on the frame lies in the interval
given by the minimum andmaximum cable length. For each cable i , this can be inter-
preted as a hollow sphere centered around the respective anchor point Ai (Fig. 5.7).
The overall workspace of the robot is then the intersection of all m spheres. This
simple example only takes the limitation from the cable length into account. A con-
siderable collection of such tools for workspace determination is described byMerlet

1For computer codes, techniques such as automatic or symbolic differentiation can be applied. Here,
such approaches are not understood to be conventional algebraic or analytic methods. Even if one
succeeds in extracting the required symbolic expressions, such equations are usually so long that it
is pointless to work with them.
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Fig. 5.7 Reachable
workspace of a single cable
bounded by its minimum lmin

and maximum lmax length

Ai

Bi

lmin

lmax

[322] but is also used by other authors. This includes methods for considering the
reachable workspace as well as limitations of the active and passive joints are pro-
posed that can be applied to cable robots. If the geometric problem is reduced to the
two- and three-dimensional space, sophisticated geometry kernels as used in modern
CAD tools can efficiently deal with the geometric operations. Also, raytracer have
been used to compute the workspace (Fig. 5.8). Because of the practical need to limit
this procedure to the three-dimensional space, it is mostly applied to compute the
translation workspace.

5.3.4 Continuous Methods

From the presentation of the workspace criteria, it becomes clear that at least some
properties have a nontrivial connection between the geometry of the robot, the pose,
and the respective quality. Continuous methods are based on mathematical tools that
extend a point-wise investigation of the operational space to techniques that apply
for regions with a finite volume that equals a set of infinitely many poses. Especially
interval analysis has proven useful for the analysis and parameter synthesis of paral-
lel robots including cable robots. A short introduction to interval analysis is attached
in the appendix (see Appendix B). Such continuous methods for workspace deter-
mination of cable robots are presented by Bruckmann [68], Merlet [409], Blanchet
[39], and Gouttefarde [182, 188]. Lately, Lamine [279] also applied rigorous interval
computations for the workspace as parts of a design method.
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Fig. 5.8 Example of the
determination of the
translation workspace of a
parallel robot with six legs
and six degrees-of-freedom
through geometric
computations with the
raytracer Povray

In the following sections, twomain approaches are followed:workspace computa-
tion based on interval analysis is introduced which provides a rigorous but relatively
slow tool to compute theworkspace and its properties. Another section is dedicated to
rapid computation of the workspace hull. The approach is subject to some restricting
assumptions but allows for very fast and versatile usage and has proven to be very
applicable to analyze and develop demonstrators. Using the pose-dependent proper-
ties which are presented in Sect. 5.2, it is trivial to compute the regular grids and we
only present some results of grid-based workspace computing since the implemen-
tation of some nested for-loop need no further discussion. In the following section,
the application of interval analysis to workspace computation is presented.

5.4 Continuous Workspace Analysis

Most methods discussed so far are used to analyze the behavior of cable robots at
discrete poses, i.e. to give insight into the properties of the robot on a point-wise base.
Suchmethods give precise but locally limited results.When sampling the workspace,
one does not get any information of the poses lying between the sample points. We
cannot cover the full workspace with such methods since we have to rely on a finite
number of evaluations. Even if a long computational time is acceptable, it remains
unclear if thewhole desiredworkspace is detected, as there is no guarantee that points
lying between those which are sampled fulfill the investigated criteria. Formal proofs
that guarantee certain properties between two sampling points are possible from a
mathematical point of view. However, such approaches are hardly used in robotics.
For parallel robots, it is known that they can change their properties within the
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workspace. Singularities for example are defects in the transmission behavior of the
robot that can be point-shaped or have the structure of lower-dimensional surfaces.
The probability of finding such a configuration by random or regular grids tends to
be zero since the singularity surfaces fill a lower-dimensional subspace of the robot’s
workspace. Thus, the absolute ratio between the points of this lower-dimensional
manifold and the spacewhere it is embedded is zero and so is the statistical probability
of finding such a point by randomsampling.Contrary to serial robots, the singularities
of parallel robots can be located inside the workspace. Therefore, the results of
discrete evaluations cannot be extended to the whole workspace.

Therefore, we introduce methods based on interval analysis that provide verified
information about a domain of the workspace, i.e. about a connected open subset of
the workspace. This idea is put forward for parallel robots by Hao and Merlet [197],
and further carried out by the author [388, 395, 397] aswell as byBruckmann [68, 74,
78]. In the following, we extend the framework presented in earlier works to cable
robots. A more detailed introduction to interval analysis is given in Appendix B.
Since these domains have a finite volume, one can exhaust a given workspace in
finite evaluations. This is the main benefit from using interval analysis. Performing a
numerical computation for a limited number of data sets provides us with a rigorous
and guaranteed information about infinitely many poses. Therefore, one can analyze
the properties of theworkspace in a continuousmanner. Especially, one can verify (or
refute) that certain constraints are fulfilled in every pose belonging to the workspace
while taking the worst case behavior of the constraints into account. When typical
implementations of interval analysis are applied, such computations can even be
done in a robust way that takes the round-off errors of the computer into account.
Interval methods can be applied to many calculations. Anyway, some criteria do not
givemeaningful answerswhen investigated through interval analysis. This is because
interval analysis is very dependent and sensitive on the mathematical formulation of
the problem. The interval computations are guaranteed to enclose the correct solution
but might not lead to usable results in acceptable computation times. In this setting,
we have to note that other methods suffer from such disadvantages as well but it
might be more difficult to realize that the results are not accurate at all. The interval
methods introduced here might fail to find the desired solution but this shortcoming
is always reported rather than neglected.

In the next section, we introduce the notion of a constraint satisfaction problem
(CSP) [196] which will be the basis of all interval algorithms that we discuss. Then,
we describe the interval algorithms to solve such problems. Finally, we derive the
constraints2 for the CSP from the kinematic model of the cable robot. Each constraint
represents a property of the robot that is taken into account in the CSP. Especially
the constraints for workspace analysis are introduced, taking into account typical
kinematic, force-closure, interference, and technological requirements. Finally, some
computational examples are discussed.

2It must be noted that the constraints considered here are not identical with the definition of a
constraint as it is often used in the kinematic analysis.
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5.4.1 Algorithms for Solving Constraint Satisfaction
Problems

The aim of the proposed approach is to provide a versatile tool for both analysis
and synthesis of the cable robots. This approach allows to cover all phases of the
design beginning with the analysis and preliminary estimations and ending with
the optimization of cable robot. All necessary steps can be performed on the same
constraints and additional constraints and effects can be added when needed without
reconsideration of the model. Firstly, the problem

�(c, v) > 0 ∀ v ∈ Xv (5.21)

is considered, where the calculation variables are collected in the vector c and the
verification variables are represented by the vector v. The set Xv is referred to as
verification domain. The problem of finding all feasible solutions of � is called
constraint satisfaction problem and basically determines the set

Xc = {
c ∈ IRn | �(c, v) > 0 ∀ v ∈ Xv

}
(5.22)

for a given CSP �. Therefore, we denote algorithms to compute the solution set Xc

of the CSP as CSP solver. In this section, the pose (r,R) of the robot is normally
identified with the calculation variables because we consider the workspace to be
the sought set. In this setting, the solution set Xc equals the workspace W of the
robot and different types of the workspace, such as the translation workspace or the
total orientation workspace, can be determined when appropriately choosing c and
v. The objective of the CSP solver is to determine all poses of the robot that fulfill
given requirements where especially the criteria discussed in Sect. 5.2 are relevant
for workspace quality. Therefore, the requirements for cable robots are rewritten so
that they can be employed in the CSP as given by Eq. (5.21).

Interval analysis [196, 410] has proven to be a powerful tool to deal with CSP
and we will use it for workspace determination of cable robots through this section
[68]. The basic idea of the following algorithms is to apply an interval evaluation
of the constraints � for a box ĉ to receive guaranteed information about all points
c ∈ ĉ enclosed by the box. For this purpose, the interval evaluation ĥ = �(̂c) and
the result ĥ can be classified as follows (Fig. 5.9):

Fig. 5.9 Evaluation of an
inequality � > 0 with a
CSP-solver

0

invalid
undefined

valid

IR
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• If inf ĥ > 0, then the inequality �(̂c) > 0 is fulfilled in every point c ∈ ĉ. Such a
box ĉ is called valid.

• If sup ĥi < 0, then the inequality �(̂c) > 0 is not fulfilled in any point c ∈ ĉ.
Thus, the box ĉ is called invalid.

• In any other case, we cannot get a reliable statement. Due to the inherent overesti-
mation of interval analysis, the box might consist of valid as well as invalid points.
We do not even know if valid or invalid points are included at all. Such boxes are
called undefined.

It shall be emphasized that the special properties of interval evaluation indeed proof
the validity or invalidity with mathematical rigorousness. This fundamental property
of interval analysis is used in the following algorithms to approximate the solution
set.

5.4.1.1 Generic CSP Solver

In the following, a branch-and-bound algorithm based on interval analysis is pre-
sented to compute the set Xc of the CSP which has the type given in Eq. (5.21).
The problem is solved by computing guaranteed bounds for smaller problems that
are successively constructed from the original problem by subdivision (branching).
This approach is then applied to the verification and calculation of the workspace
of cable robots. The conditions for a pose to belong to the workspace are written as
constraints that form a system of inequalities� > 0which are in turn systematically
evaluated. The main task is to find the solution set

Xc = {
c ∈ Xs ⊂ IRn | �(c) > 0

}
(5.23)

that fulfills all considered conditions. In this setting, we denote the set Xs ⊂ IRn as
search space. The generic algorithm consists of the following steps:

Algorithm 1: Generic Interval CSP-Solver

1. Save an approximation {̂c1, . . . , ĉn} of the search space Xs in the list LT.

2. Create empty lists LS,LI,LF for the solution set (LS), for the invalid boxes (LI),
and the set of undersized boxes with a diameter small than the threshold (LF).

3. If the list LT is empty, terminate the algorithm.

4. Extract the next box ĉ from the list LT.

5. If diam ĉ < ε, i.e. the width of all components of the box ĉ is smaller than a
given threshold ε, the box is undersized; store the box in the list LF; go to step
(3).

6. If available, apply prune and bound improvement operations to the box ĉ.
7. Evaluate the constraint ĥ = �(̂c).
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8. If inf ĥ > 0, i.e. the infimum of ĥ is positive for all constraints which means
that the constraint is valid for every c ∈ ĉ, store ĉ as solution in the list LS; go
to step (3).

9. If a sup ĥi < 0 exists, i.e. at least one supremum is negative, then no solution
exists c ∈ ĉ and the box ĉ is stored in LI; go to step (3).

10. Split the box ĉ into m sub-boxes {̂c1, . . . , ĉm} and store these new boxes in the
list LT; go to step (3).

The data flowbetween the lists of the generic solver is illustrated in Fig. 5.10 for better
reference. The initial search space is placed in the list LT and sequential evaluations
aim at finally placing every box ĉi in one of the three lists LS, LI, and LF. If no
guaranteed statement can be made, the box is bisected and both parts are placed
in LT. The behavior of the algorithm is controlled by the choice of the threshold
ε which gives the lower bound on the size of boxes to be processed. Therefore, ε

controls the trade-off between accuracy and computation time. The prune operations
are techniques to directly reduce the size of the box, i.e. removing invalid parts from
the box. More information on this topic can be found e.g. in [196]. This algorithm is
the conceptual basis of different types of solvers discussed below. The set Xs to be

Fig. 5.10 Flowchart of the generic CSP solver
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investigated is stored as a list of boxes at the beginning of the algorithm. The initial
approximation LT of the search space used in step 1 typically consists of exactly one
box that is defined from the search range for each variable. Then, one uses interval
analysis to compute guaranteed bounds for the possible values of the function. If these
bounds are strictly positive, then the constraint is fulfilled for every point in the box.
If the bounds are strictly negative, then the constraint is violated by every point in the
box. Thus, the box is either stored in the solution set or put into the set of invalid boxes.
If zero is enclosed by the interval, we cannot get reliable information in this step.
This is the expected situation at the beginning of the solving procedure. Therefore,
the box is subdivided into smaller boxes that are fed back into the evaluation loop.
Clearly, the algorithm is well suited for recursive implementation. In any case, the
presented sequential is used because it is better suited for some optimizations and
for parallel execution (see [399]). A proper management of the list LT is important
with respect to memory consumption. Especially the operations insert and extract
shall be implemented in a way such that the list behaves like a stack.

Now, we will derive two important specializations of the generic solver that are
called verify and calculate.

5.4.1.2 Verify Algorithm

The verification is the simplest form of the problem statement. Given a verification
set Xv, we have to check for a given c if

�(c, v) > 0 ∀ v ∈ Xv (5.24)

holds true. In otherwords, one has to test if all boxes in the listLT fulfill the inequality
� > 0. Therefore, the result of the verification procedure is expected to be just true
or false. In practice, it can happen that the decision cannot be made with the given
threshold εv because all boxes have been subdivided until all are smaller than εv.
In this case, the result is undefined. We call the result finite. In any of the above-
mentioned cases, we are not interested in the content of the lists LS and LI. Once
a single box is rated invalid or finite, the algorithm is terminated and returns false
or finite, respectively. If all boxes from the list LT are successfully processed, the
algorithms returns true. As a consequence the following variant of the generic solver
can be deduced:

Algorithm 2: Verify

1. Store the boxes to be verified {̂v1, . . . , v̂n} in the list LT.

2. If the list LT is empty, terminate the algorithms and return true.

3. Extract the next box v̂ from the list LT.

4. If diam v̂ < εv, i.e. the width of a component of the box v̂ is smaller than the
given threshold εv, terminate the algorithm and return finite.
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5. If prune operations can successfully reduce the width of v̂, terminate the algo-
rithm and return false.

6. Evaluate the constraint ĥ = �(̂v).
7. If inf ĥ > 0, i.e. the infimum of ĥ is positive for all constraints which means that

the constraint is valid for every v ∈ v̂, discard v̂; go to step (2).

8. If a component sup ĥi < 0 exists, i.e. at least one supremum is negative, then no
solutions v ∈ v̂ exist; terminate the algorithm and return false.

9. If a sup ĥi < 0 exists, i.e. at least one supremum is negative, then no solution
exists v ∈ v̂ and the box v̂ is stored in LI; go to step (2).

The version specialized in this way has the advantage over the generic form that it
consumes lessmemory and it detects invalid boxes faster. Especially the consumption
of memory is significantly reduced in the verify form. Compared to the total number
N of boxes to be evaluated by the algorithm, onlyO(log N ) boxes have to be stored
in the list LT leading to a very moderate use of memory. Contrary, if one seeks
information for which values the constraints are violated, then one has to use the
generic form of the algorithm.

5.4.1.3 Calculate Algorithm

The algorithm calculate solves a slightly modified problem compared to the
algorithm verify. In the following, the solution set of the CSP

Xc = {
c ∈ Xs ⊂ IRn | �(c, v) > 0

}
(5.25)

has to be found for a given v. For the calculation, the search space Xs is given as
a list LT of boxes, and the set Xc is sought that shall be approximated with the list
LS. Thus, the set approximated through the elements of the list LS converges to Xc

if the threshold εc → 0. The bisection process for the boxes is continued until the
size of the boxes is smaller than the threshold εc. Otherwise, the algorithm would
make infinitely many steps to approximate the solution set by infinitely small boxes.
It depends on the application if the list LF of the finite boxes is required for further
evaluation. Since the lists LI and LF may require a significant amount of memory,
one can discard these boxes in many cases. If one wants to refine the calculation in
later steps, one has to store the LF boxes. The specialized calculation algorithm then
reads:

Algorithm 3: Calculate

1. Save an approximation {̂c1, . . . , ĉn} of the search space Xs in the list LT.
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2. Create empty lists LS,LI,LF for the solution set (LS), for the invalid boxes (LI)
and the set of undersized boxes with a diameter smaller than the threshold (LF).

3. If the list LT is empty, terminate the algorithm.

4. Extract the next box ĉ from the list LT.

5. If diam ĉ < ε, i.e. the width of all components of the box ĉ is smaller than a
given threshold ε, the box is undersized; store the box in the list LF; go to step
(3).

6. If available, apply prune and bound improvement operations to the box ĉ.
7. Evaluate the constraint ĥ = �(̂c).
8. If inf ĥ > 0, i.e. the infimum of ĥ is positive for all constraints which means

that the constraint is valid for every c ∈ ĉ, store ĉ as solution in the list LS; go
to step (3).

9. If a sup ĥi < 0 exists, i.e. at least one supremum is negative, then no solution
exists c ∈ ĉ and the box ĉ is stored in LI; go to step (3).

10. Split the box ĉ into m sub-boxes {̂c1, . . . , ĉm} and store these new boxes in the
list LT; go to step (3).

5.4.1.4 Hybrid Algorithm

Oneneeds a combination of verify and calculate for a couple of practically
relevant CSP. An example of such combination is the determination of the total
orientation workspace W TO or the design problem of finding all robots with a given
workspace. For each position of that workspace, we have a set of orientation to check.
Therefore, a position is only said to belong to the total orientation workspace if every
pose from the set belongs to the workspace. If at least one infeasible orientation can
be found, then the position does not belong to the workspace. The procedure can also
be applied if ranges for the properties, such as available velocities, accelerations, or
wrenches, must be achieved at all poses in the workspace. Mathematically speaking,
we have to find all solutions of the problem of the form

Xc = {
c ∈ Xs ⊂ IRn | �(c, v) > 0 ∀ v ∈ Xv ⊂ IRm

}
. (5.26)

A solver for this problem can be constructed by using a nested version of the
calculate and verify algorithm. We define both verification and calcula-
tion variable for the same problem. The structure of the algorithm is based on the
calculate scheme. Then, we call the verify algorithm instead of evaluating
the constraint system, where the current box c is used to define the search space. The
algorithmic structure is as follows:
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Algorithm 4: Hybrid CSP-Solver

1. Save an approximation {̂c1, . . . , ĉn} of the search space Xs in the list LT.

2. Create empty lists LS,LI,LF for the solution set (LS), for the invalid boxes (LI),
and the set of undersized boxes with a diameter smaller than the threshold (LF).

3. If the list LT is empty, terminate the algorithm.

4. Extract the next box ĉ from the list LT.

5. If diam ĉ < ε, i.e. the width of all components of the box ĉ is smaller than a
given threshold εc, the box is undersized; store the box in the list LF; go to step
(3).

6. If available, apply prune and bound improvement operations to the box ĉ.
7. Call the algorithm Verify for the box ĉ and the set Xv.

8. If Verify returns valid, then all constraints �(c, v) > 0 are fulfilled for all
c ∈ ĉ and all v ∈ Xv; store ĉ as solution in the list LS; go to step (3).

9. If Verify returns invalid, then no c ∈ ĉ fulfills the constraints �(c, v) > 0 for
all v ∈ Xv; store ĉ in the list LI; go to step (3).

10. If Verify returns finite, then the width of the box ĉ is too large; split the box ĉ
into m sub-boxes {̂c1, . . . , ĉm} and store these new boxes in LT; go to step (3).

Having defined the structure of the solver algorithms, some supporting steps are
discussed in the following.

5.4.1.5 Bisection of Boxes

An elementary operation of the interval algorithms is the splitting of one box b̂ ∈ IIn

intom smaller boxes {̂b(1), . . . , b̂(m)}. There are different criteria to achieve this.Here,
we restrict ourselves to subdivision into two sub-boxes, which is called bisection
(Fig. 5.11). In general, more complicated strategies can be used to generate sub-
boxes. In a bisectional step, one maintains all components of the box b̂ except for
the j th component, which is divided at the position b∗

j ∈ b̂ j . Thus, we receive two
sub-boxes

b̂ = b̂(1) ∪ b̂(2) with (5.27)

b̂ = [̂b1, . . . , b̂ j , . . . , b̂n]T, (5.28)

b̂(1) = [̂b1, . . . , [inf b̂ j ; b∗
j ], . . . , b̂n]T, (5.29)

b̂(2) = [̂b1, . . . , [b∗
j ; sup b̂ j ], . . . , b̂n]T. (5.30)

To determine the point where the box is split, one mostly uses the center of the
interval
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Fig. 5.11 Bisection Operation for the Box b̂ in the j th Component

b∗
j = mid b̂ j = 1

2
(inf b̂ j + sup b̂ j ) . (5.31)

For the bisection, one has to choose the component to be split. A simple and fast
method is to use the component j with the greatest diameter diam b j . If the compo-
nents in the interval box are inhomogeneous in their order of magnitude, we have to
introduce weighting factors g j for each component of the interval vector. For exam-
ple, if length and angle have been collected in one interval vector, we might have to
deal with length in the size of tenth of meters where the angles are in the range of
π . To search all components with a comparable resolution, we have to choose the
component j to be split so that diam (g j b̂ j ) to be the maximum, where g j is the
respective weighting factor.

Instead of choosing the component with the largest diameter, one can use a round
robin method, where the component to be split is cyclically changed.

5.4.1.6 Efficiency Improvement for Interval Algorithms

The basic CSP solver presented above is simple but leads to very long computational
time and large memory consumption. Therefore, a number of heuristics have been
developed to speed up the computation and to reduce the memory usage. Just some
important methods are listed for the sake of brevity. Consistency tests can be used to
shrink or even discard boxes in the calculation scheme. This is achieved by separating
the function�i into two parts where for each part an interval evaluation is computed.
If the ranges computed for the separate parts are fully disjunct, the box cannot contain
a solution. If one of the functions can be inverted, one can shrink the interval where
solutions are possible. Another efficient tool is to compute interval evaluations on
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the Jacobian matrix of the function �. If the bounds of the interval evaluation have
equal signs, the function is strictly monotonic and thus takes its extremal values at
the boundaries of the interval. Thus, one can directly eliminate overestimation and
compute sharper bounds.

5.4.2 Constraints for Interval Workspace Analysis

In this section, we present different criteria for workspace analysis that can be
expressed by constraints of the form � > 0. For some criteria, the expression of
an inequality is natural. If the criterion is expressed by an equation, it has to be
rewritten to a mapping that is positive if the pose belongs to the workspace. Any-
way, the only necessary condition is that the constraint can be expressed in interval
form. If the condition can be written so that the expression is a closed-form or even
differentiable, we can use more efficient techniques to evaluate the constraint. We
will begin with the simplest conditions in the next section. Most of the conditions
presented in this section can also be used for real-valued analysis of a given pose.
However, in this case, the result applies only to a zero-dimensional object rather than
a set of values.

5.4.2.1 Limited Cable Length

The restrictions of a pose imposed by minimum and maximum cable length are quite
simple. We will call the related criterion reachable workspace which is a technolog-
ical restriction of a cable robot design. Using the closed-form solution of the inverse
kinematics from Eq. (4.2), we receive the constraint

lmin ≤ |ai − r − Rbi | ≤ lmax,

which can be rewritten into 2m inequalities

� IK
i : |ai − r − Rbi | − lmin > 0

� IK
(m+i) : lmax − |ai − r − Rbi | > 0

}
for i = 1, . . . ,m, (5.32)

where lmin and lmax are the minimal and maximal cable length, respectively. We can
extend this constraint to take into account the influenceof guidingpulleys by exchang-
ing the expression coming from the inverse kinematics (see Sect. 7.2.1).

5.4.2.2 Wrench-Feasibility

The criterion for testing the wrench-feasibility of poses with intervals is clearly the
most important but also involved problem in using the CSP framework. Bruckmann
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[68] developed a test for wrench-feasibility based on the so-called existence algo-
rithm. The existence algorithm is a variant of the verify algorithm presented above
where the search is stopped as soon as one feasible solution is found. To apply this
strategy to cable robots, one uses the equation of the structure matrix as function �̂

and searches for existence of feasible force distribution f by brute force. Although
this algorithm is rather ineffective in terms of computation burden, its strategy is
perfectly in line with all benefits of the CSP framework.

Here, we follow a more elegant way proposed by Gouttefarde [182] who pre-
sented an interval-basedwrench-feasibility test that allows to decide if awhole region
described by an interval box belongs to the wrench-feasible workspace. According
to Gouttefarde, one can test if the linear system formed by

Â
T
f = −ŵ (5.33)

with the interval structure matrix Â
T
is strongly feasible. Note that the interval form

ŵ of the wrench is a specific kind of the wrench set Q which is formed by an
axis-aligned bounding box given through the ranges of the intervals. Here, strong
feasibility of the equation means that for every matrix AT ∈ Â

T
and every wrench

wP ∈ ŵ there exists a distribution of cable force f ∈ F so that ATf + wP = 0.
Hence, the strong feasibility of the interval equation (5.33) is a sufficient condition

for all poses used to compute the interval structure matrix to be fully included in the
wrench-feasible workspace. The criterion is said to be strong since the intervalmatrix
Â

T
is in general an overestimation, i.e. in general there exist some matricesAT ∈ Â

T

that do not correspond to any pose (r,R) of the robot. The property is called strong
feasibility because it is a sufficient, but not necessary criterion.

Rohn [150] provides a test to check strong feasibility. To describe the test, one
introduces a set Yn with vectors which components are either −1 or 1. There are
exactly 2n permutations yi ∈ Yn . Given an interval matrix Â, one defines for each
vector yi a corresponding matrix AY which is defined component-wise as

AY,i j = inf Ai j + (
sup Ai j − inf Ai j

)
(1 − yi )/2 (5.34)

and the 2n matrices defined in that way are called the vertices of Â. In a similar
manner, one defines the vertices of an interval vector bi by

bY,i = inf bi + (sup bi − inf bi ) (1 − yi )/2 , (5.35)

which are the 2n vertices of the box defined by the interval vector. Now, according
to Rohn’s theorem, the interval system is strongly feasible if, and only if, all linear
systems AT

Y f = −fY, y ∈ Yn are all feasible. To clarify the conclusion, Gouttefarde
shows that one can assess infinitely many poses contained in a box by testing only
a finite number of linear systems, namely 2n systems [182]. Since n is a fixed and
relatively small number for a given robot, the computational costs for these tests
is constant in the context of workspace computation. To support the computation,
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further tests are presented [182] for proving that a box is fully outside the workspace
along with heuristics used in the interval algorithm.

By proving the feasibility of these linear systems, one has also proven that no
singular configuration is inside the given box of poses. Summing up the findings
above, the wrench-feasibility test can be used as a single criterion ĥi = �̂(c, v) in
the above-mentioned framework if it returns the interval ĥ = [1; 1] which evaluates
to valid on successful testing of the pose, and ĥ = [−1;−1] if the box can be fully
discarded (invalid), and ĥ = [−1; 1] in all other cases (undefined). Note that an
interval implementation is only required for computing the interval structure matrix
Â

T
. The computations afterwards can be done with conventional linear algebra.

5.4.2.3 Dexterity Requirements

The dexterity of a robot plays an important role and thus should be taken into account
for workspace analysis and parameter synthesis. Most of the considerations con-
cerning dexterity are coupled to the calculation and analysis of the pose-dependent
Jacobian matrix J which is essentially the negative transpose of the structure matrix
AT. Typical indices for the dexterity are based on the eigenvalues, on the singular
values, on the determinant, or on the condition number of the matrix. These dexter-
ity measures are somehow related to each other and their computation is either time
consuming, iterative, or even both. Furthermore, eigenvalues and the determinant
can only be applied to robots with m = n cables.

We use a slightly relaxed but efficient dexterity test here [394]. Let J = −A be the
Jacobian matrix of the inverse kinematics of the cable robot thus mapping velocities
of the platform ẏ to velocities in the cables l̇. For a given platform velocity in world
coordinates, it is important not to exceed the maximal feasible velocity l̇max of the
cables. Therefore, we need a relation

l̇max > Jẏ . (5.36)

Introducing compatible norms for the vectors yields the desired inequations

||l̇max|| = ||Jẏ|| ≤ ||J|| ||ẏ|| . (5.37)

If we choose the Euclidian norm || · ||2 for vectors and the spectral norm for the
matrices, we basically receive the known forms of dexterity measures discussed
above. We consider the inverse kinematics and thus the maximal velocities may be
generated by each actuator individually. Therefore, it is enough to limit each row of
the matrix which leads to the use of the infinity norm || · ||∞. This norm is defined
as
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||v||∞ = max
1≤i≤n

|vi | v ∈ IRn (5.38)

||A||∞ = max
1≤i≤n

m∑

j=1

∣∣ai j
∣∣ A ∈ IRn×m . (5.39)

Now, the world coordinate velocity ẏ is normalized to 1 and the norm of the Jacobian
matrix J is considered. We deal with the max(·) operator in Eq. (5.39) by checking
all rows of the matrix separately to be smaller than the given maximal transmission
factor jmax and we receive n simple conditions for the CSP as follows

m∑

k=1

|Jik | < jmax ∀ 1 ≤ i ≤ n , (5.40)

where Jik are the elements of the Jacobian matrix. Thus, we find a simple method to
check for dexterity requirements over the whole workspace as inequalities enabling
us to add the n additional requirements to our CSP �̂.

5.4.2.4 Cable Interference

The interference of cables can restrict the workspace of cable robots significantly.
Thus, it is important to verify if the workspace is free of cable interference or at least
to check whether the required (mostly rectangular) workspace may be used without
collisions. The most frequent problem in this field is the calculation of the distance
between two finite line segments (Fig. 5.12). This problem can easily be solved for
given points. However, one has to distinguish between quite a number of special
cases where lines are parallel, have identical points, etc. Therefore, we use a simple
interval formula that is directly related to the original distance problem. Given line
segment of one cable with

gi : xi = ai + λi (bi − ai ), λi ∈ [0; 1], i ∈ 1, 2, . . . ,m (5.41)

we are searching for the supremum of

di j = ||xi − x j ||2 ∀ λi , λ j ∈ [0; 1], i �= j. (5.42)

By introducing λi , λ j as intervals, we can replace the distinction of cases by a basic
interval evaluation of a simple norm function and we receive

dmin < di j = ||ai + λi (bi − ai ) − a j − λ j (b j − a j )||2 ∀ λi , λ j ∈ [0; 1], i �= j
(5.43)

as additional inequalities that take the link interference into account and we can add
them to the CSP �̂ where dmin is our chosen safe distance between the cables.
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Fig. 5.12 Distance between
two line segments in
parameter form

5.5 Numeric Boundary Methods

Compared to the above introduced interval methods, workspace boundary methods
rely on real valued evaluations with all their restrictions. In exchange, one gets
access to more involved numerical schemes that cannot be expressed in intervals
or the computation is too slow. A method for the determination of the boundary
of the workspace is presented by Pott [389]. The computation of the workspace
boundary aims at speed and precision rather than rigorous results or insight into the
mathematical structure of the workspace. Based on discrete investigation of single
points, a line search method is used to find the boundary of the workspace and to
iterate the boundary with arbitrary precision.

Furthermore, the workspace is represented by triangulation that allows for very
simple and accurate determination of the volume and surface. This accuracy can be
used to study the influence of the design variables (geometry of platform andmachine
frame) or technical parameters such as minimum and maximum cable force.

On the one hand, workspace boundary methods are more complex than grid meth-
ods in terms of efforts for the implementation. On the other hand, they provide more
exact results. To further process the results, it is useful to convert the data to CAD
structures, where we find a rich set of tools to visualize and analyze the computed
workspace.

5.5.1 Approximation of the Workspace Boundary

Here, the translation workspace for a given orientation of the cable robot is repre-
sented by a triangulation of its hull. The idea for the determination of the workspace
is to start with a unity sphere in the estimated center m of the workspace and to
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Fig. 5.13 (a) Unit octahedron (b) subdivision step for triangles

successively extend this sphere in radial direction. Clearly, this assumption may lead
to an underestimation of the workspace and the estimation depends on the chosen
value of m. On the contrary, for most technical applications, only cable robots with
a compact workspace are interesting and therefore it seems reasonable to restrict a
quick design procedure to such a subspace. The surface of the sphere is approximated
by triangles which are created by iterative subdivision of the faces of an octahedron.
Alternatively, one can also subdivide other regular polyhedrons, especially the Pla-
tonic solids with triangular facets such as a tetrahedron or an icosahedron. Especially
the latter are interesting since these solids lead to a perfectly regular structure for
the hull where all vertices share the same number of triangles. However, doing the
initialization for a tetrahedron or an icosahedron is a bit more involved.

In the first step, the eight faces of an octahedron (Fig. 5.13a) located around the
point m are described as triplets of vertices, e.g. F1 = {vA, vB, vC}i . Initially, there
is a set L = {F1, . . . , F8} containing eight faces. These faces of the octahedron are
subdivided into four congruent triangles (Fig. 5.13b). This is done by constructing
the three vertices v AB, v AC, v BC for each triangle Fi in L and projecting the generated
vertices onto a unit sphere

vi j = vi + v j

|vi + v j | , i, j ∈ {A, B, C}, i �= j . (5.44)

Then, the original triangle Fi is replaced by the four triangles (vA,vAB , vAC), (vB ,
vAB , vBC), (vC , vBC , vAC), (vAB, vAC , vBC). This process is repeated ni times thus
generating a set L containing nT = 22ni+3 triangles.

In the second step, the vertices of the triangles are projected onto the hull of the
workspace. Starting from the estimated center m of the workspace, the line

L : r = m + λvi λ ∈ [0; rmax] (5.45)
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is searched by a regula falsi method for the boundary of the workspace which is
defined by a given maximum search range rmax. For each position r generated by
the iterations of the line search, we can compute an arbitrary Boolean workspace
criterion κ(r,R) such as wrench-closure, wrench-feasibility, reachability, intersec-
tion, or feasible deflection (see Sect. 5.2). The search for the boundary is done by the
algorithm

Algorithm 5: Line search

1. Let λmin = 0 be the lower bound and λmax = rmax be the upper bound.

2. If λmax − λmin < εL, stop the line search.

3. Let λ = 1
2 (λmax + λmin) and evaluate r = m + λvi .

4. Calculate the Boolean workspace criterion κ(r) of the resulting position r.
5. If κ is valid then let λmin = λ, else let λmax = λ.

6. Go to step 2.

Finally, one ends up with the vertex v(h)
i = m + λvi approximating the hull of the

workspace with an accuracy εL. The corresponding triangles are rendered into a new
set L(h). Such data can be easily stored in a file such as stereo-lithography data file
format (STL) or virtual reality modeling language (VRML) according to ISO 14772
[221] which can be loaded and visualized with most CAD tools. If it is also required
to cope with holes within the workspace, it is trivial to add a second procedure that
evaluates the line from the center to the boundary with a given step size and possibly
reduces the maximum range. We can even use an interval evaluation over the range
of [0; λ] to receive guaranteed results.

5.5.2 Hull Computation for Different Types of Workspace

Having defined the data model and search strategy, one can compute the different
types of the workspace. The algorithm described above is straightforward to use
for computing the constant orientation workspace W CO by simply setting one spe-
cific orientation R for the platform. If one is interested in the inclusion orientation
workspace W IO or the maximum workspace Wmax, one has to slightly modify step 4
in algorithm Line Search. A position is said to belong to the inclusion orienta-
tion workspace W IO if any orientation in a set R belongs to the workspace. Thus,
in the algorithm, one prepares a list LR with orientations Ri to be checked by the
algorithm’s step 4 and evaluates one orientation Ri after the other, until one finds
an orientation that belongs to the workspace. In this case, the κ(r) is valid. This can
be understood as a Boolean disjunction (logical: or) between the evaluation of all
κ(r,R),R ∈ LR . If no such entry in LR is found, then the pose and thus κ(r) is
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invalid. To compute the maximum workspace Wmax, the set R must be chosen as a
discretization of the full SO3 group.

Computing valid positions for the total orientationworkspaceW TO is done respec-
tively but instead of searching for at least one entry in LR where the workspace
test is valid, one looks for one element where the test fails. In this case, κ(r)
evaluates to invalid, whereas successfully completing the full list LR evaluates to
valid. This is equivalent to the Boolean conjunction (logical: and) of all single tests
κ(r,R),R ∈ LR . Analogously to the procedure for the maximum workspace Wmax,
one can evaluate if a pose is dextrous. However, to the best of the author’s knowledge,
no spatial cable robot reported in the literature possess any pose that is dextrous.

5.5.3 Boolean Set Operations with the Workspace Boundary

Practical problems usually involve the consideration for more than one criterion for
workspace computation. Let W1 and W2 be the result from the workspace compu-
tations for the same robot but distinct criteria κ1 and κ2, respectively. If the criteria
are restrictions that need to be considered simultaneously, one is looking for the
conjunction of these criteria κ = κ1 ∧ κ2 or, geometrically speaking, the intersec-
tion of the geometric objects represented by the workspace W = W1 ∩ W2. For
the workspace computed from a discrete grid, this computation is straightforward.
For the hull represented through triangulation, the general intersection is much more
involved. However, if the same center is used for the projection with the line search
algorithm, one can do one-by-one identifications between the vertices and use the
parameter λ for comparing the respective vertices. The result of the intersection is
derived when choosing λ = min(λ1, λ2) for each corresponding pair of vertices in
the setsW1 and W2.

Some problems require that at least one of two criteria κ1 and κ2 needs to be
fulfilled, i.e. the logical connection between the two criteria is disjunction κ = κ1∨κ2.
In this case, the respective geometrical operation on the two workspaces is the union
W = W1 ∪ W2. Based on the precondition that the two workspace hulls share a
common center m, the union can be derived from taking λ = max(λ1, λ2).

Given that the first criterion has been evaluated and the second criterion is to be
evaluated, one can slightly modify the line search algorithm to compute the intersec-
tion (union) with the second criterion. Computing the intersection (union) is simply
achieved by altering the first step to initialize the search range. To compute the inter-
section, the pair (λmin, λmax) is initialized with (0, λ) where λ is the result of the first
workspace computation. This choice limits the line search to the already determined
workspace. If the union shall be determined, the search range (λmin, λmax) is initial-
ized instead with (λ, rmax) which extends the search beyond the already computed
workspace.
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5.5.4 Computing Properties of the Workspace from the
Boundary

The triangulated hull of the workspace allows for some geometric characterizations
of the workspace. It is straightforward to calculate the surface S(W), the volume
V (W), and the center of gravity c(W) of the workspace as follows

S(W) = 1

2

L∑
||(vA − vB) × (vA − vC)||2 (5.46)

V (W) = 1

6

L∑
((vA − m) × (vB − m)) . (vC − m) (5.47)

c(W) = 1

4V (W)

L∑
(vA + vB + vC + m) . (5.48)

For the volume, one can find a convenient shortcut if one substitutes vi −m = λiui

in the parametric form with the direction ui and its length from the line search λi .
Then, the equation for the volume becomes

V (W) = 1

6

L∑
λAλBλC(uA × uB) . uC (5.49)

where the scalar value of the product (uA ×uB) . uC is equal for all triangles and only
depends on the number of subdivisions nT done. Thus, one finds the simple form

V (W) = (uA × uB) . uC

6

L∑
λAλBλC (5.50)

with the constant factor V (nT)
i = (uA × uB) . uC.

The accurate determination of these numbers is useful for designing robots, espe-
cially if one wants to take derivatives of these indices. For computing derivatives
(see Sect. 5.5.5), one can seldom compute the expressions in closed-form. If one has
to rely on numerical approximation through finite differences, the computation for
neighboring values should be as accurate as possible. Therefore, one has to balance
the accuracy used in the line search with the step width of the finite difference so
that the results are meaningful.

5.5.5 Differential Hull

When analyzing the workspace of a cable robot, an interesting aspect is how the
workspace depends on the geometrical and technical parameters or, more generally
speaking, how it depends on the assumptions made and the algorithm settings. In
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general, the workspace will be changed if the parameters are differentially altered.
Therefore, doing a sensitivity analysis on the parameters influencing the result of
the workspace computation is interesting and can be done efficiently based on the
workspace hull model. Mathematically speaking, one may ask for the derivations
of the workspace caused by infinite changes of the describing parameters such as
the positions of the winches ai , the geometry of the platform bi , or the feasible
forces in the cables fmin, fmax. One may also ask for the sensitivity of the constant
orientation workspace W CO for changes in the orientation R0. Since the workspace
is a continuous set, the changes in shape and size happen on its boundary. Here, the
possibility is neglected that the parameter change generates a hole in the workspace
whichwould change theworkspace’s topological structures. Therefore, the change in
the parameters will only influence the hull of the workspace. Aswe have already seen
when computing the workspace, it is difficult to find a closed-form solution of the
workspace, hence, for computation we cannot compute the derivations symbolically.
Clearly, numerical approximation using finite differences is a possible way. If we
computed the workspace using discretization or interval techniques, our solution is
quite insensitive towards small changes in the parameters unless we use very small
thresholds for the discretization. This problem applies both for simple discretization
as well as for interval analysis. In contrast, the approximation of the workspace
boundary through the hull algorithm separates the granularity of the used grid from
the accuracy in the computation. Once a number of triangles is chosen, the points on
the hull can be efficiently computed with high accuracy.

If we now consider small changes in the geometry of the robot, we can accurately
track the change in the workspace hull with moderate computational burdens. To
better understand the approach, it is important to note that the steps for determining
the search directions vi for the hull determination can be completed before computing
the values for λi for each vertex. Therefore, we can change the robot model by an
increment Δai and compute the resulting value for λ′

i . A suitable approximation is

δ ≈ λ′
i − λi

Δai
. (5.51)

The concept of the differential workspace can be applied to compute the influence
of the parameters on the shape of the workspace, i.e. to compute the derivatives of
the vertices of the workspace, or on the derive of the properties S(W), V (W), c(W)

of the workspace, i.e. through finite differences. We can compute the derivation or
sensitivity

∂S(W)

∂p
, (5.52)

where p is any numerical parameter of the geometry of the robot, the robot’s technical
parameters, or an algorithm parameter. An overview of parameters for the sensitivity
analysis is given in Table 5.1.



198 5 Workspace

Table 5.1 Overview of the parameters to be studied with the differential hull. The list includes a
number of criteria that are introduced in Chap.7

Geometry Technology Algorithm setting

Proximal anchor points ai
Distal anchor points bi
Cable radius rC
Pulley radius rR
Center of gravity rM

Cable force limits fmin, fmax

Cable length limits lmin, lmax

Applied wrench wP

Maximum cable deflection on
platform and base
Cable stiffness k′
Maximum cable velocity l̇max

Maximum cable acceleration

Settings of the force
distribution
Algorithm (e.g. max.
iterations)
Platform orientation R (for
constant orientation
workspace)
Range of orientation in total
orientation workspace

5.5.6 Cable Span

A well-known disadvantage of parallel robots and especially of cable robots is that
the installation space of the robot is large compared to the workspace. One reason
for this drawback is that the cables occupy a huge volume if the workspace of the
robot is large. This volume, that is at least temporarily taken be the cables, is called
cable span (Fig. 5.14). The cable span is a volumetric object for all spatial robots
and a flat area for a planar robot. Based on the assumption of the standard model
that the proximal anchor point is a pose-independent point in space, it is clear that
the cable span for the i th cable has some kind of apex at the point Ai . Based on the
considerations of the workspace boundary in these sections, one can easily compute
the cable span for the constant orientation workspace. Let (v1, . . . , vk) be the k
vertices of the workspace hull as it is introduced in Sect. 5.5. Then, one receives all
possible points for the point Bi from

v′
j = bi + v j j = 1, . . . , k (5.53)

which is nothing but translating the hull by bi . The cable span is approximated from
connecting the point Ai with each of the vectors v′

j . The resulting geometrical object
looks a bit like a noncircular cone where most of the lines defined above are lying
inside the cone. To normalize the representation and also to reduce the amount of
data, a polar decomposition of the cone is proposed. From the structure of the hull,
we already know the projection center m which is in the central region of the hull.
The polar decomposition aims at sorting all the lines in the span around this central
line.

The procedure to compute the polar decomposition is as follows: Firstly, a coor-
dinate frame KA,i is constructed at point Ai whose z-axis is exactly aligned with the
vector m − ai . The x- and y-axis can be chosen arbitrarily where it is useful to use
the convention introduced along with the pulley model (see Sect. 7.2.1). Then, the k
lines of the span are distributed in nS polar segments in the frame KA,i . Firstly, each
line s j = v′

j −ai is transformed into the local frameKA,i . Then, spherical coordinates
are computed as follows:
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Fig. 5.14 Definition of the cable span based on the hull

Fig. 5.15 Polar
decomposition of the cable
vector to compute the cone
of the cable span for nS = 12
segments

s(C)j =
⎡

⎣
r
θ

ϕ

⎤

⎦

j

=

⎡

⎢⎢⎢
⎣

√
s2x + s2y + s2z

arccos sz√
s2x + s2y + s2z

arctan 2(sy, sx )

⎤

⎥⎥⎥
⎦

j

. (5.54)

These spherical coordinates s(C)j allow for a simple extraction of the cable span. The
k line vectors can now be sorted in ascending order of their ϕ-value (Fig. 5.15). Then,
nS segments of equal size are chosen for the angle ϕ that represent the ranges
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Si =
[
i 2π

nS

; (i + 1)2π

nS

]

i

i = 0, . . . , (nS − 1) . (5.55)

Then, one loops through the sorted list s(C)j of cylinder coordinates and extracts for
each range Si the matching element with

s(C)j
∣∣∣
ϕ∈Si

(5.56)

and stores the largest angle θ for all line vectors that belong to the respective segment.
After this procedure, one has a sorted list of nS characteristic vectors of the surface
of the cable span. Connecting two neighboring vectors with the apex at KA,i gives
a triangulation of the surface of the cable span. The list of the angles over the polar
coordinate is basically a look-up table to check if a vector is inside the cone.

5.5.7 Workspace Cross Sections

The workspace hull is a two-dimensional data model to characterize a three-
dimensional workspace by describing its boundary. One can compute intersections
between this hull and a plane to receive cross sections. Cross sections are one-
dimensional curves on the surface of the workspace. We can approximate these
curves with line segments that are simple to compute and also simple to process and
interpret. To do so, we follow the same approach used to compute the workspace hull
by triangulation. Firstly, we define a central positionm that is expected to be inside
the workspace. Secondly, we construct a number of normal vectors vi that define
the search direction. Contrary to the workspace hull where we need a set of normal
vectors pointing to the surface of a sphere, it is straightforward to find a homogenous
distribution for the normal vectors inside a circle. For the xy-plane, the vectors are
given by

vi = [cos(ϕ), sin(ϕ), 0]T ϕ ∈ [0; 2π ] (5.57)

where it is simple to generate a set of any number of spanning vertices. If the cross
section shall be computed for a different normal than the z-axis, one can apply any
appropriate rotation matrix R to the normal vectors vi to search in other directions.

To compute the cross section, one applies a line search (see Sect. 5.5.1) to all
vectors vi . After doing so, one finds a polygon approximating the workspace cross
section simply by considering the connection line from vi to vi+1 and connecting the
last vector vN in the list to the first v0. Due to their simple data model, one can easily
compute the area A(W) and the circumference L(W) of the cross section from its
vertices:
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L(W) =
L∑

||vA − vB ||2 (5.58)

A(W) = 1

2

L∑
|(vA vB ez)| (5.59)

where ez = [0, 0, 1]T is the unit vector in the z-direction. To conclude, it is empha-
sized that the data models presented here separate the topological structure from the
geometry. This facilitates the analysis of the results since explicit information on the
neighbors are represented in the results data.

5.6 Analytic Boundary Determination

In the section above, we have extensively studied numerical methods to determine
the boundary of the workspace. The presented numerical schemes can be applied
for many workspace criteria that allow for a binary decision whether a pose belongs
to workspace or not. In this section, we exploit the structure of specific criteria
to compute the boundary of the workspace while considering the structure of the
underlying mathematical object. As shown below, this leads to elegant solutions
which are in turn restricted to the determination of the wrench-closure workspace.

5.6.1 Wrench-Closure Workspace in Closed-Form

Surprisingly, a closed-form representation of thewrench-closureworkspaceW exists
[473]. The wrench-closure workspace is the union of m − 1 over n semi-algebraic
sets given by

W =
{
y ∈ SE3 | rank ÂT = n ∧ ∃h∈ker ÂT h > 0 ∧ hm > 0

}
(5.60)

=
⋃

I⊂{1,...,m−1},|I|=n

( {
y ∈ SE3 | det ÂT

I > 0 ∧ (det Â
T
I)Â

−T
I âm < 0

}

⋃{
y ∈ SE3 | det ÂT

I < 0 ∧ (det Â
T
I)Â

−T
I âm > 0

})

where the matrix Â
T
I ∈ IRn×n is composed of the columns with the numbers I from

the matrix Â
T
and âm is a shorthand for themth column of Â

T
. Each set is constituted

from n+1 polynomial inequalities of degree n. The set I represents all subsets from
the columns with exactly n elements, e.g. for m = 4 and n = 3 the sets are {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, and {2, 3, 4}.

Some studies on planar systems used this or similar representations to determine
the wrench-closure workspace [28, 142, 143] and for spatial robots with rotational
degrees-of-freedom one can hardly derive the formulas even when using computer
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algebra systems.However, if one restricts the consideration to the constant orientation
workspace, to cross sections, or to the orientation workspace, the closed-form can be
computed symbolically or numerically. Even for the general case, the closed-form
presented in Eq. (5.60) reveals that the wrench-closure workspace is bounded by a
large yet limited number of polynomial patches of sixth order for the spatial 3R3T
case, and third order both for the constant orientation workspace of spatial robots.
The translational workspace of a planar robot is bounded by quadratic functions.

5.6.2 Mathematical Structure of the Workspace Boundary

Verhoeven [473], Gouttefarde [183, 185], Stump [444], and later Sheng [436] show
that the boundary of thewrench-closure workspace can be determined from algebraic
expressions by evaluating the structurematrix. If the non-normalized structurematrix
Â

T
is used instead ofAT in the expressions, the resulting terms are largely simplified.

Sheng derived second or third order multivariate polynomials for the workspace
boundary using computer algebra. Using this procedure, the analytic expressions Ni

potentially bounding the constant orientation workspaceW CO are shown [436] to be
for a planar robot with m = 4 cables

N1 : det(A4,A2,A3) = 0 (5.61)

N2 : det(A1,A4,A3) = 0 (5.62)

N3 : det(A1,A2,A4) = 0 (5.63)

N4 : det(A1,A2,A3) = 0 (5.64)

and for a spatial robot with m = 7 cables

N1 : det(A7,A2,A3,A4,A5,A6) = 0 (5.65)

N2 : det(A1,A7,A3,A4,A5,A6) = 0 (5.66)
...

...

N6 : det(A1,A2,A3,A4,A5,A7) = 0 (5.67)

N7 : det(A1,A2,A3,A4,A5,A6) = 0 (5.68)

where Ai is the i th column of the non-normalized structure matrix Â
T
. Following

the procedure presented in [436], a pose belongs to the workspace if a subset of the
equations Ni has the same sign. This criterion is exploited later in Sect. 5.6.3.3 to
quickly compute the workspace. One can essentially do the same computation for the
orientation workspace by substituting a constant position into the structure matrix
and receive determinants that depend on the orientation parameters rather than the
position. However, the analysis for the orientation workspace is different from the
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translation due to the different topology of IR3 and the rotation group SO3 and we
do not tackle this problem here.

5.6.3 Symbolic-Numeric Wrench-Closure Workspace

One can describe the boundary of the wrench-closure constant orientation workspace
by second or third order polynomials for the planar or spatial case, respectively, and
in the following, we derive an approach to compute such a description. The basic
approach to compute the workspace boundary is as follows: Firstly, one sets up the
structure matrix of the robot. Secondly, the actual geometric parameters are substi-
tuted into the formula of the robot. Thirdly, the pose parameterization is introduced
to the structure matrix. Then, one can symbolically compute the determinants. Eval-
uating the resulting symbolic expressions yield the desired parametric curves that are
the boundary of the workspace. It is straightforward to execute the above-mentioned
workflow using a computer algebra system and, even for the spatial case with 6× 6
matrices, one can compute the determinant for a certain robot and often also for
a family of robots with a parametric representation of frame length, frame height
and so on. However, if arbitrary geometry is assumed, the number of symbols in the
computer algebra system becomes so large, that it can hardly be handled with current
computers.

To overcome this limitation, a symbolic-numeric approach is proposed [400]
which is inspired by the method of Walker and Orin [483] for the equations of
motion as well as by Hiller [211] for computing the Jacobian matrix of multi-body
systems. In both contributions, some kind of coefficient identification scheme is
employed to extract the numerical values of an equation with known structure from
numerical evaluation with carefully chosen special values. Having realized that the
mathematical structure of the expressions of the workspace boundary are second or
third order multivariate polynomials, we can use a pose-dependent formulation to
compute values of Ni .

The surprising effect of this evaluation is that one can reconstruct the full
workspace boundary from only six (planar) or 20 (spatial) local evaluations of the
structure matrix and its determinants to receive a closed-form parametric represen-
tation of the constant orientation wrench-closure workspace.

The number of coefficients required to describe the workspace boundaries are
shown for different number of cables and differentmotions pattern inTable 5.2,where
1R2T denotes the planar robot with one rotational and two translational degrees-of-
freedomand 3R3Tpresents three translational and the rotational degrees-of-freedom.
The number of coefficients results from the amount of polynomial equations, their
respective degree, and the number of determinate computed from the structurematrix.
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Table 5.2 Number of coefficients of the multivariate polynomials

Motion pattern Number of cables m Number of coefficients

1R2T 4 4 × 6 = 24

1R2T 5 4 × 5 × 6 = 120

1R2T 6 4 × 5 × 6 × 6 = 720

3R3T 7 7 × 20 = 140

3R3T 8 7 × 8 × 20 = 1120

3R3T 9 7 × 8 × 9 × 20 = 10080

5.6.3.1 The 1R2T Case

The approach for the computation of the constant orientation representation for a
cable robot with four cables is as follows. For the sake of simplicity, we omit in
the following an additional index for the coefficients a for each equation Ni . Each
boundary equation takes the form

Ni (x, y) = axx x
2 + ax x + ayy y

2 + ay y + axyxy + a0 (5.69)

for a planar robot.One cannumerically evaluateEqs. (5.61)–(5.64). The identification
of the coefficients axx , . . . , a0 is done by computing the determinants for six position
vectors r = [x, y]T following the scheme:

• Compute the coefficient a0 by evaluating the four determinants for the position
vector r = 0.

• Compute axx and ax from the determinants received from the position vectors
r = [1, 0]T and r = [−1, 0]T

• Compute ayy and ay from the determinants received from the position vectors
r = [0, 1]T and r = [0,−1]T

• Determine axy from evaluating the position r = [1, 1]T.
The numerical procedure is as follows. Compute the non-normalized structurematrix
Â

T
for the position r = 0 and the desired orientation ϕ0 and the respective numerical

values of Ni for i ∈ 1, . . . , 4 from Eqs. (5.61)–(5.64). Analyzing the polynomial
expression in Eq. (5.69) reveals that substituting zero for both x and y cancels out all
terms but the coefficient a0 and thus a0 = Ni (0, 0). Secondly, one repeats the trick
to identify both axx and ax by computing Ni (1, 0) and Ni (−1, 0). The identification
of the coefficients is slightly more complicated since we have to solve a linear 2 ×
2 equation system whose coefficients are defined from our test poses [1, 0]T and
[−1, 0]T. Thus, [

1 1
1 −1

] [
axx
ax

]
=
[

Ni (1, 0) − a0
Ni (−1, 0) − a0

]
(5.70)

has the simple solution
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axx = 1

2
(Ni (1, 0) + Ni (−1, 0)) − a0 (5.71)

ax = 1

2
(−Ni (1, 0) + Ni (−1, 0)) . (5.72)

The computation of ayy and ay with the positions [0, 1]T and [0,−1]T is done respec-
tively. In the final step, we compute axy from the position [1, 1]T with the simple
equation

axy = Ni (1, 1) − axx − ax − ayy − ay − a0 . (5.73)

Thus, we have numerically received the exact algebraic representation of the work-
space boundary by as little as computing numerically the structure matrices for six
poses and determining four determinants for each structure matrix.

The identification procedure can be formalized in a matrix form as follows:

S =

⎡

⎢⎢
⎣

1 0T 0T 0
1 A 0 0
1 0 A 0
1 1T 1T 1

⎤

⎥⎥
⎦ , with A =

[
1 1
1 −1

]
(5.74)

and

k =

⎡

⎢⎢⎢⎢⎢⎢
⎣

a0
axx
ax
ayy
ay
axy

⎤

⎥⎥⎥⎥⎥⎥
⎦

, h =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ni (0, 0)
Ni (1, 0)
Ni (−1, 0)
Ni (0, 1)
Ni (0,−1)
Ni (1, 1)

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (5.75)

Thus, the coefficients of the second order multivariate polynomial are determined by
the linear system

Sk = h . (5.76)

Note that the test poses are carefully chosen so that the condition number of the
matrix A is minimized. Since numerical computation of determinants is sensitive to
round-off errors, the proposed poses are expected to maximize stability. However, a
prerequisite of the procedure above is that the generic test poses used in the algorithm
are not singular, i.e. the determinants computed from the matrix do not vanish. If
the poses are singular, a rigid body transformation can be applied to the parameters
ai ,bi to move the reference points away from the singular loci or other test poses
can be chosen where the numerical instability might be reduced.
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5.6.3.2 The 3R3T Case

The procedure for the spatial robot is essentially the same as for the planar robot but,
in order to avoid the tiresome algorithmic description, we only describe the linear
equation formulation here. The main part in reconstructing the polynomial boundary
is to solve a large system Eq. (5.76). The sought polynomial boundary Ni (x, y, z)
takes the form

Ni = axxx x
3 + ayyy y

3 + azzz z
3 + axxyx

2y + axxzx
2z + axyyxy

2 + ayyz y
2z +

+axzz xz
2 + ayzz yz

2 + axx x
2 + ayy y

2 + azzz
2 + axyxy + axzxz + ayz yz +

+ax x + ay y + azz + axyzxyz + a0 . (5.77)

The system matrix for identifying the 20 coefficients of the polynomials reads as
block matrix

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0T 0T 0T 0T 0T 0T 0
1 A 0 0 0 0 0 0
1 0 A 0 0 0 0 0
1 0 0 A 0 0 0 0
1 C D 0 B 0 0 0
1 C 0 D 0 B 0 0
1 0 C D 0 0 B 0
1 1T 1T 1T 1T 1T 1T 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(5.78)

where thefirst and last columnaswell as thefirst and last roware scalars. Furthermore,
0 is a matrix with zero elements of appropriate size and 1 is a matrix having a 1 in
each element. In contrast, the other columns and rows are constructed each from
3 × 3 matrices from the following matrices

A =
⎡

⎣
1 1 1

−1 1 −1
8 4 2

⎤

⎦ (5.79)

B =
⎡

⎣
1 1 1

−1 −1 1
−1 1 −1

⎤

⎦ (5.80)

C =
⎡

⎣
1 1 1

−1 1 −1
1 1 1

⎤

⎦ (5.81)

D =
⎡

⎣
1 1 1

−1 1 −1
−1 1 −1

⎤

⎦ . (5.82)

From the structure ofmatrixS, one can see that it is block lower triangular. Obviously,
both A and B are regular, therefore S is also regular. Inverting or solving a linear
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system with S can be done efficiently. Basically, one can apply an algorithm similar
to the procedure described in the section above by computing first the coefficient a0,
then the triple axxx , axx , ax from a 3 × 3 system and so on.

The vector of the sought coefficients k of the constraint and the right-hand side h
of the equation read

k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a0
axxx
axx
ax
ayyy
ayy
ay
azzz
azz
az
axxy
axyy
axy
axxz
axzz
axz
ayyz
ayzz
ayz
axyz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, h =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ni (0, 0, 0)
Ni (1, 0, 0)
Ni (−1, 0, 0)
Ni (2, 0, 0)
Ni (0, 1, 0)
Ni (0,−1, 0)
Ni (0, 2, 0)
Ni (0, 0, 1)
Ni (0, 0,−1)
Ni (0, 0, 2)
Ni (1, 1, 0)

Ni (−1,−1, 0)
Ni (1,−1, 0)
Ni (1, 0, 1)

Ni (−1, 0,−1)
Ni (1, 0,−1)
Ni (0, 1, 1)

Ni (0,−1,−1)
Ni (0, 1,−1)
Ni (1, 1, 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (5.83)

The coefficients of the polynomial can now be determined from the simple linear
system Eq. (5.76). Computing the coefficients of the wrench-closure workspace of a
spatial cable robot with seven cables thus requires the following steps:

• Numerically determine the structurematrix for the 20 positions listed in Eq. (5.83).
• For each of these matrices, extract the seven 6 × 6 determinants as described in
Eq. (5.65) to generate the vectors h.

• Solve the system Eq. (5.76) to compute the coefficients for each of the seven
polynomials.

• The seven vectors k contain in their 140 elements the full information on the
constant orientation wrench-closure workspace of the robot.

The computational efforts of themain steps consist of setting up 20 structurematrices,
computing 140 determinants, and solving seven 20× 20 linear systems. Solving the
linear system can be done in linear computation time due to the almost triangular
structure.

The procedure can be generalized to robots with more than seven cables. In this
case, one has to compute more determinants from the structure matrices.
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5.6.3.3 Efficient Hull Computation

As introduced in Sect. 5.5, a triangulation of the workspace boundary is an efficient
data model to further process the results from workspace determination. As shown
above, the vertices of the triangles are projected onto the hull of the workspace.
Starting from the estimated center m of the workspace, the line

Li : ri = m + λivi λi > 0 (5.84)

is searched for its root. Instead of the regula falsi based line search used to fine the
boundary of the workspace, one can do better with the parametric representation
derived above. Since the recently used workspace criteria can only be evaluated as
Boolean test of complex numerical algorithm, we used a regula falsi line search.
Due to the algebraic form of the workspace boundary, we propose to substitute the
line Eq. (5.84) into the surface equation Eq. (5.69) proving the following expression
which reads for the planar case

(
axx v

2
xi + axyvxi vyi + ayyv

2
yi

)
λi

2

+ (
2axxmxvxi + axymxvyi + axymyvxi + 2aymyvyi + axvxi + ayvyi

)
λi

+axxm
2
x + axymxmy + ayym

2
y + axmx + aymy + a0 = 0. (5.85)

Analyzing this lengthy expression reveals the simple form of a quadratic equation in
λi . Here, we earn again the benefits of the algebraic formulation since the boundary
of the workspace is computed by just solving the polynomial with the well-known
formula

λ
1,2
i = − p

2
±
√( p

2

)2 − q . (5.86)

According to the assumptions made for the hull computation, we use the smallest
positive value of λ

1,2
i received for any one polynomial Ni . If the roots are complex

or all negative, we set λi = 0. In the latter case, the projection center is not part of
the workspace.

For the spatial case, one can do essentially the same where the final solving for λi

requires to compute the closed-form solution to a third order polynomial. However,
in both cases we have shown that all computation steps from the geometry of the
robots to the triangulation of the constant orientation workspace can be executed in
closed-form with simple mathematical tools.

Evenmore, the triangulated hull of theworkspace allows for some geometric char-
acterizations of the workspace. It is straightforward to calculate the surface S(W)

and the volume V (W) of the workspace using Eqs. (5.46) and (5.47), respectively.
Eventually, even these expressions are received in a constant number of computa-
tional steps without approximation except for the assumption that the triangulation
for the quadratic and cubic surface is exact. However, the polynomial form of the
workspace boundary allows to compute and bound the error for the triangulation.
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Table 5.3 Geometrical parameters for a robot with seven cables: platform vectors bi and base
vectors ai
Cable i Platform vector bi Base vector ai
1 [−0.125, 0.0, 0.0]T [0.0, 0.0, 0.0]T
2 [−0.125, 0.0, 0.0]T [4.0, 0.0, 0.0]T
3 [0.0, 0.25, 0.0]T [4.0, 3.0, 0.0]T
4 [0.0, 0.25, 0.0]T [0.0, 3.0, 0.0]T
5 [−0.125, 0.0, 0.0]T [0.0, 0.0, 2.0]T
6 [−0.125, 0.0, 0.0]T [4.0, 0.0, 2.0]T
7 [0.0, 0.25, 0.0]T [2.0, 3.0, 2.0]T

Fig. 5.16 Constant
orientation wrench-closure
workspace of the example
design with seven cables
computed from the
closed-form of the
workspace boundary

5.6.3.4 Computation Results

The workspace of the cable robot IPAnema 1 is determined for verification purpose
using the algebraic expressionmethod. The robot has seven cables and its geometrical
parameters are given in Table 5.3. The determined constant orientation wrench-
closure workspace W CO is depicted in Fig. 5.16.

In order to determine the computational costs of the proposed method, an imple-
mentation in C++ is employed. In order to compute the matrix operations, including
the evaluation of the determinants, the eigen 3 library3 is used. The computation
time is assessed on an Intel Core i5-3320M 2.6 GHz, Visual C++ 2010 using a single
thread. A first test for a planar robot reveals computation times of around 0.12ms
per constant orientation evaluation with 36 points on the boundary and 0.26ms for
a resolution with 360 points. The computation time for computing the coefficients
of the workspace polynomials without workspace computation is estimated to be
0.025ms. Testing the components of the vector base of the matrix kernel to have the
same sign leads to a computation time of 10ms for 360 poses.

3Gaël Guennebaud, Benoît Jacob and others, Eigen v3, http://eigen.tuxfamily.org, 2010.

http://eigen.tuxfamily.org
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The evaluation of wrench-feasibility using the fast closed-form method [396]
requires for 360 vertices on the hull in the linear search with regula falsi line search
around 12.5ms.

Comparing the computation times derived here, it seems that the proposed
symbolic-numeric approach is very fast. To the best of the author’s knowledge, no
faster method has been reported in the literature.

5.6.4 Analytic Determination of the Workspace
for a Planar Robot

The above-mentioned closed-form of the wrench-closure workspace [473] is appli-
cablewhen considering a cable robotwhere some of the cable forces are fixed. From a
practical point of view, this holds true if some of the cables are statically balanced by
e.g. using counterweights to generate the cable forces. Then, it is possible to compute
the boundary of the workspace in a symbolic form following roughly the approach
given in Sect. 5.6.1. We exemplify this method with a planar robot. Consider a cable
robot with m = 4 cables and a rectangular frame with length 2l and width 2b. Then,
the structure matrix can be written as follows:

AT(x, y) =
⎡

⎣
−l−x

(l+x)2+(b−y)2
l−x

(l−x)2+(b−y)2
l−x

(l−x)2+(b+y)2
−l−x

(l+x)2+(b+y)2

b−y
(l+x)2+(b−y)2

b−y
(l−x)2+(b−y)2

−b−y
(l−x)2+(b+y)2

−b−y
(l+x)2+(b+y)2

⎤

⎦ . (5.87)

If two of the four cables are tensed by counterweights, the tension in two cables is
constant. We apply the weights to cable 1 and 4. Thus, the following vector

f = [m1g f2 f3 m2g]
T (5.88)

results for the cable forces, wherem1,m2 are the mass of the counterweights, respec-
tively, and g is the gravity acceleration. Computing AT f gives a system of two
equations in two unknowns. In the following, we assume m1 = m2 for the sake of
simplicity. Solving the resulting linear system renders a closed-form expression for
the unknown cable forces

f2 = f1
A2B2

C
(5.89)

f3 = f1
A3B3

C
(5.90)

where
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Fig. 5.17 Force-closure
workspace for a simple 2T
robot with m = 4 cables.
The grey rectangle
represents the robot’s frame.
(a) The two cables on the left
side are tensed with constant
forces of f1 = f4 = 30N.
(b) The two cables on the left
side are tensed with constant
forces of f1 = f4 = 30 N.
The workspace boundaries
are shown for the minimum
cable force fmin =
{0, 5, 10, 15, 20, 25, 30}N

x [m]

y [m]

A1 A2

A3A4

x [m]

y [m]

A1

A2

A3

A4
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(b)
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f1 = mg (5.91)

A2 = (l − 2x)2 + (b − 2y)2 (5.92)

A3 = (l − 2x)2 + (b + 2y)2 (5.93)

B2 = bl3 + 2yl3 + 3bl2x + 4l2xy + bly2 + lb3 + 3lbx2 (5.94)

+ 2lx2y − 2y3l + by2x + 2b2yx + xb3 + bx3

B3 = bl3 − 2yl3 + 3 bl2x − 4l2xy + bly2 + lb3 + 3lbx2 (5.95)

− 2lx2y − 2y3l + by2x − 2b2yx + xb3 + bx3

C = b (l − x)
(
(l + x)2 + (b + y)2

) (
(l + x)2 + (b − y)2

)
. (5.96)

A position x, y belongs to the force-closure workspace if f2 > 0 and f3 > 0.
In Fig. 5.17a, the boundary of the force-closure workspace is depicted for l = 3,
b = 2, f1 = f4 = 30. The influence of the pretension in the cable 1 and 4 is studied
in Fig. 5.17b where the force-feasible workspace is shown for different values of the
minimal force fmin.

5.7 Workspace Studies

In this section, we present a number of workspace studies in order to characterize the
workspace of different robot architectures. Furthermore, we compare the influence
of the number of cables, the applied wrench, and the force distribution method.
Different types of workspace are compared.

In the following, we analyze how different criteria, parameters, andmethods influ-
ence the results of theworkspace computation. Therefore, we compare theworkspace
of different robot geometries and parameter settings, including changes in the min-
imum and maximum cable forces. For these studies, we analyze the accuracy for
the workspace approximation (quality of the algorithms), the computational time,
the volume, the surface, and the center of gravity of the workspace as well as the
workspace’s bounding box. Furthermore, we study the properties of the workspace
algorithms and force distribution methods with respect to the used workspace crite-
rion (wrench-closure, wrench-feasibility, wrench-feasible sets/available net wrench,
collisions, stiffness, singularities) as well as the type of the workspace (constant ori-
entationWCO for different orientations, orientation workspaceWO, total orientation
WTO) and the applied wrench wP.

If not further specified in the case studies, the following parameters and assump-
tions are applied in order to make the different results comparable:

• For the influence of the parameters, we use some of the reference designs as
described in Sect. 8.4.1.

• The geometry of the robot frame is normalized so that the volume of its axis-align
bounding box equals 1m3. If the architecture of the frame is flat, the respective
dimension of the platform is used for the computation of the bounding box.
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• Lower and upper limit fmin, fmax of the cable forces is 1 and 10N, respectively.
• The payload of the platform is chosen relatively to the upper cable force limit fmax

with 0, 25, 50, 100, 150% in different directions. If not specified otherwise, no
wrench wP = 0 is applied.

• If computation time is not considered, we use a force distributionmethod (Dykstra)
that delivers a feasible distribution if one exists.

• When considering the constant orientation workspace W CO, the platform is not
rotated with respect to the reference design (i.e. the rotation matrix equals the
identity matrix R = I).

When we address spatial robots, the geometrical analysis of the workspace
becomes involved. Firstly, one can hardly make diagrams which represent the five or
six-dimensional workspace in a form that is easy to understand. Furthermore, many
effects, such as interferences, singularities, and limitations on the anchor points,
influence the workspace in a counter-intuitive way. We use, if possible, the constant
orientation workspace and total orientation workspace instead.

5.7.1 Cable Force Limits

The studies for different cable force limits are motivated from the considerations
in Sect. 3.4.5 which shows that there are a couple of technical matters that restrict
both the minimum and maximum cable force. In the following, the impact of the
minimum fmin and maximum fmax cable forces on the shape and size of the workspace
W CO is exemplified with the IPAnema 1 design. In the nominal model, cable forces
between 1 ≤ f ≤ 10N are considered. We use the Dykstra method to compute force
distributions in order to decide if a pose belongs to the workspace. We compute the
constant orientation workspaceW CO forR = I. Nowrench is applied on the platform
wP = 0. The workspace is approximated using the hull algorithm with nT = 5
recursive subdivisions leading to 8192 triangles with an accuracy ε = 0.0001m for
the line search for the boundary of the workspace.

To study the influence, we kept the lower force constant, whereas the upper force
was varied. The ratio between the lower and upper force is called κ = fmax

fmin
. Firstly,

we evaluate volume and surface of the workspace for some values with κ ∈ [2; 105]
as well as the computation time. In Fig. 5.18, the results of the evaluation are shown
on a logarithmic scale for κ . It can be seen that around κ = 1000 the maximum for
workspace and surface is reached and little gains for the volume of the workspace
can be achieved using higher values. The second diagram shows the dependency of
the computation time on the ratio κ . Since the Dykstra method is an iterative scheme,
the computation time varies with the force settings. One can see that for κ around 50,
there is a peak in the computation time where the computation time converges to an
average value for high values of κ . A geometric comparison of cross sections of the
workspace is shown in Fig. 5.19. All cross sections have been taken into the xy-plane
with z = 1m. We can see that for κ = 1000, most of the theoretical limits given by
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Fig. 5.18 Volume and surface (left) and computation time (right) of the workspace of the nominal
IPAnema 1 design for different ratio κ between the minimum and maximum cable forces

Fig. 5.19 Cross sections of
the constant orientation
workspace of the IPAnema 1
robot for different ratio κ .
For high values of κ , the
wrench-closure workspace is
approximated

the wrench-closure workspace can be exploited. To compare shape and size of the
workspace, spatial plots are given in Fig. 5.20 for different κ . Relating the volume
of the wrench-closure workspace as upper limit of the IPAnema 1 to the restrictions
named in Sect. 3.4.5, one finds that the achievable size of the workspace is between
60% in an optimistic setting and 10% in a very conservative setting (see Table 5.4).

5.7.2 Platform Load

When considering the wrench-feasible workspace, the load of the platform plays an
important role. The load exerts a consistent wrench in the direction of the acting
gravity vector, usually congruent with the negative z-axis of the inertial frame. In
the following, we analyze how different wrenches influence size and shape of the
workspace. In order to study the influence of the load, we apply different forces to
the platform where we choose the load relative to the maximum cable force fmax.
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Fig. 5.20 Comparison of the workspace hull of IPAnema 1 computed by Dykstra method for
κ ∈ {2, 5, 100, 100000}. Iteration depth is reduced to 4 for the sake of clarity in the pictures

Table 5.4 Volume V (W CO) of the constant orientation workspace with R = I of the IPAnema 1
robot computed with Dykstra method for different cable force limits

fmin (N) fmax (N) Volume V (W)
(m3)

Relative volume
(%)

Description

0 ∞ 21.99 100 Wrench-closure
workspace

10 180 13.28 60.4 IPAnema 1 with
dynamics
gearbox

100 720 7.45 33.9 IPAnema 1 with
payload gearbox

40.6 180 4.25 19.3 IPAnema 1 with
eigenfrequency
limits

1 10 9.67 44.0 Reference force
settings κ = 10
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When considering the workspace of a loaded robot, care must be taken of how the
workspace is defined. By applying a load, the workspace is also translated in the
direction of the load, eventually leading to a suspended robot configuration. This can
be easily understood when comparing the cable robot with a crane. If the applied
forces are in negative z-direction right below the center of the robot frame, the cables
share the load and are therefore able to withstand quite high forces. At the same time,
the workspace degenerates to a long tube under the frame. Measuring the volume
of the workspace creates irritating results since workspace volume is added without
practical usage.

In the analysis presented in Fig. 5.21, only the part of the workspace inside the
robot’s frame is considered to make the changes in size and shape of the workspace
evident. For 25% load, there is little effect on the size of theworkspace. For 50% load,
the workspace is already translated greatly in the direction of the acting force. Still,
an acceptable volume remains inside the robot frame. At 100% load, the workspace
hardly reaches the center of the robot frame. Therefore, only very few poses in the
center of the workspace are able to withstand both plus and minus 100% of the
maximum cable force in z. For even higher forces, some workspace remains on the
very border of the robot framebut there is little connection to the unloadedworkspace.
When thinking about applications, this can cause problems because the robot might
not be able to reach a working position as long as it is not loaded. However, at the
same time, these effects make suspended robots effective.

When loading the platform with a torque, the deformation is quite different from
the effect of forces. In Fig. 5.22, the results of different torques Mz on the cross
sections of the IPAnema 1 constant orientation workspace are depicted. The maxi-
mum torque that leaves a very small region of the workspace is Mz = 0.8Nm. An
interesting effect occurs for smaller torques in the interval Mz ∈ [0; 0.2]Nm: Here,
we can observe an increase in the size of the workspace at the corners (top right,
bottom left) of the workspace before higher torques shrink the workspace towards
the center of the robot’s frame. For the two other corners, we observe at the same
time a continuous decrease in the size of the workspace.

After loading single forces and torques to the platform, we study the influence
of available net wrenches. In this case, the platform has to provide every wrench
from a given set. Only if all wrenches are feasible, the pose is said to belong to the
workspace. This can be understood as an intersection of all workspaces computed
for each wrench within the set. As shown by Bouchard [62], it is possible to verify if
an ellipsoid with possible platform forces is fully enclosed by the available wrench
set. In Fig. 5.23, the workspace for an ellipsoid with its main half-axis of length
[ fa, fa, fa] and a torque τ = 0 is shown. More precisely, the wrench setQ is given
by

Q =
{

wP =
(
f P
τ P

)
∈ IR6

∣∣∣∣

(
fx
fa

)2

+
(

fy
fa

)2

+
(

fz
fa

)2

≤ 1, τ = 0

}

(5.97)
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Fig. 5.21 Cross section of the constant orientation workspace of IPAnema 1 computed by Dykstra
method for fz ∈ {0, 25, 50, 100, 150, 200}% of fmax
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Fig. 5.22 Cross sections in y-direction of the constant orientation workspace of IPAnema 1 com-
puted with Dykstra method for My ∈ {0, 0.05, 0.1, 0.2, . . . , 0.8}Nm

where fa is the half-axis of the ellipsoid. Comparing the workspace with its coun-
terpart of loading the robot with a single direction, a large limitation becomes clear.
If the load direction is known and constant, e.g. because it is caused by the mass of
the platform, the workspace has a reasonable size. In contrast, if the forces may act
in arbitrary direction, the motion capabilities of the robot are significantly reduced.
When loading the robot with 10% of the maximum cable force in any direction, the
volume of the workspace is reduced to 67%, for 20% fmax only 47% volume remain,
and for 50% fmax only 14% of the workspace is available. Loading the robot with the
full cable forces is only possible at the very center of the workspace.

We find a similar situation when we consider ranges for the applied torque τ P.
When loading the platform with an arbitrary torque in the set

Q =
{
wP =

(
f P
τ P

)
∈ IR6

∣∣∣∣ f P = 0, τ 2
x + τ 2

y + τ 2
z ≤ τ 2

a

}
, (5.98)

one receives the workspace shown in Fig. 5.23. Finally, we analyze the workspace
for a mixture of forces and torques. For fa = 2N and τa = 0.1Nm, the workspace
shown in Fig. 5.24 is possible for the IPAnema 1 robot.

5.7.3 Platform Orientation

The influence of the mobile platform’s orientation on the constant orientation
workspace is studied for the IPAnema 1 system. Firstly, we compare the size and
shape of the constant orientationworkspaceW CO for different orientations (Figs. 5.25
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Fig. 5.23 Workspace for different available wrench setsQ of the IPAnema 1 robot where fa is the
half-axis of the force ellipsoid and τa is the half-axis of the torque ellipsoid
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Fig. 5.24 Workspace of the
IPAnema 1 robot for an
available wrench sets defined
by fa = 2N, τa = 0.1Nm.
The volume of the workspace
is V (W) = 3.47m3
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and 5.26). The Dykstra method is used for the evaluation to check feasibility. The
recursive subdivision depth nT for the surface is three iterations leading to 258 ver-
tices. One can see that the volume V of the constant orientation workspace slightly
decreases between 0◦ and 10◦. For larger rotation angles α, β, there is a significant
reduction in the size of the workspace. For angles larger than 20◦, the workspace
almost vanishes. At least it is so small and thin that it cannot be used in practical
applications.

In Fig. 5.26, the volume and surface of the constant orientationworkspaceW CO(R)

for R = RX(α)RY(β) is mapped over the rotation angles α and β in the range from
0◦ to 10◦. The recursive subdivision depth is nT = 3 and the Dykstra method is used
for the wrench-feasibility test. As expected from plots of the workspace, there is a
rapid decrease in the volume of the workspace when the platform is tilted.

We consider the total orientation workspaceW TO, i.e. all poses that can be reached
with all orientations in a given setR. Thisworkspace is the intersection of the constant
orientation workspace for every orientation in the orientation set R. Figure 5.27
shows the total orientation workspace for the given orientation sets.

In Fig. 5.28, a cross section plot with a rough estimate of the volume of the
orientation workspace is plotted over an xy cross section. The plot is computed for
closed-form wrench-feasibility with fi ∈ [ fmin; fmax] = [1; 10]N and no applied
wrench wP = 0. The volume is mapped from the span of the possible orientation
range when performing pure rotations about x-, y-, and z-axis. The plot does not take
into account poses where the orientation R = I does not belong to the workspace.

5.7.4 Computation Method for Force Distribution

Here, different methods for computing thewrench-feasible workspace are compared.
As already pointed out in Sect. 3.3, the region of convergency is a property of a force
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Fig. 5.25 Comparison of the constant orientation workspace W CO of IPAnema 1 for different
orientations R of the platform
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Fig. 5.26 Volume V (W CO)

of the constant orientation
workspace for different
orientations
R = RX(α)RY(β) of the
mobile platform

Fig. 5.27 Wrench-feasible
total orientation workspace
of the IPAnema 1 robot
computed with the Dykstra
method for R =
{R ∈ SO3 |R = RX(α)

RY(β), |α|, |β| < 5◦}

Fig. 5.28 Rough estimation
of the volume of the
orientation workspace. The
diagram shows an xy cross
section with z = 1m for the
robot IPAnema 1
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distribution method. To compare the closed-form method with the Dykstra method,
the following workspace problem is considered. The geometry of the robot is taken
from the nominal parameters of the IPAnema 1 robot (see Table 9.1). The wrench-
feasible constant orientation workspace W CO with R = I is computed for the cable
force limits fmin = 1N and fmax = 10N and an applied wrench wP = 0. We obtained
the results shown in Table 5.5. From the numbers in the table, we can see that the
largestworkspace is receivedwithDykstramethod,wrench setmethod, and advanced
closed-formmethod. The first and secondmethod are low but reliable while the latter
delivers its results quicker. The best computational times can be achieved with the
closed-form methods, however, the workspace obtained is significantly smaller. For
the case study in the table, only 60% of the workspace volume is found with the
closed-form method. Contrary, the closed-form solution outperforms the Dykstra
method in terms of computational time by a factor of more than 30.

Table 5.5 Results from the workspace computation with different methods for the IPAnema 1
robot. The used computer is an Intel Core i5-2520M, 2.50 GHz (single threaded). The workspace
is computed through hull triangulation with 2048 triangles and 1026 vertices

Dykstra closed-form Advanced
closed-form

Quadratic
programming

Wrench set

Computation
time [s]

3.2 0.092 0.158 3.126 10.029

Volume V
[m3]

9.671 5.795 9.658 9.590 9.671

Surface S
[m3]

24.716 17.899 24.729 24.675 24.717

Illustration Figure5.29a Figure5.29b N/A N/A N/A
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(a) Dykstra method (b) closed-form method

Fig. 5.29 Hull of the constant orientationworkspace of the IPAnema1 robot computedwithDykstra
method (left) and closed-form method (right)
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5.7.5 Differential Hull Studies

In this section, a case study of the use of the differential hull approach is presented.
The case study is based on the IPAnema 1 robot and the differential hull is computed
for the partial derivations of the workspace hull for changes in the x-component of
the first proximal anchor point a1. Using the differential hull, the change in shape
and size of the workspace can be determined. Therefore, the algorithm computes a
finite difference approximation for the differential

d = ∂W(a1X)

∂a1X
(5.99)

where the differences are actually generated as differences in each vertex dvi of
the hull. The results of such a computation are visualized in Fig. 5.30. Red lines in
the diagrams indicate regions with positive values of the derivatives dvi and thus a
growth in the workspace. In contrast, blue lines represent negative derivatives which
correlate with a local decrease in workspace volume. In Fig. 5.30b, the same results
are shown in order to highlight the region with negative derivatives that are occluded
by the hull in the left plot since the negative derivatives are pointing inwards from
the surface of the workspace. To compute the hull, the threshold for the line search
is ε = 10−6 and the finite difference in a1X was Δa1X = 10−3. The absolute values
of the finite differences range between −0.001418 and 0.001277 which indicates at
maximuma one-to-one relation between the changes in the geometry and the changes
in the workspace.

The computation of the differential hull is very fast; the determination of the case
study took around 30ms on a Core i5-3320M with 2.6 GHz. Therefore, all partial

(a) hull visible (b) hull invisible

Fig. 5.30 Differential hull of the constant orientation workspace W CO of the IPAnema 1 robot
computed with closed-form method for a finite difference in the x-component of the first proximal
anchor point aiX. The magnitude of the differences is amplified to make the effect of the change
visible. (a) The plot shows the hull with the normal lines indicating magnitude and sign of the finite
difference. (b) The same analysis but with an invisible hull
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Fig. 5.31 Areas of possible cable-cable interference (red) for the constant orientation workspace
of the IPAnema 1 robot. The robot geometry (blue) is sketched in the center of the plot for better
reference to the geometric relations

derivatives of the workspace volume, surface, and bounding box can be determined
in less than one second making the evaluation of these differences an interesting tool
for the design of robots.

5.7.6 Cable–Cable Interference

The regions of possible cable-cable interference is depicted in Fig. 5.31. The region
is computed with the algorithm from Perreault [381]. As one can see from the plot,
the IPAnema 1 is unaffected by cable-cable interference. All triangles are pointing
outward from the machine frame (marked as blue rectangle in the plot) which indi-
cates that cable-cable interferences are not an issue for this robot. The computation
time is very fast and, for the global intersection shown in the figure, the computation
is by far below 1ms.

One can easily compute the regions of intersection for a variety of orientations
R providing families of curves with the regions of intersection. This relates to the
effective restriction of the total orientation workspace. Here, the author refrains from
drawing a respective plot with a family of curves because little can be seen from
such a diagram. Firstly, because many overlapping faces are difficult to distinguish
without rotating or animating it and, secondly, because most of the interference areas
are grouped around the robot frame occluding the reference points Ai and Bi .
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Fig. 5.32 Constant and total
orientation workspace of a
non-rectangular planar cable
robot

constant orientation workspace WCO

total orientation workspace WTO

5.7.7 Planar Robots

In this section, we present some samples of the workspace of cable robots with
1R2T motion pattern. These robots are quite simple to study since their workspace
is a two- or three-dimensional manifold. Thus, it can be drawn without assumptions
and simplification in conventional diagrams providing an intuitive insight into size
and shape of the robot’s workspace.

In Fig. 5.32, the constant orientation workspace and the total orientation work-
space of a simple non-symmetric robot is depicted. One can see from the diagram
the counter-intuitive change in the shape of the workspace where the anchor points
A1 and A2 are moved from the corners of the rectangle towards the middle of the top
side.
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5.8 Conclusion

The workspaces of cable robots are nontrivial geometric objects. In the general
case, the workspace is a six-dimensional object in the Euclidian motion group that
is complex both to compute and to model. Introducing projections and slices of
the workspace into two and three dimensions helps to break down the complicated
concept to something that can be handled for practical applications.

In this chapter, we have discussed a couple of tools to describe and compute the
workspace of cable robots. As for other robotic devices, workspace computation of
cable robots depends on the criteria required to accept a pose. For cable robots, the
main restriction in terms of workspace size and shape is the need for positive tension.
This restriction also implicitly tackles the effect of payload which is in general also
pose-dependent. The limitations on the maximum motion in terms of cable length
are less important and can be easily taken into account. Geometric restrictions such
as collisions amongst cables and between the cables and the mobile platform are
considerable limitations for the motion of the cable robot.

To describe theworkspace, differentmodels are discussed.Discretizationmethods
such as regular grids are straightforward to compute and interpret. However, grids
lack accuracy, sensitivity, and rigorous coverage. In turn, interval methods allow for
guaranteed results on regions of theworkspace. Themain pose-dependent properties,
such as wrench-feasibility, cable length, cable-cable collision, and deflection angles
on the cables, are provided for usage in continuous workspace computation without
holes. However, interval-based workspace computation is rigorous but slow. Thus,
interval methods provide reliable results when little is known a priori about the robot
design.

Some approaches for computing triangulation and algebraic curves of the bound-
ary of the workspace are proposed. Triangulation is a highly efficient tool to quickly
compute an approximation of the workspace hull and to store the data so that it
can be taken up by standard engineering tools, including CAD, for planning and
further processing. The algorithms proposed for hull computation allow for sim-
ple consideration of the constant orientation workspace, the maximum workspace,
and the total orientation workspace. All pose-dependent criteria can be employed in
the workspace hull computation. The computed hull is very accurate and sensitive
to changes in the parameters if no holes are present or the evaluation criteria are
known to be convex. A main drawback of the hull method is that it makes some
strong assumptions about the shape and also the topology of the workspace. The hull
method fails if the workspace is not simply connected or if it is not obvious to find
a starting point for the search. In contrast, it is an efficient tool to tune the design
parameters for well-understood architectures.

For fully-constrained cable robots,many important questions about theworkspace
of cable robots are understood and there are efficient algorithms to compute the
workspace of cable robots. However, many of these problems remain open when the
assumptions of the standardmodel are not fulfilled, i.e. for robots with sagging cables
or for under-constrained robots with less cables than platform degrees-of-freedom.



Chapter 6
Dynamics

Abstract This chapter deals with the dynamic modeling of cable robots. Firstly, the
system structure is presented. Then, models for the mechanical and electrical subsys-
tems are introduced. Finally, results from simulation and experimental verification
are presented.

6.1 Introduction

Cable-driven parallel robots are able to generate high velocities and accelerations
due to their very small inertia of the moving parts. Furthermore, large workspace
and high payloads are possible due to efficient force transmission through the cables.
Therefore, it is proposed by many authors to use cable robots in applications that are
huge, ultra-fast, or heavy-duty. Modeling and simulation of the dynamic behavior
allow to study such extreme scenarios quickly, with little risk, and in a cost-efficient
way. Therefore, a mechatronic model of cable robots is desirable to plan and virtually
prototype large-scale or high-dynamical robots. Further applications of the dynamic
simulation are structural and geometrical design of new robots. Dynamic simulation
is a key element in the development and optimization of control strategies such as
position control, force control as well as to test motion planning. For a complete
virtual prototyping system, other pose-dependent properties of the cable robot can
be found in chapters on kinematics and statics (Chaps. 3 and 7).

A dynamic model extends the kinematic considerations by explicitly taking into
account the influence of time on the behavior of the mechanical and also electrical
subsystems of the cable robot. In the kinematic model, we sometimes use the concept
of maximum velocities and accelerations. The origin of these limits can be found in
the dynamic model, i.e. the change rates of many quantities are limited by physical
laws. For the kinematic model, we have an input/output mapping that transfers an
input motion at certain joints or bodies into an output motion at joints or bodies.
The transfer function is based on the robot’s mechanical properties and the equations
are algebraic expressions. For parallel robots such as cable robots, we often receive
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Fig. 6.1 The four main mappings in kinematics and dynamics

implicit equations that can only be solved numerically. In Fig. 6.1, an overview of
the input-output relations of the different mappings is given.

6.1.1 Types of Dynamic Models

In the forward dynamic model, we have a mapping from input forces and torques to
the output motion of the cable robot where the motion can be described as position,
velocity, and acceleration of joints, points, or bodies. The sought forward dynamic
model of the cable robot is a system of ordinary differential equations where the
mechanical equations naturally are second order differential equations. One can use
the forward dynamic model to simulate the cable robot, i.e. to predict how it moves if
one connects it to virtual motors with given force signals. The simulation requires to
integrate the differential equations and one usually applies numerical methods such
as Runge–Kutta to solve the initial value problem.

The inverse dynamics characterizes the reversemappingwhere themotion is given
and the forces and torques that generate this motion are sought. The inverse dynamic
model consists of algebraic equations and can sometimes be computed in closed-
form. The equations are useful for system design as well as a model-based controller
in feed-forward control strategies.

6.1.2 Review of Literature

In the literature, most researchers used Newton-Euler methods and accordingly
d’Alembert’s principle or Lagrange equations of the second kind to analyze the
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dynamics of cable robots. In many papers, the dynamics of the cable robot is inves-
tigated to design, test, and optimize the control system. Some more advanced works
also try to deduce some kind of model-based controller. In contrast to kinematics
where there is a huge difference in modeling under-constrained and over-constrained
cable robots, the dynamic modeling only slightly differs. Most authors assumemass-
less and linear elastic cables. Then, the motion between the winches and the platform
becomes decoupled and one can easily determine the forces that are applied to the
mobile platform.

As one of the first, Kawamura develops a dynamic model for his cable robot
Falcon [237, 239]. It is also shown that cables with nonlinear stiffness are suitable
for stable operations of the prototype. Yamamoto and Yanai [500–502] introduce
inverse dynamics for a cable robot with movable proximal anchor points.

Beside from the dynamic effects of the platform and the cables, the drive-trains
and winch mechanics can affect the dynamic behavior of the cable robot. Gallina
[157] presents a dynamic model of a planar 2T cable robot with three and four cables
including dynamics of the electric actuators. Then, the model is used in a simulation
for the design of a PD controller. Cong [383] derives the dynamic modeling of a
planar four cable robot including the dynamics of the winch units and Newton-Euler
equations for the platform. A dynamic model and hardware-in-the-loop simulation
for an over-constrained robot taking into account elastic cables, nontrivial pulley
kinematics, and system dynamics of both actuators and the control system can be
found in [344]. As an alternative in the modeling, the dynamic model of the robots
IPAnema 3 and IPAnema 3 Mini using Lagrange equations is established by Kraus
[259] who also models friction in the pulleys including nonlinear friction and a Dahl
friction model. Based on this model, vibration is studied both in simulation and in
practice. Recently, Tempel [462] contributed a dynamic model of the cable robot
IPAnema 3.

A couple of works tackle the problem of motion planning for under-constrained
cable robots. The dynamics of under-constrained cable robots for the prototype
Cablev is used for simulation and control in [206, 306]. For the analysis of the
dynamics, it is proposed to use flatness based methods [207, 309, 524]. A similar
study presents a dynamic model and controller design [4]. As one of the first works,
Barrette [29] establishes dynamic equations in order to formulate a dynamic equi-
librium to exploit dynamic aspects of the workspace including trajectories through
regions outside of the wrench-closure and wrench-feasible workspace. Cyclic stable
trajectories are derived by Gosselin [174, 176]. Actually, no equations of motions are
set up in this context. Cunningham [105] presents dynamics and motion planning for
an under-constrained cable robot with only one cable. Korayem [251] uses Newton-
Euler equations to set up the equations of motion where the dynamic model is used to
compute the optimal trajectory to carry a payload. Fahham [137, 138, 518] derives
the equation of motion using Newton-Euler equations for an over-constrained planar
robot and transforms the differential equations to a one-dimensional path form in
order to optimize motion planning. Wang [487] uses a dynamic model for a sus-
pended robot with six cables in a RoboCrane-like configuration for motion plan-
ning. Lefrancois [284] provides the dynamic equations using Lagrange approach for
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an under-constrained robot with three degrees-of-freedom and only one cable. The
model is used for motion planning and real-time control. A dynamic model using
techniques frommulti-body systemdynamics of the cable robot Segesta is introduced
[73, 139].

Rahimi [408] presents an experimental investigation on the dynamic behavior of
an under-constrained suspended cable robot and determined settling times around
15s for point-to-point motions. Beside others, Diao and Ou [116] study hardware-in-
the-loop simulation and eigenfrequencies of a spatial cable robot with seven cables.
Zheng [525] presents dynamics and vibration analysis of the suspension systems for
wind tunnels where the eigenfrequencies are computed to be between 3.1 and 17.5Hz
for the simulation model. Bedoustani [32] uses Newton-Euler approach to derive the
equations of motion taking into account linear elastic cables and damping effects in
the cables. Then, Diao [120] provides a dynamic model to analyze both longitudinal
and transversal vibrations of the cables. Later, the simplified dynamic equations with
linearized stiffness are presented [121]. The eigenfrequencies are computed from the
generalized eigenvalue problem. This paper also reported energy distributions for the
vibrations and eigenfrequencies for different robots derived from simulations. For
the parameters used in this study, the smallest eigenfrequency is determined to be
around 20Hz. Another experimental evaluation is presented by Kraus who shows
that the dynamics of the drive-trains of the IPAnema 2 robot with cascaded motion
control can be modeled as PT1 systems with dead time [265].

Shiang [437] applies Lagrange equations of the second kind for dynamic analysis
of a 3T robot with four cables. Afshari and Meghdari [3] use Lagrange equations to
set up the equations ofmotion of aRoboCrane-type cable robot. Xianqiang [511] uses
Lagrange equations of the second kind for dynamics of a hybrid cable robot which
platform is constrained by some passive joints. Bedoustani [31] uses Lagrangian
dynamics formulation where the change in the effective cable mass is taken into
account and the author argues that the change must be taken into account for accurate
simulation.

Many authors derive and implement dynamic models in order to study and design
the controller of cable robots. A dynamic model and fuzzy control for a cable robot
with six cables is presented as model for radio telescopes [528, 530]. Du [230]
presents dynamic modeling of a cable robot for the development of a nonlinear
control scheme. Khosravi also uses Lagrange equations of the second kind to set
up the equations of motion taking into account cable elasticity for a planar cable
robot [243–245]. Then, a controller in configuration (cable) space is designed and
its stability is analyzed with Lyapunov’s second method.

The connection between the time-continuous dynamics of cable robots and the
time-discrete nature of digital control is lately addressed byMerlet [331, 334]. In this
contribution, it is conjectured that the dynamic behavior of cable robots is heavily
influenced by high frequency effects in the cables which have not yet been experi-
mentally verified.

Zhang [520] presents a dynamic model based on Newton-Euler approach for a
suspended cable robot with six cables and its linearization. Aside from Newton-
Euler and Lagrange’s energy method, a suspended robot is analyzed by Ya [524]
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using Lagrange equations of the first kind where the cable constraints are introduced
as Lagrangemultipliers. Another remarkablemodeling approach is presented byPark
[380], who proposes to use a linear complementarity problem (LCP) formulation to
model the unilateral constraints imposed by the cables for dynamics. The authors
analyze tension distributions and stability based on this LCP formulation. Aref [12]
presents the dynamics of KNTU cable robot using Newton-Euler equations where
an implicit formulation with special purpose integrator is used.

Although there are a large number of commercial and free dynamic simulation
engines available, most work is presented with special purpose implementation in a
high level computer language or in a general purpose numeric tool such asMATLAB,
Scilab, or Octave. Wang [486, 487, 522] analyzes dynamics and stiffness of a planar
1R2T cable robot using the multi-body simulation systems MATLAB and ADAMS
taking elastic cables into account. Later, Tang [457] presents a dynamic analysis
of a six degrees-of-freedom robot with seven cables using ADAMS. To model the
cables with a multi-body system, each cable is approximated through ten cylinder
elements. Lately, Michelin [340] presents a dynamic simulation including an elastic
finite element cable model and pulleys of the robot CoGiRo using XDE and MAT-
LAB/Simulink. An open source framework for dynamics simulation of cable robots
is lately proposed by Lau [111].

The nontrivial dynamic effects of cables such as sagging are tackled in a few
works. Du [126, 234, 235] presents partial differential equations for sagging cables
and derives an analogous model based on lumped mass and spring-damper elements
that provide a multi-body system with ordinary differential equations for the cable
dynamics. Duan [128, 129] presents the dynamic modeling based on similar partial
differential equations for the cable for the model of the FAST telescope.

Dynamic models are applied to some application problems. Diao [117, 119]
recalls a dynamic model for workspace consideration and force distribution anal-
ysis. Notash [364] derives the inverse dynamics equations of a cable-driven serial
manipulator using Lagrange equations of the second kind. Taghirad [453] analysed
the dynamics of theLARcable robot usingNewton-Euler equationswhere an aerostat
is used and tethered to the ground by multiple cables. Liu [294, 295] uses Newton-
Euler equations to generate the equations ofmotion of a cable robot for rehabilitation.
Huang [407] presents Newton-Euler equations for an aircraft model. Oh [368, 369]
proposes a dynamic model of a cable robot with two platforms inspired by a crane
design that are both connected to the machine frame and to one another. Then, the
dynamic model is used for controller design. Later, coupled dynamics of a helicopter
and a suspended cable robot is presented [370].

Using dynamic models of cable robots is commonly spread in the literature and
centered on using the mobile platform as free floating body that is constrained by
cables. The equations of motion are established through Newton-Euler or Lagrange
methods in almost all contributions. More in-depth results on the components are
comparably rare. The cables are usually modeled as massless springs where small
papers address how to gain the physical parameters of the cables such as Young’s
modulus. Some authors extend their considerations to model winch mechanics,
pulleys including friction, and the electrodynamics of motors. Dynamic simulation
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of the cables using a finite element approach are proposed but yet lack experimental
verification. Also, hardware-in-the-loop models are considered but little is validated
to ensure the quality that is crucial to use the simulation as substitution for real
experimental work.

In the following, the system architecture and the main subsystems of cable robots
are introduced, mostly summarizing the findings from the literature. The considered
complexity of the system is such that a realistic simulation is possiblewhile achieving
real-time efficiency.

6.2 System Structure

Acable robot is amechatronic systemconsisting of amechanical part and an electrical
part (Fig. 6.2). The mechanical part includes the mobile platform that is connected
by m cables guided by pulleys to the winches. The electrical part consists of m
servo motors and position controllers. The governing numerical control is not further
modeled here. Further details on different control algorithms can be found in the
literature [259]. Its generated set-point position signal θi with i = 1, . . . ,m is used
as reference signal for the cascaded controller.

The dynamic behavior of the subsystems of a cable robot can be described by
ordinary differential equations (ODEs) of first or second order. For simulation and
numerical integration, the equivalent state space representation is obtained by trans-
forming the high order differential equations into a system of first order ordinary dif-
ferential equations. The overall system structure is shown in Fig. 6.2 with its forward
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dynamics and inverse kinematics. Furthermore, the modeled subsystems with their
associated input and output quantities are depicted.

On the electrical side, the servo motors are described by their electrodynamics
with the supply voltage u dq,i as input quantities and the measured motor currents i dq,i
and torques TM,i as output quantities. Themeasuredmotor currents are fed back to the
inner current control of the cascaded control, while the torque TM,i acts on the drum
inside the winch together with the cable force fi and therefore both are considered as
input quantities to the winchmechanics. The drum angle θ eff,i and rotary velocity θ̇ eff,i

are used as output quantities of the winch subsystem. The drum angle correlates with
the rotor angle needed for the outer position and velocity control loop. Describing
the platform pose by generalized coordinates y allows to determine the cable lengths
l and the structure matrix AT [473] by inverse kinematics. The platform motion is
determined by the cable forces f as well as by the applied force fP and torque τ P

which act on the tool center point.

6.3 Modeling of Robot Mechanics

To derive the equations of motion for the mechanical components of a cable robot,
one can use recursive Newton-Euler equations or Lagrange equations of the second
kind. Both mechanical principles are equivalent and result in equivalent equations.
However, when actually computing the equations of motion, the methods differ
in how simple they can be used to include different kinds of cable models and
subsystems into account.

In order to formulate the dynamic equations of the cable robot, one has to choose
the generalized coordinatesq. The generalized coordinates are the independent quan-
tities in the dynamic systemwhereas other states of the system depend on the general-
ized coordinates. In the field of robotics, the configuration space and the operational
space are widely used formulations.

The configuration space is given by the set of actuator variables such as the joint
angles of a serial manipulator, the cable length of a cable robot, or the length of the
struts of a parallel robot. In the configuration space, we can easily model the dynamic
properties such as inertia and damping which are directly related to the relative
motion of the actuated joints. Contrary, one has to calculate the dependent motion of
the kinematic chain including the end-effector from the joint coordinates. This can
be done efficiently and in closed-form for any serial kinematic chain. For parallel
robots, the computational effort for solving the forward kinematics is significant and
the solution is not unique. Furthermore, it might be difficult to track the numerical
solution that belongs to the configuration at hand (Chap. 4).

The operational space is given by the Cartesian coordinates of the robot’s end-
effector. Therefore, it is straightforward to formulate the equations of motion for the
platform. Given the motion of the end-effector, we have to deal with the dependent
motion of the remainder of the robot (i.e. the cables). To compute these values, one
can use inverse kinematics which can be solved efficiently in closed-form for most
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cable robots. In some cases, the calculation may even be omitted since the cables
present relatively light elements that can be neglected. The formulation in operational
space is also favorable since there is no need to distinguish between kinematically
under-constrained, fully-constrained, and over-constrained robots. The platform is
simplymodeled as a free rigid body in space onwhich a given number of cable forces
are applied to.

The proposed dynamic model is formulated in the operational space (Cartesian
space) and it employs inverse kinematics and forward dynamics which are easy to
solve and fast to compute. Based on this approach, the equations can be set up in
closed-form such that computation is basically possible in real-time. The generalized
coordinates of the platform pose are chosen as

y =
[
r
Q

]
, (6.1)

where r is the position vector with respect to the inertial frame K0 and

Q = [q0 qx qy qz︸ ︷︷ ︸
q I

]T = [q0 q I]T (6.2)

is the platform rotation described by a quaternion Q in order to avoid singularities
and to provide numerical stability. The remaining derivation uses formulas that omit
the imaginary units of the quaternion Q and handle it as ordinary four-dimensional
vector. It should be noted that quaternions have to fulfill the normalization constraint

Q2 − 1 = 0 (6.3)

if used to parameterize the rotation group SO3. The associated rotation matrix R is
derived from the quaternionQ as shown in [430]. Using the skew-symmetric matrix

q̃ =
⎡
⎣ 0 −qz qy

qz 0 −qx
−qy qx 0

⎤
⎦ (6.4)

that is associated with the cross-product. The rotation matrix R can be computed
from the quaternion Q with

R = I + 2q0q̃ + 2q̃Tq̃ . (6.5)

Furthermore, the relation between the angular velocity ω and the time derivative Q̇
of the quaternion becomes

ω = PQ̇ , (6.6)

where the transformation matrix P is
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P = 2
[−q I q0I + q̃

] ∈ IR3×4 . (6.7)

Using a parameterization of SO3 with four parameters such as quaternions intro-
duce an additional constraint which may be avoided using a three-parameter repre-
sentation such as Euler angles or roll-pitch-yaw angles. All constraint-free parame-
terizations have singularities and their numerical stability may vary. Unfortunately,
this is a general dilemma when dealing with rotations: One has to choose between
singularity-free and constraint-free formulations which either have advantages and
disadvantages over the others. Since most of the following considerations can easily
be reformulated using any parameterization, we stick to quaternion equations.

6.3.1 Mobile Platform

The mobile platform is described as a free floating rigid body without kinematic
constraints (Fig. 6.3). As shown in Sect. 3.3, the structure equations holds true for
the stationary state

0 = ATf + wP (6.8)

with the applied wrench wP = [fTP τT
P]T. In the dynamic state, the left-hand-side

depends on the motion of the mobile platform. Using Newton-Euler formulation for
the platform dynamics yields a differential algebraic equation system (DAE)1 with
six second-order differential equations, one algebraic equation, and seven unknowns
which can be written in a compact form as follows

1If we use a three-parameter representation of the rotation group, we would receive a system of
ordinary differential equations of second order instead at the cost of artificial singular configurations.
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MT ÿ − DT ẏ + gC = ATf + wP

Q2 − 1 = 0

}
. (6.9)

The matrix T is a transformation matrix with

T =
[
I 0
0 P

]
, (6.10)

where P is the transformation as defined in Eq. (6.7). The mass matrixM is given by

M =
[
mPI 0
0 IP

]
, (6.11)

where mP and IP are the mass of the mobile platform and its inertia tensor, respec-
tively. In this setting, the inertia tensor is given in the coordinates of the base frame
K0. The damping is characterized by the matrix

D =
[
D lin 0
0 D rot

]
, (6.12)

which coefficients D lin and D rot are linear and rotational damping, respectively. The
damping reflects friction of the platform in its enclosing medium as well as friction
in the cable attachment points. For cable robots moving at relatively low speed,
the friction in air is most probably negligible. But for ultra-high speed as well as
operation in thicker medium such as water, the influence of friction is significant.
Finally, the generalized centripetal and Coriolis forces are collected in the vector

gC =
[

0
IPṖq̇ I + ω̃IPω

]
. (6.13)

Deriving Eq. (6.3) twice with respect to time yields

QTQ̇ = 0 (6.14)

QTQ̈ + Q̇
2 = 0 (6.15)

and one can transform the differential-algebraic equations into a system of ordinary
differential equations of the form

⎡
⎣mPI 0

0 IPP
0 QT

⎤
⎦

︸ ︷︷ ︸
M

ÿ =
⎡
⎣D lin 0

0 D rotP
0 Q̇

T

⎤
⎦ ẏ +

[
wP + ATf − gC

0

]

︸ ︷︷ ︸
k

. (6.16)
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Fig. 6.4 Concept of
normalization for a
quaternion Q by orthogonal
projection onto the constraint
manifold C. The projection
in the figure is only a
concept in three-dimensional
space whereas quaternions
are four-dimensional objects
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Solving the linear second-order equation Mÿ = k and subsequent integration of ÿ
involves drift effects caused by differentiation of Eq. (6.3) which can be dealt with
by projecting Q and Q̇ onto the constraint manifold, respectively (Fig. 6.4). For the
quaternion Q, this orthogonal projection can be simply done by normalization

Q(k+1) = Q(k+1)
P∣∣∣∣∣∣Q(k+1)
P

∣∣∣∣∣∣
2

(6.17)

and for the derivative Q̇

Q̇
(k+1) = Q̇

(k+1)
P − Q(k+1)Q̇

(k+1)
P(

Q(k+1)
)2 Q(k+1) . (6.18)

6.3.2 Cables

The cables show different dynamic effects which depend on their length, the dynam-
ics, the material, and pretension. The following effects influence the dynamic behav-
ior of a cable:

• Elastic deformation: Due to finite stiffness of the cablematerial, the effective cable
length l eff,i depends on the cable tension fi . The stiffness of the cable can be linear
or nonlinear [239]. Damping is also caused due to friction inside the cables. Elastic
deformation occurs especially for robots with very long cables [235] and robots
with a high ratio of f min and f max admissible cable forces.

• Thermal elongation: The cable length changes depending on the temperature of
the cable, moreover magnitude of elongation depends on the cable’s material as
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well as on the temperature change. Metallic cables stretch with higher temperature
where this does not apply in general to all synthetic fibers. Some fibers, such as
carbon fiber, may also contract under increasing temperature. Thermal elongation
appears for example in outdoor applications. Aside from environmental effects,
changes in cable temperature are also induced from high friction from the winch’s
drum and its pulleys as well as thermal sources in the winches or from the process
or environment.

• Creeping: is a special form of deformation behavior of the cablematerial. For some
material such as polyethylene, creeping is a hysteresis effect causing reversible
elongation of the cable for some hours or days. Other materials show permanent
deformations. For some materials, this effect can be mitigated by racking, i.e.
pretension with a certain fraction of the breaking load for a longer time. Creeping
effects depend mostly on the material.

• Sagging: static deformation of the cable caused by the weight of the cable. This
effect is important for very large robots, for compliant cables, and for robots with
very low minimum cable forces f min [530].

• Transversal vibration: cables oscillate like the strings of a guitar causing high-
frequency changes in the effective length l eff,i and in the tension fi of the cable.
This effect is important for robots moving with high accelerations and especially
if the cable’s weightmC cannot be neglected with respect to the platform massmP.

• Longitudinal vibration: cables oscillate along their axes. For large-scale robots,
the cable material’s sonic speed can present a noticeable delay and thus reduce
the dynamic bandwidth of the cable robot. The same happens if robots shall be
actuated with ultra-high accelerations.

• Imperfect flexibility: Cables are usually modeled to have negligible bending and
torsional stiffness. Especially, cables made from steel show a finite bending stiff-
ness on small pulleys. Furthermore, hysteresis effects occur in practice when the
cable leaves the drum and the pretension is too small.

In the simplest model, cables can be understood as ideal unilateral constraint that
transmit the pulling force from the winch to the platform without delay and loss.
For this ideal model, the transmission function of the cable is given by the signum
function such that a force is transmitted if the force is positive and no force applies
to the platform if the computed force is negative. Although this approach can be
implemented straightforward, it makes simulation difficult because the transmission
function is discontinuous and shows a highly nonlinear behavior. Little additional
efforts have to be undertaken tomodel a linear elastic deformation of the cable. Beside
explicit modeling of the above-mentioned effects, some effects can be approximated
by means of characteristic lines and look-up tables.

In the following, the cable is modeled as parallel spring-damper-system with a
variable spring rate ci and damping rate di , due to the changing effective cable length
l eff,i . Eigendynamics of the cable is neglected at this point, i.e. it is assumed that the
tensile force of the cable only depends on its elongation. Thus, neither longitudinal
nor transversal vibration within the cable are taken into account. In any case, elastic
modeling of cables allows to describe the vibrations of the mobile platform.
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The standard model for the cables describes a unilateral transmission of forces,
i.e. the cables can only transmit pulling but not pushing forces. Therefore, the cable
force fi is modeled as a piecewise function that reads

fi (y, θ) =
{
ci (l eff,i (θ))Δli (y, θ) + di (l eff,i (θ))Δl̇i (y, θ) for Δli > 0

0 for Δli ≤ 0
. (6.19)

The effective initial cable length l eff,0,i = lN,i (y0) is calculated by the nominal cable
length

lN,i (y) = ‖li (y)‖2 + lR,i (y) + lG,i , (6.20)

whereas lR,i describes the cable length resting on the pulley and lG,i describes the
cable length inside the winch as shown in Fig. 6.5. With the unwound cable length
lD,i = riθi , the effective cable length reads l eff,i = l eff,0,i + lD,i and the difference
between the nominal cable lengths and the unwound cable lengths can be written as

Δli (y, θi ) = lN,i (y) − lN,i (y0) − lD,i . (6.21)

Deriving Eq. (6.21) with respect to time for i = 1, . . . ,m yields

Δl̇ = ATẏ − l̇D . (6.22)

As mentioned above, the spring coefficient of the cable is not constant, if the cable
is wound on a drum. Therefore, the effective free cable length is the basis for the
determination of the current spring constant ci . As it can be seen from Fig. 6.5, the
cable length effective for forward and inverse kinematics code can differ from the
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free cable length which has to be used to determine the stiffness of the cable. For
the kinematic code, only this part of the cable that is attached to the second pulley
is important and in practice, one calibrates the cable length such that the position
sensors refer to the length between the point Ai and Bi . Although the length of the
cable inside the winch is subject to implementation details, it is still necessary for
determination of the spring coefficient ci . Therefore, one has to take into account the
additional values given in Fig. 6.5 where most of these lengths are constant for the
IPAnema winch.

For practical computations, it is important to determine the numerical value of the
spring constant of a cable material frommeasurement. In spite of decades of research
on steel cables, it is still difficult to predict the elastic deformations of a yet unknown
cable. Instead, one has to rely on tables, such as given by Feyrer [149]. For materials
other than steel such as polyethylene, polyamide, or carbon fibers, literature values
are even more difficult to find. As an estimate, one can determine the spring constant
from the effective cross section AC and Young’s modulus EC by

ci = ECAC

li,0
, (6.23)

where li,0 is the original length of the cable. For cables with high spring constants,
one can use the measured length instead.

6.3.3 Winch Mechanics

The dynamics of thewinch unit depends on themechanical implementation.A typical
winch with a servo drive, gearbox, and drum clearly differs from a pulley mechanism
with a linear-direct drive (Fig. 6.6). In the following, we focus on winches of the first
type and including motor, gearbox, drum, and supplementary moving parts such as
guiding mechanism. In the following, we assume the cable robot has m identical
winches with identical nominal parameters such as radii and moments of inertia. It
is straightforward to use different values for each individual winch but the additional
index i is discarded in the following equations for the sake of clarity.

The mechanics of the winch is modeled as a rigid multi-body system with one
degree-of-freedom. Therefore, the equations of motion become quite simple where
the determination of exact parameters for the inertia and friction may render more
complex in practice.

The kinematic transmission in the winches depends on the gearbox ratio ν PG and
the effective radius of the drum rD. When determining the effective radius of the
drum rD, one has to take into account that the effective radius depends on both, the
diameter of the drum itself and the diameter of the current cable. If cables of different
radii are used in the winch, then the distance of the neutral fiber from the axis of
the drum changes. This effects in turn the force generated in the cable as well as the
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Fig. 6.6 Dynamic model of
the IPAnema winch with
inertia parameters and
transmission factors

IMIPGID

IS IR

IR

mG

C

B

A

hD TM TD

length and velocity of the cable. The relation between the rotation of the motor shaft
θM, and thus often also the position sensor, and the rotation of the drum θD is given
by

θD = ν PGθM . (6.24)

For the transmission between the drum and the cable, one has to take into account
the helical coiling of the cable onto the drum. This correction factor is important
since the position sensor is often integrated in the drum or into the motor. Therefore,
deviations between the perimeter and the helical sum up with each turn of the drum
and lead to a significant error in the cable length. Using the effective radius of the
drum rD and the pitch hD of the drum, the length of the cable becomes

l =
√
1 +

(
hD

2π

)2

rDθD (6.25)

and thus the overall linear transmission ratio νW is given by

l =
√
1 +

(
hD

2π

)2

rDν PG

︸ ︷︷ ︸
νW

θM . (6.26)

The winch dynamics is primarily determined by the winch mechanic’s moment of
inertia IW which can be determined by summing up the respective values of all parts
of the winch (Fig. 6.6). The moment of inertia of the winch renders
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IW = ν PG(IM + I PG) + ID + νG

(
2IS + mG

(
hD

2π

)2
)

+ 2IR , (6.27)

where IM is the moment of the motor’s rotor, I PG is the moment of inertia of the
gearbox with respect to the motor, ID is the moment of inertia of the drum, IS is the
moment of inertia for the displacement spindle,mG is the mass of the linear traveling
carriage, and IR is the moment of inertia for the pulleys. The gear ratio νG is the
transmission between the drum and linearly displaceable carriage for each pulley.

Furthermore, the dynamic behavior of thewinches depends on the frictional torque
TF( f ), which itself depends on the cable force f . With the cable force on the one
side and the motor torque TM on the other side, the drum acceleration follows with

θ̈ eff = rD f + TM + TF( f )

IW
. (6.28)

6.3.4 Lagrange Function for Platform and Cables

We have established the equations of motion using Newton-Euler methods in the
previous section. However, it is worthwhile to compute the Lagrange function con-
sisting of the kinetic and potential energy of the system as an alternative approach
for deriving the dynamic equations of the cable robot. Using the Lagrange function,
one can derive the equations of motion for the system but the Lagrange function is
also related to kinematics and statics, as we will see. Thereby, the consideration of
energy reveals some interesting links between kinematics, statics, and dynamics for
cable robots.

TheLagrangian L = T−U is the difference between the system’s potential energy
U (q) and the kinetic energy T (q, q̇), where the potential energy only depends on the
system’s configuration in terms of the current position of the generalized coordinates
q. In general, the kinetic energy is a function of both the generalized position q and
the generalized velocities q̇.

Since the cables are modeled to be elastic elements, there are two subsets of
coordinates in the system. The motion of the platform y has n degrees-of-freedom
(six in the spatial case) and for each winch one independent coordinate is contributed
to the vector �D. Thus, the generalized coordinates of the dynamic system are given
by q = [yT,�T

D ]T ∈ IRm+n .
The potential energy for a cable robot consists of the potential energy in the cables

which is modeled in the following as linear springs. The effect of the mass of the
cables is usually neglected in dynamics. To compute the potential energy in the cables,
one has to distinguish between the geometrical distance Ai Bi between the proximal
anchor points Ai and the distal anchor points Bi and the real cable length. The ideal
distance is computed from standard inverse kinematics lG = � IK(y) as a function
of the platform pose y and it is denoted by geometrical cable length. Furthermore,
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the unstretched cable connected to the motor in the winch has a length that depends
on the independent generalized coordinate of the motor �D and is denoted by the
vector lW ∈ IRm where lW is a function of the winch kinematics. For well-designed
winches, this relation is linear and depends on the drum radius, the cable radius, the
drum pitch, and the spooling unit. Then, one computes lW = νW�D from the effective
winch transmission ratio νW. In general, this relation is nonlinear, e.g. if diagonal
pull is accepted in order to compensate for the drum’s pitch or if the cable is winded
in multiple layers. For winches without cable guidance, the transmission may even
be nondeterministic adding random uncertainties to the model.

Now, let Δl = lG(y) − lW(�D) be the difference between the real cable length lW
and the geometric distance lG. According to [245, 259], the potential energy of the
cables reads

U = UP +UC = UP + 1

2
ΔlTKCΔl (6.29)

= UP + 1

2
(� IK(y) − lW(�D)

TKC(�
IK(y) − lW(�D)) , (6.30)

whereUP is the potential energy of themobile platform andUC is the potential energy
stored in the cables. The potential energy of the platform is computed from

UP = mPg r . ez , (6.31)

where for the sake of simplicity the reference point of the platform frame KP is
assumed to be at the platform’s center of gravity. The kinetic energy T of the cable
robot is

T = 1

2
ẏTM(y)ẏ + 1

2
�̇

T
DMW�̇D , (6.32)

whereM(y) is the position-dependent generalizedmassmatrix of themobile platform
and MW is a diagonal matrix with the generalized mass of the moving parts of the
drive-train. This generalized mass collects the inertia of the motor, gearbox, drum,
and respective fraction of the spooling unit as well as the mass of the inner pulleys.
All these inertia properties are lumped together in one condensed mass.

Thus, one can derive the equations of motion using the Lagrange equations of the
second kind as follows

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi i = 1, . . . , n (6.33)

and receives the equations of motion. The eigendynamics of the winch may simply
be neglected in this formulation by computing only the operational space part of the
equation and considering the motion of the winch �D as rheonomic constraint.
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Fig. 6.7 Kinematics and dynamics is coupled through energy

6.3.5 Forward Kinematics and Dynamics

The Lagrangian function L reveals a connection between kinematics and dynam-
ics (Fig. 6.7). Let the motion of the motors be the rheonomic input of the dynamic
system. For a given position of the motor shafts, the free cable length is determined
and we do the following thought experiment: An idealized controller keeps the cur-
rent position of the motors without error for a sufficiently long time. If the wrench
externally applied to the platform is constant e.g. only gravity is applied, then all
kinetic energy in the system is eventually dissipated over time due to friction and the
platform finally rests in an equilibrium pose. This pose y is only defined by locally
minimizing the potential energy U in the system. Note that the energy functional
may have multiple local minima and the one approached by the platform depends
on the initial configuration of the platform and the trajectory on which the kinetic
energy is dissipated. This implication is well in line with results from analysis of
forward kinematics that postulated multiple solutions as well the experimental result
that the platform is displaced to a neighbouring pose. As carried out in Sect. 4.3,
this minimum is exactly the sought solution of the forward kinematics. Thus, the
energy based solution of forward kinematics can be understood as the solution of the
steady state dynamic equation and we have already discussed efficient methods to
compute this equilibrium pose even under real-time requirements. Also, the Hessian
matrix H according to Eq. (4.48) can be interpreted in view of that connection. For
forward kinematics, one wants the Hessian matrix to be positive definite because
then the objective function is locally convex and the minimization problem can be
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solved numerically stable. From dynamics point of view, positive definiteness of the
Hessian matrix H is related to the stability of the pose with reaction forces push-
ing the platform into the equilibrium pose. In turn, an indefinite Hessian matrix H
indicates an instable robot pose.

In a similar way, the stiffness of the cable robot is coupled to the shape of the
potential energy vector field. One can compute the linearized stiffness from the
second order derivative of the potential energy as follows

∂2U

∂y2
= K , (6.34)

whereK is the linearized stiffnessmatrix. Clearly, if nonlinear springs are considered,
the resulting computation becomes more involved but allows to approximate more
advanced models with a linear stiffness matrix.

6.4 Modeling of Robot Electro-Mechanics

The robot’s electrical system includes the drive-trains with embedded position con-
trollers for the servo motors, the amplifiers, and the servo motors. The amplifiers
use pulse-width modulation to provide the motors with the necessary rotating three-
phase voltage. As the winches are mechatronic systems, one has to take into account
control issues for the dynamic modeling. Here, we assume a decoupled cascaded
control architecture for position control for each winch. This kind of control scheme
is used in industrial servo drives although it does not present the most recent state
of the art in drive control. For the simulation model, the amplifiers and motors are
assumed as ideal devices without dynamic behavior. An analogous model for the
drive-trains with a PT1 behavior with decay is proposed by Kraus [259, 265] for the
whole drive-train.

The permanent magnet synchronous motors are modeled as simplified motors
without damping windings, iron loss, and with symmetrical star-connected motor
windings (see Fig. 6.8). To realize field-orientated control, the electrodynamics dif-
ferential equations are transformed from the stator’s three phase system into a two
phase rotor fix frame using Clarke and Park transformation [152]. Introducing the

Fig. 6.8 Equivalent circuit
diagram of a servo motor
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Fig. 6.9 Model of the electric servo motor

winding resistance R12 and the flux linkage ψ dq, the voltage differential equation
respective the dq-frame (Fig. 6.9) reads

ψ̇ dq = u dq,i − R12i dq,i − θ̇ eff,iT Iψ dq , (6.35)

where u dq,i describes the input voltage controlled by the upstream cascaded control
and the matrix T I is defined as

T I =
[
0 −1
1 0

]
. (6.36)

The motor current
i dq,i = L−1

12

(
ψ dq − ψR, dq

)
(6.37)

is used for the inner current control loop, where L12 is the winding inductance and
ψR, dq is the rotor flux linkage caused by the permanent magnets. Considering the
pole pair number ZP, the motor torque is obtained by

TM,i = 3

2
ZP

(
T Iψ dq

)
i dq,i . (6.38)

The position control calculates the reference value for the downstream velocity con-
trol by the set-point θi and the effective angle θ eff,i using the controller amplification
kθ

θ̇ref,i = kθ

(
θi − θ eff,i

)
. (6.39)

For the velocity control loop, a proportional-integral controller with an amplification
of kθ̇ and a time constant kT θ̇ is used. Calculation of the control deviation

Δθ̇i = θ̇ref,i − θ̇ eff,i (6.40)
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leads to the desired motor current

i dq,ref,i =
[

0
kθ̇

(
Δθ̇i + kT θ̇

−1Δθi
)
]

. (6.41)

The reference value for the d-axis is set to zero, since amotor current along the d-axis
has no influence on the motor torque. As with the velocity, the current is controlled
by a proportional-integral controller with an amplification of k dq, a time constant
k Tdq, and the control deviation

Δi dq,i = i dq,ref,i − i dq, eff,i (6.42)

yielding the supply voltage

u dq,i =
[
k D

(
Δi D,i

) + k−1
Td

∫
Δi D,i dt

k Q

(
Δi Q,i

) + k−1
Tq

∫
Δi Q,i dt

]
. (6.43)

6.5 Implementation and Validation

For the validation experiments, the cable-driven parallel robot IPAnema 1.5 is used
which provides a six degrees-of-freedom end-effector with seven or eight cables
and focuses on industrial applications in the field of material handling (Fig. 6.10).

Fig. 6.10 Experimental setup of the cable robot IPAnema 1.5 with eight cables
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Table 6.1 Measured IPAnema 1.5 geometrical parameters used for the validation of the dynamic
model: base vectors ai and mobile platform vectors bi
Cable i Base vector ai [m] Platform vector bi [m]

1 [−1.537, 1.664, 1.172]T [−0.05, 0.05,−0.05]T
2 [1.424, 1.745, 1.163]T [0.05, 0.05,−0.05]T
3 [1.493,−1.573, 1.153]T [0.05,−0.05,−0.05]T
4 [−1.474,−1.660, 1.159]T [−0.05,−0.05,−0.05]T
5 [−2.054, 1.197,−0.601]T [−0.05, 0.05, 0.05]T
6 [1.977, 1.343,−0.613]T [0.05, 0.05, 0.05]T
7 [2.049,−1.166,−0.618]T [0.05,−0.05, 0.05]T
8 [−1.975,−1.225,−0.609]T [−0.05,−0.05, 0.05]T

Table 6.2 Parameters of the dynamic model for the robot IPAnema 1.5

Parameter Symbol Value Unit

Rotor moment of inertia IM 2.8 · 10−4 kgm2

Planetary gear moment of inertia I PG 2.63 · 10−4 kgm2

Threaded spindle moment of inertia IS 2.29 · 10−4 kgm2

Drum moment of inertia ID 67.42 · 10−4 kgm2

Pulley moment of inertia IR 0.06 · 10−4 kgm2

Threaded spindle pitch hS 0.004 m

Mass of pulley carriage mC 0.8 kg

Planetary gear transmission ratio ν PG 3 -

Gear transmission ratio νG 2 -

Effective drum radius for cable with r = 1.5 mm rD 0.0479 m

Winch moment of inertia IW 88.54 · 10−4 kgm2

Platform mass mP 2.676 kg

Platform tensor of inertia about x-axis I(xx)P 0.0261 kgm2

Platform tensor of inertia about y-axis I(yy)P 0.0268 kgm2

Platform tensor of inertia about z-axis I(zz)P 0.0073 kgm2

Spring rate of the cable at length 5.037 m cref 9644 N/m

Damping coefficient dref 8000 Ns/m

The geometrical parameters of this robot are given in Table6.1 and the parameter
values for the dynamic modeling are given in Table6.2. The values for the electri-
cal subsystem can be found in Table6.3. The winches are equipped with permanent
magnet synchronous motors IndraDyn S by Bosch-Rexroth. The control system is
based on the PC-based real-time extension RTX and an adopted NC-controller by
ISG (Stuttgart, Germany). For the hardware-in-the-loop simulation, the interpola-
tion cycle time is 2ms. A more detailed description of this cable robot is given in
Sect. 9.3.1.
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Table 6.3 Parameters of the electrical model for the robot IPAnema 1.5 using servo drives by
Bosch-Rexroth of type MSK050B-0600 and appropriate inverters

Parameter Symbol Value Unit

Torsional constant kM 0.90 Nm/A

Voltage constant kU,1000 55.0 V/min

Winding resistance R12 3.3 �

Winding inductance L12 19.90 mH

Pole pairs ZP 4 -
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Fig. 6.11 Two-dimensional view of platform trajectories obtained by simulation (dotted line) and
measurement (solid line)

The model is implemented by the use of Simulink and MATLAB, whereas each
subsystem is modeled individually and connected as indicated in Fig. 6.2. For real-
time simulation, the real-time coder of Simulink is used to generate source and
header files, which provide public functions to access the simulation model. The
programming languages C and C++ can be chosen. Embedding the simulation model
in the RTX real-time environment is straightforward and can be done by including
the header files in a main program which calls the simulation function. To integrate
the system at runtime, a fourth order Runge-Kutta method is employed with fixed
time step size.

Validation of the robot model is done by comparison of the actual platform tra-
jectory with a simulated trajectory using a Leica Absolute Tracker AT901-MR for
position determination with a sample rate of 1ms and an accuracy of 0.025mm.
Figure6.11 shows the measured and simulated circular trajectory respective the xy-
and xz-plane with a maximum diameter of 600mm and a velocity of 0.9m/s while
Fig. 6.12 shows the platform movement in direction of the x-axis with respect to
time. The maximum positional deviation of the simulated trajectory respective the
measured trajectory amounts to 5mm for the movement in the xy-plane and 9mm
for the xz-plane. Thus, the accuracy of the simulation is the order of magnitude of
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Fig. 6.12 Comparison of the simulated (dotted line) and measured (solid line) platform motion in
direction of the x-, y-, z-axis with respect to time

the absolute accuracy of the robot (see also Sect. 9.3.1.4). The motor’s internal cur-
rent sensor is used to obtain the motor torque for comparison against the simulated
torque with a sample rate of 1ms (Fig. 6.13). The difference between simulation
and measurement may result from the uncertain initial cable tension, the neglected
compliance of the robot frame, and subsidence of cable and winch mechanics.
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Fig. 6.13 Comparison of the simulated (dotted line) and measured (solid line) servo motor torque
for axis 1–5 with respect to time

6.6 Conclusions

In this chapter, the dynamic model for cable robots is introduced. The model consists
of themechanical subsystems taking into account platformdynamics, cable elasticity,
and mechanical winch dynamics. The equations of motion are set up using Newton-
Euler and Lagrangian method. Furthermore, the characteristics of the motors and
controllers are introduced andmodeled in a simple but efficient way. The comparison
between simulation results andmeasurements with the IPAnema 1.5 prototype shows
good agreement. Thus, suchmodel can be used in similar settings to plan and validate
new geometries for cable robots as well as to design force-control.

The model structure for motors and control seems appropriate to be used for
models of different scale. When using the electric model for robots with a very high
system dynamics, the simplification in the motors and the controller may lead to
increasing errors in the simulation.
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Contrarily, for the mechanical model of the robot, it is expected that it is also
valid for high velocities and accelerations. When scaling up the size of the robot,
it is expected that the cable model is the weakness because it does not take into
account large-scale effects such as sagging and geometrically large vibrations. Here,
the cable is introduced as stateless system without dynamic behavior.

An open problem in dynamic simulation is to account for a realistic cable model
under dynamic loads. As shown in the next chapter, the steady-state cable models
such as the well-known Irvine model can be employed in kinematics and statics.
However, one can observe a swaying motion of the sagging cable when the platform
is laterally accelerated. Currently, no efficient models are available to simulate this
behavior. Also, wave-formedmotion of the cables are not captured by current models
and certainly require the introduction of multiple elastic degrees-of-freedom for the
cable. Thus, new formulations are sought to cope with these effects.



Chapter 7
Kinematics with Nonstandard Cable
Models

Abstract In this chapter, we deal with the extension of the standard kinematicmodel
by taking realistic assumptions for the cables into account. Themodeling of nontrivial
winch kinematics with guiding pulleys is addressed in Sect. 7.2. The consideration
of cable mass leads to sagging (Sect. 7.3) and the finite stiffness of the cables causes
elastic effects in the cables (Sect. 7.4).

7.1 Introduction

The standard kinematic model for cable robots is discussed in detail in the previous
chapters. Applying the respective kinematics code to the controller enables oper-
ation of the cable robots. However, different maneuvers of the robots such as fast
motion, poses at the boundary of the workspace, or very large robots show significant
deviations from the expected behavior of the standard model. Typical discrepancies
include positioning errors, insufficient stiffness, vibration, and slack cables. Clearly,
the foundation of the standard model comprises a couple of assumptions that are vio-
lated in practice. The assumptions made for the standard model are stated explicitly
in Sect. 3.1.2. Therefore, a natural line of action is to include some of the neglected
effects in the model in order to receive advanced models.

The scope of this chapter is to partly extend the standard model towards more
realistic but also more involved effects. We have to clearly state that some of the
effects are still subject to recent research and are either not fully understoodor no tools
are available to deal with the mathematical problems unveiled so far. Furthermore,
the state of the art beyond the standard model is less structured. Many separate
approaches are presented e.g. to deal with elasticity in inverse kinematics where
no consolidated model is considered that is applicable to other problems such as
singularities, workspace, etc. Also, the cross relation between many of the effects
has not yet been unveiled. Approaches to deal with elastic cables, sagging cables,
pulley kinematics, and under-constrained robots have been presented in the literature.

© Springer International Publishing AG, part of Springer Nature 2018
A. Pott, Cable-Driven Parallel Robots, Springer Tracts in Advanced
Robotics 120, https://doi.org/10.1007/978-3-319-76138-1_7
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Fig. 7.1 External guiding pulley used with IPAnema 3 robot (side and isometric)

However, the approaches cannot be combined and it is an open issue how to deal
with under-constrained robots that use pulley mechanisms.

This chapter is dedicated to three effects beyond the standardmodel: elastic cables,
hefty cables, and pulley kinematics. The former two effects belong to the cablemodel,
i.e. one tries to refine the understanding of the behavior of the cable where the latter
effect is a global aspect in the kinematics of cable robots where geometric behavior
of the robot is coupled to the static behavior. Elastic effects in the cable include
linear and nonlinear change of the cable length depending on the cable force as well
as creeping effects of the cable that cause length changes over longer time periods
and also caused through aging of the cable.

Amodel of a hefty cable takes the effect of the cablemass into account. As a conse-
quence of this mass, the cable is subject to sagging and vibration. Sagging describes
the static deformation of the cable under gravity while vibration is a dynamic effect
causing reference elements in the cable to perform oscillations in the direction of the
cable (longitudinal vibration) and orthogonal to the direction of the cable (transversal
vibration).

Finally, real cables have a finite bending stiffness and thus cannot be bent sharply.
Therefore, cables are guided over curved surfaces typically realized by pulleys
(Fig. 7.1). These additional geometric constraints aremostly effective at the proximal
end of the cable and disturb the kinematic behavior of the robot. Thus, kinematic
transformations are sought to take into account the curved form of the cable at the
anchor points.

An under-constrained cable robot is a structure where the number of cables is less
than the degrees-of-freedom of the end-effector. When suspending a load with less
than six cables, the load finally rests at a certain pose. The underlying problem is no
longer purely geometric since the stability of the static equilibrium now has a direct
impact on the motion of the platform.

It is out of the scope of this work and hardly addressed in the literature what is
the thermal behavior of cable robots, how elasticity of the machine frame and the
mobile platform affect the motion of the robot.

Comparing the standard model with the advanced cable models leads to the prob-
lem of considering what really happens with a cable robot. One has to recall that
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every model is a simplification of the real physical behavior. From an engineering
point of view, a model should be as simple as possible and as complex as required
– and no more. A model of the cable or of the entire cable robot always has some
limitations. A goodmodel makes clear what effects have been taken into account and
what simplifications have been made. Care must be taken when a model predicts yet
unobserved effects. In this case, it is crucial to perform an experimental validation
to distinguish modeling artifacts from relevant system properties.

The development of advanced models targets at a more accurate description of
the behavior of the cable robot where the final goal is often related to increasing
the accuracy of the robot. However, one will favor a simple model over a complex
one if the gain in accuracy is not useful in the context of an application. There is no
intrinsic property of a model that can tell us, howmuch the robot differs from reality.
Therefore, experiments are required to validate the quality and the applicability of
a model. In certain situations, one has to rely on simple models even if it becomes
clear that the model has some shortcomings. One may have to stick to simple models
because of limitations in the computation capacity, to fulfill real-time constraints, or
because of technical limitations of the computer system where the model should be
implemented. The latter restrictions often arise from a lack of openness in industrial
equipment. Balancing such limitations against the potential of new ideas is the core
of implementing innovative concepts.

7.2 Kinematics for Pulley Mechanisms

Cables are flexible and versatile construction elements that are used in civil engineer-
ing applications such as bridges, buildings, cablecars, and elevators. Nevertheless,
there are important design rules when using cables that have to be taken into account
such as minimum feasible bending radius and applicable dynamic loads. Therefore,
one has to integrate elements such as pulleys to allow for acceptable durability as
well as safety. Although mostly neglected in theoretical studies, almost every cable
robot uses some kind of cylindric surfaces or pulleys to guide the cables. A perfect
imitation of a spherical joint would require a sharp edge which cuts like a knife
into the cable and would be subject to wear itself. Thus, curved guiding surfaces are
necessary to achieve a reasonable lifetime of the cable and also for the guiding ele-
ment. Some researchers use almost point-shaped guidance systems such as ceramic
eyes [210] but very short operating life of only some dozen hours are reported for
such installations. Guidance systems for cables are common machine elements in
the field of transport as well as intralogistics, and mandatory design rules such as
ISO 4308-1:3003(E) [222] and F.E.M. 1.001 [145] apply for cranes. As a rule of
thumb, the radius of the pulley must be in the range between ten to twenty times the
radius of the cable. Therefore, it becomes clear that in many applications the radius
of the pulleys is relatively small but not negligible.

Only few authors have addressed the influence of guiding pulleys on the kinemat-
ics of cable-driven parallel robots. Jeong [226] already mentions the effect of pulleys
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Fig. 7.2 Serial chain as
analogous model for the
guiding pulley
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on the kinematic performance and accuracy but it seems that pulleys are not taken
into account in the proposed forward kinematics code.

Bruckmann [72] derives an inverse kinematics transformation to cope with pul-
leys. This approach is enhanced by the author [391] to provide different formulations
of the inverse pulley kinematics which are later also used in workspace computation
and for statics consideration. Furthermore, Schmidt [434] develops also forward kine-
matics code considering pulleys. The influence of pulleys is also taken into account
for the dynamic simulation of cable robots [344, 462]. Zoso presents a suspended
planar robot where the kinematic and dynamic modeling includes pulleys [534]. Von
Zitzewitz [532] proposes a kinematic model and a forward kinematics algorithm for
an over-constrained cable robot with a pulley which is slightly different from the
approach from Pott [391] and Bruckmann [72].

A notable result is presented by Gouttefarde [181, 189] who proposes a kinematic
code that allows to take into account both the effect of pulleys and sagging of the
cables in inverse kinematics.

A remarkable paper related to steel cables guided on pulleys is published by Lu
[499]who analyzes the bending stiffness of cables and their capability to drive a drum
or pulley when wrapped around it. Kraus [260] considered, aside from the kinematic
influence, also the friction effects in the pulleys using Coulomb and Dahl friction
models and showed that pulleys considerably contribute to the energetic efficiency
of cable robots. Some considerations are already discussed in Sect. 3.4.5 related
to pretensioning and wrapping the cable around the pulley and to drive the pulley
without slip.

Lately, Gonzalez-Rodriguez [167] reconsidered the effect of pulleys for planar
robots and proposes a robot design using pulleys both on the proximal and distal
anchor points. When considering the resulting kinematic chain, the deviation intro-
duced through a single pulley is eventually canceled.
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Fig. 7.3 Definition of coordinate frame KA and variables for pulley kinematics

Guiding pulleys compromise the need for a feasible bending radius to prevent
damaging and to achieve a kinematically well-defined behavior that can be modeled
with acceptable efforts. In the standard model, simple constraints arise from the
assumption of a fixed point for the proximal cable end in space. In the pulley model,
the point is constrained to a horn torus, i.e. a torus with equal minor and major radii
rR. This also allows to define an equivalent multi-body kinematic chain with an RRP
(Fig. 7.2) where R represents a revolute joint and P stands for a prismatic joint. The
modelingwith standard kinematic software is involved since the length of the cable is
distributed amongst the rotation of the second revolute joint that mimics the rotation
of the pulley and the prismatic joint that represents the cable length after leaving the
pulley.

The parameters and coordinate frame used to exactly define the kinematics and
geometry of a guiding pulley on the winch are depicted in Fig. 7.3. In the remainder
of this section, we omit the index i for the reference points, frames, angles, and
lengths for the sake of clarity. The equations hold true for all legs of the robot. The
pulley kinematics realize a two degrees-of-freedom motion of the virtual point C
where the cable leaves the pulley. The first revolute joint is aligned with the z-axis of
frame KA to pan the pulley. The second revolute joint is the pulley itself and its joint
axis is initially aligned with the y-axis of frameKA. The center of the second rotation
is located at point M . The distance between the two joint axes is the effective radius
rR and it is assumed that the two joint axes are perpendicular to each other.

The fixed point A in the origin of the coordinate frame KA is the characteristic
point of the pulley kinematics and both its position a as well as its orientation RA

are considered to be given as design parameters. The cable coming from the winch
arrives at the pulley at point A and wraps around the pulley with an effective radius
rR, i.e. the radius that applies to the neutral fiber in the center of the cable. In the
following, we assume that rR is the effective radius, i.e. the radius resulting from
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both the actual radius of the pulley and the radius of the cable.1 In general, the actual
radius of the pulley groove is smaller than rR. Note that this holds true only if the
geometric profile of the pulley and the radius of the cable match perfectly. The cable
leaves the pulley at point C and the angle between point A and C is denoted by βR.
The coiling of the cable is only stable if 0 < βR < π . In its initial position, the
pulley is located in the xz-plane of frame KA. The initial position is defined as the
orientation of the pulley mechanisms so that its mechanical design works perfectly
and the feasible rotation about z-axis is equal in positive and negative direction. In
the initial position, βR is measured in positive direction about the y-axis of KA.

In Fig. 7.3b, one can see the rotated pulley. The panning angle of the rotation is
denoted by γR and is taken in positive direction about the z-axis of frame KA. The
exact definition of the angles βR and γR with respect to KA is crucial for both the
formulation of the kinematic codes and the consideration of collisions between the
cable and the pulley mechanism. The orientation of KA is expressed by the rotation
matrix RA and it is a design parameter of the whole robot since it is not trivial to
build pulley mechanisms that allow for large deflection of the cables. Furthermore,
a pulley mechanism cannot be exited in arbitrary direction making the orientation of
the installation relevant. If the angle βR is smaller than a certain threshold, the cable
is at risk of uncontrollably leaving the pulley and will be severely damaged from
friction with the housing. Selecting a proper pulley geometry is subject to the design
procedure of the robot while the initial orientation of it needs to be carefully chosen
to avoid restrictions from collisions in the pulley kinematics.

Similar to the proximal pulley, we define a coordinate frame on the platform
(Fig. 7.4). Here, we have a frameKB that is located at the distal end B of the cable. The
z-axis of frame KB defines the initial orientation of the cable guidance mechanisms
on the platform. Therefore, one can easily define the deflection angle of the platform.
Once again, this angle is important for the consideration of collisions between the
cable and the platform. Thus, the orientationKB becomes a design parameter as well.
The design aspects to determine good orientations for the proximal and distal frames
is addressed in Chap.8. If an universal joint is used at the distal end of the cable, the
x- and y-axis of the frameKB correspond to the first and second axis of the universal
joint. If a swivel bolt is used, the first axis of the swivel bolt is aligned with the z-axis
of KB.

On the platform, one can use guiding surfaces instead of pulleys since the cable
undergoes no motion in its longitudinal direction. Therefore, a horn can be used to
fix the cable (Fig. 7.5). The reference point bi is located at the bottleneck between the
circular guiding surfaces. This kind of fixture on the platform is favorable especially
for planar robots. The geometry is generalized to the spatial case by using a toroidal
surface similar to the eyelets used on the proximal anchor points. Although the cable

1To be precise, one has to also take into account that the cross section of the cable is deformed under
tension. This effect is especially significant for synthetic fiber cables and if the profile of the pulley
groove does not exactly match the diameter of the cable. The kinematic impact of ovalization of
the cable on the drum is analyzed by Schmidt [435] when the cable is coiled onto the drum under
changing tension. We neglect this effect in the following.
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Fig. 7.4 Definition of the
coordinate frame KB on the
mobile platform
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Fig. 7.5 Cable guidance on curved surfaces on the mobile platform

end is fixed inside the platform, there still occurs some slip between the guiding
surface and the cable leading to wear on the cable.

7.2.1 Inverse Kinematics

Using the definitions of the local frame KA, one can derive the kinematic equations
in closed-form as follows [391]: Firstly, one has to compute the vector to the point B
with respect to frame KA, where frame KA shall be both the origin and the reference
frame for the vector. One finds

Ab = RT
A (R

Pb + r − a) , (7.1)



262 7 Kinematics with Nonstandard Cable Models

R

z

xy

B

bz

bxyM

rR

2

1 KP

K0

KA
D

C r R

Pb

lF

u

Fig. 7.6 Kinematics of the pulley mechanism in the plane defined by z-axis of KA and the distal
anchor point B

where Ab = [bx , by, bz]T is the vector from point A to point B in frame KA and Pb
is the vector to point B with respect to the end-effector frame KP. Then, one has to
consider the plane defined by the z-axis of frameKA and the point b which is shown
in Fig. 7.6. The corrected cable length taking into account the cable wrapped around
the pulley becomes

l = βRrR + lF , (7.2)

where βR is the wrapping angle around the pulley, rR is the effective pulley radius, and
lF is the free cable length from point C to point B. Considering the two right-angled
triangles in Fig. 7.6, one receives

(bxy − rR)
2 + b2z = MB

2 = l2F + r2R , (7.3)

where bxy =
√
b2x + b2y and bz are the coordinates of the point B with respect to

frame KA in a cylindrical coordinate system. Thus, the free cable length is given by

lF =
√

(bxy − rR)2 + b2z − r2R =
√
b2xy − 2bxyrR + b2z . (7.4)

To solve the inverse kinematics, one needs the angle βR which can be computed
as follows: Considering the tetragon CMDB, we find two angles to be right-angled.
Therefore, one concludes that the enclosed angle β1+β2 at point B equals the sought
complementary angle βR at point M . Using trigonometric functions yields
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βR = β1 + β2 = arccos
lF√

(bxy − rR)2 + b2z
+ arccos

bz√
(bxy − rR)2 + b2z

. (7.5)

Thus, we receive the following closed-form solution for the cable length l from
combining the equations above to

l =
⎛
⎝arccos

√
b2xy − 2bxyrR + b2z√
(bxy − rR)2 + b2z

+ arccos
bz√

(bxy − rR)2 + b2z

⎞
⎠ rR +

√
b2xy − 2bxyrR + b2z .

(7.6)
Further reduction in the computational costs can be achieved by using the addition
theorem for arccos(·). It is worthwhile tomention that one can set up similar formulas
using either arctan(·) or arcsin(·) in Eq. (7.5) as follows

βR = arcsin
rR√

(bxy − rR)2 + b2z
+ arcsin

bxy − rR√
(bxy − rR)2 + b2z

(7.7)

= arctan
rR
lF

+ arctan
bxy − rR

bz
(7.8)

where both formulations require a distinction of cases when bz changes its sign.
Using arctan(·) and the respective addition theorem gives a very compact expression
which is only valid for positive bz . The advantage of the presented formula (7.5) is
that one gets the symbolic derivative for the first-order kinematics without additional
efforts.

The first rotation angle γR of the pulley about the z-axis of frame KA is simply
computed from

γR = arctan2 (by, bx ) . (7.9)

To calculate the normal vector uR along the cable, one rotates a negative unit vector
−ez about the z-axis with the following transformation matrices

uR = −RA RZ(γR) RY(βR)ez , (7.10)

whereRY(βR) andRZ(γR) are the elementary rotation matrix about the y- and z-axis,
respectively. One receives the simple form

uR = −RA

⎡
⎣
cos(γR) sin(βR)

sin(γR) sin(βR)

cos(βR)

⎤
⎦ (7.11)

for the direction of the cable.



264 7 Kinematics with Nonstandard Cable Models

7.2.2 Structure Equation and Pulley Kinematics

Considering the force and torque equilibrium for the platform driven by a pulley
mechanism leads to the well-known definition of the structure equations of the stan-
dard model (see Sect. 3.3)

AT f + wP = 0 , (7.12)

where AT is the pose-dependent structure matrix, f is the vector of the positive cable
forces, and wP is the applied wrench at the platform. When considering a pulley
model for the robot, the basic linear structure of the equation is maintained where
one has to use a modified unit vector uR for the direction of the cables as given by
Eq. (7.10). Thus, the structure matrix AT

R for pulley kinematics becomes

AT
R =−

⎡
⎢⎢⎢⎢⎢⎢⎣

RA,1

⎡
⎣
cos(γR,1) sin(βR,1)

sin(γR,1) sin(βR,1)

cos(βR,1)

⎤
⎦ . . . RA,m

⎡
⎣
cos(γR,m) sin(βR,m)

sin(γR,m) sin(βR,m)

cos(βR,m)

⎤
⎦

b1 × RA,1

⎡
⎣
cos(γR,1) sin(βR,1)

sin(γR,1) sin(βR,1)

cos(βR,1)

⎤
⎦ . . . bm × RA,m

⎡
⎣
cos(γR,m) sin(βR,m)

sin(γR,m) sin(βR,m)

cos(βR,m)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.13)

where the definition of uR,i given by Eq. (7.10) is used and the angles βR,i , γR,i are
computed from Eqs. (7.5) and (7.9), respectively.

7.2.3 Forward Kinematics Code

The kinematic model for pulleys has an influence on the forward kinematics accord-
ing to the changed geometric relations as indicated by Eq. (7.6). In contrast to the
constraint equations received for the standard model, the model equations for pulley
kinematics are non-algebraic and all known results for the number of solutions of
the forward kinematics problem do not apply for pulley kinematics. Therefore, it
is an open problem if any and how many solutions exist. Geometric considerations
show that the constraint surface is the rotation of an Archimedean spiral (Fig. 7.7a,
b). If the radius of the pulley is small compared to the length of the cable, this spiral
(Fig. 7.7) is quite close to the spherical constraint surfaces of the standard model.
Taking into account that the cable undergoes small elastic deformations, solutions
to the geometric problem are expected and one can use similar assumptions for the
forward kinematics as described for the standard model (see Sect. 4.3).

A numerical method to compute the forward kinematics taking pulleys into
account is presented bySchmidt [434]. The following algorithmgoes along thiswork.
This iterative scheme for forward kinematics is derived from the inverse kinematics
with pulleys as given in Sect. 7.2.1. Since these extended equations are still solved
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(a) (b)

(c) (d)

Fig. 7.7 The constraints imposed by the pulley models are based on an Archimedean spiral. The
upper line shows polar plots of the Archimedean spiral for small (a) and large (b) cable length and
the resulting constraint surface for small and large cable length. The lower line shows the respective
constraint surface for forward kinematics for short (c) and long (d) cables

in closed-form, one can apply the approach for forward kinematics as given for the
standard model. Firstly, the inverse kinematics equations are rearranged to form a
system of implicit equations

νR,i (l, r,R) = l2R,u − l2i = 0 for i = 1, . . . ,m , (7.14)

where the inverse kinematics solutions and the given cable length are subtracted.
Secondly,we argue thatminimizing the potential energy in the cables allows to search
for a pose (r,R) so that the sum of all squared differences becomes minimal. Then,
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the objective function is

ϕ DK
R (l) = min

r,R

m∑
i

ν2
R,i (l, r,R) . (7.15)

The determination of such a minimum is computed using a Levenberg-Marquardt
method. In this setting, the formulation from Sect. 7.2.1 of a closed-form equation
of the inverse kinematics without a distinction of cases is highly favorable since it
largely simplifies the determination of the Jacobian matrix and the generation of its
kinematic code. One can use the initial guess from the interval bounding method
(Sect. 4.41) for the Levenberg-Marquardt optimizer. In contrast to the kinematic
code of the standard model, the generated C program is significantly longer. The
evaluation of the objective functions has more than 50 lines of code and the analytic
Jacobian matrix is longer than 150 lines. However, since the code is composed from
simple mathematical operations, the executing time is hardly influenced.

7.2.4 Results

The geometrical parameters of the IPAnema 1 robot used for this study are given in
Table 9.1. For this robot, the radius of the cable is rC = 0.002m and the effective
radius of the pulleys of the real robot is rR = 0.05m. All local framesKA,i of the base
anchor points Ai at the winches run parallel to the world frame K0 (see Fig. 7.8),
thus all rotation matrices are RA,i = I.

Table 7.1 Comparison of the workspace volume and surface for different radii of the pulley rR of
the IPAnema 1 robot

Pulley radius rR
[m]

Volume V [m3] Relative volume
[%]

Surface S [m2] Relative surface
[%]

0.000 5.81488 100.00 17.92656 100.00

0.001 5.81287 99.96 17.87905 99.73

0.010 5.80754 99.87 17.89538 99.83

0.025 5.79722 99.70 17.87482 99.71

0.050 5.77644 99.34 17.75667 99.05

0.150 5.68850 97.83 17.50093 97.63

0.250 5.57410 95.86 17.17330 95.80

0.350 5.42254 93.25 16.76406 93.52

0.400 5.32749 91.62 16.49955 92.04



7.2 Kinematics for Pulley Mechanisms 267

Fig. 7.8 Kinematics of the IPAnema 1 robot with guiding pulleys at the proximal anchor points

7.2.4.1 Cable Length Error

The deviation between the standard model and the pulley model for inverse kine-
matics is depicted in Fig. 7.9, where the diagrams show the difference between both
inverse kinematics codes along a trajectory for different radii rR of the pulley. One
can see that the cable length computed from the extended formula is always longer
than the standard model. This is clear because the way around the pulley is longer
than the direct connection between the points Ai Bi . The relation for the radius rR of
the pulley as well as the deviation Δl = l − lR for the kinematic models is shown in
the lower diagram (Fig. 7.9). The ratio is almost constant for the considered interval
of pulley radii rR ∈ [0.1; 0.01] m. Thus, the dependency between the additional
length of the cable and the radius of the pulley is approximately linear in this range.

7.2.4.2 Influence on Force Distribution

In this section, the difference in the force distribution that arises from the static model
is analyzed taking the guiding pulleys into account. To calculate the force distribution,
the following closed-form formula is used (see Sect. 3.7.5). For the example below,
the bounds f min = 1N, f max = 10N, are used and an external wrench wP = 0 is
applied. Figure7.10 shows the comparison for the forces f1 in cable 1 when moving
along a trajectory for different radii rR of the pulley. The differences are again in the
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Fig. 7.9 Deviation between the standard kinematic model and the pulley model for different radii
rR of the pulley in cable 1. The upper diagram shows the absolute difference where the low diagram
shows the ratio between difference and radius of the pulley

range of some percentage and the magnitude of the difference is linear for typical
sizes of the pulleys. For the practical use in force control, the influence is assumed
to be less important since the error in the cable forces is of the same magnitude as
the measurement error caused from typical force sensors.

7.2.4.3 Deviations of the Workspace

In this section, the influence of the pulleys on the size and shape of the workspace
is studied. To compare the results from the workspace calculation with and without
pulleys, we use the triangulation of the workspace’s hull (see Sect. 5.5.1). Although
the triangulation lacks the verified nature of interval computations [182], it can be
computed with high accuracy at moderate computational times of some seconds.



7.2 Kinematics for Pulley Mechanisms 269

Fig. 7.10 Deviation between the standard kinematic model and the pulley model for the forces
f1. The upper diagram shows the absolute cable forces in cable 1 for a pulley radius of rR =
{0, 0.01, 0.025, 0.05, 0.1}m where the lower diagram shows the difference between the standard
model and different radii of the pulley

This improved sensitivity to small changes in the geometry makes it feasible for
the comparison here. This accuracy allows to measure in detail the influence of the
design variables (geometry of platform and machine frame) or technical parameters
such as minimum and maximum cable force.

To study the influence of pulleys and especially the influence of radius rR on
the workspace, the hull of the workspace is computed and the performance criteria
surface S(W) from Eq. (5.46) and volume V (W) from Eq. (5.47) are employed to
compare the results for different radii rR of the pulleys.To check forwrench-feasibility
of a pose y, Eq. (3.5) is evaluated using the Dykstra method (see Sect. 3.7.4) and
the determined force is compared to the force limits as given in the previous section.
The parameters of the workspace algorithms are set as follows: The iterations depth
for the recursive refinement of the hull is chosen to be six leading to 16386 vertices
and 32768 triangles. The accuracy for the line search is ε = 10−4 m so that the first
four digits of the performance indices are meaningful. The computational results
from the example are given in Table7.1. In this evaluation, we used even larger radii
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Fig. 7.11 Left: Deflection angles βR and γR for the first winches of the IPAnema 1 robot throughout
the workspace. Right: Actual proximal anchor points C1 where the cable leaves the pulley in the
local frame KA,1

for the pulleys than before. The relative error of the workspace volume is less than
2% for realistic values of the pulley’s radius rR.

Figure7.11 shows the actually occurring deflection angles βR,1 and γR,1 in the
pulley mechanism for the IPAnema 1 robot. The sample poses are chosen from the
hull of the workspace thus covering the extremal positions of the pulley. One can see
that the panning angle γR of the pulley is in the range [−π

2 ; 0] thus pointing to the
inside of the machine frame. The considered winch i = 1 is an upper winch located
at the top of the robot frame. Thus, the wrapping angle is βR,1 ∈ [π

2 ;π ] where the
cable always wraps at least a quarter of the pulley. Only a small part of the toroidal
surface is actually used. Thus, the regionwhere the pointCi may be located is notably
smaller than the torus.

7.2.4.4 Forward Kinematics

Simulation and experimental tests [434] with the extended kinematics code show
that it is applicable to the controller. To test convergency, 5000 random poses in the
workspace of the IPAnema 2 robot are used. Compared to the standard model, the
extended pulley kinematics is slightly slower but runs stable (Fig. 7.12). Experimental
results on the improved accuracy show that using a pulley kinematic code in the
controller improves the accuracy of the robot by 21% leading to an absolute accuracy
for the IPAnema 2 robot of 17.5mm and a repeatability of 0.51mm. The computation
time for the forward code is determined to be in the range between 80 and 130μs
which allows for operation in a real-time system.
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Fig. 7.12 Numerical results for the forward kinematics with pulleys using Levenberg-Marquardt
algorithm. Left column: Histogram of number of iterations for noise 0.1mm, 0.5mm, 1mm on the
cable length. Right column: Histogram of position error for noise 0.1mm, 0.5mm, 1mm on the
cable length
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7.2.5 Summary

Using an extended modeling for pulleys, the differences of the kinematics, statics,
and workspace between the simplified and extended model are studied. It turns out
that the difference of the volume and surface of the workspace is less than 10%
even for huge pulley radii and in the range of 1% for typical pulleys. Considering
other unconsidered uncertainties, the influence on the workspace may be neglected
in many applications. The comparison of the inverse kinematics codes and thus the
expected accuracy of the robot are influenced in the same magnitude. The deviations
between standard and pulley model are almost linear in the considered range for the
pulley radius. However, while deviations in the predicted workspace size in range
of millimeters are negligible, the same magnitude is significant for accuracy. Thus,
using the proposed pulley model is an efficient tool for improving the accuracy of the
IPAnema 1 robot by around 25% compared to the standard model. The formulation
developed for inverse kinematics is successfully used for the forward kinematics
code. Solving the respective optimization problem with the Levenberg-Marquardt
algorithm allows for application in the real-time controller. The shortening of the
cables caused by guiding the cable around the pulley significantly increases the
inner tension in the robot and, thus, disturbs the force equilibrium of the mobile
platform.

Open issues in the field for considering pulleys are their influence on the location
of singularities and the theoretical foundation of the forward kinematics.

7.3 Kinematics with Sagging Cables

A common observation for long cables in civil engineering applications such as
bridges and high voltage lines is that the cables undergo significant deformation
caused by the weight of the cables. This so-called sagging of the cables results from
the massmC of the cable itself and the influence of gravity on that mass as well as the
negligible bending stiffness of the cable. If the ratio between the length and the mass
of the cable is such that sagging becomes an issue, the cable is called hefty. Especially
for large-scale cable robots, one cannot assume that the cables form perfect lines in
space. In practice, sagging of cables leads to a coupling between the geometrical
constraints imposed by the cable length and pulley kinematics on the one hand side
as well as the static and elastic effects of the cables on the other hand side. Thus, to
describe sagging of cables in cable robots, one has to consider kinematics and statics
simultaneously since there is a strong dependency between both. From this point
of view, the effect of sagging shares some properties with the modeling of elastic
cables as well as the modeling of under-constrained robots where kinematics and
statics also are interconnected.

A couple of contributions are dedicated to study sagging for cable robots. The
compensation for sagging cables in a measurement device is proposed by Jeong
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[226], however, no method for implementation is given. The research on sagging is
strongly influenced and initialized by the planning and development of the FAST
cable robot. This huge robot is the archetype of large-scale cable robots. In Kozak
[256, 257], the kinematic modeling with cable sagging and the resulting changes in
stiffness are addressed and the model used for cable robots is basically adopted from
the reference book on civil engineering by Irvine [218].

Korayam [252] presents the modeling for elastic and hefty cables for suspended
robots. Du [234] presents the partial differential equations of the cables for the FAST
telescope and derives ordinary differential equations for the equations of motion.
Further studies of the authors [126, 231–233] aim at forward kinematics, statics,
stiffness, and control of cable-driven parallel robots with sagging cables for appli-
cation with large-scale cable robots. Recently, Nguyen presented the modeling of
sagging cables for the robot CoGiRo [360, 361]. An extension for the effect of pul-
leys in the sagging model is added to the model [189]. The relation between sagging
and stiffness is also considered by Yuan [513–515], who derives a stiffness model
for suspended cable robots with six cables taking sagging of the cables into account.
Additionally, the dynamic effects and the eigenfrequencies are determined.

A simplified model for sagging is proposed by Gouttefarde [179, 181] where a
parabolic model is used to approximate the sagging cable where the elastic reactions
of the cables are neglected. Based on that model, a simplified static analysis of the
robots is performed. Dallej [107] presents a vision-based control approach for the
simplified sagging model and a mean translational error of 8.2mm is reported for
the CoGiRo setup.

Inverse kinematics with m ≤ 6 sagging cables is addressed by Merlet [332] who
points out that by introducing the catenary equations of the sagging cable, the inverse
kinematics problem is composed from non-algebraic equations. In general, it is not
clear if the solution space is dense. Also, the forward kinematics problem is addressed
by Merlet [333, 335] where interval analysis is used to compute solutions for this
problem. The numeric examples presented in the work show that multiple solutions
can exist.

Yao [506] proposed an approach to compensate for sagging and presents experi-
mental results for the scaled model of the FAST telescope with design size of some
45m. A repeatability of 1mm to 1.7mm is reported determined for the scaled model.
Later, Hui [213] proposed a kinematic code for inverse kinematics of the full-size
FAST telescope taking sagging for a suspended robot with six cables into account. A
stiffness model for robots with sagging cables is proposed by Arsenault and applied
to a suspended 2T robot [18]. A similar approach is pursued by Ottaviano [377] who
analyzed the kinematics of a planar cable robot with two cables taking sagging of
hefty elastic cables into account.

A numeric evaluation using the software package XDE is presented by Michelin
[340]. This dynamicmodel also takes into account vibrations in the cableswhere very
long computation times roughly 3600 times slower than real-time are reported. How-
ever, this approach expresses a connection to simulate cable robots with conventional
simulation software.
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Fig. 7.13 Schematic drawing of the cable sagging when considering cable mass and a constant
cable force

Duan [128]mentions themodelingwith partial differential equations, however, the
formulation can hardly be extracted from the paper. Interestingly, no study analyzes
the partial differential equations directly but tries to convert the partial differential
equations to a system of ordinary nonlinear differential equations.

7.3.1 Modeling of Sagging Cables

In the following, the modeling of the cable under gravity force is introduced. If cable
mass is taken into account, the shape of the cable, its end-point position, and the
cable forces become coupled. In the static equilibrium, the gravity forces in the cable
cause a displacement of all cable elements leading to a cable shape that is entirely
below the straight line between the cable’s end-points Ai and Bi . This effect is called
sagging and is modeled in this section. In the literature [218, 374], it is proposed to
neglect sagging if the cable tension fi is notably larger than the weight of the cable,
i.e. the criterion

fi � g�′
Cli (7.16)

has to be fulfilled to ignore sagging, where �′
C is the linear density or weight per

length of the cable. The gravity acceleration is g and li is the free cable length.
A simplified situation for cable sagging is depicted in Fig. 7.13 where a horizontal

cable is fixed on the left side at A and guided around a pulley on the right side at B.
The radius of the pulley is neglected. Thus, the cable sags over the horizontal distance
d between the proximal and distal anchor point A and B. To tense the cable, a mass
mP is subject to gravity and puts a constant force on the cable without constraining
the cable length. The cable is assumed to have mass mC, which may be given by its
density �C or as specific weight per length �′

C, sometimes also called linear density
�′

C. The mass of the vertical part of the cable behind the pulley B shall be lumped in
the mass elementmP. The figure shows the cable in equilibrium. A well-known result
from classical mechanical engineering is that the form of the cable is a catenary. The
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Fig. 7.14 Kinematics of a cable robot with sagging cables

largest deviation from the straight line is denoted with s and occurs in the middle of
the cable if the ideal line is horizontal.

Sagging affects different properties of the cable robot. In order to reduce sagging
to a reasonable level, one has to choose a compromise between pretension in the
cables and the feasible slack span between the real cable shape and the ideal straight
line between the anchor points (Fig. 7.14). This difference causes an error in the
effective cable length lS,i of the sagging cable and the distance between the anchor
points represented by the cable length li of the standard model. Furthermore, the
direction uS,i of the cable force applied to the platform is altered by sagging of the
cable. At the same time, the cable mass mC changes the effective force acting on the
platform. Thus, some disturbance in the equilibrium of the platform is expected.

Here, we discuss the phenomenological relations between tension, cable mass,
and sagging. Therefore, the cables are considered to be inextensible, i.e. the cable
is perfectly stiff and ECAC → ∞ is assumed for the spring constant of the cable
where EC is the Young’s modulus of the cable and AC is the effective cross section
of the cable. At the same time, the cable is assumed to be perfectly flexible and the
bending stiffness EC IC = 0 of the cable vanishes where IC is the second moment
of area of the cable. For moderate sagging with a small curvature of the cable, the
bending stiffness of the cable is ignored but the bending stiffness becomes an issue
when modeling the wrapping of the cable around a pulley or around the winch drum.
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7.3.2 Inelastic Horizontal Cable Model

Firstly, the catenary equation for a cable under gravity without elastic elongation
is discussed. The derivation goes along with the considerations that can be found
e.g. in Irvine [218] and Feyrer [149]. The shape of the sagging cable (Fig. 7.13) is
determined from the ordinary differential equation

∫ ∫
gC

√
1 +

(
dy

dx

)2

dx2 = fHy (7.17)

where gC = g�′
C is the gravity force of the cable per length, y(x) is the function of the

shape of the cable over the length coordinate x , and fH is the horizontal cable force.
Integration of this equation provides the general solution for the inelastic cable

y(x) = fH
gC

(
cosh

(
(x + C1)

gC

fH

)
− C2

)
(7.18)

with two integration constants C1 and C2 that must be chosen to fulfill the geometric
boundary conditions so that the end-point Bi of the cable has the specified coordi-
nates.With an appropriate choice of the coordinate system, the solution for Eq. (7.17)
in the horizontal case can be found to be

y(x) = fH
gC

(
cosh

(
gCx

fH

)
− 1

)
. (7.19)

The curve of the horizontal cable y(x) is exemplified in Fig. 7.15. The choice of the
coordinate system is such that the curve touches the origin at its minimum. Thus, the
magnitude of the maximum sag is computed from evaluating y( d2 ) and one receives

s = y

(
d

2

)
= fH

gC

(
cosh

(
gl

2 fH

)
− 1

)
. (7.20)

The specific gravity force per length gC of the cable is computed from

gC = g�′
C = g�CAC = g�Cπr

2
C (7.21)

where g is the inertial acceleration, �C and �′
C are the density and the linear density

of the cable, respectively, and AC is the effective cross section of the cable. Cables
are not homogeneous due manufacturing from fibers or wires. Therefore, one uses
the effective linear density gC that also includes the braiding of the cable. In practice,
cable manufacturers provide the material constant gC for their products. Sample data
for Dyneema are given in Table7.2 and for a typical stainless steel cable 18× 7 in
Table7.3.
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Fig. 7.15 Sagging in [mm] of a Dyneema cable with a diameter of 2.5mm and a cable force of
F = 50N

Table 7.2 Breaking load and
specific weight of Dyneema
cables with a diameter
between 1–16mm for LIROS
D-PRO Dyneema cables. All
parameters according to
manufacturer’s data. LIROS
GmbH, Berg, Germany

Diameter dC [mm] Breaking load
[daN]

Specific weight gC

[kg/100 m]

1.0 195 0.09

1.5 230 0.13

2.0 410 0.18

2.5 580 0.35

3.0 950 0.46

4.0 1300 0.70

5.0 2600 1.30

6.0 4300 2.30

8.0 5300 3.50

9.0 7500 4.90

10.0 9000 6.00

12.0 11900 7.20

14.0 14500 9.50

16.0 19200 13.10

Computation of the derivative of y with respect to the length coordinate x is
straightforward and yields

y′ = dy

dx
= sinh

gCx

fH
. (7.22)

Then, one computes the cable length relative to the distance d between the anchor
points. This is achieved by computing the integral

l =
∫ d

2

− d
2

√
1 +

(
dy

dx

)2

dx (7.23)
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Table 7.3 Minimum
breaking load and specific
weight of stainless steel
cables 18× 7 for winches
according to DIN 3069 [124]

Diameter dC [mm] Breaking load
[daN]

Specific weight gC

[kg/100 m]

3.0 523 3.62

4.0 906 6.43

5.0 1328 10.00

6.0 1921 14.50

6.5 2227 16.40

7.0 2700 19.70

8.0 3417 25.70

10.0 5329 40.20

12.0 7763 57.90

14.0 10750 78.80

16.0 13531 103.00

which basically means that the following integral must be solved

l =
∫ √

1 + sinh2 z dz . (7.24)

The integral is solved in closed-form yielding the solution

l = fH
gC

√
1 + sinh2 gCx

fH
sinh gCx

fH
cosh gCx

fH

= fH
gC

√
1 + sinh2

gCx

fH
tanh

gCx

fH
(7.25)

and by substituting the borders− d
2 and

d
2 into the function, one finds the cable length

lC in closed-form as a surprisingly simple expression

lC = 2
fH
gC

sinh
gCd

2 fH
. (7.26)

In order to emphasize the constant parameters of the cable sagging, one substitutes
μ = gC

fH
and receives

lC = 2

μ
sinh

μd

2
(7.27)

y = 1

μ
(cosh(μx) − 1) . (7.28)

Since sagging is especially important for large-scale robots, it is worthwhile to also
consider the effect of sagging and elastic elongation of the cable.
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7.3.3 Irvine’s Elastic Cable Model

The effect of sagging and elasticity can also be modeled for the cable by solving
an ordinary differential equation where additionally the linear elastic effects of the
cables are taken into account. A hefty and elastic cable is connected to a proximal
anchor point A with the local coordinates a = 0. Then, the following relations hold
for the distal end B of the cable b = [xB, zB]T and the forces fC = [ fH, fV]T at point
B (see e.g. [218, 332, 361, 431])

xB = fH

⎛
⎜⎝ L0

ECAC

+
sinh−1

(
fV
fH

)
− sinh−1

(
fV − gCL0

fH

)

gC

⎞
⎟⎠ (7.29)

zB =
√

f 2H + f 2V − √
f 2H + ( fV − gCL0)2

gC

+ fVL0

ECAC

− gCL2
0

2ECAC

(7.30)

where L0 is the unstrained cable length, EC is the Young’s modulus of the cable,
and AC is the cable cross section. If one assumes the physical cable constants
L0, EC, AC, gC to be known, one eventually receives a cable model that describes
the position of the point B in the xz-plane of the frame KA,i as a function of the
horizontal and vertical force applied at the platform as

[
xB
zB

]
= �C( fH, fV) , (7.31)

where the function of the cable model �C : IR2 → IR2 is not algebraic but can be
computed in closed-form.

As for the pulley kinematics, one has to compute the plane of the sagging cable.
If one assumes that gravity acts in negative z-direction of the world frame K0, the
orientation γS,i of the xz plane of KA,i is computed following Eq. (7.9) from

γS,i = arctan2 (li . eY, li . eX) , (7.32)

where li = ai −Rbi − r is the cable vector as used in the standard cable model. The
rotation matrix Ri for transforming the cable plane to world coordinates reads

Ri =
⎡
⎣
cos γS,i − sin γS,i 0
sin γS,i cos γS,i 0

0 0 1

⎤
⎦ (7.33)

and can also be expressed using only the vector li without trigonometric functions
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Ri = 1√
(li . eX)2 + (li . eY)2

⎡
⎣
li . eX −li . eY 0
li . eY li . eX 0
0 0

√
(li . eX)2 + (li . eY)2

⎤
⎦ . (7.34)

In the local frameKA,i , the cable force vector is composed from f i = [ fH,i , 0, fV,i ]T.
Next, one rewrites the equilibrium condition of the platform to include the cable
forces derived from the sagging cable model as given in Eq. (7.31). The forces
applied to the mobile platform through the sagging cable are given by

−
[

Ri f i
Rbi × Ri f i

]
=

[
RieX RieY

Rbi × RieX Rbi × RieY

] [
fH,i

fV,i

]
i = 1, . . . ,m (7.35)

and one receives an equation that is roughly similar to the structure equations for the
standard model as follows

ASf S + wP = 0 , (7.36)

where the matrix AS ∈ IR6×2m takes the form

AS =
[

R1eX R1eY R2eX . . . RmeX RmeY

Rb1×R1eX Rb1×R1eY Rb2×R2eX . . . Rbm×RmeX Rbm×RmeY

]

(7.37)
with the cable force vector

f S = [ fH,1, fV,1, fH,2, . . . , fH,m, fV,m]T ∈ IR2m (7.38)

as well as the applied wrench wP = [0, 0,−mP g, 0, 0, 0]T.
For inverse kinematics of spatial cable robots, one eventually receives three

unknown variables for each cable: firstly, the sought unstrained cable length li and
secondly, the horizontal FH,i ≥ 0, and vertical cable tension FV,i ≥ 0. In total, the
entire nonlinear system contains 3m unknown variables. In terms of equations, one
has six equilibrium conditions for the mobile platform and 2m equations from the
cable model, thus a total of n + 2m equations. Therefore, the system can only be
solved directly form = 6 cableswhere form < 6 cables, one has an over-constrained
system with probably no solution.

Solving the nonlinear system is numerically involved since the equations are quite
complex while the contained terms with sinh−1(·) along with the physical constants
in largely different orders of magnitude are sources of numerical instability. Some
verified numerical results computed with interval analysis are presented by Merlet
[332] where the computation time is around 10s which is rather time consuming
compared to the standardmodelwherewehave computation times aroundonemillion
times faster.
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7.3.4 Summary

A deformation model of elastic cables with notable weight is currently the most
advanced but also most challenging cable model. However, the basic assumption
is that the cable is at static equilibrium and sags in a single vertical plane. Experi-
ments with lateral motion of the cable robots show additional swaying of the cable
and even helical shapes of the cables in the presence of abrupt acceleration. More
involved cable models as those used with finite element methods or with multi-body
chain models are essentially able to capture such effects. The computation time for
dynamic simulation increases rapidly and today their application is rather limited.
Since such models do not assume a steady-state behavior of the robots, they cannot
be integrated with conventional controller architectures that are based on a static
kinematic transformation.

7.4 Kinematics with Elastic Cables

Especially if cables are long, the effect of elongation under load cannot be neglected.
Although the structural stiffness of the cable robot is high, the absolute stiffness
values for the cables are comparably small due to the small cross section of a cable.
If the cables are long or the robot is operated with significant changes in the payload
or the process forces, notable displacements can be observed on the platform. Besides
elongation in the cables, also thewinches, themachine frame, and themobile platform
are sources of elastic deformations disturbing the motion of the robot. For high
precision applications as well as for large-scale manipulators, the elongations of
cables are addressed in the following in the context of kinematic transformation. As
shown in Chap.6 on dynamics, most authors addressed elastic cables in the dynamic
models while the effects of cable elongation are ignored in most kinematic studies.
One study taking the effect of elastic cables into account is undertaken byMerlet [323,
324] where an interval-based algorithm is presented to compute inverse kinematics
for elastic cables. Implicitly, the elastic effects in the cables are also tackled for the
forward kinematics where an elastic behavior of the cables is assumed to compensate
for uncertainties [390].

7.4.1 Inverse Kinematics

The inverse kinematics of fully-constrained robots with elastic cables becomes more
involved than the solution of the standard model introduced in Sect. 4.2.1. How-
ever, the problem can be addressed based on the concepts introduced in the context
of statics and workspace as described in this section. Considering an elastic cable
model maintains the linear shape of the cable while relating the cable tension to its
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elongation. Thus, the direction vector of the cable ui remains independent from the
tension and therefore the structure matrix AT remains unaffected from the tension.
In order to compute the cable length, one can follow this procedure.

Firstly, the desired pose (r,R) is chosen and direction vectors ui are computed
fromEq. (3.3). One easily takes into account the effects of pulleys by using Eq. (7.11)
instead. Having determined the direction of the cable, the pose-dependent structure
matrix AT is set up in order to evaluate the statics. Using one of the methods intro-
duced for force distribution, one generates a feasible force distribution f . This can be
done efficiently in closed-form (see Sect. 3.7.5). In contrast to inverse kinematics of
the standard model, this step can only be executed if the desired pose (r,R) belongs
to the wrench-closure workspace W where one can evaluate the inverse kinematics
of the standard model for any pose. Using the elastic model of the cable, one can
now compensate for the elongation in the cables. The linear elongation Δli of the
cable is computed from

Δli = ki fi , (7.39)

where ki is the stiffness of the cables that results from

ki = ECAC

li + l0,i
. (7.40)

The parameters of the cable stiffness are introduced in Sect. 3.8. Having computed
the elongation of the cable Δli , one can easily make a first order estimate for the
corrected cable length lE by reducing the elongation from the cable length computed
with the standard model

lE = � IK(r,R) − Δl(EC, AC, l0) . (7.41)

Given the uncertainties of the elastic parameters, the errors of the first order estima-
tion can be neglected. As shown by Kraus [259], one can also compensate for the
elastic reaction by means of control where the tension needs to be measured for this
approach. This is achieved by controlling the tension to set-point values computed
from the desired tension distribution.

Dealing with elastic cables as described above is done in closed-form. Yet, the
computational efforts are notably increased since one has to additionally set up the
structure matrix and evaluate the force distribution. For a linear elastic cable force
model, the determined cable length is unique for a given force. However, as shown in
Sect. 3.6, there exist infinite force distributions and thus it depends on the approaches
and objectives how to choose a unique solution. Additionally, one has to take into
account the wrench wP applied to the mobile platform. This wrench can be caused
by the payload, d’Alembert inertia forces, and process forces. It is straightforward
to take these effects into account if the value is known. From the perspective of
the kinematics code within the controller, the problem arises how to determine it in
practice.
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In this setting, the behavior of the force distribution algorithms is interesting close
to the boundary of the workspace. Some methods such as the closed-form methods
provide continuous and smooth (but of course infeasible) force distributions if poses
outside the workspace are evaluated, whereas approaches such as the barycenter
method or the advanced closed-form method provide no solutions or solutions being
far away from the last feasible solution making the behavior of the kinematic code
very sensitive to errors and noise.

7.4.2 Forward Kinematics

For over-constrained cable robots, the computation of the forward kinematics with
elastic cables is only slightly altered because the basic procedure presented in
Sect. 4.3 implicitly takes the concept of force distribution into account. The lin-
ear elastic model of the cables is considered for the forward kinematics by using a
physical measure of the potential energy instead of a simple root mean square.

As discussed in Sect. 4.3, the forward kinematics can be solved by minimizing
the potential energyU of the cable robot. Now using a physical model of the cables,
the potential energy of the robot is U = UP + ∑

i Ui where the potential energy of
the cables is

Ui = 1

2
kiν

2
i , (7.42)

ki being the stiffness of the i-th cable. The potential energy of the platform is

UP = mPg(r . eZ) (7.43)

where mP is the platform mass, g is the gravity acceleration, and eZ is the unit vector
in the direction of gravity. When the mass of the platform is taken into account as
proposed through the potential energy, the solution estimated through the forward
kinematics depends on the ratio between the stiffness of the cables and the platform
mass. To consider the stiffness of the cables, one has to compute ki according to
Eq. (7.40) for each cable taking into account both the given cable length and addi-
tionally the constant length between the winches and the last pulley. Thus, one has
to optimize the function

ϕ DKE(l) = min
r,R

mPg(r . eZ) +
m∑
i

ki (li , l0,i ) ν2
i (l, r,R) (7.44)

which can be done by using the Levenberg-Marquardt algorithm. Again, the solution
found by this optimization is in general a local one, whereas the energy functionalU
has multiple local minima. In contrast to the standard model, no results are known
how many minima exist depending on the number of cablesm and motion pattern. It
also remains an open problem to analyze under which conditions the solution branch
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is changed. If the kinematic code is used in the controller to estimate the current pose
of the platform after small changes in the cable length, one can employ the last pose
(r,R) of the platform as initial value for the next iterative optimization. In this case,
the minimization of the potential energy U is meaningful as it physically describes
in terms of energy how the platform is displaced from the last pose to the new one.

As for the elastic inverse kinematics, one needs an estimate for the current weight
of the platform including a possibly changing payload as well as the stiffness of the
cables. Compared to the forward kinematics of the standard model, the elastic effects
of the cables do not introduce new theoretical problems. However, practical usage
of the elastic models is complicated because of the additional parameters required
to compute the model. Interestingly, small uncertainties in the stiffness parameter of
the cables have a moderate impact on the estimated pose. However, the usually high
stiffness of the cables makes the computation sensitive to measurement errors in the
cable length as such deviations induce high elastic forces and thus have significant
impact on the cable force.

7.5 Conclusions

Kinematic models that take the effect of panning pulleys into account have been
proposed. Although the inverse kinematics equations are more involved than the
equations for the standard model, one can still solve them efficiently in closed-form.
If required, the structure matrix and differential kinematics can be symbolically
computed.Thus, a numerical code for forwardkinematics is derived and implemented
with real-time efficiency. However, since the inverse kinematics equations are no
longer algebraic, no theoretical results are received yet that predict existence and
number of solutions for forward kinematics. Application of the pulley model in
dynamics is straightforward and one can also take pulleys into account in workspace
computation and force distribution. However, the differences to the standard model
are mostly marginal.

Linear elastic cable models have been investigated for inverse kinematics. In
contrast to the pulley models, elastic models connect some aspects of statics to
the kinematic equations, making the problem involved. The kinematic codes used
for forward kinematics can be understood as elastic models of the cables since the
potential energy stored in the elastic cables is minimized in order to find a solution
for the forward kinematics. The linear model of the cables is somewhat understood,
however, it remains an open issue to deal with nonlinear elastic deformations where
steel cables show some nonlinear elongations and synthetic fiber cables are subject to
distinct nonlinear elastic effects. In dynamics, one usually employs linear or nonlinear
elastic cable models since the incorporation of these effects is relatively simple in the
dynamic formulation if an operational space formulation of the dynamic equations
is used.

The effect of the cable mass on the kinematic behavior of the cable robot closely
links static considerations to the kinematic problems. This effect is of notable
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importance when large-scale robots are considered, where the cables are long and
comparatively heavy. Two cable models are predominantly applied, the inelastic and
the elastic catenary curve. The underlying partial differential equations can be inte-
grated in closed-form to reveal the well-known formulas based on hyperbolic cosine.
Thus, numerical evaluation of themodel is done efficiently. However, the formulation
assumes a quasi-static state for the cable without transversal vibrations, neither in the
direction of gravitywhere sagging occurs nor in the horizontal direction. Considering
the static equilibrium constraints and the cable model as a system of equations, again,
a non-algebraic structure is revealed and no theorems are known on the existence and
number of solutions. The stiffness of cable robots can be evaluated taking the effect
of sagging into account. After all, the computation is considerably more expensive
than for the standard model.

The main challenge in the field of advanced cable models remains in achiev-
ing a more accurate model of the cable robot while considering a set of nontrivial
assumptions on the cable. Although a number of models exist to consider sagging,
elastics, and pulleys, one can hardly employ the models to predict the behavior of
a new robot without experimental validation and identification of the parameters in
time-consuming measurements.

A couple of concepts that arewidely understood for the standardmodel are entirely
open issues for nonstandard cablemodels. The theoretical analysis of kinematicswith
advanced cable models is in its infancy. No propositions are made on the number of
solutions for the forward kinematics. Other open issues include the structure of the
workspace, the location and also classification of singularity, an applicable formu-
lation for the dynamics of nonstandard cables, and calibration as well as parameter
identification methods. Especially for the problem of singularties, it is conjectured
that the mathematical structure of advanced cable models introduce a new kind of
singularity for cable robots which has no equivalent in conventional serial or parallel
robots.



Chapter 8
Design

Abstract In this chapter, the design procedure of cable robots is addressed through
a methodology presented in Sect. 8.2. Firstly, the application requirements that need
to be satisfied by a cable robot are considered in Sect. 8.3. Secondly, different ref-
erence models for cable robots are reviewed in Sect. 8.4 that serve as parametric
templates. These models are facilitated by different algorithms for geometry synthe-
sis. Approaches based on optimization and interval analysis are presented in Sect. 8.5.
The mechanical design of cable robots is discussed in Sect. 8.6.

8.1 Introduction

When working with cable-driven parallel robots, it seems that their design is one
of the most challenging tasks. As we have seen in the first chapters, the analysis of
kinematics, statics, and workspace involves a lot of advanced mathematical tools.
Throughout the previous chapters, the problem of determining the robot properties
is tackled if the physical parameters of the robot are given. For robot design, one
has to solve the inverse problem and determine the robot geometry from given robot
properties. For example, given a certain shape and size of the workspace, the task is
to find a geometry for a robot so that this robot’s workspace is generated. Machine
design is a core problem of engineering, since it answers the question of how to build
a machine for a specific purpose.

Thedesignprocedure of a cable robot is by farmore time-consuming than applying
any of the previously mentioned methods for analyzing a cable robot. This is due to
the fact that robot design involves a couple of analysis methods which are required to
efficiently work in cooperation. Just using (not researching) an approach or algorithm
presented in previous chapters is expected to be done in hours or days. In contrast,
applying a design procedure is amatter of at least weeks or evenmonths for a research
prototype and clearly beyond a person-year for a product.

The mechanical design of a new generation of winches took around 18 person-
months for the IPAnema 3 robot. An iteration of the design of a research demonstrator

© Springer International Publishing AG, part of Springer Nature 2018
A. Pott, Cable-Driven Parallel Robots, Springer Tracts in Advanced
Robotics 120, https://doi.org/10.1007/978-3-319-76138-1_8
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Table 8.1 Estimated and real efforts for design and project execution related to creating a cable
robot and its components collected over around a decade. Care must be taken when comparing the
projects since they also reflect different stages of experience in designing cable robots

Phase/component Description Duration

Winch Design of the IPAnema 1 winch 6 person-months

Winch IPAnema 1 winch: mechanical optimization,
evaluation, ready for setup in IPAnema 1
demonstrator

6 person-months

Winch Design of the IPAnema 3 winch 18 person-months

Platform Simple platform for general purpose, parameter
generation, mechanical design, integration of the
cable-ends

1 person-month

Demonstrator Shelf robot: geometry design, winch and controller
adaption, winch manufacturing, initial operation

12 person-months

Demonstrator IPAnema 2 planar: mechanical design of machine
frame and linear actuation scheme, controller
configuration, platform design, initial operation

15 person-months

Demonstrator IPAnema 2 design for Automatica 2010. Retrofitting
drive-trains and robot geometry of the IPAnema 1
system for the trade fair

6 person-months

Demonstrator IPAnema 3 demonstrator setup 12 person-months

Demonstrator IPAnema 3 Mini 9 person-months

Demonstrator Copacabana robots for research purpose (geometry
design, winch manufacturing, CE procedure, initial
operation)

6 person-months

Special purpose
machinery

MPI motion simulator including safety design for
person transportation

18–24
person-months

Special purpose
machinery

EXPO robots (parameter design, trajectory
verification, programming system, support in initial
operation and calibration)

18 person-months

Product Large-scale crane (project outline) 15 person-years
(estimate)

(without the aforementioned winch design) is estimated in the scale of one to two
person-years. The full design of a large-scale robot for outdoor operation in product
quality is estimated to be around 15 person-years. An overview of measured and
estimated research and development time is given in Table8.1. From these consid-
erations, it becomes clear that a design method is about establishing efficient and
applicable simulation tools as well as procedures. From today’s perspective, an auto-
mated design procedure with a black-box behavior, where one can simply put in the
requirements and receive a ready-to-use robot, is out of scope. Even for simpler serial
robots, the design procedure is not automated yet. For example, consider the design
of houses by architects which has been performed millions of times since the ancient
times. Being an architect is a respected profession only caring for the design and
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customization towards the application’s need. Thus, the focus for robot design is on
efficient tools and applicable methods rather than fully automated programs.

There is a rich literature on the design of cable robots.However,many papers touch
the problem of design but only present their experimental work without providing a
rationale behind the design decisions or the methodology.

8.1.1 Literature on Parameter Synthesis and Optimal Design

The central challenge in the geometrical design of cable robots is the determination
of the position of proximal and distal anchor points so that the robot fulfills given
requirements including, but not limited to, workspace and stiffness, while avoiding
auto-collisions and singularities. Such approaches are called synthesis procedures
and have been studied by a number of authors. Merlet [336] sketches a design proce-
dure based on interval analysis originating from conventional parallel robots [197]
for dimensioning cable robots. This basic design procedure is extended for a conven-
tional parallel robot to employ multiple technical requirements in a modular way in
[394], and to multiple design criteria and combined with global optimization [399].
A transfer of the method to cable robots is proposed by Gouttefarde [186] where also
an interval-based branch-and-prune method is employed to compute variants of the
robot that have a prescribed wrench-feasible workspace. Although the underlying
workspace test is different from the one proposed by Bruckmann, the basic design
procedure is essentially the same. A design procedure based on formulating the
design problem as constraint satisfaction problem (CSP) is presented by Bruckmann
[74] where a combination of CSP and optimization is used to overcome the long
computation times of interval CSP solving. Bruckmann [75] uses interval analysis
and constraint programming to compute geometrical designs for a given workspace
or given task. Lately, Lamine [279] employed such an interval analysis-based design
procedure for planar and spatial cable robots for a given wrench-feasible workspace.
The author performs optimal design for two geometric parameters in the planar case
and four parameters in the spatial case, leading to computation times of 1:33h and
14:26h, respectively.

Azizian [19–22] proposed to design the geometry of planar and spatial cable robots
so that a given box is inside the wrench-closure workspace. The design approach is
based on a direct test if a given region of the desired workspace can be generated
by the sought robot. Linear relaxation techniques are applied for the test. Using this
test as performance criterion, the dimensional synthesis is achieved. For the pla-
nar case, computation times of some 10s are reported. Gouttefarde [180] proposes
a design methodology in multiple steps with a pre-selection of discrete candidates
and different performance criteria including cable-cable collisions, a given avail-
able wrench set, and a given workspace where a combinational approach is used.
A similar approach is followed by Gagliardini [155] who approached the prob-
lem of geometrical design related to reconfiguration of the robot by considering a
combinational problem of discrete geometric variants in order to optimize stiffness
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for a task. Lafourcade [269, 270] employs a geometrical procedure to design a robot
with seven or nine cables for a given workspace where the procedure is largely based
on the assumption that a spatial robot has only three distinct distal anchor points and
up to three cables share a common distal anchor point.

In contrast to parameter synthesis, the basic idea of optimal design is driven by
the assumption that one can assess the quality of the robot through a performance
metric that makes two competing design variants strictly comparable. Consequently,
different approaches are elaborated in the literature to find the best robot through
the mathematical tool of optimization. Williams [490, 493] discusses the design of
planar robots with four cables where wrench generation and cable-cable interference
are taken into account. The design procedure is based on an exhaustive search with
constant steps in the three design parameter and checking if a grid of discrete points
belongs to the wrench-closure workspace. Fattah [141, 142] presents an approach to
the design of planar cable robots where optimization with respect to workspace size
and the global condition index is compared. A performance index to compare the
workspace of different cable robots applicable for optimal design is proposed byVer-
hoeven [473]. According to the presented results, this index serves well for assessing
the full six-dimensional workspace with position and orientation. Pusey [405, 406]
analyzes the design of a 6-6 cable robot and compares different robots with respect
to the workspace and global conditioning index. The simplex algorithm is employed
by Pham [384] to optimize the geometry of a planar cable robot with respect to the
size of the workspace where force distribution and stiffness are considered. Hassan
[198] proposes to optimize the geometry of a cable robot by minimizing the differ-
ence between the highest and lowest cable force amongst the cables. Thus, a measure
similar to the standard deviation for the cable forces is used as performance index.
Aref [15] discusses the optimal design of cable robots and compares different strate-
gies where multi-objective optimization is proposed for cable robots since different
criteria need to be considered. Therefore, a cost function based on dexterity, collision
free workspace, and wrench-feasible workspace is employed. In order to solve the
optimization problem, genetic algorithms and pattern search are proposed. Two per-
formance indices are proposed by Tang [458] to be used for robot design called all
cable tension distribution index (ACTDI), which is essentially the standard variation
of the cable forces, and the global tension distribution index (GTDI). Fang [139]
employed an optimal design procedure to maximize the wrench-closure workspace
for the robot Segesta and combines research strategies based on the Powell method
and simulated annealing algorithm to optimize a five parameter model of Segesta.

Different authors employed genetic algorithms for the optimization where little
results are generated as to how the results from genetic optimization differ from
gradient-based optimization.Duan [127] performs an optimal design procedure using
genetic algorithms for a model of the FAST where different criteria are taken into
account. In this approach, requirements are included to also limit cable sag. Yangmin
[505] proposes to use genetic algorithms for the optimization of planar cable robots
with four cables with respect to the global dexterity index and to the overall stiffness
index. A linearly weighed objective function composed from these indices is applied.



8.1 Introduction 291

A similar idea is pursued by Fahham [137] where a genetic algorithm is applied to
design a planar cable robot for optimal trajectory time taking into account constraints
on the cable forces as well as on the cable velocities. An optimization strategy from
the field of artificial intelligence is used by Xiaoling [498] who proposes to optimize
the geometry of a spatial cable robot with four cables with least square-support vector
regression method which is commonly used in machine learning. Since the author
does not provide the computation time, the effectiveness can hardly be compared
with conventional optimization methods.

Bahrami [26] discusses optimal design of a 3T robot with four cables taking
into account the volume of the workspace, the global dexterity index, and energy
consumption. Genetic algorithms are used to solve the optimal design problem.
Ouyang [378] optimizes the geometry of a simple length-width-height parametric
model of a cable robot with eight cables so that the robot has a given workspace.

The problem of reconfiguration is related to the problem of optimal design. How-
ever, in reconfiguration only parameters of the robot are varied which are expected
to be easily changeable in an existing physical robot. Typical parameters are the
location of the proximal anchor points. Nguyen [363] addresses the reconfiguration
of a cable robot by moving the proximal attachment points in order to optimize the
kinetostatic performance. Nguyen targets to customize the translational workspace
as well as the orientation workspace, the available velocities and accelerations at
the end-effector, as well as the available wrench set. The idea of providing specific
motion capabilities is taken a step further by Gagliardini [153] who introduces the
concept of the twist-feasible workspace, i.e. the workspace where all twists from a
given twist-set can be generated by the robot. Bothwrench-feasible and twist-feasible
workspace are subject to the genetic algorithm. The discrete reconfiguration of cable
robots [154, 156] is addressed by choosing from sets of geometrical design param-
eters. The papers discuss a procedure with multiple steps to find the feasible design
for reconfiguration taking different task constraints into account. Although both are
theoretically and practically possible, no results are published on adaption of the
drive-trains by e.g. changing the gearboxes to adjust the kinetostatic performance.

A rather specific application is investigated byGao [158]. The optimal geometrical
design of a cable-driven mechanism with four cables is presented where the platform
is constrained by a central spine with springs for application as an artificial neck. In
the paper, the positioning of the anchor points for minimizing the actuator forces is
presented where a simple geometric model with only two parameters is employed.

For automatic as well as user-driven geometrical design, one has to use a para-
metric model that serves as template of the robot. Such geometric archetypes provide
the relations of the proximal anchor points on the robot frame and the distal anchor
points on the mobile platform. By choosing a typical number of two and twelve
parameters, one receives a specimen of a robot from the family described by the
archetype. Kawamura [238] develops an ultra-fast cable robot with seven cables for
six degrees-of-freedom called Falcon whose cable arrangement has some similarities
with the Delta robot [98]. The geometry of the Falcon is characterized by a planar
rectangular robot frame and a slender bar for themobile platform.Choe [97] proposes
a cable robot with four cables and three degrees-of-freedom which can be seen as an
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evolution of the Falcon system. Tadokoro [451] discusses different design variants
for a cable robot focusing on the form of the mobile platform. A portable cable robot
with winches on trucks is proposed by Bosscher [50]. In order to constrain the ori-
entation of the mobile platform, pairs of cables are used which are arranged similar
to the parallel struts of Delta robots.

Tang [458] proposes three parametric archetypes for cable robotswith seven cables
where the proximal anchor points are located on two circles over and under themobile
platform. Later, Alikhani [10] proposed a robot archetype with nine cables and six
actuators where three pairs of cables are guided in parallel lines. By doing so, the
robot is constrained to be operated with purely translational motion. Lamaury [277]
discusses the geometrical design of the ReelAx8 robot underlining the symmetries
used for this robot. The paper discusses the anchor point arrangement on the mobile
platform that is later used for CoGiRo. A suspended 3T system similar to the Skycam
is proposed by Filipovic [151] where only three out of four cables are actuated. Two
cables are conventionally fixed to the mobile platform and actuated by winches. The
remaining two constraints are realized through one cable that is redirected by a pulley
on the mobile platform so that one end is fixed at a proximal anchor point and the
other end is connected to a winch. The idea is promising since it saves one actuator.
However, no results on the size of the wrench-feasible workspace are provided.

A remarkable geometry is introduced by Miermeister [346, 402] who proposed
a special geometry for cable robots that allows for unlimited rotation of the mobile
platform about one axis both without cable-cable interference and with wrench-
feasibility throughout the full rotation of the mobile platform. Different variants
with nine to twelve cables are possible and, especially if more cables are used, the
robot can perform unlimited rotation of the mobile platform within a reasonably
large workspace.

A rather unconventional approach is pursued by Liu [291] who proposes to resign
from coiling the cable and considers to change the efficient cable length by deforming
a cable four-bar mechanism through a slider in order to improve the accuracy in the
mechanism. Using three of such kinematic loops, a planar 2T robot with six cables
is received which is actuated by three sliders.

8.1.2 Dimensioning of Components and Hardware Design

Surprisingly, the problem of properly dimensioning the main components of cable
robots is hardly addressed in the literature. It seems that only Kraus [263] proposes a
method to dimension the drive-trains of cable robots based on velocity-force charts
for optimal designof the actuators. Some remarks on cable requirements and selection
for cable robots are presented byWeis [489]. Further references on designingwinches
and cables guidance elements as well as guidelines for the selection of cables are not
elaborated for the special operating conditions of cable robots. Instead, one has to
derive such information from text books [149, 204] and applicable norms [222].
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More material is published on the design of laboratory test-beds and demonstrator
systems. The scope of such papers is usually limited to listing the installed compo-
nents. When it comes to the development of cable robots, one can find a number
of conceptual drawings, CAD illustrations, and pictures for specific parts such as
winches, cable guidance systems, mobile platforms, and machines frames. In con-
trast, a design methodology is hardly tackled. Contributions focusing on components
can hardly be separated from those that target at specific applications: The first contri-
bution from Landsberger [280] presents the primal concept of a cable-driven parallel
robot as well as the physical prototype of the first robot which consists of a central
constraining linkage and six antagonistic cables. Cong [383] proposes awinch design
where the whole drum is translated instead of a spooling unit in order to keep the
point of cable attack fixed in space. Pott [404] presents the conceptual design of the
IPAnemawinches. Thewinch design employs a spooling unit traveling parallel to the
drum to allow for accurate and repeatable coiling of the cable. Compared to Cong’s
design, the winch can be built more compact for the same cable stroke but requires an
additional guiding pulley. The problem of two cables sharing one proximal anchor
points is addressed by Fassi [140] who presents the outline of a double winch unit
where two cables share almost the same proximal anchor point. Since eyelets are
used to guide the cable, the approach is limited to soft and thin cables. According to
other experimental results, such a design is expected to generate excessive wear on
the cables. Billette [38] proposes a design for awinchwith two actuatorswhere one of
the actuators produces large impetus for simulating impacts in a haptic interface. An
unconventional idea is put forward by Yeo [509], presenting a design for mechanical
components to vary the stiffness of cable-driven parallel robots. Also, the integration
of this device into a planar cable robot is described. Baoyan [27] investigates addi-
tional counter-weights to the mobile platform of the FAST robot in order to enlarge
the orientation workspace. A similar approach is taken up by Zitzewitz [144, 533]
who proposes to employ passive springs or counter-weights in the electric actuators
to optimize the performance of the drive-trains of cable robots. By presenting of the
drive-train, the operation point of the servo-drives is shifted so that both the positive
as well as the negative quadrant of the velocity-torque space are exploited. Thereby,
the required motor size is reduced and energy efficiency is improved at the cost of
higher inertia and reduced dynamics.

A cable robot design with movable proximal anchor points on either guideways
or mobile vehicles is analyzed by Zhou [526]. Korayem [253] presents the cable
robot ICaSbot which is a suspended cable robot with six cables. A full robot system,
including kinematics, control, and user interface [254], is presented and performance
measurements according to ISO 8283 [220] are performed.

8.1.3 Case Studies and Applications

A couple of practical results and conceptual case studies are presented in the con-
text of design. Lindemann [290] proposes the haptic device called Texas 9-String,
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consisting of a serial kinematic chain used as a joystick. It is constrained by nine
cables to measure the motion and to generate force feedback. Some technical details
on the hardware design of the NIST roboCrane are presented by Bostelman [54].
Then, Albus [6] describes the redesign of the RoboCrane system towards the so-
called SPIDER configuration and provides technical details on the implementation.
Geometrical design and development of real-time controller system is discussed for
the cable robot Segesta [139, 210]. Technical details on the Marionet robot family
are presented by Merlet [324, 336] who employs pulley tackles for the actuation of
the cable robot and compared the pulley tackles to winches with respect to different
criteria [327].

Some applications in the field of medical devices and rehabilitation are addressed
in the literature. Ottaviano [376] discusses the design requirements of a 4-4 cable
robot for applications in hospitals and a small-scaled model of the handling appli-
cation is presented. Rosati [423] proposes to use a suspended cable robot with four
cables for arm rehabilitation and presents results from application [421, 422]. Then,
it is proposed to use movable proximal anchor points in order to enlarge and shape
the workspace of 2T cable robots [424]. The design of the Sophia-4 cable robot for
neurorehabilitation is described [425, 517]. Morris [351] develops a planar cable
robot with three cables for generating forces for physical therapy assistance.

The design of large-scale systems imposes additional requirements. Buterbaugh
[81] presents a prototype for positioning the radio target for antenna testing using a
suspended robot with six cables similar to the RoboCrane design. Rui [508] performs
design pre-studies for a 3T suspended cable robot with four cables as case study for
the FAST telescope. This research is later generalized to six cables [459, 460].
Sensitivity studies are performed for the geometric parameters of the FAST robot
where sagging is taken into account for the modeling of the long cables. Bruckmann
presents the development of a high-bay storage retrieval machine [70] as well as
a suspension system for wind tunnels [69]. The optimization of the cable length
for a robot with moving proximal anchor points is addressed by Sturm [445]. The
achievable motion range of the actuators is crucial for the effectiveness of the cable
robot. Thus, the resulting robot can be understood as an over-constrained cable robot
counterpart of the conventional parallel robots known as Hexaglide [205]. Tempel
[463] presents planning approaches and a safety system for a cable robot for an
entertainment application that needs to fulfill strict safety regulations.

Bostelman [56] describes some possible applications of the RoboCrane system as
well as integration concepts withmovable winches on the ceiling. Later,Maeda [305]
presented the design of the WARP robot consisting of seven cables and a triangular
mobile platform. Another handling application is sketched by Dekker [113] where a
cable robot called DeltaBot for fast pick-and-place operations is presented. A peak
performance of 150 cycles per minute and a position repeatability of 0.1mm is
reported.

Bosscher [49] proposes the C4 robot for 3D-printing of buildings. The proposed
design has twelve cables and the proximal anchor points of the lower eight cables can
be moved on linear guideways in order to avoid collision between the cables and the
printed structure. To guide themobile platform, four pairs of cables are geometrically
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parallel so that the orientation of the mobile platform is locked. Capua [83] proposes
a four cable suspended robot called SpiderBot where the winches are located on the
mobile platform. The proximal anchor points can be fixed and released with suction
cups to the ceiling. By proper fixing and releasing of the cables, the robot can climb
under the ceiling.

The reconfiguration of a suspended cable robot with six cables is discussed by
Zi [529] where the proximal anchor points can be moved on the circumference of
a circle. The contribution is remarkable in being amongst the few works that also
experimentally investigated reconfiguration.

Some authors apply cables to actuate serial kinematic chains. Kossowski [255]
addresses the design of a hybrid cable-actuated structure. Mroz [352] proposes a
robot design where a serial chain is actuated by parallel attached cables. The work
is remarkable as it addresses the design methodology from requirements through
kinematic and static analysis to controller design. Lim [287] discusses the design of
the actuation of a universal joint by four cables and different arrangements of the
cables are compared.

Liu [292, 293] proposes a design concept for a cable robot with four cables and
two actuators where additional springs are integrated into the pulley mechanisms
in order to distribute the forces amongst the cables. A similar approach is pursued
by Khakpour [240] where differentially driven cable robots are discussed instead of
spring-loaded pulley tackles. Therefore, multiple winches are connected to a single
drive-train, thus, constraining the motion and reducing the costs for the system at the
same time. Springs are considered to additionally constrain the mobile platform in
order to further reduce the number of actuators. Lately, this idea of directly adding
springs to the mobile platform to shape the workspace is evolved by Duan [131].

Summarizing the findings from the review of literature, one can conclude that
many aspects in the design and realization of cable robots are considered in the
literature. However, the approaches are at best loosely connected. In the following,
a holistic approach is presented putting a couple of the methods reviewed above into
a design procedure.

8.2 Product Development for Cable Robots

The procedure presented here is an adaption of known development methods for
application to cable robots. It is basically derived from the V-model used, amongst
others, in mechatronic component design (Fig. 8.1). The elements of the procedure
have their origin in accepted design strategies like systems engineering [471], soft-
ware engineering, anddesignofmechatronic systems [472]. Therefore, thesemethods
are the foundation for developing a suitable method for the design of cable robots.
Today, the design of cable robots is hardly a systematic procedure due to lack of
knowledge and experiences with existing systems and past developments. One has
to consider that cable robots are highly modular robotic systems which have to be
adopted to special fields of application. Taking into account the variety of applications
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Fig. 8.1 Adopted design methodology for cable robots based on the V-model

presented in Chap. 2, the procedure must be customized to the field of application.
Furthermore, the design and development procedure for a robotic system is a process
that lasts several months or even years. Therefore, a list of key tasks in the develop-
ment is presented and the tasks are related to the algorithms and methods presented
in previous chapters.

The development procedure is based on the V-model described by VDI 2206
(Fig. 8.1, [472]). Beginning from the application requirements, the technical domain
specific subsystems are defined. For cable robots, the domains are mechanical engi-
neering for the winches, the machine frame, and the end-effector. The instrumen-
tation of the end-effector is application specific and it is out of the scope of this
work to include the process specific aspects. Control engineering is the basis for
open and closed-loop control for the robot controller. The development of a proper
user interface and high levels of control require also aspects of software engineering.
Additionally, design and dimensioning of the cables require some knowledge of civil
engineering.

In the first phase, the application requirements have to be translated to the com-
ponent specifications. This requires mapping the required workspace or motion path
to a suitable geometrical design. Payload, dynamic forces, and process forces need
to be considered for the winch, platform, cable, and frame. The integration of the
subsystem into the robotic system starts when all subsystems are properly defined.
Once the domain specific design for the subsystems is finalized, the performance
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of the subsystems is tested against the component requirements. This can be done by
using hardware-in-the-loop simulation as no physical robot is available at this stage.
In particular, for cable robots with extreme requirements such as huge workspace,
large payloads, or high dynamic requirements, simulations of the system are the only
way to validate the subsystem design. Additionally, experiments are prepared and
accompanied by simulations to validate the subsystem design. Shortcomings in the
design of the subsystem must be settled through iterations before further integration
in the robotic system.

An overview of the six development phaseswith their respective tasks, results, and
tools is shown in Table8.2. The phases of this development are executed within the
framework of the V-model. Therefore, at the end of the domain specific design phase,
a validation procedure starts in order to find shortcomings in the design by comparing
the components’ performance to the design specification. If shortcomings become
evident, relaxations have to be accepted in the design specifications or revisions have
to be made for the components.

Here, the main phases in designing a cable robot system are proposed. The
list below describes the cable robot specific tasks and relates methods introduced
throughout this work where applicable. The six phases follow the design methodol-
ogy for mechatronic systems as outlined in Fig. 8.1:

1. Application analysis: Process and requirement definition. Details on the defini-
tions are given in Sect. 8.3.

• Technical requirements and environment: limitation of the installation space,
required size of the workspace WR, relevant obstacles for collision testing,
temperature (Sect. 8.3).

• Process description including velocities, accelerations, process forces, pay-
load (Sect. 8.3) as well as intensity of usage for actuator design.

• Process sequence and operating grade
• Required accuracy and repeatability

Results: draft of application and catalog of criteria (design specification).
2. System level design: cable robot system architecture (Sect. 8.4)

• Design of the geometry of the mobile platform and the machine frame using
workspace computation (Chap. 5)

• Design layout of the robotic system (Sect. 8.5)
• Concept for controller and selection of controller architecture
• Dynamic simulation model of the robot (Chap. 6)

Results: layout plan, geometry data for the robot, simulation model, archetype of
the robot.

3. Domain specific design of hardware for winches, cables, drive-trains, pulleys,
machine frame, mobile platform, end-effector instrumentation

• Design and dimensioning of the fixed machine frame in order to implement
the chosen values for ai and RA,i
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Table 8.2 Design procedure for cable-driven parallel robots

Phase Tasks Document Tool, description, used
methods

Application
analysis

Process description,
technical requirements and
application demands robot
process description process
sequence

Design specification
workspace, velocity,
dynamics, payload

Workshops catalog of
criteria

System
level design

Application layout
geometry synthesis for
mobile platform and
machine frame control
system architecture
simulation

CAD layouts, ai , bi , lmin,
lmax, fmin, fmax

Templates of existing
robots, WireCenter,
CAD, computer aided
factory planning
MATLAB/Simulink

Hardware
design

Design of mobile platform
cable selection winch
design dimensioning of
drive-trains fieldbus, control
platform sensor selection

CAD of platform cable
type, pulleys

CAD building blocks
list of suppliers bill of
material

Control
software
develop-
ment

Control system architecture
development of controller
models (kinematic code,
position and force, sensor
signal filtering and
preprocessing) control
system configuration design
of (graphical) user
interface, selection of
electric components

Controller software, user
interface implementation,
circuit diagrams

MATLAB/Simulink
TwinCAT 2/3, B&R
Automation Studio MS
Visual Studio, dynamic
simulation

System inte-
gration

Hardware-in-the-loop
simulation virtual initial
operation initial operation
calibration and referencing
application programming
and teaching risk
assessment, documentation

Simulation user’s manual HIL for open-loop
control and initial
operation
MATLAB/Simulink
WireCenter CAM tools
for off-line
programming

Evaluation
and valida-
tion

Requirement validation
through measurements test
usage site acceptance test

Measurement protocols,
CE-certificate

Measurement devices

• Refine geometry design for mobile platform, i.e. fix how to mechanically
realize the values for bi as well as the static loads

• Using the requiredworkspace hullWR, one computes the required cable stroke
Δli (Sects. 5.5 and 4.2.1)

• Select the cable material and type, thus define the parameters for cable length
Δli and thus lmin, lmax, radius rC, material EC, and fatigue related properties
(Sect. 8.6.1)
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• Design or selection of actuation system such as winch and pulley mechanism
(Sect. 8.6.2). Define the pulley radius rR.

• Select drive-trains, gearboxes, inverters, and motors as well as sensors for
position and/or force measurement (Sect. 8.6.3). This defines effective fmax

through the actuators.
• By defining the mechanical components of the robot, the minimum and max-
imum cable forces fmin, fmax can be determined (Sect. 3.4.5).

Results: bill of material, engineering drawings of the robot system, the robot
frame, and the mobile platform.

4. Domain specific design of controller software: Design and implementation of
open and closed-loop control including electrical system development

• Define controller architecture e.g. position control, velocity control, or hybrid
force control as well as the framework for controller integration (proprietary
or open source)

• Development, implementation, and configuration of controller modules: kine-
matic codes for forward and inverse kinematics (Chap.4), closed-loop control,
sensor signal processing, force controller if applicable

• Motion controller configuration and parameter tuning
• Controller logic for interfacing with peripherals; fault recovery strategies,
definition of error states

• Development of user interface (UI)
• Design and implementation of the control cabinet, selection of communication
technologies such as fieldbus, selection and integration of sensors, electrical
integration of external peripheral

• Preliminary risk assessment and selection of safety-related sensors
• Application specific control development

Results: connection diagram for the control cabinet, software and configuration
data for the controller.

5. System integration: Connection of components, assembly, testing

• Component assembly, installation, wiring, mechanical connection
• Performance validation through workspace studies and kinematic computa-
tions. The validation focuses on the feasibility of technical aspects such as
deflection angles of the anchors points (Sect. 5.2.8), effective cable force
limits (Sect. 5.2.2), cable-cable interference (Sect. 5.2.6), as well as cable-
application interference (Sect. 5.5.6). In case of shortcomings with respect to
the design specifications, the phases 2–4 have to be repeated.

• Hardware-in-the-loop simulation (Chap.6)
• Virtual initial operation
• Real initial operation of the controller system with the robot hardware
• Accuracy improvement through referencing and calibration (Sect. 9.2)
• Application programming
• Risk assessment and risk mitigation
• Factory acceptance test (FAT)
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Results: run capable cable robot, measurement protocols, performance data.
6. Evaluation and validation: Test, evaluation, initial operation, documentation and

reporting

• Test measurement and validation of desired properties on the real machine
• Test operation on the desired application task
• Documentation and manuals
• CE-certification
• Site acceptance test (SAT)

Results: finalized cable robot system.

Usually, the six phases are executed subsequently where different levels of validation
of the achieved system performance against the initially defined requirements are
done. If the performance metric defined for the target robot system cannot be reached
at the end of the development stage, one has to go back to the previous stage and
refine the development. The objective of the development procedure above is to limit
the needful number of iterative cycles where from today’s perspective it is out of
reach to avoid iterative cycles at all.

8.3 Application Requirements

There is a large number of connections between the requirements of the robotic sys-
tem level and the requirements for technical parameters of the component level. This
leads to a heavily coupled system which is typical for parallel robots. In Table8.3,
an overview is given how application requirements affect component requirements.
These dependencies become meaningful for the design of variants as well as for
reconfiguration. Particularly the connection has to be considered when changes in
the requirements occur and the consequences for the robot system must be deter-
mined. Most requirements are strongly related to each other. Some are correlated but
in most cases they are antagonistic and it makes sense to order the requirements by
importance. In the following, the main technical requirements for cable robots are
listed and their respective impact on the robot design is briefly discussed.

8.3.1 Workspace

The required workspaceWR is expressed in terms of geometric primitives such as a
box (length × width × height), a cylinder (radius, height), a sphere (with radius), or
an ellipsoid (by three semi-principal axes). For the design of planar robots, one uses
rectangles, circles, and ellipses, respectively. From the perspective of the application,
one has to define if the required workspace needs to be reached with one defined
orientation (constant orientation workspaceW CO), with all orientations from a given
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Table 8.3 Dependencies between application requirements and component requirements

Requirements for components

Winch Cable

Application
requirement

Cable
velocity

Cable
force

Cable
accelera-
tion

Cable
stroke

Deflection
angle

Accuracy Stiffness

Workspace None Medium None Strong Strong None None

Payload None Strong None None None None Strong

Applied
forces

None Strong None None None None Strong

Acceleration Weak Strong Strong None None Medium Strong

Velocity Strong Medium Medium None None Medium None

Installation
space

None Medium None Weak Strong None Medium

Accuracy None Medium None None None Strong Strong

set RR (total orientation workspace W TO), or with at least one arbitrary orientation
(maximum workspace Wmax). The data model of the workspace as well as the type
of the desired workspace are then input conditions and configuration settings in the
design and verification procedure (see also Sects. 5.1.3 and 5.1.4). The application
requirements for theworkspace influence different specifications for the components.

The prescribed workspace has medium impact on the cable forces and the max-
imum strength of the cables since a larger workspace requires higher forces in the
cables in order to prevent them from sagging. Another reason for higher forces is an
unfavorable angle of attack of the cables on the mobile platform at the workspace
boundary. An increase in the maximum feasible cable force mitigates this limitation.

A larger required workspace WR heavily influences the required cable stroke Δl
of the winches. Usually there is a proportional scaling in the size of the workspace
and the required length of the cable. Contrary, the available cable stroke of a given
winch is a strict limit for the size of the workspace that cannot be bypassed with
other methods.

Changes in the required workspace size have a strong effect on the maximum
deflection angles for the winches and distal anchor points on the mobile platform.
These two components have to be designed carefully since restricted deflection
capacities largely limit the usable workspace. Summing up, changes in the required
workspace WR heavily affect the robot design.

8.3.2 Payload

The payload of the robot is described by the possible weightmR that can be supported
by the mobile platform. From an application point of view, the payload is expressed
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as a mass in kilogram. Together with the desired acceleration, this is translated
to the required wrench set QR of the robot that is analyzed in statics (Sect. 3.3),
workspace considerations (Sect. 5.2.2), drive-train dimensioning (Sect. 8.6.3), and
as parameter in the dynamic simulation (Chap. 6). The payload also affects the
mechanical design of the mobile platform in order to carry the payload. Depending
on size and distribution of the load as well as on the motion requirements of the
robot, one has to also take into account the moment of inertia on the mobile platform
�R for computing the wrench set QR.

The design of the robot depends on the required payload of the application. The
available payload depends in general on the pose of the robot but for the sake of
simplicity, it is usually assumed that only the smallest feasible payload is considered
that can be carried in the whole desired workspace and one does not take advantage
from higher payload at special positions.

The payload of the robot has a strong impact on the selection of winches, drive-
trains, and cables. As a rule of thumb, there is a proportional scaling of the required
payload to the required capacities of the winches and the cables. Since the rated
power of the motors is a main cost-driver, payload needs careful attention.

Additionally, one has to consider the elasticity of the cables alongwith the payload.
Higher payloads and thus higher tension in the cables lead to larger elongation of the
cables. This can disturb the control system and compromise accuracy. After changing
the requirements for payload, one has to reconsider the static deviation of the robot
and elastic effects caused by dynamic behavior of the robot. The experimental results
from Kraus [259] show that loading and unloading the feasible payload already
change the performance of the control system. Clearly, geometric reconfiguration of
the robot has an even larger influence.

8.3.3 Applied Forces and Torques

Applied wrenches on the mobile platform arise from the process that is executed
such as mating forces in assembly or cutting forces in machining. The applied forces
and torques are described by enclosing the required wrench wR

P by a box or by a
hyper-ellipsoid. Again, one receives a desired wrench set QR that serves as input
parameters for statics (Sect. 3.3), workspace considerations (Sect. 5.2.2), drive-train
dimensioning (Sect. 8.6.3), and for dynamic simulations (Chap. 6). Thus, the applied
wrench on the mobile platform has a similar effect on the robot as changes in the pay-
load. In contrast to the payload, the wrench set generated by applied wrenches does
not depend on the acceleration of the mobile platform. Examples of such definitions
are given in the workspace studies (see Sect. 5.7.2).

Since the applied wrench has to be counteracted by the winches, the drive-trains,
and the cables, one must address changes in the applied wrench wR

P . For estimating
new feasible cable force limits, this coupling effect can be considered to be linear.

Also for the applied wrench, one has to take the elastic effects of the cables into
account. Even if higher forces can be generated with a higher breaking load of the
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cables, the elastic reactions at the mobile platform and thus the positioning errors
are larger. Therefore, one has to check if the larger elastic effects are feasible for the
application.

8.3.4 Acceleration

The feasible dynamics of the mobile platform are governed in terms of the linear amax

and angular accelerations αmax of the mobile platform. Similar to the requirements for
the applied wrench, the specification of the acceleration amax, αmax can be described
by a box or ellipsoid. For that purpose, one has to use both platform weight mP and
moment of inertia IP as well as the payload to compute the equivalent wrench set.
Using d’Alembert’s formula, one computes the inertia wrench wI for the mobile
platform by

wI =
[

mPaP

IPαP + ωP × IPωP

]
(8.1)

whereωP, aP,αP are the vectors with the required angular velocity, the linear acceler-
ation, and the angular acceleration of the mobile platform, respectively. Thus, using
above-mentioned d’Alembert’s formula, one determines the required wrench setQR

for a given scenario. This wrench set QR is then taken into account in statics and
workspace computation as well as for dynamics evaluation. The required accelera-
tions of the end-effector affect the following subsystems.

The cable forces are mainly influenced by the cable acceleration. The required
acceleration is directly governed by the maximum force fmax that can be generated
by the winch since the generalized inertia seen by the winch is the connecting factor
between acceleration and cable force. The same holds true for limitations in the accel-
eration capacities of the winch. As a rule of thumb, there is a proportional relation
between the linear accelerations of the end-effector and the maximum acceleration
provided by the winch.

When considering higher accelerations, there are additional requirements for the
mechanical parts of the winches. In such cases, one has to consider the dynamics
of the cable and auxiliary parts of the winch such as the guiding pulleys and the
panning joint of the pulley. Higher platform accelerations require additional actions
for robust and reliable operation of the cable when it is guided around the pulleys.
For ultra-fast motion, the centrifugal forces of the cable need to be taken into account
when the cable is guided over pulleys or coiled onto the drum.

Higher accelerations indirectly influence the inertia of the cable since higher
forces lead to thicker cables and thereby to high cable inertia forces. The guiding
pulleys and winch drums also grow with the cable diameter and their respective
impact on the inertia is increased. If very high accelerations are required, one has to
additionally consider the cable stiffness. For ultra-high accelerations, the connection
between stiffness and bandwidth of the cables needs to be considered. Otherwise,
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the commanded motion of the actuators leads only to elastic reactions in the cables
rather than generating the desired motion of the mobile platform.

8.3.5 Velocity

The velocities of the mobile platform or, more precisely, the twist are described
either by a box in terms of ||v||∞ < vmax or by an ellipsoid with its main axes. This
is equivalent to the definition of a twist-set and a twist-feasible workspace [153].
The specified velocity of the mobile platform affects the following subsystems of
the cable robot:

The required velocity directly determines the cable velocity of the winch which
needs to be at least as high as the end-effector velocity to realize the required end-
effector velocities in all poses.

In order to realize the required acceleration along a path, the end-effector velocities
constrain the required accelerations of the winches. Even if there is no acceleration
of the mobile platform along a linear path, the nonlinear transmission of the inverse
kinematics generates requirements on the acceleration of the winches. If the path is
curved, additional force requirements according to Eq. (8.1) arise for the acceleration
and for the forces of the cables.

High velocities of the cable put notable prerequisites on the control system in
order to allow accurate and smooth generation and tracking performance of the
robot. Considering typical controller cycle times of 1ms, the set-point samples have
already a distance of around 1mm for robots with medium velocity of v = 1m/s.
For ultra-fast cable robots that reach 10m/s and more, control tracking becomes an
issue. This holds especially true for fully-constrained cable robots since small control
errors lead to high parasitic forces in the cables due to high internal tension.

For cable robots with very high velocities, extra demands show up for the robust
guidance of the cable. In experimental tests, it is observed that cable velocities of
10m/s and more lead to nonnegligible centrifugal forces in the cables both on the
pulleys and on the drum. Thereby, additional cable forces must be generated that
counteract the centrifugal forces. In such cases, the cables may leave the pulleys and
take off from the drum. Such phenomena severely undermine the reliable operation
of the robot.

8.3.6 Installation Space

Cable robots in general have a complex connection between cable forces, shape and
size of the workspace, and the installation space required for the robot. The installa-
tion space specifies the envelope around the winches. Mathematically speaking, one
can define the installation space as the convex hull of the proximal anchor points
Ai plus the size of the winch units. In practice, it is common to consider the size
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of a rectangular box enclosing all winches. For some robot designs, the workspace
is larger than the convex hull of the proximal anchor points Ai . This holds true for
many suspended robots. However, also fully-constrained robot designs such as the
Falcon design show this property (Sect. 8.4.4). If the maximum installation space is
given, it is usually assumed that the winches have to be placed on the surface of the
installation space. This restriction is tackled by the use of parametric robot models
as introduced in Sect. 8.4. For these robots, the installation space needs special treat-
ment. If the installation space is given or changed, the following properties of the
robot are influenced.

The installation space mainly specifies the required length of the cables. If the
installation space is increased, longer cables are required even if the desired size of
the workspace is maintained. Since the length of the cables is coupled to the cable’s
stiffness, one has a medium influence of installation space on robot stiffness.

A strong connection must be taken into account between the installation space
and the workspace. Roughly speaking, there is a linear scaling between the size of
the workspace and the size of the installation space. For large-scale robots, additional
factors arise. To maintain the stiffness, the additional length of the cables needs to
be compensated by thicker cables which in turn increase weight and pretension to
prevent sagging. Therefore, there is a strong connection between the installation
space and the workspace.

The cable stroke of the winches is moderately influenced by the installation space
compared to the size of the workspace. Increasing the installation space while main-
taining the size of the workspace puts little additional restriction on the cable stroke
of the winches since the cable can have an arbitrarily long remaining length when
fully coiled on the winch.

The deflection angles of the cable guidance system strongly depend on the ratio
between installation space and workspace. Especially if the workspace is large com-
pared to the installation space, large deflection angles are required both on the prox-
imal and the distal anchor points which might be difficult to realize.

8.3.7 Accuracy

The precision of a robotic system is given by its accuracy and repeatability (see
Sect. 9.2 for the definition) and these performance measures directly determine the
robot’s ability to properly perform its task. Designing a robot for a given accuracy is
difficult since accuracy can usually be determined experimentally once the robot is
fully assembled. Thus, proper assessment of this important performance indicator is
made at a late state of the development, making it a critical factor in the development
process. The following subsystems relate to the required accuracy. Experimentally
determined values for the accuracy and repeatability are given in Sect. 9.3.1.4.

The proper positioning of the end-effector through cables depends on the feasible
tension in the cables. Therefore, the minimum and maximum cable forces have a
medium impact on the accuracy of the robot.
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Inaccurate cable length caused by imperfect mechanics, control errors, and elastic
deformation directly affects the accuracy of the end-effector. Therefore, one has to
design the position measurement and control system for the cable length mainly
depending on the required accuracy. Additionally, all mechanical parts in the winch
system need to be designed so that the actuator motion is accurately rendered to cable
length.

Elastic cables allow for larger elongation. Therefore, the position accuracy is
reduced if the stiffness of the cables decreases. Further reductions in the stiffness of
the drive-train are caused by the winches, the cable guidance system, and the mobile
platform. For large-scale robots, one has to also consider the elastic deformation of
the robot frame. As a consequence, the accuracy degenerates with an increasing size
of the robot.

8.4 System Design and Structural Synthesis

Once all application requirements for a new robot are qualitatively and quantitatively
described, the designer has to make the decision to transform the requirements into
specifications for the robot. The first step in this procedure is the selection of required
motion patterns and the degrees-of-freedom of the robot. Secondly, the number of
cables needs to be selected. The task in the design of the robot can be identified with
the structural synthesis or topological synthesiswhich has widely been discussed for
conventional parallel robots, see the five reference books by Gogu [166] as well as
Merlet [322, Chap. 2]. In topological synthesis of cable-driven parallel robots, one
has by far less options and combinations available than for the design of conventional
parallel robots. This is due to the fact that the kinematic chains of cable robots are
governed by the kinematic properties of the cables. The dominant structure are cable
actuators that cause a change in the effective length of the cables. Only few systems
use cables of constant efficient length with moving anchor points. Although different
cable connection mechanisms are possible, such as universal joints, swivel bolts, and
spherical joints, their kinematic properties differ marginally and it is disregarded in
the structural synthesis. Instead, its selection is subject to mechanical design. Thus,
structural synthesis for cable robots requires to define

• Motion pattern and degrees-of-freedom n,
• Selection of over-constrained (CRPM, RRPM) or under-constrained (IRPM)
cable robots

• Choosing amongst suspended or fully-constrained cable robots
• Definition of the number of cables m
• Selection of the actuation scheme: controlling cable length by winches, pulley
tackles, twisting or controlling the position of the proximal anchor points by linear
guideways or levers.

The choice of motion pattern is straightforward derived from the mobility require-
ment of the application. The decision between IRPM and CRPM/RRPM is more
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involved. IRPM robots come at lower costs for the robot hardware since less winches
and less motors are involved. Due to the smaller number of cables, restrictions,
from collisions amongst the cables are reduced. In turn, IRPM impose significant
drawbacks in terms of accuracy, stiffness, and dynamic capabilities. Furthermore,
kinematics, control, and error recovery of under-constrained robots are challenging
adding costs to the development of the controller system which may consume the
savings achieved by the reduced actuators.

Under-constrained robots (IRPM) are always suspended whereas CRPM or
RRPM may be operated in suspended configuration. Suspended configurations can
be used when the load is high and the accelerations are low, e.g. in crane-like han-
dling and assembly applications or for relatively slow positioning of sensors such as
cable-suspended cameras. Suspended robots suffer from limited stiffness in direc-
tion of gravity. Furthermore, their ability of distributing forces amongst the cables
is reduced. In return, suspended robots hardly interfere with obstacles below and
lateral to the mobile platform.

The number of cables m shall be chosen as small as possible in order to reduce
costs. However, there are reasons to employ more than the minimum number of
cables. Robots of the 2T motion pattern can be realized with three cables. However,
the workspace and installation space has a triangular shape which often does not
fit the needs of the application. In this case, a redundantly constrained robot with
four cables allows to notably enlarge the workspace and gives additional degrees-
of-freedom in the design to shape the robot’s properties. The same situation occurs
for spatial cable robots with 3R3T motion pattern. Using seven cables for a fully-
constrained robot is possible but the workspace is small compared to the installation
space. Again, increasing the number of cables to eight or more allows for more
suitable workspace shapes. Using more than the minimum number of cables can be
useful to achieve additional advantages. The shape and size of the workspace can be
customized, additional cables allow for system inherent robustness against failure
in single drive-trains for applications with high demands for safety. Such applica-
tions are transportation of passengers, handling of hazardous goods, or operation in
changing environments. More cables are necessary to actuate additional degrees-of-
freedom on the mobile platform or to perform unlimited rotation of the platform (see
Sect. 8.4.13). Finally, redundant cables can, simplified put, increase payload.

The choice of the actuation system influences the workspace, stiffness, and energy
efficiency. Cable robots withwinches allow for a hugeworkspacewhere linear guide-
ways are considerably restricted. An advantage of linear actuation of the proximal
anchor points is pointed out by Bruckmann [68]: Since a share of the effective cable
force results from the passive reaction forces of the linear guideways, one can realize
high cable tension and high stiffness with a good energy efficiency.

The choices to be made for the criteria above have to be made by an engineer’s
careful considerations and no quantitative measures are provided here. After fixing
these properties, one can approach the problem of finding a proper geometry of the
robot, which is tackled in the following sections.
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8.4.1 Common Architectures and Reference Designs

To describe the geometry of a cable robot, one has to define the positions of all
proximal and all distal anchor points to uniquely fix the geometry of the robot.
Each cable has a proximal and distal anchor point, the coordinates of which can
be chosen freely. Thus, using 6m geometric parameters in the spatial case and 4m
parameters in the planar case defines a cable robot. The properties, such asworkspace,
kinematics, statics, singularities, and stiffness, of the fully-constrained robot must
be invariant under rigid body transformations of the machine frame and also under
rigid body transformations of the mobile platform. Only the effect of gravity is
altered through some rotation. We neglect this fact in the following. If one changes
all proximal anchor points ai of the robot by translation or rotation, the robot is
essentially maintained and its properties remain unchained. Thus, within the 6m-
dimensional design space of the robot, six dimensions can be removed for such
transformations of the machine frame and another six dimensions can be removed
for the mobile platform leaving 6m−12 independent design parameters in the spatial
case and 4m − 6 parameters in the planar case.

A simple convention to reflect this dimensional reduction can be achieved by
choosing a1 = b1 = 0 for fixing six parameters in the spatial case or four parameters
in the planar case. One can proceed with defining the second anchor point to be
located on the x-axis, and thus, fixing the respective y- and z-coordinate to zero, i.e.
a2 = [a2x , 0, 0]T and b2 = [b2x , 0, 0]T. Thus, another four parameters are eliminated
in the spatial case and two parameters vanish in the planar case. Finally, for the spatial
case, the third point of the frame and the mobile platform is fixed to the xy-plane
and the respective anchor points become a3 = [a3x , a3y, 0]T and b3 = [b3x , b3y, 0]T.
Thereby, we have eliminated two geometric parameters and the total number of
geometric parameters is reduced by twelve in the spatial case and six in the planar
case. The convention described here is widespread, however, there are also others to
achieve this reduction.

For the purely translational robots implementing the motion pattern 2T and 3T,
the reduction can be continued. Here, all cables need to be connected to the same
distal points since this is the condition for elimination of the rotation capability of the
robot. Thus, only 3m (2m) parameters can be chosen in the spatial (planar) case and
removing the congruent robots through rigid body transformations leaves 3m − 6
parameter in the spatial case and 2m − 3 parameters in the planar case.

For the 2R3Tmotion pattern, one can reduce the parameter space since the design
requires all distal anchor points bi to lie on a line. Thus, the first anchor point is chosen
to be b1 = 0 and each of the remaining anchor points is characterized only by its
translation along the common axis. Thus, the number of free parameters is 3m − 6
on the machine frame and (m − 1) for the mobile platform which results in a total
number of 4m − 7 independent design parameters for the 2R3T class.

Although the reduction approach described above reduces the number of design
parameters, a large design space is still left for robots of motion pattern 1R2T, and
especially for the 3R3T class. Therefore, subclasses described by fewer parameters
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Fig. 8.2 Concept of parametric models transforming parameters g = [l,w]T in the design space
into robot geometries (a1, . . . ,b4)

are useful to describe robot families. Such parameterizations are vector functions
�G : IRnD → IR6m of the form

[
a1 . . . am b1 . . . bm

] = �G(g) (8.2)

that map the design parameters gD = [g1, . . . , gnD]T to the geometric parameters of
the robot a1, . . . , am,b1, . . . ,bm . The basic procedure of generating robot designs
from design parameters is depicted in Fig. 8.2. In this work, the function �G for
different robot archetypes is represented by a table such as Table8.5 that lists the
mathematical expression for the position vectors of the proximal ai and distal bi
anchor points. This notation is for the sake of readability, favored, over the notation
as equation in the text.

A well-known parameterization of conventional parallel robots is the simplified
symmetric mechanism (SSM, Fig. 8.7) [322]. This robot design is originally used for
some of the first cable robots such as theRoboCrane [6]. By pre-selecting certain rela-
tions amongst the geometric parameters, useful properties of the robot are produced,
e.g. a large translational or orientation workspace, a high stiffness, or little influence
from cable interference. In Table8.4, an overview of such archetypical designs is
given. A number of archetypes of cable robots is illustrated in Figs. 8.3, 8.4, and 8.5.
The shown designs represent typical configurations to arrange the cables. The generic
type has eight cables and six degrees-of-freedom with a rectangular mobile platform
and machine frame. The translational motion is quite reasonable where rotations are
limited. Furthermore, the cables constrained in all directions make collisions with
the environment a considerable problem. The suspended robot is a variant with six
cables and six degrees-of-freedom.

Thepresentedgeneric designs are understood tobe templates for starting thedevel-
opment of a new robot or to customize the design for specific application require-
ments. The parametric description allows for model reduction of the design space
and thus decreases the number of free design parameters to a set that is expected
to generate useful robots. The parameterizations is used either for automatic search
methods or for manual design where one searches for a suitable solution within
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Table 8.4 Overview of archetypical robot designs

Name m n Description

RoboCrane 6 6 The original NIST design is essentially an inverted simplified
symmetric manipulator (SSM) with six cables

Falcon 7 6 Design by Kawamura with a flat robot frame and an orthogonal
strut platform for picker applications

Segesta 7 7 6 The original Segesta robot design; a six degrees-of-freedom robot
with seven cables and a planar mobile platform

IPAnema 1 7 6 The original IPAnema design with a box frame and a planar
platform

IPAnema 1 8 6 Box frame with planar mobile platform where all anchor points are
on the corners of the box

IPAnema 1.5 8 6 Trapezoidal frame with crossed cables and a strut-shaped platform

IPAnema 2 8 6 Trapezoidal box frame with crossed cables and trapezoidal mobile
platform for handling

IPAnema 3 8 6 Box-shaped platform and trapezoidal platform for general purpose;
used both for handling and haptic interaction

CoGiRo 8 6 Suspended but redundant platform for handling

CableSimulator 8 6 Box frame with icosahedra platform for improved orientation
capabilities

IPAnema-Falcon 8 6 Long strut platform with crossed cables for high stiffness and
orientation capacities for tilting

Endless Z9/Z12 9–
12

6 Superior orientation capacities with 9 to 12 cables where one axis
can be operated with unlimited rotation

French-German 12 6 A fully antagonistic design where two cables are mainly used to
actuate one degree-of-freedom of end-effector motion with large
orientation capacities

Segesta 9 9 6 Box frame with planar platform

Segesta 12 12 6 Experimental setup with counterweights and movable proximal
anchor points

CabLev 3 6 Suspended robot with three cables and movable proximal anchor
points

a meaningful class of robots. In the following section, some design templates are
described in detail and typical properties are discussed.

8.4.2 Generic Redundantly-Constrained Robot Design with
Eight Cables

In the following, a number of common parameterizations of the robot frames are
presented. A widely used structure for the fixed machine frame is a rectangular box
where the winches are located at or close to the eight corners. As a rule of thumb,
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Planar belt robot (2T) planar robot (1R2T)

Fig. 8.3 Archetypical designs of planar cable robots

the numbering scheme for the winches is clockwise and from top to bottom. Since
this definition fixes the layout of the machine frame, robots with somewhat crossing
cables result from choosing an appropriate geometry of themobile platform. The box
is parameterized by its length lB, width wB, and height hB (Fig. 8.6). The coordinates
of the anchor points are given in Table8.5. The reference coordinate frame is in the
center of the lower side of the box. The same parameterization is used for the mobile
platform with the parameters length lP, width wP, and height hP.

The generic design realizes a 3R3T motion pattern which can be operated both
in fully-constrained and suspended configuration. If all parameters are nonzero, the
robot is in 8-8 configuration. However, if one or more parameters are zero, other
configurations are possible such as 8-4 (3R3T), 8-2 (2R3T), and 8-1 (3T). Setting
the frame parameters to zero allows for 4-8 (3R3T), 2-8 (2R3T) and 1-8 (rather
exotic). Mixing zero parameters amongst platform and base allows for unusual con-
figurations where 4-4 (3R3T) is reasonable and some of the remaining settings are
architecturally singular. In terms of wrench-feasibility, the generic robot design pro-
vides reasonable translational workspace while the size of the orientation workspace
is small. Due to the small orientation workspace, cable-cable interference is mostly
not the relevant limitation. Constraining the mobile platform from all sides gives
good stiffness properties where collisions with other objects in the machine frame
are considerable limitations. The design suffers from singularities in the center of
the workspace if the geometry of the mobile platform is congruent with the robot
frame.
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generic fully-constrained robot (3R3T) RoboCrane-type suspended robot (3R3T)

Falcon-IPAnema with needle platform (3R3T) CoGiRo-type, suspended redundant robot
(3R3T)

Fig. 8.4 Archetypical designs of spatial cable robots

Amongst other robots, the IPAnema 1 [389] robot implements this generic design
where parameters are set to g = [4.0, 3.0, 2.0, 0.12, 0.12, 0.0]T. As the height of the
mobile platform is hP = 0, one receives an 8-4 configuration.
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Assembly portal (3R3T) IPAnema 2 type with crossed cables (3R3T)

Falcon-type (3R3T) French-German design (3R3T)

Fig. 8.5 Archetypical designs of spatial cable robots

8.4.3 RoboCrane

The first cable robot demonstrator was the NIST RoboCrane design [6]. This
robot system combines aspects of a multi cable crane as it can be found in many
applications, such as container cranes, where each of its six cables has an indepen-
dent actuation.Conventional container cranes have a special geometrywith congruent
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Fig. 8.6 Geometry of the
generic box frame
parameterized with length,
width, and height

A1
A2

A3

A4

A5
A6

A7A8

K0

lB

wB

hB

Table 8.5 Coordinates of the proximal and distal anchor points ai and bi with eight cables and a
box-shaped geometry defined by the six parameters g = [lB,wB, hB, lP,wP, hP]T
Cable i Base vector ai Platform vector bi

x y z x y z

1 −lB/2 wB/2 hB −lP/2 wP/2 hP

2 lB/2 wB/2 hB lP/2 wP/2 hP

3 lB/2 −wB/2 hB lP/2 −wP/2 hP

4 −lB/2 −wB/2 hB −lP/2 −wP/2 hP

5 −lB/2 wB/2 0 −lP/2 wP/2 0

6 lB/2 wB/2 0 lP/2 wP/2 0

7 lB/2 −wB/2 0 lP/2 −wP/2 0

8 −lB/2 −wB/2 0 −lP/2 −wP/2 0

machine frame andmobile platformand thus a number of their cables is geometrically
parallel. From a kinematic point of view, such cranes are operated in a singular con-
figuration and the swaying motion of the load can be identified with the self-motion
or over-mobility of the kinematic chains. To overcome this problem, the RoboCrane
design uses six actuated cables to move the mobile platform and adopts the geom-
etry of the simplified symmetric manipulator (SSM) [322], see Fig. 8.7. In order to
keep all cables under tension, the robot is operated in a suspended configuration
which inverts the original SSM configuration. The SSM design is defined by four
geometric parameters g = [rB, αB, rP, αP]T. The geometry of the proximal anchor
points is chosen so that all points Ai are distributed on a circle with radius rB in the
xy-plane of the base frame K0. Then, the circle is divided into three and the anchor
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Fig. 8.7 Parameterization of the simplified symmetric mechanism (SSM)

Table 8.6 Parameterization
of the SSM robot for proximal
and distal anchor points and
the four geometric parameters
g = [rB, αB, rP, αP]T

Cable i Base vector ai Platform vector bi
1 rBRZ(ΔαB)ex rPRZ(ΔαP)ex
2 rBRZ(120◦ − ΔαB)ex rPRZ(120◦ − ΔαP)ex
3 rBRZ(120◦ + ΔαB)ex rPRZ(120◦ + ΔαP)ex
4 rBRZ(240◦ − ΔαB)ex rPRZ(240◦ − ΔαP)ex
5 rBRZ(240◦ + ΔαB)ex rPRZ(240◦ + ΔαP)ex
6 rBRZ(−ΔαB)ex rPRZ(−ΔαP)ex

points are displaced pairwise by angle ±ΔαB (see Fig. 8.7). The same pattern is used
for the mobile platform where the radius rP and the angle ΔαP are used, respectively.
This arrangement leads to the parameterization given in Table8.6.

The robot design generates the motion pattern 3R3T for typical parameter sets.
However, setting the platform radius rP to zero turns the robot into pattern 3T. The
RoboCrane design has a simple and well understood geometry for parallel robots
and many properties such as the number of solutions of the forward kinematics and
the singular surfaces have been widely studied (see [322] for an overview). The
workspace of such suspended robots is relatively small and the available wrench set
is limited due to the suspended configuration. The robot design is hardly limited by
cable interference. Typical applications are handling and lifting tasks.
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Table 8.7 Parameterization
of the Falcon robot from
Kawamura based on six
geometric parameters
g = [lB,wB, hB, lP,wP, hP]T

Cable i Base vector ai Platform vector bi
1 [−lB/2,wB/2, hB]T [0, 0, hP]T
2 [lB/2, 0, hB]T [0, 0, hP]T
3 [−lB/2,−wB/2, hB]T [0, 0, hP]T
4 [−lB/2,wB/2, 0]T [−lP/2,wP/2, 0]T
5 [lB/2,wB/2, 0]T [lP/2,wP/2, 0]T
6 [lB/2,−wB/2, 0]T [lP/2,−wP/2, 0]T
7 [−lB/2,−wB/2, 0]T [−lP/2,−wP/2, 0]T

8.4.4 Falcon

The Falcon design is proposed by Kawamura [237] where the robot frame is a planar
rectangle and themobile platform consists of a slender strut orthogonal to the plane of
the robot frame. Thus, the cables are connected to the ends of the strut which largely
reduces the effect of cable-cable and cable-platform collisions. Furthermore, the
cables are directed away from the operation space which is usually located below the
frame. The robot is proposed for fast pick-and-place applications. The geometry of
the robot has some similarities with the well-knownDelta robot design [98] although
the Falcon design allows for six degrees-of-freedom. Especially the direction of the
cables leaving the lower tip of the strut-shaped platform allow for little collisions
between the robot and the handled goods if a gripper is mounted at the lower end.

The parameterization shown in Table8.7 is deduced from the Falcon prototype
presented in the reference paper [237]. The robot is operated in a fully-constrained
configuration and the cable connection is in 7-5 configuration generating a 3R3T
motion pattern. If the lateral platform parameters lP and wP are set to zero, the robot
degenerates to a 2R3T design in 7-2 configuration. It is worthwhile to mention that
the nominal parameters of the Falcon prototype generate a flat robot frame with zero
height in z-axis and all proximal anchor points Ai lie within a common plane.

The volume of the workspace of the Falcon is notably large, however, it has
triangular cross sections as it is typical for robots with seven cables. For long and
slender platforms, large changes in the orientation are possible for rotations about
the x- and y-axis. In contrast, rotation about the z-axis of a slender platform is hardly
possible. Also, the stiffness is poor against torques about the z-axis.

8.4.5 Segesta 7

The original Segesta design (here called Segesta 7 because of its seven cables) follows
the rule to connect multiple cables to one anchor point on the mobile platform in
order to reduce the restriction caused by cable-cable interference [210]. The robot
frame is defined by a box where the winches are located at the corners or edges
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Table 8.8 Parameterization
of the Segesta 7 robot based
on five geometric parameters
g = [lB,wB, hB, lP,wP]T

Cable i Base vector ai Platform vector bi
1 [−lB/2,wB/2, hB]T [−lP/2,wP/2, 0]T
2 [lB/2,wB/2, hB]T [lP/2,wP/2, 0]T
3 [0,−wB/2, hB]T [0,−wP/2, 0]T
4 [−lB/2,wB/2, 0]T [−lP/2,wP/2, 0]T
5 [lB/2,wB/2, 0]T [lP/2,wP/2, 0]T
6 [lB/2,−wB/2, 0]T [0,−wP/2, 0]T
7 [−lB/2,−wB/2, 0]T [0,−wP/2, 0]T

which simplifiesmechanical construction of the robot frame. The distal anchor points
form a planar triangle. The robot has six degrees-of-freedom and allows for some
rotations of the mobile platform. Since the seven winches cannot fully surround the
entire volume of the box-shaped frame, the workspace of the robot is relatively small
compared to the volume of the box and workspace cross sections in the xy-plane
have a form similar to triangles. In order to reduce collisions amongst the cables,
multiple cables are connected in a 7-3 configuration to common distal anchor points
on the mobile platform. The robot is a CRPM design and is operated preferably in
a fully-constrained configuration. The parameterization of the mobile platform and
machine frame is given in Table8.8 where the five parameter description is taken
from Fang [139].

8.4.6 IPAnema 1.5

A simple modification of the box-shaped machine frame is the trapezoidal frame lay-
out. This structure is used, amongst others, for the IPAnema 1.5 robot. The robot has
a box-shaped frame where the proximal anchor points Ai are pairwise shifted along
the horizontal edges of the frame. This kind of modification results in a somewhat
regular shape while breaking congruency between mobile platform and machine
frame. As a rule of thumb, this seems to be a good approach to avoid singular con-
figurations in the center of the machine frame. The primary dimensions are length
lB, width wB, and height hB. The actual locations of the anchor points are then mod-
ified by offsets ΔlB, ΔwB, and ΔhB that shift the anchor points along the respective
edges where positive values shift the winches towards the center of the box. These
Δ-parameters are normally chosen to be small related to the respective length, width,
and height of the robot frame. There are in total six different permutations how to
distribute these offsets (see Table8.9). In the top-bottom case, all anchor points are
distributed on two parallel planes with a distance of hB. In the right-left case, the
parallel planes have a distance of lB along the x-coordinate, and in the front-back
case, the distance is wB. Each of the configurations allows for larger rotations in
some directions but restricts the orientation workspace in a perpendicular direction.
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Table 8.9 Six variations of the parameterization of coordinates of the proximal anchor points
ai of an eight-cable modified box-shaped machine frame defined by the parameters g =
[lB,wB, hB,ΔlB,ΔwB]T, g = [lB,wB, hB,ΔwB,ΔhB]T, and g = [lB,wB, hB,ΔlB,ΔwB]T, respec-
tively

Top-bottom Bottom-top

Cable Base vector ai Base vector ai

i x y z x y z

1 −lB/2 + ΔlB wB/2 hB −lB/2 wB/2 − ΔwB hB

2 lB/2 − ΔlB wB/2 hB lB/2 wB/2 − ΔwB hB

3 lB/2 − ΔlB −wB/2 hB lB/2 −wB/2 + ΔwB hB

4 −lB/2 + ΔlB −wB/2 hB −lB/2 −wB/2 + ΔwB hB

5 −lB/2 wB/2 − ΔwB 0 −lB/2 + ΔlB wB/2 0

6 lB/2 wB/2 − ΔwB 0 lB/2 − ΔlB wB/2 0

7 lB/2 −wB/2 + ΔwB 0 lB/2 − ΔlB −wB/2 0

8 −lB/2 −wB/2 + ΔwB 0 −lB/2 + ΔlB −wB/2 0

Right-left Left-right

Base vector ai Base vector ai

i x y z x y z

1 −lB/2 wB/2 − ΔwB hB −lB/2 wB/2 hB − ΔhB

2 lB/2 wB/2 hB −
ΔhB

lB/2 wB/2 − ΔwB hB

3 lB/2 −wB/2 hB −
ΔhB

lB/2 −wB/2 + ΔwB hB

4 −lB/2 −wB/2 + ΔwB hB −lB/2 −wB/2 hB − ΔhB

5 −lB/2 wB/2 − ΔwB 0 −lB/2 wB/2 ΔhB

6 lB/2 wB/2 ΔhB lB/2 wB/2 − ΔwB 0

7 lB/2 −wB/2 ΔhB lB/2 −wB/2 + ΔwB 0

8 −lB/2 −wB/2 + ΔwB 0 −lB/2 −wB/2 ΔhB

Back-front Front-back

Base vector ai Base vector ai

i x y z x y z

1 −lB/2 + ΔlB wB/2 hB −lB/2 wB/2 − ΔwB hB

2 lB/2 − ΔlB wB/2 hB lB/2 wB/2 − ΔwB hB

3 lB/2 − ΔlB −wB/2 hB lB/2 −wB/2 + ΔwB hB

4 −lB/2 + ΔlB −wB/2 hB −lB/2 −wB/2 + ΔwB hB

5 −lB/2 wB/2 − ΔwB 0 −lB/2 + ΔlB wB/2 0

6 lB/2 wB/2 − ΔwB 0 lB/2 − ΔlB wB/2 0

7 lB/2 −wB/2 + ΔwB 0 lB/2 − ΔlB −wB/2 0

8 −lB/2 −wB/2 + ΔwB 0 −lB/2 + ΔlB −wB/2 0

When connected to the box-shaped platform, the cables can be crossed to enlarge
the workspace and to improve the stiffness of the robot. Cable-cable collisions in the
translational workspace must be avoided by appropriate choice of parameters.
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Table 8.10 Parameterization
of the IPAnema 2 robot based
on nine geometric parameters
g = [lB,wB, hB, hB0,

lP,wP, hP,ΔlP,ΔwP]T

Cable i Base vector ai Platform vector bi
1 [−lB/2,wB/2, hB]T [−lP/2+ΔlP,wP/2, 0]T
2 [lB/2,wB/2, hB]T [lP/2 − ΔlP,wP/2, 0]T
3 [lB/2,−wB/2, hB]T [lP/2−ΔlP,−wP/2, 0]T
4 [−lB/2,−wB/2, hB]T [−lP/2 +

ΔlP,−wP/2, 0]T
5 [−lB/2,wB/2, hB0]T [−lP/2,wP/2 −

ΔwP, hP]T
6 [lB/2,wB/2, hB0]T [lP/2,wP/2−ΔwP, hP]T
7 [lB/2,−wB/2, hB0]T [lP/2,−wP/2 +

ΔwP, hP]T
8 [−lB/2,−wB/2, hB0]T [−lP/2,−wP/2 +

ΔwP, hP]T

8.4.7 IPAnema 2

The trapezoidal shape of the robot frame used for the IPAnema 1.5 frame allows
for crossed cable configuration that increases the size of the orientation workspace
and improves stiffness. For the IPAnema 2 parameterization, the effect is maintained
but generated by appropriate geometry on the mobile platform. The IPAnema 2
parameterization (Table8.10) has eight cables for fully-constrained operation. Due
to the usage of a trapezoidal platform, the robot is in 8-8 configuration exact for
canceling all Δ-parameter and at least one of the three platform parameters lP, wP,
or hP. The 8-8 configuration requires a general purpose kinematic transformation as
described in Sect. 4.3.4 and cannot exploit geometrical assumptions for the kinematic
transformation.However, having only distinct points on the base Ai and on themobile
platform Bi allows to use standard mechanical construction elements for the guiding
pulleys and for the connection on the platform. The frame of the robot is a simple
box with the proximal anchor points at its corners. As a matter of convenience, an
additional parameter for the heights of the four lower anchor points is introduced
which can be neglected when appropriate requirements for the workspace are given.

The robot has a large wrench-feasible translational workspace which is free of
cable-cable collision for appropriate geometric parameters. The parameterization
allows for considerable rotation about the x- or y-axis depending on the length lP
and width wP of the mobile platform. The rotation about the z-axis is compromised
by the increase in the translational workspace and the improved rotational stiffness.

The crossed configuration of the cables reduces the collision between the cables
and objects under the robot. Thus, handling and assembly are typical applications
for the IPAnema 2 design.
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Fig. 8.8 Layout and workspace of the IPAnema 3 robot

8.4.8 IPAnema 3

The IPAnema 3 parameterization (Fig. 8.8) introduces additional degrees-of-freedom
in the robot design compared to the IPAnema 2 design described above by introduc-
ing two additional parameters (Table8.11). Thus, the robot is a RRPM design with
eight cables allowing for 3R3T motion. A trapezoidal shape is used for both the
machine frame and the mobile platform allowing for more sophisticated compro-
mises between translational and orientation workspace. Thus, one has a set of five
parameters to form the mobile platform and the machine frame. Except for rather
specific parameter settings, the robot is in 8-8 configuration with crossed cables.
The geometry is well suitable for using simple machine elements in the implemen-
tation and proper dimensioning allows for a reasonably large workspace without
cable-cable interference.

For moderately large values of the Δ-parameters ΔlB,ΔwB, ΔlP, and ΔwP, one
can use a rectangular framework to build the mobile platform and machine frame,
respectively. Different parameter variants of the IPAnema 3 geometry are used for
experimental investigation of applications such as handling, assembly, and haptic
interaction.

8.4.9 CoGiRo

TheCoGiRo design is a suspended but redundantly restrained robot designwith eight
cables [276]. The mobile platform and base are both box-shaped (Fig. 8.4). CoGiRo
introduces cross cables but with a scheme that differs from the one described for
the IPAnema robots. The first four proximal anchor points A1–A4 are connected to
the upper four distal anchor points but the assignment is permuted as if the robot
was rotated by 90◦ clockwise. In turn, the proximal anchor points A5–A8 are con-
nected to the lower distal anchor points where, again, the assignment is permuted
counter-clockwise. Thus, the moment about the z-axis induced by the first group is



8.4 System Design and Structural Synthesis 321

Table 8.11 Parameterization
of the IPAnema 3 robot based
on eleven geometric
parameters
g = [lB,wB, hB,ΔlB,
ΔwB, hB0, lP,wP, hP,

ΔlP,ΔwP]T

Cable i Base vector ai Platform vector bi
1 [−lB/2 +

ΔlB,wB/2, hB]T
[−lP/2 + ΔlP,wP/2, 0]T

2 [lB/2 −
ΔlB,wB/2, hB]T

[lP/2 − ΔlP,wP/2, 0]T

3 [lB/2 −
ΔlB,−wB/2, hB]T

[lP/2 − ΔlP,−wP/2, 0]T

4 [−lB/2 +
ΔlB,−wB/2, hB]T

[−lP/2 +
ΔlP,−wP/2, 0]T

5 [−lB/2,wB/2 −
ΔwB, hB0]T

[−lP/2,wP/2 −
ΔwP, hP]T

6 [lB/2,wB/2 −
ΔwB, hB0]T

[lP/2,wP/2− ΔwP, hP]T

7 [lB/2,−wB/2 +
ΔwB, hB0]T

[lP/2,−wP/2 +
ΔwP, hP]T

8 [−lB/2,−wB/2 +
ΔwB, hB0]T

[−lP/2,−wP/2 +
ΔwP, hP]T

counterbalanced by the second group. A similar archetype is also proposed by Aref
[15]. This layout allows at certain positions for a large orientation workspace and,
in experimental tests, objects are rotated by more than 90◦ about the z-axis. The
special arrangement of the cables allows the mobile platform to travel rather close
to the boundary of the supporting machine frame giving the robot a very good ratio
between installation space and wrench-feasible workspace. Although the robot is
suspended, a considerable structural stiffness can be achieved. The parameterization
for the CoGiRo robot is given in Table8.12.

Itmust be noted that somealgorithms for force distribution and forward kinematics
that are efficient for fully-constrained cable robots requiremodifications to be applied
to redundantly-constrained but suspended cable robots such as CoGiRo. Thus, the
choice of the geometry has some impact on the tools which are applicable for analysis
and design.

8.4.10 Cable Simulator

For the design of a driving and flight simulator, a new mechanical construction for
the mobile platform is proposed in order to create a stiff but light-weight framework
for the mobile platform [343].While many other cable robots are designed to interact
with their environment, the motion simulator focuses on creating the desired motion
and a large installation space is desired inside of themobile platform for the passenger
and instrumentation. The proposed icosahedral geometry of the mobile platform
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Table 8.12 Parameterization
of the CoGiRo suspended
robot based on seven
geometric parameters g =
[lB,wB, hB, hB0, lP,wP, hP]T

Cable i Base vector ai Platform vector bi
1 [−lB/2,wB/2, hB0 +

hB]T
[lP/2,wP/2, hP]T

2 [lB/2,wB/2, hB0 + hB]T [lP/2,−wP/2, hP]T
3 [lB/2,−wB/2, hB0 +

hB]T
[−lP/2,−wP/2, hP]T

4 [−lB/2,−wB/2, hB0 +
hB]T

[−lP/2,wP/2, hP]T

5 [−lB/2,wB/2, hB0]T [−lP/2,−wP/2, 0]T
6 [lB/2,wB/2, hB0]T [−lP/2,wP/2, 0]T
7 [lB/2,−wB/2, hB0]T [lP/2,wP/2, 0]T
8 [−lB/2,−wB/2, hB0]T [lP/2,−wP/2, 0]T

Fig. 8.9 Top view of the
parameterization of the
mobile platform for the
Cable Simulator design with
an icosahedron platform in
the xy-plane

allows for a stiff exo-structure without obstacles inside while positioning the distal
anchor points with little collisions. The cables are connected in an 8-8 configuration
(Fig. 8.9).

In the nominal design of the robot, the upper winches are connected to the lower
vertices of the mobile platform and the lower winches to the upper vertices of the
mobile platform. Again, this crossed cable configuration increases the stiffness of the
robot as well as its orientation capabilities. The robot has an asymmetric workspace
due to the arrangement of the distal anchor points on the robot frame. However, the
orientation workspace is comparably large.

The parametricmodel of the robot is given in Table8.13where the two parameters
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Table 8.13 Parameterization
of the Cable Simulator design
with eight cables and an
icosahedron platform based
on four geometric parameters
g = [lB,wB, hB, rP]T

Cable
i

Base vector ai Platform vector bi

1 [−lB/2,wB/2, hB]T RZ(108◦) [rM, 0,−h]T
2 [lB/2,wB/2, hB]T RZ(36◦) [rM, 0,−h]T
3 [lB/2,−wB/2, hB]T RZ(−36◦) [rM, 0,−h]T
4 [−lB/2,−wB/2, hB]T RZ(−108◦) [rM, 0,−h]T
5 [−lB/2,wB/2, 0]T RZ(144◦) [rM, 0, h]T
6 [lB/2,wB/2, 0]T RZ(72◦) [rM, 0, h]T
7 [lB/2,−wB/2, 0]T RZ(−72◦) [rM, 0, h]T
8 [−lB/2,−wB/2, 0]T RZ(−144◦) [rM, 0, h]T

h = cos π
5

1 + cos π
5

rP and (8.3)

rM = 2
√
5

5
rP (8.4)

are used to parameterize the vertices of the icosahedron. rP is the radius of the
circumscribed sphere. The frame of the robot is simply described by a rectangular
box by length, width, and height, respectively. Thus, the design is fully defined by
only four geometric parameters.

8.4.11 IPAnema-Falcon

The IPAnema-Falcon design is a synthesis of the ideas of crossing cables, a flat
frame with zero height, and a layout taking the benefits from eight cables. A slen-
der strut is employed as mobile platform and the cables are arranged in a crossed
configuration. Compared to the Falcon system, the robot is designed to operate in
an 8-8 fully-constrained configuration which simplified the mechanical design with
distinct anchor points both on the frame and on the mobile platform while maintain-
ing the advantages of the Falcon robot with its compact frame. Using eight cables,
the workspace of the robot can be shaped to have almost rectangular horizontal cross
sections that cover a notably larger ratio of the footprint of the robot frame when
compared with the conventional Falcon.

The geometric parameters of the IPAnema-Falcon design are given in Table8.14.
All proximal anchor points are fixed in a common xy-plane where two Δ-parameter
are used to displace the proximal anchor points Ai along the edges. On the mobile
platform, the cables are connected to the corners of a box.

Thedesignprovides high stiffness and a large orientation capacity for tilting thanks
to its crossed cables. At the same time, a good translational workspace is maintained.
The concept of the robot is depicted in Fig. 8.10. Note that the conceptual drawing
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Table 8.14 Parameterization
of the IPAnema-Falcon
design with eight cables and a
strut platform based on seven
geometric parameters
g = [lB,wB,ΔlB,ΔwB, lP,
wP, hP]T

Cable
i

Base vector ai Platform vector bi

1 [−lB/2+ΔlB,wB/2, 0]T [−lP/2,wP/2, 0]T
2 [lB/2 − ΔlB,wB/2, 0]T [lP/2,wP/2, 0]T
3 [lB/2−ΔlB,−wB/2, 0]T [lP/2,−wP/2, 0]T
4 [−lB/2 +

ΔlB,−wB/2, 0]T
[−lP/2,−wP/2, 0]T

5 [−lB/2,wB/2 −
ΔwB, 0]T

[−lP/2,wP/2, hP]T

6 [lB/2,wB/2 − ΔwB, 0]T [lP/2,wP/2, hP]T
7 [lB/2,−wB/2 +

ΔwB, 0]T
[lP/2,−wP/2, hP]T

8 [−lB/2,−wB/2 +
ΔwB, 0]T

[−lP/2,−wP/2, hP]T

Fig. 8.10 Concept for a
pick-and-place installation
with a Falcon like robot

in the figure shows a cable robot with a 2×2m footprint. Due to the efficient force
transmission of cable robots, this robot can be used for picking larger and also heavier
objects than a conventional picker based on the Delta robot. In the draft, a closed
robot frame ismounted over two conveyers for pick-and-place operations. The design
combines a high payload, large workspace, and high velocities with collision-free
motion for conveyer-to-conveyer handling.
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8.4.12 French-German

A design with twelve cables to generate a 3R3T robot is proposed where pairs of
antagonistic cables are used to actuate one degree-of-freedom of the end-effector.
The idea is developed by Verhoeven and Lafourcade [473] and is called French-
German design due to the inventors’ nationalities. The parameterization of the robot
based on six geometric parameters is given in Table8.15. The geometry of themobile
platform is based on a star-shaped structure with a bar in three orthogonal directions.
The distal cable ends are located at the ends of the arms with the length lP, width wP,
height hP, respectively. The robot is enclosed by a rectangular frame with length lB,
width wB, and height hB, where the proximal anchor points are each located on the
center of the surfaces of the box (Fig. 8.5). Variants of the robot can be derived by
permuting the assignment between the surfaces of the proximal box with the bars on
the mobile platform.

The robot is a fully-constrained highly redundant RRPM in 6-6 configuration.
The design follows the idea of having an antagonistic pair with two cables for each
degree-of-freedom of the platform motion. However, the actuation is not decoupled
amongst the pairs of cables. With the high number of cables and a mobile platform
of reasonable size, high stiffness can be achieved. The design aims at maximizing
the orientation workspace. In turn, the translational workspace is limited. Using
coinciding anchor points both on the platform and the base, the problem of cable-
cable interference is reduced at the cost of the additional efforts to realize this special
property in the mechanical design. In turn, the mobile platform is widely surrounded
by the cables and actuation units make collisions with external obstacles likely.
Therefore, the robot is suitable for applications where no direct contact needs to be
made with the surrounding such as motion simulation or sensor testing. To the best
of the author’s knowledge, no physical prototype of this robot is built yet.

8.4.13 Endless Z9 and Z12

Comparing the properties of cable robots with the requirements of handling and pick-
and-place tasks, it becomes apparent that large or even unlimited rotation is required
in many applications. Considering the connection of many cables to the mobile
platform in a spatial robot, it seems clear from intuition that unlimited rotation is
impossible for a cable constrained system. However, one way to achieve this effect
is to employ a platform that is similar to a crank shaft. Fixing three cables to each
end of the shaft is a generic 2R3T design (see Fig. 2.3). Then, one uses an eccentric
connection point on the shaft to control the rotation of the shaft (see Figs. 8.11
and 8.12). In this simple example, three cables share the same distal anchor point at
each end of the shaft as well as on the crank. From a kinematic point of view, this
yields exactly the desired mobility of the platform. In practice, it is rather difficult to
implement a mechanical design with two or more cables sharing a common point on
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Table 8.15 Parameterization of the French-German design with twelve cables based on six geo-
metric parameters g = [lB,wB, hB, lP,wP, hP]T
Cable i Base vector ai Platform vector bi

x y z x y z

1 0 0 hB/2 lP/2 0 0

2 0 0 hB/2 −lP/2 0 0

3 0 wB/2 0 0 0 hP/2

4 0 wB/2 0 0 0 −hP/2

5 lB/2 0 0 0 wP/2 0

6 lB/2 0 0 0 −wP/2 0

7 0 −wB/2 0 0 0 hP/2

8 0 −wB/2 0 0 0 −hP/2

9 −lB/2 0 0 0 wP/2 0

10 −lB/2 0 0 0 −wP/2 0

11 0 0 −hB/2 lP/2 0 0

12 0 0 −hB/2 −lP/2 0 0

the platform. There are two possibilities to overcome this practical problem. Firstly,
one distributes the anchor points along the axis of the shaftwithout losing the property
of infinite rotation. Secondly, one connects the cables that should share the anchor
point to a common ring, e.g. the outer ring of a ball bearing. The latter solution allows
for an elaborated mechanical design. Following this idea, the concept is extended
as follows: A standard design for a 3R3T robot is used and a shaft is inserted into
the mobile platform. By fixing three cables at an eccentric point on that shaft, one
can infinitely rotate the shaft relative to the platform only by pulling on the upper
three cables (Fig. 8.13). The parameterization for nine and twelve cables is given
Table8.16.

The idea is proposed by Pott and Miermeister [346, 402, 403] and can be even
more generalized by allowing for additional serial degrees-of-freedom on the plat-
form [346]. As shown in the paper, each additional degree-of-freedom requires at
least one extra cable. However, one might need to add more cables for a degree-of-
freedom for a given geometry of the platform for a cable robot.

Strictly speaking, the robot implementing the latter approach is no longer fully
parallel but hybrid since we have introduced a serial chain on the platform. This
has no practical implications and the advantage of the parallel robot such as being
light-weight with actuators on the fixed base are maintained.

A sample of this concept with unlimited rotation about its z-axis in exemplified
in the following. The design of the robot is based on a simple 9-3 design with a
triangular frame structure and a planar mobile platform. The geometry data of the
sample robot is given in Table8.17.

In order to show the surprising possibility of unlimited rotation, a proof-of-concept
example is presented below. We consider a trajectory that includes a full rotation
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Fig. 8.11 Concept of a cable robot with unlimited rotation about its z-axis in the form of crank
shaft
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Fig. 8.12 The endless Z12 robot architecture with m = 12 cables and a platform with a crank
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Fig. 8.13 Extension of a conventional 3R3T robot design with an eccentric shaft to allow for an
unlimited rotation

Table 8.16 Geometry data for the endless Z9 and Z12 robot design for the base ai and platform
bi anchor points

Robot Cable i Base vector ai Platform vector bi
x y z x y z

Endless Z9 1 − rB
2

√
3
2 rB HB rP 0 HP

2 rB 0 HB rP 0 HP

3 − rB
2 −

√
3
2 rB HB rP 0 HP

4 − rB
2

√
3
2 rB hB 0 0 hP

5 rB 0 hB 0 0 hP

6 − rB
2 −

√
3
2 rB hB 0 0 hP

7 − rB
2

√
3
2 rB 0 0 0 0

8 rB 0 0 0 0 0

9 − rB
2 −

√
3
2 rB 0 0 0 0

Endless Z12 1 −rB rB HB rP 0 HP

2 rB rB HB rP 0 HP

3 rB −rB HB rP 0 HP

4 −rB −rB HB rP 0 HP

5 −rB rB hB 0 0 hP

6 rB rB hB 0 0 hP

7 rB −rB hB 0 0 hP

8 −rB −rB hB 0 0 hP

9 −rB rB 0 0 0 0

10 rB rB 0 0 0 0

11 rB −rB 0 0 0 0

12 −rB −rB 0 0 0 0
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Table 8.17 Geometry data for the base ai and platform bi anchor points for the Endless Z9 robot

Base vector ai (m) Platform vector bi (m)

Cable i x y z x y z

1 −1
√
3 3 0.3 0 0.5

2 2 0 3 0.3 0 0.5

3 −1 −√
3 3 0.3 0 0.5

4 −1
√
3 2 0 0 0.4

5 2 0 2 0 0 0.4

6 −1 −√
3 2 0 0 0.4

7 −1
√
3 0 0 0 0

8 2 0 0 0 0 0

9 −1 −√
3 0 0 0 0

about the z-axis of the mobile platform. Let r = [0, 0.5, 1.5]T be the position of
the platform. Furthermore, the orientation of the platform R is chosen to be the
elementary rotation matrix RZ(ϕ). The force distributions are computed using the
closed-form method (Sect. 3.7.5). In Fig. 8.14, the computation results for the cable
forces for all nine cables are shown for ϕ ∈ [0; 2π ]. It can be seen that the values of
all nine forces are continuous and between the force bounds fmin = 1 and fmax = 10.
Therefore, the platform is capable of performing a full rotation about its z-axis under
wrench-feasibility with optional infinite repetitions. The example proves that it is
possible to design a cable robot with unlimited rotation capacities for at least one of
its axes. Although it cannot be seen from the diagram, the cables do not intersect at
any time.

According to [473], two cables can only intersect at one point. Since three sets of
each three cables share a common anchor point, these cables cannot intersect during
the motion. For the motion example in Fig. 8.14, the three sets of cables are moving
in three separate layers and the cables maintain sufficient distance.

The infinite rotation capability is possible at different positions within the robot
frame. To show this property of the robot design, the total orientation workspace
W TO of the robot is computed where the orientation set

R = {R ∈ SO3 | R = RZ(ϕ), ϕ ∈ [0; 2π ]} (8.5)

is used. The Dykstra method (see Sect. 3.7.4) is used for workspace testing and
the workspace shown in Fig. 8.15 is determined. The volume of the workspace is
1.32m3 and the shape is compact. Note that the ability for unlimited rotation about
the platform’s axis is maintained even if this axis is slightly tilted.

Using the cable-cable interference method described in Sect. 5.2.6, the cable-
cable interference is studied. For this analysis, the following geometric parameters
are used for the endless Z12 design: rB = 2, rP = 0.3, HB = 3, hB = 2, HP = 0.5,
and hP = 0.2. Note that the z-coordinates of the points b5–b8 are smaller in order to
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Fig. 8.14 Run of the nine cable forces fi along the z rotation with angle ϕ

Fig. 8.15 Total orientation workspace W TO for R ∈ RZ(ϕ) with ϕ ∈ [0; 2π ] for the sample with
unlimited z-rotation capability
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Fig. 8.16 Lateral view in the xz-plane of the region of cable-cable interference and total orientation
workspace W of the endless Z12 robot and the regions of cable-cable interference I

avoid collisions between the cable groups 1–4 and 5–8. It can be seen from Fig. 8.16
that the total orientation workspace and the region of interference are separated and
cable-cable interference are avoided throughout the workspace.

8.5 Parameter Synthesis

After selecting an appropriate motion pattern and a respective cable robot parameter-
ization, one needs to define the actual geometry for the robot according to the applica-
tion requirements. Parameter synthesis is understood as the procedure to determine
the geometric parameters of the cable robot fromgiven application requirements. The
overall design procedure consists of a number of phases. Firstly, all requirements and
performance wishes for the desired robot system are determined (Sect. 8.3). Using
themethods described throughout this book, one needs a procedure to assess whether
a candidate design qualitatively possesses the desired property and, even better, to
quantify the property. The desired motion pattern is chosen in structural synthe-
sis and thereby the degrees-of-freedom n are defined for the robot. For the desired
motion pattern and the required number of cables m, one chooses a parameteriza-
tion that introduces a mapping depending on the design parameters g as function
(ai ,bi ) = �G(g), which are introduced in Sect. 8.4.1. The main aspects in parameter
synthesis are:

• Select performance criteria for the robot. The tools introduced in Chaps. 3–5
provide a variety of methods to measure all kinds of performances of the robot
and to assess these performance measures against the application requirements.



332 8 Design

Fig. 8.17 The main steps in
the parameter design
procedure

• Use a search strategy, e.g. engineer’s expert knowledge, optimization, constraint
satisfaction, or constrained global optimization, to find one or more parameter
vectors g with a sufficient geometry for the cable robot.

• Validate the design g found by the step above. Since the analysis criteria used in
parameter synthesis are compromised for computation time, a thorough analysis
should be executed for the identified robot design. Furthermore, the validation
procedure may include dynamic simulation (Chap. 6) and preliminary controller
design which is neglected in the geometrical parameter synthesis.

After determining and validating a proper robot geometry, the design procedure con-
tinues to choose and select technical parameters as prerequisites for the mechanical
design procedure. This includes especially drive-train design. For a well-designed
drive-train, it is usually required to consider application requirements in depth [263].
When all technical parameters are defined, the mechanical design is approached
which typically uses CAD software to prepare the parts of the robot for manufactur-
ing (Fig. 8.17).

In the following, twomain approaches are considered for the parameter synthesis:
Optimal design and constraint satisfaction.

8.5.1 Parameter Synthesis as Optimal Design Problem

Kinematic properties of robots largely depend on the geometry of the robot and
additionally vary notably throughout the workspace. This is especially true for both
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conventional and cable-driven parallel robots. Appropriate choice of the geometry
is an important task [318] that is addressed by geometrical parameter synthesis.

For parameter synthesis, two different kinds of requirements occur. Firstly, some
criteria have to be fulfilled unconditionally. Such criteria are called compulsory or
imperative and most of these criteria arise from technical limitations. Limitations
such as avoidance of singularities and interference are understood to be compulsory.
Secondly, some criteria are not mandatory but desirable to minimize.1 Such criteria
can be quantitatively represented through an objective function or cost function.
Frequently used examples are robot properties such as size of theworkspace, stiffness,
accuracy, dynamic capabilities, cycle time, weight, installation size, and sensitivity
to errors. Nonmechanical examples for the desirable criteria are the minimization of
energy consumption or simply the minimization of monetary costs.

A wide-spread approach for the design of parallel robots is the so-called optimal
design (see e.g. [375, 387]). In this procedure, one parameterizes a class of robots
through design variables g so that different values for g correspond to variants of the
robot. The parameter models of the archetypes described in Sect. 8.4 are examples
of such models and the focus in the following lies on using such models. In order
to compare different variants of the same class, performance criteria ki are defined
that characterize the quality of the robot with respect to certain properties. Typical
examples of such criteria are amongst others:

• Volume of the workspace,
• Stiffness of the robot,
• Dexterity indices,
• Quality of possible force distributions,
• Available wrench set,
• Accuracy,
• Energy efficiency,
• Closeness to cable-cable interference and cable-platform interference,
• Closeness to singularities.

Each property is represented by a performance index.2 Before using a specific per-
formance index, one must carefully consider if higher values of the index actually
correspond to a robot that is better in the context of the design task. If, and only if,
this assumption holds true in general, optimal design leads the way to the best robot.

One can optimize a single criterion or a combination of some criteria. Since the
performance indices have different metrics by nature, one has to apply weighting
factors or normalization in order to balance the influence of the single factors where
usually an application-specific balancing is needed. In practice, the use of linear
combination is wide-spread

1Note that in optimization minimizing or maximization of f is complementary since simply eval-
uating − f instead of f achieves the complementary effect.
2There might be more that one index for measuring a property. The question what is the best index
to measure dexterity of a robot is rather complicated and an intensively discussed issue in robotics.
We refrain from this discussion and focus on the design procedure instead.
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f (g) =
∑
i

ηi ki (g) (8.6)

where ki are the robot design-specific performance criteria and ηi are the respective
weighting factors. Some important criteria such as the existence of singularities
within the workspace are characterized by Boolean values true or false which are
mapped to numerical values of 1 (true) and0 (false).Using sufficiently highweighting
factors ηi , one can try to enforce the compliance with such requirements. In general,
such definitions do not guarantee that compulsory requirements are met.

This approach has some significant drawbacks. Firstly, the binary criteria make
the function discontinuous. Therefore, gradient-based optimization algorithms lose
efficiency in finding the optimum. Secondly, it is possible to find optimal solutions
that violate compulsory requirements. Thus, a design being optimal in the sense of
the objective function may be not understood to be optimal by the engineer since
it has obvious drawbacks, e.g. collision in the center of the workspace. Especially
when many performance criteria are involved, it is rather difficult (or impossible) to
choosemeaningful weighting factors ηi so that the optimum of the objective function
Eq. (8.6) relates to the sought robot design. Disregarding any problem related to
successfully solving the optimization problem, one has to note that every choice of
the weights ηi implicates another optimal design. Hence, one implicitly predefines
the optimal robot by setting the values for ηi where a priori it is not clear how the
values ηi affect the result of the optimal design procedure. Weighting the objective
functions is basically an act where one prioritizes the antagonistic criteria. Thus,
multi-criteria optimal design is about making a compromise while concealing the
rationale behind the compromise.

8.5.1.1 Local and Global Performance Indices

Many performance indices ki depend on the robot pose y = (r,R) within the
workspace and can vary largely for different poses. For cable robots, typical indices
are coupled to the pose-dependent structure matrix AT such as size of the available
wrench set, manipulability, singular values of the structure matrix, and stiffness. In
order to receive a global index that measures the quality of the robot design through-
out the workspace W , the integral over the workspace is computed from

k̄ = 1

V (W)

∫
W

k(y) dy (8.7)

where V (W) is the volume of the workspace, as proposed in e.g. [15]. If a dexterity
measure is used in the equations above, it is called global dexterity index (GDI) [172].
Thus, one receives the mean value k̄ of the performance index k over the workspace.
Thismeanvalue iswell-definedbut even for simple indices ki it is virtually impossible
to symbolically compute the integral from Eq. (8.7). A practicable way to estimate
the mean value k̄ as global index is to use a discrete set of N sample poses yi by
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e.g. using a regular or random grid for the poses to evaluate. Thus, the integral is
approximated by the sum

k̃ = 1

N

N∑
i=1

k(yi ) . (8.8)

Having an acceptable performance on average may not be sufficient in the design.
Depending on the used index and the application, it might be acceptable to improve
manipulability or stiffness on average. It is up to the designer to assess whether
unbounded local deficits in a certain index are acceptable for the target application
or not. Considering the standard deviation as additional statistical indicator of the
homogeneous distribution of the property can mitigate the local loss in performances
evaluation.However, this complicates the comparisonof the performances since there
is no unique way to compare two robot designs that are both characterized by mean
and standard deviation, respectively.

A conservative approach to overcome the problem is to take the smallest occurring
value of the performance index k within the workspace as global index leading to
the global index

ǩ = min
y ∈ W k(y) . (8.9)

This kind of approachmust be used if a deficit in the performance index is unfeasible.
Typical examples are dexterity indices dropping to zero in a kinematic singularity or
cable-cable distances dropping to zero showing a collision.3 Although such deficits
are local, the robot design featuring such defects is unacceptable. A rigorous determi-
nation of the lower bound ǩ is possible using e.g. interval analysis or minimization.
However, scanning through a regular grid of poses yi gives a quick estimate for the
index ǩ as follows

ǩ ≈ min
1≤i≤N

k(yi ) . (8.10)

Although the application of such indices based on the minimum value is mathemat-
ically feasible, some problems arise for numerical algorithms employed for optimal
design since performance indices based on the minimum function are not differen-
tiable and may even have regions of constant value spanning a certain area in the
parameter space. Such properties render optimization algorithms based on gradients
inefficient. As discussed in Sect. 8.5.2, constrained global optimization using interval
analysis can be employed to deal with design problems having rigorous requirements
for the lower bound of performance parameters.

3Therefore, it is advised to check for collisions and singularities with global methods or through
rigorous tests as discussed in Sect. 5.4.
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Table 8.18 Case study for
optimal design of a planar
robot with the geometric
parameters
g = [lB,wB, lP,wP]T

Cable i Base vector ai Platform vector bi
1 [−lB/2,wB/2]T [−lP/2,wP/2]T
2 [lB/2,wB/2]T [lP/2,wP/2]T
3 [lB/2,−wB/2]T [lP/2,−wP/2]T
4 [−lB/2,−wB/2]T [−lP/2,−wP/2]T

8.5.1.2 Case Study for a Planar Robot

A simple case study of optimal design is presented in the following. The design of a
planar cable robot with rectangular base and platform is exemplified. The generating
function �G is given by Table8.18. Defined by the task to carry instrumentation,
the size of the mobile platform is predefined to be of length lP = 0.4m and width
wP = 0.2m. The desired workspace WR is square with edge length of 1 × 1 m
centered around the origin. The remaining design parameters are the length and the
width of the robot frame yielding the sought design parameter vector g = [lB,wB]T.
The cable forces are predefined to be in the range of f ∈ [1; 10]N and we are using
a simple wrench-feasibility test (closed-form solution) for workspace assessment.

The aim of this example is to minimize the installation space of the robot, thus,
the simple objective function

f (g) = (lB wB)p + p (8.11)

is employed which is the area of the machine frame where p is a penalty factor. In
order to enforce the desired workspace, a binary penalty p is multiplied with

p =
{

1 if the desired workspace WR is wrench-feasible .

10 otherwise
(8.12)

Having defined this, one can evaluate a function f (g) for different robot geometries
and receive a value to compare the variants of the robot. The required workspace
evaluation is done by simply checking a regular grid of 121 poses within the desired
workspace W .

Employing a simple Nelder-Mead (downhill simplex method) optimization pro-
cedure on the objective function with the initial value g = [3.0, 2.0]T m yields the
optimal robot design shown in Fig. 8.18. In this figure, the final robot design with
the required workspace is depicted on the left. Aside, the parameter run over 120
iterations is plotted where one can obverse a smooth convergency towards the final
values after a turbulent initial phase. The computation time of this simple optimiza-
tion procedure is around 80ms. The result of the procedure is quite reasonable.

In such a simple example, an exhaustive search provides the exact environment of
the objective function in the design space around the optimum value (see Fig. 8.19).
On the left lower side, one can see the feasible designs without penalty and on the
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Fig. 8.18 Simple example of optimal design optimizing the installation space of the robot for a
given workspace

Fig. 8.19 Map of the
objective functions used for
the optimal design example.
The discontinuity generated
by the penalty factor p can
be clearly identified

right upper side of the diagram the designs that fail in the workspace computation
are visible. Therefore, the optimal design is located exactly at the transition between
active and inactive penalty. Although mathematically sound, the discontinuity in
the objective function makes the numerical optimization rather involved if larger
parameter vectors are used in complicated cases. In the next section, a slightly varied
design problem is discussed that leads to a counter-intuitive result.

8.5.1.3 Unexpected Results from Optimal Design of Planar Robots

As discussed above, the volume of the robot frame or the robot platform seem to
be reasonable candidates for the objective function, i.e. in order to find the largest
workspace for the smallest frame. In contrast to the design example above, it is
now allowed for the function �G (see Table8.18) to change both the shape of the
platform and the shape of the frame. Thus all four parameters g = [lB,wB, lP,wP]T
may be altered. Instead of minimizing the installation space, one asks to maximize
the workspace for a given volume of the installation space. Setting up a similar
procedure as above leads to a surprising result. One can generate an infinitely large
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Fig. 8.20 Zero volume
robot with arbitrarily large
workspace

workspace with an installation space of zero and rendering the idea of optimal design
pointless.

For planar and also spatial robots, one can find special designs where the volume
of the convex hull of all ai as well as the volume of all bi is exactly zero and the robot
has an arbitrarily large workspace (Fig. 8.20). Since both the y-coordinate of all ai
and x-coordinate of all bi is zero, neither platform nor frame enclose a finite volume.
However, the crossed configuration allows the platform to generate a significant
workspace. Moreover, the size of the robot still depends on the nonzero length of the
frame if the width wB is zero while the objective function does not. The same result
can also be received in the spatial case, where a Falcon-like design with a planar
frame and a vertical but flat platform can be employed to have a finite workspace
volume for a cable robot of which the volume of the convex hull of the platform and
the frame vanishes. This shows that the definition of a meaningful objective function
is difficult to achieve in general. Interestingly, optimization algorithms sometimes
unveil such configurations to the designer.

Reconsidering the zero volume robot leads to the idea of putting constraints on
the convex hull of platform and base. This kind of considerations are analyzed in
Sect. 8.5.2 where the concepts constrained optimization and constraint satisfaction
problem for design are discussed.

8.5.1.4 Conclusion from Optimal Design

A proper selection of the geometrical design parameters is crucial for dimensioning
the cable robot. Optimal parameter design is an ambivalent tool. Carefully used,
it is suitable for tuning the parameters of the robot towards a well-defined design
goal. However, global search through optimal design is difficult for two reasons. On
the one hand, one has a rather challenging mathematical problem which is time-
consuming to set up and also time-consuming to solve globally. On the other hand,
the definition of a proper optimization function is a challenge of its own and, to the
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best of the author’s knowledge, there are no formal criteria to a priori proof that the
optimum value of the objective function corresponds to a cable robot that has the
desired properties. The key to optimal design is a meaningful objective function.
Having constructed this function, the optimum robot is exactly defined although this
robot is not yet revealed to the designer before the time consuming optimization
procedure is executed. Therefore, optimal design approaches shall only be applied
if one has unconditional trust in the objective function. The example above with a
zero-volume robot illustrates that quite reasonable assumptions can lead to surprising
and unfortunately useless results. On the other side, applying optimization to a well-
defined aspect for finding the optimal parameters is a powerful tool. At the current
stage, the engineer must be kept in the loop to assess the proposals coming for the
optimal design before accepting them.

8.5.2 Parameter Synthesis with Interval Analysis

This section deals with algorithms and methods to derive a cable robot geometry
for prescribed properties where the workspace is assumed to be given. Prescribing
the main performance properties is a change in paradigm compared to the idea of
optimal design. The basic approach is based on interval parameter synthesis and is
firstly proposed by Hao and Merlet [197].

A procedure for geometrical parameter synthesis based on constraint program-
ming is introduced in the following. The application requirements for the robot to
be designed are considered as constraints rather than objective functions. The ratio-
nale behind this approach is that many requirements are compulsory and must be
fulfilled with a certain performance level where more performance may be useful
but shall be compromised in order to fulfill other mandatory requirements. Under-
standing application requirements as constraints makes it easier to, at the same time,
take different requirements into account without the need to define an objective that
has to weight the different performance criteria. Thus, the mathematical formula-
tion reflects the underlying design problem in a more natural way. In contrast to the
multi-criteria optimization problem, defining the design problem with constraints is
straightforward and adding or removing additional requirements has no influence on
other requirements. In the multi-criteria approach, one has to balance the objective
function whenever a qualitative or quantitative change is made to the requirements.
Such a constrained optimization problem for robot design takes the form

minimize f (g) (8.13)

subject to �(g, y) > 0 ∀ y ∈ WR . (8.14)

An approach to solve this problem is discussed in the following. Here, the vec-
tor g collects all design variables which typically reflect the geometry of the
robot. The vector y is the pose of the robot and WR is a set describing the size
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and shape of the desired workspace. The function f : IRNg → IR is the objective
function that shall be minimized. Thus, one searches for the global optimum of the
function f under the constraints � [40, 195]. This kind of optimization problem is
seldom considered since the constraints of the optimization problem are given by
a constraint satisfaction problem (CSP), i.e. the constraints need to be fulfilled in
every point of the workspace. Understanding the compulsive requirements as con-
straints in the optimization problem realizes the concept of taking the minimum as
the performance criteria as argued in Sect. 8.5.1.1.

If the algorithms introduced in Sect. 5.4 are used to compute the solution of
the CSP, one can guarantee that the requirements are fulfilled in every point of the
workspace. However, one can also compromise thoroughness of the results for a
reduction in computational time. In this case, hull computation or grid discretization
are used to speed up the verification of the workspace (see Sect. 5.5).

The posed global optimization problem defines precisely which robot designs
represented through the vector g are sought. In practice, it is rather complicated to
test if a found vector g∗, which locally optimizes the objective function, is also the
desired global optimum of the design problem.

Different methods are applied in global optimization including heuristic meth-
ods, approximation methods, and systematic methods [40]. Heuristic methods are,
amongst others, genetic algorithms, simulated annealing, andMonte-Carlomethods.
These approaches include stochastic elements to support the broad search in a huge
parameter space. However, such approaches cannot guarantee to find the global opti-
mum. Furthermore, such methods are designed to deal with conventional constraints
rather than having to fulfill a CSP that represents the workspace of the robot.

In the following, a method for global optimization with CSP is discussed that
employs interval analysis to deal with the continuous nature of the CSP [197, 394,
399]. This algorithm combines somemethods that have been already used in Sect. 5.4
with an interval algorithm for optimization. These methods are successfully used for
parameter synthesis of parallel robots [398] as well as for cable robots [68]. Since
one employs the CSP approach introduced for workspace analysis, one takes benefit
from using the same modeling and implementation both for analysis of the robot
and for geometry design. For parameter synthesis, the verification setXv is identified
with the desired workspace WR.

8.5.2.1 Parameter Synthesis as Constraint Satisfaction Problem

In the following, the interval algorithm used for workspace computation with the
hybrid solver (Sect. 5.4.1.4) is applied to parameter design. This leads to a CSP of
the type

�(c, v) > 0 ∀ v ∈ Xv (8.15)

with the constraints�, the calculation variables c, the verification variables v, and the
verification setXv. In order to perform parameter synthesis, the geometric parameters
g of the robot are associatedwith the calculation variables c and theworld coordinates
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Fig. 8.21 Example of a
simple parameter relation for
the length of the machine
frame lB and the length of the
mobile platform lP. One can
easily include many of such
hints from the human
designer on the level of the
geometry of the cable robot
to eliminate roughly 50% of
the parameter space without
a time consuming workspace
evaluation

y are identified with the verification variable v. Thus, the desired workspace WR is
given through the verification set Xv. Hence, this CSP represents the task to find
the set Xs where each g ∈ Xs represents a cable robot with the desired properties,
including the size and shape of the workspace WR, and with all performance cri-
teria � fulfilled in every point y of the workspace. One uses the same criteria as
constraints that are employed in workspace computation introduced in Sect. 5.4. It
is a remarkable advantage of the CSP approach that one uses a unique model for
both analysis and synthesis. This holistic approach can even be used to compute
valid ranges for the technical parameters of the robot as shown for parallel robots
[398]. Using the interval solver introduced there, one can guarantee that the desired
performance criteria are fulfilled in every point of the workspaceWR and that every
robot in the solution set Xs has the desired properties (Fig. 8.21).

Constraints for Parameter Synthesis

The discussion so far is focused on employing local performance criteria in the design
procedure in order to enforce the quality. These criteria originate from the analysis of
the robot and connect the quality of the robot to the robot pose y and the robot geom-
etry g. Based on the parameterizations �G introduced in Sect. 8.4, one adds relations
amongst the geometric parameters in order to speed up the computation or to exclude
certain configurations, e.g. because of considerations from mechanical engineering,
of the components of the robot. The simplest type of constraints are restrictions for a
single parameter such as putting lower or upper limits on the parameter value. Such
restrictions are practically implemented by setting an appropriate initial search space
Xc for the parameter. Depending on the application, one is interested in considering
only mobile platforms where the platform is smaller than the machine frame. Using
the simple box parameterization from Sect. 8.4.2, one receives the trivial additional
constraints
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Φ len : lB − lP > 0 (8.16)

Φ width : wB − wP > 0 (8.17)

Φ high : hB − hP > 0 (8.18)

where the parameters lB, lP, wB, wP, hB, and hP are the length, width, and height of the
platform and base, respectively. Since the CSP solver can efficiently evaluate arbi-
trarily many of such constraintsΦi , one discards a huge number of design candidates
through the constraints above without performing the time consuming consideration
of the workspace. Technically speaking, the hybrid CSP solver does not need to eval-
uate the underlying algorithm Verify that in effect consumes the largest amount
of the computational time. One can consider such design parameter constraints as
handy yet efficient tool for the engineer to give hints to the automatic solver. Typ-
ical design constraints include relations in the size of the mobile platform and the
machine frame, minimal distance between anchor points if one does not want the
anchor points to coincide or minimum/maximum volume constraints for the mobile
platform and machine frame. Also, heuristic knowledge on parameter relations can
be used to restrict the search space of the solver. However, care must be taken when
restricting the parameter space so possible solutions to the design problem are not
excluded. As it can be seen from the Falcon design (Sect. 8.4.4), having a platform
with a larger height than the height of the machine frame allows for interesting robot
properties.

Such design hints are trivial to construct but can reduce the efficient search space
significantly. Each of the three hints given above reduce the search space by around
50%. Furthermore, the hints can be efficiently evaluated by the solver since typi-
cal hints have a simple mathematical structure which can be quickly exploited in
consistency tests and evaluation of the constraints’ derivatives.

8.5.2.2 Global Optimization

Extending the procedure above, acceptable designs are found by solving the respec-
tive CSP (see Sect. 5.4.1.4). Thus, one receives a set Xs of candidates that fulfill all
requirements for the application. Now, the question arises how to choose the opti-
mal robot from the solution set. For this, an objective function f is defined that is
based on a measure to be unconditionally optimized. Examples of such criteria to be
optimized are the overall installation space or, even more meaningful, the monetary
costs of the robot. In the following, the issue is addressed how the optimal value of
the objective function can be found using interval analysis.

Free Global Optimization

Before discussing the constrained global optimization, we start with the free global
optimization without constraints to show the principle. Searching for a minimum
of a function aims at locating a position g∗ where the evaluations of the functions
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f (g∗) is smaller than for any other value of g close by. Using conventional function
evaluation, one can numerically test the function value for one specific value g.
The main problem in finding the global optimum of a function is that there exist
infinite points in the search space Xc where one can only perform a finite number of
evaluations. Interval analysis prooved to be an effective tool in global optimization
since the interval evaluation of a function computes guaranteed bounds for a set with
infinite points. This property is the key feature that allows to construct algorithms
for global optimization using interval analysis. The basic idea is as follows: Let
f̂1 = f (̂c1) and f̂2 = f (̂c2) be two evaluations of the function f over disjunct
interval domains ĉ1, ĉ2. By comparison of the two images f̂1 and f̂2, the following
conclusions for global minimization are drawn:

• sup f1 < inf f2: The interval ĉ2 cannot contain the global minimum.
• sup f2 < inf f1: The interval ĉ1 cannot contain the global minimum.

Based on this simple comparison, a branch-and-bound algorithm is constructed that
guarantees to enclose the global minimum if it is in the search domain [196]. The
algorithm is as follows:

Algorithm 6: Generic global optimizer

1. Evaluate the objective function ĥi = f (̂ci ) for each interval boxes {̂c1, . . . , ĉn}
of the search space and save the pairs (̂ci , ĥi ) in a list LT.

2. Create a list LS for the solution candidates. Set the guaranteed upper bound to
h∗ = ∞.

3. If the list LT is empty, terminate the algorithm.

4. Update h∗, if h∗ > min
LT

(sup ĥ), i.e. there exists a box in LT with a smaller

supremum.

5. Discard all pairs with inf ĥ > h∗ from the lists LT and LS.

6. Extract the pair (̂c, ĥ) from LT which has the smallest infimum inf ĥ.

7. If available, apply prune and bound improvement operations to the box ĉ.
8. If diam ĉ < ε and diam ĥ < μ, i.e. the diameter of all components of the box

is larger than the threshold ε and the diameter value of the objective function is
smaller than μ, the box is sufficiently small. Save (̂c, ĥ) in the list LS; go to step
(3).

9. Split the box ĉ into m sub-boxes {̂c1, . . . , ĉm}, evaluate the objective function
for each sub-box ĥi = f (̂ci ) and store the pairs in the list LT; go to step (3).

The behavior of the algorithm is governed by two important parameters which have
to be chosen a priori. The threshold ε is the lower bound of the size of the boxes in
the parameter space and μ is the maximum error in the objective function. When the
algorithm is terminated, every pair (̂ci , ĥi ) in the list LS fulfills:
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diam ĉi < ε , (8.19)

diam ĥi < μ , (8.20)

h∗ ≤ ĥi ≤ h∗ . (8.21)

After termination of the algorithm, a guaranteed lower bound for the value of the
objective function is also found. The objective function cannot take values smaller
than h∗ = min

LS

(inf ĥ). Summing up, the algorithm has the following remarkable

properties:

• The algorithm guarantees to find the global minimum in the search space. If more
than one global minimum with equal values exists, all are found.

• While searching for the global minimum, one also finds guaranteed upper and
lower bounds for the value of the objective function f .

• One finds guaranteed bounds for the design parameters c that contain the global
minimum.

• The objective function needs not to be continuous differentiable as long as an
interval evaluation can be computed.

• The algorithm can be well executed on a parallel computer due to numerous inde-
pendent evaluations.

• Using interval analysis, the algorithm is robust under numerical round-off errors.

A straightforward combination of parameter synthesis and global optimization is
achieved by using just the resulting set of feasible designs as input for the global
optimization as described above. Technically speaking, one simply assigns the list
LS computed with the hybrid CSP-solver as input list LT of the Generic
global optimizer. However, comparing the two algorithms reveals consider-
able similarities in their structure. When used for parameter optimization of robots,
a specific difference is by far faster evaluation of the objective function f than the
tiresome verification of the underlying constrained satisfaction problem. Usually, the
difference of the computation time is in the range of three to five orders of magnitude.
Thus, for the constrained global minimization, one can intensively test for potential
improvements of the objective functions before taking the burden of computing the
respective CSP. If h∗ cannot be improved, the respective box ci can be discarded
without paying attention to the tiresome computation of the constraints.

Constrained Global Optimization

Combining the CSP solver with the global optimization leads to the following con-
strained global minimization problem:

minimize f (c) (8.22)

subject to �(c, v) > 0 ∀ v ∈ Xv . (8.23)

The basic structure of the hybrid CSP-solver and the generic global optimizer
differ in the tests being applied before discarding a box. The CSP solver considers
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the constraint system �(c, v) > 0 whereas the optimizer compares the objective
function to the best known value h∗. Both criteria must be fulfilled to make the cur-
rent box a candidate for the global optimum. For the optimization of cable robots, the
evaluation of the objective function is much faster than the execution of the algorithm
Verify. Therefore, the objective function is prioritized. If the box has no potential
to improve the current value of h∗, the box is discarded. Once the improvement of
the best value h∗ is started, this rejection rule is successively improved as the value
h∗ gets smaller and allows for discarding more boxes.

Consistency Tests for the Objective Function

So-called filtering techniques are used as heuristics to notably speed-up the com-
putation time in global optimization with interval analysis. Here, only the outline is
mentioned where a detailed description can be found in the literature on optimization
[40, 196].

When the first feasible solution ĉ is found for the CSP, one can compute an upper
bound for the objective function. This is done by simply evaluating the objective
function. The supremum h∗ = sup f (̂c) is clearly an upper bound for the global
optimum. However, this bound can usually be improved simply by evaluating any
discrete point c ∈ ĉ. Clearly, it holds true that f (c) ∈ f (̂c) and h′∗ = f (c) ≤ h∗.
Since the interval evaluation is usually subject to overestimation, it is likely that
picking a single point from the box provides a better bound. An efficient choice for
the point c is the center of the box c = mid ĉ. Thus, one receives a sharp criterion to
discard other boxes in the LT list.

Gradient of the Objective Function

Although the objective function does not need to be continuous or differentiable to
be applied in the interval optimization algorithm, one can speed-up the computation
if it is differentiable. The interval evaluation of the gradient ẑ = ∇ f (̂c) contains
useful information about monotonicity. If one component of the gradient ẑi is strictly
positive, i.e. if ẑi > 0, then the function is monotonically increasing. Therefore, the
sought minimum of the objective function over that interval ĉ must occur on the
boundary of that interval. Thus, the box can be contracted to the partially degenerated
interval ĉ′ = [̂c1, . . . , inf ĉi , . . . , ĉn] and h′∗ = f (̂c′) is a candidate for improving the
global upper bound. Likewise, if one component of the gradient ẑi is strictly negative,
i.e. if ẑi < 0, then the function is monotonically decreasing. Again, the minimum
must be on the boundary and one contracts the box to ĉ′ = [̂c1, . . . , sup ĉi , . . . , ĉn]T.
This reduction is made for every component in the interval evaluation of the gradient.
If at least one contraction is made, one recursively evaluates the gradient for the
improved box ĉ′.
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Objective Function

As discussed above, the requirements for the robot are characterized to be compul-
sory. The constraint programming approach is employed to reduce the search space
with feasible variants of the robots to those designs g that fulfill all given compulsory
requirements. Within this set, one may now search unconditionally for a robot that
fits best to the desired criteria. Now, one employs criteria like minimization of instal-
lation space or minimization of economic cost of the robot. While the minimization
of the size of the robot is an intuitive assumption that can be elegantly expressed in
mathematical formula, the monetary costs are a main driving factor in the product
development that is derived from experience and heuristics. Thus, the former objec-
tive function can be used easily to employ tests of the global optimization procedure
where the latter is more suitable for practical usage.

A pure geometric criterion for the optimization of the robot is the installation
space which can be computed from the geometric parameters. As we have seen in
Sect. 8.5.1.3, one has to take into account the size of the platform,machine frame, and
the winches to determine a meaningful installation space. However, for suspended
robots other criteria must be used to measure the size of the robot.

8.5.2.3 Synthesis for Depending Technical Parameters

Using geometrical parameter synthesis and optimal design, one can find a cable robot
that fulfills the given application requirements represented by the requirements �.
However, in this design phase assumptions on technical parameters such as the max-
imum cable length, available cable forces, and cable deflection angles are used. The
problem of technical parameter synthesis tackles the problem how to appropriately
choose these parameters.Using theCSPapproach, one employs themodel constraints
in order to execute a synthesis procedure where the workspace WR is introduced as
verification set Xv and the parameterization of the pose is connected to the verifica-
tion variables v. The geometrical parameters g are understood to be constant and the
values determined through the design procedure above are assigned. In the techni-
cal parameter synthesis, the technical parameters are identified with the calculation
variables c and one can determine the range for these parameters that are sufficient
to fulfill the application requirements. Since the primary geometry synthesis already
proofed that such robots exist, the technical parameter synthesis only addressed the
issue of choosing optimal values for the technical parameters. Following this idea,
one customizes e.g. the orientation of the coordinate for the guiding pulleys KA,i

which is described by the matrix RA,i as well as orientation of the distal cable-end
connectors given through RB,i . This parameter study yields the valid range for the
orientations where one usually picks the one with the smallest deflection angles. The
influence of many technical parameters is decoupled and the technical parameter
synthesis aims at checking if a machine element can be chosen as cost-efficient as
possible.
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8.6 Hardware Design

After choosing an appropriate geometry for the cable robot, the mechanical design of
the robot hardware has to be done subsequently. Using the determined dimensions of
the robot as input parameters, notable efforts in mechanical engineering are required
to break down the geometrical specifications to machine parts such as dimensioning
the machine frame, choosing fixture elements, and achieving proper arrangements
of the electric wiring. Most of the work is not specific for cable robots and we refer
to the respective construction methods. In the following, we deal with aspects of
mechanical design that involve components that are specific to cable robots. This
includes the selection of cables including guidance and connection to the platform.
Following, design guidelines for the winches are discussed along with selection
of drive-trains. Finally, selection and integration of sensors for the cable robot is
discussed.

8.6.1 Cables

8.6.1.1 Selection of Cables

When designing the hardware for a cable robot from scratch, the cable is likely to be
the first mechanical element to be selected. A couple of other components depend on
the chosen cable’s length, radius, and material. Therefore, the selection of the cable
is crucial for further mechanical design of the cable robot. For the selection of the
cable, one needs to know some key performance parameters such as

• Maximum nominal force fmax,
• Minimum nominal force fmin,
• Safety factor of breaking load f break,
• Allowed elongation of the cable,
• And number of bending cycles nB the cable has to resist.

Some figures on the fatigue bending cycles for synthetic fiber cables can be found
in Hearle [204]. The figures are based on bending of the cable around a drum or
pulley4 with a ratio of rD/rC = 15 and rD/rC = 25 between the cable radius rC and the
drum radius rD. This ratio is commonly abbreviated by D/d in the literature. High-
performance polyethylene (e.g. Dyneema) has roughly nB = 106 bending cycles to
failure at 20% of the breaking load which drops down to around nB = 104 cycles at
50% of the breaking load. For aramid, the situation is worse where aramid allows
for some hundred thousand bending cycles at 10% of its breaking loads which drops
below nB = 104 cycles at 30% breaking load. For steel, one receives around nB = 106

cycles at 10% breaking load which goes down to some twenty thousand cycles at

4In the literature on cable technology, pulleys are frequently called sheaves and instead of cable,
usually the technical term (wire) rope is used. The respective test is referred to as cycling bending
over sheaves (BOS) test.
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Fig. 8.22 Comparison of the cycles to failure for cable of HPME (Dyneema), aramid, and steel
measured for different ratios of rD/rC = D/d. The figures are compiled from different data sets
[204, 426]

50% breaking load. Preliminary tests for Dyneema cables with a diameter of 2.5mm
show a perspective for some million cycles when loading the cable with around 10%
breaking load. Thus, safety factors against failure by fatigue of around 10 are typical
for long-term installations of cable robots. For Dyneema cables, some nB = 5 · 105
cycles are determined at 5.5% breaking load [426] for rD/rC = 10. Experimental
validations based on load cycles within a cable robot are undertaken by Schmidt
where Dyneema cables with rC = 1.25mm and rD/rC = 28 are used. At a tension
level of 4.7% of the cable breaking load, more than nB > 7.5 ·105 cycles are observed
without failure (Fig. 8.22).

Wehr investigated recently the fatigue of synthetic fiber cables under dynamic
loads [488]. Selected results from this experimental study are presented in Fig. 8.23.
Note that the latter parameter set is determined for d/D = 15 leading to higher
wear and shorter lifetime. The experimental tests were performed for relative loads
of some 8% and more. Longer lifetimes are conjectured but not experimentally
validated. Furthermore, the experiments from Wehr show that synthetic fiber cables
are more resistant to dynamic stress. This has to be taken into account for fast cable
robots that employ cable velocities of several meter per second and accelerations
beyond 10 m/s2.

The ratio rD/rC is generally a very important parameter for assessing the fatigue of
cables. For steel cables, one finds reference values [149] which are experimentally
generated for applications such as elevators and cranes. In this setting, a ratio of
rD/rC = 25 is considered to be small for steel which leads to considerably large
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Vectran, and steel with diameter dC = {2, 6} mm. The bending ratio is rD/rC = D/d = 15. Own
figure based on data from [488] (Courtesy of M. Wehr)

diameters for drums and pulleys in civil engineering constructions. The limited data
sets are summarized in Fig. 8.22.

The number of feasible bending cycles for the cable may not be confused with the
number of motion cycles of the robot. Even for the simplest winch design, one has
two bending cycles for a linear motion of the robot. Firstly, when uncoiling the cable
from the drum and secondly when redirecting the cable by a pulley.5 In practice, the
number of pulleys can be larger: Winches with spooling guides have an additional
pulley. The same holds true if pulleys are used to measure the cable force or if a
pulley tackle is used to actuate the cable. Also, additional guidance elements such as
double-pulleys (Sect. 8.6.1.2) which improve flexibility and reconfigurability have
to be taken into account for the cable selection.

A method for proper selection of cables remains an open issue if a large number
of bending cycles shall be achieved without replacing cables. The figures above
are preliminary reference values. For large-scale but low dynamic applications, the
cables and cable guidance systems can be designed for a reasonable life-time. There
is a perspective for the use of synthetic fiber cables for highly dynamic cable robots
in long-term usage. To account for fatigue based on the static breaking load, factors
of 10–20 are realistic and a ratio of rD/rC ≥ 25 is advised. However, application
specific tests for fatigue with the chosen values are mandatory to proof feasibility.

5The wear of the cable in an eyelet is by far worse since the ratio of diameter is very low for an
eyelet generating excessive wear.
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8.6.1.2 Proximal Cable Guidance System

Compared to other machines using running cables such as cranes or elevators, cable
robots require deflecting a moving cable within a large range of directions. Thus, a
machine element at the proximal anchor point Ai is needed that has a kinematically
well-defined behavior in fixing the point Ai in space while allowing the cable to
move unhindered in its current direction. In the following, the cable guidance system
is considered independently from the actuation system since these two components
can be almost unconditionally combined. A very simple guidance system consists
of an eyelet where the cable is guided through [139]. An ideal eyelet realizes an
accurate point-shaped outlet for the cable (Fig. 8.24). However, the kinematically
ideal eyelet has a sharp edge, thus, it cuts like a knife into the cable causing a lot
of friction and abrasion. When using eyelets, the simplified standard cable model
can be justified where cables form perfect lines. In practice, one has to make a
trade-off between a kinematically perfect eyelet that allows for accurate guidance
of the cable and a rounding eyelet that reduces abrasive wear of the cables. Using
ceramic eyelets with synthetic fiber cables, the lifetime of the cables is reported in the
range of some ten hours of operations. Increasing the radius of the eyelet introduces
a more involved kinematic transformation. Using a toroidal shape, the kinematic
behavior of a panning pulley is mimicked. In Fig. 8.24, a conceptual CAD of a cable
guided through an eyelet is shown. For moderate deflection angles of up to 45◦, Fang
[139] reported acceptable force loss due to friction in the eyelet where the friction
increases notably when the deflection angle increases. Since the eyelet has similar
contact conditions as expressed through the Euler-Eytelwein formula, an exponential
connection between deflection angle and friction force is expected causing significant
losses in the cable force. Depending on the friction on the eyelet, efficiency factors
ηE = 0.83 . . . 0.96 can be expected for 45◦ deflection and ηE = 0.77 . . . 0.95 for 60◦
deflection. Almost all energy dissipated this way is fed into the cable causing heavy
wear inside the cable.

Some cable guidance systems consist of one or more pulleys to redirect the cable
from the actuation system into the workspace. In a typical design, the cable is guided
to apanningpulley and its rotational axis is coaxial to the directionof the cable coming
from the actuation system. The axis of the pulley is perpendicular to the panning axis
and allows guiding the cable into a large variety of directions (see Fig. 8.25). Usage
of such guiding pulleys largely reduces the wear of the cable compared to an eyelet
but requires an advanced kinematic transformation (see Sect. 7.2.1).

The ideaof panningpulleys canbe extended todouble panningpulleyunitswhere a
pair of panning pulleys is mounted in one housing to provide omnidirectional feeding
angles on the actuation side as well as on the distal side of the pulley unit (Fig. 8.26).
In such designs, the panning axis of both pulleys must be aligned. Such units are
applied for cable routing if the winches are installed on the floor. Furthermore,
double pulley units are efficient machine elements that facilitate reconfiguration of
cable robots. Relocating the double pulley unit is relatively easy to do by clamping
the unit to different positions on themachine frame. In contrast, the winches aremore
bulky and reconfiguration of the winches requires also changes in the electric wiring



8.6 Hardware Design 351

Fig. 8.24 Guiding the cable through an eyelet allows for an approximate ideal point-shaped redi-
rection of the cable

IPAnema 1 panning pulley IPAnema 3 panning pulley

Fig. 8.25 Guiding the cable over a panning pulley reduces the wear of the cable but makes kine-
matics more complicated

of the robot. Beside the ease of configuration, double panning pulleys introduce
an additional pulley in the drive-train, increasing cable force loss through friction,
increasing fatigue in the cables, and reduce the accuracy of force measurements at
the proximal end of the cable.

8.6.1.3 Platform Anchor Point Design

In order to exert forces on the mobile platform, the distal end of the cable needs
to be fixed. As discussed above for the proximal anchor point, the key challenge
in attaching the cable to the platform is to maintain a kinematically well-defined
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Fig. 8.26 Double panning
pulley unit for
omnidirectional guidance of
the cable allows to redirect
the cable at the upper side of
the frame (picture without
cable)

behavior within a wide range of possible attack angles. On the platform, the end of
the cable needs to be fixed which is different from the proximal anchor points where
the running cables is led through a defined point. Fixing the cable to the platform
basically consists of two main aspects. Firstly, one has to make a durable connection
with the cable that allows transmitting the force from the cable into another machine
element. Secondly, one has to provide the ability to withstand the forces in different
directions. Additionally, a light-weight design on the cable side is desirable to reduce
parasitic inertia in the cable.

For this purpose, different concepts are used on the demonstrators. Some robots
simply clamp the cables between flat jaws. This is very simple to build, however
it causes excessive wear on the cable in the region where the cable is clamped and
sharply bent. The clamping design allows to approximately connect two or more
cables to the same position on the platform. It is rather difficult to set up accurate
cable length when clamping one or even more cables to the platform. The assem-
bly procedure usually leaves significant uncertainties in the cable length requiring
subsequent calibration procedures.

The ends of both steel and synthetic fiber cables can be formed to a soft eye. Then,
a snap hook is a simple and re-usable way to connect the cable end to a ring bolt on
the platform. This link to the platform is a good solution also for reconfiguration of
the platform and for using cables in a rough environment. However, the connection
is subject to uncertainties and clearance leading to decrease in both, accuracy and
durability. Instead of metallic snap hook, one can use soft loops made from synthetic
fibers. Additionally, snap hook can cause sudden settling effects if large deflection
angles are reached.

A more elaborated but also more expensive connection consists of end sleeves for
the cables. Such end connectors add a well-defined mechanical interface such as a
plain or screw bolt to the end of the cable that can be linked by a joint to the mobile
platform. The construction of a compact and accurate end-connector is challenging.
The best connection for both steel and synthetic fiber cables requires to split the
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cable into its fibers or wires and to mold the single fibers or wires into a conic
housing. However, molding the cable into the end-connector requires some expertise
to achieve high tensile strength. The result is a very robust and efficient connection
that can be pre-assembled with some accuracy. In turn, shortening of the cables and
repair of broken cable connections are more involved and require specific tools. A
simpler solution is to coil the cable around a smaller bolt that is inserted transversal in
the end-connector (see Fig. 8.37). For synthetic fiber cables, one can transmit forces
almost as high as the molded connection can bear with good resistance to fatigue.

End-connectors can be linked to the platform through a spherical joint, a universal
joint, or a swivel bolt. The two latter connectors basically consist of two revolute
joints with orthogonal axes where the alignment of the axes differs with respect to
the cable direction. Universal joints provide symmetric deflection capabilities with
comparably small deflection angles up to 60◦ with small deflection angles beingmore
preferable. In contrast, in a swivel bolt, one axis is aligned with the straight cable.
This configuration causes a kinematic singularity when the swivel bolt is stressed
in purely longitudinal direction. Instead, swivel bolts allow for very large deflection
angles beyond 90◦ and provide good force transmission capacities for large deflection
angles. The choice between universal joints and swivel bolts is a matter of proper
design.

For planar robots, the connection to the mobile platform can be implemented with
an end-connector as described above with a conventional revolute joint. Since one
needs only one rotational axis, there are many simple possibilities for the mechanical
integration into the mobile platform.

Instead of joints, one can guide the cable through circular profiles on the platform
in order to bend the cables in a well-defined way. Connecting the cable between
two cylindrical surfaces can be easily manufactured and provide a good resistance
to fatigue in the cables (see Fig. 7.5). The transmission of the cable force onto the
platform can then be done by winding the cable around a bollard. This idea was
implemented in a planar robot in 2014 as well as proposed in [167] for use with a
spatial robot (Fig. 8.27).

8.6.2 Cable Actuation Systems

8.6.2.1 Winches

The design of a winch (or hoist) is a well-understood task in mechanical engineering
since winches have been used in crane applications for centuries. One distinguishes
between drums with and without cable guidance system and also between coiling
in single or multiple layers. Winches without cable guiding system are more cost
efficient to build and the cable is coiled in multiple layers. Clearly, one can store
much longer cables on such winches. These advantages come at the cost of reduced
accuracy in the estimation of the wound cable length as well as high wear of the
cable. At least for steel cables, the loss in lifetime of cables is found to be excessive
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Fig. 8.27 Distal anchor
point on the mobile platform
based on a cable rolling up
on cam that is mounted onto
a revolute joint

and can bring down the lifetime to 2–9% of the nominal value [149]. Thus, the cable
is destroyed some 10–50 times faster.Multi-layered spooling is generally not advised
for all kinds of longer operations (Fig. 8.28).

Winch designs for cable robots are presented for example in Rostock [206, 306]
and Duisburg [70], by Tecnalia [224], and Fraunhofer IPA [404]. Linear drives are
proposed by Surdilovic [448]. A comparison between winches and pulley tackles as
actuation scheme is made by Merlet [327]. An alternative design for a winch-based
actuation system is proposed by Cong [383] where the drum is mounted on a linear
guide on the shaft in order to keep the contact point where the cable leaves the drum
fixed in space. When rotating the drum, a spindle drive moves the drum on the shaft
to compensate for the pitch of the drum. A similar idea is depicted in Fig. 8.29 where
the motor and the drum are connected by a 3R mechanism for transmission of the
torque where the drum is mounted on a screw thread to keep the contact point fixed
in space.

To allow for accurate coiling of the cable, this section focuses on single layer
winches. In the following, a review of the essential dimensions of a winch is pre-
sented. The length ΔlD of a cable coiled onto the drum with diameter dD is

ΔlD = nW

√
d2

Dπ
2 + h2D , (8.24)

where nW is the number of windings on the drum and hD is the pitch of the drum
(Fig. 8.30). Clearly, the pitch hD must be greater than the diameter dC of the cable.
For example for a 6mm synthetic fiber cable, a pitch hD = 7mm is used in the
IPAnema 3 winch and for a 2.5mm synthetic fiber cable a pitch of hD = 3mmworks
well. For steel cables, the norm for crane hoists [222] can be used to find sufficient



8.6 Hardware Design 355

Fig. 8.28 Concept for a servo-controlled winch with integrated force sensing: (1) transmission
belt, (2) guiding pulley, (3) drum, (4) linear guidance, (5) spooling unit, (6) force sensor, (7) guiding
pulley, (8) spindle, (9) planetary gearbox, (10) servo motor

Fig. 8.29 Movable winches based on a four-bar linkage and a movable drum on a thread screw

values. The minimum length of the drum lD is

lD = nWhD + lD0 , (8.25)

where lD0 is a positive length that collects the unused length of the drum. This addi-
tional length is required to fix the cable on the drum, as safety margin for the end-
of-travel sensors, and for regions that cannot be accessed on the drum e.g. because
of installation space of the cable guidance system. If the cable is clamped onto the
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Fig. 8.30 Development
drawing of the cable on the
drum

drum, some nE = 3 . . . 5 windings should be used to reduce the effective forces
acting on the clamping. The exact relation of the force at the end of the cable fE and
cable force f is determined from the formula by Euler-Eytelwein

f ≤ fEe
μDα , (8.26)

where μD is the coefficient of friction for the cable on the drum and the angle α =
2πnE is determined from the number ofwindings nE around the drum.With amedium
coefficient of friction of μD = 0.1 for Dyneema on steel, we find a reduction of the
force fE by around 6.5 for three windings and by around 23 for five windings.
See Table 3.7 for the friction coefficients of different cable materials. Due to the
significant reduction in the cable force at the end, the cable can be clamped to the
drum without damage and only moderate forces are applied to the cable.

The diameter of the drummust be chosen according to different effects. Firstly, the
diameter is a linear factor for the computation of the overall transmission index of the
winch. Since a typical servo motor has a high nominal angular velocity, gearboxes,
or belt drives are used to reduce the velocity of the cable. Therefore, small diameter
of the drums are favorable to support the transmission to smaller velocities of cable.
The motor motion is transformed to cable velocity by

l̇ = πdD

2νPG

ωM , (8.27)

where l̇ is the velocity of the cable, νPG is the gear ratio of the gearbox, and ωM is
the angular velocity of the motor. Contrary, the torque TM generated by the motor is
transformed to the cable force through

f = 2νPG

πdD

ηGηWTM , (8.28)

where ηG and ηW are the efficiency factors of the gearbox and the winch, respec-
tively. Industrial gearboxes have efficiency factors of around ηG = 0.95 . . . 0.97 at
nominal load. Care must be taken when the winch is operated below the nominal
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load of the gearbox since the efficiency factor ηG decreases notably in this case. Such
usage occurs frequently for cable robots especially when cables are uncoiled with
small tension. Due to the small forces in the cables during uncoiling, the friction in
the gearbox can prevent recuperation of energy due to insufficient efficiency in the
gearbox.

This becomes evident if one considers the following example: The IPAnema 1
winch has a nominal cable force of fmax = 720N, a gear ratio νPG = 12, and a nominal
motor torque TM = 3Nm. The two-stage planetary gearbox has an efficiency of
ηG = 0.95 at nominal load, i.e. the friction force is approximately FF = (1−ηG) fmax =
36N. Typical values for the mechanical efficiency of such winches are determined to
be between 0.8 . . . 0.9 depending on the load-state. Thus, one has to generate some
torque with the motor if the cable is operated at low tension even if the cable is
uncoiled.

The second important factor for the winch diameter results from the fact that the
diameter of the winch largely effects the rotational moment of inertia. If the drum is
modeled as a hollow cylinder, one finds the moment of inertia ID to be

ID = lDπ�D

32

(
d4

D − (dD − tD)
4
)

, (8.29)

where �D is the density, tD is the thickness, and dD the diameter of the drum. One
can conclude that the moment of inertia of the drum largely depends on its diameter.
Especially for dynamic applications of cable robots, it is advantageous to keep the
inertia of the winch low to exploit the full dynamic bandwidth of the motor.

Thirdly, the ratio from the cable diameter and the drum diameter dD/dC is a lower
limit for the diameter of the drum. For synthetic fiber cable, a ratio dD/dC = 8 . . . 12
is applied for short-term usage6 where for steel cables a ratio of 25 and more is
typical. As one can see from Fig. 8.22, also for synthetic fiber cables larger ratios
are required for long-term usage. In most cases, a minimum diameter of the drum is
governed by the requirements of the cable.

A short example is given to illustrate the cable criterion. Awinch shall be designed
for the usage of Dyneema cables with a diameter of dC = 2.5mm. Based on a ratio of
25, the drum (and the pulleys) should have a minimum diameter of dD = 62.6mm.
In order to increase resistance to bending fatigue of the cable for long-term usage, a
factor of 40 is advised leading to a minimum diameter of dD = 100mm.

8.6.2.2 Linear Systems

Wide-spread ways to mechanically realize the linear drives are direct driven linear
motors as well as spindle nut drives used in machine tools. The former actuation
requires specific customization and allows for higher dynamics but is most costly

6There are no strictly reliable measurements for the lower limit of ratio dD/dC available for synthetic
fibers, also because there are huge amounts of different new materials on the market.
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Fig. 8.31 Schematic sketch of the linear actuators for cable robot IPAnema 2 planar (left) T:
sliding carriage with pulleys, U: rotor of the linear direct drive, V: linear guideway, W: housing
for the drag chain, X: drag chain with power and encoder cables, Y: carrier for supply cable and
drag chain, Z: stator of linear direct drive. The entirely assembled planar cable robot IPAnema 2
with the four linear motors (right)

and difficult to operate. Spindle nut drives are actuated using the electric servomotors
as used in winches.

One can directly connect the linear drive (Fig. 8.31) to the cable as exemplified in
the StringMan robot [448]. Such design requires only one panning pulley and thus
allows for little friction losses aswell as damage in the cable.However, the application
is limited to smaller robots since the length of the actuation system is directly coupled
to the size of the workspace. Using linear drives, one can determine precisely the
effective cable length through the integrated sensors of the actuator. In contrast
to winches, less disturbance is caused by ovalization and undefined cable coiling
since the whole cable remains tensed during normal operation. Using pulley tackles
[325, 327], one can realize a gear like behavior where gear ratios are achieved that
correspond to gearbox ratios νPG < 1. Thus, the cable velocities are generally larger
than the actuator velocities and the cable forces are lower than the actuator forces.
Taking into account that linear drives already provide good dynamic performance,
one can realize ultra-high speed robot. Merlet conjectures that reaching the speed of
sound is achievable [327], however, no experimental results are presented yet. By
using pulley tackles in the transmission, the cable stroke of the actuator is multiplied
by the number of pulleys thus reducing the installation size of the actuation system.
Such designs compromise the lifetime of the cables since the cables are subject to
excessive wear caused by the bending over many pulleys. Additionally, significant
losses in the cable force are caused by friction in the pulleys. Roughly speaking, the
overall losses are proportional ηL = ηnR

R where nR is the number of pulleys and ηR is
the efficient of each pulley.
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8.6.2.3 Twisting of Cables

An exotic way of actuating cable-driven parallel robot is twisting the cables. If an
axial rotation is applied to a cable, the cable begins to shorten and exerts also a pulling
force on the platform. This actuation scheme for cable robots is proposed by Shoham
[439]. In serial robots, twisting of cable is a known actuation principle [426, 497].
A large benefit of twisting the cable is that a very high transmission ratio around
400 times higher than a typical winch can be achieved without using gearboxes
[497]. Contrary, only relatively small changes in the length can be achieved, the
transmission ratio is highly nonlinear, and twisting the cable causes large wear on the
cable [426]. There are little figures available for the lifetime of cables under twisting
loads. Some preliminary values for synthetic fiber cables can be found from [426]
where experimental tests are presented using cables as artificial muscles. Therefore,
excessive testing is required before usage in production installations.

8.6.3 Selection of the Actuators

Cable robots are usually operated with electric servo motors due to good control-
lability. Many cable robots use synchronous direct current servo motors (see e.g.
[210, 404]). Servo motors and suitable gearboxes are available in high quality by
many vendors and can be selected in many variants ranging from rated powers of
some watts to several hundreds kilowatts. Using gearboxes, the ratio of motor torque
and speed can be precisely customized to applications’ needs. Servo motors are both
suitable for slow speed cable robots with high payload as well as for high dynam-
ics applications. The technical limitations of servo motors are a constant maximum
torquewhich ismostly independent from its speed, amaximumvelocity being almost
independent from the torque, and limitation in the total rated power. Servo motors
allow for both position and force control. One of the main drawbacks of servomotors
is that they are expensive compared to other types of electric drives. In turn, stepper
motors can be employed for cost efficient actuation especially for small cable robots.
Stepper motors have a complex characteristic curve relating the available torque to
the motor speed. Due to the simple actuation scheme, stepper drives are preferably
used with open-loop position control.

A conservative way to determine the required motors and gearboxes is to compute
the worst case motor torque required to fulfill the application as well as to use the
highest required velocity vmax defined for the application. Taking into account the
characteristics of the winch, one can directly compute the required maximum speed
of the motor from

n M,max ≥ vmaxνPG

2πrD
, (8.30)

where νPG is the reduction ratio of the gearbox and rD is the radius of the drum in
the winch. In contrast to the velocity, one has to take into account losses in the
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Table 8.19 Parameters for the drive section with typical values as well as lower and upper bounds
for the parameter for the IPAnema 3 winch. Winch efficiency is determined at maximum rated
power of the drive

Symbol Description Typical values IPAnema 3
(lower)

(upper)

ηP Efficiency factor
of pulley

0.97 0.97

ηPG Efficiency factor
of gearbox

0.95–0.97 0.97

ηW Efficiency factor
of winch

0.80–0.90 >0.80

nP Number of
guiding pulleys

1–5 2 4

η Overall
mechanical
efficiency

0.87–0.63 0.73 0.69

mechanical transmission to compensate for friction in the drive-train for selecting
the motor torque. Similarly, one receives the required nominal torque of the motor
from

TM,max ≥ FC

η
nP
P ηWηPGνPGrD

, (8.31)

where ηP, ηW, ηPG are the efficiency factors of the pulley, the winch, and the gearbox,
respectively, and nP is the number of guiding pulleys. Thus, the overall mechanical
transmission efficiency is

η = ηnP
P ηWηPG . (8.32)

Typical values for these factors are given in Table8.19. The numerical examples of
the IPAnema winches show that one has to consider a buffer of around 35–47% of
torque on the motor side to account for losses in the drive-train. However, using the
dimensioning of the motor and gearbox as described above can lead to notably over-
sized drive-trains when the robot is operated dynamically. Then, the scenario-based
approach from Kraus [261, 263] can be applied to tailor the drive-train accurately to
the duty cycle of the robot.

The basic idea of the scenario-based dimensioning of the drive-trains is based on
a repetitive duty cycle of the robot. In practice, such cycles are defined by the robot
program that defines the motion of the mobile platform and hence also velocities
and accelerations. Therefore, one can use rigid body kinematics to determine the
platform’s inertia wrench wI from

wI =
[
f I
τ I

]
=

[
mPI3 0
0 IP

] [
aP

αP

]
+

[
0

ωP × IPωP

]
, (8.33)
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Fig. 8.32 Examples for the scenario-based dimensioning of the drive-trainwith the reference curves
of the motor for its rated torque (S1) and the peak torque (S2)

where aP,αP are the linear and angular accelerations of the platform, respectively,
and ωP is the angular velocity of the mobile platform. Furthermore,mP and IP are the
platform mass and the platform’s moment of inertia. The inertia wrench wI and the
applied wrench wP is used in the structure equations to compute cable forces (see
Sect. 3.6) and cable velocities (see Eq. (4.4) in Sect. 4.2.3). Computing these motor
torques and the motor velocities along a trajectory provides a sequence of states in
a speed-torque diagram required for the scenario (Fig. 8.32).

Having determined application scenario curves as given in the diagram, one may
test for combinations of motors and gearboxes according to data sheets from vendors
of drive-trains. Using peak values for the rated power that is computed from the
respective product of speed and torque, one can pick candidates for the motors.
Then, selecting appropriate gearboxes allows for shaping themotor’s curve to enclose
the characteristic trajectory of the scenario. Using a model of energy efficiency as
discussed by Kraus [261, 266], one can additionally fine tune the drive selection for
optimal exploitation of the thermal behavior of the motor.

8.6.4 Sensor Integration

Common control strategies require to measure the system states during operation in
order to improve performance of cable robots. Furthermore, sensors are used to assure
reliable performance. This requires the integration of sensors into the cable robot. The
sensors are integrated into different hardware elements of the cable robot including
the winches, the guiding pulleys, and the mobile platform. The most frequent use of
sensors in the winch is measuring the kinetostatic state of the cable. This includes
the determination of the current cable length or velocity as well as the current cable
force.
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8.6.4.1 Cable Position and Velocity Sensors

The current cable length li must be determined for accurate control of the robot’s
kinematic transformation. There are several possibilities tomeasure the length,which
are elaborated in the following. When using servo motors, it is convenient to include
an encoder or resolver into themotorwhich feeds back the current position or velocity
to the motor inverter. This kind of position sensors are available frommanymanufac-
turers for drive-trains in good quality. If the winch has a well-defined cable guidance
system, the effective length of the cable is computed from an offset and the overall
transmission factor of the winch. Encoders are available as so-calledmulti-turn abso-
lute encoders that allow the controller to directly recover the absolute length of the
cable in each cycle also after loss of power or during startup of the control system.
Relative encoders need to cross a reference marker that can be located on the cable,
on the drum, or in the encoder to reconstruct the absolute position. For larger cable
robots, it is not practical to do such referencing because it could be dangerous to
move the winches before the position of the platform is known. Such initialization
procedures require a separate control strategy to operate the robot before valid abso-
lute length values are available, by e.g. uncoiling single cables and later recovering
a tensed state.

Motor-integrated sensing is also applicable for linear actuation systems where the
linear displacement of the actuator is measured with an angular encoder or resolver
if a servo motor is used to move the pulley tackle.

Besidemotor-integrated sensors, a direct lengthmeasurement of the cable is desir-
able. An incremental but relative lengthmeasurement system is achieved by applying
an additional friction pulley on the cable preferably close the winch’s exit point. Such
measurement systems are subject to drift errors when the cables are moved with very
high velocities and accelerations. Another approach to determine the cable length is
optical tracking or magnetic markers [325, 338] on the surface or inside the cable.
An optical or magnetic sensor is then installed at the outlet of the winch to record
the markers. Using markers allows for significant improvements of the repeatabil-
ity at reasonable costs as little efforts must be spent on the winches to reproduce
a given position. Additionally, referencing with markers overcomes position errors
caused by inaccurate coiling of the cable. Clearly, this requires purpose-made cables
to perform such measurements. To the best of the author’s knowledge, such cables
are not available as ready to use products but have to be customized. Also the impact
of markers on cable fatigue is unknown.

An important practical problem with all position and velocity measurements is
that one receives information about perfectly rigid cables where changes in the cable
length caused by elastic, plastic, or hysteretic effects cannot be measured. A second
practical problem is to determine the initial cable length after installation. Even if
the sensor provides absolute values, one has to perform referencing before initial
operation and accurate referencing is difficult to achieve. If the absolute position of
the platform pose is determined with an external measurement device, one executes
the referencing for this known reference pose to match it with the sensor data.
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Fig. 8.33 Prototypic measurement device to sense the direction of the cable of the IPAnema 1
robot using guiding pulleys on the lever and two encoders for measuring the direction in spherical
coordinates

8.6.4.2 Sensing the Cable Direction

Determining the current cable direction vector ui allows to set up the structure matrix
without estimating the pose through the kinematic transformation. Also, forward
kinematics can be simplified, either by directly using the cable direction to compute
the position of the distal anchor points or by selecting amongst ambiguous solutions
in forward kinematics.

The direction of the cable is determinedwith encoders (Fig. 8.33) that are built into
the cable guidance system [206, 306, 496],with cameras [108] and image processing,
or with one-dimensional arrays of photo sensors. The accuracy of the measurement
is typically only accurate up to some degree. Therefore, the measurement is only
used as a rough estimate instead of an exact value. A prototypic realization of an
encoder-based direction measurement is shown in Fig. 8.33. The drawback of the
mechanism measurement is that the additional forces to move the measurement unit
disturb the motion of the robot.

8.6.4.3 Measuring the Pose of the Platform

The pose (r,R) is usually only implicitly measured through the cable length l and
by computing the forward kinematics code. If such transformation is not available
or not accurate enough, the measurement of the platform position and orientation
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Fig. 8.34 Pose determination of the platform of the IPAnema 3 robot using a laser tracker

is required. To measure the platform pose, some approaches are proposed in the
literature. Camera-based vision sensors are used to track markers on the mobile
platform [96, 108] and their measurement signal is employed in the position control
loop. Other approaches are inertial measurement units (IMU) [449], (differential)
GPS, or laser tracking (Fig. 8.34) of the platform [264]. The pose measurement is
required for external calibration (see Sect. 9.2) and motion control where the latter
requires real-time sensor data processing. The latter is more involved since many
three- and six-dimensional measurement systems are not designed to supply their
data with real-time speed and efficiency. Even fast computer systems may fail to
provide the position estimates with little latency time to allow for control cycles in
the magnitude of milliseconds. To the best of the author’s knowledge, no results are
reported about feeding back such platform measurements into the control system
at full cycle time making measured pose data available for control. Beside this, a
couple of demonstrators used camera-based vision for validation purpose, see e.g.
[25, 527].

8.6.4.4 Cable Force Measurement

Determination or estimation of the current cable force is a prerequisite for all kinds of
cable force control. In the simplest case, one monitors the cable forces to keep them
between the minimum and maximum limit or to detect failures such as slackness or
even breaking of the cables. In contrast for the use in closed-loop control, five main
properties for the force measurement are important:
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Fig. 8.35 Concepts for integrating a one-axis force sensor into a cable robot

• Accuracy of the measurement: Precise measurement simplifies the use of the force
signal in control.

• Dynamic resolution: The maximum sampling frequency of the force signal is
limited by the sensors, the A/D converter, and the cycle time of the control system.
As expressed in [334], the sampling bandwidth should be higher than 1kHz.

• Latency: Measurement, signal conversion, filtering, and transmission through the
fieldbus lead to a dead time.

• Noise: Force sensors are subject to significant noise disturbing the quality of the
measurement.

• Systematic errors: Parasitic inertia, friction, etc.

The effects listed above vary in quality and quantity depending on the sensor used
in the robot as well as on the concept used to integrate the sensor.

A straightforward method for integrating a force sensor is to place the sensor
between the distal end of the cable and the mobile platform (Fig. 8.35a). From
mechanical engineering point of view, the installation is rather simple and the mea-
surement signal is practically free of parasitic inertia and friction. Thus, based on the
quality of the sensor, one measures directly the force applied to the mobile platform
as assumed by the standard static model. When using a one-axial force sensor, an
additional spherical or universal joint must be used to guarantee that the sensor is
only loaded in axial direction to prevent damage to the sensor. A disadvantage of
distal force sensing is that one has to transmit the signal from the platform to the
controller making additional signal and energy connection to the mobile platform
necessary. An example of such measurement is shown in Fig. 8.36.

A straightforward and frequently used technique to measure the cable force is to
add a linear force sensor to one of the guiding pulleys inside the actuation system
(Figs. 8.35c and 8.37). Application of this concept can be found in [261, 376, 413].
Assuming that the pulley has no friction, one can directly determine a linear estimate
of the cable force. When using a linear motor with a pulley mechanism, there are a
couple of possible locations for the force sensor. Since the full cable is under tension,
the force sensor can be located at the proximal end of the cable where it does not
move. This eases installation and electric wiring of the sensor. Measuring the cable
force at the proximal end of the cable suffers from some disturbance caused by
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Fig. 8.36 A force sensor at the distal end of the cable. Using a universal joint between the platform
and the force sensor allows to load the sensor only in axial direction. The lower photo shows the
connector assembled with the robot according to patent DE102012024451 (A1)

Fig. 8.37 A force sensor
integrated into the guiding
pulleys inside a winch. Care
must be taken to protect the
force sensor from shear
forces

friction in the guiding pulleys. As a rule of thumb, 3% of the cable force is dissipated
in each pulley and consequently cannot be measured by the sensors on the proximal
end.

When installing the sensor in a winch, it is favorable that the cable’s attack angle
on the pulley do not change (see Fig. 8.35b). Then, one receives a constant mul-
titude between a factor of 1 and 2 of the cable force depending on the wrapping
angle around the cable. The advantages of this arrangement are a compact hardware
design and ease of installation since the sensor does not move relative to the actu-
ation system. Furthermore, there is little parasitic inertia in the mechanical system
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Fig. 8.38 Measurement principle for determining the cable force with a lever mechanism (left) and
a typical implementation on the IPAnema 3 winch (right)

allowing for determination of the cable force at high bandwidths. However, some
drawbacks remain. Especially for large-scale cable robots, the force measurement
on the proximal side disregards the effects of pulley friction, the effect of sagging
and elasticity, as well as for huge robots some delay in the measurement caused by
limited wave velocity. A practical implementation is exemplified for the IPAnema 3
winch in Fig. 8.38.

If the drum is mounted on a lever, one can also add a force sensor to the lever to
determine the cable force. This approach is applicable if the cable is directly guided
from the drum to the workspace or to a distal pulley. The mechanical design is simple
and by choosing an appropriate geometry for the lever, one can easily guarantee a
single-axis load for the force sensor. In this design, sensors measuring pushing forces
are applicable. A disadvantage is the high parasitic inertia of the lever and the drum
making themeasurement insensitive to higher frequencies. The disadvantages named
for measuring at the guiding pulley also apply for measurements at the drum.

If the winch has a spooling mechanism, a lever can be used for the pulley
(Fig. 8.35b). Again, this design is a simple but efficient way to receive only one-
dimensional tension in force sensors. From the scheme in Fig. 8.38, it becomes
apparent that balancing the distances a and b allows for fine tuning of the measure-
ment range of the force sensor: Available force sensors have fixed maximum loads
that may mismatch with the desired maximum load of the winch. Small changes in
the length a and b allow to accurately exploit the measurement range of the force
sensor, by e.g. changing the pivot point of the lever by less than 10%, one can vary
the effective scaling factor for the force sensor by more than factor 2.

Another approach is using a torque sensor in the drive-train to measure the cable
force. The torque sensor is placed between the drum and the clutch preferably after a
possibly applied gearbox. Clutches with integrated torque sensors are also available.
The mechanical integration is elegant and compact where some effort needs to be
undertaken in transmitting the signal from the rotating sensors in the drive-train.
Integrating the sensor in the winch mechanics is robust but comes at the cost of even
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higher parasitic inertia and disturbing effects such as friction in the pulleys, elasticity
in the cables, and sagging as well as friction in the bearing of the drum.

Finally, motor-integrated force sensing (e.g. by evaluating the servo motor’s cur-
rent) can be applied but is subject to additional measurement errors induced by
backlash and friction in the gearbox. Experimental evaluation with a planetary gear-
box showed that friction force in the gearbox is higher than the cable force [259].
Therefore, force sensing on the motor-shaft is rather limited when using a gearbox.
For high payload and gearless drive-trains, acceptable force measurements at the
motor are obtained at the Cable Simulator.

For the sensor itself, one-axial load-cells can be applied for distal and proximal
force measurement. Most of the sensors used in practice employ a metallic or silicon
stain gauge where sensors with integrated amplifiers are available. Piezo sensors are
less versatile for the use with cable robots since these sensors only detect changes in
the force rather than absolute forces. Therefore, Piezo sensors are only applicable if
the cable forces change at higher frequencies.

8.7 Conclusions

The design of cable robots is an engineering process with a number of phases that
require iterative approaches. Firstly, the application requirements have to be com-
piled as a solid basis for the design decisions to be made. Based on this requirement
specification, the system design is carried out. Considering the desired properties of
the robot, one has to define the motion pattern of the robot, the kinematic classifica-
tion, and decide if the robot is fully-constrained or suspended. In order to facilitate the
geometric dimensioning, one defines a parametric model as template. A collection of
such models for different archetypical applications is presented. For new or special
applications, one needs to define a specific parameterization that fits this application.
The parameterization defines the design space for the geometric parameter synthesis
of the robot. Two automatic approaches are presented based on optimal design and
constraint programming. For plain design problems, one might succeed by apply-
ing rule of thumb guidelines and manually tune the geometry of the robot. In this
procedure, the engineer employs ad hoc the tools for analysis described in earlier
chapters in order to investigate the feasibility of the robot to be designed. It must be
concluded, that different techniques for tuning the geometric parameters are possible
but all of them require expertise from the side of the engineer to be used efficiently.

After fixing the geometry of the robot, the mechanical design and the controller
design of the robot has to be done. From the technical requirements, one has to first
select the cable since the cable defines technical specifications for the winches, guid-
ance elements, and end-connectors. Then, one has to perform the mechanical design
of the robot including the selection or construction of the winches, the dimensioning
of the machine frame, and the construction of the mobile platform. Furthermore,
the cable guidance systems need to be selected and appropriate distal cable end
connectors have to be chosen.
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The mechanical design shall be accompanied by setting up a dynamic simulation
model that allows to quickly validate the mechanical design as well as to prepare the
controller design and parameterization. Furthermore, the simulation model can be
used to tool up for the initial operation of the robot, since most control parameters
can be prepared based on the simulation in order to allow for an accelerated initial
operation of the robot.

The design of cable robots remains a rather challenging topic requiring consider-
able knowledge in different disciplines and is heavily influenced by practical expe-
riences with earlier cable robot designs. Today, the theoretical foundation of this
engineering process for cable robots is rather preliminary since little components
have gained maturity from multiple iterations.



Chapter 9
Practice

Abstract In this section, operating experience and experimental results are pre-
sented related to building and running cable robots. Firstly, the basic procedure
for calibration of cable robots is outlined. Then, the IPAnema robot family is intro-
ducedwhere the different demonstrator systems exemplify possible design decisions.
Finally, some other cable robots are presented which are designed and built using
the methodology described in this book.

9.1 Introduction

As robotics is an applied engineering science, one has eventually to proof the effec-
tiveness of the theoretical findings in an experiment. The aim of using robots is
to provide automation solutions to real world problems. One can approach this in
two different ways. The deductive approach is based on deriving the complicated
structure of an actual system from basic axioms and fundamental theorems. Mathe-
matics is the very archetype of this approach and well-structured physical disciplines
such as mechanics follow this paradigm. Here, it is mostly followed for deriving the
kinematic and static foundation of cable robots. The second approach is based on
induction and requires unconditional observation of systems to identify patterns and
to conjecture general rules. If a scientist is not able to construct his experiments as
desired, he must resign to observe the arrangements that are available. Typical exam-
ples of this approach are astronomy and also many aspects of life science. Although
one can build in principle any variants of a cable robot, this is practically impossible
due to limitation of resources. Therefore, observation of the physical robot is required
to extract the essentials.

Theoretical approaches are required to solve some kinds of problems that cannot
be attacked by just building and observing the robot. However, the deduction of
a theorem or a model for cable robots from the natural laws requires decisions
what effects must be addressed and what effects are neglected. For example, the
validity and applicability of Newtonian mechanics are unconditionally accepted for
modeling of cable robots where relativistic effects are neglected since such effects
are anticipated to be very small. However, other effects such as friction in the cables
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and pulleys, aerodynamic effects of the moving platform, and thermal effects in the
materials are to be discussed and depend on the use-case. Furthermore, it can be
hardly tested if one has overlooked something in the model or if one simply failed
in its implementation.

A purely inductive point of view on cable robots is seldom followed. One can take
the perspective of an observer who qualitatively and quantitatively determines the
behavior of the cable robots. Is a certain pose of the robot stiff? Does the robot vibrate
or sway, and with which frequencies and amplitudes? The observations can lead to
a discovery of phenomena that need explanation and guide the direction for further
development of themodel.Averitablemodel can reliably predict andpossibly explain
the observable phenomena with acceptable errors and minimal effort. In contrast,
adding complexity to the model without receiving a more accurate prediction is
pointless.When one proposes an extension to a theoreticalmodelwithout comparison
with the experiment, one cannot assess correctness and validity unless the model is
experimentally validated or already known observations can be explained with the
extended model. However, one can do theoretical studies on a validated model to
analyze its properties.

The research on cable robots is mostly driven through research in the field of
kinematics, dynamics, and control. As robotics is an interdisciplinary science, the
connection of the different domains is involved and complex. Providing and operating
the test-beds required for the experimental validation is predominantly not the main
objective of the research projects undertaken. Lately, the research on cable robots is
more driven by applications but still lacks an established practice in building cable
robots. Thus, there are no standard robots available making comparison amongst
experimental results involved and sometimes also fuzzy.

The objective of this chapter is to provide accurate information on the test-beds
used for the experimental validation of many of the results discussed so far. Fur-
thermore, we present a number of solutions for practical challenges that occur if
one meets the challenge of testing a hypothesis experimentally. The first step in that
practical direction is the calibration where one tries to identify the actual geome-
try of the robot. Then, an overview on some demonstrators is given where some
implementation details are elaborated and compared.

9.2 Calibration

Accuracy is a key performance indicator for all kinds of robotic devices. A detailed
technical definition of accuracy of robots and how tomeasure it is subject in ISO9283
[220]. The position accuracy of a robot describes its ability to move its reference
points to the desired absolute position in space. In contrast, repeatability is the devi-
ation between the actually reached position of the end-effector when approaching
to the same position in configuration space in a number of times. Repeatability is
influenced by the reproducibility of the motion in the actuators and in the mechanics
including effects such as elastic reactions, control errors, sensor errors, hysteresis,
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Fig. 9.1 Definition of position accuracy d and position repeatability r according to ISO 9283 [220]

cable creeping, thermal effects, and clearance. The effect of good or poor accuracy
and repeatability is depicted in Fig. 9.1. Repeatability is in general equal or better than
accuracy because accuracy suffers from bad repeatability. In contrast, a robot can
have a good repeatability without having good accuracy, e.g. if the referencing of the
actuators is poor or if the parameters in the kinematic transformation are imprecise.
Especially, over-constrained cable robots suffer additionally from shortcomings in
repeatability since violations in the constraints cause additional effects on the pose.
By different means of correction, one can improve the accuracy towards the level of
the robot’s repeatability.

Although significant efforts are undertaken in the design, manufacturing, and
assembly of robots to build the robot accurately according to the design specifica-
tions, one cannot prevent errors and uncertainties in the geometry of the robot. By
using costly procedures, one can only reduce but not eliminate the errors. While
machine parts such as drums, pulleys, and guidance systems can be manufactured
with narrow tolerances, the setup of large machine frames suffers from significant
errors. Thus, improving the accuracy by means of calibration during the initial oper-
ation of the robot is an important topic. Calibration is the procedure to estimate the
actual numerical values of the geometrical design parameters of the robot. Usually,
one considers the nominal parameters to be given, where the nominal parameters are
the ideal values fixed as the results of the design procedure. Thus, calibration is a
special kind of model parameter identification where the model to be identified is a
kinematic model and the sought parameters relate to the geometry of the robot. How-
ever, in the context of cable robots, it makes sense to extend the calibration procedure
to consider also the cable forces and optionally the elastic effects in the cables to effi-
ciently increase the robot’s accuracy. Merlet [322] argues that optimal design aims at
making the robot insensitive to geometric changes where the calibration procedure
requires such sensitivity to be effective.

Evaluating the effectiveness of the calibration procedure is a time-consuming pro-
cedure. Eventually only the results allow to benchmark the quality of the calibration
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after finishing the whole calibration procedure and experimentally measuring the
accuracy. If the result of the calibration is not satisfactory, it is difficult to assess how
to improve the quality of the procedure.

9.2.1 Review of Literature

The calibration of cable robots is highly related to the calibration of conventional
parallel robots as both types of robots have closed-kinematic loops causing a highly
coupled motion between the actuators and the mobile platform. Thus, a number of
conventional strategies developed for machine tools and industrial robots [133] are
not applicable due to the different structure of parallel robots.

Due to the coupled motion of the closed-kinematic loops, the calibration of paral-
lel robots is based on measurement and matching of externally determined poses of
the end-effector. This includes the problem of selecting the poses to bemeasured. The
problem of optimal selection of measurement poses for a serial robot is addressed by
Borm [44], who employs an observability index to rate the measurement pose set.
Also, Khalil [242] discusses the impact of different measurement positions for the
calibration of robots. Then, Wampler [484] generalizes a method to apply calibra-
tion procedures to parallel robots, and Hollerbach [212] introduces the well-known
calibration index in order to assess the quality of the set of measurement poses.
Nahvi [357, 358] proposes a method for calibration of a redundant parallel robot
addressing also pose selection and the numerical conditioning of the least-square
problem. Daney provides a series of reference papers on the calibration of parallel
robots [109, 110] where also the notion of certified calibration is addressed. Boye
and Verl propose the calibration of conventional parallel robots [63, 478] taking into
account the problem of optimal measurement pose selection and estimation of the
reachable accuracy of the calibration procedure.

A couple of authors address calibration of cable-driven parallel robots. Tadokoro
[452] mentions calibration for a portable rescue crane where for a mobile cable
robot the calibration is a part of the regular use. Joshi [236] presents a calibration
procedure with inclinometer as proposed by Khalil for a 6-6 cable robot and presents
simulation results from the calibration. Borgstrom [42] proposes a self-calibration
method based on position and forces differences for a planar 2T robot with four
cables. The error of the calibrated robot is determined to 19.8mm for tension-based
self calibration and 6.3mm for the position based calibration.Miermeister [345, 347]
develops a thorough differential kinematic model of cable robots and applies both
conventional as well as self-calibration methods to spatial cable robots with eight
cables. Since the behavior of cable robots does not only depend on the geometric
parameters but notably on material parameters such as cable stiffness and masses,
Miermeister proposes to use a multi-stage parameter identification [342]. Sandretto
[8] proposes the calibration of the ReelAx8 robot using weighted least-square and
self-calibration where the model of the robot consists of the proximal and distal
anchor points as well as offsets of the cable length. Additionally, interval analysis



9.2 Calibration 375

is used for the calibration of a robot [9] where different strategies are proposed to
gain robustness against measurement errors. Duan [132] presents the calibration of
the 50m test-bed of the FAST cable robot and the improvement of the accuracy of a
three-level positioning device is tackled.

Calibration of cable robots is related to the usage of cable sensors for pose mea-
surement and calibration of other manipulators. Williams [491] presents a pose mea-
surement device based on cables and determines a translational error of 0.61mm.
The calibration of the device is based on fixing the end-effector at known reference
positions. Legnani [285] proposes a cable-based measurement device with six cables
for the calibration of industrial robots.

Varziri [470] addresses the calibration of a cable-driven hybrid robot arm with a
Gauss-Newton and a Levenberg-Marquardt method to solve the optimization prob-
lem. A singular value decomposition is used on the identification matrix in order to
identify the ill-conditioned parameters in the model.

Lately, some procedures for calibration related to conventional parallel robots
are proposed. Gayral [159] proposes an index to take into account the accuracy
of the sensors and the noise of the measurement devices to benchmark calibration
procedures. Recently, Gottlieb [177] presents a non-parametric calibration approach
that is a generic correction function. It is argued to be simple but highly efficient for
improving the accuracy of conventional parallel robots. However, this approach is
not yet applied to cable robots and it remains open if it is efficient for redundantly
constrained robots.

Self-calibration orauto-calibration is studied for conventional parallel robotswith
and without actuation redundancy. Khalil [241] fixes some parts of a conventional
parallel robot without actuator redundancy in order to obtain redundant measure-
ments that can be used in a self-calibration procedure. Although the approach is
elegant, it cannot be directly applied to cable robots since the cables do not constrain
the robot in the same way as conventional joints do. However, a variant is possi-
ble if the motion of the mobile platform is constrained by an additional mechanical
joint. Yiu [510] proposes a self-calibration procedure of a conventional parallel robot
with three planar over-constrained RRR chains. A kinematic model identification is
computed using the extra sensor information from the redundant leg of the robot.
Müller [353, 354] proposes to calibrate redundantly actuated parallel robots with-
out additional sensors by using so-called motion reversal points as landmarks. Patel
[379] studies the calibration of conventional parallel robots with a redundant leg and
Takeda [455] tackles self-calibration using a double-ball bar.

9.2.2 Principles and Aspects of Calibration

The main aspect in calibration is to fine-tune the kinematic transformation repre-
sented through the kinematic code such that the measured values on the available
inputs (usually the installed sensors) relate perfectly to the measurable outputs of the
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robot embodied by the motion of the end-effector. In order to identify these relations,
one distinguishes four main principles for calibration [322, 353]:

• External calibration is based on full or partial measurement of themobile platform
through an independent device that is usually attached to the robot only for the
sake of the calibration routine. This is the conventional method used for parallel
robots and it is well applicable for cable robots.

• In constrained calibration, one uses geometrically well-defined mechanical fix-
tures to generate a certain and exactly defined pattern of measurement poses.
Also, mechanical constraints built into the cable robots are possible. Constrained
calibration is of interest for small cable robots. Adequate fixtures with sufficient
precision for the calibration can be cost-efficiently manufactured. For such a cal-
ibration procedure, the robot is manually displaced to the relevant poses on that
fixture.

• In self-calibration, one exploits an integrated sensor redundancy to gain over-con-
strained measurements. This approach is highly interesting for over-constrained
cable robots since such sensor redundancy is available in these robots anyway.

• Finally, one can use natural landmarks in the kinematicmapping in order to identify
specifical points within the workspace as reference points in order to tune the
parameters. This concept is proposed for conventional robots [353, 354].

A calibration procedure is mainly defined by four aspects (Fig. 9.2): The choice
of the measurement device, the number and distribution of poses to be measured, the
kinematic model, and the numerical procedure to estimate the parameters:

Fig. 9.2 The main steps in
the calibration procedure kinematic model for control

pose selection

measurement

parameter identification
and adjustment
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• Kinematic model: From a calibration point of view, the kinematic model mainly
defines the geometric parameters to be determined in the calibration procedure.
Although an advanced model exists as shown in Chap. 7, the relevant factor for
calibration is which model is used e.g. as kinematic transformation within the
controller.

• Pose selection defines the number of poses to be measured as well as the distri-
bution of the nominal measurement poses within the workspace. The number of
poses to bemeasured clearly scales the efforts to execute themeasurement. Appro-
priate distributions heavily influence the quality and numerical conditioning of the
calibration problem to be solved.

• Measurement device: The main properties of the measurement device are its accu-
racy and its fraction in determining a pose. Measurement devices capable of deter-
mining the full pose information consisting of position and orientation are rarely
available and expensive. In contrast, partial pose determination is wide-spread and
affordable. Laser interferometer as well as time-of-flight measurements provide
only the distance between the measurement device and a single point on the robot.
Somedevices additionally include information on the direction of themeasurement
resulting in polar coordinates of the reference point. Also, full pose reconstruction
is possible e.g. using three to six distinct reference points, sequential measure-
ments, or by using stereo-vision. However, determination of full pose information
with high accuracy remains time-consuming and expensive.
Secondary properties of the measurement device are its measurement volume, the
ease of setup and usage, its price, and the measurement speed.

• Calibration algorithm: The actual parameter identification algorithm takes the
nominal measurement poses with the measured data, the data received from the
internal sensors of the robot, and the respective kinematic model as input data
and estimates the actual geometric parameters of the robot that fit best to the
measured data. The calibration algorithm transforms this matching problem into
a minimization problem that is solved with available optimization techniques.

9.2.3 Calibration Kinematic Model

Calibration of a robot only makes sense in view of a certain kinematic model. The
kinematic transformation used in the robot controller is the only relevant model. The
kinematic transformation is a model and thus a simplification of the real physical
behavior. It is the core of a model to be a simplification of reality in order to achieve
a trade-off between the computability and accuracy. In Sect. 3.2, the assumptions
made for the standard model are detailed and more involved effects are tackled in
Chap.7. No matter which model is used, some simplifications must be accepted
and thus, some errors remain. Eventually one chooses a model that compromises
the available efforts (and applicable resources) with the required accuracy for an
application. Since the kinematic model is an approximation of the real robot, one
accepts by using the model that a certain choice in the geometric parameters of the
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model does not necessarily reflect a physical system property. Instead, the observed
effect may be an artifact generated by the simplifications that are inherent in the
model. For example, consider a real cable robot with guiding pulleys with a robot
controller that employs a hard-coded standard kinematic model. This situation is
typical for a couple of demonstrators in operation. If the cables are relatively short
and sufficiently tensed, the cables form straight lines. However, the end of the line
where the cable attacks the guiding pulley actually displaces in space on the surface
of a torus as carried out in Sect. 7.2.1. The kinematic code in the controller uses
a fixed point ai in replacement for this toroidal constraint surface. Optimizing the
choice for the point ai to provide the best accuracy for the robot leads to a numerical
value that has no physical relevance for the real robot. Although it is likely that this
vector ai is near the pulley, there is no guarantee that it actually is.

For the application of the kinematic model in the controller, it does not matter if
the parameters have a physical relevance if the desired accuracy is reached. More
generally speaking, the parameters of every simplifiedmodel are artificial in that they
have no actual representations in the robot. The conclusion is that every applicable
model includes some simplifications and therefore the sought optimal parameters
are not necessarily quantities that can be found physically in the robot. The optimal
parameters are just those settings that provide the optimal performance when applied
to the used kinematic transformation.

In order to perform a meaningful parameter identification, one has to define the
actual kinematic model �IK(y, g) based on the pose y and a vector of geometric
parameters g. Therefore, the standard model presented in Sect. 4.2.1 is considered
or one selects an advanced model as introduced in Chap. 7. The selected model
�IK defines two primary aspects. Firstly, the type of mathematical equations to
deal with including the algorithm to compute the solution of the equations, and
secondly, the set of parameters g being specific for the actual robot to be calibrated.
The model equations are prescribed by the kinematic model which is used in the
controller. Moreover, one has to define which parameters can actually be changed
in the controller. Sometimes not every parameter that influences the performance
can actually be configured in the controller. For example, in a kinematic code that
takes into account pulleys (Sect. 7.2.1), each pulley could have a different radius,
however, it is quite common to set all radii to equal values in the implementation.
Thus, only one parameter can be configured. For the sake of simplicity, the standard
model is employed in the following which is derived in detail in Sect. 3.2. For the
utilization in the kinematic code, the closure constraints νi according to Eq. (3.1)
are understood to be functions of the pose y and the cable lengths l. In view of the
calibration, one has to consider the geometric parameters g of the robot to be initially
unknown parameters. Thus, the closure constraints are functions

νi (ai ,bi , y, li ) : ai − r − Rbi − li = 0 for i = 1, . . . ,m . (9.1)

In the same way, the inverse kinematics function has to be understood as a function
of the geometric parameters g = [aTi ,bT1 , . . . , aTm,bTm]T ∈ IR6m . Thus, the function
can be written as
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l = �IK(y, g) . (9.2)

The same procedure is applicable when using more involved kinematic models such
as the pulley kinematic model given by Eq. (7.2.1). In this case, the geometric param-
eters g has to be extended by the radius rR and the orientation RA,i of the proximal
pulleys. Elastic cable models and hefty cable models add material parameters of the
cable, center of gravity of the platform, platform mass etc. which are also subject
to the calibration procedure. In practice, additional parameters of the robot may be
unknown for the standard model. In a winch, one may have a highly precise encoder
(see Sect. 8.6.4.1), however after the assembly of the robot, there is an uncertainty in
the mapping between the measured data that is received from the controller and the
actual absolute cable length. One can model this uncertainty be introducing initially
unknown offset l0,i for each cable with

li = l0,i + ΘM,i νW,i , (9.3)

where Θi is the rotation angle of the actuator (assuming that the encoder is mounted
on the motor shaft) and νW,i is the overall transmission ratio of the winch including
motor, gearbox, drum radius, and pitch of the drum for the i-th winch. Also, the exact
value of this transmission factor νW,i is unknown and one has to estimate it from the
mechanical design of the winch according to Eq. (6.26). The transmission factor
varies amongst the winches due to manufacturing and assembly errors. Thus, even
for the standard model, one ends up with a larger number of parameters effecting the
mapping between the measurable parameters and the platform pose y although one
neglects most of the nontrivial effects such as elastics, sagging, thermal effects, and
pulleys.

9.2.4 Pose Measurement

For external calibration, a full or partial determinationof theplatformpose is required.
The type of measurement device used for the procedure defines if the full pose can
be determined or only a partial pose measurement is made. For example, partial
pose measurements are only the determination of the position of one point on the
mobile platform (e.g. using a laser tracker), only orientation through inclinometer,
or even only the distance between a platform pose and a reference point (e.g. through
a double-ball bar or laser distance sensors). Furthermore, the accuracy of the mea-
surement is important since one cannot improve the accuracy of the robot beyond
the systematical error of the measurement device.
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9.2.5 Parameter Fitting

In the following, it is assumed that full pose measurement is applied and a set of
nominal measurement posesP = {

y1, . . . , ynM

}
for the calibration has been chosen.

Then, one receives nM tuples of cable lengths l(i) = �IK(yi ) and respective external
measurements for the pose y(i). If the model�IK is perfectly valid, then themeasured
poses exactly match the nominal poses in the set P . In practice, the measured poses
differ from the nominal poses and one computes the difference between the cable
length predicted by the kinematicmodel for the nominal poses yi and the cable length
determined for this actual poses y(i) from

ξ(l(i), y(i), g) = �IK(y(i), g) − l(i) , (9.4)

where the function ξ is called the residual function. Collecting the values of the
residual function for each measured pose y(i) yields the vector function

ξ(g) = [ξ(l(1), y(1), g)T, . . . , ξ(l(nM), y(nM), g)T]T , (9.5)

that only depends on the geometry g of the robot as the numerical values for the
pose set from the P and the measured pose y(i) are substituted into the equation. By
searching for the geometric parameters g that minimizes the least-square problem

g opt = min
g

(
1

2
ξ(g)Tξ(g)

)
, (9.6)

one finds the geometry g opt of the robot that fits best with the observedmeasurements.
Minimization of ξTξ is equivalent to the least-square method and this optimal con-
figuration corresponds to the most likely robot geometry if the errors in the pose
measurements are assumed to be Gaussian random variables. Formally speaking,
one has to solve the minimization problem to receive the optimal geometric param-
eters g opt.

The measurements and the kinematic model are transformed into an optimization
problem which can be solved by algorithms such as Levenberg-Marquardt method
or interval analysis [9]. It must be noted that there are no fundamental results that
such minima are unique. Furthermore, over-fitting may occur, i.e. making the robot
very accurate in the measurement poses but inaccurate elsewhere. This inaccuracy
might even occur at poses between the nominal measurement poses from the set P .

For numerical solving of the minimization problem as well as for the analysis
of the numerical stability, the Jacobian matrix of the objective function ξ has to be
considered. Therefore, one computes the pose-dependent derivatives of the function
�IK with respect to the geometric parameters g from

JG = ∂�IK

∂g
, (9.7)
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where g collects all geometric parameters subject to the calibration procedure.
Although JG is related to the kinematic Jacobian matrix that occurs in the differ-
ential kinematic (Sect. 4.2.3), it has one column for each geometric parameter in
the model, where the positions of the proximal and distal anchor points already
contribute 6m parameters. The identification matrix H [212] is composed from the
Jacobian matrices JG(yi ) taken at different measurement poses yi ∈ P and it reads

H =
⎡

⎢
⎣

J(1)
G (y1)

...

J(nM)
G (ynM)

⎤

⎥
⎦ . (9.8)

Using the identification matrix H, one computes a first order estimate Δg for the
actual geometric parameters by solving the linear equation

(HHT)Δg = HT ξ , (9.9)

where ξ is the collected difference between the measured and the estimated cable
length.

9.2.6 Measurement Pose Selection

The result of the calibration notably depends on the selection of the poses in the set
P as shown e.g. by Boye and Verl [63, 478]. To decide which poses are suited for
calibration, a performance measure for the pose set is required. The observability
index kO is defined as the condition number of the identification matrix H and is
computed from the ratio between the smallest and the largest singular value of H as
follows

kO = σ max

σ min

, (9.10)

where σ min and σ max are the smallest and largest singular value of H, respectively.
The observability index kO has an optimal value of 1 when the maximum and min-
imum singular values are equal. This means that the transformation identified with
the identification matrix induced no distortion in the parameter space. However, this
optimal situation is unrealistic in practice. In turn, high values for the observability
index are related to large numerical errors due to bad numerical conditioning of the
related numerical problem. Since one can influence the observability index by choos-
ing appropriate poses for the calibration procedure, one can assess the measurement
pose set P using this index.
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One could expect that the final error of the calibration procedure generally
decreases when using a larger number of poses since the influence of statistical
measurement errors and noise is canceled with higher numbers of measurements.
This intuition from conventional physical measurement is wrong since a large num-
ber of pose measurements used in the parameter fitting has a negative influence on
the numerical conditioning of the fitting algorithm. The numerical errors caused by
larger problems can exceed the benefits from the statistical effects. Therefore, one
searches for a trade-off between a high number of poses for averaging out mea-
surement errors and a low number of poses to keep numerical errors small. Thus, a
well-distributed and minimal set of measurements reduces the efforts for executing
the measurement and increases the expectable accuracy of the calibration.

The effectiveness of the whole calibration procedure can only be assessed by
experimental verification. In contrast, one can improve the numerical conditioning
of the problem by proper selection of the poses for the measurement pose set. This
selection can be supported by numerical simulation. Furthermore, one has to take into
account that the improvements made through calibration are achieved in a section of
the workspace around the measurement pose set. As experiments show, the accuracy
may be improved in a small area around the selected pose set P whereas in other
regions of the reachable workspace, the accuracy gets poorer. Therefore, also the
desired workspace is a side condition for designing the measurement pose set P .

An example for the determination of the condition number kO(H) depending on
the number of the measurement poses in the set P is shown in Fig. 9.3. The nominal
design of the IPAnema 1 is used in this case study. The basic pose set P is generated
from 250 randomly selected poses in the range x, y ∈ [−1; 1] and z ∈ [0.5; 1.5]
and for randomly set orientations through Bryant angles in the range [−π

6 ; π
6 ]. As

observed in other contributions (see e.g. [345]), there is a minimum in the condition
number around 25 poses.

Fig. 9.3 Left: Condition number of the identification matrix kO(H) for different numbers of poses
in the measurement pose set P for the IPAnema 1 robot. Right: Distribution of random poses P in
the workspace
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9.3 IPAnema Robot Family

Research on cable robot is not an end in itself but targets on enabling the construction
and also the application in real world scenarios. Many of the theoretical considera-
tions and the direction of research pursued in this work originate from the question
what it takes to put such cable robots to practical work. In the following sections, the
system architecture of the cable robot family IPAnema is presented which consists
of multiple generations of demonstrator systems. As outline, the nominal parameters
of these reference designs are given. These values are used throughout this work
to provide the basis and rationale for the numerical examples. Since these robots
are used for experimental evaluations also measurements are presented. All param-
eters given in the tables are nominal values, i.e. the ideal design parameters. These
numbers reflect the physical dimensions and used components of the prototypes.

The robots of the IPAnema family as well as related other cable robots introduced
below guided the line of research that led to this work. It is important to understand
that the IPAnema robots are not the result of the design procedure presented in
Chap.8 but also the design procedure matured while building and configuring a
dozen robots. Hence, the derivation of the design procedure and the development of
this family of robots evolved simultaneously. The robots are therefore understood
as solid experience with an elaborated design but we do not call these robots best
practice as the robots are not optimal. The final results of the design procedure are
given below in terms of the description of the demonstrator. All the erroneous trials
undertaken are concealed for the sake of brevity. Thus, the robots are understood as
some feasible practice and the short stories told about these robots should provide
the reader with some hints for future projects (Fig. 9.4).

Fig. 9.4 CAD model of the cable robot IPAnema 1 in 8-4 configuration
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The first reference design is the cable robot IPAnema 1 (and its slightly modified
version IPAnema 1.5) that was used from 2007 to 2010 at Fraunhofer IPA (Germany)
for experimental purpose. The parameters of the very first version of this robot are
given in Table9.1. It uses a flat platform with an 8-4 configuration where two cables
share one distal anchor point. Later, the winches were reconfigured (IPAnema 1.5
in Table9.1) such that the upper winches are connected to the lower side of the
mobile platform and the lower winches are connected to the upper side of the mobile
platform leading to a crossed cable configuration. At the same time, the winches are
displaced in the xy-plane along the edges of the machine frame to avoid interference
amongst the cables. In 2010, the robot geometry was completely redesigned for a
handling application. The resulting robot is named IPAnema 2 and its geometric
parameters are given in Table9.1. The size of the frame is largely increased and a
platform of reasonable size for the targeted application is added. By elaborating and
refining the technical approaches from the IPAnema 1 and 2 generation, a third robot
is developed which geometry is given at the bottom of Table9.1.

9.3.1 IPAnema 1

The purpose of the IPAnema robot family is to bridge the gap between the laboratory
test-beds to an industrial pilot installation by scaling up what is basically possible to
what is feasible in an industrial application. The IPAnema 1 is the original demon-
strator for the experimental evaluation in this work. It is an all new robot design
based on newly constructed winches, an industrial real-time controller platform, and
state of the art industrial drive-trains. The main objective in its design is the indus-
trialization of the cable robot technology restricting the employed components to
those that are available in industrial quality. Such design restrictions are considered
as basis for the technology transfer targeting at commercial applications and fulfill-
ing regulations such as safety norms and implications of the machine directive.1 The
IPAnema 1 robot provides a six degrees-of-freedom mobile platform constrained by
seven or eight cables. The application focus is on industrial applications in the field of
material handling as well as fast pick-and-place applications (Fig. 9.5 and Table9.2).

9.3.1.1 Control System Architecture

The cable robot IPAnema 1 presents some technological innovations in 2007 which
were needed to execute robotic motion programs. The controller is developed based
on the open controller architecture for machine tools between 2007 and 2009
and seems to be the first computerized numerical control (CNC) based controller
used for a cable robot. The basic of the controller is the motion kernel by Indus-
trielle Steuerungstechnik GmbH (ISW, Germany). The controller architecture of

1European Machine Directive 2006/42/EC.
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Table 9.1 Nominal geometric parameters: base vectors ai and platform vectors bi of four robots
used for the reference examples: IPAnema 1, 1.5, 2, and 3

Robot Cable i Base vector ai Platform vector bi
IPAnema 1 1 [−2.0, 1.5, 2.0]T [−0.06, 0.06, 0.0]T

2 [2.0, 1.5, 2.0]T [0.06, 0.06, 0.0]T
3 [2.0,−1.5, 2.0]T [0.06,−0.06, 0.0]T
4 [−2.0,−1.5, 2.0]T [−0.06,−0.06, 0.0]T
5 [−2.0, 1.5, 0.0]T [−0.06, 0.06, 0.0]T
6 [2.0, 1.5, 0.0]T [0.06, 0.06, 0.0]T
7 [2.0,−1.5, 0.0]T [0.06,−0.06, 0.0]T
8 [−2.0,−1.5, 0.0]T [−0.06,−0.06, 0.0]T

IPAnema 1.5 1 [−1.8, 1.5, 2.0]T [−0.1, 0.1, 0.0]T
2 [1.8, 1.5, 2.0]T [0.1, 0.1, 0.0]T
3 [1.8,−1.5, 2.0]T [0.1,−0.1, 0.0]T
4 [−1.8,−1.5, 2.0]T [−0.1,−0.1, 0.0]T
5 [−2.0, 1.3, 0.0]T [−0.1, 0.1, 0.2]T
6 [2.0, 1.3, 0.0]T [0.1, 0.1, 0.2]T
7 [2.0,−1.3, 0.0]T [0.1,−0.1, 0.2]T
8 [−2.0,−1.3, 0.0]T [−0.1,−0.1, 0.2]T

IPAnema 2 1 [−4.0, 3.0, 5.0]T [−0.65, 0.125, 0.25]T
2 [4.0, 3.0, 5.0]T [0.65, 0.125, 0.25]T
3 [4.0,−3.0, 5.0]T [0.65,−0.125, 0.25]T
4 [−4.0,−3.0, 5.0]T [−0.65,−0.125, 0.25]T
5 [−4.0, 3.0, 1.0]T [−0.75, 0.100, 0.75]T
6 [4.0, 3.0, 1.0]T [0.75, 0.100, 0.75]T
7 [4.0,−3.0, 1.0]T [0.75,−0.100, 0.75]T
8 [−4.0,−3.0, 1.0]T [−0.75,−0.100, 0.75]T

IPAnema 3 1 [8.185, 5.693, 3.203]T [0.061, 0.649,−0.262]T
2 [8.224,−5.492, 3.236]T [0.061,−0.651,−0.262]T
3 [−8.491,−5.322, 3.250]T [−0.070,−0.652,−0.261]T
4 [−8.545, 5.464, 3.221]T [−0.070, 0.648,−0.261]T
5 [7.208, 6.464,−0.590]T [0.095, 0.749, 0.261]T
6 [7.869,−5.558,−0.549]T [0.095,−0.746, 0.261]T
7 [−8.271,−5.546,−0.528]T [−0.086,−0.746, 0.262]T
8 [−8.192, 5.648,−0.583]T [−0.086, 0.749, 0.262]T
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Fig. 9.5 Cable-driven parallel robot IPAnema setup with seven cables

the IPAnema 1 robot is depicted in Fig. 9.6. The motors in the winches are con-
nected through an optical SERCOS II interface and set-point values are transferred
with a cycle time of 2ms to the servo amplifiers which run a decentralized position-
velocity-torque cascaded control. The control system is implemented into a PC-based
real-time operating system RTX by Interval Zero. A software programmable logic
controller (PLC) is coupled to the NC-kernel at full cycle time. One of the major
challenges in the development of the controller system is to integrate the custom
kinematic transformation (Chap.4) into the controller architecture. For path genera-
tion, it is necessary to calculate the set-point values for the cable length from given
Cartesian coordinates in real-time and to allow supervision and correction of the gen-
erated set-values. This is essentially done through an inverse kinematics code based
on the standard model. The algorithms described in Sect. 4.2.1 are implemented as
real-time C-code. The Cartesian set-point coordinates of the mobile platform are
generated from an NC-program written in G-Code (DIN 66025 [123]). Contrary,
the actual values measured by multi-turn absolute encoders inside the winches are
transformed into the current pose of the end-effector. The latter transformation is by
far the more complicated one: it involves the forward kinematics and its real-time
implementation for the standard model is described in Sect. 4.3. The computation
time for the forward kinematics limits the cycle time to 2ms.
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Table 9.2 Overview of the IPAnema 1 specification

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G IPAnema 1 –

Size of the robot frame 4.0 × 3.0 × 2.0 m

Size of the mobile platform 0.12 × 0.12 m

Rated cable force f min, f max 10–180 N

Max. cable velocity l̇ max 10 m/s

Drive MSK050B-0600-NN-M2-
UG1-RNNN

–

Drive power 1.8 kW

Gear box GTE120-NN1-003A-NN20 –

Gear ratio ν PG 3:1 –

Drum diameter dD 0.1 m

Cable type Dyneema, LIROS D-Pro
01505-0150

–

Cable diameter dC 1.5 mm

Specific cable stiffness k′
C 28500 N

Cable force sensor Disynet XFTC-300-A1-2.000 –

Cable force measurement ±2000 N

Control system RTX, ISG Motion Kernel –

Fig. 9.6 System structure for the cable robot IPAnema 1
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To ensure the reliable operation of the cable robot system, the tension in the cables
is monitored by the PLC. This is done in two different ways: Firstly, the tension is
estimated from the measured current in the motors. This kind of measurement is
integrated into the motors but is rather inaccurate. A better measurement is received
from force sensors which are integrated into the distal anchor points of the cables.
For supervision, the comparison with the force limits f min and f max is done in the
PLC.

9.3.1.2 Design of Winches and Drive-Trains

The mechanical design of the winches is derived from crane winches where some
additional requirements are taken into account to control and operate the cable robot.
A first requirement for permanent operation of the cable robotwithout excessivewear
of the cables is bending the cable at most with a radius that is significantly larger
than the diameter of the cables. Secondly, the direction of the cable changes contin-
uously during operation of the cable robot. Therefore, it is necessary to include an
omnidirectional guidance mechanism into the winch. The concept of the IPAnema 1
winch is shown in Fig. 9.7.

A synchronous servo motor IndraDyn S by Bosch-Rexroth with integrated multi-
turn absolute encoder is coupled to a planetary gearbox with transmission ratio of
ν PG = 3. This drive-train is connected to a drum with a diameter dD = 100mm. The
winch can store a cable length of up to Δl max = 6m. The winches are equipped with
multi-turn absolute encoders allowing to obtain the absolute cable length at the fully
cycle timewith a resolution of 50µm. The drum is connected to an additional gearing
that moves a cable guidance in parallel to the drum. Due to equal pitch of the drum
and the spindle, the relative direction of the coiled cable is constant allowing for

Fig. 9.7 Concept for
servo-controlled winch for
cable robot IPAnema 1 motor

gearbox

drum

cable
guide
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reliable coiling and uncoiling of the cable. This is especially important since the
velocities and accelerations of the cables are high for the IPAnema 1 robot.

The cable guidance includes the spooling unit that redirects the cable to run
parallel to the axis of the drum. A second panning pulley is mounted to the housing
of the winch that allows for an omnidirectional redirection of the cable into the inner
workspace of the cable robot.

9.3.1.3 Control Software and Kinematic Transformation

The control system of the cable robot consists of closed-loop position control algo-
rithms which are integrated into the amplifier modules for each winches. On the
position level, servo-controller fromBosch-Rexroth (power supply unit HMV01.1E-
W0030 with axis inverter HMS01.1N-W0020) are used to execute the motion com-
mands which are sent by the CNC-kernel through the optical SERCOS II bus. The
decoupled cascaded closed-loop position and current control for each servo motor is
tuned for each drive within the framework of the servo-controller.

The CNC-kernel runs within the real-time extension RTX of the Windows XP
operating system. The CNC-kernel interprets robot programs written in G-Code and
generates smooth trajectories according to the G-Code program in operational space
coordinates. To translate the desired motion of the mobile platform to cable lengths
and then to set values of the servo motors, a kinematic transformation based on the
standardmodel is used (Sect. 4.2.1). Contrary, themeasured cable length is read from
the absolute encoders of the winches in order to estimate the current position of the
mobile platform. The latter is done by a real-time capable forward transformation
(Sect. 4.3).

For interfacing with standard industrial equipment, a programmable logic con-
troller (CoDeSys PLC by 3S-Smart Software Solutions) is coupled with the NC-
kernel through a shared memory interface. The data exchange is performed at every
interpolation cycle time of 2ms. The integration of additional sensor data, i.e. the
cable forces read from the force sensors is processed in the PLC. Furthermore, the
PLC can interface with additional IT-infrastructure such as a manufacturing execu-
tion system.

The user interface of the robot consists of two main components. Firstly, a touch-
screen with a graphical user interface (GUI) is implemented in the Windows XP
operating system and allows for visualization of complex data structures in textural
and graphical form. Secondly, a control panel is integrated to provide hardware keys
to switch operation modes, unlock the drives, and to provide an emergency stop
button. A non real-time data exchange is possible between the GUI and the CNC-
kernel where the latency of the Windows system is hardly recognized by the user
when reading the display. The data exchange between the user interface and the
CNC-kernel is realized through a TCP/IP stack. The control panel is coupled with
the SERCOS II bus allowing to directly interact with the CNC-kernel and the PLC.

The multi-physics dynamic simulation of the cable robot dynamics presented in
Chap.6 is coupled to this control system. This hardware-in-the-loop simulation is
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used to verify and evaluate this robot as well as to design parts of the control system.
Especially, the design of the force control of the IPAnema 1 is largely simplified as
it is optimized with a simulation model.

9.3.1.4 Experimental Results

This hardware of the robot is used for experimental evaluation in a couple of studies.
In the following, we focus on accuracy assessment according the norm ISO 9283
[220], which describes performance criteria for robots and which are important to
evaluate if the robot’s technique is adequate for practical applications. All accuracy
measurements are performed using a Leica Absolute Tracker AT901-MR with a
certified absolute accuracy of less than 25µm.

As an example, the definition of the position repeatability is shown in Fig. 9.1.
Similar definitions are detailed in ISO 9283 for the path repeatability and for the
distance repeatability. Following the evaluation procedure given in the norm, 30
single measurements are taken at different velocities of the IPAnema 1 robot (v1 =
0.5m/s, v2 = 2.5m/s, v3 = 5m/s). The pose repeatability is found to be smaller than
r Pose = 0.75mm for all velocities where it largely depends on the nominal velocity.
Interestingly, it is found that the best values could be achieved with highest velocity
of the cable robot where a repeatability better than r Pose = 0.35mm is determined.
For the distance repeatability, a value better than r Dis = 0.2mm is determined. For
distance repeatability, we measured better values at lower velocities where the best
values of less than r Dis = 0.06mm are measured for v1. Finally, the path repeatability
is investigated and the experiment yields a value of r Path = 0.5mm. Again, the best
values are measured for v1 where the repeatability is r Path = 0.17mm.

A summary of performance indices of different robots from the IPAnema family
are given in Table9.3. The frame size is the diagonal length of the respective robot
frame giving a reference value for the robot’s overall size as well as an indication
of the average cable length. All experiments except for the IPAnema 2 planar are
undertakenwith synthetic fiber cables. The experimental evaluation of the cable robot

Table 9.3 Summary of the position accuracy and repeatability measurements of the IPAnema 1,
IPAnema 2 planar, IPAnema 3, and IPAnema 3 Mini prototype

Robot Frame size [m] Repeatability [mm] Accuracy [mm]

IPAnema 1 5.39 0.75 [401] 5.63 [229]

IPAnema 2 12.66 0.59 [434] 22.32 [434]

IPAnema 2 (pulley) 12.66 0.51 [434] 17.50 [434]

IPAnema 2 planar 4.47 0.1−0.2 8.5

IPAnema 3 21.2 5.237 [431] 40.423 [431]

IPAnema 3 Mini 1.69 0.081 [431] 1.384 [431]
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accuracy and repeatability yields encouraging results to underline that the cable robot
technology is capable of fulfilling industrial requirements.

9.3.2 IPAnema 2

The IPAnema 2 systemwas set up in 2010 and is a reconfiguration of some IPAnema 1
components, where a couple of improvements and extensions are integrated. The
basic mechanical design of the winch is kept. The reconfiguration includes signifi-
cant changes in the drive-trains including the exchange of the planetary gearboxes
allowing to increase themaximum cable force by four.With a newly designedmobile
platform, the rated payload of the robot is increased by a factor of ten while reduc-
ing the maximum velocities and accelerations by four. The increase in the payload
beyond the change in the maximum cable velocity is achieved by reducing the nomi-
nal acceleration. At the same time, the volume of the workspace grows by ten thanks
to the larger machine frame. The experimental retrofitting practically shows that
reconfiguration of cable robots is feasible and allows to modify the technical param-
eters in a range that is not possible with conventional robots. The technical key data
of the IPAnema 2 are given in Table9.4.

9.3.2.1 Design for Assembly Task

The robot is designed to avoid collisions of the cables with the mobile platform and
with the handled objects. Therefore, the robot geometry is checked for interference
between cables following the geometric approach (Sect. 5.2.6). The region of cable
interference for the IPAnema 2 robot is depicted in Fig. 9.8. It can be seen that no
intersection between the region of interference and the workspace occurs. Note, that
the upper and lower cables are crossed in the workspace, i.e. the upper winches
are connected to the lower platform level and the lower winches are connected to
a higher platform level. This design allows for improved stiffness and reduction
of cable-environment collisions. Still, no cable-cable collisions occur inside of the
machine frame and the workspace of this robot is thereby free of interference.

9.3.2.2 Mechanical Design

The machine frame of the IPAnema 2 robots is constructed from steel beams to
realize the increased size to 9 × 7 × 5.5m. Using a steel frame shows better static
and dynamic stiffness behavior compared to the aluminum frame used with the
IPAnema 1 robot. In contrast to the much smaller IPAnema 1 frame, installation and
also maintenance of the large frame requires a working platform to access the upper
winches. In order to resign to such equipment for operating the robot and also to



392 9 Practice

Table 9.4 Overview of the IPAnema 2 specification

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G IPAnema 2 –

Size of the robot frame 9.0 × 7.0 × 5.5 m

Size of the mobile platform 1.5 × 0.225 × 0.5 m

Rated cable force f min, f max 100–720 N

Max. cable velocity l̇ max 2.5 m/s

Drive MSK050B-0600-NN-M2-
UG1-RNNN

–

Drive power 1.8 kW

Gear box Bosch Rexroth
GTE160-NN2-012B-NN16

–

Gear ratio ν PG 12:1 –

Drum diameter dD 0.1 m

Cable type Dyneema, LIROS D-Pro
01505-0250

–

Cable diameter dC 2.5 mm

Specific cable stiffness k′
C 55000 N

Cable force sensor Disynet XFTC-300-A1-2.000 –

Cable force measurement ±2000 N

Control system RTX, ISG Motion Kernel,
v.262

–

simplify wiring of the winches, the later version of the IPAnema robots placed all
winches on the floor and used fixed pulleys on the upper parts of the machine frame.

For the new robot, the end-effector is designed to match the footprint of the
collector modules of the exemplary handling application. The mobile platform has a
size of 1.5 × 0.225 × 0.5mwith integrated grippers at the lower side for the handling
application. Additionally, a light-weight robot is installed on the mobile platform to
execute simple assembly tasks at different positions in the large workspace of the
IPAnema 2 robot. A new version of the control software makes use of multiple CNC-
channels to simultaneous control the cable robot and a light-weight robotic arm. To
supply the serial robot with the CAN fieldbus as well as with electric and pneumatic
energy, an energy chain is installed leading fieldbus, energy, and pressured air to
the mobile platform. This gives also the opportunity to connect force sensors on the
distal cable ends (Fig. 8.36). Thanks to the largely increased payload and the existing
energy chain, the force sensors with their A/D converter are installed on the mobile
platform and the measured forces are mapped into the PLC. However, the cable
forces are only used for supervision and for statically controlling the pretension in
the cables during referencing.
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Fig. 9.8 Design tool. Left: Motion study for the application and geometry design of cable robots.
Right: Top viewof the IPAnema 2 robot: Interference between cables (red region around themachine
frame) only occurs outside the workspace (round region in the center)

As the IPAnema winches are operated with the maximum stroke to exploit the
full workspace, experimental inductive end-of-travel sensors are installed for sensory
detection of the minimum and maximum cable length in the winches.

9.3.3 IPAnema 2 Planar

In a couple of applications such as warehousing, a robot system is needed that
performs a planar motion with two translational degrees-of-freedom, where rotation
may not be required. For that purpose, the planar IPAnema 2 system is designed using
four linear direct drives to actuate the platform. The open space in the robot frame
has a width of 4m and a height of 2m. All four linear actuators are placed in the lower
part of the frame and the cables are guided by pulleys through the frame structure.
The center of gravity of the overall robot system is close to the floor giving the robot
a solid stability. Two arrangements for the cables are possible. In the conventional
design, the cables are guided around four pulleys that are placed in the corners of
the machine frame. This kind of design is largely studied as planar robot. In the
second design, the pulleys are located on trolleys that move along a linear guiding
on the inner side of the robot frame. In this setting, two pairs of the motors operate
antagonistic by generating one translational degree-of-freedom at the end-effector.
The trolleys are connected to the motors by additional cables such that the vertical
trolley movement is mechanically coupled to the end-effector motion. Thus, one
receives a cable-driven parallel robot with decoupled Cartesian motion (Fig. 9.9).

For this orthogonal arrangement of the cables, the kinematic transformation
becomes trivial and the kinematic Jacobian matrix of the robot is isotropic in every
tensed configuration. The motion of the actuator is mapped one-to-one to the hor-
izontal or vertical motion of the platform, respectively. To improve the motion of
the platform, a force control is applied to the pairs of actuators which is also very
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Fig. 9.9 Planar IPAnema2. left: kinematic concept for the decoupledmotion of themobile platform.
Right: prototype with orthogonal cable arrangement

simple since there is only a one-dimensional coupling in the motor pairs. The orthog-
onal robot design has a rectangular workspace allowing the cable robot to reach the
very corners of the robot frame. Therefore, the robot has an excellent ratio between
workspace and installation space. The rectangular shape of the workspace is highly
favorable for warehousing applications.

All conventional planar cable robots suffer from low stiffness perpendicular to
the plane of the cables if no additional mechanical elements are used to constrain
the robot to the plane. However, such guiding largely compromise the minimalist
mechanical design of a cable robot. Also, experimental tests with pairs of cables
show little improvements in this behavior. One method to overcome this problem
is analyzed using the experimental setup of the IPAnema 2 planar robot. Instead
of cables, steel bands are used to actuate the robot. Using sufficiently thin strips,
one can coil and guide the steel band on drums and over rollers. The mechanical
element equivalent to a winch consists of a simple drum where the steel band is
reeled like a film spool making the mechanical design simple and straightforward.
In the experimental setup, the drum is aligned between two bearings and a simple
clutch is used to connect the drum to a servo motor without gearbox. As a result,
one receives a planar cable robot which is kinematically equivalent and that employs
bands as transmission elements. Using commercially available spring bands with a
thickness of 0.2mm for the bands, one can use off-the-shelf components for the robot.
In contrast to steel or synthetic fiber cables, the steel bands yield a finite stiffness
against bending. Even more, if the robot is pretensed, acceptable stiffness values are
obtained for the 4 × 2m prototype. Beside the gains in stiffness, steel bands offer
some advantages such as accurately coiling and a largely improved repeatability of
0.1mm. The comparison of the accuracy of the IPAnema 2 planar with the other
robots is shown in Table9.3.
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Table 9.5 Overview of the IPAnema 3 specification

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G IPAnema 3 –

Size of the robot frame 17.0 × 12.0 × 4.5 m

Size of the mobile platform 1.5 × 0.225 × 0.5 m

Rated cable force f min, f max 100–3000 N

Max. cable velocity l̇ max 1.7 m/s

Drive Bosch Rexroth MSK071E-
0300-NN-M1-UG1-NNNN

–

Drive power 5.0 kW

Gear box Bosch Rexroth
GTE160-NN1-005B-NN16

–

Gear ratio ν PG 12:1 –

Drum diameter dD 0.1 m

Cable type Dyneema, LIROS D-Pro
01505-0600

–

Cable diameter dC 6.0 mm

Specific cable stiffness k′
C 900000 N

Cable force sensor Tecsis F2301 –

Cable force measurement Range 0–4000 N

Control system TwinCAT 3.1, Beckhoff –

9.3.4 IPAnema 3

The IPAnema3 demonstrator is largely composed of new components. A newgenera-
tion ofwinches is designed for higher payloads and larger cable stroke. The controller
is ported to TwinCAT 3.1 (Beckhoff, Germany), which essentially contains a newer
version of the ISG motion kernel. The required extension of the kinematic transfor-
mation for cable robots is implemented without proprietary extensions. The fieldbus
is changed from SERCOS II to EtherCAT (Table9.5).

9.3.4.1 Mechanical Design

To simplify mechanical design and installation, the eight winches are grouped in so-
calledwinch batteries to pairs or even quadruples. These batteries are either located at
the lower corners of themachine frame (four pairs) or in themiddles of the head sides
of the frame (quadruples). In order to realize the predominantly box shaped geometry
of the points Ai , cable guidance units (see Sect. 8.6.1.2) are applied to the machine
frame. The rationale behind is the simplification in mechanical design, transport, and
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setup of the system since the electro-mechanical components are concentrated in the
compact winch batteries. A drawback of this mechanical packaging is the additional
elasticity in the longer cables as well as uneven distribution of the elasticity amongst
the winches due to the different overall lengths of the cables.

Compared to the first two generations of the IPAnema robot, significantly stronger
motors and gearboxes are used to exploit the specifications of the winches. The com-
bination of motor and gearbox allows for nominal cable force f max = 3kN and a
nominal cable velocity of l̇ max = 1.7m/s. Since the motors in the winches gener-
ate considerably higher forces in overload mode, the force sensors with thin film
implant are chosen to measure cable forces of up to 4kN with an accuracy of 0.2%
according to the manufacturer. In addition, the winches are equipped with binary
end-of-travel sensors which are simply connected to the servo amplifier in order to
prevent mechanical damage when reaching the maximum and minimum position of
the winch’s spooling system.

9.3.4.2 Controller Architecture

The IPAnema 3 controller architecture is depicted in Fig. 9.10 and represents an
evolution of the controller architecture used for the IPAnema 1 robot. Compared to
the previous version, the control system is implemented on the TwinCAT3.1 platform
by Beckhoff, which allows to customize the kinematic transformation for inverse
and forward kinematics within the real-time framework. Thus, the set-point pose yS

determined from the interpolation of the CNC program is fed to the custom inverse
kinematics block and simultaneously mapped through a shared memory to the PLC.
Using the inverse kinematics code (with orwithout pulley), the set-point cable lengths
are computed. The drive interfacemaps geometric cable length to the respective angle
of the motor taking into account gear ratio and overall transmission ratio of the winch
and encoder resolution. Using the position control interface of the decentralized
motor controllers, the CNC control sends the set-point values �S over the EtherCAT
fieldbus to the drives with a 1ms cycle time. The servo amplifier implements a
vendor specific cascaded position-velocity-current control scheme where a finally
pulse width modulation (PWM) is used to generate the current for the synchronous
servo motors. Closed-loop control is performed only within the servo amplifier. The
motor shaft angle is determined through motor integrated encoders which are both
used for the closed-loop control and are sent over the fieldbus to the CNC controller.
The angles� are transformed by the drive interface to cable lengths which are in turn
mapped through the forward kinematics to the estimation yI of the current pose. The
CNC uses this value for showing the actual position of the platform and to determine
position lag. However, the difference between yS and yI is only supervised to remain
under a threshold.

The controller architecture does not support force control. However, the force
controller is implemented in the PLC which is synchronized at full cycle time with
the motion controller of the CNC stack. The controller outputs ΔlF of the force
controller are then super-positioned with the set-point values lS computed from the
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Fig. 9.10 The controller architecture of the IPAnema 3 robot with force control based on TwinCAT
3.1

inverse kinematics to yield the input lD for the drive interface. In addition to the force
measurement f that is fed into the PLC through analogue-to-digital (AD) converters
and EtherCAT fieldbus, also the energy consumption of the robot is monitored and
mapped to the PLC at full cycle time. When required, also further analogous and
digital inputs and outputs (I/O) can be controlled by the PLC e.g. in order to trigger
a gripper.

9.3.4.3 Reconfiguration

The IPAnema 3 robot is subject of a couple of reconfiguration experiments. The initial
operation of thewinches is executed in the steel frame already used for the IPAnema 2
robot. Different geometries both for the robot frame aswell as for themobile platform
are tested. This includes a planar platform and a strut shaped platform. Also, an
experimental evaluation of transportation and setup at a remote location are executed
(Fig. 9.11). It is determined that transport, setup, initial operation, demonstration, and
dismounting of the robot is possible within 10 days. Eventually, the robot is set up
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Fig. 9.11 Examples for the reconfiguration of the cable robots. Usage of a strut platform (left) and
installation of the cable robot in a large handling and logistics application (right)

with the parameters given in Table9.1 using the 6mmDyneema cable where 2.5mm
cables are used in the earlier experiments.

For enabling efficient reconfiguration, it is essential to package the mechanical
integration of winches in batteries and thereby to ease the electric wiring as well
as rapid setup of the cables. Using double pulley units (see Sect. 8.6.1.2) for the
upper anchor points Ai contributes to quick execution of reconfiguration. Firstly, the
winches are kept accessible when installed on the floor. Secondly, the cable guidance
units are constructed so that the cables can be led through with the bulky cable-end
connector already installed, and finally using cable guidance units for the upper
anchor points minimizes the installation work that needs to be done high over the
ground. Especially, for large-scale robots, the additional time consumed for working
safely at height must not be under estimated. Accurate referencing for both ends
of the cable is also time-consuming to achieve in practice. Therefore, well-defined
machine parts such as cable-end connector proof useful in reconfiguration. In terms
of sensor support in the initial operation, winch integrated force sensors and end-of-
travel sensors facilitate defined tension in the cables, support cable length referencing,
and finally contribute to the machine safety.

9.3.5 IPAnema 3 Mini

The IPAnema 3 Mini is designed as a test-bed for developing kinematic codes, force
control algorithms, and to test calibration methods (Fig. 9.12). The hardware design
(Table9.6) of the robot is reduced to the essential parts and built into a light-weight
aluminum frame. Thus, also the winches and the control cabinet are built into the
frame of the robot. The winches are simplified by directly connecting the drum
to the motor shaft. Compared to the industrial IPAnema 3 winch, the gearboxes
and the spooling unit are discarded. The cables are guided over a series of pulleys
both to emulate the behavior of the IPAnema 3 robot and to minimize wear. Motor
integrated multi-turn encoders allow for cable length estimation and force sensors
on the platform as well as within the machine frame provide the cable forces at full
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Fig. 9.12 Laboratory small-scale cable robot IPAnema 3 Mini. The robot uses industrial-grade
drives with low-cost winches, and the IPAnema 3 controller architecture for development of kine-
matic codes, calibration, and force control

Table 9.6 Overview of the IPAnema 3 Mini specification

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G IPAnema 3 -

Size of the robot frame 1.1 × 0.8 × 1.0 m

Size of the mobile platform 0.044 × 0.08 × 0.166 m

Rated cable force f min, f max 0–40 N

Max. cable velocity l̇ max 2.0 m/s

Drive Beckhoff AM3121-0201-0001 –

Drive power 0.2 kW

Gear box gearless –

Gear ratio ν PG 1:1 –

Drum diameter dD 0.02 m

Cable type Dyneema, LIROS D-Pro
01505-0150

–

Cable diameter dC 1.5 mm

Specific cable stiffness k′
C 28500 N

Cable force sensor Futek LRM200 –

Cable force measurement Range 0–111 N

Control system TwinCAT 3.1, Beckhoff –
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cycle time through A/D converter. For the proximal force measurement, a pulley
arrangement as shown in Fig. 8.35c is used. For the cables, 1.5mm Dyneema cables
are used which soft behavior is convenient for manual handling.

The control system is based on TwinCAT 3.1 by Beckhoff running on 64-bit
Windows as host system. This control system is taken from the IPAnema 3 robot
making the exchange of algorithms e.g. for kinematic transformation and force con-
trol straightforward. In fact, the testing of new algorithms is frequently done on the
smaller robot for safety reasons before transferring the results to the larger, stronger,
and more costly IPAnema 3. All sensor and actuator data including measured cable
length from the encoder, cable tension from analogous force sensors, and motor set-
point values for the amplifiers are transmitted through an EtherCAT fieldbus into the
PLC. In contrast to all other IPAnema robots, cap rail sized amplifiers EL7201-0010
by Beckhoff are used for the decentralized cascaded velocity-current control where
the position control is done by the NC-kernel [259]. The cycle time for open-loop
motion generation in the CNC is 1ms and the PLC runs force control algorithms
with the same cycle time.

Beside testing of control algorithms, the IPAnema 3 Mini serves as test-bed for
haptic human-robot interactionwhere different control algorithms for haptic displays
are analyzed [259]. Therefore, the platform is designed to form a handle that can be
grasped with a human hand (Fig. 9.12). The cable arrangement is chosen in the
crossed configuration to allow for high torques in the available wrench set as well as
for a larger orientation workspace. A number of performance results related to cable
force and operational space force control have been published [259, 261].

9.4 Other Cable Robots

9.4.1 Copacabana

The Copacabana robots consist of 16 identical winches and drive-trains that are
mounted within a common steel frame. Since all drive-trains are equal, the demon-
strator offers rich possibilities of reconfiguration, both in terms of changing the
geometry of the robot as well as changing the number of cables. The winch con-
struction is based on the IPAnema 3 winch where the installed drive-trains allow
for an actuation with maximum cable velocity of l̇ max = 1.5m/s and maximum cable
forces of f max = 1200N. To the best of the author’s knowledge, it is the only instal-
lation with two cooperating cable robots in one machine frame. Due to the setup,
the robot allows to simultaneously operate two cable robots with different platform
geometries in order to compare designs. The technical parameters of the two robots
are identical and given in Table9.7.

The robots are equipped with Dyneema cables with a diameter dC = 6mm. Thus,
the cable stiffness is high compared to the size of the robot and the nominal cable
force. The two robots are equipped with a standard industrial safety system. Thus,
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Table 9.7 Overview of the Copacabana robot specification

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G IPAnema 3 –

Size of the robot frame 4.36 × 2.59 × 3.37 m

Size of the mobile platform 0.44 × 0.43 × 1.00 m

Rated cable force f min, f max 100–1200 N

Max. cable velocity l̇ max 1.5 m/s

Drive Bosch Rexroth MSK061C-
0600-NN-M1-UG1-NNNN

–

Drive power 4.7 kW

Gear box Bosch Rexroth
GTE120-NN1-005A-NN05

–

Gear ratio ν PG 5:1 –

Drum diameter dD 0.1 m

Cable type Dyneema, LIROS D-Pro
01505-0600

–

Cable diameter dC 6.0 mm

Specific cable stiffness k′
C 900000 N

Cable force sensor Tecsis F2306 –

Cable force measurement Range 0–2000 N

Control system TwinCAT 3.1, Beckhoff –

long term tests can be executed without operator supervision. The robots serve
amongst others as test-bed for the validation of the dynamic simulation presented in
Chap.6.

9.4.2 Expo 2015

Beside applications in production engineering, cable robots are applied to entertain-
ment installations such as acting in a media show. An example of this utilization was
shown during the Universal Exposition EXPO 2015, which was hosted in Milan,
Italy in the German Pavilion [463]. Here, two cable robots were installed with huge
displays mounted to the mobile platform. Compared to industrial applications, high
accuracy and rapid movements are second to the esthetic impression of the motion.
The robots with their screens were actuated over the visitors, making safety of the
robotic system a severe challenge. In order to address the safety issues, winches and
controller systems from the field of stage equipment are used which implements
redundant control system fulfilling safety integrity level 3 (SIL 3) according to the
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Fig. 9.13 Cable robots in transporting film during commissioning at the German Pavilion at EXPO
2015

applicable norm IEC/EN62061.2 Engineering the system according to the strict regu-
lations allows to playback pre-computed trajectories on drive level. However, it is not
possible to certify the used kinematic codes for forward kinematics, inverse kinemat-
ics, and force control according to SIL 3. Therefore, a simple but robust safety PLC
is used to playback pre-computed sequences of cable length and supervise the cable
forces. These sequences are generated in a specific 3D programming environment
that allows to arrange the desired motions of the platform under esthetic aspects and
synchronized to the video, audio, and light show. Furthermore, the off-line program-
ming system performs trajectory verification in the full six-dimensional operational
space allowing the artists to exploit the general workspace which is a superset of the
translational workspace and the orientation workspace. The pre-computed transla-
tional workspace only served as visual indicator for the artists to design trajectories
in the six-dimensional Euclidian motion group SE3 (Fig. 9.13).

9.4.2.1 Programming and Trajectory Verification

However, since the artists directing the show are not trained in robotic concepts,
the design and verification of the trajectory is modeled using cubic Bezier-splines to
parameterize both the translationalmotion aswell as the orientation byBryant angles.
Thus, a sequence of poses (r,R)i is generated that is tested for criteria relevant for
executing the motion including wrench-feasibility (Sect. 3.4.2), interference, and
reachability.

2IEC/EN 62061: Safety of machinery: Functional safety of electrical, electronic and programmable
electronic control systems.
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A suspended configuration is employed to mitigate the risk of excessive forces
in the cables during emergency stop. Although each drive-train is carried out with
a high safety performance level, it cannot be guaranteed that the drives move syn-
chronously during emergency stop. Thus, a fully-constrained configuration could
generated unpredictable internal forces. In contrast, the risk evaluation for the sus-
pended configuration showed that emergency stop may lead to uncontrolled local
motion of the platform. Since the motion is executed out of the reach of the audi-
ence, no risk was identified for this parasitic motion. This parasitic motion prevents
overload in the cables and in the platform during emergency stop and the platform
cannot fall down since it remains constrained by at least some of the eight cables.
Clearly, the active cable configuration [330] (the subset of cables still under tension),
is undefined in this case and a dedicated manual recovery procedure is required after
emergency stop. To achieve the high safety standard for the winch hardware, each
winch possesses two independent braking systems and two separated encoders. Fur-
thermore, the overload safety factors for brakes and cables are chosen to withstand
ten times of the nominal load.

9.4.2.2 Parameter Design

The geometrical design of the Expo cable robots is governed by the given layout
of the building as well as the desired size of the projection screens on the mobile
platform. In order to generate a large translational workspace in the lateral plane,
the proximal anchor points are placed close to the surrounding walls. The footprint
of the building is mostly square with 14 × 14m and rounded corners. Two cable
robots are installed mirror-inverted side by side. Thus, the layout of each robot has
a trapezoidal shape (see Fig. 9.14). The anchor points are placed based on a mixture
of the idea behind the CoGiRo parameterization for the machine frame and the
IPAnema 3 parameterization for the mobile platform. The trapezoidal shape of the
robot frame leads to distortion of the workspace as it can be seen from the workspace

Fig. 9.14 Layout of the left (Lucia) and right (Roberto) cable robots installed at the Expo with the
calculated wrench-feasible workspace integrated in the installation environment
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Fig. 9.15 One of the two mobile platforms used with the Expo robot

plots in Fig. 9.14. The numerical values for the frame are simply chosen to fill the
available installation space of the building. The geometry of the platform is defined so
that the distal anchor points are placed on the surface of the back-projection screen
of the platforms. Then, some manual tuning is executed to compromise the size
of the orientation workspace and the avoidance of cable-cable interference as well
as cable-platform collisions. A remarkable feature in the mechanical design of the
robot are the steel cables with embedded electrical fibers that provided electric power
and HD-video signals to the moving screens. In Fig. 9.15, one can see the electric
contacting as additional fibers between the cable ends and the mobile platform at
the distal anchor points. The cable ends are fixed in jackets and connected to the
mobile platform through swivel bolts. The proximal cable guidance is realized using
panning pulleys where the normal axis of the panning is pointing downwards since
the winches are installed in supporting framework under the roof of the building.
An overview of the technical specifications of the pair of Expo robots is given in
Table9.8.

9.4.2.3 Conclusions

The installation and operation of cable robots in the German Pavilion shows that
cable robots can be designed and safely operated in public environments. Although
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Table 9.8 Overview of the specifications of the robots Expo Lucia/Roberto at the world exhibition
2015 in Milan

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, suspended –

Parameterization �G Modified CoGiRo frame,
IPAnema 3 platform

–

Size of the robot frame 5.39 × 13.78 × 7.08 m

Size of the mobile platform 1.36 × 0.88 × 0.88 m

Rated cable force f min, f max 200–2400 N

Max. cable velocity l̇ max 1.5 (2.0 max.) m/s

Drive Asynchronous motor –

Drive power 5.5 kW

Gear box Special worm gear TDA10 –

Gear ratio ν PG 10.25:1 –

Drum diameter dD 0.225 m

Cable type Steel, Gustav Wolf PAWO F 4e –

Cable diameter dC 7.0 mm

Specific cable stiffness k′
C ∼425000 (estimated) N

Cable force sensor N/A –

Cable force measurement N/A N

Control system F&P control, based on safety
PLC (SIL 3) from Mitsubishi
Electric

–

strict safety regulations needs to be met, the required techniques are available to
put the robot show into operation. Around forty shows per day have been executed
for six months showing robust performance of all involved components. The overall
availability of the show was beyond 98.5%.

9.4.3 MPI CableSimulator

The motion simulator called CableSimulator is installed at the Max-Planck Institute
for Biological Cybernetics and is developed in cooperation with Fraunhofer IPA
[343]. Cable robots are a good choice for car driving and flight simulators, since
cable robots are capable to generate smooth and high dynamic motion within a large
workspace. The accurateness of the motion has to be achieved on the acceleration
level where the positioning accuracy is second for the passenger. This is due to the
fact the human passenger is sensitive to acceleration through his vestibular system
where position and velocity can only be indirectly determined e.g. through vision.
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Furthermore, the mobile platform can freely move through a large robot frame.
A large cable span is no drawback for the motion simulator application since the
environment around the passenger’s cabin needs to be empty for safety reasons.
Beside its application for car driving and flight simulator, the MPI motion simulator
is designed for research on human senses as well as medical therapy.

9.4.3.1 Geometry Design

The geometrical design of the robot frame is governed by the available installation
space in the building. Thus, the proximal anchor points are installed in the corners
of the room where consoles are employed to induce the significant forces into the
building structure.

The design of the mobile platform is driven by the requirements of having a large
installation space for the passenger and other equipment for the targeted applications
in virtual reality aswell as car driving andflight simulators. Therefore, an icosahedron
structuremade from carbon fiber struts was chosen to achieve high rigidity alongwith
a large installation space inside the icosahedron. The carbon structure offers a light-
weight framework with 60kg weight that allows to withstand the significant peak
loads of the drive-trains. The outer radius of the platform is chosen large enough to
allow for two passenger seats inside or to install an additional gimbal system to allow
for full rotation as it is required for car driving and flight simulation. Originally, the
endless Z12 design (Sect. 8.4.13) was foreseen for the robot design but is discarded
because of technical complexity in a safety critical application.

9.4.3.2 Drive-Train Selection and Safety

The selection of the drive-trains is constrained from the safety requirements and
compatibility with the controller. The application in motion simulation requires very
smooth and also silent motion generation which is realized by a gearless drive-train.
Synchronous servo drives with a rated power of 46kW are chosen to achieve high
accelerations for the significant platform loads. The payload of the robot is high
enough to allow for two probands, virtual reality equipment, and instrumentation on
the mobile platform.

The CableSimulator addresses even higher safety requirements compared to the
Expo installation since the robot is designed to carry one or two passengers on its
mobile platform. Furthermore, the control system is designed to react online to user-
input prohibiting to evaluate the signal off-line before execution.

Again, stage technology is used as basis for the design of the safety critical drive-
trains and low-level control system including dual-channel axis controller, redundant
brakes, and cables with a very high safety factor against failure.
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9.4.3.3 Results

The constant orientation workspace contains a 4 × 5 × 5m box with a maximum
orientation of ±40◦ for roll and pitch while the yaw axis is rather limited with
around±5◦ due to singularities. The CableSimulator is amongst the largest available
cable robots in a fully-constrained configuration using steel cables. The observed
stiffness properties are outstanding. Due to the excellent stiffness of the used cables,
the CableSimulator achieves very high Cartesian stiffness values. The bandwidth
for motion simulation is determined to be in the range of 5–14Hz depending on
pretension and the platform’s position in the workspace. Measurements with an
inertial motion unit (IMU) on the platform verify that the large-scale simulation can
actually yield ±10m/s2 of acceleration to the passenger (Tables9.9 and 9.10).

9.4.4 Segesta

The Segesta prototype was built at the University of Duisburg-Essen, Germany [68,
139, 210, 473] around 2003. It employs a rectangular machine frame and a flat

Table 9.9 Overview of the specifications of the MPI CableSimulator in Tubingen, Germany

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G CableSimulator (Icosahedron) –

Size of the robot frame 15 × 12 × 8 m

Size of the mobile platform Diameter: 2.6 m

Rated cable force f min, f max 1000–14000 N

Max. cable velocity l̇ max 5.0 m/s

Drive Synchronous servo –

Drive power 46 kW

Gear box Gearless –

Gear ratio ν PG 1:1 –

Drum diameter dD 0.32 m

Cable type Steel –

Cable diameter dC 14.0 mm

Specific cable stiffness k′
C 1690000 (estimated) N

Cable force sensor N/A –

Cable force measurement N/A N

Control system TwinCAT 3.1 with
Waagner-Biro axis controller

–
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Table 9.10 Geometry data of the MPI CableSimulator

Cable i Base vector ai [m] Platform vector bi [m]

x y z x y z

1 0.8090 14.8620 7.9060 −1.3830 0.5280 −0.7470

2 0.8100 14.8500 0.6090 −0.7990 1.2448 0.7457

3 11.3190 14.5780 7.9530 1.4535 0.3697 −0.7482

4 11.3230 14.5650 1.1580 0.9539 1.1471 0.7450

5 11.1960 0.5820 7.9820 0.8187 −1.2676 −0.7465

6 11.2040 0.5670 1.1860 1.4027 −0.5507 0.7464

7 0.4180 0.4940 7.9700 −0.9346 −1.1698 −0.7458

8 0.4200 0.4800 0.6750 −1.432 −0.3925 0.7475

triangular platform with 7-3 configuration where groups of two or three cables share
a common distal anchor point. This is realized by clamping thin cables in a common
hole on the planar platform. Using brushless DCmotors fromMaxon to directly drive
the winches allows for very high accelerations of the light-weight mobile platform.
Each drive-train has a rated power of some PW = 430W and allows for maximum
cable velocity l̇ = 6.8m/s and cable forces of f max = 63N. Position measurements
are done through optical incremental encoders in themotors with a resolution of 2000
ticks per rotation. In recent years, the robot is redesigned to an 8-3 configuration and
newer publications show a revised geometry partly also with more than eight cables.
The main specifications are summarized in Table9.11.

The original Segesta control system was based on a real-time Linux kernel with
a complete motion controller stack. Later, the controller system was fully rewritten
based on a dSpace DS1005 real-time controller system where the implementation
of the controller is performed using a MATLAB/Simulink tool chain with code
generation for the controller.

In Table9.12, the coordinates of the anchor points of the cable robot Segesta
(Fig. 9.16) are given.

9.4.5 Storage Retrieval Machine CABLAR

The storage retrieval machine CABLAR (Fig. 2.12) is designed and implemented by
the University of Duisburg-Essen, Germany [70, 71, 273]. The goal of the design is
to proof the feasibility of a cable robot for operation in the field of warehousing to
load and unload high-bay shelf. Thus, the geometry of this robot is flat with the main
motion in one horizontal and one vertical degree-of-freedom. The robot uses drive-
trains by SEW Eurodrive and a TwinCAT 3 controller from Beckhoff. The robot
employs a laser scanner on the mobile platform to determine its platform position
for referencing and control. A remarkable technical feature of the robot is the use
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Table 9.11 Overviewof the specifications of the Segesta cable robot,University ofDuisburg-Essen,
Germany

Parameter and symbol Value/component Unit

Number of cables m 7/8 –

Degrees-of-freedom n 6, 3R3T, fully-constrained –

Parameterization �G Segesta 7 –

Size of the robot frame 0.83 × 0.63 × 1 m

Size of the mobile platform 0.105 × 0.2 × 0 m

Rated cable force f min, f max 0–63 N

Max. cable velocity l̇ max 6.8 m/s

Drive Servo drives Maxon EC60 –

Drive power 0.43 kW

Gear box Gearless –

Gear ratio ν PG 1:1 –

Drum diameter dD 0.0242 m

Cable type Dyneema –

Cable diameter dC N/A mm

Specific cable stiffness k′
C N/A N

Cable force sensor Custom strain gage –

Cable force measurement N/A N

Control system Custom design based on
MATLAB/Simulink

–

Table 9.12 Nominal geometric parameters: base vectors ai and platform vectors bi of the Segesta 8
robot

Cable i Base vector ai [m] Platform vector bi [m]

1 [0.0, 0.0, 0.0]T [−0.0525,−0.0760, 0.0]T
2 [0.0, 0.0, 1.0]T [−0.0525,−0.0760, 0.0]T
3 [0.83, 0.0, 1.0]T [0.0525,−0.0760, 0.0]T
4 [0.83, 0.0, 0.0]T [0.0525,−0.0760, 0.0]T
5 [0.83, 0.63, 0.0]T [0.0, 0.1240, 0.0]T
6 [0.0, 0.63, 1.0]T [0.0, 0.1240, 0.0]T
7 [0.0, 0.63, 0.0]T [0.0, 0.1240, 0.0]T
8 [0.83, 0.63, 1.0]T [0.0, 0.1240, 0.0]T
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Fig. 9.16 Schematic setup
of the Segesta prototype with
eight cables in 8-3
configuration

of a long energy chain to provide electrical signals and power supply to the mobile
platform through a passively balanced connection.

A second robot is designed for the operation in wind tunnels e.g. for testing
mockups of ship hulls (Fig. 2.17). This design uses cables with constant effective
length while moving the proximal anchor points in horizontal guideways [77]. A
main benefit from using cables with constant length is that cable tension can be
controlled with a very high energy efficiency. This can be understood when one
considers the mapping between the cable forces and actuator forces. Due to the
attack angle between the cable and the guideway, a portion of the cable force is
distributed between the horizontal guideways below and above the platform leading
to higher tension in the cables than in the actuators. Therefore, this tension is passively
maintained without energy consumption in the drives.

9.4.6 CoGiRo

The cable robot CoGiRo is developed by Laboratoire d’Informatique, de Robo-
tique et de Microélectronique de Montpellier (LIRMM) and Tecnalia, Montpel-
lier, France and is one of the largest suspended cable robots when it was set up
(Fig. 9.17). Although the robot uses eight cables and is of the redundantly restrained
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Fig. 9.17 CoGiRo: a large-dimension suspended cable-driven parallel robot with six degrees-of-
freedom by LIRMM and Tecnalia. (Courtesy of LIRMM, Montpellier, France)

type (RRPM), the platform of the CoGiRo is always in a suspended configuration
making use of gravity to keep the cables under tension. An overview of the technical
specifications is given in Table9.13. The special arrangement of the cables on the
platform (see Sect. 8.4.9) allows for a large orientation workspace where especially
the yaw rotation about the z-axis is maximized. Furthermore, the geometry of the
platform is optimized in order to increase stiffness of the robot since little stiffness
is gained from controlling the cable force distribution. Since the robot operates in a
suspended configuration, the load is efficiently shared amongst the cables and makes
high payloads of more than 300kg kilogram possible throughout the workspace. A
maximum payload of some 500kg is possible in the center of the workspace. The
mass of the unloaded platform is around mP = 100kg which is important for the
cable pretension in unloaded operation.

The machine frame of the CoGiRo prototype is constructed from modular frame-
work structures as used for stage equipment. This kind of structure allows for recon-
figuration of themachine frame in different geometrical shapes. The size of the frame
is 15.24 × 11.24 × 5.93m. The winches are grouped in pairs at each corner of the
robot’s footprint, where the cables are routed over panning pulleys with a diameter
of dR = 100mm at the top side of the robot frame. In contrast to the IPAnema robots,
steel cables according to DIN 3069 with a diameter of dC = 4mm are employed.
Although this robot has a similar size as the IPAnema 3 robot, sagging of the cables
is more important due to the notably higher cable weight. However, the steel cables
show a reduced creeping in turn reducing efforts for referencing of the cable length.

The winches of the cable robot use a single layer drum without spooling. The
motors from B&R (8LSA85) have a rated power of around 12kW each allowing for
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Table 9.13 Overview of the CoGiRo specification according to different sources from LIRMM,
Montpellier, France

Parameter and symbol Value/component Unit

Number of cables m 8 –

Degrees-of-freedom n 6, 3R3T, suspended
fully-constrained

–

Parameterization �G CoGiRo –

Size of the robot frame 15.24 × 11.24 × 5.93 m

Size of the mobile platform 1.00 × 1.00 × 1.00 m

Rated cable force f min, f max 5000 N

Max. cable velocity l̇ max 3.5 m/s

Drive B&R 8LSA85 –

Drive power 12.0 kW

Gear box Geared belt drive –

Gear ratio ν PG 3:1 –

Drum diameter dD 0.135 m

Cable type Steel, DIN 3069 –

Cable diameter dC 4.0 mm

Specific cable stiffness k′
C N/A N

Cable force sensor N/A –

Cable force measurement N/A N

Control system B&R Automation Studio –

a nominal cable force of some 4200N. Since the winches use a belt transmission
instead of a gearbox, the inertia in the drive-train is largely reduced compared to
other winches.

The control system is based on Automation Studio by B&R. The controller run
at a cycle time of 1.2ms. The controller architecture is similar but not identical with
the one used for the IPAnema robots. The robot is subject to a number of calibration
experiments where geometry data is also available from direct measurement with a
laser tracker.

9.5 Conclusions

The practice in the field of cable robots is currently in a period of intensive consoli-
dation and maturing. While the first twenty years after Landsberger’s original study
on the subject [280], the practice was governed by proof-of-concept works. Different
laboratory robots show that motion generation with cables is feasible, finite stiffness
can be generated through unilateral constraints, and cable robots can indeed generate
a hugeworkspace and performultra fastmotion.However, a lot of practically relevant
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issues were postponed or left unsolved. Therefore, a couple of problems caused by
the prototypic components of the laboratory test-beds needs to be tackled in order to
apply cable robots is serious applications. Excessive wear of the cables is addressed
using sophisticated cable guidance systems with pulleys and sufficiently large drum.
The reliability of controller systems for flexible and long-term application is solved
by adopting conventional controller architectures from machine tools and adapting
the kinematic codes for cable robots to run on these controllers. The simple winches
are exchanged by new developments or adoptions from related fields like stage tech-
nology in order to provide safe and reliable operation. Finally, systems such as the
EXPO robots and the CableSimulator proofed that high standards on safety can be
met using cable robot technology.

All these developments require to combine the involved mathematical descrip-
tion of kinematics, statics, workspace, and control to work along with conventional
controllers and drive-trains. What seems quite simple from a theoretical point of
view, e.g. using a singular value decomposition, turns out to be a project of several
person-months if the implementation shall be run under real-time constraints in a
PLC.

The main objective in the further development of cable robots from a practical
point of view is the improvement of accuracy, a standardization of force control in
the controller architecture, rapidly deployable solutions for parameter identification.
Calibration and customization of components must be fostered towards the domain
specific needs of a variety of applications.



Chapter 10
Summary

Since the first research in 1985 on cable-driven parallel robots, this field has been
notably structured and shaped. Now, a number of fundamental problems are inten-
sively studied and both a theoretical foundation and applicable practice are devel-
oped. The scope of this book is to structure the field, to discuss the foundation, and
to present a solid theory of cable robots.

A consistent terminology is a prerequisite for the scientific development within
a field of research. Based on the introduced technical terms, different classifica-
tion schemes are recalled and introduced that allow for accurate assessment of the
algorithms sketched and developed throughout this book. The distinction between
under-constrained cable robots (IRPM) and fully- or redundantly-constrained cable
robots (CRPM, RRPM) is fundamental for the development of efficient kinematics
codes. The presented fields of application as well as the robot archetypes serve as
a knowledge base from examples in a field that still lacks stringent design rules for
choosing the robot architecture.

The kinematics and statics of fully- and redundantly-constrained cable robots
based on the standard cable model is a understood and thorough theory that is mature
for application in different fields. The basic equations, relations, and concepts are
introduced and discussed in detail in this work. Based on this solid background, a
number of algorithms and methods are available to efficiently compute the kine-
matics transformations, to evaluate statics including cable force distributions, and to
characterize the stiffness of the robot. In contrast, the equations of under-constrained
robots can be set up but it lacks efficient methods for the computation of kinematics
and the development of such tools remains a challenging problem, especially under
real-time constraints.

The determination of the wrench-feasible workspace of cable robots is solved.
For a cable robot, the most important questions are in which poses the platform
can be operated with positive tension and to compute the feasible tension in the
cables. Using the presented methods, such computations are done efficiently within
some seconds. Additionally, the problem of cable-cable interference is related to the
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workspace and is efficiently computed. Therefore, workspace determination is an
applicable tool for both robot analysis as well as robot design.

The structure of the dynamic model of a cable robot is well understood and in line
with other simulation tools. The proposed approach and other results in the literature
show that the effects of the robot mechanics, elastic cables, winch dynamics, friction
in the pulleys, and the cascaded control can be taken into account. Based on the
standardmodel, the simulation is even possible under real-time constraints. Themain
problem for simulation of cable robots is to identify the robot’s physical parameters.
Especially the material parameters of the cables are difficult to determine and vary
amongst cables made from the same material.

Many advances have been made in the field of cable models in the recent years.
Three main topics are addressed: The effect of guiding pulleys on kinematics and
friction, the disturbance from elastic cables, and the influence of the cable mass
leading to sagging of the cable. All three effects significantly change the modeling
equations used for kinematics, statics, and dynamics. Since more sophisticated cable
models change the mathematical classification of problems, such as inverse kine-
matics, statics, and dynamics, many known results for the standard model cannot be
extended to the respective cable models. A large number of problems remain open
on both the theoretical as well as the practical side. How many solution has the for-
ward kinematics of a cable robot with sagging cables? How can one compute such
solutions efficiently under real-time constraints?

In spite of some dozens of laboratory prototypes and demonstrator systems for
special purposes, the design of cable robots remains a tricky procedure. Amechatron-
ical approach to system design is sketched from requirement specification through
selection of an architecture, parameter synthesis, and mechanical design. However,
the procedure is rather lengthy and an engineer still has to rely on his expert knowl-
edge to cope with a couple of problems. Some design decisions become necessary
that are not backed by cable robot knowledge. This can lead to a couple of itera-
tions in the procedure. However, a number of robots are successfully implemented
showing that it is possible to build productive and safe cable robots.

Finally, the overview of the work on applied cable robots and practice reflects the
state of the art of what one can actually do with cable robots today. Many questions
around the operation of the cable robots are at the frontier between research and
application. However, also for experimental scientific investigations, one has even-
tually to make decisions on the hardware to be used in the test-bed and, due to lack of
information in this field, some choices must be made without prior knowledge and
accepted guidelines. In spite of a complicated theory and a number of numerically
ill-conditioned problems, the prototypes have a tendency to work smoothly although
the theoretical evaluation predicts some instabilities.
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10.1 Open Issues

The list of open problems is long and not everything is named or even discussed
here. The dynamic simulation of cable robots is tackled by a large number of authors.
However, the state of the art in this field is hardly consolidated and bringing together
the description of the different subsystems remains an open topic. Since cables are
special machine elements and their use as freely moving transmission elements is
seldom used in other applications, the commercially established engineering tools
have significant blind spots when used to simulate cable robots. This notably slows
down research efforts on cable robots since a scientist has to introduce new elements
in an existing software framework which is complicated and often frustrating. In
contrast, one can rely on custom software tools or very special purpose tools with
support for cable models where one has to resign from a number of wide-spread
functions available in the general purpose software. Therefore, the main problem is
the consolidation and reuse of simulation tools for cable robots, that allow to inte-
grate the efforts undertaken in the past on a common platform or through improved
interpretability amongst different platforms.

Under-constrained cable robots lately attracted more interest as the reduced num-
ber of actuators make themmore profitable. However, the additional theoretical chal-
lenges in kinematics, workspace, and control are usually under-estimated when start-
ing projects on such prototypes. The current state of the art lacks efficient real-time
capable kinematic codes to control such robots. Also, there is a need for applicable
controller and design methods of under-constrained cable robots.

The development and application of better cable models attracted a lot of attention
over the past years and bears a number of further problems for the coming years.
Beyond the standardmodel, the kinematics of the anchor points, includingpulleys and
guiding surfaces, are tackled. Also, linear and nonlinear elastic reactions in the cables
and sagging of the cables are described. However, only some handpicked algorithms
are extended to include these effect, whereas the majority of the applied methods is
still based on the standard model. Extending the cable robot models with advanced
cablemodels raises the question of the number of solutions (if any) for the inverse and
forward kinematics. Furthermore, it raises the question of efficient kinematic codes
to compute the kinematic transformations, on their respective numerical stability,
on existence and unique for cable force distributions, on evaluation of the stiffness,
and location as well as nature of singularities. Even new kinds of singularities are
conjectured that may result from the cable model.

An important open field in applied cable robots is the improvement of both
repeatability and accuracy. Although some improvements have been made in recent
studies, many applications demand for better performance. Efforts in different fields
of cable robots are undertaken for improving the accuracy: Advanced kinematic
codes and cable models allow to take more sophisticated effects into account. Prac-
tically, all of these approaches increase the number of parameters which need to be
identified to make the models effective. Therefore, advances in parameter identifi-
cation and calibration are required to put the improved cable models to productive
work.
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Calibration of cable robots is still at a very early stage and applications of efficient
techniques remain tasks for a small group of experts. Thus, the possible benefits in
accuracy are rarely exploited for application. It remains an open issue to develop
methods that are simple to apply. Many cable robots are of the over-constrained type
and cable forces sensors are also frequently installed. Both properties allow basically
to apply auto-calibration procedures which can at time or even continuously estimate
the robot’s parameter for better performance. Beside improvements in accuracy, one
might even employ such methods to changing geometry or aging components.

The design procedure for cable robots is in its infancy. In the understanding of
the author, design is mastering the art of the cable robots as it includes aspects
from all other problems and fields discussed in this book. A number of important
steps in the design procedure of cable robots are understood but there is hardly an
established procedure or widely agreed results for the steps. The proposed design
procedure is far from being holistic, however, it seems to be the first outline covering
all steps from specification to initial operations. Therefore, future works on design
shall elaborate on the connection between the clear mathematical solution of single
steps, such as optimal design of the geometry, and the structural decisions made in
the design procedure. The questions remain which geometry template shall be used,
which cables are applicable, and how to choose from the known mechanical and
electrical components. Such optimization problems are known to be difficult and
their solution is anticipated to remain open for quite some time.

A problem related to design is reconfiguration. Compared to other robots, the
physical and module structure of cable robots is highly suitable to adopt the robot
to changed application requirements. However, except for some use case studies, no
methodology for this problem was proposed yet.

10.2 Outlook

Today, cable-driven parallel robots are at the crossroads to applications. Cable robots
possess a number of properties that are superior to any other robotic device. At its
core, the advantages of cable robots rely on the ultra light-weight nature of the used
cables and the mechanically simple winches to operate the cables. Thus, a threefold
scalability is possible. Firstly, one can efficiently scale the payload in a realistic
range of grams to hundreds of tons, i.e. in eight orders of magnitude. Secondly, one
can scale the size of the robot from millimeters to some hundreds of meters, i.e. in
five orders of magnitude, and, finally, the manipulation through cables is efficiently
done from quasi-static structures with an ability to reconfigure, as known from civil
engineering, up to ultra-fast and dynamic motion with accelerations of up to 420m/s
and velocities of some 20 m/s.

Some pilot applications impressively show the potential of the technology where
the cable cameras are yet the most successful one. The world largest telescope FAST
is initially operated in the near future. The installations on the Expo 2015 in Milan
as entertainment system proofed that a safe and reliable operation with the audience
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is feasible. Most recently, the flight simulation CableRobotSimulator impressively
highlights dynamical capabilities alongwith the possibility to transport people. How-
ever, other usage in entertainment, production engineering, measurement devices,
rehabilitation, elderly care, and energy generation have gained good positions to
enter the market.

The possibility to highly customize the properties of the cable robot is perhaps its
biggest strength as well as weakness at the same time. Where the apparently simple
principle of cable robots allows for configuring the robot towards many applications’
needs, the complexity of the underlying theory requires considerable expert’s knowl-
edge to exploit the potential. In this sense, this work is contributed in the hope that
its comprehensive overview of the theory helps to leverage the application potentials
of cable robots.



Appendix A
Notation and Definitions

This works is meant to present an unified theory of cable-driven parallel robots. As
part of this attempt both the terminology and the mathematical description shall be
harmonized. However, due to the number of fields touched, it is a challenge to keep
symbols through all chapters and to maintain common notion where possible. In the
following, the systematics for notation are described.

Scalar real values and natural numbers are noted in italic letters s. Vectors are
noted in bold as x and their symbols are usually lower case letters. Where nec-
essary, information on the dimension of the vector is given when introducing the
vector. The components of vectors and matrices are noted in square brackets as
r = [x, y, z]T. Position vectors, velocities, and accelerations as well as forces and
torques are understood to be elements of IR3 for spatial robots and IR2 for planar
robots. If not stated otherwise, vectors are understood to be columns. The zero vector
with all elements vanishing is denoted by 0 ∈ IRn and its dimension n shall be selected
from the context. When comparing two vectors by using the operators <,>,≤,≥
the comparison has to be done component-wise. Let a = [a1, . . . , an]T ∈ IRn and
b = [b1, . . . , bn]T ∈ IRn , then

a > b holds true if and only if ai > bi ∀ i = 1, . . . , n . (A.1)

Sometimes vectors are also compared with scalar values. This comparison is also
understood to be executed component-wise. Let a = [a1, . . . , an]T and s ∈ IR, then

a > s holds true if, and only if, ai > s ∀ i = 1, . . . , n . (A.2)

The scalar product of two vectors a . b of the same dimension is the sum of the
product of its respective components. The scalar product is equivalent to

a . b = aTb =
∑

i

ai bi . (A.3)
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The notion a2 is a shorthand for

a2 = a . a = aTa =
∑

i

aiai = ||a||22 (A.4)

and the result is a scalar which is the squared length of the vector or the square of
the Euclidean norm of vector a. Matrices are noted with bold letters as M and their
symbols are usually capital letters. If not said otherwise, the matrices here are all
real-valued. The square identify matrix I = diag(1, . . . , 1) ∈ IRn×n as well as the
zero matrix 0 ∈ IRm×n with all elements being zero have dimensions m, n fitting to
the context of the equations, respectively. A set is denoted with calligraphic letters
such as S which also applies to the notation of the workspace W that is basically
also a set of poses. Sets may have a finite or infinite number of elements, such as
IR, IRn , and SO3, and we use curly brackets to enumerate elements S = {1, 2, 5}.
Lists L are special finite sets and bridge the way from mathematics to a computer
implementation. In addition to mathematical sets, lists are assumed to have a well-
defined sequence allowing for indexing where sets are unordered.

Interval variables are written with a hat like â. Consequently, vectors of intervals
are denoted as bold letters with a hat b̂ and interval matrices M̂. When written in
form of the lower interval bounds a and the upper bounds b, square brackets and a
semicolon are used for the interval [a; b]. Note that this notation is used both for
the application with interval analysis as well as for ordinary notation of parameter
ranges.

Coordinate frames are abbreviates with a calligraphic K, however, coordinate
systems are not understood to be sets. A spatial coordinate frame is equivalent to a
pose and one possible parameterization is composed from the position r ∈ IR3 and
the orientation matrix R ∈ SO3 ⊂ IR3×3 where the special orthogonal group SO3 is
defined as follows:

SO3 = {
R ∈ IR3×3 | RRT = I, det(R) = 1

}
. (A.5)

Subscripts in italic letters are understood to symbolize indices taking natural num-
bers, e.g. to select components from vectors and sets. Sequences of subscripts repre-
sent multiple indexing, e.g. to name the components of a matrix like Ai j . Subscripts
in normal letters are names, multiple normal letters without comma separation also
form a name, for example K TCP for the coordinate frame of the TCP. When names
and indices are combined as subscripts, the index is separated with an additional
comma, e.g. the frame K A,i denotes the i th proximal anchor point frame.

Derivatives with respect to time t are noted with dots over the letter. The rule
applies both for scalar and vectors. Let s be a length, then ṡ = ds

dt is the linear

velocity and s̈ = d2s
dt2 is the linear acceleration. For the position vector r, one gets the

velocity vector v = ṙ = dv
dt and the acceleration vector a = v̇ = r̈ = d2r

dt2 .
The usage of poses consisting of a position r ∈ IR3 and an orientation R ∈ SO3

needs special treatment. Such a pose represents an unique state of a coordinate
frame K in the Euclidian motion group SE3 which is a six-dimensional manifold
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composed from the product IR3× SO3. Therefore, one can represent a pose by
pair of the positions r and R that we denote with y = (r,R). For many com-
puter codes it is required to choose a parameterization for R such as Euler angles,
Bryant angles, roll-pitch-yaw, Rodriguez parameters, Quaternion, or simply the nine
coefficients [r11, . . . , r33]T of the rotation matrix. The notation (r,R) is used when-
ever the method is independent from the parameterization used. Parameterizations
are avoided where possible for the sake of generality. However, some operations
cannot be carried out without choosing a certain parameterization of rotation. The
pose vector y is written as a tuple of parameters. Note that such parameter vec-
tors are restricted in their mathematical operations since common operations as plus
and minus, have no physical meaning if the components of the vector y are e.g.
y = [x, y, z, a, b, c]T where x, y, z are the Cartesian coordinates and a, b, c are the
Euler angles then adding or subtracting two such vectors has no physical meaning.



Appendix B
Introduction to Interval Analysis

Interval Arithmetic was firstly introduced by Ramon E. Moore [410] and was origi-
nally used to propagate computation and round-off errors in numerical computations.
This is achieved by determining guaranteed bounds on computations in a robust way.
Beside the handling of round-off errors, interval analysis have been proven a valuable
tool in many other numerical problems such as linear algebra, solving of nonlinear
equations, constraint programming, and optimization. A major property of inter-
val analysis is its ability to derive guaranteed bounds for the values of an analytic
function in a given interval. This can be done even if the coefficients of the equa-
tion are subject to uncertainties as long as one can give ranges (intervals) for these
coefficients. Interval algorithms were developed for a couple of numerical problems
such as solving nonlinear systems of equations, enclosing the roots of polynomials,
and finding all solutions of systems of inequalities. During the last decades, inter-
val algorithms were developed for constrained global optimization [40, 196, 359].
These methods were successfully applied to problems where conventional methods
were hardly able to deal with. Especially the inherent property to deal with round-
off errors in a robust way and to compute strict bounds for the numerical error of
the algorithms are superior to conventional computations with real values. However,
there are some additional numerical costs for the interval evaluation and for certain
problems interval algorithms are rigorous but rather inefficient.

An interval x̂ is an ordered pair [a; b] of two real numbers

x̂ = [a; b] = {x ∈ IR | a ≤ x ≤ b} , (B.1)

where a is called infimum and b is called supremum of x̂ . The difference between
infimum and supremum is called width (diameter) of the interval and the mean value
is called center (middle). Thus, the following functions are defined

inf x̂ = a , (B.2)

sup x̂ = b , (B.3)
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diam x̂ = b − a , (B.4)

mid x̂ = 1

2
(a + b) . (B.5)

The set of all real valued intervals is denoted with II. A vector of interval is called
a box. Analogously to the arithmetics of real numbers, the elementary operations
+,−, ∗, / are declared for the set of intervals II as follows:

x̂ ◦ ŷ = [a; b] ◦ [c; d] = {x ◦ y | a ≤ x ≤ b, c ≤ y ≤ d} , (B.6)

where ◦ is any of the elementary operations +,−, ∗, /. The following rules apply
for the elementary operations

[a; b] + [c; d] = [a + c; b + d] , (B.7)

[a; b] − [c; d] = [a − d; b − c] , (B.8)

[a; b] ∗ [c; d] = [min(ac, ad, bc, bd);max(ac, ad, bc, bd)] , (B.9)

[a; b] / [c; d] = [a; b] ∗ [1/d; 1/c] if 0 ∈/ [c, d] . (B.10)

The result of any such operation is an interval, i.e. the set of intervals is closed with
respect to the arithmetic operations+,−, ∗. Only for the division, the expression x̂/ŷ
is undefined if 0 ∈ ŷ.1 The degenerated intervals of the form [a; a] are associated
with the real numbers and the interval operations yield the same results. Furthermore,
the interval operations converge towards the results for real values arithmetics, if the
width of all intervals converges towards zero. Therefore, interval analysis can be
understood as a generalization of the arithmetics of real numbers [410].

An interval is called positive (negative) if inf x̂ ≥ 0 (sup x̂ ≤ 0) and strictly
positive (strictly negative) if inf x̂ > 0 (sup x̂ < 0). Two intervals x̂, ŷ are equal if
inf x̂ = inf ŷ and sup x̂ = sup ŷ. Intervals are partially sorted and [a; b] < [c; d]
holds true only if b < c.

B.1 Interval Evaluation of a Function

Interval analysis can be applied to ordinary continuous2 functions that are composed
of the elementary operations as introduced in the previous section. This is achieved
by exchanging the real-values variables (x1, . . . , xn) of the function f : IRn → IR

1It is possible to extended interval arithmetics with the values ±∞ as limits of an interval where
the division by 0 is allowed. Such an extended interval arithmetics is also closed with respect to
division, see [196].
2We restrict ourselves to continuous functions because it serves well for the purpose of this work.
Anyway, there are extended techniques that allow to deal with non-continuous functions as well,
see e.g. [196].
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by real-values intervals (̂x1, . . . , x̂n). This results in a function f I : IIn → II that
maps the interval vector x̂ onto an interval ŷ. Since the interval function f I is equal
to the real-valued function f except for the type of its arguments, we omit a special
notation for such interval functions. We assume that interval operations have to be
applied for evaluation if at least one operand is in an interval. Calculating the interval
value of a function is called interval evaluation of the function. From the definition
of the interval operations, it follows

ẑ = f (̂x) ⇔ inf ẑ ≤ f (x) ≤ sup ẑ ∀ x ∈ x̂ , (B.11)

i.e. the interval evaluation of a function yields guaranteed bounds ẑ of the image
space of the function f over the interval box x̂.

B.2 Over-Estimation

Beside many similarities between interval arithmetics and arithmetics of real num-
bers, there are some important differences that needs to be taken into account. Both
commutative and associative property holds true for addition and multiplication of
intervals. Contrary, the distributive property cannot be used with intervals in its com-
mon form

â(̂b + ĉ) �= âb̂ + âĉ, â, b̂, ĉ ∈ II . (B.12)

Sub-distributivity is a weak form of the distributive property and it holds true for
every interval â, b̂, ĉ ∈ II

â(̂b + ĉ) ⊂ âb̂ + âĉ . (B.13)

To receive an interval evaluation with as strict as possible bounds, it is favorable to
evaluate the left hand side of Eq. (B.13) since it yields stricter bounds. In general, it
can be stated that an interval evaluation yields closer bounds if every variable occurs
only once in the function. If the same variable occurs multiple times in the same
function, the so-called interval identity is lost, i.e. it cannot be taken into account
that each instance of the variable x has the same value x ∈ x̂ . Therefore, we may
receive an over-estimation for the function’s image if interval identity is not fulfilled.
Even for very simple expressions such as â2 ⊂ â ∗ â and 0 ⊂ â − â �= 0, we find
a significant over-estimation. For example, evaluating the former expressions for
x̂ = [−1; 1] yields x̂ ∗ x̂ = [−1; 1] where the strict result is x̂2 = [0; 1]. The source
of the overestimation comes from dealing with x̂ ∗ x̂ as with x̂ ∗ ŷ, where the ranges
for ŷ = x̂ are identical just by chance. Functions with complicated expressions
cannot be factored or rearranged so that every variable occurs only once. Therefore,
over-estimation cannot be avoided in general. But still one can often find equivalence
transformations leading to a smaller over-estimation. On the other hand, if interval
identity holds true, one can conclude from the evaluation of the function
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ŷ = f (̂x) (B.14)

that f is surjective in the interval ŷ, i.e. for every value y ∈ ŷ in the image space it
exists at least one x ∈ x̂ in the domain.

B.3 Software and Implementation

The inclusion of a value in an interval is mathematically justified under the assump-
tion that any number can be exactly representedwith round-off errors. In practice, this
is hardly possible due to finite accuracy of real computer hardware. Since the number
of digits in limited at least by the amount of memory, we have to deal with some
kind of round-off errors in any computation. Most microcomputers allow to control
the direction of the round-off effect so that one receives a range of values where the
exact value is enclosed. A systematic control called outward round-off is supported
by many computers and allows to enclose the real value in an interval. An important
application to interval analysis is therefore to keep track of all round-off errors during
a computation. These errors can be a consequence of uncertainties in the initial data
as well as method errors caused by the algorithm. These round-off errors cannot be
avoided by interval analysis but unlike standard real-valued computations we get a
rigorous estimation of these errors. Therefore, the result of an interval computation
might be an interval with an inadequate large width and thus little practical use. In
any case, standard algorithms would have reported one single but completely wrong
value without any indication of a catastrophic round-off effect. Due to their special
ability to deal with round-off and method errors interval analysis is called robust or
reliable computation and a whole branch of numerical mathematics was developed
around this property.

There are a number of computer libraries and development environments for
interval analysis. Results presented in this workmostly used BIAS/Profil by Knüppel
[249, 250], since this library is platform-independent and work both with Windows
and Linux. Other implementations such as PASCAL-XSC [194], C-XSC [248] and
Sun Forte [447] offer similar functions. An extension for MATLAB (MathWorks
Inc.) for interval analysis was developed by Rump [427, 428]. A notable collection
of algorithms for interval linear algebra called VERSOFT is available from Rohn.

Based on basic implementation for interval arithmetics, different tools were devel-
oped to do practical interval computations with advanced algorithms. An example
with many applications in mechanism science is ALIAS [101] and its extension
ALIAS/Maple [102]with an interface for the computer algebra systemMaple (Water-
looMaple Inc.). The basics of the interval algorithms implemented there can be found
in Moore [410], Neumaier [359] and Hansen [195, 196].

A typical library for a high level computer language such as C, C++, or Python
as well for the scripting languages of numerical packages provides amongst the basic
arithmetics operations +,−, ∗, / a selection of elementary functions such as sin(·),
cos(·), √·, etc. These functions are efficiently implemented from their real-valued
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counterparts by making use of the individual properties such as monotony in order to
compute largely improved bounds. Some packages additionally include hardware-
based control of round-off errors through directed rounding. Briefly speaking, this
instructs the computer to conservatively select the bounds for the result of an arith-
metic operation.
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A
Abrasive wear, 68, 350
Absolute, 117, 124, 224, 251, 270, 281, 362,

372, 379, 386, 388
Acceleration, 28, 129, 244, 303
Acceptable, 60, 79
Acceptable forces, 350, 368
Acceptable workspace, 179, 216
Acceptance test, 298–300
Accuracy, 41, 270, 305, 390,
Actual, 270, 317, 377
Actuation, 17, 23, 50, 288, 354, 358
Actuation system, 17, 353
Actuator, 64, 95, 136, 235, 297, 358
Actuators, Selection, 359
Admittance control, 39
Advanced cable models, 12, 256, 285, 417
Aerostat, 34, 50, 233
Aircraft, 233
Algebraic approach, 127, 134
Algebraic solution, 89
Algebraic workspace, 202, 208
Algorithm, 79, 81, 85, 119, 134, 142, 150,

153, 174, 182, 194, 264, 287, 343,
377

Ambiguity, 124
Amplifier, 389, 396, 400
Anchor points, 17, 29, 56, 275, 308, 314, 352
Angle, 70, 172, 199, 235, 260, 350, 356
Angular acceleration, 303, 361
Angular velocity, 122, 236, 303, 356, 361
Antagonistic requirements, 300
Antipodal theorem, 159
Aperture, 6, 41, 163
Apex, 198, 200
Application, 31, 293, 310, 383
Application requirement, 71, 287, 296, 346

Applied research, x
Applied wrench, 19, 52, 54, 154, 237, 302
Approximation methods, 340
Aramid, 18, 115, 347, 348
Archetype, 162, 309, 371
Archimedean spiral, 264
Architecture, 15, 234, 297
Architecture, controller, 281, 297, 384, 396
Architecture, robot, 212, 327, 415
Area, kernel, 96
Arecibo, 17
Arithmetic, 84, 121
Artificial potential field, 25, 130
Aspect, workspace, 163
Assembly mode, 137, 164
Assembly, application, 307
Assistance device, 32, 36
Assumptions, forward kinematics, 264
Assumption, standard model, 46
Asynchronous motor, 405
Attack angle, 352, 366
Auto-calibration, 375, 418
Available wrench set, 76, 216
Axis aligned bounding, 140, 143, 189

B
Backlash, 368
Back-projection, 404
Backward dynamics, see inverse dynamics
Backward kinematics, see inverse kinemat-

ics
Balance, 132, 196, 333, 339
Bandwidth, 240, 303, 357, 365, 407
Bar, 31, 291, 325
Barycenter, force distribution, 48
Barycentric method, 95
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Base frame, 238, 314
Basis, 75, 98
Beams, 34, 111, 391
Bearing, 326, 368
Belt, 5, 355, 356, 412
Benchmark, 91, 373
Bending, 46, 240, 275
Bending cycle, 63, 347, 349
Betabot, 160
Bilateral constraint, 45
Binary criteria, 334
Bisection, 184
Block-box behavior, 288
Boolean criteria, 174, 334
Boolean workspace evaluation, 174
Boundary determination, analytic, 201
Bound improvement, 181, 185, 343
Box, 31, 140, 143, 300, 323, 344
Box, interval, 187
Braiding, cable, 276
Brake, 64, 403
Branch-and-bound, 181, 343
Branch, forward kinematics, 124, 164
Branching, 181
Break, 64
Breaking force, 64
Brute force, 106, 189
Bryant angles, 126, 146, 151, 382, 402
Buckling, 4, 111

C
CABLAR, 33, 408
Cable, 16, 347
Cable actuation systems, 353
Cable-cable interference, 170, 225, 331
Cablecam, 8, 39
Cable direction, sensor, 363
Cable-driven parallel robot, 3, 16
Cable-end, 346, 398
Cable-environment interference, 160, 391
Cable fatigue, 362
Cable force measurement, 364, 387
Cable guidance system, 305, 350, 353, 362
Cable guiding, 353
Cable interference, 137, 169, 191, 309, 315
Cable length, 17, 27, 66, 110, 120, 168, 188,

239, 262, 272, 282, 306, 353, 362
Cable model, 255
Cable parameters, 63, 114
Cable-platform collision, 171, 316, 404
Cable-platform interference, 170, 333
Cable-pulley, 69

Cable robot, see cable-driven parallel robot
Cable routing, 351
CableSimulator, 310, 406,
Cable span, 171, 198
Cables, selection, 292, 347,
Cable stiffness, 63, 110, 198, 282
Cable structures, 28
Cable-suspended, 130, 307
Cablev, 6, 25, 33, 231, 310
Calculate, 59, 120, 133, 185, 196
Calculate algorithm, 184
Calculation variables, 185
Calibration, 10, 372
Calibration algorithm, 377
Capstan equation, 70
Carbon fiber, 240, 406
Carex, 8
Cartesian coordinates, 111, 235, 386
Cartesian displacement, 117
Cartesian position, 51, 151
Cascaded control, 235, 247, 386
Catenary, 49, 67, 274
CDPR, see cable-driven parallel robot
Ceramic eye, 257
Cholesky decomposition, 90, 101
Circumference, workspace, 200
Clamp, cable, 352
Classification, 18, 29, 127, 135, 173
Classification, calibration, 41, 285, 372
Classification, design method, 177, 288
Classification, dynamic models, 232, 281
Classification, force distribution, 73, 92
Classification, forward kinematics, 48, 122,

142, 154, 235, 246, 264, 273, 283
Classification, workspace, 157, 285
Classification, workspace algorithms, 212,

269
Classification, workspace criteria, 177
Clearance, 29, 352, 373
Closed-form cable length, 67
Closed-form force distribution, 101
Closed-form forward kinematics, 123
Closed-form method, see closed-form force

distribution
Closed-form method, improved, 94, 103
Closed-form workspace, 101, 202, 223, 283
Closed-loop control, 296, 364, 396
Closeness to interference, 333
Closure constraint, 51
CNC kernel, 154, 389
CoGiRo, 320, 411
Coiling, cable, 23, 46, 243, 354
Coincide anchor point, 138, 342
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Coinciding anchor points, 29, 325
Collision, cable-cable, 169, 294, 319
Collision-free, 170, 324
Common architectures, 308
Completely restrained positioning mecha-

nisms, 20
Compliance, see stiffness
Compliance matrix, 109, 116
Compulsive requirement, 340
Compulsory, 333, 346
Computational complexity, 85, 88, 93, 96
Cone, 163, 172, 198
Configuration singularities, 126
Configuration space, 77, 110, 120, 131, 235
Consistency test, 144, 187, 342, 345
Constrained calibration, 376
Constrained optimization, 80, 94, 133, 338
Constrain equation, 232, 264
Constraint Satisfaction Problem (CSP), 136,

159, 179, 289, 338, 340
Construction, 32, 35
Continuation method, 173, 177
Continuity, 85, 99, 105
Continuity, force distribution, 85, 88
Continuous, 59, 80, 165, 179
Continuous methods, 173, 177
Control, 229, 365, 388
Controllable, 19, 60, 79, 165, 359
Controllable, pose, 19
Controllable workspace, 167
Controller, see control
Control software, 298, 389
Control system, architecture, 298, 384
Convergency, 84, 88, 92, 137, 152, 270, 336
Convex hull, 76, 105, 304, 338
Convex set, 47, 57, 76, 168
Copacabana, 288, 400
Coulomb friction, 258
Crane, 4, 16, 34, 216, 313, 353
Crane-configuration, see suspended
Crane-like, see suspended
Creeping, 46, 240, 256, 373
Crossed cable, 30, 319, 322, 384
Cross-section, workspace, 242
CSP, solver, 180, 187, 342
Cusp, 108
Cycle-time, 154
Cycling bending over sheaves, 347

D
Dahl friction, 231
d’Alembert’s, 230, 303

Damper, 233
Damping coefficient, 250
Deductive, 371
Definiteness, Hessian, 148, 247
Deflection, 70, 166, 172, 260, 301, 350, 353
Deformation, 67, 111, 216, 239, 281
Degree-of-freedom, 15, 21, 57, 331
Degree-of-parallelism, 18
Degree-of-redundancy, 19, 53, 59
Design, 287, 295, 332, 338,
Design, methodology, 295
Design of mechatronic systems, 295
Design procedure, 331
Design size, 24
Desirable, 333
Determinant, 127, 147, 190, 203
Development, 31, 229, 288
Dexterity, 113, 159, 190, 290, 333
Dexterity requirement, 190
Dexterity requirements, workspace, 190
Dextrous workspace, 162
Differential-algebraic equation, 238
Differential workspace boundary, 101
Direct kinematics, 121
Discrete forms, 165
Discretization methods, 12, 173, 227
Distal, 16
Distal anchor point, 351
Distal anchor point, design, 127, 289, 308
Drive-train, 64, 247, 293
Drum, 235, 240, 354
Drum pitch, 245
Dualism, 123
Durability, 114, 257, 352
Dykstra method, 88
Dynamics, 231, 235, 244
Dynamics equation, 132, 231, 235, 246
Dynamic simulation, 229, 233, 254, 297
Dynamic workspace, 160, 168
Dyneema, 26, 115, 276, 348, 356, 399

E
Eigen-dynamics, 240, 245
Eigenfrequency, 68, 73, 109, 215, 232
Eigenvalue, 113, 149, 190, 232
Elastic, 141, 240, 256, 273, 279, 284, 303
Elastic cable, 48, 281
Elastic cable, kinematics, 255
Elastic deformation, 47, 110, 117, 134, 240,

264, 306
Elasticity, 115
Elastic reactions, see elastic deformation
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Electrodynamics, 233, 235
Electro-mechanics, modeling, 247
Elongation, see elastic deformation
Encoder, 362, 379
End-connector, 352, 353, 368
End-effector, see mobile platform
Endless Z, 307, 329, 406
End-point, see distal anchor point
Entertainment, 8, 39, 401
Entertainment, application, 294
Equations of motion, see dynamics equa-

tions
Equilibrium equation, 89, 132
Euclidian motion group, SE3, 20, 131, 161,

227, 402
Euler, 84, 121, 237
Euler angles, 123, 146, 162
Euler-Eytelwein, 69, 350, 356
Euler-Newton, 230, 235,
Existence, 83, 87, 91, 93, 167, 189
Expo 2015 robots, 40, 401, 418
External calibration, 364, 376
Eyelet, 260, 293, 349

F
Falcon, 6, 316
Feasible, 60
Fieldbus, 18, 298
Fields of application, 11, 15, 31, 295
Finite, 177, 183
First-order differential kinematics, 123
Five hundredmeter Aperture Spherical Tele-

scope (FAST), 6
Fixed machine frame, 28, 297, 310
Flying carpet, 18
Force-closure, 58, 79
Force computation, see force distribution
Force-control, 253
Force distribution, 57, 73, 78, 80
Force distribution, optimization, 48, 83
Force distribution, RRPM, 47, 57, 158, 411
Force-feasible, 58, 212
Force level, 90, 99
Force-torque generation, 26
Force-torque measurement, 26
Forward dynamic model, 230
Forward kinematic, 47, 120, 133, 258, 264
Forward kinematics, force-based, 154
Forward kinematics transormation, 121
Frame, see base frame
French-German, 310, 325
Frequencies, 367, 372

Friction coefficient, 116
Friction kinematics, 70
Fully-constrained, 18, 53, 61
Fully-constrained robot, 305, 308, 312

G
Gauss-Newton, 49, 375
G-Code, 386, 389
Gearbox, 242, 356
General solver, 136
Genetic algorithms, 290, 340
Geometrico-static, 130, 133
Geometrico-static kinematics, 132
Geometric stiffness, 109, 111, 117
Geometry, 51
Global dexterity index, 334
Global methods, 136, 335
Global optimization, 289, 332, 340, 342
Gradient method, 87
Grassmann geometry, 127, 169
Gravity, 19, 130, 272

H
Half-space, 93
Handling, 3
Hardware design, 292, 366, 398
Hardware-in-the-loop, 231, 297, 389
Hefty cable, 46, 50, 117, 160, 256, 273, 379
Hessian matrix, 146, 149, 246
High-bay storage, 294
High-modulus polyethylene fiber, 18
History, 39, 47
Hoist, see winch
Horn torus, 259
Hull representation, 165
Hybrid algorithm, 185
Hypercube boundary, 93
Hysteresis effects, 46, 240

I
Identification matrix, 375, 381
Ill-conditioned problem, 416
Imperative, 333
Imperfect flexibility, 240
Inclusion orientation workspace, 162, 194
Incompletely Restrained Positioning Mech-

anism (IRPM), 19, 53, 126, 131, 306
Induction, 371
Infimum, 182, 184, 343, 425
Installation space, 304
Intelligent cranes, 3
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Interference, 169, 179, 225, 331,
Intersection, 75, 97, 138, 170, 176, 216, 225,
Interval, 186, 339
Interval algorithms, efficiency improvement,

187
Interval arithmetic, 425–428
Interval evaluation, 180, 343
Interval identity, 427
Invalid interval, 180
Inverse dynamics, 230, 233
Inverse kinematics, 50, 121, 258, 272, 282
IPAnema, 12, 30, 31, 71, 74, 242, 293, 323,

360, 371, 383, 384, 386, 390, 392,
396, 400

IPAnema 1, 30, 71, 91, 105, 107, 115, 127,
150, 153, 209, 213, 266, 270, 288,
310, 357, 363, 382, 386, 389

IPAnema 2, 25, 33, 65
IPAnema 3, 62, 71, 73, 231, 287, 320, 395–

397, 400
IPAnema 3 Mini, 39, 71, 74, 231, 288, 398
IPAnema-Falcon, 310, 323
Irvine cable model, 254, 279

J
Jacobianmatrix, 53, 123, 131, 144, 153, 190,

266, 380
Jacobian matrix, calibration, 381
Jacobian matrix, kinematics, 122, 381, 393
Jerks, 47
Joint, 46, 172, 257, 353, 365

K
Kernel, 75, 79
Kinematic chain, 2, 15, 235, 258, 294
Kinematic classification, 19, 368
Kinematic code, 119, 264
Kinematic mapping, 134
Kinematic model, 46, 229, 255, 377
Kinematic model, calibration, 373, 377
Kinematics, 48, 119, 255
Kinematics, under-constrained robots, 130
Kinematic transformation, see for-

ward/inverse kinematics
Kinematic transmission functions, 120
Kinetic energy, 244–246
Kinetostatic, 122, 132, 291, 361

L
Lagrange function, platform and cables, 244
Lagrangian equations, 244

Lagrangian function, 246
Lagrangian multiplier, 61, 233
Landmarks, 375
Large-scale robot, 46, 240, 306
Least-square solution, 90
Levenberg-Marquardt algorithm, 142, 271
Lifetime, cables, 63, 257, 350, 353, 358
Light-weight designs, 4
Limits, cable force, 62, 90, 213, 302
Linear density, 274, 276
Linear programming, 48, 59, 85, 99, 168
Line search, 192, 194, 208
Local methods, 136
Logistics, 32, 398
Longitudinal vibration, 240, 256
Lower bounds, tension, 65

M
Machine frame, see base frame
Magnetic markers, 362
Manipulability, 334
Manipulator, 38, 49
Marionet, 36, 38, 294
Mashed discrete forms, 165
Material parameter, 374, 379, 416
Maximum workspace, 162, 194, 227, 301
Measurement device, 41, 362, 375, 379
Mechanisms, 16, 39, 63, 130, 172, 260
Minkowski sum, 48, 77
Mobile platform, 18, 29, 50, 120, 368
Mobile platform, dynamics, 231, 237
Mobility, 18, 132, 306, 325
Model, 119, 165, 200, 229, 255, 273, 280
Monetary costs, 333, 342, 346
Monte-Carlo methods, 340
Moore-Penrose pseudo inverse matrix, 75
Motion generation, 6, 26, 400
Motion measurement, 26, 37
Motion pattern, 18, 21, 133, 161, 306
Motion simulation, 36, 325, 406
Multi-body system, 15, 45, 232, 242
Multi-criteria optimization, 339

N
NC-controller, 250
NC-kernel, 386, 400
NC-program, 386
Net wrench, 159, 212
Neural networks, 49, 137
Neutral fiber, 242, 259
Newton, 371
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Newton-Euler, 230, 253
Newton-Raphson, 137
Noise, 136, 150, 271, 365, 375, 382
Nominal parameter, 316, 373
Non-generic, 28, 56, 126, 136, 154
Non-generic geometry, 134
Nonlinear programming, 86, 99
Nontrivial winch kinematics, 255
Nullspace structure matrix, 47, 58, 75
Numeric boundary methods, 192

O
Objective function, 81, 86, 146, 266, 334,

342, 380
Observability index, 374, 381
Omnidirectional cable guidance, 352
One-axial load, 368
1R2T, 21, 55, 113, 143, 166, 203, 226
Open issues, 155, 272, 285, 417
Open-loop control, 17, 298
Operational space, 53, 77, 109, 111, 120,

131, 154, 177, 235
Optimal design, 12, 289, 332, 337
Optimization, 58, 80, 86, 136, 145, 154, 283
Optimization problem, 86, 380
Orientation workspace, 161, 185, 309, 325
Orthogonal cables, 394
Ovalization, 47, 260, 358
Over-actuated, 57, 131, 134
Over-constrained, 26, 49, 53, 57, 75, 117,

134, 144, 231, 418
Over-constrained cable robot, 12, 18, 109,

134, 231, 258, 283, 294, 373
Over-mobility, 126, 314

P
Panning pulley, 284, 350, 358, 389
Parallelism, 2
Parallel robot, 6, 15, 178, 235, 289, 326, 374
Parameter fitting, 380
Parameterization, 120, 146, 237, 309
Parameter singularities, 126
Parameter synthesis, interval analysis, 339
Parasitic motion, 54, 403
Payload, 28, 130, 301
Performance index, 113, 196, 201, 333
Pivot point, 367
Planar robots (1R2T case), 55
Platform, see mobile platform
Platform orientation, 198, 218
p-norms, 47, 80, 93
Polar sorting, 171

Polyamide, 114, 242
Polyester, 18, 116
Polyethylene, 26, 114, 240, 347
Polynomial form, 165, 208
Pose, 52, 120, 180, 236, 379, 422
Pose-dependent, 73, 111, 169, 190
Pose estimation, 42, 143
Pose-independent, 198
Pose measurement, 42, 379
Pose selection, 374, 377, 381
Position accuracy, 306, 372, 390
Position sensors, 242, 362
Positive interval, 426
Potential energy, 142, 244, 283
Practice, 372
Pretension, 65, 68, 114
Product development, 346
Production engineering, 32
Projection, cable force, 88, 403
Prototypes, 5, 8, 383
Proximal, 17, 51
Proximal anchor point, 46, 351
Prune, 182
Pseudo inverse, 75
Pulley, 46, 244, 256, 259, 358
Pulley kinematics, 256
Pulley mechanisms, forward kinematics,

299, 386
Pulley mechanisms, inverse kinematics, 255
Pulley mechanisms, structure equation, 134,

256, 260
Puncture method, 59, 94

Q
Quaternion, 236

R
Reachability, workspace, 194
Reachable workspace, 177, 188, 382
Real-time, 101, 134, 142, 386
Real-time capable, 49, 98, 134, 389
Reconfiguration, 289, 300, 350, 391, 398
Reconstruction, pose, 377
Reconstruction, workspace, 203
Redirection unit, 352, 389
Redundantly-constrained, see RRPM
Redundantly Restrained Positioning Mech-

anisms (RRPM), 20, 73, 307
Reference designs, 11, 212, 383
Regulation, 294, 402
Reliable, 68, 146, 361, 389
Reliably, 141, 372
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Repeatability, 270, 305, 373, 390
Revolute joint, 259, 353
Rheonomic constraint, 245
Rigid cable, 362
RoboCrane, 6, 313
Robot, 1
Robot geometry, see geometry
Robotic arms, 2
Robot mechanics, 416
Rohn’s theorem, 159, 189
Roller, see pulley
Roll-pitch-yaw angles, 237
Rope, see cable
Rotation matrix, 51, 422
Row-rank, matrix, 93
Rule-of-thumb, 165, 302, 310, 317, 368
Runge-Kutta method, 251
Running cable, 371

S
Safety, 39, 63, 114, 348, 355, 384, 401
Safety requirement, 64, 406
Sagging, 66, 240, 272
Sagging cable, kinematics, 272
Sagging cable, modeling, 273
Sampling, control, 178
Sampling, workspace, 165, 174
Scalability, winch, 418
Scenario-based dimensioning, 360
Search space, 182, 185, 341, 344
Second-order differential kinematics, 129
Segesta, 100, 316, 408
Self-calibration, 374
Semi-algebraic, 201
Sensor, 362, 365
Serial, 2, 15, 326
Serial robot, 2, 374
Servo motor, 253, 355, 359, 362, 388
Sheave, see pulley
Simplex algorithm, 85
Simplified Symmetric Manipulator (SSM),

49, 159, 309, 314
Simulated annealing, 290, 340
Simulation, dynamics, 297, 302, 332, 401
Singularity, 126, 172, 246, 335
Singular Value Decomposition (SVD), 79,

90, 127, 167
SkyCam, 6, 39, 292
Slack, cable, 45, 62, 170, 255, 364
Software engineering, 295
Solid geometry, 165
Spatial robots (2R3T case), 56, 161

Special orthogonal group, 21, 161
Specific strength, 26, 115
Spool, 394
Spring-damper, 233, 240
Stability, 61, 90, 109, 236, 247, 380
Stability, equilibrium, 61, 247, 256
Standard geometric model, 50
Standard kinematic model, 45
Standard model, 12, 45
Static equilibrium pose, 61, 130
Statics, 47, 123
Steel cable, 114, 242, 258, 347
Stewart-Gough-platform, 4
Stiffness, 109, 111, 117, 240, 303, 311, 407
Stiffness, cable, 112, 282, 303, 374
Stiffness evaluation, 113
Stiffness, gearbox, 242, 355, 360, 396
Stiffness matrix, 61, 109, 116, 154, 247
Storage retrievalmachineCABLAR, 35, 408
Strictly negative, 183, 345
Strictly positive, 183, 345
String, see cable
String-Man, 6, 10, 25, 36
Stroke, cable, 168, 293, 301, 358, 395
Strongly feasible, 189
Structural synthesis, 55, 306, 331
Structure, dynamic system, 133, 244
Structure matrix, 53, 123, 203, 264
Sub-distributivity, 427
Subdivision, 181, 186, 193, 220
Superquadric, 83
Supremum, 191, 345
Surface, workspace, 165, 196
Suspended robot, 20, 130, 310
Swivel bolt, 172, 353
Synthesis, geometry, 346
Synthetic fibre, 116, 347
Systematic methods, 340
Systems engineering, 295

T
Technical parameter, synthesis, 346
Technical requirement, 297
Temperature, 46, 64, 297
Temperature effects, 46
Tendon, see cable
Terminology, 7, 11, 15
Thermal elongation, 239
3R3T, 23, 52, 161, 311
3T, 21, 135, 176, 311
3-2-1 configuration, 134, 154
Tool Center Point (TCP), 235
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Topological synthesis, 306
Topology, 2, 15
Total orientation workspace, 162, 185, 329
Trajectory, 59, 169, 361, 402
Transformation, Clarke and Park, 247
Transformation matrix, 114, 172, 236
Translational robots (2T and 3T), 21, 54, 308
Translation workspace, 160, 180, 192
Transmission ratio, 243, 250, 359, 379, 388
Transmission, velocity, 50
Transmission, winch, 245
Transversal vibration, 240, 256
Triangulation, nullspace, 47, 167
Triangulation, workspace, 208, 223, 268
Tuple, 380
TwinCAT, 298
Twisting, cable, 18, 23, 306, 359
Twist, velocity, 122
2R3T, 56, 311, 316, 325
2T, 54, 133, 147

U
Undefined cable guidance, 46
Under-actuated robot, 15, 130
Under-constrained robot, see IRPM
Under-determined constraint, 80
Unilateral constraint, 46, 57, 240
Union, workspace, 173, 195, 201
Uniqueness, 83, 86
Uniqueness, force distribution, 83, 88
Unit vector, 51, 124, 201, 263, 283
Univariate polynomial, 50, 130, 136, 176
Unwound cable, 241
Upper bounds, tension, 62

V
Valid interval, 181, 190
Velocity, platform, 190
Velocity sensors, 362
Verhoeven’s Theorem, 90
Verification variables, 180, 340, 346
Verify, 168, 179, 191, 390, 407
Verify algorithm, 183
Vertex computation, 96
Vertex, nullspace, 47, 79, 167
Vibration, 10, 46, 68, 111, 231, 240, 256
V-model, 295
Voltage, 235, 247, 272
Volume, workspace, 196

W
Wear, cable, 69, 257, 261, 293, 348, 359
Weighted sum, force distribution, 105
Weighted sum, objective function, 97
Weighted sums method, 105
Width, interval, 174, 426
Winch, 17, 242, 353, 395
Winch mechanics, dynamics, 231, 242, 367
Wire, see cable
Workflow, design, 203
Workspace, 157
Workspace aspects, 163
Workspace border, see workspace boundary
Workspace boundary, 192, 201, 301
Workspace boundary, analytical methods,

176
Workspace boundary, approximation, 192,

197, 212
Workspace boundary, mathematical struc-

ture, 192, 202
Workspace, continuous methods, 173, 177
Workspace coverage, 99, 117
Workspace, criteria, 157, 166, 170, 188, 227
Workspace, cross sections, 200
Workspace definitions, 161
Workspace, determination, 165
Workspace, geometrical methods, 176
Workspace, orientation, see orientaion

workspace
Workspace, property, 96
Workspace, representation, 157, 165
Workspace studies, 212, 330
Workspace, translational, see translation

workspace
World coordinate system, 21, 56, 146
Wrapping angle, 172, 262, 366
Wrench, 52, 234, 302
Wrench-closure, 59,203
Wrench-closure poses, 59
Wrench-closure workspace, 176
Wrench-closure workspace, closed-form,

201
Wrench-closure workspace, symbolic-

numeric method, 203
Wrench-feasibility, 60, 167
Wrench-feasible, see wrench feasibility
Wrench-feasible poses, 60, 93, 167
Wrench-feasible workspace, 167
Wrench matrix, 53
Wrench set, 61, 75, 189, 216, 302
Wrench space, 76
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Y

Young’s modulus, 110, 115, 242, 279

Z
Zonotope, 76
Zylon, 26, 115
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