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If every instrument, at command, or from
a preconception of its master’s will, could
accomplish its work (as the story goes of the statues
of Daedalus; or what the poet tells us of the tripods
of Vulcan, “that they moved of their own accord
into the assembly of the gods”), the shuttle would
then weave, and the lyre play of itself; nor would
the architect want servants, or the master
slaves. [12]

Aristotle, 384–322 BCE
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Abstract

The automation of handling tasks has been an important scientific topic since the
development of the first industrial robots. The first step in the chain of scientific
challenges to be solved is the automatic grasping of objects. One of the most
famous examples in this context is the well-known “bin-picking” problem. To pick
up objects scrambled in a box is an easy task for humans, but its automation is very
complex. Besides the localization of the object, meaning the estimation of the
object’s pose (orientation and position), it has to be ensured that a collision-free
path can be found to safely grasp the objects. For over 50 years, researchers have
published approaches towards generic solutions to this problem, but unfortunately
no industry-applicable, generic system has been developed yet.

In this thesis, three different approaches to solve the bin-picking problem are
described. More precisely, different solutions to the pose estimation problem are
introduced, each paired with additional functionalities to complete it for application
in a bin-picking station. It is described, how modern sensors can be used for
efficient bin-picking as well as how classic sensor concepts can be applied for novel
bin-picking techniques. Three complete systems are described and compared.

First, 3D point clouds, generated using a laser scanner, are used as basis.
Employing the known random sample matching algorithm and modifications of it,
paired with a very efficient depth map based collision avoidance mechanism results
in a very robust bin-picking approach.

In the second approach, all computations are done on depth maps. This allows
the use of 2D image analysis techniques to fulfill the tasks and results in real-time
data analysis. Combined with force/torque and acceleration sensors, a near-time
optimal bin-picking system emerges.

As a third option, surface normal maps are employed as a basis for pose esti-
mation. In contrast to known approaches, the normal maps are not used for 3D data
computation but directly for the object localization problem. This enables the
application of a new class of sensors for bin-picking.

All three methods are compared and advantages and disadvantages of each
approach are discussed.

xv



Chapter 1
Introduction—Automation and the Need
for Pose Estimation

One definition of automation says: “Automation is the transfer of human work to
automatons, realized with the help of machines.” [71]. And many other definitions
are very similar to this. Taking this literally, it says that automation is the replacement
of human workers by machines. The vision of machines releasing humans from hard
work is far from being new. As quoted at the very beginning of this document,
Aristotle already has had this vision of “instruments that, at command, or from a
preconception could accomplish the work of its master at its will”. But, although this
wish is nearly as old as civilization itself, there are many workplaces in industrial
manufacturing halls, where humans have not been replaced by machines, even when
the tasks are not ergonomic, monotonic or very simple. Even allegedly easy tasks are
not automated, yet. Suppose asking an infant child to pick its favorite toy out of a box.
The kid will, of course, fulfill this task without thinking a lot and without injuring
him or her self. The described task is not as easy as it is explained. Humans are
only able to fulfill it easily because they can be regarded as very complex machines,
equipped with a very big portfolio of actors and sensors. These sensors are for
example a sophisticated stereo vision system and tactile sensors in the fingers and in
every joint, without being complete. With these senses, combined with intelligence,
a superior experience and internal and external model knowledge, it is easy for even
young children to recognize single objects on a pile of different ones and to pick them
up. Humans have uncountable built in sensors, databases, path planners and efficient
collision avoidance mechanisms even including on-line trajectory generation.

The tasks described above are collectively known in scientific literature as the
“bin-picking problem” and a lot of diverse and sincere challenges have to be faced
to solve it. Literally since the first digital image and industrial robot, this problem
is famous in science. Researchers have been proposing methods, related to the bin-
picking problem for over 50 years. But, till today, no working, generic solution to the
problem can be found in modern industry. The reason for this is that at least some of
the complex abilities of human workers have to be rebuilt. More precisely, industrial
robots have to be equipped with sensors and with some kind of artificial intelligence,
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2 1 Introduction—Automation and the Need for Pose Estimation

at least in the context of a specific task. But, the algorithms should not be too specific
as special solutions always mean a big effort in updating them to new demands.

Getting to the point, in industry, parts, scrambled in boxes or on piles or lying on a
table, have to be located, picked and placed in a defined way. Here, it is obvious that
no presumptions can be made of the object’s pose. Like mentioned above, the way to
solve this is to enable the robot to acquire information about its workspace, interpret
or “understand” this information and generate movements and actions dependent
upon it. The bin-picking problem is only one of several tasks in which it is important
to estimate the poses of distinct objects in a scene. Service robots can bementioned as
a second example and there are manymore. A robot with the autonomy to understand
its surroundings can be efficient, robust and in some cases only then applicable in
industry, even when the autonomy only covers one simple task.

So, the main and basic problem that has to be solved in any autonomous robot
system is the analysis of appropriate environmental data. In most cases, the best
option is to rely on visual data as these can be obtained contactlessly. Here, the
choice of a suitable vision sensor is only the first problem of many and cannot be
solved in general. What can be said in general is that a 3D world has to be analyzed
and understood to enable robots to solve their specific tasks autonomously. It is
obvious that 3D sensor data would be best to describe a 3D scene. But, even with 3D
sensors becoming cheaper in the last years, they are not in every case the best option.
And, if 3D sensors are used and 3D data is available, this 3D data has to be analyzed
efficiently. The vision system of a robot therefore consists of two main parts, namely
the vision acquisition and its analysis. Both parts have to interact well to build an
efficient entity.

Although robot vision is such an enormously important aspect for autonomous
robots and for many decades, research has been conducted on this topic, no generic
bin-picking approach has been developed thatmade its way into industrial production
lines, yet. This thesis describes three novel approaches to solve the bin-picking
problem by giving three new pose estimation techniques embedded into a working
framework. Three more steps towards the goal of autonomous robots.



Chapter 2
Bin-Picking—5 Decades of Research

Reviewing the literature on the bin-picking problem leads to scientific papers
written more than 50years ago. Bin-picking is a meta discipline which combines
several sub-disciplines, like scene analysis, object recognition, object localization
(or pose estimation), grasp planning, and path planning. The basis for each bin-
picker is a robust pose estimation approach—as nothing can be done until a relative
pose of an object with respect to the robot is known. The field of research for this part
of the system can generally be described as scene analysis. One of the first approaches
published in the context of scene analysis is of 1963 [73]. But although many pub-
lications are very old, some of them have impact on the developments presented in
this Ph.D. thesis and have to be mentioned when giving an overview on the His-
tory of Bin-Picking. A complete review on the wide field of research concerning the
single subtasks of bin-picking would go beyond the scope of this thesis. Therefore,
the referenced publications in the following sections shall be seen as a representa-
tive selection of the available literature. The author mainly focuses on publications
which deal with the object localization problem as this is the most important part
of a bin-picker. Other tasks, like collision avoidance, are important as well but can
be simplified by properly designing the robot workspace. Experiments, described at
the end of this thesis, show that very simple collision avoidance and path planning
is sufficient for a robust and fast industrial bin-picker. Nevertheless, publications on
these tasks will be part of the historical overview but not be treated in detail.

2.1 The Early Years: Basic Developments

As already mentioned above, many of the works that will appear in this summary
are not dedicated bin-picking publications. They are rather dealing with one of the
subtasks that have to be implemented for a complete picking system. In the beginnings
of machine vision, robots were not as present as today, which is the reason for
many publications to only mention the possible use of the approaches for robotics.
Therefore, they offer developments on single topics that can be applied to several
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4 2 Bin-Picking—5 Decades of Research

other problems as well. Nevertheless, these works show basic and early approaches
that have impact on modern developments, like those presented in this thesis.

Approaches of “blind” bin-picking in which robots, equipped with vacuum or
magnetic grippers, mechanically scan their environment or the bin content until an
object is grasped are not considered in the upcoming section, as these approaches
are very slow and not robust. Automatic picking of objects stored in blisters will also
be not part of the overview, as these situations can be handled by offline teaching of
the robots and can therefore be solved without machine intelligence.

All other scenarios have to be handled by analyzing a 3D scene and extracting
object poses from the available scene data. The first approaches used simple 2D
images, as 3D scanners where not very common at the time of their publication. As
already stated, the first work that shall be mentioned here is the Ph.D. thesis of L.G.
Roberts from the year 1963 [73]. In this work former publications are cited, but the
results of Roberts were very impressive and afterall, one publication has to be the
first here. This thesis does not compute poses or even measure 3D data, but it is one
of the first works estimating 3D shapes using single camera images. In detail, the
goal is to detect polyhedral objects in a camera image and to re-render the scene
from different viewpoints. Using the machine described earlier, Roberts computed
a differential picture of the input to detect edges in the scene. With these edges,
polygons were detected and analyzed to generate 3D polyhedrons. The generated
3D scene could then be viewed from different directions. One of the first works on
3D object detection was done in 1971 by Shirai and Suwa [81]. They developed a
range finder that used a projector that was equipped with a vertical slit to project
sheets of light onto the scene. With the known pose of this projector with respect to
a camera, 3D point coordinates could be computed geometrically along the visible
line. This development was an enhancement of a similar approach of Forsen in 1968
[32] which only projected light points and thus needed much more time for the depth
image acquisition. These range finders were the only alternative to stereo vision
systems in those days. With the acquired 256× 256 depth image consisting of lines
in 3D, Shirai and Suwa estimated those lines that were near edges of polygons and
used these edge lines to estimate single planes. With these planes, polyhedrons could
be located.

In 1975 Tsuji and Nakamura published a work that describes a vision system
for an industrial application [88]. The goal was to classify and locate non occluded
“complicated-shaped objects” in a pile of other objects in order to leave the “blocks
world”. Additionally, either the top or the bottom of the part had to be visible, further
restricting its pose. To detect the objects, simple features like ellipses and border arcs
are detected and compared to a model database. All processing is prone to errors due
to lighting, occlusions and noise and does not consider depth information and thus
is a challenge for further research.

As depth sensors were uncommon in the early years of pose estimation research,
bin-picking as it is understood today was not easily manageable. But, when depth
was unimportant, like dealing with objects lying on a known surface, complete object
localization was possible. One of the approaches by Baird of 1977 is designed to
handle objects lying on belt conveyors [13]. This system is not based on models
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and therefore computes the position and orientation of objects using their silhouettes
and their centers of area as well as their axes of minimum moment of inertia. Even
five years later the same assumptions were still made by Bolles and Cain [19]. They
show a very similar method for localization of flat objects lying on a table using edge
images. The objects needed to have features like holes and corners to be detectable.
The same is true for the approach of Turney et al. [89].

In 1987 Perkins [70] made common assumptions: Known distance of the objects
to the camera, rotations of the objects only in the plane, non-textured objects. He then
used edge detection and built closed curves of the input image. By using a model
data base of the objects, their poses could be computed via fitting of the centroids
of corresponding curves. To solve the correspondence problem, the curves were
described by up to 11 different features like total length, radius, magnitude of total
angular change, etc. and compared pairwise. A very interesting publication in the
context of thiswork is the paper of Ikeuchi,Horn andNagata of 1983 [45]. The authors
propose amethod to estimate the object’s orientationwith respect to the camera using
Photometric Stereo [99] and Extended Gaussian Images (EGIs) [39]. As these two
techniques1 play an important role for the developments described in this thesis it is
very interesting that the basic ideas were developed over 30years ago. Ikeuchi uses
needle maps generated by the photometric method to build EGIs and uses these to
estimate the orientation of the objects. The objects used in the experiments were tori
and the overall method was limited to tori, as the special properties of them were
used to solve several computations. The attitude estimation is based on a brute force
comparison of the EGIs of a model torus and a measured needle map (normal map).
To enhance the performance, the search area is reduced, exploiting the rotational
symmetry of the tori. The position estimation is omitted by calculating a grasp point
of the torus as a pixel within the 2D camera image. The grasp point is approached
by a puma robot using the viewing ray of the camera, corresponding to the grasp
point. By using a kind of photoelectric barrier in the gripper fingers, sending a signal,
when an object is between the fingers, grasping of the object was enabled. All these
limitations do not diminish the originality of the ideas of this work. Furthermore, this
is one of the first complete bin-picking papers that included grasp planning and the
actual use of a robot (PUMA). Unfortunately, until now only one further publication
[40] (of the same authors) deals with the improvement of this system. Results of this
work can be seen in Fig. 2.1. In the same year when Horn and Ikeuchi published their
model-based approach, the group around Jean-Daniel Dessimoz published a different
solution to the same problem [25] which is, along with the previous approach, very
important for the developments in the present work. Dessimoz et al. proposed the
use of matched filters to locate not complete models, but locations of object parts
in an image that are accessible by a robotic gripper. The authors argued that not all
degrees of freedom (DOF) need to be estimated for a successful robotic grasping. A
very elegant aspect of their solution is that the localization procedure includes (very
simple) grasp planning making an additional processing step obsolete. Based on an

1The Photometric Stereomethod aswell as ExtendedGaussian Images will be topic of the following
chapters.
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Fig. 2.1 Results of Ikeuchi’s and Horn’s work. a One of the three input gray level images.
b Estimated needle map. c Segmentation result. d Robot grasping a located torus. All four images
kindly provided by B.K.P. Horn

image of the actively lit bin, graspable regions are bright in the middle (an object is
present that reflects the light) and dark aside (shadows due to the absence of objects
that would collide with the gripper. To detect such regions, a simple filter kernel
was used with which the image was correlated. The original kernel can be seen in
Fig. 2.2. It was further rotated to not only estimate a fixed orientation for the gripper.
Results of this work can be seen in Fig. 2.3. The interesting thing about this work
is that only simple and standard image processing tools are applied to a gray level
image to solve a very complex problem. The main disadvantage of the technique is
that no depth information can be estimated and that the pose of the grasped object
with respect to the gripper is unknown. This means that a defined placement, i.e. into
a machine for further manufacturing, is not possible. As such a defined placement is
essential for industrial bin-picking, this limitation is a big drawback. Nevertheless, a
novel approach based on this publication will be presented in the following sections.

Bolles andHorauddescribed one of thefirst approaches to identify object locations
in bins using 3D sensors and models of the objects, in 1986 [20]. They give a forecast
of the importance and the spread of depth sensors in industrial applications in the
future:
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Fig. 2.2 The used matched
filter kernel of Dessimoz.
Image taken with permission
from [25]

Fig. 2.3 Results of Dessimoz’ work. a Input gray level image. b Estimated grasp points using
the filter kernel shown in Fig. 2.2. c Estimated grasp points using the filter kernel rotated by 90 ◦.
In (b) and (c) the quality is denoted by the pixel brightness. The brighter the pixel, the better the
result. All images taken with permission from [25]

Our approach is to use 3D models of the objects to find them in range data. Our rationale
for this approach is that, first of all, range data simplify the locational analysis since the
geometric information is encoded directly in the data. Secondly, it will soon be economical
to use range sensors in industrial tasks. Finally, familiarity with the model of a part will
add enough new constraints to make it practical to locate relatively complex parts jumbled
together in a bin.[20]

As this is a very true forecast and the basis of this approach from 27years ago is
exactly the same as used in this thesis, this paper is the last representative of “bin-
picking classics”. The technique of Bolles uses a tree-search algorithm that extracts
single features, like edges, arcs, etc., out of a depth image. The feature type is selected
using themodel of the part in the bin. Around each feature, other features are “grown”
that fit this specific feature. If some of the found features match the known model, a
hypothesis for an object pose is found and a depth image is rendered to evaluate that
hypothesis.

The last publication in this section is the Ph.D. thesis of Stahs of 1994 [86], which
was developed in the same institute as the present thesis and is used here as link to
modern approaches. Here, like in Bolles work, surface features are used to identify
and locate known objects. Simple features, like cylinders, planes, edges or holes
are combined to form more complex features with describing properties, like angles
between plane normals, distances between holes and edges, etc. These properties can
be stored in hash tables, using model data. By finding the hash keys of these complex
features (local, minimal partial scene constellations), pose estimation hypotheses
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can be generated. This work builds the basis for the Ph.D. thesis of Winkelbach
[96], which will be an important basis of the pose estimation technique, described in
Chap.3 and will be described there.

The literature presented in this section is far from being complete but gives a
representative introduction to the roots of industrial vision and early bin-picking
approaches. Someof the described publications even constitute a basis for approaches
proposed in the following sections.

2.2 Modern Bin-Picking Approaches

During the years of research on object localization techniques, two main classes
of approaches have been developed: Correspondence based and voting based tech-
niques. The most prominent voting based technique is the well-known generalized
Hough transform (HT) [14]. This approach is far from being modern but is used in
this context to introduce the voting based methods.

Based on a model of the object to be located, the idea of the HT is that every
sensed data point votes for all possible positions of the model’s predefined reference
point. The point in Hough space that gets the highest number of votes gives the
coordinates of the model with respect to the sensor. The dimension of the Hough
space is defined by the possible degrees of freedom of the object, e.g. six if the pose is
not restricted at all. The resolution of the Hough spaces defines the possible accuracy
of the localization. For each point of the scan, the complete set of model points has
to be accumulated into the Hough space. The biggest conceptional problem of the
Hough transform therefore is the high complexity with respect to the degrees of
freedom of the possible objects pose and the amount of data.

A voting based technique that overcomes the complexity problems was presented
by Mian et al. [64]. The authors modify the idea of geometric hashing proposed
early in [57] by changing the hash tables to be filled with tensors instead of surface
points. These tensors are computed using three-dimensional grids located at arbitrary
positions on the meshes defined by a point tuple. The tensors are then constructed by
estimating the surface area inside each of the bins of the grid. Each tensor, consisting
of 103 bins is then stored in a 4D hash table which is spanned by the 3 grid coor-
dinates and the angle between the normals of the point tuple. In this way problems
of inhomogeneous point densities on meshes and scans can be reduced. Due to the
complex computation of tensors, only 300 are used for the matching process. When
many similar surface regions are present in the scan and/or model, this may lead
to false matchings. Furthermore, this technique requires complex (pre-)processing
steps, including mesh simplification and computation of intersections between the
tensor grid and the mesh. This results in quite long computation times.

Correspondence based techniques use feature detectors and descriptors that are
mainly known from feature tracking systems in 2D images like the well-known
SIFT operator [60]. When these techniques are adapted to 3D data, they can be
used for object localization. One example was developed by Zaharescu et al. who

http://dx.doi.org/10.1007/978-3-319-26500-1_3
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proposed a system containing a detector and descriptor for 3D mesh matching [101].
They interpret a mesh as 2D manifold in R

3 to define gradients and convolutions
on the mesh. Then, a function f can be defined on the manifold that maps the
local mean curvature of the mesh or color (if available) to each vertex. Features
are then detected by computing the difference of gaussians (DOG) of the function
f and by extracting the maxima (the authors call this procedure “meshDOG”). To
describe the features, a histogram of local gradients (“meshHOG”) is computed
around each feature. The meshHOG is built around a local coordinate system and
consists of projections of gradients onto the three orthonormal planes, described by
the coordinate axes, divided into 4 polar segments. In each segment, all gradients
are stored in an eight-bin histogram. To locate an object, the procedure described
above is applied to a scan and a model. By comparing the descriptors in a brute
force manner, correspondences are found and pose hypotheses are generated. This
approach and many other correspondence based approaches suffer from the issue
that the features that they are based on have to be present on the models. If this is not
the case, the approaches fail. If, for example, very simple objects, like a sphere or a
cube, have to be located, no features may be found, or the extracted features may not
be discriminative enough to be used for pose estimation. This is a general problem
of correspondence based techniques.

If nomodel data is available, systems can not be based onmodel data, obviously. In
this scenario, approaches to grasp unknown objects have to be developed. This thesis
focuses on the bin-picking problem, where the task is to pick and place objects out of
a bin. For this, model data has to be available. But, one of the approaches presented in
Chap.4 can also be used to grasp unknown objects. Therefore, a modern approach,
using the same sensor data as in the experiments of this thesis by Fischinger and
Vincze [29] shall be mentioned here, as well. Here, so-called height accumulated
features (“HAF”) are calculated. These are basically oriented and subsampled ver-
sions of the depth maps used. As for each possible gripper orientation, the depth map
is converted into a point cloud, oriented and subsampled to an HAF, this method
is very slow. An alternative method on this topic was published by Saxena et al.
[78]. Here a complex machine learning approach based on synthetic 2D features is
implemented. After the learning step, possible grasp points are located with a stereo
camera setup and corresponding grasp points of both cameras are triangulated. In
[15] camera images are used and analyzed to compute grasp regions. But as no depth
information can be extracted of the 2D images, only simple table top scenes can be
handled.

2.3 Yet Another Bin-Picking-Approach?

As described in the previous part of this work, the goal of a generic, robust and
efficient bin-picking system is not met yet, even after decades of research in this
field. There are, of course, several approaches that offer solutions to the bin-picking

http://dx.doi.org/10.1007/978-3-319-26500-1_4
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problem, or at least to single parts of the chain of specific needed operations. But, a
complete solution describing a generic system cannot be found in literature, yet.

When the work on this dissertation started, industrial manufactures still had no
possibility to buy a generic robotic bin-picker. An industrial applicable bin-picking
solution was needed. With a wide overview of the literature, it became obvious that
all of the known approaches have drawbacks or restrictions, or made assumptions
that stood in contrast to the demanded generic system.

What is needed, is the development and implementation of a system that offers a
solution in all single parts of the bin-picking process. The problems that needed to
be solved were of industrial background and contained short cycle times, easy model
exchange, robust pose estimation, secure collision avoidance and easy maintenance.
Due to the fact that no system was available that met all these demands, vibratory
feeders or human workers are still doing the bin-picking in modern industries.

2.3.1 Revisiting Robotic Bin-Picking—Problems to Be Solved

There are two main problems that have to be solved for bin-picking. The first and
most important problem is pose estimation.2 Three different poses are important in
a bin-picking system:

• The object pose WPO ,
• the gripper pose WPG and
• the grasp pose GPO .

The object pose WPO hereby describes the pose of an object with respect to some
world coordinate system.3 The gripper pose WPG is the goal pose of the end effector
w.r.t. the world coordinate system to grasp an object. The grasp pose GPO is the pose
of the object w.r.t. the gripper coordinate system, which is especially important for
a defined placement of the object. These three poses build a transformation chain
(see Fig. 2.4). Therefore, if two of them are estimated, the computation of the third
is trivial.

Beyond pose estimation, a second important problem arises. This problem can be
named as “collision avoidance”. Each gripper pose has to be analyzed for possible
collisions of the gripper with the environment. Only when the pose estimation and
collision avoidance is solved, can robot movements be executed safely.

2Within this work, it is assumed that only one type of objects is in the bin. Otherwise, an object
detection step has to be executed additionally.
3Within this work, it is assumed that the robot is calibrated relative to the world coordinate system.
Furthermore, it is assumed that the vision sensor is calibrated to the same coordinate system.
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Fig. 2.4 Visualization of the three important poses in the workspace of a bin-picking robot. The
object pose WPO which defines the pose of the located object (yellow) in the world, the grasp pose
GPO which described the pose of the grasped object (purple) in the gripper and the gripper pose
WPG which is the pose of the gripper in the world (green) at which an object can successfully be
grasped. It is assumed that the robot as well as the optical scanner are calibrated w.r.t. the world
frame W . When the gripper grasps an object, the three transformations build a closed chain

2.3.2 Contributions and Organization of This Work

As already mentioned, the task of pose estimation is the basis of many applications
in the field of robotic automation. Bin-picking is only one example of numerous
tasks where the knowledge of accurate object poses is essential. These different
tasks all may have different demands towards a pose estimation system. To make a
contribution in this field that covers as many applications as possible, three different
approaches towards solving the pose estimation problem are presented within this
thesis. The main difference between the approaches is the sensor data the approaches
are based on. To show the particular applicability of all approaches, each one is
embedded into a bin-picking system and used to enable a robot to autonomously
isolate objects scrambled in a box.

After the short overview on the tremendous amount of research on the topic of this
thesis, given in Sect. 2.1, the end of this overview and short description of modern
developments in Sect. 2.2 and a brief definition of the actual problem in Sect. 2.3.1,
the rest of this work is organized as follows: The thesis is divided into three main
parts. Each of these parts offers one way to solve the bin-picking problem, using a
different pose estimation technique.

In Chap.3, 3D point clouds are used as input data. How a known fragment match-
ing approach can be applied to solve the localization problem of known models in
3D point clouds is described. This approach is then modified and enhanced to handle
difficult real world scenarios in Sect. 3.1.2. The 3D pose estimation is augmented by

http://dx.doi.org/10.1007/978-3-319-26500-1_3
http://dx.doi.org/10.1007/978-3-319-26500-1_3
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a very efficient grasp planning mechanism in Sect. 3.2 and embedded into a robot
work cell in Sect. 3.3.

The contributions in this part of the work are the adaptation of the Random Sam-
ple Matching algorithm to the pose estimation problem and its enhancement to work
in difficult scenarios. A further contribution here is the semi automatic grasp pose
estimation that offers highly flexible and efficient grasp planning and collision avoid-
ance, respecting grasp pose restrictions possibly given by manufacturers.

In Chap.4, a novel, complete bin-picking system based on 2D depth maps fused
with inertia measurements is contributed. An extremely efficient, gripper pose esti-
mation technique is described in Sect. 4.1 that computes collision free gripper poses
nearly in real time. To enable it for defined placement of objects, this pose estimation
is completed by a grasp pose estimation technique in Sect. 4.3 and embedded into a
robot work cell in Sect. 4.4.

The contributions here are the proposed gripper pose estimation technique that
generates poses in quasi zero time. Furthermore, the combination of this technique
with a force/torque/acceleration based grasp pose estimation performed during the
robot’s movement results in the overall contribution of a nearly time optimal bin-
picking approach.

The third contribution,Chap. 5 of thiswork, focuses on solving the pose estimation
problem using normal maps. Normal maps were formerly only used to generate 3D
data for further analysis. By introducing a technique to directly use normal maps
for pose estimation, a whole group of sensors can newly be applied for automation
tasks. Normal maps can be generated by very low-cost sensors using single camera
shots which can result in very efficient systems.

The thesis is concluded in Chap.6, where all three approaches are compared with
each other and open problems are commented on.

http://dx.doi.org/10.1007/978-3-319-26500-1_3
http://dx.doi.org/10.1007/978-3-319-26500-1_3
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http://dx.doi.org/10.1007/978-3-319-26500-1_4
http://dx.doi.org/10.1007/978-3-319-26500-1_4
http://dx.doi.org/10.1007/978-3-319-26500-1_4
http://dx.doi.org/10.1007/978-3-319-26500-1_5
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Chapter 3
3D Point Cloud Based Pose Estimation

3D sensors are very popular in modern computer vision and are becoming cheaper.
Therefore, many researchers focus on the analysis of 3D point clouds. Not only in
the context of pose estimation but also in other fields of computer vision. For the
pose estimation problem, a 3D point cloud seems to be a very good choice as sensor
data. But, an efficient way to analyze a set of 3D points has to be found. This is the
topic of this chapter.

At first, the impact of different sensor placements on the efficiency of bin-picking
systems is discussed. Then, the pose estimation technique is explained in detail in
Sect. 3.1. This approach is analyzed in the context of a real world scenario and a
modification is presented in Sect. 3.1.2. To build a bin-picking system using the
proposed pose estimation techniques, an efficient and semi-automatic grasp pose
estimation is presented in Sect. 3.2. Both presented techniques are combined in an
experimental setup in Sect. 3.3. A short discussion follows in Sect. 3.4.

Sensor Placement. Besides the choice of the sensor modality, its placement inside
the work cell has to be chosen. This is not only important for the scanner used in the
experiments, but also for every other optical sensor used for a robotic application.
For this reason, these considerations are also true for Chaps. 4 and 5.

There are two main options to mount the sensor. It can either be mounted on
the robot’s end-effector or externally somewhere in the work cell. If an end-effector
mount is chosen, no additional hardware is needed. The robot can be used to position
the sensorw.r.t. the scene and a full scan can be acquired. But, if the sensor ismounted
near the gripper of the robot, it has to be regarded during collision avoidance. The
bigger the end-effector (including the sensor), the more likely collisions may occur
between the robot and the scene. Therefore, it is likely that many objects cannot be
grasped due to sensor collisions. Furthermore, when the robot is needed to generate
sensor data, no pipelining of single subtasks is possible. For example, no new scan
of the scene can be acquired during the object transfer movements of the robot.

Therefore, it is better to choose an external sensor mount. By this, the end-effector
stays small and a new scan of the scene can be acquired during the robot’smovements.
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This leads to a more efficient performance of the system. Possible disadvantages of
an external mount are the limitation to a single viewpoint and the need for additional
hardware.

3.1 Generic Pose Estimation Using 3D Point Clouds

As a 3D sensor usually measures 3D coordinates at single points, a 3D point cloud
has to be analyzed, when dealing with this kind of sensor. Inside the point cloud,
the object has to be located, i.e. its six degrees of freedom have to be determined.
In literature, different features are often used as search basis. These features can be
planes [17], cylinders [77], edges of cylinders [67], box like geometric primitives
[35] or others. The problem with using special features in a generic sense is, that
there are always objects on which these features are not present and so new systems
have to be designed.

Therefore, a solution has to be found that is not based on features at all, or only
uses a kind of feature available on any possible object. In industry, the CAD models
of the manufactured parts are usually available.1 As the CAD models are present as,
or can be easily converted to 3D point clouds, and the 3D scan is represented as point
cloud, two identical data structures are available for the pose estimation.

The simplest features present in everymodel and every scan are single points lying
on the surface of the object. There already exists a very efficient approach which
compares surface features to solve the 3D puzzle problem [96, 97]. This approach
will be adapted and used as generic pose estimation technique. The technique is
described in the following section and is mainly extracted from [4].

3.1.1 3D Point Cloud Based Pose Estimation

When a tessellated point cloud (amesh) is available, not only the coordinates of single
surface points are known, but also a surface normal at each point can be calculated.

Models are usually available as meshes, the scans are not. But, as depth scanners
always measure in a well structured way,2 the meshing of the scanned point cloud is
trivial (see Fig. 3.1).

When both data parts of the search process are present as oriented point clouds,
the Random Sample Matching (RANSAM) algorithm can be applied to solve the
pose estimation problem. It efficiently estimates the relative transformation between
two 3D point clouds. No initial pose estimation is needed and no special features

1If this is not the case, the objects could be easily scanned.
2E.g. laser line scanners acquire depth information on equi-spaced points along a laser line which
is translated across the scene, which leads to a regular grid of points. The same is true for depth
cameras, which acquire depth information on a regular pixel grid.
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Fig. 3.1 Regular structure of a 3D mesh acquired by a laser line scanner. It is obvious that the
tessellation can be performed in O(1). The same structure exists when using ToF cameras because
of their pixel grid

(except surface normals) of the objects to be located are used. For this reason, the
RANSAM algorithm can be used for generic pose estimation, as it can easily be
adapted to arbitrary object shapes by simply exchanging the CAD model.

The RANSAMalgorithm is based on the well-knownRandom Sample Consensus
approach (RANSAC) [30] exploiting the theory of the birthday attack [95]. In both
meshes oriented point pairs pu,v(dipoles) are selected randomly. An oriented point
in this case is defined as a 6D parameter vector pi := [vi , ni ], i.e. a vertex with the
according surface normal (see Fig. 3.2). For each dipole four translation and rotation
invariant features can be calculated. These features are the distance d between the
two points pu and pv , the angle δ between the normals nu and nv and the angles α
and β between the connecting vector puv of pu and pv and the normals nu and nv

respectively. The goal of the matching algorithm is to find two dipoles, one of the
model and one of the scan, with four similar features. Two dipoles can uniquely be
transformed onto each other. Therefore, by finding two equal ones, a pose hypothesis
can be built. To efficiently search for the same dipoles, 4D relation tables are used.
The axes of the tables are the four features d, α, β and δ of the dipoles. An individual
relation table is assigned to both meshes. Then, dipoles are randomly chosen from
both meshes in an alternating manner and, by their four features, stored inside the

Fig. 3.2 Rotation and translation invariant features of a dipole. d is the distance between point
u and point v, α is the angle between the normal nu and vector puv , β is the angle between the
normal nv and vector puv and δ is the signed angle between nu and nv around puv (i.e. dihedral
angle between the plane with normal nu × puv and the plane with normal nv × puv). Graphic
taken from [4]
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according relation table. After storing a dipole, the same coordinate in the other
relation table is checked for whether it already contains an entry with a dipole.

If the same key is found in both tables, a hypothesis for the relative transformation
is found. Since the relation tables are filled continuously and only the table of the
scan data has to be cleared after each manipulation of the scene, the pose estimation
is very efficient.

3.1.1.1 Pose Hypotheses Generation

Let A be a mesh with according sets of vertices VM = v1, . . . , vk and normals
N M = n1, . . . , nk of the model data and B be a mesh of the scan data, the goal
is to find the relative transformation that ‘correctly’ fits the CAD model into the
scan. One of the most important criteria for a good match is the amount of contact
between the model and scan. An approach that considers a larger contact area of the
scan promises more robust matching results than approaches that solely rely on local
surface features.

Obviously, it is not efficient to exhaustively search through the 6d space of all
relative locations. Therefore, only pose hypotheses with a certain surface contact
between model and scan are considered. Such a hypothesis can be constructed by
assuming a contact between some surface points. More precisely, four given oriented
surface points a, c ∈ A and b, d ∈ B are sufficient, if a tangential contact between a
and b as well as between c and d is assumed. This assumption constrains all degrees
of freedom of the relative transformation. As illustrated in Fig. 3.3, the homogeneous
4×4 transformationmatrix AT B can be estimated bymeans of two predefined frames
(one coordinate system for the CAD model an one for the scan):

AT B(a, b, c, d) = F(a, c)−1 F(b, d) (3.1)

where the function F(u, v) is a homogeneous 4×4 transformation matrix, repre-
senting a coordinate system located between the points u and v of a dipole

Fig. 3.3 The assumption of
a tangential contact between
two oriented point pairs can
be used to define a relative
transformation AT B .
Graphic taken from [4]
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F(u, v) :=
[

puv × nuv‖ puv × nuv‖ puv
puv × nuv × puv‖ puv × nuv × puv‖

pu+ pv

2

0 0 0 1

]
(3.2)

with the difference vector puv and the combined normal vector nuv

puv := pv − pu∥∥ pv − pu

∥∥ ; nuv := nu + nv. (3.3)

To avoid singular frames, it has to be ensured that the length of puv and nuv is
not zero. The calculated transformation AT B aligns both dipoles. However, an exact
tangential contact at two points is only possible if the relative distance of the points
and the surface orientations at the contact points coincide. More precisely, it has to
be ensured that the dipole (a, c) is geometrically congruent to the dipole (b, d). The
relative transformation of one oriented point of a dipole to the other has four degrees
of freedom. Therefore, at least four scalar quantities have to be compared to check
for congruency. To verify this constraint, a 4D relation vector of a dipole is defined
that consists of four values (one distance and three angles) that define the relative
pose between two oriented points without ambiguity.

rel (u, v) :=

⎡
⎢⎢⎣

duv

cos (αuv)

cos (βuv)

δuv

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎣

∥∥ pv − pu

∥∥
nu · puv

nv · puv

atan2
(
nu · ( puv × nv), (nu × puv) · ( puv × nv)

)
⎤
⎥⎥⎦ (3.4)

These four values are illustrated in Fig. 3.2. Angle δuv denotes the dihedral angle
between the plane with normal nu × puv and the plane with normal nv × puv .
Function atan2(x, y) is similar to calculating the arctangent of y/x except that the
signs of both arguments are used to determine the quadrant of the return value. The
relation vector of Eq.3.4 is invariant w.r.t. rotation and translation.

3.1.1.2 Rapid Generation of Likely Pose Hypotheses

In [96, 97] a highly efficient method for generating likely pose hypotheses by exploit-
ing the theory of birthday attack [95]—an efficient cryptological strategy to generate
two different documents with similar digital signatures (hash values)—has been pro-
posed. In the following, this approach is summed up. Random dipoles of A and B
are chosen, and alternately stored in relation tables (i.e. hash tables), using the four
features of a dipole as table indices (see Fig. 3.4). Under the assumption that the
invariants are unique, on average only 1.2 · n pairs have to be processed until a col-
lision occurs. This will provide a run-time complexity of O(n) [97]. More precisely,
the 4D relation tables (one per surface), and the four invariant features (Eq. 3.4) as
table indices are used. This leads to the following search loop:
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Fig. 3.4 Pose hypotheses generation using a ‘birthday attack’-like approach: Random dipoles are
inserted alternatingly into 4D relation tables. After a fiew processing cycles one can find dipoles
with similar relations, which thus are geometrically congruent. Graphic taken from [4]

1. Randomly choose a dipole with a, c ∈ A and calculate rel(a, c).
2. Insert the point pair into the model’s relation table: RA[rel(a, c)] = (a, c).
3. Read out same position of the scan’s relation table: (b, d) = RB[rel(a, c)];

if there is an entry ⇒ new pose hypothesis (a, b, c, d).
4. Randomly choose a dipole with b, d ∈ B and calculate rel(b, d).
5. Insert the point pair into relation table: RB[rel(b, d)] = (b, d).
6. Read out same position of the model’s relation table: (a, c) = RA[rel(b, d)];

if there is an entry ⇒ new pose hypothesis (a, b, c, d).
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These steps will be repeated either until the hypothesis is good enough or all
combinations are tested, or the processing time exceeds a predefined limit. The
algorithm offers a run-time complexity of O(n) for the first hypothesis, but since the
relation tables get filled continuously, the complexity converges to O(1) for further
hypotheses.

3.1.1.3 Quality Estimation

After generating a pose hypothesis, i.e. a match between CAD model and scan, its
matching quality has to be estimated. Therefore, the subset C of points on the surface
of CAD model A which are in contact with the surface of scan B given a relative
pose AT B has to be computed. It is assumed that the surfaces are in contact at areas
where the distances between surface points are smaller than a predefined εp:

C :=
{

a ∈A | ∃ b ∈B with
∥∥ pa −AT B pb

∥∥ < εp

}
. (3.5)

The tolerance value εp is necessary to handle noise and is therefore adapted to
the surface accuracy. The quality is given by the ratio � of contact points |C| to total
number of surface points |A| of the surface of A.

� := |C|
|A| (3.6)

The contact test is based on a kd-tree data structure (see [33]) and can therefore
achieve a logarithmical time complexity for the closest point search. To increase the
efficiency, � can also be regarded as the probability that a random surface point
a ∈ A is in contact with any surface point b ∈ B. Thus, � can be forecasted by
an efficient Monte-Carlo strategy testing a sequence of m random surface points
for contact. The advantage is that the quality estimation can be stopped early if the
expected quality is considerably worse than the last best pose hypothesis. In this
manner the quality estimation gets faster and faster, whenever the best hypothesis is
improved.Thedisadvantage is that the optimal solutionmight get lost if the forecasted
quality is very inaccurate. However, since many point pair combinations generate the
same or nearly the same pose hypothesis, a loss of all good matches is very unlikely
and thus can be neglected.

3.1.1.4 A Word to Practical Limitations—Field of View and
“Scanability”

Regarding only the subtask of pose estimation and its solution presented above, in
theory, a very versatile and generic solution is described. And, as the experiments in
Sect. 3.3will show, evenunder industrial conditions, the described approachperforms
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verywell. In themeanwhile, other researchers developed similar approaches based on
the same technique [68, 69, 80]. But, there are cases with at least reduced robustness
of the approach. In industry, robot (bin-picking) work cells can mostly be built using
one depth sensor and a robot equipped with a gripper. This means that the scene is
scanned from exactly one point of view. The robot itself could be equipped with a
depth sensor, but this has many disadvantages, as mentioned earlier. For example,
the end-effector becomes very big which results in a higher probability of collisions.
And more important, robot movements are needed to generate the sensor data. So,
the scanning procedure cannot be decoupled from the robot, making it impossible to
use the time the robot moves the gripped object for new depth data acquisition. Time
is one of the most expensive resources in industry. Thus, the eye-in-hand solution is
inappropriate.

Practically, this means that the available depth data only covers a very limited
part of the scene. By scanning from one direction, for example, faces that are parallel
to the viewing direction of the scanner are not seen. If a triangulation based sensor
is used, it can be even worse due to shadowing effects between e.g. laser line and
camera. These shadowing effects can be due to bin borders or even shadows cast
of objects onto themselves. For the most objects, all this has a negligible effect as
shown in the experiments with e.g. piston rods.

With the goal of a real generic system, these issues have to be dealt with. An
approach to overcome these problems is presented in the following section.

3.1.2 3D Edge Based Pose Estimation

In the previous section, it was mentioned that shadowing effects can be problematic
for the described surface based pose estimation approach. Also, the former approach
is sensitive to inhomogeneous point densities. This means that the surfaces of the
scan and the model optimally have to have similar point densities over the complete
surface. For example, when shiny metal parts, lying on a wooden plate, are scanned
by a laser line scanner, the reflectivity of the metal results in many missing points
whereas the wooden surface can be scanned properly (see Fig. 3.5). By locating a

Fig. 3.5 Scan of piston rods
lying on a table (SICK
LMS400). It is obvious that
high matching values will be
generated for poses that
match the objects into the
table surface
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model with high point density in this scene, the model is likely to be found in the
ground plane. And even worse, as the quality of the result is measured by the amount
of vertices in contact, the false pose will be ranked better than any possible pose
found on the real objects surface.

This problem can easily be avoided by cropping the search area. But this is only
one aspect of the real problem. Other drawbacks cannot be avoided as easily. For
example, if objects on a table are scanned from above and these objects consist of
many planar faces with 90◦ angles, only edge vertices and planes are scanned and
the same problem occurs (see Fig. 3.6). The problem is the same as before, namely
the inhomogeneous point density.

Regarding the object shown in Fig. 3.6, another problem becomes obvious. Many
possible dipoles found on this object will have the same relation vector. The relation
tables will not get filled properly and many false pose hypotheses are the result. This
problem is known in literature as self-similarity [7].

One possibility to overcome the described issues of inhomogeneous point densi-
ties and redundant relation vectors, is to extract regions of the scan which contain
most of the information and to delete all other regions. Due to unknown object poses,
the alternative to fill missing points is not possible in general. The interesting areas
are the edges of the scan. As planar faces containmany similar dipoles, these areas do
not fill the relation tables and thus will reduce the robustness of the quality estimation
step. When wrong faces are matched onto each other, the matching will nevertheless
get a high quality, as the edges only represent a small amount of points of the scan.
So, the hypothesis generation as well as the quality estimation have to be modified
for the described kind of scenario.

By extracting the edges of the scan data, only the most significant areas of the
scan remain (of course, the model edges have to be extracted as well). Edge extrac-
tion in 3D is a complex problem (e.g. [51]). To efficiently solve this problem, the
characteristic of the already mentioned single perspective scans that are present in

Fig. 3.6 Visualization of the occurring problem when sheet metal parts are scanned from a single
point of view. a Model of a joist hanger. b Scan of the same object. It is obvious that the scan does
not have a homogeneous point density (SICK IVP Ruler E1200)
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most industrial scenes is employed. As the scene is scanned from one direction only,
the scan data is well structured and can be represented by a 2D image. In this image,
each pixel represents the distance of the scene to the sensor. These images are called
depth images or depth maps and play an important role within this thesis. Using
depth maps, the problem in 3D space can be reduced to a problem in 2D space. 2D
edge extraction is a well-known problem in computer vision and many approaches
exist. A standard gradient operator is completely sufficient here.

As the resulting 2D edges are edges in a depth image, also the 3D coordinates per
pixel are known. By this, the point clouds can easily be reduced to edge points. As
only vertices are available, the computation of surface normals is no longer possible.
Even if the surface normals were estimated prior to the edge extraction, they would
not be robust. Due to this problem, the algorithm described in the former Sect. 3.1.1
cannot be used for this scenario; the dipoles would only contain one feature (d)
which is not descriptive enough for fast matching and even more important, would
not contain enough information to calculate a pose hypothesis.

To overcome this issue a third point is added to the dipole used for hypotheses
generation. On this tripole three features, duv , duw, dvw, being the distances between
single edge points, can be computed (see Fig. 3.7). The relation vector changes to

rel (u, v) :=
⎡
⎣duv

duw

dvw

⎤
⎦ :=

⎡
⎢⎣

∥∥ pv − pu

∥∥∥∥ pw − pu

∥∥∥∥ pw − pv

∥∥
⎤
⎥⎦ . (3.7)

A similar adaptation has also been used in [46]where also no normals are available
for the localization problem. The relative transformation of two equal triangles can
then be calculated by estimating the relative transformation of the local coordinate
systems defined on each of the triangles. The centroid of the triangle defines its
origin. The x-axis points from the centroid to the middle of the shortest triangle side,
the z-axis is defined by the normal of the triangle pointing towards the sensor and

Fig. 3.7 Rotational and
translational invariant
features of a tripole

pu

pw
pv

duw

dvw

duv

duv distance between point pu and point pv

duw distance between point pu and point pw

dvw distance between point pv and point pw
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the y-axis follows from these two. The poses of the two centroids WTO and WTS of
the triangles of the object and the scan respectively then define the pose hypothesis:
STO = (

WTS
)−1 WTO .

3.2 Bin-Picking Application—Collision Avoidance
and Grasp Planning

The last section described the task of pose estimation of known objects. So far, the
robot would be able to approach the objects to be grasped. But, it has to be guaranteed
that the execution of the pick movement is collision free. Therefore, when an object
pose is present, a collision avoidance mechanism has to be applied to guarantee
collision free movement of the robot. More specifically, a set of grasp poses has to be
analyzed for collisions and the safest grasp pose has to be used to compute a gripper
pose. One possible technique to cope with this problem is complete path planning of
the robot as, for example, proposed in [91] where rapidly exploring random trees are
used to find collision free paths through the workspace of the robot. Besides complex
implementation, these approaches are often time consuming. Experiments using the
systemdescribed in Sect. 3.3 and in a laboratory ofVolkswagenSalzgitter have shown
that a planned hardware setup is able to prevent the need for a complete collision
avoidance on the robot’s path. As in industry, robot cells are planned and built for
special purposes, this assumption holds true for industrial applications. Besides that,
the robot work cells are usually inside a fenced area which overcomes the problem
of dynamic obstacles in the workspace. The experiments illustrated that it is enough
to analyze the end effector pose at its computed grasp pose.

In industry, manufactured parts are often not allowed to be grasped at arbitrary
locations. Furthermore, if objects are grasped at a not predefined pose, it is possible
that it cannot be placed as desired and additional movements to regrasp the object
have to be performed, as otherwise the gripper would collide with the machine or the
conveyor where the object has to be placed. For these reasons, automatic grasp pose
computation like proposed in [65, 74–76] is not part of this thesis. So, grasp poses
have to be predefined and can therefore be limited to desired regions. To nevertheless
allow for robust grasps, a semi automatic grasp pose evaluation is proposed in the
following sections.

3.2.1 Efficient 3D Collision Avoidance

The problem of collision detection or better, collision avoidance can be described as:
“Given a grasp pose, estimate a measurement for the amount of collision between
the scene and the end-effector at that pose.”
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The scene (the scan mesh) and the model (the CAD mesh) are available as 3D
point clouds, and the gripper can be represented asmesh in 3D, too.When an object is
located, the gripper can be positioned relative to the object’s coordinate system at its
predefined pose. The straight forward solution for evaluating the pose and generating
a collision measurement is to analyze the points of the scan mesh in relation to the
gripper mesh. All points that lie inside the gripper indicate collisions of the gripper
with the scene. The penetration depth, i.e. the distance between scan points and
gripper surface can be used as collision measurement.

The algorithm can be described as follows. The surface normal for each gripper
vertex is computed. For each vertex of the scan, the nearest vertex of the gripper
is found. As a kd-tree is already available for the scan, this tree can also be used
for a nearest neighbor search between scan vertices and gripper vertices. When the
oriented gripper point pg and its nearest neighbor of the scan ps are found, the
connecting vector pgs of the two points is calculated.

pgs = ps − pg (3.8)

If the angle γ between pgs and the normal ng of vertex pg is bigger than
π
2 ,

γ = cos−1( pgs · ng) ≥ π

2
(3.9)

the scan vertex lies inside the gripper. Then, the distance

dc = | ps − pg| (3.10)

can be used as collision measurement for this point. As the scan data is subject to
noise and there may also be outliers, a simple boolean check for collisions is not
optimal. Therefore, the sum of all single collision distances can be used as overall
collision measurement EG at that pose.

EG =
∑

i

dc,iwi (3.11)

The factor wi is a weighting factor which can be used to give different weights
to different parts of the gripper. E.g., the “palm” can be weighted higher than the
“fingers” as the fingers are always nearer to the objects and small finger collisions
can be accepted due to a phased gripper geometry. If the penalty EG is too high, the
grasp pose is discarded. Furthermore, this penalty can be used to choose the best
grasp pose out of all possible ones.

Besides the advantage of being very easy to implement, this technique suffers
some drawbacks. For example, only single poses are evaluated, which means a high
computational effort, when many grasp poses are tested. Furthermore, the gripper
mesh has to have a very high resolution to enable correct measurements. This means
computational overhead. But, it is possible to reduce the complexity and at the same
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time enhance the robustness and flexibility of the measurements. This enhancement
is topic of the next section and implemented in a prototypical setup.

3.2.2 Depth Image Based Collision Measurement

The straight forward solution to the collision measurement mechanism is not very
applicable due to its lack of flexibility. What is needed is a collision avoidance mech-
anism which, on the one hand, efficiently computes accurate collision measurements
but, on the other hand, is not restricted to single poses. If only a small set of prede-
fined grasp poses (defined relative to the object coordinate system) is used (like in
the approach described above), it is likely that objects are not graspable that would
be graspable if additional grasp poses would have been defined. A “semi-automatic”
approach to grasp planning is introduced in the following paragraph, to overcome
this issue.

3.2.2.1 Optimal Grasp Pose Estimation Using Key Grasp Frames

To enhance the performance of the technique described above, at first, the evaluation
of single grasp poses is transferred from 3D point clouds to 2D images. The scan, as
well as the gripper transformed to its grasp pose, are rendered as depth images. As
the gripper is a closed mesh, it is divided into convex parts and each part is separated
into its upper and lower surface. Now, the collision measurement is a simple pixel
wise comparison of the depth images. Whenever a pixel of the upper face of an end-
effector part is above the scan, but the same pixel of the lower face is located below,
a collision in that pixel of the image is present. With the value of the differences
of the pixels and the size of the pixels a collision volume can be calculated for this
pixel. Whenever both surfaces are located below the scan, no clear evaluation can be
done for that pixel because the gripper could be in occluded free space or in occluded
collisions. The resulting unclassifiable volume is called threat volume (see Fig. 3.8).
Collision and threat volume result in an overall collision volume

Vc =
∑
Part

∑
i

sx sydiwi . (3.12)

Here, sx and sy are the pixel dimensions, di is the height difference of gripper
surface and scan surface in the colliding pixel i and wi is a weight which can be
chosen to distinguish between collision and threat volume. Furthermore,wi can give
different weights to different parts of the gripper (Fig. 3.9).

At this point, it was shown how single grasp poses can be efficiently evaluated.
To further enhance the performance, the approach is extended to work on predefined
grasp regions. To achieve this, the Key Grasp Frame (KGF) is introduced by the
author. A KGF consists of a base pose for the end-effector defined in the CAD
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Fig. 3.8 Collision analysis of a gripper pose. The yellow volumes are unclassifiable threat volumes,
as the upper and the lower surface of the gripper are below the scanned surface. Therefore, the areas
can be occluded collision or occluded free space. The red areas are collision volumes, as the upper
part of the gripper is above and the lower part below the scanned surface

Fig. 3.9 The gripper used in the experiments. a Image of the parallel jaw gripper. b Complex CAD
model used for point cloud based collision analysis. c Simplified model, sufficient and used for the
KGF concept

model’s coordinate system, a set of degrees of freedom (DOF) and an associated
range for each DOF in which this base pose can be varied. This concept will still
allow a wide variety of grasping positions (due to a quasi continuous variation of
poses), while maintaining the demands of the industry to be in control of which
region of the object classifies as a picking position. Furthermore, KGFs can easily
be defined using the CAD model. An example for KGF definitions can be seen in
Fig. 3.10. With the defined KGFs it is possible to evaluate each pose of the end-
effector using the defined set of DOFs and their corresponding ranges. To minimize
computational costs a new range image of both, the scan and the gripper is rendered
using the gripper’s coordinate system transformed to the base frame of each KGF.
The z-axis of the gripper being the same as the approach vector serves as depth axis
when translational DOFs are analyzed. For rotational DOFs, the specific rotation axis
of the gripper is used as rendering direction, e.g. for grasps into circular holes, the
approach axis is used.With this new coordinate system the scan as well as the gripper
is rendered using orthographic projection (Fig. 3.11a, b). The rendered images can be
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Fig. 3.10 Key Grasp Frame
definition using a CAD
model. KGF1 contains a
translational DOF, KGF2
contains a rotational DOF.
The gripper geometry for an
inner grasp is different to
that for an outer grasp

thought of as taken “looking through the gripper” using a virtual orthographic camera.
The advantage is that the evaluation of the grasp poses and their ranges becomes a
2D problem. The area of the rendered scene is directly given by the type of the DOF
(rotational or translational) and the range of the free parameter (Fig. 3.11c).

To analyze the translational DOFs, a simple correlation-like procedure of the
scan and the gripper images is performed using the free DOF. The gripper images
are shifted pixel-wise along the axis of the free DOF over the rendered scan image.
Then, at each step, the rendered images are analyzed pixel wise for collisions as
explained above.

The collision volume is stored for each step resulting in a 1D collision function
dependent of the variable parameter. Using this function, all parameter values below
a predefined collision threshold tc are located and used to build a distance map for all
possible collisions (Fig. 3.11e). If the gripper can bemodeled as cuboids (Fig. 3.9), the
described procedure can efficiently be implemented using integral images introduced
in [92]. If not, efficient FFT based correlation can be applied to reduce computation
times.

In case of a rotationalDOFapreprocessing step is needed.To convert the rotational
problem into a translational one, the rendered images are transformed into polar
coordinates, which transforms the rotation into a shift along the orientation axis
(Fig. 3.11d). The subsequent steps are then the same as before.

After the parameters for all defined KGFs are computed, the one with the highest
distance to all collisions is determined using the calculated distance map (Fig. 3.11f).
The collision volume resulting from this calculation is not as accurate as possible.
Due to the (possibly) tilted point of view of the gripper relative to the scan direction,
threat and collision volumes may have changed due to varying shadowing effects.
Therefore, a second collision volume estimation has to be done using the original
depth data for only the optimal frame computed in the previous step and calculating
collision and threat volumes for the fixed final pose. Only if this final collision mea-
surement is also below the threshold, the gripper pose will be selected for grasping.
Otherwise, the next best solution of the prior step has to be used.

To visualize the concept, an example of the algorithm estimating an optimal pose
using a rotational DOF KGF is shown in Fig. 3.11.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.11 Example for the optimal grasp pose estimation algorithm only using the palm of the
gripper. The KGF is centered in the hole of the object (inner grasp) with a free rotational DOF
around the approach axis of the gripper. a Depth image of the scan rendered in gripper coordinates,
centered and oriented using the base frame of theKGF (blue) at a located object (orange) surrounded
by obstacles (1 and 2) which would lead to collisions in certain gripper orientations. Dark values
are near, bright values are far. b Upper depth image of the gripper palm model. c Section of the
depth image, reduced by all pixels that do not collide with the gripper due to their height or distance
to the KGF base frame. d Polar coordinate representation of the gripper palm (green) and the scan
(red) respectively. This data is used to solve the best pose problem. e Collision function dependent
on the rotational DOF (above) and the distance function to the nearest occurring collisions (below)
with defined collision threshold t . f Superposed result of the optimal pose. Graphic taken from [1]

3.3 Experimental 3D Point Cloud Based Pose Estimation

In the previous section, a pose estimation technique was presented, based on 3D
point clouds. To evaluate this technique as basis for an automated robotic task, a
bin-picking station was prepared, consisting of an industrial robot and a 3D laser
scanner.

In the experiments in this chapter as well as in the following chapters, all vision
analysis was computed on a 3.6GHz Windows PC with 8GB RAM.
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3.3.1 Simulation

Togive adetailedoverviewof possible accuracies of the approach, the pose estimation
technique was applied to a set of benchmark objects. Besides a set of industrial metal
parts, the data set of [63, 64] was used. All models in the data set are scaled so that
their longest edge equals 100mm which fits the average size of the metal parts used
in the real world scenario (see Figs. 3.12 and 3.13).

At first, the localization of the RANSAM algorithm was applied to full isolated
models with different noise levels of σ = 0, 7, and 14mm. The experimental results
can be seen in Fig. 3.14 and show that the accuracy of the localization approach is
very high, even in the presence of noise. It can also be seen that the computation
time is dependent on the amount of vertices present in the two point clouds (scan and
model) aswell as the amount of noise. In a second series of simulated experiments, the
RANSAM algorithm was analyzed for its robustness against noise and occlusions.
A set of scenes of different objects scanned, using different viewpoints was used
(see Fig. 3.15). In this set of images, only a small part of maximum 50% of the
objects was visible. As well as in the first set of scenes, the same amount of noise

Fig. 3.12 Models of the Mian data set [63, 64]. a “Armadillo” consisting of 34834 vertices.
b “Buddha” consisting of 32316 vertices. c “Bunny” consisting of 31064 vertices. d “Chinese
Dragon” consisting of 36143 vertices. e “Dragon” consisting of 100207 vertices. f “Statuette”
consisting of 40214 vertices



30 3 3D Point Cloud Based Pose Estimation

Fig. 3.13 Examples of models of the data set of industrial parts. a “Bottle” consisting of 143077
vertices. b “Cylinder” consisting of 414722 vertices. c “Joist Hanger” consisting of 90 vertices. d
“Metal Part 1” consisting of 97636 vertices. e “Piston Rod” consisting of 58544 vertices. f “Balance
Shaft” consisting of 81120 vertices. g “Cube” consisting of 728 vertices

was applied to these scenes. In total 5 viewpoints in 5 different scenes were tested.
Each scene contained 3 different objects which means additional clutter. Each object
was located 20 times. The results can be found in Fig. 3.16. Although, the scenes are
very demanding (like locating the dragon in the scene shown in Fig. 3.15a) a valid
object pose was computed in 99.4% of the cases.

3.3.2 Real World Scenario

To test the applicability of the described localization approach a bin-picking station
was built up. Within this station, the described localization approach, in combination
with the KGF grasp planning method, was employed.

The bin-picking station consisted of a Stäubli RX60 industrial manipulator with
an open control architecture [55]. The manipulator was equipped with a standard
pneumatic parallel jaw gripper, as these grippers are rugged and therefore common
in industry. Furthermore, a pneumatic overload protection devicewas placed between
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Fig. 3.14 Plot of the results of the RANSAM algorithm applied to isolated objects with different
noise levels. The graphs show the mean and the standard deviation of the results. The applied
noise is Gaussian noise with σ = 7mm and σ = 14mm. Besides a small decrease in accuracy,
a slight increase in computation time is noticeable. a Rotational errors. b Translational errors.
c Computational times dependent of the noise level. d Computational times dependent of the vertex
count

the gripper and the wrist of the robot. For all experiments, the standard robot control
delivered from the manufacturer would also have been sufficient. The robot itself
was mounted in the work cell and its position was calibrated to a world coordinate
system. Additionally, the base of the robot was placed in the same height as the upper
border of the bin. This has the advantage that the robot arm does not collide with the
bin borders which simplifies the collision avoidance and so allows shorter overall
cycle times.

The vision hardware setup was built, taking the following aspects into account:
The workspace contained a portal with a mounted linear axis. Different vision sen-
sors were mounted on the sledge of the axis (see Fig. 3.17). This enables for easy
comparison of the approaches described in the next chapters of this thesis. The height
of the portal was high enough to avoid collisions between the robot and the portal
as well as the sensors. Furthermore, the linear axis was placed in a way so that the
viewing direction of the sensors was approximately the same as the approach direc-
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Fig. 3.15 Set of virtually scanned test scenes. a Scene without noise. It can be seen that only a
very small portion of the dragon model is visible. b Scene with added noise of σ = 7mm. c Scene
with added noise of σ = 14mm

tion of the robot when it was grasping parts and parallel to the bin borders. In this
way as little problems due to shadowing effects as possible were present. Mounting
all sensors on the sledge has the advantage that no sensor is ever in the field of view
of another and all experiments can be performed using the same hardware setup.

The overall hardware setup was designed to be similar to possible industrial work
cells.

For the 3D point cloud based pose estimation, which is subject of this chapter, two
different sensors were used and analyzed for their applicability. These sensors were
a SICK LMS400 laser line scanner (data sheet available at [82]), which measures
distances along a projected laser line using time of flight measurements and a SICK
IVP Ruler E1200 (data sheet available at [84]) which is a triangulation based laser
line scanner.

Each of the two scanners has to be moved across the workspace to acquire a
complete scan, as only the depth along one laser line is acquired at one location.
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Fig. 3.16 Plot of the results of the RANSAM algorithm applied to the random viewpoint scenes.
The graphs show the mean and the standard deviation of the results. The applied noise is Gaussian
noise with σ = 7mm and σ = 14mm. Besides a small decrease in accuracy, a slight increase
in computation time is noticeable. The experiments include very difficult scenes like shown in
Fig. 3.15a, in which only small parts of the objects are captured. a Rotational errors. b Translational
errors. c Computational times dependent of the noise level

Both scanners have a wide scanning angle which, in combination with the move-
ment of the linear axis results in a large scanned area. As the bin only covers a small
part of this area, and the position of the bin is known, the area of interest (the content
of the bin) is cropped, prior to vision analysis. This reduces the computation times
because the amount of vertices is significantly smaller.

As the bin is cropped out of the scan, a model of it is used for collision avoidance.
In this way, it is assured that the bin borders, which are not scanned as they are
vertical, are included in the collision avoidance.

The two sensors mainly differ in the accuracy of the generated point clouds. The
second important difference is that the LMS400, as it is not triangulation based and
therefore does not need a big baseline, produces significantly less shadows at the
cost of a lower accuracy. The data sheet gives a systematic error of ±4mm and a
statistical error of ±10mm, which is comparable to the highest simulated amount
of noise. Whereas the Ruler is specified with a typical height resolution of 0.4mm,
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Fig. 3.17 Three vision sensors mounted on the linear axis in the robot work cell. The moving Sick
IVP Ruler providing 3D point clouds, a Microsoft Kinect providing depth maps, and an rgb-camera
which, in combination with three light sources, provides normal maps

which is comparable to the noise free simulation. A visual comparison of the details
captured by each of the scanners can be seen in Fig. 3.18. The LMS has an operating
range of 0.7 . . . 3m, the Ruler has an operating range of 0.28 . . . 1.28m, i.e. both are
suited for the experimental setup as well as for a possible industrial setup.

The first set of experiments was performed using the LMS with its high amount of
noise. The second set of experiments was performed with the Ruler, which is more
accurate. As objects served a set of industrial metal parts, which were scrambled
unmixed in the bin. The task was to locate an object, to find a secure grasp pose and
to place the object on a seating.As can be seen in the simulated experiments above,
the amount of noise effects the accuracy and the computation time of the localization
approach. The performance of the RANSAM algorithm is still very good and even
with the LMS400, the experiments showed good results.

LMS400 Experiment Series. To test the applicability, the piston rod of the industrial
parts data set was used. At first, the work cell was equipped with the LMS400. As
no ground truth data is available, when the objects are scrambled in a bin, only the
success rate of the pick and place cycles can be measured. Each localization took 4s.
The overall pick and place success rate was 95% at 100 trials. The applied collision
avoidance was only checking for collisions at predefined, fixed grasp poses defined
relative to the models’ coordinate systems. All unsuccessful grasp attempts did not
result in collisions due to the collision avoidance mechanism but resulted in time
overhead due to empty placement movements of the robot. The limiting factors in
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Fig. 3.18 Visual comparison of the scan quality of the SICK LMS and Sick IVP Ruler. a The scan
of the LMS has less occlusions but a much higher amount of noise. b The Ruler has much less noise
but a significant amount of holes caused by shadows between laser line and camera. c 5 located
piston rods in the LMS scan, showing the robustness of the approach against noise. d 5 located
piston rods in the Ruler scan, showing the robustness of the approach against occlusions

this setup were the limited accuracy of the 3D scanner and the collision avoidance
mechanism. Therefore, after a short set of experiments these parts were replaced and
a new set of experiments was performed.

Ruler E1200 Experiment Series. As the scanner accuracy effects both, the compu-
tation time and the accuracy of the localization, the more accurate Ruler 3D scanner
was used in a second set of experiments, using the same objects. Additionally, the
semi automatic grasp planner presented in Sect. 3.2.2 was included into the system.
With these two changes, the grasp success rate of the system enhanced to 100% at
100 reported trials.3

A success in this context means a collision free pick and place cycle and includes
cycles where more than one object had to be located until a safe gripper pose was
determined, which was the case in 14.1% of the cycles. When a safe gripper pose

3The system runs as demonstrator at the Institut für Robotik und Prozessinformatik since the end of
2012. Furthermore, the systemwas transferred into a prototypicalwork cell at Volkswagen Salzgitter
where it also showed promising results.
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was found during first localization attempt, the overall computation time was 4.5s
with a standard deviation of 0.3s. Including the cycles where more objects had
to be localized, the average computation time was 5.5s with a standard deviation
of 2.6s. The grasp pose estimation took about 0.1s for a translational DOF and
0.3s for a rotational DOF. This resulted in pick and place cycles in under 12 s. To
achieve this cycle time, the scan procedure and the robot movements were pipelined.
This means that the scan procedure started as soon as the robot left the space above
the bin with a grasped object.

To evaluate the 3D edge based pose estimation, joist hangers were used as test
objects and located in the bin. With the RANSAM algorithm, the localization suc-
cess rate was only 38% at 50 trials. Using the edge based RANSAM, 92% of the
localization results were correct. A comparison of the results in a worst case scene,
with joist hangers placed directly on the ground plane of the bin, can be seen in
Fig. 3.19.

Fig. 3.19 Effect of the edge based localization attempt when locating critical planar objects. a Scan
of a scene containing four joist hangers. The point distribution is not uniform, the vertical planes of
the items cannot be scanned. b Matching attempt, using the face based RANSAM algorithm. Three
of four localizations fail. c Matching result using efficiently extracted edges and the edge based
RANSAM. All localizations are successful
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3.4 Discussion

As the experiments in Sect. 3.3 show, the approach described above with its mod-
ifications is a very powerful way of solving the bin-picking problem for arbitrary
objects. It was developed and built to meet all demands and restrictions of industrial
applications.

Nevertheless, there is one main problem with this approach. The most expensive
resource in industry is time. And so, the cycle times of manufacturing lines have to be
as short as possible. This means, that the pick-and-place cycles of bin-pickers have
to be as short as possible, too. The described system uses 3D laser scans of the scene.
These laser scans have to be quite accurate so that the model based pose estimation
performs robustly. If the bins are large and industrial sensors, like the SICK IVP
Ruler are used, the scan time is already quite long. The scanner has to be moved
over the bin to acquire the whole scene. Furthermore, in contrast to the parallelized
cycles described in the experiments, for safety reasons, often the robot cannot move
until the scanner has left the workspace of the robot. So, already several seconds are
used just to acquire sensor data. Then, the complete object pose has to be estimated
before the first movement command can be sent to the robot. If faster sensors like
ToF4-cameras are used, the data acquisition time can drastically be shortened, but
the resolution and accuracy of the point cloud is no longer high enough for the pose
estimation to perform robustly.

In summary: When time is not a big issue, the 3D point cloud based pose estima-
tion technique is successfully applicable as solution for the bin-picking problem for
arbitrary objects and for object localization in general. If time is an issue, the system
may perform too slowly.

In such a case, an alternative approach has to be found which computes motion
commands for the robot so that the next movement is available at every time in the
cycle. This would lead to the shortest possible cycle time as the robot’s movements
are the only limiting factor which cannot be avoided in any way. The experiments
of the collision avoidance mechanisms described above already showed that the
reduction of point clouds to depth images is a very promising step toward generating
efficient 3D algorithms. In this way, the 3D scanner’s structure is considered and used
for data simplification. If the complete computations could be based on 2D depth
images only, a very efficient system could be the result. Approaches using exactly
this are subject of the next section.

4Time of Flight.



Chapter 4
Depth Map Based Pose Estimation

As already mentioned in Sect. 3.1.1, (industrial) scenes are often scanned from one
direction. Furthermore, scan data from e.g. a laser scanner or depth camera, are
almost always well structured. This means that either the sensor of the depth camera
defines a grid on which the data points lie, or the grid is spanned by the laser line and
the linear axis, when using a laser line scanner. In Sect. 3.1.1 this led to the approach
to generate depth images and to use these to efficiently estimate 3D edges to perform
the matching procedure on distinct parts of the scan. For collision avoidance, the
understanding of the 3D point clouds as 2D depth images resulted in a very efficient
way of semi-automatic estimation of grasp poses.

Taking this one step further, the use of point clouds seems to be an unnecessary
overhead for these types of scenarios. Or, in other words, building a point cloud using
a 3D sensor scanning from one direction means to convert data ordered on a 2D grid
into 3D data with no gain of information but an increase of complexity. Additionally,
the acquisition of a depth map, using a 3D camera is by far less time consuming than
using a laser line scanner. So, the data acquisition time in a bin-picking system could
be reduced drastically by using a single shot depth camera as already mentioned. As
time is the most expensive resource in industry, time saving at the cost of sensor data
accuracy can be a good deal if it is possible to overcome the higher data noise by
robustness of the applied algorithms and if the image analysis is fast enough to make
full use of the short acquisition times.

When the data acquisition and analysis are very time efficient, the work flow of the
complete system can further be improved to achieve short cycle times. The system
of Chap.3, like many other bin-picking approaches, at first estimates the 6D pose
of an object, and then computes a gripper pose at which that object can be grasped.
So, in every cycle, the complete object pose is computed before the robot starts the
transfer motion to place the part at the desired position. But in fact, in many cases1

1Precise object poses are needed, in cases where objects are only allowed to be grasped at predefined
regions.
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the object pose is not needed at all to start grasping. It is rather interesting to find a
gripper pose where the robot can grasp an object. Only when the robot has the object
in its gripper and has completed the depart motion, the object pose inside the gripper
(the grasp pose) is needed to place it in a defined way.

Therefore, a direct computation of essential information is preferable to an indirect
computation to avoid time overhead. Again, in the context of the 3D point-cloud-
based bin-picker, the gripper poses are indirectly computed using object poses and
it is possible that located objects are not graspable. In such cases, some other object
has to be located. If a gripper pose is computed directly, this case may not occur.

The following process schedule results from the presented considerations:

1. Acquire a depth map of the workspace.
2. Find a graspable region in the scan data.
3. Approach and grasp the related object at the computed gripper pose.
4. Execute depart motion.
5. Estimate the pose of the grasped object inside the gripper.
6. Place the object in a well-defined way.

The rest of this chapter describes these steps and is organized as follows. In
Sect. 4.1 a very efficient way of gripper pose estimation is presented. Some concepts
to enhance the proposed gripper pose estimation technique are presented in Sect. 4.2.
Then, inSect. 4.3, the system is completedby agrasppose estimation techniquewhich
enables a defined placement of the grasped object. Section4.5 concludes the chapter
by discussing the described bin-picking technique.

4.1 Gripper Pose Estimation

The collision avoidance mechanism described in Sect. 3.2 already works on 2D
images. There, the scan mesh as well as the gripper were rendered using the scanned
point cloud and the approach direction of the gripper to analyze the collision volume
and to reduce the dimension of the problem from 3D to 2D. It became obvious that
when the grasp procedure was not performed exactly parallel to the scan direction,
shadowing effects occur and may alter the quality of the collision measure. To avoid
this issue, all grasping movements can be performed using the viewing direction of
the optical scanner as approach direction for the gripper. Doing this, no shadowing
effects may lead to undetectable collisions, or to use the KGF concept: no threat
volume will occur. To be able to do this, the scanner has to be mounted in a suitable
position relative to the robot.

Since the scene information is present as a gray level image, standard image
analysis techniques can be applied to solve the pose estimation problem. As gray
level images were the basis for the bin-picking approaches first addressed 30 years
ago (see Sect. 2.2), it is still useful to look into these classic papers. In [18] an
approach for gripper pose estimation using matched filters was presented in 1984.
Surprisingly, there have not been further developments of the ideas presented in this

http://dx.doi.org/10.1007/978-3-319-26500-1_3
http://dx.doi.org/10.1007/978-3-319-26500-1_2
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work. By adaptation of the methods of this classic paper to depth images a very
efficient gripper pose estimation technique can be obtained.

4.1.1 Fast Gripper Pose Hypotheses Generation

To revise, a gripper pose WPG is a pose of the gripper relative to the world coordi-
nate system, at which an object can be grasped. Using depth images as model for
the workspace, this means that a gripper pose is a feature in the depth image that
shows a local decrease in depth, therefore a local increase in object height. In other
words, a pattern must be found in the image which matches the gripper footprint in
its appearance. The gripper used in the experiments is a standard parallel jaw grip-
per that was already used in former experiments (see Fig. 3.9). The footprint of the
gripper fingers, which are the important part of it for grasping, can be approximated
as two simple squares. As the gripper may be rotated around its approach vector and
the algorithm shall be as fast as possible, a filter kernel is used that is rotationally
symmetric and thus contains all possible gripper orientations (see Fig. 4.1). This sim-
plification ensures a gripper pose estimation via a single convolution operation. Such
a filter kernel can also be used for other gripper types. No matter if a multifingered
hand, or an angular gripper is used, the kernel stays the same.

The correlation C of the depth image ID and this kernel K ′
G yields a set of gripper

pose hypotheses as these are the localmaxima of the correlation function. K ′
G denotes

a possibly scaled version of KG . In the case of a perspective depth camera like used
in the experiments (Microsoft Kinect), the size of the pixels is dependent on the
distance of the surface to the camera. This distance is approximated by using the
closest pixel in the depth image (see Sect. 4.4).

C (x, y) =
∑

ξ

∑
η

ID (ξ, η) · K ′
G (ξ + x, η + y) (4.1)

The locations (xm, ym) of the maxima of C (x, y) define two DoFs of the gripper
pose in pixel coordinates. These coordinates then have to be transformed into the
sensor coordinate system and evaluated and analyzed to find the optimal valid gripper

Fig. 4.1 Gripper kernel KG .
a Signs of weights. b
Optimal graspable object
superimposed. Graphic taken
from [2]

(a) (b)

http://dx.doi.org/10.1007/978-3-319-26500-1_3
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Fig. 4.2 Pick pose estimation by correlation.aDepth imageof a pile of different objects.Dark pixels
are closer to the camera. b Correlation result C . Regions that are high and have low surroundings
produce the highest (brightest) results. c Generated hypotheses using local maxima of C . The best
maximum (green square) is further analyzed in Fig. 4.3. d Valid pick pose shown as superposed
gripper footprint. Graphic taken from [2]

pose. The third DoF can be found by the local depth zg = ID (xm, ym) in the image
(see Fig. 4.2).

4.1.2 Hypothesis Evaluation and Gripper Pose Estimation

Eachmaximumin the resulting correlation image represents a hypothesis for a gripper
pose WPG . But, only three parameters of this pose have been estimated. Due to the
orientation invariance of the gripper kernel, a suitable orientation of the gripper is
still unknown. Furthermore, it has to be evaluated, if and how far the pose can be
approached without collisions.

The rotation angle around the approach vector can be computed using a local
patch of the image around the maximum. A local threshold is applied to the patch,
sized like the filter kernel, to generate a binary image in which the maximum values
are set to 1 and the minimum values to 0. This separates the graspable object region
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from the “background”. The binary image now has to be analyzed for optimal finger
placement. Depending on the gripper type, different procedures can be applied. In
the case of a parallel jaw gripper or angular gripper, the orientation can be estimated
as follows.

The topological skeleton of the binary patch is computed. Using only the skele-
ton, a line can be fitted into the patch using RANSAC [23] or deterministic linear
regression techniques. The normal of the estimated line describes the optimal ori-
entation � of the gripper to grasp this region (see Fig. 4.3). If a 3-jaw gripper is
used, a correlation could be used to find the best orientation which is similar to the
procedure described in Sect. 3.2.2. For a multifingered hand, the free space around
the grasp hypothesis could be analyzed for possible finger positions. The analysis
for a vacuum gripper is trivial. It is suitable to find a planar region and no orientation
has to be estimated. Now, only one additional parameter, the approach depth da , has
to be found. This parameter contains information about how far the gripper may
approach the gripper pose and can easily be estimated using the pixels at the com-
puted jaw positions. In this context, the jaw position means the hull of the footprint
of the fingers during their close or open motion. Subtracting zg from the minimum
depth of all pixels covered by the gripper footprint yields da . Figure4.4 illustrates
its computation.

Fig. 4.3 Estimation of the gripper orientation � of the marked hypothesis in Fig. 4.2 for a parallel
jaw gripper. a Section around pose hypothesis (xm , ym). b Binary image of the section. The object
is separated from the background. c Topological skeleton of the section. d Estimated line using
RANSAC. Graphic taken from [2]

Fig. 4.4 Calculation of the approach distance da using outer grasps or inner grasps of a parallel
jaw gripper. The same approach can be used for any type of gripper. Graphic taken from [2]

http://dx.doi.org/10.1007/978-3-319-26500-1_3
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With the algorithmdescribed above,manyhypotheses are generated.All valid gripper
pose hypotheses have to be ranked to find the best one to approach. One quality
measure is the parameter da , which is already available, and assures that no collisions
occur between the gripper jaws and the scene. As da becomes larger, the grasps at the
objects get more robust and shall be prioritized. Additionally, it has to be checked
that da exceeds a certain threshold εp and that the gripper palm does not collide with
any obstacle. The threshold εp has to be set to fit the gripper properties. By analyzing
the palm footprint, which, in the case of the gripper used in the experiments, is a
simple rectangle in the depth map, in the same manner as da has been obtained, full
collision avoidance can be guaranteed. A further quality measure is zg which is the
depth of the gripper in the bin. Objects that lie higher than others should be grasped
first. Lower zg therefore results in higher ratings of the gripper pose hypothesis. Other
quality measures can be applied if needed.

The described steps to compute a valid gripper pose are summarized in
Algorithm 1. Note that the output WPG does not contain the pitch and yaw angles
since they are fixed by the sensor setup as described above.

Data: depth image ID , gripper-defined kernel KG
Result: Gripper Pose WPG = {

xg, yg, zg,�
}
, da

find global minimum Md in ID ;
scale KG according to Md ;
Correlation function C = ID � �K ′

G ;
while no valid pose found do

find global maximum M in C ;
xm ← M.x ;
ym ← M.y;
zg ← ID[xm , ym ];
estimate topological skeleton line l in patch around (xm , ym);
� ← l.normal;
estimate approach depth da ;
if da > εp then

if gripper palm is collision-free then
valid pose found;

else
continue;

end
else

continue;
end
delete local area in C around (xm , ym);

end
transform (xm , ym) from pixel values into world coordinates;
xg ← T (xm);
yg ← T (ym);

Algorithm 1: Gripper pose estimation.
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4.2 Modifications and Enhancements

So far, not all possibilities of the approach are fully utilized. It is mentioned how
grasping from outside (grasping by closing the gripper jaws) using four DOFs of the
robot’s end-effector is possible. Many enhancements to this approach are possible.
If, for example, the objects to be grasped contain regions enabling a grasping from
inside, the local minima of the correlation function can be used as inside gripper pose
hypotheses. It may be necessary to adapt the filter kernel for a grasp from inside,
depending on the gripper geometry. In this case, a second convolution would be
necessary. In most cases, it is enough to decide for one pick style and use that to
clear the bin.

Different gripper types were already mentioned above and are a further possible
modification which can easily be integrated into the proposed system.

To enhance the robustness of the grasps, further analyses of the depth image are
possible. If the objects handled are graspable at their very ends, situations may occur
where two endpoints touch each other and two objects would be grasped accidentally.
To overcome this issue, a connectivity analysis of the binarized local patch has to be
done, to dismiss these regions. For inner grasps, a very similar procedure has to be
performed, to avoid grasps between separated objects. For this, a complete contour
can be detected in the region of the grasp hypothesis to assure validity of the gripper
pose.

More complex modifications are described in the following sections.

4.2.1 Pitch and Yaw Angles of the Pick Pose

So far, the rotation estimation of the gripper was limited to the rotation around the
approach axis, i.e. the roll angle �. Special types of objects may require a more
accurate grasp pose. For example, if the objects contain many cylindrical regions,
� is enough to estimate for a secure grasp, but an unaligned grasp of a tilted planar
object region might result in damages at the gripper or object (see Figs. 4.5 and 4.6).
In this case, pitch and/or yaw angles have to be computed additionally to the roll
angle of the gripper. This can be achieved by local analysis of the depth patch in the
grasping region. By approximating a plane in this region, i.e. by principal component
analysis, a normal can be computed describing the average orientation of the object.
The open vector o of the gripper must then be aligned with the plane normal n.
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(a) (b) (c)

Fig. 4.5 a Example of an object that should not be grasped with fixed grasping orientation. The
object or the gripper would be damaged during the grasp procedure. b Estimation of a plane in the
grasp region. c The open vector of the gripper coordinate system has to be aligned with the normal
of the plane to ensure safe grasping

(a) (b) (c)

Fig. 4.6 a Example of an object that could be best grasped with a variable pitch angle of the
gripper. The grasp on this object would be more robust. b Estimation of a plane in the grasp region.
The plane estimation works, because only the upper side of the object is scanned due to the single
point of view of the sensor. c The approach vector of the gripper coordinate system has to be aligned
with the normal of the plane to ensure best grasping

4.3 Bin-Picking Application—Grasp Pose Estimation

So far, objects may be grasped from a pile or a bin and may be transferred to a target
location coarsely defined, e.g., using the joint angles of the robot. For industrial
applications or service robotics, it is often essential to place the grasped objects at a
predefined position in a desired orientation. In these cases, model data of the objects
are required.

Employing the gripper pose estimation approach presented in Sect. 4.1 has the
drawback that the pose of the grasped object w.r.t. the gripper (denoted as grasp pose)
is unknown. Regarded from a different point of view, it has the essential advantage
that only the parameters needed for grasping are determined prior to grasping. Thus,
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the grasp motion could be initiated earlier; idle times of the robot could be reduced
and therefore pick and place cycle times could be minimized.

Nevertheless, to be able to place the grasped object at a desired pose, the grasp
pose has to be determined before the object is placed. In this section, approaches
are presented that estimate the grasp pose of the object. This happens either using
the sensor data used for gripper pose estimation, or during the transfer motion after
the object has been grasped, using force/torque and acceleration sensors. In fact, by
estimating the coordinates of the center of mass of the object and its principal axes
of inertia, a finite set2 of pose hypotheses can be obtained.

The next section describes a technique for grasp pose estimation based on visual
data. Then, a procedure to estimate the inertial parameters of an object which has
been graspedwill be presented. The derivation of robust pose hypotheses from inertial
parameters is addressed and strategies to deal with pose ambiguities are proposed.

4.3.1 Vision Based Grasp Pose Estimation

After the gripper pose is estimated, the robot can start the approach and grasp move-
ments. The time needed to perform these movements can be used to further analyze
the depth image. Until now, the estimation of the object pose WP O was avoided as it
was not needed to grasp the object. Now, as a gripper pose WPG is already available
and the next information needed is the grasp pose GPO , the object pose is of interest.
By estimating the object pose, using the known gripper pose, the grasp pose can
easily be computed by closing the transformation chain

GPO =
(

WPG
−1

)
WP O . (4.2)

The direct estimation of WP O is topic of Chap. 3 and can be used here as well. A
local patch of the depth image can easily be transformed into a 3D point cloud.
By using a region growing technique with a pixel of the depth image between the
gripper fingers as a seed pixel, a segmentation can be used to build this patch that
then nearly only consists of points of the grasped object. A RANSAM match can
then be computed very easily. The time that passes until a possible target pose for
the object is reached can be used for this computation, which means that the pose
estimation can be performed simultaneously to the robot’s transfer movements.

A problem that may occur is that the object may move during the closure of the
gripper fingers. This mainly happens, when pneumatic grippers are used without
tactile sensors built in the fingers. If this happens, the estimated gripper pose is only
a coarse estimate of the real pose. To overcome this problem, further sensors can be
included into the system.

2Not considering ambiguities arising from symmetry.

http://dx.doi.org/10.1007/978-3-319-26500-1_3
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4.3.2 Force/Torque/Acceleration Based Grasp Pose
Estimation

When an object is grasped by a manipulator and moved from one point to another,
forces and torques are exerted on the wrist of the robot. These forces and torques are
caused by the inertia of the object and the gripper. By measuring these forces and
torques, information about the pose of the object inside the gripper can be acquired,
if model data is available. To acquire this information, equations can be derived using
the basic laws of dynamics; the complete set of inertial parameters can be estimated.
These parameters are the product mc of the object’s mass m and coordinates c of the
center of mass (COM), and the elements of the inertia matrix I .

Based on these parameters, four features can be derived that are invariant to
rotation and translation. These four features are the mass and the three principal
moments of inertia; they can be estimated using sensor data acquired during the
movements of the robot. A force/torque sensor as well as an acceleration sensor
are mounted between the wrist of the robot and the gripper. These sensors deliver
6D force/torque values and 6D acceleration values. 3D angular velocity values are
measured by an inertial measurement unit (IMU). Additionally joint angle data is
acquired.

Now, based on the Newton-Euler approach, the dependence of the external forces
and torques and the motion of an object can be described by two vector equations
that are linear with respect to the unknown parameters.

S f = mSa − mSg +S α × mS c +S ω × (
Sω × mS c

)
(4.3)

Sτ = SI
S
α +S ω × (

SI Sω
) + mSc ×S a − mSc ×S g (4.4)

Here, the superscript S indicates that the sensor’s coordinate system S is used as
reference frame. S f and Sτ are the measured forces and torques. Sa and Sα are the
linear and angular acceleration vectors and Sω and Sg are the angular velocity vector
and the gravity vector. SI is the inertia matrix with

I =
⎛
⎝ Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎞
⎠ . (4.5)

The elements of matrix I constitute the moments and products of inertia. The com-
plete set of ten inertial parameters can be compiled into a vector

Sϕ = [
m, mScx , mScy, mScz,

S Ixx ,
S Ixy,

S Ixz,
S Iyy,

S Iyz,
S Izz

]T
. (4.6)

With Sϕ, Eqs. 4.3 and 4.4 can be written in matrix form3

3Note that the index S is omitted in Eqs. 4.9 and 4.10.
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(
S f
Sτ

)
= V

(Sa, Sg, Sω, Sα
) Sϕ (4.7)

with
V = (VmcVI ) (4.8)

and

Vmc =

⎛
⎜⎜⎜⎜⎜⎜⎝

ax − gx −ω2
y − ω2

z ωxωy − αz ωxωz + αy

ay − gy ωxωy + αz −ω2
x − ω2

z ωyωz − αx

az − gz ωxωz − αy ωyωz + αx −ω2
y − ω2

x

0 0 az − gz gy − ay

0 gz − az 0 ax − gx

0 ay − gy gx − ax 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.9)

VI =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
αx αy − ωxωz αz + ωxωy −ωyωz ω2

y − ω2
z ωyωz

ωxωz αx + ωyωz ω2
z − ω2

x αy αz − ωxωy −ωxωz

−ωxωy ω2
x − ω2

y αx − ωyωz ωxωy αy + ωxωz αz

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.10)

With Eq.4.7 the inertial parameters can be estimated using the sensor values mea-
sured during the transfer motion of the robot. As the sensor data is updated in every
control cycle, a recursive estimation technique has to be employed. Aweighted recur-
sive instrumental variables technique [46, 52] is applied, which combines signals of
several sensors. These sensors are, as already mentioned above, a wrist-mounted
inertial measurement unit, providing angular velocity signals and a wrist-mounted
force-torque sensor, providing forces, torques and linear and angular accelerations.
Additionally the encoder signals can be used as complementary measurements for
angular velocity, linear acceleration and angular acceleration.

To successfully estimate the inertial parameters and simultaneously move the
object from the start to the goal pose, a suitable trajectory has to be used. This
trajectory should fulfill the requirement that all needed parameters for pose estimation
are excited sufficiently. For example, a linear trajectorywouldnot allow for estimation
of the elements of the inertia matrix I . Therefore, the trajectory from start to goal
is superimposed by sinusoidal movements in the three hand joints. To generate a
measure of the quality of the pose estimation, the correlation matrix� is used which
consists of M different V matrices, so M successive measurements of all sensors,
compiled together:

� = Ṽ
T

Ṽ (4.11)

Ṽ = [
V T

1 V T
2 V T

3 . . . V T
M

]
(4.12)
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The condition number of � increases with increasing sensitivity of Sϕ to errors
in Ṽ and can therefore be used to observe the quality of the measurements. Further-
more, it has to be observed, whether the current estimate of the inertial parameters
has already converged. This has the advantage that the non-time-optimal estimation
trajectory can be stopped and a time-optimal place trajectory can be started as early
as possible. The ground truth of the inertial parameters of the object is known (e.g.
derived from theCADmodel) and can be used to stop the parameter estimation proce-
dure. To compare the ground truth and themeasured parameters, it is essential to have
rotational and translational invariant features. The only features usable in this context
are the mass m and the principal moments of inertia. These moments can be calcu-
lated as the eigenvalues I1, I2 and I3 of I and build the matrix I p = diag(I1, I2, I3).
A four dimensional feature set f = [m, I1, I2, I3] can be built, using these features.
The difference between the measured feature set fO and the ground truth feature
set f Q is estimated using the symmetric Kullback-Leibler divergence (SKLD) [96].
The SKLD JK L of the two feature sets can be regarded as the distance between two
probability distributions and takes the covariance � f O

of the estimated feature set
fO into account. fO and � f O

can be obtained from the estimated parameter vector
Sϕ̂ and its covariance matrix �ϕ̂ using the scaled unscented transform [40].

JK L = 1

2

[
� f T

(
�−1

f Q
+ �−1

f Q

)
� f + tr

(
�−1

f Q
� fO + �−1

fO
� f Q − 2E

)]
(4.13)

Here,� f = fO − f Q and tr denotes the trace of a matrix. When JK L falls below
a predetermined threshold, the switch from the estimation trajectory to the time
optimal direct place trajectory can be performed.

The gripper is attached to the force-torque sensor. Therefore, the sensors measure
the forces and torques of the grasped objects as well as the gripper itself. To over-
come this, the measurements resulting from the gripper have to be compensated. I.e.,
the inertial parameter vector of the gripper SIgr i pper has to be subtracted from the
estimated parameter vector SÎtotal to yield an estimate of the inertial parameters of
the object SÎob j .

SÎob j = SÎtotal − SIgr i pper (4.14)

Further practical challenges, such as the elimination of sensor offsets, etc., have to
be addressed to obtain robust and reliable estimates [47].

Using the estimated inertial parameters of the object, the pose of the object has
to be derived. This is done in two steps. At first the coordinates of the center of
mass (COM) are computed and then the principal axes of inertia. The center of mass
is easily derived by using the parameters 2–4 of Sϕ and dividing by m. In order
to compute the principal axes of inertia, the inertia matrix SIob j is expressed with
respect to the COM using the parallel-axis theorem [17]. The eigenvectors of the
resulting matrix C O MIobj constitute the principal axes of inertia computed by eigen
decomposition:

C O MIobj = SR Ip
SR

T
(4.15)
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The columns of SR are the eigenvectors and Ip is a diagonal 3 × 3-matrix contain-
ing the eigenvalues which constitute the principal moments of inertia. The matrix of
eigenvectors constitutes a rotation matrix SR relating the orientation of the principal
axes to the sensor frame S. Therefore, a pose hypothesis SP can be composed of SR
and a translation matrix given by ST = T rans

(
Scx ,

Scy,
Scz

)
.

SP = ST SR M (4.16)

The matrix M may denote the identity matrix E or any of the following rotations:
Rot (x,π), Rot (y,π), and Rot (z,π). This pose ambiguity results from the ambi-
guity of the principal axes of inertia.

This ambiguity problem can easily be addressed by using data of the depth cam-
era used for gripper pose estimation or the geometry of the gripper itself. During the
transfer motion simultaneous with the parameter estimation, simple visual features
can be analyzed to delete the ambiguities. Figure4.7a shows an examplewhere a sim-
ple analysis of a local patch around the gripper pose is enough to solve the ambiguity
problem. A set of pixels can be analyzed for depth differences to choose the correct
option of the two orientations. In Fig. 4.7b the gripper geometry only allows for one
grasp. Therefore only one of the two possible grasp poses is geometrically feasible.
A simple geometric test, checking for collisions of the gripper fingers transformed
relative to the CAD model can solve this problem.

When ambiguities arise and the visual features are not robust as well, situations
may arise in which ambiguities are not resolvable in practice. Figure4.7c shows an
example in which the asymmetry around the symmetry axis of a cylindrical part
neither causes robustly measurable differences during force/torque analysis nor can
robustly be solved by depth image analysis because the height difference may be
smaller then the sensor noise. In these cases, if the unknown rotation is important, a
further sensor like a smart camera can be used to solve the problem.

(a) (b) (c)

Fig. 4.7 Ambiguities and ambiguity elimination. a The two depicted poses of the piston rod cannot
be distinguished based on the inertial features. Simple clues provided by the vision system, however,
can easily resolve the ambiguity as the pose hypotheses differ considerably. b The pose hypothesis
associated with the green piston rod can be discarded. The gripper geometry and the maximum jaw
distance render the depicted grasp impossible. c The pose hypotheses cannot be distinguished in
practice because the object is nearly rotationally symmetric and therefore even minor estimation
errors will lead to significant errors in the computation of the principal axes. However, image
features may resolve such ambiguities as well. Graphic taken from [2]
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4.4 Experimental Depth Map Based Bin-Picking

Twoseries of experiments, as described in the following subsections,were performed.
In the first series, the ability of the system to grasp unknown objects was investigated.
For this purpose, several different objectswere picked and placed in a bin. The second
series served to evaluate the applicability of the system as a bin-picking solution.
With the aim of emulating industrial production environments, industrial metal parts
in a bin were grasped and placed at a desired pose. In the first series, outer grasps
were used whereas in the second series, inner grasps were employed as well.4

4.4.1 Hardware

For the experimental evaluation of the described approach, nearly the same setup as
the one described in Sect. 3.3 was used. The only difference to this setup was the
sensor. Instead of the SICK IVP Ruler, the Microsoft Kinect Sensor was employed
(the complete hardware setup with all vision sensors can be seen in Fig. 5.21). This
sensor was chosen for its data acquisition time of 30 fps or one thirtieth of a second.
When a perspective camera like the Kinect is used, some modifications have to be
made to the algorithms.

The Kinect is a depth camera. This means that every pixel of the acquired depth
image stores the distance of the focal point to a point in the scene. This results in
varying pixel sizes. Areas of the scene that are far away from the camera map to
fewer pixels of the camera than areas that are near to the camera. So, surface patches
mapped to pixels in the image are larger if they are farther away from the camera.
To resolve this problem, an approximate pixel size is calculated of the nearest pixel
in the image by using intrinsic camera parameters and the intercept theorem. The
filter kernel KG used for pick pose hypotheses generation has to be adapted to the
pixel size. The kernel is therefore scaled by a factor s computed like described above,
K ′

G = s · KG . The convolution is then performed using K ′
G .

As theKinect sensor was not developed for industrial applications, where absolute
accuracy is important, no effort was made to increase the stability of measurements
w.r.t. thermal conditions. Due to this, a significant drift of sensor values can be
observed when the temperature of the Kinect changes. In [20] this is analyzed in
detail. To overcome this issue, 3 calibration markers were placed in the workspace
with known coordinates. After a pick pose was generated, the coordinates of the
three markers in the sensor image were measured. With these 3 correspondences, the
z-coordinate of the pick pose was corrected.

Other hardware modifications to the setup of the prior experiments were the
following. The 6D force-torque as well as 6D acceleration measurements were pro-
vided by a wrist-mounted sensor manufactured by JR3 (85M35A3-I40-D 200N12).

4Grasps in which the gripper is closed to grasp are called outer grasps, grasps in which the gripper
is opened to grasp are called inner grasps.

http://dx.doi.org/10.1007/978-3-319-26500-1_3
http://dx.doi.org/10.1007/978-3-319-26500-1_5
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Fig. 4.8 Four example test piles used in the experiments. The bin is filled with a identical metal
parts, b mixed metal parts, c plastic toys and wooden toys, and d a mix of all available objects.
Images taken from [2]

Angular velocity measurements were supplied by an Analog Devices IMU5 (ADIS
16364). The inertial parameter estimation was performed on a PC running the QNX
Neutrino real-timeoperating system.Adistributed real-timemiddleware [21] enabled
efficient communication between the computing nodes.

4.4.2 Grasping Unknown Objects

To analyze the performance of the system with unknown objects, several piles of
objects in the work space were prepared (examples can be seen in Fig. 4.8). As test
objects rawmetal parts as well as plastic andwooden objects of arbitrary shapes were
used. As the geometry of the objects was unknown, no grasp pose was estimated and
the objects were only picked and dropped into another bin afterwards. A series of 261
grasp attempts has been performed. In contrast to the experiments presented in the
following section, force sensing was merely employed to detect collisions. The data

5Inertia Measurement Unit.
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acquisition time was n/30 s where n is the number of averaged Kinect scans. In our
experiments, n is set to 3. The averaging was performed to reduce the sensor noise
of the depth images. The time overhead did not increase the cycle times. The vision
processing time, i.e. the time until a valid pick pose became available, was 18ms (no
notable variance). This value comprises 10ms for convolution and maxima search
as well as 8ms for maxima evaluation including the computation of the approach
distance and the orientation of the gripper. The number of skeleton pixels used for
orientation estimation was around 20–30, depending on the scaling factor s, which
resulted in a very fast evaluation. Obviously, both, the image acquisition and the
vision processing (in total requiring 118ms), could be executed during the place
movement of the manipulator. With the test setup, the overall cycle time was 8s from
pick to pick, which is exactly the duration of the robot motion. The dynamics of the
robot were reduced significantly since a pneumatic load limiter was used to prevent
damages of the manipulator in case of collisions. However, this load limiter was also
triggered by inertial forces and associated torques.

The total grasp success rate was 95.4%. Unsuccessful grasps were caused by
sensor noise and may be classified into two categories. The computed approach
distance may be too small to allow for a stable grasp. In this case, the objects slipped
off the gripper during the depart motion. Sensor noise may also result in minor
collisions of the gripper with the object thus compromising the grasp. Due to the
short acquisition and vision processing times, a new pick pose could be computed
without significant timeoverhead in these rare cases, after the robot left theworkspace
above the bin. The average cycle time was therefore not increased notably.

4.4.3 Bin-Picking

The task of bin-picking, besides the picking of objects, also includes a defined place-
ment. Simply dropping the grasped objects into another bin is not enough in most
cases. In the experiments above, the placement was omitted to analyze the applicabil-
ity of the gripper pose estimation. To integrate the gripper pose estimation technique
into a bin-picking station, the grasp pose estimation, described in Sect. 4.3 is added
to enable defined placement of the grasped objects. The sequence diagram of the
bin-picking procedure can be seen in Fig. 4.9. This diagram shows that each com-
putational step is performed directly before its result becomes important. All steps
are computed simultaneous to the robot’s movements. The gripper pose estimation
starts when the robot leaves the workspace; the grasp pose estimation starts simul-
taneously with the place trajectory execution. The only time overhead occurs due
to the superposed sinusoidal movements in the hand joints. This time overhead is
approx. 20% of the optimal transfer motion from bin to the feeder. However, as the
estimation trajectory is canceled as soon as a sufficient pose estimate is available,
the effective increase in the duration of the transfer motion is lower.

To show the applicability of the approach, a bin was filled with piston rods. Using
the gripper pose estimation for inner grasps, the piston rods were picked up using
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Fig. 4.9 Sequence diagram of the depth map based bin-picking system. The diagram reveals the
high amount of possible parallel computations. The red color denotes the vision analysis, green
denotes the force/torque/acceleration value analysis, and blue are the robot’s movements. Diagram
taken from [2]

their big holes and then placed in the feeder. As the inside grasp eliminates all but
two DoFs of the object, which can be estimated unambiguously, no additional visual
features are required. The key parameter is the angle of the piston rod around the
approach vector of the gripper. The average absolute error obtained in 50 trials is
2.7◦. This error enables a safe placement in the feeder as it can compensate minor
angular deviations. A significant fraction of the estimation error is due to structural
oscillations of the manipulator during the estimation trajectory. This problem is
further aggravated by the load limiter.
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4.5 Discussion

This chapter describes an extremely efficient approach to solve the bin-picking prob-
lem for arbitrary objects. It outperforms known approaches in terms of robustness
and cycle times. The good performance results from an efficient information man-
agement and data acquisition and analysis. 3D point clouds are avoided as a 2D
representation of the same data proves to be sufficient to solve the task. All this
makes it possible to use cheap 3D sensors whereas former approaches needed very
accurate and expensive vision hardware.

The disadvantage of this approach is that grasp poses cannot be restricted. If
certain parts are not allowed to be grasped at certain areas, this approach cannot be
applied. Furthermore, a set of sensors has to be added to the system to acquire the
inertial parameters needed for grasp pose estimation.

As grasping is not based on the model data of the object, it can also be used to pick
unknown objects. And even in this field of research, the performance is better than
known approaches. In these scenarios, when unknown objects have to be picked, a
defined placement is not possible.



Chapter 5
Normal Map Based Pose Estimation

The last section described an approach to solve the bin-picking problem using depth
maps. These depth maps can be generated with special depth cameras or 3D scan-
ners. To base an approach on 3D data has therefore at least one of the following
disadvantages. Either the scanning device is expensive (state-of-the-art commercial
laser scanners or structured light scanners) or a time consuming procedure has to be
performed to acquire 3D coordinates or the resolution and the accuracy are very low
(Kinect, ToF cameras) or a combination of these. Another disadvantage, in regard
to the Kinect sensor, is the fixed hardware setup that results in a fixed measurement
range. Many—and especially cheap sensors—only exist in a finite number of vari-
ations (e.g. the Kinect sensor is only available in a fixed hardware setup) and may
therefore not be applicable to certain situations. Regarding service robotics, a further
disadvantage may be the use of laser light which might not be regarded as eye-safe
for use by humans.

As the described methods of this work, presented in the former sections, already
reduce the costs of the sensors, not only in the monetary but also in the temporal sense,
these considerations shall be continued within this chapter. Through the experiments
of the last section, it turned out that using single shot data acquisition may result in
superior performance of a system. So, the used scanning device should only need
fractions of a second to acquire data.

Reviewing fast visual data acquisition techniques found in literature showed that
it is possible to acquire surface normal maps1 with a single camera shot.

1In this document, surface normal maps will be named simply “normal maps” for sake of simplicity.
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5.1 The Normal Map

A normal map is an image of a scene, in which each pixel contains the normal of the
surface intersected by the according viewing ray of that pixel. In contrast to depth
maps, the distance between the focal point of the camera to the surface along this
viewing ray is unknown. As each (normalized) normal has two degrees of freedom,
normal maps can be color coded using e.g. the red color channel for the polar angle
and the blue color channel for the azimuthal angle or three color channels for the
three Cartesian coordinates of the normal (the latter is used within this work). With
such a color representation, normal maps can be intuitively visualized.

The acquisition of normal maps is introduced briefly in the appendix in Sect. A.2
since it is not an essential contribution of this thesis.

As normal maps do not contain depth information but, in a mathematical sense
the derivative of the depth, they are usually integrated, to generate 3D data, which
are then used for various purposes. This, in contrast to the single shot acquisition,
is time consuming and many assumptions, like smoothness constraints, and prior
knowledge are needed for accurate depth estimation. For this reason, normal maps
are rarely used for pose estimation.

But, as using single shot measurements is such a big advantage, and the integration
of the normals to estimate depth is often not accurate enough, the following sections
propose new approaches to directly use normal maps as basis for pose estimation.

5.2 Generic Pose Estimation Using Normal Maps

The problem with using normal maps for pose estimation of objects in 3D is that no
explicit 3D data is stored in these maps, which is obviously the main reason not to
use them for 3D pose estimation. But, with a calibrated camera, 3D viewing rays can
be constructed through pixels with known normals. This is a very important aspect
of the pose estimation technique presented here.

Based on CAD models, like in the first two chapters, a comparable representation
of the model and the normal map has to be found first. The only quantities present
in both data sets are surface normals. As it is not known, which of the normals in the
image correspond to which normals of the model and no orientation information or
position information of the object in the image is known, only the normals, without
any positional information can be used. As the normal vectors only contain orientation
information, the extraction of the normals of the image and the model separates
the orientation estimation from the translation estimation leading to a two step pose
estimation. Therefore, at first, the orientation is estimated using the extracted normals,
and with a known orientation the translation is computed resulting in object poses.
The two steps are presented separately in the next two sections. Each of the steps
can be used without the other for further applications.
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5.2.1 Orientation Estimation

As described in the introduction, the orientation information has to be extracted from
the normal data. In other words, a comparable data representation has to be found
for the image and the model.

This can be done by computing Extended Gaussian Images (EGI) [32] of both,
the model and the normal map. An EGI can be interpreted as spherical histogram of
normals. At each point of the sphere, the area of the object with the related normal
is stored. The spherical coordinates ϕ and θ on the sphere of a normalized normal
�n = [

nx , ny, nz
]T

can be computed as

ϕ = arccos (z) , (5.1)

θ = arctan
( y

x

)
. (5.2)

Here, “area” means the sum of the sizes of the faces with corresponding normals,
when dealing with the CAD model and the number of the pixels with corresponding
normals when dealing with the normal map. Further, as tilted surface patches pro-
jected onto one pixel are larger than surface patches parallel to the image plane, each
normal of the normal map contributes an area of

A(ni ) = Apixel

〈ni , r〉 (5.3)

to the EGI at the position of the normal ni . The sum of all A(ni ) then forms the
complete EGI. Here, ni is the normal, r the 3D viewing ray of the pixel, and Apixel is
the size of a single pixel. Of course, the distance of the surface patch does also effect
the size of the area that is observed by one pixel. But, as the distance is unknown
and, under consideration of a weak perspective (see Sect. A.2.1) does not vary very
much within the model, the effect of the distance is ignored.

The two EGIs each represent a function on the unit sphere (see Fig. 5.1). A suc-
cessful orientation estimation is the comparison of both spheres and the search for an
optimal overlap of both functions. Due to the monocular image acquisition, the EGI
of the normal map is subject of shadowing effects. Considering a convex object, only
the upper half of it is visible and thus, only the upper half equals the model’s EGI.
If concave objects are used, even more shadowing effects are present. Assuming a
perfect rotational alignment between model and image, this can be expressed as

Emodel(ω) = s
(
Eimage(ω) + h(ω)

)+ l(ω). (5.4)

Here, Emodel(ω) and Eimage(ω) are the two EGIs, s is a scaling factor, h(ω) is the
hidden part of the upper hemisphere and l(ω) is the lower hemisphere of the EGI of
the object. ω = (ϕ, θ)T is the spherical coordinate.
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Fig. 5.1 Extended Gaussian Images. The values on the spheres are scaled. Red are the highest
values and blue the lowest values. a, d Cube model and EGI. b, e Piston rod model and EGI. c, f
Dragon model and EGI

To find the optimal orientation of the two EGIs, a correlation of the two spherical
functions has to be computed. This correlation determines the three rotational DOFs
between the two EGIs. The mathematical background of this is the topic of the next
section.

Mathematical Background of the Orientation Estimation

The comparison of two functions can be computed by a correlation of these functions.
The location of the maximum of the correlation function describes the amount of
“shift” between the two functions that needs to be applied for maximum overlap. As
the functions present here are defined on the sphere S

2, a detailed introduction on
the mathematical theory is given here. In image analysis, the correlation of functions
defined on the plane R

2 is very popular. Therefore, parallels are always mentioned
to clarify the theory. At first, the continuous case is described and the results are
then transferred to discrete spheres. At first, Extended Gaussian Images, the sphere
S

2 and the rotation group SO(3) are introduced in detail. Then, an efficient way of
correlation of functions on the sphere is introduced. At last, the energy analysis of
spherical functions and its application in the context of pose estimation is shown.

The mathematical background presented in this chapter is mainly derived from
[45, 86].
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Extended Gaussian Images, the Sphere S
2 and the Rotation Group SO(3). To

simplify the complex problem of pose estimation using normal maps, it was split
into two sub-problems. To decouple the orientation estimation and the translation
estimation, all normals were mapped onto the unit sphere using the according face
size as weight in a first step. By this, all available normals were combined, producing
two so called Extended Gaussian Images (EGI). The EGI usually is used in case of
3D point clouds and only for coarse registration prior to an ICP algorithm [55].
To stay in mathematical terms, we consider the two EGIs as real valued functions
f : S2 → R and g : S2 → R defined on the unit sphere S

2 embedded into R
3, i.e.

S
2 = {

x ∈ R
3| ‖x‖ = 1

}
. (5.5)

Each coordinate x on the unit sphere can be transformed from spherical coordinates
(the azimuthal angle ϕ and the polar angle θ) to Cartesian coordinates by

x(ϕ, θ) = (x1, x2, x3)
T =

⎛
⎝ sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

⎞
⎠ ;ϕ ∈ [0, 2π) ; θ ∈ [0,π] . (5.6)

To rotate two different points onto each other, the rotation matrix R ∈ R
3×3 can

be used. The matrix R fulfills det (R) = 1 and RT R = I with I being the identity
matrix. The group that consists of all rotation matrices R is called Rotation Group
SO(3). The rotation of a point v ∈ S

2 can be computed as

vR = Rv; R ∈ SO(3). (5.7)

There are different ways of rotation parametrization for the elements of SO(3). For
the techniques presented here, the Euler angle parametrization is used. Every rotation
matrix R can be constructed using three angles α, β and γ with α, γ ∈ [0, 2π) and
β ∈ [0,π]. R(α,β, γ) is then defined as

R(α,β, γ) = Rz(α)Ry(β)Rz(γ) (5.8)

with

Rz(α) =
⎛
⎝cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎞
⎠ (5.9)

and

Ry(β) =
⎛
⎝ cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

⎞
⎠ . (5.10)
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Since the two EGIs described in Sect. 5.2.1 are rotated versions of each other, at least
theoretically,2 the orientation estimation problem can be reformulated as finding the
rotation matrix R ∈ SO(3) such that f (x) = g(Rx), where f, g are real valued
functions representing the two EGIs. As f and g are defined on S

2 and R is an
element of SO(3), the close relationship between the rotation group and the unit
sphere has to be analyzed.

The defined rotation matrix R was parameterized using Euler angles. Another
representation of rotation matrices is the axis-angle parametrization. Given R, its
rotation axis r is defined by the eigenvector of R, w.r.t. the eigenvalue λ = 1, as

r = 1

‖v‖v with v =
⎛
⎝g23 − g32

g31 − g13

g12 − g21

⎞
⎠ and R = (

gi j
)

j,k=1,2,3 ∈ SO(3); R �= I .

(5.11)
The rotation angle ω is defined as

ω = cos−1

(
tr(R) − 1

2

)
. (5.12)

As ‖r‖ = 1, it follows that r ∈ S
2 and the link from SO(3) to S

2 is obvious. When
the axis r and the angle ω are given, R can be constructed using

R = R (ω, n) = I + sin (ωN) + (1 − cos(ω)) N2 (5.13)

with

n = (n1, n2, n3)
T and N =

⎛
⎝ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞
⎠ . (5.14)

This directly leads to a possible metric � for the rotation group [36]. This metric
is defined as

�(Ri , R j ) := |�| , with R(�, n) = Ri RT
j ; Ri , R j ∈ SO(3). (5.15)

This metric is invariant towards rotations and is essential for the comparison of
different rotations.

With these basics, the comparison of two spherical images f, g : S2 → C is basi-
cally the same as between two planar images h, i : R2 → C. A cross correlation of f
and g computes the similarity of two functions. On the sphere, this can be written as

( f � g)(R) =
∫
S2

f (ω)g(R−1ω)dω; f, g : S2 → C. (5.16)

2As already described in Sect. 5.2.1, the spheres are only approximately similar, due to shadowing
effects, limited viewpoints and sensor noise.
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The problem with the direct computation of the correlation in this way is that high
correlation maxima are formed by high valued areas on f independent of the pattern
on g. To enhance the robustness of the correlation and to suppress these errors, the
normalized cross correlation

NC(R) =
∫
S2

(
f (ω) − f̃W

)
(g (Rω) − g̃) dω√∫

W
∣∣∣ f (ω) − f̃W

∣∣∣2 dω
√∫

W |g (ω) − g̃|2 dω

, (5.17)

cf. [78] can be used. Here, W is the window defined by the limited area of the EGI of
the image, i.e., a hemisphere. f̃W , g̃ ∈ C are the mean of f under the rotated hemi-
sphere of the EGI of the image and the mean of the EGI of the image g, respectively.

Correlation of Functions on S
2. The evaluation of the Eqs. (5.16) and (5.17) is

computationally very costly. But, as known from image analysis, the convolutions
can efficiently be computed using the fast Fourier Transform. This is also true for
functions defined on the sphere. To describe the mathematical background of the
efficient rotation estimation based on unit spheres, at first an introduction to the har-
monic analysis of SO(3) is needed. As S2 is embedded into SO(3), the introduction
of analysis of functions on the rotation group and the unit sphere are important.

The integration of a function f : S2 → C, depending on spherical coordinates
ξ = ξ(α,β) ∈ S

2 is defined as

∫
S2

f (ξ)dξ = 1

4π

∫ 2π

0

∫ π

0
f (ξ) sin(β)dαdβ (5.18)

With this definition and the restrictions of the functions to be square integrable
f ∈ L2(S2) and to have finite energy

∫
S2 f (ξ) f (ξ)dξ < ∞, the inner product of

two functions f, g ∈ S
2 can be defined as

〈 f, g〉 =
∫
S2

f (ξ)g(ξ)dξ (5.19)

while the convolution of two functions f, g ∈ S
2 is given by

( f, g) (R) =
∫
S2

f (ξ)g(R−1ξ)dξ. (5.20)

The idea of the Fourier transform is, to describe a function as sum of weighted basis
functions. On the line R, which is very popular with all engineers, these functions
are sines and cosines. And every function f : R → C can be described as

f (x) =
∫
R

f̂ (u)e2πiux du. (5.21)
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The term e2πiux describes the mentioned sines and cosines and therefore the basis
for functions on R.

To transfer the Fourier transform to the sphere, at first an orthogonal basis for
L2(S2) has to be found. This basis are the well known spherical harmonics with
degree l ∈ N0 and order m = −l, . . . l, which are defined as

Y m
l (ξ) =

√
2l + 1

4π

√
(l − m)!
(l + m)! Pm

l (cos(θ))eimϕ. (5.22)

Here, ξ ∈ S
2 with coordinates (ϕ, θ) ∈ [0, 2π) × [0,π] and Pm

l : [−1, 1] → R are
associated Legendre Polynomials

Pm
l (x) = (−1)m(1 − x2)

m
2

dm

dxm
Pl(x) = (−1)m

2l l! (1 − x2)
m
2

dl+m

dxl+m
(x2 − 1)l (5.23)

that are constructed as derivatives of ordinary Legendre polynomials Pl(x). The
spherical harmonics are the eigenfunctions of the Laplacian on the sphere. Further-
more, the spherical harmonics satisfy the orthogonality relation

∫
S2

Y m
l (ξ)Y m ′

l ′ (ξ)dξ = δll ′δmm ′ . (5.24)

By δab in this context, the Kroenecker delta

δab =
{

1, if a = b

0, otherwise
(5.25)

is denoted, which shall not be mistaken for a Dirac delta function.
The subspace Harml

(
S

2
) = span

{
Y m

l |m = −l, . . . , l
}

spanned by spherical har-
monics with a fixed degree l ∈ N is called harmonic space of degree l. The har-
monic spaces Harml

(
S

2
)

provide a complete system of SO(3)-invariant subspaces
of L2

(
S

2
)
, i.e.,

L2 (
S

2) = closL2

∞⊕
l=0

Harml
(
S

2) . (5.26)

Therefore, the spherical harmonics can be used as basis of L2(S2). In the following,
the harmonic subspaces Harml are also called band spaces Bl .

Using this basis, the Fourier expansion of functions f : S2 → C can be computed.
As the basis functions have the degree l and in each band defined by a certain degree
l ′ there are 2l ′ + 1 basis functions of order m ′ = −l ′, . . . , l ′, this expansion can be
constructed by

f (ξ) =
∞∑

l=0

l∑
m=−l

f̂ m
l Y m

l (ξ), ξ ∈ S
2. (5.27)
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The f̂ m
l are called Fourier coefficients and can be computed as

f̂ m
l = 〈

f, Y m
l

〉
. (5.28)

The appearance of the spherical harmonics can be seen in Fig. 5.2.
Now with a basis for functions on S

2, the concept of (5.7) can be transferred
to complete functions. As already said, the EGIs only differ in a relative rotation.
Therefore, the relation between the two oriented functions on the sphere can be
written as

C(R) =
∫
S2

f (ξ)g(R−1ξ)dξ. (5.29)

This is, of course, the correlation of the two functions, both defined on the sphere.
The maximum of the function C then is the optimal solution to the orientation
estimation problem. By transferring this problem into the Fourier domain, using
the tools described above, the convolution simplifies to a multiplication just like it
does in the plane. At first, the functions f and g are expanded in terms of spherical
harmonics

f (ξ) =
∞∑

l=0

l∑
m=−l

f̂ m
l Y m

l (ξ) and g(ξ) =
∞∑

l ′=0

l ′∑
n=−l ′

ĝn
l ′Y

n
l ′ (ξ). (5.30)

Combining formula (5.29) and (5.27) leads to

C(R) =
∫
S2

[ ∞∑
l=0

l∑
m=−l

f̂ m
l Y m

l (ξ)

][
�(R)

∞∑
l ′=0

l ′∑
n=−l ′

ĝn
l ′ Y

n
l ′ (ξ)

]
dξ. (5.31)

At this point, a property of the spherical harmonics can be exploited to further
simplify the formula. This property is that a rotated spherical harmonic always stays
in its band, i.e., its frequency is rotational invariant. This expresses as

(a) (b)

Fig. 5.2 Visualization of the spherical harmonincs. a Real part of the spherical harmonics.
b Imaginary part of the spherical harmonics. Image taken with permission from [49]
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Y n
l (R−1ξ) =

l∑
m=−l

Y m
l (ξ)Dm,n

l (R). (5.32)

This property is called the representation property.
By Dm,n

l , the Wigner-D functions are denoted. A full derivation of these functions
can be found in [86]. Explicitly, they can be written w.r.t. their Euler angles as

Dm,n
l (R(α,β, γ)) = e−imαe−inγdm,n

l (cos(β)). (5.33)

The term dm,n
l (x) are the so called Wigner-d functions that are defined as

dm,n
l (x) = (−1)l−n

2l

√
(l + m)!

(l − n)!(l + n)!(l − m)!

√
(1 − x)n−m

(1 + x)m+n

dl−m

dxl−m

(1 − x)n+l

(1 + x)n−l
.

(5.34)

The Wigner-D functions are a generalization of spherical harmonics, which gives
a link from SO(3) to S

2. Consequently, the spherical harmonics can be expressed,
using Wigner-D functions

Y m
l (α,β) =

√
2l + 1

4π
eimαdm,0

l (cos(β))

=
√

2l + 1

4π
Dm,0

l (R(α,β, γ))

=
√

2l + 1

4π
D0,−m

l (R(γ,β,α)) .

(5.35)

The third Euler angle γ ∈ [0, 2π) can be chosen freely because S
2 only has the two

parameters α and β.
Wigner-d functions are symmetric in certain ways

dm,n
l (−x) = (−1)l+nd−m,n

l (x) and

dm,n
l (x) = (−1)m+ndn,m

l (x)

= (−1)m+nd−m,−n
l (x)

= d−n,−m
l (x).

(5.36)

Now, combining (5.31) and (5.32) leads to

C(R) =
∞∑

l=0

∞∑
l ′=0

l∑
m=−l

l ′∑
k=−l ′

l ′∑
n=−l ′

Dk,n
l ′ (R) f̂ m

l ĝn
l ′

∫
S2

Y m
l (ξ)Y k

l ′ (ξ)dξ. (5.37)
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Of the symmetry properties of Wigner-d functions (5.36) follows that Dm,n
l =

D−m,−n
l . With this and the knowledge of the orthogonality of the spherical harmonics

(5.24), Eq. (5.37) further simplifies to

C(R) =
∞∑

l=0

l∑
m=−l

l∑
n=−l

(−1)m+n f̂ m
l ĝn

l D−m,−n
l (R)

=
∞∑

l=0

l∑
m=−l

l∑
n=−l

(−1)m+n f̂ −m
l ĝ−n

l Dm,n
l (R).

(5.38)

With this, the link between convolution of functions on the plane R
2 and the sphere

S
2 is perfectly obvious. One can see in (5.38) that the correlation reduces to a mul-

tiplication using the Fourier transform. This immensely simplifies the computation
of the cross correlation (Eq. (5.16)).

Further analysis of the Wigner-D functions shows that

〈
Dm,m ′

l , Dn,n′
l ′

〉
= 8π2

2l + 1
δmnδm ′n′δll ′ . (5.39)

Therefore, the Wigner-D functions themselves are an orthogonal basis of SO(3) and
the SO(3) Fourier series is

f (R) = lim
L→∞

L∑
l=0

l∑
m=−l

l∑
n=−l

f̂ m,n
l Dm,n

l (R), f ∈ L2(SO(3);C) (5.40)

with

f̂ m,n
l = 2l + 1

8π2

〈
f, Dm,n

l

〉
. (5.41)

Applying Spherical Harmonics to the Orientation Estimation Problem. The pre-
sented theory in the former section has to be applied and the presented algorithms
have to be evaluated in an efficient and robust way. Therefore, some modifications
are presented that allow the application of the mathematics to real world tasks. To
enhance the efficiency of the normalized cross correlation (5.17) some more delib-
erations need to be made, as in Eq. (5.17) the additional normalization terms Ng and
N f are present

Ng =
√∫

W
|g (ω) − g̃|2 dω =

√∫
W

(g (ω) − g̃) (g (ω) − g̃)dω (5.42)
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N f (R) =
√∫

W(R)

∣∣∣ f (ω) − f̃W
∣∣∣2 dω

=
√∫

W(R)

(
f (ω) − f̃W

) (
f (ω) − f̃W

)
dω,

(5.43)

cf. [34]. To recap, W is the window defined by the limited area of the EGI of
the image, i.e., a hemisphere and W(R) is its rotated version. Ng and N f are the
energies of the two functions subtracted by their means as the energy E f of a function
f ∈ L2(S2;C) is defined as

E f =
∫
S2

f (ω) f (ω)dω. (5.44)

Parseval’s theorem gives a link between the Fourier coefficients of a function and
the function itself. For the spherical case, this is

E f =
∫
S2

f (ω) f (ω)dω =
L∑

l=0

l∑
m=−l

∣∣∣ f̂ m
l

∣∣∣2 . (5.45)

The spherical harmonic with degree 0 and order 0 is

Y 0
0 ≡ 1√

4π
. (5.46)

Therefore, the mean of a function f : S2 → C computes as

f̃ =
∫
S2 f (ω)dω∫

S2 dω
=
∫
S2 f (ω) 1√

4π

√
4πdω

4π
=

√
4π
〈
f, Y 0

0

〉
4π

= 1√
4π

f̂ 0
0 . (5.47)

Using (5.45) and (5.47), Eq. (5.42) becomes:

N 2
g =

L∑
l=0

l∑
m=−l

∣∣ĝm
l

∣∣2 − 1√
4π

(ĝ0
0)

2 =
(

ĝ0
0 − ĝ0

0√
4π

)2

+
L∑

l=1

l∑
m=−l

∣∣ĝm
l

∣∣2 . (5.48)

The coefficients ĝm
l are also needed for the standard cross correlation. Therefore,

the computation of Ng does not change the complexity of the overall algorithm. To
efficiently compute the normalization term N f (R), the window function W (ω) is
introduced

W (ω) =
{

1, if ω ∈ W
0, otherwise

(5.49)

to consider the rotational dependency of N f of ω. Hence, (5.43) can be rewritten as
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N 2
f (R) =

∫
SO(3)

∣∣∣ f (ω) − f̃W
∣∣∣2 W (R−1ω)dω. (5.50)

This corresponds to the cross correlation of the function U (ω) =
∣∣∣ f (ω) − f̃W

∣∣∣2 with

the window function W and is therefore computable using the fast Fourier transform.
So, (5.43) finally simplifies to:

N f (R) = √
(U � W )(R) (5.51)

As W is constant, N f (R) can be computed offline and only once per model. There-
fore, the overall complexity of the normalized cross correlation is the same as the
complexity of the cross correlation.

Energy Analysis of Functions on S
2

With Eq. (5.4), the relation of the two EGIs, present in the orientation estimation
process, can be described. When the “amount” of h(ω) and l(ω) becomes large
in this equation, the similarity of the two EGIs may become quite small and the
estimation might fail. This is mainly the case, when very complex, concave objects
have to be located. In these scenarios, it is necessary to enhance the search process
by a limitation of the search space.

The Fourier analysis, described in the former section, offers an additional feature
which can be analyzed for this purpose. Introduced in Eq. (5.45), Parseval’s theorem
describes the link between a function, its spectrum, and its energy. Recall that the
energy E f of a function f ∈ L2(S2;C) can be computed as

E f =
∫
S2

f (ω) f (ω)dω =
L∑

l=0

l∑
m=−l

∣∣∣ f̂ m
l

∣∣∣2 . (5.52)

Here, l is the degree of the according spherical harmonics. All spherical harmonics
Y m

l with fixed l build the lth band space Bl . The union of all Bl builds L2(S2). And
a function f can be represented by the union of functions fl ∈ Bl by

f (ω) =
∞∑

n=1

fl(ω) (5.53)

with

fl(ω) :=
l∑

m=−l

f̂ m
l Y m

l (ω). (5.54)
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The band energy of the band space Bl can be computed by

E fl =
l∑

m=−l

∣∣∣ f̂ m
l

∣∣∣2 . (5.55)

Due to the rotational invariance of the band spaces, a vector of all band energies can
be used as rotational invariant feature vector e f := {

E f0 , E f1 , . . . , E fN

}
.

In [41] this feature vector was used for a model search in a data base. For the
orientation estimation, it can be used to reduce the search space. By rendering a set
of normal maps of the object of equispaced poses on the surrounding sphere of the
object, e f can be computed for each rendered normal map and a data base can be
built containing the virtual camera poses, the EGIs of the rendered normal maps,
and the energy vectors as keys. When a new EGI of a scene is acquired, a data base
search can be done to find the best fitting feature vector. By this, the nearest viewing
direction can be found and the correlation of the two EGIs can be computed in which
h(ω) and l(ω) are very small.

Another interesting aspect is that if the density of camera poses around the object is
high, the nearest neighbor match of the two energy vectors only leaves one degree of
freedom, as the image may only be rotated around the viewing direction. Interestingly,
this degree of freedom can be computed during the translation estimation steps, as
will be described in Sect. 5.2.2. An energy lookup table may therefore be enough for
orientation estimation and the correlation of the two EGIs may be redundant. This
aspect is a topic for further research.

Sample Sets for S
2 and SO(3)

To numerically compute the correlations needed for pose estimation, the algorithms
described above have to be applied to discrete sets. Therefore sample sets for two
different manifolds, i.e., the unit sphere S

2 (the EGIs) as well as the rotation group
SO(3) have to be found. Furthermore, the Fourier transforms have to be adapted to
work on discrete sets of points. As S2 and SO(3) are closely related, the sample sets
are very similar.

The discrete Fourier series of a function f : S2 → C with according spherical
harmonics Y m

l |(l, m) ∈ IS(L), the set of indicesIS(L) = {(l, m)|l ∈ N0, l ≤ L , m ∈
Z ∧ −l ≤ m ≤ l}, and bandwidth L is defined as

f = Y f̂ , (5.56)

f̂ = wT Y f , (5.57)
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with
f = ( f (s1), . . . , f (sN )) ∈ C

N ,

f̂ =
(

f̂ 0
0 , f̂ −1

1 , f̂ 0
1 , f̂ 1

1 , . . . , f̂ L
L

)
∈ C

(L+1)2
,

Y = (
Y m

l (si )
)

si ∈S; (l,m)∈IY (L)
∈ C

N×(L+1)2
,

w = (w1, w2, . . . , wN ) ∈ R
N .

(5.58)

For functions f : SO(3) → C and according Wigner-D functions Dm,n
l |(l, m, n) ∈

IR(L), the set of indices IR(L) = {(l, m, n)|l ∈ N0, l ≤ L; m, n ∈ Z ∧ −l ≤ m,

n ≤ l}, and bandwidth L the Fourier series is similarly defined as

f = D f̂ , (5.59)

f̂ = wT D f , (5.60)

with

f = ( f (s1), . . . , f (sN )) ∈ C
N ,

f̂ =
(

f̂ 0,0
0 , f̂ −1,−1

1 , f̂ −1,0
1 , f̂ −1,1

1 , f̂ 0,−1
1 , . . . , f̂ L ,L

L

)
∈ C

(L+1)(2L+1)(2L+3),

D = (
Dm,n

l (ri )
)

ri ∈R; (l,m,n)∈IW (L)
∈ C

N× 1
3 (L+1)(2L+1)(2L+3),

w = (w1, w2, . . . , wN ) ∈ R
N .

(5.61)

The two sample sets IS and IR are essential for a successful computation. Therefore,
they have to be chosen carefully. Different sample sets differ in their point distribution
and their computational complexity.

Sample Sets for S
2. EGIs were used to represent the rotational relation between the

model and the normal map. All normals of both, the map and the model are stored on
the spheres. Therefore, it is essential that on the one hand, it is possible to efficiently
find the nearest available neighbor for one normal within the sampling set. On the
other hand, it is even more important that the resulting discrete spherical function is
independent towards the orientation of the model or the object stored in the normal
map. Different sample sets are known that differently fulfill these demands and two
of them are compared here. The Clenshaw-Curtis Grid and the Fibonacci Spiral on
the sphere. The Icosphere is omitted here, as in [51] it was shown that it performs
even worse than the equiangular approach.

The Clenshaw-Curtis Grid. When the sphere is sampled, using equispaced spher-
ical coordinates, the result is the Clenshaw-Curtis grid SCC [42]. The sample point
coordinates si, j ∈ S

2 can easily be computed by
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si, j = (ϕi , θ j ) =
(

iπ

S + 1
,

jπ

2S

)
, with i ∈ {0, . . . , 2S} and j ∈ {0, . . . , 2S + 1} .

(5.62)

Here, ϕi ∈ [0, 2π) is the azimuth angle and θ j ∈ [0,π) is the polar angle. The integra-
tion weights wi, j that are needed to compensate the nonequispaced sample distances
are defined as

wi, j = 4πε2S
j

S(2S + 2)

S∑
l=0

εS
l

1

1 − 4l2
cos

(
jlπ

S

)
(5.63)

with

εJ
j =

{
1
2 , if j = 0 or j = J

1, if 0 < j < J.
(5.64)

As the sample points are generated using equispaced azimuthal and polar angles, all
points are located on equispaced circles on the sphere and the nearest neighbor of an
arbitrary normal can be found in O(1). But, the resolution of the grid is dependent
on the polar angle and the grid is not rotational invariant.

The Fibonacci Spiral. In contrast to the easy accessible but non-equispaced
Clenshaw-Curtis grid, a very uniform sample set SF S can be generated using the
Fibonacci spiral [80]. The spiral can be built using an odd number of points
N = 2P + 1. The point with the index i has the spherical coordinates

ϕi = 2πi�−1,

θi = arcsin

(
2i

N

)
+ π

2
.

(5.65)

In this equation � = 1+√
5

2 is the golden ratio and i ∈ {−P, . . . , P}. As the point
distribution on the sphere can be assumed to be equispaced, the integration weights
can be assumed to be constant and of the size of the surface patch around each point:

wi = 4π

N
, i ∈ {1, 2, . . . , N } (5.66)

Independent of N , only 10 areas near the north and south pole of the sphere differ by
more than ≈2 % of this value [29]. As the distribution of points on the sphere is not as
intuitive as the Clenshaw-Curtis grid, it is helpful to estimate the size of the surface
patches defined through the point grid. As the area of each patch can be approximated
as irregular hexagons, the inner angle θ of a triangle spanned by the center of the
sphere and two points on the border of the hexagon can be approximated as

θ = 4

√
2π

3
√

3N
, (5.67)
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cf. [32]. Therefore, 635 points on a Fibonacci sphere are necessary for an angular
resolution of 10◦.

To overcome the binning complexity of the Fibonacci spiral, a k-d-tree can be used
for normal binning. An alternative to the k-d-tree is the use of SCC . As the binning
complexity for the Clenshaw-Curtis grid is O(1), it can be used as lookup table. In
each point in SCC a link to the nearest point in SF S is stored. By this, the binning
complexity of SF S is also O(1) after an initial offline calculation. The amount S of
grid points on SCC has to be large enough to achieve an accurate lookup sampling.
The biggest area of bins on SCC is located at the equator with an area Amax of

Amax =
∫ (i+1)π

S+1

iπ
S+1

∫ (S+1)π
2S

Sπ
2S

sin(θ)dθdφ = π

S + 1

(∫ π
2 + π

2S

π
2

sin(θ)dθ

)

= π

S + 1
sin
( π

2S

)
.

(5.68)

For large S, it holds that sin
(

π
2S

) = π
2S . Therefore, to use SCC as lookup table for an

SF S grid with N points, S has to be

4π

N
= M

π

S + 1

⇒ S = −1

2
+
√

1

4
+ πM N

8
.

(5.69)

Here, the factor M defines the ratio of how much smaller the largest cell of SCC shall
be in comparison to the average cell size in SF S . A visual comparison of the two
sample sets can be seen in Fig. 5.3 and the analysis of rotational invariance can be
seen in Fig. 5.4.

Fig. 5.3 Comparison of the S
2 sample sets. a The Clenshaw-Curtis grid SCC . In the pole regions,

clusters are visible. b The Fibonacci Spiral grid SF S , a nearly uniform sample set. Image taken with
permission from [49]
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Fig. 5.4 Comparison of the energy of the EGIs using SCC and SF S . Blue is the mean of the energy
and green the standard deviation of the energy for each band. a Energy, using the Clenshaw-Curtis
grid SCC . b Energy, using the Fibonacci Spiral grid SF S . The rotational variance of SCC is obvious

Sample Sets for SO(3). The result of the correlation of the two EGIs is element
of SO(3). Therefore, it is important to also sample SO(3) uniformly. Moreover, it
is important for the grid to build small neighborhoods, i.e. to not build clusters, to
be able to perform an efficient maximum search. In other words, a good sample set
builds a sample distribution in which each sample has as few neighbors as possible
in a local neighborhood. One measure for the uniformity of a sample set R is its
dispersion

D(R) := max
r∈SO(3)

min
s∈R

d(r, s), (5.70)

where d(r, s) is a metric on SO(3) like described in Eq. (5.15).
Similar to the S

2 sample sets, the straight forward way of sampling SO(3) is an
equiangular grid RE , using uniformly distributed Euler angles:

R
(
αi ,β j , γk

) = R
(

2πi

N
,
π j

N
,

2πk

N

)
; i, j, k ∈ {1, . . . , N } (5.71)

Unfortunately, like SCC , RE builds clusters.
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It is therefore better, to construct a uniform sampling in SO(3). This can be done
by using the subgroup algorithm described in [19, 59]. In short terms, the subgroup
algorithm divides SO(3) into uniform partitions, each sampled uniformly. The par-
titions are the subgroup RZ := {RZ (θ)|θ ∈ [0, 2π)} of rotations around the z-axis
and the set R := {RZ (α)RY (β)|α ∈ [0, 2π) ,β ∈ [0,π)} which can be interpreted
as spherical coordinates. To achieve a near uniform sample set RS of N points on
SO(3), R points have to be distributed on RZ and S points have to be distributed on
R, so that N = RS. For the angular resolutions ψRZ and ψR, S and R have to be
chosen as

ψRZ =
√

2π

S
,

ψR = 4π

R
.

(5.72)

For ψ = ψRZ = ψR follows that

S = 3
√

Nπ,

R = N
3
√

Nπ
.

(5.73)

Figures 5.5 and 5.6 show a comparison of the two sampling schemes. It can be seen
that the subgroup algorithm based sampling does not build clusters of samples in
SO(3), in contrast to the equispaced Euler angle distribution.
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Fig. 5.5 SO(3) local neighborhood comparison. Number of neighbors in a local neighborhood of
15◦ for all sample points. a Equiangular sampling with N = 16 (Eq. (5.71)), therefore 4096 sample
points. b Subgroup algorithm based sampling using the Fibonacci spiral as sphere distribution. 4025
sample points overall, with 175 points on R and 23 equiangular distributed angles on RZ
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Fig. 5.6 SO(3) sampling comparison. The distance between two sample points in SO(3) is shown.
RE is plotted in blue, RS is plotted in red. a Mean angle between two samples. b Standard deviation
of angles between two samples. c Dispersion of the sampling
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Fig. 5.7 Scan of an object
out of one direction. The
surface patches with normals
pointing towards the camera
are well scanned, the rest is
invisible

Error Sources

Handling normal maps generated by one camera, which include faces with normals
pointing directly to the camera can be well measured; whereas faces with growing
angles between their normals and the camera’s viewing direction often cannot be
measured due to self occlusion. This may lead to a situation in which one normal is
dominant in the EGIs, with the result that only this dominant normal can be oriented
correctly and one degree of freedom, namely the orientation around this normal,
stays unknown.

Figure 5.7 shows a scan using the same setup as the normal map acquisition
setup but a CLA scan. It is obvious that one surface normal will be dominant in the
according EGI. Fortunately, the resulting orientation error can be eliminated during
the translation estimation step, which will be described in the following section.

5.2.2 Accurate Monocular Translation Estimation

With known orientation R of the model w.r.t. the camera, the translation of the model
relative to the camera’s coordinate system has to be estimated. As the model contains
3D data and the image 2D information, either the model data has to be reduced to
2D or the image data has to be expanded to 3D to get a comparable data base. Both
of these techniques are possible and will be presented in the following sections.

2D Model Data and 2D Image Data

When the orientation R of the model w.r.t. the camera is known, the appearance of
the object in the camera image can be approximated by a rendering of the object.
As a perspective camera is used and the position of the object relative to the camera
is unknown, an orthographic projection of the model onto the image plane is done
to generate a single comparable representation of the model. The parallel projection
only approximates the real appearance, but is similar enough to be used for the
translation estimation, even in presence of possible rotation estimation errors, as
described in Sect. 5.2.1.

The two images to be compared can be regarded as functions in : R2 → S and
io : R2 → S representing the normal image and the rendered image of the model,
respectively. Now the translation of the model can be estimated via scale invariant
correlation of the rendering and the acquired normal map.
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Ignoring perspective distortions, the relation of in and io can be written as

io(x) = in(Dx + t) (5.74)

where x = [x, y]T are the image coordinates, t = [
tx , ty

]T
a 2D translation in the

image plane and D = s R and R =
[

cos (ω) sin (ω)

−sin (ω) cos (ω)

]
is a rotation and scaling

matrix with rotation angle ω and scaling factor s.

Image Based Scale Estimation with Orientation Correction. Equation (5.74)
transformed into the Fourier domain leads to

Io(k) = 1

|det (D)| In

(
1

s
Rk
)

e j 1
s (Rk)T t (5.75)

where Io is the spectrum of io, Io = F {io}, In is the spectrum of in , In = F {in}, multi-
index k = (

kx , ky
)T

, and F {·} denotes the Fourier transform. The determinant of D
is s2, as det (R) = 1. It can be seen that the translational offset t results in a phase
shift e j 1

s (Rk)T t in the spectrum In . To break down the problem and solve it for the
individual unknowns (tx , ty, s,ω), the magnitude spectra Mo = |Io| and Mn = |In|
are used. As the translation offset in the image corresponds to a phase shift in the
spectrum (translation property), the use of only the magnitudes will eliminate the
translational parameter.

Mo(k) = 1

s2
Mn

(
1

s
Rk
)

(5.76)

The two unknown parameters ω and s are present as rotation and scaling in this
equation. By a coordinate transform of the spectra into polar coordinates

(ϕ, r)T =
(

tan−1

(
ky

kx

)
,

√
k2

x + k2
y

)T

(5.77)

the rotation around ω transforms to a shift along the ϕ-axis. To further transform the
scaling along the r -axis to a shift, the logarithm of the radii is used resulting in a
logarithmic-polar representation of the spectra [83].

Mlp
o (k) = 1

s2
Mlp

n

(
k − [

log(s),ω
]T
)

(5.78)

To estimate the relative translation of Mlp
o and Mlp

n , which is simply a shift of the
images, a 2D correlation of both signals is computed.3

Correlation of Functions on R
2. The relation between the images in Eq. (5.78) is

a simple shift. A cross correlation of the two functions can solve for the present

3As the orientation is known at this point, the parameter ω equals 0 as this parameter describes
the rotation of the model in the image plane. Nevertheless, with ω a possibly erroneous DOF, as
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translational offset. For sake of simplicity and generality renaming Mlp
o (k) as i1(x)

and Mlp
n (k) as i2(x), the relation of the two images can be written as

i2(x) = i1(x + t). (5.79)

To solve for t , the cross correlation of the two functions can be computed, defined as

c(ξ) = i1(ξ) ∗ i2(−ξ) =
∫
R2

i1(x)i2(x + ξ)dx. (5.80)

Using the convolution theorem of the FFT and with the Fourier transform F {·},
the inverse Fourier transform F−1 {·}, and I1 = F {i1} and I2 = F {i2}, the cross
correlation can alternatively be obtained by

c(ξ) = F−1
{

I1(k)I2(k)
}

. (5.81)

Here, I (k) denotes the conjugate complex of I (k).
More robust techniques to image correlation are widely available in literature, such

as orientation correlation [24], phase correlation [3] and gradient cross-correlation
[4]. The latter is used for the computations in this thesis, and a short summary is
given in the following paragraphs.

The gradient correlation (GC) is based on image gradients and takes their orien-
tation as well as their magnitude into account. A gradient image, in this context, can
be seen as complex image g : R2 → C.

gi(x) = gi,x (x) + jgi,y(x) (5.82)

gi,x = ∇x ii and gi,y = ∇yii are the partial derivatives of the corresponding image ii .
With this, the GC can be written as

gc(ξ) = g1(ξ) ∗ g2(−ξ) =
∫
R2

g1(x)g2(x + ξ)dx. (5.83)

In the Fourier domain, the problem becomes

GC(k) = F−1
{

G1(k)G2(k)
}

. (5.84)

(Footnote 3 continued)
described above, can be estimated. The rotation frame that has been estimated prior has to be updated
with ω, if ω �= 0. This update has to be a rotation around the dominant peak of sn .
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This correlation, performed as multiplication in the Fourier domain gives a very
accurate estimation of the relative position of i2 relative to i1. In the context of
scale and rotation error estimation, the maximum of gc(x) results in an estimate for[
log(s),ω

]T
.

Image Based Translation Estimation. At this point, the scaling of the object is
known and a possible orientation estimation error has been eliminated. Thus, with
the known parameters ω and s a scaled and rotated image i ′

o can be computed as

i ′
o(x) = io

(
sx
[

cos (ω) sin (ω)

− sin (ω) cos (ω)

])
. (5.85)

So the relation of the model image and the normal image now simplifies to

i ′
o(x) = in(x + t). (5.86)

The translation vector t can now be estimated using gradient correlation as already
described above. The maximum of gc(x) in this context gives the position of the
scaled model image relative to the original normal map. Using the camera calibration,
the resulting pixel coordinate t defines a 3D viewing ray v, along which the object is
translated away from the focal point of the camera. The distance of this translation
can be computed via the intercept theorem and scaling factor s (Fig. 5.8).

do

dn
= lo

ln
= s (5.87)

The translation of the object to the focal point results in tpose = dov.
Here, do is the distance of the object to the focal point, dn the distance of the pixel

to the focal point and lo and ln are the real size of the object and the size of the object
in the normal map respectively.

The values of the position estimation correlation maxima serve as a quality esti-
mate for the estimated pose.

When a position is found, it is possible to render the model using the approximately
correct perspective. With the new rendering, the search procedure can be repeated to
acquire a better accuracy as the projection and the image are more similar.

Fig. 5.8 Computation of the
distance do of the object to
the focal point f of the
camera using the intercept
theorem
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Advantages and Problems. The approach described above is based on 2D images
only. This means that all computations can be computed using 2D images and the
Fast 2D Fourier transform which makes the computation efficient. The solution is
analytically tractable and has a predictable run-time. Furthermore, a fourth parameter,
additional to the three translation parameters, can be estimated for a possible error
correction.

But, there are drawbacks to this approach. The main problem is that the approach
does not offer a closed solution for the three translational parameters. The scale
estimation is decoupled from the viewing ray estimation but both are needed for the
three Cartesian degrees of freedom of the translational part of the pose of the object.
In the case that the combination of the global maximum of the scale estimation
and the global maximum of the viewing ray estimation does not deliver a satisfying
translation estimation, another optimal combination of the two correlation functions
has to be found. As the viewing ray estimation is based on the scale estimation for
each local scale maximum smax,i , a single viewing ray estimation has to be computed.
Another problem is that without position estimation, which is the purpose of the
computations, a perspective projection of the object is impossible. Therefore, the
projected image only approximates the appearance of the model in the normal image,
which alters the quality of the translation estimation prior to the refinement step.

3D Model Data and 3D Image Data

When reducing the dimensionality of the model data from 3D to 2D, information
gets lost. Even worse, the projection to the image plane results in perspective errors
that reduce the quality of the registration, as mentioned above. Therefore, the dimen-
sionality reduction should be avoided. This means that the data of the monocular
camera have to be expanded from 2D to 3D. Regarding the camera model, when 3D
information is needed, a camera does deliver 3D information. More precisely, the
camera image defines an array of 3D viewing rays. A complete frustum can therefore
be built with constant normals along each viewing ray. This frustum is stored as a
3D voxel grid. Each voxel contains the normal of the pixel that defines the viewing
ray intersecting the voxel, see Fig. 5.9.

Additionally the mesh of the model is converted into a voxel grid. Using the same
voxel size as before, all voxels are assigned to the normals of the triangles intersecting
these voxels, see Fig. 5.10. As each viewing ray in the frustum of the camera points
to a surface with a surface normal pointing towards the camera, only normals with
an angle ∠(no,i , zc) < π

2 are stored in the grid. no,i is the specific surface normal
and zc the z-axis of the camera. Two volumes vi : R3 → S and vo : R3 → S can be
obtained by this procedure. Through the construction of the viewing frustum, the
perspective projection character of the camera is converted to a regular Cartesian
voxel grid. The voxel representation of the model is regular Cartesian, too, which
makes the two representations perfectly comparable.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.9 Frustum of a normal map, zero-padded to match the volume sizes of model and frustum.
Only the azimuthal angle of the surface normals is visualized. a Normal image acquired using
photometric stereo. b Schematic plot of the volume conversion for a single pixel. c 3D frustum of
the normal image built using the camera calibration parameters. d x-y-plane slice of the frustum.
e x-z-plane slice of the frustum. f y-z-plane slice of the frustum

Fig. 5.10 Voxelized model, zero-padded to match the volume sizes of model and frustum. The
volume is mirrored as preparation for the convolution in the Fourier domain. Only the azimuthal
angle of the surface normals is visualized. a x-y-plane slice of the volume. b x-z-plane slice of the
volume. c y-z-plane slice of the volume

The relation between the two volumes can be written as simple translation

vo(x) = vi (x + t) · χ(x), with χ(x) =
{

1, if vo(x) �= 0
0, otherwise

. (5.88)
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Data: correlation volume Vc
Result: global maximum vmax, refine
find global minimum Mv in Vc;
mz ← Mv.z;
for z = mz − rangez . . . mz + rangez do

find global maximum Mp,z in z-plane of Vc;
calculate weighted mean M̃p,z in 2D local neighborhood around Mp,z ;

end
calculate weighted mean vmax, refine of all M̃p,z ;

Algorithm 1: Sub-voxel accurate maximum estimation.

The solution to this problem is exactly the same as in the two dimensional case. The
maximum of the cross-correlation of the two volumes delivers a translation estimation
of the model relative to the viewing frustum, i.e. the camera. The computation of the
correlation can also be efficiently computed in the Fourier domain.

c(ξ) = F−1
{

Vi (k)Vo(k)
}

(5.89)

As the correlation function, in contrast to the 2D-2D variant, is present as single
discrete function on R

3, the local surroundings of the global maximum can be ana-
lyzed to achieve sub-voxel accuracy of the translation estimation result. This can,
for example, be done by a weighted mean of the values in a local neighborhood
around the global maximum. As the inaccuracy, which can be seen in Fig. 5.11, is
mainly present along viewing rays, the neighborhood is defined along these rays.
See Algorithm 1 for details.

Advantages and Problems. The main advantage of this approach is that the trans-
lation estimation is contained in a closed form solution. All three parameters are
computed at once and, therefore, a complete solution space is available. Within the

Fig. 5.11 Correlation function of the two volumes of Figs. 5.9 and 5.10. The volume is centered
at the global maximum. It can be seen that the maximum is much sharper in the x-y-plane as
in z-direction. The neighborhood analysis takes the complete maximum structure into account.
a x-y-plane slice of the volume. b x-z-plane slice of the volume. c y-z-plane slice of the volume
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solution space, a global maximum can be found with sub-voxel accuracy, considering
an arbitrarily shaped neighborhood. This methodology is capable of overcoming the
main systematic problem of monocular distance estimation. This systematic problem
can be described as: “Given a minor change of the object’s pose in viewing direction
of the monocular camera, no change of the image can reliably be captured.” But,
if a larger neighborhood of the correct position is known, a larger translation of the
object along the viewing direction can be analyzed and a global optimum can be
estimated using larger differences in the camera image.

The only disadvantage of this approach is the amount of data which needs to be
held in the memory. As the volumes contain complex values, the resolution of the
volumes has to be held quite small to keep computation time and memory utilization
within reasonable limits.

5.3 Bin-Picking Application—Collision Avoidance

The biggest issue of using normal maps for autonomous robot manipulation is that
no 3D data of the scene might be available. This makes the collision avoidance
procedure quite complicated. In a structured scenario, like industrial bin-picking,
where obstacles in the workspace of the robot are mainly known, a collision avoidance
can be performed, nevertheless.

All known obstacles have to be 3D modeled and considered in the collision avoid-
ance. By this, the only unknown obstacles are the parts to be gripped, i.e. the objects
in the bin or on the table, etc. When all possible objects are known by their models, the
pose estimation technique proposed in this chapter can be used to locate all objects
in the scene.4 When all objects are located, their models can be transformed to their
specific world poses and a 3D collision avoidance can be performed, using the same
approaches as presented in Sect. 3.2, including the grasp planning technique.

5.4 Experimental Normal Map Based Grasping

Like the two pose estimation techniques described in the former chapters, normal
maps were used to locate and autonomously grasp objects. As the photometric stereo
method was used, all objects in the real world scenarios were painted matte white
to generate known reflectance properties. A detailed look at the single-shot multi-
spectral photometric stereo is given in the Appendix A.2. Furthermore, only isolated
objects were grasped. Prior to the robotic grasping application, a set of simulated
scenes were used to analyze the possible accuracies of the system.

4The experiments will show that the approach is capable of locating several objects.

http://dx.doi.org/10.1007/978-3-319-26500-1_3
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Fig. 5.12 Impact of the focal length on the appearance of a model (piston rod) in the image.
a f = 1 mm, distance = 75 mm b f = 4 mm, distance = 300 mm c f = 12.5 mm, distance = 900 mm
d f = 32 mm, distance = 2400 mm

5.4.1 Simulation

As the setup in the robotic work cell contained an industrial camera, the same camera
was simulated in a virtual environment. The most important property of the camera
is the focal length of the attached lens. Very short focal lengths significantly distort
the scene whereas long focal lengths result in very low perspective scaling. As the
perspective is essential for rotation (weak perspective assumption) and translation
estimation (perspective scaling) the analysis of the impact of the focal length on
the localization result is important. The experiments were therefore performed using
focal lengths between 1 and 64 mm.5 Note that the 1/3 inch sensor of the camera has
a crop factor of 8, which means that the 35 mm equivalent focal lengths are between
a fish-eye (8 mm) and a super telephoto lens (512 mm). At the short end the models
are significantly distorted but the perspective scaling is large. At the long end the
viewing rays are nearly parallel, which results in nearly zero perspective scaling and
distortion. All scenes were rendered such that the objects approximately filled 10 %
of the frame. As the focal length obviously changes the field of view, the distance
between the camera and the object varied from 75 at 1 mm focal length to 4800 at
64 mm focal length (see Fig. 5.12).

Orientation Estimation Accuracy

The orientation estimation is the first of the two steps performed for pose estima-
tion. Based on the result, the translation is estimated. Therefore, it is essential that
the orientation estimation is robust and accurate. To analyze the accuracy, different

5The simulated focal lengths were 1, 2, 4, 8, 12.5, 16, 32 and 64 mm.
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models and different parameters were analyzed for their impact on its results. The
most important aspect is the focal length of the camera. As the focal length defines
the possible working distance, it has to match the task and may not be chosen freely.
But, for short focal lengths, the weak perspective assumption does not hold. Further-
more, the robustness against noise is important. Both aspects have been analyzed.
At first, the normalized cross correlation was used. The experiments showed that the
best parameters in the current implementation were achieved, using a bandwidth of
L = 8, an amount of points on the EGIs of |SF S| = 309, and an amount of points in
SO(3) of |SS| = 9957. Using this small amount of points on S

2 results in an inner
angle between two neighboring sample points of 14.3◦, but also a very short compu-
tation time of only 0.5 s. The results were produced using 51 simulated normal maps
generated using arbitrary camera poses. The objects were placed in the field of view,
so that they filled approx. 10 % of the image. To compare the rotations, the metric
defined in equation (5.15) was used. A result was defined to be successful if one of
the first 20 maxima in the correlation differed at most 25◦ from the ground truth.6

The experiments show that the results are nearly independent of the used focal length
(see Fig. 5.13). Only when very short lenses are used, the results get worse.

Considering the noise level, it can be seen that noise slightly effects the results
(see Fig. 5.14). The applied noise is normally distributed and given by its standard
deviation. It is noticeable that the orientation estimation gets better when a small
amount of noise is present in the normal maps. This is due to the nearest neigh-
bor binning. The normals are only stored in the nearest bin. Neighboring bins are
not considered. Therefore, slight rotations of the object in the image can effect the
appearance of the according EGI. This effect is reduced by the added noise.

Overall, it can be stated that the algorithm performs very robustly. Only very
complex objects need the analysis of many local correlation maxima to find a correct
orientation. To overcome this issue, the alternative of the energy lookup proposed in
Sect. 5.2.1 was analyzed (see Fig. 5.15). For the tests, the same setup as above was
used (bandwidth L = 8 to create the energy feature vectors, |SF S| = 309, |SS| =
9957). The lookup table contained 127 EGIs. The generation of the lookup was
computed in 70 s, using un-optimized code. The lookup table can be computed offline
and does not alter the overall run time. After the search for a nearest neighbor in the
lookup table, the same correlation as before is computed to get an orientation estimate.

The performance of the approach, using simple objects, is much worse than before.
The problem is that the energy vector is invariant w.r.t. symmetries. The cube, the
piston rod, as well as the metal part are subject to symmetries. The lookup for
these objects may therefore result in erroneous viewpoints and wrong EGIs. These
problems could be avoided by a more sophisticated search strategy. When a nearest
neighbor is found, the mirrored entry of that match may be as good as the entry
itself. Therefore, both entries should be considered and the correct one could then
be chosen by the maximum value of the subsequent correlation.

6With a rotation error of at most 25◦ the appearance of the model in the image is still quite similar
to the acquired image.
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Fig. 5.13 Analysis of the accuracy of the orientation estimation technique dependent on the focal
length of the camera for different objects of the industrial parts data set. The results for the piston rod
are blue, the results for the metal part are red, and the results for the balance shaft are green. a Success
rate of the estimation. A success is a result that is less than 25◦ away from the ground truth and within
the first 20 maxima in the correlation. b Average index of the correlation maximum, describing a
successful orientation estimation, considering ordered maxima in the correlation function. c Average
rotation error of the successful orientation estimation attempts

Complex objects, by contrast, like the dragon model, perform very well using this
technique, as the hidden parts in the model’s EGI are omitted and the similarity of
both EGIs is much higher.

Overall, the robustness against noise is much worse than before. This is because
noisy normals have a great effect on the energy vector. Here, and also in the normal-
ized cross correlation, it can be sensible to smooth the EGIs, prior to the lookup and
the correlation. In [43] a technique is proposed that could be applied.

Translation Estimation Accuracy

The accuracies of the image based translation estimation for three different objects
using the “2D-2D method” can be seen in Figs. 5.16, 5.17 and 5.18. These objects
have a very complex shape (Armadillo), a quite spherical shape (Bunny), or a longish
shape (piston rod) to cover different types of geometries. The results were produced
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Fig. 5.14 Analysis of the accuracy of the orientation estimation technique dependent on the
noise level present in the normal map, using a 16 mm lens. The results for the cube are blue,
the results for the piston rod are green, the results for the dragon are purple, the results for the
balance shaft are red, and the results for the metal part are cyan. a Success rate of the estimation.
A success is a result less than 25◦ away from the ground truth and within the first 20 maxima in
the correlation. b Average index of the correlation maximum, describing a successful orientation
estimation, considering ordered maxima in the correlation function. c Average rotation error of the
successful orientation estimation attempts

using 100 translation estimation procedures per focal length with given orientation
estimation. The orientation used for translation estimation was distorted by orienta-
tions of 1◦ in each axis to generate more realistic results.

All models caused very similar results matching intuitive interpretations. At very
short focal lengths, the distortion of the object in the image is so high that the
similarity between the parallel projection used for translation estimation and actual
image is not high enough. This results in high translation errors in all three directions.
At very long focal lengths, the perspective scaling of the model in the camera image
gets very low. Therefore, small translations along the viewing direction (z-axis)
cause only marginal scalings of the model in the image. The results show that the
translation error is mainly in z-direction in these cases. Furthermore, in both of the
extreme cases, the perspective correction does not notably refine the results. In case
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Fig. 5.15 Analysis of the accuracy of the orientation estimation technique, based on an energy
lookup, dependent on the noise level present in the normal map, using a 16 mm lens. The results
for the cube are blue, the results for the piston rod are green, the results for the dragon are purple,
the results for the balance shaft are red, and the results for the metal part are cyan. a Success rate
of the estimation. A success is a result less than 25◦ away from the ground truth and within the 20
first best results. b Average index of the correlation maximum, describing a successful orientation
estimation, considering ordered maxima in the correlation function. c Average rotation error

of short focal lengths, this is due to the extreme distortions. When the first translation
estimation is not accurate enough, the perspective projection of the model onto the
image plane is not better than a parallel projection. In case of long focal lengths, the
perspective projection is very similar to the parallel projection and therefore does
not refine the result.

Nevertheless, the experiments show robust results for moderate focal lengths and
better results than expected even at long distances. With an average accuracy of under
25 at 4800 mm distance between camera and model, the accuracy of the estimation
approach is still comparable to modern laser scanner accuracies.7

7The SICK LMS 500 laserscanner [76] has a systematical error of ±25 mm and a statistical error
of ± 7 mm in the range of 1 m, . . ., 10 m.
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Fig. 5.16 Analysis of the position accuracy of the image based translation estimation technique
dependent on the focal length of the camera and an orientation error of 1◦ in each axis for the
Armadillo model. a Absolute overall translation error (mean error in blue, standard deviation in
green). b Relative overall translation error dependent of the distance between camera and object.
c Absolute errors in each axis (blue x-axis, green y-axis, red z-axis). d Error reduction achieved,
after a second translation estimation using a perspective rendering of the model using the first
translation estimation result

Besides the focal length, the translation estimation accuracy is dependent on the
quality of the rotation estimation. This dependency was analyzed for different models.
In Fig. 5.19, the results are shown for the armadillo, the bunny, and the piston rod
model. It can be seen that the errors rise linearly with the rotation error. Furthermore,
it can be seen that the quality depends on the model. This is due to the general shape.
For near spherical objects, like the bunny, the size of the model in the image is quasi
independent of the rotation. For the piston rod, the difference is bigger and therefore
the translation error, too.

In comparison to the image based translation estimation, the volume based (“3D-
3D”) translation estimation technique was also analyzed, using the same technique
as above. The results can be seen in Fig. 5.20. The experiments show that the volume
based technique is neither more accurate nor more reliable than the image based
technique. This is true for the actual implementation of the technique. In contrast
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Fig. 5.17 Analysis of the position accuracy of the image based translation estimation technique
dependent on the focal length of the camera and an orientation error of 1◦ in each axis for the
Bunny model. a Absolute overall translation error (mean error in blue, standard deviation in green).
b Relative overall translation error dependent of the distance between camera and object. c Absolute
errors in each axis (blue x-axis, green y-axis, red z-axis). d Error reduction achieved, after a second
translation estimation using a perspective rendering of the model using the first translation estimation
result

to the image based technique, the resolution of the volumes is by far lower than the
resolution of the images. This is due to the higher memory consumption of the three
dimensional volumes.

5.4.2 Real World Scenario

To test the real world applicability of the normal map based pose estimation tech-
nique, the already introduced industrial setup was used, again. As the localization
technique was only tested for isolated objects, only single piston rods were grasped
in the experiments. To generate the normal maps, an enhanced multi spectral photo-
metric stereo method was used. The method is briefly described in the appendix in
Sect. A.2.2. The industrial camera “Imaging Source DFK 31BF03” with a resolution
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Fig. 5.18 Analysis of the position accuracy of the image based translation estimation technique
dependent on the focal length of the camera and an orientation error of 1◦ in each axis for the
Pistonrod model. a Absolute overall translation error (mean error in blue, standard deviation in
green). b Relative overall translation error dependent of the distance between camera and object.
c Absolute errors in each axis (blue x-axis, green y-axis, red z-axis). d Error reduction achieved,
after a second translation estimation using a perspective rendering of the model using the first
translation estimation result

of 1024 × 768 pixels was used, equipped with a 16 mm lens. The focal length of the
lens resulted in a working distance of 120 cm between the camera and the objects. To
simplify the data acquisition, the piston rods were painted white to generate known
reflection properties. The same paint was then used on a calibration body to fill the
lookup table of the photometric stereo camera. The normals in the normal maps had
an average error of 12◦. The acquisition time was equal to the exposure time of the
camera.

The work cell setup can be seen in Fig. 5.21. As only single objects were grasped,
no real bin-picking was performed and no collision avoidance mechanisms were
included into the system. To enhance the system for bin-picking, a segmentation
algorithm has to be included. In a series of 50 grasp attempts, a success rate of 94 %
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Fig. 5.19 Dependency of the image based translation estimation result of the rotation estimation
quality. The given rotation error is an error in all three axes. The blue bars are for the Armadillo
model and focal length 8 mm, the green bars for the bunny model and focal length 4 mm and the red
bars for the piston rod model and focal length 12.5 mm. a Mean overall translation error. b Standard
deviation of the overall translation error
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Fig. 5.20 Dependency of the volume based translation estimation result of the focal length. The
blue bars are for the Armadillo model, the green bars for the bunny model and the red bars for the
piston rod model. a Mean overall translation error. b Standard deviation of the overall translation
error

was achieved. The three failed attempts were caused by an inaccurate z-coordinate
of the object pose. Examples of the test scenarios can be seen in Fig. 5.22. As 10
maxima of the orientation estimation correlation were analyzed, each with 2 maxima
in the scale estimation correlation, the overall pose estimation time was 50 s. Note
that no abort criterion was used to enhance this time to get the best possible pose
estimation.
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Fig. 5.21 Robot work cell equipped with a photometric stereo based vision sensor

5.5 Discussion

This chapter describes an approach to localize objects in 3D using normal maps. In
the most extreme case, a single camera and a set of at least three LED lights is enough
for 3D object localization using this technique. Moreover, in scenarios in which only
normal maps are available, 3D object localization can now be performed, which opens
possibilities for new types of sensors to be used for pose estimation. For example, in
critical scenarios in which laser scanners cannot be used for safety reasons, like house
hold applications, this can be a big advantage. As a two step approach is presented,
both steps of the algorithm can be applied without each other. When for example the
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Fig. 5.22 Results of the normal map based pose estimation technique on real data. The results
are superposed by a red rendering of the model on the green normal map. As can be seen, even in
presence of more than one object, correct object poses are determined. a, b Normal map of a scene
with isolated object. c Normal map of a scene with two objects. d–f Localization results

orientation of objects in a camera image are known, the 3D translation estimation
procedure can be used for accurate monocular position estimation.

The normal map approach cannot compete with approaches based on 3D data
w.r.t. accuracies. Nevertheless, considering the fact that a 6D pose is computed using
only the derivatives of 3D surfaces, the accuracies are quite high, i.e., they are high
enough to be used for automation tasks. The main problem is the long run time of
the algorithms. There are many possibilities to optimize the run time but these were
not scope of this thesis.

When it comes to physical interaction with the located objects, another problem
is that no 3D scan data is available for collision avoidance. This problem can only
be tackled by known environment models and a localization of all objects within the
environment or by additional sensors in the gripper of the robot.

The algorithms were only tested on quite simple scenes. Further research should
be made on efficient segmentation techniques to enable the localization approach to
be used on complex scenes.



Chapter 6
Summary and Conclusion

In this thesis three different, novel approaches are described to solve the pose
estimation problem in the context of the classical bin-picking problem. All three
approaches have different strengths and drawbacks and suit special requirements in
different ways.

At first, in Chap. 3, a pose estimation technique, based on 3D point clouds was
proposed. Here, a known technique for fragment matching (Random Sample Match-
ing) was used and enhanced to work as a pose estimator. To safely interact with the
scene, the localization is combined with an efficient collision avoidance mechanism.
A collision measure is computed, using a gripper model positioned at a possible
grasp pose in the virtual scan data. To offer a high amount of flexibility, grasp frames
can be defined with certain degrees of freedom. Overall, with possible cycle times of
about 12 s, and a very robust performance even in the presence of noise and clutter,
the 3D point cloud based approach, built around the Random Sample Matching algo-
rithm, meets typical industrial demands. Only in scenarios with extremely tight time
constraints or when the cost of the system has to be very low, the approach might
not be applicable. The main contributions of this chapter are:

• The description of a generic, robust and efficient pose estimation technique based
on the RANSAM algorithm.

• The introduction of the Key Grasp Frame concept, which allows an automatic
grasp planning within given ranges and therefore meets industrial demands.

• The combination of these two approaches to build a very goodworking bin-picking
system.

To offer a solution to handle scenarios in which very tight time constraints are
given, the second approach, described in Chap. 4, was developed. The Kinect was
used as a 3D sensor, offering advantages regarding its low cost of only 120 US
dollars and its high frame rates of 30 images per second. To benefit from the high
speed measurements, it is necessary, to analyze the provided data in a very short
amount of time. The reduction from 3D point clouds to 2D depth images resulted in
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very efficient computations, all computations were performed on 2D depth maps. To
further improve the cycle times, the sequence of the computations was changed. In
the depth map based approach, the gripper poses are determined directly using the
scanned depth maps. The gripper footprint is approximated as a rotation invariant
2D filter kernel. By convolution of the depth map with this kernel, graspable regions
produce local maxima, which are easily extractable and directly lead to gripper pose
hypotheses. These hypotheses are then analyzed for a gripper orientation, possible
approach distance and a collision measure. This results in valid gripper poses in
about 120ms, including data acquisition and analysis, which means that, at every
moment of execution, a valid gripper pose is available. Thus, no dead times arise
and the robot can work to capacity picking up arbitrary objects. Force/torque and
acceleration sensors are added to compute the moments of inertia of the grasped
object which are then used to estimate the grasp pose during the robot’s movements.
The main contributions of this chapter are:

• A new depth map based real-time gripper pose estimation technique that can be
used to grasp unknown objects and is faster and has a higher success rate than
known approaches.

• The combination of this technique with a force/torque/acceleration based grasp
pose estimation technique that is performed during the robot’s movements and
therefore does not alter the cycle times of the system.

• A depth map based bin-picking system concept that is capable of achieving the
shortest possible cycle times.

The former two pose estimation approaches are based on 3D sensors, even if the
analysis is partly performed on 2D depth maps. Is bin-picking still possible, when
avoiding 3D sensors? Is it possible to estimate 6D object poses, in scenarios, where
laser scanners cannot be used and time of flight cameras are not accurate enough?
The approach in Chap.5 shows one way. By further reducing the dimensionality
of the input data from depth maps to normal maps, a new class of optical sensors
can be used as a basis for pose estimation. The described approach is the first in
literature to solve generic pose estimation based on normal maps. In a first step,
all normals are extracted from the image and the model and stored into spherical
histograms (EGIs). By doing this, the correspondence problem is avoided. The two
spheres are then efficiently correlated using the spherical fast Fourier Transform
leading to an orientation estimate. Using this orientation, the translation of the object
can be estimated using a 2D representation of the model or a 3D representation of the
image. In combination with the orientation, this completes the 6D pose of the object
relative to the camera’s coordinate system. Both parts of the localization approach,
the orientation and the translation estimation, can also be used without the other
for further fields of application. The accuracy of the approach is comparable to 3D
techniques which makes it usable in real world applications. The main contributions
of this chapter are:

• A rotation estimation technique based on normal maps.
• A 2D image based technique for monocular translation estimation.

http://dx.doi.org/10.1007/978-3-319-26500-1_5
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• A new 3D volume based concept for monocular translation estimation.
• The combination of these approaches for 6D pose estimation based on normal
maps, which for the first time allows the usage of normal maps for generic pose
estimation.

All three approaches performed very well and showed high potential w.r.t. certain
aspects. But, further research has to be done in some areas.

Chapter 5 builds the main part of this thesis and describes a new way of solving
the bin-picking problem or, more precisely the pose estimation problem. Therefore,
not all aspects of the approach are working perfectly. At first, the computation time
is quite long which can be optimized in certain ways already stated in the chapter.
Further, all experiments were only done with isolated objects. Single experiments
already showed the general applicability of the approach for scenes with several
objects, but further work has to be done here. Two ways to tackle this open point
are possible here. Either, the very global description of the normal maps using EGIs
has to be changed to a local description, using for example several local EGIs of
image patches, or an efficient segmentation technique to separate the objects in the
image could be used. Further, the volume based translation estimation was only ana-
lyzed briefly due to the time constraints of this thesis. It showed that this technique
generates the predicted results, but the quality was not as good as expected. Further-
more, the computation time was much higher than the image based method. As a
closed solution is available when working with volumes, a higher precision could
be possible when pursuing more research in this direction. It is interesting in this
context to analyze the local neighborhood of the maxima and if the neighborhoods
are usable for translation refinement. Further enhancements contain an optimization
of the spherical correlation with optimizations of the computation times. Here it is
notable that degrees of freedom within the orientation estimation are visible in the
correlation function. This could be used not only for faster maximum search but also
be exploited for self similarity analysis.

The system of Chap.4 was only tested on quite a small scale. Further testing is
needed here to show the strength of this approach. A more complex planning of
estimation trajectories has to be implemented and the combination of vision and
force/torque/acceleration sensing has to be further enhanced.

The approach of Chap.3 already meets industrial demands and is ready for exten-
sive testing. At the time of the writing of the thesis, the test platform of an industrial
partner was not ready. Real world experiments and manufacturing line applicability
tests are the next steps here.

These three points are topics for future work.
As a summary, three different approaches to solve the bin-picking problem are

proposed within this thesis. All three techniques yield very promising results and are
applicable in real world scenarios, each with different strengths and limitations.

http://dx.doi.org/10.1007/978-3-319-26500-1_5
http://dx.doi.org/10.1007/978-3-319-26500-1_4
http://dx.doi.org/10.1007/978-3-319-26500-1_3
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There is a variety of optical sensors currently commercially available. As different
types of sensors are used within the experiments of this work, a short survey of
sensing techniques is presented within this chapter.

Three different types of visual data are important in this context. These types are
3D point clouds, used in Chap. 3, depth maps, used in Chap.4 and normal maps used
in Chap.5. The first two are acquired using 3D sensors, the latter does not acquire
3D data but surface normals only. For all three data types, a variety of acquisition
techniques is available. The depth sensors are very common in industry and even
in consumer electronics, nowadays. Therefore, only a brief overview is given in the
following section. “Normal map scanners”, however, are not very common. As the
normal maps play an important role within this thesis, a more detailed overview over
possible acquisition techniques is given in the next section.

A.1 3D Point Cloud and Depth Map Acquisition

There is a variety of different sensors and sensor concepts to acquire 3D point clouds.
Actually, any 3Dsensor techniquemeasures 3Dcoordinates and thus 3Dpoint clouds.
If a scanner only has one optical center and therefore only has one viewing direction,
the point clouds can be stored in a 2D grid, i.e., a depth map. 3D point clouds and
depth maps can be acquired using the same sensors. A review on recent sensors can
be found in [18]. In industry, laser line scanners are the most common 3D scanners
and there are a lot of different manufactures for this kind of sensors. Structured light
scanners and time of flight cameras are further common sensors.

The main idea of triangulation based sensors, i.e. [84], is to illuminate the scene
by a laser line projector. The laser line with its projection center defines a planewhich
is intersected by surfaces of the objects in the scene. The illuminated surface points
can then easily be detected by a camera. The intersection points of the according
viewing rays with the laser plane define 3D coordinates of the object’s surface. The
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advantage of this technique is that very accurate data can be acquired and dependent
of the power of the laser line nearly all kinds of surfaces can be scanned. But, as
only one laser line is projected, a set of images has to be taken, either by translating
and/or rotating the sensor.

The same is true for structured light scanners, using for example the coded light
approach, firstly described in [94]. Here, a set of stripe images is projected onto the
scene and separate images are acquired. The so measured lit/unlit code in each pixel
can be used to solve the correspondence problem and so, specific light planes can be
found for triangulation. The spacial resolution depends on the number of projected
stripe patterns which results in long acquisition times for fine scans. This approach
further suffers from inter-reflections of the light patterns, where bright stripes reflect
light into unlit regions of the scene, distorting the scan.

Time of flight cameras measure depth data using the known speed of light, i.e.
[42, 72]. A light source emits light pulses into the scene and in every pixel of the
camera the time is measured that passes until that pulse is reflected into the camera.
These sensors have a limited accuracy in depth as well as spatial resolution.

Aquite newandvery affordable depth camera is theMicrosoftKinect sensorwhich
is also triangulation based. An infrared projector emits a quasi random point pattern
into the scene. An infrared camera detects the points and using the known pattern
solves the correspondence problem enabling for triangulation. The main advantage
of this sensor is its extremely low price. The Kinect is very widely used as sensor in
scientific publications.

A.2 Normal Map Acquisition

Images, inwhich every pixel represents a surface normal are called normalmaps. The
classical approach to acquire normal maps is the well-known “Photometric Stereo”
approach firstly proposed in [99]. Here, a set of images is taken from one camera,
each using a different lighting direction. The combination of brightness values at
each surface point can then be mapped to a specific surface normal. This technique
will be described in more detail in Sect.A.2.2.

There are alternatives to Photometric Stereo, like Shape from Polarization, e.g.
[102], Shape from Texture, e.g. [22], or Shape from Shading, e.g. [9]. Another
approach to acquire normal maps uses spherical gradient illuminations to allow for
multiple viewpoints and to measure specular and diffuse normal maps [61]. This
approach, like the classical Photometric Stereo algorithm, needs a set of images.
When cycle times of a system have to be short, a single shot characteristic of the
scanning system is desirable. Therefore, the following sections describe two different
approaches to acquire normal maps using single camera shots. This results in very
short acquisition times and enables for a short overall cycle time.

One straight forward modification of the classical Photometric Stereo is to change
the temporally multiplexed Photometric Stereo method into a spectrally multiplexed
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method by using colored light sources and single color images separated into their
single color components, e.g. [34]. This approach will be reviewed and analyzed in
this section.

Besides the spectral multiplexed Photometric Stereo, a single stripe pattern illu-
mination technique, evaluating the local orientations and distances of the stripes
in the image to get a single-shot measurement is presented in [98]. This technique
overcomes issues of the multispectral Photometric Stereo but suffers from the same
problems Coded Light systems suffer from, like inter-reflections. A modification of
the approach of Winkelbach and Wahl [98] is presented here as well.

A.2.1 Weak Perspective Cameras

Most normal map estimation techniques use single cameras. As the estimation of the
distance between an object and a camera can only be measured when a perspective
camera is used, orthographic cameras cannot be applied for pose estimation tech-
niques presented within this thesis. Using perspective cameras, the size of a surface
patch observed by one pixel varies with the distance of that patch to the optical center
of the camera. Here, two contrary needs arise: Because for the orientation estimation
(Sect. 5.2.1), the surface area of the observed scene should be accurately sampled in
the normal map which is the case with orthographic cameras and for the translation
estimation (Sect. 5.2.2), a perspective camera is essential. A good compromise here
is the use of a weak perspective camera. When the distance of the object and the
camera is much larger than the thickness of the object, it can be assumed that the
surface patch size observed by one pixel does not change within an object. In real
scenes this is mostly the case because otherwise the camera would be too close to
the scene and would interfere with the movements of the robot.

A.2.2 (Single Shot) Photometric Stereo

Photometric Stereo (PS) is awell-known technique to acquire normalmaps, and using
these, to generate depth data. The classical method was proposed byWoodham [99].
Manypublications dealwith this topic and several enhancements andmodifications of
the classical PS method have been developed. First modifications faced the problems
of non-lambertian surfaces [23, 44]. Enhancements dealing with specularities and
textured surfaces can for example be found in [21]. One of the first modifications
towards single shot measurements is described in [100] where colored light sources
where already used and frame rates of 15Hz where achieved. Further modifications
deal with PS using uncalibrated light sources [38], different types of light sources,
like computer screens [79] or even the usage of the sun as light source (“Shape from
Sun”) [8].

http://dx.doi.org/10.1007/978-3-319-26500-1_5
http://dx.doi.org/10.1007/978-3-319-26500-1_5
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Basic Photometric Stereo

When a surface with known reflectance properties is illuminated by a light source,
the visible brightness acquired by a camera is dependent of the normal vector n of
that surface. This dependence can be written as

Er = Es · μ · R(s, e, n). (A.1)

Here, Er denotes the light acquired by the camera, i.e. the reflected light, Es is
the incident light emitted by the light source, μ is a scalar factor named albedo,
which describes the amount of light reflected by the surface, i.e. its “whiteness” and
R(s, e, n) is a reflectance function defined by the reflectance model of the surface.
The reflectance function is dependent of the surface normal n, the direction of the
incident light s onto the surface and the direction of the reflected light e which is the
direction towards the camera.

Often, the reflectance properties of the measured surface is assumed to be diffuse,
or Lambertian. The diffuse reflectance function is defined as

Rd(s, e, n) = Rd(s, n) =
{
cos (α) = s·n

|s|·|n| for α,β < π
2

0 otherwise
. (A.2)

The diffuse reflection is independent of the direction of the reflected light. The angles
α and β are the angles between the incident light s and the surface normal n, and
the angle between the surface normal and the emergent light e, respectively. When
the reflectance function (e.g. Lambertian reflectance, constant albedo) as well as
information about the light source and the camera is known, Eq.A.1 can be solved
for α. Thus, using one light source only gives information about one DOF of the
surface normal. To completely reject the ambiguities, at least three images have to
be taken to solve for the two DOFs (p and q) of the normals. p and q are the partial
derivatives of the surface f (x, y):

p = δ f (x, y)

δx
(A.3)

q = δ f (x, y)

δy
(A.4)

The normal n can then be written as

n = [p, q,−1]T . (A.5)

To illustrate this graphically, the reflectance properties can also be represented in
reflectance maps (see Fig.A.1). The detected brightness of the surface is dependent
of the angle of its normal and the incident light direction. Therefore, in case of
identical incident light and viewing direction, circular structures are visible in the
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Fig. A.1 Three reflectance maps for different lighting directions

reflectance maps; on each of them the surface has the same brightness. Due to these
structures, the described ambiguities arise. Three of these “iso brightness contours”,
under different illumination directions, intersect in exactly one point which defines
one unique surface normal.

Evaluating every pixel of the three images then leads to a complete normal map.

Multi Spectral Photometric Stereo in Realistic Scenarios

To reduce the acquisition time of the classical PSmethod, the temporallymultiplexed
images can be changed into simultaneous spectrally multiplexed images. By using
an RGB-Camera and three colored light sources, all images can be taken at the same
time. After acquisition, the image can be separated into three color components. The
Bayer-filter of the camera1 and the spectra of the colored lights have to match, so
that no light of the color channels falls into the neighboring colors. Considering the
wavelength λ of the light, the reflectance equation A.1 then changes to:

Er (λ) = Es(λ) · μ(λ) · R(s, e, n) (A.6)

As PS normally makes some assumptions, the usage of it in realistic scenarios has
to be well planned.

Lookup Table. The evaluation of the reflectancemap for each set of brightness values
contains the intersection evaluation of three iso brightness contours. To reduce the
computational complexity, a simple lookup table (LUT) can be sampled prior to
the measurements. This can be done by using a sphere with the same reflectance
properties as the measured objects and by sampling each known normal on the
sphere. Each normal is then stored in a 3D table spanned by the three brightness
values. A simple table lookup then replaces the intersection computation.

1A Bayer color filter is a filter array, consisting of green, red, and blue color filters, placed in front
of photosensitive chips [16]. Using this filter, the gray level chips can be used to acquire color
information at the cost of real resolution. Mostly, the lost resolution is regained by interpolation.
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When no sphere is available, the same can be done by using arbitrary objects with
known CAD models and a scan of these objects. But, the LUT might then not be
filled completely.

Light Sources. It is assumed that all light sources are point light sources placed
infinitely far away from the scene. This results in parallel light rays and a homoge-
neous brightness in the complete scene. Under realistic conditions, light sources, e.g.
LEDs, have to be placed quite near to the scene. As LEDs have direction dependent
varying brightness, the inhomogeneous brightness in the scene may cause errors in
the measurements.

To overcome this problem, a mat white plane can be placed in the field of view
of the camera. The reference brightness of each color channel of the camera can
be stored and used to correct the measured brightness values later. Furthermore, the
field of view can be divided into several sections, each with its own LUT, in order to
evaluate pixels using only the nearest LUT.

Ambient Light. In real world situations, the measured light of the camera will be
the sum of the three light sources and ambient light. Via an unilluminated reference
image, the ambient light can be subtracted from the input image prior to the table
lookup. This reduces errors arising from ambient light, but also reduces the dynamic
range and therefore the accuracy of the measured normals.

Limitations

Photometric Stereo is well applicable using the techniques shortly introduced above.
It acquires accurate and dense normal maps when the reflectance properties of the
measured objects are known. Even the (colored) albedo values can be computed for
each pixel.

Problems arise, when specular surfaces or surfaces with unknown reflectance
properties shall be measured. Here PS is not applicable.

Further details on the method used in the experiments within this thesis can be
found in [37].

A.2.3 Single Stripe Pattern Technique

In scenarios in which the PS method fails, an alternative technique has to be used.
Modern laser scanners are already capable of scanning reflecting surfaces using
strong lasers. Unfortunately, the acquisition times are quite high. This is because
laser line triangulation sensors project a single laser line onto the scene, detect the
reflected line in a calibrated camera image and intersect the corresponding viewing
rays with the light plane to estimate 3D points. Using this procedure, one image has
to be taken for each position of the laser line in the scene and all measured slices
of the scene have to be merged for a complete 3D scan. To achieve a single-shot
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measurement, all laser lines have to be projected at once. Doing this, a new problem,
namely the correspondence-problem, occurs. When capturing all laser lines in a
single image, it is no longer trivial to decide which viewing ray intersects which
light plane. Wrong correspondences (between laser lines and viewing rays) result
in wrong depth values. Hence, assuming each laser light plane is attributed with an
accompanying number and all planes are numbered in ascending order, it is necessary
to detect all visible lines in the image and to find the correctly corresponding light
plane. This problem can be solved by counting the visible lines. But, as the number of
the first line in the image is unknown, the estimated numbers may contain a constant
numbering error. The resulting depth values are therefore erroneous, but the relative
depth changes between neighboring lines only contain very small errors. Thus, it is
possible to use the depth values to generate a correct normal map by computing local
gradients.

Acquisition Algorithm

In the following, it is assumed that the camera captures only one single object. If this
is not the case, a segmentation algorithm has to be applied in advance.

To illuminate the scene with many light planes simultaneously, an LED projector
is used, whose pose is calibrated with respect to the camera. The projected image
consists of parallel lines (see Fig.A.2).

Projector and camera are arranged in such a way that the camera’s field of view
is fully illuminated by the projector. With the calibrated system only one image is
acquired permeasurement. To easily extract the light stripes in the image, red lines are
projected and the red color channel of the camera is used as input image (Fig.A.4a).
Then, the lines are detected with sub-pixel accuracy. Besides the line positions,
the image gradients (being orthogonal to the lines) in each pixel are computed by
applying the well-known Sobel operator (Fig.A.4b).

Fig. A.2 Illuminated scene from the camera’s point of view of the single stripe system
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To solve the correspondence problem (i.e., to assign light plane numbers to visible
lines in the image), a voting algorithm is used. To prepare the algorithm, first, all
pixels are clustered into single lines and each line gets an according voting table.
Each voting table consists of possible line numbers with an associated weight. When
the algorithm starts, all voting tables are empty. Then, each line, consisting of a set
of pixels, is analyzed, starting from the top of the image (this is the border of the
image that is closest to the light plane with number 0). If the voting table is empty, a
number according to the position in the image is assigned depending on the average
coordinate of the line pixels in the image. If the table is not empty, the current line is
assigned to a light plane defined by the highest voted number. Then, for each pixel
of the line, all lines in the image that intersect the normal of the line at that pixel are
detected. The current pixel votes for a light plane number incremented of its own
and further incremented with each intersecting line and a weight that is the inverse
of the distance to the actual pixel (Fig.A.3).

When all lines are numbered, 3D coordinates can be computed for each line pixel
using the estimated light plane correspondences. If a counting error occurs in the
previous step, which is likely due to e.g. unknown object thickness at the topmost
visible line, the estimated coordinates are erroneous. But, by applying the described
voting mechanism, successive lines are assigned to successive light planes. This
results in small relative depth errors between the lines.

Using the same orthogonal directions as before, for each pixel the nearest neigh-
bors on adjacent lines are found as well as the nearest neighbors on the same line
(see Fig.A.4c). All these points are used to approximate a plane and calculate its
normal as surface normal in that pixel.

When all normals on each line are computed, the normal map is interpolated,
again using the orthogonal directions and linearly interpolating the surface normals
(Fig.A.4d).

Fig. A.3 Example of the
line voting algorithm. First,
line number 3 is assigned to
line L4. Then, for each pixel
of L4 all lines intersecting
the orthogonal are detected
and a voting is added for the
incremented line number
with a weight equal to the
inverse of the distance of the
intersection to the
current pixel:
voteLn (number,weight)
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(a) (b) (c) (d)

Fig. A.4 Normal map acquisition principle. a Red color channel of the input image with stripe
illumination. b Gradient angle image. c Extracted lines and estimation of normal n, using image
gradient direction. d Interpolated, color coded normal map

Theoretical Error Analysis

With the algorithm described in the previous section, normal maps can be gener-
ated using single camera shots. But, if the correspondences between light planes
and viewing rays are erroneous, errors occur. To obtain a measure for these errors,
the geometrical setup of the system can be analyzed and an error estimate can be
generated. The interesting errors that occur are the depth errors f1, f2 of two viewing
rays intersecting two adjacent light planes at the same surface as well as the normal
error εN which is the angle between the measured normal and the true normal.

The errors for an example setup, depending on the numbering error εC , can be seen
in TableA.1. These errors (εN and f1,2) due to correspondence errors, depend on the
extrinsic and intrinsic parameters of the camera-projector system. These parameters
are dp and dc, the distances of the projector and the camera to the measured surface,
the angle α between the camera’s and the projector’s direction of sight, the angle β
of the projector w.r.t. the measured surface and the angle λL P between two adjacent
light planes. With these parameters, εN can be computed in relation to the numbering
error εC .

To get the normal error εN and the depth errors f1 and f2 along the viewing rays
of the camera depending on the counting error εC , some geometric analysis has to
be done. As the normal is measured using adjacent light planes, the angle δ between

Table A.1 Normal error εN and depth error f1 of the single stripe pattern system depending on
the correspondence error εC

εC 1 2 3 4 5

εN 0.62◦ 1.25◦ 1.89◦ 2.53◦ 3.18◦

f1 6.8mm 13.6mm 20.6mm 27.7mm 35.0mm

εC 6 7 8 9 10

εN 3.83◦ 4.49◦ 5.16◦ 5.83◦ 6.52◦

f1 42.4mm 49.9mm 57.6mm 65.5mm 73.5mm
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Fig. A.5 Normal error εN
approximation dependent of
the numbering error εC

the second light plane and the surface is needed.

δ = π − β − λL P (A.7)

The distance e between two surface points on the surface is

e = dp
sin (λL P)

sin (β + λL P)
. (A.8)

Further important distances are dp
′ and dc

′ which are the distances of the projector
and the camera along the adjacent light plane directions.

dp
′ = dp

sin (β)

sin (π − β − λL P)
(A.9)

dc
′ = (

dc
2 + e2 − 2 dc e cos (α + β)

) 1
2 (A.10)

The angle between the viewing rays of the camera pointing towards both reflected
light planes is

λC R = sin−1

(
e

dc
′ sin (α + β)

)
. (A.11)
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To calculate the depth error, two further angles, κ and ψ, are needed.

κ = α + λC R − (εC + 1)λL P (A.12)

ψ = α − εC λL P (A.13)

Now f1 and f2 can be estimated.

f1 = dp
sin (εC λL P)

sin (ψ)
(A.14)

f2 = dp
′ sin (εC λL P)

sin (κ)
(A.15)

The normal error εN then is

εN = sin−1

(
( f1 − f2)

g
sin (π − α − β)

)
, (A.16)

with

g =
(
(dc + f1)

2 + (
dc

′ + f2
)2 − 2 (dc + f1)

(
dc

′ + f2
)
cos (λC R)

) 1
2
. (A.17)

In the experimental setup, the parameters were dp = 650mm, dc = 471mm,
α = 30◦, β = 69◦ and λL P = 0.3◦. The resulting theoretical errors can be seen in
TableA.1. The displayed error f1 is just stated for reasons of completeness as it has
no effect on the normal map.
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