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Preface

Geometrical Dynamics of Complex Systems is a graduate–level monographic
textbook. It represents a comprehensive introduction into rigorous geometrical
dynamics of complex systems of various natures. By ‘complex systems’, in this
book are meant high–dimensional nonlinear systems, which can be (but not
necessarily are) adaptive. This monograph proposes a unified geometrical ap-
proach to dynamics of complex systems of various kinds: engineering, physical,
biophysical, psychophysical, sociophysical, econophysical, etc. As their names
suggest, all these multi–input multi–output (MIMO) systems have something
in common: the underlying physics. However, instead of dealing with the pop-
ular ‘soft complexity philosophy’,1 we rather propose a rigorous geometrical
and topological approach. We believe that our rigorous approach has much
greater predictive power than the soft one. We argue that science and tech-
nology is all about prediction and control. Observation, understanding and
explanation are important in education at undergraduate level, but after that
it should be all prediction and control. The main objective of this book is to
show that high–dimensional nonlinear systems and processes of ‘real life’ can
be modelled and analyzed using rigorous mathematics, which enables their
complete predictability and controllability, as if they were linear systems.

It is well–known that linear systems, which are completely predictable
and controllable by definition – live only in Euclidean spaces (of various di-
mensions). They are as simple as possible, mathematically elegant and fully
elaborated from either scientific or engineering side. However, in nature, noth-
ing is linear. In reality, everything has a certain degree of nonlinearity, which
means: unpredictability, with subsequent uncontrollability. So, our simple and
elegant linear systems, that cover almost all of our university textbooks in
1 It is well–known that the ‘soft complexity philosophy’, which has been proclaimed

and developed in the famous Santa Fe Institute, actually advocates ‘simplicity’
by means of ‘reduction’ under the name ‘complexity’. As such, it is very different
from the ‘general system theory’ which states that a complex system is more than
a sum of its components.
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mathematics, physics and engineering, do not match the nonlinear complex-
ity of real life. We have a very common situation that best students in these
three disciplines, when they come to real life, discover that their knowledge
does not work in practice. Their linear knowledge does not match nonlinear
reality. So, they give it up in favor of ‘modern soft technologies’, which are de-
signed to match the nonlinear reality, but are not too much concerned about
‘old–fashioned issues’ of prediction and control.

As an illustration of this very common situation, consider a typical shock–
mitigation analysis using ‘linear’ accelerometer data (for the car, train, air-
craft, or spacecraft industry). No matter how well the shock–absorbers and
suspension under the pilot/passenger seats are designed, the resulting process
is nonlinear by its nature. Here, we clearly have an over–damped oscillation
process – as required, but a completely different one from all the simplified
process that cover our mechanical or control textbooks – as it is nonlinear.
If we numerically expand the real accelerometer–data into a Taylor series
around the shock–event point, we can see that a linear over–damped curve is
just the first–approximation to the real process. Thus, by adding quadratic,
cubic, and higher–order terms, we can get closer and closer to reality. This is
the nonlinear engineering that we propose in this book.

As a more complicated example, consider humanvs. humanoid (loco)motion
systems. If we neglect the neuro–muscular component of human motion (which
is intractable at this stage of science and technology)2 – we still have a consid-
erable difference in the joints of the two mechanisms. Human joints are sim-
ply more flexible than robot joints. Besides the dominant rotational degrees
of freedom, which are correctly replicated by majority of advanced Japanese
humanoid robots (Honda, Sony, Waseda), human joints also have a number of
‘hidden’, or ‘higher–order constraint’ degrees of freedom (DOFs). These ‘hid-
den DOFs’ are small translations that exist in all human joints, and are asso-
ciated to all major joint rotations. These small translations are not replicated
by contemporary humanoids, for obvious reasons of increased complexity in
dynamical balance, stability and control. These ‘higher–order constraints’ of
2 Recall that subjects like ‘complexity’, ‘self–organization’, ‘connectionism’ and

‘adaptive systems’ had already been studied in the 1940s and 1950s, in fields
like ‘cybernetics’ through researchers like N. Wiener, W.R. Ashby and J. von
Neumann. As they lived before the time of computers, they tackled complex sys-
tems only with mathematics, pencil and paper (e.g., von Neumann discovered
cellular automata and self–reproducing systems without computers, in the same
way as A. Lyapunov and H. Poincaré worked on the foundations of chaos the-
ory). Old ”C–Theories”: cybernetics, catastrophe theory, chaos theory,... have
the common goal to explain complex systems which consist of a large number
of mutually interacting and interwoven parts. New complexity theories: cellular
automata (CA), neural networks (NN), artificial intelligence (AI), and artificial
life (ALife), are related fields, but they do not try to describe general complex
systems. Using an intelligent combination of all these fields, we are interested in
prediction and control of complex systems.

XII
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human joints can be viewed as higher–order terms of some multidimensional
Taylor–series expansions of the ‘first–order DOFs’ currently existing in the
robot joints.

Thirdly, as an apparently unexpected example, we note the striking geo-
metrical and dynamical similarity between a typical nonlinear MIMO control
system (with M input processes, N output processes, and K feedback lops),
and a closed oriented superstring system (with M incoming strings, inter-
acting through internal K loops, to produce N outgoing strings). One might
argue that it is not a cost–effective job to explain a control system using a
string theory, which is clearly true in case of relatively simple control systems,
but nevertheless, this realization that the underlying ‘stringy control’ geomet-
rical dynamics is the same in both cases – has its own scientific value that
might eventually lead to discovery of new control systems.

Now, recall that nonlinearity can be two–fold: natural deterministic sys-
tems range from almost linear to chaotic, while natural stochastic systems
range from almost linear to ergodic. In this book we will cover them all. Now,
as majority of our readership, we have also passed through ‘linear schools of
thought’, so to be able to comprehend any natural system, we will always try
to find its corresponding linear system, if it exists. From geometrical point of
view, nonlinear systems (of any dimension) can be viewed as such deforma-
tions of associated linear systems, which are locally topologically equivalent
to the corresponding linear ones that live in Euclidean spaces. This idea leads
to the fundamental concept of a manifold. Our geometrical machinery starts
with manifolds.

On the other hand, geometrical elaboration of the above subtle idea of
‘hidden DOFs’, or ‘higher–order constraints’, in complex systems, has devel-
oped into the notion of ‘higher–order tangency’ of modern jet bundles. We
believe that the most rigorous analysis of complex systems of any nature can
be performed using the formalism of jet bundles, which is the pinnacle of our
geometrical machinery. The question might be cost–effectiveness, but it is still
good to have a fully reliable machinery, at least as a benchmark.

Our approach to dynamics of complex systems is somewhat similar to the
approach to mathematical physics used at the beginning of the 20th Century
by the leading two mathematicians: David Hilbert and John von Neumann
– the approach of combining mathematical rigor with conceptual clarity. In
addition, we put a strong accent on modern geometrical methods, so that
besides physical clarity we emphasize also geometrical intuition that underpins
it.

This geometrical intuition is based on the main work of Albert Einstein,
technically known as geometrodynamics. It is another name for Einstein’s
theory of gravitation, the term proposed by his younger collaborator from
Princeton, John Wheeler.3 Aiming at a systematic identification of matter
3 John A. Wheeler from Institute for Advanced Study at Princeton, was best known

for coining the term ‘Black Hole’. He was a PhD–supervisor of Richard Feynman.
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with space, geometrodynamics has often been said to be an extension of the
philosophy of nature as conceived by Descartes and Spinoza.

That much about history. A modern geometrical dynamics is a strong
contemporary trend of unifying inter–scientific dynamical methods based on
differential geometry, topology and Feynman’s path integrals.4

As a final motivation, consider the vital problem of prediction and con-
trol/prevention of some natural disaster (e.g., a hurricane). The role of science
in dealing with a phenomenon/treat like this can be depicted as a feedback–
loop:

Observation −→ Understanding −→ Prediction −→ Control
↑ ↓

←− ←− ←− ←− ←−

with the following four components/phases:

1. Observation, i.e., monitoring a phenomenon in case, using experimental
sensing/measuring methods (e.g., orbital satellite imaging). This phase
produces measurement data that could be fitted as graphs of analytical
functions.

2. Understanding, in the form of geometrical pattern recognition, i.e., rec-
ognizing the turbulent patterns of spatio–temporal chaotic behavior of
the approaching hurricane, in terms of geometrical objects (e.g., tensor–
and spinor–fields). This phase recognizes the observation graphs as cross–
sections of some jet bundles, thus representing the validity criterion for
the observation phase.

3. Prediction: when, where and how will the hurricane strike?
Now, common, inductive approach here means fitting a statistical model
into empirical satellite data. However, we know that this works only for
a very short time in the future, as extrapolation is not a valid predic-
tive procedure, even if (adaptive) extended Kalman filter is used. Instead,
we suggest a deductive approach of fitting some data into a well–defined
dynamical model. This means formulating a dynamical system on con-
figuration and phase–space manifolds, which incorporates all previously

In the 1960s, Wheeler tried to achieve Einstein’s unfinished project of a unified
field theory, under the title Geometrodynamics Program [Whe61, Whe62]. As we
know, both the Einstein’s unified theory and Wheeler’s program failed, in a similar
way as the famous Hilbert’s Program of axiomatization of all mathematical sci-
ences failed. However, their influences on today’s developments in modern physics
are as strong as Hilbert’s influence on developments in modern mathematics.

4 Recall that one of the leading mathematicians of this age, and one of the founders
of modern geometrical dynamics, Vladimir I. Arnold, starts his controversial ar-
ticle on teaching mathematics with: “Mathematics is a part of physics. Physics
is an experimental science, a part of natural science. Mathematics is the part of
physics where experiments are cheap...” This is the spirit of modern geometrical
dynamics. Only, it goes beyond physics, into the realms of engineering, biophysics,
psychophysics, sociophysics and econophysics.
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recognized turbulent patterns of the hurricane’s spatio–temporal behav-
ior. Once a valid dynamical model is formulated, the necessary empirical
satellite data would include system parameters, initial and boundary con-
ditions. So, this would be a pattern–driven modelling of the hurricane,
rather than blind data–driven statistical modelling. This phase is the va-
lidity criterion for the understanding phase.

4. Control: this is the final stage of manipulating the hurricane to prevent the
destruction. If we have already formulated a valid geometrical–pattern–
based dynamical model, this task can be relatively easily accomplished,
as

Control System = Dynamical System + Controller.

So, here the problem is to design a feedback controller/compensator for
the dynamical model. This phase is the validity criterion for the prediction
phase.

This book has two Chapters and Appendix. The first Chapter develops
our geometrical machinery, in both intuitive and rigorous manner. The second
Chapter applies this geometrical machinery to a number of examples of com-
plex systems, including mechanical, physical, control, biomechanical/robotic,
neurodynamical and psycho–socio–economical systems. The Appendix gives
all the necessary background for comprehensive reading of this book, so that
it can be used as a two–semester graduate course in engineering, physics and
mathematics. Target readership includes all researchers and students of com-
plex systems (in engineering, mathematics, physics, chemistry, biology, psy-
chology, sociology, economics, medicine, etc.), working both in industry (i.e.,
clinics) and academia.

Adelaide, V. Ivancevic, Defence Science & Technology Organisation,
November 2005 Australia, e-mail: Vladimir.Ivancevic@dsto.defence.gov.au

T. Ivancevic, School of Mathematics, The University of Adelaide,
e-mail: Tijana.Ivancevic@adelaide.edu.au
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Glossary of Frequently Used Symbols

General

– ‘iff’ means ‘if and only if’;
– ‘r.h.s’ means ‘right hand side’; ‘l.h.s’ means ‘l.h.s.’;
– ODE means ordinary differential equation, while PDE means partial differ-
ential equation;
– Einstein’s summation convention over repeated indices (not necessarily one
up and one down) is assumed in the whole text, unless explicitly stated
otherwise.

Sets

N – natural numbers;
Z – integers;
R – real numbers;
C – complex numbers;
H – quaternions;
K – number field of real numbers, complex numbers, or quaternions.

Maps

f : A→ B – a function, (or map) between sets A ≡ Dom f and B ≡ Cod f ;

Ker f = f−1(eB)− a kernel of f ;
Im f = f(A)− an image of f ;

Coker f = Cod f/ Im f − a cokernel of f ;
Coim f = Dom f/Ker f − a coimage of f ;

X Y�
f

h
�
�
�
��
Z
�

g

− a commutative diagram, requiring h = g ◦ f .



Derivatives

C∞(A,B) – set of k−times differentiable functions between sets A to B;
C∞(A,B) – set of smooth functions between sets A to B;
C0(A,B) – set of continuous functions between sets A to B;
f ′(x) = df(x)

dx – derivative of f with respect to x;
ẋ – total time derivative of x;
∂t ≡ ∂

∂t – partial time derivative;
∂xi ≡ ∂i ≡ ∂

∂xi – partial coordinate derivative;
ḟ = ∂tf + ∂xif ẋi – total time derivative of the scalar field f = f(t, xi);
ut ≡ ∂tu, ux ≡ ∂xu, uxx ≡ ∂x2u – only in partial differential equations;
Lxi ≡ ∂xiL, Lẋi ≡ ∂ẋiL – coordinate and velocity partial derivatives of the
Lagrangian function;
d – exterior derivative;
dn – coboundary operator;
∂n – boundary operator;
∇ = ∇(g) – affine Levi–Civita connection on a smooth manifold M with
Riemannian metric tensor g = gij ;
Γ ijk – Christoffel symbols of the affine connection ∇;
∇XT – covariant derivative of the tensor–field T with respect to the vector–
field X, defined by means of Γ ijk;
T;xi ≡ T|xi – covariant derivative of the tensor–field T with respect to the
coordinate basis {xi};
Ṫ ≡ DT

dt ≡ ∇T
dt – absolute (intrinsic, or Bianchi) derivative of the tensor–

field T upon the parameter t; e.g., acceleration vector is the absolute time
derivative of the velocity vector, ai = ˙̄vi ≡ Dvi

dt ; note that in general, ai �= v̇i
– this is crucial for proper definition of Newtonian force (see Appendix);
LXT – Lie derivative of the tensor–field T in direction of the vector–field X;
[X,Y ] – Lie bracket (commutator) of two vector–fields X and Y ;
[F,G], or {F,G} – Poisson bracket, or Lie–Poisson bracket, of two functions
F and G.

Smooth Manifolds, Fibre Bundles and Jet Spaces

Unless otherwise specified, all manifolds M,N, ... are assumed C∞−smooth,
real, finite–dimensional,Hausdorff, paracompact,connectedandwithoutbound-
ary,5 while all maps are assumed smooth (C∞). We use the symbols ⊗, ∨, ∧
and ⊕ for the tensor, symmetrized and exterior products, as well as the Whit-
ney sum6, respectively, while  denotes the interior product (contraction) of
5 The only 1D manifolds obeying these conditions are the real line R and the circle

S1.
6 Whitney sum ⊕ is an analog of the direct (Cartesian) product for vector bundles.

Given two vector bundles Y and Y ′ over the same base X, their Cartesian product
is a vector bundle over X × X. The diagonal map induces a vector bundle over
X called the Whitney sum of these vector bundles and denoted by Y ⊕ Y ′.
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(multi)vectors and p−forms, and ↪→ denotes a manifold imbedding (i.e., both
a submanifold and a topological subspace of the codomain manifold). The
symbols ∂AB denote partial derivatives with respect to coordinates possessing
multi–indices BA (e.g., ∂α = ∂/∂xα);
TM – tangent bundle of the manifold M ;
πM : TM →M – natural projection;
T ∗M – cotangent bundle of the manifold M ;
π : Y → X – fibre bundle;
(E, π,M) – vector bundle with total space E, base M and projection π;
(Y, π,X, V ) – fibre bundle with total space Y , base X, projection π and stan-
dard fibre V ;
Jk(M,N) – space of k−jets of smooth functions between manifolds M and
N ;
Jk(X,Y ) – k–jet space of a fibre bundle Y → X; in particular, in mechanics we
have a 1–jet space J1(R, Q), with 1–jet coordinate maps j1t s : t �→ (t, xi, ẋi),
as well as a 2–jet space J2(R, Q), with 2–jet coordinate maps j2t s : t �→
(t, xi, ẋi, ẍi);
jkxs – k−jets of sections si : X → Y of a fibre bundle Y → X;
We use the following kinds of manifold maps: immersion, imbedding, sub-
mersion, and projection. A map f : M → M ′ is called the immersion if the
tangent map Tf at every point x ∈M is an injection (i.e., ‘1–1’ map). When
f is both an immersion and an injection, its image is said to be a submanifold
of M ′. A submanifold which also is a topological subspace is called imbedded
submanifold. A map f : M → M ′ is called submersion if the tangent map
Tf at every point x ∈ M is a surjection (i.e., ‘onto’ map). If f is both a
submersion and a surjection, it is called projection or fibre bundle.

Lie and (Co)Homology Groups

G – usually a general Lie group;
GL(n) – general linear group with real coefficients in dimension n;
SO(n) – group of rotations in dimension n;
Tn – toral (Abelian) group in dimension n;
Sp(n) – symplectic group in dimension n;
T (n) – group of translations in dimension n;
SE(n) – Euclidean group in dimension n;
Hn(M) = Ker ∂n/ Im ∂n−1 – nth homology group of the manifold M ;
Hn(M) = Ker dn/ Im dn+1 – nth cohomology group of the manifold M .

Other Spaces and Operators

i ≡
√
−1 – imaginary unit;

C∞(M) – space of k−differentiable functions on the manifold M ;
Ωk(M) – space of k−forms on the manifold M ;
g – Lie algebra of a Lie group G, i.e., the tangent space of G at its identity
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element;
Ad(g) – adjoint endomorphism; recall that adjoint representation of a Lie
group G is the linearized version of the action of G on itself by conjugation,
i.e., for each g ∈ G, the inner automorphism x �→ gxg−1 gives a linear trans-
formation Ad(g) : g→ g, from the Lie algebra g of G to itself;
nD space (group, system) means n−dimensional space (group, system), for
n ∈ N;
� – semidirect (noncommutative) product; e.g., SE(3) = SO(3) � R3;∫
Σ – Feynman path integral symbol, denoting integration over continuous
spectrum of smooth paths and summation over discrete spectrum of Markov

chains; e.g.,
∫
Σ D[x] eiS[x] denotes the path integral (i.e., sum–over–histories)

over all possible paths xi = xi(t) defined by the Hamiltonian action, S[x] =
1
2

∫ t1
t0
gij ẋ

iẋj dt, while
∫
Σ D[Φ] eiS[Φ] denotes the path integral over all possible

fields Φi = Φi(x) defined by some field action S[Φ].

Categories

S – all sets as objects and all functions between them as morphisms;
PS – all pointed sets as objects and all functions between them preserving
base point as morphisms;
V – all vector spaces as objects and all linear maps between them as mor-
phisms;
B – Banach spaces over R as objects and bounded linear maps between them
as morphisms;
G – all groups as objects, all homomorphisms between them as morphisms;
A – Abelian groups as objects, homomorphisms between them as morphisms;
AL – all algebras (over a given number field K) as objects, all their homo-
morphisms between them as morphisms;
T – all topological spaces as objects, all continuous functions between them
as morphisms;
PT – pointed topological spaces as objects, continuous functions between
them preserving base point as morphisms;
T G – all topological groups as objects, their continuous homomorphisms as
morphisms;
M – all smooth manifolds as objects, all smooth maps between them as mor-
phisms;
Mn – nD manifolds as objects, their local diffeomorphisms as morphisms;
LG – all Lie groups as objects, all smooth homomorphisms between them as
morphisms;
LAL – all Lie algebras (over a given field K) as objects, all smooth homomor-
phisms between them as morphisms;
T B – all tangent bundles as objects, all smooth tangent maps between them
as morphisms;
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T ∗B – all cotangent bundles as objects, all smooth cotangent maps between
them as morphisms;
VB – all smooth vector bundles as objects, all smooth homomorphisms be-
tween them as morphisms;
FB – all smooth fibre bundles as objects, all smooth homomorphisms between
them as morphisms;
Symplec – all symplectic manifolds (i.e., physical phase–spaces), all symplec-
tic maps (i.e., canonical transformations) between them as morphisms;
Hilbert – all Hilbert spaces and all unitary operators as morphisms.
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Modern Geometrical Machinery

1.1 Introduction

As stated in the preface, the objective of this monograph is a unified rigorous
geometrical dynamics of complex systems of various natures, where by ‘com-
plex systems’ we mean high–dimensional nonlinear systems (with or without
adaptation), predominantly with continuous–time dynamics. The main pur-
pose of this book is to show that high–dimensional nonlinear systems and
processes from ‘real life’ can be modelled and analyzed using rigorous math-
ematics, which enables their complete predictability & controllability. With
this book we try to fit into the ‘market’ currently occupied by two ‘worlds’:
(i) traditional ‘hard linear engineering’, and (ii) modern ‘soft nonlinear engi-
neering’. We believe that our new approach has advantages of both of these
engineering worlds. So, before proceeding, let us quickly observe both of them.

Today, we see a number of the so–called ‘soft agent simulators’ of com-
plex systems, which are supposedly ‘good models of real life situations’; they
can be ‘simply taken off–shelf’ and are ‘very easy to understand and imple-
ment’, both in software and in hardware. Some of these soft simulators have
‘discrete–time’ dynamics, while others have some strange ‘dynamics’ with no
time at all. Regarding this soft–complexity fashion, we argue:
(i) that every complex behavior in nature is a temporal process (some are
even spatio–temporal processes); and more,
(ii) that sequences of discrete events occurring in equidistant time steps do
not exist in nature.1

In other words, we question the predictive value of ‘discrete event simulators’,
and even more the general realism of time–independent soft simulators and
multi–agent systems based on chess–like games.2 It is true that real–life games
1 An experimental evidence for this claim is well–known to any experimentalist:

the sampling rate of the measuring device necessarily has to match the measured
dynamics – otherwise we miss the valuable information.

2 Recall that in a discrete event simulation approach to human performance mod-
elling, the whole simulation represents a schedule–like process to be modelled,
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are often decided by a ‘single knock–out blow’; however, their dynamics are
never instantaneous and repeatable in equidistant time steps. In such simplis-
tic discrete models we often miss the most vital signal/system information. If
we eventually need a discrete–time functional approximation, we will rather
approximate the solution – not the problem, as the overall modelling error
will be much smaller, and consequently the predictive value much higher.

In a word, we argue that continuous–time models are much finer predic-
tors for real–life situations than discrete–time models, which are coarse by
nature and therefore represent quick routes to artificially–chaotic behavior.3

For example, popular Belief–Desire–Intention (BDI) agents based on Boolean
logic (see e.g., [RG98], as well as subsection 2.6.8 below) – necessarily show
unrealistic and ‘jerky’ behavior.4

Such discrete dynamics is most often defined by some (two–state, or Ising
spin) Boolean function f(x, y, . . . ), while all the change that f undergoes can
be represented by the associated Boolean derivative,

∂f

∂x
=

{
1 if f(|x− 1|, y, . . . ) �= f(x, y, . . . ),
0 otherwise,

while individual activities (or, tasks) are events scheduled to occur from the
queue. This approach is useful as a ‘bird view’ on a complex schedule includ-
ing a number of unimportant activities. However, each of the included activities
is modelled as a discrete event described by only two characteristics: Start and
Stop. The obvious question here is: what happens between the start and stop?
Where is the process of the action? It does not exist. Therefore, this approach is
O.K. as long as there is no a single important human performance action that we
might really want to simulate, understand, predict, and control. If there is only
one important activity or task in the schedule, then this methodology crashes at
that task. This is more obvious if in the schedule we have at least one physical,
chemical, physiological, or cognitive process. Such a process represents a tem-
poral (or even a spatio–temporal) system with its own input–output variables,
its own initial (and possibly boundary) conditions, as well as measurable system
parameters. If such a ‘strange’ event is actually included in the schedule, then we
need a very different methodology to simulate, predict and control it.

3 This is similar to numerical solution of differential equations versus difference
equations (or, ‘maps’). In realms of physical, chemical, biological, psychologi-
cal and socio–economical worlds, differential equations are generally much finer
models, even if they are numerically solved (providing the use of sophisticated
integrators with either adaptive or very small time steps) – than the correspond-
ing difference maps, which are both coarse approximations to reality and quick
routes to chaos. Namely, the necessary condition for chaos can be satisfied (as a
minimum) by a three–dimensional continuous–time dynamical system compared
to a one–dimensional discrete–time map. And usually, this apparent chaos exists
only in the model – not in the real system described by the model.

4 This problem can be solved by using either temporal fuzzy–logic [Kos92], or tem-
poral logic of actions [Lam94], instead of simplistic and ‘jerky’ Boolean logic.
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which represents a measure of sensitivity of a function f with respect to its
arguments x, y, . . . . For example, this kind of sequential dynamics is used in
cellular automata [BFR04].

Contrasted to this simplistic Boolean dynamics, within our geometrical
machinery we propose a multitude of high–dimensional functions, with their
changes defined by a variety of sophisticated derivatives, including: covariant,
absolute, exterior, and Lie–derivatives.

However, this does not mean that we will not use modern soft techniques in
our modelling of complex adaptive systems. On the contrary, they can be very
useful for ‘hybrid adaptive hard–soft simulators’. We are only concerned with
their weak predictive power, which we intend to build–up using our rigorous
geometrical machinery. For example, we will describe the activation dynamics
of a neural network using a smooth manifold, and add on the top of it a
discrete–time (Hebbian or reinforcement) learning dynamics.

On the other hand, recall that linear systems are, by definition, fully pre-
dictable and controllable. They live only in Euclidean spaces of various di-
mensions. Unfortunately, nothing is linear in nature – everything has some
degree of nonlinearity. Natural deterministic systems range from almost lin-
ear to chaotic, while natural stochastic systems range from almost linear to
ergodic. In general, nonlinear systems can be viewed as such deformations
of associated linear systems, which are locally topologically equivalent to the
corresponding linear ones.

In our opinion, a strong predictive model of a complex system, suitable for
real–life applications, is a nonlinear, multiple–input multiple–output (MIMO)
system,5 predominantly continuous–time and smooth, but at the same time
5 It is well–known that linear MIMO control systems can always be put into

Kalman’s canonical (modular) state–space form of order n, with m inputs and k
outputs (see [KFA69]). In case of continuous–time systems we have the state and
output equation of the form

dx/dt = A(t)x(t) + B(t)u(t), (1.1)

y(t) = C(t)x(t) + D(t)u(t),

while in case of discrete time systems we have the state and output equation of
the form

x(n + 1) = A(n)x(n) + B(n)u(n), (1.2)

y(n) = C(n)x(n) + D(n)u(n).

Both in (1.1) and in (1.2) the variables have the following meaning:
x(t) ∈ X is an n−vector of state variables belonging to the vector state–space

X ⊂ Rn;
u(t) ∈ U is an m−vector of inputs belonging to the vector input space U ⊂ Rm;
y(t) ∈ Y is a k−vector of outputs belonging to the vector output space Y ⊂ Rk;
A(t) : X → X is an n × n matrix of state dynamics;
B(t) : U → X is an n × m matrix of input map;
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allowing discrete–time control and adaptation. It resembles a real–life situa-
tion (possibly including noise, uncertainty, imprecision and misinformation).
At the same time, to be a good predictor, it needs full observability, control-
lability and stability. On the top of these three essential criteria, we might
put the forth one, adaptability, as required by complexity theory (see e.g.,
[B-Y97]). In this book we propose a unified geometrical approach, somewhat
similar to the popular one presented in [AS92, CD98], as well as to the more
serious one presented in [Arn92, Arn93] – for design of such models.

As Einstein said: “Nature is simple only when analyzed locally. Why? Be-
cause, locally any system appears to be linear, and therefore fully predictable
and controllable. Geometrical elaboration of this fundamental idea has pro-
duced the concept of a manifold , a topological space which locally looks like
Euclidean Rn−spaces, but globally can be totally different. In addition, to
be able to use calculus on our manifolds, in much the same way as in ordi-
nary Rn−spaces, the manifolds need to be smooth (i.e., differentiable as many
times as required, technically denoted by C∞).

Consider a classical example, comparing a surface of an apple with a Eu-
clidean plane. A small neighborhood of every point on the surface of an apple
(excluding its stem) looks like a Euclidean plane (denoted by R2), with its
local geodesics appearing like straight lines. In other words, a smooth surface
is locally topologically equivalent to the Euclidean plane. This same concept
of nonlinear geometry holds in any dimension. If dimension is high, we are
dealing with complex systems. Therefore, while continuous–time linear sys-
tems live in Euclidean Rn−spaces, continuous–time complex systems live in
nD smooth manifolds, usually denoted by M .

Finally, note that there are two dynamical paradigms of smooth manifolds:
(i) Einstein’s 4D space–time manifold , historically the first one, and
(ii) nD configuration manifold , which is our core geometrical concept.

As the Einstein space–time manifold is both simpler to comprehend and
consequently much more elaborated, we start our geometrical machinery with
it, keeping in mind that the same fundamental dynamics holds for all smooth
manifolds, regardless of their dimension.

Throughout the book we will try to follow the Hilbertian pedagogical
method of development: (i) intuitively introduce a new geometrical concept;
(ii) rigorously define it; (iii) apply it to solve a real–world problem.

Intuition Behind Einstein’s Geometrodynamics

Briefly, Einstein–Wheeler geometrodynamics can be summarized as:

C(t) : X → Y is a k × n matrix of output map;
D(t) : U → Y is a k × m matrix of input–output transform.
Input u(t) ∈ U can be empirically determined by trial and error; it is prop-

erly defined by quadratic optimization process called Kalman regulator , or more
generally (in the presence of noise), by (extended) Kalman filter [Kal60].
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1. Gravity is not a Newtonian force, but an aspect of the geometry of space–
time.

2. Space is not an absolute invariant entity, but is influenced by the distri-
bution of mass and energy in the Universe. The fundamental Geometro-
dynamics Principle states:
Space tells matter how to move, while matter tells space how to curve.

3. Large masses introduce a strong curvature in space–time. Light and mat-
ter are forced to move according to this metric. Since all the matter is in
motion, the geometry of space is constantly changing.

The celebrated Einstein equation relates the curvature of space–time to the
mass/energy density. It reads (in the so–called ‘normal’ units: c = 8πG = 1):

G = T, or, in components, Gαβ = Tαβ , (1.3)

where G = Gαβ is the Einstein curvature tensor, representing space–time
geometry, while T = Tαβ is the stress–energy–momentum tensor, the ‘mysti-
cal’ SEM–tensor, representing matter; the 4D indices α, β = (0, 1, 2, 3) label
respectively the four space–time directions: (t, x, y, z).

To grasp the intuition behind the Einstein equation (1.3), we need to
consider a ball filled with test particles that are all initially at rest relative
to each other. Let V = V (t) be the volume of the ball after a proper time t
has elapsed, as measured by the particle at the center of the ball. Then the
Einstein equation says:

V̈

V

∣∣∣
t=0

= −1
2

⎛⎜⎜⎝
flow of t−momentum in t− direction +
flow of x−momentum in x− direction +
flow of y−momentum in y − direction +
flow of z−momentum in z − direction

⎞⎟⎟⎠ ,
where these flows are measured at the center of the ball at time t = 0, us-
ing local inertial coordinates. These flows are the diagonal components of
the SEM–tensor T. Its components Tαβ tell us how much momentum in the
α−direction is flowing in the β−direction through a given point of space–
time. The flow of t−momentum in the t−direction is just the energy density,
T00 = ρ. The flow of x−momentum in the x−direction is the ‘pressure in the
x−direction’, T11 = P1 ≡ Px, and similarly for y and z.

In any event, we may summarize the Einstein equation (1.3) as

V̈

V

∣∣∣
t=0

= −1
2
(ρ+ Px + Py + Pz) ≡ −

1
2
(T00 + T11 + T22 + T33). (1.4)

This new equation tells us that positive energy density and positive pressure
curve space–time in a way that makes a freely falling ball of point particles
tend to shrink. Since E = mc2 and we are working in normal units, ordinary
mass density counts as a form of energy density. Thus a massive object will
make a swarm of freely falling particles at rest around it start to shrink. In
short, (1.4) tells us that gravity attracts (see e.g., [MTW73, Bae01]).
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To see why equation (1.4) is equivalent to the Einstein equation (1.3), we
need to understand the Riemann curvature tensor and the geodesic deviation
equation. Namely, when space–time is curved, the result of parallel transport
depends on the path taken. To quantify this notion, pick two vectors u and v
at a point p in space–time. In the limit where ε −→ 0, we can approximately
speak of a ‘parallelogram’ with sides εu and εv. Take another vector w at p and
parallel transport it first along εv and then along εu to the opposite corner
of this parallelogram. The result is some vector w1. Alternatively, parallel
transport w first along εu and then along εv. The result is a slightly different
vector, w2. The limit

lim
ε−→0

w2 − w1

ε2
= R(u, v)w (1.5)

is well–defined, and it measures the curvature of space–time at the point p.
In local coordinates, we can write it as

R(u, v)w = Rαβγδu
βvγwδ.

The quantity Rαβγδ is called the Riemann curvature tensor . We can use this
tensor to calculate the relative acceleration of nearby particles in free fall if
they are initially at rest relative to one another. Consider two freely falling
particles at nearby points p and q. Let v be the velocity of the particle at p,
and let εu be the vector from p to q. Since the two particles start out at rest
relative to one other, the velocity of the particle at q is obtained by parallel
transporting v along εu.

Now let us wait a short while. Both particles trace out geodesics as time
passes, and at time ε they will be at new points, say p′ and q′. The point p′

is displaced from p by an amount εv, so we get a little parallelogram, exactly
as in the definition of the Riemann curvature:

Next let us calculate the new relative velocity of the two particles. To
compare vectors we must carry one to another using parallel transport. Let
v1 be the vector we get by taking the velocity vector of the particle at p′

and parallel transporting it to q′ along the top edge of our parallelogram.
Let v2 be the velocity of the particle at q′. The difference v2 − v1 is the new
relative velocity. It follows that over this passage of time, the average relative
acceleration of the two particles is a = (v2 − v1)/ε. By equation (1.5),

lim
ε→0

v2 − v1
ε2

= R(u, v)v, therefore lim
ε→0

a

ε
= R(u, v)v.

This is the simplified form of the geodesic deviation equation. From the defi-
nition of the Riemann curvature it is easy to see that R(u, v)w = −R(v, u)w,
so we can also write this equation as

lim
ε−→0

aα

ε
= −Rαβγδvβuγvδ. (1.6)

Using geodesic deviation equation (1.6) we can work out the second time
derivative of the volume V (t) of a small ball of test particles that start out at
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rest relative to each other. For this we must let u range over an orthonormal
basis of tangent vectors, and sum the ‘outwards’ component of acceleration
for each one of these. By equation (1.6) this gives

lim
V−→0

V̈

V

∣∣∣
t=0

= −Rαβαδvβvδ.

In terms of the so–called Ricci tensor , which is a contracted Riemann tensor,

Rβδ = Rαβαδ ,

we may write the above expression as

lim
V−→0

V̈

V

∣∣∣
t=0

= −Rβδvβvδ.

In local inertial coordinates, where the ball starts out at rest, we have v =
(1, 0, 0, 0), so

lim
V−→0

V̈

V

∣∣∣
t=0

= −R00. (1.7)

In short, the Ricci tensor says how our ball of freely falling test parti-
cles starts changing in volume. The Ricci tensor only captures some of the
information in the Riemann curvature tensor . The rest is captured by the
so–called the Weyl tensor (see e.g., [Pen89, Pen94, Pen97]), which says how
any such ball starts changing in shape. The Weyl tensor describes tidal forces,
gravitational waves and the like.

Now, the Einstein equation in its usual form says

Gαβ = Tαβ .

Here the right side is the stress-energy tensor, while the left side, the ‘Einstein
tensor’, is just an abbreviation for a quantity constructed from the Ricci
tensor:

Gαβ = Rαβ −
1
2
gαβR

γ
γ .

Thus the Einstein equation really says

Rαβ −
1
2
gαβR

γ
γ = Tαβ . (1.8)

This implies

Rαα −
1
2
gααR

γ
γ = Tαα ,

but gαα = 4, so
−Rαα = Tαα .

Substituting this into equation (1.8), we get
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Rαβ = Tαβ −
1
2
gαβT

γ
γ . (1.9)

This is an equivalent version of the Einstein equation, but with the roles of
R and T switched [Bae01]. This is a formula for the Ricci tensor, which has a
simple geometrical meaning.

Equation (1.9) will be true if any one component holds in all local inertial
coordinate systems. This is a bit like the observation that all of Maxwell’s
equations are contained in Gauss’s law and and ∇·B = 0. Clearly, this is only
true if we know how the fields transform under change of coordinates. Here
we assume that the transformation laws are known. Given this, the Einstein
equation (1.3) is equivalent to the fact that

R00 = T00 −
1
2
g00T

γ
γ (1.10)

in every local inertial coordinate system about every point. In such coordinates
we have

g =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (1.11)

so g00 = −1, as well as

T γγ = −T00 + T11 + T22 + T33.

Equation (1.10) thus says that

R00 =
1
2
(T00 + T11 + T22 + T33).

By equation (1.7), this is equivalent to the required

lim
V→0

V̈

V

∣∣∣
t=0

= −1
2
(T00 + T11 + T22 + T33).

Quick Definition of Einstein’s Geometrodynamics

As a final introductory motivation, we give an ‘express–flight bird–view’ on
derivation of the Einstein equation from the Hilbert action principle, start-
ing from the Einstein space–time manifold M . For all technical details, see
[MTW73], which is still, after 33 years, the core textbook on the subject.
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M ... the space–time manifold M

gij = gij(xi) ∈ TxM ... metric tensor on M

gij = (gij)
−1 ... inverse metric tensor on M

Γijk =
1
2
(∂xkgij + ∂xjgki − ∂xigjk) ... 1–order Christoffel symbols

Γ kij = gklΓijl ... 2–order Christoffel symbols (Levi–Civita connection)

Rlijk = ∂xjΓ lik − ∂xkΓ lij + Γ lrjΓ
r
ik − Γ lrkΓ rij ... Riemann curvature tensor

Rij = Rlijl ... Ricci tensor is the trace of Riemann

R = gijRij ... scalar curvature is the trace of Ricci

Gij = Rij −
1
2
Rgij ... Einstein tensor is the trace–reversed Ricci

Tij = −2
δLHilb
δgij

+ gijLHilb ... stress–energy–momentum (SEM) tensor

LHilb =
1

16π
gijRij(−g)1/2 ... is derived from the Hilbert Lagrangian

δS = δ
∫
LHilb(−g)1/2d4x = 0 ... the Hilbert action principle gives

Gij = 8πTij ... the Einstein equation.

We will continue Einstein’s geometrodynamics in subsection 1.5.4 below.

1.2 Smooth Manifolds

1.2.1 Intuition Behind a Smooth Manifold

As we have already got the initial feeling, in the heart of geometrical dynamics
is the concept of a manifold (see [Rha84]). To get some dynamical intuition
behind this concept, let us consider a simple 3DOF mechanical system deter-
mined by three generalized coordinates, qi = {q1, q2, q3}. There is a unique
way to represent this system as a 3D manifold, such that to each point of the
manifold there corresponds a definite configuration of the mechanical system
with coordinates qi; therefore, we have a geometrical representation of the
configurations of our mechanical system, called the configuration manifold .
If the mechanical system moves in any way, its coordinates are given as the
functions of the time. Thus, the motion is given by equations of the form:
qi = qi(t). As t varies (i.e., t ∈ R), we observe that the system’s representative
point in the configuration manifold describes a curve and qi = qi(t) are the
equations of this curve.
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Fig. 1.1. An intuitive geometrical picture behind the manifold concept (see text).

On the other hand, to get some geometrical intuition behind the concept
of a manifold, consider a set M (see Figure 1.1) which is a candidate for a
manifold. Any point x ∈M6 has its Euclidean chart , given by a 1–1 and onto
map ϕi : M → Rn, with its Euclidean image Vi = ϕi(Ui). More precisely, a
chart ϕi is defined by

ϕi :M ⊃ Ui � x �→ ϕi(x) ∈ Vi ⊂ Rn,

where Ui ⊂M and Vi ⊂ Rn are open sets (see [Arn78, Rha84]).
Clearly, any point x ∈M can have several different charts (see Figure 1.1).

Consider a case of two charts, ϕi, ϕj : M → Rn, having in their images two
open sets, Vij = ϕi(Ui ∩ Uj) and Vji = ϕj(Ui ∩ Uj). Then we have transition
functions ϕij between them,

ϕij = ϕj ◦ ϕ−1
i : Vij → Vji, locally given by ϕij(x) = ϕj(ϕ

−1
i (x)).

If transition functions ϕij exist, then we say that two charts, ϕi and ϕj are
compatible. Transition functions represent a general (nonlinear) transforma-
tions of coordinates, which are the core of classical tensor calculus (Appendix).

A set of compatible charts ϕi :M → Rn, such that each point x ∈M has
its Euclidean image in at least one chart, is called an atlas. Two atlases are
equivalent iff all their charts are compatible (i.e., transition functions exist
between them), so their union is also an atlas. A manifold structure is a class
of equivalent atlases.

Finally, as charts ϕi : M → Rn were supposed to be 1-1 and onto maps,
they can be either homeomorphisms, in which case we have a topological (C0)
manifold, or diffeomorphisms, in which case we have a smooth (C∞) manifold.
6 Note that sometimes we will denote the point in a manifold M by m, and some-

times by x (thus implicitly assuming the existence of coordinates x = (xi)).



1.2 Smooth Manifolds 11

Slightly more precisely, a topological (respectively smooth) manifold is a
separable space M which is locally homeomorphic (resp. diffeomorphic) to
Euclidean space Rn, having the following properties (reflected in Figure 1.1):

1. M is a Hausdorff space: For every pair of points x1, x2 ∈ M , there are
disjoint open subsets U1, U2 ⊂M such that x1 ∈ U1 and x2 ∈ U2.

2. M is second–countable space: There exists a countable basis for the topol-
ogy of M .

3. M is locally Euclidean of dimension n: Every point of M has a neigh-
borhood that is homeomorphic (resp. diffeomorphic) to an open subset of
Rn.

This implies that for any point x ∈ M there is a homeomorphism (resp.
diffeomorphism) ϕ : U → ϕ(U) ⊆ Rn, where U is an open neighborhood of x
in M and ϕ(U) is an open subset in Rn. The pair (U,ϕ) is called a coordinate
chart at a point x ∈M , etc.

1.2.2 Definition of a Smooth Manifold

Given a chart (U,ϕ), we call the set U a coordinate domain, or a coordi-
nate neighborhood of each of its points. If in addition ϕ(U) is an open ball
in Rn, then U is called a coordinate ball . The map ϕ is called a (local)
coordinate map, and the component functions (x1, ..., xn) of ϕ, defined by
ϕ(m) = (x1(m), ..., xn(m)), are called local coordinates on U .

Two charts (U1, ϕ1) and (U2, ϕ2) such that U1 ∩ U2 �= ∅ are called com-
patible if ϕ1(U1 ∩ U2) and ϕ2(U2 ∩ U1) are open subsets of Rn. A family
(Uα, ϕα)α∈A of compatible charts on M such that the Uα form a covering of
M is called an atlas. The maps ϕαβ = ϕβ ◦ ϕ−1

α : ϕα(Uαβ) → ϕβ(Uαβ) are
called the transition maps, for the atlas (Uα, ϕα)α∈A, where Uαβ = Uα ∩ Uβ ,
so that we have a commutative triangle:

ϕα(Uαβ) ϕβ(Uαβ)�
ϕαβ

Uαβ ⊆M

ϕα
�
�
�
��

ϕβ
�
�
�
��

An atlas (Uα, ϕα)α∈A for a manifold M is said to be a C∞−atlas, if all
transition maps ϕαβ : ϕα(Uαβ) → ϕβ(Uαβ) are of class C∞. Two C∞ atlases
are called C∞−equivalent, if their union is again a C∞−atlas forM . An equiv-
alence class of C∞−atlases is called a C∞−structure on M . In other words,
a smooth structure on M is a maximal smooth atlas on M , i.e., such an atlas
that is not contained in any strictly larger smooth atlas. By a C∞−manifold
M , we mean a topological manifold together with a C∞−structure and a chart
on M will be a chart belonging to some atlas of the C∞−structure. Smooth
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manifold means C∞−manifold, and the word ‘smooth’ is used synonymously
for C∞ [Rha84].

Sometimes the terms ‘local coordinate system’ or ‘parametrization’ are
used instead of charts. That M is not defined with any particular atlas, but
with an equivalence class of atlases, is a mathematical formulation of the gen-
eral covariance principle. Every suitable coordinate system is equally good. A
Euclidean chart may well suffice for an open subset of Rn, but this coordinate
system is not to be preferred to the others, which may require many charts
(as with polar coordinates), but are more convenient in other respects.

For example, the atlas of an n−sphere Sn has two charts. IfN = (1, 0, ..., 0)
and S = (−1, ..., 0, 0) are the north and south poles of Sn respectively, then
the two charts are given by the stereographic projections from N and S:

ϕ1 : Sn\{N} → Rn, ϕ1(x
1, ..., xn+1) = (x2/(1− x1), . . . , xn+1/(1− x1)), and

ϕ2 : Sn\{S} → Rn, ϕ2(x
1, ..., xn+1) = (x2/(1 + x1), . . . , xn+1/(1 + x1)),

while the overlap map ϕ2 ◦ ϕ−1
1 : Rn\{0} → Rn\{0} is given by the diffeo-

morphism (ϕ2 ◦ ϕ−1
1 )(z) = z/||z||2, for z in Rn\{0}, from Rn\{0} to itself.

Various additional structures can be imposed on Rn, and the corresponding
manifold M will inherit them through its covering by charts. For example, if
a covering by charts takes their values in a Banach space E, then E is called
the model space and M is referred to as a C∞−Banach manifold modelled
on E. Similarly, if a covering by charts takes their values in a Hilbert space
H, then H is called the model space and M is referred to as a C∞−Hilbert
manifold modelled on H. If not otherwise specified, we will consider M to be
an Euclidean manifold, with its covering by charts taking their values in Rn.

For a Hausdorff C∞−manifold the following properties are equivalent
[KMS93]: (i) it is paracompact; (ii) it is metrizable; (iii) it admits a Rie-
mannian metric;7 (iv) each connected component is separable.

1.2.3 Smooth Maps Between Manifolds

A map ϕ :M → N between two manifoldsM and N , withM � m �→ ϕ(m) ∈
N , is called a smooth map, or C∞−map, if we have the following charting:

7 Recall the corresponding properties of a Euclidean metric d. For any three points
x, y, z ∈ Rn, the following axioms are valid:

M1 : d(x, y) > 0, for x �= y; and d(x, y) = 0, for x = y;

M2 : d(x, y) = d(y, x); M3 : d(x, y) ≤ d(x, z) + d(z, y).
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� ��
ψ ◦ ϕ ◦ φ−1

� ��ϕ

�

φ

�

ψ

�

�

�

�

�

�

�

�
�
�
�
�

�
�
�
�

U

m

V

ϕ(m)

M N

�

�

�

�

�

�

�

�
φ(U) ψ(V )

φ(m) ψ(ϕ(m))

Rm �

�

Rn�

�

This means that for each m ∈M and each chart (V, ψ) on N with ϕ (m) ∈ V
there is a chart (U, φ) on M with m ∈ U,ϕ (U) ⊆ V , and Φ = ψ ◦ ϕ ◦ φ−1 is
C∞, that is, the following diagram commutes:

φ(U) ψ(V )�
Φ

M ⊇ U V ⊆ N�ϕ

�

φ

�

ψ

Let M and N be smooth manifolds and let ϕ :M → N be a smooth map.
The map ϕ is called a covering, or equivalently, M is said to cover N , if ϕ is
surjective and each point n ∈ N admits an open neighborhood V such that
ϕ−1(V ) is a union of disjoint open sets, each diffeomorphic via ϕ to V .

A C∞−map ϕ :M → N is called a C∞−diffeomorphism if ϕ is a bijection,
ϕ−1 : N →M exists and is also C∞. Two manifolds are called diffeomorphic
if there exists a diffeomorphism between them. All smooth manifolds and
smooth maps between them form the category M.

Intuition Behind Topological Invariants of Manifolds

Now, restricting to the topology of nD compact (i.e., closed and bounded)
and connected manifolds, the only cases in which we have a complete under-
standing of topology are n = 0, 1, 2. The only compact and connected 0D
manifold is a point. A 1D compact and connected manifold can either be a
line element or a circle, and it is intuitively clear (and can easily be proven)
that these two spaces are topologically different. In 2D, there is already an
infinite number of different topologies: a 2D compact and connected surface
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can have an arbitrary number of handles and boundaries, and can either be
orientable or non–orientable (see figure 1.2). Again, it is intuitively quite clear
that two surfaces are not homeomorphic if they differ in one of these respects.
On the other hand, it can be proven that any two surfaces for which these
data are the same can be continuously mapped to one another, and hence this
gives a complete classification of the possible topologies of such surfaces.

Fig. 1.2. Three examples of 2D manifolds: (a) The sphere S2 is an orientable man-
ifold without handles or boundaries. (b) An orientable manifold with one boundary
and one handle. (c) The Möbius strip is an unorientable manifold with one boundary
and no handles.

A quantity such as the number of boundaries of a surface is called a topo-
logical invariant. A topological invariant is a number, or more generally any
type of structure, which one can associate to a topological space, and which
does not change under continuous mappings. Topological invariants can be
used to distinguish between topological spaces: if two surfaces have a differ-
ent number of boundaries, they can certainly not be topologically equivalent.
On the other hand, the knowledge of a topological invariant is in general not
enough to decide whether two spaces are homeomorphic: a torus and a sphere
have the same number of boundaries (zero), but are clearly not homeomor-
phic. Only when one has some complete set of topological invariants, such as
the number of handles and boundaries in the 2D case, is it possible to de-
termine whether or not two topological spaces are homeomorphic. In more
than 2D, many topological invariants are known, but for no dimension larger
than two has a complete set of topological invariants been found. In 3D, it is
generally believed that a finite number of countable invariants would suffice
for compact manifolds, but this is not rigorously proven, and in particular
there is at present no generally accepted construction of a complete set. A
very interesting and intimately related problem is the famous Poincaré con-
jecture, stating that if a 3D manifold has a certain set of topological invariants
called its ‘homotopy groups’ equal to those of the 3–sphere S3, it is actually
homeomorphic to the three-sphere. In four or more dimensions, a complete
set of topological invariants would consist of an uncountably infinite number
of invariants! A general classification of topologies is therefore very hard to
get, but even without such a general classification, each new invariant that
can be constructed gives us a lot of interesting new information. For this rea-
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son, the construction of topological invariants of manifolds is one of the most
important issues in topology.

1.2.4 (Co)Tangent Bundles of a Smooth Manifold

Intuition Behind a Tangent Bundle

In mechanics, to each nD configuration manifold M there is associated its 2nD
velocity phase–space manifold , denoted by TM and called the tangent bundle
of M (see Figure 1.3). The original smooth manifold M is called the base of
TM . There is an onto map π : TM −→ M , called the projection. Above each
point x ∈M there is a tangent space TxM = π−1(x) toM at x, which is called
a fibre. The fibre TxM ⊂ TM is the subset of TM , such that the total tangent
bundle, TM =

⊔
m∈M

TxM , is a disjoint union of tangent spaces TxM toM for

all points x ∈ M . From dynamical perspective, the most important quantity
in the tangent bundle concept is the smooth map v : M −→ TM , which is
an inverse to the projection π, i.e, π ◦ v = IdM , π(v(x)) = x. It is called the
velocity vector–field . Its graph (x, v(x)) represents the cross–section of the
tangent bundle TM . This explains the dynamical term velocity phase–space,
given to the tangent bundle TM of the manifold M .

Fig. 1.3. A sketch of a tangent bundle TM of a smooth manifold M (see text for
explanation).

Definition of a Tangent Bundle

Recall that if [a, b] is a closed interval, a C0−map γ : [a, b] →M is said to be
differentiable at the endpoint a if there is a chart (U, φ) at γ(a) such that the
following limit exists and is finite [AMR88]:

d

dt
(φ ◦ γ)(a) ≡ (φ ◦ γ)′(a) = lim

t→a

(φ ◦ γ)(t)− (φ ◦ γ)(a)
t− a . (1.12)

Generalizing (1.12), we get the notion of the curve on a manifold. For a smooth
manifold M and a point m ∈ M a curve at m is a C0−map γ : I → M from
an interval I ⊂ R into M with 0 ∈ I and γ(0) = m.



16 1 Modern Geometrical Machinery

Two curves γ1 and γ2 passing though a point m ∈ U are tangent at m
with respect to the chart (U, φ) if (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). Thus, two curves
are tangent if they have identical tangent vectors (same direction and speed)
in a local chart on a manifold.

For a smooth manifold M and a point m ∈M, the tangent space TmM to
M at m is the set of equivalence classes of curves at m:

TmM = {[γ]m : γ is a curve at a point m ∈M}.

A C∞−map ϕ : M � m �→ ϕ(m) ∈ N between two manifolds M and N
induces a linear map Tmϕ : TmM → Tϕ(m)N for each point m ∈M , called a
tangent map, if we have:

� ��
ϕ

� ��T (ϕ)

�

πM

�

πN

�
�

�
�

�
�

�
�m ϕ(m)

M N

TM T (N)Tm(M) Tϕ(m)(N)

i.e., the following diagram commutes:

M � m ϕ(m) ∈ N�
ϕ

TmM Tϕ(m)N�Tmϕ

�

πM

�

πN

with the natural projection πM : TM → M, given by πM (TmM) = m, that
takes a tangent vector v to the point m ∈M at which the vector v is attached
i.e., v ∈ TmM .

For an nD smooth manifold M , its nD tangent bundle TM is the disjoint
union of all its tangent spaces TmM at all points m ∈M , TM =

⊔
m∈M

TmM .

To define the smooth structure on TM , we need to specify how to con-
struct local coordinates on TM . To do this, let (x1(m), ..., xn(m)) be lo-
cal coordinates of a point m on M and let (v1(m), ..., vn(m)) be compo-
nents of a tangent vector in this coordinate system. Then the 2n numbers
(x1(m), ..., xn(m), v1(m), ..., vn(m)) give a local coordinate system on TM .
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TM =
⊔
m∈M

TmM defines a family of vector spaces parameterized by M .

The inverse image π−1
M (m) of a point m ∈ M under the natural projection

πM is the tangent space TmM . This space is called the fibre of the tangent
bundle over the point m ∈M [Ste72].

A C∞−map ϕ : M → N between two manifolds M and N induces a
linear tangent map Tϕ : TM → TN between their tangent bundles, i.e., the
following diagram commutes:

M N�ϕ

TM TN�Tϕ

�

πM

�

πN

All tangent bundles and their tangent maps form the category T B. The
category T B is the natural framework for Lagrangian dynamics.

Now, we can formulate the global version of the chain rule. If ϕ :M → N
and ψ : N → P are two smooth maps, then we have T (ψ ◦ϕ) = Tψ ◦ Tϕ (see
[KMS93]). In other words, we have a functor T : M⇒ T B from the category
M of smooth manifolds to the category T B of their tangent bundles:

N P�
ψ

M

ϕ
�
�
�
��

(ψ ◦ ϕ) T=⇒
�
�
�
��

TN TP�
Tψ

TM

Tϕ
�
�
�
��

T (ψ ◦ ϕ)
�
�
�
��

Definition of a Cotangent Bundle

A dual notion to the tangent space TmM to a smooth manifold M at a point
m is its cotangent space T ∗

mM at the same point m. Similarly to the tangent
bundle, for a smooth manifold M of dimension n, its cotangent bundle T ∗M
is the disjoint union of all its cotangent spaces T ∗

mM at all points m ∈M , i.e.,
T ∗M =

⊔
m∈M

T ∗
mM . Therefore, the cotangent bundle of an n−manifold M is

the vector bundle T ∗M = (TM)∗, the (real) dual of the tangent bundle TM .
IfM is an n−manifold, then T ∗M is a 2n−manifold. To define the smooth

structure on T ∗M , we need to specify how to construct local coordinates on
T ∗M . To do this, let (x1(m), ..., xn(m)) be local coordinates of a point m on
M and let (p1(m), ..., pn(m)) be components of a covector in this coordinate
system. Then the 2n numbers (x1(m), ..., xn(m), p1(m), ..., pn(m)) give a local
coordinate system on T ∗M . This is the basic idea one uses to prove that indeed
T ∗M is a 2n−manifold.
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T ∗M =
⊔
m∈M

T ∗
mM defines a family of vector spaces parameterized by M ,

with the conatural projection, π∗M : T ∗M →M, given by π∗M (T ∗
mM) = m, that

takes a covector p to the point m ∈M at which the covector p is attached i.e.,
p ∈ T ∗

mM . The inverse image π−1
M (m) of a point m ∈M under the conatural

projection π∗M is the cotangent space T ∗
mM . This space is called the fibre of

the cotangent bundle over the point m ∈M .
In a similar way, a C∞−map ϕ :M → N between two manifoldsM and N

induces a linear cotangent map T ∗ϕ : T ∗M → T ∗N between their cotangent
bundles, i.e., the following diagram commutes:

M N�ϕ

T ∗M T ∗N�T ∗ϕ

�

π∗M

�

π∗N

All cotangent bundles and their cotangent maps form the category T ∗B.
The category T ∗B is the natural stage for Hamiltonian dynamics.

Now, we can formulate the dual version of the global chain rule. If ϕ :M →
N and ψ : N → P are two smooth maps, then we have T ∗(ψ◦ϕ) = T ∗ψ◦T ∗ϕ.
In other words, we have a cofunctor T ∗ : M⇒ T ∗B from the category M of
smooth manifolds to the category T ∗B of their cotangent bundles:

N P�
ψ

M

ϕ
�

�
�
��

(ψ ◦ ϕ) T∗
=⇒

�
�
�
��

T ∗N T ∗P�
T ∗ψ

T ∗M

T ∗ϕ

�
�
�
�	

T ∗(ψ ◦ ϕ)

�
�

�
�


1.2.5 Tensor Fields and Bundles of a Smooth Manifold

A tensor bundle T associated to a smooth n−manifold M is defined as a
tensor product of tangent and cotangent bundles:

T =
q⊗
T ∗M ⊗

p⊗
TM =

︷ ︸︸ ︷
p times

TM ⊗ ...⊗ TM ⊗

︷ ︸︸ ︷
q times

T ∗M ⊗ ...⊗ T ∗M.

Tensor bundles are special case of more general fibre bundles (see section 1.3
below).

A tensor–field of type (p, q) (see Appendix) on a smooth n−manifold M
is defined as a smooth section τ : M −→ T of the tensor bundle T . The
coefficients of the tensor–field τ are smooth (C∞) functions with p indices
up and q indices down. The classical position of indices can be explained in
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modern terms as follows. If (U, φ) is a chart at a point m ∈ M with local
coordinates (x1, ..., xn), we have the holonomous frame field

∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq ,

for i ∈ {1, ..., n}p, j = {1, ..., n}q, over U of this tensor bundle, and for any
(p, q)−tensor–field τ we have

τ |U = τ i1...ipj1...jq
∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq .

For such tensor–fields the Lie derivative along any vector–field is defined
(see subsection 1.2.6 below), and it is a derivation (i.e., both linearity and
Leibniz rules hold) with respect to the tensor product. Tensor bundle T admits
many natural transformations (see [KMS93]). For example, a ‘contraction’
like the trace T ∗M ⊗ TM = L (TM,TM) → M × R, but applied just to
one specified factor of type T ∗M and another one of type TM, is a natural
transformation. And any ‘permutation of the same kind of factors’ is a natural
transformation.

The tangent bundle πM : TM → M of a manifold M (introduced above)
is a special tensor bundle over M such that, given an atlas {(Uα, ϕα)} of M ,
TM has the holonomic atlas

Ψ = {(Uα, ϕα = Tϕα)}.

The associated linear bundle coordinates are the induced coordinates (ẋλ) at
a point m ∈M with respect to the holonomic frames {∂λ} in tangent spaces
TmM . Their transition functions read (see Appendix)

ẋ′λ =
∂x′λ

∂xµ
ẋµ.

Technically, the tangent bundle TM is a tensor bundle with the structure Lie
group GL(dimM,R) (see section 1.2.7 below).

Recall that the cotangent bundle of M is the dual T ∗M of TM . It is
equipped with the induced coordinates (ẋλ) at a point m ∈ M with respect
to holonomic coframes {dxλ} dual of {∂λ}. Their transition functions read

ẋ′λ =
∂x′µ

∂xλ
ẋµ.

The Pull–Back and Push–Forward

In this subsection we define two important operations, following [AMR88],
which will be used in the further text.

Let ϕ :M → N be a C∞ map of manifolds and f ∈ C∞(N,R). Define the
pull–back of f by ϕ by

ϕ∗f = f ◦ ϕ ∈ C∞(M,R).
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If f is a C∞ diffeomorphism and X ∈ X k(M), the push–forward of X by
ϕ is defined by

ϕ∗X = Tϕ ◦X ◦ ϕ−1 ∈ X k(N).

If xi are local coordinates on M and yj local coordinates on N , the pre-
ceding formula gives the components of ϕ∗X by

(ϕ∗X)j(y) =
∂ϕj

∂xi
(x)Xi(x), where y = ϕ(x).

We can interchange pull–back and push–forward by changing ϕ to ϕ−1,
that is, defining ϕ∗ (resp. ϕ∗) by ϕ∗ = (ϕ−1)∗ (resp. ϕ∗ = (ϕ−1)∗). Thus the
push–forward of a function f on M is ϕ∗f = f ◦ ϕ−1 and the pull–back of a
vector–field Y on N is ϕ∗Y = (Tϕ)−1 ◦ Y ◦ ϕ.

Notice that ϕ must be a diffeomorphism in order that the pull–back and
push–forward operations make sense, the only exception being pull–back of
functions. Thus vector–fields can only be pulled back and pushed forward by
diffeomorphisms. However, even when ϕ is not a diffeomorphism we can talk
about ϕ−related vector–fields as follows.

Let ϕ : M → N be a C∞ map of manifolds. The vector–fields X ∈
X k−1(M) and Y∈ X k−1(N) are called ϕ−related, denoted X ∼ϕ Y , if Tϕ ◦
X = Y ◦ ϕ.

Note that if ϕ is diffeomorphism and X and Y are ϕ−related, then Y =
ϕ∗X. However, in general, X can be ϕ−related to more than one vector–field
on N . ϕ−relatedness means that the following diagram commutes:

M N�ϕ

TM TN�Tϕ

�
X

�
Y

The behavior of flows under these operations is as follows: Let ϕ :M → N
be a C∞−map of manifolds, X ∈ X k(M) and Y ∈ X k(N). Let Ft and Gt
denote the flows of X and Y respectively. Then X ∼ϕ Y iff ϕ ◦ Ft = Gt ◦ ϕ.
In particular, if ϕ is a diffeomorphism, then the equality Y = ϕ∗X holds iff
the flow of Y is ϕ ◦ Ft ◦ ϕ−1 (This is called the push–forward of Ft by ϕ
since it is the natural way to construct a diffeomorphism on N out of one on
M). In particular, (Ft)∗X = X. Therefore, the flow of the push–forward of a
vector–field is the push–forward of its flow.

Dynamical Evolution and Flow

As a motivational example, consider a mechanical system that is capable of
assuming various states described by points in a set U . For example, U might
be R3 × R3 and a state might be the positions and momenta (xi, pi) of a
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particle moving under the influence of the central force field, with i = 1, 2, 3.
As time passes, the state evolves. If the state is γ0 ∈ U at time s and this
changes to γ at a later time t, we set

Ft,s(γ0) = γ,

and call Ft,s the evolution operator ; it maps a state at time s to what the
state would be at time t; that is, after time t − s. has elapsed. Determinism
is expressed by the Chapman–Kolmogorov law [AMR88]:

Fτ,t ◦ Ft,s = Fτ,s, Ft,t = identity. (1.13)

The evolution laws are called time independent, or autonomous, when Ft,s
depends only on t−s. In this case the preceding law (1.13) becomes the group
property :

Ft ◦ Fs = Ft+s, F0 = identity. (1.14)

We call such an Ft a flow and Ft,s a time–dependent flow , or an evolution
operator. If the system is irreversible, that is, defined only for t ≥ s, we speak
of a semi–flow [AMR88].

Usually, instead of Ft,s the laws of motion are given in the form of ODEs
that we must solve to find the flow. These equations of motion have the form:

γ̇ = X(γ), γ(0) = γ0,

where X is a (possibly time–dependent) vector–field on U .
As a continuation of the previous example, consider the motion of a par-

ticle of mass m under the influence of the central force field (like gravity, or
Coulombic potential) F i (i = 1, 2, 3), described by the Newtonian equation of
motion:

mẍi = F i(x). (1.15)

By introducing momenta pi = mẋi, equation (1.15) splits into two Hamilto-
nian equations:

ẋi = pi/m, ṗi = Fi(x). (1.16)

Note that in Euclidean space we can freely interchange subscripts and super-
scripts. However, in general case of a Riemannian manifold, pi = mgij ẋj and
(1.16) properly reads

ẋi = gijpj/m, ṗi = Fi(x). (1.17)

The phase–space here is the Riemannian manifold (R3\{0})×R3, that is, the
cotangent bundle of R3\{0}, which is itself a smooth manifold for the central
force field. The r.h.s of equations (1.17) define a Hamiltonian vector–field on
this 6D manifold by

X(x, p) =
(
(xi, pi), (pi/m,Fi(x))

)
. (1.18)

Integration of equations (1.17) produces trajectories (in this particular case,
planar conic sections). These trajectories comprise the flow Ft of the vector–
field X(x, p) defined in (1.18).
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Vector–Fields and Their Flows

Vector–Fields on M

A vector–field X on U, where U is an open chart in n−manifold M , is a
smooth function from U to M assigning to each point m ∈ U a vector at that
point, i.e., X(m) = (m,X(m)). If X(m) is tangent to M for each m ∈M , X
is said to be a tangent vector–field on M . If X(m) is orthogonal to M (i.e.,
X(p) ∈ M⊥

m) for each X(m) ∈ M , X is said to be a normal vector–field on
M .

In other words, let M be a C∞−manifold. A C∞−vector–field on M is
a C∞−section of the tangent bundle TM of M . Thus a vector–field X on a
manifold M is a C∞−map X : M → TM such that X(m) ∈ TmM for all
points m ∈ M,and πM ◦X = IdM . Therefore, a vector–field assigns to each
point m of M a vector based (i.e., bound) at that point. The set of all C∞

vector–fields on M is denoted by X k(M).
A vector–field X ∈ X k(M) represents a field of direction indicators

[Thi79]: to every point m of M it assigns a vector in the tangent space TmM
at that point. If X is a vector–field on M and (U, φ) is a chart on M and
m ∈ U , then we have X(m) = X(m)φi ∂

∂φi . Following [KMS93], we write

X|U = X φi ∂
∂φi .

Let M be a connected n−manifold, and let f : U → R (U an open set
in M) and c ∈ R be such that M = f−1(c) (i.e., M is the level set of the
function f at height c) and ∇f(m) �= 0 for all m ∈ M . Then there exist on
M exactly two smooth unit normal vector–fields N1,2(m) = ± ∇f(m)

|∇f(m)| (here
|X| = (X ·X)1/2 denotes the norm or length of a vector X, and (·) denotes
the scalar product on M) for all m ∈M , called orientations on M .

Let ϕ : M → N be a smooth map. Recall that two vector–fields X ∈
X k(M) and Y ∈ X (N) are called ϕ−related, if Tϕ ◦X = Y ◦ ϕ holds, i.e., if
the following diagram commutes:

M N�ϕ

TM TN�Tϕ

�
X

�
Y

In particular, a diffeomorphism ϕ : M → N induces a linear map between
vector–fields on two manifolds, ϕ∗ : X k(M) → X (N), such that ϕ∗X =
Tϕ ◦X ◦ ϕ−1 : N → TN , i.e., the following diagram commutes:
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M N�ϕ

TM TN�Tϕ

�
X

�
ϕ∗X

The correspondences M → TM and ϕ → Tϕ obviously define a functor
T : M ⇒ M from the category of smooth manifolds to itself. T is another
special case of the vector bundle functor (1.3.3), and closely related to the
tangent bundle functor (1.2.4).

A C∞ time–dependent vector–field is a C∞−map X : R×M → TM such
that X(t,m) ∈ TmM for all (t,m) ∈ R×M, i.e., Xt(m) = X(t,m).

Integral Curves as Dynamical Trajectories

Recall (1.2.4) that a curve γ at a point m of an n−manifold M is a C0−map
from an open interval I ⊂ R into M such that 0 ∈ I and γ(0) = m. For
such a curve we may assign a tangent vector at each point γ(t), t ∈ I, by
γ̇(t) = Ttγ(1).

Let X be a smooth tangent vector–field on the smooth n−manifold M ,
and let m ∈M . Then there exists an open interval I ⊂ R containing 0 and a
parameterized curve γ : I →M such that:

1. γ(0) = m;
2. γ̇(t) = X(γ(t)) for all t ∈ I; and
3. If β : Ĩ → M is any other parameterized curve in M satisfying (1) and

(2), then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.

A parameterized curve γ : I → M satisfying condition (2) is called an
integral curve of the tangent vector–fieldX. The unique γ satisfying conditions
(1)–(3) is the maximal integral curve of X through m ∈M .

In other words, let γ : I → M, t �→ γ (t) be a smooth curve in a manifold
M defined on an interval I ⊆ R. γ̇(t) = d

dtγ(t) defines a smooth vector–field
along γ since we have πM ◦ γ̇ = γ. Curve γ is called an integral curve or flow
line of a vector–field X ∈ X k(M) if the tangent vector determined by γ equals
X at every point m ∈M , i.e.,

γ̇ = X ◦ γ,

or, if the following diagram commutes:

I M�γ

TI TM�Tu

�

1

�

X

;

γ̇

�
�
�
�
�	
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On a chart (U, φ) with coordinates φ(m) =
(
x1(m), ..., xn(m)

)
, for which

ϕ ◦ γ : t �→ γi (t) and Tϕ ◦X ◦ ϕ−1 : xi �→
(
xi, Xi (m)

)
, this is written

γ̇i(t) = Xi (γ (t)) , for all t ∈ I ⊆ R, (1.19)

which is an ordinary differential equation of first–order in n dimensions.
The velocity γ̇ of the parameterized curve γ (t) is a vector–field along γ

defined by
γ̇(t) = (γ(t), ẋ1(t), . . . ẋn(t)).

Its length |γ̇| : I → R, defined by |γ̇|(t) = |γ̇(t)| for all t ∈ I, is a function
along α. |γ̇| is called speed of γ [Arn89].

Each vector–field X along γ is of the form X(t) = (γ(t), X1(t), . . . , Xn(t)),
where each component Xi is a function along γ. X is smooth if each Xi : I →
M is smooth. The derivative of a smooth vector–field X along a curve γ(t) is
the vector–field Ẋ along γ defined by

Ẋ(t) = (γ(t), Ẋ1(t), . . . Ẋn(t)).

Ẋ(t) measures the rate of change of the vector part (X1(t), . . . Xn(t)) of
X(t) along γ. Thus, the acceleration γ̈(t) of a parameterized curve γ(t) is the
vector–field along γ get by differentiating the velocity field γ̇(t).

Differentiation of vector–fields along parameterized curves has the follow-
ing properties. For X and Y smooth vector–fields on M along the parameter-
ized curve γ : I →M and f a smooth function along γ, we have:

1. d
dt (X + Y ) = Ẋ + Ẏ ;

2. d
dt (fX) = ḟX + fẊ; and

3. d
dt (X · Y ) = ẊY +XẎ .

A geodesic in M is a parameterized curve γ : I →M whose acceleration γ̈
is everywhere orthogonal to M ; that is, γ̈(t) ∈ M⊥

α(t) for all t ∈ I ⊂ R. Thus
a geodesic is a curve in M which always goes ‘straight ahead’ in the surface.
Its acceleration serves only to keep it in the surface. It has no component of
acceleration tangent to the surface. Therefore, it also has a constant speed
γ̇(t).

Let v ∈ Mm be a vector on M . Then there exists an open interval I ⊂ R

containing 0 and a geodesic γ : I →M such that:

1. γ(0) = m and γ̇(0) = v; and
2. If β : Ĩ → M is any other geodesic in M with β(0) = m and β̇(0) = v,

then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.

The geodesic γ is now called the maximal geodesic in M passing through
m with initial velocity v.

By definition, a parameterized curve γ : I → M is a geodesic of M iff its
acceleration is everywhere perpendicular toM , i.e., iff γ̈(t) is a multiple of the
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orientation N(γ(t)) for all t ∈ I, i.e., γ̈(t) = g(t)N(γ(t)), where g : I → R.
Taking the scalar product of both sides of this equation with N(γ(t)) we find
g = −γ̇Ṅ(γ(t)). Thus γ : I → M is geodesic iff it satisfies the differential
equation

γ̈(t) + Ṅ(γ(t))N(γ(t)) = 0.

This vector equation represents the system of second–order component ODEs

ẍi +Ni(x+ 1, . . . , xn)
∂Nj
∂xk

(x+ 1, . . . , xn) ẋj ẋk = 0.

The substitution ui = ẋi reduces this second–order differential system (in n
variables xi) to the first–order differential system

ẋi = ui, u̇i = −Ni(x+ 1, . . . , xn)
∂Nj
∂xk

(x+ 1, . . . , xn) ẋj ẋk

(in 2n variables xi and ui). This first–order system is just the differential
equation for the integral curves of the vector–field X in U ×R (U open chart
in M), in which case X is called a geodesic spray .

Now, when an integral curve γ(t) is the path a mechanical system Ξ fol-
lows, i.e., the solution of the equations of motion, it is called a trajectory. In
this case the parameter t represents time, so that (1.19) describes motion of
the system Ξ on its configuration manifold M .

If Xi (m) is C0 the existence of a local solution is guaranteed, and a Lips-
chitz condition would imply that it is unique. Therefore, exactly one integral
curve passes through every point, and different integral curves can never cross.
As X ∈ X k(M) is C∞, the following statement about the solution with arbi-
trary initial conditions holds [Thi79, Arn89]:

Theorem. Given a vector–field X ∈ X (M), for all points p ∈ M , there
exist η > 0, a neighborhood V of p, and a function γ : (−η, η) × V → M ,(
t, xi (0)

)
�→ γ

(
t, xi (0)

)
such that

γ̇ = X ◦ γ, γ
(
0, xi (0)

)
= xi (0) for all xi (0) ∈ V ⊆M.

For all |t| < η, the map xi (0) �→ γ
(
t, xi (0)

)
is a diffeomorphism fXt between

V and some open set of M . For proof, see [Die69], I, 10.7.4 and 10.8.
This theorem states that trajectories that are near neighbors cannot sud-

denly be separated. There is a well–known estimate (see [Die69], I, 10.5) ac-
cording to which points cannot diverge faster than exponentially in time if
the derivative of X is uniformly bounded.

An integral curve γ (t) is said to be maximal if it is not a restriction
of an integral curve defined on a larger interval I ⊆ R. It follows from the
existence and uniqueness theorems for ODEs with smooth r.h.s and from
elementary properties of Hausdorff spaces that for any point m ∈ M there
exists a maximal integral curve γm of X, passing for t = 0 through point m,
i.e., γ(0) = m.
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Theorem (Local Existence, Uniqueness, and Smoothness) [AMR88]. Let E
be a Banach space, U ⊂ E be open, and suppose X : U ⊂ E → E is of class
C∞, k ≥ 1. Then

1. For each x0 ∈ U , there is a curve γ : I → U at x0 such that γ̇(t) =
X (γ(t)) for all t ∈ I.

2. Any two such curves are equal on the intersection of their domains.
3. There is a neighborhood U0 of the point x0 ∈ U , a real number a > 0,

and a C∞ map F : U0 × I → E, where I is the open interval ] − a, a[ , such
that the curve γu : I → E, defined by γu(t) = F (u, t) is a curve at u ∈ E
satisfying the ODEs γ̇u(t) = X (γu(t)) for all t ∈ I.

Proposition (Global Uniqueness). Suppose γ1 and γ2 are two integral
curves of a vector–field X at a point m ∈ M . Then γ1 = γ2 on the inter-
section of their domains [AMR88].

If for every point m ∈ M the curve γm is defined on the entire real axis
R, then the vector–field X is said to be complete.

The support of a vector–field X defined on a manifold M is defined to be
the closure of the set {m ∈ M |X(m) = 0}. A C∞ vector–field with compact
support on a manifold M is complete. In particular, a C∞ vector–field on
a compact manifold is complete. Completeness corresponds to well–defined
dynamics persisting eternally.

Now, following [AMR88], for the derivative of a C∞ function f : E → R

in the direction X we use the notation X[f ] = df ·X , where df stands for the
derivative map. In standard coordinates on Rn this is a standard gradient

df(x) = ∇f = (∂x1f, ..., ∂xnf), and X[f ] = Xi∂xif.

Let Ft be the flow of X. Then f (Ft(x)) = f (Fs(x)) if t ≥ s.
For example, Newtonian equations for a moving particle of mass m in a

potential field V in Rn are given by q̈i(t) = −(1/m)∇V
(
qi(t)

)
, for a smooth

function V : Rn → R. If there are constants a, b ∈ R, b ≥ 0 such that
(1/m)V (qi) ≥ a − b

∥∥qi∥∥2
, then every solution exists for all time. To show

this, rewrite the second–order equations as a first–order system q̇i = (1/m) pi,
ṗi = −V (qi) and note that the energy E(qi, pi) = (1/2m) ‖ pi‖2 + V (q) is
a first integral of the motion. Thus, for any solution

(
qi(t), pi(t)

)
we have

E
(
qi(t), pi(t)

)
= E

(
qi(0), pi(0)

)
= V (q(0)).

Let Xt be a C∞ time–dependent vector–field on an n−manifoldM , k ≥ 1,
and let m0 be an equilibrium of Xt, that is, Xt(m0) = 0 for all t. Then for
any T there exists a neighborhood V of m0 such that any m ∈ V has integral
curve existing for time t ∈ [−T, T ].

Dynamical Flows on M

Recall (1.2.5) that the flow Ft of a C∞ vector–field X ∈ X k(M) is the one–
parameter group of diffeomorphisms Ft :M →M such that t �→ Ft (m) is the
integral curve of X with initial condition m for all m ∈ M and t ∈ I ⊆ R.
The flow Ft(m) is C∞ by induction on k. It is defined as [AMR88]:
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d

dt
Ft(x) = X(Ft(x)).

Existence and uniqueness theorems for ODEs guarantee that Ft is smooth
in m and t. From uniqueness, we get the flow property :

Ft+s = Ft ◦ Fs

along with the initial conditions F0 = identity. The flow property generalizes
the situation where M = V is a linear space, X(x) = Ax for a (bounded)
linear operator A, and where Ft(x) = etAx – to the nonlinear case. Therefore,
the flow Ft(m) can be defined as a formal exponential

Ft(m) = exp(tX) = (I + tX +
t2

2
X2 + ...) =

∞∑
k=0

Xktk

k!
.

recall that a time–dependent vector–field is a map X :M ×R →TM such
that X(m, t) ∈ TmM for each point m ∈ M and t ∈ R. An integral curve of
X is a curve γ(t) in M such that

γ̇(t) = X (γ (t) , t) , for all t ∈ I ⊆ R.

In this case, the flow is the one–parameter group of diffeomorphisms Ft,s :
M →M such that t �→ Ft,s (m) is the integral curve γ(t) with initial condition
γ(s) = m at t = s. Again, the existence and uniqueness theorem from ODE–
theory applies here, and in particular, uniqueness gives the time–dependent
flow property, i.e., the Chapman–Kolmogorov law

Ft,r = Ft,s ◦ Fs,r.

If X happens to be time independent, the two notions of flows are related by
Ft,s = Ft−s (see [MR99]).

Categories of ODEs

Ordinary differential equations are naturally organized into their categories
(see [Koc81]). First order ODEs are organized into a category ODE1. A first–
order ODE on a manifold–like object M is a vector–field X :M → TM , and
a morphism of vector–fields (M1, X1) → (M2, X2) is a map f : M1 → M2

such that the following diagram commutes

M1 M2
�

f

TM1 TM2
�Tf

�
X1

�
X2
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A global solution of the differential equation (M,X), or a flow line of a vector–
field X, is a morphism from

(
R, ∂∂x

)
to (M,X).

Similarly, second–order ODEs are organized into a category ODE2. A
second–order ODE on M is usually constructed as a vector–field on TM,
ξ : TM → TTM, and a morphism of vector–fields (M1, ξ1) → (M2, ξ2) is a
map f :M1 →M2 such that the following diagram commutes

TM1 TM2
�

Tf

TTM1 TTM2
�TTf

�
ξ1

�
ξ2

Unlike solutions for first–order ODEs, solutions for second–order ODEs are
not in general homomorphisms from R, unless the second–order ODE is a
spray [KR03].

Differential Forms on Smooth Manifolds

Recall (see Appendix, subsection 3.1.4) that exterior differential forms are a
special kind of antisymmetrical covariant tensors, that formally occur as inte-
grands under ordinary integral signs in R3. To give a more precise exposition,
here we start with 1−forms, which are dual to vector–fields, and after that
introduce general k−forms.

1−Forms on M

Dual to the notion of a C∞ vector–field X on an n−manifold M is a C∞

covector–field, or a C∞ 1−form α, which is defined as a C∞−section of the
cotangent bundle T ∗M , i.e., α :M → T ∗M is smooth and π∗M ◦X = IdM . We
denote the set of all C∞ 1−forms by Ω1(M). A basic example of a 1−form is
the differential df of a real–valued function f ∈ C∞(M,R). With point wise
addition and scalar multiplication Ω1(M) becomes a vector space.

In other words, a C∞ 1−form α on a C∞ manifold M is a real–valued
function on the set of all tangent vectors to M , i.e., α : TM → R with the
following properties:

1. α is linear on the tangent space TmM for each m ∈M ;
2. For any C∞ vector–field X ∈ X k(M), the function f :M → R is C∞.

Given a 1−form α, for each point m ∈ M the map α(m) : TmM → R is
an element of the dual space T ∗

mM. Therefore, the space of 1−forms Ω1(M)
is dual to the space of vector–fields X k(M).

In particular, the coordinate 1−forms dx1, ..., dxn are locally defined at any
point m ∈ M by the property that for any vector–field X =

(
X1, ..., Xn

)
∈

X k(M),
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dxi(X) = Xi.

The dxi’s form a basis for the 1−forms at any point m ∈ M , with local
coordinates

(
x1, ..., xn

)
, so any 1−form α may be expressed in the form

α = fi(m) dxi.

If a vector–field X on M has the form X(m) =
(
X1(m), ..., Xn(m)

)
, then

at any point m ∈M,
αm(X) = fi(m)Xi(m),

where f ∈ C∞(M,R).
Suppose we have a 1D closed curve γ = γ(t) inside a smooth manifold

M . Using a simplified ‘physical’ notation, a 1–form α(x) defined at a point
x ∈M , given by

α(x) = αi(x) dxi, (1.20)

can be unambiguously integrated over a curve γ ∈M , as follows. Parameterize
γ by a parameter t, so that its coordinates are given by xi(t). At time t, the
velocity ẋ = ẋ(t) is a tangent vector toM at x(t). One can insert this tangent
vector into the linear map α(x) to get a real number. By definition, inserting
the vector ẋ(t) into the linear map dxi gives the component ẋi = ẋi(t). Doing
this for every t, we can then integrate over t,∫ (

αi(x(t))ẋi
)
dt. (1.21)

Note that this expression is independent of the parametrization in terms of
t. Moreover, from the way that tangent vectors transform, one can deduce
how the linear maps dxi should transform, and from this how the coefficients
αi(x) should transform. Doing this, one sees that the above expression is also
invariant under changes of coordinates on M . Therefore, a 1–form can be
unambiguously integrated over a curve in M . We write such an integral as∫

γ

αi(x) dxi, or, even shorter, as
∫
γ

α.

Clearly, when M is itself a 1D manifold, (1.21) gives precisely the ordinary
integration of a function α(x) over x, so the above notation is indeed natural.

The 1−forms on M are part of an algebra, called the exterior algebra, or
Grassmann algebra onM . The multiplication ∧ in this algebra is called wedge
product (see (1.23) below), and it is skew–symmetric,

dxi ∧ dxj = −dxj ∧ dxi.

One consequence of this is that dxi ∧ dxi = 0.
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k−Forms on M

A differential form, or an exterior form α of degree k, or a k−form for short, is
a section of the vector bundle ΛkT ∗M , i.e., α :M → ΛkT ∗M . In other words,
α(m) : TmM× ...×TmM → R (with k factors TmM) is a function that assigns
to each point m ∈ M a skew–symmetric k−multilinear map on the tangent
space TmM toM at m. Without the skew–symmetry assumption, α would be
called a (0, k)−tensor–field. The space of all k−forms is denoted by Ωk(M).
It may also be viewed as the space of all skew symmetric (0, k)−tensor–fields,
the space of all maps

Φ : X k(M)× ...×X k(M) → C∞(M,R),

which are k−linear and skew–symmetric (see (1.23) below). We put Ωk(M) =
C∞(M,R).

In particular, a 2−form ω on an n−manifold M is a section of the vector
bundle Λ2T ∗M. If (U, φ) is a chart at a point m ∈ M with local coordinates(
x1, ..., xn

)
let {e1, ..., en} = {∂x1 , ..., ∂xn} – be the corresponding basis for

TmM , and let
{
e1, ..., en

}
=

{
dx1, ..., dxn

}
– be the dual basis for T ∗

mM .
Then at each point m ∈M , we can write a 2−form ω as

ωm(v, u) = ωij(m) viuj , where ωij(m) = ωm(∂xi , ∂xj ).

Similarly to the case of a 1–form α (1.20), one would like to define a 2–form
ω as something which can naturally be integrated over a 2D surface Σ within
a smooth manifold M . At a specific point x ∈M , the tangent plane to such a
surface is spanned by a pair of tangent vectors, (ẋ1, ẋ2). So, to generalize the
construction of a 1–form, we should give a bilinear map from such a pair to
R. The most general form of such a map is

ωij(x) dxi ⊗ dxj , (1.22)

where the tensor product of two cotangent vectors acts on a pair of vectors
as,

dxi ⊗ dxj (ẋ1, ẋ2) = dxi(ẋ1) dxj(ẋ2).

On the r.h.s. of this equation, one multiplies two ordinary numbers got by
letting the linear map dxi act on ẋ1, and dxj on ẋ2.

However, the bilinear map (1.22) is slightly too general to give a good
integration procedure. The reason is that we would like the integral to change
sign if we change the orientation of integration, just like in the 1D case. In
2D, changing the orientation means exchanging ẋ1 and ẋ2, so we want our
bilinear map to be antisymmetric under this exchange. This is achieved by
defining a 2–form to be

ω = ωij(x)
(
dxi ⊗ dxj − dxj ⊗ dxi

)
≡ ωij(x) dxi ∧ dxj
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We now see why a2–form corresponds to an antisymmetric tensor field: the
symmetric part of ωij would give a vanishing contribution to ω. Now, pa-
rameterizing a surface Σ in M with two coordinates t1 and t2, and reasoning
exactly like we did in the case of a 1–form, one can show that the integration
of a 2–form over such a surface is indeed well–defined, and independent of the
parametrization of both Σ and M .

If each summand of a differential form α ∈ Ωk(M) contains k basis
1−forms dxi’s, the form is called a k−form. Functions f ∈ C∞(M,R) are
considered to be 0−forms, and any form on an n−manifoldM of degree k > n
must be zero due to the skew–symmetry.

Any k−form α ∈ Ωk(M) may be expressed in the form

α = fI dxi1 ∧ ... ∧ dxik = fI dxI ,

where I is a multiindex I = (i1, ..., ik) of length k, and ∧ is the wedge product
which is associative, bilinear and anticommutative.

Just as 1−forms act on vector–fields to give real–valued functions, so
k−forms act on k−tuples of vector–fields to give real–valued functions.

The wedge product of two differential forms, a k−form α ∈ Ωk(M) and an
l−form β ∈ Ωl(M) is a (k + l)−form α ∧ β defined as:

α ∧ β =
(k + l)!
k!l!

A(α⊗ β), (1.23)

where A : Ωk(M) → Ωk(M), Aτ(e1, ..., ek) = 1
k!

∑
σ∈Sk

(signσ) τ(eσ(1), ...,
eσ(k)), where Sk is the permutation group on k elements consisting of all
bijections σ : {1, ..., k} → {1, ..., k}.

For any k−form α ∈ Ωk(M) and l−form β ∈ Ωl(M), the wedge product
is defined fiberwise, i.e., (α ∧ β)m = αx ∧ βm for each point m ∈ M . It is
also associative, i.e., (α ∧ β) ∧ γ = α ∧ (β ∧ γ), and graded commutative,
i.e., α ∧ β = (−1)klβ ∧ α. These properties are proved in multilinear algebra.
So M =⇒ Ωk(M) is a contravariant functor from the category M into the
category of real graded commutative algebras [KMS93].

Let M be an n−manifold, X ∈ X k(M), and α ∈ Ωk+1(M). The interior
product , or contraction, iXα = Xα ∈ Ωk(M) of X and α (with insertion
operator iX) is defined as

iXα(X1, ..., Xk) = α(X,X1, ..., Xk).

Insertion operator iX of a vector–field X ∈ X k(M) is natural with respect
to the pull–back F ∗ of a diffeomorphism F :M → N between two manifolds,
i.e., the following diagram commutes:

Ωk−1(N) Ωk−1(M)�
F ∗

Ωk(N) Ωk(M)�F ∗

�

iX

�

iF∗X
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Similarly, insertion operator iX of a vector–field X ∈ Yk(M) is natural
with respect to the push–forward F∗ of a diffeomorphism F : M → N , i.e.,
the following diagram commutes:

Ωk−1(M) Ωk−1(N)�
F∗

Ωk(M) Ωk(N)�F∗

�

iY

�

iF∗Y

In case of Riemannian manifolds there is another exterior operation. Let
M be a smooth n−manifold with Riemannian metric g = 〈, 〉 and the corre-
sponding volume element µ. The Hodge star operator ∗ : Ωk(M) → Ωn−k(M)
on M is defined as

α ∧ ∗β = 〈α, β〉µ for α, β ∈ Ωk(M).

The Hodge star operator satisfies the following properties for α, β ∈ Ωk(M)
[AMR88]:

1. α ∧ ∗β = 〈α, β〉µ = β ∧ ∗α;
2. ∗1 = µ, ∗µ = (−1)Ind(g);
3. ∗ ∗ α = (−1)Ind(g)(−1)k(n−k)α;
4. 〈α, β〉 = (−1)Ind(g) 〈∗α, ∗β〉, where Ind(g) is the index of the metric g.

Exterior Differential Systems

Here we give an informal introduction to exterior differential systems (EDS,
for short), which are expressions involving differential forms related to any
manifold M . Later, when we fully develop the necessary differential geomet-
rical as well as variational machinery (see (1.4.7) below), we will give a more
precise definition of EDS.

Central in the language of EDS is the notion of coframing , which is a
real finite–dimensional smooth manifold M with a given global cobasis and
coordinates, but without requirement for a proper topological and differential
structures. For example, M = R3 is a coframing with cobasis {dx, dy, dz} and
coordinates {x, y, z}. In addition to the cobasis and coordinates, a coframing
can be given structure equations (1.2.9) and restrictions. For example, M =
R2\{0} is a coframing with cobasis {e1, e2}, a single coordinate {r}, structure
equations {dr = e1, de1 = 0, de2 = e1 ∧ e2/r} and restrictions {r �= 0}.

A system S on M in EDS terminology is a list of expressions including
differential forms (e.g., S = {dz − ydx}).

Now, a simple EDS is a triple (S,Ω,M), where S is a system on M , and
Ω is an independence condition: either a decomposable k−form or a system
of k−forms on M . An EDS is a list of simple EDS objects where the various
coframings are all disjoint.
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An integral element of an exterior system (S,Ω,M) is a subspace P ⊂
TmM of the tangent space at some point m ∈ M such that all forms in S
vanish when evaluated on vectors from P . Alternatively, an integral element
P ⊂ TmM can be represented by its annihilator P⊥ ⊂ T ∗

mM , comprising
those 1−forms at m which annul every vector in P . For example, with M =
R3 = {(x, y, z)}, S = {dx ∧ dz} and Ω = {dx, dz}, the integral element
P = {∂x + ∂z, ∂y} is equally determined by its annihilator P⊥ = {dz − dx}.
Again, for S = {dz−ydx} and Ω = {dx}, the integral element P = {∂x+y∂z}
can be specified as {dy}.

Exterior Derivative on a Smooth Manifold

The exterior derivative is an operation that takes k−forms to (k + 1)−forms
on a smooth manifold M . It defines a unique family of maps d : Ωk(U) →
Ωk+1(U), U open in M , such that (see [AMR88]):

1. d is a ∧−antiderivation; that is, d is R−linear and for two forms α ∈
Ωk(U), β ∈ Ωl(U),

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

2. If f ∈ C∞(U,R) is a function on M , then df = ∂f
∂xi dx

i :M → T ∗M is the
differential of f , such that df(X) = iXdf = LXf − diXf = LXf = X[f ]
for any X ∈ X k(M).

3. d2 = d ◦ d = 0 (that is, dk+1(U) ◦ dk(U) = 0).
4. d is natural with respect to restrictions |U ; that is, if U ⊂ V ⊂ M are

open and α ∈ Ωk(V ), then d(α|U) = (dα)|U , or the following diagram
commutes:

Ωk+1(V ) Ωk+1(U)�
|U

Ωk(V ) Ωk(U)�|U

�
d

�
d

5. d is natural with respect to the Lie derivative LX (1.3.3) along any vector–
field X ∈ X k(M); that is, for ω ∈ Ωk(M) we have LXω ∈ Ωk(M) and
dLXω = LXdω, or the following diagram commutes:

Ωk+1(M) Ωk+1(M)�
LX

Ωk(M) Ωk(M)�LX

�
d

�
d
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6. Let ϕ :M → N be a C∞ map of manifolds. Then ϕ∗ : Ωk(N) → Ωk(M)
is a homomorphism of differential algebras (with ∧ and d) and d is natural
with respect to ϕ∗ = F ∗; that is, ϕ∗dω = dϕ∗ω, or the following diagram
commutes:

Ωk+1(N) Ωk+1(M)�
ϕ∗

Ωk(N) Ωk(M)�ϕ∗

�
d

�
d

7. Analogously, d is natural with respect to diffeomorphism ϕ∗ = (F ∗)−1;
that is, ϕ∗dω = dϕ∗ω, or the following diagram commutes:

Ωk+1(N) Ωk+1(M)�
ϕ∗

Ωk(N) Ωk(M)�ϕ∗

�
d

�
d

8. LX = iX ◦ d+ d ◦ iX for any X ∈ X k(M) (the Cartan ‘magic’ formula).
9. LX ◦ d = d ◦ LX , i.e., [LX , d] = 0 for any X ∈ X k(M).

10. [LX , iY ] = i[x,y]; in particular, iX ◦ LX = LX ◦ iX for all X,Y ∈ X k(M).

Given a k−form α = fI dxI ∈ Ωk(M), the exterior derivative is defined in
local coordinates

(
x1, ..., xn

)
of a point m ∈M as

dα = d
(
fI dx

I
)

=
∂fI
∂xik

dxik ∧ dxI = dfI ∧ dxi1 ∧ ... ∧ dxik .

In particular, the exterior derivative of a function f ∈ C∞(M,R) is a
1−form df ∈ Ω1(M), with the property that for anym ∈M , andX ∈ X k(M),

dfm(X) = X(f),

i.e., dfm(X) is a Lie derivative of f at m in the direction of X. Therefore, in
local coordinates

(
x1, ..., xn

)
of a point m ∈M we have

df =
∂f

∂xi
dxi.

For any two functions f, g ∈ C∞(M,R), exterior derivative obeys the
Leibniz rule:

d(fg) = g df + f dg,

and the chain rule:
d (g(f)) = g′(f) df.
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A k−form α ∈ Ωk(M) is called closed form if dα = 0, and it is called
exact form if there exists a (k − 1)−form β ∈ Ωk−1(M) such that α = dβ.
Since d2 = 0, every exact form is closed. The converse is only partially true
(Poincaré Lemma): every closed form is locally exact. This means that given
a closed k−form α ∈ Ωk(M) on an open set U ⊂M , any point m ∈ U has a
neighborhood on which there exists a (k − 1)−form β ∈ Ωk−1(U) such that
dβ = α|U .

The Poincaré lemma is a generalization and unification of two well–known
facts in vector calculus:

1. If curlF = 0, then locally F = grad f ;
2. If divF = 0, then locally F = curlG.

Poincaré lemma for contractible manifolds: Any closed form on a smoothly
contractible manifold is exact.

Intuition Behind Cohomology

The simple formula d2 = 0 leads to the important topological notion of co-
homology . Let us try to solve the equation dω = 0 for a p−form ω. A trivial
solution is ω = 0. From the above formula, we can actually find a much larger
class of trivial solutions: ω = dα for a (p − 1)−form α. More generally, if ω
is any solution to dω = 0, then so is ω + dα. We want to consider these two
solutions as equivalent:

ω ∼ ω + ω′ if ω′ ∈ Im d,

where Im d is the image of d, that is, the collection of all p−forms of the
form dα. (To be precise, the image of d contains q−forms for any 0 < q ≤ n,
so we should restrict this image to the p−forms for the p we are interested
in.) The set of all p−forms which satisfy dω = 0 is called the kernel of d,
denoted Ker d, so we are interested in Ker d up to the equivalence classes
defined by adding elements of Im d. (Again, strictly speaking, Ker d consists
of q−forms for several values of q, so we should restrict it to the p−forms for
our particular choice of p.) This set of equivalence classes is called Hp(M),
the p−th de Rham cohomology group of M ,

Hp(M) =
Ker d
Im d

.

Clearly, Ker d is a group under addition: if two forms ω(1) and ω(2) satisfy
dω(1) = dω(2) = 0, then so does ω(1) + ω(2). Moreover, if we change ω(i) by
adding some dα(i), the result of the addition will still be in the same cohomol-
ogy class, since it differs from ω(1) +ω(2) by d(α(1) +α(2)). Therefore, we can
view this addition really as an addition of cohomology classes: Hp(M) is itself
an additive group. Also note that if ω(3) and ω(4) are in the same cohomol-
ogy class (that is, their difference is of the form dα(3)), then so are cω(3) and
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cω(4) for any constant factor c. In other words, we can multiply a cohomology
class by a constant to obtain another cohomology class: cohomology classes
actually form a vector space.

Intuition Behind Homology

Another operator similar to the exterior derivative d is the boundary opera-
tor δ, which maps compact submanifolds of a smooth manifold M to their
boundary. Here, δC = 0 means that a submanifold C of M has no boundary,
and C = δU means that C is itself the boundary of some submanifold U . It
is intuitively clear, and not very hard to prove, that δ2 = 0: the boundary of
a compact submanifold does not have a boundary itself. That the objects on
which δ acts are independent of its coordinates is also clear. So is the grading
of the objects: the degree p is the dimension of the submanifold C.8 What is
less clear is that the collection of submanifolds actually forms a vector space,
but one can always define this vector space to consist of formal linear com-
binations of submanifolds, and this is precisely how one proceeds. The pD
elements of this vector space are called p−chains. One should think of −C as
C with its orientation reversed, and of the sum of two disjoint sets, C1+C2, as
their union. The equivalence classes constructed from δ are called homology
classes.

For example, in Figure 1.4, C1 and C2 both satisfy δC = 0, so they are
elements of Ker δ. Moreover, it is clear that neither of them separately can
be viewed as the boundary of another submanifold, so they are not in the
trivial homology class Im δ. However, the boundary of U is C1 − C2. (The
minus sign in front of C2 is a result of the fact that C2 itself actually has the
wrong orientation to be considered a boundary of U .) This can be written as
C1 − C2 = δU, or equivalently C1 = C2 + δU, showing that C1 and C2 are
in the same homology class.

The cohomology groups for the δ−operator are called homology groups,
and denoted by Hp(M), with a lower index.9 The p−chains C that satisfy
δC = 0 are called p−cycles. Again, the Hp(M) only exist for 0 ≤ p ≤ n.

There is an interesting relation between cohomology and homology groups.
Note that we can construct a bilinear map from Hp(M)×Hp(M) → R by

([ω], [C]) �→
∫
C

ω, (1.24)

where [ω] denotes the cohomology class of a p−form ω, and [Σ] the homology
class of a p−cycle Σ. Using Stokes’ theorem, it can be seen that the result
does not depend on the representatives for either ω or C
8 Note that here we have an example of an operator that maps objects of degree p

to objects of degree p − 1 instead of p + 1.
9 Historically, as can be seen from the terminology, homology came first and co-

homology was related to it in the way we will discuss below. However, since the
cohomology groups have a more natural additive structure, it is the name ‘coho-
mology’ which is actually used for generalizations.
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Fig. 1.4. The 1D submanifolds S1 and S represent the same homology class, since
their difference is the boundary of U.

∫
C+δU

ω + dα =
∫
C

ω +
∫
C

dα+
∫
δU

ω + dα

=
∫
C

ω +
∫
δC

α+
∫
U

d(ω + dα) =
∫
C

ω,

where we used that by the definition of (co)homology classes, δC = 0 and
dω = 0. As a result, the above map is indeed well–defined on homology and
cohomology classes. A very important theorem by de Rham says that this
map is nondegenerate [Rha84]. This means that if we take some [ω] and we
know the result of the map (1.24) for all [C], this uniquely determines [ω],
and similarly if we start by picking an [C]. This in particular means that the
vector space Hp(M) is the dual vector space of Hp(M).

The de Rham Complex and Homotopy Operators on M

After an intuitive introduction of (co)homology ideas, we now turn to their
proper definitions. Given a smooth manifold M , let Ωp(M) denote the space
of all smooth p−forms on M . The differential d, mapping p−forms to (p +
1)−forms, serves to define the de Rham complex on M

0 → Ω0(M) d0 � Ω1(M) d1 � ...
dn−1� Ωn(M) → 0. (1.25)

Recall (from subsection (3.2.8) in the Appendix) that in general, a complex
is defined as a sequence of vector spaces, and linear maps between successive
spaces, with the property that the composition of any pair of successive maps
is identically 0. In the case of the de Rham complex (1.25), this requirement
is a restatement of the closure property for the exterior differential: d ◦ d = 0.

In particular, for n = 3, the de Rham complex on a manifold M reads

0 → Ω0(M) d0 � Ω1(M) d1 � Ω2(M) d2 � Ω3(M) → 0. (1.26)

2
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If ω ≡ f(x, y, z) ∈ Ω0(M), then

d0ω ≡ d0f =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = gradω.

If ω ≡ fdx+ gdy + hdz ∈ Ω1(M), then

d1ω ≡
(
∂g

∂x
− ∂f
∂y

)
dx∧dy+

(
∂h

∂y
− ∂g
∂z

)
dy∧dz+

(
∂f

∂z
− ∂h
∂x

)
dz∧dx= curlω.

If ω ≡ Fdy ∧ dz +Gdz ∧ dx+Hdx ∧ dy ∈ Ω2(M), then

d2ω ≡ ∂F
∂x

+
∂G

∂y
+
∂H

∂z
= divω.

Therefore, the de Rham complex (1.26) can be written as

0 → Ω0(M)
grad�→Ω1(M) curl� Ω2(M) div� Ω3(M) → 0.

Using the closure property for the exterior differential, d ◦ d = 0, we get the
standard identities from vector calculus

curl · grad = 0 and div · curl = 0.

The definition of the complex requires that the kernel of one of the linear
maps contains the image of the preceding map. The complex is exact if this
containment is equality. In the case of the de Rham complex (1.25), exactness
means that a closed p−form ω, meaning that dω = 0, is necessarily an exact
p−form, meaning that there exists a (p − 1)−form θ such that ω = dθ. (For
p = 0, it says that a smooth function f is closed, df = 0, iff it is constant).
Clearly, any exact form is closed, but the converse need not hold. Thus the
de Rham complex is not in general exact. The celebrated de Rham theorem
states that the extent to which this complex fails to be exact measures purely
topological information about the manifold M , its cohomology group.

On the local side, for special types of domains in Euclidean space Rm,
there is only trivial topology and we do have exactness of the de Rham com-
plex (1.25). This result, known as the Poincaré lemma, holds for star–shaped
domains M ⊂ Rm : Let M ⊂ Rm be a star–shaped domain. Then the de
Rham complex over M is exact.

The key to the proof of exactness of the de Rham complex lies in the
construction of suitable homotopy operators. By definition, these are linear
operators h : Ωp → Ωp−1, taking differential p−forms into (p−1)−forms, and
satisfying the basic identity [Olv86]

ω = dh(ω) + h(dω), (1.27)

for all p−forms ω ∈ Ωp. The discovery of such a set of operators immediately
implies exactness of the complex. For if ω is closed, dω = 0, then (1.27) reduces
to ω = dθ where θ = h(ω), so ω is exact.
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Stokes Theorem and de Rham Cohomology of M

Stokes theorem states that if α is an (n−1)−form on an orientable n−manifold
M , then the integral of dα over M equals the integral of α over ∂M , the
boundary ofM . The classical theorems of Gauss, Green, and Stokes are special
cases of this result.

A manifold with boundary is a setM together with an atlas of charts (U, φ)
with boundary on M . Define (see [AMR88]) the interior and boundary of M
respectively as

IntM =
⋃
U

φ−1 (Int (φ(U))) , and ∂M =
⋃
U

φ−1 (∂ (φ(U))) .

IfM is a manifold with boundary, then its interior IntM and its boundary
∂M are smooth manifolds without boundary. Moreover, if f : M → N is a
diffeomorphism, N being another manifold with boundary, then f induces, by
restriction, two diffeomorphisms

Int f : IntM → IntN, and ∂f : ∂M → ∂N.

If n = dimM , then dim(IntM) = n and dim(∂M) = n− 1.
To integrate a differential n−form over an n−manifold M , M must be

oriented. If IntM is oriented, we want to choose an orientation on ∂M com-
patible with it. As for manifolds without boundary a volume form on an
n−manifold with boundary M is a nowhere vanishing n−form on M . Fix an
orientation on Rn. Then a chart (U, φ) is called positively oriented if the map
Tmφ : TmM → Rn is orientation preserving for all m ∈ U .

Let M be a compact, oriented kD smooth manifold with boundary ∂M .
Let α be a smooth (k − 1)−form on M . Then the classical Stokes formula
holds ∫

M

dα =
∫
∂M

α.

If ∂M =Ø then
∫
M
dα = 0.

The quotient space

Hk(M) =
Ker

(
d : Ωk(M) → Ωk+1(M)

)
Im (d : Ωk−1(M) → Ωk(M))

represents the kth de Rham cohomology group of a manifold M . recall that
the de Rham theorem states that these Abelian groups are isomorphic to
the so–called singular cohomology groups of M defined in algebraic topology
in terms of simplices and that depend only on the topological structure of
M and not on its differentiable structure. The isomorphism is provided by
integration; the fact that the integration map drops to the preceding quotient
is guaranteed by Stokes’ theorem.

The exterior derivative commutes with the pull–back of differential forms.
That means that the vector bundle ΛkT ∗M is in fact the value of a functor,
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which associates a bundle over M to each manifold M and a vector bundle
homomorphism over ϕ to each (local) diffeomorphism ϕ between manifolds
of the same dimension. This is a simple example of the concept of a natural
bundle. The fact that the exterior derivative d transforms sections of ΛkT ∗M
into sections of Λk+1T ∗M for every manifold M can be expressed by saying
that d is an operator from ΛkT ∗M into Λk+1T ∗M . That the exterior derivative
d commutes with (local) diffeomorphisms now means, that d is a natural
operator from the functor ΛkT ∗ into functor Λk+1T ∗. If k > 0, one can show
that d is the unique natural operator between these two natural bundles up
to a constant. So even linearity is a consequence of naturality [KMS93].

Euler–Poincaré Characteristics of M

The Euler–Poincaré characteristics of a manifold M equals the sum of its
Betti numbers

χ(M) =
n∑
p=0

(−1)p bp.

In case of 2nD oriented compact Riemannian manifold M (Gauss–Bonnet
theorem) its Euler–Poincaré characteristics is equal

χ(M) =
∫
M

γ,

where γ is a closed 2n form on M , given by

γ =
(−1)n

(4π)nn!
ε1...2ni1...i2n

Ωi1i2 ∧Ω
i2n−1
i2n

,

where Ωij is the curvature 2−form of a Riemannian connection on M .
Poincaré–Hopf theorem: The Euler–Poincaré characteristics χ(M) of a

compact manifold M equals the sum of indices of zeros of any vector–field
on M which has only isolated zeros.

Duality of Chains and Forms on M

In topology of finite–dimensional smooth (i.e., Cp+1 with p ≥ 0) manifolds,
a fundamental notion is the duality between p−chains C and p−forms (i.e.,
p−cochains) ω on the smooth manifold M , or domains of integration and
integrands – as an integral on M represents a bilinear functional (see [BM82,
DP97]) ∫

C

ω ≡ 〈C,ω〉 , (1.28)

where the integral is called the period of ω. Period depends only on the co-
homology class of ω and the homology class of C. A closed form (cocycle) is
exact (coboundary) if all its periods vanish, i.e., dω = 0 implies ω = dθ. The
duality (1.28) is based on the classical Stokes formula
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C

dω =
∫
∂C

ω.

This is written in terms of scalar products on M as

〈C, dω〉 = 〈∂C, ω〉 ,

where ∂C is the boundary of the p−chain C oriented coherently with C. While
the boundary operator ∂ is a global operator, the coboundary operator, that
is, the exterior derivative d, is local, and thus more suitable for applications.
The main property of the exterior differential,

d2 = 0 implies ∂2 = 0,

can be easily proved by the use of Stokes’ formula〈
∂2C,ω

〉
= 〈∂C, dω〉 =

〈
C, d2ω

〉
= 0.

The analysis of p–chains and p–forms on the finite–dimensional smooth
manifold M is usually performed in (co)homology categories (see [DP97,
Die88]) related to M .

Let M• denote the category of cochains, (i.e., p–forms) on the smooth
manifold M . When C = M•, we have the category S•(M•) of generalized
cochain complexes A• in M•, and if A′ = 0 for n < 0 we have a subcategory
S•
DR(M•) of the de Rham differential complexes in M•

A•
DR : 0 → Ω0(M) d � Ω1(M) d � Ω2(M) · · · (1.29)

· · · d � Ωn(M) d � · · · .

Here A′ = Ωn(M) is the vector space over R of all p–forms ω on M (for
p = 0 the smooth functions on M) and dn = d : Ωn−1(M) → Ωn(M) is the
exterior differential. A form ω ∈ Ωn(M) such that dω = 0 is a closed form or
n–cocycle. A form ω ∈ Ωn(M) such that ω = dθ, where θ ∈ Ωn−1(M), is an
exact form or n–coboundary. Let Zn(M) = Ker(d) (resp. Bn(M) = Im(d))
denote a real vector space of cocycles (resp. coboundaries) of degree n. Since
dn+1 dn = d2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector space

HnDR(M) = Ker(d)/ Im(d) = Zn(M)/Bn(M)

is the de Rham cohomology group. The elements of HnDR(M) represent equiv-
alence sets of cocycles. Two cocycles ω1, ω2 belong to the same equivalence
set, or are cohomologous (written ω1 ∼ ω2) iff they differ by a coboundary
ω1 − ω2 = dθ. The de Rham cohomology class of any form ω ∈ Ωn(M) is
[ω] ∈ HnDR(M). The de Rham differential complex (1.29) can be considered
as a system of second–order ODEs d2θ = 0, θ ∈ Ωn−1(M) having a solution
represented by Zn(M) = Ker(d).
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Analogously let M• denote the category of chains on the smooth manifold
M . When C = M•, we have the category S•(M•) of generalized chain com-
plexes A• in M•, and if An = 0 for n < 0 we have a subcategory SC

• (M•) of
chain complexes in M•

A• : 0 ← C0(M) ∂←− C1(M) ∂←− C2(M) · · · ∂←− Cn(M) ∂←− · · · .

Here An = Cn(M) is the vector space over R of all finite chains C on the
manifold M and ∂n = ∂ : Cn+1(M) → Cn(M). A finite chain C such that
∂C = 0 is an n−cycle. A finite chain C such that C = ∂B is an n−boundary.
Let Zn(M) = Ker(∂) (resp. Bn(M) = Im(∂)) denote a real vector space of
cycles (resp. boundaries) of degree n. Since ∂n+1∂n = ∂2 = 0, we have
Bn(M) ⊂ Zn(M). The quotient vector space

HCn (M) = Ker(∂)/ Im(∂) = Zn(M)/Bn(M)

is the n−homology group. The elements of HCn (M) are equivalence sets of
cycles. Two cycles C1, C2 belong to the same equivalence set, or are homolo-
gous (written C1 ∼ C2), iff they differ by a boundary C1 − C2 = ∂B). The
homology class of a finite chain C ∈ Cn(M) is [C] ∈ HCn (M).

The dimension of the n−cohomology (resp. n−homology) group equals the
nth Betti number bn (resp. bn) of the manifold M . Poincaré lemma says that
on an open set U ∈M diffeomorphic to RN , all closed forms (cycles) of degree
p ≥ 1 are exact (boundaries). That is, the Betti numbers satisfy bp = 0 (resp.
bp = 0) for p = 1, . . . , n.

The de Rham theorem states the following. The map Φ : Hn × Hn → R

given by ([C], [ω]) → 〈C,ω〉 for C ∈ Zn,ω ∈ Zn is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) Hn and Hn

and the equality bn = bn.

Hodge Star Operator and Harmonic Forms

As the configuration manifold M is an oriented ND Riemannian manifold,
we may select an orientation on all tangent spaces TmM and all cotangent
spaces T ∗

mM , with the local coordinates xi = (qi, pi) at a point m ∈ M, in
a consistent manner. The simplest way to do that is to choose the Euclidean
orthonormal basis ∂1, ..., ∂N of RN as being positive.

Since the manifold M carries a Riemannian structure g = 〈, 〉, we have a
scalar product on each T ∗

mM . So, we can define (as above) the linear Hodge
star operator

∗ : Λp(T ∗
mM) → ΛN−p(T ∗

mM),

which is a base point preserving operator

∗ : Ωp(M) → ΩN−p(M), (Ωp(M) = Γ (Λp(M)))

(here Λp(V ) denotes the p-fold exterior product of any vector space V , Ωp(M)
is a space of all p−forms on M , and Γ (E) denotes the space of sections of the
vector bundle E). Also,
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∗∗ = (−1)p(N−p) : Λp(T ∗
xM) → Λp(T ∗

mM).

As the metric on T ∗
mM is given by gij(x) = (gij(x))−1, we have the volume

form defined in local coordinates as

∗(1) =
√

det(gij)dx1 ∧ ... ∧ dxn, and vol(M) =
∫
M

∗(1).

For any to p−forms α, β ∈ Ωp(M) with compact support, we define the
(bilinear and positive definite) L2−product as

(α, β) =
∫
M

〈α, β〉 ∗ (1) =
∫
M

α ∧ ∗β.

We can extend the product (·, ·) to L2(Ωp(M)); it remains bilinear and positive
definite, because as usual, in the definition of L2, functions that differ only on
a set of measure zero are identified.

Using the Hodge star operator ∗, we can introduce the codifferential op-
erator δ, which is formally adjoint to the exterior derivative d : Ωp(M) →
Ωp+1(M) on ⊕Np=0Ω

p(M) w.r.t. (·, ·). This means that for α ∈ Ωp−1(M), β ∈
Ωp(M)

(dα, β) = (α, δβ).

Therefore, we have δ : Ωp(M) → Ωp−1(M) and

δ = (−1)N(p+1)+1 ∗ d ∗ .

Now, the Laplace–Beltrami operator (or, Hodge Laplacian, see [Gri83b,
Voi02] as well as subsection (2.4.4) below), ∆ on Ωp(M), is defined by relation
similar to (1.27) above

∆ = dδ + δd : Ωp(M) → Ωp(M) (1.30)

and an exterior differential form α ∈ Ωp(M) is called harmonic if ∆α = 0.
Let M be a compact, oriented Riemannian manifold, E a vector bundle

with a bundle metric 〈·, ·〉 over M ,

D = d+A : Ωp−1(AdE) → Ωp(AdE), with A ∈ Ω1(AdE)

– a tensorial and R−linear metric connection on E with curvature FD ∈
Ω2(AdE) (Here by Ωp(AdE) we denote the space of those elements of
Ωp(EndE) for which the endomorphism of each fibre is skew symmetric; EndE
denotes the space of linear endomorphisms of the fibers of E).

1.2.6 Lie Derivative on a Smooth Manifold

Lie derivative is popularly called ‘fisherman’s derivative’. In continuum me-
chanics it is called Liouville operator . This is a central differential operator in
modern differential geometry and its physical and control applications.
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Lie Derivative Operating on Functions

To define how vector–fields operate on functions on an m−manifold M , we
will use the Lie derivative. Let f : M → R so Tf : TM → TR = R× R.
Following [AMR88] we write Tf acting on a vector v ∈ TmM in the form

Tf · v = (f(m), df(m) · v) .

This defines, for each point m ∈M , the element df(m) ∈ T ∗
mM . Thus df is a

section of the cotangent bundle T ∗M , i.e., a 1−form. The 1−form df : M →
T ∗M defined this way is called the differential of f . If f is C∞, then df is
Ck−1.

If φ : U ⊂M → V ⊂ E is a local chart forM , then the local representative
of f ∈ C∞(M,R) is the map f : V → R defined by f = f ◦ φ−1. The local
representative of Tf is the tangent map for local manifolds,

Tf(x, v) = (f(x), Df(x) · v) .

Thus the local representative of df is the derivative of the local representative
of f . In particular, if (x1, ..., xn) are local coordinates on M , then the local
components of df are

(df)i = ∂xif.

The introduction of df leads to the following definition of the Lie derivative.
The directional or Lie derivative LX : C∞(M,R) → Ck−1(M,R) of a function
f ∈ C∞(M,R) along a vector–field X is defined by

LXf(m) = X[f ](m) = df(m) ·X(m),

for any m ∈ M . Denote by X[f ] = df(X) the map M � m �→ X[f ](m) ∈ R.
If f is F−valued, the same definition is used, but now X[f ] is F−valued.

If a local chart (U, φ) on an n−manifoldM has local coordinates (x1, ..., xn),
the local representative of X[f ] is given by the function

LXf = X[f ] = Xi ∂xif.

Evidently if f is C∞ and X is Ck−1 then X[f ] is Ck−1.
Let ϕ :M → N be a diffeomorphism. Then LX is natural with respect to

push–forward by ϕ. That is, for each f ∈ C∞(M,R),

Lϕ∗X(ϕ∗f) = ϕ∗LXf,

i.e., the following diagram commutes:

C∞(M,R) C∞(N,R)�
ϕ∗

C∞(M,R) C∞(N,R)�ϕ∗

�

LX
�

Lϕ∗X
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Also, LX is natural with respect to restrictions. That is, for U open in M
and f ∈ C∞(M,R),

LX|U (f |U) = (LXf)|U,
where |U : C∞(M,R) → C∞(U,R) denotes restriction to U , i.e., the following
diagram commutes:

C∞(M,R) C∞(U,R)�
|U

C∞(M,R) C∞(U,R)�|U

�

LX
�

LX|U

Since ϕ∗ = (ϕ−1)∗ the Lie derivative is also natural with respect to pull–
back by ϕ. This has a generalization to ϕ−related vector–fields as follows: Let
ϕ : M → N be a C∞−map, X ∈ X k−1(M) and Y ∈ X k−1(N), k ≥ 1. If
X ∼ϕ Y , then

LX(ϕ∗f) = ϕ∗LY f
for all f ∈ C∞(N,R), i.e., the following diagram commutes:

C∞(N,R) C∞(M,R)�
ϕ∗

C∞(N,R) C∞(M,R)�ϕ∗

�

LY
�

LX

The Lie derivative map LX : C∞(M,R) → Ck−1(M,R) is a derivation,
i.e., for two functions f, g ∈ C∞(M,R) the Leibniz rule is satisfied

LX(fg) = gLXf + fLXg;

Also, Lie derivative of a constant function is zero, LX(const) = 0.
The connection between the Lie derivative LXf of a function f ∈ C∞(M,R)

and the flow Ft of a vector–field X ∈ X k−1(M) is given as:

d

dt
(F ∗
t f) = F ∗

t (LXf) .

Lie Derivative of Vector Fields

If X,Y ∈ X k(M), k ≥ 1 are two vector–fields on M , then

[LX ,LY ] = LX ◦ LY − LY ◦ LX

is a derivation map from Ck+1(M,R) to Ck−1(M,R). Then there is a unique
vector–field, [X,Y ] ∈ X k(M) of X and Y such that L[X,Y ] = [LX ,LY ] and
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[X,Y ](f) = X (Y (f))− Y (X(f)) holds for all functions f ∈ C∞(M,R). This
vector–field is also denoted LXY and is called the Lie derivative of Y with
respect to X, or the Lie bracket of X and Y . In a local chart (U, φ) at a point
m ∈ M with coordinates (x1, ..., xn), for X|U = Xi∂xi and Y |U = Y i∂xi we
have [

Xi∂xi , Y j∂xj

]
=

(
Xi

(
∂xiY j

)
− Y i

(
∂xiXj

))
∂xj ,

since second partials commute. If, also X has flow Ft, then [AMR88]

d

dt
(F ∗
t Y ) = F ∗

t (LXY ) .

In particular, if t = 0, this formula becomes

d

dt
|t=0 (F ∗

t Y ) = LXY.

Then the unique Ck−1 vector–field LXY = [X,Y ] on M defined by

[X,Y ] =
d

dt
|t=0 (F ∗

t Y ) ,

is called the Lie derivative of Y with respect to X, or the Lie bracket of X
and Y, and can be interpreted as the leading order term that results from the
sequence of flows

F−Y
t ◦ F−X

t ◦ FYt ◦ F−X
t (m) = ε2[X,Y ](m) +O(ε3), (1.31)

for some real ε > 0. Therefore a Lie bracket can be interpreted as a ‘new
direction’ in which the system can flow, by executing the sequence of flows
(1.31).

Lie bracket satisfies the following property:

[X,Y ][f ] = X[Y [f ]]− Y [X[f ]],

for all f ∈ Ck+1(U,R), where U is open in M .
An important relationship between flows of vector–fields is given by the

Campbell–Baker–Hausdorff formula:

FYt ◦ FXt = FX+Y+ 1
2 [X,Y ]+ 1

12 ([X,[X,Y ]]−[Y,[X,Y ]])+...
t (1.32)

Essentially, if given the composition of multiple flows along multiple vector–
fields, this formula gives the one flow along one vector–field which results in
the same net flow. One way to prove the Campbell–Baker–Hausdorff formula
(1.32) is to expand the product of two formal exponentials and equate terms
in the resulting formal power series.

Lie bracket is the R−bilinear map [, ] : X k(M) × X k(M) → X k(M) with
the following properties:
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1. [X,Y ] = −[Y,X], i.e., LXY = −LYX for all X,Y ∈ X k(M) – skew–
symmetry;

2. [X,X] = 0 for all X ∈ X k(M);
3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ X k(M) – the

Jacobi identity;
4. [fX, Y ] = f [X,Y ] − (Y f)X, i.e., LfX(Y ) = f(LXY ) − (LY f)X for all
X,Y ∈ X k(M) and f ∈ C∞(M,R);

5. [X, fY ] = f [X,Y ] + (Xf)Y , i.e., LX(fY ) = f(LXY ) + (LXf)Y for all
X,Y ∈ X k(M) and f ∈ C∞(M,R);

6. [LX ,LY ] = L[x,y] for all X,Y ∈ X k(M).

The pair (X k(M), [, ]) is the prototype of a Lie algebra [KMS93]. In more
general case of a general linear Lie algebra gl(n), which is the Lie algebra as-
sociated to the Lie group GL(n), Lie bracket is given by a matrix commutator

[A,B] = AB −BA,

for any two matrices A,B ∈ gl(n).
Let ϕ : M → N be a diffeomorphism. Then LX : X k(M) → X k(M) is

natural with respect to push–forward by ϕ. That is, for each f ∈ C∞(M,R),

Lϕ∗X(ϕ∗Y ) = ϕ∗LXY,

i.e., the following diagram commutes:

X k(M) X k(N)�
ϕ∗

X k(M) X k(N)�ϕ∗

�

LX
�

Lϕ∗X

Also, LX is natural with respect to restrictions. That is, for U open in M
and f ∈ C∞(M,R),

[X|U, Y |U ] = [X,Y ]|U,
where U : C∞(M,R) → C∞(U,R) denotes restriction to U , i.e., the following
diagram commutes [AMR88]:

X k(M) X k(U)�
|U

X k(M) X k(U)�|U

�

LX
�

LX|U

If a local chart (U, φ) on an n−manifoldM has local coordinates (x1, ..., xn),
then the local components of a Lie bracket are
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[X,Y ]j = Xi ∂xiY j − Y i ∂xiXj ,

that is, [X,Y ] = (X · ∇)Y − (Y · ∇)X.
Let ϕ :M → N be a C∞−map, X ∈ X k−1(M) and Y ∈ X k−1(N), k ≥ 1.

Then X ∼ϕ Y , iff
(Y [f ]) ◦ ϕ = X[f ◦ ϕ]

for all f ∈ C∞(V,R), where V is open in N.
For every X ∈ X k(M), the operator LX is a derivation on(

C∞(M,R),X k(M)
)
, i.e., LX is R−linear.

For any two vector–fields X ∈ X k(M) and Y ∈ X k(N), k ≥ 1 with flows
Ft and Gt, respectively, if [X,Y ] = 0 then F ∗

t Y = Y and G∗
tX = X.

Derivative of the Evolution Operator

Recall that the time–dependent flow or evolution operator Ft,s of a vector–
field X ∈ X k(M) is defined by the requirement that t �→ Ft,s(m) be the
integral curve of X starting at a point m ∈M at time t = s, i.e.,

d

dt
Ft,s(m) = X (t, Ft,s(m)) and Ft,t(m) = m.

By uniqueness of integral curves we have Ft,s ◦Fs,r = Ft,r (replacing the flow
property Ft+s = Ft + Fs) and Ft,t = identity.

Let Xt ∈ X k(M), k ≥ 1 for each t and suppose X(t,m) is continuous in
(t,m) ∈ R×M . Then Ft,s is of class C∞ and for f ∈ Ck+1(M,R) [AMR88],
and Y ∈ X k(M), we have

1. d
dtF

∗
t,s f = F ∗

t,s (LXt
f) , and

2. d
dtF

∗
t,s f = F ∗

t,s([Xt, Y ]) = F ∗
t,s (LXt Y ).

From the above theorem, the following identity holds:

d

dt
F ∗
t,s f = −Xt

[
F ∗
t,s f

]
.

Lie Derivative of Differential Forms

Since F :M =⇒ ΛkT ∗M is a vector bundle functor on M, the Lie derivative
(1.3.3) of a k−form α ∈ Ωk(M) along a vector–field X ∈ X k(M) is defined
by

LXα =
d

dt
|t=0 F

∗
t α.

It has the following properties:

1. LX(α ∧ β) = LX α ∧ β + α ∧ LX β, so LX is a derivation.
2. [LX ,LY ] α = L[X,Y ] α.
3. d

dtF
∗
t α = F ∗

t LXα = LX (F ∗
t α).
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Formula (3) holds also for time–dependent vector–fields in the sense that
d
dtF

∗
t,sα = F ∗

t,sLXα = LX
(
F ∗
t,sα

)
and in the expression LXα the vector–field

X is evaluated at time t.
The famous Cartan magic formula (see [MR99]) states: the Lie derivative

of a k−form α ∈ Ωk(M) along a vector–field X ∈ X k(M) on a smooth
manifold M is defined as

LXα = diXα+ iXdα = d(Xα) +Xdα.

Also, the following identities hold [MR99, KMS93]:

1. LfXα = fLXα+ df ∧ ixα.
2. L[X,Y ]α = LXLY α− LY LXα.
3. i[X,Y ]α = LX iY α− iY LXα.
4. LXdα = dLXα, i.e., [LX , d] = 0.
5. LX iXα = iXLXα, i.e., [LX , iX ] = 0.
6. LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

Lie Derivative of Various Tensor Fields

In this subsection, we use local coordinates xi (i = 1, ..., n) on a biomechanical
n−manifold M , to calculate the Lie derivative LXi with respect to a generic
vector–field Xi. (As always, ∂xi ≡ ∂

∂xi ).

Lie Derivative of a Scalar Field

Given the scalar field φ, its Lie derivative LXiφ is given as

LXiφ = Xi∂xiφ = X1∂x1φ+X2∂x2φ+ ...+Xn∂xnφ.

Lie Derivative of Vector and Covector–Fields

Given a contravariant vector–field V i, its Lie derivative LXiV i is given as

LXiV i = Xk∂xkV i − V k∂xkXi ≡ [Xi, V i]− the Lie bracket.

Given a covariant vector–field (i.e., a one–form) ωi, its Lie derivative LXiωi
is given as

LXiωi = Xk∂xkωi + ωk∂xiXk.

Lie Derivative of a Second–Order Tensor–Field

Given a (2, 0) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiSij − Sij∂xiXi − Sii∂xiXj .

Given a (1, 1) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiSij − Sij∂xiXi + Sii∂xjXi.

Given a (0, 2) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiSij + Sij∂xiXi + Sii∂xjXi.
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Lie Derivative of a Third–Order Tensor–Field

Given a (3, 0) tensor–field T ijk, its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT ijk − T ijk∂xiXi − T iik∂xiXj − T iji∂xiXk.

Given a (2, 1) tensor–field T ijk , its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT ijk − T
ij
k ∂xiXi + T iji ∂xkXi − T iik ∂xiXj .

Given a (1, 2) tensor–field T ijk, its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT ijk − T ijk∂xiXi + T iik∂xjXi + T iji∂xkXi.

Given a (0, 3) tensor–field Tijk, its Lie derivative LXiTijk is given as

LXiTijk = Xi∂xiTijk + Tijk∂xiXi + Tiik∂xjXi + Tiji∂xkXi.

Lie Derivative of a Fourth–Order Tensor–Field

Given a (4, 0) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl−Rijkl∂xiXi−Riikl∂xiXj−Rijil∂xiXk−Rijki∂xiX l.

Given a (3, 1) tensor–field Rijkl , its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl −Rijkl ∂xiXi +Rijki ∂xlXi −Riikl ∂xiXj −Rijil ∂xiXk.

Given a (2, 2) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl −R
ij
kl∂xiXi +Rijil ∂xkXi +Rijki∂xlXi −Riikl∂xiXj .

Given a (1, 3) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl −Rijkl∂xiXi +Riikl∂xjXi +Rijil∂xkXi +Rijki∂xlXi.

Given a (0, 4) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl+Rijkl∂xiXi+Riikl∂xjXi+Rijil∂xkXi+Rijki∂xlXi.

Finally, recall that a spinor is a two–component complex column vector.
Physically, spinors can describe both bosons and fermions, while tensors can
describe only bosons. The Lie derivative of a spinor φ is defined by

LXφ(x) = lim
t→0

φ̄t(x)− φ(x)
t

,

where φ̄t is the image of φ by a one–parameter group of isometries with X
its generator. For a vector–field Xa and a covariant derivative ∇a, the Lie
derivative of φ is given explicitly by

LXφ = Xa∇aφ−
1
8
(∇aXb −∇bXa) γaγbφ,

where γa and γb are Dirac matrices (see, e.g., [BM00]).
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Lie Algebras

Recall from Introduction that an algebra A is a vector space with a product.
The product must have the property that

a(uv) = (au)v = u(av),

for every a ∈ R and u, v ∈ A. A map φ : A → A′ between algebras is called
an algebra homomorphism if φ(u · v) = φ(u) · φ(v). A vector subspace I of an
algebra A is called a left ideal (resp. right ideal) if it is closed under algebra
multiplication and if u ∈ A and i ∈ I implies that ui ∈ I (resp. iu ∈ I). A
subspace I is said to be a two–sided ideal if it is both a left and right ideal.
An ideal may not be an algebra itself, but the quotient of an algebra by a
two–sided ideal inherits an algebra structure from A.

A Lie algebra is an algebra A where the multiplication, i.e., the Lie bracket
(u, v) �→ [u, v], has the following properties:

LA 1. [u, u] = 0 for every u ∈ A, and
LA 2. [u, [v, w]] + [w, [u, v]] + [v, w, u]] = 0 for all u, v, w ∈ A.
The condition LA 2 is usually called Jacobi identity . A subspace E ⊂ A

of a Lie algebra is called a Lie subalgebra if [u, v] ∈ E for every u, v ∈ E. A
map φ : A → A′ between Lie algebras is called a Lie algebra homomorphism
if φ([u, v]) = [φ(u), φ(v)] for each u, v ∈ A.

All Lie algebras (over a given field K) and all smooth homomorphisms
between them form the category LAL, which is itself a complete subcategory
of the category AL of all algebras and their homomorphisms.

1.2.7 Lie Groups and Associated Lie Algebras

In the middle of the 19th Century S. Lie made a far reaching discovery that
techniques designed to solve particular unrelated types of ODEs, such as sep-
arable, homogeneous and exact equations, were in fact all special cases of a
general form of integration procedure based on the invariance of the differ-
ential equation under a continuous group of symmetries. Roughly speaking a
symmetry group of a system of differential equations is a group that trans-
forms solutions of the system to other solutions. Once the symmetry group
has been identified a number of techniques to solve and classify these dif-
ferential equations becomes possible. In the classical framework of Lie, these
groups were local groups and arose locally as groups of transformations on
some Euclidean space. The passage from the local Lie group to the present
day definition using manifolds was accomplished by E. Cartan at the end of
the 19th Century, whose work is a striking synthesis of Lie theory, classical
geometry, differential geometry and topology.

These continuous groups, which originally appeared as symmetry groups of
differential equations, have over the years had a profound impact on diverse
areas such as algebraic topology, differential geometry, numerical analysis,
control theory, classical mechanics, quantum mechanics etc. They are now
universally known as Lie groups.
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Definition of a Lie Group

A Lie group is a smooth (Banach) manifold M that has at the same time
a group G−structure consistent with its manifold M−structure in the sense
that group multiplication

µ : G×G→ G, (g, h) �→ gh (1.33)

and the group inversion

ν : G→ G, g �→ g−1 (1.34)

are C∞−maps [Che55, AMR88, MR99, Put93]. A point e ∈ G is called the
group identity element .

For example, any nD Banach vector space V is an Abelian Lie group with
group operations µ : V ×V → V , µ(x, y) = x+ y, and ν : V → V , ν(x) = −x.
The identity is just the zero vector. We call such a Lie group a vector group.

Let G and H be two Lie groups. A map G→ H is said to be a morphism
of Lie groups (or their smooth homomorphism) if it is their homomorphism
as abstract groups and their smooth map as manifolds [Pos86].

All Lie groups and all their morphisms form the category LG (more pre-
cisely, there is a countable family of categories LGdepending onCk−smoothness
of the corresponding manifolds).

Similarly, a group G which is at the same time a topological space is said to
be a topological group if maps (1.33–1.34) are continuous, i.e., C0−maps for it.
The homomorphism G→ H of topological groups is said to be continuous if it
is a continuous map. Topological groups and their continuous homomorphisms
form the category T G.

A topological group (as well as a smooth manifold) is not necessarily Haus-
dorff. A topological groupG is Hausdorff iff its identity is closed. As a corollary
we have that every Lie group is a Hausdorff topological group (see [Pos86]).

For every g in a Lie group G, the two maps,

Lg : G→ G, h �→ gh, and
Rh : G→ G, g �→ gh,

are called left and right translation maps. Since Lg ◦Lh = Lgh, and Rg ◦Rh =
Rgh, it follows that (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 , so both Lg and Rg are

diffeomorphisms. Moreover Lg ◦Rh = Rh ◦ Lg, i.e., left and right translation
commute.

A vector–fieldX on G is called left invariant vector–field if for every g ∈ G,
L∗
gX = X, that is, if (ThLg)X(h) = X(gh) for all h ∈ G, i.e., the following

diagram commutes:
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G G�
Lg

TG TG�TLg

�
X

�
X

The correspondences G → TG and Lg → TLg obviously define a functor
F : LG ⇒ LG from the category G of Lie groups to itself. F is a special case
of the vector bundle functor (see (1.3.3) below).

Let XL(G) denote the set of left invariant vector–fields on G; it is a
Lie subalgebra of X (G), the set of all vector–fields on G, since L∗

g[X,Y ] =
[L∗
gX,L

∗
gY ] = [X,Y ], so the Lie bracket [X,Y ] ∈ XL(G).

Let e be the identity element of G. Then for each ξ on the tangent space
TeG we define a vector–field Xξ on G by

Xξ(g) = TeLg(ξ).

XL(G) and TeG are isomorphic as vector spaces. Define the Lie bracket on
TeG by

[ξ, η] = [Xξ, Xη] (e),

for all ξ, η ∈ TeG. This makes TeG into a Lie algebra. Also, by construction,
we have

[Xξ, Xη] = X[ξ,η],

this defines a bracket in TeG via left extension. The vector space TeG with
the above algebra structure is called the Lie algebra of the Lie group G and
is denoted g.

For example, let V be a nD vector space. Then TeV  V and the left
invariant vector–field defined by ξ ∈ TeV is the constant vector–field Xξ(η) =
ξ, for all η ∈ V . The Lie algebra of V is V itself.

Since any two elements of an Abelian Lie group G commute, it follows
that all adjoint operators Adg, g ∈ G, equal the identity. Therefore, the Lie
algebra g is Abelian; that is, [ξ, η] = 0 for all ξ, η ∈ g [MR99].

Recall (1.2.6) that Lie algebras and their smooth homomorphisms form
the category LAL. We can now introduce the fundamental Lie functor , F :
LG ⇒ LAL, from the category of Lie groups to the category of Lie algebras
[Pos86].

Let Xξ be a left invariant vector–field on G corresponding to ξ in g. Then
there is a unique integral curve γξ : R → G of Xξ starting at e, i.e.,

γ̇ξ(t) = Xξ
(
γξ(t)

)
, γξ(0) = e.

γξ(t) is a smooth one parameter subgroup of G, i.e.,

γξ(t+ s) = γξ(t) · γξ(s),
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since, as functions of t both sides equal γξ(s) at t = 0 and both satisfy
differential equation

γ̇(t) = Xξ
(
γξ(t)

)
by left invariance of Xξ, so they are equal. Left invariance can be also used
to show that γξ(t) is defined for all t ∈ R. Moreover, if φ : R → G is a one
parameter subgroup of G, i.e., a smooth homomorphism of the additive group
R into G, then φ = γξ with ξ = φ̇(0), since taking derivative at s = 0 in the
relation

φ(t+ s) = φ(t) · φ(s) gives φ̇(t) = Xφ̇(0) (φ(t)) ,

so φ = γξ since both equal e at t = 0. Therefore, all one parameter subgroups
of G are of the form γξ(t) for some ξ ∈ g.

The map exp : g→ G, given by

exp(ξ) = γξ(1), exp(0) = e, (1.35)

is called the exponential map of the Lie algebra g of G into G. exp is a C∞–
map, similar to the projection π of tangent and cotangent bundles; exp is
locally a diffeomorphism from a neighborhood of zero in g onto a neighborhood
of e in G; if f : G→ H is a smooth homomorphism of Lie groups, then

f ◦ expG = expH ◦Tef .

Also, in this case (see [Che55, MR99, Pos86])

exp(sξ) = γξ(s).

Indeed, for fixed s ∈ R, the curve t �→ γξ(ts), which at t = 0 passes through
e, satisfies the differential equation

d

dt
γξ(ts) = sXξ

(
γξ(ts)

)
= Xsξ

(
γξ(ts)

)
.

Since γsξ(t) satisfies the same differential equation and passes through e at
t = 0, it follows that γsξ(t) = γξ(st). Putting t = 1 induces exp(sξ) = γξ(s)
[MR99].

Hence exp maps the line sξ in g onto the one–parameter subgroup γξ(s)
of G, which is tangent to ξ at e. It follows from left invariance that the flow
F ξt of X satisfies F ξt (g) = g exp(sξ).

Globally, the exponential map exp, as given by (1.35), is a natural oper-
ation, i.e., for any morphism ϕ : G → H of Lie groups G and H and a Lie
functor F , the following diagram commutes [Pos86]:

G H�ϕ

F(G) F(H)�F(ϕ)

�

exp

�

exp
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Let G1 and G2 be Lie groups with Lie algebras g1 and g2. Then G1 ×G2

is a Lie group with Lie algebra g1 × g2, and the exponential map is given by
[MR99].

exp : g1 × g2 → G1 ×G2, (ξ1, ξ2) �→ (exp1(ξ1), exp2(ξ2)) .

For example, in case of a nD vector space, or infinite–dimensional Banach
space, the exponential map is the identity.

The unit circle in the complex plane S1 = {z ∈ C : |z| = 1} is an Abelian
Lie group under multiplication. The tangent space TeS1 is the imaginary
axis, and we identify R with TeS1 by t �→ 2πit. With this identification, the
exponential map exp : R → S1 is given by exp(t) = e2πit.

The nD torus Tn = S1×···×S1 (n times) is an Abelian Lie group. The
exponential map exp : Rn → Tn is given by

exp(t1, ..., tn) = (e2πit1 , ..., e2πitn).

Since S1 = R/Z, it follows that

Tn = Rn/Zn,

the projection Rn → Tn being given by the exp map (see [MR99, Pos86]).
For every g ∈ G, the map

Adg = Te
(
Rg−1 ◦ Lg

)
: g→ g

is called the adjoint map (or operator) associated with g.
For each ξ ∈ g and g ∈ G we have

exp (Adgξ) = g (exp ξ) g−1.

The relation between the adjoint map and the Lie bracket is the following:
For all ξ, η ∈ g we have

d

dt

∣∣∣∣
t=0

Adexp(tξ)η = [ξ, η].

A Lie subgroup H of G is a subgroup H of G which is also a submanifold
of G. Then h is a Lie subalgebra of g and moreover h = {ξ ∈ g| exp(tξ) ∈ H,
for all t ∈ R}.

Recall that one can characterize Lebesgue measure up to a multiplicative
constant on Rn by its invariance under translations. Similarly, on a locally
compact group there is a unique (up to a nonzero multiplicative constant)
left–invariant measure, called Haar measure. For Lie groups the existence of
such measures is especially simple [MR99]: Let G be a Lie group. Then there
is a volume form Ub5, unique up to nonzero multiplicative constants, that is
left invariant. If G is compact, Ub5 is right invariant as well.
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Actions of Lie Groups on Smooth Manifolds

Let M be a smooth manifold. An action of a Lie group G (with the unit
element e) on M is a smooth map φ : G×M → M, such that for all x ∈ M
and g, h ∈ G, (i) φ(e, x) = x and (ii) φ (g, φ(h, x)) = φ(gh, x). In other words,
letting φg : x ∈ M �→ φg(x) = φ(g, x) ∈ M , we have (i’) φe = idM and (ii’)
φg ◦ φh = φgh. φg is a diffeomorphism, since (φg)−1 = φg−1 . We say that
the map g ∈ G �→ φg ∈ Diff(M) is a homomorphism of G into the group
of diffeomorphisms of M . In case that M is a vector space and each φg is a
linear operator, the function of G on M is called a representation of G on M
[Put93]

An action φ of G on M is said to be transitive group action, if for every
x, y ∈ M , there is g ∈ G such that φ(g, x) = y; effective group action, if
φg = idM implies g = e, that is g �→ φg is 1–1; and free group action, if for
each x ∈M , g �→ φg(x) is 1–1.

For example,

1. G = R acts on M = R by translations; explicitly,

φ : G×M →M, φ(s, x) = x+ s.

Then for x ∈ R, Ox = R. Hence M/G is a single point, and the action is
transitive and free.

2. A complete flow φt of a vector–field X on M gives an action of R on M ,
namely

(t, x) ∈ R×M �→ φt(x) ∈M.

3. Left translation Lg : G → G defines an effective action of G on itself. It
is also transitive.

4. The coadjoint action of G on g∗ is given by

Ad∗ : (g, α) ∈ G× g∗ �→ Ad∗g−1(α) =
(
Te(Rg−1 ◦ Lg)

)∗
α ∈ g∗.

Let φ be an action of G on M . For x ∈M the orbit of x is defined by

Ox = {φg(x)|g ∈ G} ⊂M

and the isotropy group of φ at x is given by

Gx = {g ∈ G|φ(g, x) = x} ⊂ G.

An action φ of G on a manifold M defines an equivalence relation on M
by the relation belonging to the same orbit; explicitly, for x, y ∈M , we write
x ∼ y if there exists a g ∈ G such that φ(g, x) = y, that is, if y ∈ Ox. The set
of all orbits M/G is called the group orbit space.

For example, letM = R2\{0}, G = SO(2), the group of rotations in plane,
and the action of G on M given by
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cos θ − sin θ
sin θ cos θ

]
, (x, y)

)
�−→ (x cos θ − y sin θ, x sin θ + y cos θ).

The action is always free and effective, and the orbits are concentric circles,
thus the orbit space is M/G  R∗

+.
A crucial concept in mechanics is the infinitesimal description of an action.

Let φ : G×M →M be an action of a Lie group G on a smooth manifold M .
For each ξ ∈ g,

φξ : R×M →M, φξ(t, x) = φ (exp(tξ), x)

is an R–action on M . Therefore, φexp(tξ) : M → M is a flow on M ; the
corresponding vector–field on M , given by

ξM (x) =
d

dt

∣∣∣∣
t=0

φexp(tξ)(x)

is called the infinitesimal generator of the action, corresponding to ξ in g.
The tangent space at x to an orbit Ox is given by

TxOx = {ξM (x)|ξ ∈ g}.

Let φ : G ×M → M be a smooth G−-action. For all g ∈ G, all ξ, η ∈ g
and all α, β ∈ R, we have:

(Adgξ)M = φ∗g−1ξM , [ξM , ηM ] = − [ξ, η]M , and (αξ+βη)M = αξM+βηM .
Let M be a smooth manifold, G a Lie group and φ : G × M → M a

G−action on M . We say that a smooth map f : M → M is with respect to
this action if for all g ∈ G,

f ◦ φg = φg ◦ f .

Let f :M →M be an equivariant smooth map. Then for any ξ ∈ g we have

Tf ◦ ξM = ξM ◦ f.

Basic Dynamical Groups

Here we give the first two examples of Lie groups, namely Galilei group and
general linear group. Further examples will be given in association with par-
ticular dynamical systems.

Galilei Group

The Galilei group is the group of transformations in space and time that con-
nect those Cartesian systems that are termed ‘inertial frames’ in Newtonian
mechanics. The most general relationship between two such frames is the fol-
lowing. The origin of the time scale in the inertial frame S′ may be shifted
compared with that in S; the orientation of the Cartesian axes in S′ may
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be different from that in S; the origin O of the Cartesian frame in S′ may
be moving relative to the origin O in S at a uniform velocity. The transition
from S to S′ involves ten parameters; thus the Galilei group is a ten param-
eter group. The basic assumption inherent in Galilei–Newtonian relativity is
that there is an absolute time scale, so that the only way in which the time
variables used by two different ‘inertial observers’ could possibly differ is that
the zero of time for one of them may be shifted relative to the zero of time
for the other.

Galilei space–time structure involves the following three elements:

1. World, as a 4D affine space A4. The points of A4 are called world points
or events. The parallel transitions of the world A4 form a linear (i.e.,
Euclidean) space R4.

2. Time, as a linear map t : R4 → R of the linear space of the world parallel
transitions onto the real ‘time axes’. Time interval from the event a ∈ A4

to b ∈ A4 is called the number t(b−a); if t(b−a) = 0 then the events a and b
are called synchronous. The set of all mutually synchronous events consists
a 3D affine space A3, being a subspace of the world A4. The kernel of the
mapping t consists of the parallel transitions of A4 translating arbitrary
(and every) event to the synchronous one; it is a linear 3D subspace R3

of the space R4.
3. Distance (metric) between the synchronous events,

ρ(a, b) =‖ a− b ‖, for all a, b ∈ A3,

given by the scalar product in R3. The distance transforms arbitrary space
of synchronous events into the well known 3D Euclidean space E3.

The space A4, with the Galilei space–time structure on it, is called Galilei
space. Galilei group is the group of all possible transformations of the Galilei
space, preserving its structure. The elements of the Galilei group are called
Galilei transformations. Therefore, Galilei transformations are affine transfor-
mations of the world A4 preserving the time intervals and distances between
the synchronous events.

The direct product R× R3, of the time axes with the 3D linear space R3
with a fixed Euclidean structure, has a natural Galilei structure. It is called
Galilei coordinate system.

General Linear Group

The group of linear isomorphisms of Rn to Rn is a Lie group of dimension n2,
called the general linear group and denoted Gl(n,R). It is a smooth manifold,
since it is a subset of the vector space L(Rn,Rn) of all linear maps of Rn

to Rn, as Gl(n,R) is the inverse image of R\{0} under the continuous map
A �→ detA of L(Rn,Rn) to R. The group operation is composition

(A,B) ∈ Gl(n,R)×Gl(n,R) �→ A ◦B ∈ Gl(n,R)



1.2 Smooth Manifolds 59

and the inverse map is

A ∈ Gl(n,R) �→ A−1 ∈ Gl(n,R).

If we choose a basis in Rn, we can represent each element A ∈ Gl(n,R) by an
invertible (n× n)–matrix. The group operation is then matrix multiplication
and the inversion is matrix inversion. The identity is the identity matrix In.
The group operations are smooth since the formulas for the product and
inverse of matrices are smooth in the matrix components.

The Lie algebra of Gl(n,R) is gl(n), the vector space L(Rn,Rn) of all
linear transformations of Rn, with the commutator bracket

[A,B] = AB −BA.

For every A ∈ L(Rn,Rn),

γA : t ∈ R �→γA(t) =
∞∑
i=0

ti

i!
Ai ∈ Gl(n,R)

is a one parameter subgroup of Gl(n,R), because

γA(0) = I, and γ̇A(t) =
∞∑
i=0

ti−1

(i− 1)!
Ai = γA(t)A.

Hence γA is an integral curve of the left invariant vector–field XA. Therefore,
the exponential map is given by

exp : A ∈ L(Rn,Rn) �→ exp(A) ≡ eA = γA(1) =
∞∑
i=0

Ai

i!
∈ Gl(n,R).

For each A ∈ Gl(n,R) the corresponding adjoint map

AdA : L(Rn,Rn) → L(Rn,Rn)

is given by
AdAB = A ·B ·A−1.

1.2.8 Lie Symmetries and Prolongations on Manifolds

In this subsection we continue our expose on Lie groups of symmetry, as a
link to modern jet machinery, developed below.
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Lie Symmetry Groups

Exponentiation of Vector Fields on M

Let x = (x1, ..., xr) be local coordinates at a point m on a smooth n−manifold
M . Recall that the flow generated by the vector–field

v = ξi(x) ∂xi ∈M,

is a solution of the system of ODEs

dxi

dε
= ξi(x1, ..., xm), (i = 1, ..., r).

The computation of the flow, or one–parameter group of diffeomorphisms,
generated by a given vector–field v (i.e., solving the system of ODEs) is of-
ten referred to as exponentiation of a vector–field , denoted by exp(εv)x (see
[Olv86]).

If v, w ∈M are two vectors defined by

v = ξi(x) ∂xi and w = ηi(x) ∂xi ,

then
exp(εv) exp(θw)x = exp(θw) exp(εv)x,

for all ε, θ ∈ R,x ∈M, such that both sides are defined, iff they commute, i.e.,
[v, w] = 0 everywhere [Olv86].

A system of vector–fields {v1, ..., vr} on a smooth manifoldM is in involu-
tion if there exist smooth real–valued functions hkij(x), x ∈M , i, j, k = 1, ..., r,
such that for each i, j,

[vi, vj ] = hkij · vk.
Let v �= 0 be a right–invariant vector–field on a Lie group G. Then the

flow generated by v through the identity e, namely

gε = exp(εv) e ≡ exp(εv),

is defined for all ε ∈ R and forms a one–parameter subgroup of G, with

gε+δ = gε · gδ, g0 = e, g−1
ε = g−ε,

isomorphic to either R itself or the circle group SO(2). Conversely, any con-
nected 1D subgroup of G is generated by such a right–invariant vector–field
in the above manner [Olv86].

For example, let G = GL(n) with Lie algebra gl(n), the space of all n× n
matrices with commutator as the Lie bracket. If A ∈ gl(n), then the corre-
sponding right–invariant vector–field vA on GL(n) has the expression [Olv86]

vA = aikx
k
j ∂xi

j
.
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The one–parameter subgroup exp(εvA) e is found by integrating the system
of n2 ordinary differential equations

dxij
dε

= aikx
k
j , xij(0) = δij , (i, j = 1, ..., n),

involving matrix entries of A. The solution is just the matrix exponential
X(ε) = eεA, which is the one–parameter subgroup of GL(n) generated by a
matrix A in gl(n).

Recall that the exponential map exp : g→ G is get by setting ε = 1 in the
one–parameter subgroup generated by vector–field v :

exp(v) ≡ exp(v) e.

Its differential at 0,
d exp : Tg|0  g→ TG|e  g

is the identity map.

Lie Symmetry Groups and General Differential Equations

Consider a system S of general differential equations (DEs, to be distinguished
from ODEs) involving p independent variables x = (x1, ..., xp), and q depen-
dent variables u = (u1, ..., uq). The solution of the system will be of the
form u = f(x), or, in components, uα = fα(x1, ..., xp), α = 1, ..., q (so that
Latin indices refer to independent variables while Greek indices refer to de-
pendent variables). Let X = Rp, with coordinates x = (x1, ..., xp), be the
space representing the independent variables, and let U = Rq, with coordi-
nates u = (u1, ..., uq), represent dependent variables. A Lie symmetry group
G of the system S will be a local group of transformations acting on some
open subset M ⊂ X × U in such way that G transforms solutions of S to
other solutions of S [Olv86].

More precisely, we need to explain exactly how a given transformation
g ∈ G, where G is a Lie group, transforms a function u = f(x). We firstly
identify the function u = f(x) with its graph

Γf ≡ {(x, f(x)) : x ∈ dom f ≡ Ω} ⊂ X × U,

where Γf is a submanifold of X ×U. If Γf ⊂Mg ≡ dom g, then the transform
of Γf by g is defined as

g · Γf = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γf} .

We write f̃ = g · f and call the function f̃ the transform of f by g.
For example, let p = 1 and q = 1, so X = R with a single independent

variable x, and U = R with a single dependent variable u, so we have a single
ODE involving a single function u = f(x). Let G = SO(2) be the rotation
group acting on X × U  R2. The transformations in G are given by
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(x̃, ũ) = θ · (x, u) = (x cos θ − u sin θ, x sin θ + u cos θ).

Let u = f(x) be a function whose graph is a subset Γf ⊂ X × U . The group
SO(2) acts on f by rotating its graph.

In general, the procedure for finding the transformed function f̃ = g · f is
given by [Olv86]:

g · f = [Φg ◦ (1× f)] ◦ [Ξg ◦ (1× f)]−1
, (1.36)

where Ξg = Ξg(x, u), Φg = Φg(x, u) are smooth functions such that

(x̃, ũ) = g · (x, u) = (Ξg(x, u), Φg(x, u)) ,

while 1 denotes the identity function of X, so 1(x) = x. Formula (1.36) holds
whenever the second factor is invertible.

Let S be a system of DEs. A symmetry group of the system S is a local
Lie group of transformations G acting on an open subset M ⊂ X × U of the
space X × U of independent and dependent variables of the system with the
property that whenever u = f(x) is a solution of S, and whenever g · f is
defined for g ∈ G, then u = g · f(x) is also a solution of the system.

For example, in the case of the ODE uxx = 0, the rotation group SO(2)
is obviously a symmetry group, since the solutions are all linear functions
and SO(2) takes any linear function to another linear function. Another easy
example is given by the classical heat equation ut = uxx. Here the group of
translations

(x, t, u) �→ (x+ εa, t+ εb, u), ε ∈ R,

is a symmetry group since u = f(x − εa, t − εb) is a solution to the heat
equation whenever u = f(x, t) is.

Prolongations

Prolongations of Functions

Given a smooth real–valued function u = f(x) = f(x1, ..., xp) of p indepen-
dent variables, there is an induced function u(n) = pr(n)f(x), called the nth
prolongation of f [Olv86], which is defined by the equations

uJ = ∂Jf(x) =
∂kf(x)

∂xj1∂xj2...∂xjk
,

where the multi–index J = (j1, ..., jk) is an unordered k−tuple of integers,
with entries 1 ≤ jk ≤ p indicating which derivatives are being taken. More
generally, if f : X → U is a smooth function from X  Rp to U  Rq, so
u = f(x) = f(f1(x), ..., fq(x)), there are q · pk numbers

uαJ = ∂Jfα(x) =
∂kfα(x)

∂xj1∂xj2...∂xjk
,
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needed to represent all the different kth order derivatives of the components
of f at a point x. Thus pr(n)f : X → U (n) is a function from X to the space
U (n), and for each x ∈ X, pr(n)f(x) is a vector whose q ·p(n) entries represent
the values of f and al its derivatives up to order n at the point x.

For example, in the case p = 2, q = 1 we have X  R2 with coordinates
(x1, x2) = (x, y), and U  R with the single coordinate u = f(x, y). The
second prolongation u(2) = pr(2)f(x, y) is given by [Olv86]

(u;ux, uy;uxx, uxy, uyy) =
(
f ;
∂f

∂x
,
∂f

∂y
;
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)
, (1.37)

all evaluated at (x, y).
The nth prolongation pr(n)f(x) is also known as the n−jet of f . In other

words, the nth prolongation pr(n)f(x) represents the Taylor polynomial of
degree n for f at the point x, since the derivatives of order ≤ n determine the
Taylor polynomial and vice versa.

Prolongations of Differential Equations

A system S of nth order DEs in p independent and q dependent variables is
given as a system of equations [Olv86]

∆r(x, u(n)) = 0, (r = 1, ..., l), (1.38)

involving x = (x1, ..., xp), u = (u1, ..., uq) and the derivatives of u with respect
to x up to order n. The functions∆(x, u(n)) = (∆1(x, u(n)), ...,∆l(x, u(n))) are
assumed to be smooth in their arguments, so ∆ : X × U (n) → Rl represents
a smooth map from the jet space X × U (n) to some lD Euclidean space (see
section 1.4 below). The DEs themselves tell where the given map ∆ vanishes
on the jet space X × U (n), and thus determine a submanifold

S∆ =
{

(x, u(n)) : ∆(x, u(n)) = 0
}
⊂ X × U (n) (1.39)

of the total the jet space X × U (n).
We can identify the system of DEs (1.38) with its corresponding submani-

fold S∆ (1.39). From this point of view, a smooth solution of the given system
of DEs is a smooth function u = f(x) such that [Olv86]

∆r(x,pr(n)f(x)) = 0, (r = 1, ..., l),

whenever x lies in the domain of f . This is just a restatement of the fact that
the derivatives ∂Jfα(x) of f must satisfy the algebraic constraints imposed
by the system of DEs. This condition is equivalent to the statement that the
graph of the prolongation pr(n)f(x) must lie entirely within the submanifold
S∆ determined by the system:

Γ
(n)
f ≡

{
(x,pr(n)f(x))

}
⊂ S∆ =

{
∆(x, u(n)) = 0

}
.
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We can thus take an nth order system of DEs to be a submanifold S∆ in the
n−jet space X ×U (n) and a solution to be a function u = f(x) such that the
graph of the nth prolongation pr(n)f(x) is contained in the submanifold S∆.

For example, consider the case of Laplace equation in the plane

uxx + uyy = 0 (remember, ux ≡ ∂xu).

Here p = 2 since there are two independent variables x and y, and q = 1 since
there is one dependent variable u. Also n = 2 since the equation is second–
order, so S∆ ⊂ X × U (2) is given by (1.37). A solution u = f(x, y) must
satisfy

∂2f

∂x2
+
∂2f

∂y2
= 0

for all (x, y). This is the same as requiring that the graph of the second
prolongation pr(2)f lie in S∆.

Prolongations of Group Actions

Let G be a local group of transformations acting on an open subsetM ⊂ X×U
of the space of independent and dependent variables. There is an induced local
action of G on the n−jet space M (n), called the nth prolongation pr(n)G of
the action of G on M. This prolongation is defined so that it transforms the
derivatives of functions u = f(x) into the corresponding derivatives of the
transformed function ũ = f̃(x̃) [Olv86].

More precisely, suppose (x0, u
(n)
0 ) is a given point in M (n). Choose any

smooth function u = f(x) defined in a neighborhood of x0, whose graph Γf
lies in M , and has the given derivatives at x0 :

u
(n)
0 = pr(n)f(x0), i.e., uαJ0 = ∂Jfα(x0).

If g is an element of G sufficiently near the identity, the transformed function
g ·f as given by (1.36) is defined in a neighborhood of the corresponding point
(x̃0, ũ0) = g · (x0, u0), with u0 = f(x0) being the zeroth order components of
u

(n)
0 .We then determine the action of the prolonged group of transformations

pr(n)g on the point (x0, u
(n)
0 ) by evaluating the derivatives of the transformed

function g · f at x̃0; explicitly [Olv86]

pr(n)g · (x0, u
(n)
0 ) = (x̃0, ũ

(n)
0 ),

where
ũ

(n)
0 ≡ pr(n)(g · f)(x̃0).

For example, let p = q = 1, so X × U  R2, and consider the action
of the rotation group SO(2). To calculate its first prolongation pr(1)SO(2),
first note that X × U (1)  R3, with coordinates (x, u, ux). given a function
u = f(x), the first prolongation is [Olv86]
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pr(1)f(x) = (f(x), f ′(x)).

Now, given a point (x0, u0, u0
x) ∈ X × U (1), and a rotation in SO(2) charac-

terized by the angle θ as given above, the corresponding transformed point

pr(1)θ · (x0, u0, u0
x) = (x̃0, ũ0, ũ0

x)

(provided it exists). As for the first–order derivative, we find

ũ0
x =

sin θ + ux cos θ
cos θ − ux sin θ

.

Now, applying the group transformations given above, and dropping the
0−indices, we find that the prolonged action pr(1)SO(2) on X ×U (1) is given
by

pr(1)θ · (x, u, ux) =
(
x cos θ − u sin θ, x sin θ + u cos θ,

sin θ + ux cos θ
cos θ − ux sin θ

)
,

which is defined for |θ| < | arccotux|. Note that even though SO(2) is a linear,
globally defined group of transformations, its first prolongation pr(1)SO(2) is
both nonlinear and only locally defined. This fact demonstrates the complexity
of the operation of prolonging a group of transformations.

In general, for any Lie group G, the first prolongation pr(1)G acts on
the original variables (x, u) exactly the same way that G itself does; only the
action on the derivative ux gives an new information. Therefore, pr(0)G agrees
with G itself, acting on M (0) =M.

Prolongations of Vector Fields

Prolongation of the infinitesimal generators of the group action turn out to be
the infinitesimal generators of the prolonged group action [Olv86]. Let M ⊂
X×U be open and suppose v is a vector–field onM , with corresponding local
one–parameter group exp(εv). The nth prolongation of v, denoted pr(n)v, will
be a vector–field on the n−jet spaceM (n), and is defined to be the infinitesimal
generator of the corresponding prolonged on–parameter group pr(n)[exp(εv)].
In other words,

pr(n)v|(x,u(n)) =
d

dε

∣∣∣∣
ε=0

pr(n)[exp(εv)](x, u(n)) (1.40)

for any (x, u(n)) ∈M (n).
For a vector–field v on M, given by

v = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q),

the nth prolongation pr(n)v is given by [Olv86]
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pr(n)v = ξi(x, u)
∂

∂xi
+ φαJ (x, u(n))

∂

∂uαJ
,

with φα0 = φα, and J a multiindex defined above.
For example, in the case of SO(2) group, the corresponding infinitesimal

generator is

v = −u ∂
∂x

+ x
∂

∂u
,

with
exp(εv)(x, u) = (x cos ε− u sin ε, x sin ε+ u cos ε) ,

being the rotation through angle ε. The first prolongation takes the form

pr(1)[exp(εv)](x, u, ux) =
(
x cos ε− u sin ε, x sin ε+ u cos ε,

sin ε+ ux cos ε
cos ε− ux sin ε

)
.

According to (1.40), the first prolongation of v is get by differentiating these
expressions with respect to ε and setting ε = 0, which gives

pr(1)v = −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
.

General Prolongation Formula

Let

v = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q), (1.41)

be a vector–field defined on an open subsetM ⊂ X×U. The nth prolongation
of v is the vector–field [Olv86]

pr(n)v = v + φαJ (x, u
(n))

∂

∂uαJ
, (1.42)

defined on the corresponding jet space M (n) ⊂ X × U (n). The coefficient
functions φαJ are given by the following formula:

φαJ = DJ
(
φα − ξiuαi

)
+ ξiuαJ,i , (1.43)

where uαi = ∂uα/∂xi, and uαJ,i = ∂uαJ/∂x
i. DJ is the total derivative with

respect to the multiindex J, i.e.,

DJ = Dj1Dj2 ...Djk ,

while the total derivative with respect to the ordinary index, Di, is defined as
follows. Let P (x, u(n)) be a smooth function of x, u and derivatives of u up to
order n, defined on an open subset M (n) ⊂ X × U (n). the total derivative of
P with respect to xi is the unique smooth function DiP (x, u(n)) defined on
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M (n+1) and depending on derivatives of u up to order n+1, with the recursive
property that if u = f(x) is any smooth function then

DiP (x,pr(n+1)f(x)) = ∂xi{P (x,pr(n)f(x))}.

For example, in the case of SO(2) group, with the infinitesimal generator

v = −u ∂
∂x

+ x
∂

∂u
,

the first prolongation is (as calculated above)

pr(1)v = −u ∂
∂x

+ x
∂

∂u
+ φx

∂

∂ux
,

where
φx = Dx(φ− ξux) + ξuxx = 1 + u2

x.

Also,
φxx = Dxφx − uxxDxξ = 3uxuxx,

thus the infinitesimal generator of the second prolongation pr(2)SO(2) acting
on X × U (2) is

pr(2)v = −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
.

Let v and w be two smooth vector–fields on M ⊂ X × U. Then their nth
prolongations, pr(n)v and pr(n)w respectively, have the linearity property

pr(n)(c1v + c2w) = c1pr(n)v + c2pr(n)w, (c1, c2 − constant),

and the Lie bracket property

pr(n)[v, w] = [pr(n)v,pr(n)w].

Generalized Lie Symmetries

Consider a vector–field (1.41) defined on an open subsetM ⊂ X×U. Provided
the coefficient functions ξi and φα depend only on x and u, v will generate a
(local) one–parameter group of transformations exp(εv) acting pointwise on
the underlying space M . A significant generalization of the notion of sym-
metry group is get by relaxing this geometrical assumption, and allowing the
coefficient functions ξi and φα to also depend on derivatives of u [Olv86].

A generalized vector–field is a (formal) expression

v = ξi[u]
∂

∂xi
+ φα[u]

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q), (1.44)

in which ξi and φα are smooth functions. For example,
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v = xux
∂

∂x
+ uxx

∂

∂u

is a generalized vector in the case p = q = 1.
According to the general prolongation formula (1.42), we can define the

prolonged generalized vector–field

pr(n)v = v + φαJ [u]
∂

∂uαJ
,

whose coefficients are as before determined by the formula (1.43). Thus, in
our previous example [Olv86],

pr(n)v = xux
∂

∂x
+ uxx

∂

∂u
+ [uxxx − (xuxx + ux)ux]

∂

∂ux
.

Given a generalized vector–field v, its infinite prolongation (including all
the derivatives) is the formal expression

pr v = ξi
∂

∂xi
+ φαJ

∂

∂uαJ
.

Now, a generalized vector–field v is a generalized infinitesimal symmetry of a
system S of differential equations

∆r[u] = ∆r(x, u(n)) = 0, (r = 1, ..., l),

iff
pr v[∆r] = 0

for every smooth solution m u = f(x) [Olv86].
For example, consider the heat equation

∆[u] = ut − uxx = 0.

The generalized vector–field v = ux ∂∂u has prolongation

pr v = ux
∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ uxxx

∂

∂uxx
+ ...

Thus
pr v(∆) = uxt − uxxx = Dx(ut − uxx) = Dx∆,

and hence v is a generalized symmetry of the heat equation.

Noether Symmetries

Here we present some results about Noether symmetries, in particular for
the first–order Lagrangians L(q, q̇) (see [BGG89, PSS96]). We start with a
Noether–Lagrangian symmetry ,
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δL = Ḟ ,

and we will investigate the conversion of this symmetry to the Hamiltonian
formalism. Defining

G = (∂L/∂q̇i) δqi − F,
we can write

δiLδq
i + Ġ = 0, (1.45)

where δiL is the Euler–Lagrangian functional derivative of L,

δiL = αi −Wik q̈k,

where

Wik ≡
∂2L

∂q̇i∂q̇k
and αi ≡ −

∂2L

∂q̇i∂qk
q̇k +

∂L

∂qi
.

We consider the general case where the mass matrix, or Hessian (Wij),
may be a singular matrix. In this case there exists a kernel for the pull–back
FL∗ of the Legendre map, i.e., fibre–derivative FL, from the velocity phase–
space manifold TM (tangent bundle of the biomechanical manifoldM) to the
momentum phase–space manifold T ∗M (cotangent bundle of M). This kernel
is spanned by the vector–fields

Γµ = γiµ
∂

∂q̇i
,

where γiµ are a basis for the null vectors of Wij . The Lagrangian time–
evolution differential operator can therefore be expressed as:

X = ∂t + q̇k
∂

∂qk
+ ak(q, q̇)

∂

∂q̇k
+ λµΓµ ≡ Xo + λµΓµ,

where ak are functions which are determined by the formalism, and λµ are
arbitrary functions. It is not necessary to use the Hamiltonian technique to
find the Γµ, but it does facilitate the calculation:

γiµ = FL∗
(
∂φµ
∂pi

)
, (1.46)

where the φµ are the Hamiltonian primary first class constraints.
Notice that the highest derivative in (1.45), q̈i, appears linearly. Because

δL is a symmetry, (1.45) is identically satisfied, and therefore the coefficient
of q̈i vanishes:

Wikδq
k − ∂G

∂q̇i
= 0. (1.47)

We contract with a null vector γiµ to find that

ΓµG = 0.
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It follows that G is projectable to a function GH in T ∗Q; that is, it is the
pull–back of a function (not necessarily unique) in T ∗Q:

G = FL∗(GH).

This important property is valid for any conserved quantity associated
with a Noether symmetry. Observe that GH is determined up to the addition
of linear combinations of the primary constraints. Substitution of this result
in (1.47) gives

Wik

[
δqk − FL∗

(
∂GH

∂pk

)]
= 0,

and so the brackets enclose a null vector of Wik:

δqi − FL∗
(
∂GH

∂pi

)
= rµγiµ, (1.48)

for some rµ(t, q, q̇).
We shall investigate the projectability of variations generated by diffeomor-

phisms in the following section. Assume that an infinitesimal transformation
δqi is projectable:

Γµδq
i = 0.

If δqi is projectable, so must be rµ, so that rµ = FL∗(rµH). Then, using (1.46)
and (1.48), we see that

δqi = FL∗
(
∂(GH + rµHφµ)

∂pi

)
.

We now redefine GH to absorb the piece rµHφµ, and from now on we will have

δqi = FL∗
(
∂GH

∂pi

)
.

Define
p̂i =

∂L

∂q̇i
;

after eliminating (1.47) times q̈i from (1.45), we get(
∂L

∂qi
− q̇k ∂p̂i

∂qk

)
FL∗(

∂GH

∂pi
) + q̇i

∂

∂qi
FL∗(GH) + FL∗∂tGH = 0,

which simplifies to

∂L

∂qi
FL∗(

∂GH

∂pi
) + q̇iFL∗(

∂GH

∂qi
) + FL∗∂tGH = 0. (1.49)

Now let us invoke two identities [BGG89] that are at the core of the connection
between the Lagrangian and the Hamiltonian equations of motion. They are
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q̇i = FL∗(
∂H

∂pi
) + vµ(q, q̇)FL∗(

∂φµ
∂pi

),

and
∂L

∂qi
= −FL∗(

∂H

∂qi
)− vµ(q, q̇)FL∗(

∂φµ
∂qi

);

whereH is any canonical Hamiltonian, so that FL∗(H) = q̇i(∂L/∂q̇i)−L = Ê,
the Lagrangian energy, and the functions vµ are determined so as to render
the first relation an identity. Notice the important relation

Γµv
ν = δνµ,

which stems from applying Γµ to the first identity and taking into account
that

Γµ ◦ FL∗ = 0.

Substitution of these two identities into (1.49) induces (where { , } denotes
the Poisson bracket)

FL∗{GH, H}+ vµFL∗{GH, φµ}+ FL∗∂tGH = 0.

This result can be split through the action of Γµ into

FL∗{GH, H}+ FL∗∂tGH = 0,

and
FL∗{GH, φµ} = 0;

or equivalently,
{GH, H}+ ∂tGH = pc,

and
{GH, φµ} = pc,

where pc stands for any linear combination of primary constraints. In this
way, we have arrived at a neat characterization for a generator GH of Noether
transformations in the canonical formalism.

Lie Symmetries in Biophysics

In this subsection we consider two most important equations for biophysics:

1. The heat equation, which has been analyzed in muscular mechanics since
the early works of A.V. Hill ([Hil38]); and

2. The Korteveg–de Vries equation, the basic equation for solitary models of
muscular excitation–contraction dynamics (see subsection (2.4.2) below).
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Suppose
S : ∆r(x, u(n)) = 0, (r = 1, ..., l),

is a system of DEs of maximal rank defined over M ⊂ X × U. If G is a local
group of transformations acting on M , and

pr(n)v[∆r(x, u(n))] = 0, whenever ∆(x, u(n)) = 0, (1.50)

(with r = 1, ..., l) for every infinitesimal generator v ofG, thenG is a symmetry
group of the system S [Olv86].

The Heat Equation

Recall that the (1+1)D heat equation (with the thermal diffusivity normalized
to unity)

ut = uxx (1.51)

has two independent variables x and t, and one dependent variable u, so p = 2
and q = 1. Equation (1.51) has the second–order, n = 2, and can be identified
with the linear submanifold M (2) ⊂ X ×U (2) determined by the vanishing of
∆(x, t, u(2)) = ut − uxx.

Let
v = ξ(x, t, u)

∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u

be a vector–field on X × U . According to (1.50) we need to now the second
prolongation

pr(2)v = v + φx
∂

∂ux
+ φt

∂

∂ut
+ φxx

∂

∂uxx
+ φxt

∂

∂uxt
+ φtt

∂

∂utt

of v. Applying pr(2)v to (1.51) we find the infinitesimal criterion (1.50) to be

φt = φxx,

which must be satisfied whenever ut = uxx.

The Korteveg–De Vries Equation

Recall that the Korteveg–de Vries equation

ut + uxxx + uux = 0 (1.52)

arises in physical systems in which both nonlinear and dispersive effects are
relevant. A vector–field

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u

generates a one–parameter symmetry group iff

φt + φxxx + uφx + uxφ = 0,

whenever u satisfies (1.52), etc.
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Lie–Invariant Geometric Objects

Robot Kinematics

It is well known (see [BL92, Pry96]), that motion planning, numerically con-
trolled machining and robotics are just a few of many areas of manufacturing
automation in which the analysis and representation of swept volumes plays
a crucial role. The swept volume modelling is also an important part of task-
oriented robot motion planning. A typical motion planning problem consists
in a collection of objects moving around obstacles from an initial to a final
configuration. This may include in particular, solving the collision detection
problem.

When a solid object undergoes a rigid motion, the totality of points
through which it passed constitutes a region in space called the swept vol-
ume. To describe the geometrical structure of the swept volume we pose this
problem as one of geometric study of some manifold swept by surface points
using powerful tools from both modern differential geometry and nonlinear dy-
namical systems theory [Ric93, LP94, Pry96, GJ94] on manifolds. For some
special cases of the Euclidean motion in the space R3 one can construct a
very rich hydrodynamic system [BL92] modelling a sweep flow, which appears
to be a completely integrable Hamiltonian system having a special Lax type
representation. To describe in detail these and other properties of swept vol-
ume dynamical systems, we develop Cartan’s theory of Lie–invariant geomet-
ric objects generated by closed ideals in the Grassmann’s algebra, following
[BPS98].

Let a Lie group G act on an analytical manifold Y in the transitive way,
that is the action G× Y ρ→ Y generates some nonlinear exact representation
of the Lie group G on the manifold Y . In the frame of the Cartan’s theory,
the representation G × Y ρ→ Y can be described by means of a system of
differential 1–forms (see section 1.4.7 below)

β̄
j = dyj + ξji ω̄

i(a, da) (1.53)

in the Grassmann algebra Λ(Y ×G) on the product Y ×G, where ω̄i(a, da) ∈
T ∗
a (G), i = 1, ..., r = dimG is a basis of left invariant Cartan’s forms of the

Lie group G at a point a ∈ G, y = {yj : j = 1, ..., n = dimY } ∈ Y and
ξji : Y ×G→ R are some smooth real valued functions.

The following Cartan theorem (see [BPS98]) is basic in describing a ge-
ometric object invariant with respect to the mentioned above group action
G× Y ρ→ Y : The system of differential forms (1.53) is a system of an invari-
ant geometric object iff the following conditions are fulfilled:

1. The coefficients ξji ∈ Ck(Y ;R) for all i = 1, ..., r, j = 1, ..., n, are some
analytical functions on Y ; and

2. The differential system (1.53) is completely integrable within the Frobenius–
Cartan criterion.



74 1 Modern Geometrical Machinery

The Cartan’s theorem actually says that the differential system (1.53) can
be written down as

β̄
j = dyj + ξji (y)ω̄

i(a, da), (1.54)

where 1–forms {ω̄i(a, da) : i = 1, ..., r} satisfy the standard Maurer–Cartan
equations

Ω̄j = dω̄j +
1
2
cjikω̄

i ∧ ω̄k = 0 (1.55)

for all j = 1, ..., r on G, coefficients cjik ∈ R, i, j, k = 1, ..., r, being the corre-
sponding structure constants of the Lie algebra G of the Lie group G.

Maurer–Cartan 1–Forms

Let be given a Lie group G with the Lie algebra G  Te(G), whose basis
is a set {Ai ∈ G : i = 1, ..., r}, where r = dim G ≡ dim G. Let also a set
U0 ⊂ {ai ∈ R : i = 1, ..., r} be some open neighborhood of the zero point in
Rr. The exponential mapping exp : U0 → G0, where by definition [BPS98]

Rr ⊃ U0 � (a1, . . . , ar) :
exp� exp

(
aiAi

)
= a ∈ G0 ⊂ G, (1.56)

is an analytical mapping of the whole U0 on some open neighborhoodG0 of the
unity element e ∈ G. From (1.56) it is easy to find that Te(G) = Te(G0)  G,
where e = exp(0) ∈ G. Define now the following left invariant G−valued
differential 1–form on G0 ⊂ G:

ω̄(a, da) = a−1da = ω̄j(a, da)Aj , (1.57)

where Aj ∈ G, ω̄j(a, da) ∈ T ∗
a (G), a ∈ G0, j = 1, ..., r. To build effectively

the unknown forms {ω̄j(a, da) : j = 1, ..., r}, let us consider the follow-
ing analytical one–parameter 1–form ω̄t(a, da) = ω̄(at; dat) on G0, where
at = exp

(
taiAi

)
, t ∈ [0, 1], and differentiate this form with respect to the

parameter t ∈ [0, 1]. We will get [BPS98]

dω̄t/dt = −ajAja−1
t dat + a−1

t atda
jAj + a−1

t data
jAj = −aj [Aj , ω̄t] +Ajdaj .

(1.58)
Having used the Lie identity [Aj , Ak] = cijkAi, j, k = 1, ..., r, and the right
hand side of (1.57) in form

ω̄j(a, da) = ω̄jk(a)da
k, (1.59)

we ultimately obtain that

d

dt
(tω̄ji (ta)) = Ajktω̄ki (ta) + δji , (1.60)

where the matrix Aki , i, k = 1, ..., r, is defined as follows:

Aki = ckija
j . (1.61)
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Thus, the matrix W j
i (t) = tω̄ji (ta), i, j = 1, ..., r, satisfies the following from

(1.60) differential equation [Che55]

dW/dt = AW + E, W |t=0 = 0, (1.62)

where E = ‖δji‖ is the unity matrix. The solution of (1.62) is representable as

W (t) =
∞∑
n=1

tn

n!
An−1 (1.63)

for all t ∈ [0, 1]. Whence, recalling the above definition of the matrix W (t),
we obtain easily that

ω̄jk(a) =W j
k (t)

∣∣∣
t=1

=
∞∑
n=1

(n!)−1An−1. (1.64)

Therefore, the following theorem solves the problem of finding in an effec-
tive algebraic way corresponding to a Lie algebra G the left invariant 1–form
ω̄(a, da) ∈ T ∗

a (G)⊗ G at any a ∈ G : Let’s be given a Lie algebra G with the
structure constants ckij ∈ R, i, j, k = 1, ..., r = dim G, related to some basis
{Aj ∈ G : j = 1, ..., r}. Then the adjoint to G left–invariant Maurer–Cartan
1–form ω̄(a, da) is built as follows [BPS98]:

ω̄(a, da) = Ajω̄
j
k(a)da

k, (1.65)

where the matrix W = ‖w̄jk(a)‖, j, k = 1, ..., r, is given exactly as

W =
∞∑
n=1

(n!)−1An−1, Ajk = cjkia
i. (1.66)

Below we shall try to use the experience gained above in solving an anal-
ogous problem of the theory of connections over a principal fibre bundle
P (M ;G) as well as over associated with it a fibre bundle P (M ;Y,G).

General Structure of Integrable One–Forms

Given 2−forms generating a closed ideal I(α) in the Grassmann algebra Λ(M),
we will denote as above by I(α, β) an augmented ideal in Λ(M ;Y ), where the
manifold Y will be called in further the representation space of some adjoint
Lie group G action: G × Y ρ→ Y . We can find, therefore, the determining
relationships for the set of 1–forms {β} and 2–forms {α}

{α} = {αj ∈ Λ2(M) : j = 1, ...,mα},

{β} = {βj ∈ Λ1(M × Y ) : j = 1, ..., n = dimY },
(1.67)

satisfying such equations [BPS98]:
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dαi = aik(α) ∧ αk,

dβj = f jkα
k + ωjs ∧ βs,

(1.68)

where aik(α) ∈ Λ1(M), f jk ∈ Λ0(M × Y ) and ωjs ∈ Λ1(M × Y ) for all i, k =
1, ...,mα, j, s = 1, ..., n. Since the identity d2βj ≡ 0 takes place for all j =
1, ..., n, from (1.68) we deduce the following relationship:(

dωjk + ωjs ∧ ωsk
)
∧ βk +

(
df js + ωjkf

k
s + f jl a

l
s(α)

)
∧ αs ≡ 0. (1.69)

As a result of (1.69) we obtain [BPS98]

dωjk + ωjs ∧ ωsk ∈ I(α, β),

df js + ωjkf
k
s + f jl a

l
s(α) ∈ I(α, β)

(1.70)

for all j, k = 1, ..., n, s = 1, ...,mα. The second inclusion in (1.70) gives a
possibility to define the 1–forms θjs = f jl a

l
s(α) satisfying the inclusion

dθjs + ωjk ∧ θ
k
s ∈ I(α, β)⊕ f jl cls(α), (1.71)

which we obtained having used the identities d2αj ≡ 0, j = 1, ...,mα, in the
form cjs(α) ∧ αs ≡ 0,

cjs(α) = dajs(α) + ajl (α) ∧ als(α), (1.72)

following from (1.68). Let us suppose further that as s = s0 the 2–forms
cjs0(α) ≡ 0 for all j = 1, ...,mα. Then as s = s0, we can define a set of 1–forms
θj = θjs0 ∈ Λ1(M × Y ), j = 1, ..., n, satisfying the exact inclusions:

dθj + ωjk ∧ θ
k = Θj ∈ I(α, β) (1.73)

together with a set of inclusions for 1–forms ωjk ∈ Λ1(M × Y )

dωjk + ωjs ∧ ωsk = Ωjk ∈ I(α, β) (1.74)

As it follows from the general theory [SW72] of connections on the fibred frame
space P (M ;GL(n)) over a base manifold M , we can interpret the equations
(1.74) as the equations defining the curvature 2–forms Ωjk ∈ Λ2(P ), as well
as interpret the equations (1.73) as those, defining the torsion 2–forms Θj ∈
Λ2(P ). Since I(α) = 0 = I(α, β) upon the integral submanifold M̄ ⊂M , the
reduced fibred frame space P (M̄ ;GL(n)) will have the flat curvature and be
torsion free, being as a result, completely trivialized on M̄ ⊂M . Consequently,
we can formulate the following theorem.

Let the condition above on the ideals I(α) and I(α, β) be fulfilled. Then
the set of 1–forms {β} generates the integrable augmented ideal I(α, β) ⊂
Λ(M × Y ) iff there exists some curvature 1–form ω ∈ Λ1(P ) ⊗ Gl(n) and
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torsion 1–form θ ∈ Λ1(P )⊗Rn on the adjoint fibred frame space P (M ;GL(n)),
satisfying the inclusions [BPS98]

dω + ω ∧ ω ∈ I(α, β)⊗ Gl(n),
dθ + ω ∧ θ ∈ I(α, β)⊗ Rn.

(1.75)

Upon the reduced fibred frame space P (M̄ ;GL(n)) the corresponding curva-
ture and torsion are vanishing, where M̄ ⊂ M is the integral submanifold of
the ideal I(α) ⊂ Λ(M).

Lax Integrable Dynamical Systems

Consider some set {β} defining a Cartan’s Lie group G invariant object on a
manifold M × Y :

βj = dyj + ξjk(y)b
k(z), (1.76)

where i = 1, ..., n = dimY, r = dim G. The set (1.76) defines on the manifold
Y a set {ξ} of vector–fields, compiling a representation ρ : G → {ξ} of a given
Lie algebra G, that is vector–fields ξs = ξjs(y)

∂
∂yj ∈ {ξ}, s = 1, ..., r, enjoy the

following Lie algebra G relationships

[ξs, ξl] = ckslξk (1.77)

for all s, l, k = 1, ..., r. We can now compute the differentials dβj ∈ Λ2(M ×
Y ), j = 1, ..., n, using (1.76) and (1.77) as follows [BPS98]:

dβj = ∂ξj
k(y)

∂yl

(
βl − ξls(y)bs(z)

)
∧ bk(z) + ξjk(y)db

k(z) (1.78)

which is equal to

∂ξjk(y)
∂yl

βl ∧ bk(z) + ξjl

(
dbl(z) +

1
2
clksdb

k(z) ∧ dbs(z)
)
,

where {α} ⊂ Λ2(M) is some a priori given integrable system of 2–forms onM ,
vanishing upon the integral submanifold M̄ ⊂M . It is obvious that inclusions
(1.78) take place iff the following conditions are fulfilled: for all j = 1, ..., r

dbj(z) +
1
2
cjksdb

k(z) ∧ dbs(z) ∈ I(α). (1.79)

The inclusions (1.79) mean in particular, that upon the integral submanifold
M̄ ⊂M of the ideal I(α) ⊂ Λ(M) the equalities

µ∗ω̄j ≡ s∗bj (1.80)

are true, where ω̄j ∈ T ∗
e (G), j = 1, ..., r, are the left invariant Maurer–Cartan

forms on the invariance Lie group G. Thus, due to inclusions (1.79) all con-
ditions of Cartan’s theorem are enjoyed, giving rise to a possibility to obtain
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the set of forms bj(z) ∈ Λ1(M) in an explicit form. To do this, let us define a
G−valued curvature 1–form ω ∈ Λ1(P (M ;G))⊗ G as follows [BPS98]

ω = Ada−1

(
Ajb

j
)

+ ω̄ (1.81)

where ω̄ ∈ G is the standard Maurer–Cartan 1–form on G. This 1–form sat-
isfies followed by (1.79) the canonical structure inclusion for Γ = Ajb

j ∈
Λ1(M)⊗ G:

dΓ + Γ ∧ Γ ∈ I(α)⊗ G, (1.82)

serving as a main relationships determining the form (1.81). To proceed fur-
ther we need to give the set of 2–forms {α} ⊂ Λ2(M) in explicit form. A
standard example is the Burgers dynamical system (see equation (2.565) be-
low).

1.2.9 Riemannian Manifolds

Local Riemannian Geometry

An important class of problems in Riemannian geometry is to understand the
interaction between the curvature and topology on a smooth manifold (see
[CC99]). A prime example of this interaction is the Gauss–Bonnet formula on
a closed surface M2, which says∫

M

K dA = 2π χ(M), (1.83)

where dA is the area element of a metric g onM , K is the Gaussian curvature
of g, and χ(M) is the Euler characteristic of M.

To study the geometry of a smooth manifold we need an additional struc-
ture: the Riemannian metric tensor . The metric is an inner product on each
of the tangent spaces and tells us how to measure angles and distances in-
finitesimally. In local coordinates (x1, x2, · · · , xn), the metric g is given by
gij(x) dxi⊗dxj , where (gij(x)) is a positive definite symmetric matrix at each
point x. For a smooth manifold one can differentiate functions. A Riemannian
metric defines a natural way of differentiating vector–fields: covariant differ-
entiation. In Euclidean space, one can change the order of differentiation.
On a Riemannian manifold the commutator of twice covariant differentiating
vector–fields is in general nonzero and is called the Riemann curvature tensor ,
which is a 4−tensor–field on the manifold.

For surfaces, the Riemann curvature tensor is equivalent to the Gaussian
curvature K, a scalar function. In dimensions 3 or more, the Riemann cur-
vature tensor is inherently a tensor–field. In local coordinates, it is denoted
by Rijkl, which is anti-symmetric in i and k and in j and l, and symmetric
in the pairs {ij} and {kl}. Thus, it can be considered as a bilinear form on
2−forms which is called the curvature operator. We now describe heuristically
the various curvatures associated to the Riemann curvature tensor. Given a
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point x ∈Mn and 2-plane Π in the tangent space of M at x, we can define a
surface S inM to be the union of all geodesics passing through x and tangent
to Π. In a neighborhood of x, S is a smooth 2D submanifold of M. We define
the sectional curvature K(Π) of the 2−plane to be the Gauss curvature of S
at x:

K(Π) = KS(x).

Thus the sectional curvature K of a Riemannian manifold associates to each
2-plane in a tangent space a real number. Given a line L in a tangent space,
we can average the sectional curvatures of all planes through L to get the
Ricci tensor Rc(L). Likewise, given a point x ∈M, we can average the Ricci
curvatures of all lines in the tangent space of x to get the scalar curvature
R(x). In local coordinates, the Ricci tensor is given by Rik = gjlRijkl and the
scalar curvature is given by R = gikRik, where (gij) = (gij)−1 is the inverse
of the metric tensor (gij).

Riemannian Metric on M

In this subsection we mainly follow [Pet99, Pet98].
Riemann in 1854 observed that around each point m ∈ M one can

pick a special coordinate system (x1, . . . , xn) such that there is a symmet-
ric (0, 2)−tensor–field gij(m) called the metric tensor defined as

gij(m) = g(∂xi , ∂xj ) = δij , ∂xkgij(m) = 0.

Thus the metric, at the specified point m ∈ M , in the coordinates
(x1, . . . , xn) looks like the Euclidean metric on Rn. We emphasize that these
conditions only hold at the specified point m ∈M. When passing to different
points it is necessary to pick different coordinates. If a curve γ passes through
m, say, γ(0) = m, then the acceleration at 0 is defined by firstly, writing the
curve out in our special coordinates

γ(t) = (γ1(t), . . . , γn(t)),

secondly, defining the tangent, velocity vector–field, as

γ̇ = γ̇i(t) · ∂xi ,

and finally, the acceleration vector–field as

γ̈(0) = γ̈i(0) · ∂xi .

Here, the background idea is that we have a connection.
Recall that a connection on a smooth manifold M tells us how to parallel

transport a vector at a point x ∈ M to a vector at a point x′ ∈ M along a
curve γ ∈M . Roughly, to parallel transport vectors along curves, it is enough
if we can define parallel transport under an infinitesimal displacement: given
a vector X at x, we would like to define its parallel transported version X̃
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after an infinitesimal displacement by εv, where v is a tangent vector to M at
x.

More precisely, a vector–field X along a parameterized curve α : I →
M in M is tangent to M along α if X(t) ∈ Mα(t) for all for t ∈ I ⊂ R.
However, the derivative Ẋ of such a vector–field is, in general, not tangent to
M . We can, nevertheless, get a vector–field tangent to M by projecting Ẋ(t)
orthogonally ontoMα(t) for each t ∈ I. This process of differentiating and then
projecting onto the tangent space to M defines an operation with the same
properties as differentiation, except that now differentiation of vector–fields
tangent to M induces vector–fields tangent to M . This operation is called
covariant differentiation.

Let γ : I → M be a parameterized curve in M , and let X be a smooth
vector–field tangent to M along α. The absolute covariant derivative of X is
the vector–field ˙̄X tangent to M along α, defined by ˙̄X = Ẋ(t) − [Ẋ(t) ·
N(α(t))]N(α(t)), whereN is an orientation onM . Note that ˙̄X is independent
of the choice of N since replacing N by −N has no effect on the above formula.

Lie bracket (1.2.6) defines a symmetric affine connection ∇ on any mani-
fold M :

[X,Y ] = ∇XY −∇YX.
In case of a Riemannian manifold M , the connection ∇ is also compatible
with the Riemannian metrics g onM and is called the Levi–Civita connection
on TM .

For a function f ∈ C∞(M,R) and a vector a vector–field X ∈ X k(M) we
always have the Lie derivative (1.2.6)

LXf = ∇Xf = df(X).

But there is no natural definition for ∇XY, where Y ∈ X k(M), unless
one also has a Riemannian metric. Given the tangent field γ̇, the acceleration
can then be computed by using a Leibniz rule on the r.h.s, if we can make
sense of the derivative of ∂xi in the direction of γ̇. This is exactly what the
covariant derivative ∇XY does. If Y ∈ TmM then we can write Y = ai∂xi ,
and therefore

∇XY = LXai∂xi . (1.84)

Since there are several ways of choosing these coordinates, one must check that
the definition does not depend on the choice. Note that for two vector–fields
we define (∇YX)(m) = ∇Y (m)X. In the end we get a connection

∇ : X k(M)×X k(M) → X k(M),

which satisfies (for all f ∈ C∞(M,R) and X,Y, Z ∈ X k(M)):

1. Y → ∇YX is tensorial, i.e., linear and ∇fYX = f∇YX.
2. X → ∇YX is linear.
3. ∇X(fY ) = (∇Xf)Y (m) + f(m)∇XY .
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4. ∇XY −∇YX = [X,Y ].
5. LXg(Z, Y ) = g(∇XZ, Y ) + g(Z,∇XY ).

A semicolon is commonly used to denote covariant differentiation with
respect to a natural basis vector. If X = ∂xi , then the components of ∇XY
in (1.84) are denoted

Y k; i = ∂xiY k + Γ kij Y
j , (1.85)

where Γ kij are Christoffel symbols defined in (1.86) below. Similar relations
hold for higher–order tensor–fields (with as many terms with Christoffel sym-
bols as is the tensor valence).

Therefore, no matter which coordinates we use, we can now define the
acceleration of a curve in the following way:

γ(t) = (γ1(t), . . . , γn(t)),
γ̇(t) = γ̇i(t)∂xi ,

γ̈(t) = γ̈i(t)∂xi + γ̇i(t)∇γ̇(t)∂xi .

We call γ a geodesic if γ(t) = 0. This is a second–order nonlinear ODE in a
fixed coordinate system (x1, . . . , xn) at the specified point m ∈ M . Thus we
see that given any tangent vector X ∈ TmM, there is a unique geodesic γX(t)
with γ̇X(0) = X. If the manifold M is closed, the geodesic must exist for all
time, but in case the manifold M is open this might not be so. To see this,
take as M any open subset of Euclidean space with the induced metric.

Given an arbitrary vector–field Y (t) along γ, i.e., Y (t) ∈ Tγ(t)M for all t,
we can also define the derivative Ẏ ≡ dY

dt in the direction of γ̇ by writing

Y (t) = ai(t)∂xi ,

Ẏ (t) = ȧi(t)∂xi + ai(t)∇γ̇(t)∂xi .

Here the derivative of the tangent field γ̇ is the acceleration γ. The field Y
is said to be parallel iff Ẏ = 0. The equation for a field to be parallel is a
first–order linear ODE, so we see that for any X ∈ Tγ(t0)M there is a unique
parallel field Y (t) defined on the entire domain of γ with the property that
Y (t0) = X. Given two such parallel fields Y, Z ∈ X k(M), we have that

ġ(Y, Z) = Dγ̇g(Y, Z) = g(Ẏ , Z) + g(Y, Ż) = 0.

Thus X and Y are both of constant length and form constant angles along γ.
Hence, ‘parallel translation’ along a curve defines an orthogonal transforma-
tion between the tangent spaces to the manifold along the curve. However, in
contrast to Euclidean space, this parallel translation will depend on the choice
of curve.

An infinitesimal distance between the two nearby local points m and n on
M is defined by an arc–element

ds2 = gij dxidxj ,



82 1 Modern Geometrical Machinery

and realized by the curves xi(s) of shortest distance, called geodesics, ad-
dressed by the Hilbert 4th problem. In local coordinates (x1(s), ..., xn(s)) at a
point m ∈M , the geodesic defining equation is a second–order ODE,

ẍi + Γ ijk ẋ
j ẋk = 0,

where the overdot denotes the derivative with respect to the affine parame-
ter s, ẋi(s) = d

dsx
i(s) is the tangent vector to the base geodesic, while the

Christoffel symbols Γ ijk = Γ ijk(m) of the affine Levi–Civita connection ∇ at
the point m ∈M are defined, in a holonomic coordinate basis ei as

Γ kij = gklΓijl, with gij = (gij)−1 and (1.86)

Γijk =
1
2
(∂xkgij + ∂xjgki − ∂xigjk).

Note that the Christoffel symbols (1.86) do not transform as tensors on the
tangent bundle. They are the components of an object on the second tangent
bundle, a spray. However, they do transform as tensors on the jet space (see
subsection 1.4.3 below).

In nonholonomic coordinates, (1.86) takes the extended form

Γ ikl =
1
2
gim (∂xlgmk + ∂xk∂gml − ∂xm∂gkl + cmkl + cmlk − cklm) ,

where cklm = gmpc
p
kl are the commutation coefficients of the basis, i.e.,

[ek, el] = cmklem.
The torsion tensor–field T of the connection∇ is the function T : X k(M)×

X k(M) → X k(M) given by

T (X,Y ) = ∇XY −∇YX − [X,Y ].

From the skew symmetry ([X,Y ] = −[Y,X]) of the Lie bracket, follows the
skew symmetry (T (X,Y ) = −T (Y,X)) of the torsion tensor. The mapping T
is said to be f−bilinear since it is linear in both arguments and also satisfies
T (fX, Y ) = fT (X,Y ) for smooth functions f . Since [∂xi , ∂xj ] = 0 for all
1 ≤ i, j ≤ n, it follows that

T (∂xi , ∂xj ) = (Γ kij − Γ kji)∂xk .

Consequently, torsion T is a (1, 2) tensor–field, locally given by

T = T ki j dx
i ⊗ ∂xk ⊗ dxj ,

where the torsion components T ki j are given by

T ki j = Γ kij − Γ kji.

Therefore, the torsion tensor gives a measure of the nonsymmetry of the con-
nection coefficients. Hence, T = 0 if and only if these coefficients are symmetric
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in their subscripts. A connection ∇ with T = 0 is said to be torsion free or
symmetric.

The connection also enables us to define many other classical concepts
from calculus in the setting of Riemannian manifolds. Suppose we have a
function f ∈ C∞(M,R). If the manifold is not equipped with a Riemannian
metric, then we have the differential of f defined by df(X) = LXf, which is a
1−form. The dual concept, the gradient of f, is supposed to be a vector–field.
But we need a metric g to define it. Namely, ∇f is defined by the relationship

g(∇f,X) = df(X).

Having defined the gradient of a function on a Riemannian manifold, we can
then use the connection to define the Hessian as the linear map

∇2f : TM → TM, ∇2f(X) = ∇X∇f.

The corresponding bilinear map is then defined as

∇2f(X,Y ) = g(∇2f(X), Y ).

One can check that this is a symmetric bilinear form. The Laplacian of f , ∆f,
is now defined as the trace of the Hessian

∆f = Tr(∇2f(X)) = Tr(∇X∇f),

which is a linear map. It is also called the Laplace–Beltrami operator , since
Beltrami first considered this operator on Riemannian manifolds.

Riemannian metric has the following mechanical interpretation. Let M
be a closed Riemannian manifold with the mechanical metric g = gijv

ivj ≡
〈v, v〉, with vi = ẋi. Consider the Lagrangian function

L : TM → R, (x, v) �→ 1
2
〈v, v〉 − U(x) (1.87)

where U(x) is a smooth function on M called the potential. On a fixed level
of energy E, bigger than the maximum of U , the Lagrangian flow generated
by (1.87) is conjugate to the geodesic flow with metric ḡ = 2(e− U(x))〈v, v〉.
Moreover, the reduced action of the Lagrangian is the distance for g = 〈v, v〉
[Arn89, AMR88]. Both of these statements are known as the Maupertius action
principle.

Geodesics on M

For a C∞, k ≥ 2 curve γ : I →M, we define its length on I as

L (γ, I) =
∫
I

|γ̇| dt =
∫
I

√
g (γ̇, γ̇)dt.

This length is independent of our parametrization of the curve γ. Thus the
curve γ can be reparameterized, in such a way that it has unit velocity. The
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distance between two points m1 and m2 onM, d (m1,m2) , can now be defined
as the infimum of the lengths of all curves from m1 to m2, i.e.,

L (γ, I) → min .

This means that the distance measures the shortest way one can travel from
m1 to m2.

If we take a variation V (s, t) : (−ε, ε) × [0, !] → M of a smooth curve
γ (t) = V (0, t) parameterized by arc–length L and of length !, then the first
derivative of the arc–length function

L(s) =
∫ �

0

|V̇ | dt, is given by

dL(0)
ds

≡ L̇(0) = g (γ̇, X)|�0 −
∫ �

0

g (γ,X) dt, (1.88)

where X (t) = ∂V
∂s (0, t) is the so–called variation vector–field. Equation (1.88)

is called the first variation formula. Given any vector–field X along γ, one
can produce a variation whose variational field is X. If the variation fixes the
endpoints, X (a) = X (b) = 0, then the second term in the formula drops
out, and we note that the length of γ can always be decreased as long as the
acceleration of γ is not everywhere zero. Thus the Euler–Lagrangian equations
for the arc–length functional are the equations for a curve to be a geodesic.

In local coordinates xi ∈ U , where U is an open subset in the Riemannian
manifoldM , the geodesics are defined by the geodesic equation (see Appendix)

ẍi + Γ ijkẋ
j ẋk = 0, (1.89)

where overdot means derivative upon the line parameter s, while Γ ijk are
Christoffel symbols of the affine Levi–Civita connection ∇ on M . From (1.89)
it follows that the linear connection homotopy ,

Γ̄ ijk = sΓ ijk + (1− s)Γ ijk, (0 ≤ s ≤ 1),

determines the same geodesics as the original Γ ijk.

Riemannian Curvature on M

The Riemann curvature tensor is a rather ominous tensor of type (1, 3); i.e.,
it has three vector variables and its value is a vector as well. It is defined
through the Lie bracket (1.2.6) as

R (X,Y )Z =
(
∇[X,Y ] − [∇X ,∇Y ]

)
Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ.

This turns out to be a vector valued (1, 3)−tensor–field in the three variables
X,Y, Z ∈ X k(M). We can then create a (0, 4)−tensor,
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R (X,Y, Z,W ) = g
(
∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ,W

)
.

Clearly this tensor is skew–symmetric in X and Y , and also in Z and W ∈
X k(M). This was already known to Riemann, but there are some further,
more subtle properties that were discovered a little later by Bianchi. The
Bianchi symmetry condition reads

R(X,Y, Z,W ) = R(Z,W,X, Y ).

Thus the Riemann curvature tensor is a symmetric curvature operator

R : Λ2TM → Λ2TM.

The Ricci tensor is the (1, 1)− or (0, 2)−tensor defined by

Ric(X) = R(∂xi , X)∂xi , Ric(X,Y ) = g(R(∂xi , X)∂xi , Y ),

for any orthonormal basis (∂xi). In other words, the Ricci curvature is a trace
of the curvature tensor. Similarly one can define the scalar curvature as the
trace

scal(m) = Tr (Ric) = Ric(∂xi , ∂xi).

When the Riemannian manifold has dimension 2, all of these curvatures
are essentially the same. Since dimΛ2TM = 1 and is spanned by X∧Y where
X,Y ∈ X k(M) form an orthonormal basis for TmM, we see that the curvature
tensor depends only on the scalar value

K(m) = R(X,Y,X, Y ),

which also turns out to be the Gaussian curvature. The Ricci tensor is a
homothety

Ric(X) = K(m)X, Ric(Y ) = K(m)Y,

and the scalar curvature is twice the Gauss curvature. In dimension 3 there are
also some redundancies as dimTM = dimΛ2TM = 3. In particular, the Ricci
tensor and the curvature tensor contain the same amount of information.

The sectional curvature is a kind of generalization of the Gauss curvature
whose importance Riemann was already aware of. Given a 2−plane π ⊂ TmM
spanned by an orthonormal basis X,Y ∈ X k(M) it is defined as

sec(π) = R(X,Y,X, Y ).

The remarkable observation by Riemann was that the curvature operator is
a homothety, i.e., looks like R = kI on Λ2TmM iff all sectional curvatures
of planes in TmM are equal to k. This result is not completely trivial, as
the sectional curvature is not the entire quadratic form associated to the
symmetric operator R. In fact, it is not true that sec ≥ 0 implies that the
curvature operator is nonnegative in the sense that all its eigenvalues are
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nonnegative. What Riemann did was to show that our special coordinates
(x1, . . . , xn) at m can be chosen to be normal at m, i.e., satisfy the condition

xi = δijx
j , (δijx

j = gij)

on a neighborhood of m. One can show that such coordinates are actually
exponential coordinates together with a choice of an orthonormal basis for
TmM so as to identify TmM with Rn. In these coordinates one can then
expand the metric as follows:

gij = δij −
1
3
Rikjlx

kxl +O
(
r3
)
.

Now the equations xi = gijx
j evidently give conditions on the curvatures

Rijkl at m.
If Γ ijk(m) = 0, the manifold M is flat at the point m. This means that the

(1, 3) curvature tensor, defined locally at m ∈M as

Rlijk = ∂xjΓ lik − ∂xkΓ lij + Γ lrjΓ
r
ik − Γ lrkΓ rij ,

also vanishes at that point, i.e., Rlijk(m) = 0.
Now, the rate of change of a vector–field Ak on the manifold M along the

curve xi(s) is properly defined by the absolute covariant derivative

D

ds
Ak = ẋi∇iAk = ẋi

(
∂xiAk + Γ kij A

j
)

= Ȧk + Γ kij ẋ
iAj .

By applying this result to itself, we can get an expression for the second
covariant derivative of the vector–field Ak along the curve xi(s):

D2

ds2
Ak =

d

ds

(
Ȧk + Γ kij ẋ

iAj
)

+ Γ kij ẋ
i(Ȧj + Γ jmn ẋ

mAn).

In the local coordinates (x1(s), ..., xn(s)) at a pointm ∈M, if δxi = δxi(s)
denotes the geodesic deviation, i.e., the infinitesimal vector describing perpen-
dicular separation between the two neighboring geodesics, passing through two
neighboring points m,n ∈ M , then the Jacobi equation of geodesic deviation
on the manifold M holds:

D2δxi

ds2
+Rijkl ẋ

j δxk ẋl = 0. (1.90)

This equation describes the relative acceleration between two infinitesimally
close facial geodesics, which is proportional to the facial curvature (measured
by the Riemann tensor Rijkl at a point m ∈M), and to the geodesic deviation
δxi. Solutions of equation (1.90) are called Jacobi fields.

In particular, if the manifold M is a 2D–surface in R3, the Riemann cur-
vature tensor simplifies into
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Rijmn =
1
2
Rgik(gkm gjn − gkn gjm),

where R denotes the scalar Gaussian curvature. Consequently the equation
of geodesic deviation (1.90) also simplifies into

D2

ds2
δxi +

R

2
δxi − R

2
ẋi(gjk ẋj δxk) = 0. (1.91)

This simplifies even more if we work in a locally Cartesian coordinate sys-
tem; in this case the covariant derivative D2

Ds2 reduces to an ordinary derivative
d2

ds2 and the metric tensor gij reduces to identity matrix Iij , so our 2D equa-
tion of geodesic deviation (1.91) reduces into a simple second–order ODE in
just two coordinates xi (i = 1, 2)

ẍi +
R

2
δxi − R

2
ẋi(Ijk ẋj δxk) = 0.

Global Riemannian Geometry

The Second Variation Formula

Cartan also establishes another important property of manifolds with nonpos-
itive curvature. First he observes that all spaces of constant zero curvature
have torsion–free fundamental groups. This is because any isometry of finite
order on Euclidean space must have a fixed point (the center of mass of any
orbit is necessarily a fixed point). Then he notices that one can geometri-
cally describe the L∞ center of mass of finitely many points {m1, . . . ,mk} in
Euclidean space as the unique minimum for the strictly convex function

x→ max
i=1,··· ,k

1
2

{
(d (mi, x))

2
}
.

In other words, the center of mass is the center of the ball of smallest radius
containing {m1, . . . ,mk} . Now Cartan’s observation from above was that the
exponential map is expanding and globally distance nondecreasing as a map:

(TmM, Euclidean metric) → (TmM, with pull–back metric) .

Thus distance functions are convex in nonpositive curvature as well as in
Euclidean space. Hence the above argument can in fact be used to conclude
that any Riemannian manifold of nonpositive curvature must also have torsion
free fundamental group.

Now, let us set up the second variation formula and explain how it is used.
We have already seen the first variation formula and how it can be used to
characterize geodesics. Now suppose that we have a unit speed geodesic γ (t)
parameterized on [0, !] and consider a variation V (s, t) , where V (0, t) = γ (t).
Synge then shows that (L̈ ≡ d2L

ds2 )
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L̈(0) =
∫ �

0

{g(Ẋ, Ẋ)− (g(Ẋ, γ̇))2 − g(R(X, γ̇)X, γ̇)}dt+ g(γ̇, A)|�0 ,

where X (t) = ∂V
∂s (0, t) is the variational vector–field, Ẋ = ∇γ̇X, and A (t) =

∇ ∂V
∂s
X. In the special case where the variation fixes the endpoints, i.e., s →

V (s, a) and s→ V (s, b) are constant, the term with A in it falls out. We can
also assume that the variation is perpendicular to the geodesic and then drop
the term g

(
Ẋ, γ̇

)
. Thus, we arrive at the following simple form:

L̈(0) =
∫ �

0

{g(Ẋ, Ẋ)− g (R (X, γ̇)X, γ̇)}dt =
∫ �

0

{|Ẋ|2 − sec(γ̇, X) |X|2}dt.

Therefore, if the sectional curvature is nonpositive, we immediately observe
that any geodesic locally minimizes length (that is, among close–by curves),
even if it does not minimize globally (for instance γ could be a closed geodesic).
On the other hand, in positive curvature we can see that if a geodesic is too
long, then it cannot minimize even locally. The motivation for this result
comes from the unit sphere, where we can consider geodesics of length > π.
Globally, we know that it would be shorter to go in the opposite direction.
However, if we consider a variation of γ where the variational field looks like
X = sin

(
t · π�

)
E and E is a unit length parallel field along γ which is also

perpendicular to γ, then we get

L̈(0) =
∫ �

0

{∣∣∣Ẋ∣∣∣2 − sec (γ̇, X) |X|2
}
dt

=
∫ �

0

{(π
!

)2

· cos2
(
t · π
!

)
− sec (γ̇, X) sin2

(
t · π
!

)}
dt

=
∫ �

0

((π
!

)2

· cos2
(
t · π
!

)
− sin2

(
t · π
!

))
dt = − 1

2!
(
!2 − π2

)
,

which is negative if the length ! of the geodesic is greater than π. Therefore,
the variation gives a family of curves that are both close to and shorter than
γ. In the general case, we can then observe that if sec ≥ 1, then for the same
type of variation we get

L̈(0) ≤ − 1
2!

(
!2 − π2

)
.

Thus we can conclude that, if the space is complete, then the diameter must be
≤ π because in this case any two points are joined by a segment, which cannot
minimize if it has length > π. With some minor modifications one can now
conclude that any complete Riemannian manifold (M, g) with sec ≥ k2 > 0
must satisfy diam(M, g) ≤ π·k−1. In particular,M must be compact. Since the
universal covering ofM satisfies the same curvature hypothesis, the conclusion
must also hold for this space; hence M must have compact universal covering
space and finite fundamental group.
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In odd dimensions all spaces of constant positive curvature must be ori-
entable, as orientation reversing orthogonal transformation on odd–dimensional
spheres have fixed points. This can now be generalized to manifolds of vary-
ing positive curvature. Synge did it in the following way: Suppose M is not
simply–connected (or not orientable), and use this to find a shortest closed
geodesic in a free homotopy class of curves (that reverses orientation). Now
consider parallel translation around this geodesic. As the tangent field to the
geodesic is itself a parallel field, we see that parallel translation preserves the
orthogonal complement to the geodesic. This complement is now odd dimen-
sional (even dimensional), and by assumption parallel translation preserves
(reverses) the orientation; thus it must have a fixed point. In other words,
there must exist a closed parallel field X perpendicular to the closed geodesic
γ. We can now use the above second variation formula

L̈(0) =
∫ �

0

{|Ẋ|2 − |X|2 sec (γ̇, X)}dt+ g (γ̇, A)|�0 = −
∫ �

0

|X|2 sec (γ̇, X) dt.

Here the boundary term drops out because the variation closes up at the
endpoints, and Ẋ = 0 since we used a parallel field. In case the sectional
curvature is always positive we then see that the above quantity is negative.
But this means that the closed geodesic has nearby closed curves which are
shorter. However, this is in contradiction with the fact that the geodesic was
constructed as a length minimizing curve in a free homotopy class.

In 1941 Myers generalized the diameter bound to the situation where one
only has a lower bound for the Ricci curvature. The idea is that Ric(γ̇, γ̇) =∑n−1
i=1 sec (Ei, γ̇) for any set of vector–fieldsEi along γ suchthat γ̇, E1, . . ., En−1

forms an orthonormal frame. Now assume that the fields are parallel and con-
sider the n−1 variations coming from the variational vector–fields sin

(
t · π�

)
Ei.

Adding up the contributions from the variational formula applied to these
fields then induces
n−1∑
i=1

L̈(0) =
n−1∑
i=1

∫ �

0

{(π
!

)2

· cos2
(
t · π
!

)
− sec (γ̇, Ei) sin2

(
t · π
!

)}
dt

=
∫ �

0

{
(n− 1)

(π
!

)2

· cos2
(
t · π
!

)
− Ric (γ̇, γ̇) sin2

(
t · π
!

)}
dt.

Therefore, if Ric(γ̇, γ̇) ≥ (n− 1) k2 (this is the Ricci curvature of Snk ), then

n−1∑
i=1

L̈(0) ≤ (n− 1)
∫ �

0

{(π
!

)2

· cos2
(
t · π
!

)
− k2 sin2

(
t · π
!

)}
dt

= − (n− 1)
1
2!

(
!2k2 − π2

)
,

which is negative when ! > π · k−1 (the diameter of Snk ). Thus at least one of
the contributions d

2Li

ds2 (0) must be negative as well, implying that the geodesic
cannot be a segment in this situation.
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Gauss–Bonnet Formula

In 1926 Hopf proved that in fact there is a Gauss–Bonnet formula for all even–
dimensional hypersurfaces H2n ⊂ R2n+1. The idea is that the determinant of
the differential of the Gauss map G : H2n → S2n is the Gaussian curvature
of the hypersurface. Moreover, this is an intrinsically computable quantity. If
we integrate this over the hypersurface, we get,

1
volS2n

∫
H

det (DG) = deg (G) ,

where deg (G) is the Brouwer degree of the Gauss map. Note that this can also
be done for odd–dimensional surfaces, in particular curves, but in this case
the degree of the Gauss map will depend on the embedding or immersion of
the hypersurface. Instead one gets the so–called winding number. Hopf then
showed, as Dyck had earlier done for surfaces, that deg (G) is always half the
Euler characteristic of H, thus yielding

2
volS2n

∫
H

det (DG) = χ (H) . (1.92)

Since the l.h.s of this formula is in fact intrinsic, it is natural to conjecture
that such a formula should hold for all manifolds.

Ricci Flow on M

Ricci flow , or the parabolic Einstein equation, was introduced by R. Hamilton
in 1982 [Ham82] in the form

∂tgij = −2Rij . (1.93)

Now, because of the minus sign in the front of the Ricci tensor Rij in this
equation, the solution metric gij to the Ricci flow shrinks in positive Ricci
curvature direction while it expands in the negative Ricci curvature direction.
For example, on the 2−sphere S2, any metric of positive Gaussian curvature
will shrink to a point in finite time. Since the Ricci flow (1.93) does not
preserve volume in general, one often considers the normalized Ricci flow
defined by

∂tgij = −2Rij +
2
n
rgij , (1.94)

where r =
∫
RdV

/ ∫
dV is the average scalar curvature. Under this nor-

malized flow, which is equivalent to the (unnormalized) Ricci flow (1.93) by
reparameterizing in time t and scaling the metric in space by a function of
t, the volume of the solution metric is constant in time. Also that Einstein
metrics (i.e., Rij = cgij) are fixed points of (1.94).

Hamilton [Ham82] showed that on a closed Riemannian 3−manifold M3

with initial metric of positive Ricci curvature, the solution g(t) to the nor-
malized Ricci flow (1.94) exists for all time and the metrics g(t) converge
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exponentially fast, as time t tends to the infinity, to a constant positive sec-
tional curvature metric g∞ on M3.

Since the Ricci flow lies in the realm of parabolic partial differential equa-
tions, where the prototype is the heat equation, here is a brief review of the
heat equation [CC99].

Let (Mn, g) be a Riemannian manifold. Given a C2 function u : M → R,
its Laplacian is defined in local coordinates

{
xi
}

to be

∆u = Tr
(
∇2u

)
= gij∇i∇ju,

where ∇i = ∇∂xi is its associated covariant derivative (Levi–Civita connec-
tion). We say that a C2 function u :Mn × [0, T ) → R, where T ∈ (0,∞], is a
solution to the heat equation if

∂tu = ∆u.

One of the most important properties satisfied by the heat equation is the
maximum principle, which says that for any smooth solution to the heat
equation, whatever pointwise bounds hold at t = 0 also hold for t > 0. Let
u : Mn × [0, T ) → R be a C2 solution to the heat equation on a complete
Riemannian manifold. If C1 ≤ u (x, 0) ≤ C2 for all x ∈M, for some constants
C1, C2 ∈ R, then C1 ≤ u (x, t) ≤ C2 for all x ∈M and t ∈ [0, T ) [CC99].

Now, given a smooth manifoldM, a one–parameter family of metrics g (t) ,
where t ∈ [0, T ) for some T > 0, is a solution to the Ricci flow if (1.93) is valid
at all x ∈M and t ∈ [0, T ). The minus sign in the equation (1.93) makes the
Ricci flow a forward heat equation [CC99] (with the normalization factor 2).

In local geodesic coordinates {xi}, we have [CC99]

gij(x) = δij −
1
3
Ripjqx

pxq +O
(
|x|3

)
, therefore, ∆gij (0) = −1

3
Rij ,

where ∆ is the standard Euclidean Laplacian. Hence the Ricci flow is like the
heat equation for a Riemannian metric

∂tgij = 6∆gij .

The practical study of the Ricci flow is made possible by the following
short–time existence result: Given any smooth compact Riemannian manifold
(M, go), there exists a unique smooth solution g(t) to the Ricci flow defined
on some time interval t ∈ [0, ε) such that g(0) = go [CC99].

Now, given that short–time existence holds for any smooth initial metric,
one of the main problems concerning the Ricci flow is to determine under
what conditions the solution to the normalized equation exists for all time
and converges to a constant curvature metric. Results in this direction have
been established under various curvature assumptions, most of them being
some sort of positive curvature. Since the Ricci flow (1.93) does not preserve
volume in general, one often considers, as we mentioned in the Introduction,
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the normalized Ricci flow (1.94). Under this flow, the volume of the solution
g(t) is independent of time.

To study the long–time existence of the normalized Ricci flow, it is im-
portant to know what kind of curvature conditions are preserved under the
equation. In general, the Ricci flow tends to preserve some kind of positivity
of curvatures. For example, positive scalar curvature is preserved in all di-
mensions. This follows from applying the maximum principle to the evolution
equation for scalar curvature R, which is

∂tR = ∆R+ 2 |Rij |2 .

In dimension 3, positive Ricci curvature is preserved under the Ricci flow. This
is a special feature of dimension 3 and is related to the fact that the Riemann
curvature tensor may be recovered algebraically from the Ricci tensor and
the metric in dimension 3. Positivity of sectional curvature is not preserved
in general. However, the stronger condition of positive curvature operator is
preserved under the Ricci flow.

Structure Equations on M

Let {Xa}ma=1, {Yi}ni=1 be local orthonormal framings on M , N respectively
and {ei}ni=1 be the induced framing on E defined by ei = Yi ◦ φ, then there
exist smooth local coframings {ωa}ma=1, {ηi}ni=1 and {φ∗ηi}ni=1 on TM , TN
and E respectively such that (locally)

g =
m∑
a=1

ω2
a and h =

n∑
i=1

η2i .

The corresponding first structure equations are [Mus99]:

dωa = ωb ∧ ωba, ωab = −ωba,
dηi = ηj ∧ ηji, ηij = −ηji,

d(φ∗ηi) = φ∗ηj ∧ φ∗ηji, φ∗ηij = −φ∗ηji,

where the unique 1–forms ωab, ηij , φ
∗ηij are the respective connection forms.

The second structure equations are

dωab = ωac ∧ ωcb +ΩMab , dηij = ηik ∧ ηkj +ΩNij ,

d(φ∗ηij) = φ∗ηik ∧ φ∗ηkj + φ∗ΩNij ,

where the curvature 2–forms are given by

ΩMab = −1
2
RMabcdωc ∧ ωd and ΩNij = −1

2
RNijklηk ∧ ηl.

The pull back map φ∗ and the push forward map φ∗ can be written as
[Mus99]
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φ∗ηi = fiaωa

for unique functions fia on U ⊂M , so that

φ∗ = ei ⊗ φ∗ηi = fiaei ⊗ ωa.

Note that φ∗ is a section of the vector bundle φ−1TN ⊗ T ∗M .
The covariant differential operators are represented as

∇MXa = ωab ⊗Xb, ∇NYi = ηij ⊗ Yj , ∇∗ωa = −ωca ⊗ ωc,

where ∇∗ is the dual connection on the cotangent bundle T ∗M .
Furthermore, the induced connection ∇φ on E is

∇φei =
(
ηij(Yk) ◦ φ

)
ej ⊗ fkaωa.

The components of the Ricci tensor and scalar curvature are defined re-
spectively by

RMab = RMacbc and RM = RMaa.

Given a function f :M → , there exist unique functions fcb = fbc such that

dfc − fbωcb = fcbωb , (1.95)

where fc = df(Xc) for a local orthonormal frame {Xc}mc=1. To prove this we
take the exterior derivative of df =

∑m
c=1 fcωc and using structure equations,

we have
0 = [dfc ∧ ωc + fbcωb ∧ ωbc] = [(dfc − fbωcb) ∧ ωc] .

Hence by Cartan’s lemma (cf. [Wil93]), there exist unique functions fcb = fbc
such that

dfc − fbωcb = fcbωb.

The Laplacian of a function f on M is given by

∆f = −Tr(∇df),

that is, negative of the usual Laplacian on functions.

Basics of Morse and (Co)Bordism Theories

Morse Theory on Smooth Manifolds

At the same time the variational formulae were discovered, a related technique,
called Morse theory , was introduced into Riemannian geometry. This theory
was developed by Morse, first for functions on manifolds in 1925, and then in
1934, for the loop space. The latter theory, as we shall see, sets up a very nice
connection between the first and second variation formulae from the previous
section and the topology of M. It is this relationship that we shall explore at
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a general level here. In section 5 we shall then see how this theory was applied
in various specific settings.

If we have a proper function f :M → R, then its Hessian (as a quadratic
form) is in fact well defined at its critical points without specifying an un-
derlying Riemannian metric. The nullity of f at a critical point is defined as
the dimension of the kernel of ∇2f, while the index is the number of negative
eigenvalues counted with multiplicity. A function is said to be a Morse func-
tion if the nullity at any of its critical points is zero. Note that this guarantees
in particular that all critical points are isolated. The first fundamental theo-
rem of Morse theory is that one can determine the topological structure of a
manifold from a Morse function. More specifically, if one can order the critical
points x1, . . . , xk so that f (x1) < · · · < f (xk) and the index of xi is denoted
λi, then M has the structure of a CW complex with a cell of dimension λi
for each i. Note that in case M is closed then x1 must be a minimum and so
λ1 = 0, while xk is a maximum and λk = n. The classical example of Milnor
of this theorem in action is a torus in 3–space and f the height function.

We are now left with the problem of trying to find appropriate Morse func-
tions. While there are always plenty of such functions, there does not seem to
be a natural way of finding one. However, there are natural choices for Morse
functions on the loop space to a Riemannian manifold. This is, somewhat
inconveniently, infinite–dimensional. Still, one can develop Morse theory as
above for suitable functions, and moreover the loop space of a manifold deter-
mines the topology of the underlying manifold.

If m, p ∈M , then we denote by Ωmp the space of all C∞ paths from m to
p. The first observation about this space is that

πi+1 (M) = πi (Ωmp) .

To see this, just fix a path from m to q and then join this path to every curve
in Ωmp. In this way Ωmp is identified with Ωm, the space of loops fixed at m.
For this space the above relationship between the homotopy groups is almost
self-evident.

On the space Ωmp we have two naturally defined functions, the arc–length
and energy functionals:

L (γ, I) =
∫
I

|γ̇| dt, and E (γ, I) =
1
2

∫
I

|γ̇|2 dt.

While the energy functional is easier to work with, it is the arc–length func-
tional that we are really interested in. In order to make things work out nicely
for the arc–length functional, it is convenient to parameterize all curves on
[0, 1] and proportionally to arc–length. We shall think of Ωmp as an infinite–
dimensional manifold. For each curve γ ∈ Ωmp the natural choice for the
tangent space consists of the vector–fields along γ which vanish at the end-
points of γ. This is because these vector–fields are exactly the variational
fields for curves through γ in Ωmp, i.e., fixed endpoint variations of γ. An
inner product on the tangent space is then naturally defined by



1.2 Smooth Manifolds 95

(X,Y ) =
∫ 1

0

g (X,Y ) dt.

Now the first variation formula for arc–length tells us that the gradient for L
at γ is −∇γ̇ γ̇. Actually this cannot be quite right, as −∇γ̇ γ̇ does not vanish
at the endpoints. The real gradient is gotten in the same way we find the
gradient for a function on a surface in space, namely, by projecting it down
into the correct tangent space. In any case we note that the critical points for
L are exactly the geodesics from m to p. The second variation formula tells
us that the Hessian of L at these critical points is given by

∇2L (X) = Ẍ +R (X, γ̇) γ̇,

at least for vector–fields X which are perpendicular to γ. Again we ignore the
fact that we have the same trouble with endpoint conditions as above. We
now need to impose the Morse condition that this Hessian is not allowed to
have any kernel. The vector–fields J for which J̈ + R (J, γ̇) γ̇ = 0 are called
Jacobi fields. Thus we have to Figure out whether there are any Jacobi fields
which vanish at the endpoints of γ. The first observation is that Jacobi fields
must always come from geodesic variations. The Jacobi fields which vanish
at m can therefore be found using the exponential map expm . If the Jacobi
field also has to vanish at p, then p must be a critical value for expm . Now
Sard’s theorem asserts that the set of critical values has measure zero. For
given m ∈M it will therefore be true that the arc–length functional on Ωmp
is a Morse function for almost all p ∈M. Note that it may not be possible to
choose p = m, the simplest example being the standard sphere. We are now
left with trying to decide what the index should be. This is the dimension of
the largest subspace on which the Hessian is negative definite. It turns out
that this index can also be computed using Jacobi fields and is in fact always
finite. Thus one can calculate the topology of Ωmp, and hence M, by finding
all the geodesics from m to p and then computing their index.

In geometrical situations it is often unrealistic to suppose that one can
calculate the index precisely, but as we shall see it is often possible to given
lower bounds for the index. As an example, note that if M is not simply–
connected, then Ωmp is not connected. Each curve of minimal length in the
path components is a geodesic from m to p which is a local minimum for the
arc–length functional. Such geodesics evidently have index zero. In particular,
if one can show that all geodesics, except for the minimal ones from m to p,
have index > 0, then the manifold must be simply–connected. We will apply
Morse theory in biomechanics/robotic in subsection (2.4.4) below.

(Co)Bordism Theory on Smooth Manifolds

(Co)bordism appeared as a revival of Poincaré’s unsuccessful 1895 attempts
to define homology using only manifolds. Smooth manifolds (without bound-
ary) are again considered as ‘negligible’ when they are boundaries of smooth
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manifolds–with–boundary. But there is a big difference, which keeps defini-
tion of ‘addition’ of manifolds from running into the difficulties encountered
by Poincaré; it is now the disjoint union. The (unoriented) (co)bordism re-
lation between two compact smooth manifolds M1,M2 of same dimension n
means that their disjoint union ∂W = M1 ∪M2 is the boundary ∂W of an
(n+1)D smooth manifold–with–boundaryW . This is an equivalence relation,
and the classes for that relation of nD manifolds form a commutative group
Nn in which every element has order 2. The direct sum N• = ⊕n≥0Nn is a
ring for the multiplication of classes deduced from the Cartesian product of
manifolds.

More precisely, a manifold M is said to be a (co)bordism from A to B
if exists a diffeomorphism from a disjoint sum, ϕ ∈ diff(A∗ ∪ B, ∂M). Two
(co)bordisms M(ϕ) and M ′(ϕ′) are equivalent if there is a Φ ∈ diff(M,M ′)
such that ϕ′ = Φ ◦ ϕ. The equivalence class of (co)bordisms is denoted by
M(A,B) ∈ Cob(A,B) [Sto68].

Composition cCob of (co)bordisms comes from gluing of manifolds [BD95].
Let ϕ′ ∈ diff(C∗∪D, ∂N). One can glue (co)bordismM with N by identifying
B with C∗, (ϕ′)−1 ◦ ϕ ∈ diff(B,C∗). We get the glued (co)bordism
(M ◦N)(A,D) and a semigroup operation,

c(A,B,D) : Cob(A,B)× Cob(B,D) −→ Cob(A,D).

A surgery is an operation of cutting a manifoldM and gluing to cylinders.
A surgery gives new (co)bordism: from M(A,B) into N(A,B). The disjoint
sum ofM(A,B) with N(C,D) is a (co)bordism (M∪N)(A∪C,B∪D).We got
a 2–graph of (co)bordism Cob with Cob0 = Mand, Cob1 = Mand+1, whose
2–cells from Cob2 are surgery operations.

There is an n−category of (co)bordisms BO [Lei03] with:

• 0−cells: 0−manifolds, where ‘manifold’ means ‘compact, smooth, oriented
manifold’. A typical 0−cell is • • • • .

• 1−cells: 1−manifolds with corners, i.e., (co)bordisms between 0−manifolds,

such as (this being a 1−cell from the 4−point mani-
fold to the 2−point 0−manifold).
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• 2−cells: 2−manifolds with corners, such as
• 3−cells, 4−cells,... are defined similarly;
• Composition is gluing of manifolds.

The (co)bordisms theme was taken a step further by [BD95], when when
they started a programme to understand the subtle relations between cer-
tain TMFT models for manifolds of different dimensions, frequently re-
ferred to as the dimensional ladder. This programme is based on higher–
dimensional algebra, a generalization of the theory of categories and func-
tors to n−categories and n−functors. In this framework a topological quan-
tum field theory (TMFT) becomes an n−functor from the n−category BO of
n−cobordisms to the n−category of n−Hilbert spaces.

1.2.10 Finsler Manifolds

Recall that Finsler geometry is such a generalization of Riemannian geometry,
that is closely related to multivariable calculus of variations.

Definition of a Finsler Manifold

Let M be a real, smooth, connected, finite–dimensional manifold. The pair
(M,F ) is called a Finsler manifold iff there exists a fundamental function
F : TM → R that satisfies the following set of axioms (see, e.g., [UN99]):

F1 F (x, y) > 0 for all x ∈M, y �= 0.
F2 F (x, λy) = |λ|F (x, y) for all λ ∈ R, (x, y) ∈ TM .
F3 the fundamental metric tensor gij on M , given by

gij(x, y) =
1
2
∂2F 2

∂yi∂yj
,

is positive definite.
F4 F is smooth (C∞) at every point (x, y) ∈ TM with y �= 0 and continuous

(C0) at every (x, 0) ∈ TM . Then, the absolute Finsler energy function is
given by

F 2(x, y) = gij(x, y)yiyj .
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Let c = c(t) : [a, b] → M be a smooth regular curve on M . For any two
vector–fields X(t) = Xi(t) ∂

∂xi

∣∣
c(t)

and Y (t) = Y i(t) ∂
∂xi

∣∣
c(t)

along the curve
c = c(t), we introduce the scalar (inner) product [Che96]

g(X,Y )(c) = gij(c, ċ)XiY j

along the curve c.
In particular, if X = Y then we have ‖X‖ =

√
g(X,X). The vector–fields

X and Y are orthogonal along the curve c, denoted by X⊥Y , iff g(X,Y ) = 0.
Let CΓ (N) = (Lijk, N

i
j , C

i
jk) be the Cartan canonical N−linear metric

connection determined by the metric tensor gij(x, y). The coefficients of this
connection are expressed by [UN99]

Lijk =
1
2
gim

(
δgmk
δxj

+
δgjm
δxk

− δgjk
δxm

)
, Cijk =

1
2
gim

(
∂gmk
∂yj

+
∂gjm
∂yk

−∂gjk
∂ym

)
,

N ij =
1
2
∂

∂yj
(
Γ ikly

kyl
)

=
1
2
∂Γ i00
∂yj

, Γ ijk =
1
2
gim

(
∂gmk
∂xj

+
∂gjm
∂xk

− ∂gjk
∂xm

)
,

where
δ

δxi
=

∂

∂xi
+N ji

∂

∂yj
.

Let X be a vector–field along the curve c expressed locally by X(t) =
Xi(t) ∂

∂xi

∣∣
c(t)

. Using the Cartan N−linear connection, we define the covariant

derivative ∇X
dt of X(t) along the curve c(t), by [UN99]

∇X
dt

= {Ẋi +Xm[Limk(c, ċ)ċ
k + Cimk(c, ċ)

δ

δt
(ċk)]} ∂

∂xi

∣∣∣∣
c(t)

.

Since
δ

δt
(ċk) = c̈k +Nkl (c, ċ)ċl,

we have
∇X
dt

= {Ẋi +Xm[Γ imk(c, ċ)ċ
k + Cimk(c, ċ)c̈

k]} ∂

∂xi

∣∣∣∣
c(t)

, (1.96)

where Γ imk(c, ċ) = Limk(c, ċ) + Ciml(c, ċ)N
l
k(c, ċ).

In particular, c is a geodesic iff
∇ċ
dt

= 0.

Since CΓ (N) is a metric connection, we have

d

dt
[g(X,Y )] = g

(
∇X
dt
, Y

)
+ g

(
X,
∇Y
dt

)
.

Energy Functional, Variations and Extrema

Let x0, x1 ∈M be two points not necessarily distinct. We introduce the Ω−set
on M , as
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Ω = {c : [0, 1] →M | c is piecewise C∞ regular curve, c(0) = x0, c(1) = x1}.

For every p ∈ R−{0}, we can define the p−energy functional onM [UN99]

Ep : Ω → R+, as

Ep(c) =
∫ 1

0

[gij(c, ċ)ċiċj ]p/2dt =
∫ 1

0

[g(ċ, ċ)]p/2dt =
∫ 1

0

‖ċ‖pdt.

In particular, for p = 1 we get the length functional

L(c) =
∫ 1

0

‖ċ‖dt,

and for p = 2 we get the energy functional

E(c) =
∫ 1

0

‖ċ‖2dt.

Also, for any naturally parametrized curve (i.e., ‖ċ‖ = const) we have

Ep(c) = (L(c))p = (E(c))p/2.

Note that the p−energy of a curve is dependent of parametrization if p �= 1.
For every curve c ∈ Ω, we define the tangent space TcΩ as

TcΩ = {X : [0, 1] → TM | X is continuous, piecewise C∞, X(t) ∈ Tc(t)M,
for all t ∈ [0, 1], X(0) = X(1) = 0}.

Let (cs)s∈(−ε,ε) ⊂ Ω be a one–parameter variation of the curve c ∈ Ω. We
define

X(t) =
dcs
ds

(0, t) ∈ TcΩ.

Using the equality

g

(
∇ċs
∂s
, ċs

)
= g

(
∇
∂t

(
∂cs
∂s

)
, ċs

)
,

we can prove the following theorem: The first variation of the p−energy is

1
p

dEp(cs)
ds

(0) = −
∑
t

g(X,∆t(‖ċ‖p−2ċ))

−
∫ 1

0

‖ċ‖p−4g

(
X, ‖ċ‖2∇ċ

dt
+ (p− 2)g

(
∇ċ
dt
, ċ

)
ċ

)
dt,

where ∆t(‖ċ‖p−2ċ) = (‖ċ‖p−2ċ)t+ − (‖ċ‖p−2ċ)t− represents the jump of
‖ċ‖p−2ċ at the discontinuity point t ∈ (0, 1) [UN99].

The curve c is a critical point of Ep iff c is a geodesic.
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In particular, for p = 1 the curve c is a reparametrized geodesic.
Now, let c ∈ Ω be a critical point for Ep (i.e., the curve c is a geodesic). Let

(cs1s2)s1,s2∈(−ε,ε) ⊂ Ω be a two–parameter variation of c. Using the notations:

X(t) =
∂cs1s2
∂s1

(0, 0, t) ∈ TcΩ, Y (t) =
∂cs1s2
∂s2

(0, 0, t) ∈ TcΩ,

‖ċ‖ = v = constant, and Ip(X,Y ) =
∂2Ep(cs1s2)
∂s1∂s2

(0, 0),

we get the following theorem: The second variation of the p−energy is [UN99]

1
pvp−4

Ip(X,Y ) = −
∑
t

g

(
Y, v2∆t

(
∇X
dt

)
+ (p− 2)g

(
∆t

(
∇X
dt

)
, ċ

)
ċ

)
−
∫ 1

0

g

(
Y, v2

[
∇
dt

∇X
dt

+R2(X, ċ)ċ
]
+(p−2)g

([
∇
dt

∇X
dt

+R2(X, ċ)ċ
]
, ċ

)
ċ

)
dt,

where ∆t
(∇X
dt

)
=

(∇X
dt

)
t+
−
(∇X
dt

)
t− represents the jump of ∇X

dt at the dis-
continuity point t ∈ (0, 1); also, if Rlijk(c, ċ) represents the components of the
Finsler curvature tensor , then

R2(X, ċ)ċ = Rlijk(c, ċ)ċ
iċjXk

∂

∂xl
= Rljk(c, ċ)ċ

jXk
∂

∂xl
.

In particular, we have

Rijk =
δN ij
δxk

− δN
i
k

δxj
, and Rihjk =

δLihj
δxk

− δL
i
hk

δxj
+LshjL

i
sk−LshkLisj+CihsRsjk.

Moreover, using the Ricci identities for the deflection tensors, we also have

Rijk = Rimjky
m = Ri0jk.

Ip(X,Y ) = 0 (for all Y ∈ TcΩ) iff X is a Jacobi field, i.e.,

∇
dt

∇X
dt

+R2(X, ċ)ċ = 0.

In these conditions we have the following definition: A point c(b) (0 ≤ a <
b < 1) of a geodesic c ∈ Ω is called a conjugate point of a point c(a) along the
curve c(t), if there exists a non–zero Jacobi field which vanishes at t ∈ {a, b}.

Now, integrating by parts and using the property of metric connection, we
find

1
pvp−4

Ip(X,Y ) =
∫ 1

0

v2
[
g

(
∇X
dt
,
∇Y
dt

)
−R2(X, ċ, Y, ċ)

]
+ (p− 2)g

(
ċ,
∇X
dt

)
g

(
ċ,
∇Y
dt

)
dt,
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where R2(X, ċ, Y, ċ) = g(R2(Y, ċ)ċ, X) = R0i0j(c(t), ċ(t))XiY j .

Let Rijk = gjmRmik. In any Finsler space the following identity is satisfied,

Rijk +Rjki +Rkij = 0,

get by the Bianchi identities. As R0i0j = Ri0j = Rj0i = R0j0i we get
R2(X, ċ, Y, ċ) = R2(Y, ċ,X, ċ).

The quadratic form associated to the Hessian of the p−energy is given by

Ip(X) = Ip(X,X) =
∫ 1

0

v2

[∥∥∥∥∇Xdt
∥∥∥∥2

−R2(X, ċ,X, ċ)

]
+(p−2)

[
g

(
ċ,
∇X
dt

)]2

dt.

Let

T⊥
c Ω = {X ∈ TcΩ | g(X, ċ) = 0}, and

T
′
cΩ = {X ∈ TcΩ | X = f ċ, where f : [0, 1]→R is continuous,

piecewise C∞, f(0) = f(1) = 0}.

Let c be a geodesic and p ∈ R−{0, 1}. Then Ip(T ′
cΩ) ≥ 0 for p ∈ (−∞, 0)∪

(1,∞), and Ip(T ′
cΩ) ≤ 0 for p ∈ (0, 1). Moreover, in both cases: Ip(X) = 0 iff

X = 0. To prove it, let X = f ċ ∈ T ′
cΩ. Then we have [UN99]

1
vp−4

Ip(X) = p
∫ 1

0

{
v2

[
g(f ′ċ, f ′ċ)−R2(f ċ, ċ, f ċ, ċ)

]
+ (p− 2) [g(ċ, f ′ċ)]2

}
dt

= p
∫ 1

0

[
v4(f ′)2 + (p− 2)v4(f ′)2

]
dt =

∫ 1

0

p(p− 1)v4(f ′)2dt.

Moreover, if Ip(X) = 0, then f ′ = 0, which means that f is constant. The
conditions f(0) = f(1) = 0 imply that f = 0.

As Ip(T ′
cΩ) is positive definite for p ∈ (−∞, 0) ∪ (1,∞) and negative

definite for p ∈ (0, 1), it is sufficient to study the behavior of Ip restricted to
T⊥
c Ω. Since X⊥ċ and the curve c is a geodesic it follows

g

(
ċ,
∇X
dt

)
= 0.

Hence, for all X ∈ T⊥
c Ω, we have

1
pvp−2

Ip(X) =
∫ 1

0

[∥∥∥∥∇Xdt
∥∥∥∥2

−R2(X, ċ,X, ċ)

]
dt = I(X).
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Constant Curvature Finsler Manifolds

We assume the Finsler space (M ,F ) is complete, of dimension n ≥ 3 and of
constant curvature K ∈ R. Hence, we have

Hijkl = K(gikgjl − gilgjk),

where Hijkl are the components of the h−curvature tensor H of the Berwald
connection BΓ . It follows that

Rijk = KF
(
gik
yj
F
− gij

yk
F

)
,

where yj = gjkyk. We also have

Ri0k = Rijkyj = K(gikF 2 − yiyk).

Hence, along the geodesic c ∈ Ω, we get

R2(X, ċ)ċ = K{‖ċ‖2X − g(X, ċ)ċ}.

This equality is also true in the case of constant h−curvature for the Cartan
canonical connection. Following Matsumoto [Mat82] we have:
(i) If K ≤ 0, then the geodesic c has no conjugate points to x0 = c(0).
(ii) If K ≥ 0 and the geodesic c has conjugate points to x0 = c(0), then the
number of conjugate points is finite, according to the Morse index theorem for
Finsler manifolds. Moreover, in the case (ii), choosing an orthonormal frame
of vector–fields {Ei}i=1,n−1 ∈ T⊥

c Ω parallel–propagated along the geodesic c,
we can build a basis {Ui, Vi}i=1,n−1 in the set of Jacobi fields orthogonal to
ċ, defining

Ui(t) = sin(
√
Kvt)Ei, and Vi(t) = cos(

√
Kvt)Ei,

where v = ‖ċ‖ = const. In conclusion, the distance between two consecutive
conjugate points is π/

√
K. In these conditions we can prove the following

theorem [UN99]: Let (M,F ) be a Finsler space, as above, and let c = cp ∈ Ω
be a global extremum point for the p−energy functional Ep, where p is a
number in R− {0, 1}. In these conditions we have:
(i) If p ∈ (−∞, 0), then c has conjugate points, K > 0 and[

(m(c) + 1)π√
K

]p
≤ Ep(c) ≤

[
m(c)π√
K

]p
,

where m(c) is the maximal number of conjugate points to x0 = c(0) along the
geodesic c.
(ii) If p ∈ (0, 1), then c has conjugate points, K > 0 and[

m(c)π√
K

]p
≤ Ep(c) ≤

[
(m(c) + 1)π√

K

]p
.
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(iii) If p ∈ (1,∞), then c is a minimal geodesic (i.e., it minimizes the length
functional). If we denote m = sup{m(c) | c ∈ Ω, c−geodesic} ∈ N , we get
the following corollary: If there is c ∈ Ω a global extremum point for the
p−energy functional Ep, where p ∈ (−∞, 0) ∪ (0, 1), we must have m < ∞
and m(c) = m.

For example, in the case of Riemannian unit sphere Sn ⊂ Rn+1, n ≥ 2,
it is well known that the geodesics are precisely the great circles, that is the
intersections of Sn with the hyperplanes trough the center of Sn. Moreover,
two arbitrary points on Sn are conjugate along a geodesic γ if they are an-
tipodal points. In these conditions, for any two points x0 and x1 on the sphere
Sn, there is no geodesic trough these points which has a finite maximal num-
ber of conjugate points, because we can surround the sphere infinite times.
Hence, for the unit sphere Sn, we have m = ∞. In conclusion, in the case
p ∈ (−∞, 0) ∪ (0, 1), the p−energy functional on the sphere has no global
extremum points [UN99].

1.2.11 Symplectic Manifolds

Symplectic Algebra

Symplectic algebra works in the category of symplectic vector spaces Vi and
linear symplectic mappings t ∈ L(Vi, Vj) [Put93].

Let V be a nD real vector space and L2(V,R) the space of all bilinear maps
from V × V to R. We say that a bilinear map ω ∈ L2(V,R) is nondegenerate,
i.e., if ω(v1, v2) = 0 for all v2 ∈ V implies v1 = 0.

If {e1, ..., en} is a basis of V and {e1, ..., en} is the dual basis, ωij = ω(ei, ej)
is the matrix of ω. A bilinear map ω ∈ L2(V,R) is nondegenerate iff its matrix
ωij is nonsingular. The transpose ωt of ω is defined by ωt(ei, ej) = ω(ej , ei).
ω is symmetric if ωt = ω, and skew–symmetric if ωt = −ω.

Let A2(V ) denote the space of skew–symmetric bilinear maps on V . An
element ω ∈ A2(V ) is called a 2−form on V . If ω ∈ A2(V ) is nondegenerate

then in the basis {e1, ..., en} its matrix ω(ei, ej) has the form J =
(

0 In

−In 0

)
.

A symplectic form on a real vector space V of dimension 2n is a nondegen-
erate 2−form ω ∈ A2(V ). The pair (V, ω) is called a symplectic vector space. If
(V1, ω1) and (V2, ω2) are symplectic vector spaces, a linear map t ∈ L(V1, V2)
is a symplectomorphism (i.e., a symplectic mapping) iff t∗ω2 = ω1. If (V, ω)
is a symplectic vector space, we have an orientation Ωω on V given by

Ωω =
(−1)

n(n−1)
2

n!
ωn.

Let (V, ω) be a 2nD symplectic vector space and t ∈ L(V, V ) a symplecto-
morphism. Then t is volume preserving, i.e., t∗(Ωω) = Ωω, and detΩω

(t) = 1.
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The set of all symplectomorphisms t : V → V of a 2nD symplectic vector
space (V, ω) forms a group under composition, called the symplectic group,
denoted by Sp(V, ω).

In matrix notation, there is a basis of V in which the matrix of ω is

J =
(

0 In

−In 0

)
, such that J−1 = J t = −J , and J2 = −I. For t ∈ L(V, V )

with matrix T = [T ij ] relative to this basis, the condition t ∈ Sp(V, ω), i.e.,
t∗ω = ω, becomes

T tJT = J.

In general, by definition a matrix A ∈M2n×2n(R) is symplectic iff AtJA = J .
Let (V, ω) be a symplectic vector space, t ∈ Sp(V, ω) and λ ∈ C an eigen-

value of t. Then λ−1, λ̄ and λ̄−1 are eigenvalues of t.

Symplectic Geometry

Symplectic geometry is a globalization of symplectic algebra [Put93]; it works
in the category Symplec of symplectic manifolds M and symplectic diffeo-
morphisms f . The phase–space of a conservative dynamical system is a sym-
plectic manifold, and its time evolution is a one–parameter family of symplec-
tic diffeomorphisms.

A symplectic form or a symplectic structure on a smooth (i.e., C∞) man-
ifold M is a nondegenerate closed 2−form ω on M , i.e., for each x ∈M ω(x)
is nondegenerate, and dω = 0. A symplectic manifold is a pair (M,ω) where
M is a smooth 2nD manifold and ω is a symplectic form on it. If (M1, ω1)
and (M2, ω2) are symplectic manifolds then a smooth map f : M1 → M2 is
called symplectic map or canonical transformation if f∗ω2 = ω1.

For example, any symplectic vector space (V, ω) is also a symplectic man-
ifold; the requirement dω = 0 is automatically satisfied since ω is a constant
map. Also, any orientable, compact surface Σ is a symplectic manifold; any
nonvanishing 2−form (volume element) ω on Σ is a symplectic form on Σ.

If (M,ω) is a symplectic manifold then it is orientable with the standard
volume form

Ωω =
(−1)

n(n−1)
2

n!
ωn,

If f :M →M is a symplectic map, then f is volume preserving, detΩω
(f) = 1

and f is a local diffeomorphism.
In general, if (M,ω) is a 2nD compact symplectic manifold then ωn is a

volume element on M , so the de Rham cohomology class [ωn] ∈ H2n(M,R) is
nonzero. Since [ωn] = [ω]n, [ω] ∈ H2(M,R) and all of its powers through the
nth must be nonzero as well. The existence of such an element ofH2(M,R) is a
necessary condition for the compact manifold to admit a symplectic structure.

However, if M is a 2nD compact manifold without boundary, then there
does not exist any exact symplectic structure, ω = dθ on M , as its total
volume is zero (by Stokes’ theorem),
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M

Ωω =
(−1)

n(n−1)
2

n!

∫
M

ωn =
(−1)

n(n−1)
2

n!

∫
M

d(θ ∧ ωn−1) = 0.

For example, spheres S2n do not admit a symplectic structure for n ≥ 2, since
the second de Rham group vanishes, i.e., H2(S2n,R) = 0. This argument
applies to any compact manifold without boundary and havingH2(M,R) = 0.

In mechanics, the phase–space is the cotangent bundle T ∗M of a config-
uration space M . There is a natural symplectic structure on T ∗M that is
usually defined as follows. Let M be a smooth nD manifold and pick local
coordinates {dq1, ..., dqn}. Then {dq1, ..., dqn} defines a basis of the tangent
space T ∗

qM , and by writing θ ∈ T ∗
qM as θ = pidq

i we get local coordinates
{q1, ..., qn, p1, ..., pn} on T ∗M . Define the canonical symplectic form ω on T ∗M
by

ω = dpi ∧ dqi.

This 2−form ω is obviously independent of the choice of coordinates {q1, ..., qn}
and independent of the base point {q1, ..., qn, p1, ..., pn} ∈ T ∗

qM ; therefore, it
is locally constant, and so dω = 0.

The canonical 1−form θ on T ∗M is the unique 1−form with the property
that, for any 1−form β which is a section of T ∗M we have β∗θ = θ.

Let f : M → M be a diffeomorphism. Then T ∗f preserves the canonical
1−form θ on T ∗M , i.e., (T ∗f)∗θ = θ. Thus T ∗f is symplectic diffeomorphism.

If (M,ω) is a 2nD symplectic manifold then about each point x ∈M there
are local coordinates {q1, ..., qn, p1, ..., pn} such that ω = dpi ∧ dqi. These
coordinates are called canonical or symplectic. By the Darboux theorem, ω is
constant in this local chart, i.e., dω = 0.

Momentum Map and Symplectic Reduction

Let (M,ω) be a connected symplectic manifold and φ : G × M → M a
symplectic action of the Lie group G on M , that is, for each g ∈ G the map
φg : M → M is a symplectic diffeomorphism. If for each ξ ∈ g there exists a
globally defined function Ĵ(ξ) :M → R such that ξM = XĴ(ξ), then the map
J :M → g∗, given by

J : x ∈M �→ J(x) ∈ g∗, J(x)(ξ) = Ĵ(ξ)(x)

is called the momentum map for φ [MR99, Put93].
Since φ is symplectic, φexp(tξ) is a one parameter family of canonical trans-

formations, i.e., φ∗exp(tξ)ω = ω, hence ξM is locally Hamiltonian and not gen-
erally Hamiltonian. That is why not every symplectic action has a momentum
map. φ : G×M → M is Hamiltonian iff Ĵ : g → C∞ (M,R) is a Lie algebra
homomorphism.

Let H :M → R be G−-invariant, that is H
(
φg(x)

)
= H(x) for all x ∈M

and g ∈ G. Then Ĵ(ξ) is a constant of motion for dynamics generated by H.
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Let φ be a symplectic action of G on (M,ω) with the momentum map J .
Suppose H : M → R is G−-invariant under this action. Then the Noether’s
theorem states that J is a constant of motion of H, i.e., J ◦ φt = J , where φt
is the flow of XH .

A Hamiltonian action is a symplectic action with an Ad∗–equivariant mo-
mentum map J , i.e.,

J
(
φg(x)

)
= Ad∗g−1 (J(x)) ,

for all x ∈M and g ∈ G.
Let φ be a symplectic action of a Lie group G on (M,ω). Assume that

the symplectic form ω on M is exact, i.e., ω = dθ, and that the action φ of
G on M leaves the one form θ ∈ M invariant. Then J : M → g∗ given by
(J(x)) (ξ) =

(
iξM
θ
)
(x) is an Ad∗–equivariant momentum map of the action.

In particular, in the case of the cotangent bundle (M = T ∗M, ω = dθ)
of a mechanical configuration manifold M , we can lift up an action φ of a
Lie group G on M to get an action of G on T ∗M. To perform this lift, let
G act on M by transformations φg : M → M and define the lifted action to
the cotangent bundle by (φg)∗ : T ∗M → T ∗M by pushing forward one forms,
(φg)∗(α) · v = α

(
Tφ−1

g v
)
,where α ∈ T ∗

qM and v ∈ Tφg(q)M . The lifted action
(φg)∗ preserves the canonical one form θ on T ∗M and the momentum map
for (φg)∗ is given by

J : T ∗M → g∗, J (αq) (ξ) = αq (ξM (q)) .

For example, let M = Rn, G = Rn and let G act on Rn by translations:

φ : (t, q) ∈ Rn × Rn �→ t+ q ∈ Rn.

Then g = Rn and for each ξ ∈ g we have ξRn(q) = ξ.
In case of the group of rotations in R3, M = R3, G = SO(3) and let

G act on R3 by φ(A, q) = A · q. Then g  R3 and for each ξ ∈ g we have
ξR3(q) = ξ × q.

Let G act transitively on (M,ω) by a Hamiltonian action. Then J(M) =
{Ad∗g−1 (J(x)) |g ∈ G} is a coadjoint orbit.

Now, let (M,ω) be a symplectic manifold, G a Lie group and φ : G×M →
M a Hamiltonian action of G onM with Ad∗–equivariant momentum map J :
M → g∗. Let µ ∈ g∗ be a regular value of J ; then J−1(µ) is a submanifold of
M such that dim

(
J−1(µ)

)
= dim (M)−dim (G). Let Gµ = {g ∈ G|Ad∗gµ = µ}

be the isotropy subgroup of µ for the coadjoint action. By Ad∗–equivariance, if
x ∈ J−1(µ) then φg(x) = J−1(µ) for all g ∈ G, i.e., J−1(µ) is invariant under
the induced Gµ–action and we can form the quotient spaceMµ = J−1(µ)/Gµ,
called the reduced phase–space at µ ∈ g∗.

Let (M,ω) be a symplectic 2nD manifold and let f1, ..., fk be k functions
in involution, i.e., {fi, fj}ω = 0, i = 1, ..., k. Because the flow of Xfi and Xfj

commute, we can use them to define a symplectic action of G = Rk on M .
Here µ ∈ Rk is in the range space of f1 × ...× fk and J = f1 × ...× fk is the
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momentum map of this action. Assume that {df1, ..., dfk} are independent at
each point, so µ is a regular value for J . Since G is Abelian, Gµ = G so we
get a symplectic manifold J−1(µ)/G of dimension 2n− 2k. If k = n we have
integrable systems.

For example, let G = SO(3) and (M,ω) =
(
R6,

∑3
i=1 dpi ∧ dqi

)
, and the

action of G on R6 is given by φ : (R, (q, p)) �→ (Rq, Rp). Then the momentum
map is the well known angular momentum and for each µ ∈ g∗  R3µ �= 0,
Gµ  S1 and the reduced phase–space (Mµ, ωµ) is (T ∗R, ω = dpi ∧ dqi), so
that dim (Mµ) = dim (M)−dim (G)−dim (Gµ). This reduction is in celestial
mechanics called by Jacobi ’the elimination of the nodes’.

The equations of motion: ḟ = {f,H}ω on M reduce to the equations of
motion: ḟµ = {fµ, Hµ}ωµon Mµ (see [MR99]).

Multisymplectic Geometry

Multisymplectic geometry constitutes the general framework for a geometri-
cal, covariant formulation of classical field theory. Here, covariant formula-
tion means that space–like and time–like directions on a given space–time be
treated on equal footing. With this principle, one can construct a covariant
form of the Legendre transformation which associates to every field variable
as many conjugated momenta, the multimomenta, as there are space–time
dimensions. These, together with the field variables, those of nD space–time,
and an extra variable, the energy variable, span the multiphase–space [KS76].
For a recent exposition on the differential geometry of this construction, see
[Got91a]. Multiphase–space, together with a closed, nondegenerate differen-
tial (n + 1)−form, the multisymplectic form, is an example of a multisym-
plectic manifold. Among the achievements of the multisymplectic approach is
a geometrical formulation of the relation of infinitesimal symmetries and co-
variantly conserved quantities (Noether’s theorem), see [LMD04] for a recent
review, and [GM92, FR04] for a clarification of the improvement techniques
(‘Belinfante–Rosenfeld formula’) of the energy–momentum tensor in classical
field theory. Multisymplectic geometry also gives convenient sets of variational
integrators for the numerical study of partial differential equations [MPS98].

Since in multisymplectic geometry, the symplectic two–form of classical
mechanics is replaced by a closed differential form of higher tensor degree,
multivector–fields and differential forms have their natural appearance. (See
[PR02] for an interpretation of multivector–fields as describing solutions to
field equations infinitesimally.) Multivector–fields form a graded Lie algebra
with the Schouten bracket (see [Kos04] for a review and unified viewpoint).
Using the multisymplectic (n+ 1)−form, one can construct a new bracket for
the differential forms, the Poisson forms [FPR04], generalizing a well–known
formula for the Poisson brackets related to a symplectic two–form. A remark-
able fact is that in order to establish a Jacobi identity, the multisymplectic
form has to have a potential, a condition that is not seen in symplectic geom-
etry. Further, the admissible differential forms, the Poisson forms, are subject
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to the rather strong restrictions on their dependence on the multimomentum
variables [Got91b]. In particular, (n−1)−forms in this context can be shown to
arise exactly from the covariantly conserved currents of Noether symmetries,
which allows their pairing with space–like hypersurfaces to yield conserved
charges in a geometrical way.

The Hamiltonian, infinite dimensional formulation of classical field theory
requires the choice of a space–like hypersurface (‘Cauchy surface’), which man-
ifestly breaks the general covariance of the theory at hand. For (n−1)−forms,
the above new bracket reduces to the Peierls–deWitt bracket after integration
over the space–like hypersurface [GN80]. With the choice of a hypersurface,
a constraint analysis a‘la Dirac [HT92, GIM04] can be performed [Lan95].
Again, the necessary breaking of general covariance raises the need for an
alternative formulation of all this [MW74]; first attempts have been made
to carry out a Marsden–Weinstein reduction [MRS04] for multisymplectic
manifolds with symmetries. However, not very much is known about how to
quantize a multisymplectic geometry, see [BS04] for an approach using a path
integral.

So far, everything was valid for field theories of first–order, i.e., where the
Lagrangian depends on the fields and their first derivatives. Higher order the-
ories can be reduced to first–order ones for the price of introducing auxiliary
fields. A direct treatment would involve higher order jet bundles [Sau89]. A
definition of the covariant Legendre transform and the multiphase–space has
been given for this case [Got91a].

1.2.12 Complex and Kähler Manifolds

Just as a smooth manifold has enough structure to define the notion of differ-
entiable functions, a complex manifold is one with enough structure to define
the notion of holomorphic (or, analytic) functions f : X → C. Namely, if we
demand that the transition functions φj ◦ φ−1

i in the charts Ui on M (see
Figure 1.5) satisfy the Cauchy–Riemann equations

∂xu = ∂yv, ∂yu = −∂xv,

then the analytic properties of f can be studied using its coordinate repre-
sentative f ◦ φ−1

i with assurance that the conclusions drawn are patch inde-
pendent. Introducing local complex coordinates in the charts Ui on M , the φi
can be expressed as maps from Ui to an open set in C

n
2 , with φj ◦ φ−1

i being
a holomorphic map from C

n
2 to C

n
2 . Clearly, n must be even for this to make

sense. In local complex coordinates, we recall that a function h : C
n
2 → C

n
2 is

holomorphic if h(z1, z̄1, ..., z
n
2 , z̄

n
2 ) is actually independent of all the z̄j .

In a given patch on any even–dimensional manifold, we can always in-
troduce local complex coordinates by, for instance, forming the combinations
zj = xj+ix

n
2 +j , where the xj are local real coordinates onM . The real test is

whether the transition functions from one patch to another — when expressed
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in terms of the local complex coordinates — are holomorphic maps. If they
are, we say that M is a complex manifold of complex dimension d = n/2. The
local complex coordinates with holomorphic transition functions giveM with
a complex structure (see [Gre96]).

Fig. 1.5. The charts for a complex manifold M have the complex coordinates.

Given a smooth manifold with even real dimension n, it can be a difficult
question to determine whether or not a complex structure exists. On the other
hand, if some smooth manifoldM does admit a complex structure, we are not
able to decide whether it is unique, i.e., there may be numerous inequivalent
ways of defining complex coordinates on M .

Now, in the same way as a homeomorphism defines an equivalence between
topological manifolds, and a diffeomorphism defines an equivalence between
smooth manifolds, a biholomorphism defines an equivalence between complex
manifolds. IfM and N are complex manifolds, we consider them to be equiva-
lent if there is a map φ :M → N which in addition to being a diffeomorphism,
is also a holomorphic map. That is, when expressed in terms of the complex
structures on M and N respectively, φ is holomorphic. It is not hard to show
that this necessarily implies that φ−1 is holomorphic as well and hence φ is
known as a biholomorphism. Such a map allows us to identify the complex
structures on M and N and hence they are isomorphic as complex manifolds.

These definitions are important because there are pairs of smooth mani-
folds M and N which are homeomorphic but not diffeomorphic, as well as,
there are complex manifolds M and N which are diffeomorphic but not bi-
holomorphic. This means that if one simply ignored the fact that M and N
admit local complex coordinates (with holomorphic transition functions), and
one only worked in real coordinates, there would be no distinction between
M and N . The difference between them only arises from the way in which
complex coordinates have been laid down upon them.

Again, recall that a tangent space to a manifoldM at a point p is the closest
flat approximation to M at that point. A convenient basis for the tangent
space of M at p consists of the n linearly independent partial derivatives,
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TpM : {∂x1 |p, ..., ∂xn |p}. (1.97)

A vector v ∈ TpM can then be expressed as v = vα∂xα |p.
Also, a convenient basis for the dual, cotangent space T ∗

pM , is the basis of
one–forms, which is dual to (1.97) and usually denoted by

T ∗
pM : {dx1|p, ..., dxn|p}, (1.98)

where, by definition, dxi : TpM → R is a linear map with dxip(∂xj |p) = δij .
Now, ifM is a complex manifold of complex dimension d = n/2, there is a

notion of the complexified tangent space ofM , denoted by TpMC, which is the
same as the real tangent space TpM except that we allow complex coefficients
to be used in the vector space manipulations. This is often denoted by writing
TpM

C = TpM ⊗ C. We can still take our basis to be as in (1.97) with an
arbitrary vector v ∈ TpMC being expressed as v = vα ∂

∂xα |p, where the vα

can now be complex numbers. In fact, it is convenient to rearrange the basis
vectors in (1.97) to more directly reflect the underlying complex structure.
Specifically, we take the following linear combinations of basis vectors in (1.97)
to be our new basis vectors:

TpM
C : {(∂x1 + i∂xd+1)|p, ..., (1.99)
(∂xd + i∂x2d)|p, (∂x1 − i∂xd+1)|p, ..., (∂xd − i∂x2d)|p}.

In terms of complex coordinates we can write the basis (1.99) as

TpM
C : {∂z1 |p, ..., ∂zd |p, ∂z̄1 |p, ..., ∂z̄d |p}.

From the point of view of real vector spaces, ∂xj |p and i∂xj |p would be con-
sidered linearly independent and hence TpMC has real dimension 4d.

In exact analogy with the real case, we can define the dual to TpMC, which
we denote by T ∗

pM
C = T ∗

pM ⊗ C, with the one–forms basis

T ∗
pM

C : {dz1|p, ..., dzd|p, dz̄1|p, ..., dz̄d|p}.

For certain types of complex manifolds M , it is worthwhile to refine the def-
inition of the complexified tangent and cotangent spaces, which pulls apart
the holomorphic and anti–holomorphic directions in each of these two vector
spaces. That is, we can write

TpM
C = TpM (1,0) ⊕ TpM (0,1),

where TpM (1,0) is the vector space spanned by {∂z1 |p, ..., ∂zd |p} and TpM (0,1)

is the vector space spanned by {∂z̄1 |p, ..., ∂z̄d |p}. Similarly, we can write

T ∗
pM

C = T ∗
pM

(1,0) ⊕ T ∗
pM

(0,1),

where T ∗
pM

(1,0) is the vector space spanned by {dz1|p, ..., dzd|p} and T ∗
pM

(0,1)

is the vector space spanned by {dz̄1|p, ..., dz̄d|p}. We call TpM (1,0) the holo-
morphic tangent space; it has complex dimension d and we call T ∗

pM
1,0 the
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holomorphic cotangent space. It also has complex dimension d. Their com-
plements are known as the anti–holomorphic tangent and cotangent spaces
respectively [Gre96].

Now, a complex vector bundle is a vector bundle π : E → M whose fiber
bundle π−1(x) is a complex vector space. It is not necessarily a complex man-
ifold, even if its base manifold M is a complex manifold. If a complex vector
bundle also has the structure of a complex manifold, and is holomorphic, then
it is called a holomorphic vector bundle.

A Hermitian metric on a complex vector bundle assigns a Hermitian inner
product to every fiber bundle. The basic example is the trivial bundle π :
U×C2 → U , where U is an open set in Rn. Then a positive definite Hermitian
matrix H defines a Hermitian metric by

〈v, w〉 = vTHw̄,

where w̄ is the complex conjugate of w. By a partition of unity, any complex
vector bundle has a Hermitian metric.

In the special case of a complex manifold, the complexified tangent bundle
TM⊗C may have a Hermitian metric, in which case its real part is a Rieman-
nian metric and its imaginary part is a nondegenerate alternating multilinear
form ω. When ω is closed, i.e., in this case a symplectic form, then ω is called
the Kähler form.

On a holomorphic vector bundle with a Hermitian metric h, there is a
unique connection compatible with h and the complex structure. Namely, it
must be ∇ = ∂ + ∂̄.

A Kähler structure on a complex manifold M combines a Riemannian
metric on the underlying real manifold with the complex structure. Such a
structure brings together geometry and complex analysis, and the main ex-
amples come from algebraic geometry. When M has n complex dimensions,
then it has 2n real dimensions. A Kähler structure is related to the unitary
group U(n), which embeds in SO(2n) as the orthogonal matrices that preserve
the almost complex structure (multiplication by i). In a coordinate chart, the
complex structure of M defines a multiplication by i and the metric defines
orthogonality for tangent vectors. On a Kähler manifold , these two notions
(and their derivatives) are related.

A Kähler manifold is a complex manifold for which the exterior deriva-
tive of the fundamental form ω associated with the given Hermitian metric
vanishes, so dω = 0. In other words, it is a complex manifold with a Kähler
structure. It has a Kähler form, so it is also a symplectic manifold. It has a
Kähler metric, so it is also a Riemannian manifold.

The simplest example of a Kähler manifold is a Riemann surface, which
is a complex manifold of dimension 1. In this case, the imaginary part of any
Hermitian metric must be a closed form since all 2−forms are closed on a real
2D manifold.

A Kähler form is a closed two–form ω on a complex manifold M which is
also the negative imaginary part of a Hermitian metric h = g − iw is called a
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Kähler form. In this case,M is called a Kähler manifold and g, the real part of
the Hermitian metric, is called a Kähler metric. The Kähler form combines the
metric and the complex structure, g(X,Y ) = ω(X, JY ),where J is the almost
complex structure induced by multiplication by i. Since the Kähler form comes
from a Hermitian metric, it is preserved by J , since h(X,Y ) = h(JX, JY ).
The equation dω = 0 implies that the metric and the complex structure are
related. It gives M a Kähler structure, and has many implications.

On C2, the Kähler form can be written as

ω = −1
2
i
(
dz1 ∧ dz1 + dz2 ∧ dz2

)
= dx1 ∧ dy1 + dx2 ∧ dy2,

where zn = xn+yn. In general, the Kähler form can be written in coordinates

ω = gij dzi ∧ dzj ,

where gij is a Hermitian metric, the real part of which is the Kähler metric.
Locally, a Kähler form can be written as ∂∂̄f , where f is a function called a
Kähler potential. The Kähler form is a real (1, 1)−complex form. The Kähler
potential is a real–valued function f on a Kähler manifold for which the Kähler
form ω can be written as ω = i∂∂̄f , where,

∂ = ∂zk
dzk and ∂̄ = ∂z̄k

dz̄k.

Since the Kähler form ω is closed, it represents a cohomology class in the
de Rham cohomology . On a compact manifold, it cannot be exact because
ωn/n! �= 0 is the volume form determined by the metric. In the special case
of a projective variety, the Kähler form represents an integral cohomology
class. That is, it integrates to an integer on any 1D submanifold, i.e., an
algebraic curve. The Kodaira embedding theorem says that if the Kähler form
represents an integral cohomology class on a compact manifold, then it must
be a projective variety. There exist Kähler forms which are not projective
algebraic, but it is an open question whether or not any Kähler manifold can
be deformed to a projective variety (in the compact case).

A Kähler form satisfies Wirtinger’s inequality,

|ω(X,Y )| ≤ |X ∧ Y | ,

where the r.h.s is the volume of the parallelogram formed by the tangent
vectors X and Y . Corresponding inequalities hold for the exterior powers of
ω. Equality holds iff X and Y form a complex subspace. Therefore, there is
a calibration form, and the complex submanifolds of a Kähler manifold are
calibrated submanifolds. In particular, the complex submanifolds are locally
volume minimizing in a Kähler manifold. For example, the graph of a holo-
morphic function is a locally area–minimizing surface in C2 = R4.

Kähler identities is a collection of identities which hold on a Kähler mani-
fold, also called the Hodge identities. Let ω be a Kähler form, d = ∂+ ∂̄ be the
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exterior derivative, [A,B] = AB −BA be the commutator of two differential
operators, and A∗ denote the formal adjoint of A. The following operators
also act on differential forms α on a Kähler manifold:

L(α) = α ∧ ω, Λ(α) = L∗(α) = αω, dc = −JdJ,

where J is the almost complex structure, J = −I, and  denotes the interior
product. Then we have

[L, ∂̄] = [L, ∂] = 0, [Λ, ∂̄∗] = [Λ, ∂∗] = 0,
[L, ∂̄∗] = −i∂, [L, ∂∗] = i∂̄, [Λ, ∂̄] = −i∂∗, [Λ, ∂] = −i∂̄.

These identities have many implications. For example, the two operators

∆d = dd∗ + d∗d and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

(called Laplacians because they are elliptic operators) satisfy

∆d = 2∆∂̄ .

At this point, assume that M is also a compact manifold. Along with Hodge’s
theorem, this equality of Laplacians proves the Hodge decomposition. The op-
erators L and Λ commute with these Laplacians. By Hodge’s theorem, they act
on cohomology, which is represented by harmonic forms. Moreover, defining

H = [L,Λ] =
∑

(p+ q − n)Πp,q,

where Πp,q is projection onto the (p, q)−Dolbeault cohomology, they satisfy

[L,Λ] = H, [H,L] = −2L, [H,Λ] = 2L.

In other words, these operators give a group representation of the special
linear Lie algebra sl2(C) on the complex cohomology of a compact Kähler
manifold (Lefschetz theorem).

Dolbeault Cohomology and Hodge Numbers

A generalization of the real–valued de Rham cohomology to complex mani-
folds is called the Dolbeault cohomology . On complex mD manifolds, we have
local coordinates zi and z̄i. One can now study (p, q)−forms, which are forms
containing p factors of dzi and q factors of dz̄j :

ω = ωi1...ip,j1...jq (z, z̄) dz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

Moreover, one can introduce two exterior derivative operators ∂ and ∂̄,
where ∂ is defined by

∂ω ≡
∂ωi1...ip,j1...jq

∂zk
dzk ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,
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and ∂̄ is defined similarly by differentiating with respect to z̄k and adding
a factor of dz̄k. Again, both of these operators square to zero. We can now
construct two cohomologies – one for each of these operators – but as we
will see, in the cases that we are interested in, the information contained in
them is the same. Conventionally, one uses the cohomology defined by the
∂̄−operator.

For complex manifolds, the Hodge theorem also holds: each cohomology
class Hp,q(M) contains a unique harmonic form. Here, a harmonic form ωh
is a form for which the complex Laplacian

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

has a zero eigenvalue: ∆∂̄ωh = 0. In general, this operator does not equal the
ordinary Laplacian, but one can prove that in the case where M is a Kähler
manifold,

∆ = 2∆∂̄ = 2∆∂ .

In other words, on a Kähler manifold the notion of a harmonic form is the
same, independently of which exterior derivative one uses. As a first conse-
quence, we find that the vector spaces Hp,q∂ (M) and Hp,q

∂̄
(M) both equal the

vector space of harmonic (p, q)−forms, so the two cohomologies are indeed
equal. Moreover, every (p, q)−form is a (p + q)−form in the de Rham coho-
mology, and by the above result we see that a harmonic (p, q)−form can also
be viewed as a de Rham harmonic (p + q)−form. Conversely, any de Rham
p−form can be written as a sum of Dolbeault forms:

ωp = ωp,0 + ωp−1,1 + . . .+ ω0,p. (1.100)

Acting on this with the Laplacian, one sees that for a harmonic p−form,

∆ωp = ∆∂̄ωp = ∆∂̄ωp,0 +∆∂̄ωp−1,1 + . . .+∆∂̄ω0,p = 0.

Since∆∂̄ does not change the degree of a form,∆∂̄ωp1,p2 is also a (p1, p2)−form.
Therefore, the r.h.s. can only vanish if each term vanishes separately, so all the
terms on the r.h.s. of (1.100) must be harmonic forms. Summarizing, we have
shown that the vector space of harmonic de Rham p−forms is a direct sum
of the vector spaces of harmonic Dolbeault (p1, p2)−forms with p1 + p2 = p.
Since the harmonic forms represent the cohomology classes in a 1–1 way, we
find the important result that for Kähler manifolds,

Hp(M) = Hp,0(M)⊕Hp−1,1(M)⊕ · · · ⊕H0,p(M).

That is, the Dolbeault cohomology can be viewed as a refinement of the de
Rham cohomology. In particular, we have

bp = hp,0 + hp−1,1 + . . .+ h0,p,

where hp,q = dimHp,q(M) are called the Hodge numbers of M .



1.2 Smooth Manifolds 115

The Hodge numbers of a Kähler manifold give us several topological in-
variants, but not all of them are independent. In particular, the following two
relations hold:

hp,q = hq,p, hp,q = hm−p,m−q. (1.101)

The first relation immediately follows if we realize that ω �→ ω maps
∂−harmonic (p, q)−forms to ∂̄−harmonic (q, p)−forms, and hence can be
viewed as an invertible map between the two respective cohomologies. As we
have seen, the ∂−cohomology and the ∂̄−cohomology coincide on a Kähler
manifold, so the first of the above two equations follows.

The second relation can be proved using the map

(α, ω) �→
∫
M

α ∧ ω

from Hp,q×Hm−p,m−q to C. It can be shown that this map is nondegenerate,
and hence that Hp,q and Hm−p,m−q can be viewed as dual vector spaces. In
particular, it follows that these vector spaces have the same dimension, which
is the statement in the second line of (1.101).

Note that the last argument also holds for de Rham cohomology, in which
case we find the relation bp = bn−p between the Betti numbers. We also
know that Hn−p(M) is dual to Hn−p(M), so combining these statements we
find an identification between the vector spaces Hp(M) and Hn−p(M). Recall
that this identification between p−form cohomology classes and (n−p)−cycle
homology classes represents the Poincaré duality . Intuitively, take a certain
(n − p)−cycle Σ representing a homology class in Hn−p. One can now try
to define a ‘delta function’ δ(Σ) which is localized on this cycle. Locally, Σ
can be parameterized by setting p coordinates equal to zero, so δ(Σ) is a ‘pD
delta function’ – that is, it is an object which is naturally integrated over
pD submanifolds: a p−form. This intuition can be made precise, and one can
indeed view the cohomology class of the resulting ‘delta–function’ p−form as
the Poincar é dual to Σ.

Going back to the relations (1.101), we see that the Hodge numbers of a
Kähler manifold can be nicely written in a so–called Hodge–diamond form:

h0,0

h1,0 h0,1

... . . .
hm,0 · · · h0,m

. . . ...
hm,m−1 hm−1,m

hm,m

The integers in this diamond are symmetrical under the reflection in its hori-
zontal and vertical axes.
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1.2.13 Conformal Killing–Riemannian Geometry

In this subsection we present some basic facts from conformal Killing–
Riemannian geometry . In mechanics it is well–known that symmetries of La-
grangian or Hamiltonian result in conservation laws, that are used to deduce
constants of motion for the trajectories (geodesics) on the configuration man-
ifold M . The same constants of motion are get using geometrical language,
where a Killing vector–field is the standard tool for the description of sym-
metry [MTW73]. A Killing vector–field ξi is a vector–field on a Riemannian
manifold M with metrics g, which in coordinates xj ∈M satisfies the Killing
equation

ξi;j + ξj;i = ξ(i;j) = 0, or Lξigij = 0, (1.102)

where semicolon denotes the covariant derivative on M , the indexed bracket
denotes the tensor symmetry, and L is the Lie derivative.

The conformal Killing vector–fields are, by definition, infinitesimal con-
formal symmetries i.e., the flow of such vector–fields preserves the conformal
class of the metric. The number of linearly–independent conformal Killing
fields measures the degree of conformal symmetry of the manifold. This num-
ber is bounded by 1

2 (n+ 1)(n+ 2), where n is the dimension of the manifold.
It is the maximal one if the manifold is conformally flat [Bau00].

Now, to properly initialize our conformal geometry, recall that conformal
twistor spinor–fields ϕ were introduced by R. Penrose into physics (see [Pen67,
PR86]) as solutions of the conformally covariant twistor equation

∇SXϕ+
1
n
X ·Dϕ = 0,

for each vector–fields X on a Riemannian manifold (M, g), where D is the
Dirac operator. Each twistor spinor–field ϕ on (M, g) defines a conformal
vector–field Vϕ on M by

g(Vϕ, X) = ik+1 〈X · ϕ,ϕ〉.

Also, each twistor spinor–field ϕ that satisfies the Dirac equation on (M, g),

Dϕ = µϕ,

is called a Killing spinor–field . Each twistor spinor–field without zeros on
(M, g) can be transformed by a conformal change of the metric g into a Killing
spinor–field [Bau00].

Conformal Killing Vector–Fields and Forms on M

The space of all conformal Killing vector–fields forms the Lie algebra of the
isometry group of a Riemannian manifold (M, g) and the number of linearly
independent Killing vector–fields measures the degree of symmetry of M . It
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is known that this number is bounded from above by the dimension of the
isometry group of the standard sphere and, on compact manifolds, equality is
attained if and only if the manifold M is isometric to the standard sphere or
the real projective space. Slightly more generally one can consider conformal
vector–fields, i.e., vector–fields with a flow preserving a given conformal class
of metrics. There are several geometrical conditions which force a conformal
vector–field to be Killing [Sem02].

A natural generalization of conformal vector–fields are the conformal
Killing forms [Yan52], also called twistor forms [MS03]. These are p−forms α
satisfying for any vector–fieldX on the manifoldM the Killing–Yano equation

∇X α − 1
p+1 X  dα + 1

n−p+1 X
∗ ∧ d∗α = 0, (1.103)

where n is the dimension of the manifold (M, g), ∇ denotes the covariant
derivative of the Levi–Civita connection on M , X∗ is 1−form dual to X
and  is the operation dual to the wedge product on M . It is easy to see
that a conformal Killing 1−form is dual to a conformal vector–field. Coclosed
conformal Killing p−forms are called Killing forms. For p = 1 they are dual
to Killing vector–fields.

Let α be a Killing p−form and let γ be a geodesic on (M, g), i.e., ∇ γ̇ γ̇ =
0. Then

∇γ̇ (γ̇α) = (∇γ̇ γ̇)α + γ̇∇γ̇ α = 0,

i.e., γ̇α is a (p− 1)–form parallel along the geodesic γ and in particular its
length is constant along γ.

The l.h.s of equation (1.103) defines a first–order elliptic differential opera-
tor T , the so–caled twistor operator. Equivalently one can describe a conformal
Killing form as a form in the kernel of twistor operator T . From this point
of view conformal Killing forms are similar to Penrose’s twistor spinors in
Lorentzian spin geometry. One shared property is the conformal invariance of
the defining equation. In particular, any form which is parallel for some metric
g, and thus a Killing form for trivial reasons, induces non–parallel conformal
Killing forms for metrics conformally equivalent to g (by a non–trivial change
of the metric) [Sem02].

Conformal Killing Tensors and Laplacian Symmetry on M

In an nD Riemannian manifold (M, g), a Killing tensor–field (of order 2) is a
symmetric tensor Kab satisfying (generalizing (1.102))

K(ab;c) = 0. (1.104)

A conformal Killing tensor–field (of order 2) is a symmetric tensor Qab satis-
fying

Q(ab;c) = q(agbc), with qa = (Q,a + 2Qa;dd )/(n+ 2), (1.105)
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where comma denotes partial derivative and Q = Qdd. When the associated
conformal vector qa is nonzero, the conformal Killing tensor will be called
proper and otherwise it is a (ordinary) Killing tensor. If qa is a Killing vector,
Qab is referred to as a homothetic Killing tensor. If the associated conformal
vector qa = q,a is the gradient of some scalar field q, then Qab is called a
gradient conformal Killing tensor. For each gradient conformal Killing tensor
Qab there is an associated Killing tensor Kab given by

Kab = Qab − qgab, (1.106)

which is defined only up to the addition of a constant multiple of the inverse
metric tensor gab.

Some authors define a conformal Killing tensor as a trace–free tensor P ab

satisfying P (ab;c) = p(agbc). Note that there is no contradiction between the
two definitions: if P ab is a trace–free conformal Killing tensor then for any
scalar field λ, P ab + λgab is a conformal Killing tensor and conversely if Qab

is a conformal Killing tensor, its trace–free part Qab − 1
nQg

ab is a trace–free
Killing tensor [REB03].

Killing tensor–fields are of importance owing to their connection with
quadratic first integrals of the geodesic equations: if pa is tangent to an affinely
parameterized geodesic (i.e., pa;bp

b = 0) it is easy to see that Kabpapb is con-
stant along the geodesic. For conformal Killing tensors Qabpapb is constant
along null geodesics and here, only the trace–free part of Qab contributes to
the constants of motion. Both Killing tensors and conformal Killing tensors
are also of importance in connection with the separability of the Hamiltonian–
Jacobi equations [CH64] (as well as other PDEs).

A Killing tensor is said to be reducible if it can be written as a constant
linear combination of the metric and symmetrized products of Killing vectors,

Kab = a0gab + aIJξI(aξ|J|b), (1.107)

where ξI for I = 1 . . . N are the Killing vectors admitted by the manifold
(M, g) and a0 and aIJ for 1 ≤ I ≤ J ≤ N are constants. Generally one is
interested only in Killing tensors which are not reducible since the quadratic
constant of motion associated with a reducible Killing tensor is a constant
linear combination of papa and of pairwise products of the linear constants of
motion ξIapa [REB03].

More generally, any linear differential operator on a Riemannian manifold
(M, g) may be written in the form [EG91, Eas02]

D = V bc···d∇b∇c · · · ∇d + lower order terms,

where V bc···d is symmetric in its indices, and ∇a = ∂/∂xa (differentiation in
coordinates). This tensor is called the symbol of D. We shall write φ(ab···c) for
the symmetric part of φab···c.

Now, a conformal Killing tensor on (M, g) is a symmetric trace–free tensor
field, with s indices, satisfying
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the trace–free part of ∇(aV bc···d) = 0, (1.108)

or, equivalently,
∇(aV bc···d) = g(abT c···d), (1.109)

for some tensor field T c···d or, equivalently,

∇(aV bc···d) = s
n+2s−2g

(ab∇eV c···d)e, (1.110)

where ∇a = gab∇b (the standard convention of raising and lowering indices
with the metric tensor gab). When s = 1, these equations define a conformal
Killing vector.

M. Eastwood proved the following theorem: any symmetry D of the Lapla-
cian ∆ = ∇a∇a on a Riemannian manifold (M, g) is canonically equivalent
to one whose symbol is a conformal Killing tensor [EG91, Eas02].

1.3 Fibre Bundles

1.3.1 Intuition Behind a Fibre Bundle

Recall that tangent and cotangent bundles, TM and T ∗M , are special cases of
a more general geometrical object called fibre bundle, where the word fiber V
of a map π : Y −→ X denotes the preimage π−1(x) of an element x ∈ X. It is a
space which locally looks like a product of two spaces (similarly as a manifold
locally looks like Euclidean space), but may possess a different global structure.
To get a visual intuition behind this fundamental geometrical concept, we can
say that a fibre bundle Y is a homeomorphic generalization of a product space
X × V (see Figure 1.6), where X and V are called the base and the fibre,
respectively. π : Y → X is called the projection, Yx = π−1(x) denotes a fibre
over a point x of the base X, while the map f = π−1 : X → Y defines the
cross–section, producing the graph (x, f(x)) in the bundle Y (e.g., in case of
a tangent bundle, f = ẋ represents a velocity vector–field) (see [Ste72]).

Fig. 1.6. A sketch of a fibre bundle Y ≈ X × V as a generalization of a product
space X×V ; left – main components; right – a few details (see text for explanation).
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The main reason why we need to study fibre bundles is that all dynamical
objects (including vectors, tensors, differential forms and gauge potentials)
are their cross–sections, representing generalizations of graphs of continuous
functions.

1.3.2 Definition of a Fibre Bundle

LetM denote an n−manifold with an atlas ΨM consisting of local coordinates
xα ∈M, (α = 1, ...,dimM), given by

ΨM = {Uξ, φξ}, φξ(x) = xαeα, (for all x ∈ Uξ ⊂M),

where {eα} is a fixed basis of Rm. Its tangent and cotangent bundles, TM
and T ∗M , respectively, admit atlases of induced coordinates (xα, ẋα) and
(xα, ẋα), relative to the holonomic fibre bases {∂α} and {dxα}, respectively.
For all elements (i.e., points) p ∈ TM and p∗ ∈ T ∗M, we have (see [Sar93,
Sar95, GMS97, MS00a, Sar02a])

p = ẋα∂α, p∗ = ẋαdxα, ∂αdxα = δαα, (α = 1, ...,dimM).

Also, we will use the notation

ω = dx1 ∧ · · · ∧ dxn, ωα = ∂αω, ωµα = ∂µ∂αω. (1.111)

If f : M → M ′ is a smooth manifold map, we define the induced tangent
map Tf over f , given by

Tf : TM −→ TM ′, ẋ′
α ◦ Tf =

∂fα

∂xα
ẋα. (1.112)

Given a manifold product M×N , π1 and π2 denote the natural projections
(i.e., canonical surjections),

π1 :M ×N →M, π2 :M ×N → N.

Now, as a homeomorphic generalization of a product space, a fibre bun-
dle can be viewed either as a topological or a geometrical (i.e., coordinate)
construction. As a topological construction, a fibre bundle is a class of more
general fibrations. To have a glimpse of this construction, let I = [0, 1]. A map
π : Y → X is said to have the homotopy lifting property (HLP, see [Swi75])
with respect to a topological space Z if for every map f : Z → Y and homo-
topy H : Z × I → X of π ◦ f there is a homotopy V : Z × I → Y with f = V0

and π ◦ V = H. V is said to be a lifting of H. π is called a fibration if it has
the HLP for all spaces Z and a weak fibration if it has the HLP for all disks
Dn, (n ≥ 0). If x ∈ X is the base point, then V = π−1(x) is called the fibre
of the fibration π. The projection onto the first factor, π1 : X × V → X, is
clearly a fibration and is called the trivial fibration over X with the fibre V .

However, for the sake of applying differential and integral dynamics on
fibre bundles, we will rather use Steenrod’s coordinate bundle definition (see
[Ste72]), which defines fibre bundle Y as a sextuple (Y,X, π, V,G, ΨY ), with:
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1. a space Y called the total space, bundle space (or simply bundle),
2. a space X called the base space,
3. a surjection π : Y −→ X called the projection,
4. a space V ⊂ Y called the fibre,
5. an effective topological (or Lie) transformation group G of V called the

group of the bundle, and
6. a bundle atlas ΨY .

Some standard examples of fibre bundles include any Cartesian product
X×V → X (which is a bundle over X with fibre V ), the Möbius strip (which
is a nontrivial fibre bundle over the circle S1 with fibre given by the unit
interval I = [0, 1]; the corresponding trivial bundle is a cylinder), the Klein
bottle (which can be viewed as a ‘twisted’ circle bundle over another circle;
thus, the corresponding trivial bundle is a torus, S1 × S1), a 3–sphere S3

(which is a bundle over S2 with fibre S1; more generally, a sphere bundle is
a fiber bundle whose fiber is an n−sphere), while a covering space is a fiber
bundle whose fiber is a discrete space.

Main properties of graphs of functions f : X → V carry over to fibre
bundles. A graph of such a function, (x, f(x)), sits in the product space X×V,
or in its homeomorphic generalization bundle. A graph is always 1–1 and
projects onto the base X.

A special class of fibre bundle is the vector bundle, in which the fibre is
a vector space. Special cases of fibre bundles that we will use in dynamics of
complex systems are: vector, affine, and principal bundles.

A fibre bundle also comes with a group G action on its fibre V , so it can
also be called a G−bundle. This group action represents the different ways
the fibre V can be viewed as equivalent (e.g., the group G might be the group
of homeomorphisms (topological group) or diffeomorphisms (Lie group) of
the fibre V ; or, the group G on a vector bundle is the group of invertible
linear maps, which reflects the equivalent descriptions of a vector space using
different vector–space bases). A principal bundle is G−bundle where the fiber
can be identified with the group G itself and where there is a right action of
G on the bundle space which is fiber preserving.

Fibre bundles are not always used to generalize functions. Sometimes they
are convenient descriptions of interesting manifolds. A common example is a
torus bundle on the circle.

More specifically, a fibre bundle, or fibre bundle Y over an nD base X is
defined as a manifold surjection

π : Y → X, (1.113)

where Y admits an atlas ΨY of fibre coordinates

(xα, yi), xα → x′
α(xµ), yi → y′

i(xµ, yj), (1.114)

compatible with the fibration (1.113), i.e., such that xα are coordinates on the
base X,
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π : Y � (xα, yi) �→ xα ∈ X.
This condition is equivalent to π being a submersion, which means that its
tangent map Tπ : TY → TX is a surjection. This also implies that π is an
open map.

A fibre bundle Y → X is said to be trivial if it is equivalent to the Cartesian
product of manifolds, Y ∼= X × V , i.e., defined as π1 : X × V → X.10 A fibre
bundle over a contractible base is always trivial [Ste72].

A fibre bundle Y → X is said to be locally trivial if there exists a fibred
coordinate atlas ΨY over an open covering {π−1(Uξ)} ∈ Y of the bundle space
Y where {Uξ} ∈ X is an open covering of the base space X. In other words, all
points of the same fibre Yx = π−1(x) of a bundle Y can be covered by the same
fibred coordinate chart ψξ ∈ ΨY , so that we have the standard fibre–manifold
V for all local bundle splittings

ψξ : π−1(Uξ) → Uξ × V.

For the purpose of our general dynamics, the most important fibre bundles
are those which are at the same time smooth manifolds. A fibre bundle Y → X
is said to be smooth (C∞) if there exist a typical fibre–manifold V and an
open covering {Uξ} of X such that Y is locally diffeomorphic to the splittings

ψξ : π−1(Uξ) → Uξ × V, (1.115)

glued together by means of smooth transition functions

ρξζ = ψξ ◦ ψ−1
ζ : Uξ ∩ Uζ × V → Uξ ∩ Uζ × V (1.116)

on overlaps Uξ ∩ Uζ . It follows that fibres Yx = π−1(x), (for all x ∈ X), of
a fibre bundle are its closed imbedded submanifolds. Transition functions ρξζ
fulfil the cocycle condition

ρξζ ◦ ρζι = ρξι (1.117)

on all overlaps Uξ ∩Uζ ∩Uι. Trivialization charts (Uξ, ψξ) together with tran-
sition functions ρξζ (1.116) constitute a bundle atlas

ΨY = {(Uξ, ψξ), ρξζ} (1.118)

of a fibre bundle Y → X. Two bundle atlases are said to be equivalent if
their union is also a bundle atlas, i.e., there exist unique transition functions
between trivialization charts of different atlases. A fibre bundle Y → X is
uniquely defined by a bundle atlas, and all its atlases are equivalent. Every
smooth fibre bundle Y → X admits a bundle atlas ΨY over a finite covering
{Uξ} of X.

If Y → X is a fibre bundle, the fibre coordinates (xα, yi) ∈ Y are assumed
to be bundle coordinates associated with a bundle atlas ΨY , that is,
10 A trivial fibre bundle admits different trivializations Y ∼= X × V that differ from

each other in surjections Y → V .
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yi(y) = (vi ◦ π2 ◦ ψξ)(y), (π(y) ∈ Uξ ⊂ X), (1.119)

where vi ∈ V ⊂ Y are coordinates of the standard fibre V of Y .
Maps of fibre bundles (or, bundle maps), by definition, preserve their fi-

brations, i.e., send a fibre to a fibre. Namely, a bundle map of a fibre bundle
π : Y → X to a fibre bundle π′ : Y ′ → X ′ is defined as a pair (Φ, f) of
manifold maps such that the following diagram commutes

X X ′�
f

Y Y ′�Φ

�

π

�
π′

i.e., Φ is a fibrewise map over f which sends a fibre Yx, (for all x ∈ X), to a
fibre Y ′

f(x), (for all f(x) ∈ X ′). A bundle diffeomorphism is called an auto-
morphism if it is an isomorphism to itself. In field theory, any automorphism
of a fibre bundle is treated as a gauge transformation.

Given a bundle Y → X, every map f : X ′ → X induces a bundle Y ′ = f∗Y
over X ′ which is called the pull–back of the bundle Y by f , such that the
following diagram commutes

X X ′�
f

Y Y ′� f∗

�

π

�
π′

In particular, the product Y ×Y ′ over X of bundles π : Y → X and π′ : Y ′ →
X is the pull–back

Y × Y ′ = π∗Y ′ = π′∗Y.

Classical fields are described by sections of fibre bundles. A (global) section
of a fibre bundle Y → X is defined as a π−inverse manifold injection s : X →
Y, s(x) �→ Yx, such that π ◦ s = IdX . That is, a section s sends any point
x ∈ X into the fibre Yx ⊂ Y over this point. A section s is an imbedding,
i.e., s(X) ⊂ Y is both a submanifold and a topological subspace of Y . It is
also a closed map, which sends closed subsets of X onto closed subsets of
Y . Similarly, a section of a fibre bundle Y → X over a submanifold of X is
defined. Given a bundle atlas ΨY and associated bundle coordinates (xα, yi),
a section s of a fibre bundle Y → X is represented by collections of local
functions {si = yi ◦ ψξ ◦ s} on trivialization sets Uξ ⊂ X.

A fibre bundle Y → X whose typical fibre is diffeomorphic to an Euclidean
space Rm has a global section. More generally, its section over a closed imbed-
ded submanifold (e.g., a point) of X is extended to a global section [Ste72].
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In contrast, by a local section is usually meant a section over an open
subset of the base X. A fibre bundle admits a local section around each point
of its base, but need not have a global section.

For any n ≥ 1 the normal bundle NSn of the n−sphere Sn is the fibre
bundle (Sn, p′, E′,R1), where E′ = {(x, y) ∈ Rn+1 × Rn+1 : ‖x‖ = 1, y =
λx, λ ∈ R1} and p′ : E′ → Sn is defined by p′(x, y) = x [Swi75].

1.3.3 Vector and Affine Bundles

The most important fibre bundles are vector and affine bundles, which give a
standard framework in both classical and quantum dynamics and field theory
(e.g., matter fields are sections of vector bundles, while gauge potentials are
sections of affine bundles).

Recall that both the tangent bundle (TM, πM ,M) and the cotangent bun-
dle (T ∗M , π∗M ,M) are examples of a more general notion of vector bundle
(E, π,M) of a manifold M , which consists of manifolds E (the total space)
and M (the base), as well as a smooth map π : E → M (the projection)
together with an equivalence class of vector bundle atlases (see [KMS93]). A
vector bundle atlas (Uα, φα)α∈A for (E, π,M) is a set of pairwise compatible
vector bundle charts (Uα, φα) such that (Uα)α∈A is an open cover of M . Two
vector bundle atlases are called equivalent, if their union is again a vector
bundle atlas.

On each fibre Em = π−1(m) corresponding to the point m ∈M there is a
unique structure of a real vector space, induced from any vector bundle chart
(Uα, φα) with m ∈ Uα. A section u of (E, π,M) is a smooth map u :M → E
with π ◦ u = IdM .

Let (E, πM ,M) and (F, πN , N) be vector bundles. A vector bundle homo-
morphism Φ : E → F is a fibre respecting, fibre linear smooth map induced
by the smooth map ϕ : M → N between the base manifolds M and N , i.e.,
the following diagram commutes:

M N�ϕ

E F�Φ

�

πM

�

πN

We say that Φ covers ϕ. If Φ is invertible, it is called a vector bundle isomor-
phism.

All smooth vector bundles together with their homomorphisms form a
category VB.

If (E, π,M) is a vector bundle which admits a vector bundle atlas (Uα, φα)α∈A
with the given open cover, then, we have φα ◦ φ−1

β (m, v) =
(
m,φαβ(m)v

)
for

C∞−transition functions φαβ : Uαβ = Uα ∩ Uβ → GL(V ) (where we have
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fixed a standard fibre V ). This family of transition maps satisfies the cocycle
condition{

φαβ(m) · φβγ(m) = φαγ(m) for each m ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ ,
φαα(m) = e for all m ∈ Uα.

The family (φαβ) is called the cocycle of transition maps for the vector bundle
atlas (Uα, φα) .

Now, let us suppose that the same vector bundle (E, π,M) is described
by an equivalent vector bundle atlas (Uα, ψα)α∈A with the same open cover
(Uα). Then the vector bundle charts (Uα, φα) and (Uα, ψα) are compatible for
each α, so ψα ◦ φ−1

β (m, v) = (m, τα(m)v) for some τα : Uα → GL(V ). We get

τα(m)φαβ(m) = φαβ(m) τβ(m) for all m ∈ Uαβ ,

and we say that the two cocycles (φαβ) and (ψαβ) of transition maps over
the cover (Uα) are cohomologous. If GL(V ) is an Abelian group, i.e., if the
standard fibre V is of real or complex dimension 1, then the cohomology
classes of cocycles (φαβ) over the open cover (Uα) form a usual cohomology
group H1 (M,GL(V )) with coefficients in the sheaf GL(V ) [KMS93].

Let (E, π,M) be a vector bundle and let ϕ : N → M be a smooth map
between the base manifolds N and M . Then there exists the pull–back vec-
tor bundle (ϕ∗E,ϕ∗π, ϕ∗N) with the same typical fibre and a vector bundle
homomorphism, given by the commutative diagram [KMS93]:

N M�ϕ

ϕ∗E E�
π∗ϕ

�

ϕ∗π

�

π

The vector bundle (ϕ∗E,ϕ∗π, ϕ∗N) is constructed as follows. Let E =
V B(φαβ) denote that E is described by a cocycle (φαβ) of transition maps over
an open cover (Uα) of M . Then (φαβ ◦ϕ) is a cocycle of transition maps over
the open cover

(
ϕ−1(Uα)

)
ofN and the bundle is given by ϕ∗E = V B(φαβ◦ϕ).

In other words, a vector bundle is a fibre bundle which admits an atlas
of linear bundle coordinates. Typical fibres of a smooth vector bundle π :
Y → X are vector spaces of some finite dimension (called the fibre dimension,
fdimY of Y ), and Y admits a bundle atlas ΨY (1.118) where trivialization
maps ψξ(x) and transition functions ρξζ(x) are linear isomorphisms of vector
spaces. The corresponding bundle coordinates (yi) obey a linear coordinate
transformation law

y′
i = ρij(x)y

j .

We have the decomposition y = yiei(π(y)), where

{ei(x)} = ψ−1
ξ (x){vi}, x = π(y) ∈ Uξ,
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are fibre bases (or frames) for fibres Yx of Y and {vi} is a fixed basis for the
typical fibre V of Y .

There are several standard constructions of new vector bundles from old
ones:

• Given two vector bundles Y and Y ′ over the same base X, their Whitney
sum Y ⊕ Y ′ is a vector bundle over X whose fibres are the direct sums of
those of the vector bundles Y and Y ′.

• Given two vector bundles Y and Y ′ over the same base X, their tensor
product Y ⊗ Y ′ is a vector bundle over X whose fibres are the tensor
products of those of the vector bundles Y and Y ′. In a similar way the
exterior product Y ∧ Y of vector bundles is defined, so that the exterior
bundle of Y is defined as

∧Y = X × R⊕ Y ⊕ ∧2Y ⊕ · · · ⊕ ∧mY, (m = fdimY ).

• Let Y → X be a vector bundle. By Y ∗ → X is denoted the dual vector
bundle whose fibres are the duals of those of Y . The interior product (or
contraction) of Y and Y ∗ is defined as a bundle map

 : Y ⊗ Y ∗ → X × R.

Given a linear bundle map Φ : Y ′ → Y of vector bundles over X, its kernel
KerΦ is defined as the inverse image Φ−1(0̂(X)) of the canonical zero section
0̂(X) of Y . If Φ is of constant rank, its kernel KerΦ and its image ImΦ
are subbundles of the vector bundles Y ′ and Y , respectively. For example,
monomorphisms and epimorphisms of vector bundles fulfil this condition. If
Y ′ is a subbundle of the vector bundle Y → X, the factor bundle Y/Y ′ over
X is defined as a vector bundle whose fibres are the quotients Yx/Y ′

x, x ∈ X.
Consider the short exact sequence of vector bundles over X,

0 → Y ′ i−→ Y
j−→Y ′′ → 0, (1.120)

which means that i is a bundle monomorphism, j is a bundle epimorphism, and
Ker j = Im i. Then Y ′′ is the factor bundle Y/Y ′. One says that the short exact
sequence (1.120) admits a splitting if there exists a bundle monomorphism
s : Y ′′ → Y such that j ◦ s = IdY ′′ , i.e.,

Y = i(Y ′)⊕ s(Y ′′) ∼= Y ′ ⊕ Y ′′.

Vector bundles of rank 1 are called line bundles.
The only two vector bundles with base space B a circle and 1D fibre F are

the Mőbius band and the annulus, but the classification of all the different
vector bundles over a given base space with fibre of a given dimension is quite
difficult in general. For example, when the base space is a high–dimensional
sphere and the dimension of the fibre is at least three, then the classification
is of the same order of difficulty as the fundamental but still largely unsolved
problem of computing the homotopy groups of spheres [Hat02].
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Now, there is a natural direct sum operation for vector bundles over a
fixed base space X, which in each fibre reduces just to direct sum of vector
spaces. Using this, one can get a weaker notion of isomorphism of vector
bundles by defining two vector bundles over the same base space X to be
stably isomorphic if they become isomorphic after direct sum with product
vector bundles X × Rn for some n, perhaps different n’s for the two given
vector bundles. Then it turns out that the set of stable isomorphism classes of
vector bundles overX forms an Abelian group under the direct sum operation,
at least if X is compact Hausdorff. The traditional notation for this group is
K̃O(X). In the case of spheres the groups K̃O(Sn) have the quite unexpected
property of being periodic in n. This is called Bott periodicity , and the values
of K̃O(Sn) are given by the following table [Hat02]:

nmod 8 1 2 3 4 5 6 7 8
K̃O(Sn) Z2 Z2 0 Z 0 0 0 Z

For example, K̃O(S1) is Z2, a cyclic group of order two, and a generator
for this group is the Mőbius bundle. This has order two since the direct sum
of two copies of the Mőbius bundle is the product S1 ×R1, as one can see by
embedding two Mőbius bands in a solid torus so that they intersect orthogo-
nally along the common core circle of both bands, which is also the core circle
of the solid torus.

The complex version of K̃O(X), called K̃(X), is constructed in the same
way as K̃O(X) but using vector bundles whose fibers are vector spaces over
C rather than R. The complex form of Bott Periodicity asserts that K̃(Sn) is
Z for n even and 0 for n odd, so the period is two rather than eight.

The groups K̃(X) and K̃O(X) for varying X share certain formal proper-
ties with the cohomology groups studied in classical algebraic topology. Using
a more general form of Bott periodicity, it is in fact possible to extend the
groups K̃(X) and K̃O(X) to a full cohomology theory, families of Abelian
groups K̃n(X) and K̃O

n
(X) for n ∈ Z that are periodic in n of period two

and eight, respectively. However, there is more algebraic structure here than
just the additive group structure. Namely, tensor products of vector spaces
give rise to tensor products of vector bundles, which in turn give product
operations in both real and complex K–theory similar to cup product in ordi-
nary cohomology. Furthermore, exterior powers of vector spaces give natural
operations within K–theory [Hat02].

The Second Vector Bundle of the Manifold M

Let (E, π,M) be a vector bundle over the biomechanical manifoldM with fibre
addition +E : E×ME → E and fibre scalar multiplicationmEt : E → E. Then
(TE, πE , E), the tangent bundle of the manifold E, is itself a vector bundle,
with fibre addition denoted by +TE and scalar multiplication denoted bymTEt .
The second vector bundle structure on (TE, Tπ, TM), is the ‘derivative’ of the
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original one on (E, π,M). In particular, the space {Ξ ∈ TE : Tπ.Ξ = 0 ∈
TM} = (Tp)−1(0) is denoted by V E and is called the vertical bundle over E.
Its main characteristics are vertical lift and vertical projection (see [KMS93]
for details).

All of this is valid for the second tangent bundle T 2M = TTM of a mani-
fold, but here we have one more natural structure at our disposal. The canon-
ical flip or involution κM : T 2M → T 2M is defined locally by

(T 2φ ◦ κM ◦ T 2φ−1)(x, ξ; η, ζ) = (x, η; ξ, ζ).

where (U, φ) is a local chart on M (this definition is invariant under changes
of charts). The flip κM has the following properties (see [KMS93]):

1. κM ◦ T 2f = T 2f ◦ κM for each f ∈ C∞(M,N);
2. T (πM ) ◦ κM = πTM ;
3. πTM ◦ κM = T (πM );
4. κ−1

M = κM ;
5. κM is a linear isomorphism from the bundle (TTM,T (πM ), TM) to

(TTM, πTM , TM), so it interchanges the two vector bundle structures on
TTM ;

6. κM is the unique smooth map TTM → TTM which, for each γ : R →M ,
satisfies

∂t∂sγ(t, s) = κM∂t∂sγ(t, s).

In a similar way the second cotangent bundle of a manifold M can be
defined. Even more, for every manifold there is a geometrical isomorphism
between the bundles TT ∗M = T (T ∗M) and T ∗TM = T ∗(TM) [MS78].

The Natural Vector Bundle

In this subsection we mainly follow [Mic01, KMS93].
A vector bundle functor or natural vector bundle is a functor F which

associates a vector bundle (F(M), πM ,M) to each n−manifoldM and a vector
bundle homomorphism

M N�ϕ

F(M) F(N)�F(ϕ)

�

πM

�

πN

to each ϕ : M → N in M, which covers ϕ and is fiberwise a linear isomor-
phism. Two common examples of the vector bundle functor F are tangent
bundle functor T and cotangent bundle functor T ∗ (see subsection 1.2.4).

The space of all smooth sections of the vector bundle (E, πM ,M) is de-
noted by Γ (E, πM ,M). Clearly, it is a vector space with fiberwise addition
and scalar multiplication.
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Let F be a vector bundle functor on M. LetM be a smooth manifold and
let X ∈ X (M) be a vector–field on M . Then the flow Ft of X for fixed t, is a
diffeomorphism defined on an open subset of M . The map

M M�
Ft

F(M) F(M)�F(Ft)

�

πM

�

πM

is then a vector bundle isomorphism, defined over an open subset of M .
We consider a tensor–field τ (1.2.5), which is a section τ ∈ Γ (F(M)) of

the vector bundle (F(M), πM ,M) and we define for t ∈ R

F ∗
t τ = F(F−t) ◦ τ ◦ Ft,

a local section of the bundle F(M). For each pointm ∈M the value F ∗
t τ(x) ∈

F(M)m is defined, if t is small enough (depending on x). So, in the vector
space F(M)m the expression d

dt |t=0 F
∗
t τ(x) makes sense and therefore the

section
LXτ =

d

dt
|t=0 F

∗
t τ

is globally defined and is an element of Γ (F(M)). It is called the Lie derivative
of the tensor–field τ along a vector–field X ∈ X (M) (see subsection 1.2.6, for
details on Lie derivative).

In this situation we have:

1. F ∗
t F

∗
r τ = F ∗

t+rτ , whenever defined.
2. d

dtF
∗
t τ = F ∗

t LXτ = LX (F ∗
t τ), so

[LX , F ∗
t ] = LX ◦ F ∗

t − F ∗
t ◦ LX = 0, whenever defined.

3. F ∗
t τ = τ for all relevant t iff LXτ = 0.

Let F1 and F2 be two vector bundle functors on M. Then the (fiberwise)
tensor product (F1 ⊗F2) (M) = F1(M) ⊗ F2(M) is again a vector bundle
functor and for τ i ∈ Γ (Fi(M)) with i = 1, 2, there is a section τ1 ⊗ τ2 ∈
Γ (F1 ⊗F2) (M), given by the pointwise tensor product.

Also in this situation, for X ∈ X (M) we have

LX (τ1 ⊗ τ2) = LX τ1 ⊗ τ2 + τ1 ⊗ LX τ2.

In particular, for f ∈ C∞(M,R) we have LX (f τ) = df(X) τ + f LX τ .
For any vector bundle functor F on M and X,Y ∈ X (M) we have:

[LX ,LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ] : Γ (F(M)) → Γ (F(M)) .
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Vertical Tangent and Cotangent Bundles

Tangent and Cotangent Bundles Revisited

Recall (from subsection 1.2.4 above) that the most important vector bundles
are familiar tangent and cotangent bundles. The fibres of the tangent bundle
πM : TM →M of a manifold M are tangent spaces to M . The peculiarity of
the tangent bundle TM in comparison with other vector bundles over M lies
in the fact that, given an atlas ΨM = {(Uξ, φξ)} of a manifold M , the tangent
bundle ofM admits the holonomic atlas Ψ = {(Uξ, ψξ = Tφξ)}, where by Tφξ
is denoted the tangent map to φξ. Namely, given coordinates xα on a manifold
M , the associated bundle coordinates on TM are holonomic coordinates (ẋα)
with respect to the holonomic frames {∂α} for tangent spaces TxM , x ∈ M .
Their transition functions read

ẋ′α =
∂x′α

∂xµ
ẋµ.

Every manifold map f : M → M ′ induces the linear bundle map over f of
the tangent bundles (1.112).

The cotangent bundle of a manifold M is the dual π∗M : T ∗M → M of
the tangent bundle TM →M . It is equipped with the holonomic coordinates
(xα, ẋα) with respect to the coframes {dxα} for T ∗M which are the duals of
{∂α}. Their transition functions read

ẋ′α =
∂xµ

∂x′α
ẋµ.

Recall that a tensor product of tangent and cotangent bundles over M ,

T = (⊗mTM)⊗ (⊗kT ∗M), (m, k ∈ N), (1.121)

is called a tensor bundle. Given two vector bundles Y and Y ′ over the same
base X, their tensor product Y ⊗ Y ′ is a vector bundle over X whose fibres
are the tensor products of those of the vector bundles Y and Y ′.

Tangent, cotangent and tensor bundles belong to the category BUN of
natural fibre bundles which admit the canonical lift of any diffeomorphism f of
a base to a bundle automorphism, called the natural automorphism [KMS93].
For example, the natural automorphism of the tangent bundle TM over a
diffeomorphism f of its baseM is the tangent map Tf (1.112) over f . In view
of the expression (1.112), natural automorphisms are also called holonomic
transformations or general covariant transformations (in gravitation theory).

Let TY → Y be the tangent bundle of a bundle Y → X. The following
diagram commutes

Y X�π

TY TX�Tπ

�

πY

�

πX
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where Tπ : TY → TX is a fibre bundle. Note that Tπ is still the bundle
map of the bundle TY → Y to TX over π and the fibred map of the bundle
TY → X to TX over X. There is also the canonical surjection

πT : TY −→ TX −→ Y, given by πT = πX ◦ Tπ = π ◦ πY .

Now, given the fibre coordinates (xα, yi) of a fibre bundle Y , the corre-
sponding induced coordinates of TY are

(xα, yi, ẋα, ẏi), ẏ′
i =

∂y′
i

∂yj
ẏj .

This expression shows that the tangent bundle TY → Y of a fibre bundle Y
has the vector subbundle

V Y = KerTπ

where Tπ is regarded as the fibred map of TY → X to TX over X. The
subbundle V Y consists of tangent vectors to fibres of Y . It is called the vertical
tangent bundle of Y and provided with the induced coordinates (xα, yi, ẏi)
with respect to the fibre bases {∂i}.

The vertical cotangent bundle V ∗Y → Y of a fibre bundle Y → X is
defined as the dual of the vertical tangent bundle V Y → Y . Note that it
is not a subbundle of the cotangent bundle T ∗Y , but there is the canonical
surjection

ζ : T ∗Y −→ V ∗Y, ẋαdx
α + ẏidyi �→ ẏidy

i, (1.122)

where {dyi} are the bases for the fibres of V ∗Y which are duals of the holo-
nomic frames {∂i} for the vertical tangent bundle V Y .

With V Y and V ∗Y , we have the following short exact sequences of vector
bundles over a fibre bundle Y → X:

0 → V Y ↪→ TY → Y × TX → 0, (1.123)
0 → Y × T ∗X ↪→ T ∗Y → V ∗Y → 0 (1.124)

Every splitting

Y × TX ↪→ TY, ∂α �→ ∂α + Γ iα(y)∂i,

of the exact sequence (1.123) and

V ∗Y → T ∗Y, d
i �→ dyi − Γ iα(y)dxα,

of the exact sequence (1.124), by definition, corresponds to a certain connec-
tion on the bundle Y → X, and vice versa.

Let Φ be a fibred map of a bundle Y → X to a bundle Y ′ → X ′ over
f : X → X ′. The tangent map TΦ : TY → TY ′ to Φ reads

(ẋ′α, ẏ′i) ◦ TΦ = (∂µfαẋµ, ∂µΦiẋµ + ∂jΦiẏj). (1.125)
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It is both the linear bundle map over Φ, given by the commutativity diagram

Y Y ′�
Φ

TY TY ′�TΦ

�

πY

�

πY ′

as well as the fibred map over the tangent map Tf to f , given by the com-
mutativity diagram

TX TX ′�
Tf

TY TY ′�TΦ

� �

Affine Bundles

Given a vector bundle Y → X, an affine bundle modelled over Y is a fibre
bundle Y → X whose fibres Yx, (for all x ∈ X), are affine spaces modelled over
the corresponding fibres Y x of the vector bundle Y , and Y admits a bundle
atlas ΨY (1.118) whose trivialization morphisms ψξ(x) and transition func-
tions functions ρξζ(x) are affine maps. The corresponding bundle coordinates
(yi) possess an affine coordinate transformation law

y′
i = ρij(x

α)yj + ρi(xα).

In other words, an affine bundle admits an atlas of affine bundle coordinates
(xα, yi) such that

r : (xα, yi)× (xα, yi) �→ (xα, yi + yi)

where (xα, yi) are linear bundle coordinates of the vector bundle Y . In par-
ticular, every vector bundle Y has the canonical structure of an affine bundle
modelled on Y itself by the map

r : (y, y′) �→ y + y′.

Every affine bundle has a global section.
One can define a direct sum Y ⊕ Y ′ of a vector bundle Y ′ → X and an

affine bundle Y → X modelled over a vector bundle Y → X, as is an affine
bundle modelled over the Whitney sum of vector bundles Y ′ ⊕ Y .

Affine bundles are subject to affine bundle maps which are affine fibrewise
maps. Any affine bundle map Φ : Y → Y ′ from an affine bundle Y modelled
over a vector bundle Y to an affine bundle Y ′ modelled over a vector bundle
Y ′, induces the linear bundle map of these vector bundles

Φ : Y → Y ′, y′
i ◦ Φ =

∂Φi

∂yj
yj . (1.126)
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Distributions and Foliations on Manifolds

Let M be an nD smooth manifold. A smooth distribution T of codimension
k on M is defined as a subbundle of rank n− k of the tangent bundle TM . A
smooth distribution T is called the involutive distribution if [u, u′] is a section
of T whenever u and u′ are sections of T .

Let T be a k−codimensional distribution on M . Its annihilator T ∗ is
a kD subbundle of T ∗M called the Pfaffian system. It means that, on a
neighborhood U of every point x ∈ M , there exist k linearly independent
sections s1, . . . , sk of T ∗ such that

Tx |U= ∩jKer sj .

Let C(T ) be the ideal of ∧(M) generated by sections of T ∗.
A smooth distribution T is involutive iff the ideal C(T ) is differential, that

is, dC(T ) ⊂ C(T ).
Given an involutive k−codimensional distribution T on M , the quotient

TM/T is a kD vector bundle called the transversal bundle of T . There is the
exact sequence

0 → T ↪→ TM → TM/T → 0. (1.127)

Given a bundle Y → X, its vertical tangent bundle V Y exemplifies an invo-
lutive distribution on Y .

A submanifold N of M is called the integral manifold of a distribution T
on M if the tangent spaces to N coincide with the fibres of this distribution
at each point of N .

Let T be a smooth involutive distribution on M . For any point x ∈ M ,
there exists a maximal integral manifold of T passing through x [KT75]. In
view of this fact, involutive distributions are also called completely integrable
distributions.

Every point x ∈ M has an open neighborhood U which is a domain of a
coordinate chart (x1, . . . , xn) such that the restrictions of T and T ∗ to U are
generated by the n − k vector fields ∂

∂x1 , . . . ,
∂

∂xn−k and the k Pfaffian forms
dxn−k+1, . . . , dxn respectively.

In particular, it follows that integral manifolds of an involutive distribu-
tion constitute a foliation. Recall that a k−codimensional foliation on an nD
manifold M is a partition of M into connected leaves Fι with the following
property: every point of M has an open neighborhood U which is a domain
of a coordinate chart (xα) such that, for every leaf Fι, the components Fι ∩U
are described by the equations xn−k+1 = const,..., xn = const [KT75]. Note
that leaves of a foliation fail to be imbedded submanifolds in general.

For example, every projection π :M → X defines a foliation whose leaves
are the fibres π−1(x), for all x ∈ X. Also, every nowhere vanishing vector field
u on a manifold M defines a 1D involutive distribution on M . Its integral
manifolds are the integral curves of u. Around each point x ∈M , there exist
local coordinates (x1, . . . , xn) of a neighborhood of x such that u is given by
u = ∂

∂xi .
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1.3.4 Principal Bundles

Recall that a principal bundle is a special case of a fibre bundle where the
fibre is a group G. More specifically, G is usually a Lie group. A principal
bundle is a total bundle space Y along with a surjective map π : Y → X
to a base manifold X. Any fibre π−1(x) is a space isomorphic to G. More
specifically, G acts freely and transitively without fixed point on the fibers,
and this makes a fibre into a homogeneous space. It follows that the orbits of
the G−action are precisely the fibers of π : Y → X and the orbit space Y/G
is homeomorphic the base space X. To say that G acts freely and transitively
on the fibers means that the fibers take on the structure of G−torsors.11

For example, in the case of a circle bundle (G = S1 ≡ {eit}), the fibers are
circles, which can be rotated, although no point in particular corresponds to
the identity. Near every point, the fibers can be given the group structure of
G in the fibers over a neighborhood by choosing an element in each fibre to be
the identity element. However, the fibers cannot be given a group structure
globally, except in the case of a trivial bundle.

An important principal bundle is the frame bundle on a Riemannian man-
ifold. This bundle reflects the different ways to give an orthonormal basis for
tangent vectors.

In general, any fibre bundle corresponds to a principal bundle where the
group (of the principal bundle) is the group of isomorphisms of the fibre (of
the fibre bundle). Given a principal bundle π : Y → X and an action of G
on a space V , which could be a group representation, this can be reversed to
give an associated fibre bundle.

A trivialization of a principal bundle, an open set U in X such that the
bundle π−1(U) over U , is expressed as U×G, has the property that the group
G acts on the left and transition functions take values inG, acting on the fibers
by right multiplication (so that the action of G on a fibre V is independent
of coordinate chart).

More precisely, a principal bundle πP : P → Q of a configuration manifold
Q, with a structure Lie group G, is a general affine bundle modelled on the
right on the trivial group bundle Q × G where the group G acts freely and
transitively on P on the right,

RG : P ×G→ P, Rg : p�→pg, (p ∈ P, g ∈ G). (1.128)

We call P a principal G−bundle. A typical fibre of a principal G−bundle is
isomorphic to the group space of G, and P/G = Q. The structure group G
acts on the typical fibre by left multiplications which do not preserve the
group structure of G. Therefore, the typical fibre of a principal bundle is only
a group space, but not a group. Since the left action of transition functions on
the typical fibre G commutes with its right multiplications, a principal bundle
admits the global right action (1.128) of the structure group.
11 A G−torsor is a space which is homeomorphic to G but lacks a group structure

since there is no preferred choice of an identity element.
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A principal G−bundle P is equipped with a bundle atlas

ΨP = {(Uα, ψPα , ραβ)}, (1.129)

whose trivialization maps

ψPα : π−1
P (Uα) → Uα ×G

obey the equivariance condition

(π2 ◦ ψPα )(pg) = (π2 ◦ ψPα )(p)g, (g ∈ G, p ∈ π−1
P (Uα)). (1.130)

Due to this property, every trivialization map ψPα determines a unique local
section zα of P over Uα such that

π2 ◦ ψPα ◦ zα = 1,

where 1 is the unit element of G. The transformation rules for zα read

zβ(q) = zα(q)ραβ(q), (q ∈ Uα ∩ Uβ), (1.131)

where ραβ(q) are G−valued transition functions of the atlas ΨP . Conversely,
the family {(Uα, zα)} of local sections of P with the transition functions
(1.131) determines a unique bundle atlas of P . In particular, it follows that
only trivial principal bundles have global sections.

Note that the pull–back of a principal bundle is also a principal bundle
with the same structure group.

The quotient of the tangent bundle TP → P and that of the vertical
tangent bundle V P of P by the tangent prolongation TRG of the canonical
action RG (1.128) are vector bundles

TGP = TP/G, VGP = V P/G (1.132)

over Q. Sections of TGP → Q are naturally identified with G-invariant vector–
fields on P , while those of VGP → Q are G-invariant vertical vector–fields on
P . Therefore, the Lie bracket of G-invariant vector–fields on P goes to the
quotients (1.132), and induces the Lie brackets of their sections. Let us write
these brackets in an explicit form.

Owing to the equivariance condition (1.130), any bundle atlas (1.129) of P
induces the associated bundle atlases {Uα, TψPα/G)} of TGP and {Uα, V ψPα/G)}
of VGP . Given a basis {εp} for the right Lie algebra gr, let {∂α, ep} and {ep},
where ep = (ψPα/G)−1(εp), be the corresponding local fibre bases for the
vector bundles TGP and VGP , respectively. Relative to these bases, the Lie
bracket of sections

ξ = ξα∂α + ξpep, η = ηµ∂µ + ηqeq

of the vector bundle TGP → Q reads
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[ξ, η] = (ξµ∂µηα − ηµ∂µξα)∂α + (ξα∂αηr − ηα∂αξr + crpqξ
pηq)er. (1.133)

Putting ξα = 0 and ηµ = 0, we get the Lie bracket

[ξ, η] = crpqξ
pηqer (1.134)

of sections of the vector bundle VG → P .
A principal bundle P is also the general affine bundle modelled on the

left on the associated group bundle P̃ with the standard fibre G on which
the structure group G acts by the adjoint representation. The corresponding
bundle map reads

P̃ × P −→ P, (p̃, p) �→ p̃p.

Note that the standard fibre of the group bundle P̃ is the group G, while
that of the principal bundle P is the group space of G on which the structure
group G acts on the left.

A principal bundle P → Q with a structure Lie group G possesses the
canonical trivial vertical splitting

α : V P → P × gl, π2 ◦ α ◦ em = Jm,

where {Jm} is a basis for the left Lie algebra gl and em denotes the corre-
sponding fundamental vector–fields on P . Given a principal bundle P → Q,
the bundle TP → TQ is a principal bundle

TP × T (Q×G) → TP

with the structure group TG = G × gl where gl is the left Lie algebra of
left–invariant vector–fields on the group G.

If P → Q is a principal bundle with a structure group G, the exact se-
quence (1.123) can be reduced to the exact sequence

0 → V GP ↪→ TGP → TQ→ 0, (1.135)
where TGP = TP/G, V GP = V P/G

are the quotients of the tangent bundle TP of P and the vertical tangent
bundle V P of P respectively by the canonical action (1.128) of G on P on the
right. The bundle V GP → Q is called the adjoint bundle. Its standard fibre
is the right Lie algebra gr of the right–invariant vector–fields on the group G.
The group G acts on this standard fibre by the adjoint representation.

1.3.5 Multivector–Fields and Tangent–Valued Forms

Recall that a vector–field on a manifoldM is defined as a global section of the
tangent bundle TM →M . The set V1(M) of vector–fields on M is a real Lie
algebra with respect to the Lie bracket [Sar93, Sar95, GMS97, MS00a, Sar02a]
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[v, u] = (vα∂αuµ − uα∂αvµ)∂µ, v = vα∂α, u = uα∂α. (1.136)

Every vector–field on a manifold M can be seen as an infinitesimal gen-
erator of a local 1–parameter Lie group of diffeomorphisms of M as follows
[KN63/9]. Given an open subset U ⊂ M and an interval (−ε, ε) ∈ R, by a
local 1–parameter group of diffeomorphisms of M defined on (−ε, ε) × U is
denoted a map

G→M, (t, x) �→ Gt(x)

such that:

1. for each t ∈ (−ε, ε), the map Gt is a diffeomorphism of U onto the open
subset Gt(U) ⊂M ; and

2. Gt+t′(x) = (Gt ◦Gt′)(x) if t, t′, t+ t′ ∈ (−ε, ε) and Gt′(x), x ∈ U .

Any local 1–parameter group of diffeomorphisms G on U ⊂ M defines
a local vector–field u on U by setting u(x) to be the tangent vector to the
curve x(t) = Gt(x) at t = 0. Conversely, if u is a vector–field on a manifold
M , there exists a unique local 1–parameter group Gu of diffeomorphisms on
a neighborhood of every point x ∈ M which defines u. We call Gu a flow
of the vector–field u. A vector–field u on a manifold M is called complete if
its flow is a 1–parameter group of diffeomorphisms of M . In particular, every
vector–field on a compact manifold is complete [KN63/9].

A vector–field u on a fibre bundle Y −→ X is an infinitesimal generator of a
local 1–parameter group Gu of isomorphisms of Y −→ X iff it is a projectable
vector–field on Y . A vector–field u on a fibre bundle Y −→ X is called pro-
jectable if it projects onto a vector–field on X, i.e., there exists a vector–field
τ on X such that the following diagram commutes:

X TX�
τ

Y TY�u

�

π

�
Tπ

A projectable vector–field has the coordinate expression

u = uα(xµ)∂α + ui(xµ, yj)∂i,

where uα are local functions on X. A projectable vector–field is said to be
vertical if it projects onto the zero vector–field τ = 0 on X, i.e., u = ui∂i
takes its values in the vertical tangent bundle V Y .

For example, in field theory, projectable vector–fields on fibre bundles play
a role of infinitesimal generators of local 1–parameter groups of gauge trans-
formations.

In general, a vector–field τ = τα∂α on a base X of a fibre bundle Y → X
induces a vector–field on Y by means of a connection on this fibre bundle.
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Nevertheless, every natural fibre bundle Y → X admits the canonical lift τ̃
onto Y of any vector–field τ on X. For example, if Y is the tensor bundle
(1.121), the above canonical lift reads

τ̃ = τµ∂µ + [∂ντα1 ẋνα2···αm

β1···βk
+ . . .− ∂β1

τν ẋα1···αm

νβ2···βk
− . . .] ∂

∂ẋα1···αm

β1···βk

. (1.137)

In particular, we have the canonical lift onto the tangent bundle TX,

τ̃ = τµ∂µ + ∂νταẋν
∂

∂ẋα
(1.138)

and another one onto the cotangent bundle T ∗X,

τ̃ = τµ∂µ − ∂βτν ẋν
∂

∂ẋβ
. (1.139)

A multivector–field ϑ of degree r (or simply a r-vector–field) on a manifold
M , by definition, is a global section of the bundle ∧rTM →M . It is given by
the coordinate expression

ϑ = ϑα1...αr∂α1 ∧ · · · ∧ ∂αr
, |ϑ| = r,

where summation is over all ordered collections (λ1, ..., λr).
Similarly, an exterior r−form on a manifold M with local coordinates xα,

by definition, is a global section of the skew–symmetric tensor bundle (exterior
product) ∧rT ∗M →M ,

φ =
1
r!
φα1...αr

dxα1 ∧ · · · ∧ dxαr , |φ| = r.

The 1–forms are also called the Pfaffian forms.
The vector space Vr(M) of r−vector–fields on a manifold M admits the

Schouten–Nijenhuis bracket (or, SN bracket)

[., .]SN : Vr(M)×Vs(M) → Vr+s−1(M)

which generalizes the Lie bracket of vector–fields (1.136). The SN–bracket has
the coordinate expression:

ϑ = ϑα1...αr∂α1 ∧ · · · ∧ ∂αr
, υ = υα1...αs∂α1 ∧ · · · ∧ ∂αs

,

[ϑ, υ]SN = ϑ & υ + (−1)|ϑ||υ|υ & ϑ, where
ϑ & υ = ϑµα1...αr−1∂µυ

α1...αs∂α1 ∧ · · · ∧ ∂αr−1 ∧ ∂α1 ∧ · · · ∧ ∂αs
.

The following relations hold for the SN–bracket:

[ϑ, υ]SN = (−1)|ϑ||υ|[υ, ϑ]SN ,
[ν, ϑ ∧ υ]SN = [ν, ϑ]SN ∧ υ + (−1)|ν||ϑ|+|ϑ|ϑ ∧ [ν, υ]SN ,
(−1)|ν||ϑ|+|ν|[ν, ϑ ∧ υ]SN + (−1)|ϑ||ν|+|ϑ|[ϑ, υ ∧ ν]SN
+ (−1)|υ||ϑ|+|υ|[υ, ν ∧ ϑ]SN = 0.
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In particular, let w = wµν∂µ ∧ ∂ν be a bivector–field. We have

[w,w]SN = wµα1∂µw
α2α3∂α1 ∧ ∂α2 ∧ ∂α3 . (1.140)

Every bivector–field w on a manifold M induces the ‘sharp’ bundle map w� :
T ∗M → TM defined by

w�(p)q := w(x)(p, q), w�(p) = wµν(x)pµ∂ν , (p, q ∈ T ∗
xM). (1.141)

A bivector–field w whose bracket (1.140) vanishes is called the Poisson
bivector–field .

Let ∧r(M) denote the vector space of exterior r−forms on a manifold M .
By definition, ∧0(M) = C∞(M) is the ring of smooth real functions onM . All
exterior forms onM constitute the N-graded exterior algebra ∧∗(M) of global
sections of the exterior bundle ∧T ∗M with respect to the exterior product ∧.
This algebra admits the exterior differential

d : ∧r(M) → ∧r+1(M),

dφ = dxµ ∧ ∂µφ =
1
r!
∂µφα1...αr

dxµ ∧ dxα1 ∧ · · · dxαr ,

which is nilpotent, i.e., d ◦ d = 0, and obeys the relation

d(φ ∧ σ) = d(φ) ∧ σ + (−1)|φ|φ ∧ d(σ).

The interior product (or, contraction) of a vector–field u = uµ∂µ and an
exterior r−form φ on a manifold M is given by the coordinate expression

uφ =
r∑
k=1

(−1)k−1

r!
uαkφα1...αk...αr

dxα1 ∧ · · · ∧ d̂x
αk ∧ · · · ∧ dxαr(1.142)

=
1

(r − 1)!
uµφµα2...αr

dxα2 ∧ · · · ∧ dxαr ,

where the caret ·̂ denotes omission. The following relations hold:

φ(u1, . . . , ur) = ur · · ·u1φ, (1.143)
u(φ ∧ σ) = uφ ∧ σ + (−1)|φ|φ ∧ uσ, (1.144)
[u, u′]φ = ud(u′φ)− u′d(uφ)− u′udφ, (φ ∈ ∧1(M)).(1.145)

Recall from section 1.2.6 above, that the Lie derivative Luσ of an exterior
form σ along a vector–field u is defined by the Cartan relation

Luσ = udσ + d(uσ).

It satisfies the relation

Lu(φ ∧ σ) = Luφ ∧ σ + φ ∧ Luσ.
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In particular, if f is a function, then

Luf = u(f) = udf.

It is important for dynamical applications that an exterior form φ is invariant
under a local 1–parameter group of diffeomorphisms Gt of M (i.e., G∗

tφ = φ)
iff its Lie derivative Luφ along the vector–field u, generating Gt, vanishes.

Let Ω be a two–form on M . It defines the ‘flat’ bundle map Ω�, as

Ω� : TM → T ∗M, Ω�(v) = −vΩ(x), (v ∈ TxM). (1.146)

In coordinates, if Ω = Ωµνdxµ ∧ dxν and v = vµ∂µ, then

Ω�(v) = −Ωµνvµdxν .

One says that Ω is of constant rank k if the corresponding map (1.146) is
of constant rank k (i.e., k is the greatest integer n such that Ωn is not the
zero form). The rank of a nondegenerate two–form is equal to dimM . A
nondegenerate closed two–form is called the symplectic form.

Given a manifold map f :M →M ′, any exterior k-form φ on M ′ induces
the pull–back exterior form f∗φ on M by the condition

f∗φ(v1, . . . , vk)(x) = φ(Tf(v1), . . . , Tf(vk))(f(x))

for an arbitrary collection of tangent vectors v1, · · · , vk ∈ TxM . The following
relations hold:

f∗(φ ∧ σ) = f∗φ ∧ f∗σ, df∗φ = f∗(dφ).

In particular, given a fibre bundle π : Y → X, the pull–back onto Y of
exterior forms on X by π gives the monomorphism of exterior algebras

π∗ : ∧∗(X) → ∧∗(Y ).

Elements of its image π∗ ∧∗ (X) are called basic forms. Exterior forms on Y
such that uφ = 0 for an arbitrary vertical vector–field u on Y are said to be
horizontal forms. They are generated by horizontal 1–forms {dxα}. For exam-
ple, basic forms are horizontal forms with coefficients in C∞(X) ⊂ C∞(Y ).
A horizontal form of degree n = dimX is called a density. For example,
Lagrangians in field theory are densities.

Elements of the tensor product ∧r(M) ⊗ V1(M) are called the tangent–
valued r−forms on M . They are sections

φ =
1
r!
φµα1...αr

dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ

of the tensor bundle
∧rT ∗M ⊗ TM →M.
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Tangent-valued 1–forms are usually called the (1,1) tensor fields.
In particular, there is the 1–1 correspondence between the tangent–valued

1–forms on M and the linear bundle maps over M ,

φ : TM → TM, φ : TxM � v �→ vφ(x) ∈ TxM. (1.147)

In particular, the canonical tangent–valued one–form θM = dxα ⊗ ∂α defines
the identity map of TM .

Tangent-valued forms play a prominent role in jet formalism and theory
of connections on fibre bundles. In particular, tangent–valued 0-forms are
vector–fields on M . Also, there is 1–1 correspondence between the tangent–
valued 1–forms φ on a manifold M and the linear bundle endomorphisms

φ̂ : TM → TM, φ̂ : TxM � v �→ vφ(x) ∈ TxM, (1.148)

φ̂
∗

: T ∗M → T ∗M, φ̂
∗

: T ∗
xM � v∗ �→ φ(x)v∗ ∈ T ∗

xM, (1.149)

over M . For example, the canonical tangent–valued 1–form on M ,

θM = dxα ⊗ ∂α , (1.150)

corresponds to the identity maps (1.148) and (1.149).
We shall deal with the following particular types of vector–fields and dif-

ferential forms on a bundle Y −→ X [Sar93, Sar95, GMS97, MS00a]:

• a projectable vector–field on Y ,

u = uµ(x)∂µ + ui(y)∂i,

which covers a vector–field τu = uµ(x)∂µ on the base X such that the
following diagram commutes:

X TX�
τu

Y TY�u

�

π

�
Tπ

• a vertical vector–field , u : Y → V Y, given by u = ui(y)∂i, is a projectable
vector–field which covers τu = 0;

• an exterior horizontal form, φ : Y → ∧rT ∗X, given by

φ =
1
r!
φα1...αr

(y)dxα1 ∧ · · · ∧ dxαr ;

• a tangent–valued horizontal form, φ : Y → ∧rT ∗X ⊗ TY, given by

φ =
1
r!
dxα1 ∧ · · · ∧ dxαr ⊗ [φµα1...αr

(y)∂µ + φiα1...αr
(y)∂i];
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• a vertical–valued horizontal form, φ : Y → ∧rT ∗X ⊗ V Y, given by

φ =
1
r!
φiα1...αr

(y)dxα1 ∧ · · · ∧ dxαr ⊗ ∂i.

• a vertical-valued soldering form, σ : Y → T ∗X ⊗ V Y, given by

σ = σiα(y)dxα ⊗ ∂i (1.151)

and, in particular, the canonical soldering form on TX,

θX = dxα ⊗ ∂α.

The pull–back–valued forms on a bundle Y → X are the following two
maps:12

Y → ∧rT ∗Y ⊗ TX, φ =
1
r!
φµα1...αr

(y)dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ,

and (1.152)

Y → ∧rT ∗Y ⊗ V ∗X, φ =
1
r!
φα1...αri(y)dx

α1 ∧ · · · ∧ dxαr ⊗ dyi.

The pull–back-valued forms (1.152) are exemplified by the canonical bun-
dle monomorphism

∧nT ∗X ⊗ V ∗Y ↪→ ∧n+1T ∗Y, ω ⊗ dyi �→ ω∧dyi.

All horizontal n−forms on a bundle Y −→ X are called horizontal densities.
For any vector–field τ on X, we can define its pull–back on Y ,

π∗τ = τ ◦ π : Y −→ TX.

This is not a vector–field on Y , for the tangent bundle TX of X fails to be
a subbundle of the tangent bundle TY of Y . One needs a connection on Y
−→ X in order to set the imbedding TX ↪→ TY .

The space ∧∗(M)⊗V1(M) of tangent–valued forms admits the Frölicher–
Nijenhuis bracket (or, FN bracket)
12 The forms (1.152) are not tangent–valued forms. The pull–backs

φ =
1

r!
φµ

α1...αr
(x)dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ

of tangent–valued forms on X onto Y by π exemplify the pull–back-valued forms
(1.152). In particular, we shall refer to the pull–back π∗θX of the canonical form
θX on the base X onto Y by π. This is a pull–back-valued horizontal one–form
on Y which we denote by the same symbol

θX : Y → T ∗X ⊗ TX, θX = dxα ⊗ ∂α.
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[., .]FN : ∧r(M)⊗ V1(M)× ∧s(M)⊗ V1(M) → ∧r+s(M)⊗ V1(M),

[φ, σ]FN =
1
r!s!

(φνα1...αr
∂νσ

µ
αr+1...αr+s

− σναr+1...αr+s
∂νφ

µ
α1...αr

− (1.153)

rφµα1...αr−1ν∂αr
σναr+1...αr+s

+ sσµναr+2...αr+s
∂αr+1φ

ν
α1...αr

)dxα1

∧ · · · ∧ dxαr+s ⊗ ∂µ.

The following relations hold for the FN–bracket:

[φ, ψ]FN = (−1)|φ||ψ|+1[ψ, φ]FN , (1.154)
[φ, [ψ, θ]FN ]FN = [[φ, ψ]FN , θ]FN + (−1)|φ||ψ|[ψ, [φ, θ]FN ]FN .

Given a tangent–valued form θ, the Nijenhuis differential , dθσ, along θ on
∧∗(M)⊗ V1(M) is defined as

dθσ = [θ, σ]FN . (1.155)

By virtue of the relation (1.154), it has the property

dφ[ψ, θ]FN = [dφψ, θ]FN + (−1)|φ||ψ|[ψ, dφθ]FN .

In particular, if θ = u is a vector–field, the Nijenhuis differential becomes the
Lie derivative of tangent–valued forms

Luσ = duσ = [u, σ]FN = (uν∂νσµα1...αs
− σνα1...αs

∂νu
µ (1.156)

+ sσµνα2...αs
∂α1u

ν)dxα1 ∧ · · · ∧ dxαs ⊗ ∂µ, (σ ∈ ∧s(M)⊗ V(M)).

1.4 Jet Spaces

Modern formulation of generalized Lagrangian and Hamiltonian dynamics on
fibre bundles is developed in the language of jet spaces, or jet manifolds (see
[KMS93, Sau89, Gri83a, BCG91, BGG03, GMS97, MOS99, MS00a, Sau89,
Sar93, Sar95, Sar02a]).

Roughly speaking, given two smooth manifoldsM and N , the two smooth
maps f, g :M → N between them are said to determine the same k−jet at a
point x ∈M , if they have the kth order contact (or, the kth order tangency) at
x [KMS93, Arn88]. A set of all k−jets fromM to N is a jet space Jk(M,N). It
is a generalization of a tangent bundle that makes a new smooth fiber bundle
out of a given smooth fiber bundle – following the recursive n−categorical
process. It makes it possible to write differential equations on sections of a
fiber bundle in an invariant form. Historically, jet spaces are attributed to C.
Ehresmann, and were an advance on the method of prolongation of E. Cartan,
of dealing geometrically with higher derivatives, by imposing differential form
conditions on newly–introduced formal variables.



144 1 Modern Geometrical Machinery

1.4.1 Intuition Behind a Jet Space

The concept of jet space is based on the idea of higher–order tangency , or
higher–order contact , at some designated point on a smooth manifold (see
[Arn88, KMS93]). Namely, a pair of smooth manifold maps (see Figure 1.7),

f1, f2 :M → N

are said to be k−tangent (or tangent of order k, or have a kth order contact)
at a point x on a domain manifold M , denoted by f1 ∼ f2, iff

f1(x) = f2(x) called 0− tangent,
∂xf1(x) = ∂xf2(x), called 1− tangent,
∂xxf1(x) = ∂xxf2(x), called 2− tangent,

... etc. to the order k.

Fig. 1.7. An intuitive geometrical picture behind the k−jet concept, based on the
idea of higher–order tangency or contact (see text for explanation).

In this way defined k−tangency is an equivalence relation, i.e.,

f1 ∼ f2 ⇒ f2 ∼ f1, f1 ∼ f2 ∼ f3 ⇒ f1 ∼ f3, f1 ∼ f1.

Now a k−jet (or, a jet of order k), denoted by jkxf , of a smooth map
f : M → N at a point x ∈ M (see Figure 1.7), is defined as an equivalence
class of k−tangent maps at x,

jkxf = {f ′ : f ′ is k − tangent to f at x}.

The point x is called the source and the point f(x) is the target of the
k−jet jkxf .

We choose local coordinates on M and N in the neighborhood of the
points x and f(x), respectively. Then the k−jet jkxf of any map close to f , at
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any point close to x, can be given by its Taylor–series expansion at x, with
coefficients up to degree k. Therefore, in a fixed coordinate chart, a k−jet can
be identified with the collection of Taylor coefficients up to degree k.

The set of all k−jets of smooth maps from M to N is called the k−jet
space and denoted by Jk(M,N). It has a natural smooth manifold structure.
Also, a map from a k−jet space Jk(M,N) to a smooth manifold M or N is
called a jet bundle (we will make this notion more precise later).

For example, consider a simple function f : X → Y, x �→ y = f(x),
mapping the X−axis into the Y−axis. In this case, M = X is a domain and
N = Y is a codomain. A 0−jet at a point x ∈ X is given by its graph (x, f(x)).
A 1−jet is given by a triple (x, f(x), f ′(x)), a 2−jet is given by a quadruple
(x, f(x), f ′(x), f ′′(x)), and so on up to the order k (where f ′(x) = df(x)

dx , etc.).
The set of all k−jets from X to Y is called the k−jet space Jk(X,Y ).

Fig. 1.8. Common spaces associated with a function f on a smooth manifold M
(modified and adapted from [Omo86]; see text for explanation).

In case of a function of two variables, f(x, y), the common spaces related to
f , including its 1–jet j1f , are depicted in Figure 1.8. Recall that a hypersurface
is a codimension–1 submanifold. Given a sample function f(x, y) = x2 + y2 in
M = R2, then: (a) shows its graph as a hypersurface in R×M ; (b) shows its
level sets in M ; (c) shows its differential form df = 2xdx+ 2ydy in the cotan-
gent bundle T ∗M ; and (d) shows a tangent hyperplane at a point (x0, yy) ∈M
to its graph in R ×M , which is a 1–jet j1(x0,y0)

f to f at (x0, yy). Note that
j1(x0,y0)

f is parallel to df , which means that its 1–jet space J1(R,M) is an
(n+ 1)D extension of the cotangent bundle T ∗M .
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In mechanics we will consider a pair of maps f1, f2 : R → M from the
real line R, representing the time t−axis, into a smooth nD (configuration)
manifold M . We say that the maps f1 = f1(t) and f2 = f2(t) have the same
k−jet jkxf at a specified time instant t0 ∈ R, iff:

1. f1(t) = f2(t) at t0 ∈ R, and also
2. the first k terms of their Taylor–series expansion around t0 ∈ R are equal.

The k−jet space Jk(R,M) is the set of all k−jets jkxf from R to M .
Now, the fundamental geometrical construct in time–dependent mechanics

is its configuration fibre bundle (see subsection 1.4.6 below). Given a configu-
ration fibre bundle M → R over the time axis R, we say that the 1−jet space
J1(R,M) is the set of equivalence classes j1t s of sections si : R → M of the
bundleM → R, which are identified by their values si(t), and by the values of
their partial derivatives ∂tsi = ∂tsi(t) at time points t ∈ R. The 1–jet space
J1(R,M) is coordinated by (t, xi, ẋi), so the 1–jets are local coordinate maps

j1t s : t �→ (t, xi, ẋi).

Similarly, the 2−jet space J2(R,M) is the set of equivalence classes j2t s
of sections si : R → M of the bundle M → R, which are identified by their
values si(t), as well as the values of their first and second partial derivatives,
∂ts

i and ∂ttsi, at time points t ∈ R. The 2–jet space J2(R,M) is coordinated
by (t, xi, ẋi, ẍi), so the 2–jets are local coordinate maps

j2t s : t �→ (t, xi, ẋi, ẍi).

Generalization to the k−jet space Jk(R,M) is obvious. This mechanical jet
formalism will be initiated in subsection 1.4.6 below and further developed in
section 2.1 below.

More generally, in a physical field context, instead of the mechanical con-
figuration bundle over the time axis R, we have some general physical fibre
bundle Y → X over some smooth manifold (base) X. In this general context,
the k−jet space Jk(X,Y ) of a bundle Y → X is the set of equivalence classes
jkxs of sections si : X → Y , which are identified by their values si(x), as well
as the first k terms of their Taylor–series expansion at points x ∈ X. This has
two important physical consequences:

1. The k−jet space of sections si : X → Y of a fibre bundle Y → X is itself
an nD smooth manifold, and

2. A kth–order differential operator on sections si(x) of a fibre bundle Y →
X can be described as a map of Jk(X,Y ) to a vector bundle over the base
X.

A map from a k−jet space Jk(X,Y ) to a smooth manifold Y or X is called a
jet bundle.

As a consequence, the dynamics of mechanical and physical field systems is
played out on nD configuration and phase manifolds. Moreover, this dynamics
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can be phrased in geometrical terms due to the 1–1 correspondence between
sections of the jet bundle J1(X,Y ) → Y and connections on the fibre bundle
Y → X.

In the framework of the standard first–order Lagrangian formalism, the
nD configuration space of sections si : X → Y of a fibre bundle Y → X
is the 1–jet space J1(X,Y ), coordinated by (xα, yi, yiα), where (xα, yi) are
fibre coordinates of Y , while yiα are the so–called ‘derivative coordinates’ or
‘velocities’. A first–order Lagrangian density13 on the configuration manifold
J1(X,Y ) is given by an exterior one–form (the so–called horizontal density)

L = L(xα, yi, yiα)ω, with ω = dx1 ∧ ... ∧ dxn.

This physical jet formalism will be developed in section 2.2 below.

1.4.2 Definition of a 1–Jet Space

As introduced above, a 1–jet is defined as an equivalence class of functions
having the same value and the same first derivatives at some designated point
of the domain manifold (see Figure 1.7). Recall that in mechanical settings,
the 1–jets are local coordinate maps

j1t s : t �→ (t, xi, ẋi).

More generally, given a fibre bundle Y → X with bundle coordinates
(xα, yi), consider the equivalence classes j1xs of its sections si : X → Y ,
which are identified by their values si(x) and the values of their first–order
derivatives ∂αsi = ∂αs

i(x) at a point x on the domain (base) manifold X.
They are called the 1–jets of sections si at x ∈ X. One can justify that the
definition of jets is coordinate–independent by observing that the set J1(X,Y )
of 1–jets j1xs is a smooth manifold with respect to the adapted coordinates
(xα, yi, yiα), such that [Sar93, Sar95, GMS97, MS00a, Sar02a]

yiα(j1xs) = ∂αsi(x), y′iα =
∂xµ

∂x′α
(∂µ + yjµ∂j)y

′i.

J1(X,Y ) is called the 1−jet space of the fibre bundle Y → X.
13 Recall that in classical field theory, a distinction is made between the Lagrangian

L, of which the action is the time integral S[xi] =
∫

L[xi, ẋi]dt and the Lagrangian
density L, which one integrates over all space–time to get the action S[ϕk] =∫
L[ϕk[xi]]d4x. The Lagrangian is then the spatial integral of the Lagrangian

density. However, L is also frequently simply called the Lagrangian, especially
in modern use; it is far more useful in relativistic theories since it is a locally
defined, Lorentz scalar field. Both definitions of the Lagrangian can be seen as
special cases of the general form, depending on whether the spatial variable xi is
incorporated into the index i or the parameters s in ϕk[xi]. Quantum field theories
are usually described in terms of L, and the terms in this form of the Lagrangian
translate quickly to the rules used in evaluating Feynman diagrams.
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In other words, the 1–jets j1xs : xα �→ (xα, yi, yiα), which are first–order
equivalence classes of sections of the fibre bundle Y → X, can be identified
with their codomain set of adapted coordinates on J1(X,Y ),

j1xs ≡ (xα, yi, yiα).

Note that in a subsection 2.1.4 below, the mechanical 1–jet space J1(R,M) ≡
R × TM will be regarded as a fibre bundle over the base product–manifold
R×M (see [NU00a, Udr00, Nea02, NU00b, Nea00] for technical details).

The jet space J1(X,Y ) admits the natural fibrations

π1 : J1(X,Y ) � j1xs �→ x ∈ X, and (1.157)
π1

0 : J1(X,Y ) � j1xs �→ s(x) ∈ Y, (1.158)

which form the commutative triangle:

J1(X,Y ) Y�
π1

0

X

π1
�
�
�
��

π
�
�

�
��

It is convenient to call π1 (1.157) the jet bundle, while π1
0 (1.158) is called the

affine jet bundle. Note that, if Y → X is a vector or an affine bundle, it also
holds for the jet bundle π1 (1.157) [Sar93, Sar95, GMS97, MS00a, Sar02a].

There exist several equivalent ways in order to give the 1–jet space
J1(X,Y ) with the smooth manifold structure. Let Y → X be a fibre bundle
with fibred coordinate atlases (1.114). The 1–jet space J1(X,Y ) of the bundle
Y → X admits the adapted coordinate atlases

(xα, yi, yiα), (xα, yi, yiα)(j1xs) = (xα, si(x), ∂αsi), (1.159)

y′iα = (
∂y′

i

∂yj
yjµ +

∂y′
i

∂xµ
)
∂xµ

∂x′α
, (1.160)

and thus satisfies the conditions which are required of a manifold. The sur-
jection (1.157) is a bundle. The surjection (1.158) is a bundle. If Y → X is a
bundle, so is the surjection (1.157).

The transformation law (1.160) shows that the jet bundle J1(X,Y ) → Y
is an affine bundle. It is modelled on the vector bundle T ∗X ⊗ V Y → Y. In
particular, if Y is the trivial bundle

π2 : V × Rm −→ Rm,

the corresponding jet bundle J1(X,Y ) −→ Rm (1.157) is a trivial bundle.
There exist the following two canonical bundle monomorphisms of the jet

bundle J1(X,Y ) −→ Y [Sar93, Sar95, GMS97, MS00a, Sar02a]:
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• the contact map

λ : J1(X,Y ) ↪→ T ∗X⊗TY, λ = dxα⊗∂̂α = dxα⊗(∂α+yiα∂i), (1.161)

• the complementary map

θ : J1(X,Y ) ↪→ T ∗Y ⊗V Y, θ = d̂yi⊗∂i = (dyi−yiαdxα)⊗∂i. (1.162)

These canonical maps enable us to express the jet–space machinery in terms
of tangent–valued differential forms (see subsection 1.3.5 above).

The operators
∂̂α = ∂α + yiα∂i

are usually called the total derivatives, or the formal derivatives, while the
forms

d̂yi = dyi − yiαdxα

are conventionally called the contact forms.
Identifying the 1–jet space J1(X,Y ) to its images under the canonical

maps (1.161) and (1.162), one can represent 1–jets j1xs ≡ (xα, yi, yiα) by
tangent–valued forms

dxα ⊗ (∂α + yiα∂i), and (dyi − yiαdxα)⊗ ∂i. (1.163)

There exists a jet functor J : Bun→ Jet, from the category Bun of fibre
bundles to the category Jet of jet spaces. It implies the natural prolongation
of maps of bundles to maps of jet spaces.

Every bundle map Φ : Y −→ Y ′ over a diffeomorphism f of X has the 1–jet
prolongation to the bundle map j1Φ : J1(X,Y ) −→ J1(X,Y )′, given by

j1Φ : j1xs �→ j1f(x)(Φ ◦ s ◦ f−1), (1.164)

y′
i
α ◦ j1Φ = ∂α(Φi ◦ f−1) + ∂j(Φiyjα ◦ f−1).

It is both an affine bundle map over Φ and a fibred map over the diffeo-
morphism f . The 1–jet prolongations (1.164) of fibred maps satisfy the chain
rules

j1(Φ ◦ Φ′) = j1Φ ◦ j1Φ′, j1(IdY ) = IdJ1(X,Y ) .

If Φ is a surjection (resp. an injection), so is j1Φ.
In particular, every section s of a bundle Y → X admits the 1–jet prolon-

gation to the section j1xs of the jet bundle J1(X,Y ) → X, given by

(yi, yiα) ◦ j1xs = (si(x), ∂αsi).

We have
λ ◦ j1xs = Ts,

where λ is the contact map (1.161).
Every projectable vector–field u on a fibre bundle Y → X,



150 1 Modern Geometrical Machinery

u = uα(x)∂α + ui(y)∂i

has the 1−jet lift to the projectable vector–field j1u on the 1–jet space
J1(X,Y ), given by

j1u ≡ u = r1 ◦ j1u : J1(X,Y ) → TJ1(X,Y ),
j1u ≡ u = uα∂α + ui∂i + (dαui − yiµ∂αuµ)∂αi . (1.165)

Geometrical applications of jet spaces are based on the canonical map over
J1(X,Y ),

J1(X,Y )× TX → J1(X,Y )× TY,
which means the canonical horizontal splitting of the tangent bundle TY
determined over J1(X,Y ) as follows [Sar93, Sar95, GMS97, MS00a, Sar02a].

The canonical maps (1.161) and (1.162) induce the bundle monomorphisms

λ̂ : J1(X,Y )× TX → J1(X,Y )× TY, ∂α �→ ∂̂α = ∂αλ (1.166)

θ̂ : J1(X,Y )× V ∗Y → J1(X,Y )× T ∗Y, dyi �→ d̂yi = θdyi(1.167)

The map (1.166) determines the canonical horizontal splitting of the pull–back

J1(X,Y )× TY = λ̂(TX)⊕ V Y, (1.168)
ẋα∂α + ẏi∂i = ẋα(∂α + yiα∂i) + (ẏi − ẋαyiα)∂i.

Similarly, the map (1.167) induces the dual canonical horizontal splitting of
the pull–back

J1(X,Y )× T ∗Y = T ∗X ⊕ θ̂(V ∗Y ), (1.169)
ẋαdx

α + ẏidyi = (ẋα + ẏiyiα)dxα + ẏi(dyi − yiαdxα).

Building on the canonical splittings (1.168) and (1.169), one gets the fol-
lowing canonical horizontal splittings of

• a projectable vector–field on a fibre bundle Y → X,

u = uα∂α + ui∂i = uH + uV = uα(∂α + yiα∂i) + (ui − uαyiα)∂i, (1.170)

• an exterior 1–form

σ = σαdxα + σidyi = (σα + yiασi)dx
α + σi(dyi − yiαdxα),

• a tangent–valued projectable horizontal form

φ = dxα1 ∧ · · · ∧ dxαr ⊗ (φµα1...αr
∂µ + φiα1...αr

∂i)

= dxα1 ∧ · · · ∧ dxαr ⊗ [φµα1...αr
(∂µ + yiµ∂i) + (φiα1...αr

− φµα1...αr
yiµ)∂i]

and, e.g., the canonical 1–form

θY = dxα ⊗ ∂α + dyi ⊗ ∂i = α+ θ = dxα ⊗ ∂̂α + d̂yi ⊗ ∂i
= dxα ⊗ (∂α + yiα∂i) + (dyi − yiαdxα)⊗ ∂i. (1.171)
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The splitting (1.171) implies the canonical horizontal splitting of the ex-
terior differential

d = dθY
= dH + dV = dα + dθ. (1.172)

Its components dH and dV act on the pull–backs

φα1...αr
(y)dxα1 ∧ · · · ∧ dxαr

of horizontal exterior forms on a bundle Y → X onto J1(X,Y ) by π01. In this
case, dH makes the sense of the total differential

dHφα1...αr
(y)dxα1 ∧· · ·∧dxαr = (∂µ+yiµ∂i)φα1...αr

(y)dxµ∧dxα1 ∧· · ·∧dxαr ,

whereas dV is the vertical differential

dV φα1...αr
(y)dxα1 ∧· · ·∧dxαr = ∂iφα1...αr

(y)(dyi−yiµdxµ)∧dxα1 ∧· · ·∧dxαr .

If φ = φ̃ω is an exterior horizontal density on Y → X, we have

dφ = dV φ = ∂iφ̃dyi ∧ ω.

1.4.3 Connections as Jet Fields

Recall that one can introduce the notion of connections on a general fibre
bundle Y −→ X in several equivalent ways. In this subsection, following
[GMS97, KMS93, MS00a, Sau89], we start from the traditional definition of
a connection as a horizontal splitting of the tangent space to Y at every point
y ∈ Y .

A connection on a fibre bundle Y → X is usually defined as a linear bundle
monomorphism

Γ : Y × TX → TY, Γ : ẋα∂α �→ ẋα(∂α + Γ iα(y)∂i), (1.173)

which splits the exact sequence (1.123), i.e.,

πT ◦ Γ = IdY×TX .

The image HY of Y × TX by a connection Γ is called the horizontal distri-
bution. It splits the tangent bundle TY as

TY = HY ⊕ V Y, giving (1.174)
ẋα∂α + ẏi∂i = ẋα(∂α + Γ iα∂i) + (ẏi − ẋαΓ iα)∂i.

Similarly, horizontal splitting of the cotangent bundle,

T ∗Y = T ∗X ⊕ Γ (V ∗X), gives
ẋαdx

α + ẏidyi = (ẋα + Γ iαẏi)dx
α + ẏi(dyi − Γ iαdxα).
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Alternatively, a connection on a fibre bundle Y −→ X can be defined as a
jet field , i.e., a section of the affine jet bundle J1(X,Y ) −→ Y . This connection
is called the Ehresmann connection, and historically it was a primary reason
for C. Ehresmann to develop the concept of jet spaces.

Due to the theorem that says [Hir66]: Every exact sequence of vector
bundles (1.120) is split, a jet–field connection on a fibre bundle always exists.

A connection on a fibre bundle Y −→ X is defined to be a tangent–valued
projectable horizontal one–form Γ on Y such that Γ φ = φ for all exterior
horizontal 1–forms φ on Y . It is given by the coordinate expression

Γ = dxα ⊗ (∂α + Γ iα(y)∂i), Γ ′i
α = (

∂y′
i

∂yj
Γ jµ +

∂y′
i

∂xµ
)
∂xµ

∂x′α
, (1.175)

such that Γ (∂α) = ∂αΓ . Conversely, every horizontal tangent–valued 1–form
on a fibre bundle Y −→ X which projects onto the canonical tangent–valued
form θX (1.150) on X defines a connection on Y −→ X.

In an equivalent way, the horizontal splitting (1.174) is given by the
vertical–valued form

Γ = (dyi − Γ iαdxα)⊗ ∂i, (1.176)

which determines the epimorphism

Γ : TY → V Y, ẋα∂α + ẏi∂i �→ (ẋα∂α + ẏi∂i)Γ = (ẏi − ẋαΓ iα)∂i.

Let Y → X be a vector bundle. A linear connection on Y reads

Γ = dxα ⊗ [∂α − Γ ijα(x)yj∂i]. (1.177)

Let Y → X be an affine bundle modelled on a vector bundle Y → X. An
affine connection on Y reads

Γ = dxα ⊗ [∂α + (−Γ ijα(x)yj + Γ iα(x))∂i], where
Γ = dxα ⊗ [∂α − Γ ijα(x)yj∂i] is a linear connection on Y .

Since the affine jet bundle J1(X,Y ) −→ Y is modelled on the vector bun-
dle Y −→ X, Ehresmann connections on Y −→ X constitute an affine space
modelled on the linear space of soldering forms on Y . If Γ is a connection and
σ is a soldering form (1.151) on Y , its sum

Γ + σ = dxα ⊗ [∂α + (Γ iα + σiα)∂i]

is a connection on Y . Conversely, if Γ and Γ ′ are connections on Y , then

Γ − Γ ′ = (Γ iα − Γ ′i
α)dx

α ⊗ ∂i

is a soldering form.
Given a connection Γ , a vector–field u on a fibre bundle Y −→ X is called

horizontal if it lives in the horizontal distribution HY , i.e., takes the form
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u = uα(y)(∂α + Γ iα(y)∂i). (1.178)

Any vector–field τ on the base X of a fibre bundle Y −→ X admits the
horizontal lift

Γτ = τΓ = τα(∂α + Γ iα∂i) (1.179)

onto Y by means of a connection Γ on Y −→ X.
Given the splitting (1.173), the dual splitting of the exact sequence (1.124)

is
Γ : V ∗Y → T ∗Y, dyi �→ Γ dyi = dyi − Γ iαdxα, (1.180)

where Γ is the vertical-valued form (1.176).
There is 1–1 correspondence between the connections on a fibre bun-

dle Y → X and the jet fields, i.e., global sections of the affine jet bundle
J1(X,Y ) → Y . Indeed, given a global section Γ of J1(X,Y ) → Y , the
tangent–valued form

λ ◦ Γ = dxα ⊗ (∂α + Γ iα∂i)

gives the horizontal splitting (1.174) of TY . Therefore, the vertical–valued
form

θ ◦ Γ = (dyi − Γ iαdxα)⊗∂i
leads to the dual splitting (1.180).

It follows immediately from this definition that connections on a fibre
bundle Y → X constitute an affine space modelled over the vector space
of soldering forms σ (1.151). They obey the coordinate transformation law
[GMS97, Sau89]

Γ ′i
α =

∂xµ

∂x′α
(∂µ + Γ jµ∂j)y

′i.

In particular, a linear connection K on the tangent bundle TX of a man-
ifold X and the dual connection K∗ to K on the cotangent bundle T ∗X are
given by the coordinate expressions

Kαβ = −Kανβ(x)ẋν , K∗
αβ = Kναβ(x)ẋν . (1.181)

Also, given a connection Γ on Y → X, the vertical tangent map V Γ :
V Y → J1(R, V )Y induces the vertical connection

V Γ = dxα ⊗ (∂α + Γ iα∂yi + ∂V Γ iα∂ẏi), ∂V Γ
i
α = ẏj∂jΓ iα, (1.182)

on the bundle V Y → X. The connection V Γ is projectable to the connection
Γ on Y , and it is a linear bundle map over Γ . The dual covertical connection
on the bundle V ∗Y → X reads

V ∗Γ = dxα ⊗ (∂α + Γ iα∂yi − ∂jΓ iαẏi∂ẏi). (1.183)

Connections on a bundle Y → X constitute the affine space modelled on
the linear space of soldering 1–forms on Y . It means that, if Γ is a connection
and σ is a soldering form on a bundle Y , its sum
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Γ + σ = dxα ⊗ [∂α + (Γ iα + σiα)∂i]

is a connection on Y . Conversely, if Γ and Γ ′ are connections on a bundle Y ,
then their difference

Γ − Γ ′ = (Γ iα − Γ ′i
α )dxα ⊗ ∂i

is a soldering form on Y .
Given a fibre bundle Y → X, let f : X ′ → X be a manifold map and f∗Y

the pull–back of Y over X ′. Any connection Γ (1.176) on Y → X induces the
pull–back connection

f∗Γ = (dyi − Γ iα(fµ(x′ν), yj)
∂fα

∂x′µ
dx′µ)⊗ ∂i (1.184)

on the pull–back fibre bundle f∗Y → X ′.
Since the affine jet bundle J1(X,Y ) −→ Y is modelled on the vector bundle

Y −→ X, connections on a fibre bundle Y constitute the affine space modelled
on the linear space of soldering forms on Y . It follows that, if Γ is a connection
and

σ = σiαdx
α ⊗ ∂i

is a soldering form on a fibre bundle Y , its sum

Γ + σ = dxα ⊗ [∂α + (Γ iα + σiα)∂i]

is a connection on Y . Conversely, if Γ and Γ ′ are connections on a fibre bundle
Y , then

Γ − Γ ′ = (Γ iα − Γ ′i
α)dx

α ⊗ ∂i
is a soldering form on Y .

The key point for physical applications lies in the fact that every connec-
tion Γ on a fibre bundle Y −→ X induces the first–order differential operator

DΓ : J1(X,Y ) → T ∗X ⊗ V Y, DΓ = λ− Γ ◦ π1
0 = (yiα − Γ iα)dxα ⊗ ∂i,

(1.185)
called the covariant differential relative to the connection Γ . If s : X → Y is
a section, one defines its covariant differential

∇Γ s = DΓ ◦ j1s = (∂αsi − Γ iα ◦ s)dxα ⊗ ∂i (1.186)

and its covariant derivative

∇Γτ s = τ∇Γ s (1.187)

along a vector–field τ on X. A (local) section s of Y → X is said to be an
integral section of a connection Γ (or parallel with respect to Γ ) if s obeys
the equivalent conditions
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∇Γ s = 0 or j1s = Γ ◦ s. (1.188)

Furthermore, if s : X → Y is a global section, there exists a connection Γ such
that s is an integral section of Γ . This connection is defined as an extension
of the local section s(x) �→ j1s(x) of the affine jet bundle J1(X,Y ) → Y over
the closed imbedded submanifold s(X) ⊂ Y .

Note that every connection Γ on the bundle Y −→ X defines a system
of first–order differential equations on Y (in the spirit of [BCG91, KLV85,
Pom78]) which is an imbedded subbundle Γ (Y ) = KerDΓ of the jet bundle
J1(X,Y ) −→ Y . It is given by the coordinate relations

yiα = Γ i(y). (1.189)

Integral sections for Γ are local solutions of (1.189), and vice versa.
We can introduce the following basic forms involving a connection Γ and

a soldering form σ:

• the curvature of a connection Γ is given by the horizontal vertical-valued
two–form:

R =
1
2
dΓΓ =

1
2
Riαµdx

α ∧ dxµ ⊗ ∂i,

Riαµ = ∂αΓ iµ − ∂µΓ iα + Γ jα∂jΓ
i
µ − Γ jµ∂jΓ iα; (1.190)

• the torsion of a connection Γ with respect to σ:

Ω = dσΓ = dΓσ =
1
2
Ωiαµdx

α ∧ dxµ ⊗ ∂i

= (∂ασiµ + Γ jα∂jσ
i
µ − ∂jΓ iασjµ)dxα ∧ dxµ ⊗ ∂i; (1.191)

• the soldering curvature of σ:

ε =
1
2
dσσ =

1
2
εiαµdx

α ∧ dxµ ⊗ ∂i

=
1
2
(σjα∂jσ

i
µ − σjµ∂jσil)dxα∧dxµ ⊗ ∂i. (1.192)

They satisfy the following relations:

Γ ′ = Γ + σ, R′ = R+ ε+Ω, Ω′ = Ω + 2ε.

In particular, the curvature (1.190) of the linear connection (1.177) reads

Riαµ(y) = −Rijαµ(x)yj ,
Rijαµ = ∂αΓ ijµ − ∂µΓ ijα + Γ kjµΓ ikα − Γ kjαΓ ikµ.

Let Y and Y ′ be vector bundles over X. Given linear connections Γ and
Γ ′ on Y and Y ′ respectively, there is the unique linear connection Γ ⊗ Γ ′ on
the tensor product Y ⊗ Y ′ → X, such that the following diagram commutes:
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Y × Y ′ Y ⊗ Y ′�
⊗

J1(X,Y )× J1(X,Y )′ J1(Y ⊗ Y ′)�J1⊗

�

Γ × Γ ′

�

Γ ⊗ Γ ′

It is called the tensor–product connection and has the coordinate expression

(Γ ⊗ Γ ′)ikα = Γ ijαyjk + Γ ′k
jαy

ij .

Every connection Γ on Y → X, by definition, induces the horizontal dis-
tribution on Y ,

Γ : TX ↪→ TY, locally given by ∂α �→ ∂α + Γ iα(y)∂i.

It is generated by horizontal lifts

τΓ = τα(∂α + Γ iα∂i)

onto Y of vector–fields τ = τα∂α on X. The associated Pfaffian system is
locally generated by the forms (dyi − Γ iαdxα).

The horizontal distribution Γ (TX) is involutive iff Γ is a curvature–free
connection. As a proof, straightforward calculations show that [τΓ , τ ′Γ ] =
([τ , τ ′])Γ iff the curvature R (1.190) of Γ vanishes everywhere.

Not every bundle admits a curvature–free connection. If a principal bundle
over a simply–connected base (i.e., its first homotopy group is trivial) admits
a curvature–free connection, this bundle is trivializable [KN63/9].

The horizontal distribution defined by a curvature–free connection is com-
pletely integrable. The corresponding foliation on Y is transversal to the foli-
ation defined by the fibration π : Y −→ X. It is called the horizontal foliation.
Its leaf through a point y ∈ Y is defined locally by the integral section sy of
the connection Γ through y. Conversely, let Y admits a horizontal foliation
such that, for each point y ∈ Y , the leaf of this foliation through y is locally
defined by some section sy of Y −→ X through y. Then, the following map is
well defined

Γ : Y −→ J1(X,Y ), Γ (y) = j1ssy, π(y) = x.

This is a curvature–free connection on Y . There is the 1–1 correspondence
between the curvature–free connections and the horizontal foliations on a
bundle Y −→ X.

Given a horizontal foliation on Y −→ X, there exists the associated atlas
of bundle coordinates (xα, yi) of Y such that (i) every leaf of this foliation is
local generated by the equations yi = const, and (ii) the transition functions
yi −→ y′

i(yj) are independent on the coordinates xα of the base X [KT75]. It
is called the atlas of constant local trivializations. Two such atlases are said
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to be equivalent if their union also is an atlas of constant local trivializations.
They are associated with the same horizontal foliation.

There is the 1–1 correspondence between the curvature–free connections
Γ on a bundle Y −→ X and the equivalence classes of atlases Ψc of constant
local trivializations of Y such that Γ iα = 0 relative to the coordinates of the
corresponding atlas Ψc [Can86].

Connections on a bundle over a 1D baseX1 are curvature–free connections.
In particular, let Y −→ X1 be such a bundle (X1 = R or X1 = S1). It

is coordinated by (t, yi), where t is either the canonical parameter of R or
the standard local coordinate of S1 together with the transition functions
t′ = t+const. Relative to this coordinate, the base X1 admits the standard
vector–field ∂t and the standard one–form dt. Let Γ be a connection on Y
−→ X1. Such a connection defines a horizontal foliation on Y −→ X1. Its leaves
are the integral curves of the horizontal lift

τΓ = ∂t + Γ i∂i (1.193)

of ∂t by Γ . The corresponding Pfaffian system is locally generated by the forms
(dyi−Γ idt). There exists an atlas of constant local trivializations (t, yi) such
that Γ i = 0 and τΓ = ∂t relative to these coordinates.

A connection Γ on Y → X1 is called complete if the horizontal vector–
field (1.193) is complete. Every trivialization of Y → R defines a complete
connection. Conversely, every complete connection on Y → R defines a triv-
ialization Y  R×M . The vector–field (1.193) becomes the vector–field ∂t
on R×M . As a proof, every trivialization of Y → R defines a 1–parameter
group of isomorphisms of Y → R over IdR, and hence a complete connection.
Conversely, let Γ be a complete connection on Y → R. The vector–field τΓ
(1.193) is the generator of a 1–parameter group GΓ which acts freely on Y .
The orbits of this action are the integral sections of τΓ . Hence we get a pro-
jection Y → M = Y/GΓ which, together with the projection Y → R, defines
a trivialization Y  R×M .

Let us consider a bundle π : Y → X which admits a composite fibration

Y → Σ → X, (1.194)

where Y → Σ and Σ → X are bundles. It is equipped with the bundle
coordinates (xα, σm, yi) together with the transition functions

xα → x′
α(xµ), σm → σ′

m(xµ, σn), yi → y′
i(xµ, σn, yj),

where (xµ, σm) are bundle coordinates of Σ → X. For example, we have the
composite bundles

TY → Y → X, V Y → Y → X, J1(X,Y ) → Y → X.

Let
A = dxα ⊗ (∂α +Aiα∂i) + dσm ⊗ (∂m +Aim∂i) (1.195)
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be a connection on the bundle Y −→ Σ and

Γ = dxα ⊗ (∂α + Γmα ∂m)

a connection on the bundle Σ −→ X. Given a vector–field τ on X, let us
consider its horizontal lift τΓ onto Σ by Γ and then the horizontal lift (τΓ )A
of τΓ onto Y by the connection (1.195).

There exists the connection

γ = dxα ⊗ [∂α + Γmα ∂m + (AimΓ
m
α +Aiα)∂i]. (1.196)

on Y → X such that the horizontal lift τγ onto Y of any vector–field τ on
X consists with the above lift (τΓ )A [Sar93, Sar95]. It is called the composite
connection.

Given a composite bundle Y (1.194), the exact sequence

0 → V YΣ ↪→ V Y → Y × V Σ → 0

over Y take place, where V YΣ is the vertical tangent bundle of Y → Σ. Every
connection (1.195) on the bundle Y → Σ induces the splitting

V Y = V YΣ ⊕ (Y × V Σ), given by
ẏi∂i + σ̇m∂m = (ẏi −Aimσ̇m)∂i + σ̇m(∂m +Aim∂i).

Due to this splitting, one can construct the first–order differential operator

D̃ = π1 ◦Dγ : J1(X,Y ) → T ∗X ⊗ V Y → T ∗X ⊗ V YΣ ,
D̃ = dxα ⊗ (yiα −Aiα −Aimσmα )∂i, (1.197)

on the composite manifold Y , where Dγ is the covariant differential (1.185)
relative to the composite connection (1.196). We call D̃ the vertical covariant
differential .

Principal Connections

The above general approach to connections as jet fields is suitable to formulate
the classical concept of principal connections. In this subsection, a structure
group G of a principal bundle is assumed to be a real finite–dimensional Lie
group (of positive dimension dimG > 0).

A principal connection A on a principal bundle P → Q is defined to be a
G−equivariant global jet field on P such that

j1Rg ◦A = A ◦Rg

for each canonical map (1.128). We have
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A ◦Rg = j1Rg ◦A, (g ∈ G), (1.198)
A = dqα ⊗ (∂α +Amα (p)em), (p ∈ P ),
Amα (qg) = Amα (p)adg−1(em).

A principal connection A determines splitting TQ ↪→ TGP of the exact se-
quence (1.135). We will refer to

A = A− θQ = Amα dq
α ⊗ em (1.199)

as a local connection form.
Let J1(Q,P ) be the 1–jet space of a principal bundle P → Q with a

structure Lie group G. The jet prolongation

J1(Q,P )× J1(Q×G) → J1(Q,P )

of the canonical action (1.128) brings the jet bundle J1(Q,P ) → Q into a
general affine bundle modelled on the group bundle

J1(Q×G) = G× (T ∗Q⊗ gl) (1.200)

over Q. However, the jet bundle J1(Q,P ) → Q fails to be a principal bundle
since the group bundle (1.200) is not a trivial bundle over Q in general. At the
same time, J1(Q,P ) is the G principal bundle C × P → C over the quotient

C = J1(Q,P )/G (1.201)

of the jet bundle J1(Q,P ) → P by the 1–jet prolongations of the canonical
maps (1.128).

Let J1(Q,P ) be the 1–jet space of a principal G−bundle P → Q. Its
quotient (1.201) by the jet prolongation of the canonical action RG (1.128) is
a fibre bundle over Q.

Given a bundle atlas of P and the associated bundle atlas of VGP , the
affine bundle C admits affine bundle coordinates (t, qi, aqα), and its elements
are represented by TGP−valued 1–forms

a = dqα ⊗ (∂α + aqαeq) (1.202)

on Q. One calls C (1.201) the connection bundle because its sections are
naturally identified with principal connections on the principal bundle P → Q
as follows.

There is the 1–1 correspondence between the principal connections on a
principal bundle P → Q and the global sections of the quotient bundle

C = J1(Q,P )/G −→ Q.

We shall call C the principal connection bundle. It is an affine bundle modelled
on the vector bundle
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C = T ∗Q⊗ V GP, (1.203)

and there is the canonical vertical splitting

V C = C × C.

Given a bundle atlas ΨP of P , the principal connection bundle C admits
the fibre coordinates (qµ, kmµ ) so that

(kmµ ◦A)(q) = Amµ (q)

are coefficients of the local connection one–form (1.199). The 1–jet space
J1(Q,C) of C is with the adapted coordinates

(qµ, kmµ , k
m
µλ). (1.204)

The affine jet bundle J1(Q,C) → C is modelled on the vector bundle

T ∗Q⊗ (C × T ∗Q⊗ V GP ).

There exists the canonical splitting

J1(Q,C) = (J2P/G)⊗ (∧2T ∗Q⊗ V GP ) (1.205)

over C where
C− = C × ∧2T ∗Q⊗ V GP

and C+ → C is the affine bundle modelled on the vector bundle

C+ = ∧2T ∗Q⊗ V GP.

In the coordinates (1.204), the splitting (1.205) reads

kmµλ =
1
2
(kmµλ + kmλµ + cmnlk

n
αk
l
µ) +

1
2
(kmµλ − kmλµ − cmnlknαklµ)

where ckmn are structure constants of the Lie algebra gr with respect to its
basis {Im}.

There are the corresponding canonical projections given by

S = π1 : J1(Q,C) → C+, Smλµ = kmµλ + kmλµ + cmnlk
n
αk
l
µ,

and F = π2 : J1(Q,C) → C−, with

F =
1
2
Fmλµdqα ∧ dqµ ⊗ Im, Fmλµ = kmµλ − kmλµ − cmnlknαklµ.

For every principal connection A, we observe that

F◦j1A = F, F =
1
2
Fmλµdq

α∧dqµ⊗Im, Fmλµ = ∂αAmµ −∂µAmα −cmnkAnαAkµ,
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is the strength of A.
Given a symmetric linear connection K∗ on the cotangent bundle T ∗Q of

Q, every principal connection A on a principal bundle P induces the connec-
tion

SA : C → C+, SA ◦A = S ◦ j1A,
on the principal connection bundle C. In the coordinates (1.204), the connec-
tion SA reads

SA
m
µλ =

1
2
[cmnlk

n
αk
l
µ + ∂µAmα + ∂αAmµ − cmnl(knµAlα + knαA

l
µ)]−Kβµλ(Amβ − kmβ ).

(1.206)
The P−associated bundle Y admits atlases Ψ = {Uξ, ψξ} associated with

atlases ΨP = {Uξ, zξ} of the principal bundle P as follows:

ψ−1
ξ (q × V ) = [zξ(q)]V (V ), (q ∈ Uξ),

where by [p]V is denoted the restriction of the canonical map P × V → Y to
the subset p× V .

Every principal connection A on a principal bundle P induces the asso-
ciated connection Γ on a P−associated bundle Y such that the following
diagram commutes:

P × V Y�

J1(Q,P )× V J1(X,Y )�

�

A× IdV
�
Γ

We call it the associated principal connection. With respect to the associated
atlases Ψ of Y and ΨP of P , this connection is written

Γ = dqα ⊗ [∂α +Amµ (q)Imijyj∂i] (1.207)

where Amµ (q) are coefficients of the local connection one–form (1.199) and Im
are generators of the structure group G on the standard fibre V of the bundle
Y . The curvature of the connection (1.207) reads

Riλµ = FmλµIm
i
jy
i.

1.4.4 Definition of a 2–Jet Space

As introduced above, a 2−jet is defined as a second–order equivalence class
of functions having the same value and the same first derivatives at some
designated point of the domain manifold. Recall that in mechanical settings,
the 2–jets are local coordinate maps

j2t s : t �→ (t, xi, ẋi, ẍi).
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In general, if we recursively apply the jet functor J : Bun→ Jet to the jet
bundles, we come to the higher order jet spaces (see [KMS93, Sar93, Sar95,
GMS97, MS00a, Sar02a]).

In particular, taking the 1–jet space of the 1–jet bundle J1(X,Y ) −→
X, we get the repeated jet space J1(X, J1(X,Y )), which admits the adapted
coordinates

(xα, yi, yiα, ŷ
i
µ, y

i
µα)

with transition functions

ŷ′
i
α =

∂xα

∂x′α
dαy

′i, y′
i
µα =

∂xα

∂x′µ
dαy

′i
α, dα = ∂α + ŷjα∂j + yjνα∂

ν
j .

The 2−jet space J2(X,Y ) of a fibre bundle Y → X is coordinated by
(xα, yi, yiα, y

i
αµ), with the local symmetry condition yiαµ = yiµα. The manifold

J2(X,Y ) is defined as the set of equivalence classes j2xs of sections si : X → Y
of the bundle Y → X, which are identified by their values si(x) and the values
of their first and second–order partial derivatives at points x ∈ X, respectively,

yiα(j
2
xs) = ∂αsi(x), yiαµ(j

2
xs) = ∂α∂µsi(x).

In other words, the 2–jets j2xs : xα �→ (xα, yi, yiα, y
i
αµ), which are second–

order equivalence classes of sections of the fibre bundle Y → X, can be iden-
tified with their codomain set of adapted coordinates on J2(X,Y ),

j2xs ≡ (xα, yi, yiα, y
i
αµ).

Let s be a section of a fibre bundle Y → X, and let j1s be its 1–jet
prolongation to a section of the jet bundle J1(X,Y ) → X. The latter induces
the section j1j1s of the repeated jet bundle J1(X, J1(X,Y )) → X. This
section takes its values into the 2–jet space J2(X,Y ). It is called the 2–jet
prolongation of the section s, and is denoted by j2s.

We have the following affine bundle monomorphisms

J2(X,Y ) ↪→ Ĵ2(X,Y )(X,Y ) ↪→ J1(X, J1(X,Y ))

over J1(X,Y ) and the canonical splitting

Ĵ2(X,Y )(X,Y ) = J2(X,Y )⊕ (∧2T ∗X ⊗ V Y ), given locally by

yiαµ =
1
2
(yiαµ + yiµα) + (

1
2
(yiαµ − yiµα).

In particular, the repeated jet prolongation j1j1s of a section s : X → Y of
the fibre bundle Y → X is a section of the jet bundle J1(X, J1(X,Y )) → X.
It takes its values into J2(X,Y ) and consists with the 2–jet prolongation j2s
of s:

j1j1s(x) = j2s(x) = j2xs.



1.4 Jet Spaces 163

Given a 2–jet space J2(X,Y ) of the fibre bundle Y → X, we have
(i) the fibred map r2 : J2(Y, TY ) → TJ2(X,Y ), given locally by

(ẏiα, ẏ
i
αµ) ◦ r2 = ((ẏi)α − yiµẋµα, (ẏi)αµ − yiµẋµαµ − yiαµẋµα),

where J2(Y, TY ) is the 2–jet space of the tangent bundle TY, and
(ii) the canonical isomorphism V J2(X,Y ) = J2(X,V Y ), where V J2(X,Y ) is
the vertical tangent bundle of the fibre bundle J2(X,Y ) → X, and J2(X,V Y )
is the 2–jet space of the fibre bundle V Y → X.

As a consequence, every vector–field u on a fibre bundle Y → X admits
the 2−jet lift to the projectable vector–field

j2u = r2 ◦ j2u : J2(X,Y ) → TJ2(X,Y ).

In particular, if u = uα∂α + ui∂i is a projectable vector–field on Y , its 2–jet
lift reads

j2u = uα∂α + ui∂i + (∂αui + yjα∂ju
i − yiµ∂αuµ)∂αi (1.208)

+ [(∂α + yjα∂j + yjβα∂
β
j )(∂α + ykα∂k)u

i − yiµẋ
µ
αβ − yiµβẋµα]∂

αβ
i .

Generalizations of the contact and complementary maps (1.161–1.162) to
the 2–jet space J2(X,Y ) read

λ : J2(X,Y ) → T ∗X ⊗ TJ1(X,Y ) is locally given by

λ = dxα ⊗ ∂̂α = dxα ⊗ (∂α + yiα∂i + y
i
µα∂

µ
i ), while (1.209)

θ : J2(X,Y ) → T ∗J1(X,Y )⊗ V J1(X,Y ) is locally given by
θ = (dyi − yiαdxα)⊗ ∂i + (dyiµ − yiµαdxα)⊗ ∂µi . (1.210)

The contact map (1.209) defines the canonical horizontal splitting of the
exact sequence

0 → V J1(X,Y ) ↪→ TJ1(X,Y ) → J1(X,Y )× TX → 0.

Hence, we get the canonical horizontal splitting of a projectable vector–field
j1u ≡ u on J1(X,Y ) over J2(X,Y ):

j1u = uH + uV = uα[∂α + yiα + yiµα] + [(ui − yiαuα)∂i + (uiµ − yiµαuα)∂
µ
i ].

Building on the maps (1.209) and (1.210), one can get the horizontal split-
tings of the canonical tangent–valued 1–form on J1(X,Y ),

θJ1(X,Y ) = dxα ⊗ ∂α + dyi ⊗ ∂i + dyiµ ⊗ ∂
µ
i = α+ θ

and the associated exterior differential

d = dθJ1(X,Y )
= dα + dθ = dH + dV . (1.211)
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They are similar to the horizontal splittings (1.171) and (1.172).
A 2–jet field (resp. a 2–connection) Γ on a fibre bundle Y → X is defined to

be a 1–jet field (resp. a 1–connection) on the jet bundle J1(X,Y ) → X, i.e., Γ
is a section (resp. a global section) of the bundle J1(X, J1(X,Y )) → J1(X,Y ).

In the coordinates (yiα, y
i
(µ), y

i
αµ) of the repeated jet space J1(X, J1(X,Y )),

a 2–jet field Γ is given by the expression

(yiα, y
i
(µ), y

i
αµ) ◦ Γ = (yiα, Γ

i

(µ), Γ
i

αµ).

Using the contact map (1.209), one can represent it by the tangent–valued
horizontal 1–form on the jet bundle J1(X,Y ) → X,

Γ = dxµ ⊗ (∂µ + Γ
i

(µ)∂i + Γ
i

αµ∂
α
i ). (1.212)

A 2–jet field Γ on a fibre bundle Y → X is called a sesquiholonomic (resp.
holonomic) 2–jet field if it takes its values into the subbundle Ĵ2(X,Y ) (resp.
J2(X,Y )) of J1(X, J1(X,Y )). We have the coordinate equality Γ

i

(µ) = yiµ for

a sesquiholonomic 2–jet field and the additional equality Γ
i

αµ = Γ
i

µα for a
holonomic 2–jet field.

Given a symmetric connection K on the cotangent bundle T ∗X, every
connection Γ on a fibre bundle Y → X induces the connection

jΓ = dxµ ⊗ [∂µ + Γ iµ∂i + (∂αΓ iµ + ∂jΓ iµy
j
α −Kααµ(yiα − Γ iα))∂αi ]

on the jet bundle J1(X,Y ) → X. Note that the curvature R of a connection
Γ on a fibre bundle Y → X induces the soldering form σR on J1(X,Y ) → X,

σR = Riαµdx
µ ⊗ ∂αi .

1.4.5 Higher–Order Jet Spaces

The notion of 1– and 2–jet spaces is naturally extended to higher–order jet
spaces. The k−jet space Jk(X,Y ) of a fibre bundle Y → X is defined as the
disjoint union of the equivalence classes jkxs of sections si : X → Y of the fibre
bundle Y → X, identified by their values and the values of the first k terms of
their Taylor–series expansion at points xi in the domain (base) manifold X.
Jk(X,Y ) is a smooth manifold with the adapted coordinates (xα, yiαk...α1

),
where

yiαk···α1
(jkxs) = ∂αk

· · · ∂α1s
i(x), (0 ≤ k ≤ k).

The transformation law of these coordinates reads

y′
i
α+αk...α1

=
∂xµ

∂′xα
dµy

′i
αk...α1

, (1.213)

where α+ αk . . . α1 = (ααk . . . α1) and
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dα = ∂α +
∑

|αk...α1|<k
yiα+αk...α1

∂αk...α1
i = ∂α + yiα∂i + y

i
αµ∂

µ
i + · · ·

are higher–order total derivatives. These derivatives act on exterior forms on
Jk(X,Y ) and obey the relations

dα(φ ∧ σ) = dα(φ) ∧ σ + φ ∧ dα(σ), dα(dφ) = d(dα(φ)).

For example,

dα(dxµ) = 0, dα(dyiαk...α1
) = dyiα+αk...α1

.

Let us also mention the following two operations: the horizontal projection
h0 given by the relations

h0(dxα) = dxα, h0(dyiαk···α1
) = yiµαk...α1

dxµ, (1.214)

and the horizontal differential

dH(φ) = dxα ∧ dα(φ), dH ◦ dH = 0, h0 ◦ d = dH ◦ h0.

In a similar way, one can describe the infinite–order jet space, J∞(X,Y ),
which can be coordinated by (xα, yi, . . . , yiα1...αr

, . . .), where α1 . . . αr are col-
lections of numbers modulo rearrangements, but it fails to be a well–behaved
manifold in general. At the same time, one can introduce the sheaf of smooth
functions on J∞(X,Y ) and define the differential calculus on J∞(X,Y ), with
suitable notation for vector–fields, derivatives and differential forms just as
like as in the finite order case (see [Sar93, Sar95, GMS97, MS00a, Sar02a]).

A vector–field uk on the k–jet space Jk(X,Y ) is called projectable vector–
field if for any l < k there exists a vector–field uk on J l(X,Y ) → X such
that

ul ◦ πkl = Tπkl ◦ uk.
The tangent map Tπkl sends projectable vector–fields on Jk(X,Y ) onto the
projectable vector–fields on J l(X,Y ).

Now consider projectable vector–fields uk which are extension to the
higher–order jet spaces of infinitesimal transformations of the fibre bundle
Y → X. The linear space of projectable vector–fields on J∞(X,Y ) is defined
as the limit of the inverse system of projectable vector–fields on k−jet spaces.
As a consequence, every projectable vector–field on the bundle Y → X,

u = uα∂α + ui∂i,

induces a projectable vector–field u∞ on J∞(X,Y ). We have its canonical
decomposition

u∞ = u∞H + u∞V ,

u∞H = uα∂̂∞α = uα(∂α + yiα∂i + ...), (1.215)

u∞V =
∞∑
k=0

∂̂kαk
...∂̂1

α1
uV

i∂α1...αk
i ,
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where uV is the vertical part of the splitting (1.170) of π1∗
0 u. In particular,

u∞H is the canonical lift of the vector–field τ = uα∂α on X onto J∞(X,Y ).
By the same limiting process we can introduce the notions of inner product

of exterior forms and projectable vector–fields, the Lie bracket of projectable
vector–fields and the Lie derivative of exterior forms by projectable vector–
fields on J∞(X,Y ). All the usual identities are satisfied.

In particular, the notion of contact forms is extended to the forms

d̂yiα1...αr
= dyiα1...αr

− yiα1...αrνdx
ν .

Let Ωr,k denote the space of exterior forms on J∞(X,Y ) which are of the
order r in the horizontal forms dxν and of the order k in the contact forms.
Then, the space Ωn of exterior n−forms on J∞(X,Y ) admits the unique
decomposition

Ωn = Ωn,0 ⊕Ωn−1,1 ⊕ . . .⊕Ω0,n. (1.216)

An exterior form is called a k−contact form if it belongs to the space Ωr,k.
In particular, we have the k−contact projection hk : Ωn −→ Ωn−k,k. For
example, the horizontal projection h0 performs the replacement dyiα1...αk

−→
yiα1...αkν

dxν .
The exterior differential d on exterior forms on J∞(X,Y ) is decomposed

into the sum
d = dH + dV (1.217)

of the total differential operator

dHφ = ∂̂∞µ φ...dx
µ ∧ . . .

and the vertical differential operator

dV φ =
∂φ...

∂yiα1...αr

d̂yiα1...αr
∧ . . .

These differentials satisfy the cohomology properties

dHdH = 0, dV dV = 0, dV dH + dHdV = 0.

Note that if σ is an exterior form on the k−jet space Jk(X,Y ), the de-
composition (1.217) is reduced to

πr+1∗
r dσ = dHσ + dV σ, which implies
h0(dσ) = dHh0(σ).

1.4.6 Jets in Mechanics

As complex nonlinear mechanics is the most exact basis of all complex nonlin-
ear dynamical systems considered in this book, we give here the first glimpse
of mechanics on jet spaces.
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Recall that in ordinary mechanics we have a configuration manifold M
and the corresponding velocity phase–space manifold is its tangent bundle
TM . However, in modern geometrical settings (see [GMS97, MOS99, MS00a,
Sau89, Sar93, Sar95, Sar02a]), the configuration manifold of time–dependent
mechanics is a fibre bundle Q → R, called the configuration bundle, coordi-
nated by (t, qi), where t ∈ R is a Cartesian coordinate on the time axis R with
the transition functions t′ = t+const. The corresponding velocity phase–space
is the 1–jet space J1(R, Q), which admits the adapted coordinates (t, qi, qit). It
was proved in [Gia92, LM96, MS98] that every dynamical equation ξ defines
a connection on the affine jet bundle J1(R, Q) → Q, and vice versa.

Due to the canonical imbedding J1(R, Q) → TQ, every dynamical connec-
tion induces a nonlinear connection on the tangent bundle TQ→ Q, and vice
versa. As a consequence, every dynamical equation on Q induces an equiv-
alent geodesic equation on the tangent bundle TQ → Q in accordance with
the following proposition. Given a configuration bundle Q → R, coordinated
by (t, qi), and its 2–jet space J2(R, Q), coordinated by (t, qi, qit, q

i
tt), any dy-

namical equation ξ on the configuration bundle Q→ R,

qitt = ξi(t, qi, qit) (1.218)

is equivalent to the geodesic equation with respect to a connection K̃ on the
tangent bundle TQ→ Q,

ṫ = 1, ẗ = 0, q̈i = K̃i0 + K̃ij q̇
j ,

which fulfills the conditions

K̃0
α = 0, ξi = K̃i0 + qjt K̃

i
j |ṫ=1,q̇i=qi

t
. (1.219)

Recall that the 1–jet space J1(R, Q) is defined as the set of equivalence
classes j1t c of sections ci : R → Q of the fibre bundle Q → R, which are
identified by their values ci(t) and the values of their partial derivatives ∂tci =
∂tc

i(t) at time points t ∈ R. Also recall that there is the canonical imbedding

λ : J1(R, Q) ↪→ TQ, locally given by λ = dt = ∂t + qit∂i, (1.220)

where dt denotes the total time derivative. From now on, we will identify
J1(R, Q) with its image in the tangent bundle TQ. This is an affine bundle
modelled over the vertical tangent bundle V Q of Q→ R.

As a consequence of (1.220), every connection Γ on a fibre bundle Q→ R,

Γ : Q→ J1(R, Q), locally given by Γ = dt⊗ (∂t + Γ i∂i), (1.221)

is identified with the nowhere vanishing vector–field on Q [MS98, MOS99],

Γ : Q→ J1(R, Q) ⊂ TQ, locally given by Γ = ∂t + Γ i∂i. (1.222)
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This is the horizontal lift of the standard vector–field ∂t on R by means of the
connection (1.221). Conversely, any vector–field Γ on Q such that dtΓ = 1
defines a connection on Q→ R. Therefore, the covariant differential associated
with a connection Γ on Q→ R reads

DG : J1(R, Q) → V Q, locally given by q̇i ◦DG = qit − Γ i.

Let J1(R, J1(R, Q)) denote the (repeated) 1–jet space of the jet bundle
J1(R, Q) → R, coordinated by (t, qi, qit, q

i
(t), q

i
tt). The corresponding 2–jet

space J2(R, Q) of the fibre bundle Q→ R is the holonomic subbundle qit = qi(t)
of J1(R, J1(R, Q)), coordinated by (t, qi, qit, q

i
tt). There are the imbeddings

J2(R, Q) λ̊−→ TJ1(R, Q) Tλ−→ TTQ, with

λ̊ : (t, qi, qit, q
i
tt) �→ (t, qi, qit, ṫ = 1, q̇i = qit, q̇

i
t = qitt). (1.223)

Tλ ◦ λ̊ : (t, qi, qit, q
i
tt) �→ (t, qi, ṫ = 1, q̇i = qit, ẗ = 0, q̈i = qitt), (1.224)

where (t, qi, q̇i, q̈i) are holonomic coordinates on the second tangent bundle
TTQ. This global geometrical structure of time–dependent mechanics is de-
picted in Figure 1.9.

Fig. 1.9. Hierarchical geometrical structure of time–dependent mechanics. Note
that (for simplicity) intermediate jet spaces, J1(R, J1(R, Q)) and TJ1(R, Q), are
not shown.

Therefore, a dynamical equation ξ on a configuration bundle Q→ R, given
in local coordinates by (1.218), is defined as the geodesic equation KerDξ ⊂
J2(R, Q) for a holonomic connection ξ on the jet bundle J1(R, Q) → R. Due
to the map (1.223), a holonomic connection ξ is represented by the horizontal
vector–field on J1(R, Q),
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ξ = ∂t + qit∂i + ξ
i(qµ, qit)∂

t
i . (1.225)

A dynamical equation ξ is said to be conservative if there exists a trivial-
ization Q ∼= R×M such that the vector–field ξ (1.225) on J1(R, Q) ∼= R×TM
is projectable onto TM . Then this projection

Ξξ = q̇i∂i + ξi(qj , q̇j)∂̇i

is a second–order dynamical equation on a typical fibre M of Q→ R,

q̈i = Ξiξ. (1.226)

Conversely, every second–order dynamical equation Ξ (1.226) on a manifold
M can be seen as a conservative dynamical equation

ξΞ = ∂t + q̇i∂i + ui∂̇i

on the trivial fibre bundle R×M → R.
Now we can explore the fundamental relationship between the holonomic

connections ξ (1.225) on the 1−jet bundle J1(R, Q) → R and the dynamical
connections γ on the affine 1−jet bundle J1(R, Q) → Q, given by

γ = dqα ⊗ (∂α + γiα∂
t
i ), (qα ≡ (t, qi), ∂α ≡ (∂t, ∂i)). (1.227)

Any dynamical connection γ (1.227) defines the holonomic connection ξγ
on J1(R, Q) → R [MS98]

ξγ = ∂t + qit∂i + (γi0 + qjtγ
i
j)∂

t
i .

Conversely, any holonomic connection ξ (1.225) on J1(R, Q) → R defines the
dynamical connection

γξ = dt⊗ [∂t + (ξi − 1
2
qjt∂

t
jξ
i)∂ti ] + dqj ⊗ [∂j +

1
2
∂tjξ

i∂ti ]. (1.228)

It follows that every dynamical connection γ (1.227) induces the dynamical
equation (1.218) on the configuration bundle Q→ R, rewritten here as

qitt = γi0 + qjtγ
i
j . (1.229)

Different dynamical connections may lead to the same dynamical equation
(1.229). The dynamical connection γξ (1.228), associated with a dynamical
equation, possesses the property

γki = ∂tiγ
k
0 + qjt∂

t
iγ
k
j ,

which implies the relation ∂tjγ
k
i = ∂tiγ

k
j . Such a dynamical connection is called

symmetric. Let γ be a dynamical connection (1.227) and ξγ the corresponding
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dynamical equation (1.4.6). Then the connection (1.228), associated with ξγ ,
takes the form

γξγ

k
i =

1
2
(γki + ∂tiγ

k
0 + qjt∂

t
iγ
k
j ), γξγ

k
0 = ξk − qitγξγ

k
i .

Note that γ = γξγ
iff γ is symmetric.

To explore the relation between the connections γ (1.227) on the affine jet
bundle J1(R, Q) → Q and the connections

K = dqα ⊗ (∂α +Kβα ∂̇β) (1.230)

on the tangent bundle TQ→ Q, consider the diagram

J1(R, Q) TQ�
λ

J1(R, J1(R, Q)) J1(Q,TQ)�j1λ

�

γ

�
K

(1.231)

where J1(Q,TQ) is the 1–jet space of the tangent bundle TQ → Q, coordi-
nated by (qα, q̇α, q̇αµ ). The jet prolongation j1λ of the canonical imbedding λ
(1.220) over Q reads

j1λ : (t, qi, qit, q
i
µt) �→ (t, qi, ṫ = 1, q̇i = qit, ṫµ = 0, q̇iµ = qiµt).

We have

j1λ ◦ γ : (t, qi, qit) �→ (t, qi, ṫ = 1, q̇i = qit, ṫµ = 0, q̇iµ = γiµ),

K ◦ λ : (t, qi, qit) �→ (t, qi, ṫ = 1, q̇i = qi0, ṫµ = K0
µ, q̇

i
µ = Kiµ).

It follows that the diagram (1.231) can be commutative only if the components
K0
µ of the connection K on TQ → Q vanish. Since the transition functions

t→ t′ are independent of qi, a connection

K̃ = dqα ⊗ (∂α +Kiα∂̇i) (1.232)

with the components K0
µ = 0 can exist on the tangent bundle TQ → Q. It

obeys the transformation law

K ′i
α = (∂jx′iKjµ + ∂µẋ′i)

∂qµ

∂x′α
. (1.233)

Now the diagram (1.231) becomes commutative if the connections γ and K̃
fulfill the relation

γiµ = Kiµ(t, q
i, ṫ = 1, q̇i = qit),
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which holds globally since the substitution of q̇i = qit into (1.233) restates the
coordinate transformation law of γ.

Every dynamical equation (1.218) on the configuration bundle Q→ R can
be written in the form

qitt = Ki0 ◦ λ+ qjtK
i
j ◦ λ, (1.234)

where K̃ is a connection (1.232) on the tangent bundle TQ→ Q. Conversely,
each connection K̃ (1.232) on TQ→ Q defines the dynamical equation (1.234)
on Q→ R.

Consider the geodesic equation (1.4.6) on TQ with respect to the connec-
tion K̃. Its solution is a geodesic curve c(t) which also satisfies the dynamical
equation (1.218), and vice versa.

From the physical viewpoint, a reference frame in mechanics on a config-
uration bundle Q→ R sets a tangent vector at each point of Q which charac-
terizes the velocity of an ‘observer’ at this point. Then any connection Γ on
Q→ R is said to be such a reference frame [EMR95, MS98, MP94, Sar98].

Each connection Γ on a fibre bundle Q → R defines an atlas of local
constant trivializations of Q→ R whose transition functions are independent
of t, and vice versa. One finds Γ = ∂t with respect to this atlas. In particular,
there is 1–1 correspondence between the complete connections Γ (1.222) on
Q→ R and the trivializations of this bundle.

Given a reference frame Γ , any connectionK (1.230) on the tangent bundle
TQ→ Q defines the dynamical equation

ξi = (Kiα − Γ iK0
α)q̇α |ṫ=1,q̇i=qi

t
. (1.235)

Given a connection Γ on the fibre bundle Q→ R and a connection K on
the tangent bundle TQ→ Q, there is the connection K̃ on TQ→ Q with the
components

K̃0
α = 0, K̃iα = Kiα − Γ iK0

α.

Our development of time–dependent mechanics on k−jet spaces is contin-
ued in section 2.1 below.

1.4.7 Jets and Action Principle

Recall that in the classical calculus of variations one studies functionals of the
form

FL(z) =
∫
Ω

L(x, z,∇z) dx, (with Ω ⊂ Rn), (1.236)

where x = (x1, . . . , xn), dx = dx1 ∧ · · · ∧ dxn, z = z(x) ∈ C1(Ω̄), and the
Lagrangian L = L(x, z, p) is a smooth function of x, z, and p = (p1, . . . , pn).
The corresponding Euler–Lagrangian equation, describing functions z(x) that
are stationary for such a functional, is represented by the second–order PDE
[BGG03]
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∆z(x) = F ′(z(x)).

For example, we may identify a function z(x) with its graph N ⊂ Rn+1,
and take the Lagrangian

L =
√

1 + ||p||2,

whose associated functional FL(z) equals the area of the graph, regarded as a
hypersurface in Euclidean space. The Euler–Lagrangian equation describing
functions z(x) stationary for this functional is H = 0, where H is the mean
curvature of the graph N .

To study these Lagrangians and Euler–Lagrangian equations geometri-
cally, we have to choose a class of admissible coordinate changes, and there are
four natural candidates. In increasing order of generality, they are [BGG03]:

• Classical transformations, of the form x′ = x′(x), z′ = z′(z); in this situa-
tion, we think of (x, z, p) as coordinates on the space J1(Rn,R) of 1−jets
of maps Rn → R.

• Gauge transformations, of the form x′ = x′(x), z′ = z′(x, z); here, we think
of (x, z, p) as coordinates on the space of 1−jets of sections of a bundle
Rn+1 → Rn, where x = (x1, . . . , xn) are coordinates on the base Rn and
z ∈ R is a fibre coordinate.

• Point transformations, of the form x′ = x′(x, z), z′ = z′(x, z); here, we
think of (x, z, p) as coordinates on the space of tangent hyperplanes

{dz − pidxi}⊥ ⊂ T(xi,z)(Rn+1)

of the manifold Rn+1 with coordinates (x1, . . . , xn, z).
• Contact transformations, of the form x′ = x′(x, z, p), z′ = z′(x, z, p), p′ =
p′(x, z, p), satisfying the equation of differential 1−forms

dz′ − p′idxi′ = f · (dz − pidxi)

for some function f(x, z, p) �= 0.

Classical calculus of variations primarily concerns the following features of
the functional FL (1.236).

The first variation δFL(z) is analogous to the derivative of a function,
where z = z(x) is thought of as an independent variable in an infinite–
dimensional space of functions. The analog of the condition that a point be
critical is the condition that z(x) be stationary for all fixed–boundary varia-
tions. Formally, we write

δFL(z) = 0,

which will give us a second–order scalar PDE for the unknown function z(x)
of the form

∂zL− ∂xi(∂piL) = 0, (1.237)

namely the Euler–Lagrangian equation of the Lagrangian L(x, z, p).
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In this subsection we will study the PDE (1.237) in an invariant, geometri-
cal setting, following [BGG03]. As a motivation for this geometrical approach,
we note the fact that Lagrangian is invariant under the large class of contact
transformations. Also, note that the Lagrangian L determines the functional
FL, but not vice versa. To see this, observe that if we add to L(x, z, p) a
divergence term and consider

L′(x, z, p) = L(x, z, p) +
∑

(∂xiKi(x, z) + ∂zKi(x, z)pi)

for functions Ki(x, z), then by the Green’s theorem, the functionals FL and
FL′ differ by a constant depending only on values of z on ∂Ω. L and L′ have

the same Euler–Lagrangian equations.
Also, there is a relationship between symmetries of a Lagrangian L and

conservation laws for the corresponding Euler–Lagrangian equations, de-
scribed by the Noether theorem. A subtlety here is that the group of sym-
metries of an equivalence class of Lagrangians may be strictly larger than the
group of symmetries of any particular representative. We will investigate how
this discrepancy is reflected in the space of conservation laws, in a manner
that involves global topological issues.

Finally, one considers the second variation δ2FL, analogous to the Hessian
of a smooth function, usually with the goal of identifying local minima of the
functional. There has been a great deal of analytic work done in this area for
classical variational problems, reducing the problem of local minimization to
understanding the behavior of certain Jacobi operators, but the geometrical
theory is not as well–developed as that of the first variation and the Euler–
Lagrangian equations.

Now we turn to multi–index notation [Gri83a, BGG03, BM82]. An exterior
differential system (EDS) is a pair (M, E) consisting of a smooth manifold
M and a homogeneous, differentially closed ideal E ⊆ Ω∗(M) in the algebra
of smooth differential forms on M . Some of the EDSs that we study are
differentially generated by the sections of a smooth subbundle I ⊆ T ∗M of the
cotangent bundle ofM ; this subbundle, and sometimes its space of sections, is
called a Pfaffian system on M . It will be useful to use the notation {α, β, . . .}
for the (two–sided) algebraic ideal generated by forms α, β,. . . , and to use
the notation {I} for the algebraic ideal generated by the sections of a Pfaffian
system I ⊆ T ∗M . An integral manifold of an EDS (M, E) is a submanifold

immersion ι : N ↪→ M for which ϕN
def
= ι∗ϕ = 0 for all ϕ ∈ E. Integral

manifolds of Pfaffian systems are defined similarly.
A differential form ϕ on the total space of a fibre bundle π : E → B is said

to be semibasic if its contraction with any vector–field tangent to the fibers
of π vanishes, or equivalently, if its value at each point e ∈ E is the pull–back
via π∗e of some form at π(e) ∈ B. Some authors call such a form horizontal.
A stronger condition is that ϕ be basic, meaning that it is locally (in open
subsets of E) the pull–back via π∗ of a form on the base B [BGG03].
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If (ω1, . . . , ωn) is an ordered basis for a vector space V , then corresponding
to a multi–index I = (i1, . . . , ik) is the k−vector

ωI = ωi1 ∧ · · · ∧ ωik ∈ ∧k(V ).

and for the complete multi–index we define

ω = ω1 ∧ · · · ∧ ωn.

Letting (e1, . . . , en) be a dual basis for V ∗, we also define the (n− k)−vector

ω(I) = eIω = eik(eik−1 · · · (ei1ω) · · · ).

This ω(I) is, up to sign, just ωIc , where Ic is a multi–index complementary to
I.

Recall that a contact manifold (M, I) is a smooth manifoldM of dimension
2n+1, with a distinguished line subbundle I ⊂ T ∗M of the cotangent bundle
which is non–degenerate in the sense that for any local 1−form θ generating
I,

θ ∧ (dθ)n �= 0.

For example, A 1−jet is an equivalence class of functions having the
same value and the same first derivatives at some designated point of the
domain. On the space J1(Rn,R) of 1−jets of functions, we can take coordi-
nates (xi, z, pi) corresponding to the jet at (xi) ∈ Rn of the linear function
f(x̄) = z + pi(x̄i − xi). Then we define the contact form

θ = dz − pidxi,

for which
dθ = −dpi ∧ dxi,

so the non–degeneracy condition θ ∧ (dθ)n �= 0 is apparent. In fact, the Pfaff
theorem [BGG03] implies that every contact manifold is locally isomorphic
to this example; that is, every contact manifold (M, I) has local coordinates
(xi, z, pi) for which the form θ = dz − pidxi generates I.

Let (M, I) be a contact manifold of dimension 2n + 1, and assume that
I is generated by a global, non–vanishing section θ ∈ Γ (I); this assumption
only simplifies our notation, and would in any case hold on a double–cover of
M . Sections of I generate the contact differential ideal

I = {θ, dθ} ⊂ Ω∗(M)

in the exterior algebra of differential forms on M . A Legendre submanifold of
M is an immersion ι : N ↪→ M of an nD submanifold N such that ι∗θ = 0
for any contact form θ ∈ Γ (I); in this case ι∗dθ = 0 as well, so a Legendre
submanifold is the same thing as an integral manifold of the differential ideal
I. In Pfaff coordinates with θ = dz − pidxi, one such integral manifold is
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N0 = {z = pi = 0}. To see other Legendre submanifolds ‘near’ this one, note
than any submanifold C1−close to N0 satisfies the independence condition
[BGG03]

dx1 ∧ · · · ∧ dxn �= 0,

and can therefore be described locally as a graph

N = {(xi, z(x), pi(x))}.

In this case, we have

θ|N = 0 iff pi(x) = ∂xiz(x).

Therefore, N is determined by the function z(x), and conversely, every func-
tion z(x) determines such an N ; we informally say that ‘the generic Legendre
submanifold depends locally on one arbitrary function of n variables’. Legen-
dre submanifolds of this form, with dx|N �= 0, are called transverse.

Now, we are interested in functionals given by triples (M, I, Λ), where
(M, I) is a (2n + 1)D contact manifold, and Λ ∈ Ωn(M) is a differential
form of degree n onM ; such a Λ will be referred to as a Lagrangian on (M, I)
[BGG03]. We then define a functional on the set of smooth, compact Legendre
submanifolds N ⊂M , possibly with boundary ∂N , by

FΛ(N) =
∫
N

Λ.

The classical variational problems described above may be recovered from
this notion by taking M = J1(Rn,R) ∼= R2n+1 with coordinates (xi, z, pi), I
generated by θ = dz − pidxi, and Λ = L(xi, z, pi)dx. This formulation also
admits certain functionals depending on second derivatives of z(x), because
there may be dpi−terms in Λ. Later, we will restrict attention to a class of
functionals which, possibly after a contact transformation, can be expressed
without second derivatives.

Suppose given a Lagrangian Λ ∈ Ωn(M) on a contact manifold (M, I),
and a fixed–boundary variation of Legendre submanifold F : N × [0, 1] →M ;
we wish to calculate d

dt (
∫
Nt
Λ).

To do this, first recall the calculation of the Poincaré–Cartan form for the
equivalence class [Λ] ∈ H̄n. Because In+1 = Ωn+1(M), we can write [BGG03]

dΛ = θ ∧ α+ dθ ∧ β = θ ∧ (α+ dβ) + d(θ ∧ β),

and then
Π = θ ∧ (α+ dβ) = d(Λ− θ ∧ β). (1.238)

We are looking for conditions on a Legendre submanifold f : N ↪→ M to
be stationary for [Λ] under all fixed–boundary variations, in the sense that
d
dt

∣∣
t=0

(
∫
Nt
Λ) = 0 whenever F |t=0 = f . We calculate
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∂t

∫
Nt

Λ = ∂t
∫
Nt

(Λ− θ ∧ β) =
∫
Nt

L∂t(Λ− θ ∧ β) =
∫
Nt

∂tΠ.

One might express this result as

δ(FΛ)N (v) =
∫
N

vf∗Π,

where the variational vector–field v, lying in the space Γ0(f∗TM) of sections of
f∗TM vanishing along ∂N , plays the role of ∂t. The conditionΠ ≡ 0(mod{I})
allows us to write Π = θ ∧ Ψ for some n−form Ψ , not uniquely determined,
and we have [BGG03]

d

dt

∣∣∣∣
t=0

∫
Nt

Λ =
∫
N

g f∗Ψ,

where g = (∂tF ∗θ)|t=0. It was shown previously that this g could locally be
chosen arbitrarily in the interior No, so the necessary and sufficient condition
for a Legendre submanifold f : N ↪→ M to be stationary for FΛ is that
f∗Ψ = 0.

In the particular classical situation whereM = {(xi, z, pi)}, θ = dz−pidxi,
and Λ = L(x, z, p)dx, we have

dΛ = Lzθ ∧ dx+ Lpi
dpi ∧ dx = θ ∧ Lzdx− dθ ∧ Lpi

dx(i),

so referring to (1.238),

Π = θ ∧ (Lzdx− d(Lpi
dx(i))) = θ ∧ Ψ.

Now, for a transverse Legendre submanifold N = {(xi, z(x), zxi(x))}, we have
Ψ |N = 0 iff (1.237) is valid along N .

Later, (see section 2.2.4 below) we will extend the jet–action formalism
presented here – to the rigorous (and elegant) jet formulation of path–integrals
in physical field systems.

1.5 Path Integrals: Extending Smooth Geometrical
Machinery

The machinery of geometrical dynamics, as presented so far, is: (i) rigorous,
(ii) elegant, and (iii) powerful – as a tool for understanding, prediction and
control of complex nonlinear systems. However, due to its smooth nature, it is
limited to modelling of deterministic and continuous–time dynamical systems
only. Naturally, the question arises: is it possible to extend this smooth ma-
chinery so to be able to effectively deal also with probabilistic and discrete–time
dynamical systems, like e.g., Markov chains? And the answer is: Yes. Namely,
in the very core of the XX Century geometrodynamics, there is a powerful
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conceptual and computational tool that is ‘by default’ used as a starting point
for virtually every new physical theory – the celebrated Feynman path inte-
gral . In the path–integral formalism, we first formulate the specific classical
action of a new theory, and subsequently perform its quantization by means
of the associated amplitude. This action–amplitude picture is the core struc-
ture in any new physical theory. Unlike mathematical manifolds, bundles and
jets, the path integral is an invention of the physical mind of Richard (Dick)
Feynman. Its virtual paths are in general neither deterministic not smooth,
although they include bundles and jets of deterministic and smooth paths, as
well as Markov chains. Yet, it is essentially a (broader) geometrical dynamics,
with its Riemannian and symplectic versions, among many others. At the be-
ginning, it worked only for conservative physical systems. Today it includes
also dissipative structures, as well as various sources and sinks. Its smooth
part reveals all celebrated equations of the 20th Century, both classical and
quantum. It is the core of modern quantum gravity and string theory. It is
arguably the most important construct of mathematical physics. At the edge
of a new millennium, if you asked a typical theoretical physicist: what will be
your main research tool in the new millennium, he/she would most probably
say: path integral. And today, we see it moving out from physics, into the
realm of social sciences. Finally, since Feynman’s fairly intuitive invention of
the path integral [Fey51], a lot of research has been done to make it mathe-
matically rigorous (see e.g., [Loo99, Loo00, AFH86, Kla97, SK98a, Kla00]).

1.5.1 Intuition Behind a Path Integral

Classical Probability Concept

Recall that a random variable X is defined by its distribution function f(x).
Its probabilistic description is based on the following rules: (i) P (X = xi) is
the probability that X = xi; and (ii) P (a ≤ X ≤ b) is the probability that X
lies in a closed interval [a, b]. Its statistical description is based on: (i) µX or
E(X) is the mean or expectation of X; and (ii) σX is the standard deviation
of X. There are two cases of random variables: discrete and continuous, each
having its own probability (and statistics) theory.

Discrete Random Variable

A discrete random variable X has only a countable number of values {xi}. Its
distribution function f(xi) has the following properties:

P (X = xi) = f(xi), f(xi) ≥ 0,
∑
i

f(xi) dx = 1.

Statistical description of X is based on its discrete mean value µX and
standard deviation σX , given respectively by

µX = E(X) =
∑
i

xif(xi), σX =
√
E(X2)− µ2

X .
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Continuous Random Variable

Here f(x) is a piecewise continuous function such that:

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx, f(x) ≥ 0,
∫ ∞

−∞
f(x) dx =

∫
R

f(x) dx = 1.

Statistical description of X is based on its continuous mean µX and stan-
dard deviation σX , given respectively by

µX = E(X) =
∫ ∞

−∞
xf(x) dx, σX =

√
E(X2)− µ2

X .

Now, let us observe the similarity between the two descriptions. The same
kind of similarity between discrete and continuous quantum spectrum stroke
Dirac when he suggested the combined integral approach, that he denoted

by
∫
Σ – meaning ‘both integral and sum at once’: summing over discrete

spectrum and integration over continuous spectrum.
To emphasize this similarity even further, as well as to set–up the stage

for the path integral, recall the notion of a cumulative distribution function
of a random variable X, that is a function F : R −→ R, defined by

F (a) = P (X) ≤ a.

In particular, suppose that f(x) is the distribution function of X. Then

F (x) =
∑
xi≤x

f(xi), or F (x) =
∫ ∞

−∞
f(t) dt,

according to as x is a discrete or continuous random variable. In either case,
F (a) ≤ F (b) whenever a ≤ b. Also,

lim
x−→−∞

F (x) = 0 and lim
x−→∞

F (x) = 1,

that is, F (x) is monotonic and its limit to the left is 0 and the limit to the
right is 1. Furthermore, its cumulative probability is given by

P (a ≤ X ≤ b) = F (b)− F (a),

and the Fundamental Theorem of Calculus tells us that, in the continuum
case,

f(x) = ∂xF (x).
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General Markov Stochastic Dynamics

Recall that Markov stochastic process is a random process characterized by
a lack of memory, i.e., the statistical properties of the immediate future are
uniquely determined by the present, regardless of the past [Gar85].

For example, a random walk is an example of the Markov chain, i.e., a
discrete–time Markov process, such that the motion of the system in consid-
eration is viewed as a sequence of states, in which the transition from one
state to another depends only on the preceding one, or the probability of the
system being in state k depends only on the previous state k−1. The property
of a Markov chain of prime importance in biomechanics is the existence of an
invariant distribution of states: we start with an initial state x0 whose abso-
lute probability is 1. Ultimately the states should be distributed according to
a specified distribution.

Between the pure deterministic dynamics, in which all DOF of the system
in consideration are explicitly taken into account, leading to classical dynam-
ical equations, for example in Hamiltonian form (1.17), i.e.,

q̇i = ∂pi
H, ṗi = −∂qiH

– and pure stochastic dynamics (Markov process), there is so–called hybrid
dynamics, particularly Brownian dynamics, in which some of DOF are rep-
resented only through their stochastic influence on others. As an example,
suppose a system of particles interacts with a viscous medium. Instead of
specifying a detailed interaction of each particle with the particles of the vis-
cous medium, we represent the medium as a stochastic force acting on the
particle. The stochastic force reduces the dimensionally of the dynamics.

Recall that the Brownian dynamics represents the phase–space trajecto-
ries of a collection of particles that individually obey Langevin rate equations
in the field of force (i.e., the particles interact with each other via some de-
terministic force). For a free particle, the Langevin equation reads [Gar85]:

mv̇ = R(t) − βv,

where m denotes the mass of the particle and v its velocity. The right–hand
side represent the coupling to a heat bath; the effect of the random force R(t)
is to heat the particle. To balance overheating (on the average), the particle
is subjected to friction β. In humanoid dynamics this is performed with the
Rayleigh–Van der Pol’s dissipation. Formally, the solution to the Langevin
equation can be written as

v(t) = v(0) exp
(
− β
m
t

)
+

1
m

∫ t

0

exp[−(t− τ)β/m]R(τ) dτ ,

where the integral on the right–hand side is a stochastic integral and the so-
lution v(t) is a random variable. The stochastic properties of the solution
depend significantly on the stochastic properties of the random force R(t). In
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the Brownian dynamics the random force R(t) is Gaussian distributed. Then
the problem boils down to finding the solution to the Langevin stochastic dif-
ferential equation with the supplementary condition (mean zero and variance)

< R(t) >= 0, < R(t)R(0) >= 2βkBTδ(t),

where < . > denotes the mean value, T is temperature, kB−equipartition (i.e.,
uniform distribution of energy) coefficient, Dirac δ(t)−function.

Algorithm for computer simulation of the Brownian dynamics (for a single
particle) can be written as [Hee90]:

1. Assign an initial position and velocity.
2. Draw a random number from a Gaussian distribution with mean zero and

variance.
3. Integrate the velocity to get vn+1.
4. Add the random component to the velocity.

Another approach to taking account the coupling of the system to a heat
bath is to subject the particles to collisions with virtual particles [Hee90].
Such collisions are imagined to affect only momenta of the particles, hence
they affect the kinetic energy and introduce fluctuations in the total energy.
Each stochastic collision is assumed to be an instantaneous event affecting
only one particle.

The collision–coupling idea is incorporated into the Hamiltonian model of
dynamics (1.17) by adding a stochastic force Ri = Ri(t) to the ṗ equation

q̇i = ∂pi
H, ṗi = −∂qiH +Ri(t).

On the other hand, the so–called Ito stochastic integral represents a kind
of classical Riemann–Stieltjes integral from linear functional analysis, which
is (in 1D case) for an arbitrary time–function G(t) defined as the mean square
limit ∫ t

t0

G(t)dW (t) = ms lim
n→∞

{
n∑
i=1

G(ti−1[W (ti)−W (ti−1]}.

Now, the general ND Markov process can be defined by Ito stochastic
differential equation (SDE),

dxi(t) = Ai[xi(t), t]dt+Bij [xi(t), t] dW j(t),
xi(0) = xi0, (i, j = 1, . . . , N)

or corresponding Ito stochastic integral equation

xi(t) = xi(0) +
∫ t

0

dsAi[xi(s), s] +
∫ t

0

dW j(s)Bij [xi(s), s],

in which xi(t) is the variable of interest, the vector Ai[x(t), t] denotes de-
terministic drift, the matrix Bij [x(t), t] represents continuous stochastic diffu-
sion fluctuations, andW j(t) is an N -variable Wiener process (i.e., generalized
Brownian motion) [Wie61], and dW j(t) =W j(t+ dt)−W j(t).
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Now, there are three well–known special cases of the Chapman–Kolmogorov
equation (see [Gar85]):

1. When both Bij [x(t), t] and W (t) are zero, i.e., in the case of pure deter-
ministic motion, it reduces to the Liouville equation

∂tP (x′, t′|x′′, t′′) = −
∑
i

∂

∂xi
{Ai[x(t), t]P (x′, t′|x′′, t′′)} .

2. When only W (t) is zero, it reduces to the Fokker–Planck equation

∂tP (x′, t′|x′′, t′′) = −
∑
i

∂

∂xi
{Ai[x(t), t]P (x′, t′|x′′, t′′)}

+
1
2

∑
ij

∂2

∂xi∂xj
{Bij [x(t), t]P (x′, t′|x′′, t′′)} .

3. When both Ai[x(t), t] and Bij [x(t), t] are zero, i.e., the state–space consists
of integers only, it reduces to the Master equation of discontinuous jumps

∂tP (x′, t′|x′′, t′′) =∫
dx {W (x′|x′′, t)P (x′, t′|x′′, t′′)−W (x′′|x′, t)P (x′, t′|x′′, t′′)} .

The Markov assumption can now be formulated in terms of the condi-
tional probabilities P (xi, ti): if the times ti increase from right to left, the
conditional probability is determined entirely by the knowledge of the most
recent condition. Markov process is generated by a set of conditional prob-
abilities whose probability–density P = P (x′, t′|x′′, t′′) evolution obeys the
general Chapman–Kolmogorov integro–differential equation

∂tP = −
∑
i

∂

∂xi
{Ai[x(t), t]P}

+
1
2

∑
ij

∂2

∂xi∂xj
{Bij [x(t), t]P}+

∫
dx {W (x′|x′′, t)P −W (x′′|x′, t)P}

including deterministic drift, diffusion fluctuations and discontinuous jumps
(given respectively in the first, second and third terms on the r.h.s.).

It is this general Chapman–Kolmogorov integro–differential equation, with
its conditional probability density evolution, P = P (x′, t′|x′′, t′′), that we are
going to model by various forms of the Feynman path integral, providing us
with the physical insight behind the abstract (conditional) probability densi-
ties.

Quantum Probability Concept

An alternative concept of probability, the so–called quantum probability, is
based on the following physical facts (elaborated in detail in this section):
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1. The time–dependent Schrödinger equation represents a complex–valued
generalization of the real–valued Fokker–Planck equation for describing
the spatio–temporal probability density function for the system exhibiting
continuous–time Markov stochastic process.

2. The Feynman path integral
∫
Σ is a generalization of the time–dependent

Schrödinger equation, including both continuous–time and discrete–time
Markov stochastic processes.

3. Both Schrödinger equation and path integral give ‘physical description’ of
any system they are modelling in terms of its physical energy, instead of
an abstract probabilistic description of the Fokker–Planck equation.

Therefore, the Feynman path integral
∫
Σ , as a generalization of the time–

dependent Schrödinger equation, gives a unique physical description for the
general Markov stochastic process, in terms of the physically based generalized
probability density functions, valid both for continuous–time and discrete–
time Markov systems.

Basic consequence: a different way for calculating probabilities. The differ-
ence is rooted in the fact that sum of squares is different from the square of
sums, as is explained in the following text.

Namely, in Dirac–Feynman quantum formalism, each possible route from
the initial system state A to the final system state B is called a history.
This history comprises any kind of a route (see Figure 1.10), ranging from
continuous and smooth deterministic (mechanical–like) paths to completely
discontinues and random Markov chains (see, e.g., [Gar85]). Each history (la-
belled by index i) is quantitatively described by a complex number14 zi called
the ‘individual transition amplitude’. Its absolute square, |zi|2, is called the in-
dividual transition probability. Now, the total transition amplitude is the sum
of all individual transition amplitudes,

∑
i zi, called the sum–over–histories.

The absolute square of this sum–over–histories, |
∑
i zi|2, is the total transition

probability.
In this way, the overall probability of the system’s transition from some

initial state A to some final state B is given not by adding up the probabilities
for each history–route, but by ‘head–to–tail’ adding up the sequence of ampli-
tudes making–up each route first (i.e., performing the sum–over–histories) –
to get the total amplitude as a ‘resultant vector’, and then squaring the total
amplitude to get the overall transition probability.
14 Recall that a complex number z = x + iy, where i =

√
−1 is the imaginary unit,

x is the real part and y is the imaginary part, can be represented also in its
polar form, z = r(cos θ + i sin θ), where the radius vector in the complex plane,
r = |z| =

√
x2 + y2, is the modulus or amplitude, and angle θ is the phase; as

well as in its exponential form z = reiθ. In this way, complex numbers actually
represent 2D vectors with usual vector ‘head–to–tail’ addition rule.
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Fig. 1.10. Two ways of physical transition from an initial state A to the cor-
responding final state B. (a) Classical physics proposes a single deterministic
trajectory, minimizing the total system’s energy. (b) Quantum physics proposes a
family of Markov stochastic histories, namely all possible routes from A to B, both
continuous–time and discrete–time Markov chains, each giving an equal contribution
to the total transition probability.

Quantum Coherent States

Recall that a quantum coherent state is a specific kind of quantum state of
the quantum harmonic oscillator whose dynamics most closely resemble the
oscillating behavior of a classical harmonic oscillator. It was the first exam-
ple of quantum dynamics when Erwin Schrödinger derived it in 1926 while
searching for solutions of the Schrödinger equation that satisfy the correspon-
dence principle. The quantum harmonic oscillator and hence, the coherent
state, arise in the quantum theory of a wide range of physical systems. For
instance, a coherent state describes the oscillating motion of the particle in a
quadratic potential well. In the quantum electrodynamics and other bosonic
quantum field theories they were introduced by the 2005 Nobel Prize winning
work of Roy Glauber in 1963 [Gla63a, Gla63b]. Here the coherent state of
a field describes an oscillating field, the closest quantum state to a classical
sinusoidal wave such as a continuous laser wave.

In classical optics, light is thought of as electromagnetic waves radiating
from a source. Specifically, coherent light is thought of as light that is emitted
by many such sources that are in phase. For instance, a light bulb radiates
light that is the result of waves being emitted at all the points along the
filament. Such light is incoherent because the process is highly random in
space and time. On the other hand, in a laser, light is emitted by a carefully
controlled system in processes that are not random but interconnected by
stimulation and the resulting light is highly ordered, or coherent. Therefore
a coherent state corresponds closely to the quantum state of light emitted by
an ideal laser. Semi–classically we describe such a state by an electric field
oscillating as a stable wave. Contrary to the coherent state, which is the most
wave–like quantum state, the Fock state (e.g., a single photon) is the most
particle–like state. It is indivisible and contains only one quanta of energy.
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These two states are examples of the opposite extremes in the concept of
wave–particle duality . A coherent state distributes its quantum–mechanical
uncertainty equally, which means that the phase and amplitude uncertainty
are approximately equal. Conversely, in a single–particle state the phase is
completely uncertain.

Formally, the coherent state |α〉 is defined to be the eigenstate of the
annihilation operator a, i.e., a|α〉 = α|α〉. Note that since a is not Hermitian,
α = |α|eiθ is complex. |α| and θ are called the amplitude and phase of the
state.

Physically, a|α〉 = α|α〉 means that a coherent state is left unchanged
by the detection (or annihilation) of a particle. Consequently, in a coherent
state, one has exactly the same probability to detect a second particle. Note,
this condition is necessary for the coherent state’s Poisson detection statistics.
Compare this to a single–particle’s Fock state: Once one particle is detected,
we have zero probability of detecting another.

Now, recall that a Bose–Einstein condensate (BEC) is a collection of boson
atoms that are all in the same quantum state. An approximate theoretical
description of its properties can be derived by assuming the BEC is in a
coherent state. However, unlike photons, atoms interact with each other so it
now appears that it is more likely to be one of the squeezed coherent states
(see [BSM97]). In quantum field theory and string theory, a generalization
of coherent states to the case of infinitely many degrees of freedom is used
to define a vacuum state with a different vacuum expectation value from the
original vacuum.

Dirac’s < bra | ket > Transition Amplitude

Now, we are ready to move–on into the realm of quantum mechanics. Re-
call that P. Dirac [Dir82] described behavior of quantum systems in terms of
complex–valued ket–vectors |A > living in the Hilbert space H, and their du-
als, bra–covectors < B| (i.e., 1–forms) living in the dual Hilbert space H∗.15

The Hermitian inner product of kets and bras, the bra–ket < B|A >, is a

15 Recall that a norm on a complex vector space H is a mapping from H into the
complex numbers, ‖·‖ : H → C; h → ‖h‖, such that the following set of norm–
axioms hold:

(N1) ‖h‖ ≥ 0 for all h ∈ H and ‖h‖ = 0 implies h = 0 (positive definiteness);
(N2) ‖λ h‖ = |λ| ‖h‖ for all h ∈ H and λ ∈ C (homogeneity); and
(N3) ‖h1 + h2‖ ≤ ‖h1‖+‖h2‖ for all h1, h2 ∈ H (triangle inequality). The pair

(H, ‖·‖) is called a normed space.
A Hermitian inner product on a complex vector space H is a mapping 〈·, ·〉 :

H×H → C such that the following set of inner–product–axioms hold:
(IP1) 〈h h1 + h2〉 = 〈h h1 + h h2〉 ;
(IP2) 〈α h, h1〉 = α 〈h, h1〉 ;
(IP3) 〈h1, h2〉 = 〈h1, h2〉 (so 〈h, h〉 is real);
(IP4) 〈h, h〉 ≥ 0 and 〈h, h〉 = 0 provided h = 0.
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complex number, which is the evaluation of the ket |A > by the bra < B|.
This complex number, say reiθ represents the system’s transition amplitude16

from its initial state A to its final state B17, i.e.,

TransitionAmplitude =< B|A >= reiθ.

That is, there is a process that can mediate a transition of a system from
initial state A to the final state B and the amplitude for this transition equals
< B|A >= reiθ. The absolute square of the amplitude, | < B|A > |2 rep-
resents the transition probability . Therefore, the probability of a transition
event equals the absolute square of a complex number, i.e.,

TransitionProbability = | < B|A > |2 = |reiθ|2.
These complex amplitudes obey the usual laws of probability : when a tran-

sition event can happen in alternative ways then we add the complex numbers,

< B1|A1 > + < B2|A2 >= r1eiθ1 + r2eiθ2 ,

and when it can happen only as a succession of intermediate steps then we
multiply the complex numbers,

< B|A >=< B|c >< c|A >= (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+θ2).

In general,

1. The amplitude for n mutually alternative processes equals the sum∑n
k=1 rke

iθk of the amplitudes for the alternatives; and
2. If transition from A to B occurs in a sequence of m steps, then the total

transition amplitude equals the product
∏m
j=1 rje

iθj of the amplitudes of
the steps.

Formally, we have the so–called expansion principle, including both prod-
ucts and sums,18

< B|A >=
n∑
i=1

< B|ci >< ci|A > . (1.239)

The standard inner product on the product space Cn = C × · · · × C is defined
by 〈z, w〉 =

∑n
i=1 ziw

i, and axioms (IP1)–(IP4) are readily checked. Also Cn is
a normed space with ‖z‖2 =

∑n
i=1 |zi|2 . The pair (H, 〈·, ·〉) is called an inner

product space.
Let (H, ‖·‖) be a normed space. If the corresponding metric d is complete,

we say (H, ‖·‖) is a Banach space. If (H, ‖·‖) is an inner product space whose
corresponding metric is complete, we say (H, ‖·‖) is a Hilbert space.

16 Transition amplitude is otherwise called probability amplitude, or just amplitude.
17 Recall that in quantum mechanics, complex numbers are regarded as the vacuum–

state, or the ground–state, and the entire amplitude < b|a > is a vacuum–to–
vacuum amplitude for a process that includes the creation of the state a, its
transition to b, and the annihilation of b to the vacuum once more.

18 In Dirac’s language, the completeness of intermediate states becomes the state-
ment that a certain sum of projectors is equal to the identity. Namely, suppose
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Fig. 1.11. Analysis of all possible routes from the source A to the detector B is
simplified to include only double straight lines (in a plane).

Feynman’s Sum–over–Histories

Now, iterating the Dirac’s expansion principle (1.239) over a complete set of
all possible states of the system, leads to the simplest form of the Feynman
path integral , or, sum–over–histories. Imagine that the initial and final states,
A and B, are points on the vertical lines x = 0 and x = n + 1, respectively,
in the x − y plane, and that (c(k)i(k), k) is a given point on the line x = k
for 0 < i(k) < m (see Figure 1.11). Suppose that the sum of projectors for
each intermediate state is complete19 Applying the completeness iteratively,
we get the following expression for the transition amplitude:

< B|A >=
∑∑

...
∑

< B|c(1)i(1) >< c(1)i(1)|c(2)i(2) > ... < c(n)i(n)|A >,

where the sum is taken over all i(k) ranging between 1 and m, and k ranging
between 1 and n. Each term in this sum can be construed as a combinatorial
route from A to B in the 2D space of the x − y plane. Thus the transition
amplitude for the system going from some initial state A to some final state
B is seen as a summation of contributions from all the routes connecting A
to B.

Feynman used this description to produce his celebrated path integral ex-
pression for a transition amplitude (see, e.g., [GS98, Sch81]). His path integral
takes the form

that
∑

i |ci >< ci| = 1 with < ci|ci >= 1 for each i. Then

< b|a >=< b||a >=< b|
∑

i

|ci >< ci||a >=
∑

i

< b|ci >< ci|a > .

19 We assume that following sum is equal to one, for each k from 1 to n − 1:

|c(k)1 >< c(k)1| + ... + |c(k)m >< c(k)m| = 1.
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Fig. 1.12. Random walk (a particular case of Markov chain) on the x−axis.

TransitionAmplitude =< B|A >=
∫
Σ D[x] eiS[x], (1.240)

where the sum–integral
∫
Σ is taken over all possible routes x = x(t) from the

initial point A = A(tini) to the final point B = B(tfin), and S = S[x] is the
classical action for a particle to travel from A to B along a given extremal
path x. In this way, Feynman took seriously Dirac’s conjecture interpreting
the exponential of the classical action functional (DeiS), resembling a complex
number (reiθ), as an elementary amplitude. By integrating this elementary
amplitude, DeiS , over the infinitude of all possible histories, we get the total
system’s transition amplitude.20

20 For the quantum physics associated with a classical (Newtonian) particle the ac-
tion S is given by the integral along the given route from a to b of the difference
T − V where T is the classical kinetic energy and V is the classical potential
energy of the particle.
The beauty of Feynman’s approach to quantum physics is that it shows the re-
lationship between the classical and the quantum in a particularly transparent
manner. Classical motion corresponds to those regions where all nearby routes
contribute constructively to the summation. This classical path occurs when the
variation of the action is null. To ask for those paths where the variation of the
action is zero is a problem in the calculus of variations, and it leads directly to
Newton’s equations of motion (derived using the Euler–Lagrangian equations).
Thus with the appropriate choice of action, classical and quantum points of view
are unified.
Also, a discretization of the Schrodinger equation

i�
dψ

dt
= − �2

2m

d2ψ

dx2
+ V ψ,

leads to a sum–over–histories that has a discrete path integral as its solution.
Therefore, the transition amplitude is equivalent to the wave ψ. The particle
travelling on the x−axis is executing a one–step random walk, see Figure 1.12.
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Fig. 1.13. A piecewise linear particle path contributing to the discrete Feynman
propagator.

The Basic Form of a Path Integral

In Feynman’s version of non–relativistic quantum mechanics, the time evolu-
tion ψ(x′, t′) �→ ψ(x′′, t′′) of the wave function ψ = ψ(x, t) of the elementary
1D particle may be described by the integral equation [GS98]

ψ(x′′, t′′) =
∫

R

K(x′′, x′; t′′, t′)ψ(x′, t′), (1.241)

where the propagator or Feynman kernel K = K(x′′, x′; t′′, t′) is defined
through a limiting procedure,

K(x′′, x′; t′′, t′) = lim
ε→0

A−N
N−1∏
k=1

∫
dxk ei

∑N−1
j=0 εL(xj+1,(xj+1−xj)/ε). (1.242)

The time interval t′′ − t′ has been discretized into N steps of length ε =
(t′′ − t′)/N , and the r.h.s. of (1.242) represents an integral over all piecewise
linear paths x(t) of a ‘virtual’ particle propagating from x′ to x′′, illustrated
in Figure 1.13.

The prefactor A−N is a normalization and L denotes the Lagrangian func-
tion of the particle. Knowing the propagator G is tantamount to having solved
the quantum dynamics. This is the simplest instance of a path integral, and
is often written schematically as

K(x′, t′;x′′, t′′) =
∫
Σ D[x(t)] eiS[x(t)],

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if we
Wick–rotate the time variable t to imaginary values t �→ τ = it, thereby
making all integrals real [RS75].
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Adaptive Path Integral

Now, we can extend the Feynman sum–over–histories (1.240), by adding the
synaptic–like weights wi = wi(t) into the measure D[x], to get the adaptive
path integral :

Adaptive TransitionAmplitude =< B|A >w=
∫
Σ D[w, x] eiS[x], (1.243)

where the adaptive measure D[w, x] is defined by the weighted product (of
discrete time steps)

D[w, x] = lim
n−→∞

n∏
t=1

wi(t) dxi(t). (1.244)

In (1.244) the synaptic weights wi = wi(t) are updated by the unsupervised
Hebbian–like learning rule [Heb49]:

wi(t+ 1) = wi(t) +
σ

η
(wid(t)− wia(t)), (1.245)

where σ = σ(t), η = η(t) represent local signal and noise amplitudes, respec-
tively, while superscripts d and a denote desired and achieved system states,
respectively. Theoretically, equations (1.243–1.245) define an ∞−dimensional
complex–valued neural network.21 Practically, in a computer simulation we
can use 107 ≤ n ≤ 108, approaching the number of neurons in the brain. Such
equations are usually solved using Markov–Chain Monte–Carlo methods on
parallel (cluster) computers (see, e.g., [WW83a, WW83b]).

1.5.2 Path Integral History

Extract from Feynman’s Nobel Lecture

In his Nobel Lecture, December 11, 1965, Richard (Dick) Feynman said that he
and his PhD supervisor, John Wheeler, had found the action A = A[x; ti, tj ],
directly involving the motions of the charges only,22

A[x; ti, tj ] = mi
∫

(ẋiµẋ
i
µ)

1
2 dti +

1
2
eiej

∫ ∫
δ(I2ij) ẋ

i
µ(ti)ẋ

j
µ(tj) dtidtj

with (i �= j) (1.246)
I2ij =

[
xiµ(ti)− xjµ(tj)

] [
xiµ(ti)− xjµ(tj)

]
,

21 For details on complex–valued neural networks, see e.g., complex–domain exten-
sion of the standard backpropagation learning algorithm [GK92, BP02].

22 Wheeler–Feynman Idea [WF49] “The energy tensor can be regarded only as a
provisional means of representing matter. In reality, matter consists of electrically
charged particles.”
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where xiµ = xiµ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋiµ(ti) = dxiµ(ti)/dti is the velocity four–vector.

The first term in the action A[x; ti, tj ] (1.246) is the integral of the proper
time ti, the ordinary action of relativistic mechanics of free particles of mass
mi (summation over µ). The second term in the action A[x; ti, tj ] (1.246)
represents the electrical interaction of the charges. It is summed over each
pair of charges (the factor 1

2 is to count each pair once, the term i = j is
omitted to avoid self–action). The interaction is a double integral over a delta
function of the square of space–time interval I2 between two points on the
paths. Thus, interaction occurs only when this interval vanishes, that is, along
light cones (see [WF49]).

Feynman comments here: “The fact that the interaction is exactly one–
half advanced and half–retarded meant that we could write such a principle of
least action, whereas interaction via retarded waves alone cannot be written
in such a way. So, all of classical electrodynamics was contained in this very
simple form.”

“...The problem is only to make a quantum theory, which has as its clas-
sical analog, this expression (1.246). Now, there is no unique way to make a
quantum theory from classical mechanics, although all the textbooks make
believe there is. What they would tell you to do, was find the momentum
variables and replace them by (�/i)(∂/∂x), but I couldn’t find a momentum
variable, as there wasn’t any.”

“The character of quantum mechanics of the day was to write things in
the famous Hamiltonian way (in the form of Schrödinger equation), which
described how the wave function changes from instant to instant, and in terms
of the Hamiltonian operator H. If the classical physics could be reduced to a
Hamiltonian form, everything was all right. Now, least action does not imply
a Hamiltonian form if the action is a function of anything more than positions
and velocities at the same moment. If the action is of the form of the integral
of the Lagrangian L = L(ẋ, x), a function of the velocities and positions at
the same time t,

S[x] =
∫
L(ẋ, x) dt, (1.247)

then you can start with the Lagrangian L and then create a Hamiltonian H
and work out the quantum mechanics, more or less uniquely. But the action
A[x; ti, tj ] (1.246) involves the key variables, positions (and velocities), at two
different times ti and tj and therefore, it was not obvious what to do to make
the quantum–mechanical analogue...”

So, Feynman was looking for the action integral in quantum mechanics.
He says: “...I simply turned to Professor Jehle and said, ‘Listen, do you know
any way of doing quantum mechanics, starting with action – where the action
integral comes into the quantum mechanics?” ‘No”, he said, ‘but Dirac has
a paper in which the Lagrangian, at least, comes into quantum mechanics.”
What Dirac said was the following: There is in quantum mechanics a very
important quantity which carries the wave function from one time to another,
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besides the differential equation but equivalent to it, a kind of a kernel, which
we might call K(x′, x), which carries the wave function ψ(x) known at time
t, to the wave function ψ(x′) at time t+ ε,

ψ(x′, t+ ε) =
∫
K(x′, x)ψ(x, t) dx.

Dirac points out that this function K was analogous to the quantity in
classical mechanics that you would calculate if you took the exponential of
[iε multiplied by the Lagrangian L(ẋ, x)], imagining that these two positions
x, x′ corresponded to t and t+ ε. In other words,

K(x′, x) is analogous to eiεL( x′−x
ε ,x)/�.

So, Feynman continues: “What does he mean, they are analogous; what does
that mean, analogous? What is the use of that?” Professor Jehle said, ‘You
Americans! You always want to find a use for everything!” I said that I thought
that Dirac must mean that they were equal. ‘No”, he explained, ‘he doesn’t
mean they are equal.” ‘Well”, I said, ‘Let’s see what happens if we make them
equal.”

“So, I simply put them equal, taking the simplest example where the
Lagrangian is

L =
1
2
Mẋ2 − V (x),

but soon found I had to put a constant of proportionality N in, suitably
adjusted. When I substituted for K to get

ψ(x′, t+ ε) =
∫
N exp

[
iε
�
L(
x′ − x
ε

, x)
]
ψ(x, t) dx (1.248)

and just calculated things out by Taylor series expansion, out came the
Schrödinger equation. So, I turned to Professor Jehle, not really understand-
ing, and said, ‘Well, you see, Dirac meant that they were proportional.” Pro-
fessor Jehle’s eyes were bugging out – he had taken out a little notebook and
was rapidly copying it down from the blackboard, and said, ‘No, no, this is an
important discovery. You Americans are always trying to find out how some-
thing can be used. That’s a good way to discover things!” So, I thought I was
finding out what Dirac meant, but, as a matter of fact, had made the discov-
ery that what Dirac thought was analogous, was, in fact, equal. I had then,
at least, the connection between the Lagrangian and quantum mechanics, but
still with wave functions and infinitesimal times.”

“It must have been a day or so later when I was lying in bed thinking about
these things, that I imagined what would happen if I wanted to calculate the
wave function at a finite interval later. I would put one of these factors eiεL in
here, and that would give me the wave functions the next moment, t+ ε, and
then I could substitute that back into (1.248) to get another factor of eiεL and
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give me the wave function the next moment, t+ 2ε, and so on and so on. In
that way I found myself thinking of a large number of integrals, one after the
other in sequence. In the integrand was the product of the exponentials, which
was the exponential of the sum of terms like εL. Now, L is the Lagrangian
and ε is like the time interval dt, so that if you took a sum of such terms,
that’s exactly like an integral. That’s like Riemann’s formula for the integral∫
Ldt, you just take the value at each point and add them together. We are to

take the limit as ε→ 0. Therefore, the connection between the wave function
of one instant and the wave function of another instant a finite time later
could be get by an infinite number of integrals (because ε goes to zero), of
exponential where S is the action expression (1.247). At last, I had succeeded
in representing quantum mechanics directly in terms of the action S[x].”

Fully satisfied, Feynman comments: “This led later on to the idea of the
transition amplitude for a path: that for each possible way that the particle
can go from one point to another in space–time, there’s an amplitude. That
amplitude is e to the power of [i/� times the action S[x] for the path], i.e.,
eiS[x]/�. Amplitudes from various paths superpose by addition. This then is
another, a third way, of describing quantum mechanics, which looks quite
different from that of Schrödinger or Heisenberg, but which is equivalent to
them.”

“...Now immediately after making a few checks on this thing, what we
wanted to do, was to substitute the action A[x; ti, tj ] (1.246) for the other
S[x] (1.247). The first trouble was that I could not get the thing to work with
the relativistic case of spin one–half. However, although I could deal with
the matter only nonrelativistically, I could deal with the light or the photon
interactions perfectly well by just putting the interaction terms of (1.246) into
any action, replacing the mass terms by the non–relativistic Ldt = 1

2Mẋ
2dt,

A[x; ti, tj ] =
1
2

∑
i

mi

∫
(ẋiµ)

2dti+
1
2

∑
i,j(i
=j)

eiej

∫ ∫
δ(I2ij) ẋ

i
µ(ti)ẋ

j
µ(tj) dtidtj .

When the action has a delay, as it now had, and involved more than one time,
I had to lose the idea of a wave function. That is, I could no longer describe the
program as: given the amplitude for all positions at a certain time to calculate
the amplitude at another time. However, that didn’t cause very much trouble.
It just meant developing a new idea. Instead of wave functions we could talk
about this: that if a source of a certain kind emits a particle, and a detector is
there to receive it, we can give the amplitude that the source will emit and the
detector receive, eiA[x;ti,tj ]/�. We do this without specifying the exact instant
that the source emits or the exact instant that any detector receives, without
trying to specify the state of anything at any particular time in between, but
by just finding the amplitude for the complete experiment. And, then we could
discuss how that amplitude would change if you had a scattering sample in
between, as you rotated and changed angles, and so on, without really having
any wave functions...It was also possible to discover what the old concepts
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of energy and momentum would mean with this generalized action. And, so
I believed that I had a quantum theory of classical electrodynamics – or
rather of this new classical electrodynamics described by the action A[x; ti, tj ]
(1.246)...”

Lagrangian Path Integral

Dirac and Feynman first developed the lagrangian approach to functional
integration. To review this approach, we start with the time–dependent
Schrödinger equation

i� ∂tψ(x, t) = −∂x2ψ(x, t) + V (x)ψ(x, t)

appropriate to a particle of mass m moving in a potential V (x), x ∈ R.
A solution to this equation can be written as an integral (see e.g., [Kla97,
Kla00]),

ψ(x′′, t′′) =
∫
K(x′′, t′′;x′, t′)ψ(x′, t′) dx′ ,

which represents the wave function ψ(x′′, t′′) at time t′′ as a linear superposi-
tion over the wave function ψ(x′, t′) at the initial time t′, t′ < t′′. The integral
kernel K(x′′, t′′;x′, t′) is known as the propagator, and according to Feynman
[Fey48] it may be given by

K(x′′, t′′;x′, t′) = N
∫
D[x] e(i/�)

∫
[(m/2) ẋ2(t)−V (x(t))] dt,

which is a formal expression symbolizing an integral over a suitable set of
paths. This integral is supposed to run over all continuous paths x(t), t′ ≤
t ≤ t′′, where x(t′′) = x′′ and x(t′) = x′ are fixed end points for all paths.
Note that the integrand involves the classical Lagrangian for the system.

To overcome the convergence problems, Feynman adopted a lattice regular-
ization as a procedure to yield well–defined integrals which was then followed
by a limit as the lattice spacing goes to zero called the continuum limit. With
ε > 0 denoting the lattice spacing, the details regarding the lattice regular-
ization procedure are given by

K(x′′, t′′;x′, t′) = lim
ε→0

(m/2πi�ε)(N+1)/2

∫
· · ·

· · ·
∫

exp{(i/�)
N∑
l=0

[(m/2ε)(xl+1 − xl)2 − ε V (xl) ]}
N∏
l=1

dxl ,

where xN+1 = x′′, x0 = x′, and ε ≡ (t′′ − t′)/(N + 1), N ∈ {1, 2, 3, . . . }. In
this version, at least, we have an expression that has a reasonable chance of
being well defined, provided, that one interprets the conditionally convergent
integrals involved in an appropriate manner. One common and fully acceptable
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interpretation adds a convergence factor to the exponent of the preceding
integral in the form −(ε2/2�)

∑N
l=1 x

2
l , which is a term that formally makes

no contribution to the final result in the continuum limit save for ensuring
that the integrals involved are now rendered absolutely convergent.

Hamiltonian Path Integral

It is necessary to retrace history at this point to recall the introduction of
the phase–space path integral by Feynman [Fey51, GS98]. In Appendix B to
this article, Feynman introduced a formal expression for the configuration or
q−space propagator given by (see e.g., [Kla97, Kla00])

K(q′′, t′′; q′, t′) =M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ −H(p, q) ] dt}.

In this equation one is instructed to integrate over all paths q(t), t′ ≤ t ≤ t′′,
with q(t′′) ≡ q′′ and q(t′) ≡ q′ held fixed, as well as to integrate over all paths
p(t), t′ ≤ t ≤ t′′, without restriction.

It is widely appreciated that the phase–space path integral is more gen-
erally applicable than the original, Lagrangian, version of the path integral.
For example, the original configuration space path integral is satisfactory for
Lagrangians of the general form

L(x) =
1
2
mẋ2 +A(x) ẋ− V (x) ,

but it is unsuitable, for example, for the case of a relativistic particle with the
Lagrangian

L(x) = −mqrt1− ẋ2

expressed in units where the speed of light is unity. For such a system – as
well as many more general expressions – the phase–space form of the path
integral is to be preferred. In particular, for the relativistic free particle, the
phase–space path integral

M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ − qrtp2 +m2 ] dt},

is readily evaluated and induces the correct propagator.

Feynman–Kac Formula

Through his own research, M. Kac was fully aware of Wiener’s theory of
Brownian motion and the associated diffusion equation that describes the
corresponding distribution function. Therefore, it is not surprising that he
was well prepared to give a path integral expression in the sense of Feynman
for an equation similar to the time–dependent Schrödinger equation save for
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a rotation of the time variable by −π/2 in the complex plane, namely, by
the change t −→ −it (see e.g., [Kla97, Kla00]). In particular, Kac [Kac51]
considered the equation

∂tρ(x, t) = ∂x2ρ(x, t)− V (x) ρ(x, t). (1.249)

This equation is analogous to Schrödinger equation but differs from it in
certain details. Besides certain constants which are different, and the change t
−→ −it, the nature of the dependent variable function ρ(x, t) is quite different
from the normal quantum mechanical wave function. For one thing, if the
function ρ is initially real it will remain real as time proceeds. Less obvious
is the fact that if ρ(x, t) ≥ 0 for all x at some time t, then the function will
continue to be nonnegative for all time t. Thus we can interpret ρ(x, t) more
like a probability density; in fact in the special case that V (x) = 0, then ρ(x, t)
is the probability density for a Brownian particle which underlies the Wiener
measure. In this regard, ν is called the diffusion constant.

The fundamental solution of (1.249) with V (x) = 0 is readily given as

W (x, T ; y, 0) =
1

qrt2πνT
exp

(
− (x− y)2

2νT

)
,

which describes the solution to the diffusion equation subject to the initial
condition

lim
T→0+

W (x, T ; y, 0) = δ(x− y) .

Moreover, it follows that the solution of the diffusion equation for a general
initial condition is given by

ρ(x′′, t′′) =
∫
W (x′′, t′′;x′, t′) ρ(x′, t′) dx′ .

Iteration of this equation N times, with ε = (t′′ − t′)/(N + 1), leads to the
equation

ρ(x′′, t′′) = N ′
∫
· · ·

∫
e−(1/2νε)

∑N
l=0(xl+1−xl)

2
N∏
l=1

dxl ρ(x′, t′) dx′,

where xN+1 ≡ x′′ and x0 ≡ x′. This equation features the imaginary time
propagator for a free particle of unit mass as given formally as

W (x′′, t′′;x′, t′) = N
∫
D[x] e−(1/2ν)

∫
ẋ2 dt,

where N denotes a formal normalization factor.
The similarity of this expression with the Feynman path integral [for

V (x) = 0] is clear, but there is a profound difference between these equa-
tions. In the former (Feynman) case the underlying measure is only finitely
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additive, while in the latter (Wiener) case the continuum limit actually de-
fines a genuine measure, i.e., a countably additive measure on paths, which is
a version of the famous Wiener measure. In particular,

W (x′′, t′′;x′, t′) =
∫
dµνW (x),

where µνW denotes a measure on continuous paths x(t), t′ ≤ t ≤ t′′, for which
x(t′′) ≡ x′′ and x(t′) ≡ x′. Such a measure is said to be a pinned Wiener
measure, since it specifies its path values at two time points, i.e., at t = t′ and
at t = t′′ > t′.

We note that Brownian motion paths have the property that with proba-
bility one they are concentrated on continuous paths. However, it is also true
that the time derivative of a Brownian path is almost nowhere defined, which
means that, with probability one, ẋ(t) = ±∞ for all t.

When the potential V (x) �= 0 the propagator associated with (1.249) is
formally given by

W (x′′, t′′;x′, t′) = N
∫
D[x]e−(1/2ν)

∫
ẋ2 dt−

∫
V (x) dt,

an expression which is well defined if V (x) ≥ c, −∞ < c <∞. A mathemati-
cally improved expression makes use of the Wiener measure and reads

W (x′′, t′′;x′, t′) =
∫

e−
∫
V (x(t)) dt dµνW (x).

This is an elegant relation in that it represents a solution to the differen-
tial equation (1.249) in the form of an integral over Brownian motion paths
suitably weighted by the potential V . Incidentally, since the propagator is
evidently a strictly positive function, it follows that the solution of the differ-
ential equation (1.249) is nonnegative for all time t provided it is nonnegative
for any particular time value.

Itô Formula

Itô [Ito60] proposed another version of a continuous–time regularization that
resolved some of the troublesome issues. In essence, the proposal of Itô takes
the form given by

lim
ν→∞

Nν
∫
D[x] exp{(i/�)

∫
[
1
2
mẋ2 − V (x)] dt} exp{−(1/2ν)

∫
[ẍ2 + ẋ2] dt}.

Note well the alternative form of the auxiliary factor introduced as a regulator.
The additional term ẍ2, the square of the second derivative of x, acts to smooth
out the paths sufficiently well so that in the case of (21) both x(t) and ẋ(t) are
continuous functions, leaving ẍ(t) as the term which does not exist. However,
since only x and ẋ appear in the rest of the integrand, the indicated path
integral can be well defined; this is already a positive contribution all by itself
(see e.g., [Kla97, Kla00]).
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1.5.3 Standard Path–Integral Quantization

Canonical versus Path–Integral Quantization

Recall that in the usual, canonical formulation of quantum mechanics, the
system’s phase–space coordinates, q, and momenta, p, are replaced by the
corresponding Hermitian operators in the Hilbert space, with real measurable
eigenvalues, which obey Heisenberg commutation relations.

The path–integral quantization is instead based directly on the notion of
a propagator K(qf , tf ; qi, ti) which is defined such that (see [Ryd96, CL84,
Gun03])

ψ(qf , tf ) =
∫
K(qf , tf ; qi, ti)ψ(qi, ti) dqi, (1.250)

i.e., the wave function ψ(qf , tf ) at final time tf is given by a Huygens principle
in terms of the wave function ψ(qi, ti) at an initial time ti, where we have
to integrate over all the points qi since all can, in principle, send out little
wavelets that would influence the value of the wave function at qf at the later
time tf . This equation is very general and is an expression of causality. We
use the normal units with � = 1.

According to the usual interpretation of quantum mechanics, ψ(qf , tf ) is
the probability amplitude that the particle is at the point qf and the time tf ,
which means that K(qf , tf ; qi, ti) is the probability amplitude for a transition
from qi and ti to qf and tf . The probability that the particle is observed at
qf at time tf if it began at qi at time ti is

P (qf , tf ; qi, ti) = |K(qf , tf ; qi, ti)|2 .

Let us now divide the time interval between ti and tf into two, with t
as the intermediate time, and q the intermediate point in space. Repeated
application of (1.250) gives

ψ(qf , tf ) =
∫ ∫

K(qf , tf ; q, t) dq K(q, t; qi, ti)ψ(qi, ti) dqi,

from which it follows that

K(qf , tf ; qi, ti) =
∫
dq K(qf , tf ; q, t)K(q, t; qi, ti).

This equation says that the transition from (qi, ti) to (qf , tf ) may be regarded
as the result of the transition from (qi, ti) to all available intermediate points
q followed by a transition from (q, t) to (qf , tf ). This notion of all possible
paths is crucial in the path–integral formulation of quantum mechanics.

Now, recall that the state vector |ψ, t〉S in the Schrödinger picture is re-
lated to that in the Heisenberg picture |ψ〉H by

|ψ, t〉S = e−iHt |ψ〉H ,
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or, equivalently,
|ψ〉H = eiHt |ψ, t〉S .

We also define the vector

|q, t〉H = eiHt |q〉S ,

which is the Heisenberg version of the Schrödinger state |q〉. Then, we can
equally well write

ψ(q, t) = 〈q, t |ψ〉H . (1.251)

By completeness of states we can now write

〈qf , tf |ψ〉H =
∫
〈qf , tf |qi, ti〉H 〈qi, ti |ψ〉H dqi,

which with the definition of (1.251) becomes

ψ(qf , tf ) =
∫
〈qf , tf |qi, ti〉H ψ(qi, ti) dqi.

Comparing with (1.250), we get

K(qf , tf ; qi, ti) = 〈qf , tf |qi, ti〉H .

Now, let us calculate the quantum–mechanics propagator

〈q′, t′ |q, t〉H =
〈
q′|e−iH(t−t′) |q〉

using the path–integral formalism that will incorporate the direct quantization
of the coordinates, without Hilbert space and Hermitian operators.

The first step is to divide up the time interval into n + 1 tiny pieces:
tl = lε + t with t′ = (n + 1)ε + t. Then, by completeness, we can write
(dropping the Heisenberg picture index H from now on)

〈q′, t′ |q, t〉 =
∫
dq1(t1)...

∫
dqn(tn) 〈q′, t′ |qn, tn〉

× 〈qn, tn |qn−1, tn−1〉 ... 〈q1, t1 |q, t〉 . (1.252)

The integral
∫
dq1(t1)...dqn(tn) is an integral over all possible paths, which are

not trajectories in the normal sense, since there is no requirement of continuity,
but rather Markov chains.

Now, for small ε we can write

〈q′, ε |q, 0〉 =
〈
q′|e−iεH(P,Q) |q〉 = δ(q′ − q)− iε 〈q′|H(P,Q) |q〉 ,

where H(P,Q) is the Hamiltonian (e.g., H(P,Q) = 1
2P

2 + V (Q), where P,Q
are the momentum and coordinate operators). Then we have (see [Ryd96,
CL84, Gun03])
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〈q′|H(P,Q) |q〉 =
∫
dp

2π
eip(q′−q)H

(
p,

1
2
(q′ + q)

)
.

Putting this into our earlier form we get

〈q′, ε |q, 0〉  
∫
dp

2π
exp

[
i
{
p(q′ − q)− εH

(
p,

1
2
(q′ + q)

)}]
,

where the 0th order in ε→ δ(q′−q) and the 1st order in ε→ −iε 〈q′|H(P,Q) |q〉.
If we now substitute many such forms into (1.252) we finally get

〈q′, t′ |q, t〉 = lim
n→∞

∫ n∏
i=1

dqi

n+1∏
k=1

dpk
2π

(1.253)

× exp

⎧⎨⎩i
n+1∑
j=1

[pj(qj − qj−1)]−H
(
pj ,

1
2
(qj + qj+1)

)
(tj − tj−1)]

⎫⎬⎭ ,
with q0 = q and qn+1 = q′. Roughly, the above formula says to integrate over
all possible momenta and coordinate values associated with a small interval,
weighted by something that is going to turn into the exponential of the ac-
tion eiS in the limit where ε → 0. It should be stressed that the different qi
and pk integrals are independent, which implies that pk for one interval can
be completely different from the pk′ for some other interval (including the
neighboring intervals). In principle, the integral (1.253) should be defined by
analytic continuation into the complex plane of, for example, the pk integrals.

Now, if we go to the differential limit where we call tj − tj−1 ≡ dτ and
write (qj−qj−1)

(tj−tj−1)
≡ q̇, then the above formula takes the form

〈q′, t′ |q, t〉 =
∫
D[p]D[q] exp

{
i
∫ t′

t

[pq̇ −H(p, q)] dτ

}
,

where we have used the shorthand notation∫
D[p]D[q] ≡

∫ ∏
τ

dq(τ)dp(τ)
2π

.

Note that the above integration is an integration over the p and q values at
every time τ . This is what we call a functional integral. We can think of a
given set of choices for all the p(τ) and q(τ) as defining a path in the 6D
phase–space. The most important point of the above result is that we have
get an expression for a quantum–mechanical transition amplitude in terms of
an integral involving only pure complex numbers, without operators.

We can actually perform the above integral for Hamiltonians of the type
H = H(P,Q). We use square completion in the exponential for this, defining
the integral in the complex p plane and continuing to the physical situation.
In particular, we have
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−∞

dp

2π
exp

{
iε(pq̇ − 1

2
p2]

}
=

1√
2πiε

exp
[
1
2
iεq̇2

]
,

(see [Ryd96, CL84, Gun03]) which, substituting into (1.253) gives

〈q′, t′ |q, t〉 = lim
n→∞

∫ ∏
i

dqi√
2πiε

exp{iε
n+1∑
j=1

[
1
2
(
qj − qj−1

ε
)2 − V (

qj + qj+1

2
)]}.

This can be formally written as

〈q′, t′ |q, t〉 =
∫
D[q] eiS[q],

where ∫
D[q] ≡

∫ ∏
i

dqi√
2πiε

,

while

S[q] =
∫ t′

t

L(q, q̇) dτ

is the standard action with the Lagrangian

L =
1
2
q̇2 − V (q).

Generalization to many degrees of freedom is straightforward:

〈q1′...qN ′, t′|q1...qN , t〉 =
∫
D[p]D[q] exp

{
i
∫ t′

t

[
N∑
n=1

pnq̇n −H(pn, qn)

]
dτ

}
,

with
∫
D[p]D[q] =

∫ N∏
n=1

dqndpn
2π

.

Here, qn(t) = qn and qn(t′) = qn′ for all n = 1, ..., N , and we are allowing for
the full Hamiltonian of the system to depend upon all the N momenta and
coordinates collectively.

Elementary Applications

(i) Consider first

〈q′, t′|Q(t0)|q, t〉

=
∫ ∏

dqi(ti) 〈q′, t′|qn, tn〉 ... 〈qi0, ti0|Q(t0)|qi−1, ti−1〉 ... 〈q1, t1|q, t〉 ,

where we choose one of the time interval ends to coincide with t0, i.e., ti0 = t0.
If we operate Q(t0) to the left, then it is replaced by its eigenvalue qi0 = q(t0).
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Aside from this one addition, everything else is evaluated just as before and
we will obviously get

〈q′, t′|Q(t0)|q, t〉 =
∫
D[p]D[q] q(t0) exp

{
i
∫ t′

t

[pq̇ −H(p, q)]dτ

}
.

(ii) Next, suppose we want a path–integral expression for
〈q′, t′|Q(t1)Q(t2)|q, t〉 in the case where t1 > t2. For this, we have to insert as
intermediate states |qi1, ti1〉 〈qi1, ti1| with ti1 = t1 and |qi2, ti2〉 〈qi2, ti2| with
ti2 = t2 and since we have ordered the times at which we do the insertions
we must have the first insertion to the left of the 2nd insertion when t1 > t2.
Once these insertions are done, we evaluate 〈qi1, ti1|Q(t1) = 〈qi1, ti1| q(t1) and
〈qi2, ti2|Q(t2) = 〈qi2, ti2| q(t2) and then proceed as before and get

〈q′, t′|Q(t1)Q(t2)|q, t〉 =
∫
D[p]D[q] q(t1) q(t2) exp

{
i
∫ t′

t

[pq̇ −H(p, q)]dτ

}
.

Now, let us ask what the above integral is equal to if t2 > t1? It is obvious
that what we get for the above integral is 〈q′, t′|Q(t2)Q(t1)|q, t〉 . Clearly, this
generalizes to an arbitrary number of Q operators.

(iii) When we enter into quantum field theory, the Q’s will be replaced
by fields, since it is the fields that play the role of coordinates in the 2nd
quantization conditions.

Sources

The source is represented by modifying the Lagrangian:

L→ L+ J(t)q(t).

Let us define |0, t〉J as the ground state (vacuum) vector (in the moving frame,
i.e., with the eiHt included) in the presence of the source. The required tran-
sition amplitude is

Z[J ] ∝ 〈0,+∞|0,−∞〉J ,

where the source J = J(t) plays a role analogous to that of an electromagnetic
current, which acts as a source of the electromagnetic field. In other words, we
can think of the scalar product JµAµ, where Jµ is the current from a scalar
(or Dirac) field acting as a source of the potential Aµ. In the same way, we
can always define a current J that acts as the source for some arbitrary field
φ. Z[J ] (otherwise denoted by W [J ]) is a functional of the current J , defined
as (see [Ryd96, CL84, Gun03])

Z[J ] ∝
∫
D[p]D[q] exp

{
i
∫ t′

t

[p(τ)q̇(τ)−H(p, q) + J(τ)q(τ)]dτ

}
,
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with the normalization condition Z[J = 0] = 1. Here, the argument of the
exponential depends upon the functions q(τ) and p(τ) and we then integrate
over all possible forms of these two functions. So the exponential is a functional
that maps a choice for these two functions into a number. For example, for
a quadratically completable H(p, q), the p integral can be performed as a q
integral

Z[J ] ∝
∫
D[q] exp

{
i
∫ +∞

−∞

(
L+ Jq +

1
2
iεq2

)
dτ

}
,

where the addittion to H was chosen in the form of a convergence factor
− 1

2 iεq2.

Fields

Let us now treat the abstract scalar field φ(x) as a coordinate in the sense
that we imagine dividing space up into many little cubes and the average
value of the field φ(x) in that cube is treated as a coordinate for that little
cube. Then, we go through the multi–coordinate analogue of the procedure
we just considered above and take the continuum limit. The final result is

Z[J ] ∝
∫
D[φ] exp

{
i
∫
d4x

(
L (φ(x)) + J(x)φ(x) +

1
2
iεφ2

)}
,

where for L we would employ the Klein–Gordon Lagrangian form. In the
above, the dx0 integral is the same as dτ , while the d3x integral is sum-
ming over the sub–Lagrangians of all the different little cubes of space and
then taking the continuum limit. L is the Lagrangian density describing
the Lagrangian for each little cube after taking the many–cube limit (see
[Ryd96, CL84, Gun03]) for the full derivation).

We can now introduce interactions, LI . Assuming the simple form of the
Hamiltonian, we have

Z[J ] ∝
∫
D[φ] exp

{
i
∫
d4x (L (φ(x)) + LI (φ(x)) + J(x)φ(x))

}
,

again using the normalization factor required for Z[J = 0] = 1.
For example of Klein Gordon theory, we would use

L = L0 + LI , L0
1
2
[∂µφ∂µφ− µ2φ2], LI = LI(φ),

where ∂µ ≡ ∂xµ and we can freely manipulate indices, as we are working in
Euclidean space R3. In order to define the above Z[J ], we have to include a
convergence factor iεφ2,

L0 →
1
2
[∂µφ∂µφ− µ2φ2 + iεφ2], so that

Z[J ] ∝
∫
D[φ] exp{i

∫
d4x(

1
2
[∂µφ∂µφ− µ2φ2 + iεφ2]+LI(φ(x))+J(x)φ(x))}

is the appropriate generating function in the free field theory case.
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Gauges

In the path integral approach to quantization of the gauge theory, we imple-
ment gauge fixing by restricting in some manner or other the path integral
over gauge fields

∫
D[Aµ]. In other words we will write instead

Z[J ] ∝
∫
D[Aµ] δ (some gauge fixing condition) exp{i

∫
d4xL (Aµ)}.

A common approach would be to start with the gauge condition

L = −1
4
FµνF

µν − 1
2
(∂µAµ)2

where the electrodynamic field tensor is given by Fµν = ∂µAν − ∂νAµ, and
calculate

Z[J ] ∝
∫
D[Aµ] exp

{
i
∫
d4x [L(Aµ(x)) + Jµ(x)Aµ(x)]

}
as the generating function for the vacuum expectation values of time ordered
products of theAµ fields. Note that Jµ should be conserved (∂µJµ = 0) in order
for the full expression L(Aµ)+JµAµ to be gauge–invariant under the integral
sign when Aµ → Aµ+∂µΛ. For a proper approach, see [Ryd96, CL84, Gun03].

Riemannian–Symplectic Geometries

In this subsection, following [SK98b], we describe path integral quantization
on Riemannian–symplectic manifolds. Let q̂j be a set of Cartesian coordinate
canonical operators satisfying the Heisenberg commutation relations [q̂j , q̂k] =
iωjk. Here ωjk = −ωkj is the canonical symplectic structure. We introduce
the canonical coherent states as |q〉 ≡ eiqjωjk q̂

k |0〉, where ωjnωnk = δkj , and
|0〉 is the ground state of a harmonic oscillator with unit angular frequency.
Any state |ψ〉 is given as a function on phase–space in this representation
by 〈q|ψ〉 = ψ(q). A general operator Â can be represented in the form Â =∫
dq a(q)|q〉〈q|, where a(q) is the lower symbol of the operator and dq is a

properly normalized form of the Liouville measure. The function A(q, q′) =
〈q|Â|q′〉 is the kernel of the operator.

The main object of the path integral formalism is the integral kernel of
the evolution operator

Kt(q, q′) = 〈q|e−itĤ |q′〉 =

q(t)=q∫
q(0)=q′

D[q] ei
∫ t
0 dτ( 1

2 q
jωjk q̇

k−h) . (1.254)

Here Ĥ is the Hamiltonian, and h(q) its symbol. The measure formally implies
a sum over all phase-space paths pinned at the initial and final points, and a
Wiener measure regularization implies the following replacement
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D[q] → D[µν(q)] = D[q] e−
1
2ν

∫ t
0 dτ q̇

2
= Nν(t) dµνW (q) . (1.255)

The factor Nν(t) equals 2πeνt/2 for every degree of freedom, dµνW (q) stands
for the Wiener measure, and ν denotes the diffusion constant. We denote by
Kνt (q, q

′) the integral kernel of the evolution operator for a finite ν. The Wiener
measure determines a stochastic process on the flat phase–space. The integral
of the symplectic 1–form

∫
qωdq is a stochastic integral that is interpreted in

the Stratonovich sense. Under general coordinate transformations q = q(q̄),
the Wiener measure describes the same stochastic process on flat space in
the curvilinear coordinates dq2 = dσ(q̄)2, so that the value of the integral is
not changed apart from a possible phase term. After the calculation of the
integral, the evolution operator kernel is get by taking the limit ν → ∞.
The existence of this limit, and also the covariance under general phase-space
coordinate transformations, can be proved through the operator formalism for
the regularized kernel Kνt (q, q

′).
Note that the integral (1.254) with the Wiener measure inserted can be

regarded as an ordinary Lagrangian path integral with a complex action,
where the configuration space is the original phase–space and the Hamiltonian
h(q) serves as a potential. Making use of this observation it is not hard to
derive the corresponding Schrödinger–like equation

∂tK
ν
t (q, q

′) =

[
ν

2

(
∂qj +

i
2
ωjkq

k

)2

− ih(q)

]
Kνt (q, q

′) , (1.256)

subject to the initial condition Kνt=0(q, q
′) = δ(q − q′), 0 < ν < ∞. One can

show that K̂νt → K̂t as ν → ∞ for all t > 0. The covariance under general
coordinate transformations follows from the covariance of the “kinetic” energy
of the Schrödinger operator in (1.256): The Laplace operator is replaced by
the Laplace–Beltrami operator in the new curvilinear coordinates q = q(q̄), so
the solution is not changed, but written in the new coordinates. This is similar
to the covariance of the ordinary Schrödinger equation and the corresponding
Lagrangian path integral relative to general coordinate transformations on
the configuration space: The kinetic energy operator (the Laplace operator)
in the ordinary Schrödinger equation gives a term quadratic in time deriva-
tives in the path integral measure which is sufficient for the general coordinate
covariance. We remark that the regularization procedure based on the mod-
ified Schrödinger equation (1.256) applies to far more general Hamiltonians
than those quadratic in canonical momenta and leading to the conventional
Lagrangian path integral.

1.5.4 Sum over Geometries and Topologies

Recall that the term quantum gravity (or quantum geometrodynamics, or quan-
tum geometry), is usually understood as a consistent fundamental quantum
description of gravitational space–time geometry whose classical limit is Ein-
stein’s general relativity. Among the possible ramifications of such a theory are
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a model for the structure of space–time near the Planck scale, a consistent cal-
culational scheme to calculate gravitational effects at all energies, a description
of quantum geometry near space–time singularities and a non–perturbative
quantum description of 4D black holes. It might also help us in understand-
ing cosmological issues about the beginning and end of the universe, i.e., the
so–called ‘big bang’ and ‘big crunch’ (see e.g., [Pen89, Pen94, Pen97]).

From what we know about the quantum dynamics of other fundamental in-
teractions it seems eminently plausible that also the gravitational excitations
should at very short scales be governed by quantum laws. Now, conventional
perturbative path integral expansions of gravity, as well as perturbative ex-
pansion in the string coupling in the case of unified approaches, both have
difficulty in finding any direct or indirect evidence for quantum gravitational
effects, be they experimental or observational, which could give a feedback for
model building. The outstanding problems mentioned above require a non–
perturbative treatment; it is not sufficient to know the first few terms of a
perturbation series. The real goal is to search for a non–perturbative defini-
tion of such a theory, where the initial input of any fixed ‘background metric’
is inessential (or even undesirable), and where ‘space–time’ is determined dy-
namically. Whether or not such an approach necessarily requires the inclusion
of higher dimensions and fundamental supersymmetry is currently unknown
(see [AK93, AL98, AJL00a, AJL00b, AJL01a, AJL01b, AJL01c, DL01]).

Such a non–perturbative viewpoint is very much in line with how one pro-
ceeds in classical geometrodynamics (see introductory subsection 1.1), where
a metric space–time (M, gµν) (+ matter) emerges only as a solution to the
familiar Einstein equation

Gµν [g] ≡ Rµν [g]−
1
2
gµνR[g] = −8πTµν [Φ], (1.257)

which define the classical dynamics of fields Φ = Φµν on the space M(M), the
space of all metrics g = gµν on a given smooth manifold M . The analogous
question we want to address in the quantum theory is: Can we get ‘quantum
space–time’ as a solution to a set of non–perturbative quantum equations of
motion on a suitable quantum analogue of M(M) or rather, of the space of
geometries, Geom(M) =M(M)/Diff(M)?

Now, this is not a completely straightforward task. Whichever way we
want to proceed non–perturbatively, if we give up the privileged role of a flat,
Minkowskian background space–time on which the quantization is to take
place, we also have to abandon the central role usually played by the Poincaré
group, and with it most standard quantum field–theoretic tools for regular-
ization and renormalization. If one works in a continuum metric formulation
of gravity, the symmetry group of the Einstein–Hilbert action is instead the
group Diff(M) of diffeomorphisms on M , which in terms of local charts are
the smooth invertible coordinate transformations xµ �→ yµ(xµ).

In the following, we will describe a non–perturbative path integral ap-
proach to quantum gravity, defined on the space of all geometries, without
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distinguishing any background metric structure [Lol01]. This is closely related
in spirit with the canonical approach of loop quantum gravity [Rov98] and its
more recent incarnations using so–called spin networks (see, e.g., [Ori01]).
‘Non–perturbative’ here means in a covariant context that the path sum or
integral will have to be performed explicitly, and not just evaluated around
its stationary points, which can only be achieved in an appropriate regular-
ization. The method we will employ uses a discrete lattice regularization as
an intermediate step in the construction of the quantum theory.

Simplicial Quantum Geometry

In this section we will explain how one may construct a theory of quantum
gravity from a non–perturbative path integral, using the method of Lorentzian
dynamical triangulations. The method is minimal in the sense of employing
standard tools from quantum field theory and the theory of critical phenom-
ena and adapting them to the case of generally covariant systems, without
invoking any symmetries beyond those of the classical theory. At an interme-
diate stage of the construction, we use a regularization in terms of simplicial
Regge geometries, that is, piecewise linear manifolds. In this approach, ‘com-
puting the path integral’ amounts to a conceptually simple and geometrically
transparent ‘counting of geometries’, with additional weight factors which are
determined by the EH action. This is done first of all at a regularized level.
Subsequently, one searches for interesting continuum limits of these discrete
models which are possible candidates for theories of quantum gravity, a step
that will always involve a renormalization. From the point of view of statistical
mechanics, one may think of Lorentzian dynamical triangulations as a new
class of statistical models of Lorentzian random surfaces in various dimen-
sions, whose building blocks are flat simplices which carry a ‘time arrow’, and
whose dynamics is entirely governed by their intrinsic geometric properties.

Before describing the details of the construction, it may be helpful to
recall the path integral representation for a 1D non–relativistic particle (see
previous subsection). The time evolution of the particle’s wave function ψ may
be described by the integral equation (1.241) above, where the propagator, or
the Feynman kernel G, is defined through a limiting procedure (1.242). The
time interval t′′−t′ has been discretized into N steps of length ε = (t′′−t′)/N ,
and the r.h.s. of (1.242) represents an integral over all piecewise linear paths
x(t) of a ‘virtual’ particle propagating from x′ to x′′, illustrated in Figure 1.13
above.

The prefactor A−N is a normalization and L denotes the Lagrangian func-
tion of the particle. Knowing the propagator G is tantamount to having solved
the quantum dynamics. This is the simplest instance of a path integral, and
is often written schematically as

G(x′, t′;x′′, t′′) =
∫
Σ D[x(t)] eiS[x(t)], (1.258)
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Fig. 1.14. The time–honoured way [HE79] of illustrating the gravitational path
integral as the propagator from an initial to a final spatial boundary geometry.

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if we
Wick–rotate the time variable t to imaginary values t �→ τ = it, thereby
making all integrals real [RS75].

Can a similar strategy work for the case of Einstein geometrodynamics?
As an analogue of the particle’s position we can take the geometry [gij(x)]
(i.e., an equivalence class of spatial metrics) of a constant–time slice. Can one
then define a gravitational propagator

G([g′ij ], [g
′′
ij ]) =

∫
Σ Geom(M)D[gµν ] eiSEH[gµν ] (1.259)

from an initial geometry [g′] to a final geometry [g′′] (Figure 1.14) as a limit
of some discrete construction analogous to that of the non-relativistic particle
(1.242)? And crucially, what would be a suitable class of ‘paths’, that is,
space–times [gµν ] to sum over?

Now, to be able to perform the integration
∫
Σ D[gµν ] in a meaningful way,

the strategy we will be following starts from a regularized version of the space
Geom(M) of all geometries. A regularized path integral G(a) can be defined
which depends on an ultraviolet cutoff a and is convergent in a non–trivial
region of the space of coupling constants. Taking the continuum limit corre-
sponds to letting a→ 0. The resulting continuum theory – if it can be shown
to exist – is then investigated with regard to its geometric properties and in
particular its semiclassical limit.

Discrete Gravitational Path Integrals

Trying to construct non–perturbative path integrals for gravity from sums
over discretized geometries, using approach of Lorentzian dynamical triangu-
lations, is not a new idea. Inspired by the successes of lattice gauge theory,
attempts to describe quantum gravity by similar methods have been popular
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on and off since the late 70’s. Initially the emphasis was on gauge–theoretic,
first–order formulations of gravity, usually based on (compactified versions
of) the Lorentz group, followed in the 80’s by ‘quantum Regge calculus’, an
attempt to represent the gravitational path integral as an integral over cer-
tain piecewise linear geometries (see [Wil97] and references therein), which
had first made an appearance in approximate descriptions of classical solu-
tions of the Einstein equations. A variant of this approach by the name of
‘dynamical triangulation(s)’ attracted a lot of interest during the 90’s, partly
because it had proved a powerful tool in describing 2D quantum gravity (see
the textbook [ADJ97] and lecture notes [AJL00a] for more details).

The problem is that none of these attempts have so far come up with con-
vincing evidence for the existence of an underlying continuum theory of 4D
quantum gravity. This conclusion is drawn largely on the basis of numerical
simulations, so it is by no means water–tight, although one can make an ar-
gument that the ‘symptoms’ of failure are related in the various approaches
[Lol98]. What goes wrong generically seems to be a dominance in the con-
tinuum limit of highly degenerate geometries, whose precise form depends on
the approach chosen. One would expect that non–smooth geometries play a
decisive role, in the same way as it can be shown in the particle case that
the support of the measure in the continuum limit is on a set of nowhere
differentiable paths. However, what seems to happen in the case of the path
integral for 4–geometries is that the structures get are too wild, in the sense
of not generating, even at coarse–grained scales, an effective geometry whose
dimension is anywhere near four.

The schematic phase diagram of Euclidean dynamical triangulations shown
in Figure 1.15 gives an example of what can happen. The picture turns out to
be essentially the same in both three and four dimensions: the model possesses
infinite-volume limits everywhere along the critical line kcrit

3 (k0), which fixes
the bare cosmological constant as a function of the inverse Newton constant
k0 ∼ G−1

N . Along this line, there is a critical point kcrit
0 (which we now know

to be of first–order in d = 3, 4) below which geometries generically have a
very large effective or Hausdorff dimension.23 Above kcrit

0 we find the opposite
phenomenon of ‘polymerization’: a typical element contributing to the state
sum is a thin branched polymer, with one or more dimensions ‘curled up’ such
that its effective dimension is around two.

This problem has to do with the fact that the gravitational action is un-
bounded below, causing potential havoc in Euclidean versions of the path
integral. Namely, what all the above-mentioned approaches have in common
is that they work from the outset with Euclidean geometries, and associated
Boltzmann-type weights exp(−Seu) in the path integral. In other words, they
integrate over ‘space–times’ which know nothing about time, light cones and
23 In terms of geometry, this means that there are a few vertices at which the entire

space–time ‘condenses’ in the sense that almost every other vertex in the simplicial
space–time is about one link-distance away from them.
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Fig. 1.15. The phase diagram of 3D and 4D Euclidean dynamical triangulations
(adapted from [AJL00b, AJL01a]).

causality. This is done mainly for technical reasons, since it is difficult to set
up simulations with complex weights and since until recently a suitable Wick
rotation was not known.

‘Lorentzian dynamical triangulations’, first proposed in [AL98] and further
elaborated in [AJL00b, AJL01a] tries to establish a logical connection between
the fact that non–perturbative path integrals were constructed for Euclidean
instead of Lorentzian geometries and their apparent failure to lead to an
interesting continuum theory.

Regge Calculus

The use of simplicial methods in general relativity goes back to the pioneering
work of Regge [Reg61]. In classical applications one tries to approximate a
classical space–time geometry by a triangulation, that is, a piecewise linear
space get by gluing together flat simplicial building blocks, which in dimension
d are dD generalizations of triangles. By ‘flat’ we mean that they are isometric
to a subspace of dD Euclidean or Minkowski space. We will only be interested
in gluings leading to genuine manifolds, which therefore look locally like anRd.
A nice feature of such simplicial manifolds is that their geometric properties
are completely described by the discrete set {l2i } of the squared lengths of
their edges. Note that this amounts to a description of geometry without
the use of coordinates. There is nothing to prevent us from re–introducing
coordinate patches covering the piecewise linear manifold, for example, on
each individual simplex, with suitable transition functions between patches.
In such a coordinate system the metric tensor will then assume a definite
form. However, for the purposes of formulating the path integral we will not
be interested in doing this, but rather work with the edge lengths, which
constitute a direct, regularized parametrization of the space Geom(M) of
geometries.
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Fig. 1.16. Positive (a) and negative (b) space–like deficit angles δ (adapted from
[Lol01, Lol98]).

How precisely is the intrinsic geometry of a simplicial space, most impor-
tantly, its curvature, encoded in its edge lengths? A useful example to keep
in mind is the case of dimension two, which can easily be visualized. A 2d
piecewise linear space is a triangulation, and its scalar curvature R(x) coin-
cides with the Gaussian curvature (see subsection 1.2.9 above). One way of
measuring this curvature is by parallel–transporting a vector around closed
curves in the manifold. In our piecewise–flat manifold such a vector will always
return to its original orientation unless it has surrounded lattice vertices v at
which the surrounding angles did not add up to 2π, but

∑
i⊃v αi = 2π−δ, for

δ �= 0, see Figure 1.16. The so–called deficit angle δ is precisely the rotation
angle picked up by the vector and is a direct measure for the scalar curva-
ture at the vertex. The operational description to get the scalar curvature
in higher dimensions is very similar, one basically has to sum in each point
over the Gaussian curvatures of all 2D submanifolds. This explains why in
Regge calculus the curvature part of the EH action is given by a sum over
building blocks of dimension (d− 2) which are the objects dual to those local
2d submanifolds. More precisely, the continuum curvature and volume terms
of the action become

1
2

∫
R
ddx

√
|det g|(d)R −→

∑
i∈R

V ol(ith (d− 2)−simplex) δi (1.260)∫
R
ddx

√
|det g| −→

∑
i∈R

V ol(ith d−simplex) (1.261)

in the simplicial discretization. It is then a simple exercise in trigonometry to
express the volumes and angles appearing in these formulas as functions of
the edge lengths li, both in the Euclidean and the Minkowskian case.

The approach of dynamical triangulations uses a certain class of such
simplicial space–times as an explicit, regularized realization of the space
Geom(M). For a given volumeNd, this class consists of all gluings of manifold–
type of a set of Nd simplicial building blocks of top–dimension d whose edge
lengths are restricted to take either one or one out of two values. In the Eu-
clidean case we set l2i = a2 for all i, and in the Lorentzian case we allow
for both space- and time–like links with l2i ∈ {−a2, a2}, where the geodesic
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distance a serves as a short-distance cutoff, which will be taken to zero later.
Coming from the classical theory this may seem a grave restriction at first,
but this is indeed not the case. Firstly, keep in mind that for the purposes of
the quantum theory we want to sample the space of geometries ‘ergodically’ at
a coarse-grained scale of order a. This should be contrasted with the classical
theory where the objective is usually to approximate a given, fixed space–time
to within a length scale a. In the latter case one typically requires a much finer
topology on the space of metrics or geometries. It is also straightforward to see
that no local curvature degrees of freedom are suppressed by fixing the edge
lengths; deficit angles in all directions are still present, although they take on
only a discretized set of values. In this sense, in dynamical triangulations all
geometry is in the gluing of the fundamental building blocks. This is dual to
how quantum Regge calculus is set up, where one usually fixes a triangulation
T and then ‘scans’ the space of geometries by letting the li’s run continuously
over all values compatible with the triangular inequalities.

In a nutshell, Lorentzian dynamical triangulations give a definite meaning
to the ‘integral over geometries’, namely, as a sum over inequivalent Lorentzian
gluings T over any number Nd of d−simplices,∫

Σ Geom(M)D[gµν ] eiS[gµν ] LDT−→
∑
T∈T

1
CT

eiSReg(T ), (1.262)

where the symmetry factor CT = |Aut(T )| on the r.h.s. is the order of the
automorphism group of the triangulation, consisting of all maps of T onto
itself which preserve the connectivity of the simplicial lattice. We will specify
below what precise class T of triangulations should appear in the summation.

It follows from the above that in this formulation all curvatures and vol-
umes contributing to the Regge simplicial action come in discrete units. This
can be illustrated by the case of a 2D triangulation with Euclidean signature,
which according to the prescription of dynamical triangulations consists of
equilateral triangles with squared edge lengths +a2. All interior angles of such
a triangle are equal to π/3, which implies that the deficit angle at any vertex
v can take the values 2π−kvπ/3, where kv is the number of triangles meeting
at v. As a consequence, the Einstein–Regge action SReg assumes the simple
form

SReg(T ) = κd−2Nd−2 − κdNd, (1.263)

where the coupling constants κi = κi(λ,GN ) are simple functions of the bare
cosmological and Newton constants in d dimensions. Substituting this into
the path sum in (1.262) leads to

Z(κd−2, κd) =
∑
Nd

e−iκdNd

∑
Nd−2

eiκd−2Nd−2
∑

T |Nd,Nd−2

1
CT
, (1.264)

The point of taking separate sums over the numbers of d− and (d−2)−simplices
in (1.264) is to make explicit that ‘doing the sum’ is tantamount to the combi-
natorial problem of counting triangulations of a given volume and number of
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Fig. 1.17. Two types of Minkowskian 4–simplices in 4D (adapted from [Lol01,
Lol98]).

simplices of codimension 2 (corresponding to the last summation in (1.264)).24

It turns out that at least in two space–time dimensions the counting of geome-
tries can be done completely explicitly, turning both Lorentzian and Euclidean
quantum gravity into exactly soluble statistical models.

Lorentzian Path Integral

Now, the simplicial building blocks of the models are taken to be pieces of
Minkowski space, and their edges have squared lengths +a2 or −a2. For ex-
ample, the two types of 4–simplices that are used in Lorentzian dynamical
triangulations in dimension four are shown in Figure 1.17. The first of them
has four time–like and six space–like links (and therefore contains 4 time–like
and 1 space–like tetrahedron), whereas the second one has six time–like and
four space–like links (and contains 5 time–like tetrahedra). Since both are
subspaces of flat space with signature (− + ++), they possess well–defined
light–cone structures everywhere [Lol01, Lol98].

In general, gluings between pairs of d−simplices are only possible when
the metric properties of their (d − 1)−faces match. Having local light cones
implies causal relations between pairs of points in local neighborhoods. Cre-
ating closed time–like curves will be avoided by requiring that all space–times
contributing to the path sum possess a global ‘time’ function t. In terms of
the triangulation this means that the d−simplices are arranged such that their
space–like links all lie in slices of constant integer t, and their time–like links
interpolate between adjacent spatial slices t and t+1. Moreover, with respect
to this time, we will not allow for any spatial topology changes25.

This latter condition is always satisfied in classical applications, where
‘trouser points’ like the one depicted in Figure 1.18 are ruled out by the
requirement of having a non–degenerate Lorentzian metric defined everywhere
on M (it is geometrically obvious that the light cone and hence gµν must
degenerate in at least one point along the ‘crotch’). Another way of thinking
about such configurations (and their time–reversed counterparts) is that the
causal past (future) of an observer changes discontinuously as her world–line

24 The symmetry factor CT is almost always equal to 1 for large triangulations.
25 Note that if we were in the continuum and had introduced coordinates on space–

time, such a statement would actually be diffeomorphism–invariant.
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Fig. 1.18. At a branching point associated with a spatial topology change, light-
cones get ‘squeezed’ [Lol01, Lol98].

passes near the singular point (see [Dow02] and references therein for related
discussions about the issue of topology change in quantum gravity).

There is no a priori reason in the quantum theory to not relax some
of these classical causality constraints. After all, as we stressed right at the
outset, path integral histories are not in general classical solutions, nor can we
attribute any other direct physical meaning to them individually. It might well
be that one can construct models whose path integral configurations violate
causality in this strict sense, but where this notion is somehow recovered in
the resulting continuum theory. What the approach of Lorentzian dynamical
triangulations has demonstrated is that imposing causality constraints will
in general lead to a different continuum theory. This is in contrast with the
intuition one may have that ‘including a few isolated singular points will not
make any difference’. On the contrary, tampering with causality in this way
is not innocent at all, as was already anticipated by Teitelboim many years
ago [Tei83].

We want to point out that one cannot conclude from the above that spatial
topology changes or even fluctuations in the space–time topology cannot be
treated in the formulation of dynamical triangulations. However, if one insists
on including geometries of variable topology in a Lorentzian discrete context,
one has to come up with a prescription of how to weigh these singular points in
the path integral, both before and after the Wick rotation [Das02]. Maybe this
can be done along the lines suggested in [LS97]; this is clearly an interesting
issue for further research.

Having said this, we next have to address the question of the Wick rotation,
in other words, of how to get rid of the factor of i in the exponent of (1.264).
Without it, this expression is an infinite sum (since the volume can become
arbitrarily large) of complex terms whose convergence properties will be very
difficult to establish. In this situation, a Wick rotation is simply a technical
tool which – in the best of all worlds – enables us to perform the state sum and
determine its continuum limit. The end result will have to be Wick–rotated
back to Lorentzian signature.

Fortunately, Lorentzian dynamical triangulations come with a natural no-
tion of Wick rotation, and the strategy we just outlined can be carried out
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explicitly in two space–time dimensions, leading to a unitary theory. In higher
dimensions we do not yet have sufficient analytical control of the continuum
theories to make specific statements about the inverse Wick rotation. Since
we use the Wick rotation at an intermediate step, one can ask whether other
Wick rotations would lead to the same result. Currently this is a somewhat
academic question, since it is in practice difficult to find such alternatives.
In fact, it is quite miraculous we have found a single prescription for Wick–
rotating in our regularized setting, and it does not seem to have a direct
continuum analogue (for more comments on this issue, see [DL01, Das02]).

Our Wick rotationW in any dimension is an injectivemap fromLorentzian–
to Euclidean–signature simplicial space–times. Using the notation T for a sim-
plicial manifold together with length assignments l2s and l2t to its space– and
time–like links, it is defined by

Tlor = (T, {l2s = a2, l2t = −a2}) W�−→ Teu = (T, {l2s = a2, l2t = a2}). (1.265)

Note that we have not touched the connectivity of the simplicial manifold
T , but only its metric properties, by mapping all time–like links of T into
space–like ones, resulting in a Euclidean ‘space–time’ of equilateral building
blocks. It can be shown [AJL01a] that at the level of the corresponding weight
factors in the path integral this Wick rotation26 has precisely the desired effect
of rotating to the exponentiated Regge action of the ‘Euclideanized’ geometry,

eiS(T lor) W�−→ e−S(T eu). (1.266)

The Euclideanized path sum after the Wick rotation has the form

Zeu(κd−2, κd) =
∑
T

1
CT

e−κdNd(T )+κd−2Nd−2(T )

=
∑
Nd

e−κdNd

∑
T |Nd

1
CT

eκd−2Nd−2(T )

=
∑
Nd

e−κdNd eκ
crit
d (κd−2)Nd × subleading(Nd). (1.267)

In the last equality we have used that the number of Lorentzian triangulations
of discrete volume Nd to leading order scales exponentially with Nd for large
volumes. This can be shown explicitly in space–time dimension 2 and 3. For
d = 4, there is strong (numerical) evidence for such an exponential bound for
Euclidean triangulations, from which the desired result for the Lorentzian case
follows (sinceW maps to a strict subset of all Euclidean simplicial manifolds).

26 To get a genuine Wick rotation and not just a discrete map, one introduces a
complex parameter α in l2t = −αa2. The proper prescription leading to (1.266) is
then an analytic continuation of α from 1 to −1 through the lower–half complex
plane.
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From the functional form of the last line of (1.267) one can immediately
read off some qualitative features of the phase diagram, an example of which
appeared already earlier in Figure 1.15. Namely, the sum over geometries Zeu

converges for values κd > κcrit
d of the bare cosmological constant, and diverges

(ie. is not defined) below this critical line. Generically, for all models of dy-
namical triangulations the infinite–volume limit is attained by approaching
the critical line κcrit

d (κd−2) from above, ie. from inside the region of conver-
gence of Zeu. In the process of taking Nd →∞ and the cutoff a→ 0, one gets
a renormalized cosmological constant Λ through

(κd − κcrit
d ) = aµΛ+O(aµ+1). (1.268)

If the scaling is canonical (which means that the dimensionality of the renor-
malized coupling constant is the one expected from the classical theory), the
exponent is given by µ = d. Note that this construction requires a positive
bare cosmological constant in order to make the state sum converge. Moreover,
by virtue of relation (1.268) also the renormalized cosmological constant must
be positive. Other than that, its numerical value is not determined by this
argument, but by comparing observables of the theory which depend on Λ
with actual physical measurements.27 Another interesting observation is that
the inclusion of a sum over topologies in the discretized sum (1.267) would
lead to a super–exponential growth of at least ∝ Nd! of the number of trian-
gulations with the volume Nd. Such a divergence of the path integral cannot
be compensated by an additive renormalization of the cosmological constant
of the kind outlined above.

There are ways in which one can sum divergent series of this type, for
example, by performing a Borel sum. The problem with these stems from
the fact that two different functions can share the same asymptotic expan-
sion. Therefore, the series in itself is not sufficient to define the underlying
theory uniquely. The non–uniqueness arises because of non–perturbative con-
tributions to the path integral which are not represented in the perturbative
expansion.28 In order to fix these uniquely, an independent, non–perturbative
definition of the theory is necessary. Unfortunately, for dynamically triangu-
lated models of quantum gravity, no such definitions have been found so far.
In the context of 2D (Euclidean) quantum gravity this difficulty is known as
the ‘absence of a physically motivated double-scaling limit’ [AK93].

Lastly, getting an interesting continuum limit may or may not require an
additional fine–tuning of the inverse gravitational coupling κd−2, depending on
the dimension d. In four dimensions, one would expect to find a second-order
transition along the critical line, corresponding to local gravitonic excitations.
The situation in d = 3 is less clear, but results get so far indicate that no fine–
tuning of Newton’s constant is necessary [AJL01b, AJL01c].
27 The non–negativity of the renormalized cosmological coupling may be taken as a

first ‘prediction’ of our construction, which in the physical case of four dimensions
is indeed in agreement with current observations.

28 A field–theoretic example would be instantons and renormalons in QCD.
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Before delving into the details, let me summarize briefly the results that
have been get so far in the approach of Lorentzian dynamical triangulations.
At the regularized level, that is, in the presence of a finite cutoff a for the
edge lengths and an infrared cutoff for large space–time volume, they are
well–defined statistical models of Lorentzian random geometries in d = 2, 3, 4.
In particular, they obey a suitable notion of reflection-positivity and possess
self–adjoint Hamiltonians.

The crucial questions are then to what extent the underlying combinato-
rial problems of counting all dD geometries with certain causal properties can
be solved, whether continuum theories with non–trivial dynamics exist and
how their bare coupling constants get renormalized in the process. What we
know about Lorentzian dynamical triangulations so far is that they lead to
continuum theories of quantum gravity in dimension 2 and 3. In d = 2, there is
a complete analytic solution, which is distinct from the continuum theory pro-
duced by Euclidean dynamical triangulations. Also the matter–coupled model
has been studied. In d = 3, there are numerical and partial analytical results
which show that both a continuum theory exists and that it again differs from
its Euclidean counterpart. Work on a more complete analytic solution which
would give details about the geometric properties of the quantum theory is
under way. In d = 4, the first numerical simulations are currently being set
up. The challenge here is to do this for sufficiently large lattices, to be able
to perform meaningful measurements. So far, we cannot make any statements
about the existence and properties of a continuum theory in this physically
most interesting case.

1.5.5 TQFT and Stringy Path Integrals

The string theory is a special case of a quantum field theory (QFT). Any QFT
deals with smooth maps γ : Σ →M of Riemannian manifolds Σ and M such
that the dimension of Σ is the dimension of the theory. On the setMap(Σ,M)
of all smooth maps γ = γ(φ), we also have defined an action function S[φ] of
the field variables φ. A non–relativistic QFT studies real–valued (Euclidean)
path integrals of the form∫

Map(Σ,M)

V (φ)D[φ] e−S[φ]/�, (1.269)

where D[φ] represents some measure on the space of paths, is the Planck
constant and V : Map(Σ,M) → R is an insertion function. The number
e−S[φ]/� should be interpreted as the probability amplitude of the contribution
of the map γ : Σ →M to the path integral. The associated integral

ZE =
∫
Map(Σ,M)

dφ e−S[φ]/�,

is the partition function of the theory. In a relativistic QFT, the space Σ has
a Lorentzian metric of signature (−,+, ...,+). The first coordinate is reserved
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for time, the rest are for space. In this case, the real–valued path integral
(1.269) is replaced with the complex–valued path integral

ZM =
∫
Map(Σ,M)

V (φ)D[φ] eiS[φ]/�.

Witten’s Topological Quantum Field Theory

Before we come to (super)strings, we give a brief on topological quantum field
theory (TQFT), as developed by Fields Medalist Edward Witten, from his
original path integral point of view (see [Wit88, LL98]). TQFT originated
in 1982, when Ed Witten rewrote classical Morse theory (see subsection 1.2.9
above, as well as subsection 2.4.4 below) in Dick Feynman’s language of quan-
tum field theory [Wit82]. Witten’s arguments made use of Feynman’s path
integrals and consequently, at first, they were regarded as mathematically
non–rigorous. However, a few years later, A. Floer reformulated a rigorous
Morse–Witten theory [Flo87] (that won a Fields medal for Witten). This trend
in which some mathematical structure is first constructed by quantum field
theory methods and then reformulated in a rigorous mathematical ground
constitutes one of the tendencies in modern physics.

In TQFT our basic topological space is an nD Riemannian manifold M
with a metric gµν . Let us consider on it a set of fields {φi}, and let S[φi] be
a real functional of these fields which is regarded as the action of the theory.
We consider ‘operators’, Oα(φi), which are in general arbitrary functionals of
the fields. In TQFT these functionals are real functionals labelled by some
set of indices α carrying topological or group–theoretical data. The vacuum
expectation value (VEV) of a product of these operators is defined as

〈Oα1Oα2 · · ·Oαp〉 =
∫

[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi) exp (−S[φi]) .

A quantum field theory is considered topological if the following relation is
satisfied:

δ

δgµν
〈Oα1Oα2 · · ·Oαp

〉 = 0, (1.270)

i.e., if the VEV of some set of selected operators is independent of the metric
gµν on M . If such is the case those operators are called ‘observables’.

There are two ways to guarantee, at least formally, that condition (1.270)
is satisfied. The first one corresponds to the situation in which both, the action
S[φi], as well as the operators Oαi

are metric independent. These TQFTs are
called of Schwarz type. The most important representative is Chern–Simons
gauge theory . The second one corresponds to the case in which there exist a
symmetry, whose infinitesimal form is denoted by δ, satisfying the following
properties:

δOαi
= 0, Tµν = δGµν , (1.271)
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where Tµν is the SEM–tensor of the theory, i.e.,

Tµν(φi) =
δ

δgµν
S[φi]. (1.272)

The fact that δ in (1.271) is a symmetry of the theory implies that the
transformations δφi of the fields are such that both δA[φi] = 0 and δOαi(φi) =
0. Conditions (1.271) lead, at least formally, to the following relation for VEVs:

δ

δgµν
〈Oα1Oα2 · · ·Oαp

〉 = −
∫

[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp
(φi)Tµνe

−S[φi]

= −
∫

[Dφi]δ
(
Oα1(φi)Oα2(φi) · · ·Oαp(φi)Gµν exp (−S[φi])

)
= 0, (1.273)

which implies that the quantum field theory can be regarded as topological.
This second type of TQFTs are called of Witten type. One of its main rep-
resentatives is the theory related to Donaldson invariants, which is a twisted
version of N = 2 supersymmetric Yang–Mills gauge theory . It is important to
remark that the symmetry δ must be a scalar symmetry, i.e., that its symme-
try parameter must be a scalar. The reason is that, being a global symmetry,
this parameter must be covariantly constant and for arbitrary manifolds this
property, if it is satisfied at all, implies strong restrictions unless the parameter
is a scalar.

Most of the TQFTs of cohomological type satisfy the relation:

S[φi] = δΛ(φi), (1.274)

for some functional Λ(φi). This has far–reaching consequences, for it means
that the topological observables of the theory, in particular the partition func-
tion, (path integral) itself are independent of the value of the coupling con-
stant. Indeed, let us consider for example the VEV:

〈Oα1Oα2 · · ·Oαp
〉 =

∫
[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp

(φi) e−
1

g2 S[φi]. (1.275)

Under a change in the coupling constant, 1/g2 → 1/g2−∆, one has (assuming
that the observables do not depend on the coupling), up to first–order in ∆:

〈Oα1Oα2 · · ·Oαp
〉 −→ 〈Oα1Oα2 · · ·Oαp

〉

+ ∆
∫

[Dφi]δ
[
Oα1(φi)Oα2(φi) · · ·Oαp

(φi)Λ(φi) exp
(
− 1
g2
S[φi]

)]
= 〈Oα1Oα2 · · ·Oαp

〉. (1.276)

Hence, observables can be computed either in the weak coupling limit, g → 0,
or in the strong coupling limit, g →∞.

So far we have presented a rather general definition of TQFT and made a
series of elementary remarks. Now we will analyze some aspects of its struc-
ture. We begin pointing out that given a theory in which (1.271) holds one
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can build correlators which correspond to topological invariants (in the sense
that they are invariant under deformations of the metric gµν) just by consid-
ering the operators of the theory which are invariant under the symmetry. We
will call these operators observables. In virtue of (1.273), if one of these op-
erators can be written as a symmetry transformation of another operator, its
presence in a correlation function will make it vanish. Thus we may identify
operators satisfying (1.271) which differ by an operator which corresponds to
a symmetry transformation of another operator. Let us denote the set of the
resulting classes by {Φ}. By restricting the analysis to the appropriate set of
operators, one has that in fact,

δ2 = 0. (1.277)

Property (1.277) has consequences on the features of TQFT. First, the
symmetry must be odd which implies the presence in the theory of commuting
and anticommuting fields. For example, the tensor Gµν in (1.271) must be
anticommuting. This is the first appearance of an odd non–spinorial field in
TQFT. Those kinds of objects are standard features of cohomological TQFTs.
Second, if we denote by Q the operator which implements this symmetry, the
observables of the theory can be described as the cohomology classes of Q:

{Φ} =
KerQ
ImQ

, Q2 = 0. (1.278)

Equation (1.271) means that in addition to the Poincare group the theory
possesses a symmetry generated by an odd version of the Poincare group. The
corresponding odd generators are constructed out of the tensor Gµν in much
the same way as the ordinary Poincare generators are built out of Tµν . For
example, if Pµ represents the ordinary momentum operator, there exists a
corresponding odd one Gµ such that

Pµ = {Q,Gµ}. (1.279)

Now, let us discuss the structure of the Hilbert space of the theory in
virtue of the symmetries that we have just described. The states of this space
must correspond to representations of the algebra generated by the operators
in the Poincare groups and by Q. Furthermore, as follows from our analysis
of operators leading to (1.278), if one is interested only in states |Ψ〉 leading
to topological invariants one must consider states which satisfy

Q|Ψ〉 = 0, (1.280)

and two states which differ by a Q−exact state must be identified. The odd
Poincare group can be used to generate descendant states out of a state satis-
fying (1.280). The operators Gµ act non–trivially on the states and in fact, out
of a state satisfying (1.280) we can build additional states using this generator.
The simplest case consists of
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γ1

Gµ|Ψ〉,

where γ1 is a 1–cycle. One can verify using (1.271) that this new state satisfies
(1.280):

Q

∫
γ1

Gµ|Ψ〉 =
∫
γ1

{Q,Gµ}|Ψ〉 =
∫
γ1

Pµ|Ψ〉 = 0.

Similarly, one may construct other invariants tensoring n operators Gµ and
integrating over n−cycles γn:∫

γn

Gµ1
Gµ2

...Gµn
|Ψ〉. (1.281)

Notice that since the operator Gµ is odd and its algebra is Poincare–like the
integrand in this expression is an exterior differential n−form. These states
also satisfy condition (1.280). Therefore, starting from a state |Ψ〉 ∈ kerQ
we have built a set of partners or descendants giving rise to a topological
multiplet. The members of a multiplet have well defined ghost number. If one
assigns ghost number −1 to the operator Gµ the state in (1.281) has ghost
number −n plus the ghost number of |Ψ〉. Now, n is bounded by the dimension
of the manifold X. Among the states constructed in this way there may be
many which are related via another state which is Q−exact, i.e., which can be
written asQ acting on some other state. Let us try to single out representatives
at each level of ghost number in a given topological multiplet.

Consider an (n−1)−cycle which is the boundary of an nD surface, γn−1 =
∂Sn. If one builds a state taking such a cycle one finds (Pµ = −i∂µ),∫

γn−1

Gµ1
Gµ2

...Gµn−1
|Ψ〉 = i

∫
Sn

P[µ1
Gµ2

Gµ3
...Gµn]|Ψ〉 (1.282)

= iQ
∫
Sn

Gµ1
Gµ2

...Gµn
|Ψ〉,

i.e., it is Q−exact. The square–bracketed subscripts in (1.282) denote that
all indices between them must by antisymmetrized. In (1.282) use has been
made of (1.279). This result tells us that the representatives we are looking
for are built out of the homology cycles of the manifold X. Given a manifold
X, the homology cycles are equivalence classes among cycles, the equivalence
relation being that two n−cycles are equivalent if they differ by a cycle which
is the boundary of an n+ 1 surface. Thus, knowledge on the homology of the
manifold on which the TQFT is defined allows us to classify the representatives
among the operators (1.281). Let us assume that X has dimension d and that
its homology cycles are γin , (in = 1, ..., dn, n = 0, ..., d), where dn is the
dimension of the n−homology group, and d the dimension of X. Then, the
non–trivial partners or descendants of a given |Ψ〉 highest–ghost–number state
are labelled in the following way:
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γin

Gµ1
Gµ2

...Gµn
|Ψ〉, (in = 1, ..., dn, n = 0, ..., d).

A similar construction to the one just described can be made for fields.
Starting with a field φ(x) which satisfies,

[Q,φ(x)] = 0, (1.283)

one can construct other fields using the operators Gµ. These fields, which we
call partners are antisymmetric tensors defined as,

φ(n)
µ1µ2...µn

(x) =
1
n!

[Gµ1
, [Gµ2

...[Gµn
, φ(x)}...}}, (n = 1, ..., d).

Using (1.279) and (1.283) one finds that these fields satisfy the so–called
topological descent equations:

dφ(n) = i[Q,φ(n+1)},

where the subindices of the forms have been suppressed for simplicity, and the
highest–ghost–number field φ(x) has been denoted as φ(0)(x). These equations
enclose all the relevant properties of the observables which are constructed
out of them. They constitute a very useful tool to build the observables of the
theory.

Stringy Actions and Amplitudes

Now we give a brief review of modern path–integral methods in (super)string
theory (mainly following [DEF99]). Recall that the fundamental quantities
in quantum field theory (QFT) are the transition amplitudes Amp : IN =⇒
OUT, describing processes in which a number IN of incoming particles scatter
to produce a number OUT of outgoing particles. The square modulus of the
transition amplitude yields the probability for this process to take place.

Strings

Recall that in string theory, elementary particles are not described as 0–
dimensional points, but instead as 1D strings. If Ms and M(∼ R ×Ms) de-
note the 3D space and 4D space–time manifolds respectively, then we picture
strings as in Figure 1.19.

While the point–particle sweeps out a 1D world–line, the string sweeps
out a world–sheet , i.e., a 2D real surface. For a free string , the topology of
the world–sheet is a cylinder (in the case of a closed string) or a sheet (for an
open string).

Roughly, different elementary particles correspond to different vibration
modes of the string just as different minimal notes correspond to different
vibrational modes of musical string instruments.
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Fig. 1.19. Basic geometrical objects of string theory: (a) a space with fixed time;
(b) a space–time picture; (c) a point–particle; (d) a world–line of a point–particle;
(e) a closed string; (f) a world–sheet of a closed string; (g) an open string; (h) a
world–sheet of an open string.

It turns out that the physical size of strings is set by gravity, more precisely
the Planck length !P ∼ 10−33 cm. This scale is so small that we effectively
only see point–particles at our distance scales. Thus, for length scales much
larger than !P , we expect to recover a QFT–description of point–particles,
plus typical string corrections that represent physics at the Planck scale.

Interactions

While the string itself is an extended 1D object, the fundamental string inter-
actions are local, just as for point–particles. The interaction takes place when
strings overlap in space at the same time. In case of closed string theories
the interactions have a form depicted in Figure 1.20, while in case of open
string theories the interactions have a form depicted in Figure 1.21. Other
interactions result from combining the interactions defined above.

Fig. 1.20. Interactions in closed string theories (left 2D–picture and right 3D–
picture).
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Fig. 1.21. Interactions in open string theories (left 2D–picture and right 3D–
picture).

In point–particle theories, the fundamental interactions are read off from
the QFT–Lagrangian. An interaction occurs at a geometrical point, where the
world–lines join and cease to be a manifold. In Lorentz–invariant theories
(where manifold M is a flat Minkowski space–time), the interaction point
is Lorentz–invariant. To specify how the point–particles interact, additional
data must be supplied at the interaction point, giving rise to many possible
distinct quantum field theories.

In string theory, the interaction point depends upon the Lorentz frame
chosen to observe the process. In the Figure above, equal time slices are in-
dicated from the point of view of two different Lorentz frames, schematically
indicated by t and t′. The closed string interaction, as seen from frames t and
t′, occurs at times t2 and t′2 and at (distinct) points P and P ′ respectively.

Lorentz invariance of interaction forbids that any point on the world–sheet
be singled out as interaction point. Instead, the interaction results purely from
the joining and splitting of strings. While free closed strings are characterized
by their topology being that of a cylinder, interacting strings are characterized
by the fact that their associated world–sheet is connected to at least 3 strings,
incoming and/or outgoing.

As a result, the free string determines the nature of the interactions com-
pletely, leaving only the string coupling constant undetermined.

The orientation is an additional structure of closed strings, dividing them
into two categories: (i) oriented strings, in which all world–sheets are assumed
to be orientable; and (ii) non–oriented strings, in which world–sheets are non–
orientable, such as the Möbius strip, Klein bottle, etc.

Loop Expansion – Topology of Closed Surfaces

For simplicity, here we consider closed oriented strings only, so that the associ-
ated world–sheet is also oriented. A general string configuration describing the
process in whichM incoming strings interact and produce N outgoing strings
looks at the topological level like a closed surface with M +N = E boundary
components and any number of handles (see Figure 1.22). This picture is a
kind of topological generalization of nonlinear control MIMO–systems with
M inputs, N outputs X states (see subsection 2.3.1 below).
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Fig. 1.22. Boundary components and handles of closed oriented system of M in-
coming strings, interacting through internal loops, to produce N outgoing strings.
Note the striking similarity with MIMO–systems of nonlinear control theory , with
M input processes and N output processes(see subsection 2.3.1 below).

The internal loops may arise when virtual particle pairs are produced,
just as in quantum field theory. For example, a Feynman diagram in quantum
field theory that involves a loop is shown in Figure 1.23 together with the
corresponding string diagram.

Fig. 1.23. A QFT Feynman diagram that involves an internal loop (left), with the
corresponding string diagram (right).

Surfaces associated with closed oriented strings have two topological in-
variants: (i) the number of boundary components E = M + N (which may
be shrunk to punctures, under certain conditions), and (ii) the number h of
handles on the surface, which equals the surface genus.

When E = 0, we just have the topological classification of compact ori-
ented surfaces without boundary. Rendering E > 0 is achieved by removing
E discs from the surface.

Recall that in QFT, an expansion in powers of Planck’s constant � yields
an expansion in the number of loops of the associated Feynman diagram, for
a given number of external states:
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Fig. 1.24. Number h of handles on the surface of closed oriented strings, which
equals the string–surface genus: (a) h = 0 for sphere S2; (b) h = 1 for torus T 2; (c)
h = 2 for string–surfaces with higher genus, etc.

�E+h−1 =

⎧⎨⎩ �

�−1

−1

for every propagator
for every vertex

for overall momentum conservation

Thus, in string theory we expect that, for a given number of external strings
E, the topological expansion genus by genus should correspond to a loop
expansion as well.

Recall that in QFT, there are in general many Feynman diagrams that
correspond to an amplitude with a given number of external particles and a
given number of loops. For example, for E = 4 external particles and h = 1
loop in φ3 theory are given in Figure 1.25, together with the same process
in string theory (for closed oriented strings), where it is described by just a
single diagram (right).

Fig. 1.25. Feynman QFT–diagrams for φ3 theory with E = 4 external particles
and h = 1 loop (left), and a single corresponding string diagram (right). In this way
the usual Feynman diagrams of quantum field theory are generalized by arbitrary
Riemannian surfaces.

Much of recent interest has been focused on the so–called D−branes. A
D−brane is a submanifold of space–time with the property that strings can
end or begin on it.

Transition Amplitudes for Strings

The only way we have today to define string theory is by giving a rule for the
evaluation of transition amplitudes, order by order in the loop expansion, i.e.,
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genus by genus. The rule is to assign a relative weight to a given configuration
and then to sum over all configurations [DEF99]. To make this more precise,
we first describe the system’s configuration manifold M (see Figure 1.26).

Fig. 1.26. The embedding map x from the reference surface Σ into the pseudo–
Riemannian configuration manifold M (adapted from [DEF99]).

We assume that Σ andM are smooth manifolds, of dimensions 2 and n re-
spectively, and that x is a continuous map from Σ toM . If ξm, (for m = 1, 2),
are local coordinates on Σ and xµ, (µ = 1, . . . , n), are local coordinates on M
then the map x may be described by functions xµ(ξm) which are continuous.

To each system configuration we can associate a weight e−S[x,Σ,M ], (for S ∈
C) and the transition amplitude Amp for specified external strings (incoming
and outgoing) is get by summing over all surfaces Σ and all possible maps x,

Amp =
∑

surfaces Σ

∑
x

e−S[x,Σ,M ] .

We now need to specify each of these ingredients:

(1) We assumeM to be an nD Riemannian manifold, with metric g. A special
case is flat Euclidean space–time Rn. The space–time metric is assumed fixed.

ds2 = (dx, dx)g = gµν(x)dxµ ⊗ dxν .

(2) The metric g on M induces a metric on Σ: γ = x∗(g),

γ = γmndξ
m ⊗ dξn, γmn = gµν

∂xµ

∂ξm
∂xν

∂ξn
.

This metric is non–negative, but depends upon x. It is advantageous to in-
troduce an intrinsic Riemannian metric g on Σ, independently of x; in local
coordinates, we have

g = gmn(ξ)dξm ⊗ dξn.
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A natural intrinsic candidate for S is the area of x(Σ), which gives the
so–called Nambu–Goto action29

Area (x (Σ)) =
∫
Σ

dµγ =
∫
Σ

n2ξ
√

det γmn, (1.284)

which depends only upon g and x, but not on g. However, the transition am-
plitudes derived from the Nambu–Goto action are not well–defined quantum–
mechanically.

Otherwise, we can take as starting point the so–called Polyakov action30

S[x, g] = κ
∫
Σ

(dx, ∗dx)g = κ
∫
Σ

dµgg
mn∂mx

µ∂nx
νgµν(x), (1.285)

where κ is the string tension (a positive constant with dimension of inverse
length square). The stationary points of S with respect to g are at g0 = eφγ
for some function φ on Σ, and thus S[x, g0] ∼ Area (x (Σ)).

The Polyakov action leads to well–defined transition amplitudes, get by
integration over the space Met(Σ) of all positive metrics on Σ for a given
topology, as well as over the space of all maps Map(Σ,M). We can define the
path integral

Amp =
∑

topologies
Σ

∫
Met(Σ)

1
N(g)

∫
Map(Σ,M)

D[x] e−S[x,g,g],

where N is a normalization factor, while the measures D[g] and D[x] are
constructed from Diff+(Σ) and Diff(M) invariant L2 norms on Σ and M .
For fixed metric g, the action S is well–known: its stationary points are the
harmonic maps x : Σ → M (see, e.g., [EL78]). However, g here varies and in
fact is to be integrated over. For a general metric g, the action S defines a
nonlinear sigma model , which is renormalizable because the dimension of Σ
is 2. It would not in general be renormalizable in dimension higher than 2,
which is usually regarded as an argument against the existence of fundamental
membrane theories (see [DEF99]).

The Nambu–Goto action (1.284) and Polyakov action (1.285) represent the
core of the so–called bosonic string theory , the original version of string theory,
developed in the late 1960s. Although it has many attractive features, it also
predicts a particle called the tachyon possessing some unsettling properties,
and it has no fermions. All of its particles are bosons, the matter particles.
29 Nambu–Goto action is the starting point of the analysis of string behavior, using

the principles of ordinary Lagrangian mechanics. Just as the Lagrangian for a free
point particle is proportional to its proper timei.e., the ‘length’ of its world–line,
a relativistic string’s Lagrangian is proportional to the area of the sheet which
the string traces as it travels through space–time.

30 The Polyakov action is the 2D action from conformal field theory , used in string
theory to describe the world–sheet of a moving string.



228 1 Modern Geometrical Machinery

The physicists have also calculated that bosonic string theory requires 26
space–time dimensions: 25 spatial dimensions and one dimension of time. In
the early 1970s, supersymmetry was discovered in the context of string theory,
and a new version of string theory called superstring theory (i.e., supersym-
metric string theory) became the real focus, as it includes also fermions, the
force particles. Nevertheless, bosonic string theory remains a very useful ‘toy
model’ to understand many general features of perturbative string theory (see
subsection 2.2.8 below).

Weyl Invariance and Vertex Operator Formulation

The action S is also invariant under Weyl rescalings of the metric g by a
positive function on σ : Σ → R, given by g → e2σg. In general, Weyl invariance
of the full amplitude may be spoiled by anomalies. Assuming Weyl invariance
of the full amplitude, the integral defining Ampmay be simplified in two ways.

1) The integration over Met(Σ) effectively collapses to an integration over
the moduli space of surfaces, which is finite dimensional, for each genus h.
2) The boundary components of Σ — characterizing external string states —
may be mapped to regular points on an underlying compact surface without
boundary by conformal transformations. The data, such as momenta and other
quantum numbers of the external states, are mapped into vertex operators.
The amplitudes are now given by the path integral

Amp =
∞∑
h=0

∫
Met(Σ)

D[g]
1

N(g)

∫
Map(Σ,M)

D[x]V1 . . . VN e−S ,

for suitable vertex operators V1, . . . VN .

More General Actions

Generalizations of the action S given above are possible whenM carries extra
structure.

1) M carries a 2−form B ∈ Ω(2)(M). The resulting contribution to the
action is also that of a ‘nonlinear sigma model’

SB [x,B] =
∫
Σ

x∗(B) =
∫
Σ

dxµ ∧ dxνBµν(x)

2) M may carry a dilaton field Φ ∈ Ω(0)(M) so that

SΦ[x, Φ] =
∫
Σ

dµgRgΦ(x).

where Rg is the Gaussian curvature of Σ for the metric g.
3) There may be a tachyon field T ∈ Ω(0)(M) contributing

ST [x, T ] =
∫
Σ

dµgT (x).
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Transition Amplitude for a Single Point Particle

The transition amplitude for a single point–particle could in fact be get in
a way analogous to how we prescribed string amplitudes. Let space–time be
again a Riemannian manifold M , with metric g. The prescription for the
transition amplitude of a particle travelling from a point y ∈M to a point y′

to M is expressible in terms of a sum over all (continuous) paths connecting
y to y′:

Amp(y, y′) =
∑

paths
joining y and y′

e−S[path].

Paths may be parametrized by maps from C = [0, 1] into M with x(0) =
y, x(1) = y′. A simple world–line action for a massless particle is get by
introducing a metric g on [0, 1]

S[x, g] =
1
2

∫
C

dτ g(τ)−1ẋµẋνgµν(x),

which is invariant under Diff+(C) and Diff(M).
Recall that the analogous prescription for the point–particle transition

amplitude is the path integral

Amp(y, y′) =
∫

Met(C)

D[g]
1
N

∫
Map(C,M)

D[x] e−S[x,g].

Note that for string theory, we had a prescription for transition amplitudes
valid for all topologies of the world–sheet. For point–particles, there is only the
topology of the interval C, and we can only describe a single point–particle,
but not interactions with other point–particles. To put those in, we would
have to supply additional information.

Finally, it is very instructive to work out the amplitude Amp by carrying
out the integrations. The only Diff+(C) invariant of g is the length L =∫ 1

0
dτ g(τ); all else is generated by Diff+(C). Defining the normalization

factor to be the volume of Diff(C): N = V ol(Diff(C)) we have D[g] =
D[v] dL and the transition amplitude becomes

Amp(y, y′) =
∫ ∞

0

dL

∫
D[x] e−

1
2L

∫ 1
0 dτ(ẋ,ẋ)g =

∫ ∞

0

dL
〈
y′|e−L∆|y

〉
=
〈
y′| 1
∆
|y
〉
.

Thus, the amplitude is just the Green function at (y, y′) for the Laplacian ∆
and corresponds to the propagation of a massless particle (see [DEF99]).
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Dynamics of Complex Systems

2.1 Mechanical Systems

2.1.1 Autonomous Lagrangian/Hamiltonian Mechanics

Basis of Lagrangian Dynamics

Recall that Riemannian metric g =<,> on the configuration manifold M is
a positive–definite quadratic form g : TM → R, given in local coordinates
qi ∈ U (U open in M) as

gij �→ gij(q,m) dqidqj , where (2.1)

gij(q,m) = mµδrs
∂xr

∂qi
∂xs

∂qj
(2.2)

is the covariant material metric tensor defining a relation between internal and
external coordinates and including n segmental masses mµ. The quantities xr

are external coordinates (r, s = 1, . . . , 6n) and i, j = 1, . . . , N ≡ 6n−h, where
h denotes the number of holonomic constraints.

The Lagrangian of the system is a quadratic form L : TM → R dependent
on velocity v and such that L(v) = 1

2 < v, v >. It is locally given by

L(v) =
1
2
gij(q,m) vivj .

On the velocity phase–space manifold TM exist:

1. a unique 1−form θL, defined in local coordinates qi, vi = q̇i ∈ Uv (Uv
open in TM) by θL = Lvidqi, where Lvi ≡ ∂L/∂vi; and

2. a unique nondegenerate Lagrangian symplectic 2−form ωL, which is closed
(dωL = 0) and exact (ωL = dθL = dLvi ∧ dqi).

TM is an orientable manifold, admitting the standard volume given by
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ΩωL
=

(−1)
N(N+1)

2

N !
ωNL ,

in local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) it is given by

ΩL = dq1 ∧ · · · ∧ dqN ∧ dv1 ∧ · · · ∧ dvN .

On the velocity phase–space manifold TM we can also define the action
A : TM → R in local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) given
by A = viLvi , so E = viLvi − L. The Lagrangian vector–field XL on TM
is determined by the condition iXL

ωL = dE. Classically, it is given by the
second–order Lagrangian equations

d

dt

∂L

∂vi
=
∂L

∂qi
. (2.3)

For a Lagrangian vector–field XL on M , there is a base integral curve
γ0(t) = (qi(t), vi(t)) iff γ0(t) is a geodesic. This is given by the contravariant
velocity equation

q̇i = vi, v̇i + Γ ijk v
jvk = 0. (2.4)

Here Γ ijk denote the Christoffel symbols of the Levi–Civita connection ∇ in
an open chart U on M , defined on the Riemannian metric g =<,> by (see
Appendix, as well as section 1.2.9 above)

Γ ijk = gilΓjkl, Γijk =
1
2
(∂xigjk + ∂xjgki + ∂xkgij). (2.5)

The l.h.s ˙̄vi = v̇i + Γ ijk v
jvk in the second part of (2.4) represents the

Bianchi covariant derivative of the velocity with respect to t. Parallel trans-
port on M is defined by ˙̄vi = 0. When this applies, XL is called the geodesic
spray and its flow the geodesic flow .

For the dynamics in the gravitational potential field V : M → R, the
Lagrangian L : TM → R has an extended form

L(v, q) =
1
2
gijv

ivj − V (q),

A Lagrangian vector–field XL is still defined by the second–order Lagrangian
equations (2.3, 2.4).

A general form of the forced, non–conservative Lagrangian equations is
given as

d

dt

∂L

∂vi
− ∂L

∂qi
= Fi(t, qi, vi)).

Here the Fi(t, qi, vi) represent any kind of covariant forces as a functions of
time, coordinates and momenta. In covariant form we have

q̇i = vi, gij(v̇i + Γ ijk v
jvk) = Fj(t, qi, vi)).
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Basics of Poincaré Dynamics

The Euler–Poincaré Equations.

Let G be a Lie group and let L : TG → R be a left–invariant Lagrangian.
Let l : g → R be its restriction to the identity. For a curve g(t) ∈ G, let
ξ(t) = g(t)−1 · ġ(t); that is, ξ(t) = Tg(t)Lg(t)−1 ġ(t). Then the following are
equivalent [MR99]:

1. g(t) satisfies the Euler–Lagrangian equations for L on G;
2. The variational principle holds,

δ

∫
L(g(t), ġ(t)) dt = 0

for variations with fixed endpoints;
3. The Euler–Poincaré equations hold:

d

dt

∂l

∂ξ
= Ad∗ξ

δl

δξ
;

4. The variational principle holds on g,

δ

∫
l(ξ(t)) dt = 0,

using variations of the form δξ = η̇ + [ξ, η], where η vanishes at the end-
points.

The Lagrangian–Poincaré Equations.

Here we follow [MR99] and drop Euler–Lagrangian equations and variational
principles from a general velocity phase–space TM to the quotient TM/G by
an action of a Lie group G onM . If L is a G−invariant Lagrangian on TM , it
induces a reduced Lagrangian l on TM/G. We introduce a connection A on the
principal bundle M → S =M/G, assuming that this quotient is nonsingular.
This connection allows one to split the variables into a horizontal and vertical
part. Let internal variables xα be coordinates for shape–space S = M/G, let
ηa be coordinates for the Lie algebra g relative to a chosen basis, let l be the
Lagrangian regarded as a function of the variables xα, ẋα, ηa and let Cadb be
the structure constants of the Lie algebra g of G.

If one writes the Euler–Lagrangian equations on TM in a local principal
bundle trivialization, with coordinates xα on the base and ηa in the fibre,
then one gets the following system of Hamel equations:

d

dt

∂l

∂ẋα
=
∂l

∂xα
, and

d

dt

∂l

∂ηb
=
∂l

∂ηa
Cadbη

a.

However, this representation of the equations does not make global in-
trinsic sense. The introduction of a connection overcomes this, and one can
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intrinsically and globally split the original variational principle relative to hor-
izontal and vertical variations. One gets from one form to the other by means
of the velocity shift given by replacing ηa by the vertical part relative to the
affine connection

ξa = Aaαẋ
α + ηa.

Here Aaα are the local coordinates of the connection A. This change of co-
ordinates is motivated from the mechanical point of view, since the vari-
ables ξa have the interpretation of the locked angular velocity. The resulting
Lagrangian–Poincaré equations have the following form:

d

dt

∂l

∂ẋα
− ∂l

∂xα
=
∂l

∂ξa

(
Baαβẋ

β +Baαdξ
d
)
,

d

dt

∂l

∂ξb
=
∂l

∂ξa

(
Babαẋ

α + Cadbξ
d
)
.

In these equations, Baαβ are the coordinates of the curvature B of A,

Badα = CadbA
b
α, and Babα = −Baαb.

The variables ξa may be regarded as the rigid part of the variables on the
original configuration space, while xα are the internal variables.

Basics of Hamiltonian Mechanics

In this section we present classical Hamiltonian dynamics. Let (M,ω) be a
symplectic manifold and H ∈ C∞(M,R) a smooth real valued function onM .
The vector–field XH determined by the condition

iXH
ω + dH = 0,

is called Hamiltonian vector–field with Hamiltonian energy function H. A
triple (M,ω,H) is called a Hamiltonian mechanical system [MR99, Put93].

Nondegeneracy of ω guarantees that XH exists, but only in the nD case.
Let {q1, ..., qn, p1, ..., pn} be canonical coordinates onM , i.e., ω = dpi∧dqi.

Then in these coordinates we have

XH =
(
∂H

∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi

)
.

As a consequence,
(
(qi(t)), (pi(t))

)
is an integral curve of XH (for i = 1, ..., n)

iff Hamiltonian equations hold,

q̇i = ∂pi
H, ṗi = −∂qiH. (2.6)

Let (M,ω,H) be a Hamiltonian mechanical system and let γ(t) be an
integral curve of XH . Then H (γ(t)) is constant in t. Moreover, if φt is the
flow of XH , then H ◦ φt = H for each t.
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Let (M,ω,H) be a Hamiltonian mechanical system and φt be the flow of
XH . Then, by the Liouville theorem, for each t, φ∗tω = ω, ( ddtφ

∗
tω = 0, so φ∗tω

is constant in t), that is, φt is symplectic, and it preserves the volume Ωω.
A convenient criterion for symplectomorphisms is that they preserve the

form of Hamiltonian equations. More precisely, let (M,ω) be a symplectic
manifold and f : M → M a diffeomorphism. Then f is symplectic iff for all
H ∈ C∞(M,R) we have f∗(XH) = XH◦f .

A vector–field X ∈ X (M) on a symplectic manifold (M,ω) is called locally
Hamiltonian iff LXω = 0, where L denotes the Lie derivative. From the
equality L[X,Y ]ω = LXLY ω−LY LXω, it follows that the locally Hamiltonian
vector–fields on M form a Lie subalgebra of X (M).

Let (M,ω) be a symplectic manifold and f, g ∈ C∞(M,R). The Poisson
bracket of f and g is the function

{f, g}ω = −ω(Xf , Xg) = −LXf
g = LXg

f.

Also, for f0 ∈ C∞(M,R), the map g �−→ {f0, g}ω is a derivation. The connec-
tion between the Lie bracket and the Poisson bracket is

[Xf , Xg] = −X{f,g}ω
⇐⇒ dω = 0.

The real vector space C∞(M,R) together with the Poisson bracket on
it forms an infinite–dimensional Lie algebra called the algebra of classical
observables.

In canonical coordinates {q1, ..., qn, p1, ..., pn} on (M,ω) the Poisson bracket
of two functions f, g ∈ C∞(M,R) is given by

{f, g}ω =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

From this definition follows:

{qi, qj}ω = 0, {pi, pj}ω = 0, {qi, pj}ω = δij .

Let (M,ω) be a symplectic manifold and f : M → M a diffeomorphism.
Then f is symplectic iff it preserves the Poisson bracket.

Let (M,ω,H) be a Hamiltonian mechanical system and φt the flow of XH .
Then for each function f ∈ C∞(M,R) we have the equations of motion in the
Poisson bracket notation:

d

dt
(f ◦ φt) = {f ◦ φt, H}ω = {f,H}ω ◦ φt.

Also, f is called a constant of motion, or a first integral , if it satisfies the
following condition

{f,H}ω = 0.

If f and g are constants of motion then their Poisson bracket is also a constant
of motion.
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A Hamiltonian mechanical system (M,ω,H) is said to be integrable if there
exists n = 1

2 dim(M) linearly–independent functions K1 = H,K2, ...,Kn such
that for each i, j = 1, 2, ..., n:

{Ki, H}ω = 0, {Ki,Kj}ω = 0.

Real 1–DOF Hamiltonian Dynamics.

A vector–field X(t) on the momentum phase–space manifold M can be given
by a system of canonical equations of motion

q̇ = f(q, p, t, µ), ṗ = g(q, p, t, µ), (2.7)

where t is time, µ is a parameter, q ∈ S1, p ∈ R×S1 are coordinates and
momenta, respectively, while f and g are smooth functions on the phase–
space R×S1.

If time t does not explicitly appear in the functions f and g, the vector–
field X is called autonomous. In this case equation (2.7) simplifies as

q̇ = f(q, p, µ), ṗ = g(q, p, µ). (2.8)

By a solution curve of the vector–field X we mean a map x = (q, p), from
some interval I ⊂ R into the phase–space manifoldM , such that t �→ x(t). The
map x(t) = (q(t), p(t)) geometrically represents a curve in M , and equations
(2.7) or (2.8) give the tangent vector at each point of the curve.

To specify an initial condition on the vector–field X, by

x(t, t0, x0) = (q(t, t0, q0), p(t, t0, p0)),

geometrically means to distinguish a solution curve by a particular point
x(t0) = x0 in the phase–space manifold M . Similarly, it may be use-
ful to explicitly display the parametric dependence of solution curves, as
x(t, t0, x0, µ) = (q(t, t0, q0, µq), p(t, t0, p0, µp)), where µq, µp denote q−depen-
dent and p−dependent parameters, respectively.

The solution curve x(t, t0, x0) of the vector–field X, may be also referred
as the phase trajectory through the point x0 at t = t0. Its graph over t is
refereed to as an integral curve; more precisely, graph
x(t, t0, x0) ≡ {(x, t) ∈M × R : x = x(t, t0, x0), t ∈ I ⊂ R}.

Let x0 = (q0, p0) be a point onM . By the orbit through x0, denoted O(x0),
we mean the set of points in M that lie on a trajectory passing through x0;
more precisely, for x0 ∈ U , U open in M , the orbit through x0 is given by
O(x0) = {x ∈ R×S1 : x=x(t, t0, x0), t ∈ I ⊂ R}.

Consider a general autonomous vector–field X on the phase–space man-
ifold M , given by equation ẋ = f(x), x = (q, p) ∈ M . An equilibrium
solution, singularity, or fixed point of X is a point x̄ ∈M such that f(x̄) = 0,
i.e., a solution which does not change in time.
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Any solution x̄(t) of an autonomous vector–field X on M is stable if solu-
tions starting ‘close’ to x̄(t) at a given time remain close to x̄(t) for all later
times. It is asymptotically stable if nearby solutions actually converge to x̄(t)
as t −→∞. In order to determine the stability of x̄(t) we must understand the
nature of solutions near x̄(t), which is done by linearization of the vector–field
X. The solution of the linearized vector–field Y is asymptotically stable if all
eigenvalues have negative real parts. In that case the fixed point x = x̄ of as-
sociated nonlinear vector–field X is also asymptotically stable. A fixed point
x̄ is called hyperbolic point if none of the eigenvalues of Y have zero real part;
in that case the orbit structure near x̄ is essentially the same for X and Y .

In the case of autonomous vector–fields on M we have also an important
property of Hamiltonian flow. If x(t) = (q(t), p(t)) is a solution of ẋ =
f(x), x ∈ M , then so is x(t + τ) for any τ ∈ R. Also, for any x0 ∈ M there
exists only one solution of an autonomous vector–field passing through this
point. The autonomous vector–field

ẋ = f(x)

has the following properties (compare with the section (1.2.5) above):

1. x(t, x0) is C∞;
2. x(0, x0) = x0; and
3. x(t+ s, x0) = x(t, x(s, x0)).

These properties show that the solutions of an autonomous vector–field form
a one–parameter group of diffeomorphisms of the phase–space manifold M .
This is refereed to as a phase–flow and denoted by φt(x) or φ(t, x).

Consider a flow φ(t, x) generated by vector–field ẋ = f(x). A point x0 =
(q0, p0) on M is called an ω−limit point of x,= (q, p) ∈ M , denoted ω(x),
if there exists a sequence {ti}, ti �→ ∞, such that φ(ti, x) �→ x0. Similarly,
α−limit points are defined by taking a sequence {ti}, ti �→ −∞. The set of all
ω−limit points of a flow is called the ω−limit set . The α−limit set is similarly
defined.

A point x0 = (q0, p0) on M is called nonwandering if for any open neigh-
borhood U ⊂M of x0, there exists some t �= 0 such that φ(t, U)∩U �= 0. The
set of all nonwandering points of a flow is called the nonwandering set of that
particular map or flow.

A closed invariant subset A ⊂ M is called an attracting set if there is
some open neighborhood U ⊂M of A such that φ(t, x) ∈ U and φ(t, x) �→ ∞
for any x ∈ U and t ≥ 0. The domain or basin of attraction of A is given
by ∪t≤0φ(t, U). In practice, a way of locating attracting sets is to first find
a trapping region, i.e., a closed, connected subset V ⊂ M such that for any
t ≥ 0 φ(t, V ) ⊂ V . Then ∩t〉0φ(t, V ) = A is an attracting set .

As a first example of one–DOF dynamical systems, let us consider a vector–
field x = (q, p) ∈ R×R of a simple harmonic oscillator, given by equations

q̇ = p, ṗ = −q. (2.9)
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Here, the solution passing through the point (q, p) = (1, 0) at t = 0 is given
by (q(t), p(t)) = (cos t, − sin t); the integral curve passing through (q, p) =
(1, 0) at t = 0 is given by {(q, p, t) ∈ R×R×R : (q(t), p(t)) = (cos t, − sin t)},
for all t ∈ R; the orbit passing through (q, p) = (1, 0) is given by the circle
q2 + p2 = 1.

A one–DOF dynamical system is called Hamiltonian system if there exists
a first integral or a function of the dependent variables (q, p) whose level curves
give the orbits of the vector–field X = XH , i.e., a total–energy Hamiltonian
function H = H(q, p) : U → R, (U open set on the phase–space manifold
M), such that the vector–fieldXH is given by Hamiltonian canonical equations
(2.6). In (2.6), the first, q̇−equation, is called the velocity equation and serves
as a definition of the momentum, while the second, ṗ−equation is called the
force equation, and represents the Newtonian second law of motion.

The simple harmonic oscillator (2.9) is a Hamiltonian system with a
Hamiltonian function H = p2

2 + q2

2 . It has a fixed point – center (having
purely imaginary eigenvalues) at (q, p) = (0, 0) and is surrounded by a one–
parameter family of periodic orbits given by the Hamiltonian H.

A nice example of one–DOF dynamical system with a Hamiltonian struc-
ture is a damped Duffing oscillator (see, e.g., [Wig90]). This is a plane Hamil-
tonian vector–field x = (q, p) ∈ R2, given by Hamiltonian equations

q̇ = p ≡ f(q, p), ṗ = q − q3 − δp ≡ g(q, p, δ), δ ≥ 0. (2.10)

For the special parameter value δ = 0, we have an undamped Duffing oscillator
with a first integral represented by Hamiltonian function H = p2

2 −
q2

2 + q4

4 ,
where p

2

2 corresponds to the kinetic energy (with a mass scaled to unity), and
− q

2

2 + q4

4 ≡ V (x) corresponds to the potential energy of the oscillator.
In general, if the first integral, i.e., a Hamiltonian functionH, is defined by

H = p2

2 + V (x), then the momentum is given by p = ±
√

2
√
H − V (x). All

one–DOF Hamiltonian systems are integrable and all the solutions lie on level
curves of the Hamiltonian function, which are topologically equivalent with
the circle S1. This is actually a general characteristic of all n−DOF integrable
Hamiltonian systems: their bounded motions lie on nD invariant tori Tn =
S1 × · · · × S1, or homoclinic orbits. The homoclinic orbit is sometimes called
a separatrix because it is the boundary between two distinctly different types
of motion.

For example, in case of a damped Duffing oscillator (2.10) with δ �= 0, we
have

∂qf + ∂pg = −δ,
and according to the Bendixon criterion for δ > 0 it has no closed orbits.

The vector–field X given by equations (2.10) has three fixed points given
by (q, p) = (0, 0), (±1, 0). The eigenvalues λ1,2 of the associated linearized
vector–field are given by λ1,2 = −δ/2± 1

2

√
δ2 + 4, for the fixed point (0, 0),

and by λ1,2 = −δ/2± 1
2

√
δ2 − 8, for the fixed point (±1, 0). Hence, for δ > 0,
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(0, 0) is unstable and (±1, 0) are asymptotically stable; for δ = 0, (±1, 0) are
stable in the linear approximation (see, e.g., [Wig90]).

Another example of one–DOF Hamiltonian systems is a simple pendulum
(again, all physical constants are scaled to unity), given by Hamiltonian func-
tion H = p2

2 − cos q. This is the first integral of the cylindrical Hamiltonian
vector–field (q, p) ∈ S1 × R, defined by canonical equations

q̇ = p, ṗ = − sin q.

This vector–field has fixed points at (0, 0), which is a center (i.e., the eigen-
values are purely imaginary), and at (±π, 0), which are saddles, but since the
phase–space manifold is the cylinder, these are really the same point.

The basis of human arm and leg dynamics represents the coupling of two
uniaxial, SO(2)−joints. The study of two DOF Hamiltonian dynamics we
shall start with the most simple case of two linearly coupled linear undamped
oscillators with parameters scaled to unity. Under general conditions we can
perform a change of variables to canonical coordinates (the ‘normal modes’)
(qi, pi), i = 1, 2, so that the vector–field XH is given by

q̇1 = p1, q̇2 = p2, ṗ1 = −ω2
1q

1, ṗ2 = −ω2
2q

2.

This system is integrable, since we have two independent functions of
(qi, pi), i.e., Hamiltonians

H1 =
p21
2

+
ω2

1(q
1)2

2
, H2 =

p22
2

+
ω2

2(q
2)2

2
.

The level curves of these functions are compact sets (topological circles);
therefore, the orbits in the 4D phase–space R4 actually lie on the two–torus
T 2. By making the appropriate change of variables, it can be shown (see, e.g.,
[Wig90]) that the whole dynamics of the two linearly coupled linear undamped
oscillators is actually contained in the equations

θ̇1 = ω1, θ̇2 = ω2, (θ1, θ2) ∈ S1 × S2 ≡ T 2. (2.11)

The flow on the two–torus T 2, generated by (2.11), is simple to calculate
and is given by

θ1(t) = ω1t + θ10 , θ1(t) = ω1t + θ10 , (mod 2π),

and θ1 and θ2 are called the longitude and latitude. However, orbits under this
flow will depend on how ω1 and ω2 are related. If ω1 and ω2 are commensurate
(i.e., the equationmω1+nω2 = 0, (n,m) ∈ Z has solutions), then every phase
curve of (2.11) is closed. However, if ω1 and ω2 are incommensurate i.e., upper
equation has no solutions), then every phase curve of (2.11) is everywhere
dense on T 2.

Somewhat deeper understanding of Hamiltonian dynamics is related to the
method of action–angle variables. The easiest way to introduce this idea is to
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consider again a simple harmonic oscillator (2.9). If we transform equations
(2.9) into polar coordinates using q = r sin θ, p = r cos θ, then the equations
of the vector–field become ṙ = 0, θ̇ = 1, having the obvious solution r =
const, θ = t+θ0. For this example polar coordinates work nicely because the
system (2.9) is linear and, therefore, all of the periodic orbits have the same
period.

For the general, nonlinear one–DOF Hamiltonian system (2.6) we will
seek a coordinate transformation that has the same effect. Namely, we will
seek a coordinate transformation (q, p) �→ (θ(q, p), I(q, p)) with inverse trans-
formation (θ, I) �→ (q(I, θ), p(I, θ)) such that the vector–field (2.6) in the
action–angle (θ, I) coordinates satisfies the following conditions: (i) İ = 0;
(ii) θ changes linearly in time on the closed orbits with θ̇ = Ω(I). We might
even think of I and θ heuristically as ’nonlinear polar coordinates’. In such a
coordinate system Hamiltonian function takes the form H = H(I), and also,
Ω(I) = ∂IH, i.e., specifying I specifies a periodic orbit.

The action variable I(q, p) geometrically represents an area enclosed by
any closed curve, which is constant in time. It is defined as an integral I =
1
2π

∫
H
p dq, where H denotes the periodic orbit defined by H(q, p) = H =

const. If the period of each periodic orbit defined by H(q, p) = H = const is
denoted by T (H), the angle variable θ(q, p) is defined by

θ(q, p) =
2π
T (H)

t(q, p),

where t = t(q, p) represents the time taken for the solution starting from
(q0, p0) to reach (q, p).

For the system with Hamiltonian H = p2

2 + V (x) and momentum p =
±
√

2
√
H − V (x) the action is given by I =

√
2
π

∫ qmax

qmin

√
H − V (q) dq, and the

angle is given by θ(q, p) = 2π
T (H)

∫ qmax

qmin

dq√
2
√
H−V (q)

.

Closely related to the action–angle variables is the perturbation theory
(see [Nay73]). To explain the main idea of this theory, let us consider an
ε−perturbed vector–field periodic in t which can be in component form given
as (with (q, p) ∈ R2)

q̇ = f1(q, p) + εg1(q, p, t, ε), ṗ = f2(q, p) + εg2(q, p, t, ε). (2.12)

Setting ε = 0 we get the unperturbed Hamiltonian system with a smooth
scalar–valued function H(q, p) for which holds

f1(q, p) =
∂H(q, p)
∂p

, f2(q, p) = −∂H(q, p)
∂q

,

so, the perturbed system (2.12) gets the symmetric canonical form

q̇ =
∂H(q, p)
∂p

+ εg1(q, p, t, ε), ṗ = −∂H(q, p)
∂q

+ εg2(q, p, t, ε).
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The perturbation (g1, g2) need not be Hamiltonian, although in the case where
perturbation is Hamiltonian versus the case where it is not, the dynamics are
very different.

Now, if we transform the coordinates of the perturbed vector–field us-
ing the action–angle transformation for the unperturbed Hamiltonian vector–
field, we get

İ = ε

(
∂I

∂q
g1 +

∂I

∂p
g2

)
≡ εF (I, θ, t, ε), (2.13)

θ̇ = Ω(I) + ε

(
∂θ

∂q
g1 +

∂θ

∂p
g2

)
≡ Ω(I) + εG(I, θ, t, ε), where

F (I, θ, t, ε) =
∂I

∂q
(q(I, θ), p(I, θ)) g1((q(I, θ), p(I, θ), t, ε)

+
∂I

∂p
(q(I, θ), p(I, θ)) g2((q(I, θ), p(I, θ), t, ε), and

G(I, θ, t, ε) =
∂θ

∂q
(q(I, θ), p(I, θ)) g1((q(I, θ), p(I, θ), t, ε)

+
∂θ

∂p
(q(I, θ), p(I, θ)) g2((q(I, θ), p(I, θ), t, ε).

Here, F and G are 2π periodic in θ and T = 2π/ω periodic in t.
Finally, we shall explain in brief the most important idea in the dynamical

systems theory, the idea of Poincaré maps. The idea of reducing the study
of continuous time systems (flows) to the study of an associated discrete time
system (map) is due to Poincaré who first utilized it in the end of the last Cen-
tury in his studies of the three body problem in celestial mechanics. Nowadays
virtually any discrete time system that is associated with an ordinary differ-
ential equation is refereed to as a Poincaré map [Wig90]. This technique offers
several advantages in the study of dynamical systems, including dimensional
reduction, global dynamics and conceptual clarity. However, construction of
a Poincaré map requires some knowledge of the phase–space of a dynamical
system. One of the techniques which can be used for construction of Poincaré
maps is the perturbation method.

To construct the Poincaré map for the system (2.13), we have to rewrite
it as an autonomous system

İ = εF (I, θ, φ, ε), θ̇ = Ω(I) + εG(I, θ, φ, ε), φ̇ = ω, (2.14)

(where (I, θ, φ) ∈ R+×S1×S1. We construct a global cross–section Σ to this
vector–field defined as Σφ0 = {(I, θ, φ)|φ = φ0}. If we denote the (I, θ)
components of solutions of (2.14) by (Iε(t), θε(t)) and the (I, θ) components
of solutions of (2.14) for ε = 0 by (I0, Ω(I0)t + θ0), then the perturbed
Poincaré map is given by
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Pε : Σφ0 → Σφ0 , (Iε(0), θε(0)) �→ (Iε(T ), θε(T )),

and the mth iterate of the Poincaré map is given by

Pmε : Σφ0 → Σφ0 , (Iε(0), θε(0)) �→ (Iε(mT ), θε(mT )).

Now we can approximate the solutions to the perturbed problem as linear,
constant–coefficient approximation

Iε(t) = I0 + εI1(t) + O(ε2), θε(t) = θ0 + Ω(I0)t + εθ1(t) + O(ε2),

where we have chosen Iε(0) = I0, θε(0) = θ0.
As a last example of one–DOF Hamiltonian dynamics we shall analyze a

damped, forced Duffing oscillator , given by canonical equations [Wig90]

q̇ = p, ṗ = q − q3 − δp + γ cosωt, δ, γ, ω ≥ 0, (q, p) ∈ R2. (2.15)

where δ, γ, and ω are real parameters physically meaning dissipation, ampli-
tude of forcing and frequency, respectively.

The perturbed system (2.15) is given by

q̇ = p, ṗ = q − q3 + ε(γ cosωt − δp), (2.16)

where ε-perturbation is assumed small. Then the unperturbed system reads

q̇ = p, ṗ = q − q3.

It is conservative with Hamiltonian function

H(q, p) =
p2

2
− q2

2
+
q4

4
. (2.17)

In the unperturbed phase–space all orbits are given by the level sets of
the Hamiltonian (2.17). There are three equilibrium points at the following
coordinates: (q, p) = (±1, 0) – centers, and (q, p) = (0, 0) – saddle. The
saddle point is connected to itself by two homoclinic orbits given by

q0+(t) = (
√

2(cosh t)−1
, −
√

2(cosh t)−1 tanh t), q0−(t) = −q0+(t).

There are two families of periodic orbits qk±(t), where k represents the
elliptic modulus related to the Hamiltonian by H(qk±(t)) ≡ H(k) = k2−1

(2−k2)2 ,
inside the corresponding homoclinic orbits q0±(t), with the period T (k) =
2K(k)

√
2− k2 (K(k) is the complete elliptic integral of the first kind.

Also, there exists a family of periodic orbits outside the homoclinic orbits
with the period T (k) = 4K(k)

√
k2 − 1.

The perturbed system (2.16) can be rewritten as a third–order autonomous
system

q̇ = p, ṗ = q − q3 + ε(γ cosφ − δp), φ̇ = ω,
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where (q, p, φ) ∈ R2×S1, S1 is the circle of length 2π/ω and φ(t) = ωt + φ0.
We form the global cross–section to the flow

Σφ0 = {(q, p, φ)|φ = φ0 ∈ [0, 2π/ω]}

and the associated Poincaré map is given by

P : Σφ0 → Σφ0 , (q(0), p(0)) �→ (q(2π/ω), p(2π/ω)).

A detailed analysis of the perturbed Poincaré map for the damped, forced
Duffing oscillator is related to the Melnikov function (see [Wig90]).

Complex 1–DOF Hamiltonian Dynamics

Recall that setting z = q + ip, z ∈ C, i =
√
−1, Hamiltonian equations

q̇ = ∂H/∂p, ṗ = −∂H/∂q may be written in complex notation as [AM78,
MR99, Wig90]

ż = −2i
∂H

∂z̄
. (2.18)

Let U be an open set in the complex phase–space manifold MC (i.e., man-
ifold M modelled on C). A C0 function γ : [a, b] → U ⊂ MC , t �→ γ(t)
represents a solution curve γ(t) = q(t) + ip(t) of a complex Hamiltonian
system (2.18). For example, the curve γ(θ) = cos θ + i sin θ, 0 ≤ θ ≤ 2π is
the unit circle. γ(t) is a parameterized curve. We call γ(a) the beginning point,
and γ(b) the end point of the curve. By a point on the curve we mean a point
w such that w = γ(t) for some t ∈ [a, b].

The derivative γ̇(t) is defined in the usual way, namely

γ̇(t) = q̇(t) + iṗ(t),

so that the usual rules for the derivative of a sum, product, quotient, and
chain rule are valid. The speed is defined as usual to be |γ̇(t)|. Also, if
f : U → MC represents a holomorphic, or analytic function, then the
composite f ◦ γ is differentiable (as a function of the real variable t) and
(f ◦ γ)′(t) = f ′(γ(t)) γ̇(t).

Recall that a path represents a sequence of C1−curves,

γ = {γ1, γ2, . . . , γn},

such that the end point of γj , (j = 1, . . . , n) is equal to the beginning point
of γj+1. If γj is defined on the interval [aj , bj ], this means that

γj(bj) = γj+1(aj+1).

We call γ1(a1) the beginning point of γj , and γn(bn) the end point of γj . The
path is said to lie in an open set U ⊂ MC if each curve γj lies in U , i.e., for
each t, the point γj(t) lies in U .
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An open set U is connected if given two points α and β in U , there exists
a path γ = γ1, γ2, . . . , γn in U such that α is the beginning point of γ1 and
β is the end point of γn; in other words, if there is a path γ in U which joins
α to β. If U is a connected open set and f a holomorphic function on U such
that f ′ = 0, then f is a constant. If g is a function on U such that f ′ = g,
then f is called a primitive of g on U . Primitives can be either find out by
integration or written down directly.

Let f be a C0−function on an open set U , and suppose that γ is a curve
in U , meaning that all values γ(t) lie in U for a ≤ t ≤ b. The integral of f
along γ is defined as∫

γ

f =
∫
γ

f(z) =
∫ b

a

f(γ(t)) γ̇(t) dt.

For example, let f(z) = 1/z, and γ(θ) = eiθ. Then γ̇(θ) = ieiθ. We want
to find the value of the integral of f over the circle,

∫
γ
dz/z, so 0 ≤ θ ≤ 2π.

By definition, this integral is equal to
∫ 2π

0
ieiθ/eiθ dθ = i

∫ 2π

0
dθ = 2πi.

The length L(γ) is defined to be the integral of the speed, L(γ) =∫ b
a
|γ̇(t)| dt.
If γ = γ1, γ2, . . . , γn is a path, then the integral of a C0−function f on an

open set U is defined as
∫
γ
f =

∑n
i=1

∫
γi
f , i.e., the sum of the integrals of f

over each curve γi (i = 1, . . . , n of the path γ. The length of a path is defined
as L(γ) =

∑n
i=1 L(γi).

Let f be continuous on an open set U ⊂ MC , and suppose that f has a
primitive g, that is, g is holomorphic and g′ = f . Let α, β be two points in
U , and let γ be a path in U joining α to β. Then

∫
γ
f = g(β) − g(α); this

integral is independent of the path and depends only on the beginning and
end point of the path.

A closed path is a path whose beginning point is equal to its end point. If f
is a C0−function on an open set U ⊂MC admitting a holomorphic primitive
g, and γ is any closed path in U , then

∫
γ
f = 0.

Let γ, η be two paths defined over the same interval [a, b] in an open set
U ⊂ MC . Recall (see Introduction) that γ is homotopic to η if there exists a
C0−function ψ : [a, b] × [c, d] → U defined on a rectangle [a, b] × [c, d] ⊂ U ,
such that ψ(t, c) = γ(t) and ψ(t, d) = η(t) for all t ∈ [a, b]. For each number
s ∈ [c, d] we may view the function |psis(t) = ψ(t, s) as a continuous curve
defined on [a, b], and we may view the family of continuous curves ψs as a
deformation of the path γ to the path η. It is said that the homotopy ψ leaves
the end points fixed if we have ψ(a, s) = γ(a) and ψ(b, s) = γ(b) for all
values of s ∈ [c, d]. Similarly, when we speak of a homotopy of closed paths,
we assume that each path ψs is a closed path.

Let γ, η be paths in an open set U ⊂MC having the same beginning and
end points. Assume that they are homotopic in U . Let f be holomorphic on
U . Then

∫
γ
f =

∫
η
f . The same holds for closed homotopic paths in U . In
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particular, if γ is homotopic to a point in U , then
∫
γ
f = 0. Also, it is said

that an open set U ⊂ MC is simply–connected if it is connected and if every
closed path in U is homotopic to a point.

In the previous example we found that

1
2πI

∫
γ

1
z
dz = 1,

if γ is a circle around the origin, oriented counterclockwise. Now we define for
any closed path γ its winding number with respect to a point α to be

W (γ, α) =
1

2πi

∫
γ

1
z − α dz,

provided the path does not pass through α. If γ is a closed path, thenW (γ, α)
is an integer.

A closed path γ ∈ U ⊂MC is homologous to 0 in U if∫
γ

1
z − α dz = 0,

for every point α not in U , or in other words, W (γ, α) = 0 for every such
point.

Similarly, let γ, η be closed paths in an open set U ⊂ MC . We say that
they are homologous in U , and write γ ∼ η, if W (γ, α) = W (η, α) for every
point α in the complement of U . We say that γ is homologous to 0 in U , and
write γ ∼ 0, if W (γ, α) = 0 for every point α in the complement of U .

If γ and η are closed paths in U and are homotopic, then they are homol-
ogous. If γ and η are closed paths in U and are close together, then they are
homologous.

Let γ1, . . . , γn be curves in an open set U ⊂ MC , and let m1, . . . ,mn be
integers. A formal sum γ = m1γ1 + · · · + mnγn =

∑n
i=1miγi is called a

chain in U . The chain is called closed if it is a finite sum of closed paths.
If γ is the chain as above, then

∫
γ
f =

∑
imi

∫
γi
f . If γ and η are closed

chains in U , then W (γ + η, α) = W (γ, α) + W (η, α). We say that γ and η
are homologous in U , and write γ ∼ η, if W (γ, α) = W (η, α) for every point
α in the complement of U . We say that γ is homologous to 0 in U , and write
γ ∼ 0, if W (γ, α) = 0 for every point α in the complement of U .

Recall that the Cauchy theorem states that if γ is a closed chain in an
open set U ⊂MC , and γ is homologous to 0 in U , then

∫
γ
f = 0. If γ and η

are closed chains in U , and γ ∼ η in U , then
∫
γ
f =

∫
η
f .

It follows from Cauchy’s theorem that if γ and η are homologous, then∫
γ
f =

∫
η
f for all holomorphic functions f on U [AM78, Wig90].

Library of Basic Hamiltonian Systems

In this subsection, we present some basic Hamiltonian systems used by
human–like biomechanics (for more details, see [Put93]).
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1D Harmonic Oscillator

In this case we have {p, q} as canonical coordinates on R2

M = T ∗R  R
2, ω = dp ∧ dq,

H =
1
2
(
p2 + y

)
, XH = p

∂

∂q
− q ∂
∂p
,

and Hamiltonian equations read

q̇ = p, ṗ = −q.

For each f, g ∈ C∞(R2,R) the Poisson bracket is given by

{f, g}ω =
∂f

∂q

∂g

∂p
− ∂f
∂p

∂g

∂q
.

Complex Plane

Let T ∗R  R
2 have the canonical symplectic structure ω = dp ∧ dq. Writing

z = q + ip, we have

ω =
1
2i
dz ∧ dz̄, XH = i

(
∂H

∂z

∂

∂z
− ∂H
∂z̄

∂

∂z̄

)
,

{f, g}ω =
i
2

(
∂f

∂z

∂g

∂z̄
− ∂f
∂z̄

∂g

∂z

)
,

so, the Hamiltonian equations, q̇ = ∂pH, ṗ = −∂qH, become

ż = −2i
∂H

∂z̄
.

2D Harmonic Oscillator

In this case we have {q1, y, p1, p2} as canonical coordinates on R4

M = T ∗R2 R
4, ω = dp1 ∧ dq1 + dp2 ∧ dq2,

H =
1
2
[
p21 + p22 + (q1)2 + (y)2

]
.

The functions f = pipj+qiqj and g = piqj+pjqi, (for i, j = 1, 2), are constants
of motion.

nD Harmonic Oscillator

In this case we have (i = 1, ..., n)

M = T ∗Rn R
2n, ω = dpi ∧ dqi,

H =
1
2

n∑
i=1

[
p2i + (qi)2

]
.

The system is integrable in an open set of T ∗Rn with:

K1 = H, K2 = p22 + (y)2, ..., Kn = p2n + (qn)2.
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Toda Molecule

Consider three mass–points on the line with coordinates qi, (i = 1, 2, 3), and
satisfying the ODEs:

q̈i = −∂qiU, where U = eq
1−q2 + eq

2−q3 − eq3−q1 .

This is a Hamiltonian system with {qi, pi} as canonical coordinates on R6,

M = T ∗R3 R
6, ω = dpi ∧ dqi,

H =
1
2
(
p21 + p22 + p23

)
+ U.

The Toda molecule (2.1.1) is an integrable Hamiltonian system in an open
set of T ∗R3 with:

K1 = H, K2 = p1 + p2 + p3,

K3 =
1
9

(p1 + p2 + p3) (p2 + p3 − 2p1) (p3 + p1 − 2p2)− (p1 + p2 − 2p3) eq
1−q2

− (p2 + p3 − 2p1) eq
2−q3 − (p3 + p1 − 2p2) eq

3−q1 .

3–Point Vortex Problem

The motion of three–point vortices for an ideal incompressible fluid in the
plane is given by the equations:

q̇j = − 1
2π

∑
i
=j
Γi (pj − pi) /r2ij ,

ṗj =
1
2π

∑
i
=j
Γi

(
qi − qj

)
/r2ij ,

r2ij =
(
qi − qj

)2
+ (pj − pi)2 ,

where i, j = 1, 2, 3, and Γi are three nonzero constants. This mechanical sys-
tem is Hamiltonian if we take:

M = T ∗R3 R
6, ω = dpi ∧ dqi, (i = 1, ..., 3),

H = − 1
4π

3∑
i,j=1

ΓiΓi ln (rij) .

Moreover, it is integrable in an open set of T ∗R3 with:

K1 = H, K2 =
3∑
i=1

Γi

[(
qi
)2

+ p2i
]
,

K3 =

(
3∑
i=1

Γiq
i

)2

+K2
2 .
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The Newton’s Second Law as a Hamiltonian System

In the case of conservative forces, Newton’s law of motion can be written on
R3n as

miq̈
i = −∂qiU, (i = 1, 2, ..., 3n).

Its symplectic formulation reads:

M = T ∗R3 R
6, ω = dpi ∧ dqi,

H =
3n∑
i=1

p2i
2mi

+ U.

The Hamiltonian vector–field XH is

XH =
(
pi
mi
∂qi − ∂qiU ∂pi

)
,

giving the Hamiltonian equations

q̇i =
pi
mi
, ṗi = −∂qiU.

Rigid Body Fixed in a Point

The configuration space of a rigid body fixed in a point is SO(3), the group
of proper orthogonal transformations of R3 to itself, while the corresponding
phase–space is its cotangent bundle, T ∗SO(3). The motion of a rigid body
is a geodesic with respect to a left–invariant Riemannian metric (the inertia
tensor) on SO(3). The momentum map J : P → R3 for the left SO(3)−action
is right translation to the identity. We identify so(3)∗ with so(3) via the Killing
form and identify R3 with so(3) via the map v �→ v̂, where v̂(w) = v × w (×
being the standard cross product). Points in so(3)∗ are regarded as the left
reduction of T ∗SO(3) by G = SO(3) and are the angular momenta as seen
from a body–fixed frame.

A Segment of a Human–Like Body

A rigid body with a fixed point is a basic model of a single segment of the human
(or robot) body. This is a left–invariant Hamiltonian mechanical system on
the phase–space T ∗SO(3). The differentiable structure on SO(3) is defined
using the traditional Euler angles {ϕ,ψ, θ}. More precisely, a local chart is

(ϕ,ψ, θ) ∈ R3 �−→ A ∈ SO(3), 0 < ϕ,ψ < 2π; 0 < θ < π, where

A=

⎡⎣ cosψ cosϕ− cos θ sinϕ sinψ cosψ cosϕ+ cos θ cosϕ sinψ sin θ sinψ
− sinψ cosϕ− cos θ sinϕ sinψ − sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ

⎤⎦
The corresponding conjugate momenta are denoted by pϕ, pψ, pθ, so {ϕ,ψ, θ,

pϕ, pψ, pθ} is the phase–space T ∗SO(3). Thus, we have
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M = T ∗SO(3), ω = dpϕ ∧ dϕ+ dpψ ∧ dψ + dpθ ∧ dθ, H =
1
2
K,

K =
[(pϕ − pψ cos θ) sinψ + pθ sin θ cosψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cosψ − pθ sin θ sinψ]2

I2 sin2 θ
+
p2ψ
I3
,

where I1, I2, I3 are the moments of inertia, diagonalizing the inertia tensor of
the body.

The Hamiltonian equations are

ϕ̇ =
∂H

∂pϕ
, ψ̇ =

∂H

∂pψ
, θ̇ =

∂H

∂pθ
,

ṗϕ = −∂H
∂ϕ
, ṗψ = −∂H

∂ψ
, ṗθ = −∂H

∂θ
.

For each f, g ∈ C∞(T ∗SO(3),R) the Poisson bracket is given by

{f, g}ω =
∂f

∂ϕ

∂g

∂pϕ
− ∂f

∂pϕ

∂g

∂ϕ
+
∂f

∂ψ

∂g

∂pψ
− ∂f

∂pψ

∂g

∂ψ

+
∂f

∂θ

∂g

∂pθ
− ∂f

∂pθ

∂g

∂θ
.

The Heavy Top – Continued

Recall (see (2.4.1) above) that the heavy top is by definition a rigid body
moving about a fixed point in a 3D space [Put93]. The rigidity of the top
means that the distances between points of the body are fixed as the body
moves. In this case we have

M = T ∗SO(3),
ω = dpϕ ∧ dϕ+ dpψ ∧ dψ + dpθ ∧ dθ,

H =
1
2
K +mgl cos θ,

K =
[(pϕ − pψ cos θ) sinψ + pθ sin θ cosψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cosψ − pθ sin θ sinψ]2

I2 sin2 θ
+
p2ψ
I3
,

where I1, I2, I3 are the moments of inertia, m is the total mass, g is the
gravitational acceleration and l is the length of the vector determining the
center of mass at t = 0.

The Hamiltonian equations are

ϕ̇ =
∂H

∂pϕ
, ψ̇ =

∂H

∂pψ
, θ̇ =

∂H

∂pθ
,

ṗϕ = −∂H
∂ϕ
, ṗψ = −∂H

∂ψ
, ṗθ = −∂H

∂θ
.



250 2 Dynamics of Complex Systems

For each f, g ∈ C∞(T ∗SO(3),R) the Poisson bracket is given by

{f, g}ω =
∂f

∂ϕ

∂g

∂pϕ
− ∂f

∂pϕ

∂g

∂ϕ
+
∂f

∂ψ

∂g

∂pψ
− ∂f

∂pψ

∂g

∂ψ

+
∂f

∂θ

∂g

∂pθ
− ∂f

∂pθ

∂g

∂θ
.

The Hamiltonian H is invariant under rotations about the z–axis, i.e., ϕ is
a cyclic variable, so pϕ is a constant of motion. The momentum map for this
S1–action is J(ϕ,ψ, θ, pϕ, pψ, pθ) = pϕ. The reduced phase–space J−1(pϕ)/S1

can be identified with T ∗S2 and it is parameterized by {ψ, θ, pψ, pθ}. The
equations of motion for ψ, θ are just Hamiltonian equations for H with pϕ
held constant.

Two Coupled Pendula

The configuration space of the system of two coupled pendula in the plane is
T 2 = {(θ1, θ2)}, where the θs are the two pendulum angles, the phase–space is
T ∗T 2 with its canonical symplectic structure and the Hamiltonian H is given
by [Put93]

H =
1
2
(p2ϕ + p2ψ) + V (

√
2ψ), where

ϕ =
θ1 + θ2√

2
, ψ =

θ1 − θ2√
2
.

The circle group S1 acts on a torus T 2 by θ · (θ1 + θ2) = (θ+ θ1, θ+ θ2) and
hence the induced momentum map for the lifted action to T ∗T 2 is given
by J(ϕ,ψ, pϕ, pψ) = pϕ. Therefore, the reduced phase–space J−1(pϕ)/S1 is
symplectically diffeomorphic to T ∗S1 with its canonical symplectic structure
ωµ = dpψ ∧ dψ. The reduced Hamiltonian Hµ is Hµ = 1

2p
2
ψ + V (

√
2ψ), and

Hamiltonian equations for Hµ are

ψ̇ = pψ, ṗψ = −
√

2V̇ (
√

2ψ).

The Plane 2–Body Problem

The plane two body problem can be formulated as the triple (M,ω,H) where
[Put93]

M = T ∗ ((0,∞)× S1
)
, ω = dpr ∧ dr + dpθ ∧ dθ,

H = (p2r + p2θ)/r
2 − 1/r.

The Lie group G = SO(2)  S1 acts on the configuration spaceM = (0,∞)×
S1 by rotations, i.e., if Rϕ ∈ SO(2) then

φ : (Rϕ, (r, θ)) �→ (r, θ + ϕ, pr, pθ).

The corresponding momentum map is

J(r, θ, pr, pθ) = pθ.
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The 3–Body Problem

There is a vast literature on the restricted three–body problem (see [MH92]).
Among other things, there are investigations of the equilibriums points and
their stability, investigations of the existence, stability and bifurcation of peri-
odic orbits, and investigations of collisions and ejection orbits. The restricted
problem is said to be a limit of the full three–body problem as one of the masses
tends to zero, and so to each result for the restricted problem there should be
a corresponding result for the full three–body problem.

The restricted three–body problem is a Hamiltonian system of differential
equations which describes the motion of an infinitesimal particle (the satellite)
moving under the gravitational influence of two particles of finite mass (the
primaries) which are moving on a circular orbit of the Kepler problem [MS00].

Since the motion of the primaries is given, the restricted problem has two
DOF for the planar problem and three DOF for the spatial problem. However,
the full problem has six DOF in the planar case and nine DOF in the spatial
case. Thus, at first the restricted problem seems too small to reflect the full
complexity of the full problem; but when the symmetries of the full problem
are taken into account the dimension gap narrows considerably.

The Hamiltonian of the full problem is invariant under Euclidean motions,
i.e., translations and rotations, which begets the integrals of linear and angular
momentum. Translations and rotations induce ignorable coordinates. Holding
the integrals fixed and dropping the ignorable coordinates reduces the full
problem from six to three DOF in the planar case and from nine to four DOF
in the spatial case. Thus the full problem on the reduced space is only one
DOF larger than the restricted problem in either the planar or the spatial
case [MS00].

The full 3–body problem in 3D space has 9 DOF. By placing the center
of mass at the origin and setting linear momentum equal to zero the problem
reduces one with six DOF. This can be done using Jacobi coordinates. The
Hamiltonian of the full 3–body problem in rotating (about the z–axis) Jacobi
coordinates (u0, u1, u2, v0, v1, v2) is

H =
‖ v0 ‖2
2M0

− uT0 Jv0 +
‖ v1 ‖2
2M1

− uT1 Jv1 −
m0m1

‖ u1 ‖

+
‖ v2 ‖2
2M2

− uT2 Jv2 −
m1m2

‖ u2 − α0u1 ‖
− m2m0

‖ u2 + α1u1 ‖
where ui, vi ∈ R3,

M0 = m0 +m1 +m2, M1 = m0m1/(m0 +m1),
M2 = m2(m0 +m1)/(m0 +m1 +m2),
α0 = m0/(m0 +m1), α1 = m1/(m0 +m1),

and J =

(
0 1 0
−1 0 0
0 0 0

)
.
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In these coordinates u0 is the center of mass, v0 is total linear momentum,
and total angular momentum is: A = u0×v0 +u1×v1 +u2×v2. See [MH92]
for further details.

n–DOF Hamiltonian Dynamics

Classically, n−DOF Hamiltonian dynamics combines the ideas of differential
equations and variational principles (see [AM78, Arn89, MR99, Wig90]). As
Hamiltonian first realized, many of the systems of mechanics and optics can
be put into the special form (compare (2.6))

q̇i =
∂H

∂pi
(qi, pi, t), ṗi = −∂H

∂qi
(qi, pi, t), (i = 1, . . . , n),

or an associated variational form (summing upon the repeated index is used
in the following text)

δ

∫
(pidqi − H) dt = 0.

Here the state of the system is given as a point (q1, . . . , qn, p1, . . . , pn) in phase–
space, the q’s are the configuration coordinates, the p’s are the momenta, t
is time, and H = H(qi, pi, t) is a total–energy function called Hamiltonian.
The variables (qi, pi) are called canonical coordinates.

If H = H(qi, pi) does not depend explicitly on time, the system is said to
be autonomous. In this case, it is easy to verify thatH is conserved. The search
for other conserved quantities led to a new notion of solving Hamiltonian
systems. Instead of finding formulae for the coordinates as a function of time,
one searches for constants of the motion (integrals). If one can find n integrals
Ii(qi, pi) which are in involution:

[Ii, Ij ] =
∂Ii
∂qk

∂Ij
∂pk

− ∂Ii
∂pk

∂Ij
∂qk

= 0, (i �= j),

and independent (the vectors ∇Ii are independent ‘almost everywhere’), then
associated variables φi can be derived which evolve linearly in time: φ̇

i
=

∂H
∂Ii

(Ii).
Such a system is integrable in the sense of Liouville [Arn89]. If the sets

I = const are bounded, then they are nD tori Tn in phase–space. Choosing
irreducible cycles, γi, on the tori, one can define a preferred set of integrals
Ji =

∫
γi
pidq

i, called action variables, for which the corresponding φi are
angle variables mod 1 on Tn. The quantities ωi(J) = ∂H

∂Ji
(Ji) are called the

frequencies on Tn.
Another feature of Hamiltonian systems noticed by Liouville is the preser-

vation of phase–space volume
∫

(dq)n(dp)n. A more general result is that
Poincaré’s integral

∫
pidq

i is conserved around any loop following the flow
[Arn89]. This is the property that really distinguishes Hamiltonian differen-
tial equations from general ones.
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The major problem with the notion of integrability is that most systems
are not integrable. This was first appreciated when Poincaré proved that the
circular restricted three–body problem has no integral analytic in the mass
ratio. The perturbation expansions which gave excellent predictions of motion
of the planets do not converge. The basic reason is that among the invariant
tori of integrable systems is a dense subset on which the frequencies ωi are
commensurate, i.e, miωi = 0 for some non–zero integer vector mi. However,
most systems have no commensurate tori, because they can be destroyed by
arbitrarily small perturbation.

Poincaré went on to examine what really does happen. The key tech-
nique he used was geometrical analysis: instead of manipulating formulae for
canonical transformations as Jacobi and others did, he pictured the orbits in
phase–space. An important step in this qualitative ODE theory was the idea
of surface of section. If Σ is a codimension–one surface (i.e., of dimension one
less than that of the phase–space) transverse to a flow, then the sequence {xj}
of successive intersections of an orbit with Σ gives a lot of information about
that orbit. For example, if {xj} is periodic then it corresponds to a periodic
orbit. If {xj} is confined to a subset of codimension m on Σ then so is the
orbit of the flow, etc.. The flow induces a mapping of Σ to itself; the map takes
a point in Σ to the point at which it first returns to Σ (assuming there is on).
Since the surface of section has one dimension less than the phase–space it is
easier to picture the dynamics of the return map than the flow. In fact, for
Hamiltonian systems one can do even better; since H is conserved, Σ decom-
poses into a one–parameter family of codimension two surfaces parameterized
by the value of the energy, a reduction of two dimensions.

This led Poincaré to the ideas of stable and unstable manifolds for hy-
perbolic periodic orbits, which are extensions of the stable and unstable
eigenspaces for associated linear systems, and their intersections, known as
hetero– and homo–clinic points, whose orbits converge to one periodic orbit
in the past and to another (or the same) in the future. He showed that hav-
ing intersected once, the invariant manifolds must intersect infinitely often.
Moreover the existence of one heteroclinic orbit implies the existence of an
infinity of others.

The distance between the stable and unstable manifolds can be quantified
by Melnikov’s integral. This leads to a technique for proving the non–existence
of integrals for a slightly perturbed, integrable Hamiltonian.

For integrable systems, nearby orbits separate linearly in time. However,
dynamical systems can have exponentially separating orbits. Let δx be a tan-
gent vector at the phase–space point x and δxt be the evolved vector following
the orbit of x. Then, recall that the average rate of exponentiation of δxt is
the Lyapunov exponent λ (see, e.g., [CD98])

λ(x, δx) = lim
t−→∞

1/t ln |δxt|.



254 2 Dynamics of Complex Systems

If λ is nonzero, then the predictions one can make will be valid for a time only
logarithmic in the precision. Therefore, although deterministic in principle, a
system need not be predictable in practice.

A concrete example of the complexity of behavior of typical Hamiltonian
systems is provided by the ‘horseshoe’, a type of invariant set found near ho-
moclinic orbits. Its points can be labelled by doubly infinite sequences of 0’s
and 1’s corresponding to which half of a horseshoe shaped set the orbit is in at
successive times. For every sequence, no matter how complicated, there is an
orbit which has that symbol sequence. This implies, e.g., that a simple pendu-
lum in a sufficiently strongly modulated time–periodic gravitational field has
an initial condition such that the pendulum will turn over once each period
when there is 1 in the sequence and not if there is a 0 for any sequence of 0’s
and 1’s.

Hamilton–Poisson Mechanics

Now, instead of using symplectic structures arising in Hamiltonian mechanics,
we propose the more general Poisson manifold (g∗, {F,G}). Here g∗ is a
chosen Lie algebra with a (±) Lie–Poisson bracket {F,G}±(µ)) and carries
an abstract Poisson evolution equation Ḟ = {F,H}. This approach is well–
defined in both the finite– and the infinite–dimensional case. It is equivalent to
the strong symplectic approach when this exists and offers a viable formulation
for Poisson manifolds which are not symplectic (for technical details, see see
[Wei90, AMR88, MR99, Put93, IP01a]).

Let E1 and E2 be Banach spaces. A continuous bilinear functional <,>:
E1 × E2 −→ R is nondegenerate if < x, y >= 0 implies x = 0 and y = 0
for all x ∈ E1 and y ∈ E2. We say E1 and E2 are in duality if there is a
nondegenerate bilinear functional <,>: E1×E2 −→ R. This functional is also
referred to as an L2−pairing of E1 with E2.

Recall that a Lie algebra consists of a vector space g (usually a Banach
space) carrying a bilinear skew–symmetric operation [, ] : g × g → g, called
the commutator or Lie bracket. This represents a pairing [ξ, η] = ξη − ηξ of
elements ξ, η ∈ g and satisfies Jacobi identity

[[ξ, η], µ] + [[η, µ], ξ] + [[µ, ξ], η] = 0.

Let g be a (finite– or infinite–dimensional) Lie algebra and g∗ its dual
Lie algebra, that is, the vector space L2 paired with g via the inner product
<,>: g∗×g → R. If g is nD, this pairing reduces to the usual action (interior
product) of forms on vectors. The standard way of describing any nD Lie
algebra g is to give its n3 Lie structural constants γkij , defined by [ξi, ξj ] =
γkijξk i

For any two smooth functions F : g∗ → R, we define the Fréchet derivative
D on the space L(g∗,R) of all linear diffeomorphisms from g∗ to R as a map
DF : g∗ → L(g∗,R); µ �→ DF (µ). Further, we define the functional derivative
δF/δµ ∈ g by

, in some basis ξ , (i = 1, . . . , n).
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DF (µ) · δµ =< δµ,
δF

δµ
>

with arbitrary ‘variations’ δµ ∈ g∗.
For any two smooth functions F,G : g∗ → R, we define the (±) Lie–

Poisson bracket by

{F,G}±(µ) = ± < µ,
[
δF

δµ
,
δG

δµ

]
> . (3.1)

Here µ ∈ g∗, [ξ, µ] is the Lie bracket in g and δF/δµ, δG/δµ ∈ g are the
functional derivatives of F and G.

The (±) Lie–Poisson bracket (3.1) is clearly a bilinear and skew–symmetric
operation. It also satisfies the Jacobi identity

{{F,G}, H}±(µ) + {{G,H}, F}±(µ) + {{H,F}, G}±(µ) = 0

thus confirming that g∗ is a Lie algebra, as well as Leibniz’ rule

{FG,H}±(µ) = F{G,H}±(µ) + G{F,H}±(µ). (2.19)

If g is a nD phase–space manifold with structure constants γkij , the (±)
Lie–Poisson bracket (2.19) becomes

{F,G}±(µ) = ±µkγkij
δF

δµi

δG

δµj
. (2.20)

The (±) Lie–Poisson bracket represents a Lie–algebra generalization of the
classical nD Poisson bracket [F,G] = ω(Xf , Xg) on the symplectic phase–
space manifold (P, ω) for any two real–valued smooth functions F,G : P
−→ R.

As in the classical case, any two smooth functions F,G : g∗ −→ R are in
involution if {F,G}±(µ) = 0.

The Lie–Poisson theorem states that a Lie algebra g∗ with a ± Lie–Poisson
bracket {F,G}±(µ) represents a Poisson manifold (g∗, {F,G}±(µ)).

Given a smooth Hamiltonian functionH : g∗ → R on the Poisson manifold
(g∗, {F,G}±(µ)), the time evolution of any smooth function F : g∗ → R is
given by the abstract Poisson evolution equation

Ḟ = {F,H}. (2.21)

Completely Integrable Hamiltonian Systems

In order to integrate a system of 2n ODEs, we must know 2n first integrals. It
turns out that if we are given a canonical system of ODEs, it is often sufficient
to know only n first integrals [Arn89].
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Liouville Theorem on Completely Integrable Systems

Recall that a function F is a first integral of a system Ξ with Hamiltonian
functionH iffH and F are in involution on the system’s phase–space P (which
is the cotangent bundle of the system’s configuration manifold T ∗M), i.e., iff
the Poisson bracket of H and F is identically equal to zero on P , {H,F} ≡ 0.

Liouville proved that if, in a system Ξ with n DOF (i.e., with a 2nD phase–
space P = T ∗M), n independent first integrals in involution are known, then
the system is integrable by quadratures.

Here is the exact formulation of the Liouville theorem [Arn89]: Suppose
that we are given n functions in involution on a symplectic 2nD manifold:

F1, ..., Fn; {Fi, Fj} ≡ 0, (i, j = 1, ..., n).

Consider a level set of the functions Fi:

Mf = {x : Fi(x) = fi}, (i = 1, ..., n).

Assume that the n functions Fi are independent on Mf (i.e., the n 1−forms
dFi are linearly independent at each point of Mf ). Then

1. Mf is a smooth manifold, invariant under the phase–flow with Hamil-
tonian function H = F1.

2. If the manifold Mf is compact and connected, then it is diffeomorphic
to the n−torus

Tn = {(ϕ1, ..., ϕn) mod 2π}.
3. The phase–flow with Hamiltonian functionH determines a conditionally

periodic motion on Mf , i.e., in angular coordinates ϕi = (ϕ1, ..., ϕn) we have

ϕ̇i = ωi, ωi = ωi(fi), (i = 1, ..., n).

4. The canonical equations with Hamiltonian functionH can be integrated
by quadratures.

For the proof of this theorem see [Arn89].
As an example with 3 DOF, we consider a heavy symmetrical Lagrangian

top fixed at a point on its axis. Three first integrals are immediately obvious:
H, Mz and M3. It is easy to verify that the integrals Mz and M3 are in
involution. Furthermore, the manifold H = h in the phase–space is compact.
Therefore, we can say without any calculations that the motion of the top is
conditionally periodic: the phase trajectories fill up the 3D torus T 3, given by:
H = c1, Mz = c2, M3 = c3. The corresponding three frequencies are called
frequencies of fundamental rotation, precession, and nutation.

Other examples arise from the following observation: if a canonical system
can be integrated by the method of Hamiltonian–Jacobi, then it has n first
integrals in involution. The method consists of a canonical transformation
(pi, qi) → (Pi, Qi) such that the Qi are first integrals, while the functions Qi

and Qi are in involution.
The Liouville theorem, as formulated above, covers all the problems of

dynamics which have been integrated to the present day [Arn89].
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Action–Angle Variables

Under the hypothesis of the Liouville theorem, we can find symplectic coordi-
nates (Ii, ϕi) such that the first integrals Fi depend only on Ii and ϕi (for i =
1, ..., n) are angular coordinates on the n−torus Tn  Mf = {x : Fi(x) = fi},
which is invariant with respect to the phase–flow. We choose angular coordi-
nates ϕi on Mf so that the phase–flow with Hamiltonian function H = F1

takes an especially simple form [Arn89]:

ϕ̇i = ωi(fi), ϕi(t) = ϕi(0) + ωit.

Now we look at a neighborhood of the n−manifold Mf = Tn in the system’s
2nD phase–space P .

In the coordinates (Fi, ϕi) the phase–flow with Hamiltonian function H =
F1 can be written in the form of the simple system of 2n ODEs

Ḟi = 0, ϕ̇i = ωi(Fi), (i = 1, ..., n), (2.22)

which is easily integrated: Fi(t) = Fi(0), ϕi(t) = ϕi(0) + ωi (Fi(0)) t.
Thus, in order to integrate explicitly the original canonical system of

ODEs, it is sufficient to find the variables ϕi in explicit form. It turns out
that this can be done using only quadratures. A construction of the variables
ϕi is given below [Arn89].

In general, the variables (Fi, ϕi) are not symplectic coordinates. However,
there are functions of Fi, which we denote by Ii = Ii(Fi), (i = 1, ..., n), such
that the variables (Ii, ϕi) are symplectic coordinates: the original symplectic
structure dpi ∧ dqi is expressed in them as dIi ∧ dϕi. The variables Ii have
physical dimensions of action and are called action variables; together with the
angle variables ϕi they form the action–angle system of canonical coordinates
in a neighborhood of Mf = Tn.

The quantities Ii are first integrals of the system with Hamiltonian func-
tion H = F1, since they are functions of the first integrals Fi. In turn, the vari-
ables Fi can be expressed in terms of Ii and, in particular, H = F1 = H(Ii).
In action–angle variables, the ODEs of our flow (2.22) have the form

İi = 0, ϕ̇i = ωi(Ii), (i = 1, ..., n).

A system with one DOF in the phase plane (p, q) is given by the Hamilto-
nian functionH(p, q). In order to construct the action–angle variables, we look
for a canonical transformation (p, q) → (I, ϕ) satisfying the two conditions:

I = I(h),
∮
Mh

dϕ = 2π. (2.23)

The action variable in the system with one DOF given by the Hamiltonian
function H(p, q) is the quantity
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I(h) =
1
2π
Π(h) =

1
2π

∮
Mh

pdq,

which is the area bounded by the phase curve H = h. Arnold states the
following theorem: Set S(I, q) =

∫ q
q0
pdq|H=h(I) is a generating function. Then

a canonical transformation (p, q) → (I, ϕ) satisfying conditions (2.23) is given
by

p =
∂S(I, q)
∂q

, ϕ =
∂S(I, q)
∂I

, H

(
∂S(I, q)
∂q

, q

)
= h(I).

We turn now to systems with n DOF given in R2n = {(pi, qi), i = 1, ..., n}
by a Hamiltonian function H(pi, qi) and having n first integrals in involution
F1 = H,F2..., Fn. Let γ1, ..., γn be a basis for the 1D cycles on the torus
Mf = Tn (the increase of the coordinate ϕi on the cycle γj is equal to 2π if
i = j and 0 if i �= j). We set

Ii(fi) =
1
2π

∮
Mh

pidq
i, (i = 1, ..., n). (2.24)

The n quantities Ii(fi) given by formula (2.24) are called the action vari-
ables [Arn89].

We assume now that, for the given values fi of the n integrals Fi, the n
quantities Ii are independent, det(∂Ii/∂fi)|fi �= 0. Then in a neighborhood of
the torus Mf = Tn we can take the variables Ii, ϕi as symplectic coordinates,
i.e., the transformation (pi, qi) → (Ii, ϕi) is canonical, i.e.,

dpi ∧ dqi = dIi ∧ dϕi, (i = 1, ..., n).

Now, let m be a point on Mf , in a neighborhood of which the n variables
qi are coordinates of Mf , such that the submanifold Mf ⊂ R2n is given by
n equations of the form pi = pi(Ii, qi), qi(m) = qi0. In a simply–connected
neighborhood of the point qi0 a single–valued function is defined,

S(Ii, qi) =
∫ q

q0

pi(Ii, qi) dqi,

and we can use it as the generating function of a canonical transformation
(pi, qi) → (Ii, ϕi):

pi =
∂S

∂qi
, ϕi =

∂S

∂Ii
.

A Universal Model for Completely Integrable Systems

A Hamiltonian system on a 2nD symplectic manifold M is said to be com-
pletely integrable if it has n first integrals in involution, which are functionally
independent on some open dense submanifold of M . This definition of a com-
pletely integrable system is usually found, with some minor variants, in any
modern text on symplectic mechanics [Arn89, AM78, LM87, MS95, Thi79].
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Starting with this definition, one uses the so–called Liouville–Arnold the-
orem to introduce action–angle variables and write the Hamiltonian system
in the form

İk = 0, φ̇k =
∂H

∂Ik
= νk(I),

where k ∈ {1, . . . , n}. The corresponding flow is given by

Ik(t) = Ik(0), φk(t) = φk(0) + νkt. (2.25)

The main interest in completely integrable systems relies on the fact that they
can be integrated by quadratures [Arn89].

However, it is clear that even if νkdIk is not an exact (or even a closed)
1–form, as long as ν̇k = 0, the system can always be integrated by quadratures.

If we consider the Abelian Lie group Rn, we can construct a Hamilto-
nian action of Rn on T ∗Rn induced by the group addition: Rn × T ∗Rn →
T ∗Rn. This can be generalized to the Hamiltonian action [AGM97]

Rn × T ∗(Rk × Tn−k) → T ∗(Rk × Tn−k),

of Rn, where Tm stands for the mD torus, and reduces to Rn × T ∗Tn or
Tn × T ∗Tn, when k = 0.

By using the standard symplectic structure on T ∗Rn, we find the momen-
tum map µ : T ∗Rn −→ (Rn)s, (q, p) �→ p, induced by the natural action of Rn

on itself via translations, which is a Poisson map if (Rn)s is with the (trivial)
natural Poisson structure of the dual of a Lie algebra. It is now clear that any
function on (Rn)s, when pulled back to T ∗Rn or T ∗Tn, induces a Hamilto-
nian system which is completely integrable (in the Liouville sense). Because
the level sets of this function carry on the action of Rn, the completely inte-
grable system induces a 1D subgroup of the action of Rn on the given level
set. However, the specific subgroup will depend on the particular level set,
i.e., the ‘frequencies’ are first integrals. The property of being integrable by
quadratures is captured by the fact that it is a subgroup of the Rn−action on
each level set.

It is now clear, how we can preserve this property, while giving up the
requirement that our system is Hamiltonian. We can indeed consider any 1–
form η on (Rn)s and pull it back to T ∗Rn or T ∗Tn, then associated vector–field
Γη = Λ0(µs(η)), where Λ0 is the canonical Poisson structure in the cotangent
bundle, is no more Hamiltonian, but it is still integrable by quadratures. In
action–angle variables, if η = νkdI

k is the 1–form on (Rn)s, the associated
equations of motion on T ∗Tn will be [AGM97]

İk = 0, φ̇k = νk,

with ν̇k = 0, therefore the flow will be as in (2.25), even though ∂Ijνk �= ∂Ikνj .
We can now generalize this construction to any Lie group G. We consider

the Hamiltonian action G × T ∗G → T ∗G, of G on the cotangent bundle,
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induced by the right action of G on itself. The associated momentum map
µ : T ∗G  Gs × G −→ Gs. It is a Poisson map with respect to the natural
Poisson structure on Gs (see, e.g., [AGM94, LM87]).

Now, we consider any differential 1–form η on Gs which is annihilated
by the natural Poisson structure ΛG∗ on Gs associated with the Lie bracket.
Such form we call a Casimir form. We define the vector–field Γη = Λ0(µs(η)).
Then, the corresponding dynamical system can be written as [AGM97]

g−1ġ = η(g, p) = η(p), ṗ = 0,

since ω0 = d(< p, g−1dg >) (see [AGM94]). Here we interpret the covector
η(p) on Gs as a vector of G. Again, our system can be integrated by quadra-
tures, because on each level set, get by fixing p’s in Gs, our dynamical system
coincides with a one–parameter group of the action of G on that particular
level set.

We give a familiar example: the rigid rotator and its generalizations
[AGM97]. In the case of G = SO(3) the (right) momentum map

µ : T ∗SO(3) −→ so(3)∗

is a Poisson map onto so(3)∗ with the linear Poisson structure

Λso(3)∗ = εijkpi∂pj
⊗ ∂pk

.

Casimir 1–forms for Λso(3)∗ read η = FdH0, where H0 =
∑
p2i /2 is the ‘free

Hamiltonian’ and F = F (p) is an arbitrary function. Clearly, FdH0 is not a
closed form in general, but (pi) are first integrals for the dynamical system
Γη = Λ0(µs(η)). It is easy to see that

Γη = F (p)Γ0 = F (p)piX̂i,

where X̂i are left–invariant vector–fields on SO(3), corresponding to the basis
(Xi) of so(3) identified with (dpi). Here we used the identification T ∗SO(3)  
SO(3)× so(3)∗ given by the momentum map µ. In other words, the dynamics
is given by

ṗi = 0, g−1ġ = F (p)piXi ∈ so(3),

and it is completely integrable, since it reduces to left–invariant dynamics
on SO(3) for every value of p. We recognize the usual isotropic rigid rotator,
when F (p) = 1.

We can generalize our construction once more, replacing the cotangent
bundle T ∗G by its deformation, namely a group double D(G,ΛG) associ-
ated with a Lie–Poisson structure ΛG on G (see e.g., [Lu90]). This double,
denoted simply by D, carry on a natural Poisson tensor–field Λ+

D which is
non–degenerate on the open–dense subset D+ = G · Gs ∩ Gs · G of D (here
Gs ⊂ D is the dual group of G with respect to ΛG). We refer to D as being
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complete if D+ = D. Identifying D with G × Gs if D is complete (or D+

with an open submanifold of G × Gs in general case; we assume complete-
ness for simplicity) via the group product, we can write Λ+

D in ‘coordinates’
(g, u) ∈ G×Gs in the form [AGM97]

Λ+
D(g, u) = ΛG(g) + ΛG∗(u)−X li(g) ∧ Y ri (u), (2.26)

where X li and Y ri are, respectively, the left– and right–invariant vector–fields
on G and Gs relative to dual bases Xi and Yi in the Lie algebras G and Gs,
and where ΛG and ΛG∗ are the corresponding Lie–Poisson tensors on G and
Gs (see [Lu90]). It is clear now that the projections µG∗ and µG of (D,Λ+

D)
onto (G,ΛG) and (Gs, ΛG∗), respectively, are Poisson maps. Note that we get
the cotangent bundle (D,Λ+

D) = (T ∗G,Λ0) if we put ΛG = 0.
The group G acts on (D,Λ+

D) by left translations which, in general are
not canonical transformations. However, this is a Poisson action with respect
to the inner Poisson structure ΛG on G, which is sufficient to develop the
momentum map reduction theory (see [Lu91]). For our purposes, let us take
a Casimir 1–form η for ΛG∗ , i.e., ΛG∗(η) = 0. By means of the momentum
map
µG∗ : D −→ Gs, we define the vector–field on D [AGM97]:

Γη = Λ+
D(µsG∗(η)).

In ‘coordinates’ (g, u), due to the fact that η is a Casimir, we get

Γη(g, u) =< Y ri , η > (u)X li(g),

so that Γη is associated with the Legendre map

Lη : D  G×Gs −→ TG  G× G, Lη(g, u) =< Y ri , η > (u)Xi,

which can be viewed also as a map Lη : Gs −→ G. Thus we get the following
theorem [AGM97]: The dynamics Γη on the group double D(G,ΛG), associ-
ated with a 1–form η which is a Casimir for the Lie–Poisson structure ΛG∗ on
the dual group, is given by the system of equations

u̇ = 0, g−1ġ =< Y ri , η > (u)Xi ∈ G,

and is therefore completely integrable by quadratures.
We have seen that if we concentrate on the possibility of integrating our

system by quadratures, then we can do without the requirement that the
system is Hamiltonian.

By considering again the equations of motion in action–angle variables,
we classically have

İk = 0, φ̇k = νk(I).

Clearly, if we have
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İk = Fk(I), φ̇k = Ajk(I)φj , (2.27)

and we are able to integrate the first equation by quadratures, we again have
the possibility to integrate by quadratures the system (2.27), if only the ma-
trices (Ajk(I(t))) commute [AGM97]:

φ(t) = exp
(∫ t

0

A(I(s))ds
)
φ0.

Because φk are discontinues functions on the torus, we have to be more careful
here. However, we show how this idea works for double groups. In the case
when the 1–form η on Gs is not a Casimir 1–form for the Lie–Poisson structure
ΛG∗ , we get, in view of (2.26),

Γη(g, u) =< Y ri , η > (u)X li(g) + ΛG∗(η)(u).

Now, the momenta evolve according to the dynamics ΛG∗(η) on Gs (which
can be interpreted, as we will see later, as being associated with an interaction
of the system with an external field) and ‘control’ the evolution of the field of
velocities on G (being left–invariant for a fixed time) by a ‘variation of con-
stants’. Let us summarize our observations in the following theorem [AGM97]:
The vector–field Γη on the double group D(G,ΛG), associated with a 1–form
η on Gs, defines the following dynamics

u̇ = ΛG∗(η)(u), g−1ġ =< Y ri , α > (u)Xi ∈ G, (2.28)

and is therefore completely integrable, if only we are able to integrate the
equation (2.28) and < Y ri , η > (u(t))Xi lie in a commutative subalgebra of G
for all t.

Finally, we can weaken the assumptions of the previous theorem. It is
sufficient to assume [AGM97] that

g−1ġ(t) = exp(tX)A(t) exp(−tX),

for some A(t), X ∈ G, such that X+A(t) lie in a commutative subalgebra of G
for all t (e.g., A(t) = const), to assure that (2.28) is integrable by quadratures.
Indeed, in the new variable

g1(t) = exp(−tX)g(t) exp(tX),

the equation (2.28) reads

ġ1(t) = g1(t)(X +A(t))−Xg1(t),

and, since the right– and the left–multiplications commute, we find that
[AGM97]

g(t) = g0 exp
(
tX +

∫ t

0

A(s)ds
)

exp(−tX).

This procedure is similar to what is known as the Dirac interaction picture in
the quantum evolution.
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Killing Vector– and Tensor–Fields in Mechanics

Recall from subsection 1.2.13 above, that on a Riemannian manifold (M, g)
with the system’s kinetic energy metric tensor g = (gij), for any pair of vectors
V and T , the following relation holds1

∂s〈V, T 〉 = 〈∇sV, T 〉+ 〈V,∇sT 〉, (2.29)

where 〈V, T 〉 = gijV
iT j . If the curve γ(s) is a geodesic, for a generic vector

X we have

∂s〈X, γ̇〉 = 〈∇sX, γ̇〉+ 〈X,∇sγ̇〉 = 〈∇sX, γ̇〉 ≡ 〈∇γ̇X, γ̇〉, (2.30)

where
(∇γ̇X)i = ∂sxl∂xlXi + Γ ijk∂sx

jXk,

so that in components it reads

∂s(Xiẋi) = ẋi∇i(Xj ẋj).

Using the fact that Xj ẋi∇iẋj = Xj∇γ̇ γ̇j = 0, as well as the auto–parallelism
of the geodesics, this can be rewritten as

∂s(Xiẋi) =
1
2
ẋj ẋi(∇iXj +∇jXi), (i, j = 1, ..., N).

This means that the conservation of Xiẋi along a geodesic, i.e., ∂s(Xiẋi) = 0,
is guaranteed by (see [CP02])

∇(iXj) ≡ ∇iXj +∇jXi = 0. (2.31)

If such a field exists on a manifold, it is the Killing vector–field . Recall that
(2.31) is equivalent to LXg = 0, where L is the Lie derivative. On the biome-
chanical manifolds (M, g), being the unit vector q̇i – tangent to a geodesic
– proportional to the canonical momentum pi = ∂L

∂q̇i = q̇i, the existence of
a Killing vector–field X implies that the corresponding momentum map (see
subsection 1.2.11 above),

J(q, p) = Xk(q)∂sqk =
1√

2(E − V (q))
Xk(q)q̇k =

1√
2T (q)

Xk(q)pk, (2.32)

is a constant of motion along the geodesic flow. Thus, for an NDOF Hamil-
tonian system, a physical conservation law, involving a conserved quantity
linear in the canonical momenta, can always be related with a symmetry on
the manifold (M, g) due to the action of a Killing vector–field on the manifold.

1 In this subsection, the overdot denotes the derivative upon the arc–length param-
eter s, namely (̇) ≡ ∂s ≡ d/ds, while ∇s is the covariant derivative along a curve
γ(s).
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These are the Noether conservation laws . The equation (2.31) is equivalent to
the vanishing of the Poisson brackets,

{H, J} =
(
∂H

∂qi
∂J

∂pi
− ∂H
∂pi

∂J

∂qi

)
= 0, (2.33)

which is the standard definition of a constant of motion J(q, p) (see, e.g.,
[AM78]).

However, if a 1–1 correspondence is to exist between conserved physical
quantities along a Hamiltonian flow and suitable symmetries of the biome-
chanical manifolds (M, g), then integrability will be equivalent to the existence
of a number of symmetries at least equal to the number of DOF, which is equal
to dim(M). If a Lie group G acts on the phase–space manifold through com-
pletely canonical transformations, and there exists an associated momentum
map, then every Hamiltonian having G as a symmetry group, with respect to
its action, admits the momentum map as the constant of motion. These sym-
metries are usually referred to as hidden symmetries because, even though
their existence is ensured by integrability, they are not easily recognizable
[CP02].

Let us now extend what has been presented so far about Killing vector–
fields, trying to generalize the form of the conserved quantity along a geodesic
flow from J = Xiẋi to J = Kj1j2...jr ẋ

j1 ẋj2 . . . ẋjr , with Kj1j2...jr a tensor of
rank r. Thus, we look for the conditions that entail

∂s(Kj1j2...jr ẋ
j1 ẋj2 . . . ẋjr ) = ẋj∇j(Kj1j2...jr ẋj1 ẋj2 . . . ẋjr ) = 0. (2.34)

In order to work out from this equation a condition for the existence of a
suitable tensor Kj1j2...jr , which is called a Killing tensor–field , let us first
consider the 2r rank tensor Kj1j2...jr ẋ

i1 ẋi2 . . . ẋir and its covariant derivative
along a geodesic [CP02]

ẋj∇j(Kj1j2...jr ẋi1 ẋi2 . . . ẋir ) = ẋi1 ẋi2 . . . ẋir ẋj∇jKj1j2...jr , (2.35)

where we have again used ẋj∇j ẋik = 0 along a geodesic, and a standard
covariant differentiation formula (see Appendix, as well as section 1.2.9 above).
Now, by contraction on the indices ik and jk the 2r−rank tensor in (2.35) gives
a new expression for (2.34), which reads

∂s(Kj1j2...jr ẋ
j1 ẋj2 . . . ẋjr ) = ẋj1 ẋj2 . . . ẋjr ẋj∇(jKj1j2...jr), (2.36)

where ∇(jKj1j2...jr) = ∇jKj1j2...jr +∇j1Kjj2...jr + · · ·+∇jrKj1j2...jr−1j . The
vanishing of (2.36), entailing the conservation of Kj1j2...jr ẋ

j1 ẋj2 . . . ẋjr along
a geodesic flow, is therefore guaranteed by the existence of a tensor–field
fulfilling the conditions [CP02]

∇(jKj1j2...jr) = 0. (2.37)
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These equations generalize (2.31) and give the definition of a Killing tensor–
field on a Riemannian biomechanical manifold (M, g). These Nr+1 equations
in (N+r−1)!/r!(N−1)! unknown independent components of the Killing ten-
sor constitute an overdetermined system of equations. Thus, a‘priori, we can
expect that the existence of Killing tensor–fields has to be rather exceptional.

If a Killing tensor–field exists on a Riemannian manifold, then the scalar

Kj1j2...jr q̇
j1 q̇j2 . . . q̇jr

is a constant of motion for the geodesic flow on the same manifold. With
the only difference of a more tedious combinatorics, also in this case it turns
out that the equations (2.37) are equivalent to the vanishing of the Poisson
brackets of J(q, p), that is

{H, J} = 0 is equivalent to ∇(jKj1j2...jr) = 0.

Thus, the existence of Killing tensor–fields, obeying (2.37), on a biomechanical
manifold (M, g) give the rephrasing of integrability of Newtonian equations
of motion or, equivalently, of standard Hamiltonian systems, within the Rie-
mannian geometrical framework.

The first natural question to address concerns the existence of a Killing
tensor–field, on any biomechanical manifold (M, g), to be associated with total
energy conservation. Such a Killing tensor–field actually exists and coincides
with the metric tensor g, in fact it satisfies by definition (2.37).

One of the simplest case of integrable system is represented by a decoupled
system described by a generic Hamiltonian

H =
N∑
i=1

[
p2i
2

+ Vi(qi)
]

=
N∑
i=1

Hi(qi, pi)

for which all the energies Ei of the subsystemsHi, i = 1, . . . , N , are conserved.
On the associated biomechanical manifold, N second–order Killing tensor–
fields exist, they are given by

K
(i)
jk = δjk{Vi(qi)[E − V (qi)] + δij [E − V (qi)]2}.

In fact, these tensor–fields fulfil (2.37), which explicitly reads [CP02]

∇kK(i)
lm +∇lK(i)

mk +∇mK(i)
kl

= ∂qkK
(i)
lm + ∂qlK

(i)
mk + ∂qmK

(i)
kl − 2Γ jklK

(i)
jm − 2Γ jkmK

(i)
jl − 2Γ jlmK

(i)
jk = 0.

The conserved quantities J (i)(q, p) are then get by saturation of the tensors
K(i) with the velocities q̇i,

J (i)(q, p) = K(i)
jk q̇

j q̇k = Ei.
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Distributions and Nonholonomic Geometry

Let TM = ∪x∈MTxM , be the tangent bundle of a smooth nD mechanical
manifold M . Recall (from the subsection 1.3.3 above) that sub–bundle V =
∪x∈MVx, where Vx is a vector subspace of TxM , smoothly dependent on points
x ∈ M , is called the distribution. If the manifold M is connected, dimVx is
called the dimension of the distribution. A vector–field X on M belongs to
the distribution V if X(x) ⊂ Vx. A curve γ is admissible relatively to V , if the
vector–field γ̇ belongs to V . A differential system is a linear space of vector–
fields having a structure of C∞(M) – module. Vector–fields which belong to
the distribution V form a differential system N(V ). A kD distribution V is
integrable if the manifold M is foliated to kD sub–manifolds, having Vx as
the tangent space at the point x. According to the Frobenius theorem, V is
integrable iff the corresponding differential system N(V ) is involutive, i.e., if
it is a Lie sub–algebra of the Lie algebra of vector–fields on M . The flag of
a differential system N is a sequence of differential systems: N0 = N, N1 =
[N,N ], . . . , Nl = [Nl−1, N ], . . . .

The differential systems Ni are not always differential systems of some
distributions Vi, but if for every i, there exists Vi, such that Ni = N(Vi), then
there exists a flag of the distribution V : V = V0 ⊂ V1 . . . . Such distributions,
which have flags, will be called regular. Note that the sequence N(Vi) is going
to stabilize, and there exists a number r such that N(Vr−1) ⊂ N(Vr) =
N(Vr+1). If there exists a number r such that Vr = TM , the distribution
V is called completely nonholonomic, and minimal such r is the degree of
non–holonomicity of the distribution V .

Now, let us see the mechanical interpretation of these geometrical objects.
Consider a nonholonomic mechanical system corresponding to a Riemannian
manifold (M, g), where g is a metric defined by the system’s kinetic energy
[DG03]. Suppose that the distribution V is defined by (n−m) one–forms ωα;
in local coordinates q = (q1, ..., qn) on M

ωρ(q)(q̇) = aρi(q) q̇i = 0, (ρ = m+ 1, . . . , n; i = 1, . . . , n).

A virtual displacement is a vector–field X on M , such that ωρ(X) = 0, i.e.,
X belongs to the differential system N(V ).

Differential equations of motion of a given mechanical system follow from
the D’Alambert–Lagrangian principle: trajectory γ of the given system is a
solution of the equation

〈∇γ̇ γ̇ −Q,X〉 = 0, (2.38)

where X is an arbitrary virtual displacement, Q a vector–field of internal
forces, and ∇ is the affine Levi–Civita connection for the metric g.

The vector–field R(x) on M , such that R(x) ∈ V ⊥
x , V

⊥
x ⊕ Vx = TxM , is

called reaction of ideal nonholonomic connections. (2.38) can be rewritten as

∇γ̇ γ̇ −Q = R, ωα(γ̇) = 0. (2.39)
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If the system is potential, by introducing L = T −U , where U is the potential
energy of the system (Q = − gradU), then in local coordinates q on M ,
equations (2.39) becomes the forced Lagrangian equation:

d

dt
Lq̇ − Lq = R̃, ωα(q̇) = 0.

Now R̃ is a one–form in (V ⊥), and it can be represented as a linear combina-
tion of one–forms ωm+1, . . . , ωn which define the distribution, R̃ = λαωα.

Suppose e1, . . . , en are the vector–fields on M , such that e1(x), . . . , en(x)
form a base of the vector space TxM at every point x ∈ M , and e1, . . . , em
generate the differential system N(V ). Express them through the coordinate
vector–fields:

ei = Aji (q)∂qj , (i, j = 1, . . . , n).

Denote by p a projection p : TM → V orthogonal according to the metric
g. Corresponding homomorphism of C∞−modules of sections of TM and V
is

p∂qi = pai ea, (a = 1, . . . ,m, i = 1, . . . , n).

Projecting by p the equations (2.39), from R(x) ∈ V ⊥(x), we get p(R) = 0,
and denoting p(Q) = Q̃ we get

∇̃γ̇ γ̇ = Q̃,

where ∇̃ is the projected connection [DG03]. A relationship between standard
Christoffel symbols Γ kij and coefficients Γ̃ cab of the connection ∇̃, defined by

∇̃ea
eb = Γ̃ cabec, is given by Γ̃ cab = Γ kijA

i
aA
j
bp
c
k +Aia ∂qiAjb p

c
j .

If the motion takes place under the inertia (Q = Q̃ = 0), the trajectories of
nonholonomic mechanical problem are the geodesics for ∇̃.

Now, let V be a distribution on M . Denote a C∞(M)−module of sections
on V by Γ (V ). A nonholonomic connection on the sub–bundle V of TM is a
map ∇ : Γ (V )× Γ (V ) → Γ (V ) with the properties:

∇X(Y + Z) = ∇XY +∇XZ, ∇X(f · Y ) = X(f)Y + f∇XY ,
∇fX+gY Z = f∇XZ + g∇Y Z, (X,Y, Z ∈ Γ (V ); f, g ∈ C∞(M)).

Having a morphism of vector bundles p0 : TM → V , formed by the pro-
jection on V , denote by q0 = 1TM − p0 the projection on W , V ⊕W = TM .

The tensor–field T∇ : Γ (V )× Γ (V ) → Γ (V ) defined by

T∇(X,Y ) = ∇XY −∇YX − p0[X,Y ], (X,Y ∈ Γ (V )),

is called the torsion tensor for the connection ∇.
Suppose there is a positively defined metric tensor g = gij on V . Given a

distribution V , with p0 and g, there exists a unique nonholonomic connection
∇ with the properties [DG03]
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∇Xg(Y, Z) = X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ) = 0, T∇ = 0.

These conditions can be rewritten in the form:

∇XY = ∇YX + p0[X,Y ], Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ).

By cyclic permutation of X,Y, Z and summing we get:

g(∇XY, Z) =
1
2
{X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y )) (2.40)

+ g(Z, p0[X,Y ]) + g(Y, p0[Z,X])− g(X, p0[Y, Z]}.

Let qi, (i = 1, . . . , n) be local coordinates on M , such that the first m co-
ordinate vector–fields ∂qj are projected by projection p0 into vector–fields
ea, (a = 1, . . . ,m), generating the distribution V : p0∂qj = pai (q)ea. Vector–
fields ea can be expressed in the basis ∂qj as ea = Bia∂qj , with Biap

b
i = δba.

Now we give coordinate expressions for the coefficients of the connection Γ cab,
defined as ∇ea

eb = Γ cabec. From (2.40) we get

Γ cab = {cab}+ gaegcdΩebd + gbegcdΩead −Ωcab,

where Ω is get from p0[ea, eb] = −2Ωcabec as

2Ωcab = pciea(B
i
b)− pcieb(Bia),

and {cab} = 1
2g
ce(ea(gbe) + eb(gae)− ee(gab)).

2.1.2 Non–Autonomous Lagrangian/Hamiltonian Mechanics

Geodesics

In this subsection we continue our study of non–autonomous, time–dependent
mechanics on a configuration bundle Q → R, that we started in subsection
1.4.6 above. Recall that R is the time axis, while the corresponding velocity
phase–space manifold is the 1–jet space J1(R, Q) of sections s : R −→ Q
of the bundle Q → R. Also, recall that second–order dynamical equation
(dynamical equation, for short) on a fibre bundle Q → R is defined as a
first–order dynamical equation on the jet bundle J1(R, Q) → R, given by
a holonomic connection ξ on J1(R, Q) → R which takes its values in the
2–jet space J2(R, Q) ⊂ J1(R, J1(R, Q)) (see [LM96, MS98, MP94, MS99]).
The global geometrical structure of time–dependent mechanics is depicted in
Figure 1.9 above.

Since a configuration bundle Q→ R is trivial, the existent formulations of
mechanics often imply its preliminary splitting Q = R ×M [CF93, EMR91,
LM96, MFV90]. This is not the case of mechanical systems subject to time–
dependent transformations, including inertial frame transformations. Recall
that different trivializations of Q → R differ from each other in projections
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Q → M . Since a configuration bundle Q → R has no canonical trivialization
in general, mechanics on Q → R is not a repetition of mechanics on R ×
M , but implies additionally a connection on Q → R which is a reference
frame [MS98, Sar98]. Considered independently on a trivialization of Q→ R,
mechanical equations make the geometrical sense of geodesic equations.

We now examine quadratic dynamical equations in details. In this case,
the corresponding dynamical connection γ on J1(R, Q) → Q is affine, while
the connection K̃ (1.219) on TQ→ Q is linear. Then the equation for Jacobi
vector–fields along the geodesics of the connection K̃ can be considered. This
equation coincides with the existent equation for Jacobi fields of a Lagrangian
system [DR94, MS98] in the case of non–degenerate quadratic Lagrangians,
when they can be compared. We will consider more general case of quadratic
Newtonian systems characterized by a pair (ξ, µ) of a quadratic dynamical
equation ξ and a Riemannian inertia tensor µ which satisfy a certain com-
patibility condition. Given a reference frame, a Riemannian inertia tensor µ
is extended to a Riemannian metric on the configuration space Q. Then con-
jugate points of solutions of the dynamical equation ξ can be examined in
accordance with the well–known geometrical criteria [MS98, Sar98].

Quadratic Dynamical Equations

From the physical viewpoint, the most interesting dynamical equations are
the quadratic ones, i.e.,

ξi = aijk(q
µ)qjt q

k
t + bij(q

µ)qjt + f i(qµ). (2.41)

This property is coordinate–independent due to the affine transformation law
of coordinates qit. Then, it is clear that the corresponding dynamical connec-
tion γξ (1.228) is affine:

γ = dqα ⊗ [∂α + (γiλ0(q
ν) + γiλj(q

ν)qjt )∂
t
i ],

and vice versa. This connection is symmetric iff γiλµ = γiµλ.
There is 1–1 correspondence between the affine connections γ on the affine

jet bundle J1(R, Q) → Q and the linear connections K̃ (1.232) on the tangent
bundle TQ→ Q.

This correspondence is given by the relation

γiµ = γiµ0 + γiµjq
j
t , γiµλ = Kµiα.

In particular, if an affine dynamical connection γ is symmetric, so is the
corresponding linear connection K̃.

Any quadratic dynamical equation

qitt = aijk(q
µ)qjt q

k
t + bij(q

µ)qjt + f i(qµ) (2.42)

is equivalent to the geodesic equation
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ṫ = 1, ẗ = 0,
q̈i = aijk(q

µ)q̇iq̇j + bij(q
µ)q̇j ṫ+ f i(qµ)ṫṫ. (2.43)

for the symmetric linear connection

K̃ = dqα ⊗ (∂α +Kµαν(t, q
i)q̇ν ∂̇µ)

on TQ→ Q, given by the components

K0
αν = 0, K0

i
0 = f i, K0

i
j = Kji0 =

1
2
bij , Kj

i
k = aijk. (2.44)

Conversely, any linear connection K on the tangent bundle TQ → Q
defines the quadratic dynamical equation

qitt = Kjikq
j
t q
k
t + (K0

i
j +Kji0)q

j
t +K0

i
0,

written with respect to a given reference frame (t, qi) ≡ qµ.
However, the geodesic equation (2.43) is not unique for the dynamical

equation (2.42). Any quadratic dynamical equation (2.41), being equivalent
to the geodesic equation with respect to the linear connection K̃ (2.44), is
also equivalent to the geodesic equation with respect to an affine connection
K ′ on TQ→ Q which differs from K̃ (2.44) in a soldering form σ on TQ→ Q
with the local components

σ0
α = 0, σik = hik + (s− 1)hik q̇

0, σi0 = −shik q̇k − hi0q̇0 + hi0,

where s and hiα are local functions on Q.

Equation of Free–Motion

We say that the dynamical equation (1.218), that is: qitt = ξi(t, qi, qit),
is a free motion equation iff there exists a reference frame (t, qi) on the con-
figuration bundle Q→ R such that this equation reads

qitt = 0. (2.45)

With respect to arbitrary bundle coordinates (t, qi), a free motion equation
takes the form

qitt = dtΓ i + ∂jΓ i(q
j
t − Γ j)−

∂qi

∂qµ
∂qµ

∂qj∂qk
(qjt − Γ j)(qkt − Γ k), (2.46)

where Γ i = ∂tq
i(t, qj) is the connection associated with the initial frame

(t, qi). One can think of the r.h.s. of the equation (2.46) as being the general
coordinate expression of an inertial force in mechanics. The corresponding
dynamical connection γ on the affine jet bundle J1(R, Q) → Q reads

γik = ∂kΓ i −
∂qi

∂qµ
∂qµ

∂qj∂qk
(qjt − Γ j), γi0 = ∂tΓ i + ∂jΓ iq

j
t − γikΓ k. (2.47)
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This affine dynamical connection defines a linear connection K on the tangent
bundle TQ → Q whose curvature is necessarily zero. Thus, we come to the
following criterion for a dynamical equation to be a free motion equation:
if ξ is a free motion equation, it is quadratic and the corresponding linear
symmetric connection (2.44) on the tangent bundle TQ → Q is flat. A free
motion equation on a configuration bundle Q → R exists iff the typical fibre
M of Q admits a curvature–free linear symmetric connection.

Quadratic Lagrangian and Newtonian Systems

Recall that a Lagrangian of an nD mechanical system on Q→ R is defined as
a function on the velocity phase–space J1(R, Q). In particular, let us consider
a non–degenerate quadratic Lagrangian

L =
1
2
µij(q

µ)qitq
j
t + ki(qµ)qit + f(qµ), (2.48)

where µij (i, j = 1, ..., n) is a Riemannian fibre metric tensor in the vertical
tangent bundle V Q, called the inertial metric tensor . As for quadratic dynam-
ical equations, this property is coordinate–independent, namely one can show
that any quadratic polynomial on J1(R, Q) ⊂ TQ is extended to a bilinear
form on TQ, so that the Lagrangian L (2.48) can be written as

L =
1
2
γαµq

α
t q
µ
t , (with q0t = 1),

where γ is the (degenerate) fibre metric in the tangent bundle TQ, given by

γ00 = 2f, γ0i = ki, γij = µij . (2.49)

The associated Lagrangian equation takes the form

qitt = (µ−1)ikΓλkνqαt q
ν
t , (2.50)

where Γλµν = −1
2
(∂αγµν + ∂νγµλ − ∂µγλν)

are the Christoffel symbols of the first–kind of the metric γαµ given in com-
ponents by (2.49). The corresponding geodesic equation (2.43) on TQ reads

q̈i = (µ−1)ikΓλkν q̇αq̇ν , ṫ = 1, ẗ = 0, (2.51)

such that K̃ (1.219) is a linear connection with the following components

K̃0
αν = 0, K̃iαν = (µ−1)ikΓλkν .

We have the relation
q̇α(∂αµij +Kiαν q̇

ν) = 0. (2.52)

One can show that an arbitrary Lagrangian system on a configuration bun-
dle Q→ R is a particular Newtonian system on Q→ R. The latter is defined
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as a pair (ξ, µ) of a dynamical equation ξ and a (degenerate) fibre metric
µ in the fibre bundle VQJ1(R, Q) → J1(R, Q) which satisfy the symmetry
condition ∂tkµij = ∂tjµik and the compatibility condition [MS98, MOS99]

ξdµij + µikγ
k
j + µjkγ

k
i = 0, (2.53)

where γξ is the dynamical connection (1.228), i.e.,

γξ = dt⊗ [∂t + (ξi − 1
2
qjt∂

t
jξ
i)∂ti ] + dqj ⊗ [∂j +

1
2
∂tjξ

i∂ti ].

We restrict our consideration to non–degenerate quadratic Newtonian sys-
tems when ξ is a quadratic dynamical equation (2.41) and µ is a Riemannian
fibre metric in V Q, i.e., µ is independent of qit and the symmetry condition
becomes trivial. In this case, the dynamical equation (2.42) is equivalent to
the geodesic equation (2.43) with respect a symmetric linear connection K̃
(2.44), while the compatibility condition (2.53) takes the form (2.52).

Given a symmetric linear connection K̃ (2.44) on the tangent bundle
TQ → Q, one can consider the equation for Jacobi vector–fields along
geodesics of this connection, i.e., along solutions of the dynamical equation
(2.42). IfQ admits a Riemannian metric, the conjugate points of these geodesic
can be investigated.

Jacobi Fields

Let us consider the quadratic dynamical equation (2.42) and the equivalent
geodesic equation (2.43) with respect to the symmetric linear connection K̃
(2.44). Its Riemann curvature tensor

Rλµ
α
β = ∂λKµαβ − ∂µKαλ β +KγλβKµ

α
γ −KµγβKαλ γ

has the temporal component

Rλµ
0
β = 0. (2.54)

Then the equation for a Jacobi vector–field u along a geodesic c reads

q̇β q̇µ(∇β(∇µuα)−Rλµαβuλ) = 0, ∇β q̇α = 0, (2.55)

where ∇µ denotes the covariant derivative relative to the connection K̃ (see
[KN63/9]). Due to the relation (2.54), the equation (2.55) for the temporal
component u0 of a Jacobi field takes the form

q̇β q̇µ(∂µ∂βu0 +Kµγβ∂γu0) = 0.

We chose its solution
u0 = 0, (2.56)
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because all geodesics obey the constraint ṫ = 0.
Note that, in the case of a quadratic Lagrangian L, the equation (2.55)

coincides with the Jacobi equation

ujd0(∂j ∂̇iL) + d0(u̇j ∂̇i∂̇jL)− uj∂i∂jL = 0

for a Jacobi field on solutions of the Lagrangian equations for L. This equation
is the Lagrangian equation for the vertical extension LV of the Lagrangian L
(see [DR94, MS98, MOS99]).

Let us consider a quadratic Newtonian system with a Riemannian inertia
tensor µij . Given a reference frame (t, qi) ≡ qα, this inertia tensor is extended
to the following Riemannian metric on Q

g00 = 1, g0i = 0, gij = µij .

However, its covariant derivative with respect to the connection K̃ (2.44) does
not vanish in general. Nevertheless, due to the relations (2.52) and (2.56), we
get the well–known formula for a Jacobi vector–field u along a geodesic c:∫ b

a

(
gλµ(q̇

α∇αuλ)(q̇β∇βuµ) +Rλµανuλuαq̇µq̇ν
)
dt

+ gλµq̇
α∇αuλu′µ|t=a − gλµq̇α∇αuλu′µ|t=b = 0.

Therefore, the following assertions also remain true [KN63/9]: (i) if the sec-
tional curvature Rλµανuλuαq̇µq̇ν is positive on a geodesic c, this geodesic has
no conjugate points; (ii) if the sectional curvature Rλµανuλuαvµvν , where
u and v are arbitrary unit vectors on a Riemannian manifold Q less than
k < 0, then, for every geodesic, the distance between two consecutive conju-
gate points is at most π/

√
k.

For example, let us consider a 1D motion described by the Lagrangian

L =
1
2
(q̇1)2 − φ(q1),

where φ is a potential. The corresponding Lagrangian equation is equivalent to
the geodesic one on the 2D Euclidean space R2 with respect to the connection
K̃ whose non–zero component is K̃0

1
0 = −∂1φ. The curvature of K̃ has the

non–zero component
R10

1
0 = ∂1K̃0

1
0 = −∂2

1φ.

Choosing the particular Riemannian metric g with components

g11 = 1, g01 = 0, g00 = 1,

we come to the formula∫ b

a

[(q̇µ∂µu1)2 − ∂2
1φ(u

1)2]dt = 0
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for a Jacobi vector–field u, which vanishes at points a and b. Then we get that,
if ∂2

1φ < 0 at points of c, this motion has no conjugate points. In particular,
let us consider the oscillator φ = k(q1)2/2. In this case, the sectional curvature
is R0101 = −k, while the half–period of this oscillator is exactly π/

√
k.

Constraints

Recall that symplectic and Poisson manifolds give an adequate Hamiltonian
formulation of classical and quantum conservative mechanics. This is also the
case of presymplectic Hamiltonian systems. Recall that every presymplectic
form can be represented as a pull–back of a symplectic form by a coisotropic
imbedding (see e.g., [Got82, MS98]), a presymplectic Hamiltonian systems
can be seen as Dirac constraint systems [CGI95, MS98]. An autonomous La-
grangian system also exemplifies a presymplectic Hamiltonian system where
a presymplectic form is the exterior differential of the Poincaré–Cartan form,
while a Hamiltonian is the energy function [CR93, LM96, MS98, MR92]. A
generic example of conservative Hamiltonian mechanics is a regular Poisson
manifold (Z,w) where a Hamiltonian is a real function H on Z. Given the
corresponding Hamiltonian vector–field ϑH = w�(df), the closed subbundle
ϑH(Z) of the tangent bundle TZ is an autonomous first–order dynamical
equation on a manifold Z, called the Hamiltonian equations. The evolution
equation on the Poisson algebra C∞(Z) is the Lie derivative LϑHf = {H, f},
expressed into the Poisson bracket of the Hamiltonian H and functions f on
Z. However, this description cannot be extended in a straightforward manner
to time–dependent mechanics subject to time–dependent transformations.

The existent formulations of time–dependent mechanics imply usually a
preliminary splitting of a configuration space Q = R ×M and a momentum
phase–space manifold Π = R × Z, where Z is a Poisson manifold [CF93,
CLM94, EMR91, HL84, MFV90, LM93]. From the physical viewpoint, this
means that a certain reference frame is chosen. In this case, the momentum
phase–space Π is with the Poisson product of the zero Poisson structure on R

and the Poisson structure on Z. A Hamiltonian is defined as a real function H
on Π. The corresponding Hamiltonian vector–field ϑH on Π is vertical with
respect to the fibration Π → R. Due to the canonical imbedding

Π × TR → TΠ, (2.57)

one introduces the vector–field

γH = ∂t + ϑH, (2.58)

where ∂t is the standard vector–field on R [HL84]. The first–order dynamical
equation γH(Π) ⊂ TΠ on the manifold Π plays the role of Hamiltonian
equations. The evolution equation on the Poisson algebra C∞(Π) is given by
the Lie derivative

LγHf = ∂tf + {H, f}.
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This is not the case of mechanical systems subject to time–dependent
transformations. These transformations, including canonical and inertial frame
transformations, violate the splitting R × Z. As a consequence, there is no
canonical imbedding (2.57), and the vector–field (2.58) is not well defined. At
the same time, one can treat the imbedding (2.57) as a trivial connection on
the bundle Π −→ R, while γH (2.58) is the sum of the horizontal lift onto Π
of the vector–field ∂t by this connection and of the vertical vector–field ϑH.

Let Q→ R be a fibre bundle coordinated by (t, qi), and J1(R, Q) its 1–jet
space, equipped with the adapted coordinates (t, qi, qit). Recall that there is a
canonical imbedding λ given by (1.220) onto the affine subbundle of TQ→ Q
of elements υ ∈ TQ such that υdt = 1. This subbundle is modelled over
the vertical tangent bundle V Q→ Q. As a consequence, there is a 1–1 corre-
spondence between the connections Γ on the fibre bundle Q→ R, treated as
sections of the affine jet bundle π1

0 : J1(R, Q) → Q [MOS99], and the nowhere
vanishing vector–fields Γ = ∂t + Γ i∂i on Q, called horizontal vector–fields,
such that Γ dt = 1 [MS98, MOS99]. The corresponding covariant differential
reads

DΓ = λ− Γ : J1(R, Q) −→ V Q, qi ◦DΓ = qit − Γ i.
Let us also recall the total derivative dt = ∂t + qit∂i + · · · and the exterior
algebra homomorphism

h0 : φdt+ φidy
i �→ (φ+ φiq

i
t)dt (2.59)

which sends exterior forms onQ→ R onto the horizontal forms on J1(R, Q) →
R, and vanishes on contact forms θi = dyi − qitdt.

Lagrangian time–dependent mechanics follows directly Lagrangian field
theory (see [Gia92, Kru97, LMM97, MS98, MP94], as well as subsection 2.2.2
below). This means that we have a configuration space Q→ R of a mechanical
system, and a Lagrangian is defined as a horizontal density on the velocity
phase–space J1(R, Q),

L = Ldt, with L : J1(R, Q) → R. (2.60)

A generic momentum phase–space manifold of time–dependent mechanics
is a fibre bundle Π −→ R with a regular Poisson structure whose characteristic
distribution belongs to the vertical tangent bundle V Π of Π −→ R [HL84].
However, such a Poisson structure cannot give dynamical equations. A first–
order dynamical equation on Π −→ R, by definition, is a section of the affine
jet bundle J1(R, Π) −→ Π, i.e., a connection on Π −→ R. Being a horizontal
vector–field, such a connection cannot be a Hamiltonian vector–field with
respect to the above Poisson structure on Π.

One can overcome this difficulty as follows. Let Q → R be a configu-
ration bundle of time–dependent mechanics. The corresponding momentum
phase–space is the vertical cotangent bundle Π = V ∗Q → R, called the
Legendre bundle, while the cotangent bundle T ∗Q is the homogeneous mo-
mentum phase–space. T ∗Q admits the canonical Liouville form Ξ and the
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symplectic form dΞ, together with the corresponding non–degenerate Poisson
bracket {, }T on the ring C∞(T ∗Q). Let us consider the subring of C∞(T ∗Q)
which comprises the pull–backs ζ∗f onto T ∗Q of functions f on the vertical
cotangent bundle V ∗Q by the canonical fibration

ζ : T ∗Q→ V ∗Q. (2.61)

This subring is closed under the Poisson bracket {, }T , and V ∗Q admits the
regular Poisson structure {, }V such that [Vai94]

ζ∗{f, g}V = {ζ∗f, ζ∗g}T .

Its characteristic distribution coincides with the vertical tangent bundle
V V ∗Q of V ∗Q → R. Given a section h of the bundle (2.61), let us consider
the pull–back forms

Θ = h∗(Ξ ∧ dt), Ω = h∗(dΞ ∧ dt) (2.62)

on V ∗Q, but these forms are independent of a section h and are canonical
exterior forms on V ∗Q. The pull–backs h∗Ξ are called the Hamiltonian forms.
With Ω, the Hamiltonian vector–field ϑf for a function f on V ∗Q is given by
the relation

ϑfΩ = −df ∧ dt,
while the Poisson bracket (2.1.2) is written as

{f, g}V dt = ϑgϑfΩ.

The pair (V ∗Q,Ω) is the particular polysymplectic phase–space of the co-
variant Hamiltonian field theory (see [CCI91, GMS97, Got91c, Sar95] for a
survey). Following its general scheme, we can formulate the Hamiltonian time–
dependent mechanics as follows [MS98, Sar98].

Recall that connection γ on the Legendre bundle V ∗Q −→ R is called
canonical if the corresponding horizontal vector–field is canonical for the Pois-
son structure on V ∗Q, i.e., the form γΩ is closed. Such a form is necessarily
exact. A canonical connection γ is a said to be a Hamiltonian connection if

γΩ = dH, (2.63)

where H is a Hamiltonian form on V ∗Q. Every Hamiltonian form admits a
unique Hamiltonian connection γH , while any canonical connection is locally
a Hamiltonian one. Given a Hamiltonian form H, the kernel of the covariant
differential DγH

, associated with the Hamiltonian connection γH , is a closed
imbedded subbundle of the jet bundle J1(R, V ∗Q) −→ R, and so is the sys-
tem of first–order PDEs on the Legendre bundle V ∗Q −→ R. These are the
Hamiltonian equations in time–dependent mechanics, while the Lie derivative

LγH
f = γHdf (2.64)
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defines the evolution equation on C∞(V ∗Z). This Hamiltonian dynamics is
equivalent to the Lagrangian one for hyperregular Lagrangians, while a de-
generate Lagrangian involves a set of associated Hamiltonian forms in order
to exhaust solutions of the Lagrangian equations [GMS97, Sar94, Sar95].

Since γH is not a vertical vector–field, the r.h.s. of the evolution equation
(2.64) is not expressed into the Poisson bracket in a canonical way, but con-
tains a frame–dependent term. Every connection Γ on the configuration bun-
dle Q→ R is an affine section of the bundle (2.61), and defines the Hamilto-
nian form HΓ = Γ ∗Ξ on V ∗Q. The corresponding Hamiltonian connection is
the canonical lift V ∗Γ of Γ onto the Legendre bundle V ∗Q [GMS97, MOS99].
Then any Hamiltonian form H on V ∗Q admits splittings

H = HΓ − H̃Γ dt, with γH = V ∗Γ + ϑH̃Γ
, (2.65)

where ϑH̃Γ
is the vertical Hamiltonian field for the function H̃Γ , which the

energy function with respect to the reference frame Γ . With the splitting
(2.65), the evolution equation (2.64) takes the form

LγH
f = V ∗Γ H + {H̃Γ , f}V . (2.66)

Let the configuration bundle Q −→ R with an mD typical fibre M be
coordinated by (t, qi). Then Legendre bundle V ∗Q and the cotangent bundle
T ∗Q admit holonomic coordinates (t, qi, pi = q̇i) and (t, qi, pi, p), respectively.
Relative to these coordinates, a Hamiltonian form H on V ∗Q reads

H = h∗Ξ = pidqi −Hdt. (2.67)

It is the well–known integral invariant of Poincaré–Cartan, where H is a
Hamiltonian in time–dependent mechanics. The expression (2.67) shows that
H fails to be a scalar under time–dependent transformations. Therefore, the
evolution equation (2.66) takes the local form

LγH
= ∂tf + {H, f}V , (2.68)

but one should bear in mind that the terms in its r.h.s., taken separately,
are not well–behaved objects under time–dependent transformations. In par-
ticular, the equality {H, f}V = 0 is not preserved under time–dependent
transformations.

Every Lagrangian L defines the Legendre map

L̂ : J1(R, Q) −→ V ∗Q, locally given by pi ◦ L̂ = πi, (2.69)

whose image NL = L̂(J1(R, Q)) ⊂ V ∗Q is called the Lagrangian constraint
space. We state the comprehensive relationship between solutions of the La-
grangian equations for an almost regular Lagrangian L and solutions in NL
of the Hamiltonian equations for associated Hamiltonian forms.
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Lagrangian Time–Dependent Dynamics

Given a Lagrangian L on the velocity phase–space J1(R, Q), we follow the
first variational formula of [GMS97, MS98, Sar97], which gives the canonical
decomposition of the Lie derivative

Lj1uL = (j1uL) dt (2.70)

of L along a projectable vector–field u on Q −→ R. We have

j1uL = uV EL + dt(uHL),

where uV = (uθi)∂i,

HL = L+ πiθi, πi = ∂tiL, (2.71)

is the Poincaré–Cartan form and

EL : J2(R, Q) −→ V ∗Q, EL = (∂i − dtπi)Ldqi

is the Euler–Lagrangian operator associated with L. The kernel Ker EL ⊂
J2(R, Q) of EL defines the Lagrangian equations on Q, given by the coordinate
relations

(∂i − dtπi)L = 0. (2.72)

On–shell, the first variational formula (2.70) leads to the weak identity

Lj1uL ≈ dt(uHL)dt,

and then, if Lj1uL = 0, to the weak conservation law

dt(uHL) = −dtJ ≈ 0

of the symmetry current J , given by

J = −(uHL) = −πi(utq̇i − ui)− utL.

Being the Lepagean equivalent of the Lagrangian L on J1(R, Q) (i.e., L =
h0(HL) where h0 is the map (2.59), see [GMS97, MS98, Sar97]), the Poincaré–
Cartan form HL (2.71) is also the Lepagean equivalent of the Lagrangian on
the repeated jet space J1(R, J1(R, Q)),

L = ĥ0(HL) = (L+ ( ̂̇qi − q̇i)πi)dt, ĥ0(dyi) = q̂itdt,

coordinated by (t, qi, q̇i, ̂̇qi, q̈i). The Euler–Lagrangian operator
EL : J1(R, J1(R, Q)) → V ∗J1(R, Q) for L is locally given by

EL = (∂iL − d̂tπi + ∂iπj( ̂̇qj − q̇j))dqi + ∂tiπj( ̂̇qj − q̇j)dq̇i, (2.73)

with d̂t = ∂t + ̂̇qi∂i + q̈i∂ti .
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Its kernel Ker EL ⊂ J1(R, J1(R, Q)) defines the Cartan equations

∂tiπj( ̂̇qj − q̇j) = 0, ∂iL − d̂tπi + ( ̂̇qj − q̇j)∂iπj = 0. (2.74)

Since EL |J2(R,Q)= EL, the Cartan equations (2.74) are equivalent to the
Lagrangian equations (2.72) on integrable sections c = ċ of J1(R, Q) → R.
These equations are equivalent in the case of regular Lagrangians.

On sections c : R −→ J1(R, Q), the Cartan equations (2.74) are equivalent
to the relation

c∗(udHL) = 0, (2.75)

which is assumed to hold for all vertical vector–fields u on J1(R, Q) −→ R.
With the Poincaré–Cartan form HL (2.71), we have the Legendre map

ĤL : J1(R, Q) −→ T ∗Q, (pi, p) ◦ ĤL = (πi,L − πiq̇i).

Let ZL = ĤL(J1(R, Q)) be an imbedded subbundle iL : ZL ↪→ T ∗Q of T ∗Q→
Q. It admits the pull–back de Donder form i∗LΞ. We have

HL = Ĥ∗
LΞL = Ĥ∗

L(i∗LΞ).

By analogy with the Cartan equations (2.75), the Hamilton–de Donder equa-
tions for sections r of T ∗Q→ R are written as

r∗(udΞL) = 0 (2.76)

where u is an arbitrary vertical vector–field on T ∗Q→ R [LM03].
Let the Legendre map ĤL : J1(R, Q) −→ ZL be a submersion. Then a

section c of J1(R, Q) −→ R is a solution of the Cartan equations (2.75) iff
ĤL ◦ c is a solution of the Hamilton–de Donder equations (2.76), i.e., Cartan
and Hamilton–de Donder equations are quasi–equivalent [Got91c, LM03].

Hamiltonian Time–Dependent Dynamics

Let the Legendre bundle V ∗Q → R be provided with the holonomic coordi-
nates (t, qi, q̇i). Relative to these coordinates, the canonical 3–form Ω (2.62)
and the canonical Poisson structure on V ∗Q read

Ω = dpi ∧ dqi ∧ dt, (2.77)
{f, g}V = ∂if∂ig − ∂ig∂if, (f, g ∈ C∞V ∗Q). (2.78)

The corresponding symplectic foliation coincides with the fibration V ∗Q→ R.
The symplectic forms on the fibres of V ∗Q → R are the pull–backs Ωt =
dpi ∧ dqi of the canonical symplectic form on the typical fibre T ∗M of the
Legendre bundle V ∗Q→ R with respect to trivialization maps [CR89, HL84,
Sar98]. Given such a trivialization, the Poisson structure (2.78) is isomorphic
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to the product of the zero Poisson structure on R and the canonical symplectic
structure on T ∗M .

An automorphism ρ of the Legendre bundle V ∗Q → R is a canonical
transformation of the Poisson structure (2.78) iff it preserves the canonical
3–form Ω (2.77). Let us emphasize that canonical transformations are com-
patible with the fibration V ∗Q → R, but not necessarily with the fibration
πQ : V ∗Q→ Q.

With respect to the Poisson bracket (2.78), the Hamiltonian vector–field
ϑf for a function f on the momentum phase–space manifold V ∗Q is given by

ϑf = ∂if∂i − ∂if∂i.

A Hamiltonian vector–field, by definition, is canonical. Conversely, every ver-
tical canonical vector–field on the Legendre bundle V ∗Q −→ R is locally a
Hamiltonian vector–field.

To prove this, let σ be a one–form on V ∗Q. If σ ∧ dt is closed form, it
is exact. Since V ∗Q is diffeomorphic to R × T ∗M , we have the de Rham
cohomology group

H2(V ∗Q) = H0(R)⊗H2(T ∗M)⊕H1(R)⊗H1(T ∗M).

The form σ ∧ dt belongs to its second item which is zero.
If the two–form σ ∧ dt is exact, then σ ∧ dt = dg ∧ dt locally [GMS97].
Let γ = ∂t+γi∂i+γi∂i be a canonical connection on the Legendre bundle

V ∗Q −→ R. Its components obey the relations

∂iγj − ∂jγi = 0, ∂iγj − ∂jγi = 0, ∂jγ
i + ∂iγj = 0.

Canonical connections constitute an affine space modelled over the vector
space of vertical canonical vector–fields on V ∗Q −→ R.

If γ is a canonical connection, then the form γΩ is exact. Every connection
Γ on Q→ R induces the connection on V ∗Q→ R,

V ∗Γ = ∂t + Γ i∂i − pi∂jΓ i∂j ,

which is a Hamiltonian connection for the frame Hamiltonian form

V ∗Γ Ω = dHΓ , HΓ = pidqi − piΓ idt. (2.79)

Thus, every canonical connection γ on V ∗Q defines an exterior one–form
H modulo closed forms so that dH = γΩ. Such a form is called a locally
Hamiltonian form.

Every locally Hamiltonian form on the momentum phase–space V ∗Q is
locally a Hamiltonian form modulo closed forms. Given locally Hamiltonian
forms Hγ and Hγ′ , their difference σ = Hγ −Hγ′ is a one–form on V ∗Q such
that the two–form σ ∧ dt is closed. The form σ ∧ dt is exact and σ = fdt+ dg
locally. Put Hγ′ = HΓ where Γ is a connection on V ∗Q −→ R. Then Hγ
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modulo closed forms takes the local form Hγ = HΓ + fdt, and coincides
with the pull–back of the Liouville form Ξ on T ∗Q by the local section p =
−piΓ i + f of the fibre bundle (2.61).

Conversely, each Hamiltonian formH on the momentum phase–space V ∗Q
admits a unique canonical connection γH on V ∗Q −→ R such that the relation
(2.63) holds. Given a Hamiltonian form H, its exterior differential

dH = h∗dΞ = (dpi + ∂iHdt) ∧ (dqi − ∂iHdt)

is a presymplectic form of constant rank 2m since the form

(dH)m = (dpi ∧ dqi)m −m(dpi ∧ dqi)m−1 ∧ dH ∧ dt

is nowhere vanishing. It is also seen that (dH)m ∧ dt �= 0. It follows that the
kernel of dH is a 1D distribution. Then the desired Hamiltonian connection

γH = ∂t + ∂iH∂i − ∂iH∂i (2.80)

is a unique vector–field γH on V ∗Q such that γHdH = 0 and γHdt = 1.
Hamiltonian forms constitute an affine space modelled over the vector

space of horizontal densities fdt on V ∗Q→ R, i.e., over C∞(V ∗Q). Therefore
Hamiltonian connections γH form an affine space modelled over the vector
space of Hamiltonian vector–fields. Every Hamiltonian form H defines the
associated Hamiltonian map

Ĥ = j1πQ ◦ γH : ∂t + ∂iH : V ∗Q→ J1(R, Q). (2.81)

With the Hamiltonian map (2.81), we have another Hamiltonian form

HĤ = −ĤΘ = pidqi − pi∂iH.

Note that HĤ = H iff H is a frame Hamiltonian form.
Given a Hamiltonian connection γH (2.80), the corresponding Hamiltonian

equations DγH
= 0 take the coordinate form

q̇i = ∂iH, ṗi = −∂iH. (2.82)

Their classical solutions are integral sections of the Hamiltonian connection
γH , i.e., ṙ = γH ◦ r. On sections r of the Legendre bundle V ∗Q −→ R, the
Hamiltonian equations (2.82) are equivalent to the relation

r∗(udH) = 0 (2.83)

which is assumed to hold for any vertical vector–field u on V ∗Q −→ R.
A Hamiltonian form H (2.79) is the Poincaré–Cartan form for the La-

grangian on the jet space J1(R, V )∗Q,

LH = h0(H) = (piq̇i −H)ω. (2.84)
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Given a projectable vector–field u on the configuration bundle Q −→ R and
its lift onto the Legendre bundle V ∗Q −→ R,

ũ = ut∂t + ui∂i − ∂iujpj∂i, we have
LũH = LJ1ũLH . (2.85)

Note that the Hamiltonian equations (2.82) for H are exactly the Lagrangian
equations for LH , i.e., they characterize the kernel of the Euler–Lagrangian
operator

EH : J1(R, V )∗Q→ V ∗V ∗Q, EH = (q̇i − ∂iH)dpi − (ṗi + ∂iH)dqi

for the Lagrangian LH , called the Hamiltonian operator for H.
Using the relation (2.85), let us get the Hamiltonian conservation laws

in time–dependent mechanics. As in field theory, by gauge transformations
in time–dependent mechanics are meant automorphism of the configuration
bundle Q → R, but only over translations of the base R. Then, projectable
vector–fields on V ∗Q→ R,

u = ut∂t + ui∂i, udt = ut = const, (2.86)

can be seen as generators of local 1–parameter groups of local gauge trans-
formations. Given a Hamiltonian form H (2.126), its Lie derivative (2.85)
reads

LũH = Lj1ũLH = (−ut∂tH+ pi∂tui − ui∂iH+ ∂juipi∂jH)dt. (2.87)

The first variational formula (2.70) applied to the Lagrangian LH (2.84) leads
to the weak identity LũH ≈ dt(uH)dt. If the Lie derivative (2.87) vanishes,
we have the conserved symmetry current

Ju = udH = piui − utH, (2.88)

along u. Every vector–field (2.86) is a superposition of a vertical vector–field
and a reference frame on Q → R. If u is a vertical vector–field, Ju is the
Nöther current

Ju(q) = uq = piui, (q = pidqi ∈ V ∗Q). (2.89)

The symmetry current along a reference frame Γ , given by

JΓ = piΓ i −H = −H̃Γ ,

is the energy function with respect to the reference frame Γ , taken with the
sign minus [EMR95, MS98, Sar98]. Given a Hamiltonian form H, the energy
functions H̃Γ constitute an affine space modelled over the vector space of
Nöther currents. Also, given a Hamiltonian form H, the conserved currents
(2.88) form a Lie algebra with respect to the Poisson bracket
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{Ju,Ju′}V = J[u,u′].

The second of the above constructions enables us to represent the r.h.s. of
the evolution equation (2.68) as a pure Poisson bracket. Given a Hamiltonian
form H = h∗Ξ, let us consider its pull–back ζ∗H onto the cotangent bundle
T ∗Q. Note that the difference Ξ−ζ∗H is a horizontal one–form on T ∗Q→ R,
while

H∗ = ∂t(Ξ − ζ∗H) = p+H (2.90)

is a function on T ∗Q. Then the relation

ζ∗(LγH
f) = {H∗, ζ∗f}T (2.91)

holds for every function f ∈ C∞(V ∗Q). In particular, given a projectable
vector–field u (2.86), the symmetry current Ju (2.88) is conserved iff

{H∗, ζ∗Ju}T = 0.

Moreover, let ϑH∗ be the Hamiltonian vector–field for the function H∗ (2.90)
with respect to the canonical Poisson structure {, }T on T ∗Q. Then

Tζ(ϑH∗) = γH .

Time–Dependent Constraints

The relation (2.91) enables us to extend the constraint algorithm of conser-
vative mechanics and time–dependent mechanics on a product R ×M (see
[CLM94, LM93]) to mechanical systems subject to time–dependent transfor-
mations.

Let H be a Hamiltonian form on the momentum phase–space manifold
V ∗Q. In accordance with the relation (2.91), a constraint f ∈ IN is preserved if
the bracket in (2.91) vanishes. It follows that the solutions of the Hamiltonian
equations (2.82) do not leave the constraint space N if

{H∗, ζ∗IN}T ⊂ ζ∗IN . (2.92)

If the relation (2.92) fails to hold, let us introduce secondary constraints
{H∗, ζ∗f}T , f ∈ IN , which belong to ζ∗C∞(V ∗Q). If the collection of pri-
mary and secondary constraints is not closed with respect to the relation
(2.92), let us add the tertiary constraints {H∗, {H∗, ζ∗fa}T }T and so on.

Let us assume that N is a final constraint space for a Hamiltonian form
H. If a Hamiltonian form H satisfies the relation (2.92), so is a Hamiltonian
form

Hf = H − fdt, (2.93)

where f ∈ I ′N is a first class constraint. Though Hamiltonian forms H and
Hf coincide with each other on the constraint space N , the corresponding
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Hamiltonian equations have different solutions on the constraint space N be-
cause dH|N �= dHf |N . At the same time, d(i∗NH) = d(i∗NHf ). Therefore, let
us introduce the constrained Hamiltonian form

HN = i∗NHf , (2.94)

which is the same for all f ∈ I ′N . Note that HN (2.94) is not a true Hamil-
tonian form on N −→ R in general. On sections r of the fibre bundle N −→ R,
we can write the equations

r∗(uNdHN ) = 0, (2.95)

where uN is an arbitrary vertical vector–field on N −→ R. They are called the
constrained Hamiltonian equations.

For any Hamiltonian form Hf (2.93), every solution of the Hamiltonian
equations which lives in the constraint space N is a solution of the constrained
Hamiltonian equations (2.95). The constrained Hamiltonian equations can be
written as

r∗(uNdi∗NHf ) = r∗(uNdHf |N ) = 0. (2.96)

They differ from the Hamiltonian equations (2.83) for Hf restricted to N
which read

r∗(udHf |N ) = 0, (2.97)

where r is a section of N → R and u is an arbitrary vertical vector–field on
V ∗Q→ R. A solution r of the equations (2.97) satisfies the weaker condition
(2.96).

One can also consider the problem of constructing a generalized Hamil-
tonian system, similar to that for Dirac constraint system in conservative
mechanics [MS98]. Let H satisfies the condition {H∗, ζ∗I ′N}T ⊂ IN , whereas
{H∗, ζ∗I ′N}T �⊂ IN . The goal is to find a constraint f ∈ IN such that the
modified Hamiltonian H − fdt would satisfy both the conditions

{H∗ + ζ∗f, ζ∗I ′N}T ⊂ ζ∗IN , {H∗ + ζ∗f, ζ∗IN}T ⊂ ζ∗IN .

The first of them is fulfilled for any f ∈ IN , while the latter is an equation
for a second–class constraint f .

Note that, in contrast with the conservative case, the Hamiltonian vector–
fields ϑf for the first class constraints f ∈ I ′N in time–dependent mechanics
are not generators of gauge symmetries of a Hamiltonian form in general. At
the same time, generators of gauge symmetries define an ideal of constraints
as follows.

Lagrangian Constraints

Let us consider the Hamiltonian description of Lagrangian mechanical systems
on a configuration bundle Q→ R. If a Lagrangian is degenerate, we have the
Lagrangian constraint subspace of the Legendre bundle V ∗Q and a set of
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Hamiltonian forms associated with the same Lagrangian. Given a Lagrangian
L (2.60) on the velocity phase–space J1(R, Q), a Hamiltonian form H on the
momentum phase–space V ∗Q is said to be associated with L if H satisfies the
relations

L̂ ◦ Ĥ ◦ L̂ = L̂, and H = HĤ + Ĥ∗L (2.98)

where Ĥ and L̂ are the Hamiltonian map (2.81) and the Legendre map (2.69),
respectively. Here, L̂ ◦ Ĥ is the projector

pi(z) = πi(t, qi, ∂jH(z)), (z ∈ NL), (2.99)

from Π onto the Lagrangian constraint space NL = L̂(J1(R, Q)). Therefore,
Ĥ ◦ L̂ is the projector from J1(R, Q) onto Ĥ(NL). A Hamiltonian form is
called weakly associated with a Lagrangian L if the condition (2.98) holds on
the Lagrangian constraint space NL.

If a bundle map Φ : V ∗Q → J1(R, Q) obeys the relation (2.98), then the
Hamiltonian form H = −ΦΘ+Φ∗L is weakly associated with the Lagrangian
L. If Φ = Ĥ, then H is associated with L [GMS97].

Any Hamiltonian form H weakly associated with a Lagrangian L obeys
the relation

H|NL
= Ĥ∗HL|NL

, (2.100)

where HL is the Poincaré–Cartan form (2.71). The relation (2.98) takes the
coordinate form

H(z) = pi∂iH−L(t, qi, ∂jH(z)), (z ∈ NL). (2.101)

Substituting (2.99) and (2.101) in (2.126), we get the relation (2.100).
The difference between associated and weakly associated Hamiltonian

forms lies in the following. Let H be an associated Hamiltonian form, i.e.,
the equality (2.101) holds everywhere on V ∗Q. The exterior differential of
this equality leads to the relations

∂tH(z) = −(∂tL) ◦ Ĥ(z), ∂iH(z) = −(∂iL) ◦ Ĥ(z),
(pi − (∂tiL)(t, qi, ∂jtH))∂it∂

a
tH = 0, (z ∈ NL).

The last of them shows that the Hamiltonian form is not regular outside
the Lagrangian constraint space NL. In particular, any Hamiltonian form is
weakly associated with the Lagrangian L = 0, while the associated Hamilto-
nian forms are only HΓ .

Here we restrict our consideration to almost regular Lagrangians L, i.e.,
if: (i) the Lagrangian constraint space NL is a closed imbedded subbundle
iN : NL −→ V ∗Q of the bundle V ∗Q −→ Q, (ii) the Legendre map L̂ : J1(R, Q)
−→ NL is a fibre bundle, and (iii) the pre-image L̂−1(z) of any point z ∈ NL
is a connected submanifold of J1(R, Q).
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A Hamiltonian form H weakly associated with an almost regular La-
grangian L exists iff the fibre bundle J1(R, V )∗Q −→ NL admits a global
section.

The condition (iii) leads to the following property [GMS97, MS98]. The
Poincaré–Cartan form HL for an almost regular Lagrangian L is constant on
the connected pre–image L̂−1(z) of any point z ∈ NL.

An immediate consequence of this fact is the following assertion [GMS97].
All Hamiltonian forms weakly associated with an almost regular Lagrangian
L coincide with each other on the Lagrangian constraint space NL, and the
Poincaré–Cartan form HL for L is the pull–back

HL = L̂∗H, πiq̇
i − L = H(t, qj , πj),

of any such a Hamiltonian form H.
It follows that, given Hamiltonian forms H an H ′ weakly associated with

an almost regular Lagrangian L, their difference is fdt, (f ∈ IN ). Above
proposition enables us to connect Lagrangian and Cartan equations for an
almost regular Lagrangian L with the Hamiltonian equations for Hamiltonian
forms weakly associated with L [GMS97].

Let a section r of V ∗Q −→ R be a solution of the Hamiltonian equations
(2.82) for a Hamiltonian form H weakly associated with an almost regular
Lagrangian L. If r lives in the constraint space NL, the section c = πQ ◦ r of
Q −→ R satisfies the Lagrangian equations (2.72), while c = Ĥ ◦ r obeys the
Cartan equations (2.74).

Given an almost regular Lagrangian L, let a section c of the jet bundle
J1(R, Q) −→ R be a solution of the Cartan equations (2.74). Let H be a
Hamiltonian form weakly associated with L, and let H satisfy the relation

Ĥ ◦ L̂ ◦ c = j1(π1
0 ◦ c). (2.102)

Then, the section r = L̂ ◦ c of the Legendre bundle V ∗Q −→ R is a solution of
the Hamiltonian equations (2.82) for H. Since Ĥ ◦ L̂ is a projection operator,
the condition (2.102) implies that the solution s of the Cartan equations is
actually an integrable section c = ċ where c is a solution of the Lagrangian
equations.

Given a Hamiltonian form H weakly associated with an almost regular
Lagrangian L, let us consider the corresponding constrained Hamiltonian form
HN (2.94). HN is the same for all Hamiltonian forms weakly associated with
L, and HL = L̂∗HN .

For any Hamiltonian form H weakly associated with an almost regular
Lagrangian L, every solution of the Hamiltonian equations which lives in the
Lagrangian constraint space NL is a solution of the constrained Hamiltonian
equations (2.95).

Using the equality HL = L̂∗HN , one can show that the constrained
Hamiltonian equations (2.95) are equivalent to the Hamilton–de Donder
equations (2.76) and are quasi–equivalent to the Cartan equations (2.75)
[GMS97, MS98, LM03].
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Quadratic Degenerate Lagrangian Systems

Given a configuration bundle Q→ R, let us consider a quadratic Lagrangian
L which has the coordinate expression

L =
1
2
aij q̇

iq̇j + biq̇i + c, (2.103)

where a, b and c are local functions on Q. This property is coordinate–
independent due to the affine transformation law of the coordinates q̇i. The
associated Legendre map

pi ◦ L̂ = aij q̇j + bi (2.104)

is an affine map over Q. It defines the corresponding linear map

L : V Q −→ V ∗Q, pi ◦ L = aij q̇j . (2.105)

Let the Lagrangian L (2.103) be almost regular, i.e., the matrix function aij
is of constant rank. Then the Lagrangian constraint space NL = L̂(J1(R, Q))
is an affine subbundle of the bundle V ∗Q −→ Q, modelled over the vector
subbundle NL (2.105) of V ∗Q −→ Q. Hence, NL −→ Q has a global section.
For the sake of simplicity, let us assume that it is the canonical zero section
0̂(Q) of V ∗Q −→ Q. Then NL = NL. Therefore, the kernel of the Legendre
map (2.104) is an affine subbundle of the affine jet bundle J1(R, Q) −→ Q,
modelled over the kernel of the linear map L (2.105). Then there exists a
connection Γ on the fibre bundle Q −→ R, given by

Γ : Q −→ Ker L̂ ⊂ J1(R, Q), with aijΓ
j
µ + bi = 0.

Connections Γ constitute an affine space modelled over the linear space of
vertical vector–fields υ on Q −→ R, satisfying the conditions

aijυ
j = 0 (2.106)

and, as a consequence, the conditions υibi = 0. If the Lagrangian (2.103) is
regular, the connection Γ is unique.

There exists a linear bundle map

σ : V ∗Q −→ V Q, q̇i ◦ σ = σijpj ,

such that L ◦ σ ◦ iN = iN . The map σ is a solution of the algebraic equations

aijσ
jkakb = aib.

There exist the bundle splitting

V Q = Ker a⊕ E′ (2.107)
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and a nonholonomic atlas of this bundle such that transition functions of
Ker a and E′ are independent. Since a is a non–degenerate fibre metric in
E′, there exists an atlas of E′ such that a is brought into a diagonal matrix
with non–vanishing components aAA. Due to the splitting (2.107), we have
the corresponding bundle splitting

V ∗Q = (Ker a)∗ ⊕ Im a. (2.108)

Then the desired map σ is represented by a direct sum σ1⊕σ0 of an arbitrary
section σ1 of the bundle ∨2 Ker a∗ → Q and the section σ0 of the bundle
∧2E′ → Q, which has non–vanishing components σAA = (aAA)−1 with respect
to the above atlas of E′. Moreover, σ satisfies the particular relations

σ0 = σ0 ◦ L ◦ σ0, a ◦ σ1 = 0, σ1 ◦ a = 0. (2.109)

The splitting (2.107) leads to the splitting

J1(R, Q) = S(J1(R, Q))⊕F(J1(R, Q)) = Ker L̂⊕ Im(σ ◦ L̂), (2.110)
q̇i = Si + F i = [q̇i − σik0 (akj q̇j + bk)] + [σik0 (akj q̇j + bk)], (2.111)

while the splitting (2.108) can be written as

V ∗Q = R(V ∗Q)⊕ P(V ∗Q) = Kerσ0 ⊕NL, (2.112)

pi = Ri + Pi = [pi − aijσjk0 pk] + [aijσ
jk
0 pk]. (2.113)

Note that, with respect to the coordinates Siα and F iα (2.111), the La-
grangian (2.103) reads

L =
1
2
aijF iFj + c′,

while the Lagrangian constraint space is given by the reducible constraints

Ri = pi − aijσjk0 pk = 0.

Given the linear map σ and the connection Γ as defined above, let us
consider the affine Hamiltonian map

Φ = Γ̂ + σ : V ∗Q −→ J1(R, Q), Φi = Γ i + σijpj , (2.114)

and the Hamiltonian form

H = HΦ + Φ∗L = pidqi − [piΓ i +
1
2
σ0
ijpipj + σ1

ijpipj − c′]dt (2.115)

= (Ri + Pi)dqi − [(Ri + Pi)Γ i +
1
2
σij0 PiPj + σij1 pipj − c′]dt.

In particular, if σ1 is non–degenerate, so is the Hamiltonian form H.
The Hamiltonian forms of the type H, parameterized by connections Γ ,

are weakly associated with the Lagrangian (2.103) and constitute a complete
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set. Then H is weakly associated with L. Let us write the corresponding
Hamiltonian equations (2.82) for a section r of the Legendre bundle V ∗Q
−→ R. They are

ċ = (Γ̂ + σ) ◦ r, c = πQ ◦ r. (2.116)

Due to the surjections S and F (2.111), the Hamiltonian equations (2.116)
break in two parts

S ◦ ċ = Γ ◦ c, ṙi − σik(akj ṙj + bk) = Γ i ◦ c, (2.117)
F ◦ ċ = σ ◦ r, σik(akj ṙj + bk) = σikrk. (2.118)

Let c be an arbitrary section of Q −→ R, e.g., a solution of the Lagrangian
equations. There exists a connection Γ such that the relation (2.117) holds,
namely, Γ = S ◦ Γ ′, where Γ ′ is a connection on Q −→ R which has c as an
integral section.

If σ1 = 0, then Φ = Ĥ and the Hamiltonian forms H are associated with
the Lagrangian (2.103). Thus, for different σ1, we have different complete sets
of Hamiltonian forms H, which differ from each other in the term υiRi, where
υ are vertical vector–fields (2.106). This term vanishes on the Lagrangian
constraint space. The corresponding constrained Hamiltonian form HN =
i∗NH and the constrained Hamiltonian equations (2.95) can be written.

For every Hamiltonian form H, the Hamiltonian equations (2.82) and
(2.118) restricted to the Lagrangian constraint space NL are equivalent to
the constrained Hamiltonian equations.

Due to the splitting (2.112), we have the corresponding splitting of the
vertical tangent bundle VQV ∗Q of the bundle V ∗Q −→ Q. In particular, any
vertical vector–field u on V ∗Q −→ R admits the decomposition

u = [u− uTN ] + uTN , with uTN = ui∂i + aijσ
jk
0 uk∂

i,

such that uN = uTN |NL
is a vertical vector–field on the Lagrangian constraint

space NL −→ R. Let us consider the equations

r∗(uTNdH) = 0

where r is a section of V ∗Q −→ R and u is an arbitrary vertical vector–field
on V ∗Q −→ R. They are equivalent to the pair of equations

r∗(aijσ
jk
0 ∂

idH) = 0, (2.119)
r∗(∂idH) = 0. (2.120)

Restricted to the Lagrangian constraint space, the Hamiltonian equations
for different Hamiltonian forms H associated with the same quadratic La-
grangian (2.103) differ from each other in the equations (2.117). These equa-
tions are independent of momenta and play the role of gauge–type conditions.
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Time–Dependent Completely Integrable Hamiltonian Systems

Recall that the configuration space of a time–dependent mechanical system
is a fibre bundle M → R over the time axis R equipped with the bundle
coordinates qα ≡ (t, qk), for k = 1, . . . ,m. The corresponding momentum
phase–space is the vertical cotangent bundle V ∗M of M → R with holonomic
bundle coordinates (t, qk, pk).

Recall that the cotangent bundle T ∗M of M is coordinated by [MS98,
GMS97]

(t, qk, p0 = p, pk), p′ = p+
∂qk

∂t
pk, (2.121)

and plays the role of the homogeneous momentum phase–space of time–
dependent mechanics. It admits the canonical Liouville form Ξ = pαdqα, the
canonical symplectic form ΩT = dΞ, and the corresponding Poisson bracket

{f, f ′}T = ∂αf∂αf ′ − ∂αf∂αf ′, (f, f ′ ∈ C∞(T ∗M)). (2.122)

There is a canonical 1D fibre bundle

ζ : T ∗M → V ∗M, (2.123)

whose kernel is the annihilator of the vertical tangent bundle VM ⊂ TM .
The transformation law (2.121) shows that it is a trivial affine bundle. Indeed,
given a global section h of ζ, one can equip T ∗M with the fibre coordinate
r = p− h possessing the identity transition functions.

The fibre bundle (2.123) gives the vertical cotangent bundle V ∗M with
the canonical Poisson structure {, }V such that

ζ∗{f, f ′}V = {ζ∗f, ζ∗f ′}T , (2.124)
{f, f ′}V = ∂kf∂kf ′ − ∂kf∂kf ′, (2.125)

for all f, f ′ ∈ C∞(V ∗M). The corresponding symplectic foliation coincides
with the fibration V ∗M → R.

However, the Poisson structure (2.125) fails to give any dynamical equation
on the momentum phase–space V ∗M because Hamiltonian vector–fields

ϑf = ∂kf∂k − ∂kf∂k, ϑfdf ′ = {f, f ′}V , (f, f ′ ∈ C∞(V ∗M)),

of functions on V ∗M are vertical. Hamiltonian dynamics of time–dependent
mechanics is described in a different way as a particular Hamiltonian dynamics
on fibre bundles [MS98, GMS97].

A Hamiltonian on the momentum phase–space V ∗M → R of time–
dependent mechanics is defined as a global section

h : V ∗M → T ∗M, p ◦ h = −H(t, qj , pj),

of the affine bundle ζ (2.123). It induces the pull–back Hamiltonian form
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H = h∗Ξ = pkdqk −Hdt, (2.126)

on V ∗M . Given H (2.126), there exists a unique vector–field γH on V ∗M such
that

γHdt = 1, γHdH = 0. (2.127)

This vector–field reads

γH = ∂t + ∂kH∂k − ∂kH∂k. (2.128)

It defines the first–order Hamiltonian equation

ṫ = 1, q̇k = ∂kH, ṗk = −∂kH (2.129)

on V ∗M , where (t, qk, pk, ṫ, q̇k, ṗk) are holonomic coordinates on the tangent
bundle TV ∗M . Solutions of this equation are trajectories of the vector–field
γH . They assemble into a (regular) foliation of V ∗M .

A first integral of the Hamiltonian equation (2.129) is defined as a smooth
real function F on V ∗M whose Lie derivative

LγH
F = γHdF = ∂tF + {H, F}V

along the vector–field γH (2.128) vanishes, i.e., the function F is constant
on trajectories of the vector–field γH . A time–dependent Hamiltonian system
(V ∗M,H) on V ∗M is said to be completely integrable if the Hamiltonian
equation (2.129) admits m first integrals Fk which are in involution with
respect to the Poisson bracket {, }V (2.125) and whose differentials dFk are
linearly independent almost everywhere. This system can be extended to an
autonomous completely integrable Hamiltonian system on T ∗M as follows.

Let us consider the pull–back ζ∗H of the Hamiltonian form H = h∗Ξ onto
the cotangent bundle T ∗M . Note that the difference Ξ−ζ∗h∗Ξ is a horizontal
1–form on T ∗M → R and that

H∗ = ∂t(Ξ − ζ∗h∗Ξ)) = p+H (2.130)

is a function on T ∗M [Sni80]. Let us regard H∗ (2.130) as a Hamiltonian of
an autonomous Hamiltonian system on the symplectic manifold (T ∗M,ΩT ).
The Hamiltonian vector–field of H∗ on T ∗M reads

γT = ∂t − ∂tH∂0 + ∂kH∂k − ∂kH∂k.

It is projected onto the vector–field γH (2.128) on V ∗M , and the relation

ζ∗(LγH
f) = {H∗, ζ∗f}T , (f ∈ C∞(V ∗M)).

holds. An immediate consequence of this relation is the following.
Let (V ∗M,H;Fk) be a time–dependent completely integrable Hamilto-

nian system with first integrals {Fk} on V ∗M . Then (T ∗M ;H∗, ζ∗Fk) is an
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autonomous completely integrable Hamiltonian system on T ∗M whose first
integrals {H∗, ζ∗Fk} are in involution with respect to the Poisson bracket {, }T
(2.122). Furthermore, let N be a connected invariant manifold of the time–
dependent completely integrable Hamiltonian system (V ∗M,H;Fk). Then
h(N) ⊂ T ∗M is a connected invariant manifold of the completely integrable
Hamiltonian system (T ∗M ;H∗, ζ∗Fk) on T ∗M . IfN contains no critical points
of first integrals Fk, then {H∗, ζ∗Fk} have no critical points in h(N).

Time–Dependent Action–Angle Coordinates

Let us introduce time–dependent action–angle coordinates around an invari-
ant manifold N of a time–dependent completely integrable Hamiltonian sys-
tem (V ∗M,H) as those induced by the action–angle coordinates around the
invariant manifold h(N) of the autonomous completely integrable system
(T ∗M,H∗).

Let M ′ be a connected invariant manifold of an autonomous completely
integrable system (Fα), α = 1, . . . , n, on a symplectic manifold (Z,ΩZ), and
let the Hamiltonian vector–fields of first integrals Fα on M ′ be complete. Let
there exist a neighborhood U of M ′ such that Fα have no critical points in
U and the submersion ×Fα : U → Rn is a trivial fibre bundle over a domain
V ′ ⊂ Rn. Then U is isomorphic to the symplectic annulus

W = V ′ × (Rn−m × Tm),

provided with the generalized action–angle coordinates

(I1, . . . , In;x1, . . . , xn−m;φ1, . . . , φm)

such that the symplectic form on W reads

ΩZ = dIi ∧ xi + dIn−m+k ∧ dφk,

and the first integrals Fα are functions of the action coordinates (Iα) only.
In particular, let M ′ be a compact invariant manifold of a completely

integrable system {Fα}, α = 1, . . . , n, on a symplectic manifold (Z,ΩZ) which
does not contain critical points of the first integrals Fα. Let the vector–field
γH (2.128) be complete. Let a connected invariant manifold N of a time–
dependent completely integrable Hamiltonian system (V ∗M,H;Fk) contain
no critical points of first integrals Fk, and let its projection N0 onto the fibre
V ∗

0 M along trajectories of γH be compact. Then the invariant manifold h(N)
of the completely integrable Hamiltonian system (T ∗M ;H∗, ζ∗Fk) has an open
neighborhood U .

Now, the open neighborhood U of the invariant manifold h(N) of the
completely integrable Hamiltonian system (T ∗M ;H∗, ζ∗Fk) is isomorphic to
the symplectic annulus

W ′ = V ′ × (R× Tm), V ′ = (−ε, ε)× V, (2.131)
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provided with the generalized action–angle coordinates

(I0, . . . , Im; t, φ1, . . . , φm). (2.132)

Moreover, we find that J0 = r, aα0 = δα0 and, as a consequence,

a00 =
∂I0
∂J0

= 1, a0i =
∂Ii
∂J0

= 0,

i.e., the action coordinate I0 is linear in the coordinate r, while Ii are inde-
pendent of r. With respect to the coordinates (2.132), the symplectic form on
W ′ reads

ΩT = dI0 ∧ dt+ dIk ∧ dφk,

the Hamiltonian H∗ is an affine function H∗ = I0+H′(Ij) of the action coor-
dinate I0, while the first integrals ζ∗Fk depends only on the action coordinates
Ii. The Hamiltonian vector–field of the Hamiltonian H∗ is

γT = ∂t + ∂iH′∂i. (2.133)

Since the action coordinates Ii are independent on the coordinate r, the
symplectic annulus W ′ (2.131) inherits the composite fibration

W ′ → V × (R× Tm) → R. (2.134)

Therefore, one can regard W = V × (R × Tm) as a momentum phase–space
of the time–dependent Hamiltonian system in question around the invariant
manifold N . It is coordinated by (Ii, t, φi), which we agree to call the time–
dependent action–angle coordinates. By the relation similar to (2.124),W can
be equipped with the Poisson structure

{f, f ′}W = ∂if∂if ′ − ∂if∂if ′,

while the global section h′ : W → W ′ such that I0 ◦ h′ = −H′, of the trivial
bundle ζ (2.134), gives W with the Hamiltonian form

H ′ = Iidφi −H′(Ij)dt.

The associated vector–field γH (2.127) is exactly the projection ontoW of the
Hamiltonian vector–field γT (2.133), and takes the same coordinate form. It
defines the Hamiltonian equation on W ,

Ii = const, φ̇
i
= ∂iH′(Ij).

One can think of this equation as being the Hamiltonian equation of a time–
dependent Hamiltonian system around the invariant manifold N relative to
time–dependent action–angle coordinates.
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Lyapunov Stability

The notion of the Lyapunov stability of a dynamical equation on a smooth
manifold implies that this manifold is equipped with a Riemannian metric.
At the same time, no preferable Riemannian metric is associated to a first–
order dynamical equation. Here, we aim to study the Lyapunov stability of
first–order dynamical equations in non–autonomous mechanics with respect
to different (time–dependent) Riemannian metrics.

Let us recall that a solution s(t), for all t ∈ R, of a first–order dynamical
equation is said to be Lyapunov stable (in the positive direction) if for t0 ∈ R

and any ε > 0, there is δ > 0 such that, if s′(t) is another solution and
the distance between the points s(t0) and s′(t0) is inferior to δ, then the
distance between the points s(t) and s′(t) for all t > t0 is inferior to ε. In
order to formulate a criterion of the Lyapunov stability with respect to a
time–dependent Riemannian metric, we introduce the notion of a covariant
Lyapunov tensor as generalization of the well–known Lyapunov matrix. The
latter is defined as the coefficient matrix of the variation equation [Gal83,
HS74], and fails to be a tensor under coordinate transformations, unless they
are linear and time–independent. On the contrary, the covariant Lyapunov
tensor is a true tensor field, but it essentially depends on the choice of a
Riemannian metric. The following was shown in [Sar02b]:

(i) If the covariant Lyapunov tensor is negative definite in a tubular neigh-
borhood of a solution s at points t ≥ t0, this solution is Lyapunov stable.

(ii) For any first–order dynamical equation, there exists a (time–dependent)
Riemannian metric such that every solution of this equation is Lyapunov sta-
ble.

(iii) Moreover, the Lyapunov exponent of any solution of a first–order
dynamical equation can be made equal to any real number with respect to
the appropriate (time–dependent) Riemannian metric. It follows that chaos in
dynamical systems described by smooth (C∞) first–order dynamical equations
can be characterized in full by time–dependent Riemannian metrics.

First–Order Dynamical Equations

Let R be the time axis provided with the Cartesian coordinate t and transition
functions t′ = t+const. In geometrical terms [MS98], a (smooth) first–order
dynamical equation in non–autonomous mechanics is defined as a vector–field
γ on a smooth fibre bundle

π : Y −→ R (2.135)

which obeys the condition γdt = 1, i.e.,

γ = ∂t + γk∂k. (2.136)

The associated first–order dynamical equation takes the form

ṫ = 1, ẏk = γk(t, yj)∂k, (2.137)
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where (t, yk, ṫ, ẏk) are holonomic coordinates on TY . Its solutions are trajec-
tories of the vector–field γ (2.136). They assemble into a (regular) foliation
F of Y . Equivalently, γ (2.136) is defined as a connection on the fibre bundle
(2.135).

A fibre bundle Y (2.135) is trivial, but it admits different trivializations

Y ∼= R×M, (2.138)

distinguished by fibrations Y −→ M . For example, if there is a trivialization
(2.138) such that, with respect to the associated coordinates, the components
γk of the connection γ (2.136) are independent of t, one says that γ is a
conservative first–order dynamical equation on M .

Hereafter, the vector–field γ (2.136) is assumed to be complete, i.e., there
is a unique global solution of the dynamical equation γ through each point of
Y . For example, if fibres of Y −→ R are compact, any vector–field γ (2.136)
on Y is complete.

If the vector–field γ (2.136) is complete, there exists a trivialization (2.138)
of Y , with an atlas Ψ = {(U ; t, ya)} of a fibre bundle Y −→ R with time–
independent transition functions y′a(yb), such that any solution s of γ reads

sa(t) = const, (for all t ∈ R),

with respect to associated bundle coordinates (t, ya). If γ is complete, the
foliation F of its trajectories is a fibration ζ of Y along these trajectories onto
any fibre of Y , e.g., Yt=0

∼=M . This fibration induces a desired trivialization
[MS98].

One can think of the coordinates (t, ya) as being the initial–date coordi-
nates because all points of the same trajectory differ from each other only in
the temporal coordinate.

Let us consider the canonical lift V γ of the vector–field γ (2.136) onto the
vertical tangent bundle V Y of Y −→ R. With respect to the holonomic bundle
coordinates (t, yk, yk) on V Y , it reads

V γ = γ + ∂jγkyj∂k, where ∂k =
∂

∂yk
.

This vector–field obeys the condition V γdt = 1, and defines the first–order
dynamical equation

ṫ = 1, ẏk = γk(t, yi), (2.139)

ẏt
k

= ∂jγk(t, yi)yj (2.140)

on V Y . The equation (2.139) coincides with the initial one (2.137). The equa-
tion (2.140) is the well–known variation equation. Substituting a solution s of
the initial dynamical equation (2.139) into (2.140), one gets a linear dynamical
equation whose solutions s are Jacobi fields of the solution s. In particular, if
Y −→ R is a vector bundle, there are the canonical splitting V Y ∼= Y ×Y and
the map V Y −→ Y so that s+ s obeys the initial dynamical equation (2.139)
modulo the terms of order > 1 in s.
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Lyapunov Tensor

The collection of coefficients
lj
k = ∂jγk (2.141)

of the variation equation (2.140) is called the Lyapunov matrix. Clearly, it is
not a tensor under bundle coordinate transformations of the fibre bundle Y
(2.135). Therefore, we introduce a covariant Lyapunov tensor as follows.

Let a fibre bundle Y → R be provided with a Riemannian fibre metric g,
defined as a section of the symmetrized tensor product

∨2 V ∗Y → Y (2.142)

of the vertical cotangent bundle V ∗Y of Y → R. With respect to the holonomic
coordinates (t, yk, yk) on V ∗Y , it takes the coordinate form

g =
1
2
gij(t, yk)dyi ∨ dyj ,

where {dyi} are the holonomic fibre bases for V ∗Y .
Given a first–order dynamical equation γ, let

V ∗γ = γ − ∂jγkyk∂
j
, where ∂

j
=
∂

∂yj
. (2.143)

be the canonical lift of the vector–field γ (2.136) onto V ∗Y . It is a connection
on V ∗Y −→ R. Let us consider the Lie derivative Lγg of the Riemannian fibre
metric g along the vector–field V ∗γ (2.143). It reads

Lij = (Lγg)ij = ∂tgij + γk∂kgij + ∂iγkgkj + ∂jγkgik. (2.144)

This is a section of the fibre bundle (2.142) and, consequently, a tensor with
respect to any bundle coordinate transformation of the fibre bundle (2.135).
We agree to call it the covariant Lyapunov tensor. If g is an Euclidean metric,
it becomes the following symmetrization of the Lyapunov matrix (2.141),

Lij = ∂iγj + ∂jγi = lij + lji.

Let us point the following two properties of the covariant Lyapunov tensor.
(i) Written with respect to the initial–date coordinates, the covariant Lya-

punov tensor is given by

Lab = ∂tgab.

(ii) Given a solution s of the dynamical equation γ and a solution s of the
variation equation (2.140), we have

Lij(t, sk(t))sisj = ∂t(gij(t, sk(t))sisj).
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The definition of the covariant Lyapunov tensor (2.144) depends on the
choice of a Riemannian fibre metric on the fibre bundle Y .

If the vector–field γ is complete, there is a Riemannian fibre metric on Y
such that the covariant Lyapunov tensor vanishes everywhere. Let us choose
the atlas of the initial–date coordinates. Using the fibration ζ : Y −→ Yt=0,
one can give Y with a time–independent Riemannian fibre metric

gab(t, yc) = h(t)gab(0, yc) (2.145)

where gab(0, yc) is a Riemannian metric on the fibre Yt=0 and h(t) is a positive
smooth function on R. The covariant Lyapunov tensor with respect to the
metric (2.145) is given by

Lab = ∂thgab.

Putting h(t) = 1, we get L = 0.

Lyapunov Stability of the First–Order Dynamical Equations

With the covariant Lyapunov tensor (2.144), we get the following criterion of
the stability condition of Lyapunov.

Recall that, given a Riemannian fibre metric g on a fibre bundle Y −→ R,
the instantwise distance ρt(s, s′) between two solutions s and s′ of a dynamical
equation γ on Y at an instant t is the distance between the points s(t) and
s′(t) in the Riemannian space (Yt, g(t)).

Let s be a solution of a first–order dynamical equation γ. If there exists
an open tubular neighborhood U of the trajectory s where the covariant Lya-
punov tensor (2.144) is negative-definite at all instants t ≥ t0, then there
exists an open tubular neighborhood U ′ of s such that

lim
t′→∞

[ρt′(s, s
′)− ρt(s, s′)] < 0

for any t > t0 and any solution s′ crossing U ′. Since the condition and the
statement are coordinate–independent, let us choose the following chart of
initial–date coordinates that covering the trajectory s. Put t = 0 without a
loss of generality. There is an open neighborhood U0 ⊂ Y0 ∩ U of s(0) in
the Riemannian manifold (Y0, g(0)) which can be provided with the normal
coordinates (xa) defined by the Riemannian metric g(0) in Y0 and centralized
at s(0). Let us consider the open tubular U ′ = ζ−1(U0) with the coordinates
(t, xa). It is the desired chart of initial–date coordinates. With respect to
these coordinates, the solution s reads sa(t) = 0. Let s′a(t) = ua = const be
another solution crossing U ′. The instantwise distance ρt(s, s′), t ≥ 0, between
solutions s and s′ is the distance between the points (t, 0) and (t, u) in the
Riemannian manifold (Yt, g(t)). This distance does not exceed the length

ρt(s, s
′) =

[∫ 1

0

gab(t, τuc)uaubdτ
]1/2

(2.146)
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of the curve
xa = τua, (τ ∈ [0, 1]) (2.147)

in the Riemannian space (Yt, g(t)), while ρ0(s, s′) = ρ0(s, s′). The temporal
derivative of the function ρt(s, s′) (2.146) reads

∂tρt(s, s
′) =

1
2(ρt(s, s′))1/2

∫ 1

0

∂tgab(t, τuc)uaubdτ . (2.148)

Since the bilinear form ∂tgab = Lab, t ≥ 0, is negative-definite at all points of
the curve (2.147), the derivative (2.148) at all points t ≥ t0 is also negative.
Hence, we get

ρt>0(s, s
′) < ρt>0(s, s

′) < ρ0(s, s
′) = ρ0(s, s

′).

The solution s is Lyapunov stable with respect to the Riemannian fibre
metric g. One can think of the solution s as being isometrically Lyapunov
stable. Being Lyapunov stable with respect a Riemannian fibre metric g, a
solution s need not be so with respect to another Riemannian fibre metric g′,
unless g′ results from g by a time–independent transformation.

For any first–order dynamical equation defined by a complete vector–field
γ (2.136) on a fibre bundle Y −→ R, there exists a Riemannian fibre metric on
Y such that each solution of γ is Lyapunov stable. This property obviously
holds with respect to the Riemannian fibre metric (2.145) where h = 1.

Let λ be a real number. Given a dynamical equation γ defined by a com-
plete vector–field γ (2.136), there is a Riemannian fibre metric on Y such that
the Lyapunov spectrum of any solution of γ reduces to λ. To prove this, recall
that the (upper) Lyapunov exponent of a solution s′ with respect to a solution
s is defined as the limit

K(s, s′) =
−

lim
t→∞

1
t

ln(ρt(s, s
′)). (2.149)

Let us give Y with the Riemannian fibre metric (2.145) where h = exp(λt). A
simple computation shows that the Laypunov exponent (2.149) with respect
to this metric is exactly λ.

If the upper limit

λ =
−

lim
ρt=0(s,s

′)−→0
K(s, s′)

is negative, the solution s is said to be exponentially Lyapunov stable. If
there exists at least one positive Lyapunov exponent, one speaks about chaos
in a dynamical system [Gut90]. This shows that chaos in smooth dynamical
systems can be characterized in full by time–dependent Riemannian metrics.
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Example

Here is a simple example which shows that solutions of a smooth first–order
dynamical equation can be made Lyapunov stable at will by the choice of an
appropriate time–dependent Riemannian metric.

Let R be the time axis provided with the Cartesian coordinate t. In geo-
metrical terms, a (smooth) first–order dynamical equation in non–autonomous
mechanics is defined as a vector–field γ on a smooth fibre bundle Y −→ R which
obeys the condition γdt = 1. With respect to bundle coordinates (t, yk) on
Y , this vector–field becomes (2.136). The associated first–order dynamical
equation takes the form

ẏk = γk(t, yj)∂k,

where (t, yk, ṫ, ẏk) are holonomic coordinates on the tangent bundle TY of Y .
Its solutions are trajectories of the vector–field γ (2.136).

Let a fibre bundle Y → R be provided with a Riemannian fibre metric
g, defined as a section of the symmetrized tensor product ∨2V ∗Y → Y of
the vertical cotangent bundle V ∗Y of Y → R. With respect to the holonomic
coordinates (t, yk, yk) on V ∗Y , it takes the coordinate form

g =
1
2
gij(t, yk)dyi ∨ dyj ,

where {dyi} are the holonomic fibre bases for V ∗Y .
Recall that above we have proposed the following: Let λ be a real number.

Given a dynamical equation defined by a complete vector–field γ (2.136), there
exists a Riemannian fibre metric on Y such that the Lyapunov spectrum of
any solution of γ is λ. The following example aims to illustrate this fact.

Let us consider 1D motion on the axis R defined by the first–order dy-
namical equation

ẏ = y (2.150)

on the fibre bundle Y = R × R −→ R coordinated by (t, y). Solutions of the
equation (2.150) read

s(t) = c exp(t), (with c = const). (2.151)

Let eyy = 1 be the standard Euclidean metric on R. With respect to this
metric, the instantwise distance between two arbitrary solutions

s(t) = c exp(t), s′(t) = c′ exp(t) (2.152)

of the equation (2.150) is

ρt(s, s
′)e = |c− c′| exp(t).

Hence, the Lyapunov exponent K(s, s′) (2.149) equals 1, and so is the Lya-
punov spectrum of any solution (2.151) of the first–order dynamical equation
(2.150).
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Let now λ be an arbitrary real number. There exists a coordinate y′ =
y exp(−t) on R such that, written relative to this coordinate, the solutions
(2.151) of the equation (2.150) read s(t) =const. Let us choose the Riemannian
fibre metric on Y → R which takes the form gy′y′ = exp(2λt) with respect to
the coordinate y′. Then relative to the coordinate y, it reads

gyy =
∂y′

∂y

∂y′

∂y
gy′y′ = exp(2(λ− 1)t). (2.153)

The instantwise distance between the solutions s and s′ (2.152) with respect
to the metric g (2.153) is

ρt(s, s
′) = [gyy(s(t)− s′(t))2]1/2 = |c− c′| exp(λt).

One at once gets that the Lyapunov spectrum of any solution of the differential
equation (2.150) with respect to the metric (2.153) is λ.

2.1.3 Semi–Riemannian Geometrical Dynamics

In this subsection we develop a Finsler–like approach to semi–Riemannian
geometrical dynamics.

Vector–Fields and Connections

Let M be an nD smooth manifold. Recall that a smooth (C∞) vector–field
X on M defines the flow

ẋ = X(x). (2.154)

By definition, a semi–Riemannian metric g on M is a smooth symmetric
tensor field of type (0, 2) which assigns to each point x ∈M a nondegenerate
inner product g(x) on the tangent space TxM of signature (r, s). The pair
(M, g) is called a semi–Riemannian manifold.

The vector–field X and the semi–Riemannian metric g determine the en-
ergy f :M → R,given by f = 1

2g(X,X). The vector–field X (and its flow) on
(M, g) is called [Udr00]:

1. time–like, if f < 0;
2. nonspacelike or causal, if f ≤ 0;
3. null or lightlike, if f = 0;
4. space–like, if f > 0.

Let∇ be the Levi–Civita connection of (M, g). Using the semi–Riemannian
version of the covariant derivative operator (1.96), we get the prolongation

∇
dt
ẋ = ∇ẋX (2.155)

of the differential system (2.154) or of any perturbation of the system (2.154)
get adding to the second member X a parallel vector–field Y with respect
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to the covariant derivative ∇. The prolongation by derivation represents the
general dynamics of the flow. The vector–field Y can be used to illustrate a
progression from stable to unstable flows, or converse.

The vector–field X, the metric g, and the connection ∇ determine the
external (1, 1)−tensor field

F = ∇X − g−1 ⊗ g(∇X), Fj
i = ∇jXi − gihgkj∇hXk,

(with i,j,h,k=1,...,n), which characterizes the helicity of vector–field X and its
flow.

First we write the differential system (2.155) in the equivalent form

∇
dt
ẋ = g−1 ⊗ g(∇X) (ẋ) + F (ẋ) . (2.156)

Successively we modify the differential system (2.156) as follows [Udr00]:

∇
dt
ẋ = g−1 ⊗ g(∇X)(X) + F (ẋ) , (2.157)

∇
dt
ẋ = g−1 ⊗ g(∇X) (ẋ) + F (X), (2.158)

∇
dt
ẋ = g−1 ⊗ g(∇X)(X) + F (X). (2.159)

Obviously, the second–order systems (2.157), (2.158), (2.159) are prolonga-
tions of the first–order system (2.154). Each of them is connected either to
the dynamics of the field X or to the dynamics of a particle which is sensitive
to the vector–field X. Since

g−1 ⊗ g(∇X)(X) = grad f,

we shall show that the prolongation (2.157) describes a conservative dynamics
of the vector–field X or of a particle which is sensitive to the vector–field X.
The physical phenomenon produced by (2.158) or (2.159) was not yet studied
[Udr00].

In the case F = 0, the kinematic system (2.154) prolongs to a potential
dynamical system with n degrees of freedom, namely

∇
dt
ẋ = grad f. (2.160)

In the case F �= 0, the kinematic system (2.154) prolongs to a non–
potential dynamical system with n degrees of freedom, namely

∇
dt
ẋ = grad f + F (ẋ) . (2.161)

Let us show that the dynamical systems (2.160) and (2.161) are conserva-
tive. To simplify the exposition we identity the tangent bundle TM with the
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cotangent bundle T ∗M using the semi–Riemann metric g [Udr00]. The tra-
jectories of the dynamical system (2.160) are the extremals of the Lagrangian

L =
1
2
g (ẋ, ẋ) + f(x).

The trajectories of the dynamical system (2.161) are the extremals of the
Lagrangian

L =
1
2
g (ẋ−X, ẋ−X) =

1
2
g (ẋ, ẋ)− g (X, ẋ) + f(x).

The dynamical systems (2.160) and (2.161) are conservative, the Hamil-
tonian being the same for both cases, namely

H =
1
2
g (ẋ, ẋ)− f(x).

The restriction of the Hamiltonian H to the flow of the vector–field X is zero.

Hamiltonian Structures on the Tangent Bundle

Let (N,ω) be a 2nD symplectic phase–space manifold, and H : N → R be
a C∞ real function. We define the Hamiltonian gradient XH as being the
vector–field which satisfies

ωp(XH(x), v) = dH(x)(v), (for all v ∈ TxN),

and the Hamiltonian equations as

ẋ = XH(x).

Let (M, g) be a semi–Riemann nD manifold. Let X be a C∞ vector–
field on M , and ω = g ◦ F the two–form associated to the tensor field F =
∇X − g−1 ⊗ g(∇X) via the metric g.

The tangent bundle is usually equipped with the Sasakian metric G, in-
duced by g,

G = gijdxi ⊗ dxj + gijδyi ⊗ δyj .
If (xi, yi) are the coordinates of the point (x, y) ∈ TM and Γ ijk are the com-
ponents of the connection induced by gij , then we have the following dual
frames [Udr00](

δ

δxi
=
∂

∂xi
− Γhijyj

∂

∂yh
,

∂

∂yi

)
⊂ X (TM), and

(dxj , δyj = dyj + Γ jhky
kdxh) ⊂ X ∗(TM).

The dynamical system (2.160) lifts to TM as a Hamiltonian dynamical
system with respect to the
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Hamiltonian H =
1
2
g(ẋ, ẋ)− f(x), and

symplectic two–form Ω1 = gijdxiωδyj .

This can be verified by putting η1 = gijyidxj , and dη1 = −Ω1.
The dynamical system (2.161) lifts to TM as a Hamiltonian dynamical

system with respect to the above Hamiltonian function and the symplectic
two–form

Ω2 =
1
2
ωijdx

iωdxj + gijdxiωδyj .

This can be verified by putting η2 = −gijXidxj + gijyidxj , and dη2 = −Ω2.

In the remainder of this subsection, we give three examples in Euclidean
spaces, so we can put all indices down (still summing over repeated indices).

Pendulum Geometry

We use the Riemannian manifold (R2, δij). The small oscillations of a plane
pendulum are described as solutions of the following differential system giving
the plane pendulum flow,

ẋ1 = −x2, ẋ2 = x1. (2.162)

In this case, the set {x1(t) = 0, x2(t) = 0, (t ∈ R)} is the equilibrium
point and

x1(t) = c1 cos t+ c2 sin t, x2(t) = c1 sin t− c2 cos t

is the general solution, which is a family of circles with a common center.

Let X = (X1, X2), X1(x1, x2) = −x2, X2(x1, x2) = x1,

f(x1, x2) =
1
2
(x2

1 + x2
2), curlX = (0, 0, 2), divX = 0.

The pendulum flow conserves the areas. The prolongation by derivation of
the kinematic system (2.162) is [Udr00]

ẍi =
∂Xi
∂xj

ẋj , (i, j = 1, 2)

or ẍ1 = −ẋ2, ẍ2 = ẋ1.

This prolongation admits a family of circles as the general solution

x1(t) = a1 cos t+ a2 sin t+ h, x2(t) = a1 sin t− a2 cos t+ k, (t ∈ R).

The pendulum geometrodynamics is described by

ẍi =
∂f

∂xi
+
(
∂Xi
∂xj

− ∂Xj
∂xi

)
ẋj , (i, j = 1, 2),

or ẍ1 = x1 − 2ẋ2, ẍ2 = x2 + 2ẋ1, (2.163)
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with a family of spirals as the general solution

x1(t) = b1 cos t+ b2 sin t+ b3t cos t+ b4t sin t,
x2(t) = b1 sin t− b2 cos t+ b3t sin t− b4t cos t, (t ∈ R).

Using

L =
1
2

[
(ẋ1)

2 + (ẋ2)
2
]

+ x2ẋ1 − x1ẋ2 + f,

H =
1
2

[
(ẋ1)

2 + (ẋ2)
2
]
− f, gij = (H + f)δij ,

Nj
i = −Fji = −δihFjh, Fij =

∂Xj
∂xi

− ∂Xi
∂xj

, (i, j, h = 1, 2),

the solutions of the differential system (2.163) are horizontal pregeodesics of
the Riemann–Jacobi–Lagrangian manifold (R2 \ {0}, gij , Nji).

Geometry of the Lorenz Flow

We use the Riemannian manifold (R3, δij). The Lorenz flow is a first dissi-
pative model with chaotic behavior discovered in numerical experiment. Its
state equations are (see [Lor63, Spa82])

ẋ1 = −σx1 + σx2, ẋ2 = −x1x3 + rx1 − x2, ẋ3 = x1x2 − bx3,

where σ, r, b are real parameters. Usually σ, b are kept fixed whereas r is varied.
At

r > r0 =
σ(σ + b+ 3)
σ − b− 1

chaotic behavior is observed [Udr00].

Let X = (X1, X2, X3), X1(x1, x2, x3) = −σx1 + σx2,

X2(x1, x2, x3) = −x1x3 + rx1 − x2, X3(x1, x2, x3) = x1x2 − bx3,

f =
1
2
[(−σx1 + σx2)2 + (−x1x3 + rx1 − x2)2 + (x1x2 − bx3)2],

curlX = (2x1, −x2, r − x3 − σ).

The Lorenz dynamics is described by

ẍi =
∂f

∂xi
+
(
∂Xi
∂xj

− ∂Xj
∂xi

)
ẋj , (i, j = 1, 2, 3), or

ẍ1 =
∂f

∂x1
+ (σ + x3 − r)ẋ2 − x2ẋ3, ẍ2 =

∂f

∂x2
+ (r − x3 − σ)ẋ1 − 2x1ẋ3,

ẍ3 =
∂f

∂x3
+ x2ẋ1 + 2x1ẋ2. (2.164)
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Using L =
1
2

3∑
i=1

(ẋi)
2 −

3∑
i=1

Xiẋi + f, H =
1
2

3∑
i=1

(ẋi)
2 − f,

gij = (H + f)δij , Nj
i = −Fji = −δihFjh, Fij =

∂Xj
∂xi

− ∂Xi
∂xj

,

(i, j, h = 1, 2, 3), the solutions of the differential system (2.164) are horizontal
pregeodesics of the Riemann–Jacobi–Lagrangian manifold (R3 \E, gij , Nji),
where E is the set of equilibrium points.

Geometry of the ABC Flow

We use the Riemannian manifold (R3, δij). One example of a fluid velocity
that contains exponential stretching and hence instability is the ABC flow,
named after Arnold, Beltrami and Childress,

ẋ1 = A sinx3+C cosx2, ẋ2 = B sinx1+A cosx3, ẋ3 = C sinx2+B cosx1.

For nonzero values of the constants A,B,C the preceding system is not glob-
ally integrable. The topology of the flow lines is very complicated and can
only be investigated numerically to reveal regions of chaotic behavior. The
ABC flow conserves the volumes since the ABC field is solenoidal.

The ABC geometrodynamics is described by [Udr00]

ẍi =
∂f

∂xi
+
(
∂Xi
∂xj

− ∂Xj
∂xi

)
ẋj , (i, j = 1, 2, 3).

Since f = 1
2 (A+B+C+2AC sinx3 cosx2+2BA sinx1 cosx3+2CB sinx2 cosx1),

and curlX = X, the ABC geometrodynamics is given by the system,

ẍ1 = AB cosx1 cosx3 −BC sinx1 sinx2

− (B cosx1 + C sinx2)ẋ2 + (B sinx1 +A cosx3)ẋ3,

ẍ2 = −AC sinx2 sinx3 +BC cosx1 cosx2

+ (B cosx1 + C sinx2)ẋ1 − (A sinx3 + C cosx2)ẋ2,

ẍ3 = AC cosx3 cosx2 −BA sinx1 sinx3

− (B sinx1 +A cosx3)ẋ1 + (C cosx2 +A sinx3)ẋ2.

Using

L =
1
2
ẋiẋi −Xiẋi + f, H =

1
2
ẋiẋi − f, (i, j, h = 1, 2, 3),

gij = (H + f)δij , Nj
i = −Fji = −δihFjh, Fij =

∂Xj
∂xi

− ∂Xi
∂xj

,

the solutions of the above differential system are horizontal pregeodesics of
the Riemann–Jacobi–Lagrangian manifold (R3 \ E, gij , Nji), where E is the
set of equilibrium points which is included in the surface of equation

sinx1 sinx2 sinx3 + cosx1 cosx2 cosx3 = 0.
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2.1.4 Relativistic and Multi–Time Rheonomic Dynamics

Recall that a number of geometrical models in mechanics and physics are
based on the notion of ordinary, autonomous Lagrangian (i.e., a smooth real
function on R× TM). In this sense, we recall that a Lagrangian space Ln =
(M,L(x, y)) is defined as a pair which consists of a real, smooth, nD manifold
M with local coordinates xi, (i = 1, ..., n) and a regular Lagrangian L : TM →
R. The geometry of Lagrangian spaces is now used in various fields to study
natural phenomena where the dependence on position, velocity or momentum
is involved [KO89]. Also, this geometry gives a model for both the gravitational
and electromagnetic field theory, in a very natural blending of the geometrical
structure of the space with the characteristic properties of the physical fields.
Again, there are many problems in physics and variational calculus in which
time–dependent Lagrangians are involved.

In the context exposed in [MKA88, MA94], the energy action functional
E, attached to a given time–dependent Lagrangian,

L : R× TM → R, (t, xi, vi) �→ L(t, xi, vi), (i = 1, ..., n)

not necessarily homogenous with respect to the direction {vi}, is of the form

E(c) =
∫ b

a

L(t, xi(t), ẋi(t)) dt, (2.165)

where [a, b] ⊂ R, and c : [a, b] → M is a smooth curve, locally expressed
by t �→ xi(t), and having the velocity ẋ = (ẋi(t)). It is obvious that the
non–homogeneity of the Lagrangian L, regarded as a smooth function on the
product manifold R × TM , implies that the energy action functional E is
dependent of the parametrizations of every curve c. In order to remove this
difficulty, [MKA88, MA94] regard the space R× TM like a fibre bundle over
M . In this context, the geometrical invariance group of R× TM is given by

t̄ = t, x̄i = x̄i(xj), v̄i =
∂x̄i

∂xj
vj . (2.166)

The structure of the gauge group (2.166) emphasizes the absolute character
of the time t from the classical rheonomic Lagrangian mechanics. At the same
time, we point out that the gauge group (2.166) is a subgroup of the gauge
group of the configuration bundle J1(R,M), given as

t̄ = t̄(t), x̄i = x̄i(xj), v̄i =
∂x̄i

∂xj
dt

dt̄
vj . (2.167)

In other words, the gauge group (2.167) of the jet bundle J1(R,M), from the
relativistic rheonomic Lagrangian mechanics is more general than that used
in the classical rheonomic Lagrangian mechanics, which ignores the temporal
reparametrizations. A deep exposition of the physical aspects of the classical
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rheonomic Lagrangian geometry is done by [Ike90], while the classical rheo-
nomic Lagrangian mechanics is done by [Mat82].

Therefore, to remove the parametrization dependence of E, they ignore
the temporal repametrizations on R × TM . Naturally, in these conditions,
their energy functional becomes a well defined one, but their approach stands
out by the ‘absolute’ character of the time t.

In a more general geometrical approach, [NU00a, Udr00, Nea02] tried
to remove this inconvenience. Following this approach, we regard the me-
chanical 1–jet space J1(R,M) ≡ R × TM as a fibre bundle over the base
product–manifold R×M . The gauge group of this bundle of configurations is
given by 2.167. Consequently, our gauge group does not ignore the temporal
reparametrizations, hence, it stands out by the relativistic character of the
time t. In these conditions, using a given semi–Riemannian metric h11(t) on
R, we construct the more general and natural energy action functional, setting

E(c) =
∫ b

a

L(t, xi(t), ẋi(t))
√
|h11| dt. (2.168)

Obviously, E is well defined and is independent of the curve parametrizations.

Relativistic Rheonomic Lagrangian Spaces

In order to develop the time–dependent Lagrangian geometry, following
[NU00a, Udr00, Nea02, NU00b, Nea00], we consider L : J1(R,M) → R to
be a smooth Lagrangian function on the 1–jet bundle J1(R,M) → R, lo-
cally expressed by (t, xi, vi) �→ L(t, xi, vi). The so–called vertical fundamental
metrical d−tensor of L is defined by

G
(1)(1)
(i)(j) =

1
2
∂2L

∂vi∂vj
. (2.169)

Let h = (h11) be a semi–Riemannian metric on the temporal manifold R.

A Lagrangian function L : J1(R,M) → R whose vertical fundamental metrical
d−tensor is of the form

G
(1)(1)
(i)(j) (t, xk, vk) = h11(t)gij(t, xk, vk), (2.170)

where gij(t, xk, vk) is a d−tensor on J1(R,M), symmetric, of rank n and
having a constant signature on J1(R,M), is called a Kronecker h−regular
Lagrangian function, with respect to the temporal semi–Riemannian metric
h = (h11).

A pair RLn = (J1(R,M), L), where n = dimM , which consists of
the 1−jet space J1(R,M) and a Kronecker h−regular Lagrangian function
L : J1(T,M) → R is called a relativistic rheonomic Lagrangian space.

In our geometrization of the time–dependent Lagrangian function L that we
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will construct, all entities with geometrical or physical meaning will be di-
rectly arisen from the vertical fundamental metrical d−tensor G(1)(1)

(i)(j) . This
fact points out the metrical character (see [GIM98]) and the naturalness of
the subsequent relativistic rheonomic Lagrangian geometry.

For example, suppose that the spatial manifold M is also equipped with a
semi–Riemannian metric g = (gij(x)). Then, the time–dependent Lagrangian
function L1 : J1(R,M) → R defined by

L1 = h11(t)gij(x)vivj (2.171)

is a Kronecker h−regular time–dependent Lagrangian function. Consequently,
the pair RLn = (J1(R,M), L1) is a relativistic rheonomic Lagrangian space.
We underline that the Lagrangian L1 = L1

√
|h11| is exactly the energy

Lagrangian whose extremals are the harmonic maps between the semi–
Riemannian manifolds (R, h) and (M, g). At the same time, this Lagrangian
is a basic object in the physical theory of bosonic strings (compare with sub-
section 2.2.8 below).

In above notations, taking U (1)
(i) (t, x) as a d−tensor field on J1(R,M) and

F : R ×M → R a smooth map, the more general Lagrangian function L2 :
J1(R,M) → R defined by

L2 = h11(t)gij(x)vivj + U (1)
(i) (t, x)vi + F (t, x) (2.172)

is also a Kronecker h−regular Lagrangian. The relativistic rheonomic La-
grangian space RLn = (J1(R,M), L2) is called the autonomous relativistic
rheonomic Lagrangian space of electrodynamics because, in the particular
case h11 = 1, we recover the classical Lagrangian space of electrodynam-
ics [MKA88, MA94] which governs the movement law of a particle placed
concomitantly into a gravitational field and an electromagnetic one. From a
physical point of view, the semi–Riemannian metric h11(t) (resp. gij(x)) rep-
resents the gravitational potentials of the space R (resp. M), the d−tensor
U

(1)
(i) (t, x) stands for the electromagnetic potentials and F is a function which

is called potential function. The non-dynamical character of spatial gravita-
tional potentials gij(x) motivates us to use the term of ‘autonomous’.

More general, if we consider gij(t, x) a d−tensor field on J1(R,M), sym-
metric, of rank n and having a constant signature on J1(R,M), we can define
the Kronecker h−regular Lagrangian function L3 : J1(R,M) → R, setting

L3 = h11(t)gij(t, x)vivj + U (1)
(i) (t, x)vi + F (t, x). (2.173)

The pair RLn = (J1(R,M), L3) is a relativistic rheonomic Lagrangian space
which is called the non–autonomous relativistic rheonomic Lagrangian space
of electrodynamics. Physically, we remark that the gravitational potentials
gij(t, x) of the spatial manifold M are dependent of the temporal coordinate
t, emphasizing their dynamical character.
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Canonical Nonlinear Connection

Let us consider h = (h11) a fixed semi–Riemannian metric on R and a
rheonomic Lagrangian space RLn = (J1(R,M), L), where L is a Kronecker
h−regular Lagrangian function. Let [a, b] ⊂ R be a compact interval in the
temporal manifold R. In this context, we can define the energy action func-
tional of RLn, setting

E : C∞(R,M) → R, E(c) =
∫ b

a

L(t, xi, vi)
√
|h|dt,

where the smooth curve c is locally expressed by (t) → (xi(t)) and vi = dxi

dt .
The extremals of the energy functional E verifies the Euler–Lagrangian

equations

2G(1)(1)
(i)(j) ẍ

j +
∂2L

∂xj∂vi
ẋj − ∂L

∂xi
+
∂2L

∂t∂vi
+
∂L

∂vi
H1

11 = 0, (i = 1, ..., n),

(2.174)
where H1

11 are the Christoffel symbols of the semi–Riemannian metric h11.
Taking into account the Kronecker h−regularity of the Lagrangian func-

tion L, it is possible to rearrange the Euler–Lagrangian equations (2.174) of
the Lagrangian L = L

√
|h|, in the Poisson form [NU00a]

∆hx
i + 2Gi(t, xi, vi) = 0, (i = 1, ..., n), where (2.175)
∆hx

i = h11
{
ẍi −H1

11v
i
}
, vi = ẋi,

2Gi =
gii

2

{
∂2L

∂xj∂vi
vj − ∂L

∂xi
+
∂2L

∂t∂vi
+
∂L

∂vi
H1

11 + 2gijh11H1
11v

j

}
.

Denoting G(r)
(1)1 = h11G

r, the geometrical object G = (G(r)
(1)1) is a spatial

spray on J1(R,M). By a direct calculation, we deduce that the local geomet-
rical entities of J1(R,M)

2Sk =
gki

2

{
∂2L

∂xj∂vi
vj − ∂L

∂xi

}
,

2Hk =
gki

2

{
∂2L

∂t∂vi
+
∂L

∂vi
H1

11

}
, 2Jk = h11H1

11v
j ,

verify the following transformation rules

2Sp = 2S̄r ∂x
p

∂x̄r
+ h11 ∂x

p

∂x̄l
dt̄

dt

∂x̄lγ
∂xj

vj , 2Hp = 2H̄r ∂x
p

∂x̄r
+ h11 ∂x

p

∂x̄l
dt̄

dt

∂v̄l

∂t
,

2Jp = 2J̄ r ∂x
p

∂x̄r
− h11 ∂x

p

∂x̄l
dt̄

dt

∂v̄l

∂t
.

Consequently, the local entities 2Gp = 2Sp + 2Hp + 2Jp can be modified by
the transformation laws
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2Ḡr = 2Gp ∂x̄
r

∂xp
− h11 ∂x

p

∂x̄j
∂x̄rµ
∂xp

v̄j . (2.176)

The extremals of the energy functional attached to a Kronecker h−regular
Lagrangian function L on J1(R,M) are harmonic curves of the time–dependent
spray (H,G), with respect to the semi–Riemannian metric h, defined by the
temporal components

H
(i)
(1)1 = −1

2
H1

11(t)v
i

and the local spatial components

G
(i)
(1)1 =

h11g
ik

4

[
∂2L

∂xj∂vk
vj − ∂L

∂xk
+
∂2L

∂t∂vk
+
∂L

∂xk
H1

11 + 2h11H1
11gklv

l

]
.

The time–dependent spray (H,G) constructed from the previous theorem
is called the canonical time–dependent spray attached to the relativistic rheo-
nomic Lagrangian space RLn.

In the particular case of an autonomous electrodynamics relativistic rheo-
nomic Lagrangian space (i.e., gij(t, xk, vk) = gij(xk)), the canonical spatial
spray G is given by the components

G
(i)
(1)1 =

1
2
γijkv

jvk +
h11g

li

4

⎡⎣U (1)
(l)jv

j +
∂U

(1)
(l)

∂t
+ U (1)

(l) H
1
11 −

∂F

∂xl

⎤⎦ , (2.177)

where U (1)
(i)j =

∂U
(1)
(i)

∂xj − ∂U
(1)
(j)

∂xi .

Wehave the following theorem:The pair of local functionsΓ =(M (i)
(1)1, N

(i)
(1)j),

which consists of the temporal components

M
(i)
(1)1 = 2H(i)

(1)1 = −H1
11v

i, (2.178)

and the spatial components

N
(i)
(1)j =

∂Gi(1)1

∂vj
, (2.179)

where H(i)
(1)1 and G(i)

(1)1 are the components of the canonical time–dependent
spray of RLn, represents a nonlinear connection on J1(R,M).

The nonlinear connection Γ = (M (i)
(1)1, N

(i)
(1)j) from the preceding theorem

is called the canonical nonlinear connection of the relativistic rheonomic La-
grangian space RLn.

In the case of an autonomous electrodynamics relativistic rheonomic La-
grangian space (i.e., gij(t, xk, vk) = gij(xk)), the canonical nonlinear con-
nection becomes Γ = (M (i)

(1)1, N
(i)
(1)j), where

M
(i)
(1)1 = −H1

11v
i, N

(i)
(1)j = γijkv

k +
h11g

ik

4
U

(1)
(k)j . (2.180)
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Cartan’s Canonical Connection

The main theorem of this paper is the theorem of existence of the Cartan
canonical h−normal linear connection CΓ which allow the subsequent devel-
opment of the relativistic rheonomic Lagrangian geometry of physical fields,
which will be exposed in the next sections.

On the relativistic rheonomic Lagrangian space RLn = (J1(R,M), L)
equipped with its canonical nonlinear connection Γ there is a unique h−normal
Γ−linear connection

CΓ = (H1
11, G

k
j1, L

i
jk, C

i(1)
j(k))

having the metrical properties:

(i) gij|k = 0, gij |(1)(k) = 0,

(ii) Gkj1 = gki

2
δgij

δt , Lkij = Lkji, C
i(1)
j(k) = Ci(1)k(j).

To prove this theorem, let CΓ = (Ḡ1
11, G

k
j1, L

i
jk, C

i(1)
j(k)) be a h−normal

Γ−linear connection whose coefficients are defined by Ḡ1
11 = H1

11, G
k
j1 =

gki

2
δgij

δt , and

Lijk =
gim

2

(
δgjm
δxk

+
δgkm
δxj

− δgjk
δxm

)
, C

i(1)
j(k) =

gim

2

(
∂gjm
∂vk

+
∂gkm
∂vj

− ∂gjk
∂vm

)
.

By computations, one can verify that CΓ satisfies the conditions (i) and (ii).
Conversely, let us consider C̄Γ = ( ¯̄G1

11, Ḡ
k
j1, L̄

i
jk, C̄

i(1)
j(k)) ah−normalΓ−linear

connection which satisfies (i) and (ii). It follows directly that

¯̄G1
11 = H1

11, and Ḡkj1 =
gki

2
δgij
δt
.

The condition gij|k = 0 is equivalent with

δgij
δxk

= gmjL̄mik + gimL̄mjk.

Applying the Christoffel process to the indices {i, j, k}, we find

L̄ijk =
gim

2

(
δgjm
δxk

+
δgkm
δxj

− δgjk
δxm

)
.

By analogy, using the relations Ci(1)j(k) = Ci(1)k(j) and gij |(1)(k) = 0, following a
Christoffel process applied to the indices {i, j, k}, we get

C̄
i(1)
j(k) =

gim

2

(
∂gjm
∂vk

+
∂gkm
∂vj

− ∂gjk
∂vm

)
.
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As a rule, the Cartan canonical connection of a relativistic rheonomic
Lagrangian space RLn verifies also the properties

h11/1 = h11|k = h11|(1)(k) = 0 and gij/1 = 0. (2.181)

Particularly, the coefficients of the Cartan connection of an autonomous
relativistic rheonomic Lagrangian space of electrodynamics (i.e., gij(t, xk, vk) =
gij(xk)) are the same with those of the Berwald connection, namely, CΓ =
(H1

11, 0, γ
i
jk, 0). Note that the Cartan connection is a Γ−linear connection,

where Γ is the canonical nonlinear connection of the relativistic rheonomic
Lagrangian space while the Berwald connection is a Γ0−linear connection,
Γ0 being the canonical nonlinear connection associated to the metric pair
(h11, gij). Consequently, the Cartan and Berwald connections are distinct.

The torsion d−tensor T of the Cartan canonical connection of a relativis-
tic rheonomic Lagrangian space is determined by only six local components,
because the properties of the Cartan canonical connection imply the rela-
tions Tmij = 0 and S(i)(1)(1)

(1)(j)(k) = 0. At the same time, we point out that the
number of the curvature local d−tensors of the Cartan canonical connection
not reduces. In conclusion, the curvature d−tensor R of the Cartan canonical
connection is determined by five effective local d−tensors. The torsion and
curvature d−tensors of the Cartan canonical connection of an RLn are called
the torsion and curvature of RLn.

All torsion d−tensors of an autonomous relativistic rheonomic Lagrangian
space of electrodynamics vanish, except

R
(m)
(1)1j = −h11g

mk

4

⎡⎣H1
11U

(1)
(k)j +

∂U
(1)
(k)j

∂t

⎤⎦ ,
R

(m)
(1)ij = rmijkv

k +
h11g

mk

4

[
U

(1)
(k)i|j + U (1)

(k)j|i

]
,

where rmijk are the curvature tensors of the semi–Riemannian metric gij .

General Nonlinear Connections

Recall that a nonlinear connection (i.e., a supplementary–horizontal distri-
bution of the vertical distribution of J1(R,M)) offers the possibility of con-
struction of the vector or covector adapted bases on J1(R,M)) [NU00a]. A
nonlinear connection Γ on J1(R,M) is determined by a pair of local function
sets M (i)

(1)1 and N (i)
(1)j which modify by the transformation laws

M̄
(j)
(1)1

dt̄

dt
=M (k)

(1)1

dt

dt̄

∂x̄j

∂xk
− ∂v̄

j

∂t
, N̄

(j)
(1)k

∂x̄k

∂xi
= N (k)

(1)i

dt

dt̄

∂x̄j

∂xk
− ∂v̄

j

∂xi
. (2.182)

A set of local functions M (i)
(1)1 (resp. N (i)

(1)j) on J1(R,M), which transform
by the rules (2.182) is called a temporal nonlinear connection (resp. spatial
nonlinear connection) on J1(R,M).
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For example, studying the transformation rules of the local components

M
(i)
(1)1 = −H1

11v
i, N

(i)
(1)j = γijkv

k,

where H1
11 (resp. γijk) are the Christoffel symbols of a temporal (resp. spatial)

semi–Riemannian metric h (resp. ϕ), we conclude that Γ0 = (M (i)
(1)1, N

(i)
(1)j)

represents a nonlinear connection on J1(R,M), which is called the canonical
nonlinear connection attached to the metric pair (h, ϕ).

If M (i)
(1)1 are the components of a temporal nonlinear connection, then

the components H(i)
(1)1 = 1

2M
(i)
(1)1 represent a temporal spray. Conversely, if

H
(i)
(1)1 are the components of a temporal spray, then M

(i)
(1)1 = 2H(i)

(1)1 are the

components of a temporal nonlinear connection. If G(i)
(1)1 are the components

of a spatial spray, then the components N (i)
(1)j =

∂Gi
(1)1

∂vj represent a spatial
nonlinear connection.

Conversely, the spatial nonlinear connectionN (i)
(1)j induces the spatial spray

2G(i)
(1)1 = N (i)

(1)jv
j .

The previous theorems allow us to conclude that a time–dependent spray
(H,G) induces naturally a nonlinear connection Γ on J1(R,M), which is
called the canonical nonlinear connection associated to the time–dependent
spray (H,G). We point out that the canonical nonlinear connection Γ at-
tached to the time–dependent spray (H,G) is a natural generalization of the
canonical nonlinear connection N induced by a time–dependent spray G from
the classical rheonomic Lagrangian geometry [MKA88, MA94].

Let Γ = (M (i)
(1)1N

(i)
(1)j) be a nonlinear connection on J1(R,M). Let us

consider the geometrical objects,

δ

δt
=
∂

∂t
−M (j)

(1)1

∂

∂vj
,

δ

δxi
=
∂

∂xi
−N (j)

(1)i

∂

∂vj
, δvi = dyi+M (i)

(1)1dt+N
(i)
(1)jdx

j .

One can deduce that the set of vector–fields
{
δ
δt ,

δ
δxi ,

∂
∂vi

}
⊂ X (J1(R,M))

and of covector–fields {dt, dxi, δvi} ⊂ X ∗(J1(R,M)) are dual bases. These are
called the adapted bases on J1(R,M), determined by the nonlinear connection
Γ . The big advantage of the adapted bases is that the transformation laws of
its elements are simple and natural. The transformation laws of the elements
of the adapted bases attached to the nonlinear connection Γ are

δ

δt
=
dt̄

dt

δ

δt̄
,

δ

δxi
=
∂x̄j

∂xi
δ

δx̄j
,

∂

∂vi
=
∂x̄j

∂xi
dt

dt̄

δ

δv̄j
,

dt =
dt

dt̄
dt̄, dxi =

∂xi

∂x̄j
dx̄j , δvi =

∂xi

∂x̄j
dt̄

dt
δv̄j .
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2.1.5 Geometrical Quantization

Quantization of Hamiltonian Mechanics

Recall that classical Dirac quantization states [Dir82]:

{f, g} =
1
i�

[f̂ , ĝ],

which means that the quantum Poisson brackets (i.e., commutators) have the
same values as the classical Poisson brackets. In other words, we can associate
smooth functions defined on the symplectic phase–space manifold (M,ω) of
the classical biodynamic system with operators on a Hilbert space H in such
a way that the Poisson brackets correspond. Therefore, there is a functor
from the category Symplec to the category Hilbert. This functor is called
prequantization.

Let us start with the simplest symplectic manifold (M = T ∗Rn, ω = dpi∧
dqi) and state the Dirac problem: A prequantization of (T ∗Rn, ω = dpi ∧dqi)
is a map δ : f �→ δf , taking smooth functions f ∈ C∞(T ∗Rn,R) to Hermitian
operators δf on a Hilbert space H, satisfying the Dirac conditions:

1. δf+g = δf + δg, for each f, g ∈ C∞(T ∗Rn,R);
2. δλf = λδf , for each f ∈ C∞(T ∗Rn,R) and λ ∈ R;
3. δ1Rn = IdH; and
4. [δf , δg] = (δf ◦ δg − δg ◦ δf ) = i�δ{f,g}ω

, for each f, g ∈ C∞(T ∗Rn,R);

The pair (H, δ), where

H = L2(Rn,C); δ : f ∈ C∞(T ∗Rn,R) �→ δf : H → H;
δf = −i�Xf − θ(Xf ) + f ; θ = pidqi,

gives a prequantization of (T ∗Rn, dpi ∧ dqi), or equivalently, the answer to
the Dirac problem is affirmative [Put93].

Now, let (M = T ∗Q,ω) be the cotangent bundle of an arbitrary manifold
Q with its canonical symplectic structure ω = dθ. The prequantization ofM is
given by the pair

(
L2(M,C),δθ

)
, where for each f ∈ C∞(M,R), the operator

δθf : L2(M,C) →L2(M,C) is given by

δθf = −i�Xf − θ(Xf ) + f.

Here, symplectic potential θ is not uniquely determined by the condition ω =
dθ; for instance θ′ = θ + du has the same property for any real function u on
M . On the other hand, in the general case of an arbitrary symplectic manifold
(M,ω) (not necessarily the cotangent bundle) we can find only locally a 1–
form θ such that ω = dθ.

In general, a symplectic manifold (M,ω = dθ) is quantizable (i.e., we can
define the Hilbert representation space H and the prequantum operator δf
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in a globally consistent way) if ω defines an integral cohomology class. Now,
by the construction theorem of a fiber bundle, we can see that this condition
on ω is also sufficient to guarantee the existence of a complex line bundle
Lω = (L, π,M) over M , which has exp(i uji/�) as gauge transformations
associated to an open cover U = {Ui|i ∈ I} of M such that θi is a symplectic
potential defined on Ui (i.e., dθi = ω and θi = θi + d uji on Ui ∩ Uj).

In particular, for exact symplectic structures ω (as in the case of cotangent
bundles with their canonical symplectic structures) an integral cohomology
condition is automatically satisfied, since then we have only one set Ui = M
and do not need any gauge transformations.

Now, for each vector–field X ∈ M there exists an operator ∇ωX on the
space of sections Γ (Lω) of Lω,

∇ωX : Γ (Lω) → Γ (Lω), given by ∇ωXf = X(f)− i
�
θ(X)f,

and it is easy to see that ∇ω is a connection on Lω whose curvature is ω/i�.
In terms of this connection, the definition of δf becomes

δf = −i�∇ωXf
+ f.

The complex line bundle Lω = (L, π,M) together with its compatible
connection and Hermitian structure is usually called the prequantum bundle
of the symplectic manifold (M,ω).

If (M,ω) is a quantizable manifold then the pair (H, δ) defines its pre-
quantization.

Examples

Each exact symplectic manifold (M,ω = dθ) is quantizable, for the cohomol-
ogy class defined by ω is zero. In particular, the cotangent bundle, with its
canonical symplectic structure is always quantizable.

Let (M,ω = dθ) be an exact symplectic manifold. Then it is quantizable
with the prequantum bundle given by [Put93]:

Lω = (M × C, pr1,M);

Γ (Lω)  C∞(M,C); ∇ωXf = X(f)− i
�
θ(X)f ;

((x, z1), (x, z2))x = z̄1z2; δf = −i�[Xf −
i

�
θ(Xf )] + f.

Let (M,ω) = (T ∗R, dp ∧ dq). It is quantizable with [Put93]:

Lω = (R2 × C, pr1,R
2); Γ (Lω) = C∞(R2,C);

∇ωXf = X(f)− i
�
pdq(X)f ; ((x, z1) , (x, z2))x = z̄1z2;

δf = −i�
[
∂f

∂p

∂

∂q
− ∂f
∂q

∂

∂p

]
− p∂f

∂p
+ f.
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Therefore,

δq = i�
∂

∂p
+ q, δp = −i� ∂

∂q
,

which differs from the classical result of the Schrödinger quantization:

δq = q, δp = −i� ∂
∂q
.

Let H be a complex Hilbert space and Ut : H → H a continuous one–
parameter unitary group, i.e., a homomorphism t �→ Ut from R to the group
of unitary operators on H such that for each x ∈ H the map t �→ Ut(x) is
continuous. Then we have the self–adjoint generator A of Ut, defined by

Ax =
1
i

d

dt
Ut(x) =

1
i

lim
h→0

Uh(x)− x
h

.

Let
(
R2, ω = dp ∧ dq, H = 1

2 (p2 + q2
)

be the Hamiltonian structure of the
1D harmonic oscillator.

If we take θ = 1
2 (pdq − qdp) as the symplectic potential of ω, then the

spectrum of the prequantum operator δH = i�
(
q ∂∂p − p

∂
∂q

)
is [Put93]

Spec(δH) = {...,−2�,−�, 0, �, 2�, ...}, where each eigenvalue occurs with in-
finite multiplicity.

Let g be the vector space spanned by the prequantum operators δq, δp, δH ,
given by

δq = i�
∂

∂p
+ q, δp = −i� ∂

∂q
, δH = i�

(
q
∂

∂p
− p ∂
∂q

)
,

and Id. Then we have [Put93]:

1. g is a Lie algebra called the oscillator Lie algebra, given by:

[δp, δq] = i�δ{p,q}ω
= i� Id,

[δH , δq] = i�δ{H,q}ω
= −i�δp,

[δH , δp] = i�δ{H,p}ω
= i�δq,

2. [g, g] is spanned by δq, δp, δH and Id, or equivalently, it is a Heisenberg
Lie algebra.

3. The oscillator Lie algebra g is solvable.

Quantization of Relativistic Hamiltonian Mechanics

Given a symplectic manifold (Z,Ω) and a Hamiltonian H on Z, a Dirac
constraint system on a closed imbedded submanifold iN : N −→ Z of Z is
defined as a Hamiltonian system on N admitting the pull–back presymplectic
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form ΩN = i∗NΩ and the pull–back Hamiltonian i∗NH [GNH78, MS98, MR92].
Its solution is a vector–field γ on N which fulfils the equation

γΩN + i∗NdH = 0.

Let N be coisotropic. Then a solution exists if the Poisson bracket {H, f}
vanishes on N whenever f is a function vanishing on N . It is the Hamiltonian
vector–field of H on Z restricted to N [Sar03].

Recall that a configuration space of non–relativistic time–dependent me-
chanics (henceforth NRM) of m degrees of freedom is an (m + 1)D smooth
fibre bundle Q −→ R over the time axis R [MS98, Sar98]. It is coordinated
by (qα) = (q0, qi), where q0 = t is the standard Cartesian coordinate on R.
Let T ∗Q be the cotangent bundle of Q equipped with the induced coordinates
(qα, pα = q̇α) with respect to the holonomic coframes {dqα}. The cotangent
bundle T ∗Q plays the role of a homogeneous momentum phase–space of NRM,
admitting the canonical symplectic form

Ω = dpα ∧ dqα. (2.183)

Its momentum phase–space is the vertical cotangent bundle V ∗Q of the con-
figuration bundle Q −→ R, coordinated by (qα, qi). A Hamiltonian H of NRM
is defined as a section p0 = −H of the fibre bundle T ∗Q −→ V ∗Q. Then the
momentum phase–space of NRM can be identified with the image N of H
in T ∗Q which is the one-codimensional (consequently, coisotropic) imbedded
submanifold given by the constraint

HT = p0 +H(qα, pk) = 0.

Furthermore, a solution of a non–relativistic Hamiltonian system with a
Hamiltonian H is the restriction γ to N ∼= V ∗Q of the Hamiltonian vector–
field of HT on T ∗Q. It obeys the equation γΩN = 0 [MS98, Sar98]. Moreover,
one can show that geometrical quantization of V ∗Q is equivalent to geometri-
cal quantization of the cotangent bundle T ∗Q where the quantum constraint
ĤTψ = 0 on sections ψ of the quantum bundle serves as the Schrödinger
equation [Sar03].

A configuration space of relativistic mechanics (henceforth RM) is an ori-
ented pseudo–Riemannian manifold (Q, g), coordinated by (t, qi). Its momen-
tum phase–space is the cotangent bundle T ∗Q provided with the symplectic
form Ω (2.183). Note that one also considers another symplectic form Ω + F
where F is the strength of an electromagnetic field [Sni80]. A relativistic
Hamiltonian is defined as a smooth real function H on T ∗Q [MS98, Sar98].
Then a relativistic Hamiltonian system is described as a Dirac constraint sys-
tem on the subspace N of T ∗Q given by the equation

HT = gµν∂µH∂νH − 1 = 0. (2.184)

To perform geometrical quantization of NRM, we give geometrical quan-
tization of the cotangent bundle T ∗Q and characterize a quantum relativistic
Hamiltonian system by the quantum constraint
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ĤTψ = 0. (2.185)

We choose the vertical polarization on T ∗Q spanned by the tangent vectors
∂α. The corresponding quantum algebra A ⊂ C∞(T ∗Q) consists of affine
functions of momenta

f = aα(qµ)pα + b(qµ) (2.186)

on T ∗Q. They are represented by the Schrödinger operators

f̂ = −iaα∂α −
i
2
∂αa

α − i
4
aα∂α ln(−g) + b, (g = det(gαβ)) (2.187)

in the space C∞(Q) of smooth complex functions on Q.
Note that the function HT (2.184) need not belong to the quantum algebra

A. Nevertheless, one can show that, if HT is a polynomial of momenta of
degree k, it can be represented as a finite composition

HT =
∑
i

f1i · · · fki (2.188)

of products of affine functions (2.186), i.e., as an element of the enveloping
algebra A of the Lie algebra A [GMS02b]. Then it is quantized

HT �→ ĤT =
∑
i

f̂1i · · · f̂ki (2.189)

as an element of A. However, the representation (2.188) and, consequently,
the quantization (2.189) fail to be unique.

The space of relativistic velocities of RM on Q is the tangent bundle TQ
of Q equipped with the induced coordinates (t, qi, q̇α) with respect to the
holonomic frames {∂α}. Relativistic motion is located in the subbundle Wg of
hyperboloids [MS98, MS00b]

gµν(q)q̇µq̇ν − 1 = 0 (2.190)

of TQ. It is described by a second–order dynamical equation

q̈α = Ξα(qµ, q̇µ) (2.191)

on Q which preserves the subbundle (2.190), i.e.,

(q̇α∂α +Ξα∂̇α)(gµν q̇µq̇ν − 1) = 0, (∂̇α = ∂/∂q̇α).

This condition holds if the r.h.s. of the equation (2.191) takes the form

Ξα = Γαµν q̇
µq̇ν + Fα,

where Γαµν are Christoffel symbols of a metric g, while Fα obey the relation
gµνF

µq̇ν = 0. In particular, if the dynamical equation (2.191) is a geodesic
equation,
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q̈α = Kαµ q̇
µ

with respect to a (non-linear) connection on the tangent bundle TQ→ Q,

K = dqα ⊗ (∂α +Kµα ∂̇µ),

this connections splits into the sum

Kαµ = Γαµν q̇
ν + Fαµ (2.192)

of the Levi–Civita connection of g and a soldering form

F = gλνFµνdqµ ⊗ ∂̇α, Fµν = −Fνµ.

As was mentioned above, the momentum phase–space of RM on Q is the
cotangent bundle T ∗Q provided with the symplectic form Ω (2.183). Let H
be a smooth real function on T ∗Q such that the map

H̃ : T ∗Q −→ TQ, q̇µ = ∂µH (2.193)

is a bundle isomorphism. Then the inverse image N = H̃−1(Wg) of the
subbundle of hyperboloids Wg (2.190) is a one-codimensional (consequently,
coisotropic) closed imbedded subbundle of T ∗Q given by the constraint
HT = 0 (2.184). We say that H is a relativistic Hamiltonian if the Poisson
bracket {H,HT } vanishes on N . This means that the Hamiltonian vector–field

γ = ∂αH∂α − ∂αH∂α (2.194)

ofH preserves the constraint N and, restricted to N , it obeys the Hamiltonian
equation

γΩN + i∗NdH = 0 (2.195)

of a Dirac constraint system on N with a Hamiltonian H.
The map (2.193) sends the vector–field γ (2.194) onto the vector–field

γT = q̇α∂α + (∂µH∂α∂µH − ∂µH∂α∂µH)∂̇α

on TQ. This vector–field defines the second–order dynamical equation

q̈α = ∂µH∂α∂µH − ∂µH∂α∂µH (2.196)

on Q which preserves the subbundle of hyperboloids (2.190).
The following is a basic example of relativistic Hamiltonian systems. Put

H =
1

2m
gµν(pµ − bµ)(pν − bν),

where m is a constant and bµdqµ is a covector–field on Q. Then HT =
2m−1H − 1 and {H,HT } = 0. The constraint HT = 0 defines a closed
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imbedded one-codimensional subbundle N of T ∗Q. The Hamiltonian equa-
tion (2.195) takes the form γΩN = 0. Its solution (2.194) reads

q̇α =
1
m
gαν(pν − bν),

ṗα = − 1
2m
∂αg

µν(pµ − bµ)(pν − bν) +
1
m
gµν(pµ − bµ)∂αbν .

The corresponding second–order dynamical equation (2.196) on Q is

q̈α = Γαµν q̇
µq̇ν − 1

m
gλνFµν q̇

µ, (2.197)

Γαµν = −1
2
gλβ(∂µgβν + ∂νgβµ − ∂βgµν), Fµν = ∂µbν − ∂νbµ.

It is a geodesic equation with respect to the affine connection

Kαµ = Γαµν q̇
ν − 1

m
gλνFµν

of type (2.192). For example, let g be a metric gravitational field and let bµ =
eAµ, where Aµ is an electromagnetic potential whose gauge holds fixed. Then
the equation (2.197) is the well–known equation of motion of a relativistic
massive charge in the presence of these fields.

Let us now perform the quantization of RM, following the standard ge-
ometrical quantization of the cotangent bundle (see [Bla83, Sni80, Woo92]).
As the canonical symplectic form Ω (2.183) on T ∗Q is exact, the prequantum
bundle is defined as a trivial complex line bundle C over T ∗Q. Note that this
bundle need no metaplectic correction since T ∗X is with canonical coordi-
nates for the symplectic form Ω. Thus, C is called the quantum bundle. Let
its trivialization

C ∼= T ∗Q× C (2.198)

hold fixed, and let (t, qi, pα, c), with c ∈ C, be the associated bundle coordi-
nates. Then one can treat sections of C (2.198) as smooth complex functions
on T ∗Q. Note that another trivialization of C leads to an equivalent quanti-
zation of T ∗Q.

Recall that the Kostant–Souriau prequantization formula associates to
each smooth real function f ∈ C∞(T ∗Q) on T ∗Q the first–order differential
operator

f̂ = −i∇ϑf
+ f (2.199)

on sections of C, where ϑf = ∂αf∂α − ∂αf∂α is the Hamiltonian vector–
field of f and ∇ is the covariant differential with respect to a suitable U(1)-
principal connection A on C. This connection preserves the Hermitian metric
g(c, c′) = cc′ on C, and its curvature form obeys the prequantization condition
R = iΩ. For the sake of simplicity, let us assume that Q and, consequently,
T ∗Q is simply–connected. Then the connection A up to gauge transformations
is
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A = dpα ⊗ ∂α + dqα ⊗ (∂α + icpα∂c), (2.200)

and the prequantization operators (2.199) read

f̂ = −iϑf + (f − pα∂αf). (2.201)

Let us choose the vertical polarization on T ∗Q. It is the vertical tangent
bundle V T ∗Q of the fibration π : T ∗Q → Q. As was mentioned above, the
corresponding quantum algebra A ⊂ C∞(T ∗Q) consists of affine functions f
(2.186) of momenta pα. Its representation by operators (2.201) is defined in
the space E of sections ρ of the quantum bundle C of compact support which
obey the condition ∇ϑρ = 0 for any vertical Hamiltonian vector–field ϑ on
T ∗Q. This condition takes the form

∂αf∂
αρ = 0, (f ∈ C∞(Q)).

It follows that elements of E are independent of momenta and, consequently,
fail to be compactly supported, unless ρ = 0. This is the well–known problem
of Schrödinger quantization which is solved as follows [Bla83, GMS02b].

Let iQ : Q −→ T ∗Q be the canonical zero section of the cotangent bundle
T ∗Q. Let CQ = i∗QC be the pull–back of the bundle C (2.198) over Q. It
is a trivial complex line bundle CQ = Q × C provided with the pull–back
Hermitian metric g(c, c′) = cc′ and the pull–back

AQ = i∗QA = dqα ⊗ (∂α + icpα∂c)

of the connection A (2.200) on C. Sections of CQ are smooth complex functions
on Q, but this bundle need metaplectic correction.

Let the cohomology group H2(Q; Z2) of Q be trivial. Then a metalinear
bundle D of complex half-forms on Q is defined. It admits the canonical lift
of any vector–field τ on Q such that the corresponding Lie derivative of its
sections reads

Lτ = τα∂α +
1
2
∂ατ

α.

Let us consider the tensor product Y = CQ⊗D over Q. Since the Hamiltonian
vector–fields

ϑf = aα∂α − (pµ∂αaµ + ∂αb)∂α

of functions f (2.186) are projected onto Q, one can assign to each element f
of the quantum algebra A the first–order differential operator

f̂ = (−i∇πϑf
+ f)⊗ Id + Id⊗Lπϑf

= −iaα∂α −
i
2
∂αa

α + b

on sections ρQ of Y . For the sake of simplicity, let us choose a trivial metalinear
bundle D → Q associated to the orientation of Q. Its sections can be written
in the form ρQ = (−g)1/4ψ, where ψ are smooth complex functions on Q.
Then the quantum algebra A can be represented by the operators f̂ (2.187)
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in the space C∞(Q) of these functions. It can be justified that these operators
obey the Dirac condition

[f̂ , f̂ ′] = −i{̂f, f ′}.

One usually considers the subspace EQ ⊂ C∞(Q) of functions of com-
pact support. It is a pre–Hilbert space with respect to the non–degenerate
Hermitian form

〈ψ|ψ′〉 =
∫
Q

ψψ′(−g)1/2dm+1q

Note that f̂ (2.187) are symmetric operators f̂ = f̂∗ in EQ, i.e., 〈f̂ψ|ψ′〉 =
〈ψ|f̂ψ′〉. However, the space EQ gets no physical meaning in RM.

As was mentioned above, the function HT (2.184) need not belong to
the quantum algebra A, but a polynomial function HT can be quantized as
an element of the enveloping algebra A by operators ĤT (2.189). Then the
quantum constraint (2.185) serves as a relativistic quantum equation.

Let us again consider a massive relativistic charge whose relativistic Hamil-
tonian is

H =
1

2m
gµν(pµ − eAµ)(pν − eAν).

It defines the constraint

HT =
1
m2
gµν(pµ − eAµ)(pν − eAν)− 1 = 0. (2.202)

Let us represent the function HT (2.202) as symmetric product of affine func-
tions of momenta,

HT =
(−g)−1/4

m
(pµ − eAµ)(−g)1/4gµν(−g)1/4(pν − eAν)

(−g)−1/4

m
− 1.

It is quantized by the rule (2.189), where

(−g)1/4 ◦ ∂̂α ◦ (−g)−1/4 = −i∂α.

Then the well–known relativistic quantum equation

(−g)−1/2[(∂µ − ieAµ)gµν(−g)1/2(∂ν − ieAν) +m2]ψ = 0. (2.203)

is reproduced up to the factor (−g)−1/2.

2.2 Physical Field Systems

2.2.1 n−Categorical Framework

Recall that in the 19th Century Maxwell unified Faraday’s electric and mag-
netic fields. Maxwell’s theory led to Einstein’s special relativity where this
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unification becomes a spin–off of the unification of space end time in the form
of the Faraday tensor [MTW73]

F = E ∧ dt+B,

where F is electromagnetic 2−form on space–time, E is electric 1−form on
space, and B is magnetic 2−form on space. Gauge theory considers F as
secondary object to a connection–potential 1−form A. This makes half of the
Maxwell equations into tautologies [Bae02], i.e.,

F = dA =⇒ dF = 0 the Bianchi relation,

but does not imply the dual Bianchi relation, which is a second half of
Maxwell’s equations,

∗d ∗ F = J,

where ∗ is the dual Hodge star operator and J is current 1−form.
To understand the deeper meaning of the connection–potential 1−form A,

we can integrate it along a path γ in space–time, x
γ � y. Classically, the

integral
∫
γ
A represents an action for a charged point particle to move along

the path γ. Quantum–mechanically, exp
(
i
∫
γ
A
)

represents a phase (within
the unitary group U(1)) by which the particle’s wave–function changes as it
moves along the path γ, so A is a U(1)−connection.

The only thing that matters here is the difference α between two paths γ1

and γ2 in the action
∫
γ
A [Bae02], which is a two–morphism (see Appendix)

x

γ1

γ2

α
�

	∨
y

To generalize this construction, consider any compact Lie group G. A con-
nection A on a trivial G−bundle is a γ−valued 1−form. A assigns a holonomy

P exp
(
i
∫
γ
A
)
∈ G along any path x

γ � y and has a curvature F given
by

F = dA+A ∧A.

The curvature F implies the extended Bianchi relation

dF +A ∧ F = 0,

but does not imply the dual Bianchi relation, i.e., Yang–Mills relation

∗(d ∗ F +A ∧ ∗F ) = J.
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Further generalization is performed with string theory. Just as point par-
ticles naturally interact with a 1−form A, strings naturally interact with a
2−form B, such that [Bae02]

action =
∫
Σ

B, and phase = exp
(

i
∫
Σ

B

)
.

This 2−form connection B has a 3−form curvature G = dB, which satisfies
Maxwell–like equations, i.e., implies Bianchi–like relation dG = 0, but does
not imply the dual, current relation ∗d ∗G = J, with the current 2−form J .

In this way, the higher Yang–Mills theory assigns holonomies to paths and
also to paths of paths, so that we have a 3−morphism

x

γ1

γ2

γ3

α1

α2

�∨

∨

�

�
y

allowing us to ask not merely whether holonomies along paths are equal, but
whether and how they are isomorphic.

This generalization actually proposes categorification of the basic geomet-
rical concepts of manifold, group, Lie group and Lie algebra [Bae02]. Replacing
the words set and function by smooth manifold and smooth map we get the
concept of smooth category. Replacing them by group and homomorphism
we get the concept of 2−group. Replacing them by Lie group and smooth
homomorphism we get the concept of Lie 2−group. Replacing them by Lie
algebra and Lie algebra homomorphism we get the concept of Lie 2−algebra.
Examples of the smooth categories are the following:

1. A smooth category with only identity morphisms is a smooth manifold.
2. A smooth category with one object and all morphisms invertible is a Lie

group.
3. Any Lie groupoid gives a smooth category with all morphisms invertible.
4. A generalization of a vector bundle (E,M, π), where E andM are smooth

manifolds and projection π : E → M is a smooth map, gives a vector
2−bundle (E,M, π) where E andM are smooth categories and projection
π : E →M is a smooth functor.

2.2.2 Lagrangian Field Theory on Fibre Bundles

In this subsection we will apply the jet formalism defined in subsection 1.4
above, and already applied for development of the time–dependent mechanics
in subsection 2.1.2 above, to formulate the first–order Lagrangian field theory
on fibre bundles (see [Sar93, Sar95, GMS97, MS00a, Sar02a] for details).
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Recall that the configuration space of the first–order Lagrangian field the-
ory on a fibre bundle Y → X, coordinated by (xα, yi, yiα), is the 1–jet space
J1(X,Y ) of the bundle Y → X, coordinated by (xα, yi, yiα). Therefore, a first–
order Lagrangian L : J1(X,Y ) → ∧nT ∗X is defined as a horizontal density
on J1(X,Y ),

L = L(xα, yi, yiα)ω, with ω = dx1 ∧ ... ∧ dxn, (n = dimX). (2.204)

Let us follow the standard formulation of the variational problem on fibre bun-
dles where deformations of sections of a fibre bundle Y → X are induced by
local 1–parameter groups of automorphisms of Y → X over X (the so-called
vertical gauge transformations). Here, we will not study the calculus of varia-
tions in depth, but apply in a straightforward manner the first variational for-
mula (2.70) (for technical details, see [Sar93, Sar95, GMS97, MS00a, Sar02a]).

Recall that a projectable vector–field u on a fibre bundle Y → X is an
infinitesimal generator of a local 1–parameter group of gauge transformations
of Y → X. Therefore, one can think of its jet prolongation j1u (1.165) as being
the infinitesimal generator of gauge transformations of the configuration space
J1(X,Y ). Let the Lie derivative of a Lagrangian L along j1u be given by

Lj1uL = [∂αuαL+ (uα∂α + ui∂i + (dαui − yiµ∂αuµ)∂αi )L]ω. (2.205)

The first variational formula (2.70) gives its canonical decomposition (in ac-
cordance with the general variational problem), which reads

Lj1uL = uV EL + dHh0(uHL) (2.206)
= (ui − yiµuµ)(∂i − dα∂αi )Lω − dα[παi (uµyiµ − ui)− uαL]ω.

In the canonical decomposition (2.206), uV = (uθi)∂i; the map

EL : J2(X,Y ) → T ∗Y ∧ (∧nT ∗X), given by EL = (∂iL − dαπαi )θi ∧ ω,
(2.207)

(with παi = ∂αi L) is the Euler–Lagrangian operator associated to the La-
grangian L; and the map

HL : J1(X,Y ) →MY = T ∗Y ∧ (∧n−1T ∗X), given by (2.208)
HL = L+ παi θ

i ∧ ωα = παi dy
i ∧ ωα + (L − παi yiα)ω, (2.209)

is called the Poincaré–Cartan form.
The kernel of the Euler–Lagrangian operator EL (2.207) defines the system

of second–order Euler–Lagrangian equations, in local coordinates given by

(∂i − dα∂αi )L = 0, (2.210)

A solution of these equations is a section s : X −→ Y of the fibre bundle Y
−→ X, whose second–order jet prolongation j2s lives in (2.210), i.e.,
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∂iL ◦ s− (∂α + ∂αsj∂j + ∂α∂µsj∂
µ
j )∂αi L ◦ s = 0. (2.211)

Different Lagrangians L and L′ can lead to the same Euler–Lagrangian
operator EL if their difference L0 = L−L′ is a variationally trivial Lagrangian,
whose Euler–Lagrangian operator vanishes identically. A Lagrangian L0 is
called variationally trivial iff

L0 = h0(ϕ), (2.212)

where ϕ is a closed n–form on Y . We have at least locally ϕ = dξ, and then

L0 = h0(dξ) = dH(h0(ξ) = dαh0(ξ)αω, h0(ξ) = h0(ξ)αωα.

The Poincaré–Cartan form HL (2.208) is called a Lepagean equivalent of
a Lagrangian L if h0(HL) = L. In contrast with other Lepagean forms (see
[GMS97, MS00a]),HL is a horizontal form on the affine jet bundle J1(X,Y ) →
Y .

The fibre bundleMY = T ∗Y ∧(∧n−1T ∗X), figuring in the Poincaré–Cartan
form (2.208) is called the homogeneous Legendre bundle. It has holonomic local
coordinates (xα, yi, pαi , p) with transition functions

p′
α
i = det(

∂xε

∂x′ν
)
∂yj

∂y′i
∂x′

α

∂xµ
pµj , p′ = det(

∂xε

∂x′ν
)(p− ∂y

j

∂y′i
∂y′

i

∂xµ
pµj ). (2.213)

Relative to these coordinates, the map (2.208) reads

(pµi , p) ◦HL = (πµi ,L − π
µ
i y
i
µ).

The transition functions (2.213) shows that MY is a 1D affine bundle

πMΠ :MY → Π (2.214)

over the Legendre bundle

Π = ∧nT ∗X ⊗ V ∗Y ⊗ TX = V ∗Y ∧ (∧n−1T ∗X), (2.215)

with holonomic coordinates (xα, yi, pαi ). Then the composition

L̂ = πMΠ ◦HL : J1(X,Y ) −→ Π, (xα, yi, pαi ) ◦ L̂ = (xα, yi, παi ), (2.216)

is the well–known Legendre map. One can think of pαi as being the covariant
momenta of field functions, and the Legendre bundle Π (2.215) plays the
role of a finite–dimensional momentum phase–space of fields in the covariant
Hamiltonian field theory (see subsection 2.2.4 below).

The first variational formula (2.206) gives the standard procedure for the
study of differential conservation laws in Lagrangian field theory as follows.

Let u be a projectable vector–field on a fibre bundle Y → X treated as the
infinitesimal generator of a local 1–parameter group Gu of gauge transforma-
tions. On–shell, i.e., on the kernel (2.210) of the Euler–Lagrangian operator
EL, the first variational formula (2.206) leads to the weak identity
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Lj1uL ≈ −dαJαω, where (2.217)
J = Jαωα, Jα = παi (u

µyiµ − ui)− uαL, (2.218)

is the symmetry current along the vector–field u. Let a Lagrangian L be
invariant under the gauge group Gu. This implies that the Lie derivative
Lj1uL (2.205) vanishes. Then we get the weak conservation law

dαJ
α ≈ 0 (2.219)

of the symmetry current J (2.218).2

The weak conservation law (2.219) leads to the differential conservation
law

∂α(Jα ◦ s) = 0 (2.220)

on solutions s : X −→ Y (2.211) of the Euler–Lagrangian equations (2.210). It
implies the integral conservation law∫

∂N

s∗J = 0, (2.221)

where N is a compact nD submanifold of X with the boundary ∂N .
In gauge theory, the symmetry current J (2.218) takes the form

J =W + dHU = (Wα + dµUµα)ωα, (2.222)

where the term W depends only on the variational derivatives

δiL = (∂i − dα∂αi )L, (2.223)

i.e., W ≈ 0. The tensor–field U = Uµαωµα : J1(X,Y ) → ∧n−2T ∗X is a
horizontal (n − 2)–form on J1(X,Y ) → X. Then one says that J reduces to
the superpotential U (see [FFF94, GMS97, Sar97]). On–shell, such a symme-
try current reduces to a dH–exact form (2.222). In this way, the differential
conservation law (2.220) and the integral conservation law (2.221) become
tautological. At the same time, the superpotential form (2.222) of J implies
the following integral relation∫

Nn−1
s∗J =

∫
∂Nn−1

s∗U, (2.224)

where Nn−1 is a compact oriented (n−1)D submanifold of X with the bound-
ary ∂Nn−1. One can think of this relation as being a part of the Euler–
Lagrangian equations written in an integral form.
2 The first variational formula defines the symmetry current (2.218) modulo the

terms dµ(cµα
i (yi

νuν − ui)), where cµα
i are arbitrary skew–symmetric functions on

Y [GMS97]. Here, we set aside these boundary terms which are independent of a
Lagrangian L.



328 2 Dynamics of Complex Systems

Let us consider conservation laws in the case of gauge transformations
which preserve the Euler–Lagrangian operator EL, but not necessarily a La-
grangian L. Let u be a projectable vector–field on Y → X, which is the
infinitesimal generator of a local 1–parameter group of such transformations,
i.e.,

Lj2uEL = 0,

where j2u is the second–order jet prolongation of the vector–field u. There is
the useful relation [GMS97]

Lj2uEL = ELj1uL
. (2.225)

Then, in accordance with (2.212), we have locally

Lj1uL = dαh0(ξ)αω. (2.226)

In this case, the weak identity (2.217) reads

dα(h0(ξ)α − Jα) ≈ 0, (2.227)

where J is the symmetry current (2.218).
Background fields, which do not live in the dynamical shell (2.210), violate

conservation laws as follows. Let us consider the product

Ytot = Y × Y ′ (2.228)

of a fibre bundle Y −→ X, coordinated by (xα, yi), whose sections are dy-
namical fields and of a fibre bundle Y ′ −→ X, coordinated by (xα, yA), whose
sections are background fields that take the background values

yB = φB(x), and yBα = ∂αφB(x).

A Lagrangian L of dynamical and background fields is defined on the total
configuration space J1(X,Y )tot. Let u be a projectable vector–field on Ytot
which also projects onto Y ′ because gauge transformations of background
fields do not depend on dynamical fields. This vector–field takes the coordinate
form

u = uα(xµ)∂α + uA(xµ, yB)∂A + ui(xµ, yB , yj)∂i. (2.229)

Substitution of u (2.229) in the formula (2.206) leads to the first variational
formula in the presence of background fields:

∂αu
αL+ [uα∂α + uA∂A + ui∂i + (dαuA − yAµ ∂αuµ)∂αA(2.230)

+(dαui − yiµ∂αuµ)∂αi ]L = (uA − yAαuα)∂AL+ παAdα(uA − yAµ uµ)
+(ui − yiαuα)δiL − dα[παi (uµyiµ − ui)− uαL].(2.231)

Then we have on the shell (2.210) the weak identity
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∂αu
αL+ [uα∂α + uA∂A + ui∂i + (dαuA − yAµ ∂αuµ)∂αA + (dαui − yiµ∂αuµ)∂αi ]L

≈ (uA − yAαuα)∂AL+ παAdα(u
A − yAµ uµ)− dα[παi (uµyiµ − ui)− uαL].

If a total Lagrangian L is invariant under gauge transformations of Ytot, we
get the weak identity

(uA − yAµ uµ)∂AL+ παAdα(uA − yAµ uµ) ≈ dαJ
α, (2.232)

which is the transformation law of the symmetry current J in the presence of
background fields.

Conservation Laws

In the first–order Lagrangian field theory, we have the following differential
transformation and conservation laws on solutions s : X −→ Y (2.211) of the
Euler–Lagrangian equations (2.210).

Recall that given fibre coordinates (xα, yi) of Y , the jet space J1(X,Y )
is equipped with the adapted coordinates (xα, yi, yiα), while the first–order
Lagrangian density on J1(X,Y ) is defined as the map

L : J1(X,Y ) → ∧nT ∗X, (n = dimX),
L = L(xα, yi, yiα)ω, with ω = dx1 ∧ ... ∧ dxn.

The corresponding first–order Euler–Lagrangian equations for sections s : X
−→ J1(X,Y ) of the jet bundle J1(X,Y ) → X read

∂αs
i = siα, ∂iL − (∂α + sjα∂j + ∂αsjα∂

α
j )∂αi L = 0. (2.233)

We consider the Lie derivatives of Lagrangian densities in order to get
differential conservation laws. Let

u = uα(x)∂α + ui(y)∂i

be a projectable vector–field on Y → X and u its jet lift (1.165) onto
J1(X,Y ) → X. Given L, let us computer the Lie derivative LuL. We get
the identity

s∗LuL ≈ −
d

dxα
[παi (u

αsiα − ui)− uαL]ω, παi = ∂αi L, (2.234)

modulo the Euler–Lagrangian equations (2.233).
Let L be a Lagrangian density on the jet space J1(X,Y ). For the sake

of simplicity, we shall denote the pull–back π1∗
0 L of L onto J2(X,Y ) by the

same symbol L.
Let u be a projectable vector–field on Y −→ X and u its jet lift (1.165)

onto the configuration bundle J1(X,Y ) −→ X. Recall that the vector–field u
is associated with some 1–parameter group of transformations of Y .
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Let us calculate the Lie derivative LuL of the horizontal density L when
its Lepagian equivalent is chosen to be the Poincaré–Cartan form ΞL, given
by the coordinate expression

ΞL = Lω + παi (dyi − yiαdxα) ∧ ωα. (2.235)

In this case we recover the first variational formula (2.206) for projectable
vector–fields on Y as (see [GM90, Sar97])

LuL = uV EL + h0(duΞL). (2.236)

Since the Poincaré–Cartan form ΞL is a horizontal form on the jet bundle
J1(X,Y ) −→ Y , the formula (2.236) takes the form

LuL = uV EL + dHh0(uΞL). (2.237)

Being restricted to the kernel

[∂i − (∂α + yjα∂j + yjαλ∂
α
j )∂αi ]L = 0

of the Euler–Lagrangian operator EL (2.207), the equality (2.237) reduces to
the weak identity

LuL ≈ dHh0(uΞL), (2.238)

∂αu
αL+[uα∂α+ui∂i+(∂αui+yjα∂ju

i−yiα∂αuα)∂αi ]L ≈ ∂̂α[παi (u
i−uαyiα)+uαL],

∂̂α = ∂α + yiα∂i + y
i
αλ∂

α
i .

On solutions s of the Euler–Lagrangian equations, the weak identity
(2.238) becomes the weak differential transformation law

s∗LuL ≈ d(s∗uΞL) (2.239)

which takes the coordinate form (2.234).
Note that, in order to get the differential transformation laws on solutions

s of a given system of Euler–Lagrangian equations, one can examine other
Lepagian equivalents ρL of the Lagrangian density L, besides the Poincaré–
Cartan form ΞL. In this case, the first variational formula (2.236) and the
corresponding weak identity

LuL ≈ h0(duρL)

differ from relations (2.236) and (2.238) respectively in the strong identity

0 = h0(duε) = dHh0(uε), (2.240)

where ρL = ΞL + ε. From the physical point of view, it means that different
Lepagian equivalents result in different superpotentials h0(uε).

The form ε in the identity (2.240) has the coordinate expression
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ε = −(∂̂νcανi d̂y
i + cανi d̂y

i
ν) ∧ ωα + χ.

It is the general local expression for Lepagian equivalents of the zero La-
grangian density. We have

h0(uε) = ∂̂ν [(ui − yiαuα)cανi ]ωα.

One can consider also other Lagrangian densities L′ which possess the
same Euler–Lagrangian operator EL. Then the first variational formula and
the corresponding weak identity differ from relations (2.236) and (2.238) re-
spectively in the strong identity

Luh0(ε) = h0(duε) (2.241)

where ε is some closed exterior form on Y . However, if the form h0(ε) possesses
the same symmetries as the Lagrangian density L only, the contribution of
the strong identity (2.241) into the weak identity (2.238) is not tautological.

Note that the weak identity (2.238) is linear in the vector–field u, and we
can consider superposition of different weak identities (2.238) corresponding
to different vector–fields u. For example, if u and u′ are projectable vector–
fields on the bundle Y −→ X which are projected onto the same vector–field
on the base X, their difference u − u′ is a vertical vector–field on Y −→ X.
Therefore, the difference of the weak identity (2.238) with respect the vector–
fields u and u′ results in the weak identity (2.238) with respect to the vertical
vector–field u− u′.

Now let us consider the case when a Lagrangian density L depends on
background fields. We define such a Lagrangian density as the pull–back of
the Lagrangian density Ltot on the total configuration space by some fixed
sections φ(x) describing background fields.

Let us again consider the product (2.228), namely Ytot = Y × Y ′, of the
bundle Y whose sections are dynamical fields and the bundle Y ′ whose sections
φ play the role of background fields. Let the bundles Y and Y ′ be coordinated
by (xα, yi) and (xα, yA) respectively. The Lagrangian density Ltot is defined
on the total configuration space J1(X,Y )tot.

Let u be a projectable vector–field on Ytot which is also projectable with
respect to projection Y × Y ′ → Y ′. It has the coordinate form

u = uα(x)∂α + uA(xα, yB)∂A + ui(xα, yB , yj)∂i,

showing that transformations of background fields are independent on dynam-
ical fields.

Calculating the Lie derivative of the Lagrangian density Ltot by this
vector–field, we get the equality

∂αu
αLtot + [uα∂α + uA∂A + ui∂i + (∂αuA + yBα ∂Bu

A − yAα ∂αuα)∂αA
+(∂αui + yBα ∂Bu

i + yjα∂ju
i − yiα∂αuα)∂αi ]Ltot = ∂̂α[παi (ui − uαyiα) + uαLtot]

+(ui − yiαuα)(∂i − ∂̂α∂αi )Ltot + (uA − yAαuα)∂ALtot + παA∂̂α(uA − yAαuα),
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which can be rewritten as

∂αu
αLtot + [uα(∂α + yBα ∂B + yBαλ∂

α
B)L+ ui∂i + (∂̂αui − yiα∂αuα)∂αi ]Ltot

= ∂̂α[παi (u
i − uαyiα) + uαLtot] + (ui − yiαuα)(∂i − ∂̂α∂αi )Ltot.

The pull–back of this equality to the bundle Y −→ X by sections φA(x) of
the bundle Y ′ which describe the background fields results in the familiar
expression (2.237) and the familiar weak identity (2.238) for the Lagrangian
density L = φ∗Ltot. Now the partial derivative ∂α can be written as

∂α = ∂̃α + ∂αφB∂B + ∂α∂αφB∂αB ,

where ∂̃α denote the partial derivatives with respect to the coordinates xα on
which the Lagrangian density Ltot depends explicitly.

Note that Lagrangian densities of field models almost never depend explic-
itly on the world coordinates xα. At the same time, almost all field models
describe fields in the presence of a background world metric g on the base
manifold X, except topological field theories whose classical Lagrangian den-
sities are independent on g [BBR91] and the gravitation theory where a world
metric g is a dynamical field.

By a world metric on X is denoted a nondegenerate fibre metric gαν in
cotangent and tangent bundles of X. In this case, the partial derivative ∂αL
in the weak identity (2.238) contains the term ∂L

∂gαν ∂αg
αν , so that the metric

stress–energy–momentum tensor of fields (SEM–tensor, for short, see subsec-
tion 2.2.6 below)

tαν
√
| g | = 2

∂L
∂gαν

, | g |=| det(gαν) | .

is called into play.
The weak identity (2.238) and the weak transformation law (2.239) are

basic for our analysis of differential transformation and conservation laws in
field theory.

In particular, one says that an isomorphism Φ of the fibre bundle Y −→
X is an invariant transformation if its jet prolongation j1Φ preserves the
Lagrangian density L, i.e.,

j1∗ΦL = L.

Let u be a projectable vector–field on Y −→ X. The corresponding local 1–
parameter groups of isomorphisms of Y are invariant transformations iff the
strong equality : LuL = 0 holds. In this case, we have the corresponding weak
conservation law

d(s∗uΞL) ≈ 0. (2.242)

An isomorphism Φ of the bundle Y −→ X is called the generalized invariant
transformation if it preserves the Euler–Lagrangian operator EL. Let u be a
projectable vector–field on Y −→ X. The corresponding local isomorphisms of
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Y are generalized invariant transformations iff LuL = h0(ε), where ε is a
closed n–form on the bundle Y −→ X. In this case, the weak transformation
law (2.239) reads

s∗ε ≈ d(s∗uΞL)

for every critical section s of Y −→ X. In particular, if ε = dε is an exact form,
we get the weak conservation law

d(s∗(uΞL − ε)) ≈ 0.

In particular, gauge transformations in gauge theory on a 3D base X are
the invariant transformations if L is the Yang–Mills Lagrangian density and
they are the generalized invariant transformations if L is the Chern–Simons
Lagrangian density .

General Covariance Condition

Now we consider the class of bundles T −→ X which admit the canonical lift
of vector–fields τ on X. They are called the bundles of geometrical objects.
In fact, such canonical lift is the particular case of the horizontal lift of a field
τ with respect to the suitable connection on the bundle T −→ X [GMS05].

Let τ = τα∂α be a vector–field on the manifold X. There exists the canon-
ical lift

τ̃ = Tτ = τα∂α + ∂νταẋν
∂

∂ẋα
(2.243)

of τ onto the tangent bundle TX of X. This lift consists with the horizontal
lift of τ by means the symmetric connection K on the tangent bundle which
has τ as the integral section or as the geodesic field:

∂ντ
α +Kααντα = 0.

Generalizing the canonical lift (2.243), one can construct the canonical
lifts of a vector–field τ on X onto the following bundles over X. For the sake
of simplicity, we denote all these lifts by the same symbol τ̃ . We have:

• the canonical lift of τ onto the cotangent bundle T ∗X, given by

τ̃ = τα∂α − ∂βτν ẋν
∂

∂ẋβ
;

• the canonical lift of τ onto the tensor bundle T kmX = (⊗mTX)⊗(⊗kT ∗X),
given by

τ̃ = τα∂α + [∂ντα1 ẋνα2···αm

β1···βk
+ . . .− ∂β1

τν ẋα1···αm

νβ2···βk
− . . .] ∂

∂ẋα1···αm

β1···βk

;
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• the canonical lift of τ onto the bundle C of the linear connections on TX,
given by

τ̃ = τα∂α + [∂νταkνβα − ∂βτνkανα − ∂ατνkαβν − ∂βατα]
∂

∂kαβα
.

One can think of the vector–fields τ̃ on a bundle of geometrical objects
T as being the vector–fields associated with local 1–parameter groups of the
holonomic isomorphisms of T induced by diffeomorphisms of its base X. In
particular, if T = TX they are the tangent isomorphisms. We call these
isomorphisms the general covariant transformations.

Let T be the bundle of geometrical objects and L a Lagrangian density on
the configuration space J1(X,T ). Given a vector–field τ on the base X and
its canonical lift τ̃ onto T , one may use the first variational formula (2.237)
in order to get the corresponding SEM transformation law. The left side of
this formula can be simplified if the Lagrangian density satisfies the general
covariance condition.

Note that, if the Lagrangian density L depends on background fields, we
should consider the corresponding total bundle (2.228) and the Lagrangian
density Ltot on the total configuration space J1(X,T )tot. We say that the La-
grangian density L satisfies the general covariance condition if Ltot is invariant
under 1–parameter groups of general covariant transformations of Ttot induced
by diffeomorphisms of the base X. It takes place iff, for any vector–field τ on
X, the Lagrangian density Ltot obeys the equality

Lj10 τ̃Ltot = 0 (2.244)

where τ̃ is the canonical lift of τ onto Ttot and j10 τ̃ is the jet lift of τ̃ onto
J1(X,T )tot.

If the Lagrangian density L does not depend on background fields, the
equality (2.244) becomes

Lj10 τ̃L = 0. (2.245)

Substituting it in the first variational formula (2.237), we get the week con-
servation law

dHh0(τ̃ΞL) ≈ 0. (2.246)

One can show that the conserved quantity is reduced to a superpotential term.
Here, we verify this fact in case of a tensor bundle T −→ X. Let it be

coordinated by (xα, yA) where the collective index A is employed. Given a
vector–field τ on X, its canonical lift τ̃ on T reads

τ̃ = τα∂α + uAβα∂βτ
α∂A.

Let a Lagrangian density L on the configuration space J1(X,T ) be in-
variant under general covarian transformations. Then, it satisfies the equality
(2.245) which takes the coordinate form
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∂α(ταL) + uAβα∂βτ
α∂AL+ ∂̂α(uAβα∂βτ

α)∂αAL − yAα ∂βτα∂
β
AL = 0. (2.247)

Due to the arbitrariness of the functions τα, the equality (2.247) is equivalent
to the system of the equalities

∂αL = 0,
δβαL+ uAβα∂AL+ ∂̂α(uAβα)∂

α
AL − yAα ∂

β
AL = 0, (2.248)

uAβα∂
α
AL+ uAαα∂

β
AL = 0. (2.249)

Note that the equality (2.248) can be brought into the form

δβαL+ uAβαδAL+ ∂̂α(uAβα∂
α
AL) = yAα ∂

β
AL, (2.250)

where δAL are the variational derivatives of the Lagrangian density L. Sub-
stituting the relations (2.250) and (2.249) into the weak identity

∂̂α[(uAβα∂βτ
α − yAα τα)∂αAL+ ταL] ≈ 0,

we get the conservation law

∂̂α[−uAααδALτα − ∂̂α(uAαα∂
α
ALτα)] ≈ 0, (2.251)

where the conserved current is reduced to the superpotential term

Qτ̃
α = −uAααδALτα − ∂̂α(uAαα∂αALτα). (2.252)

For general field models, we have the product T ×Y of a bundle T → X of
geometrical objects and some other bundle Y → X. The lift of a vector–field τ
on the baseX onto the corresponding configuration space J1(X,T )×J1(X,Y )
reads

τ = j10 τ̃ + ταΓ iα∂i + (∂α(ταΓ iα) + ταyjα∂jΓ
i
α − yiα∂ατα)∂αi

where Γ is a connection on the fibre bundle Y → X.
In this case, we cannot say anything about the general covariance condition

independently on the invariance of a Lagrangian density with respect to the
internal symmetries.

On the other hand, in gauge theory (see subsection 2.2.5 below), several
types of gauge transformations are considered. To get the Noether conserva-
tion laws, we restrict our consideration to vertical isomorphisms of the prin-
cipal bundle P . These are the G−equivariant isomorphism Φ of P over IdX ,
that is,

rg ◦ Φ = Φ ◦ rg, (g ∈ G). (2.253)

We call them the gauge isomorphisms. As is well–known, they yield the vertical
isomorphisms of the bundle of principal connections C and the P−associated
bundle E.
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For example, let P −→ X be a principal bundle with the structure Lie group
G. Let us consider general gauge isomorphisms Φ of this principal bundle over
diffeomorphisms of the base X. They satisfy the relation (2.253). We denote
by uG the projectable vector–fields on P corresponding to local 1–parameter
groups of such isomorphisms. There is the 1–1 correspondence between these
vector–fields and sections of the bundle TGP = TP/G. They are called the
general principal vector–fields (see [GM90]). In particular, one can show that,
given a vector–field τ on the base X, its horizontal lift onto the principal
bundle P by means of a principal connection on P is a general principal
vector–field.

General gauge isomorphisms of the principal bundle P , as like as its vertical
isomorphisms, yield the corresponding isomorphisms of the associated bundles
E and the bundle of principal connections C. We denote by the same symbol
uG the corresponding general principal vector–fields on these bundles.

Consider the product S = C×E×T, where T → X is a bundle of geomet-
rical objects. Let a Lagrangian density L on the corresponding configuration
space J1(T, S) be invariant under the isomorphisms of the bundle S which
are general gauge isomorphisms of C × E over diffeomorphisms of the base
X and the general covariant transformations of T induced by these diffeo-
morphisms of X. In particular, vertical isomorphisms of S consist of vertical
isomorphisms of C ×E only. It should be emphasized that the general gauge
isomorphisms of the bundle C×E and those of the bundle T taken separately
are not the bundle isomorphisms of the product S because they must covering
the same diffeomorphisms of the base X of Y . At the same time, one can say
that the Lagrangian density L satisfies the general covariance condition in the
sense that it is invariant under general isomorphisms of the bundle S [GM90].

This is phrased in terms of the Lie derivatives as follows. Let

uG = τα∂α + uA∂A

be a general principal vector–field on the product C × E which is projected
onto the vector–field τ = τα∂α on the base X. The corresponding general
principal vector–field on the bundle Y reads

ũG = τ̃ + uA∂A, (2.254)

where τ̃ is the canonical lift of τ onto the bundle of geometrical objects T . A
Lagrangian density L is invariant under general isomorphisms of the bundle
S iff

Lj10 ũG
L = 0, (2.255)

where the jet lift j10 ũG of the vector–field ũG takes the coordinate form

j10 ũG = j10 τ̃ − yAα ∂αuA∂αA + uA∂A + ∂̂αuA∂αA.

There are the topological field theories, besides the gravitation theory,
where we can use the condition (2.255) (see subsection 2.2.5 below).
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2.2.3 Finsler–Lagrangian Field Theory

In this subsection we present generalized Finsler–Lagrangian field theory .
The geometrical background of this theory relies on the notion of general-
ized Lagrangian space, GLn = (M, gij(xk, yk)), which is a real nD manifold
M with local coordinates {xi}, (i = 1, ..., n) and a symmetric fundamental
metric tensor–field gij = gij(xk, yk) of rank n and constant signature on T
[MKA88, MA94].

From physical point of view, the fundamental metric tensor represents a
unified gravitational field on TM , which consists of one external (x)−gravitati-
onal field spanned by points {xi}, and the one internal (y)−gravitational field
spanned by directions {yi} and equipped with some microscopic character of
the space–time structure.

The field theory developed on a generalized Lagrangian space GLn relies
on a fixed a priori nonlinear connection Γ = (N ij(x, y)) on the tangent bun-
dle TM . This plays the role of mapping operator of the internal (y)−field
onto the external (x)−field, and prescribes the interaction between (x)− and
(y)−fields. From geometrical point of view, the nonlinear connection allows
the construction of the adapted bases [MKA88, MA94]{

δ

δxi
=
∂

∂xi
−N ji

∂

∂yj
,
∂

∂yi

}
⊂ X (TM),

{dxi, δyi = dyi +N ijdx
j} ⊂ X ∗(TM).

As to the spatial structure, the most important thing is to determine
the Cartan canonical connection CΓ = (Lijk, C

i
jk) with respect to gij , which

comes from the metric conditions

gij|k =
δgij
δxk

−Lmikgmj −Lmjkgmi = 0, gij;k =
∂gij
∂yk

−Cmikgmj −Cmjkgmi = 0,

where “|k” and “;k” are the local h− and v− covariant derivatives of CΓ . The
importance of the Cartan connection comes from its main role played in the
generalized Finsler–Lagrangian theory of physical fields.

Regarding the unified field gij(x, y) of GLn, the authors of [MKA88,
MA94] constructed a Sasakian metric on TM ,

G = gijdxi ⊗ dxj + gijδyi ⊗ δyj .

In this context, the Einstein equations for the gravitational potentials
gij(x, y) of a generalized Lagrangian space GLn, (n > 2), are postulated
as being the Einstein equations attached to CΓ and G,

Rij −
1
2
Rgij = KTHij ,

′Pij = KT 1
ij ,

Sij −
1
2
Sgij = KTVij ,

′′Pij = −KT 2
ij ,
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where Rij = Rmijm, Sij = Smijm, ′Pij = Pmijm, ′′Pij = Pmimj are the Ricci tensors
of CΓ , R = gijRij and S = gijSij are the scalar curvatures, THij , TVij , T

1
ij , T

2
ij

are the components of the energy–momentum tensor T, and K is the Einstein
constant (equal to 0 for vacuum). Moreover, the energy–momentum tensors
THij and TVij satisfy the conservation laws [MKA88, MA94]

KTH m
j|m = −1

2
(Phmjs R

s
hm + 2RsmjP

m
s ), KTV mj|m = 0.

The generalized Lagrangian theory of electromagnetism relies on the
canonical Liouville vector–field C = yi ∂∂yi and the Cartan connection CΓ
of the generalized Lagrangian space GLn. In this context, we can introduce
the electromagnetic two—form on TM [MA94]

F = Fijδyi ∧ dxj + fijδyi ∧ δyj , where

Fij =
1
2
[(gimym)|j − (gjmym)|i], fij =

1
2
[(gimym);j − (gjmym);i].

Using the Bianchi identities attached to the Cartan connection CΓ , they
conclude that the electromagnetic components Fij and fij are governed by
the following Maxwell–type equations

Fij|k + Fjk|i + Fki|j = −[Cimrym + (gimym)|r]Rrjk,
Fij;k + Fjk;i + Fki;j = −(fij|k + fjk|i + fki|j), fij;k + fjk;i + fki;j = 0.

2.2.4 Hamiltonian Field Systems: Path–Integral Quantization

Recall that the Hamiltonian counterpart of the classical Lagrangian field
theory (see subsection 2.2.2 above) is the covariant Hamiltonian field the-
ory, in which momenta correspond to derivatives of fields with respect to all
world coordinates. It is well–known that classical Lagrangian and covariant
Hamiltonian field theories are equivalent in the case of a hyperregular La-
grangian, and they are quasi–equivalent if a Lagrangian is almost–regular (see
[Sar93, Sar95, GMS97, GMS99, MS00a, Sar02a]). Further, in order to quan-
tize covariant Hamiltonian field theory, one usually attempts to construct
and quantize a multisymplectic generalization of the Poisson bracket. The
path–integral quantization of covariant Hamiltonian field theory was recently
suggested in [BS04].

Recall that the symplectic Hamiltonian technique applied to field the-
ory leads to instantaneous Hamiltonian formalism on an infinite–dimensional
phase–space coordinated by field functions at some instant of time (see
[Got91c] for the strict mathematical exposition of this formalism). The true
Hamiltonian counterpart of classical first–order Lagrangian field theory is co-
variant Hamiltonian formalism, where canonical momenta pµi correspond to
derivatives yiµ of fields yi with respect to all world coordinates xµ. This formal-
ism has been developed since the 1970s in its polysymplectic, multisymplectic
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and Hamilton–de Donder variants (see [GMS97, LM03]). In order to quantize
covariant Hamiltonian field theory, one usually attempts to construct multi-
symplectic generalization of the Poisson bracket with respect to the derivatives
∂/∂yi and ∂/∂pµi [Kan98].

We can also quantize covariant Hamiltonian field theory in path–integral
terms following [BS04]. A polysymplectic Hamiltonian system with a Hamil-
tonian H(xµ, yi, pµi ) is equivalent to a Lagrangian system with the Lagrangian

LH(xµ, yi, pµi , y
i
α) = pαi y

i
α −H(xµ, yi, pµi , y

i
α) (2.256)

of the variables yi and pµi . In subsection 2.2.4 below we will quantize this
Lagrangian system in the framework of perturbative quantum field theory.
Briefly, if there is no constraint and the matrix ∂2H/∂pµi ∂pνj is nondegenerate
and positive–definite, this quantization is given by the generating functional

Z = N−1

∫
exp{

∫
(LH + Λ+ iJiyi + iJ iµp

µ
i )dx}

∏
x

[dp(x)][dy(x)] (2.257)

of Euclidean Green functions, where Λ comes from the normalization condition∫
exp{

∫
(−1

2
∂iµ∂

j
νHp

µ
i p
ν
j + Λ)dx}

∏
x

[dp(x)] = 1.

If a Hamiltonian H is degenerate, the Lagrangian LH (2.256) may admit
gauge symmetries. In this case, integration of a generating functional along
gauge group orbits must be finite. If there are constraints, the Lagrangian
system with a Lagrangian LH (2.256) restricted to the constraint manifold is
quantized.

In order to verify this path–integral quantization scheme, we apply it
to Hamiltonian field systems associated to Lagrangian field systems with
quadratic Lagrangians

L =
1
2
aλµij y

i
αy
j
µ + bαi y

i
α + c, (2.258)

where a, b and c are functions of world coordinates xµ and field variables
yi. Note that, in the framework of perturbative quantum field theory, any
Lagrangian is split into the sum of a quadratic Lagrangian (2.258) and an
interaction term quantized as a perturbation.

For example, let the Lagrangian (2.258) be hyperregular, i.e., the matrix
function a is nondegenerate. Then there exists a unique associated Hamilto-
nian system whose Hamiltonian H is quadratic in momenta pµi , and so is the
Lagrangian LH (2.256). If the matrix function a is positive–definite on an Eu-
clidean space–time, the generating functional (2.257) is a Gaussian integral of
momenta pµi (x). Integrating Z with respect to pµi (x), one restarts the generat-
ing functional of quantum field theory with the original Lagrangian L (2.258).
We extend this result to field theories with almost–regular Lagrangians L
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(2.258), e.g., Yang–Mills gauge theory . The key point is that, though such a
Lagrangian L induces constraints and admits different associated Hamiltoni-
ans H, all the Lagrangians LH coincide on the constraint manifold, and we
have a unique constrained Hamiltonian system which is quasi–equivalent to
the original Lagrangian one [GMS97].

Covariant Hamiltonian Field Systems

To develop the covariant Hamiltonian field theory suitable for path–integral
quantization, we start by following the geometrical formulation of classical
field theory (see [Sar93, Sar95, GMS97, MS00a, Sar02a]), in which classical
fields are represented by sections of fibre bundles. Let Y → X be a smooth
fibre bundle provided with bundle coordinates (xµ, yi). Recall from subsection
2.2.2 above, that the configuration space of Lagrangian field theory on Y is
the 1–jet space J1(X,Y ) of Y . It is equipped with the bundle coordinates
(xµ, yi, yiµ) compatible with the composite fibration

J1(X,Y )
π1

0−→ Y
π−→ X.

Any section s : X −→ Y of a fibre bundle Y → X is prolonged to the section
j1s : X −→ J1(X,Y ) of the jet bundle J1(X,Y ) → X, such that yiµ ◦ j1s =
∂µs

i.
Also, recall that the first–order Lagrangian is defined as a horizontal den-

sity

L = Lω : J1(X,Y ) → ∧nT ∗X, (ω = dx1 ∧ · · · dxn, n = dimX), (2.259)

on the jet space J1(X,Y ). The corresponding Euler–Lagrangian equations

(∂i − dα∂αi )L = 0, dα = ∂α + yiα∂i + y
i
λµ∂

µ
i , (2.260)

represent the subset of the 2–jet space J2(X,Y ) of Y , coordinated by
(xµ, yi, yiα, y

i
λµ). A section s of Y → X is a solution of these equations if

its second jet prolongation j2s lives in the subset (2.260).
The phase–space of covariant (polysymplectic) Hamiltonian field theory

on a fibre bundle Y −→ X is the Legendre bundle (see (2.215) above)

Π = ∧nT ∗X ⊗ V ∗Y ⊗ TX = V ∗Y ∧(∧n−1T ∗X), (2.261)

where V ∗Y is the vertical cotangent bundle of Y → X. The Legendre bundle
Π is equipped with the holonomic bundle coordinates (xα, yi, pµi ) compatible
with the composite fibration

Π
πY−→ Y

π−→ X, (2.262)

admitting the canonical polysymplectic form
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Ω = dpαi ∧ dyi ∧ ω ⊗ ∂α.

A covariant Hamiltonian H on Π (2.262) is defined as a section p = −H of
the trivial line bundle (i.e., 1D fibre bundle)

ZY = T ∗Y ∧ (∧n−1T ∗X) → Π, (2.263)

equipped with holonomic bundle coordinates (xα, yi, pµi , p). This fibre bundle
admits the canonical multisymplectic Liouville form

Ξ = pω + pαi dy
i ∧ ωα, with ωα = ∂αω.

The pull–back of Ξ onto Π by a Hamiltonian H gives the Hamiltonian form

H = H∗ΞY = pαi dy
i ∧ ωα −Hω (2.264)

on Π. The corresponding covariant Hamiltonian equations on Π,

yiα = ∂iαH, pαλi = −∂iH, (2.265)

represent the closed submanifold of the jet space J1(X,Π) of Π. A section r
of Π → X is a solution of these equations if its jet prolongation j1r lives in
the submanifold (2.265).

A section r of Π −→ X is a solution of the covariant Hamiltonian equations
(2.265) iff it satisfies the condition r∗(udH) = 0 for any vertical vector–field
u on Π −→ X.

Alternatively, a section r of Π −→ X is a solution of the covariant Hamil-
tonian equations (2.265) iff it is a solution of the Euler–Lagrangian equations
for the first–order Lagrangian LH on J1(X,Π),

LH = h0(H) = LHω = (pαi y
i
α −H)ω, (2.266)

where h0 sends exterior forms onΠ onto horizontal exterior forms on J1(X,Π)
−→ X, using the rule h0(dyi) = yiαdx

α.
Note that, for any section r of Π −→ X, the pull–backs r∗H and j1r∗LH

coincide. This fact motivated [BS04] to quantize covariant Hamiltonian field
theory with a Hamiltonian H on Π as a Lagrangian system with the La-
grangian LH (2.266).

Furthermore, let iN : N −→ Π be a closed imbedded subbundle of the
Legendre bundleΠ −→ Y which is regarded as a constraint space of a covariant
Hamiltonian field system with a Hamiltonian H. This Hamiltonian system is
restricted to N as follows. LetHN = i∗NH be the pull–back of the Hamiltonian
form H (2.264) onto N . The constrained Hamiltonian form HN defines the
constrained Lagrangian

LN = h0(HN ) = (j1iN )∗LH (2.267)

on the jet space J1(X,NL) of the fibre bundle NL −→ X. The Euler–
Lagrangian equations for this Lagrangian are called the constrained Hamilto-
nian equations.
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Note that, the Lagrangian LH (2.266) is the pull–back onto J1(X,Π)
of the horizontal form LH on the bundle product Π × J1(X,Y ) over Y by
the canonical map J1(X,Π) → Π × J1(X,Y ). Therefore, the constrained
Lagrangian LN (2.267) is the restriction of LH to N × J1(X,Y ).

A section r of the fibre bundle N −→ X is a solution of constrained Hamil-
tonian equations iff it satisfies the condition r∗(uNdH) = 0 for any vertical
vector–field uN on N −→ X.

Any solution of the covariant Hamiltonian equations (2.265) which lives in
the constraint manifold N is also a solution of the constrained Hamiltonian
equations on N . This fact motivates us to quantize covariant Hamiltonian field
theory on a constraint manifold N as a Lagrangian system with the pull–back
Lagrangian LN (2.267).

Since a constraint manifold is assumed to be a closed imbedded subman-
ifold of Π, there exists its open neighborhood U which is a fibre bundle U
−→ N . If Π is a fibre bundle πN : Π −→ N over N , it is often convenient to
quantize a Lagrangian system on Π with the pull–back Lagrangian π∗NLN ,
but integration of the corresponding generating functional along the fibres of
Π −→ N must be finite.

In order to verify this quantization scheme, let us associate to a Lagrangian
field system on Y a covariant Hamiltonian system on Π, then let us quan-
tize this Hamiltonian system and compare this quantization with that of an
original Lagrangian system.

Associated Lagrangian and Hamiltonian Systems

In order to relate classical Lagrangian and covariant Hamiltonian field theo-
ries, let us recall that, besides the Euler–Lagrangian equations, a Lagrangian
L (2.259) also induces the Cartan equations which are given by the subset

(yjµ − yjµ)∂αi ∂
µ
j L = 0, (2.268)

∂iL − dα∂αi L+ (yjµ − yjµ)∂i∂
µ
j L = 0, dα = ∂α + yiα∂i + y

i
λµ∂

µ
i ,

of the repeated jet space J1J1(X,Y ) coordinated by (xµ, yi, yiλ, y
i
α, y

i
λµ). A

solution of the Cartan equations is a section s of the jet bundle J1(X,Y ) −→ X
whose jet prolongation j1s lives in the subset (2.268). Every solution s of the
Euler–Lagrangian equations (2.260) defines the solution j1s of the Cartan
equations (2.268). If s is a solution of the Cartan equations and s = j1s, then
s is a solution of the Euler–Lagrangian equations. If a Lagrangian L is regular,
the equations (2.260) and (2.268) are equivalent.

Recall that any Lagrangian L (2.259) induces the Legendre map (2.216),
i.e.,

L̂ : J1(X,Y ) −→ Π, pαi ◦ L̂ = ∂αi L, (2.269)

over IdY whose image NL = L̂(J1(X,Y )) is called the Lagrangian constraint
space. A Lagrangian L is said to be hyperregular if the Legendre map (2.269)
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is a diffeomorphism. A Lagrangian L is called almost–regular if the Lagrangian
constraint space is a closed imbedded subbundle iN : NL → Π of the Legendre
bundle Π → Y and the surjection L̂ : J1(X,Y ) → NL is a submersion (i.e.,
a fibre bundle) whose fibres are connected. Conversely, any Hamiltonian H
induces the Hamiltonian map

Ĥ : Π → J1(X,Y ), yiα ◦ Ĥ = ∂iαH. (2.270)

A Hamiltonian H on Π is said to be associated to a Lagrangian L on
J1(X,Y ) if H satisfies the following relations (with (xµ, yi, pµi ) ∈ NL)

L̂ ◦ Ĥ ◦ L̂ = L̂, pµi = ∂µi L(xµ, yi, ∂jαH), (2.271)

Ĥ∗LH = Ĥ∗L, pµi ∂
i
µH−H = L(xµ, yj , ∂jαH). (2.272)

If an associated Hamiltonian H exists, the Lagrangian constraint space NL
is given by the coordinate relations (2.271) and Ĥ ◦ L̂ is a projector from Π
onto NL.

For example, any hyperregular Lagrangian L admits a unique associated
Hamiltonian H such that

Ĥ = L̂−1, H = pµi L̂iµ
−1
− L(xα, yi, L̂iα

−1
).

In this case, any solution s of the Euler–Lagrangian equations (2.260) defines
the solution r = L̂ ◦ j1s, of the covariant Hamiltonian equations (2.265).
Conversely, any solution r of these Hamiltonian equations induces the solution
s = πY ◦ r of the Euler–Lagrangian equations (2.260).

A degenerate Lagrangian need not admit an associated Hamiltonian. If
such a Hamiltonian exists, it is not necessarily unique. Let us restrict our
consideration to almost–regular Lagrangians. From the physical viewpoint, the
most of Lagrangian field theories is of this type. From the mathematical one,
this notion of degeneracy is particularly appropriate for the study of relations
between Lagrangian and covariant Hamiltonian formalisms as follows [BS04].

Let L be an almost–regular Lagrangian and H an associated Hamiltonian.
Let a section r ofΠ −→ X be a solution of the covariant Hamiltonian equations
(2.265) for H. If r lives in the constraint manifold NL, then s = πY ◦ r
satisfies the Euler–Lagrangian equations (2.260) for L, while s = Ĥ ◦ r obeys
the Cartan equations (2.268). Conversely, let s be a solution of the Cartan
equations (2.268) for L. If H satisfies the relation

Ĥ ◦ L̂ ◦ s = j1(π1
0 ◦ s),

the section r = L̂ ◦ s of the Legendre bundle Π −→ X is a solution of the
Hamiltonian equations (2.265) for H. If s = j1s, we get the relation between
solutions the Euler–Lagrangian equations and the covariant Hamiltonian ones.

Due to this theorem, one need a set of different associated Hamiltonians in
order to recover all solutions of the Euler–Lagrangian and Cartan equations for
an almost–regular Lagrangian L. We can overcome this ambiguity as follows.
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Let H, H′ be two different Hamiltonians associated to an almost–regular
Lagrangian L. Let H, H ′ be the corresponding Hamiltonian forms (2.264).
Their pull–backs i∗NH and i∗NH

′ onto the Lagrangian constraint manifold NL
coincide with each other.

It follows that, if an almost–regular Lagrangian admits associated Hamil-
tonians H, it defines a unique constrained Hamiltonian form HN = i∗NH on
the Lagrangian constraint manifold NL and a unique constrained Lagrangian
LN = h0(HN ) (2.267) on the jet space J1(X,NL) of the fibre bundleNL −→ X.
For any Hamiltonian H associated to L, every solution r of the Hamiltonian
equations which lives in the Lagrangian constraint space NL is a solution of
the constrained Hamiltonian equations for LN .

Let an almost–regular Lagrangian L admit associated Hamiltonians. A
section s of the jet bundle J1(X,Y ) → X is a solution of the Cartan equa-
tions for L iff L̂ ◦ s is a solution of the constrained Hamiltonian equations.
In particular, any solution r of the constrained Hamiltonian equations gives
the solution s = Ĥ ◦ r of the Cartan equations. This theorem shows that
the constrained Hamiltonian equations and the Cartan equations are quasi–
equivalent. Thus, one can associate to an almost–regular Lagrangian L (2.259)
a unique constrained Lagrangian system on the constraint Lagrangian mani-
fold NL. Let us compare quantizations of these Lagrangian systems on Y and
NL ⊂ Π in the case of an almost–regular quadratic Lagrangian L.

Evolution Operator

Recall that the covariant Hamiltonian field theory is mainly developed in its
multisymplectic and polysymplectic variants, related to the two different Leg-
endre maps in the first–order calculus of variations on fibre bundles [Sar02c]
(also, see [Got91c] for a survey of symplectic formalism).

Recall that, given a fibre bundle Y → X coordinated by (xα, yi), every
first–order Lagrangian L : J1(X,Y ) → ∧nT ∗X is given by L = Lω, ω =
dx1 ∧ · · · dxn, (n = dimX), and induces the Legendre map of the 1–jet
space J1(X,Y ) to the Legendre bundle

Π = ∧nT ∗X ⊗ V ∗Y ⊗ TX, (2.273)

coordinated by (xα, yi, pαi ). The Π admits the canonical polysymplectic form

ΩΠ = dpαi ∧ dyi ∧ ω ⊗ ∂α, (2.274)

and is regarded as the polysymplectic phase–space of fields.
The multisymplectic phase–space of fields is the homogeneous Legendre

bundle
Z = T ∗Y ∧ (∧n−1T ∗X), (2.275)

coordinated by (xα, yi, pαi , p) and equipped with the canonical multisymplectic
form
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Ω = dΞ = dp ∧ ω + dpαi ∧ dyi ∧ ωα, with ωα = ∂αω. (2.276)

It is natural that one attempts to generalize a Poisson bracket on sym-
plectic manifolds to polysymplectic and multisymplectic manifolds in order
to get the covariant canonical quantization of field theory. Different variants
of such a bracket have been suggested. However, it seems that no canonical
bracket corresponds to the TX–valued polysymplectic form (2.274), unless
dimX = 1. On the contrary, using the exterior multisymplectic form (2.276),
one can associate multivector–fields to exterior forms on the fibre bundle Z
(2.275) (but not to all of them), and can introduce a desired bracket of these
forms via the Schouten–Nijenhuis bracket of multivector–fields.

Note that no bracket determines the evolution operator in polysymplectic
and multisymplectic Hamiltonian formalism, including the case of dimX = 1
of the time–dependent mechanics (see subsection 2.1.2 above). Written as
a bracket, the evolution operator can be quantized, and it determines the
Heisenberg equation.3

Recall the following relationship between first–order dynamical equations,
connections, multivector–fields and evolution operators on a fibre bundle.

(i) Let π : Q→ X be a fibre bundle coordinated by (xµ, qa). As a section
γ : Q −→ J1(X,Q) of the 1–jet bundle J1(X,Q) → Q, any connection

γ = dxµ ⊗ (∂µ + γaµ∂a), (2.277)

on Q→ X defines the first–order differential operator

D : J1(X,Q) → T ∗X ⊗ V Q, (xµ, qa, qaµ) → (xµ, qa, qaµ − γaµ(xν , qb))
(2.278)

on Q → X called the covariant differential with respect to γ. The kernel of
this differential operator is a closed imbedded subbundle of J1(X,Q) → X,
given by the first–order dynamical equation

qaµ − γaµ(xν , qb) = 0 (2.279)

on a fibre bundle Q→ X. Conversely, any first–order dynamical equation on
Q→ X is of this type.

(ii) LetHQ ⊂ TQ be the horizontal distribution defined by a connection γ.
If X is orientable, there exists a nowhere vanishing global section of the exte-
rior product ∧nHQ→ Q. It is a locally decomposable π-transverse n−vector–
field on Q. Conversely, every multivector–field of this type on Q→ X induces
3 Recall that in the (Lorentz–invariant) Heisenberg quantum picture, the state vec-

tor |ψ > does not change with time, and an observable A satisfies the Heisenberg
equation of motion

Ȧ = (i�)−1[A, H] + (∂tA)classic,

which becomes the classical Poisson equation if we replace its commutator [A, H]
by the Poisson bracket A, H.
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a connection and, consequently, a first–order dynamical equation on this fibre
bundle [EMR98].

(iii) Given a first–order dynamical equation γ on a fibre bundle Q → X,
the corresponding evolution operator dγ is defined as the pull–back dγ onto
the shell of the horizontal differential

dH = dxµ(∂µ + qaµ∂a)

acting on smooth real functions on Q. It reads

dγf = (∂µ + γaµ∂a)fdx
µ, (f ∈ C∞(Q)). (2.280)

This expression shows that dγ is projected onto Q, and it is a first–order
differential operator on functions on Q. In particular, if a function f obeys
the evolution equation dγf = 0, it is constant on any solution of the dynamical
equation (2.279).

In Hamiltonian dynamics on Q, a problem is to represent the evolution
operator (2.280) as a bracket of f with some exterior form on Q.

First of all, let us study the case of fibre bundles Y −→ X over a 1D
orientable connected manifold X (i.e., X is either R or S1). In this case, the
Legendre bundle Π (2.273) is isomorphic to the vertical cotangent bundle
V ∗Y of Y −→ X coordinated by (x, yi, pi), and the polysymplectic form ΩΠ
(2.274) on V ∗Y reads

ΩΠ = dpi ∧ dyi ∧ dx⊗ ∂x. (2.281)

Therefore, the homogeneous Legendre bundle (2.275) is the cotangent bun-
dle T ∗Y , coordinated by (x, yi, p, pi), and the multisymplectic form (2.276)
becomes the canonical symplectic form on T ∗Y , given by

Ω = dp ∧ dx+ dpi ∧ dyi. (2.282)

The vertical cotangent bundle V ∗Y admits the canonical Poisson bracket

{f, f ′}V = ∂if∂if ′ − ∂if∂if ′, (f, f ′ ∈ C∞(V ∗Y )), (2.283)

given by the relation
ζ∗{f, f ′}V = {ζ∗f, ζ∗f ′},

where {, } is the canonical Poisson bracket on T ∗Y [MS98, Sar98]. However,
the Poisson structure (2.283) fails to determine Hamiltonian dynamics on the
fibre bundle V ∗Q → X because all Hamiltonian vector–fields with respect
to this structure are vertical. At the same time, in accordance with general
polysymplectic formalism [GMS97], a section h, p◦h = −H, of the fibre bundle
V ∗Y −→ T ∗Y induces a polysymplectic Hamiltonian form on V ∗Y ,

H = pidyi −Hdx. (2.284)
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The associated Hamiltonian connection on V ∗Y −→ X with respect to the
polysymplectic form (2.281) is

γH = dx⊗ (∂x + ∂iH∂i − ∂iH∂i). (2.285)

It defines the Hamiltonian equation on V ∗Y ,

yix = ∂iH, pix = −∂iH.

The corresponding evolution operator (2.280) takes the local form

dγf = (∂xf + {H, f}V )dx, (f ∈ C∞(V ∗Q)). (2.286)

The bracket {H, f}V in this expression is not globally defined because H is
not a function on V ∗Q. Therefore, the evolution operator (2.286) does not
reduce to the Poisson bracket (2.283).

Let us now consider the pull–back ζ∗H of the Hamiltonian form H (2.284)
onto T ∗Y . Then the difference

H∗ = Ξ − ζ∗H = (p+H)dx (2.287)

is a horizontal density on the fibre bundle T ∗Y → X. It is a multisymplectic
Hamiltonian form. The corresponding Hamiltonian connection γ on T ∗Y → X
is given by the condition

γ(Ω) = dH∗, (2.288)

where the map

γ(Ω) = dx ∧ [(∂x + γp∂p + γi∂i + γi∂
i)Ω]

is induced by an endomorphism of T ∗Y determined by the tangent–valued
form γ. We get

γ = dx⊗ (∂x + γp∂p + ∂iH∂i − ∂iH∂i), (2.289)

where the coefficient γp is arbitrary. Note that this connection projects to
the connection γH (2.285) on V ∗Y → X. As a consequence, it defines the
evolution operator whose restriction to the pull–back of functions on V ∗Q is
exactly the evolution operator (2.286). But now this operator locally reduces
to the Poisson bracket on T ∗Y ,

dγf = {p+H, f}dx, (f ∈ C∞(V ∗Y )). (2.290)

However, this bracket is not globally defined, too, since p+H is a horizontal
density, but not a function on T ∗Y .

Let us introduce the function E = ρ−1(p + H) on T ∗Y , where ρdx is
some nowhere vanishing density on X. The Hamiltonian vector–field of E
with respect to the symplectic form Ω on T ∗Y reads
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ϑE = ρ−1∂x − ∂xE∂p + ∂iE∂i − ∂iE∂i.

This vector–field is horizontal with respect to the connection (2.289), where
γp = −ρ∂xE , and it determines this connection in the form

γ = dx⊗ (∂x − ρ∂xE∂p + ρ∂iE∂i − ρ∂iE∂i).

Therefore, the evolution operator (2.290) is rewritten as

dγf = ρ{E , f}dx, (2.291)

The bracket {E , f} is well–defined, but dγ does not equal this bracket because
of the factor ρ.

The multisymplectic bracket with the horizontal density H∗ (2.287) also
cannot help us since there is no Hamiltonian multivector–field associated to
H∗ relative to the symplectic form Ω.

The manifolds X = R and X = S1 can be equipped with coordinates x
possessing transition functions x′ = x + const, and one can always choose
the density ρ = 1. Then the evolution operator (2.291) reduces to a Poisson
bracket in full. If X = R, this is the case of time–dependent mechanics where
time reparametrization is forbidden [MS00b, GMS02a].

Now we turn to the general case of dimX > 1. In the framework of
polysymplectic formalism [GMS97], a polysymplectic Hamiltonian form on
the Legendre bundle Π (2.273) reads

H = pαi dy
i ∧ ωα −Hω. (2.292)

The associated Hamiltonian connection

γH = dxα ⊗ (∂α + γiα∂i + γ
µ
iλ∂

i
µ)

fails to be uniquely determined, but obeys the equations

γiα = ∂iαH, γαiλ = −∂iH.

The values of these connections assemble into a closed imbedded subbubdle

yiα = ∂iαH, pαiλ = −∂iH

of the jet bundle J1(X,Π) −→ X which is the first–order polysymplectic
Hamiltonian equation on Π. This equation is not algebraically solved for the
highest order derivatives and, therefore, it is not a dynamical equation. As a
consequence, the evolution operator depends on the jet coordinates pαiµ and,
therefore, it is not a differential operator on functions onΠ. Clearly, no bracket
on Π can determine such an operator.
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Quadratic Degenerate Systems

Given a fibre bundle Y → X, let us consider a quadratic Lagrangian L
(2.258), where a, b and c are local functions on Y . This property is coordinate–
independent since J1(X,Y ) → Y is an affine bundle modelled over the vector
bundle T ∗X⊗V Y , where V Y denotes the vertical tangent bundle of Y → X.
The associated Legendre map (2.269) reads

pαi ◦ L̂ = aαµij y
j
µ + bαi . (2.293)

Let a Lagrangian L (2.258) be almost–regular, i.e., the matrix function a
is a linear bundle map

a : T ∗X ⊗ V Y → Π, pαi = aαµij y
j
µ, (2.294)

of constant rank, where (xα, yi, yiα) are bundle coordinates on T ∗X ⊗ V Y .
Then the Lagrangian constraint space NL (2.293) is an affine subbundle of
the Legendre bundleΠ → Y (2.273). Hence, NL → Y has a global section. For
the sake of simplicity, let us assume that it is the canonical zero section 0̂(Y )
of Π → Y . The kernel of the Legendre map (2.293) is also an affine subbundle
of the affine jet bundle J1(X,Y ) → Y . Therefore, it admits a global section

Γ : Y → Ker L̂ ⊂ J1(X,Y ), aαµij Γ
j
µ + bαi = 0, (2.295)

which is a connection on Y → X. If the Lagrangian (2.258) is regular, the
connection (2.295) is unique.

There exists a linear bundle map

σ : Π −→ T ∗X ⊗ V Y, yiα ◦ σ = σijαµp
µ
j , (2.296)

such that
a ◦ σ ◦ a = a, aαµij σ

jk
µαa

αν
kb = aανib . (2.297)

Note that σ is not unique, but it falls into the sum σ = σ0 + σ1 such that

σ0 ◦ a ◦ σ0 = σ0, a ◦ σ1 = σ1 ◦ a = 0, (2.298)

where σ0 is uniquely defined. For example, there exists a nondegenerate map
σ (2.296).

Recall that there are the splittings

J1(X,Y ) = S(J1(X,Y ))⊕F(J1(X,Y )) = Ker L̂⊕ Im(σ0 ◦ L̂),(2.299)
yiα = Siα + F iα = [yiα − σ0

ik
αµ(a

αµ
kj y

j
µ + bαk )] + [σ0

ik
αµ(a

αµ
kj y

j
µ + bαk )],

Π = R(Π)⊕ P(Π) = Kerσ0 ⊕NL, (2.300)
pαi = Rαi + Pαi = [pαi − a

αµ
ij σ0

jk
µαp

α
k ] + [aαµij σ0

jk
µαp

α
k ].

The relations (2.298) lead to the equalities
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aαµij Sjµ = 0, σ0
jk
µαRαk = 0, σ1

jk
µαPαk = 0, Rαi F iα = 0. (2.301)

Due to these equalities, the Lagrangian (2.258) takes the form

L = Lω, L =
1
2
aαµij F iαFjµ + c′. (2.302)

One can show that, this Lagrangian admits a set of associated Hamiltonians

HΓ = (Rαi + Pαi )Γ iα +
1
2
σ0
ij
αµPαi P

µ
j +

1
2
σ1
ij
αµRαi R

µ
j − c′ (2.303)

indexed by connections Γ (2.295). Therefore, the Lagrangian constraint man-
ifold (2.293) is given by the reducible constraints

Rαi = pαi − a
αµ
ij σ0

jk
µαp

α
k = 0. (2.304)

Given a Hamiltonian HΓ , the corresponding Lagrangian (2.266) reads

LHΓ
= Rαi (Siα − Γ iα) + Pαi F iα −

1
2
σ0
ij
αµPαi P

µ
j −

1
2
σ1
ij
αµRαi R

µ
j + c′. (2.305)

Its restriction (2.267) to the Lagrangian constraint manifold NL (2.304) is

LN = LNω, LN = Pαi F iα −
1
2
σ0
ij
αµPαi P

µ
j + c′. (2.306)

It is independent of the choice of a Hamiltonian (2.303). Note that the La-
grangian LN may admit gauge symmetries due to the term Pαi F iα.

The Hamiltonian HΓ induces the Hamiltonian map ĤΓ (2.270) and the
projector

T = L̂ ◦ ĤΓ , pαi ◦ T = Tαjiµ p
µ
j = aανik σ0

kj
νµp

µ
j = Pαi , (2.307)

from Π onto its summand NL in the decomposition (2.300). It obeys the
relations

σ ◦ T = σ0, T ◦ a = a. (2.308)

The projector T (2.307) is a linear map over IdY . Therefore, T : Π → NL is a
vector bundle. Let us consider the pull–back LΠ = T ∗LN of the constrained
Lagrangian LN (2.306) onto Π. Due to the relations (2.301), it is given by
the coordinate expression

LΠ = LΠω, LΠ = pαi F iα −
1
2
σ0
ij
αµp

α
i p
µ
j + c′. (2.309)

This Lagrangian is gauge–invariant under the subgroup of the gauge group of
vertical automorphisms Φ of the affine bundle Π → Y such that T ◦ Φ = T .
This subgroup coincides with the gauge group Aut Kerσ0 of vertical automor-
phisms of the vector bundle Kerσ0 → Y .
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Note that the splittings (2.299) and (2.300) result from the splitting of the
vector bundle

T ∗X ⊗ V Y = Ker a⊕ E,
which can be provided with the adapted coordinates (ya, yA) such that a
(2.294) is brought into a diagonal matrix with nonvanishing components aAA.
Then the Legendre bundle Π → Y (2.273) admits the dual (nonholonomic)
coordinates (pa, pA), where pA are coordinates on the Lagrangian constraint
manifold NL, given by the irreducible constraints pa = 0. Written relative to
these coordinates, σ0 becomes the diagonal matrix

σAA0 = (aAA)−1, σaa0 = 0, (2.310)

while σAa1 = σAB1 = 0. Moreover, one can choose the coordinates ya (accord-
ingly, pa) and the map σ (2.296) such that σ1 becomes a diagonal matrix with
nonvanishing positive components σaa1 = V−1, where Vω is a volume form on
X. We further follow this choice of the adapted coordinates (pa, pA). Let us
write

pa =Maiαp
α
i , pA =MAiαp

α
i , (2.311)

where M are the matrix functions on Y obeying the relations

Ma
i
αa
αµ
ij = 0, M−1αa

i σ0
i
α = 0, Ma

i
αPαi = 0, MA

i
αRαi = 0.

Then the Lagrangian LN (2.306) with respect to the adapted coordinates
(pa, pA) takes the form

LN =M−1αA
i pAF iα −

1
2

∑
A

(aAA)−1(pA)2 + c′, (2.312)

Path Integrals and Perturbative Quantum Fields

Recall that an elegant way to make geometrical path integrals rigorous is to
formulate them using the jet formalism. In this way the covariant Hamiltonian
field systems were presented in [BS04]. In this subsection we give a brief review
of this perturbative quantum field model.

Let us quantize a Lagrangian system with the Lagrangian LN (2.306)
on the constraint manifold NL (2.304). In the framework of a perturbative
quantum field theory, we should assume that X = Rn and Y → X is a trivial
affine bundle. It follows that both the original coordinates (xα, yi, pαi ) and
the adapted coordinates (xα, yi, pa, pA) on the Legendre bundle Π are global.
Passing to field theory on an Euclidean space Rn, we also assume that the
matrix a in the Lagrangian L (2.302) is positive–definite, i.e., aAA > 0.

Let us start from a Lagrangian (2.306) without gauge symmetries. Since
the Lagrangian constraint space NL can be equipped with the adapted co-
ordinates pA, the generating functional of Euclidean Green functions of the
Lagrangian system in question reads [BS04]
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Z = N−1

∫
exp{

∫
(LN +

1
2

Tr(lnσ0) + iJiyi + iJApA)ω}
∏
x

[dpA(x)][dy(x)],

(2.313)
where LN is given by the expression (2.312) and σ0 is the square matrix

σAB0 =M−1αA
i M

−1µB
j σ0

ij
αµ = δAB(aAA)−1.

The generating functional (2.313) a Gaussian integral of variables pA(x). Its
integration with respect to pA(x) under the condition JA = 0 restarts the
generating functional

Z = N−1

∫
exp{

∫
(L+ iJiyi)ω}

∏
x

[dy(x)], (2.314)

of the original Lagrangian field system on Y with the Lagrangian (2.302).
However, the generating functional (2.313) cannot be rewritten with respect
to the original variables pµi , unless a is a nondegenerate matrix function.

In order to overcome this difficulty, let us consider a Lagrangian system
on the whole Legendre manifold Π with the Lagrangian LΠ (2.309). Since
this Lagrangian is constant along the fibres of the vector bundle Π → NL,
an integration of the generating functional of this field model with respect to
variables pa(x) should be finite. One can choose the generating functional in
the form [BS04]

Z = N−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p
µ
j (2.315)

+
1
2

Tr(lnσ) + iJiyi + iJ iµp
µ
i )ω}

∏
x

[dp(x)][dy(x)].

Its integration with respect to momenta pαi (x) restarts the generating func-
tional (2.314) of the original Lagrangian system on Y . In order to get the
generating functional (2.315), one can follow a procedure of quantization
of gauge–invariant Lagrangian systems. In the case of the Lagrangian LΠ
(2.309), this procedure is rather trivial, since the space of momenta variables
pa(x) coincides with the translation subgroup of the gauge group Aut Kerσ0.

Now let us suppose that the Lagrangian LN (2.306) and, consequently, the
Lagrangian LΠ (2.309) are invariant under some gauge group GX of vertical
automorphisms of the fibre bundle Y → X (and the induced automorphisms of
Π → X) which acts freely on the space of sections of Y → X. Its infinitesimal
generators are represented by vertical vector–fields u = ui(xµ, yj)∂i on Y → X
which induce the vector–fields

u = ui∂i − ∂juipαi ∂jα + dαui∂αi , dα = ∂α + yiα∂i, (2.316)

on Π × J1(X,Y ). Let us also assume that GX is indexed by m parameter
functions ξr(x) such that u = ui(xα, yj , ξr)∂i, where
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ui(xα, yj , ξr) = uir(x
α, yj)ξr + uiµr (xα, yj)∂µξr (2.317)

are linear first–order differential operators on the space of parameters ξr(x).
The vector–fields u(ξr) must satisfy the commutation relations

[u(ξq), u(ξ′p)] = u(crpqξ
′pξq),

where crpq are structure constants. The Lagrangian LΠ (2.309) is invariant un-
der the above gauge transformations iff its Lie derivative LuLΠ along vector–
fields (2.316) vanishes, i.e.,

(ui∂i − ∂juipαi ∂jα + dαui∂αi )LΠ = 0. (2.318)

Since the operator Lu is linear in momenta pµi , the condition (2.318) falls into
the independent conditions

(uk∂k − ∂jukpνk∂jν + dνuj∂νj )(p
α
i F iα) = 0, (2.319)

(uk∂k − ∂jukpνk∂jν)(σ0
ij
λµp

α
i p
µ
j ) = 0, (2.320)

ui∂ic
′ = 0. (2.321)

It follows that the Lagrangian LΠ is gauge–invariant iff its three summands
are separately gauge–invariant.

Note that, if the Lagrangian LΠ on Π is gauge–invariant, the original
Lagrangian L (2.302) is also invariant under the same gauge transformations.
Indeed, one gets at once from the condition (2.319) that

u(F iµ) = ∂juiFjµ, (2.322)

i.e., the quantity F is transformed as the dual of momenta p. Then the con-
dition (2.320) shows that the quantity σ0p is transformed by the same law as
F . It follows that the term aFF in the Lagrangian L (2.302) is transformed
exactly as a(σ0p)(σ0p) = σ0pp, i.e., is gauge–invariant. Then this Lagrangian
is gauge–invariant due to the equality (2.321).

Since Siα = yiα−F iα, one can derive from the formula (2.322) the transfor-
mation law of S,

u(Siµ) = dµui − ∂juiFjµ = dµui − ∂jui(yjµ − Sjµ) = ∂µui + ∂juiSjµ. (2.323)

This expression shows that the gauge group GX acts freely on the space of
sections S(x) of the fibre bundle Ker L̂ → Y in the splitting (2.299). Let
the number m of parameters of the gauge group GX do not exceed the fibre
dimension of Ker L̂ → Y . Then some combinations brµi Siµ of Siµ can be used
as the gauge condition

brµi Siµ(x)− αr(x) = 0,

similar to the generalized Lorentz gauge in Yang–Mills gauge theory .
Now we turn to path–integral quantization of a Lagrangian system with the

gauge–invariant Lagrangian LΠ (2.309). In accordance with the well–known
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quantization procedure, let us modify the generating functional (2.315) as
follows [BS04]

Z = N−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p
µ
j

+
1
2

Tr(lnσ)− 1
2
hrsα

rαs + iJiyi + iJ iµp
µ
i )ω} (2.324)

∆
∏
x

×rδ(brµi Siµ(x)− αr(x))[dα(x)][dp(x)][dy(x)]

= N ′−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p
µ
j +

1
2

Tr(lnσ)

−1
2
hrsb

rµ
i b
sα
j SiµSjα + iJiyi + iJ iµp

µ
i )ω}∆

∏
x

[dp(x)][dy(x)],

where
∫

exp{
∫

(−1
2
hrsα

rαs)ω}
∏
x

[dα(x)]

is a Gaussian integral, while the factor ∆ is defined by the condition

∆

∫ ∏
x

×rδ(u(ξ)(brµi Siµ))[dξ(x)] = 1.

We have the linear second–order differential operator

Mr
s ξ
s = u(ξ)(brµi Siµ(x)) = brµi (∂µu

i(ξ) + ∂jui(ξ)Sjµ) (2.325)

on the parameter functions ξ(x), and get ∆ = detM . Then the generating
functional (2.325) takes the form

Z = N ′−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p
µ
j +

1
2

Tr lnσ − 1
2
hrsb

rµ
i b
sα
j SiµSjα

− crMr
s c
s + iJiyi + iJ iµp

µ
i )ω}

∏
x

[dc][dc][dp(x)][dy(x)], (2.326)

where cr, cs are odd ghost fields. Integrating Z (2.326) with respect to mo-
menta under the condition J iµ = 0, we come to the generating functional

Z = N ′−1

∫
exp{

∫
(L−1

2
hrsb

rµ
i b
sα
j SiµSjα−crMr

s c
s+iJiyi)ω}

∏
x

[dc][dc][dy(x)]

(2.327)
of the original field model on Y with the gauge–invariant Lagrangian L (2.302).

Note that the Lagrangian

L′ = L − 1
2
hrsb

rµ
i b
sα
j SiµSjα − crMr

s c
s (2.328)
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fails to be gauge–invariant, but it admits the so–called BRST symmetry4

whose odd operator reads

ϑ = ui(xµ, yi, cs)∂i + dαui(xµ, yi, cs)∂αi + vr(xµ, yi, yiµ)
∂

∂cr
(2.329)

+ vr(xµ, yi, cs)
∂

∂cr
+ dαvr(xµ, yi, cs)

∂

∂crα
+ dµdαvr(xµ, yi, cs)

∂

∂crµλ
,

dα = ∂α + yiα∂i + y
i
λµ∂

µ
i + crα

∂

∂cr
+ crλµ

∂

∂crµ
.

Its components ui(xµ, yi, cs) are given by the expression (2.317) where pa-
rameter functions ξr(x) are replaced with the ghosts cr. The components vr
and vr of the BRST operator ϑ can be derived from the condition

ϑ(L′) = −hrsMr
q b
sα
j Sjαcq − vrMr

q c
q + crϑ(ϑ(brαj Sjα)) = 0

of the BRST invariance of L′. This condition falls into the two independent
relations

hrsM
r
q b
sα
j Sjα + vrMr

q = 0,

ϑ(cq)(ϑ(cp)(brαj Sjα)) = u(cp)(u(cq)(brαj Sjα)) + u(vr)(brαj Sjα)

= u(
1
2
crpqc

pcq + vr)(brαj Sjα) = 0.

Hence, we get: vr = −hrsbsαj Sjα, and vr = − 1
2c
r
pqc

pcq.

2.2.5 Gauge Fields on Principal Connections

Connection Strength

Given a principal G−bundle P → Q, the Frölicher–Nijenhuis bracket (1.153)
on the space ∧∗(P ) ⊗ V1(P ) of tangent–valued forms on P is compatible
with the canonical action RG (1.128) of G on P , and induces the Frölicher–
Nijenhuis bracket on the space ∧∗(Q)⊗ TGP (Q) of TGP−valued forms on Q.
Its coordinate form issues from the Lie bracket (1.133).

Then any principal connection A ∈ ∧1(Q) ⊗ TGP (Q) (1.198) sets the
Nijenhuis differential

dA : ∧r(Q)⊗ TGP (Q) → ∧r+1(Q)⊗ VGP (Q),
dAφ = [A,φ]FN , φ ∈ ∧r(Q)⊗ TGP (Q), (2.330)

4 Recall that the BRST formalism is a method of implementing first class con-
straints. The letters BRST stand for Becchi, Rouet, Stora, and (independently)
Tyutin who discovered this formalism. It is a rigorous method to deal with quan-
tum theories with gauge invariance.
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on the space ∧∗(Q)⊗ TGP (Q).
The curvature R (1.190) can be equivalently defined as the Nijenhuis dif-

ferential

R : Y → ∧2T ∗Q⊗ V Y, given by R =
1
2
dΓΓ =

1
2
[Γ, Γ ]FN . (2.331)

Let us define the strength of a principal connection A, as

FA =
1
2
dAA =

1
2
[A,A]FN ∈ ∧2(Q)⊗VGP (Q), (2.332)

FA =
1
2
F rλµdq

α ∧ dqµ⊗er, F rλµ = ∂αArµ − ∂µArα + crpqA
p
αA

q
µ. (2.333)

It is locally given by the expression

FA = dA +
1
2
[A,A] = dA + A ∧A, (2.334)

where A is the local connection form (1.199). By definition, the strength
(2.332) of a principal connection obeys the second Bianchi identity

dAFA = [A,FA]FN = 0. (2.335)

It should be emphasized that the strength FA (2.332) is not the stan-
dard curvature (1.190) of a connection on P , but there are the local relations
ψPζ FA = z∗ζΘ, where

Θ = dÃ+
1
2
[Ã, Ã] (2.336)

is the gl-valued curvature form on P (see the expression (2.340) below). In
particular, a principal connection is flat iff its strength vanishes.

Associated Bundles

Given a principal G−bundle πP : P → Q, let V be a manifold provided with
an effective left action G × V → V, (g, v) �→ gv of the Lie group G. Let
us consider the quotient

Y = (P × V )/G (2.337)

of the product P ×V by identification of elements (p, v) and (pg, g−1v) for all
g ∈ G. We will use the notation (pG,G−1v) for its points. Let [p] denote the
restriction of the canonical surjection

P × V → (P × V )/G (2.338)

to the subset {p} × V so that [p](v) = [pg](g−1v). Then the map Y → Q,
[p](V ) �→ πP (p), makes the quotient Y (2.337) to a fibre bundle over Q.

Let us note that, for any G−bundle, there exists an associated principal G-
bundle [Ste72]. The peculiarity of the G−bundle Y (2.337) is that it appears
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canonically associated to a principal bundle P . Indeed, every bundle atlas
ΨP = {(Uα, zα)} of P determines a unique associated bundle atlas

Ψ = {(Uα, ψα(q) = [zα(q)]−1)}

of the quotient Y (2.337), and each automorphism of P also induces the
corresponding automorphism (2.353) of Y .

Every principal connection A on a principal bundle P → Q induces a
unique connection on the associated fibre bundle Y (2.337). Given the hor-
izontal splitting of the tangent bundle TP relative to A, the tangent map
to the canonical map (2.338) defines the horizontal splitting of the tangent
bundle TY of Y and, consequently, a connection on Y → Q [KN63/9]. This
is called the associated principal connection or a principal connection on a
P−associated bundle Y → Q. If Y is a vector bundle, this connection takes
the form

A = dqα ⊗ (∂α −ApαIpijyj∂i), (2.339)

where Ip are generators of the linear representation of the Lie algebra gr in
the vector space V . The curvature (1.190) of this connection reads

R = −1
2
F pλµIp

i
jy
jdqα∧dqµ ⊗ ∂i, (2.340)

where F pλµ are coefficients (2.333) of the strength of a principal connection A.
In particular, any principal connection A induces the associated linear con-

nection on the gauge algebra bundle VGP → Q. The corresponding covariant
differential ∇Aξ (1.186) of its sections ξ = ξpep reads

∇Aξ : Q→ T ∗Q⊗ VGP, ∇Aξ = (∂αξr + crpqA
p
αξ
q)dqα ⊗ er.

It coincides with the Nijenhuis differential

dAξ = [A, ξ]FN = ∇Aξ (2.341)

of ξ seen as a VGP−valued 0–form, and is given by the local expression given
by the local expression

∇Aξ = dξ + [A, ξ], (2.342)

where A is the local connection form (1.199).

Classical Gauge Fields

Since gauge potentials are represented by global sections of the connection
bundle C → Q (1.201), its 1–jet space J1(Q,C) plays the role of a con-
figuration space of classical gauge theory. The key point is that the jet space
J1(Q,C) admits the canonical splitting over C which leads to a unique canon-
ical Yang–Mills Lagrangian density of gauge theory on J1(Q,C).

Let us describe this splitting. One can show that the principal G−bundle
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J1(Q,P ) → J1(Q,P )/G = C (2.343)

is canonically isomorphic to the trivial pull–back bundle

PC = C × P → C, (2.344)

and that the latter admits the canonical principal connection [Gar77, GMS97]

A = dqα ⊗ (∂α + apαep) + darα ⊗ ∂αr ∈ O1(C)⊗ TG(PC)(C). (2.345)

Since C (1.201) is an affine bundle modelled over the vector bundle

C = T ∗Q⊗ VGP → Q,

the vertical tangent bundle of C possesses the canonical trivialization

V C = C × T ∗Q⊗ VGP, where (2.346)
VGPC = VG(C × P ) = C × VGP.

Then the strength FA of the connection (2.345) is the VGP−valued horizontal
2–form on C,

FA =
1
2
dAA =

1
2
[A,A]FN ∈ ∧2(C)⊗ VGP (Q),

FA = (darµ ∧ dqµ +
1
2
crpqa

p
αa
q
µdq

α ∧ dqµ)⊗ er. (2.347)

Note that, given a global section connection A of the connection bundle
C → Q, the pull–back A∗FA = FA is the strength (2.332) of the principal
connection A.

Let us take the pull–back of the form FA onto J1(Q,C) with respect to
the fibration (2.343), and consider the VGP−valued horizontal 2–form

F = h0(FA) =
1
2
Frλµdqα ∧ dqµ ⊗ er,

Frλµ = arλµ − arµλ + crpqa
p
αa
q
µ, (2.348)

where h0 is the horizontal projection (1.214). Note that

F/2 : J1(Q,C) → C × ∧2T ∗Q⊗ VGP (2.349)

is an affine map over C of constant rank. Hence, its kernel C+ = KerF is the
affine subbundle of J1(Q,C) → C, and we have a desired canonical splitting

J1(Q,C) = C+ ⊕ C− = C+ ⊕ (C × ∧2T ∗Q⊗VGP ), (2.350)

arλµ =
1
2
(arλµ + arµλ − crpqapαaqµ) +

1
2
(arλµ − arµλ + crpqa

p
αa
q
µ), (2.351)

over C of the jet space J1(Q,C). The corresponding canonical projections are

π1 = S : J1(Q,C) → C+, Srλµ =
1
2
(arλµ + arµλ − crpqapαaqµ), (2.352)

and π2 = F/2 given by (2.349).
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Gauge Transformations

In classical gauge theory, several classes of gauge transformations are exam-
ined [GMS97, MM92, Soc91]. A most general gauge transformation is defined
as an automorphism ΦP of a principal G−bundle P which is equivariant under
the canonical action (1.128) of the group G on G, i.e.,

Rg ◦ ΦP = ΦP ◦Rg, (g ∈ G).

Such an automorphism of P induces the corresponding automorphism

ΦY : (pG,G−1v) → (ΦP (p)G,G−1v) (2.353)

of the P−associated bundle Y (2.337) and the corresponding automorphism

ΦC : J1(Q,P )/G→ J1ΦP (J1(Q,P ))/G (2.354)

of the connection bundle C.
Every vertical automorphism of a principal bundle P is represented as

ΦP (p) = pf(p), (p ∈ P ), (2.355)

where f is a G−valued equivariant function on P , i.e.,

f(pg) = g−1f(p)g, (g ∈ G). (2.356)

There is a 1–1 correspondence between these functions and the global sections
s of the group bundle

PG = (P ×G)/G, (2.357)

whose typical fibre is the group G, subject to the adjoint representation of
the structure group G. Therefore, PG (2.357) is also called the adjoint bundle.
There is the canonical fibre–to–fibre action of the group bundle PG on any
P−associated bundle Y by the law

PG × Y → Y, ((pG,G−1gG), (pG,G−1v)) �→ (pG,G−1gv).

Then the above–mentioned correspondence is given by the relation

PG × P → P, (s(πP (p)), p) �→ pf(p),

where P is a G−bundle associated to itself. Hence, the gauge group G(P ) of
vertical automorphisms of a principal G−bundle P → Q is isomorphic to the
group of global sections of the P−associated group bundle (2.357).

In order to study the gauge invariance of one or another object in gauge
theory, it suffices to examine its invariance under an arbitrary 1–parameter
subgroup [ΦP ] of the gauge group. Its infinitesimal generator is a G−invariant
vertical vector–field ξ on a principal bundle P or, equivalently, a section
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ξ = ξp(x)ep (2.358)

of the gauge algebra bundle VGP → Q (1.132). We will call it a gauge vector–
field. One can think of its components ξp(q) as being gauge parameters. Gauge
vector–fields (2.358) are transformed under the infinitesimal generators of
gauge transformations (i.e., other gauge vector–fields) ξ′ by the adjoint rep-
resentation

Lξ′ξ = [ξ′, ξ] = cprqξ
′rξqep, (ξ, ξ′ ∈ VGP (Q)).

Therefore, gauge parameters are subject to the coadjoint representation

ξ′ : ξp �→ − cprqξ′
r
ξq. (2.359)

Given a gauge vector–field ξ (2.358) seen as the infinitesimal generator
of a 1–parameter gauge group [ΦP ], let us get the gauge vector–fields on a
P−associated bundle Y and the connection bundle C.

The corresponding gauge vector–field on the P−associated vector bundle
Y → Q issues from the relation (2.353), and reads

ξY = ξpIip∂i,

where Ip are generators of the group G, acting on the typical fibre V of Y .
The gauge vector–field ξ (2.358) acts on elements a (1.202) of the connec-

tion bundle by the law

Lξa = [ξ, a]FN = (−∂αξr + crpqξ
paqα)dqα ⊗ er.

In view of the vertical splitting (2.346), this quantity can be regarded as the
vertical vector–field

ξC = (−∂αξr + crpqξ
paqα)∂αr (2.360)

on the connection bundle C, and is the infinitesimal generator of the 1–
parameter group [ΦC ] of vertical automorphisms (2.354) of C, i.e., a desired
gauge vector–field on C.

Lagrangian Gauge Theory

Classical gauge theory of unbroken symmetries on a principal G−bundle P →
Q deals with two types of fields. These are gauge potentials identified to global
sections of the connection bundle C → Q (1.201) and matter fields represented
by global sections of a P−associated vector bundle Y (2.337), called a matter
bundle. Therefore, the total configuration space of classical gauge theory is
the product of jet bundles

J1(X,Y )tot = J1(X,Y )× J1(Q,C). (2.361)

Let us study a gauge–invariant Lagrangian on this configuration space.
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A total gauge vector–field on the product C × Y reads

ξY C = (−∂αξr + crpqξ
paqα)∂αr + ξpIip∂i = (uAλp ∂αξ

p + uAp ξ
p)∂A, (2.362)

where we use the collective index A, and put the notation

uAλp ∂A = −δrp∂αr , uAp ∂A = crqpa
q
α∂
α
r + Iip∂i.

A Lagrangian L on the configuration space (2.361) is said to be gauge–
invariant if its Lie derivative LJ1ξY C

L along any gauge vector–field ξ (2.358)
vanishes. Then the first variational formula (2.70) leads to the strong equality

0 = (uAp ξ
p + uAµp ∂µξ

p)δAL+ dα[(uAp ξ
p + uAµp ∂µξ

p)παA], (2.363)

where δAL are the variational derivatives (2.223) of L and the total derivative
reads

dα = ∂α + apλµ∂
µ
p + yiα∂i.

Due to the arbitrariness of gauge parameters ξp, this equality falls into the
system of strong equalities

uAp δAL+ dµ(uAp π
µ
A) = 0, (2.364)

uAµp δAL+ dα(uAµp π
α
A) + uAp π

µ
A = 0, (2.365)

uAλp π
µ
A + uAµp π

α
A = 0. (2.366)

Substituting (2.365) and (2.366) in (2.364), we get the well–known constraints

uAp δAL − dµ(uAµp δAL) = 0

for the variational derivatives of a gauge–invariant Lagrangian L.
Treating the equalities (2.364) – (2.366) as the equations for a gauge–

invariant Lagrangian, let us solve these equations for a Lagrangian

L = L(t, qi, arµ, a
r
λµ)ω : J1(Q,C) → ∧nT ∗Q (2.367)

without matter fields. In this case, the equations (2.364) – (2.366) read

crpq(a
p
µ∂
µ
r L+ apλµ∂

λµ
r L) = 0, (2.368)

∂µq L+ crpqa
p
α∂
µλ
r L = 0, (2.369)

∂µλp L+ ∂λµp L = 0. (2.370)

Let rewrite them relative to the coordinates (aqµ,Srµλ,Frµλ) (2.348) and (2.352),
associated to the canonical splitting (2.350) of the jet space J1(Q,C). The
equation (2.370) reads

∂L
∂Srµλ

= 0. (2.371)
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Then a simple computation brings the equation (2.369) into the form

∂µq L = 0. (2.372)

The equations (2.371) and (2.372) shows that the gauge–invariant Lagrangian
(2.367) factorizes through the strength F (2.348) of gauge potentials. As a
consequence, the equation (2.368) takes the form

crpqF
p
λµ

∂L
∂Frλµ

= 0.

It admits a unique solution in the class of quadratic Lagrangians which is the
conventional Yang–Mills Lagrangian LYM of gauge potentials on the configu-
ration space J1(Q,C). In the presence of a background world metric g on the
base Q, it reads

LYM =
1

4ε2
aGpqg

λµgβνFpλβFqµν
√
|g|ω, (where g = det(gµν)), (2.373)

where aG is a G−invariant bilinear form on the Lie algebra of gr and ε is a
coupling constant.

Hamiltonian Gauge Theory

Let us consider gauge theory of principal connections on a principal bundle
P −→ X with a structure Lie group G. Principal connections on P −→ X are
represented by sections of the affine bundle

C = J1(Q,P )/G −→ X, (2.374)

modelled over the vector bundle T ∗X ⊗ VGP [GMS97]. Here, VGP = V P/G
is the fibre bundle in Lie algebras g of the group G. Given the basis {εr} for
g, we get the local fibre bases {er} for VGP . The connection bundle C (2.374)
is coordinated by (xµ, arµ) such that, written relative to these coordinates,
sections A = Arµdx

µ⊗er of C −→ X are the familiar local connection 1–forms,
regarded as gauge potentials.

There is 1–1 correspondence between the sections ξ = ξrer of VGP −→ X
and the vector–fields on P which are infinitesimal generators of 1–parameter
groups of vertical automorphisms (gauge transformations) of P . Any section
ξ of VGP −→ X induces the vector–field on C, given by

u(ξ) = ukµ
∂

∂arµ
= (crpqa

p
µξ
q + ∂µξr)

∂

∂arµ
, (2.375)

where crpq are the structure constants of the Lie algebra g.
The configuration space of gauge theory is the jet space J1(Q,C) equipped

with the coordinates (xα, amα , a
m
µλ). It admits the canonical splitting (2.299)

given by the coordinate expression
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arµλ = Srµλ + Frµλ =
1
2
(arµλ + arλµ − crpqapµaqα) +

1
2
(arµλ − arλµ + crpqa

p
µa
q
α),

where F is the strength of gauge fields up to the factor 1/2. The Yang–Mills
Lagrangian LYM on the configuration space J1(Q,C) is given by

LYM = aGpqg
λµgβνFpλβFqµν

√
|g|ω, (g = det(gµν)), (2.376)

where aG is a non–degenerate G−invariant metric in the dual of the Lie alge-
bra of g and g is a pseudo–Riemannian metric on X.

The phase–space Π (2.261) of the gauge theory is with the canonical co-
ordinates (xα, apα, p

µλ
q ). It admits the canonical splitting (2.300) given by the

coordinate expression

pµλm = Rµλm + Pµλm = p(µλ)m + p[µλ]m =
1
2
(pµλm + pλµm ) +

1
2
(pµλm − pλµm ). (2.377)

With respect to this splitting, the Legendre map induced by the Lagrangian
(2.376) takes the form

p(µλ)m ◦ L̂YM = 0, (2.378)

p[µλ]m ◦ L̂YM = 4aGmng
µαgλβFnαβ

√
|g|. (2.379)

The equalities (2.378) define the Lagrangian constraint space NL of Hamilto-
nian gauge theory. Obviously, it is an imbedded submanifold of Π, and the
Lagrangian LYM is almost–regular.

In order to construct an associated Hamiltonian, let us consider a connec-
tion Γ (2.295) on the fibre bundle C → X which take their values into Ker L̂,
i.e.,

Γ rλµ − Γ rµλ + crpqa
p
λa
q
µ = 0.

Given a symmetric linear connection K on X and a principal connection B
on P → X, this connection reads

Γ rλµ =
1
2
[∂µBrα + ∂αBrµ − crpqapαaqµ + crpq(a

p
αB

q
µ + apµB

q
α)]−Kαβµ(arβ −Brβ).

The corresponding Hamiltonian (2.303) associated to LYM is

HΓ = pλµr Γ
r
λµ + amnG gµνgλβp

[µλ]
m p[νβ]n

√
|g|.

Then we get the Lagrangian

LN = p[λµ]r Frλµ − amnG gµνgλβp
[µλ]
m p[νβ]n

√
|g|

(2.306) on the Lagrangian constraint manifold (2.378) and its pull–back

LΠ = LΠω, LΠ = pλµr Frλµ − amnG gµνgλβp
[µλ]
m p[νβ]n

√
|g|, (2.380)
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(2.309) onto Π.
Both the Lagrangian LYM (2.376) on C and the Lagrangian LΠ (2.380) on

Π are invariant under gauge transformations whose infinitesimal generators
are the lifts

j1u(ξ) = (crpqa
p
µξ
q + ∂µξr)

∂

∂arµ
+ (crpq(a

p
λµξ

q + apµ∂αξ
q) + ∂α∂µξr)

∂

∂arλµ
,

u(ξ) = j1u(ξ)− crpqpλµr ξq
∂

∂pλµp
,

of the vector–fields (2.375) onto J1(Q,C) and Π×J1(Q,C), respectively. We
have the transformation laws

j1u(ξ)(Frλµ) = crpqF
p
λµξ

q, j1u(ξ)(Srλµ) = crpqS
p
λµξ

q + crpqa
p
µ∂αξ

q + ∂α∂µξr.

Therefore, one can choose the gauge conditions

gλµSrλµ(x)− αr(x) =
1
2
gλµ(∂αarµ(x) + ∂µarα(x))− αr(x) = 0,

which are the familiar generalized Lorentz gauge. The corresponding second-
order differential operator (2.325) reads

Mr
s ξ
s = gλµ(

1
2
crpq(∂αa

r
µ + ∂µarα)ξq + crpqa

p
µ∂αξ

q + ∂α∂µξr).

Passing to the Euclidean space and repeating the above quantization proce-
dure, we come to the generating functional

Z = N−1

∫
exp{

∫
(pαµr Frαµ − amnG gµνgαβp

µα
m p

νβ
n

√
|g|

− 1
8
aGrsg

ανgαµ(∂αarν + ∂νarα)(∂αa
s
µ + ∂µasα)

− gαµcr(
1
2
crpq(∂αa

r
µ + ∂µarα)c

q + crpqa
p
µc
q
α + crαµ)

+ iJµr a
r
µ + iJrµαp

µα
r )ω}

∏
x

[dc][dc][dp(x)][da(x)].

Its integration with respect to momenta restarts the familiar generating func-
tional of gauge theory.

Gauge Conservation Laws

On–shell, the strong equality (2.363) becomes the weak Noether conservation
law

dα[(uAp ξ
p + uAµp ∂µξ

p)παA] ≈ 0 (2.381)

of the Noether current
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Jα = −(uAp ξ
p + uAµp ∂µξ

p)παA. (2.382)

Therefore, the equalities (2.364) – (2.366) on–shell lead to the familiar Noether
identities

dµ(uAp π
µ
A) ≈ 0, (2.383)

dα(uAµp π
α
A) + uAp π

µ
A ≈ 0, (2.384)

uAαp π
µ
A + uAµp π

α
A = 0 (2.385)

for a gauge–invariant Lagrangian L. They are equivalent to the weak equality
(2.381) due to the arbitrariness of the gauge parameters ξp(q).

The expressions (2.381) and (2.382) shows that both the Noether conser-
vation law and the Noether current depend on gauge parameters. The weak
identities (2.383) – (2.385) play the role of the necessary and sufficient condi-
tions in order that the Noether conservation law (2.381) is maintained under
changes of gauge parameters. This means that, if the equality (2.381) holds
for gauge parameters ξ, it does so for arbitrary deviations ξ + δξ of ξ. In
particular, the Noether conservation law (2.381) is maintained under gauge
transformations, when gauge parameters are transformed by the coadjoint
representation (2.359).

It can be seen that the equalities (2.383) – (2.385) are not mutually in-
dependent, but (2.383) is a corollary of (2.384) and (2.385). This property
reflects the fact that, in accordance with the strong equalities (2.365) and
(2.366), the Noether current (2.382) is brought into the superpotential form

Jα = ξpuAαp δAL − dµ(ξpuAµp παA), Uµα = −ξpuAµp παA,

(2.222). Since a matter field Lagrangian is independent of the jet coordinates
apαµ, the Noether superpotential, Uµα = ξpπµαp , depends only on gauge poten-
tials. The corresponding integral relation (2.224) reads∫

Nn−1
s∗Jαωα =

∫
∂Nn−1

s∗(ξpπµαp )ωµα, (2.386)

where Nn−1 is a compact oriented (n−1)D submanifold of Q with the bound-
ary ∂Nn−1. One can think of (2.386) as being the integral relation between
the Noether current (2.382) and the gauge field, generated by this current.
In electromagnetic theory seen as a U(1) gauge theory, the similar relation
between an electric current and the electromagnetic field generated by this
current is well known. However, it is free from gauge parameters due to the
peculiarity of Abelian gauge models.

Note that the Noether current (2.382) in gauge theory takes the superpo-
tential form (2.222) because the infinitesimal generators of gauge transforma-
tions (2.362) depend on derivatives of gauge parameters.
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Topological Gauge Theories

The field models that we have investigated so far show that when a background
world metric is present, the stress–energy–momentum (SEM) transformation
law becomes the covariant conservation law of the metric SEM–tensor (see
subsection on SEM–tensors 2.2.6 below). Topological gauge theories exemplify
the field models in the absence of a world metric [GMS05].

Let us consider the Chern–Simons gauge theory on a 3D base manifold
X3 [BBR91, Wit89]. Physical interpretation of this fundamental model will
be given in subsection 2.2.8 below.

Let P −→ X3 be a principal bundle with a structure semisimple Lie groupG
and C the corresponding bundle of principal connections which is coordinated
by (xα, kmα ). The Chern–Simons Lagrangian density is given by the coordinate
expression

LCS =
1
2k
aGmnε

αλµkmα (Fnλµ +
1
3
cnpqk

p
αk
q
µ)d

3x (2.387)

where εαλµ is the skew–symmetric Levi–Civita tensor.
Note that the Lagrangian density (2.387) is not gauge–invariant and glob-

ally defined. At the same time, it gives the globally defined Euler–Lagrangian
operator

ELCS
=

1
k
aGmnε

αλµFnλµdkmα ω.

Thus, the gauge transformations in the Chern–Simons model appear to be
the generalized invariant transformations which keep invariant the Euler–
Lagrangian equations, but not the Lagrangian density. Solutions of these equa-
tions are the curvature–free principal connections A on the principal bundle
P −→ X3.

Though the Chern–Simons Lagrangian density is not invariant under gauge
transformations, we still have the Noether–type conservation law (2.381) in
which the total conserved current is the standard Noether current (2.382) plus
the additional term as follows.

Let ug be the principal vector–field (2.360) on the bundle of principal
connections C. We calculate the Lie derivative

LugLCS =
1
k
aGmnε

αλµ∂α(αm∂αAnµ)d
3x.

Hence, the Noether transformation law (2.381) becomes the conservation law

dαTCS
α = dα(Tα +

1
k
aGmnε

αλµαm∂αA
n
µ) ≈ 0, where (2.388)

Tα = πµλn ug
n
µ =

1
k
aGmnε

αλµAmα ug
n
µ

is the standard Noether current . After simplification, the conservation law
(2.388) takes the form
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dα(
1
k
aGmnε

αλµαmFnαµ) ≈ 0.

In the Chern–Simons model, the total conserved current TCS is equal to zero.
At the same time, if we add the Chern–Simons Lagrangian density to the
Yang–Mills one, TCS plays the role of the massive term and makes the con-
tribution into the standard Noether current of the Yang–Mills gauge theory.

Let τ be a vector–field on the base X and τB its lift onto the bundle C by
means of a section B of C. Remind that the vector–fields τB are the general
principal vector–fields associated with local 1–parameter groups of general
gauge isomorphisms of C. We calculate

LτB
LCS =

1
k
aGmnε

αλµ∂α(τνBmν ∂αA
n
µ) d

3x.

The corresponding SEM transformation law takes the form

dαJCSα = dα(J α −
1
2k
aGmnε

αλµτνBmν ∂αA
n
µ) ≈ 0, where (2.389)

J α = πµλn [τν∂νAmµ − τν(∂µBnν − cnpqApµBqν)− ∂µτν(Bnν −Anν )]− δαν τνLCS

is the standard SEM–tensor relative to the lift τB of the vector–field τ .
Let A be a critical section. We consider the lift of the vector–field τ on

X onto C by means of the principal connection B = A. Then, the energy–
momentum conservation law (2.389) becomes the conservation law

dα[
1
k
aGmnτ

νεαλµAmα Fnνµ − ταLCS ] = dα(− 1
6k
ταεανµcnpqA

n
αA

p
νA

q
µ) ≈ 0.

(2.390)
Note that, since the gauge symmetry of the Chern–Simons Lagrangian

density is broken, the energy–momentum conservation law (2.390) fails to be
invariant under gauge transformations.

Let us consider Lagrangian densities of topological gauge models which
are invariant under the general gauge isomorphisms of the bundle C. Though
they imply the zero Euler–Lagrangian operators, the corresponding strong
identities may be used as the superpotential terms when such a topological
Lagrangian density is added to the Yang–Mills one.

Let P −→ X be a principal bundle with the structure Lie group G. Let us
consider the bundle J1(Q,P ) −→ C. This also is a G principal bundle. Due
to the canonical vertical splitting V P = P × gl, where gl is the left Lie
algebra of the group G, the complementary map (1.162) of J1(Q,P ) defines
the canonical G-valued one–form θ on J1(Q,P ). This form is the connection
form of the canonical principal connection on the principal bundle J1(Q,P )
−→ C [Gar72]. Moreover, if ΓA : P −→ J1(Q,P ) is a principal connection on
P and A the corresponding connection form, we have Γ ∗

Aθ = A. If Ω and
RA are the curvature 2–forms of the connections θ and A respectively, then
Γ ∗
AΩ = RA.
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Local connection 1–forms on C associated with the canonical connection
θ are given by the coordinate expressions kmµ dx

µ ⊗ Im. The corresponding
curvature two–form on C reads

ΩC = (dkmµ ∧ dxµ −
1
2
cmnlk

n
µk
l
νdx

ν ∧ dxµ)⊗ Im.

Let I(g) be the algebra of real G−invariant polynomial on the Lie algebra
g of the group G. Then, there is the well–known Weyl homomorphism of
I(g) into the de Rham cohomology algebra H∗(C,R). Using this isomorphism,
every k-linear element r ∈ I(g) is represented by the cohomology class of the
closed characteristic 2k−form r(ΩC) on C. If A is a section of C, we have
A∗r(ΩC) = r(F ), where F is the strength of A and r(F ) is the corresponding
characteristic form on X.

Let dimX be even and a characteristic n−form r(ΩC) on C exist. This is
a Lepagian form which defines a gauge–invariant Lagrangian density

Lr = h0(r(ΩC))

on the jet space J1(Q,C). The Euler–Lagrangian operator associated with Lr
is equal to zero. Then, for any projectable vector–field u on C, we have the
strong relation (2.241):

Luh0(r(ΩC)) = h0(dur(ΩC)).

If u is a general principal vector–field on C, this relation takes the form

dH(ur(ΩC)) = 0.

For example, let dimX = 4 and the group G be semisimple. Then, the
characteristic Chern–Pontryagin 4–form

r(ΩC) = aGmnΩ
n
C ∧ΩmC .

It is the Lepagian equivalent of the Chern–Pontryagin Lagrangian density

L =
1
k
aGmnε

αβµνFnαβFmµνd4x

of the topological Yang–Mills theory.

2.2.6 Modern Geometrodynamics

In this subsection we present some modern developments of the classical
Einstein–Wheeler geometrodynamics that we briefly reviewed as a motiva-
tion to our geometrical machinery.
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Stress–Energy–Momentum Tensors

While in analytical mechanics there exists the conventional differential energy
conservation law, in field theory it does not exist (see [Sar98]). Let F be a
smooth manifold. In time–dependent mechanics on the phase–space R× T ∗F
coordinated by (t, yi, ẏi) and on the configuration space R× TF coordinated
by (t, yi, ẏi), the Lagrangian energy and the construction of the Hamiltonian
formalism require the prior choice of a connection on the bundle R×F −→ R.
However, such a connection is usually hidden by using the natural trivial
connection on this bundle. Therefore, given a Hamiltonian function H on the
phase–space manifold R× T ∗F , we have the usual energy conservation law

dH
dt
≈ ∂H
∂t

(2.391)

where by ‘≈’ is meant the weak identity modulo the Hamiltonian equations.
Given a Lagrangian function L on the configuration manifold R× TF , there
exists the fundamental identity

∂L
∂t

+
d

dt
(ẏi(t)

∂L
∂ẏi

− L) ≈ 0 (2.392)

modulo the equations of motion. It is the energy conservation law in the fol-
lowing sense. Let L̂ be the Legendre morphism given by ẏi ◦ L̂ = ∂ẏiL, and
Q = Im L̂ the Lagrangian constraint manifold. Let H be a Hamiltonian func-
tion associated with L and Ĥ the momentum morphism, ẏi◦Ĥ = ∂ẏi

H. Every
solution r of the Hamiltonian equations of H which lives on Q yields the solu-
tion Ĥ ◦ r of the Euler–Lagrangian equations of L. Then, the identity (2.392)
on Ĥ ◦ r recovers the energy transformation law (2.391) on r.5

Recall that in field theory, classical fields are described by sections of a
fibre bundle Y −→ X, while their dynamics is phrased in terms of jet spaces.
We restrict ourselves to the first–order Lagrangian formalism when the config-
uration space is J1(X,Y ). Given fibred coordinates (xµ, yi) of Y , the jet space
J1(X,Y ) is equipped with the adapted coordinates (xµ, yi, yiµ). Recall that
the first–order Lagrangian density on J1(X,Y ) is defined to be the morphism

L : J1(X,Y ) → ∧nT ∗X, (n = dimX),
L = L(xµ, yi, yiµ)ω, with ω = dx1 ∧ ... ∧ dxn,

while the corresponding first–order Euler–Lagrangian equations for sections s
of the jet bundle J1(X,Y ) → X read

5 There are different Hamiltonian functions associated with the same singular La-
grangian function as a rule. Given such a Hamiltonian function, the Lagrangian
constraint space Q plays the role of the primary constraint space, and the Dirac
procedure can be used in order to get the final constraint space where a solution
of the Hamiltonian equations exists [CLM94, GNH78].
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∂αs
i = siα, ∂iL − (∂α + sjα∂j + ∂αsjµ∂

µ
j )∂αi L = 0. (2.393)

As before, we consider the Lie derivatives of Lagrangian densities in order
to get differential conservation laws. Let u = uµ(x)∂µ + ui(y)∂i be a pro-
jectable vector–field on Y → X and u its jet lift (1.165) onto J1(X,Y ) → X.
Given L, let us calculate the Lie derivative LuL. We get the identity

s∗LuL ≈ −
d

dxα
[παi (uµsiµ − ui)− uαL]ω, with πµi = ∂µi L, (2.394)

modulo the Euler–Lagrangian equations (2.393). In particular, if u is a vertical
vector–field this identity becomes the current conservation law exemplified by
the Noether identities in gauge theory [Sar94].

Let now τ = τα∂α be a vector–field on X and

τΓ = τµ(∂µ + Γ iµ∂i) (2.395)

its horizontal lift onto Y by a connection Γ on Y → X. In this case, the
identity (2.394) takes the form

s∗LτΓ
L ≈ − d

dxα
[τµJΓ αµ(s)]ω, (2.396)

where JΓ αµ(s) = [παi (yiµ − Γ iµ)− δαµL] ◦ siµ

is the stress–energy–momentum (SEM) tensor on a field s relative to the
connection Γ . We here restrict ourselves to this particular case of SEM–tensors
[KT79].

For example, let us choose the trivial local connection Γ iµ = 0. In this case,
the identity (2.396) recovers the well–known conservation law

∂L
∂xα

+
d

dxα
J αµ(s) ≈ 0

of the canonical energy–momentum tensor

J αµ(s) = παi s
i
µ − δαµL. (2.397)

Physicists often lose sight of the fact that (2.397) fails to be a mathematical
well–behaved object. The crucial point lies in the fact that the Lie derivative

LτΓ
L = {∂µτµL+[τµ∂µ+ τµΓ iµ∂i+(∂α(τµΓ iµ)+ τµyjα∂jΓ

i
µ−yiµ∂ατµ)∂αi ]L}ω

is almost never equal to zero. Therefore, it is not obvious how to choose the
true energy–momentum tensor.

The canonical energy–momentum tensor (2.397) in gauge theory is sym-
metrized by hand in order to get the gauge–invariant one. In gauge theory in
the presence of a background world metric g, the identity (2.396) is brought
into the covariant conservation law for the metric SEM–tensor ,
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∇αtαµ ≈ 0. (2.398)

In Einstein’s general relativity, the covariant conservation law (2.398) is-
sues directly from the gravitation equations. It is concerned with the zero-spin
matter in the presence of the gravitational field generated by this matter,
though the matter is not required to satisfy the motion equations. The total
energy–momentum conservation law for matter and gravity is introduced by
hand. It is usually written as

d

dxµ
[(−g)N (tλµ + tgλµ))] ≈ 0, (2.399)

where the energy–momentum pseudotensor tgλµ of a metric gravitational field
is defined to satisfy the relation

(−g)N (tλµ + tgλµ) ≈
1
2κ
∂σ∂α[(−g)N (gλµgσα − gσµgλα]

modulo the Einstein equations. However, the conservation law (2.399) ap-
pears satisfactory only in cases of asymptotic–flat gravitational fields and of
a background metric.

Moreover, the covariant conservation law (2.398) fails to take place in the
affine–metric gravitation theory and in the gauge gravitation theory, e.g., in
the presence of fermion fields.

Thus, we have not any conventional energy–momentum conservation law in
Lagrangian field theory. In particular, one may take different SEM–tensors for
different field models and, moreover, different SEM–tensors for different solu-
tions of the same field equations. Just the latter in fact is the above-mentioned
symmetrization of the canonical energy–momentum tensor in gauge theory.

Gauge theory exemplifies constraint field theories. Contemporary field
models are almost always the constraint ones. To describe them, let us turn
to the Hamiltonian formalism.

When applied to field theory, the conventional Hamiltonian formalism
takes the form of the instantaneous Hamiltonian formalism where canoni-
cal variables are field functions at a given instant of time. The corresponding
phase–space is infinite–dimensional, so that the Hamiltonian equations in the
bracket form fail to be differential equations.

The true partners of the Lagrangian formalism in classical field theory are
polysymplectic and multisymplectic Hamiltonian machineries where canonical
momenta correspond to derivatives of fields with respect to all world coordi-
nates, not only the temporal one [CCI91, Sar93]. We here follow the multi-
momentum Hamiltonian formulation of field theory when the phase–space of
fields is the Legendre bundle over Y

Π = ∧nT ∗X ⊗ TX ⊗ V ∗Y, (2.400)

which is coordinated by (xα, yi, pαi ) [Sar93, Sar94]. Every Lagrangian density
L on J1(X,Y ) implies the Legendre morphism
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L̂ : J1(X,Y ) −→ Π, pµi ◦ L̂ = πµi .

The Legendre bundle (2.400) carries the polysymplectic form

Ω = dpαi ∧ dyi ∧ ω ⊗ ∂α. (2.401)

Recall that one says that a connection γ on the fibred Legendre manifold
Π → X is a Hamiltonian connection if the form γΩ is closed. Then, a
Hamiltonian form H on Π is defined to be an exterior form such that

dH = γΩ (2.402)

for some Hamiltonian connection γ. The key point lies in the fact that every
Hamiltonian form admits the following splitting

H = pαi dy
i∧ωα−pαi Γ iαω−H̃Γω = pαi dy

i∧ωα−Hω, ωα = ∂αω, (2.403)

where Γ is a connection on Y → X.
Given the splitting (2.403), the equality (2.402) becomes the Hamiltonian

equations

∂αr
i = ∂iαH, ∂αr

α
i = −∂iH (2.404)

for sections r of Π −→ X.
The Hamiltonian equations (2.404) are the multimomentum generaliza-

tion of the standard Hamiltonian equations in mechanics. The corresponding
multimomentum generalization of the conventional energy conservation law
(2.391) is the weak identity

τµ[(∂µ + Γ iµ∂i − ∂iΓ jµrαj ∂iλ)H̃Γ −
d

dxα
TΓ
α
µ(r)] ≈ τµrαi Riλµ, (2.405)

TΓ
α
µ(r) = [rαi ∂

i
µH̃Γ − δαµ(rαi ∂iαH̃Γ − H̃Γ )], (2.406)

where Riλµ = ∂αΓ iµ − ∂µΓ iα + Γ jα∂jΓ
i
µ − Γ jµ∂jΓ iα

is the curvature of the connection Γ . One can think of the tensor (2.406) as
being the Hamiltonian SEM–tensor.

If a Lagrangian density is regular, the multimomentum Hamiltonian for-
malism is equivalent to the Lagrangian formalism, otherwise in case of de-
generate Lagrangian densities. In field theory, if a Lagrangian density is not
regular, the Euler–Lagrangian equations become underdetermined and require
supplementary gauge–type conditions. In gauge theory, they are the familiar
gauge conditions. However, in general case, the gauge–type conditions remain
elusive. In the framework of the multimomentum Hamiltonian formalism, they
appear automatically as a part of the Hamiltonian equations. The key point
consists in the fact that, given a degenerate Lagrangian density, one must con-
sider a family of different associated Hamiltonian forms in order to exhaust
all solutions of the Euler–Lagrangian equations [CCI91, Sar93].
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Lagrangian densities of all realistic field models are quadratic or affine in
the velocity coordinates yiµ. Complete family of Hamiltonian forms associated
with such a Lagrangian density always exists [Sar93, Sar94]. Moreover, these
Hamiltonian forms differ from each other only in connections Γ in the splitting
(2.403). Different connections are responsible for different gauge–type condi-
tions mentioned above. They are also the connections which one should use
in construction of the Hamiltonian SEM–tensors (2.406).

The identity (2.405) remains true in the first–order Lagrangian theories of
gravity. In this work, we examine the metric-affine gravity where independent
dynamical variables are world metrics and general linear connections. The
energy–momentum conservation law in the affine–metric gravitation theory is
not widely discussed. We construct the Hamiltonian SEM–tensor for gravity.
In case of the affine Hilbert–Einstein Lagrangian density, it is equal to

Tαµ =
1
2κ
δαµR

√
−g

and the total conservation law (2.405) for matter and gravity is reduced to
the conservation law for matter in the presence of a background world metric,
otherwise in case of quadratic Lagrangian densities.

Lagrangian SEM–Tensors

Given a Lagrangian density L, the jet space J1(X,Y ) carries the associated
Poincaré–Cartan form [Sar98]

ΞL = παi dy
i ∧ ωα − παi yiαω + Lω (2.407)

and the Lagrangian polysymplectic form

ΩL = (∂jπαi dy
j + ∂µj π

α
i dy

j
µ) ∧ dyi ∧ ω ⊗ ∂α.

Using the pull–back of these forms onto the repeated jet space J1J1(X,Y ),
one can construct the exterior generating form on J1J1(X,Y ),

ΛL = dΞL − λΩL = [yi(λ) − yiα)dπαi + (∂i − ∂̂α∂αi )Ldyi] ∧ ω, (2.408)

λ = dxα ⊗ ∂̂α, ∂̂α = ∂α + yi(λ)∂i + y
i
µλ∂

µ
i .

Its restriction to the sesquiholonomic jet space Ĵ2(X,Y ) defines the first–order
Euler–Lagrangian operator

E ′L : Ĵ2(X,Y ) −→ ∧n+1T ∗Y, given by
E ′L = δiLdyi ∧ ω = [∂i − (∂α + yiα∂i + y

i
µλ∂

µ
i )∂αi ]Ldyi ∧ ω, (2.409)

corresponding to L. The restriction of the form (2.408) to the second–order
jet space J2(X,Y ) of Y recovers the familiar variational Euler–Lagrangian
operator
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EL : J2(X,Y ) −→ ∧n+1T ∗Y,

given by the expression (2.409), but with symmetric coordinates yiµλ = yiλµ.
Let s be a section of the jet bundle J1(X,Y ) −→ X such that its jet

prolongation j1s takes its values into Ker E ′L given by the coordinate relations

∂iL − (∂α + yjα∂j + yjµλ∂
µ
j )∂αi L = 0.

Then, s satisfies the first–order Euler–Lagrangian equations (2.393). These
equations are equivalent to the second–order Euler–Lagrangian equations

∂iL − (∂α + ∂αsj∂j + ∂α∂µsj∂
µ
j )∂αi L = 0. (2.410)

for sections s of Y −→ X where s = j1s.
We have the following differential conservation laws on solutions of the

first–order Euler–Lagrangian equations.
Given a Lagrangian density L on J1(X,Y ), let us consider its pull–back

onto Ĵ2(X,Y ). Let u be a projectable vector–field on Y −→ X and u its jet lift
(1.165) onto J1(X,Y ) −→ X. Its pull–back onto J1J1(X,Y ) has the canonical
horizontal splitting (1.170) given by the expression

u = uH +uV = uα(∂α+ yi(λ)∂i+ y
i
µλ∂

µ
i ) + [(ui− yi(λ)uα)∂i+ (uiµ− yiµλuα)∂

µ
i ].

Let us calculate the Lie derivative LuL. We have

LuL = ∂̂α[πλi (u
i − uµyiµ) + uαL]ω + uV E ′L, (2.411)

∂̂α = ∂α + yiα∂i + y
i
µλ∂

µ
i .

Being restricted to Ker E ′L, the equality (2.411) is written

∂αu
αL+ [uα∂α + ui∂i + (∂αui + yjα∂ju

i − yiµ∂αuµ)∂αi ]L (2.412)

≈ ∂̂α[παi (u
i − uµyiµ) + uαL].

On solutions s of the first–order Euler–Lagrangian equations, the weak iden-
tity (2.412) becomes the differential conservation law

s∗LuL ≈ d(uΞL ◦ s),

which takes the coordinate form (2.394).
In particular, let τΓ be the horizontal lift (2.395) of a vector–field τ on

X onto Y → X by a connection Γ on Y . In this case, the identity (2.412) is
written

τµ{[∂µ+Γ iµ∂i+(∂αΓ iµ+ yjα∂jΓ
i
µ)∂

α
i ]L+ ∂̂α[παi (yiµ−Γ iµ)− δαµL] ≈ 0. (2.413)

On solutions s of the first–order Euler–Lagrangian equations, the identity
(2.413) becomes the differential conservation law (2.396) where JΓ αµ(s) are
coefficients of the T ∗X−valued form on X,
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JΓ (s) = −(Γ ΞL) ◦ s = [παi (s
i
µ − Γ iµ)− δαµL] dxµ ⊗ ωα. (2.414)

This conservation law takes the coordinate form

τµ{[∂µ + Γ iµ∂i + (∂αΓ iµ + sjα∂jΓ
i
µ)∂

α
i ]L+

d

dxα
[παi (s

i
µ − Γ iµ)− δαµL] ≈ 0.

SEM Conservation Laws

Every projectable vector–field u on the bundle Y −→ X which covers a vector–
field τ on the base X is represented as the sum of a vertical vector–field on
Y −→ X and some lift of τ onto Y . Hence, any differential transformation
law (2.239) can be represented as a superposition of some transformation law
associated with a vertical vector–field on the bundle Y −→ X and the one
induced by the lift of a vector–field on the base X onto Y . Therefore, we can
reduce our consideration to transformation laws associated with these two
types of vector–fields on Y .

Vertical vector–fields result in transformation and conservation laws of
Noether currents. In general case, a vector–field τ on a base X induces a
vector–field on Y only by means of some connection on the bundle Y −→ X.
Such lifts result in the transformation laws of the SEM–tensors.

Given a bundle Y → X, let τ be a vector–field on X and

τΓ = τΓ = τµ(∂µ + Γ iµ∂i)

its horizontal lift onto Y → X by means of a connection on Y , given by

Γ = dxµ ⊗ (∂µ + Γ iµ∂i).

In this case, the weak identity (2.412) is written

∂µτ
µL+ [τµ∂µ + τµΓ iµ∂i + (∂α(τµΓ iµ) + τµyjα∂jΓ

i
µ − yiµ∂ατµ)∂αi ]L

− ∂̂α[παi (τµΓ iµ − τµyiµ) + δαµτ
µL] ≈ 0. (2.415)

One can simplify it as follows:

τµ{[∂µ + Γ iµ∂i + (∂αΓ iµ + yjα∂jΓ
i
µ)∂

α
i ]L − ∂̂α[παi (Γ iµ − yiµ) + δαµL] ≈ 0.

Let us emphasize that this relation takes place for arbitrary vector–field τ on
X. Therefore, it is equivalent to the system of the weak identities

[∂µ + Γ iµ∂i + (∂αΓ iµ + yjα∂jΓ
i
µ)∂

α
i ]L − ∂̂α[παi (Γ iµ − yiµ) + δαµL] ≈ 0. (2.416)

On solutions s of the Euler–Lagrangian equations, the weak identity
(2.415) becomes the weak transformation law

s∗LτΓ
L+

d

dxα
[τµJΓ αµ(s)]ω ≈ 0
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and to the equivalent system of the weak transformation laws

[∂µ+Γ iµ∂i+(∂αΓ iµ+∂αsj∂jΓ iµ)∂
α
i ]L+

d

dxα
[παi (∂µsi−Γ iµ)−δαµL] ≈ 0 (2.417)

where JΓ αµ(s) is the SEM–tensor given by the components of the T ∗X−valued
(n− 1)−form on X,

JΓ (s) = −(Γ ΞL) ◦ s = [παi (∂µs
i − Γ iµ)− δαµL]dxµ ⊗ ωα.

It is clear that the first and the second terms in (2.417) taken separately
fail to be well–behaved objects. Therefore, only their combination may result
in the satisfactory transformation or conservation law.

For example, let a Lagrangian density L depend on a background metric
g on the base X. In this case, we have

∂µL = −tαβ
√
|g|Γ βµα, where tαβ = gαγtγβ

is the metric SEM–tensor (by definition), while Γ βµα are the Christoffel sym-
bols of the metric g. Then, the weak transformation law (2.417) takes the
form

−tαβ
√
|g|Γ βµα + [Γ iµ∂i + (∂αΓ iµ + ∂αsj∂jΓ iµ)∂

α
i ]L

+
d

dxα
[παi (∂µsi − Γ iµ)− δαµL] ≈ 0,

and, under suitable conditions of symmetries of the Lagrangian density L, it
may become the covariant conservation law ∇αtαβ = 0 where ∇α denotes the
covariant derivative relative to the connection Γ βµα.

Note that, if we consider another Lepagian equivalent of the Lagrangian
density L, the SEM transformation law takes the form

s∗LτΓ
L+

d

dxα
[τµJ ′

Γ
α
µ(s)]ω ≈ 0,

where J ′
Γ
α
µ = JΓ αµ −

d

dxν
[(∂µsi − Γ iµ)cλνi ],

that is, the SEM–tensors J ′
Γ
α
µ and JΓ αµ differ from each other in the

superpotential–type term: − d
dxν [(∂µsi − Γ iµ)cλνi ].

In particular, if the bundle Y has a fibre metric aYij , one can choose

cµνi = aYijg
µαgνβRjαβ ,

where R is the curvature of the connection Γ on the bundle Y and g is a
metric on X. In this case, the superpotential contribution into the SEM–
tensor is equal to − d

dxν [aYijg
λαgνβ(∂µsi − Γ iµ)R

j
αβ ].

Let us now consider the weak identity (2.415) when a vector–field τ on the
base X induces a vector–field on Y by means of different connections Γ and
Γ ′ on Y −→ X. Their difference result in the weak identity
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[τµσiµ∂i + (∂α(τµσiµ) + yjα∂j(τ
µσiµ))∂

α
i ]L − ∂̂α[παi τµσiµ] ≈ 0 (2.418)

where σ = Γ ′ − Γ is a soldering form on the bundle Y −→ X and

τσ = τµσiµ∂i (2.419)

is a vertical vector–field. It is clear that the identity (2.418) is exactly the
weak identity (2.412) in case of the vertival vector–field (2.419).

It follows that every SEM transformation law contains a Noether trans-
formation law. Conversely, every Noether transformation law associated with
a vertical vector–field uV on Y −→ X can be get as the difference of two SEM
transformation laws if the vector–field uV takes the form uV = τσ, where
σ is some soldering form on Y and τ is a vector–field on X. In field theory,
this representation fails to be unique. On the contrary, in Newtonian mechan-
ics there is the 1–1 correspondence between the vertical vector–fields and the
soldering forms on the bundle R× F −→ F.

Note that one can consider the pull–back of the first–order Lagrangian
density L and their Lepagian equivalents onto the infinite order jet space
J∞Y . In this case, there exists the canonical lift τ∞H (1.215) of a vector–field
τ on X onto J∞Y . One can treat this lift as the horizontal lift of τ by means
of the canonical connection on the bundle J∞Y −→ X, given by

Γ∞ = dxµ⊗(∂µ + yi∂i + yiα∂
α
i + · · · ).

Multimomentum Hamiltonian Formalism

LetΠ be the Legendre bundle (2.400) coordinated by (xα, yi, pαi ). By J1(X,Π)
is meant the first–order jet space of Π −→ X. It is coordinated by
(xα, yi, pαi , y

i
(µ), p

α
iµ). The Legendre manifold Π carries the generalized Liou-

ville form
θ = −pαi dyi ∧ ω ⊗ ∂α

and the polysymplectic form Ω (2.401).
The Hamiltonian formalism in fibred manifolds is formulated intrinsically

in terms of Hamiltonian connections which play the role similar to that of
Hamiltonian vector–fields in the symplectic geometry [Sar93].

We say that a jet field (resp. a connection)

γ = dxα ⊗ (∂α + γi(λ)∂i + γ
µ
iλ∂

i
µ)

on the Legendre manifold Π −→ X is a Hamiltonian jet field (resp. a Hamil-
tonian connection) if the following exterior form is closed:

γΩ = dpαi ∧ dyi ∧ ωα + γαiλdy
i ∧ ω − γi(λ)dpαi ∧ ω.

An exterior n−form H on the Legendre manifold Π is called a Hamil-
tonian form if, on an open neighborhood of each point of Π, there exists a
Hamiltonian jet–field satisfying the equation γΩ = dH, i.e., if there exists a
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Hamiltonian connection satisfying the equation (2.402). Hamiltonian connec-
tions constitute an affine subspace of connections on Π → X. The following
construction shows that this subspace is not empty.

Every connection Γ on Y → X is lifted to the connection

γ = Γ̃ = dxα ⊗ [∂α + Γ iα(y)∂i + (−∂jΓ iα(y)pµi −Kµνλ(x)pνj +Kααλ(x)p
µ
j )∂

j
µ]

on Π → X, where

K = dxα ⊗ (∂α +Kµνλẋµ
∂

∂ẋν
)

is a linear symmetric connection on T ∗X. We have the equality

Γ̃ Ω = d(Γ θ).

This equality shows that Γ̃ is a Hamiltonian connection and

HΓ = Γ θ = pαi dy
i ∧ ωα − pαi Γ iαω

is a Hamiltonian form.
Let H be a Hamiltonian form. For any exterior horizontal density H̃ = H̃ω

on Π −→ X, the form H + H̃ is a Hamiltonian form. Conversely, if H and
H ′ are Hamiltonian forms, their difference H − H ′ is an exterior horizontal
density on Π −→ X.

Thus, Hamiltonian forms constitute an affine space modelled on a linear
space of the exterior horizontal densities on Π −→ X. It follows that every
Hamiltonian form on Π can be given by the expression (2.403) where Γ is
some connection on Y −→ X. Moreover, a Hamiltonian form has the canonical
splitting (2.403) as follows.

Every Hamiltonian form H implies the momentum map

Ĥ : Π −→ J1(X,Y ), yiα ◦ Ĥ = ∂iαH,

and the associated connection ΓH = Ĥ ◦ 0̂ on Y where 0̂ is the global zero
section of Π → Y . As a consequence, we have the canonical splitting

H = HΓH
− H̃.

The Hamiltonian operator EH of a Hamiltonian form H is defined to be
the first–order differential operator on Π → X,

EH : j1Π → ∧n+1T ∗Π,

EH = dH − Ω̂ = [(yi(λ) − ∂iαH)dpαi − (pαiλ + ∂iH)dyi] ∧ ω (2.420)

where Ω̂ = dpαi ∧ dyi∧ωα + pαiλdy
i ∧ ω − yi(λ)dpαi ∧ ω

is the pull–back of the multisymplectic form (2.401) onto j1Π.
For any connection γ on Π → X, we have
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EH ◦ γ = dH − γΩ.

It follows that γ is a Hamiltonian connection for a Hamiltonian form H iff it
takes its values into Ker EH given by the coordinate relations

yi(λ) = ∂iαH, pαiλ = −∂iH. (2.421)

Let a Hamiltonian connection γ has an integral section r of Π −→ X, that
is, γ ◦ r = j1r. Then, the algebraic equations (2.421) are brought into the
first–order differential Hamiltonian equations (2.404).

Now we consider relations between Lagrangian and Hamiltonian for-
malisms. A Hamiltonian form H is defined to be associated with a Lagrangian
density L if it satisfies the relations

L̂ ◦ Ĥ|Q = IdQ, Q = L̂(J1(X,Y )),

H = HĤ + L ◦ Ĥ,

which take the coordinate form

∂µi L(xα, yj , ∂jαH) = pµi , L(xα, yj , ∂jαH) = pµi ∂
i
µH−H.

Note that there are different Hamiltonian forms associated with the same
singular Lagrangian density.

Bearing in mind physical application, we restrict our consideration to so–
called semiregular Lagrangian densities L when the preimage L̂−1(q) of each
point of q ∈ Q is the connected submanifold of J1(X,Y ). In this case, all
Hamiltonian forms associated with a semiregular Lagrangian density L coin-
cide on the Lagrangian constraint space Q, and the Poincaré–Cartan form ΞL
is the pull–back

ΞL = H ◦ L̂, παi y
i
α − L = H(xµ, yi, παi ),

of any associated multimomentum Hamiltonian form H by the Legendre mor-
phism L̂ [Zak92]. Also the generating form (2.408) is the pull–back of

ΛL = EH ◦ J1L̂

of the Hamiltonian operator (2.420) of any Hamiltonian form H associated
with a semiregular Lagrangian density L. As a consequence, we get the fol-
lowing correspondence between solutions of the Euler–Lagrangian equations
and the Hamiltonian equations [Sar94, Zak92].

Let a section r of Π −→ X be a solution of the Hamiltonian equations
(2.404) for a Hamiltonian form H associated with a semiregular Lagrangian
density L. If r lives on the Lagrangian constraint space Q, the section s = Ĥ◦r
of J1(X,Y ) −→ X satisfies the first–order Euler–Lagrangian equations (2.393).
Conversely, given a semiregular Lagrangian density L, let s be a solution of
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the first–order Euler–Lagrangian equations (2.393). Let H be a Hamiltonian
form associated with L so that

Ĥ ◦ L̂ ◦ s = s. (2.422)

Then, the section r = L̂ ◦ s of Π −→ X is a solution of the Hamiltonian
equations (2.404) for H. For sections s and r, we have the relations

s = j1s, and s = πΠY ◦ r,

where s is a solution of the second–order Euler–Lagrangian equations (2.410).
We shall say that a family of Hamiltonian forms H associated with a

semiregular Lagrangian density L is complete if, for each solution s of the
first–order Euler–Lagrangian equations (2.393), there exists a solution r of
the Hamiltonian equations (2.404) for some Hamiltonian form H from this
family so that

r = L̂ ◦ s, s = Ĥ ◦ r, s = J1(πΠY ◦ r). (2.423)

Such a complete family exists iff, for each solution s of the Euler–Lagrangian
equations for L, there exists a Hamiltonian form H from this family so that
the condition (2.422) holds.

We do not discuss here existence of solutions of Euler–Lagrangian and
Hamiltonian equations. Note that, in contrast with mechanics, there are dif-
ferent Hamiltonian connections associated with the same multimomentum
Hamiltonian form in general. Moreover, in field theory when the primary
constraint space is the Lagrangian constraint space Q, there is a family of
Hamiltonian forms associated with the same Lagrangian density as a rule. In
practice, one can choose either the Hamiltonian equations or solutions of the
Hamiltonian equations such that these solutions live on the constraint space.

Hamiltonian SEM–Tensors

Let H be a Hamiltonian form on the Legendre bundle Π over a fibre bundle
Y −→ X. We have the following differential conservation law on solutions of
the Hamiltonian equations [Sar98].

Let r be a section of the fibred Legendre manifold Π −→ X. Given a
connection Γ on Y −→ X, we consider the T ∗X−valued (n− 1)−form

TΓ (r) = −(Γ H) ◦ r, (2.424)

TΓ (r) = [rαi (∂µri − Γ iµ)− δαµ(rαi (∂αri − Γ iα)− H̃Γ )]dxµ ⊗ ωα,

on X where H̃Γ is the Hamiltonian density in the splitting (2.403) of H with
respect to the connection Γ .

Let τ = τα∂α be a vector–field on X. Given a connection Γ on Y → X, it
induces the projectable vector–field
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τ̃Γ = τα∂α + ταΓ iα∂i + (−τµpαj ∂iΓ jµ − pαi ∂µτµ + pµi ∂µτ
α)∂iα

on the Legendre bundle Π. Let us calculate the Lie derivative Lτ̃Γ
H̃Γ on a

section r. We have

(Lτ̃Γ
H̃Γ ) ◦ r = {∂αταH̃Γ + [τα∂α

+ ταΓ iα∂i + (−τµrαj ∂iΓ jµ − rαi ∂µτµ + rµi ∂µτ
α)∂iα]H̃Γ }ω

= τµrαi R
i
λµω + d(τµTΓ αµ(r)ωα)− (τ̃ΓV EH) ◦ r, (2.425)

where τ̃ΓV is the vertical part of the canonical horizontal splitting (1.170)
of the vector–field τ̃V on Π over j1Π. If r is a solution of the Hamiltonian
equations, the equality (2.425) becomes the conservation law (2.405). The
form (2.424) modulo the Hamiltonian equations reads

TΓ (r) ≈ [rαi (∂iµH− Γ iµ)− δαµ(rαi ∂iαH−H)]dxµ ⊗ ωα. (2.426)

For example, if X = R and Γ is the trivial connection, we have TΓ (r) =
Hdt, where H is a Hamiltonian function. Then, the identity (2.405) becomes
the conventional energy conservation law (2.391) in mechanics.

Unless n = 1, the identity (2.405) cannot be regarded directly as the
energy–momentum conservation law. To clarify its physical meaning, we turn
to the Lagrangian formalism.

Let a Hamiltonian form H be associated with a semiregular Lagrangian
density L. Let r be a solution of the Hamiltonian equations ofH which lives on
the Lagrangian constraint space Q and s the associated solution of the first–
order Euler–Lagrangian equations of L so that they satisfy the conditions
(2.423). Then, we have

TΓ (r) = JΓ (H̃ ◦ r), TΓ (L̃ ◦ s) = JΓ (s),

where JΓ is the SEM–tensor (2.414).
It follows that, on the Lagrangian constraint space Q, the form (2.426)

can be treated the Hamiltonian SEM–tensor relative to the connection Γ on
Y −→ X.

At the same time, the examples below show that, in several field models,
the equality (2.405) is brought into the covariant conservation law (2.398) for
the metric SEM–tensor.

In the Lagrangian formalism, the metric SEM–tensor is defined to be

√
−gtαβ = 2

∂L
∂gαβ

.

In case of a background world metric g, this object is well–behaved. In the
framework of the multimomentum Hamiltonian formalism, one can introduce
the similar tensor

√
−gtHαβ = 2

∂H
∂gαβ

. (2.427)
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If a Hamiltonian form H is associated with a semiregular Lagrangian den-
sity L, there are the equalities

tH
αβ(q) = −gαµgβνtµν(xα, yi, ∂iαH(q)), (q ∈ Q),

tH
αβ(xα, yi, παi (z)) = −gαµgβνtµν(z), Ĥ ◦ L̂(z) = z.

In view of these equalities, we can think of the tensor (2.427) restricted to the
Lagrangian constraint space Q as being the Hamiltonian metric SEM–tensor.
On Q, the tensor (2.427) does not depend upon choice of a Hamiltonian form
H associated with L. Therefore, we shall denote it by the common symbol t.
Set

tλα = gανtλν .

In the presence of a background world metric g, the identity (2.405) takes the
form

tλα{αλµ}
√
−g + (Γ iµ∂i − ∂iΓ jµrαj ∂iα)H̃Γ ≈

d

dxα
TΓ
α
µ + rαi R

i
αµ , (2.428)

where by {αλµ} are meant the Christoffel symbols of the world metric g.

SEM Tensors in Gauge Theory

In this subsection, following [Sar98] we consider the gauge theory of principal
connections treated as gauge potentials. Here, the manifold X is assumed to
be oriented and provided with a nondegenerate fibre metric gµν in the tangent
bundle of X. We denote g = det(gµν).

Let P → X be a principal bundle with a structure Lie group G which acts
freely and transitively on P on the right: rg : p �→ pg, (p ∈ P, g ∈ G).
A principal connection A on P → X is defined to be a G-equivariant connec-
tion on P such that j1rg ◦ A = A ◦ rg for each canonical morphism rg.
Recall that there is the 1–1 correspondence between the principal connections
on a principal bundle P → X and the global sections of the quotient bundle

C = J1(X,P )/G→ X. (2.429)

The bundle (2.429) is the affine bundle modelled on the vector bundle C =
T ∗X ⊗ (V P/G). Given a bundle atlas ΨP of P , the bundle C has the fibred
coordinates (xµ, kmµ ) so that (kmµ ◦ A)(x) = Amµ (x) are coefficients of the
local connection 1–form of a principal connection A with respect to the atlas
ΨP . The 1–jet space J1(X,C) of the fibre bundle C −→ X is coordinated by
(xµ, kmµ , k

m
µλ).

There exists the canonical splitting over C, given by

J1(X,C) = C+ ⊕ C− = (J2P/G)⊕ (∧2T ∗X ⊗ V GP ), (2.430)

kmµλ =
1
2
(kmµλ + kmλµ + cmnlk

n
αk
l
µ) +

1
2
(kmµλ − kmλµ − cmnlknαklµ).
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The corresponding surjections read:

S : J1(X,C) → C+, Smλµ = kmµλ + kmλµ + cmnlk
n
αk
l
µ,

F : J1(X,C) → C−, Fmλµ = kmµλ − kmλµ − cmnlknαklµ.

On the configuration space (2.430), the conventional Yang–Mills La-
grangian density LYM of gauge potentials in the presence of a background
world metric is given by the expression

LYM =
1

4ε2
aGmng

λµgβνFmλβFnµν
√
|g|ω, (2.431)

where aG is a nondegenerate G−invariant metric in the Lie algebra g of G.
The Legendre morphism associated with the Lagrangian density (2.431) takes
the form

p(µλ)m ◦ L̂YM = 0, (2.432)

p[µλ]m ◦ L̂YM = ε−2aGmng
λαgµβFnαβ

√
|g|. (2.433)

The equation (2.432) defines the constraint space of gauge theory.
Given a symmetric connection K on the tangent bundle TX, every prin-

cipal connection B on P induces the connection

Γmµλ = ∂µBmα − cmnlknµBlα −Kβµλ(Bmβ − kmβ ) (2.434)

on the bundle of principal connections C.
Let τ be a vector–field on the base X and

τBK = τα{∂α + [∂µBmα − cmnlknµBlα −Kβµλ(Bmβ − kmβ )]∂µm} (2.435)

its horizontal lift onto C by means of the connection (2.434). For every vector–
field τ , one can choose the connection K on the tangent bundle TX which
has τ as the geodesic field. In this case, the horizontal lift (2.435) of the
vector–field τ becomes its canonical lift

τB = τα∂α + [τα(∂µBmα − cmnlknµBlα) + ∂µτα(Bmα − kmα )]∂µm , (2.436)

by means of the principal connection B on the principal bundle P [GM90].
The vector–field (2.436) is just the general principal vector–field on C that
has been mentioned in the previous Section. Hence, the Lie derivative of the
Lagrangian density (2.431) by the jet lift τB of the field τB becomes

LτB
LYM = (∂αταLYM + τα∂αLYM −Fmµν∂ατµπνλm )ω.

The corresponding SEM transformation law takes the form

∂ατ
αLYM − τµtαβ

√
|g|Γ βµα −Fmµν∂ατµπνλm ≈ (2.437)

∂̂α[πνλm (τµ(∂νBmµ − cmnlknνBlµ) + ∂ντµ(Bmµ − kmµ )− τµkmνµ) + δαµτ
µLYM ],
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where
tαβ =

1√
|g|

(πναm Fmβν − δαβLYM )

is the metric SEM–tensor of gauge potentials.
Note that, in general case of the principal connection B, the corresponding

SEM transformation law (2.437) differs from the covariant conservation law
in the Noether conservation law

∂̂α(πνλm ug
m
ν ) ≈ 0, where
ug = (∂ναm + cmnlk

l
να
n)∂νm, αm = τµ(Bmµ −Amµ )

is the principal vector–field (2.360) on C.
Following the general procedure [Sar93, Sar94], let us consider connections

on the fibre bundle C −→ X which take their values into Ker L̂YM :

Γ : C → C+, Γmµλ − Γmλµ − cmnlknαklµ = 0. (2.438)

Moreover, we can restrict ourselves to connections of the following type. Every
principal connection B on P induces the connection ΓB (2.438) on C such that

ΓB ◦B = S ◦ j1B,

ΓB
m
µλ =

1
2
[cmnlk

n
αk
l
µ + ∂µBmα + ∂αBmµ − cmnl(knµBlα + knαB

l
µ)]− Γ

β
µλ(B

m
β − kmβ ).

For all these connections, the following Hamiltonian forms

HB = pµλm dk
m
µ ∧ ωα − pµλm ΓBmµλω − H̃YMω, (2.439)

H̃YM =
ε2

4
amnG gµνgλβp

[µλ]
m p[νβ]n |g|−1/2,

are associated with the Lagrangian density LYM and constitute a complete
family. The corresponding Hamiltonian equations for sections r of Π −→ X
read

∂αp
µλ
m = −cnlmklνp[µν]n + cnmlB

l
νp

(µν)
n − Γµλνp(λν)m , (2.440)

∂αk
m
µ + ∂µkmα = 2ΓBm(µλ), (2.441)

plus the equation (2.433). The equations (2.433) and (2.440) restricted to
the constraint space (2.432) are the familiar Yang–Mills equations. Different
Hamiltonian forms (2.439) lead to the different equations (2.441). The equa-
tion (2.441) is independent of canonical momenta and plays the role of the
gauge–type condition. Its solution is k(x) = B.

Let A be a solution of the Yang–Mills equations. There exists the Hamil-
tonian form HB=A (2.439) such that rA = L̂YM ◦A is a solution of the corre-
sponding Hamiltonian equations (2.440), (2.441) and (2.433) on the constraint
space (2.432).
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On the solution rA, the curvature of the connection ΓA is reduced to

Rmλαµ =
1
2
(∂αFmαµ − cmqnkqαFnαµ − Γ

β
αλF

m
βµ − Γ

β
µλF

m
αβ) =

1
2
[(∂αFmλµ − cmqnkqαFnλµ − Γ

β
λαF

m
µβ)− (∂µFmλα − cmqnkqµFnλα − Γ

β
λµF

m
αβ)]

where F = F ◦A is the strength of A. If we set

Sαµ = p[αλ]m ∂mαµH̃YM =
ε2

2
√
|g|
amnG gµνgαβp

[αλ]
m p[βν]n ,

then we have
Sαµ =

1
2
p[αλ]Fmµα, H̃YM =

1
2
Sαα.

Using (2.432), (2.433) and (2.440), we get the relations

∂βnΓA
m
αµp

αλ
m ∂

n
βλH̃YM = Γ βαµS

α
β , rA

[λα]
m Rmλαµ = ∂αSαµ(rA)− Γ βµλSαβ(rA)

and we find that

tαµ
√
|g| = 2Sαµ −

1
2
δαµS

α
α, TΓA

α
µ(rA) = Sαµ(rA)− 1

2
δαµS

α
α(rA),

tαµ(rA)
√
|g| = TαΓAµ(rA) + Sλµ(rA).

Hence, the identity (2.428) in gauge theory is brought into the covariant
energy–momentum conservation law

∇αtαµ(rA) ≈ 0.

The Lagrangian partner of the Hamiltonian SEM–tensor TΓA
(rA) is the

SEM–tensor JΓA
(A) (2.414) on the solution A relative to the connection ΓA

on the bundle C. This is exactly the familiar symmetrized canonical energy–
momentum tensor of gauge potentials.

SEM Tensors of Matter Fields

In gauge theory, matter fields possessing only internal symmetries are de-
scribed by sections of a vector bundle Y = (P × V )/G, associated with a
principal bundle P [Sar98]. It has a G−invariant fibre metric aY . Because of
the canonical vertical splitting V Y = Y × Y , the metric aY is a fibre metric
in the vertical tangent bundle V Y → X. Every principal connection A on a
principal bundle P yields the associated connection

Γ = dxα ⊗ [∂α +Amµ (x)Imijyj∂i], (2.442)

where Amµ (x) are coefficients of the local connection 1–form and Im are gen-
erators of the structure group G on the standard fibre V of the bundle Y .
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On the configuration space J1(X,Y ), the regular Lagrangian density of
matter fields in the presence of a background connection Γ on Y reads

L(m) =
1
2
aYij [g

µν(yiµ − Γ iµ)(yjν − Γ jν )−m2yiyj ]
√
|g|ω. (2.443)

The Legendre bundle of the vector bundle Y −→ X is Π = ∧nT ∗X ⊗
TX⊗Y ∗. The unique Hamiltonian form onΠ associated with the Lagrangian
density L(m) (2.443) is written

H(m) = pαi dy
i∧ωα−pαi Γ iαω−

1
2
(aijY gµνp

µ
i p
ν
j |g|−1+m2aYijy

iyj)
√
|g|ω, (2.444)

where aY is the fibre metric in V ∗Y dual to aY . There is the 1–1 correspon-
dence between the solutions of the first–order Euler–Lagrangian equations of
the regular Lagrangian density (2.443) and the solutions of the Hamiltonian
equations of the Hamiltonian form (2.444).

To examine the conservation law (2.428), let us take the same Hamiltonian
SEM–tensor relative to the connection Γ (2.442) for all solutions r of the
Hamiltonian equations. The following equality motivates the option above.
We have

TαΓ µ(r) = tαµ(r)
√
|g| = [aijY gµνr

α
i p
ν
j |g|−1

−1
2
δαµ(a

ij
Y gανr

α
i r
ν
j |g|−1 +m2aYijr

irj)]
√
|g|.

The gauge invariance condition Im
j
ir
α
j ∂
i
αH̃ = 0 also takes place. Then, it

can be observed that the identity (2.428) reduces to the familiar covariant
energy–momentum conservation law√

|g|∇αtαµ(r) ≈ −rαi FmλµImijyj .

SEM Tensors in Affine–Metric Gravitation Theory

Now we can apply the Hamiltonian SEM–tensor machinery to gravitation
theory [Sar98, GS96]. Here, X4 is a 4D world manifold which obeys the well–
known topological conditions in order that a gravitational field exists on X4.

Recall that the contemporary concept of gravitational interaction is based
on the gauge gravitation theory with two types of gravitational fields: tetrad
gravitational fields and Lorentz gauge potentials. In absence of fermion matter,
one can choose by gravitational variables a pseudo–Riemannian metric g on
a world space–time manifold X4 and a general linear connections K on the
tangent bundle of X4. We call them a world metric and a world connection
respectively. Here we are not concerned with the matter interacting with a
general linear connection, for it is non–Lagrangian and hypothetical as a rule.

Let LX −→ X4 be the principal bundle of linear frames in the tangent
spaces to X4. Its structure group is GL+(4,R). The world connections are
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associated with the principal connections on the principal bundle LX −→ X4.
Hence, there is the 1–1 correspondence between the world connections and
the global sections of the quotient bundle

C = J1(X4, LX)/GL+(4,R). (2.445)

We therefore can apply the standard procedure of the Hamiltonian gauge
theory in order to describe the configuration and phase–spaces of world con-
nections [Sar93, Sar94].

Also, there is the 1–1 correspondence between the world metrics g on X4

and the global sections of the bundle Σ of pseudo–Riemannian bilinear forms
in tangent spaces to X4. This bundle is associated with the GL4−principal
bundle LX. The 2–fold covering of the bundle Σ is the quotient bundle
LX/SO(3, 1).

The total configuration space of the affine–metric gravitational variables
is the product

J1(X4, C)× J1(X4, Σ). (2.446)

coordinated by (xµ, gαβ , kαβµ, gαβα, kαβµλ). Also, the total phase–space Π
of the affine–metric gravity is the product of the Legendre bundles over the
above–mentioned bundles C and Σ. It has the corresponding canonical coor-
dinates (xµ, gαβ , kαβµ, pαβα, pαβµλ).

On the configuration space (2.446), the Hilbert–Einstein Lagrangian den-
sity of general relativity reads

LHE = − 1
2κ
gβλFαβαλ

√
−gω, with (2.447)

Fαβνλ = kαβλν − kαβνλ + kαενkεβλ − kαελkεβν .

The corresponding Legendre morphism is given by the expressions

pαβ
α ◦ L̂HE = 0,

pα
βνλ ◦ L̂HE = παβνλ =

1
2κ

(δναg
βλ − δααgβν)

√
−g, (2.448)

which define the constraint space of general relativity in the affine–metric
variables.

Now, let us consider the following connections on the bundle C × Σ in
order to construct a complete family of Hamiltonian forms associated with
the Lagrangian density (2.447).

Let K be a world space–time connection and

ΓK
α
βνλ =

1
2
[kαενkεβλ − kαελkεβν + ∂αKαβν + ∂νKαβλ

−2Kε(νλ)(Kαβε − kαβε) +Kεβλkαεν +Kεβνkαελ −Kαελkεβν −Kαενkεβλ]

be the corresponding connection on the bundle C (2.445). Let K ′ be another
symmetric world connection. Building on these connections, we set up the
following connection on the bundle C ×Σ,
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Γαβα = −K ′α
ελg

εβ −K ′β
ελg

αε,

Γαβνλ = ΓKαβνλ −
1
2
Rαβνλ , (2.449)

where Rαβνλ is the Riemann curvature tensor of K.
For all connections (2.449), the following Hamiltonian forms are associated

with the Lagrangian density LHE and constitute a complete family:

HHE = (pαβαdgαβ + pαβνλdkαβν) ∧ ωα −HHEω,
HHE = −pαβα(K ′α

ελg
εβ +K ′β

ελg
αε)

+ pαβνλΓKαβνλ −
1
2
Rαβνλ(pαβνλ − παβνλ)

= −pαβα(K ′α
ελg

εβ +K ′β
ελg

αε) + pαβνλΓαβνλ + H̃HE ,

H̃HE =
1
2κ
R
√
−g. (2.450)

Given the Hamiltonian form HHE (2.450) plus a Hamiltonian form HM
for matter, we have the corresponding Hamiltonian equations

∂αg
αβ +K ′α

ελg
εβ +K ′β

ελg
αε = 0, (2.451)

∂αk
α
βν = ΓKαβνλ −

1
2
Rαβνλ, (2.452)

∂αpαβ
α = pεβσK ′ε

ασ + pεασK ′ε
βσ (2.453)

− 1
2κ

(Rαβ −
1
2
gαβR)

√
−g − ∂HM

∂gαβ
,

∂αpα
βνλ = −pαε[νγ]kβεγ + pεβ[νγ]kεαγ − pαβεγKν (εγ)

−pαε(νγ)Kβεγ + pεβ(νγ)Kεαγ , (2.454)

plus the motion equations of matter. The Hamiltonian equations (2.451) and
(2.452) are independent of canonical momenta and so, reduce to the gauge–
type conditions. The equation (2.452) breaks into the following two parts,

Fαβλν = Rαβνλ, and (2.455)
∂ν(Kαβλ − kαβλ) + ∂α(Kαβν − kαβν)− 2Kε(νλ)(Kαβε − kαβε)
+ Kεβλkαεν + Kεβνk

α
ελ −Kαελkεβν −Kαενkεβλ = 0, (2.456)

where F is the curvature of the connection k(x). It is clear that the gauge–type
conditions (2.451) and (2.452) are satisfied by

k(x) = K, K ′α
βλ = Γαβλ. (2.457)

When restricted to the constraint space (2.448), the Hamiltonian equations
(2.453) and (2.454) become
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1
κ

(Rαβ −
1
2
gαβR)

√
−g = −∂HM

∂gαβ
, (2.458)

Dα(
√
−ggνβ)− δναDα(

√
−ggλβ) +

√
−g[gνβ(kααλ − kαλα)

+ gλβ(kνλα − kναλ) + δναg
λβ(kµµλ − kµλµ)] = 0, (2.459)

where Dαg
αβ = ∂αgαβ + kαµλgµβ + kβµλgαµ.

Substituting the equation (2.455) into the equation (2.458), we get the Ein-
stein equations

1
κ

(Fαβ −
1
2
gαβF ) = −tαβ , (2.460)

where tαβ is the metric SEM–tensor of matter. The equations(2.459) and
(2.460) are the familiar equations of affine–metric gravity. In particular, the
former is the equation for torsion and nonmetricity terms of the general linear
connection k(x). In the absence of matter sources of a general linear connec-
tion, it admits the well–known solution

kαβν = Γαβν −
1
2
δανVβ , Dαg

βγ = Vαgβγ ,

where Vα is an arbitrary covector–field corresponding to the well–known pro-
jective freedom.

Let s = (k(x), g(x)) be a solution of the Euler–Lagrangian equations of the
first–order Hilbert–Einstein Lagrangian density (2.447) and r the correspond-
ing solution of the Hamiltonian equations of the Hamiltonian form (2.450)
where K and K ′ are given by the expressions (2.457). For this solution r, let
us take the SEM–tensor Ts (2.406) relative to the connection (2.449) where
K and K ′ are given by the expressions (2.457). It reads

Ts
α
µ = δαµH̃HE =

1
2κ
δαµR

√
−g

and the identity (2.405) takes the form

(∂µ + Γαβµ∂αβ + Γ iµ∂i − ∂iΓ jµpαj ∂iλ)(H̃HE + H̃M )

≈ d

dxα
(Tsαµ + TMαµ) + pαβνλRαβνλµ + pαi R

i
λµ (2.461)

where TM is the SEM–tensor for matter.
One can verify that the SEM–tensor Ts meets the condition

(∂µ + Γαβµ∂αβ)H̃HE =
d

dxα
Ts
α
µ, (2.462)

so that on solutions (2.457), the curvature of the connection (2.449) vanishes.
Hence, the identity (2.461) is reduced to the conservation law (2.428) of mat-
ter in the presence of a background metric. The gravitation SEM–tensor is
eliminated from the conservation law because the Hamiltonian form HHE is
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affine in all canonical momenta. Note that only gauge–type conditions (2.451),
(2.452) and the motion equations of matter have been used.

At the same time, since the canonical momenta pαβα of the world met-
ric are equal to zero, the Hamiltonian equation (2.453) on the Lagrangian
constraint space becomes

∂αβ(H̃HE + H̃M ) = 0.

Hence, the equality (2.461) takes the form

πα
βνλ∂µR

α
βνλ+ (∂µ+Γ iµ∂i− ∂iΓ jµpαj ∂iλ)H̃M ≈ d

dxα
(Tsαµ+TMλµ) + pαi R

i
λµ.

(2.463)
This is the form of the energy–momentum conservation law which we ob-
serve also in case of quadratic Lagrangian densities of affine–metric gravity.
Substituting the equality (2.462) into (2.463), we get the above result.

As a test case of quadratic Lagrangian densities of affine–metric gravity,
let us examine the sum

L = (− 1
2κ
gβλFαβαλ +

1
4ε
gαγg

βσgνµgλεFαβνλFγσµε)
√
−gω (2.464)

of the Hilbert–Einstein Lagrangian density and the Yang–Mills one. The cor-
responding Legendre map reads

pαβ
α ◦ L̂ = 0, (2.465)

pα
β(νλ) ◦ L̂ = 0, (2.466)

pα
β[νλ] ◦ L̂ = παβνλ +

1
ε
gαγg

βσgνµgλεFγσεµ
√
−g. (2.467)

The relations (2.465) and (2.466) defines the Lagrangian constraint space.
Let us consider two connections on the bundle C ×Σ,

Γαβα = −K ′α
ελg

εβ −K ′β
ελg

αε, and Γαβνλ = ΓKαβνλ, (2.468)

where the notations of the expression (2.449) are used. The corresponding
Hamiltonian forms

H = (pαβαdgαβ + pαβνλdkαβν) ∧ ωα −Hω,
H = −pαβα(K ′α

ελg
εβ +K ′β

ελg
αε) + pαβνλΓKαβνλ + H̃,

H̃ =
ε

4
gαγgβσgνµgλε(pαβ[νλ] − παβνλ)(pγσ[µε] − πγβµε), (2.469)

are associated with the Lagrangian density (2.464) and constitute a complete
family.

Given the Hamiltonian form (2.469) plus the Hamiltonian form HM for
matter, we have the corresponding Hamiltonian equations
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∂αg
αβ +K ′α

ελg
εβ +K ′β

ελg
αε = 0, (2.470)

∂αk
α
βν = ΓαKβνλ + εgαγgβσgνµgλε(pγσ[µε] − πγβµε), (2.471)

∂αpαβ
α = − ∂H

∂gαβ
− ∂HM
∂gαβ

, (2.472)

∂αpα
βνλ = −pαε[νγ]kβεγ + pεβ[νγ]kεαγ
−pαβεγKν (εγ) − pαε(νγ)Kβεγ + pεβ(νγ)Kεαγ (2.473)

plus the motion equations for matter. The equation (2.471) breaks into the
equation (2.467) and the gauge–type condition (2.456). The gauge–type con-
ditions (2.470) and (2.456) have the solution (2.457). Substituting the equa-
tion (2.471) into the equation (2.472) on the constraint space (2.465), we get
the quadratic Einstein equations. Substitution of the equations (2.466) and
(2.467) into the equation (2.473) results into the Yang–Mills generalization of
the equation (2.459),

∂αpα
βνλ + pαε[νγ]kβεγ − pεβ[νγ]kεαγ = 0.

Consider now the splitting of the Hamiltonian form (2.469) with respect
to the connection (2.449) and the Hamiltonian density

H̃Γ = H̃+
1
2
pα
βνλRαβνλ.

Let s = (k(x), g(x)) be a solution of the Euler–Lagrangian equations of
the Lagrangian density (2.464) and r the corresponding solution of the Hamil-
tonian equations of the Hamiltonian form (2.469) where K and K ′ are given
by the expressions (2.457). For this solution r, let us take the SEM–tensor Ts
(2.406) relative to the connection (2.449) where K and K ′ are given by the
expressions (2.457). It reads

Ts
α
µ =

1
2
pα
β[νλ]Rαβνµ +

ε

2
gαγgβσgνδgµεpα

β[νλ](pγσ[δε] − πγσδε)

−δαµ(H̃+
ε

2
gαγgβσgνδgτεπα

βντ (pγσ[δε] − πγσδε))

and is equal to

1
ε
Rα

βνλRαβνµ + παβνλRαβνµ − δαµ(
1
4ε
Rα

βνλRαβνλ +
1
2κ
R).

The weak identity (2.405) now becomes

(∂µ + Γαβµ∂αβ + Γ iµ∂i − ∂iΓ jµpαj ∂iλ − pαβνλ
∂

∂kσγδ
ΓK

α
βνµ

∂

∂Pσγδλ
)(H̃Γ + H̃M )

≈ d

dxα
(Tsαµ + TMαµ) + pαβνλRαβνλµ + pαi R

i
λµ

and can be simplified to
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(∂µ + Γ iµ∂i − ∂iΓ jµpαj ∂iλ)H̃M − pαβνλ
∂

∂kσγδ
ΓK

α
βνµ

∂

∂pσγδλ
H̃Γ

≈ d

dxα
(Tsαµ + TMαµ) + pαi R

i
λµ , where (2.474)

pα
βνλ ∂

∂kσγδ
ΓK

α
βνµ

∂

∂pσγδλ
H̃Γ (2.475)

=
1
κ
kγβµ(gβνRαγαν − gανRβανγ)

√
−g − kγ(βµ)pα

νβλRανγλ.

Let us choose the local geodetic coordinate system at a point x ∈ X.
Relative to this coordinate system, the equality (2.474) at x becomes the
conservation law

(∂µ + Γ iµ∂i − ∂iΓ jµpαj ∂iλ)H̃M ≈ d

dxα
(Tsαµ + TMαµ) + pαi R

i
λµ.

For example, in gauge theory, we have

d

dxα
(TΓ αµ + tMαµ) = 0,

where tM is the metric SEM–tensor of matter.

Gauge Systems of Gravity and Fermion Fields

In physical reality, one observes three types of field systems: gravitational
fields, fermion fields, and gauge fields associated with internal symmetries
(see [GS97]). If the gauge invariance under internal symmetries is kept in the
presence of a gravitational field, Lagrangian densities of gauge fields must
depend on a metric gravitational field only.

In the gauge gravitation theory, gravity is represented by pairs (h,Ah) of
gravitational fields h and associated Lorentz connections Ah [HMM95, Sar92].
The connection Ah is usually identified with both a connection on a world
manifold X and a spinor connection on the spinor bundle Sh → X whose
sections describe Dirac fermion fields ψh in the presence of the gravitational
field h. The problem arises when Dirac fermion fields are described in the
framework of the affine–metric gravitation theory. In this case, the fact that a
world connection is some Lorentz connection may result from the field equa-
tions, but it cannot be assumed in advance. There are models where the world
connection is not a Lorentz connection [HMM95]. Moreover, it may happen
that a world connection is the Lorentz connection with respect to different
gravitational fields [Tho93]. At the same time, a Dirac fermion field can be
regarded only in a pair (h, ψh) with a certain gravitational field h.

One has to define the representation of cotangent vectors to X by the
Dirac’s γ−matrices in order to construct the Dirac operator. Given a tetrad
gravitational field h(x), we have the representation
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γh : dxµ �→ d̂xµ = hµaγ
a.

However, different gravitational fields h and h′ yield the nonequivalent repre-
sentations γh and γh′ .

It follows that fermion–gravitation pairs (h, ψh) are described by sections
of the composite spinor bundle

S → Σ → X, (2.476)

where Σ → X is the bundle of gravitational fields h where values of h play the
role of parameter coordinates, besides the familiar world coordinates [Sar92].
In particular, every spinor bundle Sh → X is isomorphic to the restriction
of S → Σ to h(X) ⊂ Σ. Performing this restriction, we come to the familiar
case of a field model in the presence of a gravitational field h(x). The feature
of the dynamics of field systems on the composite bundle (2.476) lies in the
fact that we have the modified covariant differential of fermion fields which
depend on derivatives of gravitational fields h.

As a consequence, we get the following covariant derivative of Dirac
fermion fields in the presence of a gravitational field h(x):

D̃α = ∂α −
1
2
Aabcµ(∂αh

µ
c +Kµνλhνc )Iab, (2.477)

Aabcµ =
1
2
(ηcahbµ − ηcbhaµ),

where K is a general linear connection on a world manifold X,6 η is the
Minkowski metric, and Iab = 1

4 [γa, γb] are generators of the spinor Lie group
Ls = SL(2,C).

The covariant derivative (2.477) has been considered by [AM91, PO82,
TW95]. The relation (2.479) correspond to the canonical decomposition of the
Lie algebra of the general linear group. By the well–known theorem [KN63/9],
every general linear connection being projected onto the Lie algebra of the
Lorentz group induces a Lorentz connection.

In our opinion, the advantage of the covariant derivative (2.477), consists
in the fact that, being derived in the framework of the gauge gravitation the-
ory, it may be also applied to the affine–metric gravitation theory and the
6 The connection

K̃ab
α = Aabc

µ(∂αhµ
c + Kµ

νλhν
c ) (2.478)

is not the connection

Kk
mλ = hk

µ(∂αhµ
m + Kµ

νλhν
m) = Kab

α(ηamδk
b − ηbmδk

a)

written with respect to the reference frame ha = ha
αdxα, but there is the relation

K̃ab
α =

1

2
(Kab

α − Kba
α). (2.479)

If K is a Lorentz connection Ah, then the connection K̃ given by (2.478) is
consistent with K itself.
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conventional Einstein’s gravitation theory. We are not concerned here with
the general problem of equivalence of metric, affine and affine–metric theo-
ries of gravity [FK82]. At the same time, when K is the Levi–Civita connec-
tion of h, the Lagrangian density of fermion fields which uses the covariant
derivative (2.477) becomes that in the Einstein’s gravitation theory. It fol-
lows that the configuration space of metric (or tetrad) gravitational fields and
general linear connections may play the role of the universal configuration
space of realistic gravitational models. In particular, one then can think of
the generalized Komar superpotential as being the universal superpotential
of energy–momentum of gravity [GS95].

We follow [GS97] in the geometrical approach to field theory when classical
fields are described by global sections of a fibre bundle Y −→ X over a smooth
world space–time manifoldX. Their dynamics is phrased in terms of jet spaces
[Sar93, Sau89]. Recall that a kth–order differential operator on sections of a
fibre bundle Y −→ X is defined to be a bundle morphism of the jet bundle
Jk(X,Y ) −→ X to a vector bundle over X.

In particular, given bundle coordinates (xµ, yi) of a fibre bundle Y −→ X,
the 1–jet space J1(X,Y ) of Y has the adapted coordinates (xµ, yi, yiµ), where
yiµ(j

1
xs) = ∂µsi(x).
There is the 1–1 correspondence between the connections on the fibre

bundle Y → X and the global sections Γ = dxα ⊗ (∂α + Γ iα∂i) of the affine
jet bundle J1(X,Y ) → Y . Every connection Γ on Y → X induces the first–
order differential operator on Y ,

DΓ : J1(X,Y ) −→ T ∗X ⊗ V Y, DΓ = (yiα − Γ iα)dxα ⊗ ∂i,

which is called the covariant differential relative to the connection Γ .
Recall that in the first–order Lagrangian formalism, the 1–jet space

J1(X,Y ) of Y plays the role of the finite–dimensional configuration space
of fields represented by sections s of a bundle Y → X. A first–order La-
grangian density L : J1(X,Y ) −→ ∧nT ∗X is defined to be a horizon-
tal density L = L(xµ, yi, yiµ)ω on the jet bundle J1(X,Y ) → X, where
ω = dx1 ∧ ... ∧ dxn, (n = dimX). Since the jet bundle J1(X,Y ) → Y is
affine, every polynomial Lagrangian density of field theory factors through
L : J1(X,Y ) D−→ T ∗X⊗V Y → ∧nT ∗X, where D is the covariant differential
on Y , and V Y is the vertical tangent bundle of Y .

Let us consider the gauge theory of gravity and fermion fields. By X is
further meant an oriented 4D world manifold which satisfies the well–known
topological conditions in order that gravitational fields and spinor structure
can exist on X. To summarize these conditions, we assume that X is not
compact and that the tangent bundle of X is trivial [GS97].

Let LX be the principal bundle of oriented linear frames in tangent spaces
to X. In gravitation theory, its structure group GL+(4,R) is reduced to the
connected Lorentz group L = SO(1, 3). It means that there exists a reduced
subbundle LhX of LX whose structure group is L. In accordance with the
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well–known theorem, there is the 1–1 correspondence between the reduced L
subbundles LhX of LX and the global sections h of the quotient bundle

Σ = LX/L −→ X. (2.480)

These sections h describe gravitational fields on X, for the bundle (2.480) is
the 2–folder covering of the bundle of pseudo–Riemannian metrics on X.

Given a section h of Σ, let Ψh be an atlas of LX such that the corre-
sponding local sections zhξ of LX take their values into LhX. With respect to
Ψh and a holonomic atlas ΨT = {ψTξ } of LX, a gravitational field h can be
represented by a family of GL4−valued tetrad functions

hξ = ψTξ ◦ zhξ , dxα = hαa (x)ha. (2.481)

By the Lorentz connections Ah associated with a gravitational field h are
meant the principal connections on the reduced subbundle LhX of LX. They
give rise to principal connections on LX and to spinor connections on the
Ls-lift Ph of LhX.

Given a Minkowski space M , let Cl1,3 be the complex Clifford algebra7

generated by elements of M . A spinor space V is defined to be a minimal left
ideal of Cl1,3 on which this algebra acts on the left. We have the representation
γ : M ⊗ V → V of elements of the Minkowski space M ⊂ Cl1,3 by Dirac’s
matrices γ on V .

Let us consider a bundle of complex Clifford algebras Cl1,3 over X whose
structure group is the Clifford group of invertible elements of Cl1,3. Its sub-
bundles are both a spinor bundle SM −→ X and the bundle YM −→ X of
Minkowski spaces of generating elements of Cl1,3. To describe Dirac fermion
fields on a world manifold X, one must require YM to be isomorphic to the
cotangent bundle T ∗X of X. It takes place if there exists a reduced L sub-
bundle LhX such that

YM = (LhX ×M)/L.

Then, the spinor bundle
7 Recall that Clifford algebras are a type of associative algebra, named after English

geometer W. Clifford. They can be thought of as one of the possible generaliza-
tions of the complex numbers and quaternions. The theory of Clifford algebras is
intimately connected with the theory of quadratic forms and orthogonal transfor-
mations. The most important Clifford algebras are those over R and C equipped
with nondegenerate quadratic forms. Recall that every nondegenerate quadratic
form on a finite–dimensional real vector space is equivalent to the standard di-
agonal form Q(x) = x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q, where n = p + q is the

dimension of the vector space. The pair of integers (p, q) is called the signature
of the quadratic form. Similarly, one can define Clifford algebras on complex vec-
tor spaces. Every nondegenerate quadratic form on a complex vector space is
equivalent to the standard diagonal form Q(z) = z2

1 + z2
2 + · · · + z2

n, so there is
essentially only one Clifford algebra in each dimension. One can show that the
complex Clifford algebra may be obtained as the complexification of the real one.
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SM = Sh = (Ph × V )/Ls (2.482)

is associated with the Ls−lift Ph of LhX. In this case, there exists the repre-
sentation

γh : T ∗X ⊗ Sh = (Ph × (M ⊗ V ))/Ls −→ (Ph × γ(M × V ))/Ls = Sh (2.483)

of cotangent vectors to a world manifold X by Dirac’s γ-matrices on elements
of the spinor bundle Sh. As a shorthand, one can write

d̂xα = γh(dx
α) = hαa (x)γa.

Given the representation (2.483), we shall say that sections of the spinor
bundle Sh describe Dirac fermion fields in the presence of the gravitational
field h. Let a principal connection on Sh be given by

Ah = dxα ⊗ (∂α +
1
2
AabαIab

A
Bψ

B∂A).

Given the corresponding covariant differential D and the representation γh
(2.483), one can construct the Dirac operator on the spinor bundle Sh, as

Dh = γh ◦D : J1Sh → T ∗X ⊗ V Sh → V Sh, (2.484)

ẏA ◦ Dh = hαaγ
aA
B(yBα −

1
2
AabαIab

A
By
B).

Different gravitational fields h and h′ define nonequivalent representations
γh and γh′ . It follows that a Dirac fermion field must be regarded only in a
pair with a certain gravitational field. There is the 1–1 correspondence between
these pairs and sections of the composite spinor bundle (2.476).

Recall that we have a composite bundle

Y → Σ → X (2.485)

of a bundle Y → X denoted by YΣ and a bundle Σ → X. It is coordinated
by (xα, σm, yi) where (xµ, σm) are coordinates of Σ and yi are the fibre coor-
dinates of YΣ . We further assume that Σ has a global section.

The application of composite bundles to field theory is founded on the fol-
lowing [Sar92]. Given a global section h of Σ, the restriction Yh of YΣ to h(X)
is a subbundle of Y → X. There is the 1–1 correspondence between the global
sections sh of Yh and the global sections of the composite bundle (2.485) which
cover h. Therefore, one can think of sections sh of Yh as describing fermion
fields in the presence of a background parameter field h, whereas sections of
the composite bundle Y describe all the pairs (sh, h). The configuration space
of these pairs is the 1–jet space J1(X,Y ) of the composite bundle Y .

Every connection

AΣ = dxα ⊗ (∂α + Ãiα∂i) + dσm ⊗ (∂m +Aim∂i)
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on the bundle YΣ induces the horizontal splitting

V Y = V YΣ ⊕ (Y × V Σ), locally given by
ẏi∂i + σ̇m∂m = (ẏi −Aimσ̇m)∂i + σ̇m(∂m +Aim∂i).

Using this splitting, one can construct the first–order differential operator
(1.197) on the composite bundle Y , namely

D̃ : J1(X,Y ) → T ∗X ⊗ V YΣ , D̃ = dxα ⊗ (yiα − Ãiα −Aimσmα )∂i. (2.486)

This operator possess the following property. Given a global section h of Σ,
let Γ be a connection on Σ whose integral section is h, that is, Γ ◦ h = j1h.
Note that the differential (2.486) restricted to J1(X,Y )h ⊂ J1(X,Y ) becomes
the familiar covariant differential relative to the connection on Yh,

Ah = dxα ⊗ [∂α + (Aim∂αh
m + Ãiα)∂i].

Thus, it is D̃ that we may use in order to construct a Lagrangian density

L : J1(X,Y ) D̃−→ T ∗X ⊗ V YΣ → ∧nT ∗X

for sections of the composite bundle Y .
In particular, in gravitation theory, we have the composite bundle LX →

Σ → X, where Σ is the quotient bundle (2.480) and LXΣ = LX → Σ is
the L−principal bundle. Let PΣ be the Ls−principal lift of LXΣ such that
PΣ/Ls = Σ and LXΣ = r(PΣ). In particular, there is the imbedding of the
Ls−lift Ph of LhX onto the restriction of PΣ to h(X) [GS97].

Let us consider the composite spinor bundle (2.476) where SΣ = (PΣ ×
V )/Ls is associated with the Ls−principal bundle PΣ . Note that, given a
global section h of Σ, the restriction SΣ to h(X) is the spinor bundle Sh
(2.482) whose sections describe Dirac fermion fields in the presence of the
gravitational field h.

Let us give the principal bundle LX with a holonomic atlas {ψTξ , Uξ} and
the principal bundles PΣ and LXΣ with associated atlases {zsε , Uε} and {zε =
r◦zsε}. With respect to these atlases, the composite spinor bundle is equipped
with the bundle coordinates (xα, σµa , ψ

A) where (xα, σµa) are coordinates of
the bundle Σ such that σµa are the matrix components of the group element
(ψTξ ◦ zε)(σ), σ ∈ Uε, πΣX(σ) ∈ Uξ. Given a section h of Σ, we have (σαa ◦
h)(x) = hαa (x), where hαa (x) are the tetrad functions (2.481).

Let us consider the bundle of Minkowski spaces (LX×M)/L→ Σ associ-
ated with the L−principal bundle LXΣ . Since LXΣ is trivial, it is isomorphic
to the pull–back Σ × T ∗X which we denote by the same symbol T ∗X. Then,
one can define the bundle morphism γΣ over Σ, given by

γΣ : T ∗X ⊗ SΣ → SΣ , d̂xα = γΣ(dxα) = σαaγ
a. (2.487)
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When restricted to h(X) ⊂ Σ, the map (2.487) becomes the morphism γh
(2.483). We use this morphism in order to construct the total Dirac operator
on the composite spinor bundle S (2.476).

Let
Ã = dxα ⊗ (∂α + ÃBα ∂B) + dσµa ⊗ (∂aµ +ABaµ∂B)

be a principal connection on the bundle SΣ and D̃ the corresponding differ-
ential (2.486). We have the first–order differential operator on S, given by

D = γΣ ◦ D̃ : J1S → T ∗X ⊗ V SΣ → V SΣ ,

ψ̇
A ◦ D = σαaγ

aA
B(ψBα − ÃBα −ABaµσ

µ
aλ).

One can think of it as being the total Dirac operator since, for every section
h, the restriction of D to J1Sh ⊂ J1S becomes the Dirac operator Dh (2.484)
relative to the connection on the bundle Sh, given by

Ah = dxα ⊗ [∂α + (ÃBα +ABaµ∂αh
µ
a)∂B ].

In order to construct the differential D̃ (2.486) on J1(X,S) in explicit
form, let us consider the principal connection on the bundle LXΣ which is
given by the local connection form

Ã = (Ãabµdxµ +Aabcµdσ
µ
c )⊗ Iab, (2.488)

Ãabµ =
1
2
Kνλµσ

α
c (η

caσbν − ηcbσaν),

Aabcµ =
1
2
(ηcaσbµ − ηcbσaµ), (2.489)

where K is a general linear connection on TX and (2.489) corresponds
to the canonical left–invariant connection on the bundle GL+(4,R) −→
GL+(4,R)/L.
Therefore, the differential D̃ relative to the connection (2.488) reads

D̃ = dxα ⊗ [∂α −
1
2
Aabcµ(σ

µ
cλ +Kµνλσνc )Iab

A
Bψ

B∂A]. (2.490)

Given a section h, the connection Ã (2.488) is reduced to the Lorentz con-
nection K̃ (2.478) on LhX, and the differential (2.490) leads to the covariant
derivatives of fermion fields (2.477). We will use the differential (2.490) in order
to construct a Lagrangian density of Dirac fermion fields. Their Lagrangian
density is defined on the configuration space J1(X,S ⊕ S+) coordinated by
(xµ, σµa , ψ

A, ψ+
A, σ

µ
aλ, ψ

A
α , ψ

+
Aλ). It reads

Lψ = { i
2
[ψ+
A(γ0γα)AB(ψBα −

1
2
Aabcµ(σ

µ
cλ +Kµνλσνc )Iab

B
Cψ

C)

− (ψ+
Aλ −

1
2
Aabcµ(σ

µ
cλ +Kµνλσνc )ψ

+
CI

+
ab
C
A)(γ0γα)ABψB ] (2.491)

− mψ+
A(γ0)ABψB}σ−1ω,
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where γµ = σµaγ
a, and σ = det(σµa), while ψ+

A(γ0)ABψB is the Lorentz–
invariant fibre metric in the bundle S ⊕ S∗ [Cra91].

One can show that
∂Lψ
∂Kµνλ

+
∂Lψ
∂Kµλν

= 0.

Hence, the Lagrangian density (2.491) depends on the torsion of the general
linear connection K only. In particular, it follows that, if K is the Levi-Civita
connection of a gravitational field h(x), after the substitution σνc = hνc (x),
the Lagrangian density (2.491) becomes the familiar Lagrangian density of
fermion fields in the Einstein’s gravitation theory.

Hawking–Penrose Quantum Gravity and Black Holes

In their search for quantum gravity, S. Hawking and R. Penrose use the
straightforward application of quantum theory to general relativity [HE79,
Pen89, HP96], rather than following the more fashioned string theory ap-
proach (described below).

According to Hawking, “Einstein’s general relativity is a beautiful theory
that agrees with every observation that has been made so far. It might require
modifications on the Planck scale, and it might be only a low energy approxi-
mation to some more fundamental theory, like e.g., superstring theory, but it
will not affect many of the predictions that can be get from gravity...” [HE79].

Space–Time Manifold, Gravity, Black Holes and Big Bang

The crucial technique for investigating Hawking–Penrose singularities and
black holes, has been the study of the global causal structure of space–time
[HE79]. Define I+(p) to be the set of all points of the space–time manifold
M that can be reached from the point p by future directed time like curves.
One can think of I+(p) as the set of all events that can be influenced by what
happens at p. One now considers the boundary İ+(S) of the future of a set
S. It is easy to see that this boundary cannot be time–like. For in that case,
a point q just outside the boundary would be to the future of a point p just
inside. Nor can the boundary of the future be space–like, except at the set
S itself. For in that case every past directed curve from a point q, just to
the future of the boundary, would cross the boundary and leave the future of
S. That would be a contradiction with the fact that q is in the future of S.
Therefore, the boundary of the future is null apart from at S itself.

To show that each generator of the boundary of the future has a past
end point on the set, one has to impose some global condition on the causal
structure. The strongest and physically most important condition is that of
global space–time hyperbolicity.8 The significance of global hyperbolicity for
singularity theorems stems from the following [HE79, HP96]. Let U be globally
hyperbolic and let p and q be points of U that can be joined by a time like or
8 Recall that an open set U is said to be globally hyperbolic if:
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null curve. Then there is a time–like or null–geodesic between p and q which
maximizes the length of time like or null curves from p to q. The method of
proof is to show the space of all time like or null curves from p to q is compact
in a certain topology. One then shows that the length of the curve is an upper
semi–continuous function on this space. It must therefore attain its maximum
and the curve of maximum length will be a geodesic because otherwise a small
variation will give a longer curve.

One can now consider the second variation of the length of a geodesic
γ. One can show that γ can be varied to a longer curve if there is an in-
finitesimally neighboring geodesic from p which intersects γ again at a point
r between p and q. The point r is said to be conjugate to p. One can illustrate
this by considering two points p and q on the surface of the Earth. Without
loss of generality one can take p to be at the north pole. Because the Earth
has a positive definite metric rather than a Lorentzian one, there is a geodesic
of minimal length, rather than a geodesic of maximum length. This minimal
geodesic will be a line of longitude running from the north pole to the point
q. But there will be another geodesic from p to q which runs down the back
from the north pole to the south pole and then up to q. This geodesic con-
tains a point conjugate to p at the south pole where all the geodesics from p
intersect. Both geodesics from p to q are stationary points of the length under
a small variation. But now in a positive definite metric the second variation of
a geodesic containing a conjugate point can give a shorter curve from p to q.
Thus, on the Earth, the geodesic that goes down to the south pole and then
comes up is not the shortest curve from p to q.

The reason one gets conjugate points in space–time is that gravity is an
attractive force. It therefore curves space–time in such a way that neighboring
geodesics are bent towards each other rather than away. One can see this from
the Newman–Penrose equation

dρ

dv
= ρ2 + σijσij +

1
n
Rαβl

αlβ , (α, β = 0, 1, 2, 3)

where n = 2 for null geodesics and n = 3 for time–like geodesics. Here v
is an affine parameter along a congruence of geodesics, with tangent vector
lα which are hypersurface orthogonal. The quantity ρ is the average rate of
convergence of the geodesics, while σ measures the shear. The term Rαβl

αlβ

gives the direct gravitational effect of the matter on the convergence of the
geodesics. By the Einstein equation (1.3), it will be non–negative for any null
vector lα if the matter obeys the so–called weak energy condition, which says
that the energy density T00 is non–negative in any frame, i.e.,

1. For every pair of points p and q in U the intersection of the future of p and the
past of q has compact closure. In other words, it is a bounded diamond shaped
region.

2. Strong causality holds on U . That is, there are no closed or almost closed time–
like curves contained in U .
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Tαβv
αvβ ≥ 0, (2.492)

for any time–like vector vα, is obeyed by the classical SEM–tensor of any
reasonable matter [HE79, HP96].

Suppose the weak energy condition holds, and that the null geodesics from
a point p begin to converge again and that ρ has the positive value ρ0. Then
the Newman–Penrose equation would imply that the convergence ρ would
become infinite at a point q within an affine parameter distance 1

ρ0
if the null

geodesic can be extended that far. If ρ = ρ0 at v = v0 then ρ ≥ 1
ρ−1+v0−v .

Thus there is a conjugate point before v = v0 + ρ−1.
Infinitesimally neighboring null geodesics from p will intersect at q. This

means the point q will be conjugate to p along the null geodesic γ joining
them. For points on γ beyond the conjugate point q there will be a variation
of γ that gives a time like curve from p. Thus γ cannot lie in the boundary
of the future of p beyond the conjugate point q. So γ will have a future end
point as a generator of the boundary of the future of p.

The situation with time–like geodesics is similar, except that the strong
energy condition [HE79, HP96],

Tαβv
αvβ ≥ 1

2
vαvαT, (2.493)

that is required to make Rαβlαlβ non–negative for every time like vector lα,
is rather stronger than the weak energy condition (2.492). However, it is still
physically reasonable, at least in an averaged sense, in classical theory. If
the strong energy condition holds, and the time like geodesics from p begin
converging again, then there will be a point q conjugate to p.

Finally there is the generic energy condition, which says:

1. The strong energy condition holds.
2. Every time–like or null geodesic has a point where l[aRb]cd[elf ]lcld �= 0.

One normally thinks of a space–time singularity as a region in which the
curvature becomes unboundedly large. However, the trouble with this defi-
nition is that one could simply leave out the singular points and say that
the remaining manifold was the whole of space–time. It is therefore better to
define space–time as the maximal manifold on which the metric is suitably
smooth. One can then recognize the occurrence of singularities by the exis-
tence of incomplete geodesics that cannot be extended to infinite values of the
affine parameter.

Hawking–Penrose Singularity Theorems

Hawking–Penrose Singularity is defined as follows [HE79, Pen89, HP96]:
A space–time manifold is singular if it is time–like or null geodesically

incomplete but cannot be embedded in a larger space–time manifold.
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This definition reflects the most objectionable feature of singularities, that
there can be particles whose history has a beginning or end at a finite time.
There are examples in which geodesic incompleteness can occur with the cur-
vature remaining bounded, but it is thought that generically the curvature
will diverge along incomplete geodesics. This is important if one is to appeal
to quantum effects to solve the problems raised by singularities in classical
general relativity.

Singularity Theorems include:

1. Energy condition (i.e., weak (2.492), strong (2.493), or generic (2.2.6)).
2. Condition on global structure (e.g., there should not be any closed time–

like curves).
3. Gravity strong enough to trap a region (so that nothing could escape).

The various singularity theorems show that space–time must be time like
or null geodesically incomplete if different combinations of the three kinds
of conditions hold. One can weaken one condition if one assumes stronger
versions of the other two. The Hawking–Penrose Singularity theorems have
the generic energy condition, the strongest of the three energy conditions. The
global condition is fairly weak, that there should be no closed time like curves.
And the no escape condition is the most general, that there should be either
a trapped surface or a closed space like three surface.

The theorems predict singularities in two situations. One is in the future in
the gravitational collapse of stars and other massive bodies. Such singularities
would be an end of time, at least for particles moving on the incomplete
geodesics. The other situation in which singularities are predicted is in the
past at the beginning of the present expansion of the universe.

The prediction of singularities means that classical general relativity is not
a complete theory. Because the singular points have to be cut out of the space–
time manifold one cannot define the field equations there and cannot predict
what will come out of a singularity. With the singularity in the past the only
way to deal with this problem seems to be to appeal to quantum gravity. But
the singularities that are predicted in the future seem to have a property that
Penrose has called, Cosmic Censorship. That is they conveniently occur in
places like black holes that are hidden from external observers. So any break
down of predictability that may occur at these singularities will not affect
what happens in the outside world, at least not according to classical theory.

Hawking Cosmic Censorship Hypothesis says: “Nature abhors a naked sin-
gularity” [HE79, HP96]. However, there is unpredictability in the quantum
theory. This is related to the fact that gravitational fields can have intrinsic
entropy which is not just the result of coarse graining. Gravitational entropy,
and the fact that time has a beginning and may have an end, are the two main
themes of Hawking’s research, because they are the ways in which gravity is
distinctly different from other physical fields.

The fact that gravity has a quantity that behaves like entropy was first
noticed in the purely classical theory. It depends on Penrose’s Cosmic Cen-
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sorship Conjecture. This is unproved but is believed to be true for suitably
general initial data and state equations.

One makes the approximation of treating the region around a collapsing
star as asymptotically flat. Then, as Penrose showed, one can conformally
embed the space–time manifold M in a manifold with boundary M̄ . The
boundary ∂M will be a null surface and will consist of two components, fu-
ture and past null infinity, called I+ and I−. One says that weak Cosmic
Censorship holds if two conditions are satisfied. First, it is assumed that the
null geodesic generators of I+ are complete in a certain conformal metric.
This implies that observers far from the collapse live to an old age and are
not wiped out by a thunderbolt singularity sent out from the collapsing star.
Second, it is assumed that the past of I+ is globally hyperbolic. This means
there are no naked singularities that can be seen from large distances. Penrose
has also a stronger form of Cosmic Censorship which assumes that the whole
space–time is globally hyperbolic.

Weak Cosmic Censorship Hypothesis reads:

1. I+ and I− are complete.
2. I−(I+) is globally hyperbolic.

If weak Cosmic Censorship holds, the singularities that are predicted to
occur in gravitational collapse cannot be visible from I+. This means that
there must be a region of space–time that is not in the past of I+. This region
is said to be a black hole because no light or anything else can escape from it
to infinity. The boundary of the black hole region is called the event horizon.
Because it is also the boundary of the past of I+ the event horizon will be
generated by null–geodesic segments that may have past end points but don’t
have any future end points. It then follows that if the weak energy condition
holds the generators of the horizon cannot be converging. For if they were
they would intersect each other within a finite distance [HE79, Pen89, HP96].

This implies that the area of a cross section of the event horizon can never
decrease with time and in general will increase. Moreover if two black holes
collide and merge together the area of the final black hole will be greater than
the sum of the areas of the original black holes. This is very similar to the
behavior of entropy according to the Second Law of Thermodynamics:9.

Second Law of Black Hole Mechanics: δA ≥ 0.
Second Law of Thermodynamics: δS ≥ 0.
The similarity with thermodynamics is increased by what is called the

First Law of Black Hole Mechanics, which relates the change in mass of a
black hole to the change in the area of the event horizon and the change
in its angular momentum and electric charge. One can compare this to the
First Law of Thermodynamics which gives the change in internal energy in
terms of the change in entropy and the external work done on the system
[HE79, HP96]:
9 Recall that Second Law of Thermodynamics states: Entropy can never decrease

and the entropy of a total system is greater than the sum of its constituent parts
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First Law of Black Hole Mechanics: δE = κ
8π δA+ΩδJ + ΦδQ.

First Law of Thermodynamics: δE = TδS + PδV.
One sees that if the area A of the event horizon is analogous to entropy S

then the quantity analogous to temperature is what is called the surface gravity
of the black hole κ. This is a measure of the strength of the gravitational field
on the event horizon. The similarity with thermodynamics is further increased
by the so–called Zeroth Law of Black Hole Mechanics: the surface gravity is
the same everywhere on the event horizon of a time independent black hole
[HE79].

Zeroth Law of Black Hole Mechanics:
κ is the same everywhere on the horizon of a time independent black hole.

Zeroth Law of Thermodynamics:
T is the same everywhere for a system in thermal equilibrium.

Encouraged by these similarities Bekenstein proposed that some multiple
of the area of the event horizon actually was the entropy of a black hole. He
suggested a generalized Second Law: the sum of this black hole entropy and
the entropy of matter outside black holes would never decrease (see [SV96]).

Generalized Second Law: δ(S + cA) ≥ 0.
However, this proposal was not consistent. If black holes have an entropy

proportional to horizon area A they should also have a non zero temperature
proportional to surface gravity.

Path–Integral Model for Black Holes

Recall that the fact that gravity is attractive means that it will tend to draw
the matter in the universe together to form objects like stars and galaxies.
These can support themselves for a time against further contraction by ther-
mal pressure, in the case of stars, or by rotation and internal motions, in the
case of galaxies. However, eventually the heat or the angular momentum will
be carried away and the object will begin to shrink. If the mass is less than
about one and a half times that of the Sun the contraction can be stopped by
the degeneracy pressure of electrons or neutrons. The object will settle down
to be a white dwarf or a neutron star respectively. However, if the mass is
greater than this limit there is nothing that can hold it up and stop it contin-
uing to contract. Once it has shrunk to a certain critical size the gravitational
field at its surface will be so strong that the light cones will be bent inward
[HE79, HP96].

If the Cosmic Censorship Conjecture is correct the trapped surface and
the singularity it predicts cannot be visible from far away. Thus there must
be a region of space–time from which it is not possible to escape to infinity.
This region is said to be a black hole. Its boundary is called the event horizon
and it is a null surface formed by the light rays that just fail to get away to
infinity. As we saw in the last subsection, the area A of a cross section of the
event horizon can never decrease, at least in the classical theory. This, and
perturbation calculations of spherical collapse, suggest that black holes will
settle down to a stationary state.
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Recall that the Schwarzschild metric form, given by

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2(dθ2 + sin2 θdφ2),

represents the gravitational field that a black hole would settle down to if
it were non rotating. In the usual r and t coordinates there is an apparent
singularity at the Schwarzschild radius r = 2M . However, this is just caused
by a bad choice of coordinates. One can choose other coordinates in which
the metric is regular there.

Now, if one performs the Wick rotation, t = iτ , one gets a positive definite
metric, usually called Euclidean even though they may be curved. In the
Euclidean–Schwarzschild metric

ds2 = x2

(
dτ

4M

)2

+
(
r2

4M2

)2

dx2 + r2(dθ2 + sin2 θdφ2)

there is again an apparent singularity at r = 2M . However, one can define a
new radial coordinate x to be 4M(1− 2Mr−1)

1
2 .

The metric in the x− τ plane then becomes like the origin of polar coor-
dinates if one identifies the coordinate τ with period 8πM . Similarly, other
Euclidean black hole metrics will have apparent singularities on their hori-
zons which can be removed by identifying the imaginary time coordinate with
period 2π

κ .
To see the significance of having imaginary time identified with some pe-

riod β, let us consider the amplitude to go from some field configuration φ1 on
the surface t1 to a configuration φ2 on the surface t2. This will be given by the
matrix element of eiH(t2−t1). However, one can also represent this amplitude
as a path integral over all fields φ between t1 and t2 which agree with the
given fields φ1 and φ2 on the two surfaces,

< φ2, t2|φ1, t1 >=< φ2| exp(−iH(t2 − t1))|φ1 >=
∫
D[φ] exp(iA[φ]).

One now chooses the time separation (t2 − t1) to be pure imaginary and
equal to β. One also puts the initial field φ1 equal to the final field φ2 and
sums over a complete basis of states φn. On the left one has the expectation
value of e−βH summed over all states. This is just the thermodynamic partition
function Z at the temperature T = β−1,

Z =
∑

< φn| exp(−βH)|φn >=
∫
D[φ] exp(−A[φ]). (2.494)

On the r.h.s. of this equation one has a path integral. One puts φ1 = φ2

and sums over all field configurations φn. This means that effectively one is
doing the path integral over all fields φ on a space–time that is identified
periodically in the imaginary time direction with period β. Thus the partition
function for the field φ at temperature T is given by a path integral over all
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fields on a Euclidean space–time. This space–time is periodic in the imaginary
time direction with period β = T−1 [HE79, HP96].

If one calculates the path integral in flat space–time identified with period
β in the imaginary time direction one gets the usual result for the parti-
tion function of black body radiation. However, as we have just seen, the
Euclidean–Schwarzschild solution is also periodic in imaginary time with pe-
riod 2π

κ . This means that fields on the Schwarzschild background will behave
as if they were in a thermal state with temperature κ

2π .
The periodicity in imaginary time explained why the messy calculation

of frequency mixing led to radiation that was exactly thermal. However, this
derivation avoided the problem of the very high frequencies that take part
in the frequency mixing approach. It can also be applied when there are
interactions between the quantum fields on the background. The fact that the
path integral is on a periodic background implies that all physical quantities
like expectation values will be thermal. This would have been very difficult to
establish in the frequency mixing approach [HE79, HP96].

One can extend these interactions to include interactions with the grav-
itational field itself. One starts with a background metric g0 such as the
Euclidean–Schwarzschild metric that is a solution of the classical field equa-
tions. One can then expand the action A in a power series in the perturbations
δg about g0, as

A[g] = A[g0] +A2(δg)2 +A3(δg)3 + ...

Here, the linear term vanishes because the background is a solution of the field
equations. The quadratic term can be regarded as describing gravitons on the
background while the cubic and higher terms describe interactions between
the gravitons. The path integral over the quadratic terms are finite. There
are non renormalizable divergences at two loops in pure gravity but these
cancel with the fermions in super–gravity theories. It is not known whether
super–gravity theories have divergences at three loops or higher because no
one has been brave or foolhardy enough to try the calculation. Some recent
work indicates that they may be finite to all orders. But even if there are
higher loop divergences they will make very little difference except when the
background is curved on the scale of the Planck length (10−33 cm).

More interesting than the higher order terms is the zeroth order term, the
action of the background metric g0 [HE79, HP96],

A = − 1
16π

∫
R(−g) 1

2 d4x+
1
8π

∫
K(±h) 1

2 d3x.

Recall that the usual Einstein–Hilbert action for general relativity is the
volume integral of the scalar curvature R. This is zero for vacuum solutions
so one might think that the action of the Euclidean-Schwarzschild solution
was zero. However, there is also a surface term in the action proportional to
the integral of K, the trace of the second fundamental form of the boundary
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surface. When one includes this and subtracts off the surface term for flat
space one finds the action of the Euclidean–Schwarzschild metric is β2

16π where
β is the period in imaginary time at infinity. Thus the dominant contribution
to the path integral for the partition function Z given by (2.494), is e

−β2

16π ,

Z =
∑

exp(−βEn) = exp
(
− β

2

16π

)
.

If one differentiates logZ with respect to the period β one gets the expec-
tation value of the energy, or in other words, the mass,

< E >= − d
dβ

(logZ) =
β

8π
.

So this gives the mass M = β
8π . This confirms the relation between the mass

and the period, or inverse temperature, that we already knew. However, one
can go further. By standard thermodynamic arguments, the log of the parti-
tion function is equal to minus the free energy F divided by the temperature
T , i.e., logZ = −FT . And the free energy is the mass or energy plus the
temperature times the entropy S, i.e., F =< E > +TS. Putting all this
together one sees that the action of the black hole gives an entropy of 4πM2,

S =
β2

16π
= 4πM2 =

1
4
A.

This is exactly what is required to make the laws of black holes the same
as the laws of thermodynamics [HE79, HP96]. The reason why does one get
this intrinsic gravitational entropy which has no parallel in other quantum
field theories, is that gravity allows different topologies for the space–time
manifold.

In the case we are considering the Euclidean–Schwarzschild solution has a
boundary at infinity that has topology S2 × S1. The S2 is a large space like
two sphere at infinity and the S1 corresponds to the imaginary time direction
which is identified periodical. One can fill in this boundary with metrics of at
least two different topologies. One is the Euclidean–Schwarzschild metric. This
has topology R2×S2, that is the Euclidean two plane times a two sphere. The
other is R3 × S1, the topology of Euclidean flat space periodically identified
in the imaginary time direction. These two topologies have different Euler
numbers. The Euler number of periodically identified flat space is zero, while
that of the Euclidean–Schwarzschild solution is two,

Total action =M(τ2 − τ1).

The significance of this is as follows: on the topology of periodically identified
flat space one can find a periodic time function τ whose gradient is no where
zero and which agrees with the imaginary time coordinate on the boundary at
infinity. One can then work out the action of the region between two surfaces
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τ1 and τ2. There will be two contributions to the action, a volume integral over
the matter Lagrangian, plus the Einstein–Hilbert Lagrangian and a surface
term. If the solution is time independent the surface term over τ = τ1 will
cancel with the surface term over τ = τ2. Thus the only net contribution to
the surface term comes from the boundary at infinity. This gives half the mass
times the imaginary time interval (τ2−τ1). If the mass is non–zero there must
be non–zero matter fields to create the mass. One can show that the volume
integral over the matter Lagrangian plus the Einstein–Hilbert Lagrangian
also gives 1

2M(τ2 − τ1). Thus the total action is M(τ2 − τ1). If one puts
this contribution to the log of the partition function into the thermodynamic
formulae one finds the expectation value of the energy to be the mass, as one
would expect. However, the entropy contributed by the background field will
be zero.

However, the situation is different with the Euclidean–Schwarzschild solu-
tion, which says:

Total action including corner contribution =M(τ2 − τ1)

Total action without corner contribution =
1
2
M(τ2 − τ1)

Because the Euler number is two rather than zero one cannot find a time
function τ whose gradient is everywhere non–zero. The best one can do is
choose the imaginary time coordinate of the Schwarzschild solution. This has
a fixed two sphere at the horizon where τ behaves like an angular coordinate.
If one now works out the action between two surfaces of constant τ the volume
integral vanishes because there are no matter fields and the scalar curvature is
zero. The trace K surface term at infinity again gives 1

2M(τ2 − τ1). However
there is now another surface term at the horizon where the τ1 and τ2 surfaces
meet in a corner. One can evaluate this surface term and find that it also is
equal to 1

2M(τ2− τ1). Thus the total action for the region between τ1 and τ2

is M(τ2 − τ1). If one used this action with τ2 − τ1 = β one would find that
the entropy was zero. However, when one looks at the action of the Euclidean
Schwarzschild solution from a 4−dimensional point of view rather than a 3+1,
there is no reason to include a surface term on the horizon because the metric
is regular there. Leaving out the surface term on the horizon reduces the action
by one quarter the area of the horizon, which is just the intrinsic gravitational
entropy of the black hole [HE79, HP96].

Quantum Cosmology

According to Hawking, cosmology used to be considered a pseudo–science and
the preserve of physicists who may have done useful work in their earlier years
but who had gone mystic in their dotage. There is a serious objection that
cosmology cannot predict anything about the universe unless it makes some
assumption about the initial conditions. Without such an assumption, all one
can say is that things are as they are now because they were as they were
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at an earlier stage. Yet many people believe that science should be concerned
only with the local laws which govern how the universe evolves in time. They
would feel that the boundary conditions for the universe that determine how
the universe began were a question for metaphysics or religion rather than
science [HE79, HP96].

Hawking–Penrose theorems showed that according to general relativity
there should be a singularity in our past. At this singularity the field equa-
tions could not be defined. Thus classical general relativity brings about its
own downfall: it predicts that it cannot predict the universe. For Hawking
this sounds rally disturbing: If the laws of physics could break down at the
beginning of the universe, why couldn’t they break down any where. In quan-
tum theory it is a principle that anything can happen if it is not absolutely
forbidden. Once one allows that singular histories could take part in the path
integral they could occur any where and predictability would disappear com-
pletely. If the laws of physics break down at singularities, they could break
down any where.

The only way to have a scientific theory is if the laws of physics hold
everywhere including at the beginning of the universe. One can regard this as
a triumph for the Principle of Democracy : Why should the beginning of the
universe be exempt from the laws that apply to other points. If all points are
equal one cannot allow some to be more equal than others.

To implement the idea that the laws of physics hold everywhere, one should
take the path integral only over non–singular metrics. One knows in the ordi-
nary path integral case that the measure is concentrated on non–differentiable
paths. But these are the completion in some suitable topology of the set of
smooth paths with well defined action. Similarly, one would expect that the
path integral for quantum gravity should be taken over the completion of the
space of smooth metrics. What the path integral cannot include is metrics
with singularities whose action is not defined.

In the case of black holes we saw that the path integral should be taken
over Euclidean, that is, positive definite metrics. This meant that the singu-
larities of black holes, like the Schwarzschild solution, did not appear on the
Euclidean metrics which did not go inside the horizon. Instead the horizon
was like the origin of polar coordinates. The action of the Euclidean metric
was therefore well defined. One could regard this as a quantum version of
Cosmic Censorship: the break down of the structure at a singularity should
not affect any physical measurement.

It seems, therefore, that the path integral for quantum gravity should be
taken over non–singular Euclidean metrics. But what should the boundary
conditions be on these metrics. There are two, and only two, natural choices.
The first is metrics that approach the flat Euclidean metric outside a compact
set. The second possibility is metrics on manifolds that are compact and with-
out boundary. Therefore, the natural choices for path integral for quantum
gravity are [HE79, HP96]: (i) asymptotically Euclidean metrics, and (ii) com-
pact metrics without boundary. The first class of asymptotically Euclidean
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metrics is appropriate for scattering calculations. In these one sends particles
in from infinity and observes what comes out again to infinity. All measure-
ments are made at infinity where one has a flat background metric and one
can interpret small fluctuations in the fields as particles in the usual way. One
doesn’t ask what happens in the interaction region in the middle. That is why
one does a path integral over all possible histories for the interaction region,
that is, over all asymptotically Euclidean metrics. However, in cosmology one
is interested in measurements that are made in a finite region rather than at
infinity. We are on the inside of the universe not looking in from the outside.
To see what difference this makes let us first suppose that the path integral
for cosmology is to be taken over all asymptotically Euclidean metrics.

The so–called No Boundary Proposal of Hartle and Hawking reads [HE79,
HP96]: The path integral for quantum gravity should be taken over all com-
pact Euclidean metrics. One can paraphrase this as: the boundary condition of
the universe is that it has no boundary. According to Hawking, this no bound-
ary proposal seems to account for the universe we live in. That is an isotropic
and homogeneous expanding universe with small perturbations. We can ob-
serve the spectrum and statistics of these perturbations in the fluctuations in
the microwave background. The results so far agree with the predictions of
the no boundary proposal. It will be a real test of the proposal and the whole
Euclidean quantum gravity program when the observations of the microwave
background are extended to smaller angular scales.

In order to use the no boundary proposal to make predictions, it is useful
to introduce a concept that can describe the state of the universe at one time:

Probability of induced metric hij on Σ =
∫

metrics on M that
induce hij on Σ

d[g] exp(−A[g]).

Consider the probability that the space–time manifold M contains an em-
bedded three dimensional manifold Σ with induced metric hij . This is given
by a path integral over all metrics gab on M that induce hij on Σ. If M is
simply–connected, which we will assume, the surface Σ will divideM into two
parts M+ and M− [HE79, HP96],

Probability of hij = Ψ+(hij)× Ψ−(hij), where

Ψ+(hij) =
∫

metrics on M+ that
induce hij on Σ

d[g] exp(−A[g]).

In this case, the probability for Σ to have the metric hij can be factorized.
It is the product of two wave functions Ψ+ and Ψ−. These are given by path
integrals over all metrics on M+ and M− respectively, that induce the given
three metric hij on Σ. In most cases, the two wave functions will be equal and
we will drop the superscripts + and −. Ψ is called the wave function of the
universe. If there are matter fields φ, the wave function will also depend on
their values φ0 on Σ. But it will not depend explicitly on time because there is
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no preferred time coordinate in a closed universe. The no boundary proposal
implies that the wave function of the universe is given by a path integral over
fields on a compact manifold M+ whose only boundary is the surface Σ. The
path integral is taken over all metrics and matter fields on M+ that agree
with the metric hij and matter fields φ0 on Σ.

One can describe the position of the surface Σ by a function τ of three
coordinates xi on Σ. But the wave function defined by the path integral
cannot depend on τ or on the choice of the coordinates xi. This implies that
the wave function Ψ has to obey four functional differential equations. Three
of these equations are called the momentum constraint One can describe the
position of the surface Σ by a function τ of three coordinates xi on Σ. But
the wave function defined by the path integral cannot depend on τ or on
the choice of the coordinates xi. This implies that the wave function Ψ has to
obey four functional differential equations. Three of these equations are called
the momentum constraint equation:

(
∂Ψ
∂hij

)
;j

= 0. They express the fact

that the wave function should be the same for different 3 metrics hij that can
be get from each other by transformations of the coordinates xi. The fourth
equation is called the Wheeler–DeWitt equation(

Gijkl
∂2

∂hij∂hkl
− h 1

2 3R

)
Ψ = 0.

It corresponds to the independence of the wave function on τ . One can think of
it as the Schrödinger equation for the universe. But there is no time derivative
term because the wave function does not depend on time explicitly.

In order to estimate the wave function of the universe, one can use the
saddle point approximation to the path integral as in the case of black holes.
One finds a Euclidean metric g0 on the manifold M+ that satisfies the field
equations and induces the metric hij on the boundaryΣ. One can then expand
the action A in a power series around the background metric g0,

A[g] = A[g0] +
1
2
δgA2δg + ...

As before, the term linear in the perturbations vanishes. The quadratic term
can be regarded as giving the contribution of gravitons on the background
and the higher order terms as interactions between the gravitons. These can
be ignored when the radius of curvature of the background is large compared
to the Planck scale. Therefore, according to [HE79, HP96] we have

Ψ ≈ 1
(det A2)

1
2

exp(−A[go]).

Consider now a situation in which there are no matter fields but there is a
positive cosmological constant Λ. Let us take the surface Σ to be a three
sphere and the metric hij to be the round three sphere metric of radius a.
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Then the manifold M+ bounded by Σ can be taken to be the four ball. The
metric that satisfies the field equations is part of a four sphere of radius 1

H

where H2 = Λ
3 ,

A =
1

16π

∫
(R− 2Λ)(−g) 1

2 d4x+
1
8π

∫
K(±h) 1

2 d3x.

For a 3–sphere Σ of radius less than 1
H there are two possible Euclidean

solutions: eitherM+ can be less than a hemisphere or it can be more. However
there are arguments that show that one should pick the solution corresponding
to less than a hemisphere.

One can interpret the wave function Ψ as follows. The real time solution of
the Einstein equations with a Λ term and maximal symmetry is de Sitter space
(see, e.g., [Wit98]). This can be embedded as a hyperboloid in five dimensional
Minkowski space. Here, we have two choices:

1. Lorentzian–de Sitter metric,

ds2 = −dt2 +
1
H2

coshHt(dr2 + sin2 r(dθ2 + sin2 θdφ2)).

One can think of it as a closed universe that shrinks down from infinite size
to a minimum radius and then expands again exponentially. The metric
can be written in the form of a Friedmann universe with scale factor
coshHt. Putting τ = it converts the cosh into cos giving the Euclidean
metric on a four sphere of radius 1

H .
2. Euclidean metric,

ds2 = dτ2 +
1
H2

cosHτ(dr2 + sin2 r(dθ2 + sin2 θdφ2)).

Thus one gets the idea that a wave function which varies exponentially
with the three metric hij corresponds to an imaginary time Euclidean
metric. On the other hand, a wave function which oscillates rapidly cor-
responds to a real time Lorentzian metric.

Like in the case of the pair creation of black holes, one can describe the
spontaneous creation of an exponentially expanding universe. One joins the
lower half of the Euclidean four sphere to the upper half of the Lorentzian
hyperboloid.

Unlike the black hole pair creation, one couldn’t say that the de Sitter uni-
verse was created out of field energy in a pre-existing space. Instead, it would
quite literally be created out of nothing: not just out of the vacuum but out
of absolutely nothing at all because there is nothing outside the universe. In
the Euclidean regime, the de Sitter universe is just a closed space like the
surface of the Earth but with two more dimensions ([Wit98]). If the cosmo-
logical constant is small compared to the Planck value, the curvature of the
Euclidean four sphere should be small. This will mean that the saddle point
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approximation to the path integral should be good, and that the calculation
of the wave function of the universe will not be affected by our ignorance of
what happens in very high curvatures.

One can also solve the field equations for boundary metrics that aren’t
exactly the round three sphere metric. If the radius of the three sphere is less
than 1

H , the solution is a real Euclidean metric. The action will be real and
the wave function will be exponentially damped compared to the round three
sphere of the same volume. If the radius of the three sphere is greater than
this critical radius there will be two complex conjugate solutions and the wave
function will oscillate rapidly with small changes in hij .

Any measurement made in cosmology can be formulated in terms of the
wave function. Thus the no boundary proposal makes cosmology into a science
because one can predict the result of any observation. The case we have just
been considering of no matter fields and just a cosmological constant does not
correspond to the universe we live in. Nevertheless, it is a useful example, both
because it is a simple model that can be solved fairly explicitly and because,
as we shall see, it seems to correspond to the early stages of the universe.

Although it is not obvious from the wave function, a de Sitter universe has
thermal properties rather like a black hole. One can see this by writing the
de Sitter metric in a static form (rather like the Schwarzschild solution)

ds2 = −(1−H2r2)dt2 + (1−H2r2)−1dr2 + r2(dθ2 + sin2 θdφ2).

There is an apparent singularity at r = 1
H . However, as in the Schwarzschild

solution, one can remove it by a coordinate transformation and it corresponds
to an event horizon.

If one returns to the static form of the de Sitter metric and put τ = it
one gets a Euclidean metric. There is an apparent singularity on the horizon.
However, by defining a new radial coordinate and identifying τ with period
2π
H , one gets a regular Euclidean metric which is just the four sphere. Because
the imaginary time coordinate is periodic, de Sitter space and all quantum
fields in it will behave as if they were at a temperature H

2π . As we shall see, we
can observe the consequences of this temperature in the fluctuations in the
microwave background. One can also apply arguments similar to the black hole
case to the action of the Euclidean–de Sitter solution [Wit98]. One finds that
it has an intrinsic entropy of π

H2 , which is a quarter of the area of the event
horizon. Again this entropy arises for a topological reason: the Euler number
of the four sphere is two. This means that there cannot be a global time
coordinate on Euclidean–de Sitter space. One can interpret this cosmological
entropy as reflecting an observers lack of knowledge of the universe beyond
his event horizon [HE79, HP96]:

Euclidean metric periodic with period
2π
H
⇒

{
Temperature T = H

2π
,

Area A of event horizon = 4π
H2 ,

Entropy S = π
H2 .
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2.2.7 Topological Phase Transitions and Hamiltonian Chaos

Phase Transitions in Hamiltonian Systems

Recall that phase transitions (PTs) are phenomena which bring about quali-
tative physical changes at the macroscopic level in presence of the same micro-
scopic forces acting among the constituents of a system. Their mathematical
description requires to translate into quantitative terms the mentioned quali-
tative changes. The standard way of doing this is to consider how the values of
thermodynamic observables, get in laboratory experiments, vary with temper-
ature, or volume, or an external field, and then to associate the experimentally
observed discontinuities at a PT to the appearance of some kind of singularity
entailing a loss of analyticity. Despite the smoothness of the statistical mea-
sures, after the Yang–Lee theorem [YL52] we know that in the N →∞ limit
non–analytic behaviors of thermodynamic functions are possible whenever the
analyticity radius in the complex fugacity plane shrinks to zero, because this
entails the loss of uniform convergence in N (number of degrees of freedom)
of any sequence of real–valued thermodynamic functions, and all this depends
on the distribution of the zeros of the grand canonical partition function. Also
the other developments of the rigorous theory of PTs [Geo88, Rue78], identify
PTs with the loss of analyticity.

In this subsection we will address a recently proposed geometric approach
to thermodynamic phase transitions (see [CCC97, FCS99, FPS00, FP04]).
Given any Hamiltonian system, the configuration space can be equipped with
a metric, in order to get a Riemannian geometrization of the dynamics. At
the beginning, several numerical and analytical studies of a variety of models
showed that the fluctuation of the curvature becomes singular at the transition
point. Then the following conjecture was proposed in [CCC97]: The phase
transition is determined by a change in the topology of the configuration space,
and the loss of analyticity in the thermodynamic observables is nothing but
a consequence of such topological change. The latter conjecture is also known
as the topological hypothesis.

The topological hypothesis states that suitable topology changes of equipo-
tential submanifolds of the Hamiltonian system’s configuration manifold can
entail thermodynamic phase transitions [FPS00]. The authors of the topologi-
cal hypothesis gave both a theoretical argument and numerical demonstration
in case of 2d lattice ϕ4 model. They considered classical many–particle (or
many–subsystem) systems described by standard mechanical Hamiltonians

H(p, q) =
N∑
i=1

p2i
2m

+ V (q), (2.495)

where the coordinates qi = qi(t) and momenta pi = pi(t), (i = 1, ..., N), have
continuous values and the system’s potential energy V (q) is bounded below.

Now, assuming a large number of subsystems N , the statistical behavior
of physical systems described by Hamiltonians of the type (2.495) is usually
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encompassed, in the system’s canonical ensemble, by the partition function in
the system’s phase–space

ZN (β) =
∫ N∏
i=1

dpidq
ie−βH(p,q) =

(
π

β

)N
2
∫ N∏
i=1

dqie−βV (q)

=
(
π

β

)N
2
∫ ∞

0

dv e−βv
∫
Mv

dσ

‖∇V ‖ , (2.496)

where the last term is written using a co–area formula [Fed69], and v labels
the equipotential hypersurfaces Mv of the system’s configuration manifold M ,

Mv = {(q1, . . . , qN ) ∈ RN |V (q1, . . . , qN ) = v}. (2.497)

Equation (2.496) shows that for Hamiltonians (1.17) the relevant statistical
information is contained in the canonical configurational partition function

ZCN =
∫ N∏
i=1

dqi exp[−βV (q)].

Therefore, partition function ZCN is decomposed – in the last term of equa-
tion (2.496) – into an infinite summation of geometric integrals,

∫
Mv
dσ /‖∇V ‖,

defined on the {Mv}v∈R. Once the microscopic interaction potential V (q) is
given, the configuration space of the system is automatically foliated into the
family {Mv}v∈R of these equipotential hypersurfaces. Now, from standard sta-
tistical mechanical arguments we know that, at any given value of the inverse
temperature β, the larger the number N of particles the closer to Mv ≡Muβ

are the microstates that significantly contribute to the averages – computed
through ZN (β) – of thermodynamic observables. The hypersurfaceMuβ

is the
one associated with the average potential energy computed at a given β,

uβ = (ZCN )−1

∫ N∏
i=1

dqiV (q) exp[−βV (q)].

Thus, at any β, ifN is very large the effective support of the canonical measure
shrinks very close to a single Mv =Muβ

.
Explicitly, the topological hypothesis reads: the basic origin of a phase

transition lies in a suitable topology change of the {Mv}, occurring at some vc.
This topology change induces the singular behavior of the thermodynamic ob-
servables at a phase transition. By change of topology we mean that {Mv}v<vc

are not diffeomorphic to the {Mv}v>vc
. In other words, canonical measure

should ‘feel’ a big and sudden change of the topology of the equipotential hy-
persurfaces of its underlying support, the consequence being the appearance
of the typical signals of a phase transition.

This point of view has the interesting consequence that – also at finite
N – in principle different mathematical objects, i.e., manifolds of different



416 2 Dynamics of Complex Systems

cohomology type, could be associated to different thermodynamical phases,
whereas from the point of view of measure theory [YL52] the only mathe-
matical property available to signal the appearance of a phase transition is
the loss of analyticity of the grand–canonical and canonical averages, a fact
which is compatible with analytic statistical measures only in the mathemat-
ical N →∞ limit.

As it is conjectured that the counterpart of a phase transition is a break-
ing of diffeomorphicity among the surfaces Mv, it is appropriate to choose a
diffeomorphism invariant to probe if and how the topology of theMv changes
as a function of v. This is a very challenging task because we have to deal
with high dimensional manifolds. Fortunately a topological invariant exists
whose computation is feasible, yet demands a big effort. Recall (from sub-
section 1.2.9 above) that this is the Euler characteristic, a diffeomorphism
invariant of the system’s configuration manifold, expressing its fundamental
topological information.

Geometry of the Largest Lyapunov Exponent

Now, the topological hypothesis has recently been promoted into a topological
theorem [FP04]. The new theorem says that non–analyticity is the ‘shadow’
of a more fundamental phenomenon occurring in the system’s configuration
manifold: a topology change within the family of equipotential hypersurfaces
(2.497). This topological approach to PTs stems from the numerical study
of the Hamiltonian dynamical counterpart of phase transitions, and precisely
from the observation of discontinuous or cuspy patterns, displayed by the
largest Lyapunov exponent at the transition energy (or temperature).

Recall that the Lyapunov exponents measure the strength of dynamical
chaos and cannot be measured in laboratory experiments, at variance with
thermodynamic observables, thus, being genuine dynamical observables they
are only measurable in numerical simulations of the microscopic dynamics. To
get a hold of the reason why the largest Lyapunov exponent λ1 should probe
configuration space topology, let us first remember that for standard Hamil-
tonian systems, λ1 is computed by solving the tangent dynamics equation for
Hamiltonian systems (see Jacobi equation of geodesic deviation (1.90)),

ξ̈i +
(
∂2V

∂qi∂qj

)
q(t)

ξj = 0, (2.498)

which, for the nonlinear Hamiltonian system

q̇1 = p1, ṗ1 = −∂q1V,
... ...

q̇N = pN , ṗN = −∂qNV,

expands into linearized Hamiltonian dynamics
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ξ̇1 = ξN+1, ξ̇N+1 = −
N∑
j=1

(
∂2V

∂q1∂qj

)
q(t)

ξj ,

... ... (2.499)

ξ̇n = ξ2N , ξ̇2N = −
N∑
j=1

(
∂2V

∂qN∂qj

)
q(t)

ξj .

Using (2.498) we can get the analytical expression for the largest Lyapunov
exponent

λ1 = lim
t→∞

1
t

log

[
ξ21(t) + · · ·+ ξ2N (t) + ξ̇

2

1(t) + · · ·+ ξ̇2N (t)
]1/2

[
ξ21(0) + · · ·+ ξ2N (0) + ξ̇

2

1(0) + · · ·+ ξ̇2N (0)
]1/2

. (2.500)

If there are critical points of V in configuration space, that is points qc =
[q1, . . . , qN ] such that ∇V (q)|q=qc

= 0, according to the Morse lemma (see
e.g., [Hir76]), in the neighborhood of any critical point qc there always exists
a coordinate system q̃(t) = [q1(t), . . . , qN (t)] for which

V (q̃) = V (qc)−
(
q1
)2 − · · · − (

qk
)2

+
(
qk+1

)2
+ · · ·+

(
qN

)2
, (2.501)

where k is the index of the critical point, i.e., the number of negative eigen-
values of the Hessian of V . In the neighborhood of a critical point, equa-
tion (2.501) yields

∂2V/∂qi∂qj = ±δij ,
which, substituted into equation (2.498), gives k unstable directions which con-
tribute to the exponential growth of the norm of the tangent vector ξ = ξ(t).
This means that the strength of dynamical chaos, measured by the largest
Lyapunov exponent λ1, is affected by the existence of critical points of V .
In particular, let us consider the possibility of a sudden variation, with the
potential energy v, of the number of critical points (or of their indexes) in
configuration space at some value vc, it is then reasonable to expect that the
pattern of λ1(v) – as well as that of λ1(E) since v = v(E) – will be conse-
quently affected, thus displaying jumps or cusps or other singular patterns at
vc.

On the other hand, recall that Morse theory teaches us that the existence
of critical points of V is associated with topology changes of the hypersurfaces
{Mv}v∈R, provided that V is a good Morse function (that is: bounded below,
with no vanishing eigenvalues of its Hessian matrix). Thus the existence of
critical points of the potential V makes possible a conceptual link between
dynamics and configuration space topology, which, on the basis of both direct
and indirect evidence for a few particular models, has been formulated as a
topological hypothesis about the relevance of topology for PTs phenomena
(see [FPS00, FP04, GM04]).

Here we give two simple examples of standard Hamiltonian systems of the
form (2.495), namely Peyrard–Bishop system and mean–field XY model.
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Peyrard–Bishop Hamiltonian System

The Peyrard–Bishop system [PB89]10 exhibits a second–order phase transi-
tion. It is defined by the following potential energy

V (q) =
N∑
i=1

[
K

2
(qi+1 − qi)2 +D(e−aq

i − 1)2 +Dhaqi
]
, (2.502)

which represents the energy of a string of N base pairs of reduced mass m.
Each hydrogen bond is characterized by the stretching qi and its conjugate
momentum pi = mq̇i. The elastic transverse force between neighboring pairs
is tuned by the constant K, while the energy D and the inverse length a de-
termine, respectively, the plateau and the narrowness of the on–site potential
well that mimics the interaction between bases in each pair. It is understood
that K, D, and a are all positive parameters. The transverse, external stress
h ≥ 0 is a computational tool useful in the evaluation of the susceptibility.
Our interest in it lies in the fact that a phase transition can occur only when
h = 0. We assume periodic boundary conditions.

The transfer operator technique [DTP02] maps the problem of computing
the classical partition function into the easier task of evaluating the lowest
energy eigenvalues of a ‘quantum’ mechanical Morse oscillator (no real quan-
tum mechanics is involved, since the temperature plays the role of �). One can
then observe that, as the temperature increases, the number of levels belong-
ing to the discrete spectrum decreases, until for some critical temperature
Tc = 2

√
2KD/(akB) only the continuous spectrum survives. This passage

from a localized ground state to an unnormalizable one corresponds to the
second–order phase transition of the statistical model. Various critical expo-
nents can be analytically computed and all applicable scaling laws can be
checked. The simplicity of this model permits an analytical computation of
the largest Lyapunov exponent by exploiting the geometric method proposed
in [CCC97].

Mean–Field XY Hamiltonian System

The mean–field XY model describes a system of N equally coupled planar
classical rotators (see [AR95, CCP99]). It is defined by a Hamiltonian of the
class (2.495) where the potential energy is

V (ϕ) =
J

2N

N∑
i,j=1

[
1− cos(ϕi − ϕj)

]
− h

N∑
i=1

cosϕi. (2.503)

Here ϕi ∈ [0, 2π] is the rotation angle of the i−th rotator and h is an external
field. Defining at each site i a classical spin vector si = (cosϕi, sinϕi) the
10 The Peyrard–Bishop system has been proposed as a simple model for describing

the DNA thermally induced denaturation [GM04].
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model describes a planar (XY) Heisenberg system with interactions of equal
strength among all the spins. We consider only the ferromagnetic case J > 0;
for the sake of simplicity, we set J = 1. The equilibrium statistical mechanics
of this system is exactly described, in the thermodynamic limit, by the mean–
field theory [AR95]. In the limit h → 0, the system has a continuous phase
transition, with classical critical exponents, at Tc = 1/2, or εc = 3/4, where
ε = E/N is the energy per particle.

The Lyapunov exponent λ1 of this system is extremely sensitive to the
phase transition. According to reported numerical simulations (see [CCP99]),
λ1(ε) is positive for 0 < ε < εc, shows a sharp maximum immediately below
the critical energy, and drops to zero at εc in the thermodynamic limit, where
it remains zero in the whole region ε > εc, which corresponds to the ther-
modynamic disordered phase. In fact in this phase the system is integrable,
reducing to an assembly of uncoupled rotators.

Euler Characteristics of Hamiltonian Systems

Recall that Euler characteristic χ is a number that is a characterization of the
various classes of geometric figures based only on the topological relationship
between the numbers of vertices V , edges E, and faces F , of a geometric
Figure. This number, χ = F −E+V, is the same for all figures the boundaries
of which are composed of the same number of connected pieces. Therefore, the
Euler characteristic is a topological invariant , i.e., any two geometric figures
that are homeomorphic to each other have the same Euler characteristic.

More specifically, a standard way to analyze a geometric Figure is to frag-
ment it into other more familiar objects and then to examine how these pieces
fit together. Take for example a surface M in the Euclidean 3D space. Slice
M into pieces that are curved triangles (this is called a triangulation of the
surface). Then count the number F of faces of the triangles, the number
E of edges, and the number V of vertices on the tesselated surface. Now,
no matter how we triangulate a compact surface Σ, its Euler characteristic,
χ(Σ) = F −E+V , will always equal a constant which is characteristic of the
surface and which is invariant under diffeomorphisms φ : Σ → Σ′.

At higher dimensions this can be again defined by using higher dimensional
generalizations of triangles (simplexes) and by defining the Euler characteristic
χ(M) of the nD manifold M to be the alternating sum:

{number of points} − {number of 2-simplices} +
{number of 3-simplices} − {number of 4-simplices} + ...

i.e.,

χ(M) =
n∑
k=0

(−1)k(number of faces of dimension k). (2.504)

and then define the Euler characteristic of a manifold as the Euler charac-
teristic of any simplicial complex homeomorphic to it. With this definition,



420 2 Dynamics of Complex Systems

circles and squares have Euler characteristic 0 and solid balls have Euler char-
acteristic 1.

The Euler characteristic χ of a manifold is closely related to its genus g
as χ = 2− 2g.11

Recall that in differential topology a more standard definition of χ(M) is

χ(M) =
n∑
k=0

(−1)k bk(M), (2.505)

where bk are the kth Betti numbers of M .
In general, it would be hopeless to try to practically calculate χ(M) from

(2.505) in the case of non–trivial physical models at large dimension. Fortu-
nately, there is a possibility given by the Gauss–Bonnet formula, that relates
χ(M) with the total Gauss–Kronecker curvature of the manifold, (compare
with (1.83) and (1.92))

χ(M) = γ
∫
M

KG dσ, (2.506)

which is valid for even dimensional hypersurfaces of Euclidean spaces RN [here
dim(M) = n ≡ N − 1], and where:

γ = 2/ vol(Sn1 )

is twice the inverse of the volume of an n−dimensional sphere of unit radius
Sn1 ; KG is the Gauss–Kronecker curvature of the manifold;

dσ =
√

det(g) dx1dx2 · · · dxn

is the invariant volume measure ofM and g is its Riemannian metric (induced
from RN ). Let us briefly sketch the meaning and definition of the Gauss–
Kronecker curvature. The study of the way in which an n−surface M curves
around in RN is measured by the way the normal direction changes as we
move from point to point on the surface. The rate of change of the normal
direction ξ at a point x ∈M in direction v is described by the shape operator

Lx(v) = −Lvξ = [v, ξ],

where v is a tangent vector at x and Lv is the Lie derivative, hence
11 Recall that the genus of a topological space such as a surface is a topologically

invariant property defined as the largest number of nonintersecting simple closed
curves that can be drawn on the surface without separating it, i.e., an integer
representing the maximum number of cuts that can be made through it without
rendering it disconnected. This is roughly equivalent to the number of holes in
it, or handles on it. For instance: a point, line, and a sphere all have genus 0; a
torus has genus 1, as does a coffee cup as a solid object (solid torus), a Möbius
strip, and the symbol 0; the symbols 8 and B have genus 2; etc.
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Lx(v) = −(∇ξ1 · v, . . . ,∇ξn+1 · v);

gradients and vectors are represented in RN . As Lx is an operator of the tan-
gent space at x into itself, there are n independent eigenvalues κ1(x), . . . , κn(x)
which are called the principal curvatures of M at x [Tho79]. Their product is
the Gauss–Kronecker curvature:

KG(x) =
n∏
i=1

κi(x) = det(Lx).

Alternatively, recall that according to the Morse theory , it is possible to
understand the topology of a given manifold by studying the regular critical
points of a smooth Morse function defined on it. In our case, the manifold M
is the configuration space RN and the natural choice for the Morse function
is the potential V (q). Hence, one is lead to define the family Mv (2.497) of
submanifolds of M .

A full characterization of the topological properties of Mv generally re-
quires the critical points of V (q), which means solving the equations

∂qiV = 0, (i = 1, . . . , N). (2.507)

Moreover, one has to calculate the indexes of all the critical points, that
is the number of negative eigenvalues of the Hessian ∂2V/(∂qi∂qj). Then the
Euler characteristic χ(Mv) can be computed by means of the formula

χ(Mv) =
N∑
k=0

(−1)kµk(Mv), (2.508)

where µk(Mv) is the total number of critical points of V (q) onMv which have
index k, i.e., the so–called Morse numbers of a manifold M , which happen to
be upper bounds of the Betti numbers,

bk(M) ≤ µk(M) (k = 0, . . . , n). (2.509)

Among all the Morse functions on a manifold M , there is a special class,
called perfect Morse functions, for which the Morse inequalities (2.509) hold
as equalities. Perfect Morse functions characterize completely the topology of
a manifold.

Now, we continue with our two examples started before.
Peyrard–Bishop System. If applied to any generic model, calculation

of (2.508) turns out to be quite formidable, but the exceptional simplicity of
the Peyrard–Bishop model (2.502) makes it possible to carry on completely
the topological analysis without invoking equation (2.508).

For the potential in exam, equation (2.507) results in the nonlinear system

a

R
(qi+1 − 2qi + qi−1) = h− 2(e−2aqi − e−aqi

),
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where R = Da2/K is a dimensionless ratio. It is easy to verify that a particular
solution is given by

qi = −1
a

ln
1 +

√
1 + 2h
2

, (i = 1, . . . , N).

The corresponding minimum of potential energy is

Vmin = ND
(

1 + h−
√

1 + 2h
2

− h ln
1 +

√
1 + 2h
2

)
.

Mean–Field XY Model. In the case of the mean–fieldXY model (2.503)
it is possible to show analytically that a topological change in the configuration
space exists and that it can be related to the thermodynamic phase transi-
tion. Consider again the familyMv of submanifolds of the configuration space
defined in (2.497); now the potential energy per degree of freedom is that of
the mean–field XY model, i.e.,

V(ϕ) =
V (ϕ)
N

=
J

2N2

N∑
i,j=1

[
1− cos(ϕi − ϕj)

]
− h

N∑
i=1

cosϕi,

where ϕi ∈ [0, 2π]. Such a function can be considered a Morse function onM ,
so that, according to Morse theory, all these manifolds have the same topology
until a critical level V−1(vc) is crossed, where the topology of Mv changes.

A change in the topology of Mv can only occur when v passes through a
critical value of V. Thus in order to detect topological changes in Mv we have
to find the critical values of V, which means solving the equations

∂ϕiV(ϕ) = 0, (i = 1, . . . , N). (2.510)

For a general potential energy function V, the solution of (2.510) would be
a formidable task, but in the case of the mean–field XY model, the mean–
field character of the interaction greatly simplifies the analysis, allowing an
analytical treatment of (2.510); moreover, a projection of the configuration
space onto a 2D plane is possible [CCP99, CPC03].

2.2.8 Topological String Theory

Three Pillars of Modern Physics

Arguably, the three most influential geniuses that shaped the world of the 20th
Century physics, and at the same time showed the pathway to the current
superstring theory (‘of everything’), are:

1. In the first third of the Century, it had been Albert Einstein.
2. In the second third of the Century, it was Richard Feynman.
3. At the end of the Century – and still today, it has been Edward Witten.
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It is well–known that Einstein had three periods of his scientific career:

1. Before 1905, when he formulated Special Relativity in a quick series of
papers published in Annalen der Physik (the most prestigious physics
journal of the time). This early period was dominated by his ‘thought
experiments’, i.e., ‘concrete physical images’, described in the language
of non–professional mathematics. You can say, it was almost pure visu-
alization. This quick and powerful series of ground–braking papers (with
just enough maths to be accepted by scientific community) gave him a
reputation of the leading physicist and scientist.12

2. Although an original and brilliant theory, Special Relativity was not com-
plete, which was obvious to Einstein. So, he embarked onto the general
relativity voyage, incorporating gravitation. Now, for this goal, his maths
was not strong enough. He spent 10 years fighting with gravity, using the
‘hard’ Riemannian geometry, and talking to the leading mathematician of
the time, David Hilbert. At the end, they both submitted the same gravi-
tational equations of general relativity (only derived in different ways) to
Annalen der Physik in November of 1915.

3. Although even today considered as the most elegant physical theory, Gen-
eral Relativity is still not complete: it cannot live together in the same
world with quantum mechanics. So, Einstein embarked onto the last jour-
ney of his life, the search for unified field theory – and he ‘failed’13 after
30 years of unsuccessful struggle with a task to big for one man.

Feynman’s story is very different. All his life he was a profoundly original
scientist, similar to the young Einstein. He refused to take anybody’s word for
anything, which meant that he had to reinvent for himself almost the whole
of physics. It took him five years of concentrated work to reinvent quantum
mechanics. At the end, he got a new version of quantum mechanics that he
(and only he) could understand. In orthodox physics it was said: Suppose an
electron is in this state at a certain time, then you calculate its future be-
havior by solving Schrodinger equation. Instead of this, Feynman said simply:
“The electron does whatever it likes.” A history of the electron is any pos-
sible path in space and time. The behavior of the electron is just the result
of adding together all histories according to some simple rules that Feynman
worked out. His path–integral and related Feynman diagrams, for long de-
fied rigorous mathematical foundation. However, it is still the most powerful
calculation tool in quantum (and statistical) mechanics. Later, Feynman gen-
eralized it to encompass physical fields – which led to his version of quantum
12 Recall that the Nobel Prize was ‘in the air’ for Einstein for more than 15 years;

at the end he got it in 1921, for his discovery of the Photo–Electric Effect.
13 Einstein ‘failed’ in the same way as Hilbert ‘failed’ with his Program of axiomatic

formalization of all mathematical sciences. Their apparent ‘failure’ still influences
development of physics and mathematics, apparently converging into superstring
theory. Their joined work on gravity is called the Einstein–Hilbert action.
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electrodynamics (the first prototype of a quantum field theory) – and his No-
bel Prize. All his career he consistently distrusted official mathematics and
invented his own maths underpinned with a direct physical intuition.

If the story ended here, we might say that visual physical intuition is lead-
ing the way of science. However, the story does not end here. The leading
authority in contemporary physics is Ed Witten, a physicist who did not get
the Nobel Prize, but rather the Fields Medal – together with his string the-
ory.14 Witten works at the same place where Einstein spent the last 30 years
of his life – at the Princeton Institute of Advanced Study. He is dreaming Ein-
stein’s dream: a unified theory of everything, using the most powerful maths
possible. His prophecy, delivered at a turn of the Century, has been: “In the
21 fist Century, mathematics will be dominated by string theory.”

When superstring theory arrived in physics in 1984 as a potential theory of
the universe, it was considered by mainstream physicists as little better than
religion in terms of constituting a viable, testable theory. In string theory,
the fundamental particles were string–like, rather than point particles; the
universe had 10 or 11 dimensions, rather than four; and the theory itself
existed at an energy so far from earthly energies that it took a leap of enormous
faith to imagine the day when an experiment could ever test it. Quite simply,
string theory seemed an excessively esoteric pursuit, which it still is.

Ed Witten on String Theory

Witten’s contributions to string theory have been many, including the critical
time in 1995 when he gave the field a much–needed boost by showing how
the five different variations of the theory then competing with one another
actually all belonged under one umbrella (see [Wit95]). In his words, “String
theory is an attempt at a deeper description of nature by thinking of an
elementary particle not as a little point but as a little loop of vibrating string.
One of the basic things about a string is that it can vibrate in many different
shapes or forms, which gives music its beauty. If we listen to a tuning fork,
it sounds harsh to the human ear. And that’s because you hear a pure tone
rather than the higher overtones that you get from a piano or violin that
give music its richness and beauty. So in the case of one of these strings
it can oscillate in many different forms—analogously to the overtones of a
piano string. And those different forms of vibration are interpreted as different
elementary particles: quarks, electrons, photons. All are different forms of
vibration of the same basic string. Unity of the different forces and particles
is achieved because they all come from different kinds of vibrations of the same
basic string. In the case of string theory, with our present understanding, there
would be nothing more basic than the string. It is surprising that replacing
the elementary particle with a string leads to such a big change in things.
I’m tempted to say that it has to do with the fuzziness it introduces. So the
14 Witten joined the ‘old Green–Schwarz bosonic string community’ after he won

his Fields Medal for topological quantum field theory (TQFT)
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particle is spread out. But it turns out that everything about space–time is a
little bit spread out; it’s blurred. You have to start doing some calculations
to really see it. It’s hard to explain it just in words or by drawing pictures.
Spreading out the particle into a string is a step in the direction of making
everything we’re familiar with fuzzy. You enter a completely new world where
things aren’t at all what you’re used to. It’s as surprising in its own way as
the fuzziness that much of physics acquired in light of quantum mechanics
and the Heisenberg uncertainty principle.

In Einstein’s general relativity the geometrical structure of space can
change but not its topology. Topology is the property of something that
doesn’t change when you bend it or stretch it as long as you don’t break
anything. You can imagine a bowling ball and you can imagine a coffee cup
that has a handle—the coffee cup is different topologically because there’s a
handle. Even if you could bend it or stretch it, as long as you don’t break
it, it’s still got that handle, which makes it topologically different. Quantum
mechanics brought an unexpected fuzziness into physics because of quantum
uncertainty, the Heisenberg uncertainty principle. String theory does so again
because a point particle is replaced by a string, which is more spread out. And
even though it’s a naive statement, it leads in the right direction: in string
theory, space–time becomes fuzzy.

String theory requires 10 dimensions of space. Thus, you need the extra
dimensions. At first people didn’t like them too much, but they’ve got a big
benefit, which is that the ability of string theory to describe all the elemen-
tary particles and their forces along with gravity depends on using the extra
dimensions. You have that one basic string, but it can vibrate in many ways.
But we’re trying to get a lot of particles because experimental physicists have
discovered a lot of particles. The electron and its heavy cousins the neutrinos,
the quarks, photons, gravitons, and so on. There is really a big zoo of elemen-
tary particles that you’re trying to explain. Having those extra dimensions
and therefore many ways the string can vibrate in many different directions
turns out to be the key to being able to describe all the particles that we see.
The theory has to be interpreted that extra dimensions beyond the ordinary
four dimensions the three spatial dimensions plus time are sufficiently small
that they haven’t been observed yet. So we would hope to test the theory,
conceivably directly at accelerators. I suspect that’s a long shot. More likely
we’ll do it indirectly by making more precise calculations about elementary
particles based on the existence of extra dimensions. If I take the theory as
we have it now, literally, I would conclude that extra dimensions really exist.
They’re part of nature. We don’t really know how big they are yet, but we
hope to explore that in various ways. They’re beyond our ordinary experience
just like atomic nuclei are. On the other hand, we don’t understand the theory
too completely, and because of this fuzziness of space–time, the very concept
of space–time and space–time dimensions isn’t precisely defined. I suspect
that the fuzziness of space–time will play more of a role in the eventual an-
swer than we understand now... I guess it’s possible that string theory could
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be wrong. But if it is in fact wrong, it’s amazing that it’s been so rich and
has survived so many brushes with catastrophe and has linked up with the
established physical theories in so many ways, providing so many new insights
about them. I wouldn’t have thought that a wrong theory should lead us to
understand better the ordinary quantum field theories or to have new insights
about the quantum states of black holes.”

Quantum Geometry Framework

To start our review on topological string theory, here we depict a general
quantum geometry framework (see e.g., [Wit98]).

SPECIAL RELATIVITY QUANTUM FIELD THEORY

CLASSICAL DYNAMICS QUANTUM MECHANICS
v/c ↑

→
�

Fig. 2.1. The deformation from classical dynamics to quantum field theory (see
text for explanation).

The relationship between non–relativistic classical mechanics and quantum
field theory (see [Col88]) can be summarized as in Figure 2.1. We see that the
horizontal axis corresponds to the Planck constant � (divided by the typical
action of the system being studied), while the vertical axis corresponds to v/c,
the ration of motion velocity and light velocity.

Similarly, in the superstring theory there are also two relevant expansion
parameters, as shown in Figure 2.2. Here we see that the horizontal axis
corresponds to the value of the string coupling constant, gs, while the verti-
cal axis corresponds to the value of the dimensionless sigma model coupling
α′/R2 with R being a typical radius of a compactified portion of space). In the
extreme α′ = gs = 0 limit, for instance, we recover relativistic particle dynam-
ics. For nonzero gs we recover point particle quantum field theory. For gs = 0
and nonzero α′ we are studying classical string theory. In general though, we
need to understand the theory for arbitrary values of these parameters (see
[Gre96]).

Quantum stringy geometry postulates the existence of 6D Calabi–Yau
manifolds at every point of the space–time (see, e.g., [CHS85]). These curled–
up local manifolds transform according to the general orbifolding procedure,
as will be described below.
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CLASSICAL STRINGY QUANTUM STRINGY
GEOMETRY GEOMETRY

CLASSICAL RIEMANNIAN QUANTUM RIEMANNIAN
GEOMETRY GEOMETRY

α′/R2 ↑
→

gs

Fig. 2.2. The deformation from classical Riemannian geometry to quantum stringy
geometry (see text for explanation).

Green–Schwarz Bosonic Strings and Branes

Here, we briefly describe the world–sheet dynamics of the Green–Schwarz
bosonic string theory , and (more generally), bosonic p−brane theory, the pre-
decessor of the current superstring theory (see [Sch93, GSW87] for details).

World–Line Description of a Point Particle

Recall that a point particle sweeps out a trajectory called world–line in space–
time. This can be described by functions xµ(τ), that describe how the world–
line, parameterized by τ , is embedded in the space–time, whose coordinates
are denoted xµ (µ = 0, 1, 2, 3). For simplicity, let us assume that the space–
time is flat Minkowski space with a Lorentz metric tensor

ηµν =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .
Then, the Lorentz–invariant line element (metric form) is given by

ds2 = −ηµνdxµdxν .

In normal units (� = c = 1), the action for a particle of mass m is given by

S = −m
∫
ds.

This could be generalized to a curved space–time by replacing ηµν by a Rie-
mannian metric tensor gµν(x), but (for simplicity) we will not do so here. In
terms of the embedding functions, xµ(t), the action can be rewritten as

S[x] = −m
∫
dτ

√
−ηµν ẋµẋν ,



428 2 Dynamics of Complex Systems

where overdot represents the derivative with respect to τ . An important prop-
erty of this action is invariance under local reparametrizations. This is a kind
of gauge invariance, whose meaning is that the form of S is unchanged un-
der an arbitrary reparametrization of the world–line τ → τ(τ̃). Actually, one
should require that the function τ(τ̃) is smooth and monotonic

(
dτ
dτ̃ > 0

)
. The

reparametrization invariance is a 1D analog of the 4D general coordinate in-
variance of general relativity. Mathematicians refer to this kind of symmetry
as diffeomorphism invariance.

The reparametrization invariance of S allows us to choose a gauge. A nice
choice is the static gauge, x0 = τ . In this gauge (renaming the parameter to
t) the action becomes

S = −m
∫ √

1− v2i dt, where vi =
dxi
dt
.

Requiring this action to be stationary under an arbitrary variation of xi(t)
gives the Euler–Lagrangian equations

dpi
dt

= 0, where pi =
δS

δvi
=

mvi√
1− v2i

,

which is the usual result. So we see that usual relativistic kinematics follows
from the action S = −m

∫
ds.

p−Branes and World–Volume Actions

We can now generalize the analysis of the massive point particle to a generic
p−brane, which is characterized by its tension Tp. The action in this case
involves the invariant (p+ 1)D volume and is given by

Sp = −Tp
∫
dµp+1,

where the invariant volume element is

dµp+1 =
√
−det(−ηµν∂αxµ∂βxν)dp+1σ.

Here the embedding of the p−brane into dD space–time is given by functions
xµ(σα). The index α = 0, . . . , p labels the p+1 coordinates σα of the p−brane
world–volume and the index µ = 0, . . . , d − 1 labels the d coordinates xµ of
the dD space–time. We have defined ∂αx

µ = ∂xµ

∂σα .The determinant operation
acts on the (p + 1) × (p + 1) matrix whose rows and columns are labeled by
α and β. The tension Tp is interpreted as the mass per unit volume of the
p−brane. For a 0−brane, it is just the mass.

Let us now specialize to the string, p = 1. Evaluating the determinant
gives the Nambu–Goto action (see subsection 1.5.5 above)

S[x] = −T
∫
dσdτ

√
ẋ2x′2 − (ẋ · x′)2,
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where we have defined σ0 = τ , σ1 = σ , and ẋµ = ∂xµ

∂τ , x′µ = ∂xµ

∂σ . The
above action is equivalent to the action

S[x, h] = −T
2

∫
d2σ

√
−hhαβηµν∂αxµ∂βxν , (2.511)

where hαβ(σ, τ) is the world–sheet metric, h = dethαβ , and hαβ = (hαβ)−1 is
the inverse of hαβ . The Euler–Lagrangian equations obtained by varying hαβ

are
Tαβ = ∂αx · ∂βx−

1
2
hαβh

γδ∂γx · ∂δx = 0.

In addition to reparametrization invariance, the action S[x, h] has another
local symmetry, called conformal invariance, or, Weyl invariance. Specifically,
it is invariant under the replacement

hαβ → Λ(σ, τ)hαβ , xµ → xµ.

This local symmetry is special to the p = 1 case (strings).
The two reparametrization invariance symmetries of S[x, h] allow us to

choose a gauge in which the three functions hαβ (this is a symmetric 2 × 2
matrix) are expressed in terms of just one function. A convenient choice is the
conformally flat gauge

hαβ = ηαβe
φ(σ,τ).

Here, ηαβ denoted the 2D Minkowski metric of a flat world–sheet. However,
hαβ is only ‘conformally flat’, because of the factor eφ. Classically, substitution
of this gauge choice into S[x, h] leaves the gauge–fixed action

S =
T

2

∫
d2σηαβ∂αx · ∂βx. (2.512)

Quantum mechanically, the story is more subtle. Instead of eliminating h
via its classical field equations, one should perform a Feynman path integral,
using standard machinery to deal with the local symmetries and gauge fixing.
When this is done correctly, one finds that in general φ does not decouple from
the answer. Only for the special case d = 26 does the quantum analysis repro-
duce the formula we have given based on classical reasoning. Otherwise, there
are correction terms whose presence can be traced to a conformal anomaly
(i.e., a quantum–mechanical breakdown of the conformal invariance).

The gauge–fixed action is quadratic in the x’s. Mathematically, it is the
same as a theory of d free scalar fields in two dimensions. The equations of
motion obtained by varying xµ are free 2D wave equations:

ẍµ − x′′µ = 0.

However, this is not the whole story, because we must also take account of
the constraints Tαβ = 0, which evaluated in the conformally flat gauge, read
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T01 = T10 = ẋ · x′ = 0, T00 = T11 =
1
2
(ẋ2 + x′2) = 0.

Adding and subtracting gives

(ẋ± x′)2 = 0. (2.513)

Boundary Conditions

To go further, one needs to choose boundary conditions. There are three im-
portant types. For a closed string one should impose periodicity in the spatial
parameter σ. Choosing its range to be π (as is conventional)

xµ(σ, τ) = xµ(σ + π, τ).

For an open string (which has two ends), each end can be required to satisfy
either Neumann or Dirichlet boundary conditions for each value of µ,

Neumann :
∂xµ

∂σ
= 0 at σ = 0 or π,

Dirichlet :
∂xµ

∂τ
= 0 at σ = 0 or π.

The Dirichlet condition can be integrated, and then it specifies a space–time
location on which the string ends. The only way this makes sense is if the
open string ends on a physical object – it ends on a D–brane.15 If all the
open–string boundary conditions are Neumann, then the ends of the string
can be anywhere in the space–time. The modern interpretation is that this
means that there are space–time–filling D–branes present.

Let us now consider the closed–string case in more detail. The general
solution of the 2d wave equation is given by a sum of ‘right–movers’ and ‘left–
movers’: xµ(σ, τ) = xµR(τ − σ) + xµL(τ + σ). These should be subject to the
following additional conditions:

• xµ(σ, τ) is real,
• xµ(σ + π, τ) = xµ(σ, τ), and
• (x′L)2 = (x′R)2 = 0 (these are the Tαβ = 0 constraints in (2.513)).

The first two of these conditions can be solved explicitly in terms of Fourier
series:

xµR =
1
2
xµ + !2sp

µ(τ − σ) +
i√
2
!s
∑
n
=0

1
n
αµne

−2in(τ−σ)

xµL =
1
2
xµ + !2sp

µ(τ + σ) +
i√
2
!s
∑
n
=0

1
n
α̃µne

−2in(τ−σ),

15 D here stands for Dirichlet.
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where the expansion parameters αµn, α̃
µ
n satisfy αµ−n = (αµn)

†, α̃µ−n =
(α̃µn)

†.The center–of–mass coordinate xµ and momentum pµ are also real. The
fundamental string length scale !s is related to the tension T by

T =
1

2πα′
, α′ = !2s.

The parameter α′ is called the universal Regge slope, since the string modes
lie on linear parallel Regge trajectories with this slope.

Canonical Quantization

The analysis of closed–string left–moving modes, closed–string right–moving
modes, and open–string modes are all very similar. Therefore, to avoid repeti-
tion, we focus on the closed–string right–movers. Starting with the gauge–fixed
action in (2.512), the canonical momentum of the string is

pµ(σ, τ) =
δS

δẋµ
= T ẋµ.

Canonical quantization (this is just free 2d field theory for scalar fields) gives

[pµ(σ, τ), xν(σ′, τ)] = −i�ηµνδ(σ − σ′).
In terms of the Fourier modes (setting � = 1) these become

[pµ, xν ] = −iηµν , [αµm, α
ν
n] = mδm+n,0η

µν , [α̃µm, α̃
ν
n] = mδm+n,0η

µν ,

and all other commutators vanish.
Recall that a quantum–mechanical harmonic oscillator can be described in

terms of raising and lowering operators, usually called a† and a, which satisfy
[a, a†] = 1. We see that, aside from a normalization factor, the expansion
coefficients αµ−m and αµm are raising and lowering operators. There is just one
problem. As η00 = −1, the time components are proportional to oscillators
with the wrong sign ([a, a†] = −1). This is potentially very bad, because such
oscillators create states of negative norm, which could lead to an inconsistent
quantum theory (with negative probabilities, etc.). Fortunately, as we will
explain, the Tαβ = 0 constraints eliminate the negative–norm states from the
physical spectrum.

The classical constraint for the right–moving closed–string modes, (x′R)2 =
0, has Fourier components

Lm =
T

2

∫ π

0

e−2imσ(x′R)2dσ =
1
2

∞∑
n=−∞

αm−n · αn,

which are called Virasoro operators. Since αµm does not commute with αµ−m,
L0 needs to be normal–ordered:

L0 =
1
2
α2

0 +
∞∑
n=1

α−n · αn.

Here αµ0 = !spµ/
√

2, where pµ is the momentum.
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Calabi–Yau Manifolds, Orbifolds and Mirror Symmetry

Calabi–Yau Manifolds

Fundamental geometrical objects in string theory are the so–called Calabi–
Yau manifolds [Cal57, Yau78]. A Calabi–Yau manifold is a compact Ricci–
flat Kähler manifold (see subsection 1.2.12 above) with a vanishing first Chern
class. A Calabi–Yau manifold of complex dimension n is also called a Calabi–
Yau n−fold, which is a manifold with an SU(n) holonomyi.e., it admits a
global nowhere vanishing holomorphic (n, 0)−form.

For example, in one complex dimension, the only examples are family of
tori. Note that the Ricci–flat metric on the torus is actually a flat metric, so
that the holonomy is the trivial group SU(1). In particular, 1D Calabi–Yau
manifolds are also called elliptic curves.

In two complex dimensions, the torus T 4 and theK3 surfaces16 are the only
examples. T 4 is sometimes excluded from the classification of being a Calabi–
Yau, as its holonomy (again the trivial group) is a proper subgroup of SU(2),
instead of being isomorphic to SU(2). On the other hand, the holonomy group
of a K3 surface is the full SU(2) group, so it may properly be called a Calabi–
Yau in 2D.

In three complex dimensions, classification of the possible Calabi–Yau
manifolds is an open problem. One example of a 3D Calabi–Yau is the quintic
threefold in CP 4.

In string theory, the term compactification refers to ‘curling up’ the extra
dimensions (6 in the superstring theory), usually on Calabi–Yau spaces or on
orbifolds. The mechanism behind this type of compactification is described
by the Kaluza–Klein theory.

In the most conventional superstring models, 10 conjectural dimensions
in string theory are supposed to come as 4 of which we are aware, carrying
some kind of fibration with fiber dimension 6. Compactification on Calabi–Yau
n−folds are important because they leave some of the original supersymmetry
unbroken. More precisely, compactification on a Calabi–Yau 3−fold (with real
dimension 6) leaves one quarter of the original supersymmetry unbroken.

Orbifolds

Recall that in topology, an orbifold is a generalization of a manifold, a topo-
logical space (called the underlying space) with an orbifold structure. The
underlying space locally looks like a quotient of a Euclidean space under the
action of a finite group of isometries.

The formal orbifold definition goes along the same lines as a definition of
manifold, but instead of taking domains in Rn as the target spaces of charts
16 Recall that K3 surfaces are compact, complex, simply–connected surfaces, with

trivial canonical line bundle, named after three algebraic geometers, Kummer,
Kähler and Kodaira. Otherwise, they are hyperkähler manifolds of real dimension
4 with SU(2) holonomy.
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one should take domains of finite quotients of Rn. A (topological) orbifold O,
is a Hausdorff topological spaceX with a countable base, called the underlying
space, with an orbifold structure, which is defined by orbifold atlas, given as
follows.

An orbifold chart is an open subset U ⊂ X together with open set V ⊂ Rn

and a continuous map ϕ : U → V which satisfy the following property: there is
a finite group Γ acting by linear transformations on V and a homeomorphism
θ : U → V/Γ such that ϕ = θ ◦ π, where π denotes the projection V → V/Γ .
A collection of orbifold charts, {ϕi = Ui → Vi}, is called the orbifold atlas if
it satisfies the following properties:

(i) ∪iUi = X;
(ii) if ϕi(x) = ϕj(y) then there is a neighborhood x ∈ Vx ⊂ Vi and

y ∈ Vy ⊂ Vj as well as a homeomorphism ψ : Vx → Vy such that ϕi = ϕj ◦ ψ.
The orbifold atlas defines the orbifold structure completely and we regard

two orbifold atlases of X to give the same orbifold structure if they can be
combined to give a larger orbifold atlas. One can add differentiability condi-
tions on the gluing map in the above definition and get a definition of smooth
(C∞) orbifolds in the same way as it was done for manifolds.

The main example of underlying space is a quotient space of a manifold
under the action of a finite group of diffeomorphisms, in particular mani-
fold with boundary carries natural orbifold structure, since it is Z2−factor of
its double. A factor space of a manifold along a smooth S1−action without
fixed points cares an orbifold structure. The orbifold structure gives a natu-
ral stratification by open manifolds on its underlying space, where one strata
corresponds to a set of singular points of the same type.

Note that one topological space can carry many different orbifold struc-
tures. For example, consider the orbifold O associated with a factor space of a
2−sphere S2 along a rotation by π. It is homeomorphic to S2, but the natural
orbifold structure is different. It is possible to adopt most of the character-
istics of manifolds to orbifolds and these characteristics are usually different
from the correspondent characteristics of the underlying space. In the above
example, its orbifold fundamental group of O is Z2 and its orbifold Euler
characteristic is 1.

Manifold orbifolding denotes an operation of wrapping, or folding in the
case of mirrors, to superimpose all equivalent points on the original manifold
– to get a new one.

In string theory, the word orbifold has a new flavor. In physics, the no-
tion of an orbifold usually describes an object that can be globally written
as a coset M/G where M is a manifold (or a theory) and G is a group of its
isometries (or symmetries). In string theory, these symmetries do not need to
have a geometric interpretation. The so–called orbifolding is a general proce-
dure of string theory to derive a new string theory from an old string theory
in which the elements of the group G have been identified with the identity.
Such a procedure reduces the number of string states because the states must
be invariant under G, but it also increases the number of states because of
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the extra twisted sectors. The result is usually a new, perfectly smooth string
theory.

Mirror Symmetry

The so–called mirror symmetry is a surprising relation that can exist between
two Calabi–Yau manifolds. It happens, usually for two such 6D manifolds,
that the shapes may look very different geometrically, but nevertheless they
are equivalent if they are employed as hidden dimensions of a (super)string
theory. More specifically, mirror symmetry relates two manifolds M and W
whose Hodge numbers h1,1 = dimH1,1 and h1,2 = dimH1,2 are swapped;
string theory compactified on these two manifolds leads to identical physical
phenomena (see [Gre00]).

[Str90] showed that mirror symmetry is a special example of the so–called
T−duality: the Calabi–Yau manifold may be written as a fiber bundle whose
fiber is a 3D torus T 3 = S1×S1×S1. The simultaneous action of T−duality
on all three dimensions of this torus is equivalent to mirror symmetry.

Mirror symmetry allowed the physicists to calculate many quantities that
seemed virtually incalculable before, by invoking the ‘mirror’ description of a
given physical situation, which can be often much easier. Mirror symmetry has
also become a very powerful tool in mathematics, and although mathemati-
cians have proved many rigorous theorems based on the physicists’ intuition,
a full mathematical understanding of the phenomenon of mirror symmetry is
still lacking.

Topological Field Theories

Unfortunately, there is no such thing as a crash course in string theory, but
the necessary background can be found in the classic two–volume monographs
[GSW87] and [Pol98]. A good introduction to conformal field theory is given in
the lecture notes [Sch96]. The basics of topological string theory were laid out
in a series of beautiful papers by E. Witten in 1990s [Wit88a, Wit89, Wit88c,
Wit88b, Wit90, Wit91, Wit92, Wit95, Wit91], and more or less completed in a
seminal paper [BCO94]. Reviews about topological string theory, usually also
contain a discussion of topological field theory. The first one of these is the
review [DVV91] from the same period. However, if we want to dig even deeper,
there is the 900–page book [HKK03], which discusses topological string theory
from the point of view of mirror symmetry.

In particular, there exists a mathematically rigorous, axiomatic definition
of topological field theories due to [Ati88]. Instead of giving this definition,
we will define topological field theory in a more physically–intuitive way, but
as a result somewhat less rigorous way.

Recall (from subsection 1.5.5 above) that the output of a QFT is given by
its observables: correlation functions of products of operators,

〈O1(x1) · · · On(xn)〉b. (2.514)
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Here, the Oi(x) are physical operators of the theory. What one calls ‘physical’
is part of the definition of the theory, but it is important to realize that in
general not all combinations of fields are viewed as physical operators. For
example, in a gauge theory, we usually require the observables to arise from
gauge–invariant operators. That is, TrF would be one of the Oi, but TrA or
A itself would not.

The subscript b in the above formula serves as a reminder that the cor-
relation function is usually calculated in a certain background. That is, the
definition of the theory may involve a choice of a Riemannian manifold M on
which the theory lives, it may involve choosing a metric on M , it may involve
choosing certain coupling constants, and so on.

The definition of a topological field theory is now as follows. Suppose that
we have a quantum field theory where the background choices involve a choice
of manifold M and a choice of metric h on M . Then the theory is called a
topological field theory if the observables (2.514) do not depend on the choice
of metric h. Let us stress that it is part of the definition that h is a background
field – in particular, we do not integrate over h in the path integral. One may
wonder what happens if, once we have a topological field theory, we do make
the metric h dynamical and integrate over it. This is exactly what we will do
once we start considering topological string theories.

Note that the word ‘topological’ in the definition may be somewhat of a
misnomer [Von05]. The reason is that the above definition does not strictly
imply that the observables depend only on the topology of M – there may
be other background choices hidden in b on which they depend as well. For
example, in the case of a complex manifold M , correlation functions will in
general not only depend on the topology of M and its metric, but also on our
specific way of combining the 2d real coordinates on M into d complex ones.
This choice, a complex structure, is part of the background of the quantum
field theory, and correlation functions in a topological field theory will in
general still depend on it.

If our quantum field theory has general coordinate invariance, as we will
usually assume to be the case, then the above definition has an interesting
consequence. The reason is that in such a case we can do an arbitrary general
coordinate transformation, changing both the coordinates on M and its met-
ric, under which the correlation functions should be invariant. Then, using
the topological invariance, we can transform back the metric to its old value.
The combined effect is that we have only changed the xi in (2.514). That is,
in a generally coordinate invariant topological field theory, the observables do
not depend on the insertion points of the operators.

Chern Classes

Inspired by the identification of a connection with a gauge field, let us consider
the analogue of the non–Abelian field strength,

F = dA−A ∧A,
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where A∧A is a shorthand for AIJiA
J
Kj dx

i∧dxj (note that A∧A �= 0). A short
calculation shows that on the overlap of two patches of M (or equivalently,
under a gauge transformation), this quantity transforms as

F(b) = Λ(ba)F(a)Λ
−1
(ba),

from which we see that F can be viewed as a section of a true vector bundle
of Lie algebra valued 2–forms. In particular, we can take its trace and obtain
a genuine 2–form:

c1 =
i

2π
Tr(F ),

where the prefactor is convention. It can be seen that this 2–form is closed:

d(Tr(F )) = Tr(dF ) = −Tr(d(A ∧A)) = −Tr(dA ∧A−A ∧ dA) = 0.

Therefore, we can take its cohomology class, for which we would like to argue
that it is a topological invariant. Note that this construction is independent
of the choice of coordinates onM . Moreover, it is independent of gauge trans-
formations. However, on a general vector bundle there may be connections
which cannot be reached in this way from a given connection. Changing to
such a connection is called a ‘large gauge transformation’, and from what we
have said it is not clear a priori that the Chern classes do not depend on this
choice of equivalence class of connections. However, with some work we can
also prove this fact. The invariant [c1] is called the first Chern class. In fact,
it might be better to call it a ‘relative topological invariant’: given a base
manifoldM of fixed topology, we can topologically distinguish vector bundles
over it by calculating the above cohomology class.

By taking the trace of F , we loose a lot of information. There turns out
to be a lot more topological information in F , and it can be extracted by
considering the expression

c(F ) = det
(

1 +
iF
2π

)
,

where 1 is the identity matrix of the same size as the elements of the Lie
algebra of G. Again, it can be checked that this expression is invariant under
a change of coordinates for M and under a change of connection. Since the
matrix components inside the determinant consist of the 0–form 1 and the
2–form F , expanding the determinant will lead to an expression consisting of
forms of all even degrees. One writes this as

c(F ) = c0(F ) + c1(F ) + c2(F ) + . . .

The sum terminates either at the highest degree encountered in expanding the
determinant, or at the highest allowed even form on M . Note that c0(F ) = 1,
and [c1(F )] is exactly the first Chern class we defined above. The cohomology
class of cn is called the nth Chern class.
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As an almost trivial example, let us consider the case of a product bundle
M ×W . In this case there is a global section g(x) of the principal bundle P ,
and we can use this to construct a connection A = −gdg−1, so that [Von05]

F = −dgdg−1 − gdg−1gdg−1 = −dgdg−1 + dgdg−1 = 0.

Thus, for a trivial bundle with this connection, c0 = 1 and cn = 0 for all
n > 0.

Chern–Simons theory

The easiest way to construct a topological field theory is to construct a theory
where both the action S (or, quantum measure eiS) and the fields do not
include the metric at all. Such topological field theories are called ‘Schwarz–
type’ topological field theories. This may sound like a trivial solution to the
problem, but nevertheless it can lead to quite interesting results. To see this,
let us consider familiar example: Chern–Simons gauge theory on a 3D manifold
M – now from a physical point of view.

Recall from subsection 2.2.5 that Chern–Simons theory is a gauge theory
– that is, it is constructed from a vector bundle E over the base space M ,
with a structure group (gauge group) G and a connection (gauge field) A. The
Lagrangian of Chern–Simons theory is then given by

L = Tr(A ∧ dA− 2
3
A ∧A ∧A).

It is a straightforward exercise to check how this Lagrangian changes under
the gauge transformation

Ã = gAg−1 − gdg−1,

and one finds

L̃ ≡ Tr(Ã ∧ dÃ− 2
3
Ã ∧ Ã ∧ Ã)

= Tr(A ∧ dA− 2
3
A ∧A ∧A)− d Tr(gA ∧ dg−1) +

1
3

Tr(gdg−1 ∧ dg ∧ dg−1).

The second term is a total derivative, so if M does not have a boundary, the
action, being the integral of L over M , does not get a contribution from this
term. The last term is not a total derivative, but its integral turns out to be
a topological invariant of the map g(x), which is quantized as

1
24π2

∫
M

Tr(gdg−1 ∧ dg ∧ dg−1) = m ∈ Z.

From this, we see that if we define the action as

S =
k

4π

∫
M

L,
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with k an integer, the action changes by 2πkm under gauge transformations,
and the quantum measure eiS is invariant.

So from this discussion we seem to arrive at the conclusion that the par-
tition function

Z =
∫
D[A] eiS[A]

for a line bundle of a fixed topology E is a topological invariant of M , as are
the correlation functions of gauge–invariant operators such as TrF . However,
there is one more detail we have to worry about: there may be an anomaly
in the quantum theory. That is, it may not be possible to define the path
integral measure D[A] in a gauge–invariant way.

One way to see what problems can arise is to note that to actually calcu-
late the path integral, one has to pick a gauge condition on A. That is, we
have to pick one representative of A in each equivalence class under gauge
transformations. To make such a choice will in general require a choice of
metric. For example, from electromagnetism (where E is a 1D complex line
bundle and G = U(1)) we know that a useful gauge is the Feynman gauge, in
which the equation of motion for A becomes

∆A = 0.

As we have seen before, the Laplacian ∆ is an operator which, through the
Hodge star, depends on the metric, and hence the results we find will a priori
be metric dependent. To show that the results are truly metric independent,
one needs to show that the quantum results do not depend on our arbitrary
choice of gauge.

We will not go into the details of this, but state that one can show that
Chern–Simons theory on a compact 3–manifold is anomaly–free, so our naive
argument above was correct, and one can indeed calculate topological invari-
ants of M in this way.

Let us briefly discuss the kind of topological invariants that Chern–Simons
theory can lead to. Recall that one can construct a Lie group element g from
a Lie algebra element A as g = eA. Now suppose we have a path γ(t) inside
M . Suppose that we chop up γ into very small line elements given by tangent
vectors γ̇δt. Then we can insert this tangent vector into the connection 1–
form A, and get a Lie algebra element. As we have seen, it is precisely this
Lie algebra element which transports vectors in E along this small distance:
we have to multiply these vectors by 1 + A. This is a linear approximation
to the finite transformation eA. So if we transport a vector along the entire
closed curve γ, it will return multiplied by a group element

g = lim
δt→0

[exp (A (γ̇(0)) δt) exp (A (γ̇(δt)) δt) exp (A (γ̇(2δt)) δt) · · · ] .

Now it is tempting to add all the exponents and write their sum in the limit as
an integral, but this is not quite allowed since the different group elements may
not commute, so eXeY �= eX+Y . Therefore, one uses the following notation,
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g = P exp
∫
γ

A,

where P stands for path ordering, while the element g is called the holonomy
of A around the closed curve γ. An interesting gauge and metric independent
object turns out to be the trace of this group element. This trace is called the
Wilson loop Wγ(A), given by

Wγ(A) = Tr(P ) exp
∫
γ

A.

The topological invariants we are interested in are now the correlation func-
tions of such Wilson loops in Chern–Simons theory. Since these correlation
functions are independent of the parametrization of M , we can equivalently
say that they will be independent of the precise location of the loop γ; we
have in fact constructed a topological invariant of the embedding of γ in-
side M. This embedding takes the shape of a knot, so the invariants we have
constructed are knot invariants. One can show that the invariants are actu-
ally polynomials in the variable y = exp 2πi/(k + 2), where k is the integer
‘coupling constant’ of the Chern–Simons theory.

The above construction is due to E. Witten, and was carried out in [Wit89].
Before Witten’s work, several polynomial invariants of knots were known, one
of the simplest ones being the so–called Jones polynomial . It can be shown
that many of these polynomials arise as special cases of the above construction,
where one takes a certain structure group G, SU(2) for the Jones polynomial,
and a certain vector bundle (representation) E, the fundamental represen-
tation for the Jones polynomial. That is, using this ‘trivial’ topological field
theory, Witten was able to reproduce a large number of the known knot invari-
ants in a unified framework, and construct a great number of new invariants
as well [Von05].

Cohomological Field Theories

Even though the above example leads to quite interesting topological invari-
ants, the construction itself is somewhat trivial: given the absence of anoma-
lies that we mentioned, the independence of the metric is completely manifest
throughout the procedure. There exists a different way of constructing topo-
logical field theories in which the definition of the theory does use a metric,
but one can still show that the partition function and the physical correla-
tion functions of the theory are metric–independent. The theories constructed
in this way are called topological theories of ‘Witten–type’, or cohomological
field theories.

Cohomological field theories are field theories that possess a very special
type of symmetry. Recall that from Noether’s theorem a global symmetry of
a theory leads to a conserved charge S, and that after quantizing the theory,
the symmetry is generated by the corresponding operator:
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δεOi = iε[S,Oi], or δεOi = iε{S,Oi},

depending on whether S and Oi are fermionic or bosonic. Furthermore, the
symmetry–invariant states |j〉 satisfy

S |j〉 = 0. (2.515)

In particular, if the symmetry is not spontaneously broken, the vacuum of
such a theory will be symmetric, i.e., S |0〉 = 0, and expectation values of
operators will be unchanged after a symmetry transformation:

〈0|Oi + δOi|0〉 = 〈0|Oi|0〉+ iε〈0|SOi ±OiS|0〉 = 〈0|Oi|0〉,

since S annihilates the vacuum. Note that, to linear order in a ‘small parame-
ter’ ε, the second term in the first line (with |0〉 replaced by an arbitrary state
|ψ〉) can also be obtained if instead of on the operators, we let the symmetry
operator S act on the state as

|ψ〉 → |ψ〉+ iεS|ψ〉. (2.516)

In case S is the Hamiltonian, this is the infinitesimal version of the well–
known transition between the Schrödinger and Heisenberg pictures. Note that
the equations (2.515) and (2.516) already contain some flavor of cohomology.
Cohomological field theories are theories where this analogy can be made
exact.

With this in mind, the first property of a cohomological field theory will
not come as a surprise: it should contain a fermionic symmetry operator Q
which squares to zero, Q2 = 0. This may seem like a strange requirement
for a field theory, but symmetries of this type occur for example when we
have a gauge symmetry and fix it by using the Faddeev–Popov procedure;
the resulting theory will then have a global BRST–symmetry , which satisfies
precisely this constraint. Another example is found in supersymmetry, where
one also encounters symmetry operators that square to zero, as we will see in
detail later on.

The second property a cohomological field theory should have is really a
definition: we define the physical operators in this theory to be the operators
that are closed under the action of this Q−operator17:

{Q,Oi} = 0. (2.517)

Again, this may seem to be a strange requirement for a physical theory, but
again it naturally appears in BRST quantization, and for example in con-
formal field theories, where we have a 1–1 correspondence between operators
and states. In such theories, the symmetry requirement (2.515) on the states
translates into the requirement (2.517) on the operators.
17 From now on, we denote both the commutator and the anti-commutator by curly

brackets, unless it is clear that one of the operators inside the brackets is bosonic.
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Thirdly, we want to have a theory in which the Q−symmetry is not spon-
taneously broken, so the vacuum is symmetric. Note that this implies the
equivalence

Oi ∼ Oi + {Q,Λ}. (2.518)

The reason for this is that the expectation value of an operator product in-
volving a Q−exact operator {Q,Λ} takes the form

〈0|Oi1 · · · Oij{Q,Λ}Oij+1 · · · Oin |0〉 = 〈0|Oi1 · · · Oij (QΛ−ΛQ)Oij+1 · · · Oin |0〉,

and each term vanishes separately, e.g.,

〈0|Oi1 · · · OijQΛOij+1 · · · Oin |0〉= ±〈0|Oi1 · · ·QOijΛOij+1 · · · Oin |0〉 (2.519)
= ±〈0|QOi1 · · · OijΛOij+1 · · · Oin |0〉 = 0 ,

where we made repeated use of (2.517). Together, (2.517) and (2.518) mean
that our physical operators are Q−cohomology classes.

The fourth and final requirement for a cohomological field theory is that
the metric SEM–tensor is Q−exact,

Tαβ ≡
δS

δhαβ
= {Q,Gαβ} (2.520)

for some operatorGαβ . The physical interpretation of this is the following. The
integrals of the components T0α over a space–like hypersurface are conserved
quantities. For example, the integral of T00 gives the Hamiltonian:

H =
∫
space

T00.

Similarly, T0a for a �= 0 give the momentum charges. Certainly, the Hamilto-
nian H should commute with all symmetry operators of the theory, and one
usually takes the other space–time symmetries to commute with the inter-
nal symmetries as well. The choice of the first lower index 0 here is related
to a choice of Lorentz frame, so in general the integrals of all Tαβ will com-
mute with the internal symmetries. In a local theory, it is then natural to
assume that also the densities commute with Q. However, (2.520) is an even
stronger requirement: the SEM densities should not only commute with Q
(that is, be Q−closed), but they have to do so in a trivial way (they should
be Q−commutators, that is, Q−exact) for the theory to be cohomological.

This fourth requirement is the crucial one in showing the topological in-
variance of the theory. Let us consider the functional hαβ−derivative of an
observable:

δ

δhαβ
〈Oi1 · · · Oin〉 =

δ

δhαβ

(∫
DφOi1 · · · OineiS[φ]

)
= i

∫
DφOi1 · · · Oin

δS

δhαβ
eiS[φ] = i〈Oi1 · · · Oin{Q,Gαβ}〉 = 0,
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where in the last line we used the same argument as in (2.519). One might be
worried about the operator ordering in going from the operator formalism to
the path integral formalism and back. We should really have inserted a time
ordering operator on the r.h.s. in the first step above. However, the result
then shows us that we can arbitrarily change the metric – and hence the
time ordering of the operators, so with hindsight we may actually think of
the operators as being arbitrarily ordered. Finally, we have assumed that our
operators do not depend explicitly on the metric.

A very practical way to ensure (2.520) is to use a Lagrangian which itself is
Q−exact, L = {Q,V }, for some operator V . This choice has an extra virtue,
which we can see if we explicitly include Planck’s constant in our description:
the quantum measure then reads

exp
i
�

{
Q,

∫
M

V

}
.

Then, we can use exactly the same argument as before to show that

d

d�
〈Oi1 · · · Oin〉 = 0.

That is, the correlators we are interested in are independent of �, and we can
therefore calculate them exactly in the classical limit.

Descent equations
An important property of cohomological field theories is that, given a

scalar physical operator on M – where by ‘scalar’ we mean an operator that
does not transform under coordinate transformations of M , so in particular
it has no α−indices – we can construct further operators which behave like
p−forms on M . The basic observation is that we can integrate (2.520) over a
spatial hypersurface to get a similar relation for the momentum operators:

Pα = {Q,Gα},

where Gα is a fermionic operator. Now consider the operator

O(1)
α = i{Gα,O(0)},

where O(0)(x) is a scalar physical operator: {Q,O(0)(x)} = 0. Let us calculate

d

dxα
O(0) = i[Pα,O(0)] = [{Q,Gα},O(0)]

= ±i{{Gα,O(0)}, Q} − i{{O(0), Q}, Gα} = {Q,O(1)
α }.

In going from the second to the third line, we have used the Jacobi identity.
The first sign in the third line depends on whetherO(0) is bosonic or fermionic,
but there is no sign ambiguity in the last line. By defining the 1–form operator

O(1) = O(1)
α dx

α
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we can write this result as

dO(0) = {Q,O(1)}.

Then, we can integrate this equation over a closed curve γ ⊂M to find

{Q,
∫
γ

O(1)} = 0.

That is, by constructing a
∫
γ
O(1) for each O(0), we have found a whole class

of new, non–local, physical operators.
The above procedure can now be repeated in exactly the same way starting

from O(1), and doing this we find a whole tower of p−form operators:

{Q,O(0)} = 0, {Q,O(1)} = dO(0), {Q,O(2)} = dO(1),

· · · , {Q,O(n)} = dO(n−1), 0 = dO(n).

The last equation is trivial, since there are no (n+1)−forms on an nD smooth
manifold.

Following the same reasoning, the integral of O(p) over a pD submanifold
of M is now a physical operator. This gives us a large class of new physical
operators, starting from the scalar ones. Note that these operators, being in-
tegrated over a submanifold, are inherently nonlocal. Nevertheless, they can
have a very physical interpretation. Particularly important examples of this
are the ‘top–form’ operators O(n) that can be integrated over the whole man-
ifold, leading to {

Q,

∫
M

O(n)

}
= 0.

This implies that we can add terms taO(n)
a , with ta arbitrary coupling con-

stants, to our Lagrangian without spoiling the fact that the theory is coho-
mological. These deformations of the theory will be important to us later.

2D Cohomological Field Theories

Since string theories are 2D field theories, we will in particular be interested
in cohomological field theories in two dimensions. These theories have some
extra properties which will be important in our discussion. Let us begin by
reminding the reader of the relation between states in the operator formal-
ism of quantum field theories, and boundary conditions in the path–integral
formalism. In its simplest form, this relation looks like∫ BC2

BC1

Dφ · · · eiS[φ] = 〈BC1|T (· · · ) |BC2〉. (2.521)

Here, we included a time–ordering operator for completeness, but as we have
stated before, for the theories we are interested in this ordering is irrele-
vant. The notation |BCi〉 indicates the state corresponding to the incoming
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or outgoing boundary condition. For example, if on the path integral side we
prescribe all fields at a certain initial time, φ(t = t1) = f(t1) , on the operator
side this corresponds to the incoming state satisfying

φ(t1)|BC1〉 = f(t1)|BC1〉. (2.522)

where on the l.h.s. we have an operator acting, but on the r.h.s. there is a
simple scalar multiplication. More generally, in the operator formalism we can
have linear combinations of states of the type (2.522). Therefore, we should
allow for linear combinations on the l.h.s. of (2.521) as well. In other words,
in the path–integral formalism, a state is an operator which adds a number
(a weight) to each possible boundary condition on the fields. From this point
of view, the states in (2.522) are like ‘delta–functionals’: they assign weight 1
to the boundary condition φ(t1) = f(t1), and weight 0 to all other boundary
conditions.

Now, let us specialize to 2D field theories. Here, the boundary of a compact
manifold is a set of circles. Let us for simplicity assume that the ‘incoming’
boundary consists of a single circle. We can now define a state in the above
sense by doing a path integral over a second surface with the topology of a
hemisphere. This path integral gives a number for every boundary condition
of the fields on the circle, and this is exactly what a state in the path–integral
formalism should do. In particular, one can use this procedure to define a
state corresponding to every operator Oa by inserting Oa on the hemisphere
and then stretching this hemisphere to infinite size. An expectation value in
the operator formalism, such as

〈Oa|Ob(x2)Oc(x3)|Od〉cyl, (2.523)

on a cylinder of finite length, can then schematically be drawn as in Figure
2.3. Here, instead of first doing the path integrals over the semi–infinite hemi-
spheres and inserting the result in the path integral over the cylinder, one can
just as well integrate over the whole surface at once. However, note that in
topological field theories, there is no need to do the stretching, since the path
integral only depends on the topology of the surface, and hence not on the
size of the hemisphere [Von05].

Fig. 2.3. A graphical representation of the correlation function (2.523).

We assume that all states that we are interested in are of the above form,
which in particular means that we will integrate only over Riemann surfaces
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without boundary. Moreover, we assume these surfaces to be orientable. An
important property of topological field theories in two dimensions is now that
its correlation functions factorize in the following way:

〈O1 · · · On〉Σ =
∑
a,b

〈O1 · · · OiOa〉Σ1η
ab〈ObOi+1 · · · On〉Σ2 , (2.524)

where the genus of Σ is the sum of the genera of Σ1 and Σ2. This statement
is explained in Figure 2.4. By using the topological invariance, we can deform
a Riemann surface Σ with a set of operator insertions in such a way that it
develops a long tube. From general quantum field theory, we know that if we
stretch this tube long enough, only the asymptotic states – that is, the states
in the physical part of the Hilbert space – will propagate. But as we have just
argued, instead of inserting these asymptotic states, we may just as well insert
the corresponding operators at a finite distance. However, to conclude that
this leads to (2.524), we have to show that this definition of ‘physical states’
– being the ones that need to be inserted as asymptotic states – agrees with
our previous definition in terms of Q−cohomology. Let us argue that it does
by first writing the factorization as

〈O1 · · · On〉Σ =
∑
A,B

〈O1 · · · Oi|OA〉Σ1η
AB〈OB |Oi+1 · · · On〉Σ2 . (2.525)

where the OA with capital index now correspond to a complete basis of asymp-
totic states in the Hilbert space. The reader may be more used to this type of
expressions in the case where ηAB = δAB , but since we have not shown that
with our definitions 〈OA|OB〉 = δAB , we have to work with this more general
form of the identity operator, where η is a metric that we will determine in a
moment.

Now, we can write the Hilbert space as a direct sum, H = H0 ⊕ H1,
where H0 consists of states |ψ〉 for which Q|ψ〉 = 0 and H1 is its orthogonal
complement. Since

Q (O1 . . .Oi|0〉) = 0, (2.526)

the states in H1 are in particular orthogonal to states of the form O1 . . .Oi|0〉,
and hence the states in H1 do not contribute to the sum in (2.525). Moreover,
changing OA to OA+{Q,Λ} does not change the result in (2.525), so we only
need to sum over a basis of H0/'({Q, ·}), which is exactly the space Hphys of
‘topologically physical’ states.

Finally, let us determine the metric ηab. We can deduce its form by fac-
torizing the 2–point function

Cab = 〈OaOb〉 (2.527)

in the above way, resulting in

Cab = CacηcdCdb. (2.528)
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Fig. 2.4. A correlation function on a Riemann surface factorizes into correlation
functions on two Riemann surfaces of lower genus (adapted from [Von05]).

In other words, we find that the metric ηab is the matrix inverse of the
2–point function Cab, which for this reason we will write as ηab from now on.

One can apply a similar procedure to ‘cut open’ internal loops in a Rie-
mann surface Σ, so that we get

〈O1 · · · On〉Σ = (−1)Faηab
∑
a,b

〈OaObO1 · · · On〉Σ′ , (2.529)

where the genus of Σ′ is one less than the genus of Σ. The factor (−1)Fa multi-
plies the expression on the r.h.s. by −1 if the inserted operator Oa (and hence
also Ob) is fermionic. Proving that it needs to be included is not straight-
forward, but one can think of it as the ‘stringy version’ of the well–known
statement from quantum field theory that fermion loops add an extra minus
sign to a Feynman diagram.

The reader should convince himself that together, the equations (2.524)
and (2.529) imply that we can reduce all n−point correlation functions to
products of 3–point functions on the sphere. We denote these important quan-
tities by

cabc ≡ 〈OaObOc〉0, (2.530)

where the label 0 denotes the genus of the sphere. By using (2.524) to separate
two insertion points on a sphere, we see that

〈· · · OaOb · · · 〉Σ =
∑
c,d

〈· · · Oc · · · 〉Σ ηcdcabd =
∑
c

〈· · · Oc · · · 〉Σ cabc,

where we raised an index of cabc with the metric η. We can view the above
result as the definition of an operator algebra with structure constants cabc:

OaOb =
∑
c

cab
cOc. (2.531)
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From the metric ηab and the structure constants cabc, we can now calculate
any correlation function in the cohomological field theory.

Topological Strings

The 2D field theories we have constructed are already very similar to string
theories. However, one ingredient from string theory is missing: in string the-
ory, the world–sheet theory does not only involve a path integral over the
maps φi to the target space and their fermionic partners, but also a path
integral over the world–sheet metric hαβ . So far, we have set this metric to a
fixed background value.

We have also encountered a drawback of our construction. Even though
the theories we have found can give us some interesting ‘semi–topological’
information about the target spaces, one would like to be able to define general
nonzero n−point functions at genus g instead of just the partition function
at genus one and the particular correlation functions we calculated at genus
zero.

It turns out that these two remarks are intimately related. In this section
we will go from topological field theory to topological string theory by in-
troducing integrals over all metrics, and in doing so we will find interesting
nonzero correlation functions at any genus (see [Von05]).

Coupling to Topological Gravity

In coupling an ordinary field theory to gravity, one has to perform three steps.

• First of all, one rewrites the Lagrangian of the theory in a covariant way by
replacing all the flat metrics by the dynamical ones, introducing covariant
derivatives and multiplying the measure by a factor of

√
deth.

• Secondly, one introduces an Einstein–Hilbert term as the ‘kinetic’ term
for the metric field, plus possibly extra terms and fields to preserve the
symmetries of the original Lagrangian.

• Finally, one has to integrate the resulting theory over the space of all
metrics.

Here we will not discuss the first two steps in this procedure. As we have
seen in our discussion of topological field theories, the precise form of the La-
grangian only plays a comparatively minor role in determining the properties
of the theory, and we can derive many results without actually considering a
Lagrangian. Therefore, let us just state that it is possible to carry out the ana-
log of the first two steps mentioned above, and construct a Lagrangian with a
‘dynamical’ metric which still possesses the topological Q−symmetry we have
constructed. The reader who is interested in the details of this construction
is referred to the paper [Wit90] and to the lecture notes [DVV91].

The third step, integrating over the space of all metrics, is the one we
will be most interested in here. Naively, by the metric independence of our
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theories, integrating their partition functions over the space of all metrics,
and then dividing the results by the volume of the topological ‘gauge group’,
would be equivalent to multiplication by a factor of 1,

Z[h0]
?=

1
Gtop

∫
D[h]Z[h], (2.532)

for any arbitrary background metric h0. There are several reasons why this
naive reasoning might go wrong:

• There may be metric configurations which cannot be reached from a given
metric by continuous changes.

• There may be anomalies in the topological symmetry at the quantum level
preventing the conclusion that all gauge fixed configurations are equiva-
lent.

• The volume of Gtop is infinite, so even if we could rigorously define a path
integral the above multiplication and division would not be mathematically
well–defined.

For these reasons, we should really be more careful and precisely define
what we mean by the ‘integral over the space of all metrics’. Let us note the
important fact that just like in ordinary string theory (and even before twist-
ing), the 2D sigma models become conformal field theories when we include
the metric in the Lagrangian. This means that we can borrow the technol-
ogy from string theory to integrate over all conformally equivalent metrics.
As is well known, and as we will discuss in more detail later, the conformal
symmetry group is a huge group, and integrating over conformally equivalent
metrics leaves only a nD integral over a set of world–sheet moduli. Therefore,
our strategy will be to use the analogy to ordinary string theory to first do
this integral over all conformally equivalent metrics, and then perform the
integral over the remaining nD moduli space.

In integrating over conformally equivalent metrics, one usually has to
worry about conformal anomalies. However, here a very important fact be-
comes our help. To understand this fact, it is useful to rewrite our twisting
procedure in a somewhat different language (see [Von05]).

Let us consider the SEM–tensor Tαβ , which is the conserved Noether cur-
rent with respect to global translations on C. From conformal field theory,
it is known that Tzz̄ = Tz̄z = 0, and the fact that T is a conserved current,
∂αT

α
β = 0, means that Tzz ≡ T (z) and Tz̄z̄ ≡ T̄ (z̄) are (anti–)holomorphic

in z. One can now expand T (z) in Laurent modes,

T (z) =
∑
Lmz

−m−2. (2.533)

The Lm are called the Virasoro generators, and it is a well–known result from
conformal field theory that in the quantum theory their commutation relations
are
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[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n.

The number c depends on the details of the theory under consideration, and
it is called the central charge. When this central charge is nonzero, one runs
into a technical problem. The reason for this is that the equation of motion
for the metric field reads

δS

δhαβ
= Tαβ = 0.

In conformal field theory, one imposes this equation as a constraint in the
quantum theory. That is, one requires that for physical states |ψ〉,

Lm|ψ〉 = 0 (for all m ∈ Z).

However, this is clearly incompatible with the above commutation relation
unless c = 0. In string theory, this value for c can be achieved by taking
the target space of the theory to be 10D. If c �= 0 the quantum theory is
problematic to define, and we speak of a ‘conformal anomaly’ [Von05].

The whole above story repeats itself for T̄ (z̄) and its modes L̄m. At this
point there is a crucial difference between open and closed strings. On an
open string, left–moving and right–moving vibrations are related in such a
way that they combine into standing waves. In our complex notation, ‘left–
moving’ translates into ‘z−dependent’ (i.e. holomorphic), and ‘right–moving’
into ‘z̄−dependent’ (i.e. anti–holomorphic). Thus, on an open string all holo-
morphic quantities are related to their anti–holomorphic counterparts. In par-
ticular, T (z) and T̄ (z̄), and their modes Lm and L̄m, turn out to be complex
conjugates. There is therefore only one independent algebra of Virasoro gen-
erators Lm.

On a closed string on the other hand, which is the situation we have been
studying so far, left– and right–moving waves are completely independent.
This means that all holomorphic and anti–holomorphic quantities, and in
particular T (z) and T̄ (z̄), are independent. One therefore has two sets of
Virasoro generators, Lm and L̄m.

Let us now analyze the problem of central charge in the twisted theo-
ries. To twist the theory, we have used the U(1)−symmetries. Any global
U(1)−symmetry of our theory has a conserved current Jα. The fact that it
is conserved again means that Jz ≡ J(z) is holomorphic and Jz̄ ≡ J̄(z̄) is
anti–holomorphic. Once again, on an open string J and J̄ will be related, but
in the closed string theory we are studying they will be independent functions.
In particular, this means that we can view a global U(1)−symmetry as re-
ally consisting of two independent, left– and right–moving, U(1)−symmetries,
with generators FL and FR.

Note that the sum of U(1)−symmetries FV + FA only acts on objects
with a + index. That is, it acts purely on left–moving quantities. Similarly,
FV −FA acts purely on right–moving quantities. From our discussion above, it
is therefore natural to identify these two symmetries with the two components
of a single global U(1) symmetry:
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FV =
1
2
(FL + FR) FA =

1
2
(FL − FR).

A more detailed construction shows that this can indeed be done.
Let us expand the left–moving conserved U(1)−current into Laurent

modes,
J(z) =

∑
Jmz

−m−1. (2.534)

The commutation relations of these modes with one another and with the
Virasoro modes can be calculated, either by writing down all of the modes in
terms of the fields of the theory, or by using more abstract knowledge from
the theory of superconformal symmetry algebras. In either case, one finds

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n[Lm, Jn]

= −nJm+n[Jm, Jn] =
c

3
mδm+n.

Note that the same central charge c appears in the J− and in the L−commu-
tators. This turns out to be crucial.

Following the standard Noether procedure, we can now construct a con-
served charge by integrating the conserved current J(z) over a space–like slice
of the z−plane. In string theory, the physical time direction is the radial di-
rection in the z−plane, so a space–like slice is just a curve around the origin.
The integral is therefore calculated using the Cauchy theorem,

FL =
∮
z=0

J(z)dz = 2πiJ0.

In the quantum theory, it will be this operator that generates the U(1)L−sym-
metry. Now recall that to twist the theory we want to introduce new Lorentz
rotation generators,

MA =M − FV =M − 1
2
(FL + FR)MB =M − FA =M − 1

2
(FL − FR).

A well–known result from string theory (see [Von05]) is that the generator of
Lorentz rotations is M = 2πi(L0 − L̄0). Therefore, we find that the twisting
procedure in this new language amounts to

A : L0,A = L0 −
1
2
J0, L̄0,A = L̄0 +

1
2
J̄0,

B : L0,B = L0 −
1
2
J0, L̄0,B = L̄0 −

1
2
J̄0.

Let us now focus on the left–moving sector; we see that for both twistings
the new Lorentz rotation generator is the difference of L0 and 1

2J0. The new
Lorentz generator should also correspond to a conserved 2–tensor, and from
(2.533) and (2.534) there is a very natural way to obtain such a current:
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T̃ (z) = T (z) +
1
2
∂J(z), (2.535)

which clearly satisfies ∂̄T̃ = 0 and

L̃m = Lm −
1
2
(m+ 1)Jm, (2.536)

so in particular we find that L̃0 can serve as L0,A or L0,B . We should apply
the same procedure (with a minus sign in the A−model case) in the right–
moving sector. Equations (2.535) and (2.536) tell us how to implement the
twisting procedure not only on the conserved charges, but on the whole N = 2
superconformal algebra – or at least on the part consisting of the J− and
L−modes, but a further investigation shows that this is the only part that
changes. We have motivated, but not rigorously derived (2.535); for a complete
justification the reader is referred to the original papers [LVW89] and [CV91].

Now, we come to the crucial point. The algebra that the new modes L̃m
satisfy can be directly calculated from (2.535), and we find

[L̃m, L̃n] = (m− n)L̃m+n.

That is, there is no central charge left. This means that we do not have any
restriction on the dimension of the theory, and topological strings will actually
be well–defined in target spaces of any dimension.

From this result, we see that we can integrate our partition function over
conformally equivalent metrics without having to worry about the conformal
anomaly represented by the nonzero central charge. After having integrated
over this large part of the space of all metrics, it turns out that there is a
nD integral left to do. In particular, it is known that one can always find a
conformal transformation which in the neighborhood of a chosen point puts
the metric in the form hαβ = ηαβ , with η the usual flat metric with diagonal
entries ±1. (Or, +1 in the Euclidean setting.) On the other hand, when one
considers the global situation, it turns out that one cannot always enforce this
gauge condition everywhere. For example, if the world–sheet is a torus, there
is a left–over complex parameter τ that cannot be gauged away. The easiest
way to visualize this parameter (see [Von05]) is by drawing the resulting torus
in the complex plane and rescaling it in such a way that one of its edges runs
from 0 to 1; the other edge then runs from 0 to τ , see Figure 2.5. It seems
intuitively clear that a conformal transformation – which should leave all
angles fixed – will never deform τ , and even though intuition often fails when
considering conformal mappings, in this case this can indeed be proven. Thus,
τ is really a modular parameter which we need to integrate over. Another
fairly intuitive result is that any locally flat torus can, after a rescaling, be
drawn in this form, so τ indeed is the only modulus of the torus.

More generally, one can show that a Riemann surface of genus g has mg =
3(g−1) complex modular parameters. As usual, this is the virtual dimension of
the moduli space. If g > 1, one can show that this virtual dimension equals the
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Fig. 2.5. The only modulus τ of a torus T 2.

actual dimension. For g = 0, the sphere, we have a negative virtual dimension
mg = −3, but the actual dimension is 0: there is always a flat metric on a
surface which is topologically a sphere (just consider the sphere as a plane
with a point added at infinity), and after having chosen this metric there are
no remaining parameters such as τ in the torus case. For g = 1, the virtual
dimension is mg = 0, but as we have seen the actual dimension is 1.

We can explain these discrepancies using the fact that, after we have used
the conformal invariance to fix the metric to be flat, the sphere and the torus
have leftover symmetries. In the case of the sphere, it is well known in string
theory that one can use these extra symmetries to fix the positions of three
labelled points. In the case of the torus, after fixing the metric to be flat
we still have rigid translations of the torus left, which we can use to fix the
position of a single labelled point. To see how this leads to a difference between
the virtual and the actual dimensions, let us for example consider tori with
n labelled points on them. Since the virtual dimension of the moduli space
of tori without labelled points is 0, the virtual dimension of the moduli space
of tori with n labelled points is n. One may expect that at some point (and
in fact, this happens already when n = 1), one reaches a sufficiently generic
situation where the virtual dimension really is the actual dimension. However,
even in this case we can fix one of the positions using the remaining conformal
(translational) symmetry, so the positions of the points only represent n − 1
moduli. Hence, there must be an nth modulus of a different kind, which is
exactly the shape parameter τ that we have encountered above. In the limiting
case where n = 0, this parameter survives, thus causing the difference between
the virtual and the real dimension of the moduli space.

For the sphere, the reasoning is somewhat more formal: we analogously
expect to have three ‘extra’ moduli when n = 0. In fact, three extra parameters
are present, but they do not show up as moduli. They must be viewed as the
three parameters which need to be added to the problem to find a 0D moduli
space.



2.2 Physical Field Systems 453

Since the cases g = 0, 1 are thus somewhat special, let us begin by studying
the theory on a Riemann surface with g > 1. To arrive at the topological
string correlation functions, after gauge fixing we have to integrate over the
remaining moduli space of complex dimension 3(g − 1). To do this, we need
to fix a measure on this moduli space. That is, given a set of 6(g− 1) tangent
vectors to the moduli space, we want to produce a number which represents
the size of the volume element spanned by these vectors, see Figure 2.6. We
should do this in a way which is invariant under coordinate redefinitions of
both the moduli space and the world–sheet. Is there a ‘natural’ way to do
this?

Fig. 2.6. A measure on the moduli space M assigns a number to every set of three
tangent vectors. This number is interpreted as the volume of the element spanned
by these vectors.

To answer this question, let us first ask how we can describe the tan-
gent vectors to the moduli space (see [Von05]). In two dimensions, conformal
transformations are equivalent to holomorphic transformations: z �→ f(z). It
thus seems natural to assume that the moduli space we have left labels dif-
ferent complex structures on Σ, and indeed this can be shown to be the case.
Therefore, a tangent vector to the moduli space is an infinitesimal change of
complex structure, and these changes can be parameterized by holomorphic
1–forms with anti–holomorphic vector indices,

dz �→ dz + εµzz̄(z)dz̄.

The dimension counting above tells us that there are 3(g − 1) independent
(µi)zz̄, plus their 3(g−1) complex conjugates which change dz̄. So the tangent
space is spanned by these µi(z, z̄), µ̄i(z, z̄). How do we get a number out of
a set of these objects? Since µi has a z and a z̄ index, it seems natural to
integrate it over Σ. However, the z−index is an upper index, so we need to
lower it first with some tensor with two z−indices. It turns out that a good
choice is to use the Q−partner Gzz of the SEM–tensor component Tzz, and
thus to define the integration over moduli space as∫

Mg

3g=3∏
i=1

(
dmidm̄i

∫
Σ

Gzz(µi)
z
z̄

∫
Σ

Gz̄z̄(µ̄i)
z̄
z

)
. (2.537)
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Note that by construction, this integral is also invariant under a change of
basis of the moduli space. There are several reasons why using Gzz is a nat-
ural choice. First of all, this choice is analogous to what one does in bosonic
string theory. There, one integrates over the moduli space using exactly the
same formula, but with G replaced by the conformal ghost b. This ghost is
the BRST–partner of the SEM–tensor in exactly the same way as G is the
Q−partner of T . Secondly, one can make the not unrelated observation that
since {Q,G} = T, we can still use the standard arguments to show indepen-
dence of the theory of the parameters in a Lagrangian of the form L = {Q,V }.
The only difference is that now we also have to commute Q through G to make
it act on the vacuum, but since Tαβ itself is the derivative of the action with
respect to the metric hαβ , the terms we obtain in this way amount to integrat-
ing a total derivative over the moduli space. Therefore, apart from possible
boundary terms these contributions vanish. Note that this reasoning also gives
us an argument for using Gzz instead of Tzz (which is more or less the only
other reasonable option) in (2.537): if we had chosen Tzz then all path inte-
grals would have been over total derivatives on the moduli space, and apart
from boundary contributions the whole theory would have become trivial.

If we consider the vector and axial charges of the full path integral mea-
sure, including the new path integral over the world–sheet metric h, we find
a surprising result. Since the world–sheet metric does not transform under
R−symmetry, naively one might expect that its measure does not either.
However, this is clearly not correct since one should also take into account the
explicit G−insertions in (2.537) that do transform under R−symmetry. From
the N = 2 superconformal algebra (or, more down–to–earth, from expressing
the operators in terms of the fields), it follows that the product of G and Ḡ
has vector charge zero and axial charge 2. Therefore, the total vector charge
of the measure remains zero, and the axial charge gets an extra contribution
of 6(g− 1), so we find a total axial R−charge of 6(g− 1)− 2m(g− 1). From
this, we see that the case of complex target space dimension 3 is very spe-
cial: here, the axial charge of the measure vanishes for any g, and hence the
partition function is nonzero at every genus. If m > 3 and g > 1, the total
axial charge of the measure is negative, and we have seen that we cannot can-
cel such a charge with local operators. Therefore, for these theories only the
partition function at g = 1 and a specific set of correlation functions at genus
zero give nonzero results. Moreover, for m = 2 and m = 1, the results can be
shown to be trivial by other arguments. Therefore, a Calabi–Yau threefold is
by far the most interesting target space for a topological string theory. It is
a ‘happy coincidence’ (see [Von05]) that this is exactly the dimension we are
most interested in from the string theory perspective.

Finally, let us come back to the special cases of genus 0 and 1. At genus
zero, the Riemann surface has a single point as its moduli space, so there are
no extra integrals or G−insertions to worry about. Therefore, we can copy the
topological field theory result saying that we have to introduce local operators
with total degree (m,m) in the theory. The only remnant of the fact that we



2.2 Physical Field Systems 455

are integrating over metrics is that we should also somehow fix the remaining
three symmetries of the sphere. The most straightforward way to do this is to
consider 3–point functions with insertions on three labelled points. As a gauge
choice, we can then for example require these points to be at the points 0, 1
and ∞ in the compactified complex plane. For example, in the A−model on a
Calabi–Yau threefold, the 3–point function of three operators corresponding
to (1, 1)−forms would thus give a nonzero result.

In the case of the torus, we have seen that there is one ‘unexpected’ mod-
ular parameter over which we have to integrate. This means we have to insert
one G− and one Ḡ−operator in the measure, which spoils the absence of the
axial anomaly we had for g = 1 in the topological field theory case. However,
we also must fix the one remaining translational symmetry, which we can do
by inserting a local operator at a labelled point. Thus, we can restore the axial
R−charge to its zero value by choosing this to be an operator of degree (1, 1).

Summarizing, we have found that in topological string theory on a target
Calabi–Yau 3–fold, we have a nonvanishing 3–point function of total degree
(3,3) at genus zero; a nonvanishing 1–point function of degree (1,1) at genus
one, and a nonvanishing partition (‘zero–point’) function at all genera g > 1.

Nonlocal Operators

In one respect, what we have achieved is great progress: we can now for any
genus define a nonzero partition function (or for low genus a correlation func-
tion) of the topological string theory. On the other hand, we would also like to
define correlation functions of an arbitrary number of operators at these gen-
era. As we have seen, the insertion of extra local operators in the correlation
functions is not possible, since any such insertion will spoil our carefully con-
structed absence of R−symmetry anomalies. Therefore, we have to introduce
nonlocal operators.

There is one class of nonlocal operators which immediately becomes mind.
Before we saw, using the descent equations, that for every local operator we
can define a corresponding 1–form and a 2–form operator. If we check the axial
and vector charges of these operators, we find that if we start with an operator
of degree (1, 1), the 2–form operator we end up with actually has vanishing
axial and vector charges. This has two important consequences. First of all,
we can add the integral of this operator to our action [Von05],

S[t] = S0 + ta
∫
O(2)
a ,

without spoiling the axial and vector symmetry of the theory. Secondly, we
can insert the integrated operator into correlation functions,

〈
∫
O(2)

1 · · ·
∫
O(2)
n 〉
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and still get a nonzero result by the vanishing of the axial and vector charges.
These two statements are related: one obtains such correlators by differenti-
ating S[t] with respect to the appropriate t’s, and then setting all ta = 0.

A few remarks are in place here. First of all, recall that the integration over
the insertion points of the operators can be viewed as part of the integration
over the moduli space of Riemann surfaces, where now we label a certain
number of points on the Riemann surface. From this point of view, the g = 0, 1
cases fit naturally into the same framework. We could unite the descendant
fields into a world–sheet super–field ,

Φa = O(0)
a +O(1)

aα θ
α +O(2)

aαβθ
αθβ

where we formally replaced each dz and dz̄ by corresponding fermionic coor-
dinates θz and θz̄. Now, one can write the above correlators as integrals over
n copies of this super–space,∫ n∏

s=1

d2zsd
2θs 〈Φa1(z1, θ1) · · ·Φan

(zn, θn)〉

The integration prescription at genus 0 and 1 tells us to fix 3 and 1 points
respectively, so we need to remove this number of super–space integrals. Then,
integrating over the other super–space coordinates, the genus 0 correlators
indeed become

〈O(0)
a1 O

(0)
a2 O

(0)
a3

∫
O(2)
a4 · · ·

∫
O(2)
an
〉

From this prescription we note that these expressions are symmetric in the
exchange of all ai and aj . In particular, this means that the genus zero 3–point
functions at arbitrary t,

cabc[t] = 〈O(0)
a O

(0)
b O(0)

c 〉[t]

have symmetric derivatives:

∂cabc
∂td

=
∂cabd
∂tc

,

and similarly with permuted indices. These equations can be viewed as inte-
grability conditions, and using the Poincaré lemma we see that they imply
that

cijk[t] =
∂Z0[t]
∂ti∂tj∂tk

.

for some function Z0[t]. Following the general philosophy that n−point func-
tions are nth derivatives of the t−dependent partition function, we see that
Z0[t] can be naturally thought of as the partition function at genus zero. Sim-
ilarly, the partition function at genus 1 can be defined by integrating up the
one-point functions once.
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The quantities we have calculated above should be semi–topological in-
variants, meaning that they only depend on ‘half’ of the moduli (either the
Kähler ones or the complex structure ones) of the target space. For example,
in the A−model we find the Gromov–Witten invariants. In the B−model, it
turns out that F0[t] = lnZ0[t] is actually a quantity we already knew: it is the
prepotential of the Calabi–Yau manifold. A discussion of why this is the case
can be found in the paper [BCO94]. The higher genus partition functions can
be thought of as ‘quantum corrections’ to the prepotential.

Finally, there is a type of operator we have not discussed at all so far.
Recall that in the topological string theory, the metric itself is now a dynam-
ical field. We could not include the metric in our physical operators, since
this would spoil the topological invariance. However, the metric is part of a
Q−multiplet, and the highest field in this multiplet is a scalar field which is
usually labelled ϕ. (It should not be confused with the fields φi.) We can get
more correlation functions by inserting operators ϕk and the operators related
to them by the descent equations into the correlation functions. These opera-
tors are called ‘gravitational descendants’. Even the case where the power is
k = 0 is nontrivial; it does not insert any operator, but it does label a certain
point, and hence changes the moduli space one integrates over. This operator
is called the ‘puncture operator’.

All of this seems to lead to an enormous amount of semi-topological target
space invariants that can be calculated, but there are many recursion relations
between the several correlators. This is similar to how we showed before that
all correlators for the cohomological field theories follow from the 2–and 3–
point functions on the sphere. Here, it turns out that the set of all correlators
has a structure which is related to the theory of integrable hierarchies. Unfor-
tunately, a discussion of this is outside the scope of both these lectures and
the author’s current knowledge.

The Holomorphic Anomaly

We have now defined the partition function and correlation functions of topo-
logical string theory, but even though the expressions we obtained are much
simpler than the path integrals for ordinary quantum field or string theories,
it would still be very hard to explicitly calculate them. Fortunately, it turns
out that the t−dependent partition and correlation functions are actually
‘nearly holomorphic’ in t, and this is a great aid in exactly calculating these
quantities.

Let us make this ‘near holomorphy’ more precise. As we have seen, cal-
culating correlation functions of primary operators in topological string the-
ories amounts to taking t−derivatives of the corresponding perturbed parti-
tion function Z[t] and consequently setting t = 0. Recall that Z[t] is defined
through adding terms to the action of the form

ta
∫
Σ

O(2)
a , (2.538)
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Let us for definiteness consider the B−twisted model. We want to show that
the above term is QB−exact. For simplicity, we assume that O(2)

a is a bosonic
operator, but what we are about to say can by inserting a few signs straight-
forwardly be generalized to the fermionic case. From the descent equations we
studied in the subsection 2.2.8 above, we know that

(O(2)
a )+− = −{G+, [G−,O(0)

a ]}, (2.539)

where G+ is the charge corresponding to the current Gzz, and G− the one
corresponding to Gz̄z̄. We can in fact express G± in terms of the N = (2, 2)
supercharges Q. So, according to [Von05], we have

H = 2πi(L0 + L̄0) =
1
2
{Q+, Q̄+} −

1
2
{Q−, Q̄−}P

= 2πi(L0 − L̄0) =
1
2
{Q+, Q̄+}+

1
2
{Q−, Q̄−}.

Thus, we find that the left– and right–moving SEM charges satisfy

T+ = 2πiL0 =
1
2
{Q+, Q̄+}T− = 2πiL̄0 = −1

2
{Q−, Q̄−}.

To find G in the B−model, we should write these charges as commutators
with respect to QB = Q̄+ + Q̄−, which gives

T+ =
1
2
{QB ,Q+}T− = −1

2
{QB ,Q−},

so we arrive at the conclusion that for the B−model,

G+ =
1
2
Q+G− = −1

2
Q−.

Now, we can rewrite (2.539) as

(O(2)
a )+− = −{G+, [G−,O(0)

a ]} =
1
4
{Q+, [Q−,O(0)

a ]} (2.540)

=
1
8
{Q̄B , [(Q− −Q+),O(0)

a ]},

which proves our claim that O(2)
a is QB−exact.

An N = (2, 2) sigma model with a real action does, apart from the term
(2.538), also contain a term

tā
∫
Σ

Ō(2)
a , (2.541)

where tā is the complex conjugate of ta. It is not immediately clear that Ō(2)
a

is a physical operator: we have seen that physical operators in the B−model
correspond to forms that are ∂̄−closed, but the complex conjugate of such a
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form is ∂−closed. However, by taking the complex conjugate of (2.540), we
see that

(Ō(2)
a )+− =

1
8
{QB , [(Q̄− − Q̄+), Ō(0)

a ]},

so not only is the operator QB−closed, it is even QB−exact. This means that
we can add terms of the form (2.541) to the action, and taking tā−derivatives
inserts QB−exact terms in the correlation functions. Naively, we would ex-
pect this to give a zero result, so all the physical quantities seem to be
t−independent, and thus holomorphic in t. We will see in a moment that
this naive expectation turns out to be almost right, but not quite.

However, before doing so, let us comment briefly on the generalization of
the above argument in the case of the A−model. It seems that a straight-
forward generalization of the argument fails, since QA is its own complex
conjugate, and the complex conjugate of the de Rham operator is also the
same operator. However, note that the N = (2, 2)−theory has a different kind
of ‘conjugation symmetry’: we can exchange the two supersymmetries, or in
other words, exchange θ+ with θ̄+ and θ− with θ̄−. This exchanges QA with
an operator which we might denote as QĀ ≡ Q+ + Q̄−. Using the above
argument, we then find that the physical operators O(2)

a are QĀ−exact, and
that their conjugates in the new sense are QA−exact. We can now add these
conjugates to the action with parameters tā, and we again naively find in-
dependence of these parameters. In this case it is less natural to choose ta

and tā to be complex conjugates, but we are free to choose this particular
‘background point’ and study how the theory behaves if we then vary ta and
tā independently.

Now, let us see how the naive argument showing independence of the the-
ory of tā fails. In fact, the argument above would certainly hold for topological
field theories. However, in topological string theories (see [Von05]), we have
to worry about the insertions in the path integral of

G · µi ≡
∫
d2z Gzz (µi)

z
z̄,

and their complex conjugates, when commuting the QB towards the vacuum
and making sure it gives a zero answer. Indeed, the QB−commutator of the
above factor is not zero, but it gives

{QB , G · µi} = T · µi.

Now recall that Tαβ = ∂hαβS. We did not give a very precise definition
of µi above, but we know that it parameterizes the change in the metric
under an infinitesimal change of the coordinates mi on the moduli space.
One can make this intuition precise, and then finds the following ‘chain rule’:
T · µi = ∂miS. Inserting this into the partition function, we find that
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∂Fg
∂tā

=
∫
Mg

3g−3∏
i=1

dmidm̄i
∑
j,k

∂2

∂mj∂m̄k

〈
(
∏
l 
=j

∫
µl ·G)(

∏
l 
=k

∫
µ̄l · Ḡ)

∫
Ō(2)
a

〉
,

where Fg = lnZg is the free energy at genus g, and the reason Fg appears in
the above equation instead of Zg is, as usual in quantum field theory, that the
expectation values in the r.h.s. are normalized such that 〈1〉 = 1, and so the
l.h.s. should be normalized accordingly and equal Z−1

g ∂āZg = ∂āFg [Von05].
Thus, as we have claimed before, we are integrating a total derivative

over the moduli space of genus g surfaces. If the moduli space did not have
a boundary, this would indeed give zero, but in fact the moduli space does
have a boundary. It consists of the moduli which make the genus g surface
degenerate. This can happen in two ways: an internal cycle of the genus g
surface can be pinched, leaving a single surface of genus g − 1, as in Figure
2.7 (a), or the surface can split up into two surfaces of genus g1 and g2 =
g − g1, as depicted in Figure 2.7 (b). By carefully considering the boundary
contributions to the integral for these two types of boundaries, it was shown
in [BCO94] that

∂Fg
∂tā

=
1
2
cāb̄c̄e

2KGb̄dGc̄e

(
DdDeFg−1 +

g−1∑
r=1

DdFrDeFg−r

)
,

where G is the so–called Zamolodchikov metric on the space parameterized by
the coupling constants ta, tā; K is its Kähler potential, and the Da are covari-
ant derivatives on this space. The coefficients cāb̄c̄ are the 3–point functions
on the sphere of the operators Ō(0)

a . We will not derive the above formula in
detail, but the reader should notice that the contributions from the two types
of boundary are quite clear.

Fig. 2.7. At the boundary of the moduli space of genus g surfaces, the surfaces de-
generate because certain cycles are pinched. This either lowers the genus of the sur-
face (a) or breaks the surface into two lower genus ones (b) (adapted from [Von05]).

Using this formula, one can inductively determine the tā dependence on
the partition functions if the holomorphic ta−dependence is known. Holomor-
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phic functions on complex spaces (or more generally holomorphic sections of
complex vector bundles) are quite rare: usually, there is only a nD space of
such functions. The same turns out to hold for our topological string partition
functions: even though they are not quite holomorphic, their anti–holomorphic
behavior is determined by the holomorphic dependence on the coordinates,
and as a result there is a finite number of coefficients which determines them.

Thus, just from the above structure and without doing any path integrals,
one can already determine the topological string partition functions up to a
finite number of constants. This leads to a feasible program for completely
determining the topological string partition function for a given target space
and at given genus. From the holomorphic anomaly equation, one first has to
find the general form of the partition function. Then, all one has left to do is
to fix the unknown constants. Here, the fact that in the A−model the parti-
tion function counts a number of points becomes our help: by requiring that
the A−model partition functions are integral, one can often fix the unknown
constants and completely determine the t−dependent partition function. In
practice, the procedure is still quite elaborate, so we will not describe any
examples here, but several have been worked out in detail in the literature.
Once again, the pioneering work for this can be found in the paper [BCO94].

Geometrical Transitions

Conifolds

Recall that a conifold is a generalization of the notion of a manifold. Unlike
manifolds, a conifold can (or, should) contain conical singularities i.e., points
whose neighborhood looks like a cone with a certain base. The base is usually
a 5D manifold.

In string theory, a conifold transition represents such an evolution of the
Calabi–Yau manifold in which its fabric rips and repairs itself, yet with mild
and acceptable physical consequences in the context of string theory. How-
ever, the tears involved are more severe than those in an ‘weaker’ flop transi-
tion (see [Gre00]). The geometrically singular conifolds were shown to lead to
completely smooth physics of strings. The divergences are ‘smeared out’ by
D3–branes wrapped on the shrinking 3–sphere S3, as originally pointed out
by A. Strominger, who, together with D. Morrison and B. Greene have also
found that the topology near the conifold singularity can undergo a topo-
logical phase–transition (see subsection 2.2.7). It is believed that nearly all
Calabi–Yau manifolds can be connected via these ‘critical transitions’.

More precisely, the conifold is the simplest example of a non–compact
Calabi–Yau 3–fold: it is the set of solutions to the equation

x1x2 − x3x4 = 0

in C4. The resulting manifold is a cone, meaning in this case that any real
multiple of a solution to this equation is again a solution. The point (0, 0, 0, 0)
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is the ‘tip’ of this cone, and it is a singular point of the solution space. Note
that by writing

x1 = z1 + iz2, x2 = z1 − iz2, x3 = z3 + iz4, x4 = −z3 + iz4,

where the zi are still complex numbers, one can also write the equation as

z21 + z22 + z23 + z24 = 0.

Writing each zi as ai + ibi, with ai and bi real, we get the two equations

|a|2 − |b|2 = 0, a · b = 0. (2.542)

Here a · b =
∑
i aibi and |a|2 = a · a. Since the geometry is a cone, let us focus

on a ‘slice’ of this cone given by

|a|2 + |b|2 = 2r2,

for some r ∈ R. On this slice, the first equation in (2.542) becomes

|a|2 = r2, (2.543)

which is the equation defining a 3–sphere S3 of radius r. The same holds for
b, so both a and b lie on 3–spheres. However, we also have to take the second
equation in (2.542) into account. Let us suppose that we fix an a satisfying
(2.543). Then b has to lie on a 3–sphere, but also on the plane through the
origin defined by a · b = 0. That is, b lies on a 2–sphere. This holds for every
a, so the slice we are considering is a fibration of 2–spheres over the 3–sphere.
With a little more work, one can show that this fibration is trivial, so the
conifold is a cone over S2 × S3.

Since the conifold is a singular geometry, we would like to find geometries
which approximate it, but which are non–singular. There are two interesting
ways in which this can be done. The simplest way is to replace the defining
equation by

x1x2 − x3x4 = µ2. (2.544)

From the two equations constraining a and b, we now see that |a|2 ≥ µ2. In
other words, the parameter r should be at least µ. At r = µ, the a−sphere
still has finite radius µ, but the b−sphere shrinks to zero size. This geometry
is called the deformed conifold. Even though this is not clear from the picture,
from the equation (2.544) one can straightforwardly show that it is nonsin-
gular. One can also show that it is topologically equivalent to the cotangent
bundle on the 3–sphere, T ∗S3. Here, the S3 on which the cotangent bundle is
defined is exactly the S3 at the ‘tip’ of the deformed conifold.

The second way to change the conifold geometry arises from studying the
two equations

x1A+ x3B = 0, x4A+ x2B = 0. (2.545)
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Here, we require A and B to be homogeneous complex coordinates on a CP 1,
i.e.,

(A,B) �= (0, 0), (A,B) ∼ (λA, λB)

where λ is any nonzero complex number. If one of the xi is nonzero, say x1,
one can solve for A or B, e.g., A = −x3B

x1
, and insert this in the other equation

to get
x1x2 − x3x4 = 0

which is the conifold equation. However, if all xi are zero, any A and B
solve the system of equations (2.545). In other words, we have constructed a
geometry which away from the former singularity is completely the same as
the conifold, but the singularity itself is replaced by a CP 1, which topologically
is the same as an S2. From the defining equations one can again show that
the resulting geometry is nonsingular, so we have now replaced our conifold
geometry by the so–called resolved conifold.

Topological D–branes

Since topological string theories are in many ways similar to an ordinary
(bosonic) string theories, one natural question which arises is: are there also
open topological strings which can end on D–branes? To answer the above
question rigorously, we would have to study boundary conditions on world–
sheets with boundaries which preserve the Q−symmetry.

In the A−model, one can only construct 3D–branes wrapping so–called
‘Lagrangian’ submanifolds of M . Here, ‘Lagrangian’ means that the Kähler
form ω vanishes on this submanifold. In the B−model, one can construct
D–branes of any even dimension, as long as these branes wrap holomorphic
submanifolds of M .

Just like in ordinary string theory, when we consider open topological
strings ending on a D–brane, there should be a field theory on the brane
world–volume describing the low–energy physics of the open strings. Moreover,
since we are studying topological theories, one may expect such a theory to
inherit the property that it only depends on a restricted amount of data of the
manifolds involved. A key example is the case of the A−model on the deformed
conifold, M = T ∗S3, where we wrap ND–branes on the S3 in the base. (One
can show that this is indeed a Lagrangian submanifold.) In ordinary string
theory, the world–volume theory on ND–branes has a U(N) gauge symmetry,
so putting the ingredients together we can make the guess that the world–
volume theory is a 3D topological field theory with U(N) gauge symmetry.
There is really only one candidate for such a theory: the Chern–Simons gauge
theory . Recall that it consists of a single U(N) gauge field, and has the action

S =
k

4π

∫
S3

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
. (2.546)

Before the invention of D–branes, E. Witten showed that this is indeed the
theory one gets. In fact, he showed even more: this theory actually describes
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the full topological string–field theory on the D–branes, even without going
to a low–energy limit [Wit95].

Let us briefly outline the argument that gives this result. In his paper,
Witten derived the open string–field theory action for the open A−model
topological string; it reads

S =
∫

Tr
(
A ∗QAA+

2
3
A ∗ A ∗ A

)
.

The form of this action is very similar to Chern–Simons theory, but its in-
terpretation is completely different: A is a string–field (a wave function on
the space of all maps from an open string to the space–time manifold), QA
is the topological symmetry generator, which has a natural action on the
string–field, and ∗ is a certain noncommutative product. Witten shows that
the topological properties of the theory imply that only the constant maps
contribute, so A becomes a field on M – and since open strings can only
end on D–branes, it actually becomes a field on S3. Moreover, recall that QA
can be interpreted as a de Rham differential. Using these observations and the
precise definition of the star product one can indeed show that the string–field
theory action reduces to Chern–Simons theory on S3.

Topological Strings and Black Hole Attractors

Topological string theory is naturally related to black hole dynamics (see sub-
section 2.2.6 above). Namely, critical string theory compactified on Calabi–
Yau manifolds has played a central role in both the mathematical and physical
development of modern string theory. The physical relevance of the data pro-
vided by the topological string ĉ = 6 (of A and B types) has been that
it computes F−type terms in the corresponding four dimensional theory
[BCO94, AGN94]. These higher–derivative F−type terms for Type II super-
string on a Calabi–Yau manifold are of the general form∫

d4xd4θ(WabW ab)gFg(XΛ), (2.547)

where Wab is the graviphoton super–field of the N = 2 super–gravity and XΛ

are the vector multiplet fields. The lowest component of W is F the gravipho-
ton field strength and the highest one is the Riemann tensor. The lowest
components of XΛ are the complex scalars parameterizing Calabi–Yau mod-
uli and their highest components are the associated U(1) vector fields. These
terms contribute to multiple graviphoton–graviton scattering. (2.547) includes
(after θ integrations) an R2F 2g−2 term. The topological string partition func-
tion Ztop represents the canonical ensemble for multi–particle spinning five
dimensional black holes [BMP97, KKV99].

Recently, [OSV04] proposed a simple and direct relationship between the
second–quantized topological string partition function Ztop and black hole
partition function ZBH in four dimensions of the form
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ZBH(pΛ, φΛ) = |Ztop(XΛ)|2, where XΛ = pΛ +
i
π
φΛ

in a certain Kähler gauge. The l.h.s. here is evaluated as a function of integer
magnetic charges pΛ and continuous electric potentials φΛ, which are conju-
gate to integer electric charges qΛ. The r.h.s. is the holomorphic square of the
partition function for a gas of topological strings on a Calabi–Yau whose mod-
uli are those associated to the charges/potentials (pΛ, φΛ) via the attractor
equations [OSV04]. Both sides of (2.548) are defined in a perturbation expan-
sion in 1/Q, where Q is the graviphoton charge carried by the black hole.18

The nonperturbative completion of either side of (2.548) might in principle
be defined as the partition function of the holographic CFT dual to the black
hole, as in [SV96]. Then we have the triple equality,

ZCFT = ZBH = |Ztop|2.

The existence of fundamental connection between 4D black holes and the
topological string might have been anticipated from the following observation.
Calabi–Yau spaces have two types of moduli: Kähler and complex structure.
The world–sheet twisting which produces the A (B) model topological string
from the critical superstring eliminates all dependence on the complex struc-
ture (Kähler) moduli at the perturbative level. Hence the perturbative topo-
logical string depends on only half the moduli. Black hole entropy on the other
hand, insofar as it is an intrinsic property of the black hole, cannot depend
on any externally specified moduli. What happens at leading order is that
the moduli in vector multiplets are driven to attractor values at the horizon
which depend only on the black hole charges and not on their asymptotically
specified values. Hypermultiplet vevs on the other hand are not fixed by an
attractor mechanism but simply drop out of the entropy formula. It is natural
to assume this is valid to all orders in a 1/Q expansion. Hence the perturbative
topological string and the large black hole partition functions depend on only
half the Calabi–Yau moduli. It would be surprising if string theory produced
two functions on the same space that were not simply related. Indeed [OSV04]
argued that they were simply related as in (2.548).

Supergravity Area–Entropy Formula

Recall that a well–known hypothesis by J. Bekenstein and S. Hawking states
that the entropy of a black hole is proportional to the area of its horizon (see
[HE79]). This area is a function of the black hole mass, or in the extremal case,
of its charges. Here we review the leading semiclassical area–entropy formula
for a general N = 2, d = 4 extremal black hole characterized by magnetic
and electric charges (pΛ, qΛ), recently reviewed in [OSV04]. The asymptotic
values of the moduli in vector multiplets, parameterized by complex projective
coordinates XΛ, (Λ = 0, 1, . . . , nV ) in the black hole solution, are arbitrary.

18 The string coupling gs is in a hypermultiplet and decouples from the computation.
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These moduli couple to the electromagnetic fields and accordingly vary as a
function of the radius. At the horizon they approach an attractor point whose
location in the moduli space depends only on the charges. The locations of
these attractor points can be found by looking for supersymmetric solutions
with constant moduli. They are determined by the attractor equations,

pΛ = Re[CXΛ], qΛ = Re[CF0Λ], (2.548)

where F0Λ = ∂F0/∂X
Λ are the holomorphic periods, and the subscript 0

distinguishes these from the string loop corrected periods to appear in the
next subsection. Both (pΛ, qΛ) and (XΛ, F0Λ) transform as vectors under the
Sp(2n+ 2;Z) duality group.

The (2nv+2) real equations (2.548) determine the (nv+2) complex quan-
tities (C,XΛ) up to Kähler transformations, which act as

K → K − f(X)− f̄(X̄), XΛ → efXΛ, F0 → e2fF0, C → e−fC,

where the Kähler potential K is given by

e−K = i(X̄ΛF0Λ −XΛF̄0Λ).

We could at this point set C = 1 and fix the Kähler gauge but later we
shall find other gauges useful. It is easy to see that (as required) the charges
(pΛ, qΛ) determined by the attractor equations (2.548) are invariant under
Kähler transformations. Given the horizon attractor values of the moduli de-
termined by (2.548) the Bekenstein–Hawking entropy SBH may be written
as

SBH =
1
4
Area = π|Q|2,

where Q = Qm + iQe is a complex combination of the magnetic and electric
graviphoton charges and

|Q|2 =
i
2
(
qΛC̄X̄

Λ − pΛC̄F̄0Λ

)
=
CC̄

4
e−K .

The normalization of Q here is chosen so that |Q| equals the radius of the two
sphere at the horizon.

It is useful to rephrase the above results in the context of type IIB super-
strings in terms of geometry of Calabi–Yau. In this case the attractor equations
fix the complex geometry of the Calabi–Yau. The electric/magentic charges
correlate with three cycles of Calabi–Yau. Choosing a symplectic basis for the
three cycles gives a choice of the splitting to electric and magnetic charges.
Let AΛ denote a basis for the electric three cycles, BΣ the dual basis for the
magnetic charges and Ω the holomorphic 3–form at the attractor point. Ω is
fixed up to an overall multiplication by a complex number Ω → λΩ. There is
a unique choice of λ such that the resulting Ω has the property that
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pΛ =
∫
AΛ

ReΩ = Re[CXΛ], qΛ =
∫
BΛ

ReΩ = Re[CF0Λ],

where ReΩ =
1
2
(Ω +Ω).

In terms of this choice, the black hole entropy can be written as

SBH =
π

4

∫
CY

Ω ∧Ω.

Higher–Order Corrections

F−term corrections to the action are encoded in a string loop corrected holo-
morphic prepotential

F (XΛ,W 2) =
∞∑
h=0

Fh(XΛ)W 2h, (2.549)

where Fh can be computed by topological string amplitudes (as we review in
the next section) andW 2 involves the square of the anti–self dual graviphoton
field strength. This obeys the homogeneity equation

XΛ∂ΛF (XΛ,W 2) +W∂WF (XΛ,W 2) = 2F (XΛ,W 2). (2.550)

Near the black hole horizon, the attractor value of W 2 obeys C2W 2 = 256,
and therefore the exact attractor equations read

pΛ = Re[CXΛ], qΛ = Re
[
CFΛ

(
XΛ,

256
C2

)]
. (2.551)

This is essentially the only possibility consistent with symplectic invariance.
It has been then argued that the entropy as a function of the charges is

SBH =
πi
2

(qΛC̄X̄Λ − pΛC̄F̄Λ) +
π

2
Im[C3∂CF ], (2.552)

where FΛ, XΛ and C are expressed in terms of the charges using (2.551).

Topological Strings

Partition Functions for Black Hole and Topological Strings. The
notion of topological string was introduced in [Wit90]. Subsequently a con-
nection between them and superstring was discovered: It was shown in
[BCO94, AGN94], that the superstring loop corrected F−terms (2.549) can
be computed as topological string amplitudes. The purpose of this subsec-
tion is to translate the super–gravity notation of the previous section to the
topological string notation.

The second quantized partition function for the topological string may be
written
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Ztop(tA, gtop) = exp
[
Ftop(tA, gtop)

]
, where

Ftop(tA, gtop) =
∑
h

g2h−2
top Ftop,h(tA),

and Ftop,h is the h−loop topological string amplitude. The Kähler moduli are
expressed in the flat coordinates

tA =
XA

X0
= θA + irA,

where rA are the Kähler classes of the Calabi–Yau M and θA are periodic
θA ∼ θA + 1.

We would like to determine relations between super–gravity quantities
and topological string quantities. Using the homogeneity property (2.550) and
the expansion (2.549), the holomorphic prepotential in super–gravity can be
expressed as

F (CXΛ, 256) = (CX0)2F
(
XΛ

X0
,

256
(CX0)2

)
=

∞∑
h=0

(CX0)2−2hfh(tA), (2.553)

where fh(tA) is related to Fh(XΛ) in (2.549) as

fh(tA) = 162hFh

(
XΛ

X0

)
.

This suggests an identification of the form fh(tA) ∼ Ftop,h(tA) and gtop ∼
(CX0)−1. For later purposes, we need precise relations between super–gravity
and topological string quantities, including numerical coefficients. These can
be determined by studying the limit of a large Calabi–Yau space.

In the super–gravity notation, the genus 0 and 1 terms in the large volume
are given by

F
(
CXΛ, 256

)
= C2DABC

XAXBXC

X0
− 1

6
c2A
XA

X0
+ · · ·

= (CX0)2DABCtAtBtC −
1
6
c2At

A + · · · ,

where c2A =
∫
M

c2 ∧ αA,

with c2 being the second Chern class of M , and CABC = −6DABC are the
4–cycle intersection numbers. These terms are normalized so that the mixed
entropy SBH is given by (2.552). On the other hand, the topological string
amplitude in this limit is given by
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Ftop = − (2π)3i
g2top

DABCt
AtBtC − πi

12
c2At

A + · · · (2.554)

The normalization here is fixed by the holomorphic anomaly equations in
[BCO94], which are nonlinear equations for Ftop,h.

Comparing the one–loop terms in (2.553) and (2.554), which are indepen-
dent of gtop, we find

F (CXΛ, 256) = −2i
π
Ftop(tA, gtop).

Given this, we can compare the genus 0 terms to find

gtop = ± 4πi
CX0

.

This implies

lnZBH = −π Im
[
F (CXΛ, 256)

]
= Ftop + F̄top and

ZBH(φΛ, pΛ) = |Ztop(tA, gtop)|2, with

tA =
pA + iφA/π
p0 + iφ0/π

, gtop = ± 4πi
p0 + iφ0/π

.

Supergravity Approach to ZBH . The above relation

ZBH = |Ztop|2 (2.555)

can have a simpler super–gravity derivation [OSV04].
A main ingredient in this derivation is the observation that the N = 2

super–gravity coupled to vector multiplets can be written as the action

S =
∫
d4xd4θ (super−−volume form) + h.c. =

∫
d4x
√
−gR+ ..., (2.556)

where the super–volume form in the above depends non–trivially on curvature
of the fields. This reproduces the ordinary action after integrating over d4θ and
picking up the θ4 term in the super–volume. In the context of black holes the
boundary terms accompanying (2.556) give the classical black hole entropy.

We now become the derivation of (2.555). As was observed in [BCO94,
AGN94], topological string computes the terms

F =
∞∑
h=0

∫
d4xd4θFh(X)(W 2)g + c.c. (2.557)

There are various terms one can get from the above action after integrating
over d4θ. Let us concentrate on one of the terms which turns out to be the
relevant one for us: Take the top components of XΛ and W 2, and absorb the
d4θ integral from the super–volume measure as in (2.556). We will work in
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the gauge X0 ∼ 1 and thus C ∼ 1/gtop. As noted before in the near–horizon
black hole geometry in this gauge the top component W 2 ∼ 1/C2 ∼ g2top and
the XΛ are fixed by the attractor mechanism. Thus, we have the black hole
free energy

lnZBH =
∞∑
h=0

g2htopFtop,h(XΛ/X0)
∫
d4xd4θ + c.c.

=
∞∑
g=0

(gtop)2h−2Ftop,h(XΛ/X0) + c.c.

= 2 Re Ftop, (using
∫
d4xd4θ ∼ 1/g2top).

Upon exponentiation this leads to (2.555).
Here we have shown that if we consider one absorption of θ4 term in (2.557)

upon d4θ integral we get the desired result. That there be no other terms is
not obvious. For example another way to absorb the θ’s would have given the
familiar term R2F 2g−2 where F is the graviphoton field. However, such terms
do not contribute in the black hole background. It would be nice to find a
simple way to argue why these terms do not contribute and that we are left
with this simple absorption of the θ integrals.

2.2.9 Turbulence and Chaos Field Theory

Recall that chaos theory , of which turbulence is the most extreme form, started
in 1963, when Ed Lorenz from MIT took the Navier–Stokes equations from
viscous fluid dynamics and reduced them into three first–order coupled non-
linear ODEs (see subsection 2.1.3 above), to demonstrate the idea of sensitive
dependence upon initial conditions and associated chaotic behavior .

It is well–known that the viscous fluid evolves according to the nonlinear
Navier–Stokes PDEs19

u̇ + u ·∇u +∇p/ρ = ν∆u + f , (2.558)

19 Recall that the Navier–Stokes equations, named after C.L. Navier and G.G.
Stokes, are a set of PDEs that describe the motion of liquids and gases, based on
the fact that changes in momentum of the particles of a fluid are the product of
changes in pressure and dissipative viscous forces acting inside the fluid. These
viscous forces originate in molecular interactions and dictate how viscous a fluid
is, so the Navier–Stokes PDEs represent a dynamical statement of the balance
of forces acting at any given region of the fluid. They describe the physics of a
large number of phenomena of academic and economic interest (they are useful
to model weather, ocean currents, water flow in a pipe, motion of stars inside a
galaxy, flow around an airfoil (wing); they are also used in the design of aircraft
and cars, the study of blood flow, the design of power stations, the analysis of
the effects of pollution, etc).
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where u = u(xi, t), (i = 1, 2, 3) is the fluid 3D velocity, p = p(xi, t) is
the pressure field, ρ, ν are the fluid density and viscosity coefficient, while
f = f(xi, t) is the nonlinear external energy source. To simplify the problem,
we can impose to f the so–called Reynolds condition, 〈f · u〉 = ε, where ε is
the average rate of energy injection.

Fluid dynamicists believe that Navier–Stokes equations (2.558) accurately
describe turbulence. A mathematical proof of the global regularity of the so-
lutions to the Navier–Stokes equations is a very challenging problem and yet
such a proof or disproof does not solve the problem of turbulence. However, it
may help understanding turbulence. Turbulence is more of a dynamical sys-
tem problem. We will see below that studies on chaos in PDEs indicate that
turbulence can have Bernoulli shift dynamics which results in the wandering
of a turbulent solution in a fat domain in the phase space; thus, turbulence
can not be averaged. The hope is that turbulence can be controlled [Li04].

The first demonstration of existence of an unstable recurrent pattern in
a 3D turbulent hydrodynamic flow was performed in [KK01], using the full
numerical simulation, a 15,422-dimensional discretization of the 3D Plane
Couette turbulence at the Reynolds number Re = 400.20 The authors found
an important unstable spatio–temporally periodic solution, a single unstable
recurrent pattern.

Classical Chaos in Lorenz and Laser ODEs

Before we focus on the turbulent geometry of the Navier–Stokes PDEs (2.558),
let us briefly review the Lorenz reduced system of nonlinear ODEs

ẋ = a(y − x), ẏ = bx− y − xz, ż = xy − cz, (2.559)

where x, y and z are dynamical variables, constituting the 3D phase–space of
the Lorenz flow ; and a, b and c are the parameters of the system. Originally,
Lorenz used this model to describe the unpredictable behavior of the weather,
20 Recall that the Reynolds number Re is the most important dimensionless num-

ber in fluid dynamics and provides a criterion for determining dynamical similar-
ity . Where two similar objects in perhaps different fluids with possibly different
flowrates have similar fluid flow around them, they are said to be dynamically
similar. Re is the ratio of inertial forces to viscous forces and is used for deter-
mining whether a flow will be laminar or turbulent. Laminar flow occurs at low
Reynolds numbers, where viscous forces are dominant, and is characterized by
smooth, constant fluid motion, while turbulent flow, on the other hand, occurs at
high Res and is dominated by inertial forces, producing random eddies, vortices
and other flow fluctuations. The transition between laminar and turbulent flow is
often indicated by a critical Reynolds number (Recrit), which depends on the ex-
act flow configuration and must be determined experimentally. Within a certain
range around this point there is a region of gradual transition where the flow is
neither fully laminar nor fully turbulent, and predictions of fluid behavior can be
difficult.
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where x is the rate of convective overturning (convection is the process by
which heat is transferred by a moving fluid), y is the horizontal temperature
overturning, and z is the vertical temperature overturning; the parameters are:
a ≡ P−proportional to the Prandtl number (ratio of the fluid viscosity of a
substance to its thermal conductivity, usually set at 10), b ≡ R−proportional
to the Rayleigh number (difference in temperature between the top and bot-
tom of the system, usually set at 28), and c ≡ K−a number proportional to
the physical proportions of the region under consideration (width to height ra-
tio of the box which holds the system, usually set at 8/3). The Lorenz system
(2.559) has the properties:

1. symmetry : (x, y, z) → (−x,−y, z) for all values of the parameters, and
2. the z−axis (x = y = 0) is invariant (i.e., all trajectories that start on it

also end on it).

Nowadays, it is well–known that the Lorenz model is a paradigm for low–
dimensional chaos in dynamical systems in synergetics and this model or its
modifications are widely investigated in connection with modelling purposes
in meteorology, hydrodynamics, laser physics, superconductivity, electronics,
oil industry, chemical and biological kinetics, etc.

Fig. 2.8. The celebrated ‘Lorenz–mask’ strange attractor, obtained by simulating
the equations (2.559) in MatlabTM .

The 3D phase–portrait of the Lorenz system (2.8) shows the celebrated
‘Lorenz mask ’, a special type of (fractal , or ‘strange’) chaotic Lorenz attrac-
tor (see Figure 2.8). It depicts the famous ‘butterfly effect ’, (i.e., sensitive
dependence on initial conditions) – the idea in meteorology that the flapping
of a butterfly’s wing will create a disturbance that in the chaotic motion of
the atmosphere will become amplified eventually to change the large scale
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atmospheric motion, so that the long term behavior becomes impossible to
forecast. The Lorenz mask has the following characteristics:

1. Trajectory does not intersect itself in three dimensions,
2. Trajectory is not periodic or transient,
3. General form of the shape does not depend on initial conditions, and
4. Exact sequence of loops is very sensitive to the initial conditions.

In 1975, H. Haken showed in [Hak83, Hak93] that the Lorenz equations
(2.8) were isomorphic to the Maxwell–Haken laser equations, that were the
starting point for Haken’s synergetics,

Ė = σ(P − E), Ṗ = β(ED − P ), Ḋ = γ(σ − 1−D − σEP ),

Here, the variables in the Lorenz equations, namely x,y and z correspond to
the slowly varying amplitudes of the electric field E and polarization P and
the inversion D respectively in the Maxwell–Haken equations. The parameters
are related via c = γ

β , a = σ
β and b = σ + 1, where γ is the relaxation rate

of the inversion, β is the relaxation rate of the polarization, σ is the field
relaxation rate, and σ represents the normalized pump power.

Turbulent Flow

Recall that in fluid dynamics, turbulent flow is a flow regime characterized
by low momentum diffusion, high momentum convection, and rapid variation
of pressure and velocity in space and time. Flow that is not turbulent is
called laminar flow . Also, recall that the Reynolds number Re characterizes
whether flow conditions lead to laminar or turbulent flow. The structure of
turbulent flow was first described by A. Kolmogorov. Consider the flow of
water over a simple smooth object, such as a sphere. At very low speeds
the flow is laminar, i.e., the flow is locally smooth (though it may involve
vortices on a large scale). As the speed increases, at some point the transition
is made to turbulent (or, chaotic) flow. In turbulent flow, unsteady vortices21

appear on many scales and interact with each other. Drag due to boundary
layer skin friction increases. The structure and location of boundary layer
separation often changes, sometimes resulting in a reduction of overall drag.
Because laminar–turbulent transition is governed by Reynolds number, the
same transition occurs if the size of the object is gradually increased, or the
viscosity of the fluid is decreased, or if the density of the fluid is increased.
21 Recall that a vortex can be any circular or rotary flow that possesses vorticity.

Vortex represents a spiral whirling motion (i.e., a spinning turbulent flow) with
closed streamlines. The shape of media or mass rotating rapidly around a center
forms a vortex. It is a flow involving rotation about an arbitrary axis.
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Vorticity Dynamics

Vorticity ω = ω(xi, t), (i = 1, 2, 3) is a geometrical concept used in fluid
dynamics, which is related to the amount of ‘circulation’ or ‘rotation’ in a
fluid. More precisely, vorticity is the circulation per unit area at a point in
the flow field, or formally, ω = ∇×u, where u = u(xi, t) is the fluid velocity.
It is a vector quantity, whose direction is (roughly speaking) along the axis of
the swirl. The movement of a fluid can be said to be vortical if the fluid moves
around in a circle, or in a helix, or if it tends to spin around some axis. Such
motion can also be called solenoidal. In the atmospheric sciences, vorticity
is a property that characterizes large–scale rotation of air masses. Since the
atmospheric circulation is nearly horizontal, the 3D vorticity is nearly vertical,
and it is common to use the vertical component as a scalar vorticity.

A vortex can be seen in the spiraling motion of air or liquid around a
center of rotation. Circular current of water of conflicting tides form vortex
shapes. Turbulent flow makes many vortices. A good example of a vortex is
the atmospheric phenomenon of a whirlwind or a tornado. This whirling air
mass mostly takes the form of a helix, column, or spiral. Tornadoes develop
from severe thunderstorms, usually spawned from squall lines and supercell
thunderstorms, though they sometimes happen as a result of a hurricane.22

Another example is a mesovortex on the scale of a few miles (smaller than
a hurricane but larger than a tornado). On a much smaller scale, a vortex is
usually formed as water goes down a drain, as in a sink or a toilet. This occurs
in water as the revolving mass forms a whirlpool.23 This whirlpool is caused
by water flowing out of a small opening in the bottom of a basin or reservoir.
This swirling flow structure within a region of fluid flow opens downward
from the water surface. In the hydrodynamic interpretation of the behavior of
electromagnetic fields, the acceleration of electric fluid in a particular direction
creates a positive vortex of magnetic fluid. This in turn creates around itself
a corresponding negative vortex of electric fluid.

Dynamical Similarity and Eddies

In order for two flows to be similar they must have the same geometry
and equal Reynolds numbers. When comparing fluid behavior at homologous
points in a model and a full–scale flow, we have Re∗ = Re, where quantities
marked with ∗ concern the flow around the model and the other the real flow.
22 Recall that a hurricane is a much larger, swirling body of clouds produced by

evaporating warm ocean water and influenced by the Earth’s rotation. In partic-
ular, polar vortex is a persistent, large–scale cyclone centered near the Earth’s
poles, in the middle and upper troposphere and the stratosphere. Similar, but far
greater, vortices are also seen on other planets, such as the permanent Great Red
Spot on Jupiter and the intermittent Great Dark Spot on Neptune.

23 Recall that a whirlpool is a swirling body of water produced by ocean tides or by
a hole underneath the vortex, where water drains out, as in a bathtub.
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This allows us to perform experiments with reduced models in water channels
or wind tunnels, and correlate the data to the real flows. Note that true dy-
namic similarity may require matching other dimensionless numbers as well,
such as the Mach number used in compressible flows, or the Froude number
that governs free-surface flows.

In a turbulent flow, there is a range of scales of the fluid motions, sometimes
called eddies. A single packet of fluid moving with a bulk velocity is called an
eddy . The size of the largest scales (eddies) are set by the overall geometry of
the flow. For instance, in an industrial smoke–stack, the largest scales of fluid
motion are as big as the diameter of the stack itself. The size of the smallest
scales is set by Re. As Re increases, smaller and smaller scales of the flow are
visible. In the smoke–stack, the smoke may appear to have many very small
bumps or eddies, in addition to large bulky eddies. In this sense, Re is an
indicator of the range of scales in the flow. The higher the Reynolds number,
the greater the range of scales.

Spatio–Temporal Chaos and Turbulence in PDEs

In their first edition of Fluid Mechanics [LL59], Landau and Lifschitz proposed
a route to turbulence in spatio–temporal fluid systems. Since then, much work,
in dynamical systems, experimental fluid dynamics, and many other fields has
been done concerning the routes to turbulence. Ever since the discovery of
chaos in low–dimensional systems, researchers have been trying to use the
concept of chaos to understand turbulence [RT71]. recall that there are two
types of fluid motions: laminar flows and turbulent flows. Laminar flows look
regular, and turbulent flows are non–laminar and look irregular. Chaos is more
precise, for example, in terms of the so–called Bernoulli shift dynamics. On
the other hand, even in low–dimensional systems, there are solutions which
look irregular for a while, and then look regular again. Such a dynamics is
often called a transient chaos.

Low–dimensional chaos is the starting point of a long journey toward un-
derstanding turbulence. To have a better connection between chaos and tur-
bulence, one has to study chaos in PDEs [Li04].

Sine–Gordon Equation

Consider the simple perturbed sine–Gordon equation [Li04c]

utt = c2uxx + sinu+ ε[−aut + cos t sin3 u], (2.560)

subject to periodic boundary condition

u(t, x+ 2π) = u(t, x) ,

as well as even or odd constraint,

u(t,−x) = u(t, x), or u(t,−x) = −u(t, x) ,
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where u is a real–valued function of two real variables (t, x), c is a real constant,
ε ≥ 0 is a small perturbation parameter, and a > 0 is an external parameter.
One can view (2.560) as a flow (u, ut) defined in the phase–space manifold
M ≡ H1×L2, where H1 and L2 are the Sobolev spaces on [0, 2π]. A point in
the phase–space manifoldM corresponds to two profiles, (u(x), ut(x)). [Li04c]
has proved that there exists a homoclinic orbit (u, ut) = h(t, x) asymptotic to
(u, ut) = (0, 0). Let us define two orbits segments

η0 : (u, ut) = (0, 0) , and η1 : (u, ut) = h(t, x) , (t ∈ [−T, T ] ).

When T is large enough, η1 is almost the entire homoclinic orbit (chopped off
in a small neighborhood of (u, ut) = (0, 0)). To any binary sequence

a = {· · · a−2a−1a0, a1a2 · · · } , (ak ∈ {0, 1}), (2.561)

one can associate a pseudo–orbit

ηa = {· · · ηa−2
ηa−1

ηa0 , ηa1ηa2 · · · } .

The pseudo–orbit ηa is not a true orbit but rather ‘almost an orbit’. One
can prove that for any such pseudo–orbit ηa, there is a unique true orbit in
its neighborhood [Li04c]. Therefore, each binary sequence labels a true orbit.
All these true orbits together form a chaos. In order to talk about sensitive
dependence on initial data, one can introduce the product topology by defining
the neighborhood basis of a binary sequence

a∗ = {· · · a∗−2a
∗
−1a

∗
0, a

∗
1a

∗
2 · · · } as ΩN = {a : an = a∗n , |n| ≤ N} .

The Bernoulli shift on the binary sequence (2.561) moves the comma one step
to the right. Two binary sequences in the neighborhood ΩN will be of order
Ω1 away after N iterations of the Bernoulli shift. Since the binary sequences
label the orbits, the orbits will exhibit the same feature. In fact, the Bernoulli
shift is topologically conjugate to the perturbed sine–Gordon flow.

Replacing a homoclinic orbit by its fattened version – a homoclinic tube,
or by a heteroclinic cycle, or by a heteroclinically tubular cycle; one can still
obtain the same Bernoulli shift dynamics. Also, adding diffusive perturbation
εbutxx to (2.560), one can still prove the existence of homoclinics or hetero-
clinics, but the Bernoulli shift result has not been established [Li04c].

Complex Ginzburg–Landau Equation

Consider the complex–valued Ginzburg–Landau equation [Li04a, Li04b],

iqt = qxx + 2[|q|2 − ω2] + iε[qxx − αq + β] , (2.562)

which is subject to periodic boundary condition and even constraint

q(t, x+ 2π) = q(t, x) , q(t,−x) = q(t, x) ,
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where q is a complex-valued function of two real variables (t, x), (ω, α, β) are
positive constants, and ε ≥ 0 is a small perturbation parameter. In this case,
one can prove the existence of homoclinic orbits [Li04a]. But the Bernoulli
shift dynamics was established under generic assumptions [Li04b].

A real fluid example is the amplitude equation of Faraday water wave,
which is also a complex Ginzburg–Landau equation [Li04d],

iqt = qxx + 2[|q|2 − ω2] + iε[qxx − αq + βq̄] , (2.563)

subject to the same boundary condition as (2.562). For the first time, one can
prove the existence of homoclinic orbits for a water wave equation (2.563).
The Bernoulli shift dynamics was also established under generic assumptions
[Li04d]. That is, one can prove the existence of chaos in water waves under
generic assumptions.

The nature of the complex Ginzburg–Landau equation is a parabolic equa-
tion which is near a hyperbolic equation. The same is true for the perturbed
sine–Gordon equation with the diffusive term εbutxx added. They contain ef-
fects of diffusion, dispersion, and nonlinearity. The Navier–Stokes equations
are diffusion–advection equations. The advective term is missing from the
perturbed sine–Gordon equation and the complex Ginzburg–Landau equa-
tion. However, the modified KdV equation (1.52) does contain an advective
term. In principle, perturbed modified KdV equation should have the same
feature as the perturbed sine–Gordon equation. Turbulence happens when the
diffusion is weak, i.e., in the near hyperbolic regime. One should hope that
turbulence should share some of the features of chaos in the perturbed sine–
Gordon equation. There is a popular myth that turbulence is fundamentally
different from chaos because turbulence contains many unstable modes. In
both the perturbed sine–Gordon equation and the complex Ginzburg–Landau
equation, one can incorporate as many unstable modes as one likes, the re-
sulting Bernoulli shift dynamics is still the same. On a computer, the solution
with more unstable modes may look rougher, but it is still chaos [Li04].

In a word, dynamics of strongly nonlinear classical fields is ‘turbulent’, not
‘laminar’.

On the other hand, field theories such as 4-dimensional QCD or gravity
have many dimensions, symmetries, tensorial indices. They are far too com-
plicated for exploratory forays into this forbidding terrain. Instead, we con-
sider a simple spatio–temporally chaotic nonlinear system of physical interest
[CCP96].

Kuramoto–Sivashinsky System

One of the simplest and extensively studied spatially extended dynamical
systems is the Kuramoto–Sivashinsky (KS) system [Kur76, Siv77]

ut = (u2)x − uxx − νuxxxx, (2.564)
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which arises as an amplitude equation for interfacial instabilities in a vari-
ety of contexts. The so–called flame front u(x, t) has compact support, with
x ∈ [0, 2π] a periodic space coordinate. The u2 term makes this a nonlinear
system, t ≥ 0 is the time, and ν is a 4–order ‘viscosity’ damping parameter
that irons out any sharp features. Numerical simulations demonstrate that as
the viscosity decreases (or the size of the system increases), the flame front
becomes increasingly unstable and turbulent. The task of the theory is to de-
scribe this spatio-temporal turbulence and yield quantitative predictions for
its measurable consequences.

For any finite spatial resolution, the KS system (2.564) follows approxi-
mately for a finite time a pattern belonging to a finite alphabet of admissible
patterns, and the long term dynamics can be thought of as a walk through
the space of such patterns, just as chaotic dynamics with a low dimensional
attractor can be thought of as a succession of nearly periodic (but unstable)
motions. The periodic orbit gives the machinery that converts this intuitive
picture into precise calculation scheme that extracts asymptotic time predic-
tions from the short time dynamics. For extended systems the theory gives
a description of the asymptotics of partial differential equations in terms of
recurrent spatio–temporal patterns.

The KS periodic orbit calculations of Lyapunov exponents and escape
rates [CCP96] demonstrate that the periodic orbit theory predicts observable
averages for deterministic but classically chaotic spatio–temporal systems.
The main problem today is not how to compute such averages – periodic orbit
theory as well as direct numerical simulations can handle that – but rather
that there is no consensus on what the sensible experimental observables worth
are predicting [Cvi00].

Burgers Dynamical System

Consider the following Burgers dynamical system on a functional manifold
M ⊂ Ck(R; R):

ut = uux + uxx, (2.565)

where u ∈ M, t ∈ R is an evolution parameter. The flow of (2.565) on M
can be recast into a set of 2–forms {α} ⊂ Λ2(J(R2; R)) upon the adjoint
jet–manifold J(R2; R) as follows [BPS98]:

{α} =
{
du(0) ∧ dt− u(1)dx ∧ dt = α1, du(0) ∧ dx+ u(0)du(0) ∧ dt

+du(1) ∧ dt = α2 :
(
x, t;u(0), u(1)

)τ ∈M4 ⊂ J1(R2; R)
}
,

(2.566)

where M4 is some finite–dimensional submanifold in J1(R2; R)) with coor-
dinates (x, t, u(0) = u, u(1) = ux). The set of 2–forms (2.566) generates the
closed ideal I(α), since

dα1 = dx ∧ α2 − u(0)dx ∧ α1, dα2 = 0, (2.567)
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the integral submanifold M̄ = {x, t ∈ R} ⊂M4 being defined by the condition
I(α) = 0. We now look for a reduced ‘curvature’ 1–form Γ ∈ Λ1(M4) ⊗ G,
belonging to some not yet determined Lie algebra G. This 1–form can be
represented using (2.566), as follows:

Γ = b(x)(u(0), u(1))dx+ b(t)(u(0), u(1))dt, (2.568)

where elements b(x), b(t) ∈ G satisfy such determining equations [BPS98]

∂b(x)

∂u(0) = g2, ∂b(x)

∂u(1) = 0, ∂b(t)

∂u(0) = g1 + g2u(0),
∂b(t)

∂u(1) = g2, [b(x), b(t)] = −u(1)g1.
(2.569)

The set (2.569) has the following unique solution

b(x) = A0 +A1u
(0),

b(t) = u(1)A1 + u(0)2

2 A1 + [A1, A0]u(0) +A2,
(2.570)

where Aj ∈ G, j = 0, 2, are some constant elements on M of a Lie algebra G
under search, enjoying the next Lie structure equations (see subsection 1.2.8
above):

[A0, A2] = 0,

[A0, [A1, A0]] + [A1, A2] = 0,

[A1, [A1, A0]] + 1
2 [A0, A1] = 0.

(2.571)

From (2.569) one can see that the curvature 2–form Ω ∈ spanR{A1, [A0, A1] :
Aj ∈ G, j = 0, 1}. Therefore, reducing via the Ambrose–Singer theorem the
associated principal fibred frame space P (M ;G = GL(n)) to the principal
fibre bundle P (M ;G(h)), where G(h) ⊂ G is the corresponding holonomy Lie
group of the connection Γ on P , we need to satisfy the following conditions
for the set G(h) ⊂ G to be a Lie subalgebra in G : ∇mx ∇nt Ω ∈ G(h) for all
m,n ∈ Z+.

Let us try now to close the above transfinitive procedure requiring that
[BPS98]

G(h) = G(h)0 = spanR{∇mx ∇nxΩ ∈ G : m+ n = 0} (2.572)

This means that

G(h)0 = spanR{A1, A3 = [A0, A1]}. (2.573)

To enjoy the set of relations (2.571) we need to use expansions over the basis
(2.573) of the external elements A0, A2 ∈ G(h):

A0 = q01A1 + q13A3, A2 = q21A1 + q23A3. (2.574)
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Substituting expansions (2.574) into (2.571), we get that q01 = q23 = λ, q21 =
−λ2/2 and q03 = −2 for some arbitrary real parameter λ ∈ R, that is G(h) =
spanR{A1, A3}, where

[A1, A3] = A3/2; A0 = λA1 − 2A3, A2 = −λ2A1/2 + λA3. (2.575)

As a result of (2.575) we can state that the holonomy Lie algebra G(h) is a
real 2D one, assuming the following (2× 2)−matrix representation [BPS98]:

A1 =
(

1/4 0
0 −1/4

)
, A3 =

(
0 1
0 0

)
,

A0 =
(
λ/4 −2
0 −λ/4

)
, A2 =

(
−λ2/8 λ

0 λ2/8

)
.

(2.576)

Thereby from (2.568), (2.570) and (2.576) we obtain the reduced curvature
1–form Γ ∈ Λ1(M)⊗ G,

Γ = (A0 + uA1)dx+ ((ux + u2/2)A1 − uA3 +A2)dt, (2.577)

generating parallel transport of vectors from the representation space Y of the
holonomy Lie algebra G(h):

dy + Γy = 0 (2.578)

upon the integral submanifold M̄ ⊂M4 of the ideal I(α), generated by the set
of 2–forms (2.566). The result (2.578) means also that the Burgers dynamical
system (2.565) is endowed with the standard Lax type representation, having
the spectral parameter λ ∈ R necessary for its integrability in quadratures.

Nonlinear Fluid Dynamics

In this subsection we will derive the general form of the Navier–Stokes equa-
tions (2.558) in nonlinear fluid dynamics.

Continuity Equation

Recall that the most important equation in fluid dynamics, as well as in
general continuum mechanics, is the celebrated equation of continuity, (we
explain the symbols in the following text)

∂tρ+ div(ρu) = 0. (2.579)

As a warm–up for turbulence, we will derive the continuity equation
(2.579), starting from the mass conservation principle. Let dm denote an
infinitesimal mass of a fluid particle. Then, using the absolute time derivative
operator ˙( ) ≡ D

dt (see Appendix), the mass conservation principle reads

˙dm = 0. (2.580)
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If we further introduce the fluid density ρ = dm/dv, where dv is an infinites-
imal volume of a fluid particle, then the mass conservation principle (2.580)
can be rewritten as

˙ρdv = 0,

which is the absolute derivative of a product, and therefore expands into

ρ̇dv + ρḋv = 0. (2.581)

Now, as the fluid density ρ = ρ(xk, t) is a function of both time t and
spatial coordinates xk, for k = 1, 2, 3, that is, a scalar–field , its total time
derivative ρ̇, figuring in (2.581), is defined by

ρ̇ = ∂tρ+ ∂xkρ ∂tx
k ≡ ∂tρ+ ρ;ku

k, (2.582)
or, in vector form ρ̇ = ∂tρ+ grad(ρ) · u,

where uk = uk(xk, t) ≡ u is the velocity vector–field of the fluid.
Regarding ḋv, the other term figuring in (2.581), we start by expanding

an elementary volume dv along the sides {dxi(p), dx
j
(q), dx

k
(r)} of an elementary

parallelepiped, as

dv =
1
3!
δpqrijk dx

i
(p)dx

j
(q)dx

k
(r), (i, j, k, p, q, r = 1, 2, 3)

so that its absolute derivative becomes

ḋv =
1
2!
δpqrijk

˙
dxi(p)dx

j
(q)dx

k
(r)

=
1
2!
ui;lδ

pqr
ijk dx

l
(p)dx

j
(q)dx

k
(r) (using ˙

dxi(p) = ui;ldx
l
(p)),

which finally simplifies into

ḋv = uk;kdv ≡ div(u) dv. (2.583)

Substituting (2.582) and (2.583) into (2.581) gives

˙ρdv ≡
(
∂tρ+ ρ;ku

k
)
dv + ρuk;kdv = 0. (2.584)

As we are dealing with arbitrary fluid particles, dv �= 0, so from (2.584) follows

∂tρ+ ρ;ku
k + ρuk;k ≡ ∂tρ+ (ρuk);k = 0. (2.585)

Equation (2.585) is the covariant form of the continuity equation, which in
standard vector notation becomes (2.579), i.e., ∂tρ+ div(ρu) = 0.
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Forces Acting on a Fluid

A fluid contained in a finite volume is subject to the action of both volume
forces F i and surface forces Si, which are respectively defined by

F i =
∫
v

ρf idv, and Si =
∮
a

σijdaj . (2.586)

Here, f i is a force vector acting on an elementary mass dm, so that the
elementary volume force is given by

dF i = f idm = ρf idv,

which is the integrand in the volume integral on l.h.s of (2.586). σij =
σij(xk, t) is the stress tensor–field of the fluid, so that the elementary force
acting on the closed oriented surface a is given by

dSi = σijdaj ,

where daj is an oriented element of the surface a; this is the integrand in the
surface integral on the r.h.s of (2.586).

On the other hand, the elementary momentum dKi of a fluid particle (with
elementary volume dv and elementary mass dm = ρdv) equals the product of
dm with the particle’s velocity ui, i.e.,

dKi = uidm = ρuidv,

so that the total momentum of the finite fluid volume v is given by the volume
integral

Ki =
∫
v

ρuidv. (2.587)

Now, the Newtonian–like force law for the fluid states that the time derivative
of the fluid momentum equals the resulting force acting on it, K̇i = F i, where
the resulting force F i is given by the sum of surface and volume forces,

F i = Si + F i =
∮
a

σijdaj +
∫
v

ρf idv. (2.588)

From (2.587), taking the time derivative and using ˙ρdv = 0, we get

K̇i =
∫
v

ρu̇idv,

where u̇i = u̇i(xk, t) ≡ u̇ is the acceleration vector–field of the fluid, so that
(2.588) gives ∮

a

σijdaj +
∫
v

ρ(f i − u̇i)dv = 0. (2.589)
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Now, assuming that the stress tensor σij = σij(xk, t) does not have any
singular points in the volume v bounded by the closed surface a, we can
transform the surface integral in (2.589) in the volume one, i.e.,∮

a

σijdaj =
∫
v

σij;jdv, (2.590)

where σij;j denotes the divergence of the stress tensor . The expression (2.590)
shows us that the resulting surface force acting on the closed surface a equals
the flux of the stress tensor through the surface a. Using this expression, we
can rewrite (2.589) in the form∫

v

(
σij;j + ρf i − ρu̇i

)
dv = 0.

As this equation needs to hold for an arbitrary fluid element dv �= 0, it implies
the dynamical equation of motion for the fluid particles, also called the first
Cauchy law of motion,

σij;j + ρf i = ρu̇i. (2.591)

Constitutive and Dynamical Equations

Recall that, in case of a homogenous isotropic viscous fluid, the stress tensor
σij depends on the strain–rate tensor–field eij = eij(xk, t) of the fluid in such
a way that

σij = −pgij , when eij = 0,

where the scalar function p = p(xk, t) represents the pressure field. Therefore,
pressure is independent on the strain–rate tensor eij . Next, we introduce the
viscosity tensor–field βij = βij(xk, t), as

βij = σij + pgij , (2.592)

which depends exclusively on the strain–rate tensor (i.e., βij = 0 whenever
eij = 0). A viscous fluid in which the viscosity tensor βij can be expressed as
a function of the strain–rate tensor eij in the form

βij = α1(eI , eII , eIII)gij+α2(eI , eII , eIII)eij+α3(eI , eII , eIII)eike
kj , (2.593)

where αl = αl(eI , eII , eIII), (l = 1, 2, 3) are scalar functions of the basic
invariants (eI , eII , eIII) of the strain–rate tensor eij , is called the Stokes fluid .

If we take only the linear terms in (2.593), we get the constitutive equation
for the Newtonian fluid ,

βij = α1eIg
ij + α2e

ij , (2.594)

which is, therefore, a linear approximation of the constitutive equation (2.593)
for the Stokes fluid.
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If we now put (2.594) into (2.592) we get the dynamical equation for the
Newtonian fluid,

σij = −pgij + µeIgij + 2ηeij , (2.595)

If we put µ = ηV − 2
3η, where ηV is called the volume viscosity coefficient,

while η is called the shear viscosity coefficient, we can rewrite (2.595) as

σij = −pgij +
(
ηV −

2
3
η

)
eIg

ij + 2ηeij . (2.596)

Navier–Stokes Equations

From the constitutive equation of the Newtonian viscous fluid (2.596), by
taking the divergence, we get

σij;j = −p;jgij +
(
ηV −

2
3
η

)
eI;jg

ij + 2ηeij;j .

However, as eI;j = uk;kj as well as

eij;j =
1
2
(ui;j + uj;i);j =

1
2
(ui;jj + uj;ij ) =

1
2
∆ui +

1
2
uki;k

we get

σij;j = −p;jgij +
(
ηV −

2
3
η

)
uk;kjg

ij + η∆ui + ηuk;kjg
ij ,

or σij;j = −p;jgij +
(
ηV −

1
3
η

)
uk;kjg

ij + η∆ui.

If we now substitute this expression into (2.591) we get

ρu̇i = ρf i − p;jgij +
(
ηV −

1
3
η

)
uk;kjg

ij + η∆ui, (2.597)

that is a system of 3 scalar PDEs called the Navier–Stokes equations, which
in vector form read

ρu̇ = ρf − grad p+
(
ηV −

1
3
η

)
grad(divu) + η∆u. (2.598)

In particular, for incompressible fluids, divu = 0, we have

u̇ = f − 1
ρ

grad p+ ν∆u, where ν =
η

ρ
(2.599)

is the coefficient of kinematic viscosity.
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Computational Fluid Dynamics

It is possible to numerically solve the Navier–Stokes equations (2.598–2.599)
for laminar flow cases and for turbulent flows when all of the relevant length
scales can be contained on the grid (a direct numerical simulation).24 In gen-
eral however, the range of length scales appropriate to the problem is larger
than even today’s massively parallel computers can model. In these cases,
turbulent flow simulations require the introduction of a turbulence model.
The so–called Reynolds–averaged Navier–Stokes equations,25 and large eddy
simulations,26 are two techniques for dealing with these scales.

In many instances, other equations (mostly convective-diffusion equations)
are solved simultaneously with the Navier–Stokes equations. These other equa-
tions can include those describing species concentration, chemical reactions,
heat transfer, etc. More advanced codes allow the simulation of more complex
cases involving multi-phase flows (e.g., liquid/gas, solid/gas, liquid/solid) or
non–Newtonian fluids, such as blood.

In all of these approaches the same basic procedure is followed: (i) the
geometry of the problem is defined, (ii) the volume occupied by the fluid
is divided into the mesh of discrete cells, (iii) the physical modelling is de-
fined (e.g., the equations of motions + enthalpy + species conservation), (iv)
boundary conditions are defined (this involves specifying the fluid behavior
24 Direct numerical simulation (DNS) captures all of the relevant scales of turbulent

motion, so no model is needed for the smallest scales. This approach is extremely
expensive, if not intractable, for complex problems on modern computing ma-
chines, hence the need for models to represent the smallest scales of fluid motion.

25 Reynolds–averaged Navier–Stokes equations (RANS) is the oldest approach to
turbulence modelling. In this method, an ensemble version of the governing equa-
tions is solved, which introduces new apparent stresses known as Reynolds stress.
This adds a second–order tensor of unknown variables for which various mod-
els can give different levels of closure. It is a common misconception that the
RANS equations do not apply to flows with a time-varying mean flow because
these equations are ‘time–averaged’. In fact, non–stationary flows can equally be
treated. This is sometimes referred to as URANS. There is nothing inherent in
Reynolds averaging to preclude this, but the turbulence models used to close the
equations are valid only as long as the time over which these changes in the mean
occur is large compared to the time scales of the turbulent motion containing
most of the energy.

26 Large eddy simulations (LES) is a technique in which the smaller eddies are fil-
tered and modelled using a sub–grid scale model, while the larger energy carrying
eddies are simulated. This method generally requires a more refined mesh than
a RANS model, but a far coarser mesh than a DNS solution. The so–called de-
tached eddy simulations (DES) is a modification of RANS, in which the model
switches to a subgrid scale formulation in regions fine enough for LES calcula-
tions. Regions near solid boundaries and where the turbulent length scale is less
than the maximum grid dimension are assigned the RANS mode of solution. As
the turbulent length scale exceeds the grid dimension, the regions are solved using
the LES mode, so the grid resolution is not as demanding as pure LES.
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and properties at the boundaries of the problem; for transient problems, the
initial conditions are also defined), (v) the equations are solved iteratively
as either steady–state or transient, (vi) the resulting numerical solution is
visualized and further analyzed using 3D computer graphics methods.

Common discretization methods currently in use are:
(i) Finite volume method is the standard approach used most often in com-
mercial software and research codes, in which the governing equations are
solved on discrete control volumes. This integral approach yields a method
that is inherently conservative (i.e., quantities such as density remain physi-
cally meaningful),

∂

∂t

∫∫∫
QdV +

∫∫
FdA = 0,

where Q is the vector of conserved variables, and F is the vector of fluxes.
(ii) Finite element method (FEM) is popular for structural analysis of solids,
but is also applicable to fluids. The FEM formulation requires, however, spe-
cial care to ensure a conservative solution.
(iii) Finite difference method has historical importance and is simple to pro-
gram.
(iv) Boundary element method , in which the boundary occupied by the fluid
is divided into surface mesh.

Chaos Field Theory

In [Cvi00], Cvitanovic re–examined the path–integral formulation and the role
that the classical solutions play in quantization of strongly nonlinear fields.
In the path integral formulation of a field theory the dominant contributions
come from saddle–points, the classical solutions of equations of motion. Usu-
ally one imagines one dominant saddle point, the ‘vacuum’ (see Figure 2.9,
(a)).

The Feynman diagrams of quantum electrodynamics (QED) and quan-
tum chromodynamics (QCD), associated to their path integrals, give us a
visual and intuitive scheme to calculate the correction terms to this starting
semiclassical, Gaussian saddlepoint approximation. But there might be other
saddles (Figure 2.9, (b)). That field theories might have a rich repertoire of
classical solutions became apparent with the discovery of instantons [BPS75],
analytic solutions of the classical SU(2) Yang–Mills relation, and the realiza-
tion that the associated instanton vacua receive contributions from countable
∞’s of saddles. What is not clear is whether these are the important classical
saddles. Cvitanovic asks the question: could it be that the strongly nonlinear
theories are dominated by altogether different classical solutions?

The search for the classical solutions of nonlinear field theories such as the
Yang–Mills and gravity has so far been neither very successful nor very sys-
tematic. In modern field theories the main emphasis has been on symmetries
(compactly collected in action functionals that define the theories) as guiding
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Fig. 2.9. Path integrals and chaos field theory (see text for explanation).

principles in writing down the actions. But writing down a differential equa-
tion is only the start of the story; even for systems as simple as 3 coupled
ordinary differential equations one in general has no clue what the nature of
the long time solutions might be.

These are hard problems, and in explorations of modern field theories
the dynamics tends to be is neglected, and understandably so, because the
wealth of the classical solutions of nonlinear systems can be truly bewil-
dering. If the classical behavior of these theories is anything like that of
the field theories that describe the classical world – the hydrodynamics, the
magneto–hydrodynamics, the Burgers dynamical system (2.565), Ginzburg–
Landau equation (2.562), or Kuramoto–Sivashinsky equation (2.564), there
should be very many solutions, with very few of the important ones analytical
in form; the strongly nonlinear classical field theories are turbulent, after all.
Furthermore, there is not a dimmest hope that such solutions are either beau-
tiful or analytic, and there is not much enthusiasm for grinding out numerical
solutions as long as one lacks ideas as what to do with them.

By late 1970’s it was generally understood that even the simplest nonlinear
systems exhibit chaos. Chaos is the norm also for generic Hamiltonian flows,
and for path integrals that implies that instead of a few, or countably few
saddles (Figure 2.9, (c)), classical solutions populate fractal sets of saddles
(Figure 2.9, (d)). For the path–integral formulation of quantum mechanics
such solutions were discovered and accounted for by [Gut90] in late 1960’s.
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In this framework the spectrum of the theory is computed from a set of its
unstable classical periodic solutions and quantum corrections. The new aspect
is that the individual saddles for classically chaotic systems are nothing like
the harmonic oscillator degrees of freedom, the quarks and gluons of QCD
– they are all unstable and highly nontrivial, accessible only by numerical
techniques.

So, if one is to develop a semiclassical field theory of systems that are
classically chaotic or turbulent, the problem one faces is twofold [Cvi00]

1. Determine, classify, and order by relative importance the classical solu-
tions of nonlinear field theories.

2. Develop methods for calculating perturbative corrections to the corre-
sponding classical saddles.

2.3 Nonlinear Control Systems

2.3.1 The Basis of Modern Geometrical Control

Introduction to Geometrical Nonlinear Control

In this section we give a brief introduction to geometrical nonlinear control
systems. Majority of techniques developed under this name consider the so–
called affine nonlinear MIMO–systems of the form (see [Isi89, NS90, Lew95,
LM97, Lew98])

ẋ(t) = f0(x(t)) + ui(t)fi(x(t)), (i = 1, ...,m) (2.600)

where t �→ x(t) is a curve in a system’s state manifold M . The vector–field f0
is called the drift vector–field , describing the dynamics of the system in the
absence of controls, and the vector–fields f1, ..., fm are the input vector–fields
or control vector–fields, indicating how we are able to actuate the system. The
vector–fields f0, f1, ..., fm are assumed to be real analytic. We do not ask for
any sort of linear independence of the control vector–fields f1, ..., fm. We shall
suppose that the controls u : [0, T ] → U are locally integrable with U some
subset of Rm. We allow the length T of the interval on which the control is
defined to be arbitrary. It is convenient to denote by τ(u) the right endpoint of
the interval for a given control u. For a fixed U we denote by U the collection
of all measurable controls taking their values in U . To be concise about this,
a control affine system is a triple Σ = (M,F = {f0, f1, ..., fm}, U), with all
objects as defined above. A controlled trajectory for Σ is a pair (c, u), where
u ∈ U and where c : [0, τ(u)] →M is defined so that

ċ(t) = f0(c(t)) + ui(t)fi(c(t)).

One can show that for admissible controls, the curve c will exist at least for
sufficiently small times, and that the initial condition c(0) = x0 uniquely
defines c on its domain of definition.
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For x ∈M and T > 0 we define several types of reachable sets as:

RΣ(x, T ) = {c(T ) :
(c, u) is a controlled trajectory for Σ with τ(u) = T and c(0) = x},
RΣ(x,≤ T ) = ∪t∈[0,T ]RΣ(x, t), RΣ(x) = ∪t≥0RΣ(x, t),

that allow us to give several definitions of controllability as follows. Let Σ =
(M,F , U) be a control affine system and let x ∈M . We say that:

1. Σ is accessible from x if int(RΣ(x)) �= 0.
2. Σ is strongly accessible from x if int(RΣ(x, T )) �= 0 for each T > 0.
3. Σ is locally controllable from x if x ∈ int(RΣ(x)).
4. Σ is small–time locally controllable (STLC) from x if there exists T > 0

so that x ∈ int(RΣ(x,≤ T )) for each t ∈ [0, T ].
5. Σ is globally controllable from x if (RΣ(x)) =M .

For example, a typical simple system that is accessible but not controllable
is given by the following data:

M = R2, m = 1, U = [−1, 1],
ẋ = u, ẏ = x2.

This system is (not obviously) accessible from (0, 0), but is (obviously) not
locally controllable from that same point. Note that although RΣ((0, 0),≤ T )
has nonempty interior, the initial point (0, 0) is not in that interior. Thus this
is a system that is not controllable in any sense. Note that the system is also
strongly accessible.

Feedback Linearization

Recall that the core of control theory is the idea of the feedback. In case of
nonlinear control, this implies feedback linearization.

Exact Feedback Linearization

The idea of feedback linearization is to algebraically transform the nonlinear
system dynamics into a fully or partly linear one so that the linear control
techniques can be applied. Note that this is not the same as a conventional
linearization using Jacobians. In this subsection we will present the modern,
geometrical, Lie–derivative based techniques for exact feedback linearization
of nonlinear control systems.

The Lie Derivative and Lie Bracket in Control Theory. Recall (see
(1.2.6) above) that given a scalar function h(x) and a vector–field f(x), we
define a new scalar function, Lfh = ∇hf , which is the Lie derivative of h
w.r.t. f , i.e., the directional derivative of h along the direction of the vector
f . Repeated Lie derivatives can be defined recursively:
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L0
fh = h, Lifh = Lf

(
Li−1
f h

)
= ∇

(
Li−1
f h

)
f, (for i = 1, 2, ...)

Or given another vector–field, g, then LgLfh(x) is defined as

LgLfh = ∇ (Lfh) g.

For example, if we have a control system

ẋ = f(x), y = h(x),

with the state x = x(t) and the output y, then the derivatives of the output
are:

ẏ =
∂h

∂x
ẋ = Lfh, and ÿ =

∂Lfh

∂x
ẋ = L2

fh.

Also, recall that the curvature of two vector–fields, g1, g2, gives a non–zero
Lie bracket, [g1, g2] ( (1.2.6) see Figure 2.10). Lie bracket motions can generate
new directions in which the system can move.

Fig. 2.10. The so–called ‘Lie bracket motion’ is possible by appropriately modu-
lating the control inputs (see text for explanation).

In general, the Lie bracket of two vector–fields, f(x) and g(x), is defined
by

[f, g] = Adfg = ∇gf −∇fg =
∂g

∂x
f − ∂f

∂x
g,

where ∇f = ∂f/∂x is the Jacobian matrix. We can define Lie brackets recur-
sively,

Ad0fg = g, Adifg = [f,Adi−1
f g], (for i = 1, 2, ...)

Lie brackets have the properties of bilinearity, skew–commutativity and Jacobi
identity.

For example, if

f =
(

cosx2

x1

)
, g =

(
x1

1

)
,
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then we have

[f, g] =
(

1 0
0 0

)(
cosx2

x1

)
−
(

0 − sinx2

1 0

)(
x1

1

)
=

(
cosx2 + sinx2

−x1

)
.

Input/Output Linearization. Given a single–input single–output (SISO)
system

ẋ = f(x) + g(x)u, y = h(x), (2.601)

we want to formulate a linear–ODE relation between output y and a new
input v. We will investigate (see [Isi89, SI89, Wil00]):

• How to generate a linear input/output relation.
• What are the internal dynamics and zero–dynamics associated with the

input/output linearization?
• How to design stable controllers based on the I/O linearization.

This linearization method will be exact in a finite domain, rather than
tangent as in the local linearization methods, which use Taylor series ap-
proximation. Nonlinear controller design using the technique is called exact
feedback linearization.

Algorithm for Exact Feedback Linearization. We want to find a
nonlinear compensator such that the closed–loop system is linear (see Figure
2.11). We will consider only affine SISO systems of the type (2.601), i.e, ẋ =
f(x)+ g(x)u, y = h(x), and we will try to construct a control law of the form

u = p(x) + q(x) v, (2.602)

where v is the setpoint, such that the closed–loop nonlinear system

ẋ = f(x) + g(x) p(x) + g(x) q(x) v, y = h(x),

is linear from command v to y.

Fig. 2.11. Feedback linearization (see text for explanation).
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The main idea behind the feedback linearization construction is to find
a nonlinear change of coordinates which transforms the original system into
one which is linear and controllable, in particular, a chain of integrators. The
difficulty is finding the output function h(x) which makes this construction
possible.

We want to design an exact nonlinear feedback controller. Given the non-
linear affine system, ẋ = f(x) + g(x), y = h(x),.we want to find the controller
functions p(x) and q(x). The unknown functions inside our controller (2.602)
are given by:

p(x) =
−
(
Lrfh(x) + β1Lr−1

f h(x) + ...+ βr−1Lfh(x) + βrh(x)
)

LgLr−1
f h(x)

,

q(x) =
1

LgLr−1
f h(x)

, (2.603)

which are comprised of Lie derivatives, Lfh(x). Here, the relative order, r, is
the smallest integer r such that LgLr−1

f h(x) �= 0. For linear systems r is the
difference between the number of poles and zeros.

To get the desired response, we choose the r parameters in the β polynomial
to describe how the output will respond to the setpoint, v (pole–placement).

dry

dtr
+ β1

dr−1y

dtr−1
+ ...+ βr−1

dy

dt
+ βry = v.

Here is the proposed algorithm [Isi89, SI89, Wil00]):

1. Given nonlinear SISO process, ẋ = f(x, u), and output equation y = h(x),
then:

2. Calculate the relative order, r.
3. Choose an rth order desired linear response using pole–placement tech-

nique (i.e., select β). For this could be used a simple rth order low–pass
filter such as a Butterworth filter.

4. Construct the exact linearized nonlinear controller (2.603), using Lie
derivatives and perhaps a symbolic manipulator (Mathematica or Maple).

5. Close the loop and get a linear input–output black–box (see Figure 2.11).
6. Verify that the result is actually linear by comparing with the desired

response.

Relative Degree

A nonlinear SISO system

ẋ = f(x) + g(x)u, y = h(x),

is said to have relative degree r at a point xo if (see [Isi89, NS90])

1. LgLkfh(x) = 0 for all x in a neighborhood of xo and all k < r − 1; and
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2. LgLr−1
f h(xo) �= 0.

For example, controlled Van der Pol oscillator has the state–space form

ẋ = f(x) + g(x)u =
[

x2

2ωζ (1− µx2
1)x2 − ω2x1

]
+
[

0
1

]
u.

Suppose the output function is chosen as y = h(x) = x1. In this case we have

Lgh(x) =
∂h

∂x
g(x) =

[
1 0

] [0
1

]
= 0, and

Lfh(x) =
∂h

∂x
f(x) =

[
1 0

] [ x2

2ωζ (1− µx2
1)x2 − ω2x1

]
= x2.

Moreover

LgLfh(x) =
∂(Lfh)
∂x

g(x) =
[
0 1

] [0
1

]
= 1,

and thus we see that the Vand der Pol oscillator system has relative degree 2
at any point xo.

However, if the output function is, for instance y = h(x) = sinx2, then
Lgh(x) = cosx2. The system has relative degree 1 at any point xo, provided
that (xo)2 �= (2k+1)π/2. If the point xo is such that this condition is violated,
no relative degree can be defined.

As another example, consider a linear system in the state–space form

ẋ = Ax+B u, y = C x.

In this case, since f(x) = Ax, g(x) = B, h(x) = C x, it can be seen that

Lkfh(x) = C Ak x, and therefore,

LgL
k
fh(x) = C Ak B.

Thus, the integer r is characterized by the conditions

C Ak B = 0, for all k < r − 1
C Ar−1B �= 0, otherwise.

It is well–known that the integer satisfying these conditions is exactly equal
to the difference between the degree of the denominator polynomial and the
degree of the numerator polynomial of the transfer function

H(s) = C (sI −A)−1B

of the system.
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Approximative Feedback Linearization

Consider a SISO system
ẋ = f(x) + g(x)u, (2.604)

where f and g are smooth vector–fields defined on a compact contractible
region M of Rn containing the origin. (Typically, M is a closed ball in Rn.)
We assume that f(0) = 0, i.e., that the origin is an equilibrium for ẋ = f(x).
The classical problem of feedback linearization can be stated as follows: find
in a neighborhood of the origin a smooth change of coordinates z = Φ(x) (a
local diffeomorphism) and a smooth feedback law u = k(x) + l(x)unew such
that the closed–loop system in the new coordinates with new control is linear,

ż = Az +B unew,

and controllable (see [BH96]). We usually require that Φ(0) = 0. We assume
that the system (2.604) has the linear controllability property

dim(span{g,Adfg, ..., Adn−1
f g}) = n, for all x ∈M (2.605)

(where Adif are iterated Lie brackets of f and g). We define the characteristic
distribution for (2.604)

D = span{g,Adfg, ..., Adn−2
f g},

which is an (n − 1)D smooth distribution by assumption of linear control-
lability (2.605). We call any nowhere vanishing 1−form ω annihilating D a
characteristic 1−form for (2.604). All the characteristic 1−forms for (2.604)
can be represented as multiples of some fixed characteristic 1−form ω0 by a
smooth nowhere vanishing function (zero–form) β. Suppose that there is a
nonvanishing β so that βω0 is exact, i.e., βω0 = dα for some smooth function
α, where d denotes the exterior derivative. Then ω0 is called integrable and
is called an integrating factor for ω0. The following result is standard in non-
linear control: Suppose that the system (2.604) has the linear controllability
property (2.605) on M . Let D be the characteristic distribution and ω0 be a
characteristic 1−form for (2.604). The following statements are equivalent:

1. Equation (2.604) is feedback linearizable in a neighborhood of the origin
in M ;

2. D is involutive in a neighborhood of the origin in M ; and
3. ω0 is integrable in a neighborhood of the origin in M .

As is well known, a generic nonlinear system is not feedback linearizable
for n > 2. However, in some cases, it may make sense to consider approximate
feedback linearization.

Namely, if one can find a feedback linearizable system close to (2.604),
there is hope that a control designed for the feedback linearizable system and
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applied to (2.604) will give satisfactory performance if the feedback lineariz-
able system is close enough to (2.604). The first attempt in this direction
goes back to [Kre84], where it was proposed to apply to (2.604) a change of
variables and feedback that yield a system of the form

ż = Az +B unew +O(z, unew),

where the term O(z, unew) contains higher–order terms. The aim was to make
O(z, unew) of as high order as possible. Then we can say that the system
(2.604) is approximately feedback linearized in a small neighborhood of the
origin. Later [HT93] introduced a new algorithm to achieve the same goal
with fewer steps.

Another idea has been investigated in [HSK92]. Roughly speaking, the
idea was to neglect nonlinearities in (2.604) responsible for the failure of the
involutivity condition in above theorem. This approach happened to be suc-
cessful in the ball–and–beam system, when neglect of centrifugal force act-
ing on ball yielded a feedback linearizable system. Application of a control
scheme designed for the system with centrifugal force neglected to the origi-
nal system gave much better results than applying a control scheme based on
classical Jacobian linearization. This approach has been further investigated
in [XH94, XH95] for the purpose of approximate feedback linearization about
the manifold of constant operating points. However, a general approach to de-
ciding which nonlinearities should be neglected to get the best approximation
has not been set forth.

All of the above–mentioned work dealt with applying a change of coor-
dinates and a preliminary feedback so that the resulting system looks like
linearizable part plus nonlinear terms of highest possible order around an
equilibrium point or an equilibrium manifold. However, in many applications
one requires a large region of operation for the nonlinearizable system. In
such a case, demanding the nonlinear terms to be neglected to be of highest
possible order may, in fact, be quite undesirable. One might prefer that the
nonlinear terms to be neglected be small in a uniform sense over the region
of operation. In tis section we propose an approach to approximate feedback
linearization that uses a change of coordinates and a preliminary feedback to
put a system (2.604) in a perturbed Brunovsky form,

ż = Az +B unew + P (z) +Q(z)unew), (2.606)

where P (z) and Q(z) vanish at z = 0 and are ‘small’ on M . We get up-
per bounds on uniform norms of P and Q (depending on some measures of
noninvolutivity of D) on any compact, contractible M .

A different, indirect approach was presented in [BH96]. In this section, the
authors present an approach for finding feedback linearizable systems that
approximate a given SISO nonlinear system on a given compact region of
the state–space. First, they it is shown that if the system is close to being
involutive, then it is also close to being linearizable. Rather than working di-
rectly with the characteristic distribution of the system, the authors work with



496 2 Dynamics of Complex Systems

characteristic 1−forms, i.e., with the 1−forms annihilating the characteristic
distribution. It is shown that homotopy operators can be used to decompose
a given characteristic 1−form into an exact and an antiexact part. The ex-
act part is used to define a change of coordinates to a normal form that
looks like a linearizable part plus nonlinear perturbation terms. The nonlin-
ear terms in this normal form depend continuously on the antiexact part, and
they vanish whenever the antiexact part does. Thus, the antiexact part of a
given characteristic 1−form is a measure of nonlinearizability of the system.
If the nonlinear terms are small, by neglecting them we get a linearizable sys-
tem approximating the original system. One can design control for the original
system by designing it for the approximating linearizable system and applying
it to the original one. We apply this approach for design of locally stabilizing
feedback laws for nonlinear systems that are close to being linearizable.

Let us start with approximating characteristic 1−forms by exact forms
using homotopy operators (compare with equation (1.27) above). Namely, on
any contractible region M one can define a linear operator H that satisfies

ω = d(Hω) +Hdω (2.607)

for any form ω. The homotopy identity (2.607) allows to decompose any given
1−form into the exact part d(Hω) and an ‘error part’ ε = Hdω, which we
call the antiexact part of ω. For given ω0 annihilating D and a scaling factor
β we define αβ = Hβw0 and εβ = Hdβw0. The 1−form εβ measures how
exact ωβ = βw0 is. If it is zero, then ωβ is exact and the system (2.604) is
linearizable, and the zero–form αβ and its first n−1 Lie derivatives along f are
the new coordinates. In the case that ω0 is not exactly integrable, i.e., when
no exact integrating factor β exists, we choose β so that dβw0 is smallest in
some sense (because this also makes εβ small). We call this β an approximate
integrating factor for ω0. We use the zero–form αβ and its first n − 1 Lie
derivatives along f as the new coordinates as in the linearizable case. In those
new coordinates the system (2.604) is in the form

ż = Az +Bru+Bp+ Eu,

where r and p are smooth functions, r �= 0 around the origin, and the term
E (the obstruction to linearizablity) depends linearly on εβ and some of its
derivatives. We choose u = r−1(unew−p), where unew is a new control variable.
After this change of coordinates and control variable the system is of the form
(2.606) with Q = r−1E, P = −r−1pE. We get estimates on the uniform norm
of Q and P (via estimates on r, p, and E) in terms of the error 1−form εβ ,
for any fixed β, on any compact, contractible manifold M . Most important is
that Q and P depend in a continuous way on εβ and some of its derivatives,
and they vanish whenever ε does (see [BH96]).
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Controllability

Linear Controllability

Recall that a system is said to be controllable if the set of all states it can
reach from initial state x0 = x(0) at the fixed time t = T contains a ball B
around x0. Again, a system is called small time locally controllable (STLC)
iff the ball B for t ≤ T contains a neighborhood of x0.27

In the case of a linear system in the standard state–space form (see sub-
section (2.4.3) above)

ẋ = Ax+Bu, (2.608)

where A is the n × n state matrix and B is the m × n input matrix, all
controllability definitions coincide, i.e.,

0 → x(T ), x(0) → 0, x(0) → x(T ),

where T is either fixed or free.
Rank condition states: System (2.608) is controllable iff the matrix

Wn =
(
BAB ... An−1B

)
has full rank.

In the case of nonlinear systems the corresponding result is get using the
formalism of Lie brackets, as Lie algebra is to nonlinear systems as matrix
algebra is to linear systems.

Nonlinear Controllability

Nonlinear MIMO–systems are generally described by differential equations of
the form (see [Isi89, NS90, Goo98]):

ẋ = f(x) + gi(x)ui, (i = 1, ..., n), (2.609)

defined on a smooth n−manifold M , where x ∈M represents the state of the
control system, f(x) and gi(x) are vector–fields on M and the ui are control
inputs, which belong to a set of admissible controls, ui ∈ U . The system
(2.609) is called driftless, or kinematic, or control linear if f(x) is identically
zero; otherwise, it is called a system with drift, and the vector–field f(x) is
called the drift term. The flow φgt (x0) represents the solution of the differential
equation ẋ = g(x) at time t starting from x0. Geometrical way to understand
the controllability of the system (2.609) is to understand the geometry of the
vector–fields f(x) and gi(x).

Example: Car–Parking Using Lie Brackets In this popular example,
the driver has two different transformations at his disposal. He/she can turn

27 The above definition of controllability tells us only whether or not something can
reach an open neighborhood of its starting point, but does not tell us how to do
it. That is the point of the trajectory generation.
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the steering wheel, or he/she can drive the car forward or back. Here, we
specify the state of a car by four coordinates: the (x, y) coordinates of the
center of the rear axle, the direction θ of the car, and the angle φ between the
front wheels and the direction of the car. L is the constant length of the car.
Therefore, the configuration manifold of the car is 4D, M = (x, y, θ, φ).

Using (2.609), the driftless car kinematics can be defined as:

ẋ = g1(x)u1 + g2(x)u2, (2.610)

with two vector–fields g1, g2 ∈ X k(M).
The infinitesimal transformations will be the vector–fields

g1(x) ≡ drive = cos θ
∂

∂x
+ sin θ

∂

∂y
+

tanφ
L

∂

∂θ
≡

⎛⎜⎜⎝
cos θ
sin θ

1
L tanφ

0

⎞⎟⎟⎠ ,

and g2(x) ≡ steer =
∂

∂φ
≡

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ .
Now, steer and drive do not commute; otherwise we could do all your

steering at home before driving of on a trip. Therefore, we have a Lie bracket

[g2, g1] ≡ [steer,drive] =
1

L cos2 φ
∂

∂θ
≡ rotate.

The operation [g2, g1] ≡ rotate ≡ [steer,drive] is the infinitesimal version
of the sequence of transformations: steer, drive, steer back, and drive back,
i.e.,

{steer,drive, steer−1,drive−1}.
Now, rotate can get us out of some parking spaces, but not tight ones:
we may not have enough room to rotate out. The usual tight parking space
restricts the drive transformation, but not steer. A truly tight parking space
restricts steer as well by putting your front wheels against the curb.

Fortunately, there is still another commutator available:

[g1, [g2, g1]] ≡ [drive, [steer,drive]] = [[g1, g2], g1] ≡

[drive,rotate] =
1

L cos2 φ

(
sin θ

∂

∂x
− cos θ

∂

∂y

)
≡ slide.

The operation [[g1, g2], g1] ≡ slide ≡ [drive,rotate] is a displacement at
right angles to the car, and can get us out of any parking place. We just need
to remember to steer, drive, steer back, drive some more, steer, drive back,
steer back, and drive back:

{steer,drive, steer−1,drive, steer,drive−1, steer−1,drive−1}.



2.3 Nonlinear Control Systems 499

We have to reverse steer in the middle of the parking place. This is not intu-
itive, and no doubt is part of the problem with parallel parking.

Thus from only two controls u1 and u2 we can form the vector–fields drive
≡ g1, steer ≡ g2, rotate ≡ [g2, g1], and slide ≡ [[g1, g2], g1], allowing
us to move anywhere in the configuration manifold M . The car kinematics
ẋ = g1u1 + g2u2 is thus expanded as:⎛⎜⎜⎝

ẋ
ẏ

θ̇

φ̇

⎞⎟⎟⎠ = drive · u1 + steer · u2 ≡

⎛⎜⎜⎝
cos θ
sin θ

1
L tanφ

0

⎞⎟⎟⎠ · u1 +

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ · u2 .

The parking theorem says: One can get out of any parking lot that is larger
than the car.

Fig. 2.12. Classical unicycle problem (see text for explanation).

The Unicycle Example. Now, consider the unicycle example (see Figure
2.12). Here we have

g1 =

⎛⎝ cosx3

sinx3

0

⎞⎠ , g2 =

⎛⎝ 0
0
1

⎞⎠ , [g1, g2] =

⎛⎝ sinx3

− cosx3

0

⎞⎠ .
The unicycle system is full rank and therefore controllable.

Controllability Condition

Nonlinear controllability is an extension of linear controllability. The nonlinear
MIMO system

ẋ = f(x) + g(x)u is controllable

if the set of vector–fields {g, [f, g], ..., [fn−1, g]} is independent.
For example, for the kinematic car system of the form (2.610), the nonlin-

ear controllability criterion reads: If the Lie bracket tree:
g1, g2, [g1, g2], [[g1, g2], g1], [[g1, g2], g2], [[[g1, g2], g1], g1], [[[g1, g2], g1], g2],

[[[g1, g2], g2], g1], [[[g1, g2], g2], g2], ...
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– has full rank then the system is controllable [Isi89, NS90, Goo98]. In this
case the combined input

(u1, u2) =

⎧⎪⎪⎨⎪⎪⎩
(1, 0), t ∈ [0, ε]
(0, 1), t ∈ [ε, 2ε]

(−1, 0), t ∈ [2ε, 3ε]
(0,−1), t ∈ [3ε, 4ε]

gives the motion x(4ε) = x(0)+ ε2 [g1, g2]+O(ε3), with the flow given by (see
(1.32) below)

F
[g1,g2]
t = lim

n→∞

(
F−g2√

t/n
F−g1√

t/n
F g2√

t/n
F g1√

t/n

)n
.

Distributions

In control theory, the set of all possible directions in which the system can
move, or the set of all points the system can reach, is of obvious fundamental
importance. Geometrically, this is related to distributions.

Recall from subsection 1.3.3 above that a distribution ∆ ⊂ X k(M) on
a smooth nD manifold M is a subbundle of its tangent bundle TM , which
assigns a subspace of the tangent space TxM to each point x ∈M in a smooth
way. The dimension of ∆(x) over R at a point x ∈ M is called the rank of ∆
at x.

A distribution ∆ is involutive if, for any two vector–fields X,Y ∈ ∆, their
Lie bracket [X,Y ] ∈ ∆.

A function f ∈ C∞(M) is called an integral of ∆ if df(x) ∈ ∆0(x) for
each x ∈ M . An integral manifold of ∆ is a submanifold N of M such that
TxN ⊂ ∆(x) for each x ∈ N . A distribution ∆ is integrable if, for any x ∈M ,
there is a submanifold N ⊂M, whose dimension is the same as the rank of ∆
at x,.containing x such that the tangent bundle, TN , is exactly ∆ restricted
to N , i.e., TN = ∆|N . Such a submanifold is called the maximal integral
manifold through x.

It is natural to consider distributions generated by the vector–fields ap-
pearing in the sequence of flows (1.31). In this case, consider the distribution
defined by

∆ = span{f ; g1...gm},
where the span is taken over the set of smooth real–valued functions. Denote
by ∆̄ the involutive closure of the distribution ∆, which is the closure of ∆
under bracketing. Then, ∆̄ is the smallest subalgebra of X k(M) which contains
{f ; g1...gm}. We will often need to ‘add’ distributions. Since distributions are,
pointwise, vector spaces, define the sum of two distributions,

(∆1 +∆2)(x) = ∆1(x) +∆2(x).

Similarly, define the intersection
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(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x).

More generally, we can arrive at a distribution via a family of vector–fields,
which is a subset V ⊂ X k(M). Given a family of vector–fields V, we may define
a distribution on M by

∆V(x) = 〈X(x)|X ∈ V〉R.

Since X k(M) is a Lie algebra, we may ask for the smallest Lie subalgebra
of X k(M) which contains a family of vector–fields V. It will be denoted as
Lie(V), and will be represented by the set of vector–fields on M generated
by repeated Lie brackets of elements in V. Let V(0) = V and then iteratively
define a sequence of families of vector–fields by

V(i+1) = V(i) ∪ {[X,Y ]|X ∈ V(0) = V and Y ∈ V(i)}.

Now, every element of Lie(V) is a linear combination of repeated Lie brackets
of the form

[Zk, [Zk−1, [· · ·, [Z2, Z1] · ··]]]

where Zi ∈ V for i = 1, ..., k.

Foliations

Recall that related to integrable distributions are foliations.
The Frobenius theorem asserts that integrability and involutivity are equiv-

alent, at least locally. Thus, associated with an involutive distribution is a
partition Φ ofM into disjoint connected immersed submanifolds called leaves.
This partition Φ is called a foliation. More precisely, a foliation F of a smooth
manifold M is a collection of disjoint immersed submanifolds of M whose
disjoint union equals M . Each connected submanifold of F is called a leaf of
the foliation. Given an integrable distribution ∆, the collection of maximal
integral manifolds for ∆ defines a foliation on M , denoted by FD.

A foliation F of M defines an equivalence relation on M whereby two
points in M are equivalent if they lie in the same leaf of F . The set of equiva-
lence classes is denotedM/F and is called the leaf space of F . A foliation F is
said to be simple if M/F inherits a manifold structure so that the projection
from M to M/F is a surjective submersion.

In control theory, foliation leaves are related to the set of points that a
control system can reach starting from a given initial condition. A foliation
Φ of M defines an equivalence relation on M whereby two points in M are
equivalent if they lie in the same leaf of Φ. The set of equivalence classes is
denoted M/Φ and is called the leaf space of Φ.

Philip Hall Basis

Given a set of vector–fields {g1...gm}, define the length of a Lie product as
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l(gi) = 1, l([A,B]) = l(A) + l(B), (for i = 1, ...,m),

where A and B may be Lie products. A Philip Hall basis is an ordered set of
Lie products H = {Bi} satisfying:

1. gi ∈ H, (i = 1, ...,m);
2. If l(Bi) < l(Bj), then Bi < Bj ; and
3. [Bi, Bj ] ∈ H iff

(a) Bi, Bj ∈ H and Bi < Bj , and
(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H and

Bl ≤ Bi.

Essentially, the ordering aspect of the Philip Hall basis vectors accounts
for skew symmetry and Jacobi identity to determine a basis.

2.3.2 Geometrical Control of Mechanical Systems

Much of the existing work on control of mechanical systems has relied on the
presence of specific structure. The most common examples of the types of
structure assumed are symmetry (conservation laws) and constraints. While
it may seem counter–intuitive that constraints may help in control theory, this
is sometimes in fact the case. The reason is that the constraints give extra
forces (forces of constraint) which can be used to advantage. probably, the
most interesting work is done from the Lagrangian (respectively Hamiltonian)
perspective where we study systems whose Lagrangians are ‘kinetic energy
minus potential energy’ (resp. ‘kinetic energy plus potential energy’). For these
simple mechanical control systems, the controllability questions are different
than those typically asked in nonlinear control theory. In particular, one is
often more interested in what happens to configurations rather than states,
which are configurations and velocities (resp. momenta) for these systems (see
[Lew95, LM97]).

Abstract Control System

In general, a nonlinear control system Σ can be represented as a triple
(Σ,M, f), where M is the system’s state–space manifold with the tangent
bundle TM and the general fibre bundle E, and f is a smooth map, such that
the following bundle diagram commutes [Man98]

E TM�ψ

M

π
�
�
�
��

πM
�
�
�
��



2.3 Nonlinear Control Systems 503

where ψ : (x, u) �→ (x, f(x, u)), πM is the natural projection of TM onM, the
projection π : E →M is a smooth fibre bundle, and the fibers of E represent
the input spaces. If one chooses fibre–respecting coordinates (x, u) for E, then
locally this definition reduces to ψ : (x, u) �→ (x, ψ(x, u)), i.e.,

ẋ = ψ(x, u).

The specific form of the map ψ, usually used in nonlinear control, is ψ :
(x, u) �→ (x, f(x) + g(x, u)), with g(x, 0) = 0, producing standard nonlinear
system equation

ẋ = f(x) + g(x, u).

Controllability of a Linear Control System

Consider a linear biomechanical control system:

ẋ(t) = Ax(t) +Bu(t), (2.611)

where x ∈ Rn , u ∈ Rm , A ∈ L(Rn ,Rn ), and B ∈ L(Rm ,Rn ). One should
think of t �→ u(t) as being a specified input signal, i.e., a function on the
certain time interval, [0, T ]. Now, control theory wants to design the signal to
make the state t �→ x(t) do what we want. What this is may vary, depending
on the situation at hand. For example, one may want to steer from an initial
state xi to a final state xf , perhaps in an optimal way. Or, one may wish to
design u : Rn → Rm so that some state, perhaps x = 0, is stable for the
dynamical system ẋ(t) = Ax + Bu(x), which is called state feedback (often
one asks that u be linear). One could also design u to be a function of both x
and t, etc.

One of the basic control questions is controllability, which comes in many
guises. Basically we are asking for ‘reachable’ points. In particular,

R(0) = spanR{[B|AB|...|An−1B]},

which is the smallest A−invariant subspace containing Im(B), denotes the set
of points reachable from 0 ∈ Rn . For the linear system (2.611), the basic con-
trollability questions have definite answers. We want to do something similar
for a class of simple mechanical systems [Lew95, LM97].

Affine Control System and Local Controllability

The nonlinear control system that we most often consider in humanoid
robotics (see next section) has state–space M , a smooth n−manifold, and
is affine in the controls. Thus it has the form (see [Lew95, LM97])

ẋ = f(x) + uaga(x), (x ∈M), (2.612)
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where f, g1, ..., gm are vector–fields on M . The drift vector–field f = f(x)
describes how the system would evolve in the absence of any inputs. Each of
the control vector–fields g1, ..., gm specifies a direction in which one can supply
actuation. To fully specify the control system properly, one should also specify
the type of control action to be considered. Here we consider our controls to be
taken from the set: U = {u : R → Rm |u is piecewise constant}. This class of
controls is sufficient to deal with all analytic control systems. More generally,
one may wish to consider measurable functions which take their values in a
subset of Rm.

Given an affine control system (2.612), it is possible to define a family of
vector–fields on M by: VΣ = {f + uaga |u ∈ Rm}.

A solution of the system (2.612) is a pair (γ, u), where γ : [0, T ] →M is a
piecewise smooth curve on M and u ∈ U such that

γ̇(t) = f(γ(t)) + ua(t) ga(γ(t)), for each t ∈ [0, T ].

The reachable set from x0 in time T is

R(x0, T ) = {x|∃γ : [0, T ] →M and
u : [0, T ] → Rm satisfying (2.612)

with γ(0) = x0 and γ(T ) = x}.

Note that since the system has drift f , when we reach the point γ(T ) we
will not remain there if this is not an equilibrium point for f . Also, we have,
R(x0,≤ T ) = ∪0<t≤TR(x0, T ).

Let x0 ∈ M , let V be a neighborhood of x0, and let T > 0. We say that
equation (2.612) represents a locally accessible system at x0 if R(x0,≤ T )
contains an open subset of M for each V and for each T sufficiently small.
Furthermore, we say that the system (2.612) is small–time local controllability
(STLC, see [Sus83, Sus87]), if it is locally accessible and if x0 is in the interior
of R(x0,≤ T ) for each V and for each T sufficiently small.

Lagrangian Control Systems

Simple Mechanical Control Systems

As a motivation/prototype of a simple mechanical control system, consider
a simple robotic leg (see Figure 2.13), in which inputs are: (1) an internal
torque F 1 moving the leg relative to the body and (2) a force F 2 extending
the leg. This system is ‘controllable’ in the sense that, starting from rest, one
can reach any configuration from a given initial configuration. However, as a
traditional control system, it is not controllable because of conservation of an-
gular momentum. If one asks for the states (i.e., configurations and velocities)
reachable from configurations with zero initial velocity, one finds that not all
states are reachable. This is a consequence of the fact that angular momentum
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is conserved, even with inputs. Thus if one starts with zero momentum, the
momentum will remain zero (this is what enables one to treat the system as
nonholonomic). Nevertheless, all configurations are accessible. This suggests
that the question of controllability is different depending on whether one is
interested in configurations or states. We will be mainly interested in reach-
able configurations. Considering the system with just one of the two possible
input forces is also interesting. In the case where we are just allowed to use
F 2, the possible motions are quite simple; one can only move the ball on the
leg back and forth. With just the force F 1 available, things are a bit more
complicated. But, for example, one can still say that no matter how you apply
the force, the ball with never move ‘inwards’ [Lew95, LM97].

Fig. 2.13. A simple robotic leg (see text for explanation).

In general, simple mechanical control systems are characterized by:

• An nD configuration manifold M ;
• A Riemannian metric g on M ;
• A potential energy function V on M ; and
• m linearly independent 1−forms, F 1, ..., Fm on M (input forces; e.g., in

the case of the simple robotic leg, F 1 = dθ − dψ and F 2 = dr).

When we say these systems are not amenable to liberalization–based meth-
ods, we mean that their liberalizations at zero velocity are not controllable,
and that they are not feedback linearizable. This makes simple mechanical
control systems a non–trivial class of nonlinear control systems, especially
from the point of view of control design.

As a basic example to start with, consider a planar rigid body (see Figure
2.14), with coordinates (x, y, θ). Inputs are (1) force pointing towards center
of mass, F 1 = cos θdx+sin θdy, (2) force orthogonal to line to center of mass,
F 2 = − sin θdx + cos θdy − hdθ, and (3) torque at center of mass F 3 = dθ.
The planar rigid body, although seemingly quite simple, can be actually in-
teresting. Clearly, if one uses all three inputs, the system is fully actuated, and
so boring for investigating reachable configurations. But if one takes various
combinations of one or two inputs, one gets a pretty nice sampling of what
can happen for these systems. For example, all possible combinations of two
inputs allow one to reach all configurations. Using F 1 or F 3 alone give simple,
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1D reachable sets, similar to using F 2 for the robotic leg (as we are always
starting with zero initial velocity). However, if one is allowed to only use F 2,
then it is not quite clear what to expect, at least just on the basis of intuition.

Fig. 2.14. Coordinate systems of a planar rigid body.

It turns out that our simplifying assumptions, i.e., zero initial velocity and
restriction of our interest to configurations (i.e., as all problem data is on
M , we expect answers to be describable using data on M), makes our task
much simpler. In fact, the computations without these assumptions have been
attempted, but have yet to yield coherent answers.

Now, we are interested in how do the input 1−forms F 1, ..., Fm interact
with the unforced mechanics of the system as described by the kinetic energy
Riemannian metric. That is, what is the analogue of linear system’s ‘the small-
est A−invariant subspace containing Im(B)’ – for simple mechanical control
systems?

Motion and Controllability in Affine Connections

If we start with the local Riemannian metric form g �−→ gij(q) dqidqj , then
we have a kinetic energy Lagrangian L(q, v) = gij(q) q̇iq̇j , and consequently
the Euler–Lagrangian equations read

d

dt
∂q̇iL− ∂qiL ≡ gij q̈j +

(
∂qkgij −

1
2
∂qigjk

)
q̇j q̇k = uaF ai , (i = 1, ..., n).

Now multiply this by gli and take the symmetric part of the coefficient of
q̇j q̇k to get q̈l + Γ ljk q̇

j q̇k = uaY la , (l = 1, ..., n,), where Γ ijk are the Christoffel
symbols (2.5) for the Levi–Civita connection ∇ (see (1.2.9) above). So, the
equations of motion an be rewritten

∇γ̇(t)γ̇(t) = ua(t)Ya (γ(t)) , (a = 1, ...,m),

where Ya = (F a)�, while � : T ∗M → TM is the ‘sharp’–isomorphism associ-
ated with the Riemannian metric g.
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Now, there is nothing to be gained by using a Levi–Civita connection,
or by assuming that the vector–fields come from 1−forms. At this point, per-
haps the generalization to an arbitrary affine connection seems like a senseless
abstraction. However, as we shall see, this abstraction allows us to include an-
other large class of mechanical control systems. So we will study the control
system

∇γ̇(t)γ̇(t) = ua(t)Ya (γ(t)) [+Y0 (γ(t))] , (2.613)

with ∇ a general affine connection on M , and Y1..., Ym linearly independent
vector–fields on M . The ‘optional’ term Y0 = Y0 (γ(t)) in (2.613) indicates
how potential energy may be added. In this case Y0 = − gradV (however,
one looses nothing by considering a general vector–field instead of a gradient)
[Lew98].

A solution to (2.613) is a pair (γ, u) satisfying (2.613) where γ : [0, T ] →M
is a curve and u : [0;T ] → Rm is bounded and measurable.

Let U be a neighborhood of q0 ∈M and denote by RUM (q0, T ) those points
in M for which there exists a solution (γ, u) with the following properties:

1. γ(t) ∈ U for t ∈ [0, T ];
2. γ̇(0) = 0q; and
3. γ(T ) ∈ TqM .

Also RUM (q0,≤ T ) = ∪0≤t≤TRUM (q0, t). Now, regarding the local control-
lability, we are only interested in points which can be reached without tak-
ing ‘large excursions’. Control problems which are local in this way have the
advantage that they can be characterized by Lie brackets. So, we want to de-
scribe our reachable set RUM (q,≤ T ) for the simple mechanical control system
(2.613). The system (2.613) is locally configuration accessible (LCA) at q if
there exists T > 0 so that RUM (q,≤ t) contains a non–empty open subset of
M for each neighborhood U of q and each t ∈]0, T ]. Also, (2.613) is locally
configuration controllable (LCC) at q if there exists T > 0 so that RUM (q,≤ t)
contains a neighborhood of q for each neighborhood U of q and each t ∈]0, T ].
Although sound very similar, the notions of local configuration accessibility
and local configuration controllability are genuinely different (see Figure 2.15).
Indeed, one need only look at the example of the robotic leg with the F 1 in-
put. In this example one may show that the system is LCA, but is not LCC
[Lew98].

Local Configuration Accessibility

The accessibility problem is solved by looking at Lie brackets. For this we
need to recall the definition of the vertical lift [Lew98]:

verlift(Y (vq)) =
d

dt

∣∣∣∣
t=0

(vq + tY (q)),

in local coordinates, if Y = Y i∂qi , then verlift(Y ) = Y i∂vi . Now we can
rewrite (2.613) in the first–order form:
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Fig. 2.15. Difference between the notions of local configuration accessibility (a),
and local configuration controllability (b).

v̇ = Z(v) + ua verlift(Ya(v)),

where Z is the geodesic spray for ∇.
We evaluate all brackets at 0q (recall that T0q

TM  TqM ⊕ TqM). Here,
the first component we think of as being the ‘horizontal’ bit which is tangent
to the zero section in TM , and we think of the second component as being
the ‘vertical’ bit which is the tangent space to the fibre of τM : TM →M .

To get an answer to the local configuration accessibility problem, we em-
ploy standard nonlinear control techniques involving Lie brackets. Doing so
gives us our first look at the symmetric product, 〈X : Y 〉 = ∇XY + ∇YX.
Our sample brackets suggest that perhaps the only things which appear in
the bracket computations are symmetric products and Lie brackets of the
input vector–fields Y1, ..., Ym.

Here are some sample brackets:

(i) [Z, verlift(Ya)](0q) = (−Ya(q), 0);
(ii) [verlift(Ya), [Z, verlift(Yb)]](0q) = (0, 〈Ya : Yb〉 (q));
(iii) [[Z, verlift(Ya)], [Z, verlift(Yb)]](0q) = ([Ya, Yb](q), 0).

Now, let Cver be the closure of span{Y1, ..., Ym} under symmetric product.
Also, let Chor be the closure of Cver under Lie bracket. So, we assume Cver
and Chor to be distributions (i.e., of constant rank) on M . The closure of
span{Z, verlift(Y1), ..., verlift(Ym)} under Lie bracket, when evaluated at 0q,
is then the distribution

q �→ Chor(q)⊕ Cver(q) ⊂ TqM ⊕ TqM.

Proving that the involutive closure of span{Z, verlift(Y1), ..., verlift(Ym)} is
equal at 0q to Chor(q) ⊕ Cver(q) is a matter of computing brackets, samples
of which are given above, and seeing the patterns to suggest an inductive
proof. The brackets for these systems are very structured. For example, the
brackets of input vector–fields are identically zero. Many other brackets vanish
identically, and many more vanish when evaluated at 0q.
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Chor is integrable: let Λq be the maximal integral manifold through q ∈M .
Then, RUM (q,≤ T ) is contained in Λq, and RUM (q,≤ T ) contains a non–empty
open subset of Λq. In particular, if rank(Chor) = n then (2.613) is LCA
[Lew95, LM97]. This theorem gives a ‘computable’ description of the reachable
sets (in the sense that we can calculate Λq by solving some over–determined
nonlinear PDE’s). But it does not give the kind of insight that we had with
the ‘smallest A−invariant subspace containing Im(B)’.

Recall that a submanifold N of M is totally geodesic if every geodesic
with initial velocity tangent to N remains on N . This can be weakened to
distributions: a distribution D on M is geodesically invariant if for every
geodesic γ : [0, T ] →M , γ̇(0) ∈ Dγ(0) implies γ̇(t) ∈ Dγ(t) for t ∈]0, T ].
D is geodesically invariant i it is closed under symmetric product [Lew98].

This theorem says that the symmetric product plays for geodesically invariant
distributions the same role the Lie bracket plays for integrable distributions.
This result was key in providing the geometrical description of the reachable
configurations.

An integrable distribution is geodesically generated distribution if it is the
involutive closure of a geodesically invariant distribution. This basically means
that one may reach all points on a leaf with geodesics lying in some subdis-
tribution. The picture one should have in mind with the geometry of the
reachable sets is a foliation of M by geodesically generated (immersed) sub-
manifolds onto which the control system restricts if the initial velocity is zero.
The idea is that when we start with zero velocity we remain on leaves of
the foliation defined by Chor [LM97, Lew00a]. Note that for cases when the
affine connection possesses no geodesically invariant distributions, the system
(2.613) is automatically LCA. This is true, for example, of S2 with the affine
connection associated with its round metric.

Clearly Cver is the smallest geodesically invariant distribution containing
span{Y1, ..., Ym}. Also, Chor is geodesically generated by span span{Y1, ..., Ym}.
Thus RUM is contained in, and contains a non–empty open subset of, the dis-
tribution geodesically generated by span{Y1, ..., Ym}. Note that the pretty
decomposition we have for systems with no potential energy does not exist at
this point for systems with potential energy.

Local Configuration Controllability

The problem of configuration controllability is harder than the one of con-
figuration accessibility. Following [LM99, Lew00a], we will call a symmetric
product in {Y1, ..., Ym} bad if it contains an even number of each of the input
vector–fields. Otherwise we will call it good. The degree is the total number of
vector–fields. For example, 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad and of degree 4, and
〈Ya : 〈Yb : Yb〉〉 is good and of degree 3. If each bad symmetric product at q is
a linear combination of good symmetric products of lower degree, then (2.613)
is LCC at q.

Now, the single–input case can be solved completely: The system (2.613)
with m = 1 is LCC iff dim(M) = 1 [LM99].
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Systems With Nonholonomic Constraints

Let us now add to the data a distribution D defining nonholonomic con-
straints. One of the interesting things about this affine connection approach
is that we can easily integrate into our framework systems with nonholonomic
constraints. As a simple example, consider a rolling disk (see Figure 2.16),
with two inputs: (1) a ‘rolling’ torque, F 1 = dθ and (2) a ‘spinning’ torque,
F 2 = dφ. It can be analyzed as a nonholonomic system (see [Lew99, Lew00a]).

Fig. 2.16. Rolling disk problem (see text for explanation).

The control equations for a simple mechanical control system with con-
straints are:

∇γ̇(t)γ̇(t) = λ(t) + ua(t)Ya (γ(t)) [− gradV (γ(t))] , γ̇(t) ∈ Dγ(t),

where λ(t) ∈ D⊥
γ(t) are Lagrangian multipliers.

Examples

1. Recall that for the simple robotic leg (Figure 2.13) above, Y1 was internal
torque and Y2 was extension force. Now, in the following three cases:
(i) both inputs active – this system is LCA and LCC (satisfies sufficient con-
dition);
(ii) Y1 only, it is LCA but not LCC; and
(iii) Y2 only, it is not LCA.
In theses three cases, Chor is generated by the following linearly independent
vector–fields:
(i) both inputs: {Y1, Y2, [Y1, Y2]};
(ii) Y1 only: {Y1, 〈Y1 : Y1〉 , 〈Y1 : 〈Y1 : Y1〉〉}; and
(iii) Y2 only: 〈Y2〉.
Recall that with both inputs the system was not accessible in TM as a con-
sequence of conservation of angular momentum. With the input Y2 only, the
control system behaves very simply when given zero initial velocity. The ball
on the end of the leg just gets moved back and forth. This reflects the foliation
of M by the maximal integral manifolds of Chor, which are evidently 1D in
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this case. With the Y1 input, recall that the ball will always go ‘outwards’
no matter what one does with the input. Thus the system is not LCC. But
apparently (since rank(Chor) = dim(M)) one can reach a non–empty open
subset of M . The behavior exhibited in this case is typical of what one can
expect for single–input systems with no potential energy.

2. For the planar rigid body (Figure 2.14) above, we have the following
five cases:
(i) Y1 and Y2 active, this system is LCA and LCC (satisfies sufficient condi-
tion);
(ii) Y1 and Y3, it is LCA and LCC (satisfies sufficient condition);
(iii) Y1 only or Y3 only, not LCA;
(iv) Y2 only, LCA but not LCC; and
(v) Y2 and Y3: LCA and LCC (fails sufficient condition).

Now, with the inputs Y1 or Y3 alone, the motion of the system is simple. In
the first case the body moves along the line connecting the point of application
of the force and the center of mass, and in the other case the body simply
rotates. The equations in (x, y, θ) coordinates are

ẍ =
cos θ
m
u1 − sin θ

m
u2, ÿ =

sin θ
m
u1 +

cos θ
m
u2, θ̈ =

1
J

(
u3 − hu2

)
,

which illustrates that the θ−equation decouples when only Y3 is applied. We
make a change of coordinates for the case where we have only Y1: (ξ, η, ψ) =
(x cos θ + y sin θ,−x sin θ + y cos θ, θ). In these coordinates we have

ξ̈ − 2η̇ψ̇ − ξψ̇2
=

1
m
u1, η̈ + 2ξ̇ψ̇ − ηψ̇2

= 0, ψ̇ = 0,

which illustrates the decoupling of the ξ−equation in this case.
Chor has the following generators:

(i) Y1 and Y2: {Y1, Y2, [Y1, Y2]};
(ii) Y1 and Y3: {Y1, Y3, [Y1, Y3]};
(iii) Y1 only or Y3 only: {Y1} or {Y3};
(iv) Y2 only: {Y2, 〈Y2 : Y2〉 , 〈Y2 : 〈Y2 : Y2〉〉};
(v) Y2 and Y3 {Y2, Y3, [Y2, Y3]}.

3. Recall that for the rolling disk (Figure 2.16) above, Y1 was ‘rolling’ in-
put and Y2 was ‘spinning’ input. Now, in the following three cases:
(i) Y1 and Y2 active, this system is LCA and LCC (satisfies sufficient condi-
tion);
(ii) Y1 only: not LCA; and
(iii) Y2 only: not LCA.
In theses three cases, Chor has generators:
(i) Y1 and Y2: {Y1, Y2, [Y1, Y2], [Y2, [Y1, Y2]]};
(ii) Y1 only: {Y1}; and
(iii) Y2 only: {Y2}.
The rolling disk passes the good/bad symmetric product test. Another way to
show that it is LCC is to show that the inputs allow one to follow any curve
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which is admitted by the constraints. Local configuration controllability then
follows as the constraint distribution for the rolling disk has an involutive
closure of maximal rank [Lew99].

Categorical Structure of Control Affine Systems

Control affine systems make a category CAS (see [Elk99]). The category CAS
has the following data:

• An object in CAS is a pair
∑

= (M,F = {f0, f1, ..., fm}) where F is a
family of vector–fields

ẋ(t) = f0(x(t)) + ua(t)fa(x(t))

on the manifold M.
• A morphism sending

∑
= (M,F = {f0, f1, ..., fm}) to

∑′ = (M ′,F′ =
{f ′0, f ′1, ..., f ′m′}) is a triple (ψ, λ0, Λ) where ψ : M → M ′, λ0 : M → Rm

′
,

and Λ :M → L(Rm,Rm
′
) are smooth maps satisfying:

1. Txψ(fa(x)) = Λαa (x)f
′
α(ψ(x)), a ∈ {1, ...,m}, and

2. Txψ(f0(x)) = f ′0(ψ(x)) + λα0 f
′
α(ψ(x)).

This corresponds to a change of state–input by

(x, u) �−→ (ψ(x), λ0(x) + Λ(x)u).

Elkin [Elk99] discusses equivalence, inclusion, and factorization in the cat-
egory CAS. Using categorical language, he considers local equivalence for var-
ious classes of nonlinear control systems, including single–input systems, sys-
tems with involutive input distributions, and systems with three states and
two inputs.

Lie–Adaptive Control

In this subsection we develop the concept of machine learning in the frame-
work of Lie derivative control formalism (see (2.3.1) above). Consider an nD,
SISO system in the standard affine form (2.601), rewritten here for conve-
nience:

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x), (2.614)

As already stated, the feedback control law for the system (2.614) can be
defined using Lie derivatives Lfh and Lgh of the system’s output h along the
vector–fields f and g.

If the SISO system (2.614) is a relatively simple (quasilinear) system with
relative degree r = 1 it can be rewritten in a quasilinear form

ẋ(t) = γi(t) fi(x) + dj(t) gj(x)u(t), (2.615)
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where γi (i = 1, ..., n) and dj (j = 1, ...,m) are system’s parameters, while fi
and gj are smooth vector–fields.

In this case the feedback control law for tracking the reference signal yR =
yR(t) is defined as (see [Isi89, NS90])

u =
−Lfh+ ẏR + α (yR − y)

Lgh
, (2.616)

where α denotes the feedback gain.
Obviously, the problem of reference signal tracking is relatively simple

and straightforward if we know all the system’s parameters γi(t) and dj(t)
of (2.615). The question is can we apply a similar control law if the system
parameters are unknown?

Now we have much harder problem of adaptive signal tracking. However,
it appears that the feedback control law can be actually cast in a similar form
(see [SI89, Gom94]):

û =
−L̂fh+ ẏR + α (yR − y)

L̂gh
, (2.617)

where Lie derivatives Lfh and Lgh of (2.616) have been replaced by their
estimates L̂fh and L̂gh, defined respectively as

L̂fh = γ̂i(t)Lfi
h, L̂gh = d̂j(t)Lgi

h,

in which γ̂i(t) and d̂j(t) are the estimates for γi(t) and dj(t).
Therefore, we have the straightforward control law even in the uncertain

case, provided that we are able to estimate the unknown system parameters.
Probably the best known parameter update law is based on the so–called
Lyapunov criterion (see [SI89]) and given by

ψ̇ = −γ εW, (2.618)

where ψ = {γi − γ̂i, dj − d̂j} is the parameter estimation error, ε = y − yR is
the output error, and γ is a positive constant, while the matrix W is defined
as:

W =
[
WT

1 W
T
2

]T
, with

W1 =

⎡⎢⎣Lf1h...
Lfn
h

⎤⎥⎦ , W2 =

⎡⎢⎣ Lg1h...
Lgm

h

⎤⎥⎦ · −L̂fh+ ẏR + α (yR − y)
L̂gh

.

The proposed adaptive control formalism (2.617–2.618) can be efficiently
applied wherever we have a problem of tracking a given signal with an output
of a SISO–system (2.614–2.615) with unknown parameters.
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2.3.3 Hamiltonian Optimal Control and Maximum Principle

Hamiltonian Control Systems

Hamiltonian control system on a symplectic manifold (P, ω) is defined as an
affine control system whose drift and control vector–fields are Hamiltonian. It
can be written as

ṗ = XH(p) + uaXa(p),

where the vector–fields Xa are assumed to be Hamiltonian with Hamiltonian
Ha for a = 1, ...,m. Examples of systems which are (at least locally) Hamilto-
nian control systems are those which evolve on the symplectic manifold T ∗M
and where the control Hamiltonians are simply coordinate functions on M .

Alternatively, Hamiltonian control systems can be defined on Poisson man-
ifolds. However, for the purposes of this subsection, it will be more natu-
ral to work within the Poisson context. Recall that given a smooth Hamil-
tonian function h : M → R, on the Poisson manifold M, the Poisson
bracket {, } : C∞(M) × C∞(M) → C∞(M) (such that {f, g} = −{g, f},
{f, {g, h}}} + {g, {h, f}} + {h, {f, g}} = 0, and {fg, h} = {f, h}g + f{g, h})
allows us to obtain a Hamiltonian vector–fieldXh with Hamiltonian h through
the equality

LXh
f = {f, h}, for all f ∈ C∞(M),

where LXh
f is the Lie derivative of f along Xh. Note that the vector–field Xh

is well defined since the Poisson bracket verifies the Leibniz rule and therefore
defines a derivation on C∞(M) (see [MR99]). Furthermore C∞(M) equipped
with a Poisson bracket is a Lie algebra, called a Poisson algebra. Also, we say
that the Poisson structure on M is nondegenerate if the {, }−associated map
B# : T ∗M → TM defined by

dg(B#(x)(df)) = B(x)(df, dg),

(where df denotes the exterior derivative of f) is an isomorphism for every
x ∈M .

An affine Hamiltonian control system Σ = (U,M, h) consists of a smooth
manifold U (the input space), a Poisson manifoldM with nondegenerate Pois-
son bracket (the state–space), and a smooth function H : M × U → R (the
controlled Hamiltonian). Furthermore, H is locally of the form H = h0 +hiui

(i = 1, ..., n), with hi locally defined smooth real valued maps and ui local
coordinates for U [TP01].

Using the controlled Hamiltonian and the Poisson structure on M we can
recover the familiar system map F :M × U → TM, locally given by

F = Xh0 +Xhi
ui,

and defines an affine distribution on M given by

DM (x) = Xh0(x) + span{Xh1(x), Xh2(x), ..., Xhn
(x)}.
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This distribution captures all the possible directions of motion available
at a certain point x, and therefore describes a control system, up to a
parametrization by control inputs. This affine distribution will is our main
object of interest here, and we will assume that the rank of DM does not
change with x. Furthermore, we denote an affine distribution DM by X +∆,
where X is a vector–field and ∆ a distribution. When this affine distribu-
tion is defined by a Hamiltonian control system we have X = Xh0 and
∆ = span{Xh1(x), Xh2(x), ..., Xhn

(x)}. A similar reasoning is possible at the
level of Hamiltonians. Locally, we can define the following affine space of
smooth maps

HM = h0 + spanR{h1, h1, ..., hn},
which defines DM by the equality

DM = B#(dHM ),

where we used the notation dHM to denote the set ∪h∈HM
dh. We also use

the notation HM = h0 +H∆ for an affine space of smooth maps where h0 is
a smooth map and H∆ a linear space of smooth maps.

Having defined Hamiltonian control systems we turn to their trajectories
or solutions: A smooth curve γ : I → M , I ⊆ R+

0 is called a trajectory of
control system Σ = (U,M,H), iff there exists a curve γU : I → U satisfying
[TP01]

ẏ(t) = F (γ(t), γU (t)), for every t ∈ I.
Now, given a Hamiltonian control system and a desired property, an ab-

stracted Hamiltonian system is a reduced system that preserves the property
of interest while ignoring modelling detail (see [TP01]). Property preserving
abstractions of control systems are important for reducing the complexity of
their analysis or design. From an analysis perspective, given a large scale con-
trol system and a property to be verified, one extracts a smaller abstracted
system with equivalent properties. Checking the property on the abstraction
is then equivalent to checking the property on the original system. From a
design perspective, rather than designing a controller for the original large
scale system, one designs a controller for the smaller abstracted system, and
then refines the design to the original system while incorporating modelling
detail.

This approach critically depends on whether we are able to construct hier-
archies of abstractions as well as characterize conditions under which various
properties of interest propagate from the original to the abstracted system
and vice versa. In [PLS00], hierarchical abstractions of linear control systems
were extracted using computationally efficient constructions, and conditions
under which controllability of the abstracted system implied controllability of
the original system were obtained. This led to extremely efficient hierarchical
controllability algorithms. In the same spirit, abstractions of nonlinear control
affine systems were considered in [PS02], and the canonical construction for
linear systems was generalized to nonlinear control affine systems.
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In [TP01], abstractions of Hamiltonian control systems are considered,
which are control systems completely specified by controlled Hamiltonians.
This additional structure allows to simplify the abstraction process by work-
ing with functions instead of vector–fields or distributions as is the case for
general nonlinear systems [PS02]. This is possible since the controlled Hamil-
tonian contains all the relevant information that must be captured by the ab-
stracted system. On the other hand, to be able to relate the dynamics induced
by the controlled Hamiltonians, we need to restrict the class of abstracting
maps to those that preserve the Hamiltonian structure. More precisely, given
a Hamiltonian control system on a Poisson manifold M , and a (quotient)
Poisson map φ :M → N , one presents a canonical construction that extracts
an abstracted Hamiltonian control system on N . One then characterizes ab-
stracting maps for which the original and abstracted system are equivalent
from a local accessibility point of view [TP01].

Pontryagin’s Maximum Principle

Recall that the Pontryagin Maximum Principle (PMP, see [PBK62, IK80])
applies to a general optimization problem called a Bolza problem. To apply
PMP to optimal control, we need to define Hamiltonian function:

H(ψ, x, u) = (ψ, f(x, u)) = ψif
i(x, u), (i = 1, ..., n). (2.619)

Then in order for a control u(t) and a trajectory x(t) to be optimal, it is
necessary that there exist a nonzero absolutely continuous vector function
ψ(t) = (ψ0(t), ψ1(t), ..., ψn(t)) corresponding to the functions u(t) and x(t)
such that:

1. The functionH(ψ(t), x(t), u(t)) attains its maximum at the point u = u(t)
almost everywhere in the interval t0 ≤ t ≤ T ,

H(ψ(t), x(t), u(t)) = max
u∈U

H(ψ(t), x(t), u(t)).

2. At the terminal time T , the following relations are satisfied:
ψ0(T ) ≤ 0 and H(ψ(T ), x(T ), u(T )) = 0.

PMP states the following algorithm: To maximize the set of steering func-
tions γixi(t) (with n constants γi) for controlling the changes in the state
variables

ẋi(t) = f i(xi, uk), (i = 0, 1, ..., n, k = 1, ...,m),

we maximize at each instant the Hamiltonian function (2.619), where

ψ̇i = −ψj
∂f j

∂xi
and ψi(T ) = γi.
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Affine Control Systems

Now, let us look at PMP as applied to the affine control system (see [Lew00b])

ẏ(t) = f0(γ(t)) + ua(t) fa(γ(t)),

with γ(t) ∈M , u taking values in U ⊂ Rm, and objective function L(x, u).
We need to have the control Hamiltonian on U × T ∗M :

H(αx, u) = αx(f0(x))︸ ︷︷ ︸
H1

+ αx(uafa(x))︸ ︷︷ ︸
H2

− L(x, u)︸ ︷︷ ︸
H3

.

One of several consequences of the PMP is that if (u, γ) is a minimizer
then there exists a 1−form field λ along γ with the property that t �→ λ(t)
is an integral curve for the time–dependent Hamiltonian (αx, u) �→ H(αx, u).
The Hamiltonian H(αx, u) is a sum of three terms, and so too will be the
Hamiltonian vector–field.

Let us look at the first term, that with (old) Hamiltonian H1 = αx(f0(x)).
In local coordinates XH1 is written as

ẋi = f i0(x), ṗi = −∂f
j
0 (x)
∂xi

pj . (2.620)

XH1 is the cotangent lift of f0 and, following [Lew00b], we denote it fT
∗

0 . So
we want to understand fT

∗
0 on TM with f0 = Z.

Let f0 be a vector–field on a general manifold N with fT0 its tangent lift
defined by

fT0 (vx) =
d

dt

∣∣∣∣
t=0

TxFt(vx),

where Ft denotes the flow of f0. Therefore, fT0 is the ‘linearization’ of f0 and
in local coordinates it is given by (compare with (2.620))

ẋi = f i0(x), v̇i = −∂f
i
0(x)
∂xj

vj .

The flow of fT0 measures how the integral curves of f0 change as we change
the initial condition in the direction of vx.

Now, perhaps we can understand ZT on TM with f0 = Z in the discussion
of tangent lift. Let γ(t) be a geodesic. By varying the initial condition for the
geodesic we generate an ‘infinitesimal variation’ which satisfies the extended
Jacobi equation,

∇2
ẏ(t)ξ(t) +R(ξ(t), ẏ(t)) ẏ(t) +∇ẏ(t) (T (ξ(t), ẏ(t))) = 0. (2.621)

To make the ‘connection’ between ZT and the Jacobi equation, we perform
constructions on the tangent bundle using the spray Z. ∇ comes from a linear
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connection onM which induces an Ehresmann connection on τM : TM →M .
Thus we may write Tvq

TM  TqM ⊕ TqM . Now, if IM : TTM → TTM is
the canonical involution then I∗MZ

T is a spray. We use I∗MZ
T to induce an

Ehresmann connection on τTM : TTM → TM. Thus,

TXvq
TTM  TvqTM ⊕ TvqTM  TqM ⊕ TqM︸ ︷︷ ︸

geodesic equations

⊕ TqM ⊕ TqM︸ ︷︷ ︸
variation equations

.

One represents ZT in this splitting and determines that the Jacobi equation
sits ‘inside’ one of the four components. Now one applies similar constructions
to T ∗TM and ZT

∗
to derive a 1−form version of the Jacobi equation (2.621),

the so–called adjoint Jacobi equation [Lew00b]:

∇2
ẏ(t)λ(t) +R∗(λ(t), ẏ(t)) ẏ(t)− T ∗ (∇ẏ(t)λ(t), ẏ(t)) = 0, (2.622)

where we have used 〈R∗(α, u)v;ω〉 = 〈α;R(ω, u)v〉, and 〈T ∗(α, u);ω〉 =
〈α;T (ω, u)〉 .

The adjoint Jacobi equation forms the backbone of a general statement
of the PMP for affine connection control systems. When objective function is
the Lagrangian L(u, vq) = 1

2g(vq, vq), when ∇ is the Levi–Civita connection
for the Riemannian metric g, and when the system is fully actuated, then we
recover the equation of [NHP89]

∇3
ẏ(t) ẏ(t) +R

(
∇ẏ(t)ẏ(t), ẏ(t)

)
= 0.

Therefore, the adjoint Jacobi equation (2.622) captures the interesting part
of the Hamiltonian vector–field ZT

∗
, which comes from the PMP, in terms of

affine geometry, i.e., from ZT
∗

follows

∇ẏ(t)ẏ(t) = 0, ∇2
ẏ(t)λ(t) +R∗(λ(t), ẏ(t)) ẏ(t)− T ∗ (∇ẏ(t)λ(t), ẏ(t)) = 0.

The geometry of Z on TM gives a way of globally pulling out the adjoint
Jacobi equation from the PMP in an intrinsic manner, which is not generally
possible in the PMP [Lew00b].

2.3.4 Path–Integral Optimal Control of Stochastic Systems

A path–integral based optimal control model for nonlinear stochastic sys-
tems has recently been developed in [Kap05]. The author addressed the role
of noise and the issue of efficient computation in stochastic optimal control
problems. He considered a class of nonlinear control problems that can be
formulated as a path integral and where the noise plays the role of tempera-
ture. The path integral displays symmetry breaking and there exist a critical
noise value that separates regimes where optimal control yields qualitatively
different solutions. The path integral can be computed efficiently by Monte
Carlo integration or by Laplace approximation, and can therefore be used to
solve high dimensional stochastic control problems.
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Recall that optimal control of nonlinear systems in the presence of noise is
a very general problem that occurs in many areas of science and engineering.
It underlies autonomous system behavior, such as the control of movement and
planning of actions of animals and robots, but also optimization of financial
investment policies and control of chemical plants. The problem is stated as:
given that the system is in this configuration at this time, what is the optimal
course of action to reach a goal state at some future time. The cost of each
time course of actions consists typically of a path contribution, that specifies
the amount of work or other cost of the trajectory, and an end cost, that
specifies to what extend the trajectory reaches the goal state.

Also recall that in the absence of noise, the optimal control problem can be
solved in two ways: using (i) the Pontryagin Maximum Principle (PMP, see
previous subsection), which represents a pair of ordinary differential equations
that are similar to the Hamiltonian equations; or (ii) the Hamilton–Jacobi–
Bellman (HJB) equation, which is a partial differential equation (PDE)
[BK64].

In the presence of Wiener noise, the PMP formalism is replaced by a set of
stochastic differential equations (SDEs), which become difficult to solve (com-
pare with [YZ99]). The inclusion of noise in the HJB framework is mathemat-
ically quite straightforward, yielding the so–called stochastic HJB equation
[Ste93]. However, its solution requires a discretization of space and time and
the computation becomes intractable in both memory requirement and CPU
time in high dimensions. As a result, deterministic control can be computed
efficiently using the PMP approach, but stochastic control is intractable due
to the curse of dimensionality.

For small noise, one expects that optimal stochastic control resembles op-
timal deterministic control, but for larger noise, the optimal stochastic control
can be entirely different from the deterministic control [RN03]. However, there
is currently no good understanding how noise affects optimal control.

In this subsection, we address both the issue of efficient computation and
the role of noise in stochastic optimal control. We consider a class of nonlinear
stochastic control problems, that can be formulated as a statistical mechanics
problem. This class of control problems includes arbitrary dynamical systems,
but with a limited control mechanism. It contains linear–quadratic [Ste93]
control as a special case. We show that under certain conditions on the noise,
the HJB equation can be written as a linear PDE

− ∂tψ = Hψ, (2.623)

with H a (non–Hermitian) operator. Equation (2.623) must be solved subject
to a boundary condition at the end time. As a result of the linearity of (2.623),
the solution can be obtained in terms of a diffusion process evolving forward
in time, and can be written as a path integral. The path–integral has a direct
interpretation as a free energy, where noise plays the role of temperature.

This link between stochastic optimal control and a free energy has an im-
mediate consequence that phenomena that allow for a free energy description,
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typically display phase transitions. [Kap05] has argued that for stochastic op-
timal control one can identify a critical noise value that separates regimes
where the optimal control has been qualitatively different. He showed how
the Laplace approximation can be combined with Monte Carlo sampling to
efficiently calculate the optimal control.

Path–Integral Approach to Nonlinear Stochastic Optimal Control

Let xi be an nD stochastic variable that is subject to the SDE

dxi = (bi(xi, t) + ui)dt+ dξi (2.624)

with dξi being an nD Wiener process with
〈
dξidξj

〉
= νijdt, and functions νij

independent of xi, ui and time t. The term bi(xi, t) is an arbitrary nD function
of xi and t, and ui represents an nD vector of control variables. Given the
value of xi at an initial time t, the stochastic optimal control problem is to
find the control path ui(·) that minimizes

C(xi, t, ui(·)) =
〈
φ(xi(tf )) +

∫ tf

t

dτ(
1
2
ui(τ)Rui(τ) + V (xi(τ), τ))

〉
xi

,

(2.625)
with R a matrix, V (xi, t) a time–dependent potential, and φ(xi) the end cost.
The brackets 〈〉xi denote expectation value with respect to the stochastic
trajectories (2.624) that start at xi.

One defines the optimal cost–to–go function from any time t and state xi

as
J(xi, t) = min

ui(·)
C(xi, t, ui(·)).

J satisfies the following stochastic HJB equation [Kap05]

− ∂tJ(xi, t) = min
ui

(
1
2
uiRu

i + V + (bi + ui)∂xiJ(xi, t) +
1
2
νij∂xixjJ(xi, t)

)
= −1

2
R−1∂xiJ(xi, t)∂xiJ + V + bi∂xiJ(xi, t) +

1
2
νij∂xixjJ(xi, t),

(2.626)

where bi = (bi)T , and ui = (ui)T , and

ui = −R−1∂xiJ(xi, t) (2.627)

is the optimal control at the point (xi, t). The HJB equation is nonlinear in
J and must be solved with end boundary condition J(xi, tf ) = φ(xi).

Let us define ψ(xi, t) through the Log Transform

J(xi, t) = −λ logψ(xi, t), (2.628)

and assume that there exists a scalar λ such that
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λδij = (Rν)ij , (2.629)

with δij the Kronecker delta. In the one dimensional case, such a λ can always
be found. In the higher dimensional case, this restricts the matrices R ∝
(νij)

−1. Equation (2.629) reduces the dependence of optimal control on the
nD noise matrix to a scalar value λ that will play the role of temperature,
while (2.626) reduces to the linear equation (2.623) with

H = −V
λ

+ bi∂xi +
1
2
νij∂xixjJ(xi, t).

Let ρ(yi, τ |xi, t) with ρ(yi, t|xi, t) = δ(yi − xi) describe a diffusion process
for τ > t defined by the Fokker–Planck equation

∂τρ = H†ρ = −V
λ
ρ− ∂xi(biρ) +

1
2
νij∂xixjJ(xi, t)ρ (2.630)

withH† the Hermitian–conjugate ofH. ThenA(τ) =
∫
dyiρ(yi, τ |xi, t)ψ(yi, τ)

is independent of τ and in particular A(t) = A(tf ). It immediately follows that

ψ(xi, t) =
∫
dyiρ(yi, tf |xi, t) exp(−φ(yi)/λ) (2.631)

We arrive at the important conclusion that ψ(xi, t) can be computed either
by backward integration using (2.623) or by forward integration of a diffusion
process given by (2.630).

We can write the integral in (2.631) as a path integral. Following [Kap05]
we can divide the time interval t→ tf in n1 intervals and write ρ(yi, tf |xi, t) =∏n1
i=1 ρ(x

i
i, ti|xii−1, ti−1) and let n1 →∞. The result is

ψ(xi, t) =
∫

[dxi]xi exp
(
− 1
λ
S(xi(t→ tf ))

)
(2.632)

with
∫

[dxi]xi an integral over all paths xi(t→ tf ) that start at xi and with

S(xi(t→ tf )) = φ(xi(tf )+
∫ tf

t

dτ(
1
2
(ẋi−bi(xi, τ))R(ẋi−bi(xi, τ))+V (xi, τ))

(2.633)
the Action associated with a path. From (2.628) and (2.632), the cost–to–go
J(x, t) becomes a log partition sum (i.e., a free energy) with temperature λ.

Monte Carlo Sampling

The path integral (2.632) can be estimated by stochastic integration from t
to tf of the diffusion process (2.630) in which particles get annihilated at a
rate V (xi, t)/λ [Kap05]:
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xi = xi + bi(xi, t)dt+ dξi, with probability 1− V dt/λ
xi = †, with probability V dt/λ (2.634)

where † denotes that the particle is taken out of the simulation. Denote the
trajectories by xiα(t→ tf ), (α = 1, . . . , N). Then, ψ(xi, t) and ui are estimated
as

ψ̂(xi, t) =
∑
α∈alive

wα, uidt =
1

ψ̂(xi, t)

N∑
α∈alive

wαdξ
i
α(t), (2.635)

with wα =
1
N

exp(−φ(xiα(tf ))/λ),

where ‘alive’ denotes the subset of trajectories that do not get killed along the
way by the † operation. The normalization 1/N ensures that the annihilation
process is properly taken into account. Equation (2.635) states that optimal
control at time t is obtained by averaging the initial directions of the noise
component of the trajectories dξiα(t), weighted by their success at tf .

The above sampling procedure can be quite inefficient, when many tra-
jectories get annihilated. One of the simplest procedures to improve it is by
importance sampling. We replace the diffusion process that yields ρ(yi, tf |xi, t)
by another diffusion process, that will yield ρ′(yi, tf |xi, t) = exp(−S′/λ). Then
(2.632) becomes,

ψ(xi, t) =
∫

[dxi]xi exp (−S′/λ) exp (−(S − S′)/λ) .

The idea is to chose ρ′ such as to make the sampling of the path integral
as efficient as possible. Following [Kap05], here we use the Laplace approx-
imation, which is given by the k deterministic trajectories xβ(t → tf ) that
minimize the Action

J(xi, t) ≈ −λ log
k∑
β=1

exp(−S(xiβ(t→ tf )/λ).

The Laplace approximation ignores all fluctuations around the modes and
becomes exact in the limit λ → 0. The Laplace approximation can be com-
puted efficiently, requiring O(n2m2) operations, where m is the number of
time discretization.

For each Laplace trajectory, we can define a diffusion processes ρ′β accord-
ing to (2.634) with bi(xi, t) = xiβ(t). The estimators for ψ and ui are given
again by (2.635), but with weights

wα =
1
N

exp
(
−
(
S(xiα(t→ tf ))− S′

β(x
i
α(t→ tf ))

)
/λ

)
.

S is the original Action (2.633) and S′
β is the new Action for the Laplace

guided diffusion. When there are multiple Laplace trajectories one should
include all of these in the sample.
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2.3.5 Life: Complex Dynamics of Gene Regulatory Networks

A living organism represents a complex interconnection of many control units
that form a gene regulatory network .28 In developmental biology, clusters of
DNA sequence elements, the so–called cis–regulatory module, are target sites
for transcription factors. One cis–regulatory module controls a set of spatio–
temporal gene expressions [LD05]. One transcription factor can interact with
many modules, and one module is controlled by many transcription factors.
Thus, the spatio–temporal variation of a gene expression is a consequence of
an interconnected network of interactions.

In the last five years we have witnessed a growing interest in experiments
within the field of systems biology that require mathematical models to de-
scribe the experimental results [OTK02, BMT04, MZA03, GBL03, HDR02,
HYW03, BS00]. A model for gene regulatory networks is also closely re-
lated with synthetic biology , the engineering counterpart of systems biology
[Bre04, Ark01, EB01]. Similar to the development of the field of electronics,
where complex equipment is built on interconnected simple devices, the field
of synthetic biology aims to build simple molecular devices for later use in
more complex molecular machines [Alo03, GEH02]. To build a robust, reli-
able, and simple device, the molecular engineer needs to have a mathematical
description of the system in order to evaluate the number, range and meaning
of a group of parameters that are critical for the device functionality.

Briefly, the so–called messenger RNA (mRNA) is RNA that encodes and
carries information from DNA29 to sites of protein synthesis. The brief ‘life
cycle’ of an mRNAs begins with transcription and ultimately ends in degra-
dation. During their life, mRNAs may also be processed, edited,30 and trans-
28 Recall that an irreducible complex system is a single system which is composed

of several interacting parts that contribute to the basic function, and where the
removal of any one of the parts causes the system to effectively cease functioning.

29 During transcription, RNA polymerase makes a copy of a gene from the DNA
to mRNA as needed. This process is similar in eukaryotes and prokaryotes. One
notable difference, however, is that eukaryotic RNA polymerase associates with
mRNA processing enzymes during transcription so that processing can proceed
quickly after the start of transcription. The short–lived, unprocessed or partially
processed, product is termed pre–mRNA; once completely processed, it is termed
mature mRNA.

30 In some instances, an mRNA will be edited, changing the nucleotide composition
of that mRNA. An example in humans is the apolipoprotein B mRNA, which is
edited in some tissues, but not others. The editing creates an early stop codon,
which upon translation, produces a shorter protein.
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ported prior to translation.31 Eukaryotic mRNAs often require extensive pro-
cessing and transport, while prokaryotic mRNAs do not.32

Fig. 2.17. The ‘life cycle’ of an mRNA in a eukaryotic cell: RNA is transcribed
in the nucleus; once completely processed, it is transported to the cytoplasm and
translated by the ribosome; at the end of its life, the mRNA is degraded (adapted
from [Wik05]).

31 Translation is the second process of protein biosynthesis (part of the overall pro-
cess of gene expression). In translation, messenger RNA is decoded to produce a
specific polypeptide according to the rules specified by the genetic code. Transla-
tion is necessarily preceded by transcription. Similarly to transcription, transla-
tion proceeds in three phases: initiation, elongation and termination (all describ-
ing the growth of the amino acid chain, or polypeptide that is the product of
translation). The capacity of disabling or inhibiting translation in protein biosyn-
thesis is used by antibiotics such as: anisomycin, cycloheximide, chloramphenicol
and tetracycline.

32 Processing of mRNA differs greatly between eukaryotes and prokaryotes. Prokary-
otic mRNA is essentially mature upon transcription and requires no processing
(except in rare cases). Eukaryotic pre-mRNA, however, requires extensive pro-
cessing. A fully processed mRNA includes the 5’ cap, 5’ UTR, coding region, 3’
UTR, and poly(A) tail. Coding regions are composed of codons, which are de-
coded and translated into protein by the ribosome. Coding regions begin with the
start codon and end with the one of three possible stop codons. In addition to
protein–coding, portions of coding regions may also serve as regulatory sequences.
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Recently, it has been proposed that signal generators controlled by light,
can be incorporated into the gene regulatory network [LW05]. With the help
of these light–controlled signal generators [SHT02], different types of signal
perturbations could be imposed on the gene regulatory network. The mRNA
is controlled by an input signal generator and thus the gene state will evolve
in time. Such a generator can be practically constructed using an yeast two–
hybrid system. The light–switch is based on phytochrome that is synthesized
in darkness in the Q1 form. A red light photon of wavelength 664 nm shined on
the Q1 form of the protein transforms it in the form Q2. Figure 2.18 presents
the state of the switch after the effect of the corresponding wavelength took
place. When Q2 absorbs a far red light of wavelength 748 nm, the molecule
Q goes back to its original form, Q1. These transitions take milliseconds.
The protein P interacts only with the Q2 form, recruiting thus the activation
domain to the target promoter. In this position, the promoter is open and the
gene is transcribed. After the desired time elapsed, the gene can be turned off
by a photon from a far red light source. Using a sequence of red and far red
light pulses the molecular switch can be opened and closed.

Fig. 2.18. Input signal generator for mRNA1 control. Here, AD is activation do-
main, BD is binding domain, Q is a protein that changes its form upon light expo-
sure, from Q1 to Q2 and back, P is a protein that interacts only with Q2 (adapted
from [SHT02]).

In [LW05], the Master Equation was solved for genetic systems that were
linear in the transition probabilities. The network’s response to signal genera-
tors was expressed in terms of a transfer matrix for the first and second order
moments of the stochastic process.

More recently, the structure of a stochastic nonlinear gene regulatory net-
work has been uncovered by studying its response to input signal genera-
tors [AL05]. Each genetic regulatory network has been built on a set of in-
teracting molecular species, described by a set of n gene state coordinates
q = (q1, . . . , qn) (see Figure 2.19, for a nonlinear connection of two linear sys-
tems: System 1, with mRNA1 and protein1 as molecular species, nonlinearly
coupled with System 2 with mRNA2 and protein2 as its molecular species).
Namely, each state coordinate qi represents the number of molecules for the
component i of the state q, so that the components i = 1 . . . n can represent
different proteins, mRNAs, or the same protein but in different configurations
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or localizations (in nucleus, on the membrane, in Golgi apparatus, etc.). The
state coordinates qi change in time due to a set of possible transitions ε. If at
time t the state coordinate is q, then at time t+dt the state coordinate will be
q+ ε, with ε being one of the possible transitions. Each transition is governed
by its transition probability Tε(q, t) that depends on the state coordinates qi

and time t.

Fig. 2.19. Up: A schematic of an autoregulatory genetic network; here, the gene G
is under the influence of a cofactor C that rhythmically modulates the activity of the
promoter P. Down: A simple input–output network composed of two interconnected
(i.e., nonlinearly–coupled) gene regulatory systems, described by the set of gene
coordinates q = (q1, q2, q3, q4) (adapted from [LW05] and [AL05]).

To excite a gene regulatory network, an experimental biologist has to act
on it through a set of signal generators Mm

ε (t), to get the transition probability

Tε(q, t) =
∑
m

Mm
ε em(q) +G(t),

where G(t) denotes the part of the signal generator that modulates the
mRNA1 transcription, em(q) are polynomials given by decreasing factorials
in coordinates qi, while m stands for a set m = (m1,m2, ...,mn) of integers.

For example, one of the basic elements of a gene regulatory network is
a gene that controls its own transcription, the so–called Hill feedback control
[LRR02]. Here, the protein acts on mRNA production through a simple trans-
fer function of the form a

b+p2 , where p is the Laplace complex variable. When
the number of protein molecules increases, the rate of mRNA production will
decrease, stabilizing the system’s transcription and translation. This kind of
feedback control is employed in the description of many biological systems. In
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[OTL04] it was used to explain the appearance of multistability in the lactose
utilization network of Escherichia coli, while in [EL00] it was used to describe
a stable oscillator constructed from three genes that repress themselves in a
closed loop.

Fig. 2.20. Autoregulatory gene. The feedback has a Hill coefficient of 2.

Using the basic building blocks (the state q, the transitions ε and the
transition probabilities Tε), the structure of the Hill feedback system (Figure
2.20) is given by [LRR02]:

ε1 = (1, 0) ε−1 = (−1, 0) ε2 = (0, 1) ε−2 = (0,−1)

Tε1 = G(t) +
a1 + a2p

b1 + b2p + b3p(p − 1)

Tε−1 = γqq Tε2 = Kq Tε−2 = γpp

The Master equation for the probability evolution P (q − ε, t) of the gene
regulatory network P (q1, ...qn, t) to be in the state q at time t is given by

∂tP (q, t) =
∑
ε

Tε(q − ε, t)P (q − ε, t)−
∑
ε

Tε(q, t)P (q, t). (2.636)

We are interested in themeanvalues for differen tmolecules,〈qm〉=
∑
q q
mP (q, t),

as well as their correlations. The generating function for such variables is
F (z, t), the Z–transform of the network probability P (q, t) given by (2.636),

F (z, t) ≡ Z(P (q, t)) =
∑
q

zqP (q, t), with

{
z = (z1, . . . , zn),
zq = zq

1

1 . . . z
qn

n .

Using the boundary condition,m ≥ −ε, for every m in Tε(q, t) withMm
ε (t) �=

0, we get the evolution equation for the variable F (z, t),

∂tF =
∑
ε,m

(zε+m − zm)Mm
ε (t)∂mF, (2.637)
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where we used the property that Z(em(q)P (q, t))) = zm∂mF (z, t).
Now, using

∂α(zε) = Qα(ε)zε−α, with Qα(ε) = εα, we get
Ḟα = Rmα (t)Fm , where

Rmα (t) =
∑
ε

(Qα(ε+m)−Qα(m))Mm
ε (t),

(here, Greek letters refer to a 1D index running from 1 to n, while Latin letters
refer to a tensor index m = α1α2α3...). Similarly, we have

Ḟαβ = Rmαβ(t)Fm +Rmα (t)Fmβ +Rmβ (t)Fmα , with

Rmαβ(t) =
∑
ε

(Qαβ(ε+m)−Qαβ(m))Mm
ε (t) . (2.638)

The general equations for the Fm variables are obtained by applying the
operator ∂α1...αn to (2.637). We write the action of this operator on a product
of two functions as

∂α1...αn
(fg) =

{
∂α1...αk

f ∂αk+1...αn
g
}
α
,

where the braces indicate the summation for all pairs of disjoint sets (α1 . . . αk),
(αk+1 . . . αn) that form a partition of the tensor index α1 . . . αn. When listing
all possible partitions, we take care that a permutation of the elements of a
set does not change said set. Also Rm with an empty index set is zero, because
Q(ε) = 1, which comes from zε = Q(ε)zε.

Then the evolution equation for the time variation of Fm(t) is [AL05]

Ḟα1...αn
=

{
Rmα1...αk

(t)Fmαk+1...αn

}
α
, (summing over m) (2.639)

The tensor Rmα1...αk
(t) is given by (2.638) with α1 . . . αk instead of the index

αβ. To see the structure of the equation (2.639) we specialize it for n = 3,

Ḟα1α2α3 = Rmα1α2α3
(t)Fm (2.640)

+ Rmα1α2
(t)Fmα3 +Rmα1α3

(t)Fmα2 +Rmα2α3
(t)Fmα1

+ Rmα1
(t)Fmα2α3 +Rmα2

(t)Fmα1α3 +Rmα3
(t)Fmα1α2 .

The equation (2.639) has a similar structure to a bilinear MIMO–system
[Isi89]. Recall that a bilinear system is represented by a time evolution equa-
tion that is linear in state, linear in control, but not jointly linear in both,

ẋ(t) = A(t)x(t) +
n∑
k=1

Nk(t)uk(t)x(t) +B(t)u(t), (2.641)

where x ∈ Rn and A,Nk, B are appropriate matrices, while the controls are
uk, (k = 1 . . . n) and the state is described by x [Moh91]. Obviously, system
(2.641) is a special case of the general nonlinear MIMO–system (2.600).
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Using the equation (2.639), several gene regulatory applications have been
studied in [AL05], including (i) design of a logic pulse; (ii) a molecular
Michaelis–Menten amplifier ; and (iii) the interference of three signal gen-
erators in E2F1 regulatory element. Also, the Young tableaux formalism from
the Lie group theory is used to classify the symmetries of (2.639) and to keep
its bilinear structure, as follows.

The change of variable F (z, t) = eX(z,t) is similar with the change from
moments to cumulants [McCul87]. As F (z, t) generates the factorial moments,
X(z, t) generates the factorial cumulants. In this way, the time–dependent
variables, Fm, are replaced by Xm = ∂mX(z, t) |z=1. The transformation
relations between Fm and Xm follow from the Faà Di Bruno’s formula for
the derivative of the composition of functions [CS96]. To keep the bilinear
structure, we need to construct an appropriate index notation for the terms
of the Faà Di Bruno’s formula. For example, the fourth–order derivative of F
at z = 1 is

Fαβγδ = Xαβγδ +XαβγXδ +XαβδXγ +XαγδXβ +XβγδXα (2.642)
+ XαβXγδ +XαγXβδ +XαδXβγ +XαβXγXδ +XαγXβXδ
+ XαδXβXγ +XβγXαXδ +XβδXαXγ +XγδXαXβ +XαXβXγXδ

Given the index αβγδ from the l.h.s of (2.642), we need to generate all the
indices that appear in its the r.h.s. If the term XαγXβXδ is present in the
sum, then any symmetric version of it, like XβXγαXδ, cannot be present. If
we classify all possible symmetries of a term, then we find an index notation
that will eliminate all the equivalent terms. The symmetries come from the
commutativities of the product and the partial derivatives.

If we use the corresponding Young tableaux filled with indices α, β, γ, ...,
to represent products of Xm variables,

X α β γ

δ
= XαβγXδ,

then (2.642) becomes (see [AL05]):
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The rows of a Young tableau are listed in decreasing order of their length,
which will enforce an order in the product of the variables Xm. Thus the
symmetry due to the commutativity of the product is lifted.

For example, if Y= , m = αβγδ , σ(1) = 1, σ(2) = 2, σ(3) = 4 and
σ(4) = 3 we have:

Y[m]= α β γ
δ

Y [mσ]= α β δ
γ

and XY [m] = XαβγXδ XY [mσ ] = XαβδXγ . (2.643)

The terms in the Faà Di Bruno formula are generated using filled Young
tableaux and a set of representative permutations σi, (i = 1 . . . J), where J
is |Y |!/card(HY ), chosen form each set of the coset space,

S|Y |/H
Y = {σ1H

Y , . . . , σJH
Y },

so that the Faà Di Bruno formula in Young tableaux notation reads

Fm =
∑

|Y |=|m|

∑
σ∈S|Y |/HY

XY [mσ ].

For partial derivatives with z not fixed to 1 the formula is similar

∂mF (z, t) =
∑

|Y |=|m|

∑
σ∈S|Y |/HY

∂Y [mσ ]X(z, t)eX(z,t),

with the convention that the derivation, with respect to a filled Young tableau,
is the product of the derivatives along each line of the tableau. Thus, using
the example (2.643) we have

∂Y [m]X(z, t) = ∂α∂β∂γX(z, t)∂δX(z, t) .

Now, the equation (2.637) in the variable X(z, t) becomes

∂tX(z, t) =
∑
m,ε

(zε+m − zm )Mm
ε (t)[

∑
|Y |=|m|

∑
σ∈S|Y |/HY

∂Y [mσ ]X(z, t)].

(2.644)
The time–dependent variables will now be ∂mX(z, t) |z=1, so that we need

to take partial derivatives with respect to z of (2.644). The concatenation
notation ∂αβ = ∂α∂β has to be generalized for the filled Young tableaux

∂α|Y [m]X(z, t) = ∂α(∂Y [m]X(z, t)).

Therefore, the concatenation α|Y [m] means that a box containing α must be
glued to each row of Y [m] and the object thus obtained must be rearranged
into a lexicographical order filled Young tableau. Inductively we can define

∂α|β|...γ|Y [m] = ∂α(∂β|...|γ|Y [m]).
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The concatenation notation is also applied to the Xm variable,

Xα|Y [m] = ∂α|Y [m]X(z, t) |z=1 .

The equations for the factorial cumulants are now, as a consequence of (2.644),
given by

Ẋα = Rmα (t)
∑
Y,σ

XY [mσ ],

Ẋαβ = Rmαβ(t)
∑
Y,σ

XY [mσ ] +Rmα (t)
∑
Y,σ

Xβ|Y [mσ ] +Rmβ (t)
∑
Y,σ

Xα|Y [mσ ],

with
∑
Y,σ being a short notation for the the sums over Y and σ in (2.644).

In general, for polynomial transition probabilities and factorial cumulants, we
get the time evolution equation [AL05]:

Ẋα1α2...αn
=

⎧⎨⎩Rmα1α2...αk
(t)

∑
Y,σ

Xαk+1|...|αn|Y [mσ ]

⎫⎬⎭
α

.

2.4 Human–Like Biomechanics

Recall from [II05] that modern unified geometrical basis for both human
biomechanics and humanoid robotics represents the constrained SE(3)−group,
i.e., the so–called special Euclidean group of rigid–body motions in 3D space
(see, e.g., [MLS94, PC05]). In other words, during human movement, in each
movable human joint there is an action of a constrained SE(3)−group. There-
fore, constrained SE(3)−group represents general kinematics of human–like
joints. The corresponding nonlinear dynamics problem (resolved mainly for
aircraft and spacecraft dynamics) is called the dynamics on SE(3)−group,
while the associated nonlinear control problem (resolved mainly for general
helicopter control) is called the control on SE(3)−group.

Recall that the Euclidean SE(3)−group is defined as a semidirect (non-
commutative) product of 3D rotations and 3D translations, SE(3) := SO(3)�
R3 [MLS94, PC05, II05]). Its most important subgroups are the following:
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Subgroup Definition
SO(3), group of rotations in 3D

(a spherical joint)
Set of all proper orthogonal
3× 3− rotational matrices

SE(2), special Euclidean group in 2D
(all planar motions)

Set of all 3× 3−matrices:⎡⎣ cos θ sin θ rx
− sin θ cos θ ry

0 0 1

⎤⎦
SO(2), group of rotations in 2D

subgroup of SE(2)− group
(a revolute joint)

Set of all proper orthogonal
2× 2− rotational matrices
included in SE(2)− group

R3, group of translations in 3D
(all spatial displacements) Euclidean 3D vector space

In the next subsection we give detailed analysis of these subgroups, as well
as the total SE(3)−group.

2.4.1 Lie Groups and Symmetries in Biomechanics

Lie Groups of Joint Rotations

Local kinematics at each rotational robot or (synovial) human joint, is de-
fined as a group action of an nD constrained rotational Lie group SO(n) on
the Euclidean space Rn. In particular, there is an action of SO(2)–group in
uniaxial human joints (cylindrical, or hinge joints, like knee and elbow) and
an action of SO(3)–group in three–axial human joints (spherical, or ball–and–
socket joints, like hip, shoulder, neck, wrist and ankle). In both cases, SO(n)
acts, with its operators of rotation, on the vector x = {xµ}, (i = 1, 2, 3) of
external, Cartesian coordinates of the parent body–segment, depending, at
the same time, on the vector q = {qs}, (s = 1, · · · , n) on n group–parameters,
i.e., joint angles.

Each joint rotation R ∈ SO(n) defines a map

R : xµ �→ ẋµ, R(xµ, qs) = Rqsxµ,

where Rqs ∈ SO(n) are joint group operators. The vector v = {vs}, (s =
1, · · · , n) of n infinitesimal generators of these rotations, i.e., joint angular
velocities, given by

vs = −[
∂R(xµ, qs)
∂qs

]q=0
∂

∂xµ
,

constitute an nD Lie algebra so(n) corresponding to the joint rotation
group SO(n). Conversely, each joint group operator Rqs , representing a one–
parameter subgroup of SO(n), is defined as the exponential map of the cor-
responding joint group generator vs

Rqs = exp(qsvs). (2.645)
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The exponential map (2.645) represents a solution of the joint operator dif-
ferential equation in the joint group–parameter space {qs}

dRqs

dqs
= vsRqs .

Uniaxial Group of Joint Rotations

The uniaxial joint rotation in a single Cartesian plane around a perpendicular
axis, e.g., xy−plane about the z axis, by an internal joint angle θ, leads to
the following transformation of the joint coordinates

ẋ = x cos θ − y sin θ, ẏ = x sin θ + y cos θ.

In this way, the joint SO(2)−group, given by

SO(2) =
{
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
|θ ∈ [0, 2π]

}
,

acts in a canonical way on the Euclidean plane R2 by

SO(2) =
((

cos θ − sin θ
sin θ cos θ

)
,

(
x
w

))
�−→

(
x cos θ −y sin θ
x sin θ y cos θ

)
.

Its associated Lie algebra so(2) is given by

so(2) =
{(

0 −t
t 0

)
|t ∈ R

}
,

since the curve γθ ∈ SO(2) given by

γθ : t ∈ R �−→ γθ(t) =
(

cos tθ − sin tθ
sin tθ cos tθ

)
∈ SO(2),

passes through the identity I2 =
(

1 0
0 1

)
and then

d

dt

∣∣∣∣
t=0

γθ(t) =
(

0 −θ
θ 0

)
,

so that I2 is a basis of so(2), since dim (SO(2)) = 1.
The exponential map exp : so(2) → SO(2) is given by

exp
(

0 −θ
θ 0

)
= γθ(1) =

(
cos tθ − sin tθ
sin tθ cos tθ

)
.

The infinitesimal generator of the action of SO(2) on R2, i.e., joint angular
velocity v, is given by
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v = −y ∂
∂x

+ x
∂

∂y
,

since

vR2 (x, y) =
d

dt

∣∣∣∣
t=0

exp(tv) (x, y) =
d

dt

∣∣∣∣
t=0

(
cos tv − sin tv
sin tv cos tv

)(
x
y

)
.

The momentum map (see subsection 1.2.11 below) J : T ∗R2 → R associ-
ated to the lifted action of SO(2) on T ∗R2  R4 is given by

J (x, y, p1, p2) = xpy − ypx, since
J (x, y, px, py) (ξ) = (pxdx+ pydy)(vR2) = −vpxy +−vpyx.

The Lie group SO(2) acts on the symplectic manifold (R4, ω = dpx ∧dx+
dpy ∧ dx) by

φ

((
cos θ − sin θ
sin θ cos θ

)
, (x, y, px, py)

)
= (x cos θ − y sin θ, x sin θ + y cos θ, px cos θ − py sin θ, px sin θ + py cos θ) .

Three–Axial Group of Joint Rotations

The three–axial SO(3)−group of human–like joint rotations depends on three
parameters, Euler joint angles qi = (ϕ,ψ, θ), defining the rotations about the
Cartesian coordinate triedar (x, y, z) placed at the joint pivot point. Each of
the Euler angles are defined in the constrained range (−π, π), so the joint
group space is a constrained sphere of radius π.

Let G = SO(3) = {A ∈ M3×3(R) : AtA = I3,det(A) = 1} be the group
of rotations in R3. It is a Lie group and dim(G) = 3. Let us isolate its one–
parameter joint subgroups, i.e., consider the three operators of the finite joint
rotations Rϕ, Rψ, Rθ ∈ SO(3), given by

Rϕ =

⎡⎣1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎤⎦ , Rψ =

⎡⎣ cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

⎤⎦ , Rθ =

⎡⎣ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤⎦
corresponding respectively to rotations about x−axis by an angle ϕ, about
y−axis by an angle ψ, and about z−axis by an angle θ.

The total three–axial joint rotation A is defined as the product of above
one–parameter rotations Rϕ, Rψ, Rθ, i.e., A = Rϕ ·Rψ ·Rθ is equal

A=

⎡⎣ cosψ cosϕ− cos θ sinϕ sinψ cosψ cosϕ+ cos θ cosϕ sinψ sin θ sinψ
−sinψ cosϕ− cos θ sinϕ sinψ−sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ

⎤⎦.
However, the order of these matrix products matters: different order products
give different results, as the matrix product is noncommutative product . This
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is the reason why Hamilton’s quaternions33 are today commonly used to pa-
rameterize the SO(3)−group, especially in the field of 3D computer graphics.

The one–parameter rotations Rϕ, Rψ, Rθ define curves in SO(3) starting

from I3 =

(
1 0 0
0 1 0
0 0 1

)
. Their derivatives in ϕ = 0, ψ = 0 and θ = 0 belong to the

associated tangent Lie algebra so(3). That is the corresponding infinitesimal
generators of joint rotations – joint angular velocities vϕ, vψ, vθ ∈ so(3) – are
respectively given by

vϕ =

[
0 0 0
0 0 −1
0 1 0

]
= −y ∂

∂z
+ z

∂

∂y
, vψ =

[
0 0 1
0 0 0
−1 0 0

]
= −z ∂

∂x
+ x

∂

∂z
,

vθ =

[
0 −1 0
1 1 0
0 0 0

]
= −x ∂

∂y
+ y

∂

∂x
.

Moreover, the elements are linearly independent and so

so(3) =

⎧⎨⎩
⎡⎣ 0 −a b
a 0 −γ
−b γ 0

⎤⎦ |a, b, γ ∈ R

⎫⎬⎭ .
The Lie algebra so(3) is identified with R3 by associating to each v =

(vϕ, vψ, vθ) ∈ R3 the matrix v ∈ so(3) given by v =

[
0 −a b
a 0 −γ
−b γ 0

]
. Then

we have the following identities:

1. û× v = [û, v]; and
2. u · v = − 1

2 Tr(û · v).

The exponential map exp : so(3) → SO(3) is given by Rodrigues relation

exp(v) = I +
sin ‖v‖
‖v‖ v +

1
2

(
sin ‖v‖

2
‖v‖
2

)2

v2,

where the norm ‖v‖ is given by

‖v‖ =
√

(v1)2 + (v2)2 + (v3)2.

33 Recall that the set of Hamilton’s quaternions H represents an extension of the
set of complex numbers C. We can compute a rotation about the unit vector, u
by an angle θ. The quaternion q that computes this rotation is

q =

(
cos

θ

2
, u sin

θ

2

)
.
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The the dual, cotangent Lie algebra so(3)∗, includes the three joint angular
momenta pϕ, pψ, pθ ∈ so(3)∗, derived from the joint velocities v by multiplying
them with corresponding moments of inertia.

Note that the parameterization of SO(3)−rotations is the subject of con-
tinuous research and development in many theoretical and applied fields of
mechanics, such as rigid body, structural, and multibody dynamics, robotics,
spacecraft attitude dynamics, navigation, image processing, etc. For a com-
plete discussion on the classical attitude representations see [Fri88, Mla91,
Shu93, STP95]. In addition, a modern vectorial parameterization of finite ro-
tations, encompassing the mentioned earlier developments as well as Gibbs,
Wiener, and Milenkovic parameterizations [Mla99, BT03].

Euclidean Groups of Total Joint Motions

Biomechanically realistic joint movement is predominantly rotational, plus
restricted translational (translational motion in human joints is observed after
reaching the limit of rotational amplitude). Gross translation in any human
joint means joint dislocation, which is a severe injury. Obvious models for
uniaxial and triaxial joint motions are special Euclidean groups of rigid body
motions, SE(2) and SE(3), respectively.

Special Euclidean Group in the Plane

The motion in uniaxial human joints is naturally modelled by the special
Euclidean group in the plane, SE(2). It consists of all transformations of R2

of the form Az + a, where z, a ∈ R2, and

A ∈ SO(2) =
{

matrices of the form
(

cos θ − sin θ
sin θ cos θ

)}
.

In other words [MR99], group SE(2) consists of matrices of the form:

(Rθ, a) =
(

Rθ a
0 I

)
, where a ∈ R2 and Rθ is the rotation matrix:

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, while I is the 3×3 identity matrix. The inverse (Rθ, a)

−1

is given by

(Rθ, a)
−1 =

(
Rθ a
0 I

)−1

=
(
R−θ −R−θa

0 I

)
.

The Lie algebra se(2) of SE(2) consists of 3× 3 block matrices of the form(
−ξJ v

0 0

)
, where J =

(
0 1
−1 0

)
, (JT = J−1 = −J),

with the usual commutator bracket. If we identify se(2) with R3 by the iso-
morphism
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−ξJ v

0 0

)
∈ se(2) �−→ (ξ, v) ∈ R3,

then the expression for the Lie algebra bracket becomes

[(ξ, v1, v2), (ζ, w1, w2)] = (0, ζv2 − ξw2, ξw1 − ζv1) = (0, ξJTw − ζJT v),

where v = (v1, v2) and w = (w1, w2).
The adjoint group action of

(Rθ, a)
(
Rθ a
0 I

)
on (ξ, v) =

(
−ξJ v

0 0

)
is given by the group conjugation,(

Rθ a
0 I

)(
−ξJ v

0 0

)(
R−θ −R−θa

0 I

)
=

(
−ξJ ξJa+Rθv

0 0

)
,

or, in coordinates [MR99],

Ad(Rθ,a)(ξ, v) = (ξ, ξJa+Rθv). (2.646)

In proving (2.646) we used the identity RθJ = JRθ. Identify the dual

algebra, se(2)∗, with matrices of the form
(
µ
2J 0
α 0

)
, via the nondegenerate

pairing given by the trace of the product. Thus, se(2)∗ is isomorphic to R3

via (
µ
2J 0
α 0

)
∈ se(2)∗ �−→ (µ, α) ∈ R3,

so that in these coordinates, the pairing between se(2)∗ and se(2) becomes

〈(µ, α), (ξ, v)〉 = µξ + α · v,

that is, the usual dot product in R3. The coadjoint group action is thus given
by

Ad∗
(Rθ,a)

−1(µ, α) = (µ−Rθα · Ja+Rθα). (2.647)

Formula (2.647) shows that the coadjoint orbits are the cylinders T ∗S1
α =

{(µ, α)| ‖α‖ = const} if α �= 0 together with the points are on the µ−axis.
The canonical cotangent bundle projection π : T ∗S1

α → S1
α is defined as

π(µ, α) = α.

Special Euclidean Group in the 3D Space

The most common group structure in human–like biomechanics is the special
Euclidean group in 3D space, SE(3). It is defined as a semidirect (noncom-
mutative) product of 3D rotations and 3D translations, SO(3) � R3.



538 2 Dynamics of Complex Systems

The Heavy Top

As a starting point consider a rigid body (see (2.1.1) below) moving with
a fixed point but under the influence of gravity. This problem still has a
configuration space SO(3), but the symmetry group is only the circle group
S1, consisting of rotations about the direction of gravity. One says that gravity
has broken the symmetry from SO(3) to S1. This time, eliminating the S1

symmetry mysteriously leads one to the larger Euclidean group SE(3) of rigid
motion of R3. Conversely, we can start with SE(3) as the configuration space
for the rigid–body and ‘reduce out’ translations to arrive at SO(3) as the
configuration space (see [MR99]).

The equations of motion for a rigid body with a fixed point in a gravita-
tional field give an interesting example of a system that is Hamiltonian (see
(2.1.1)) relative to a Lie–Poisson bracket (see (2.4.2)). The underlying Lie
algebra consists of the algebra of infinitesimal Euclidean motions in R3.

The basic phase–space we start with is again T ∗SO(3), parameterized by
Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form. However, the presence of gravity breaks
the symmetry, and the system is no longer SO(3) invariant, so it cannot be
written entirely in terms of the body angular momentum p. One also needs
to keep track of Γ , the ‘direction of gravity’ as seen from the body. This is
defined by Γ = A−1k, where k points upward and A is the element of SO(3)
describing the current configuration of the body. The equations of motion are

ṗ1 =
I2 − I3
I2I3

p2p3 +Mgl(Γ 2χ3 − Γ 3χ2),

ṗ2 =
I3 − I1
I3I1

p3p1 +Mgl(Γ 3χ1 − Γ 1χ3),

ṗ3 =
I1 − I2
I1I2

p1p2 +Mgl(Γ 1χ2 − Γ 2χ1),

and Γ̇ = Γ ×Ω,

whereΩ is the body’s angular velocity vector, I1, I2, I3 are the body’s principal
moments of inertia, M is the body’s mass, g is the acceleration of gravity, χ
is the body fixed unit vector on the line segment connecting the fixed point
with the body’s center of mass, and l is the length of this segment.

The Euclidean Group and Its Lie Algebra

An element of SE(3) is a pair (A, a) where A ∈ SO(3) and a ∈ R3. The action
of SE(3) on R3 is the rotation A followed by translation by the vector a and
has the expression

(A, a) · x = Ax+ a.

Using this formula, one sees that multiplication and inversion in SE(3) are
given by
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(A, a)(B, b) = (AB,Ab+ a) and (A, a)−1 = (A−1,−A−1a),

for A,B ∈ SO(3) and a, b ∈ R3. The identity element is (l, 0).
The Lie algebra of the Euclidean group SE(3) is se(3) = R3×R3 with the

Lie bracket
[(ξ, u), (η, v)] = (ξ × η, ξ × v − η × u). (2.648)

The Lie algebra of the Euclidean group has a structure that is a spe-
cial case of what is called a semidirect product. Here it is the product of the
group of rotations with the corresponding group of translations. It turns out
that semidirect products occur under rather general circumstances when the
symmetry in T ∗G is broken.

The dual Lie algebra of the Euclidean group SE(3) is se(3)∗ = R3 × R3

with the same Lie bracket (2.648). For the further details on adjoint orbits in
se(3) as well as coadjoint orbits in se(3)∗ see [MR99].

Symplectic Group in Hamiltonian Mechanics

Let J =
(

0 I
−I 0

)
, with I the n×n identity matrix. Now, A ∈ L(R2n,R2n) is

called a symplectic matrix if ATJ A = J . Let Sp(2n,R) be the set of 2n× 2n
symplectic matrices. Taking determinants of the condition ATJ A = J gives
detA = ±1, and so A ∈ GL(2n,R). Furthermore, if A,B ∈ Sp(2n,R), then
(AB)TJ(AB) = BTATJAB = J . Hence, AB ∈ Sp(2n,R), and if ATJ A = J ,
then JA = (AT )−1J = (A−1)TJ , so J = (A− 1)T JA−1, or A−1 ∈ Sp(2n,R).
Thus, Sp(2n,R) is a group [MR99].

The symplectic Lie group

Sp(2n,R) =
{
A ∈ GL(2n,R) : ATJ A = J

}
is a noncompact, connected Lie group of dimension 2n2 + n. Its Lie algebra

sp(2n,R) =
{
A ∈ L(R2n,R2n) : ATJ A = J = 0

}
,

called the symplectic Lie algebra, consists of the 2n×2n matrices A satisfying
ATJ A = 0 [MR99].

Consider a particle of mass m moving in a potential V (q), where qi =
(q1, q2, q3) ∈ R3. Newtonian second law states that the particle moves along
a curve q(t) in R3 in such a way that mq̈i = − gradV (qi). Introduce the
momentum pi = mq̇i, and the energy

H(q, p) =
1

2m

3∑
i=1

p2i + V (q).

Then
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∂H

∂qi
=
∂V

∂qi
= −mq̈i = −ṗi, and

∂H

∂pi
=

1
m
pi = q̇i, (i = 1, 2, 3),

and hence Newtonian law F = mq̈i is equivalent to Hamiltonian equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Now, writing z = (qi, pi) [MR99],

J gradH(z) =
(

0 I
−I 0

)(
∂H
∂qi

∂H
∂pi

)
=

(
q̇i, ṗi

)
= ż,

so Hamiltonian equations read

ż = J gradH(z). (2.649)

Now let f : R3 × R3 → R3 × R3 and write w = f(z). If z(t) satisfies
Hamiltonian equations (2.649) then w(t) = f(z(t)) satisfies ẇ = AT ż, where
AT = [∂wi/∂zj ] is the Jacobian matrix of f . By the chain rule,

ẇ = ATJ grad
z
H(z) = ATJ A grad

w
H(z(w)).

Thus, the equations for w(t) have the form of Hamiltonian equations with en-
ergy K(w) = H(z(w)) iff ATJ A = J , that is, iff A is symplectic. A nonlinear
transformation f is canonical iff its Jacobian matrix is symplectic. Sp(2n,R)
is the linear invariance group of classical mechanics [MR99].

Group Structure of the Biomechanical Manifold M

Purely Rotational Biomechanical Manifold

Kinematics of an n–segment human–body chain (like arm, leg or spine) is
usually defined as a map between external coordinates (usually, end–effector
coordinates) xr (r = 1, . . . , n) and internal joint coordinates qi (i = 1, . . . , N)
(see [IS01, Iva02, IP01b, IP01b, Iva05a]). The forward kinematics are defined
as a nonlinear map xr = xr(qi) with a corresponding linear vector functions
dxr = ∂xr/∂qi dqi of differentials: and ẋr = ∂xr/∂qi q̇i of velocities. When
the rank of the configuration–dependent Jacobian matrix J ≡ ∂xr/∂qi is less
than n the kinematic singularities occur; the onset of this condition could be
detected by the manipulability measure. The inverse kinematics are defined
conversely by a nonlinear map qi = qi(xr) with a corresponding linear vector
functions dqi = ∂qi/∂xr dxr of differentials and q̇i = ∂qi/∂xr ẋr of velocities.
Again, in the case of redundancy (n < N), the inverse kinematic problem
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admits infinite solutions; often the pseudo–inverse configuration–control is
used instead: q̇i = J∗ ẋr, where J∗ = JT (J JT )−1 denotes the Moore–Penrose
pseudo–inverse of the Jacobian matrix J .

Humanoid joints, that is, internal coordinates qi (i = 1, . . . , N), constitute
a smooth configuration manifold M , described as follows. Uniaxial, ‘hinge’
joints represent constrained, rotational Lie groups SO(2)icnstr, parameterized
by constrained angles qicnstr ≡ qi ∈ [qimin, q

i
max]. Three–axial, ‘ball–and–

socket’ joints represent constrained rotational Lie groups SO(3)icnstr, param-
eterized by constrained Euler angles qi = q

φi
cnstr (in the following text, the

subscript ‘cnstr’ will be omitted, for the sake of simplicity, and always as-
sumed in relation to internal coordinates qi).

All SO(n)–joints are Hausdorff C∞–manifolds with atlases (Uα, uα); in
other words, they are paracompact and metrizable smooth manifolds, admit-
ting Riemannian metric.

Let A and B be two smooth manifolds described by smooth atlases
(Uα, uα) and (Vβ , vβ), respectively. Then the family (Uα × Vβ , uα × vβ :
Uα × Vβ → Rm × Rn)(α, β) ∈ A × B is a smooth atlas for the direct prod-
uct A × B. Now, if A and B are two Lie groups (say, SO(n)), then their
direct product G = A×B is at the same time their direct product as smooth
manifolds and their direct product as algebraic groups, with the product law

(a1, b1)(a2, b2) = (a1a2, b1b2), (a1,2 ∈ A, b1,2 ∈ B).

Generalizing the direct product to N rotational joint groups, we can draw
an anthropomorphic product–tree (see Figure 2.21) using a line segment ‘–’ to
represent direct products of human SO(n)–joints. This is our basic model of
the biomechanical configuration manifold M .

Let TqM be a tangent space to M at the point q. The tangent bundle TM
represents a union ∪q∈MTqM , together with the standard topology on TM
and a natural smooth manifold structure, the dimension of which is twice the
dimension of M . A vector–field X on M represents a section X : M → TM
of the tangent bundle TM .

Analogously let T ∗
qM be a cotangent space to M at q, the dual to its tan-

gent space TqM . The cotangent bundle T ∗M represents a union ∪q∈MT ∗
qM ,

together with the standard topology on T ∗M and a natural smooth manifold
structure, the dimension of which is twice the dimension of M . A 1−form θ
on M represents a section θ :M → T ∗M of the cotangent bundle T ∗M .

We refer to the tangent bundle TM of biomechanical configuration man-
ifold M as the velocity phase–space manifold, and to its cotangent bundle
T ∗M as the momentum phase–space manifold.

Reduction of the Rotational Biomechanical Manifold

The biomechanical configuration manifold M (Figure 2.21) can be (for the
sake of the brain–like motor control) reduced to N–torus TN , in three steps,
as follows.
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Fig. 2.21. Purely rotational, whole–body biomechanical manifold, with a single
SO(3)−joint representing the whole spinal movability.

First, a single three–axial SO(3)−joint can be reduced to the direct prod-
uct of three uniaxial SO(2)−joints, in the sense that three hinge joints can
produce any orientation in space, just as a ball–joint can. Algebraically, this
means reduction (using symbol ‘�’) of each of the three SO(3) rotation ma-
trices to the corresponding SO(2) rotation matrices⎛⎝1 0 0

0 cosφ − sinφ
0 sinφ cosφ

⎞⎠ �
(

cosφ − sinφ
sinφ cosφ

)
⎛⎝ cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ

⎞⎠ �
(

cosψ sinψ
− sinψ cosψ

)
⎛⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞⎠ �
(

cos θ − sin θ
sin θ cos θ

)

In this way we can set the reduction equivalence relation SO(3) � SO(2)�
SO(2)�SO(2), where ‘�’ denotes the noncommutative semidirect product (see
(2.4.1) above).

Second, we have a homeomorphism: SO(2) ∼ S1, where S1 denotes the
constrained unit circle in the complex plane, which is an Abelian Lie group.

Third, let IN be the unit cube [0, 1]N in RN and ‘∼’ an equivalence relation
on RN get by ‘gluing’ together the opposite sides of IN , preserving their
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orientation. The manifold of human–body configurations (Figure 2.21) can be
represented as the quotient space of RN by the space of the integral lattice
points in RN , that is a constrained ND torus TN (2.684),

RN/ZN = IN/ ∼∼=
N∏
i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = TN . (2.650)

Since S1 is an Abelian Lie group, its N–fold tensor product TN is also an
Abelian Lie group, the toral group, of all nondegenerate diagonal N × N
matrices. As a Lie group, the biomechanical configuration space M ≡ TN has
a natural Banach manifold structure with local internal coordinates qi ∈ U ,
U being an open set (chart) in TN .

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation. By
the Tychonoff product–topology theorem, for every such quotient space there
exists a ‘selector’ such that their quotient models are homeomorphic, that is,
TN/ ∼∗≈ AN/ ∼∗. Therefore IN represents a ‘selector’ for the configura-
tion torus TN and can be used as an N–directional ‘command–space’ for the
topological control of human motion. Any subset of DOF on the configura-
tion torus TN representing the joints included in human motion has its simple,
rectangular image in the command space – selector IN . Operationally, this
resembles what the brain–motor–controller, the cerebellum, actually performs
on the highest level of human motor control.

The Complete Biomechanical Manifold

The full kinematics of a whole human–like body can be split down into five
kinematic chains: one for each leg and arm, plus one for spine with the head.
In all five chains internal joint coordinates, namely n1 constrained rotations
xkrt together with n2 of even more constrained translations xjtr (see Figure
2.22), constitute a smooth nD anthropomorphic configuration manifold M ,
with local coordinates xi, (i = 1, . . . , n). That is, the motion space in each
joint is defined as a semidirect (noncommutative) product of the Lie group
SO(n) of constrained rotations and a corresponding Lie group Rn of even more
restricted translations. More precisely, in each movable human–like joint we
have an action of the constrained special Euclidean SE(3) group (see (2.4.1)
above). The joints themselves are linked by direct (commutative) products.

Realistic Human Spine Manifold

The high–resolution human spine manifold is a dynamical chain consisting
of 25 constrained SE(3)− joints. Each movable spinal joint has 6 DOF: 3
dominant rotations, (performed first in any free spinal movement), restricted
to about 7 angular degrees and 3 secondary translations (performed after
reaching the limit of rotational amplitude), restricted to about 5 mm (see
Figure 2.23).
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Fig. 2.22. A medium–resolution, whole–body biomechanical manifold, with just a
single SE(3)−joint representing the spinal movability.

Fig. 2.23. The high–resolution human spine manifold is a dynamical chain consist-
ing of 25 constrained SE(3)−joints.

Now, SE(3) = SO(3) � R3 is a non–compact group, so there is no any
natural metric given by the kinetic energy on SE(3), and consequently, no
natural controls in the sense of geodesics on SE(3). However, both of its
subgroups, SO(3) and R3, are compact with quadratic metric forms defined
by standard line element gijdqidqj , and therefore admit optimal muscular–like
controls in the sense of geodesics (see section 1.2.9 below).
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2.4.2 Muscle–Driven Hamiltonian Biomechanics

We will develop our Hamiltonian geometry on the configuration biomechan-
ical manifold M in three steps, following the standard symplectic geometry
prescription (see subsection 1.2.11 above):
Step A Find a symplectic momentum phase–space (P, ω).

Recall that a symplectic structure on a smooth manifold M is a nonde-
generate closed 2−form ω on M , i.e., for each x ∈M , ω(x) is nondegenerate,
and dω = 0.

Let T ∗
xM be a cotangent space to M at m. The cotangent bundle T ∗M

represents a union ∪m∈MT
∗
xM , together with the standard topology on T ∗M

and a natural smooth manifold structure, the dimension of which is twice the
dimension of M . A 1−form θ on M represents a section θ :M → T ∗M of the
cotangent bundle T ∗M .
P = T ∗M is our momentum phase–space. On P there is a nondegenerate

symplectic 2−form ω is defined in local joint coordinates qi, pi ∈ U , U open
in P , as ω = dqi ∧ dpi (’∧’ denotes the wedge or exterior product). In that
case the coordinates qi, pi ∈ U are called canonical. In a usual procedure the
canonical 1−form θ is first defined as θ = pidqi, and then the canonical 2–form
ω is defined as ω = −dθ.

A symplectic phase–space manifold is a pair (P, ω).
Step B Find a Hamiltonian vector–field XH on (P, ω).

Let (P, ω) be a symplectic manifold. A vector–field X : P → TP is called
Hamiltonian if there is a smooth function F : P −→ R such that iXω = dF
(iXω denotes the interior product or contraction of the vector–field X and
the 2–form ω). X is locally Hamiltonian if iXω is closed.

Let the smooth real–valued Hamiltonian function H : P → R, representing
the total biomechanical energy H(q, p) = T (p) + V (q) (T and V denote
kinetic and potential energy of the system, respectively), be given in local
canonical coordinates qi, pi ∈ U , U open in P . The Hamiltonian vector–field
XH , condition by iXH

ω = dH, is actually defined via symplectic matrix J ,
in a local chart U , as

XH = J∇H =
(
∂piH,−∂qiH

)
, J =

(
0 I
−I 0

)
,

where I denotes the n× n identity matrix and ∇ is the gradient operator.
Step C Find a Hamiltonian phase–flow φt of XH .

Let (P, ω) be a symplectic phase–space manifold and XH = J∇H a
Hamiltonian vector–field corresponding to a smooth real–valued Hamiltonian
function H : P → R, on it. If a unique one–parameter group of diffeomor-
phisms φt : P → P exists so that d

dt |t=0 φtx = J∇H(x), it is called the
Hamiltonian phase–flow.

A smooth curve t �→
(
qi(t), pi(t)

)
on (P, ω) represents an integral curve of

the Hamiltonian vector–field XH = J∇H, if in the local canonical coordinates
qi, pi ∈ U , U open in P , Hamiltonian canonical equations (2.6) hold.



546 2 Dynamics of Complex Systems

An integral curve is said to be maximal if it is not a restriction of an
integral curve defined on a larger interval of R. It follows from the standard
theorem on the existence and uniqueness of the solution of a system of ODEs
with smooth r.h.s, that if the manifold (P, ω) is Hausdorff, then for any point
x = (qi, pi) ∈ U , U open in P , there exists a maximal integral curve of
XH = J∇H, passing for t = 0, through point x. In case XH is complete,
i.e., XH is Cp and (P, ω) is compact, the maximal integral curve of XH is the
Hamiltonian phase–flow φt : U → U .

The phase–flow φt is symplectic if ω is constant along φt, i.e., φ∗tω = ω
(φ∗tω denotes the pull–back of ω by φt),
iff LXH

ω = 0
(LXH

ω denotes the Lie derivative of ω upon XH).
Symplectic phase–flow φt consists of canonical transformations on (P, ω),

i.e., diffeomorphisms in canonical coordinates qi, pi ∈ U , U open on all (P, ω)
which leave ω invariant. In this case the Liouville theorem is valid: φt preserves
the phase volume on (P, ω). Also, the system’s total energy H is conserved
along φt, i.e., H ◦ φt = φt.

Recall that the Riemannian metrics g =<,> on the configuration mani-
foldM is a positive–definite quadratic form g : TM → R, in local coordinates
qi ∈ U , U open inM , given by (2.1–2.2) above. Given the metrics gij , the sys-
tem’s Hamiltonian function represents a momentum p–dependent quadratic
form H : T ∗M → R – the system’s kinetic energy H(p) = T (p) = 1

2 < p, p >,
in local canonical coordinates qi, pi ∈ Up, Up open in T ∗M , given by

H(p) =
1
2
gij(q,m) pipj , (2.651)

where gij(q,m) = g−1
ij (q,m) denotes the inverse (contravariant) material met-

ric tensor

gij(q,m) =
n∑
χ=1

mχδrs
∂qi

∂xr
∂qj

∂xs
.

T ∗M is an orientable manifold, admitting the standard volume form

ΩωH
=

(−1)
N(N+1)

2

N !
ωNH .

For Hamiltonian vector–field, XH on M , there is a base integral curve
γ0(t) =

(
qi(t), pi(t)

)
iff γ0(t) is a geodesic, given by the one–form force

equation

˙̄pi ≡ ṗi + Γ ijk gjlgkm plpm = 0, with q̇k = gkipi, (2.652)

where Γ ijk denote Christoffel symbols of an affine Levi–Civita connection on
M , defined upon the Riemannian metric g =<,> by (2.5).

The l.h.s ˙̄pi of the covariant momentum equation (2.652) represents the
intrinsic or Bianchi covariant derivative of the momentum with respect to
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time t. Basic relation ˙̄pi = 0 defines the parallel transport on TN , the simplest
form of human–motion dynamics. In that case Hamiltonian vector–field XH
is called the geodesic spray and its phase–flow is called the geodesic flow.

For Earthly dynamics in the gravitational potential field V :M → R, the
Hamiltonian H : T ∗M → R (2.651) extends into potential form

H(p, q) =
1
2
gijpipj + V (q),

with Hamiltonian vector–field XH = J∇H still defined by canonical equa-
tions (2.6).

A general form of a driven, non–conservative Hamiltonian equations reads:

q̇i = ∂pi
H, ṗi = Fi − ∂qiH, (2.653)

where Fi = Fi(t, q, p) represent any kind of joint–driving covariant torques,
including active neuro–muscular–like controls, as functions of time, angles
and momenta, as well as passive dissipative and elastic joint torques. In the
covariant momentum formulation (2.652), the non–conservative Hamiltonian
equations (2.653) become

˙̄pi ≡ ṗi + Γ ijk gjlgkm plpm = Fi, with q̇k = gkipi.

Hamiltonian–Poisson Biomechanical Systems

Recall from subsection 2.1.1 above that Hamiltonian–Poisson mechanics is a
generalized form of classical Hamiltonian mechanics. Let (P, {}) be a Poisson
manifold and H ∈ C∞(P,R) a smooth real valued function on P . The vector–
field XH defined by

XH(F ) = {F,H},
is the Hamiltonian vector–field with energy function H. The triple (P, {}, H)
we call the Hamiltonian–Poisson biomechanical system (HPBS) [MR99, Put93,
IP01a]. The map F �→ {F,H} is a derivation on the space C∞(P,R), hence it
defines a vector–field on P . The map F ∈ C∞(P,R) �→ XF ∈ X (P ) is a Lie
algebra anti–homomorphism, i.e., [XF , Xg] = −X{F,g}.

Let (P, {}, H) be a HPBS and φt the flow of XH . Then for all F ∈
C∞(P,R) we have the conservation of energy :

H ◦ φt = H,

and the equations of motion in Poisson bracket form,

d

dt
(F ◦ φt) = {F,H} ◦ φt = {F ◦ φt, H},

that is, the above Poisson evolution equation (2.21) holds. Now, the function
F is constant along the integral curves of the Hamiltonian vector–field XH iff

{F,H} = 0.

φt preserves the Poisson structure.
Next we present two main examples of HPBS.



548 2 Dynamics of Complex Systems

‘Ball–and–Socket’ Joint Dynamics in Euler Vector Form

The dynamics of human body–segments, classically modelled via Lagrangian
formalism (see [Hat77b, Iva91, ILI95, II05]), may be also prescribed by Euler’s
equations of rigid body dynamics. The equations of motion for a free rigid
body, described by an observer fixed on the moving body, are usually given
by Euler’s vector equation

ṗ = p× w. (2.654)

Here p, w ∈ R3, pi = Iiwi and Ii (i = 1, 2, 3) are the principal moments of
inertia, the coordinate system in the segment is chosen so that the axes are
principal axes, w is the angular velocity of the body and p is the corresponding
angular momentum.

The kinetic energy of the segment is the Hamiltonian function H : R3 → R

given by [IP01a]

H(p) =
1
2
p · w

and is a conserved quantity for (2.654).
The vector space R3 is a Lie algebra with respect to the bracket operation

given by the usual cross product. The space R3 is paired with itself via the
usual dot product. So if F : R3 → R, then δF/δp = ∇F (p) and the (–)
Lie–Poisson bracket {F,G}−(p) is given via (2.20) by the triple product

{F,G}−(p) = −p · (∇F (p)×∇G(p)).

Euler’s vector equation (2.654) represents a generalized Hamiltonian sys-
tem in R3 relative to the Hamiltonian function H(p) and the (–) Lie–Poisson
bracket {F,G}−(p). Thus the Poisson manifold (R3, {F,G}−(p)) is defined
and the abstract Poisson equation is equivalent to Euler’s equation (2.654)
for a body segment and associated joint.

Solitary Model of Muscular Contraction

Recall that the so–called sliding filament theory of muscular contraction was
developed in 1950s by Nobel Laureate A. Huxley [HN54, Hux57]. At a deeper
level, the basis of the molecular model of muscular contraction is repre-
sented by oscillations of Amid I peptide groups with associated dipole elec-
tric momentum inside a spiral structure of myosin filament molecules (see
[Dav81, Dav91]).

There is a simultaneous resonant interaction and strain interaction gen-
erating a collective interaction directed along the axis of the spiral. The res-
onance excitation jumping from one peptide group to another can be repre-
sented as an exciton, the local molecule strain caused by the static effect of
excitation as a phonon and the resultant collective interaction as a soliton.

The simplest model of Davydov’s solitary particle–waves is given by the
nonlinear Schrödinger equation [IP01a]
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i∂tψ = −∂x2ψ + 2χ|ψ|2ψ, (2.655)

for −∞ < x < +∞. Here ψ(x, t) is a smooth complex–valued wave function
with initial condition ψ(x, t)|t=0 = ψ(x) and χ is a nonlinear parameter. In
the linear limit (χ = 0) (2.655) becomes the ordinary Schrödinger equation
for the wave function of the free 1D particle with mass m = 1/2.

We may define the infinite–dimensional phase–space manifold P = {(ψ, ψ̄) ∈
S(R,C)}, where S(R,C) is the Schwartz space of rapidly–decreasing complex–
valued functions defined on R). We define also the algebra χ(P) of observ-
ables on P consisting of real–analytic functional derivatives δF/δψ, δF/δψ̄ ∈
S(R,C).

The Hamiltonian function H : P −→ R is given by

H(ψ) =
∫ +∞

−∞

(∣∣∣∣∂ψ∂x
∣∣∣∣2 + χ|ψ|4

)
dx

and is equal to the total energy of the soliton. It is a conserved quantity for
(4.3) (see [Sei95]).

The Poisson bracket on χ(P) represents a direct generalization of the
classical nD Poisson bracket

{F,G}+(ψ) = i
∫ +∞

−∞

(
δF

δψ

δG

δψ̄
− δF

δψ̄

δG

δψ

)
dx. (2.656)

It manifestly exhibits skew–symmetry and satisfies Jacobi identity. The func-
tionals are given by δF/δψ = −i{F, ψ̄} and δF/δψ̄ = i{F, ψ}. Therefore
the algebra of observables χ(P) represents the Lie algebra and the Poisson
bracket is the (+) Lie–Poisson bracket {F,G}+(ψ).

The nonlinear Schrödinger equation (2.655) for the solitary particle–wave
is a Hamiltonian system on the Lie algebra χ(P) relative to the (+) Lie–
Poisson bracket {F,G}+(ψ) and Hamiltonian function H(ψ). Therefore the
Poisson manifold (χ(P), {F,G}+(ψ)) is defined and the abstract Poisson evo-
lution equation (2.21), which holds for any smooth function F : χ(P) →R, is
equivalent to equation (2.655).

A more subtle model of soliton dynamics is provided by the Korteveg–de
Vries equation [IP01a]

ft − 6ffx + fxxx = 0, (fx = ∂xf), (2.657)

where x ∈ R and f is a real–valued smooth function defined on R (com-
pare with (1.52) above). This equation is related to the ordinary Schrödinger
equation by the inverse scattering method [Sei95, IP01a].

We may define the infinite–dimensional phase–space manifold V = {f ∈
S(R)}, where S(R) is the Schwartz space of rapidly–decreasing real–valued
functions R). We define further χ(V) to be the algebra of observables consist-
ing of functional derivatives δF/δf ∈ S(R).
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The Hamiltonian H : V → R is given by

H(f) =
∫ +∞

−∞
(f3 +

1
2
f2
x) dx

and gives the total energy of the soliton. It is a conserved quantity for (2.657)
(see [Sei95]).

As a real–valued analogue to (2.656), the (+) Lie–Poisson bracket on χ(V)
is given via (2.19) by

{F,G}+(f) =
∫ +∞

−∞

δF

δf

d

dx

δG

δf
dx.

Again it possesses skew–symmetry and satisfies Jacobi identity. The function-
als are given by δF/δf = {F, f}.

The Korteveg–de Vries equation (KdV1), describing the behavior of the
molecular solitary particle–wave, is a Hamiltonian system on the Lie algebra
χ(V) relative to the (+) Lie–Poisson bracket {F,G}+(f) and the Hamilto-
nian function H(f). Therefore, the Poisson manifold (χ(V), {F,G}+(f)) is
defined and the abstract Poisson evolution equation (2.21), which holds for
any smooth function F : χ(V) →R, is equivalent to (2.657).

2.4.3 Biomechanical Functors

The Covariant Force Functor

Recall (see subsection 3.1.5 in Appendix) that int the realm of biomechan-
ics the central concept is the covariant force law , Fi = mgija

j [II05]. In
categorical language, it represents the covariant force functor F∗ defined by
commutative diagram:

TT ∗M TTM�F∗

�
Fi = ṗi

�
ai = ˙̄vi

T ∗M = {xi, pi} TM = {xi, vi}

M = {xi}

pi

�
�
�
�


vi = ẋi

�
�
�
�	

which states that the force 1–form Fi = ṗi, defined on the mixed tangent–
cotangent bundle TT ∗M , causes the acceleration vector–field ai = ˙̄vi, defined
on the second tangent bundle TTM of the configuration manifold M .
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The corresponding contravariant acceleration functor is defined as its in-
verse map F∗ : TTM −→ TT ∗M .

In the following subsections we present several Lie functors, as they are
used in modern biomechanical research, all being different formulations of the
covariant force law, Fi = mgija

j , and giving different Lie representations of
the fundamental covariant force functor F∗ : TT ∗M −→ TTM .

Lie–Lagrangian Biomechanical Functor

Now we develop the Lie–Lagrangian biomechanical functor using a modern,
nonlinear formulation of the classical robotics structure (see [Iva05b, Iva05c]):

Kinematics → Dynamics → Control

Lie groups → Exterior Lagrangian → Lie derivative

The conservative part of generalized Lagrangian formalism, as used in
biomechanics, is derived from Lagrangian conservative energy function. It
describes the motion of the conservative skeleton, which is free of control and
dissipation. According to the Liouville theorem, this conservative dynamics is
structurally unstable due to the phase–space spreading effect, caused by the
growth of entropy (see [Iva91, ILI95, IS01, II05]. The dissipative part is derived
from nonlinear dissipative function, and describes quadratic joint dampings,
which prevent entropy growth. Its driving part represents equivalent muscular
torques Fi acting in all DOF (or just in active joints, as used in the affine input
control), in the form of force–time and force–velocity signals.

Joint Kinematics

Recall that human joints represented by internal coordinates xi (i = 1, . . . , n),
constitute an nD smooth biomechanical configuration manifoldM (see Figure
2.21). Now we are going to perform some categorical transformations on the
biomechanical configuration manifold M . If we apply the functor Lie to the
category •[SO(k)i] of rotational Lie groups SO(k)i and their homomorphisms
we get the category •[so(k)i] of corresponding tangent Lie algebras so(k)i and
their homomorphisms. If we further apply the isomorphic functor Dual to the
category •[so(k)i] we get the dual category ∗

•[so(k)
∗
i ] of cotangent, or, canonical

Lie algebras so(k)∗i and their homomorphisms. To go directly from •[SO(k)i]
to ∗

•[so(k)
∗
i ] we use the canonical functor Can [IS01, Iva02, IB05, Iva05a].

Therefore we have a commutative triangle

•[so(k)i] ∗
•[so(k)

∗
i ]��

∼=
Dual

•[SO(k)i]

Lie

�
�
�
�
�
��

Can

�
�
�
�
�
��

LGA
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Both the tangent algebras so(k)i and the cotangent algebras so(k)∗i contain
infinitesimal group generators, angular velocities ẋi = ẋφi in the first case and
canonical angular momenta pi = pφi

in the second. As Lie group generators,
angular velocities and angular momenta satisfy the respective commutation
relations [ẋφi , ẋψi ] = εφψθ ẋθi and [pφi

, pψi
] = εθφψ pθi , where the structure

constants εφψθ and εθφψ constitute totally antisymmetric third–order tensors.
In this way, the functor DualG : Lie ∼= Can establishes a geometrical

duality between kinematics of angular velocities ẋi (involved in Lagrangian
formalism on the tangent bundle of M) and that of angular momenta pi
(involved in Hamiltonian formalism on the cotangent bundle of M). This is
analyzed below. In other words, we have two functors Lie and Can from a
category of Lie groups (of which •[SO(k)i] is a subcategory) into a category
of their Lie algebras (of which •[so(k)i] and ∗

•[so(k)
∗
i ] are subcategories), and

a natural equivalence (functor isomorphism) between them defined by the
functor DualG. (As angular momenta pi are in a bijective correspondence with
angular velocities ẋi, every component of the functor DualG is invertible.)

Applying the functor Lie to the biomechanical configuration manifold M
(Figure 2.21), we get the product–tree of the same anthropomorphic struc-
ture, but having tangent Lie algebras so(k)i as vertices, instead of the groups
SO(k)i. Again, applying the functor Can toM , we get the product–tree of the
same anthropomorphic structure, but this time having cotangent Lie algebras
so(k)∗i as vertices.

The functor Lie defines the second–order Lagrangian formalism on the tan-
gent bundle TM (i.e., the velocity phase–space manifold) while the functor Can
defines the first–order canonical Hamiltonian formalism on the cotangent bun-
dle T ∗M (i.e., the momentum phase–space manifold). As these two formalisms
are related by the isomorphic functor Dual, they are equivalent. In this section
we shall follow the Lagrangian functor Lie, using the powerful formalism of ex-
terior differential systems and integral variational principles [Gri83a, BM82].
For the parallel, Hamiltonian treatment along the functor Can, more suitable
for chaos theory and stochastic generalizations, see [IS01, Iva02].

Exterior Lagrangian Dynamics

Let Ωp(M) =
∑
ωIdx

I denote the space of differential p−forms on M . That
is, if multi–index I ⊂ {1, . . . , n} is a subset of p elements then we have a
p−form dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxip on M . We define the exterior derivative
on M as dω =

∑
∂ωI

∂xp
dxp ∧ dxI (compare with (1.4.7) above).

Now, from exterior differential systems point of view (see subsection 1.2.5
above as well as [Gri83a]), human–like motion represents an n DOF neuro–
musculo–skeletal system Ξ, evolving in time on its nD configuration manifold
M , (with local coordinates xi, i = 1, ..., n) as well as on its tangent bundle
TM (with local coordinates (xi; ẋi)).
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For the system Ξ we will consider a well–posed variational problem
(I, ω;ϕ), on an associated (2n + 1)–D jet space X = J1(R,M) ∼= R × TM ,
with local canonical variables (t;xi; ẋi).

Here, (I, ω) is called a Pfaffian exterior differential system on X (see
[Gri83a]), given locally as {

θi = dxi − ẋiω = 0
ω ≡ dt �= 0

, (2.658)

with the structure equations

dθi = −dẋi ∧ ω.

Integral manifolds N ∈ J1(R,M) of the Pfaffian system (I, ω) are locally
one–jets t→ (t, x(t), ẋ(t)) of curves x = x(t) : R →M .
ϕ is a 1−form

ϕ = Lω, (2.659)

where L = L(t, x, ẋ) is the system’s Lagrangian function defined on X, having
both coordinate and velocity partial derivatives, respectively denoted by
Lxi ≡ ∂xiL, and Lẋi ≡ ∂ẋiL.

A variational problem (I, ω;ϕ) is said to be strongly non–degenerate, or
well–posed [Gri83a], if the determinant of the matrix of mixed velocity partials
of the Lagrangian is positive definite, i.e.,

det ‖Lẋiẋj‖ > 0.

The extended Pfaffian system⎧⎨⎩ θi = 0
dLẋi − Lxi ω = 0

ω �= 0
.

generates classical Euler–Lagrangian equations

d

dt
Lẋi = Lxi , (2.660)

describing the control–free, dissipation–free, conservative skeleton dynamics.
If an integral manifold N satisfies the Euler–Lagrangian equations (2.660)

of a well–posed variational problem on X then

d

dt

(∫
Nt

ϕ

)
t=0

= 0

for any admissible variation Nt ∈ N that satisfies the endpoint conditions
ω = θi = 0.

Theorem: Under the above conditions, both the Lagrangian dynamics with
initial conditions
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d
dtLẋi = Lxi

x(t0) = x0, ẋ(t0) = ẋ0

and the Lagrangian dynamics with endpoint conditions{
d
dtLẋi = Lxi

x(t0) = x0, x(t1) = x1

have unique solutions. For the proof, see [Gri83a].
Now, ifM is a smooth Riemannian manifold, its metric g =< . > is locally

given by a positive definite quadratic form

ds2 = gij(x) dxidxj , (2.661)

where the metric tensor gij is a C∞ symmetric matrix g(x) = ‖gij(x)‖.
Kinetic energy of the system Ξ is a function T = T (x, ẋ) on the tangent

bundle TM , which induces a positive definite quadratic form in each fibre
TxM ⊂ TM . In local coordinates, it is related to the Riemannian metric
(2.661) by: T ω2 = 1

2 ds
2.

If potential energy of the system Ξ is a function U = U(x) onM , then the
autonomous Lagrangian is defined as L(x, ẋ) = T (x, ẋ) − U(x), i.e., kinetic
minus potential energy.

The condition of well–posedness is satisfied, as

det ‖Lẋiẋj‖ = det ‖gij(x)‖ > 0.

Now, the covariant Euler–Lagrangian equations (2.660) expand as

d

dt

(
gij(x(t)) ẋj(t)

)
=

1
2
(
∂xigjk(x(t)) ẋj(t) ẋk(t)

)
− Fi(x(t)), (2.662)

where Fi(x(t)) = ∂U(x(t))
∂ẋi denote the gradient force 1–forms.

Letting
∥∥gij(x)∥∥ be the inverse matrix to ‖gij(x)‖ and introducing the

Christoffel symbols

Γ ijk = gilΓjkl, Γjkl =
1
2

(∂xjgkl + ∂xkgjl − ∂xlgjk)

the equations (2.662) lead to the classical contravariant form (see [Iva91,
IP01b, II05])

ẍi(t) + Γ ijk(x(t)) ẋ
j(t) ẋk(t) = −F i(x(t)), (2.663)

where F i(x(t)) = gij(x)∂U(x(t))
∂ẋj denote the gradient force vector–fields.

The above theorem implies that both the Lagrangian dynamics with initial
conditions {

ẍi(t) + Γ ijk(x(t)) ẋ
j(t) ẋk(t) = −F i(x(t))

x(t0) = x0, ẋ(t0) = ẋ0
(2.664)

and the Lagrangian dynamics with endpoint conditions
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ẍi(t) + Γ ijk(x(t)) ẋ

j(t) ẋk(t) = −F i(x(t))
x(t0) = x0, x(t1) = x1

(2.665)

have unique solutions. We consider the system (2.664) to be the valid basis
of human–like dynamics, and the system (2.665) to be the valid basis of the
finite biomechanics control.

Now, recall that any smooth n−manifold M induces an n−category
Πn(M), its fundamental n−groupoid. In Πn(M), 0–cells are points in M ;
1–cells are paths in M (i.e., parameterized smooth maps f : [0, 1] → M);
2–cells are smooth homotopies (denoted by  ) of paths relative to endpoints
(i.e., parameterized smooth maps h : [0, 1] × [0, 1] → M); 3–cells are smooth
homotopies of homotopies of paths in M (i.e., parameterized smooth maps
j : [0, 1] × [0, 1] × [0, 1] → M). Categorical composition is defined by past-
ing paths and homotopies, which gives the recursive homotopy dynamics (see
below).

On the other hand, to describe the biomechanical realism, we have to
generalize (2.663), so to include any other type of external contravariant forces
(including excitation and contraction dynamics of muscular–like actuators, as
well as nonlinear dissipative joint forces) to the r.h.s of (2.663). In this way,
we get the general form of contravariant Lagrangian dynamics

ẍi(t) + Γ ijk(x(t)) ẋ
j(t) ẋk(t) = F i (t, x(t), ẋ(t)) , (2.666)

or, in exterior, covariant form

d

dt
Lẋi − Lxi = Fi (t, x(t), ẋ(t)) . (2.667)

Recursive homotopy dynamics:

0− cell : x0 • x0 ∈M ; in the higher cells below: t, s ∈ [0, 1];

1− cell : x0 •
f � •x1 f : x0  x1 ∈M,

f : [0, 1] →M, f : x0 �→ x1, x1 = f(x0), f(0) = x0, f(1) = x1;
e.g., linear path: f(t) = (1− t)x0 + t x1; or
e.g., Euler–Lagrangian f − dynamics with endpoint conditions (x0, x1) :
d

dt
fẋi = fxi , with x(0) = x0, x(1) = x1, (i = 1, ..., n);
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2− cell : x0 •

f

g

h
�

	∨
•x1 h : f  g ∈M,

h : [0, 1]× [0, 1] →M, h : f �→ g, g = h(f(x0)),
h(x0, 0) = f(x0), h(x0, 1) = g(x0), h(0, t) = x0, h(1, t) = x1

e.g., linear homotopy: h(x0, t) = (1− t) f(x0) + t g(x0); or
e.g., homotopy between two Euler–Lagrangian (f, g)− dynamics
with the same endpoint conditions (x0, x1) :
d

dt
fẋi = fxi , and

d

dt
gẋi = gxi with x(0) = x0, x(1) = x1;

3− cell : x0 •

f

g

h i
j

� �
>

�

	
•x1 j : h  i ∈M,

j : [0, 1]× [0, 1]× [0, 1] →M, j : h �→ i, i = j(h(f(x0)))
j(x0, t, 0) = h(f(x0)), j(x0, t, 1) = i(f(x0)),
j(x0, 0, s) = f(x0), j(x0, 1, s) = g(x0),
j(0, t, s) = x0, j(1, t, s) = x1

e.g., linear composite homotopy: j(x0, t, s) = (1− t)h(f(x0)) + t i(f(x0));
or, homotopy between two homotopies between above two Euler-
Lagrangian (f, g)− dynamics with the same endpoint conditions (x0, x1).

Lie–Hamiltonian Biomechanical Functor

The three fundamental and interrelated obstacles facing any researcher in the
field of human–like musculo–skeletal dynamics, could be identified as [IS01]:

1. Deterministic chaos,
2. Stochastic forces , and
3. Imprecision of measurement (or estimation) of the system numbers (SN):

inputs, parameters and initial conditions.

Recall that the deterministic chaos is manifested as an irregular and un-
predictable time evolution of purely deterministic nonlinear systems. If a non-
linear system is started twice, from slightly different initial conditions, its time
evolution differs exponentially, while in case of a linear system, the difference
in time evolution is linear.
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Again, recall that the stochastic dynamics is based on the concept of
Markov process34, which represents the probabilistic analogue to the deter-
ministic dynamics. The property of a Markov chain of prime importance for
human–motion dynamics is the existence of an invariant distribution of states:
we start with an initial state x0 whose absolute probability is 1. Ultimately
the states should be distributed according to a specified distribution.

Recall that Brownian dynamics represents the phase–space trajectories of
a collection of particles that individually obey Langevin rate equations (see
[Gar85]) in the field of force (i.e., the particles interact with each other via
some deterministic force). For one free particle the Langevin equation of mo-
tion is given by

mv̇ = R(t) − βv,

wherem denotes the mass of the particle and v its velocity. The r.h.s represents
the coupling to a heat bath; the effect of the random force R(t) is to heat the
particle. To balance overheating (on the average), the particle is subjected to
friction β.

Noe, between pure deterministic (in which all DOF of the system in con-
sideration are explicitly taken into account, leading to classical dynamical
equations like Hamiltonian) and pure stochastic dynamics (Markov process),
there is so–called hybrid dynamics, particularly the Brownian dynamics, in
which some of DOF are represented only through their stochastic influence
on others.

System theory and artificial intelligence have long investigated the topic of
uncertainty in measurement, modelling and simulation. Research in artificial
intelligence has enriched the spectrum of available techniques to deal with
uncertainty by proposing a theory of possibility, based on the theory of fuzzy
sets (see [Yag87, DP80, Cox92, Cox94]). The field of qualitative reasoning and
simulation [BK92] is also interested in modelling incompletely known systems
where qualitative values are expressed by intervals. However, qualitative sim-
ulation techniques reveal a low predictive power in presence of complex mod-
els. In this section we have combined qualitative and quantitative methods,
in spirit of [Bon95, IS01].

In this section we will deal with the general biomechanics from the point
of view that mathematically and logically approaches a general theory of sys-
tems, i.e., that makes the unique framework for both linear and nonlinear,
discrete and continuous, deterministic and stochastic, crisp and fuzzy, SISO
and MIMO–systems, and generalizes the robot dynamics elaborated in the lit-
erature (see [VJ69, VJF70, VFJ70, VS72, VS73, IN92, Hur93, SGL93, SK93]),
including all necessary DOF to match the physiologically realistic human–like
motion. Yet, we wish to avoid all the mentioned fundamental system obsta-
34 Recall that the Markov process is characterized by a lack of memory, i.e., the

statistical properties of the immediate future are uniquely determined by the
present, regardless of the past (see [Gar85]).
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cles. To achieve this goal we have formulated the general biomechanics functor
machine, covering a union of the three intersected frameworks:

1. Muscle–driven, dissipative, Hamiltonian (nonlinear, both discrete and con-
tinuous) MIMO–system;

2. Stochastic forces (including dissipative fluctuations and ‘Master’ jumps);
and

3. Fuzzy system numbers.

The Abstract Functor Machine

In this subsection we define the abstract functor machine [IS01] (compare with
[AAM76]) by a two–step generalization of the Kalman’s modular theory of lin-
ear MIMO–systems. The first generalization puts the Kalman’s theory into the
category Vect of vector spaces and linear operators (see [MacL71] for technical
details about categorical language), thus formulating the unique, categorical
formalism valid both for the discrete– and continuous–time MIMO–systems.

We start with the unique, continual–sequential state equation

ẋ(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), (2.668)

where the nD vector spaces of state X � x, input U � u, and output Y � y
have the corresponding linear operators, respectively A : X → X, B : U → X,
and C : X → Y . The modular system theory comprises the system dynamics,
given by a pair (X,A), together with a reachability map e : U → X of the
pair (B,A), and an observability map m : X → Y of the pair (A,C). If the
reachability map e is surjection the system dynamics (X,A) is called reach-
able; if the observability map m is injection the system dynamics (X,A) is
called observable. If the system dynamics (X,A) is both reachable and ob-
servable, a composition r = m◦e : U → Y defines the total system’s response,
which is given by solution of equation (2.668). If the unique solution to the
continual–sequential state equation exists, it gives the answer to the (mini-
mal) realization problem: find the system S that realizes the given response
r = m ◦ e : U → Y (in the smallest number of discrete states and in the
shortest time).

In categorical language, the system dynamics in the category Vect is a
pair (X,A), where X ∈ Ob(Vect) is an object in Vect and A : X → X ∈
Mor(Vect) is a Vect–morphism. A decomposable system in Vect is such a
sextuple S ≡ (X,A,U,B, Y, C) that (X,A) is the system dynamics in Vect, a
Vect–morphism B : U → X is an input map, and a Vect–morphism C : X →
Y is an output map. Any object in Vect is characterized by mutually dual35

notions of its degree (a number of its input morphisms) and its codegree (a
number of its output morphisms). Similarly, any decomposable system S in

35 Recall that in categorical language duality means reversing the (arrows of) mor-
phisms; the knowledge of one of the two mutually dual terms automatically im-
plies the knowledge of the other.
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Vect has a reachability map given by an epimorphism e = A◦B : U → X and
its dual observability map given by a monomorphism m = C ◦ A : X → Y ;
their composition r = m ◦ e : U → Y in Mor(Vect) defines the total system’s
response in Vect given by the unique solution of the continual–sequential state
equation (2.668).

The second generalization gives an extension of the continual–sequential
MIMO–system theory: from the linear category Vect – to an arbitrary non-
linear category K. We do this extension (see [IS01]) by formally apply-
ing the action of the nonlinear process–functor F : K ⇒ K on the de-
composable system S ≡ (X,A,U,B, Y, C) in Vect. Under the action of
the process functor F the linear system dynamics (X,A) in Vect trans-
forms into a nonlinear F–dynamics (F [X],F [A]) in K, creating the func-
tor machine in K represented by a nonlinear decomposable system F [S] ≡
(F [X],F [A],F [U ],F [B],F [Y ],F [C]). The reachability map transforms into
the input process F [e] = F [A] ◦ F [B] : F [U ] → F [X], while its dual, ob-
servability map transforms into the output process F [m] = F [C] ◦ F [A] :
F [X] → F [Y ]. In this way the total response of the linear system r =
m ◦ e : U → Y in Mor(Vect) transforms into the nonlinear system behavior
F [r] = F [m] ◦ F [e] : F [U ] → F [Y ] in Mor(K). Obviously, F [r], if exists, is
given by a nonlinear F–transform of the linear state equation (2.668).

The purpose of this section is to formulate a nonlinear F–transform for
the linear state equation (2.668) for biomechanics, i.e., the biomechanics func-
tor machine. In subsequent sections we give a three–step development of a
fuzzy–stochastic–Hamiltonian formulation for the biomechanics functor ma-
chine F [S], with a corresponding nonlinear system behavior F [r].

Muscle–Driven, Dissipative, Hamiltonian Biomechanics

In this subsection we choose the functor Can, as the first–order Hamiltonian
formalism is more suitable for both stochastic and fuzzy generalizations to
follow. Recall that the general deterministic Hamiltonian biomechanics, rep-
resenting the canonical functor Can : S•[SO(n)i] ⇒ S∗

• [so(n)∗i ], is given by
dissipative, driven δ−Hamiltonian equations,

q̇i =
∂H

∂pi
+
∂R

∂pi
, (2.669)

ṗi = Fi −
∂H

∂qi
+
∂R

∂qi
, (2.670)

qi(0) = qi0, pi(0) = p0i , (2.671)

including contravariant equation (2.669) – the velocity vector–field, and co-
variant equation (2.670) – the force 1−form, together with initial joint angles
and momenta (2.671). Here (i = 1, . . . , N), and R = R(q, p) denotes the
Raileigh nonlinear (biquadratic) dissipation function, and Fi = Fi(t, q, p) are
covariant driving torques of equivalent muscular actuators, resembling mus-
cular excitation and contraction dynamics in rotational form.
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The velocity vector–field (2.669) and the force 1−form (2.670) together
define the generalized Hamiltonian vector–field XH , which geometrically rep-
resents the section of the momentum phase–space manifold T ∗M , which is
itself the cotangent bundle of the biomechanical configuration manifold M ;
the Hamiltonian (total energy) function H = H(q, p) is its generating func-
tion.

As a Lie group, the configuration manifoldM is Hausdorff [AMR88, MR99,
Pos86]. Therefore, for x = (qi, pi) ∈ Up, Up open in T ∗M , there exists a
unique one–parameter group of diffeomorphisms φδt

: T ∗M → T ∗M , the
generalized deterministic δ−Hamiltonian phase–flow

φδt
: G1 × T ∗M → T ∗M : (p(0), q(0)) �→ (p(t), q(t)), (2.672)

(φδt
◦ φδs

= φδt+s
, φδ0 = identity),

given by (2.669–2.671) such that

d

dt
|t=0 φδt

x = J∇H(x).

The δ−Hamiltonian system (2.669–2.671), with its δ−Hamiltonian phase–
flow φδt

(2.672), i.e., the canonical functor Can, represents our first, continual–
deterministic model for the biomechanics functor machine F [S] with the non-
linear system behavior F [r]. In the two subsequent sections we generalize this
model to include discrete stochastic forces and fuzzy SN.

Stochastic–Lie–Hamiltonian Biomechanical Functor

In terms of the Markov stochastic process, we can interpret the determinis-
tic δ−Hamiltonian biomechanical system (2.669–2.671) as deterministic drift
corresponding to the Liouville equation. Thus, we can naturally (in the sense
of Langevin) add the covariant vector σi(t) of stochastic forces (diffusion fluc-
tuations and discontinuous–Master jumps) σi(t) = Bij [qi(t), t] dW j(t) to the
canonical force equation. In this way we get stochastic σ−Hamiltonian biome-
chanical system, a stochastic transformation Stoch[Can] of the canonical func-
tor Can,

dqi =
(
∂H

∂pi
+
∂R

∂pi

)
dt, (2.673)

dpi =
(
Fi −

∂H

∂qi
+
∂R

∂qi

)
dt+ σi(t), (2.674)

σi(t) = Bij [qi(t), t] dW j(t), qi(0) = qi0, pi(0) = p0i .

In our low–dimensional example–case of symmetrical 3D load–lifting, the
velocity and force σ−Hamiltonian biomechanics equations (2.673–2.674) be-
come
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dqi =

⎛⎜⎝pi
⎧⎪⎨⎪⎩[Ji]−1 +

⎡⎢⎣mi
⎛⎝ i∑
j=1

Lj cos qj

⎞⎠2
⎤⎥⎦
−1⎫⎪⎬⎪⎭ +

∂R

∂pi

⎞⎟⎠ dt,
dpi = Bij [qi(t), t] dW j(t) +

⎛⎝Fi − g 10−i∑
j=i

Ljmj sin qj

−
10−i∑
j=i

Lj sin qjpipj

⎡⎣mi( i∑
k=1

Lk cos qk
)3

⎤⎦−1

+
∂R

∂qi

⎞⎟⎠ dt.
Recall that Ito quadratic cotangent bundle I∗QN is defined as a Whitney

sum
I∗QN = T ∗QN ⊕ SQN ,

where SQN corresponds to stochastic tensor bundle, whose elements are 2nd–
order tensor–fields composed of continual diffusion fluctuations and discon-
tinuous jumps at every point of the manifold QN . On I∗QN is defined a
non–degenerate, stochastic 2−form α which is closed, i.e., dα = 0, and exact,
i.e., α = dβ, where 1−form β represents a section β : QN → I∗QN of the Ito
bundle I∗QN .

Now, the stochastic Hamiltonian vector–field ΞH represents a section
ΞH : QN → IQN of the Ito quadratic tangent bundle IQN , also defined
as a Whitney sum

IQN = TM ⊕ SQN .
The quadratic character of Ito stochastic fibre–bundles corresponds to the

second term (trace of the 2nd–order tensor–field) of associate stochastic Taylor
expansion (see [Elw82, May81]).

Through stochastic σ−Hamiltonian biomechanical system (2.673–2.674),
the deterministic δ−Hamiltonian phase–flow φδt

(2.672), extends into stochas-
tic σ−Hamiltonian phase–flow φσt

φσt
: G1 × I∗M → I∗M : (p(0), q(0)) �→ (p(t), q(t)), (2.675)

(φσt
◦ φσs

= φσt+s
, φσ0

= identity),

where I∗M denotes Ito quadratic cotangent bundle (see [Elw82, May81]) of
biomechanical configuration manifold M.

Besides the σ−Hamiltonian phase–flow φσt
(2.675), includingN individual

random–phase trajectories, we can also define (see [Elw82]) an average or
mean 〈σ〉− Hamiltonian flow 〈φ〉σt

〈φ〉σt
: G1 × I∗M → I∗M : (〈p(0)〉 , 〈q(0)〉) �→ (〈p(t)〉 , 〈q(t)〉),

(〈φ〉σt
◦ 〈φ〉σs

= 〈φ〉σt+s
, 〈φ〉σ0

= identity),

which stochastically corresponds to the trajectory of the center of mass in the
human–like dynamics, approximatively lumbo–sacral spinal SO(3)−joint.
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The necessary conditions for existence of a unique non–anticipating solu-
tion of the σ−Hamiltonian biomechanical system in a fixed time interval are
Lipschitz condition and growth condition (see [Elw82, May81]). For construct-
ing an approximate solution a simple iterative Cauchy–Euler procedure could
be used to calculate (qik+1, p

k+1
i ) from the knowledge of (qik, p

k
i ) on the mesh

of time points tk, k = 1, . . . , s, by adding discrete δ–Hamiltonian drift–terms
Ai(qik)∆t

k and Ai(pki )∆t
k,as well as a stochastic term Bij(qki , t

k)∆W j
k .

σ−Hamiltonianbiomechanical system(2.673–2.674),with its σ−Hamiltonian
phase–flow φσt

(2.675), i.e., the functor Stoch[Can], represents our second,
continual–discrete stochastic model for the biomechanics functor machine
F [S] with the nonlinear system behavior F [r]. In the next section we gen-
eralize this model once more to include fuzzy SN.

Fuzzy–Stochastic–Lie–Hamiltonian Functor

Generally, a fuzzy differential equation model (FDE–model, for short) is a
symbolic description expressing a state of incomplete knowledge of the con-
tinuous world, and is thus an abstraction of an infinite set of ODEs models.
Qualitative simulation (see [BK92]) predicts the set of possible behaviors con-
sistent with a FDE model and an initial state. Specifically, as a FDE we
consider an ordinary deterministic (i.e., crisp) differential equation (CDE) in
which some of the parameters (i.e., coefficients) or initial conditions are fuzzy
numbers, i.e., uncertain and represented in a possibilistic form. As a solution
of a FDE we consider a time evolution of a fuzzy region of uncertainty in the
system’s phase–space, which corresponds to its the possibility distribution.

Recall that a fuzzy number is formally defined as a convex, normalized
fuzzy set [DP80, Cox92, Cox94]. The concept of fuzzy numbers is an extension
of the notion of real numbers: it encodes approximate quantitative knowledge.
It is not probabilistic, but rather a possibilistic distribution. The mathemat-
ics of fuzzy numbers is founded on the extension principle, introduced by
Zadeh [Yag87]. This principle gives a general method for extending standard
mathematical concepts in order to deal with fuzzy quantities [DP80].

Let Φ : Y 1 × Y 2 × · · · × Y n → Z be a deterministic map such that z =
Φ(y1, y2, . . . , yn) for all z ∈ Z, yi ∈ Y i. The extension principle allows us to
induce from n input fuzzy sets ȳi on Y i an output fuzzy set z̄ on Z through
Φ given by

µz̄(t) = sup
t=Φ(s1,...,sn)

min(µȳ1(s
1), . . . , µȳn(sn)),

or µz̄(t) = 0 if Φ−1(t) = ∅,

where Φ−1(t) denotes the inverse image of t and µȳi is the membership func-
tion of ȳi, (i = 1, . . . , n).

The extension principle gives a method to calculate the fuzzy value of a
fuzzy map but, in practice, its application is not feasible because of the infi-
nite number of computations it would require. The simplest way of efficiently
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applying the extension principle is in the form of iterative repetition of sev-
eral crisp Hamiltonian simulations (see [Bon95, IS01, PI03, PI04]), within the
range of included fuzzy SN.

Fuzzification of the crisp deterministic δ−Hamiltonian biomechanical sys-
tem (2.669–2.671) gives the fuzzified µ–Hamiltonian biomechanical system,
namely δ–Hamiltonian biomechanical system with fuzzy SN, i.e., the fuzzy
transformation Fuzzy[Can] of the canonical functor Can

q̇i =
∂H(q, p, σ)

∂pi
+
∂R

∂pi
, (2.676)

ṗi = F̄i(q, p, σ)−
∂H(q, p, σ)

∂qi
+
∂R

∂qi
, (2.677)

qi(0) = q̄i0, pi(0) = p̄0i , (i = 1, . . . , N). (2.678)

Here σ = σµ (with µ ≥ 1) denote fuzzy sets of conservative parameters
(segment lengths, masses and moments of inertia), dissipative joint dampings
and actuator parameters (amplitudes and frequencies), while the bar (̄.) over
a variable (.) denotes the corresponding fuzzified variable.

In our example–case of symmetrical 3D load–lifting, the fuzzified µ−Hamil-
tonian biomechanical system (2.676–2.678) becomes

q̇i = pi

⎧⎪⎨⎪⎩[J̄i]−1 +

⎡⎢⎣m̄i
⎛⎝ i∑
j=1

L̄j cos qj

⎞⎠2
⎤⎥⎦
−1⎫⎪⎬⎪⎭ +

∂R

∂pi
,

ṗi = F̄i(t, qi, pi, {σ}µ)− g
10−i∑
j=i

L̄jm̄j sin qj

−
10−i∑
j=i

L̄j sin qjpipj

⎡⎣m̄i( i∑
k=1

L̄k cos qk
)3

⎤⎦−1

+
∂R

∂qi

qi(0) = q̄i0, pi(0) = p̄0i , (i = 1, . . . , 9).

In this way, the crisp δ–Hamiltonian phase–flow φδt
(2.672) extends into

fuzzy–deterministic µ–Hamiltonian phase–flow φµt

φµt
: G1 × T ∗M → T ∗M : (p̄0i , q̄

i
0) �→ (p(t), q(t)),

(φµt
◦ φµs

= φµt+s
, φµ0

= identity).

Similarly, fuzzification of crisp stochastic σ−Hamiltonian biomechanical
system (2.673–2.674) gives fuzzy–stochastic [µσ]−Hamiltonian biomechanical
system, namely stochastic σ−Hamiltonian biomechanical system with fuzzy
SN, i.e., the fuzzy–stochastic transformation Fuzzy[Stoch[Can]] of the canon-
ical functor Can
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dqi =
(
∂H(q, p, σ)

∂pi
+
∂R

∂pi

)
dt, (2.679)

dpi = Bij [qi(t), t] dW j(t) +
(
F̄i(q, p, σ)−

∂H(q, p, σ)
∂qi

+
∂R

∂qi

)
dt, (2.680)

qi(0) = q̄i0, pi(0) = p̄0i . (2.681)

In our example–case of symmetrical 3D load–lifting, the velocity and force
[µσ]−Hamiltonian biomechanics equations (2.679–2.680) become

dqi =

⎛⎜⎝pi
⎧⎪⎨⎪⎩[J̄i]−1 +

⎡⎢⎣m̄i
⎛⎝ i∑
j=1

L̄j cos qj

⎞⎠2
⎤⎥⎦
−1⎫⎪⎬⎪⎭ +

∂R

∂pi

⎞⎟⎠ dt,
dpi = Bij [qi(t), t] dW j(t) +

⎛⎝F̄i(t, qi, pi, {σ}µ)− g 10−i∑
j=i

L̄jm̄j sin qj

−
10−i∑
j=i

L̄j sin qjpipj

⎡⎣m̄i( i∑
k=1

L̄k cos qk
)3

⎤⎦−1

+
∂R

∂qi

⎞⎟⎠ dt.
In this way, the crisp stochastic σ–Hamiltonian phase–flow φσt

(2.675)
extends into fuzzy–stochastic [µσ]–Hamiltonian phase–flow φ[µσ]t

φ[µσ]t : G1 × I∗M → I∗M : (p̄0i , q̄
i
0) �→ (p(t), q(t)), (2.682)

(φ[µσ]t ◦ φ[µσ]s = φ[µσ]t+s
, φ[µσ]0 = identity).

[µσ]−Hamiltonian biomechanical system (2.679–2.681), with its phase–
flow φ[µσ]t (2.682), i.e., the functor Fuzzy[Stoch[Can]], represents our final,
continual–discrete and fuzzy–stochastic model for the biomechanics functor
machine F [S] with the nonlinear system behavior F [r].

2.4.4 Biomechanical Topology

(Co)Chain Complexes in Biomechanics

In this section we present the category of (co)chain complexes, as used in mod-
ern biomechanics. The central concept in cohomology theory is the category
S•(C) of generalized cochain complexes in an Abelian category C [Die88]. The
objects of the category S•(C) are infinite sequences

A• : · · · −→ An−1 dn−1� An
dn � An+1 −→ · · ·

where, for each n ∈ Z, An is an object of C and dn a morphism of C, with
the conditions
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dn−1 ◦ dn = 0

for every n ∈ Z. When An = 0 for n < 0, one speaks of cochain complexes.
The dn are called coboundary operators.

The morphisms of the category S•(C) are sequences f• = (fn) : A• → B•

where, for each n ∈ Z, fn : An → Bn is a morphism of C, and in the diagram

· · · −→ An−1 dn−1� An
dn � An+1 −→ · · ·

fn−1
|
↓ fn

|
↓ fn+1

|
↓ (2.683)

· · · −→ Bn−1 dn−1� Bn
dn � Bn+1 −→ · · ·

all squares are commutative; one says the fn commute with the coboundary
operators. One has Im dn+1 ⊂ Ker dn ⊂ An for every n ∈ Z; the quotient
Hn(A•) = Ker dn/ Im dn+1 is called the nth cohomology object of A•. From
(2.683) it follows that there is a morphism

Hn(f•) : Hn(A•) → Hn(B•)

deduced canonically from f•, and

(A•, f•) ⇒ (Hn(A•), Hn(f•))

is a covariant functor from S•(C) to C.
The cohomology exact sequence: if three cochain complexes A•, B•, C• are

elements of a short exact sequence of morphisms

0 −→ A• −→ B• −→ C• −→ 0

then there exists an infinite sequence of canonically defined morphisms dn :
Hn(C•) → Hn−1(A•) such that the sequence

· · · −→ Hn(A•) −→ Hn(B•) −→ Hn(C•) −→ Hn−1(A•) −→ · · ·

is exact, that is the image of each homomorphism in the sequence is exactly
the kernel of the next one.

The dual to the category S•(C) is the category of S•(C) of generalized
chain complexes. Its objects and morphisms are get by formal inversion of all
arrows and lowering all indices.

Biomechanical (Co)Homologies

LetM• denote the Abelian category of cochains, (i.e., p–forms) on the biome-
chanical configuration manifoldM (see Figure 2.22). When C = M•, we have
the category S•(M•) of generalized cochain complexes A• in M•, and if
A′ = 0 for n < 0 we have a subcategory S•

DR(M•) of the de Rham differen-
tial complexes in M•
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A•
DR : 0→ Ω0(M) d−→ Ω1(M) d−→ Ω2(M) · · · d−→ Ωn(M) d−→ · · · .

Here A′ = Ωn(M) is the vector space over R of all p–forms ω on M (for
p = 0 the smooth functions on M) and dn = d : Ωn−1(M) → Ωn(M) is the
exterior differential. A form ω ∈ Ωn(M) such that dω = 0 is a closed form
or n–cocycle. A form ω ∈ Ωn(M) such that ω = dθ, where θ ∈ Ωn−1(M), is
an exact form or n–coboundary. Let Zn(M) = Ker d (resp. Bn(M) = Im d
denote a real vector space of cocycles (resp. coboundaries) of degree n. Since
dn+1 ◦ dn = d2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector space

HnDR(M) = Ker d/ Im d = Zn(M)/Bn(M)

is the de Rham cohomology group. The elements of HnDR(M) represent equiv-
alence sets of cocycles. Two cocycles ω1, ω2 belong to the same equivalence
set, or are cohomologous (written ω1 ∼ ω2) iff they differ by a coboundary
ω1 − ω2 = dθ. The de Rham’s cohomology class of any form ω ∈ Ωn(M)
is [ω] ∈ HnDR(M). The de Rham differential complex (1) can be considered
as a system of second–order DEs d2θ = 0, θ ∈ Ωn−1(M) having a solution
represented by Zn(M) = Ker d.

Analogously let M• denote the Abelian category of chains on the con-
figuration manifold M . When C = M•, we have the category S•(M•) of
generalized chain complexes A• in M•, and if An = 0 for n < 0 we have a
subcategory SC

• (M•) of chain complexes in M•

A• : 0 ← C0(M) ∂←− C1(M) ∂←− C2(M) · · · ∂←− Cn(M) ∂←− · · · .

Here An = Cn(M) is the vector space over R of all finite chains C on the
manifold M and ∂n = ∂ : Cn+1(M) → Cn(M). A finite chain C such that
∂C = 0 is an n−cycle. A finite chain C such that C = ∂B is an n−boundary.
Let Zn(M) = Ker ∂ (resp. Bn(M) = Im ∂) denote a real vector space of
cycles (resp. boundaries) of degree n. Since ∂n+1 ◦ ∂n = ∂2 = 0, we have
Bn(M) ⊂ Zn(M). The quotient vector space

HCn (M) = Ker ∂/ Im ∂ = Zn(M)/Bn(M)

is the n−homology group. The elements of HCn (M) are equivalence sets of
cycles. Two cycles C1, C2 belong to the same equivalence set, or are homol-
ogous (written C1 ∼ C2), iff they differ by a boundary C1 − C2 = ∂B). The
homology class of a finite chain C ∈ Cn(M) is [C] ∈ HCn (M).

The dimension of the n−cohomology (resp. n−homology) group equals
the nth Betti number bn (resp. bn) of the manifold M . Poincaré lemma says
that on an open set U ∈ M diffeomorphic to RN , all closed forms (cycles) of
degree p ≥ 1 are exact (boundaries). That is, the Betti numbers satisfy bp = 0
(resp. b = 0), for p = 1, . . . , n.

The de Rham theorem states the following. The map Φ : Hn × Hn → R

given by ([C], [ω]) → 〈C,ω〉 for C ∈ Zn,ω ∈ Zn is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) Hn and Hn

and the equality bn = bn.
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Configuration Manifold Reduction and its Euler Characteristic

Recall (see subsection (2.4.1) above), that for the purpose of high–level con-
trol, the rotational biomechanical configuration manifold M (Figure 2.21),
could be first, reduced to an n−torus, and second, transformed into an n−cube
‘hyper–joystick’, using the following topological techniques (see [IP01b, Iva02,
Iva05a]).

Let S1 denote the constrained unit circle in the complex plane, which is an
Abelian Lie group. Firstly, we propose two reduction homeomorphisms, using
the noncommutative semidirect product ‘�’ of the constrained SO(2)−groups:

SO(3) � SO(2) � SO(2) � SO(2), and SO(2) ≈ S1.

Next, let In be the unit cube [0, 1]n in Rn and ‘∼’ an equivalence relation
on Rn get by ‘gluing’ together the opposite sides of In, preserving their ori-
entation. Therefore, the manifoldM can be represented as the quotient space
of Rn by the space of the integral lattice points in Rn, that is an oriented and
constrained nD torus Tn:

Rn/Zn = In/ ∼≈
n∏
i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = Tn. (2.684)

Now, using the de Rham theorem and the homotopy axiom for the de
Rham cohomologies, we can calculate the Euler–Poincaré characteristics for
Tn as well as for its two bundles, TTn and T ∗Tn, as (see [Iva02, Iva05a])

χ(Tn, TTn) =
n∑
p=1

(−1)pbp , where bp are the Betti numbers defined as

b0 = 1, b1 = n, . . . bp =
(
n

p

)
, . . . bn−1 = n, bn = 1, (p = 0, ..., n).

Morse Theory in Biomechanics

Morse Geometry of a Biomechanical Manifold

Recall that on any smooth manifold M there exist many Riemannian metrics
g. Each of these metrics is locally defined in a particular point q ∈ M as a
symmetric (0, 2) tensor–field such that g|q : TqM × TqM → R is a positively
defined inner product for each point q ∈ M . In an open local chart U ∈ M
containing the point q, this metric is given as g|q �→ gij(q) dqidqj . With each
metric g|q there is associated a local geodesic on M .

Now, two main global geodesics problems on the biomechanical configura-
tion manifoldM with the Riemannian metrics g, can be formulated as follows
(compare with subsection 1.2.9 above):
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1. Is there a minimal geodesic γ0(t) between two points A and B on M? In
other words, does an arc of geodesic γ0(t) with extremities A,B actually
have minimum length among all rectifiable curves γ(t) = (qi(t), pi(t))
joining A and B?

2. How many geodesic arcs are there joining two points A and B on M?

Locally these problems have a complete answer : each point of the biome-
chanics manifold M has an open neighborhood V such that for any two dis-
tinct points A,B of V there is exactly one arc of a geodesic contained in V
and joining A and B, and it is the unique minimal geodesic between A and
B.

Recall (see subsection (1.2.9) above), that seven decades ago, Morse con-
sidered the set Ω = Ω(M ;A,B) of piecewise smooth paths on a Rieman-
nian manifold M having fixed extremities A,B, defined as continuous maps
γ : [0, 1] →M such that γ(0) = A, γ(1) = B, and there were a finite number
of points

t0 = 0 < t1 < t2 < · · · < tm−1 < tm = 1, (2.685)

such that in every closed interval [ti, ti+1], γ was a C∞−function. The
parametrization was always chosen such that for tj ≤ t ≤ tj+1,

t−tj =
tj+1 − tj
lj

∫ t

tj

‖ dγ
du
‖ du, with lj =

∫ tj+1

tj

‖ dγ
du
‖ du. (2.686)

In other words, t− tj was proportional to the length of the image of [tj , t] by
γ. Then

L(γ) =
m∑
j=0

lj ,

the length of γ, was a function of γ in Ω. A minimal arc from A to B should
be a path γ for which L(γ) is minimum in Ω, and a geodesic arc from A to B
should be a path that is a ‘critical point’ for the function L. This at first has
no meaning, since Ω is not a differential manifold; the whole of Morse’s theory
consists in showing that it is possible to substitute for Ω genuine differential
manifolds to which his results on critical points can be applied ([Mor34]).

To study the geodesics joining two points A,B it is convenient, instead of
working with the length L(γ), to work with the energy of a path γ : [A,B] →
M , defined by ([Die88])

EBA (γ) =
∫ B

A

‖ dγ
du
‖2 du. (2.687)

With the chosen parametrization (2.686), E(γ) = (B − A)L(γ)2, and the
extremals of E are again the geodesics, but the computations are easier with
E.

Morse theory can be divided into several steps (see [Mil63]).
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Step 1 is essentially a presentation of the classical Lagrangian method that
brings to light the analogy with the critical points of a C∞− function on M .
No topology is put on Ω; a variation of a path γ ∈ Ω is a continuous map α
into M , defined in a product ]− ε, ε[× [0, 1] with the following properties:

1. α(0, t) = γ(t);
2. α(u, 0) = A, α(u, 1) = B for −ε < u < ε; and
3. There is a decomposition (2.685) such that α is C∞ in each set

]− ε, ε[× [ti, ti+1].

A variation vector–field t �→W (t) is associated to each variation α, where
W (t) is a tangent vector in the tangent space Tγ(t)M to M , defined by

W (t) = ∂uα(0, t). (2.688)

It is a continuous map of [0, 1] into the tangent bundle TM , smooth in each
interval [ti, ti+1]. These maps are the substitute for the tangent vectors at the
point γ; they form an infinite–dimensional vector space written TΩ(γ).

More generally the interval ] − ε, ε[ can be replaced in the definition of
a variation by a neighborhood of 0 in some Rn, defining an n−parameter
variation.

A critical path γ0 ∈ Ω for a function F : Ω −→ R is defined by the condition
that for every variation α of γ0 the function

u �→ F (α(u, ·))

is derivable for u = 0 and its derivative is 0.
Step 2 is a modern presentation of the formulas of Riemannian geometry,

giving the first variation and second variation of the energy (2.687) of a path
γ0 ∈ Ω, which form the basis of Jacobi results.

First consider an arbitrary path ω0 ∈ Ω, its velocity ω̇(t) = dω/dt, and its
acceleration in the Riemannian sense

ω̈(t) = ∇tω̇(t),

where ∇t denotes the Bianchi covariant derivative. They belong to Tω(t)M for
each t ∈ [0, 1], are defined and continuous in each interval [ti, ti+1] in which
ω is smooth, and have limits at both extremities. Now let α be a variation of
ω and t �→W (t) be the corresponding variation vector–field (2.688). The first
variation formula gives the first derivative

1
2
d

du
E(α(u, ·))|u=0 = −

∑
i

(W (ti)|ω̇(ti+)− ω̇(ti−))−
∫ 1

0

(W (t)|ω̈(t)) dt,

where (x|y) denotes the scalar product of two vectors in a tangent space. It
follows from this formula that γ0 ∈ Ω is a critical path for E iff γ is a geodesic.
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Next, fix such a geodesic γ and consider a two–parameter variation:

α : U × [0, 1] →M,

where U is a neighborhood of 0 in R2, so that

α(0, 0, t) = γ(t), ∂u1α(0, 0, t) =W1(t), ∂u2α(0, 0, t) =W2(t),

in which W1 and W2 are in TΩ(γ). The second variation formula gives the
mixed second derivative

1
2

∂2

∂u1∂u2
E(α(u1, u2, ·)))|(0,0) = −

∑
i

(W2(ti)|∇tW1(ti+)−∇tW1(ti−))

−
∫ 1

0

(W2(t)|∇2
tW1(t) +R(V (t) ∧W1(t)) · V (t)) dt, (2.689)

where Z �→ R(X ∧ Y ) ·Z is the curvature of the Levi–Civita connection. The
l.h.s of (2.689) is thus a bilinear symmetric form

(W1,W2) �→ E∗∗(W1,W2)

on the product TΩ(γ)× TΩ(γ). For a one–parameter variation α

E∗∗(W,W ) =
1
2
d2

du2
E(α(u, ·))|u=0,

from which it follows that if γ is a minimal geodesic in Ω, E∗∗(W,W ) ≥ 0 in
TΩ(γ). As usual, we shall speak of E∗∗ indifferently as a symmetric bilinear
form or as a quadratic form W �→ E∗∗(W,W ).

Formula (2.689) naturally leads to the junction with Jacobi work (see
[Die88]): consider the smooth vector–fields t �→ J(t) along γ ∈ M , satisfying
the equation

∇2
tJ(t) +R(V (t) ∧ J(t)) · V (t) = 0 for 0 ≤ t ≤ 1. (2.690)

With respect to a frame along γ moving by parallel translation on M this
relation is equivalent to a system of n linear homogeneous ODEs of order 2
with C∞−coefficients; the solutions J of (2.690) are called the Jacobi fields
along γ and form a vector space of dimension 2n. If for a value a ∈]0, 1] of
the parameter t there exists a Jacobi field along γ that is not identically 0
but vanishes for t = 0 and t = a, then the points A = γ(0) and r = γ(a)
are conjugate along γ with a multiplicity equal to the dimension of the vector
space of Jacobi fields vanishing for t = 0 and t = a.

Jacobi fields on the biomechanical configuration manifold M may also be
defined as variation vector–fields for geodesic variations of the path γ ∈ M :
they are C∞−maps

α : ]− ε, ε[× [0, 1] →M,
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such that for any u ∈ ]− ε, ε[ , t �→ α(u, t) is a geodesic and α(0, t) = γ(t).
It can be proved that the Jacobi fields along γ ∈M that vanish at A and

B (hence belong to TΩ(γ)) are exactly the vector–fields J ∈ TΩ(γ) such that

E∗∗(J,W ) = 0

for every W ∈ TΩ(γ). Although TΩ(γ) is infinite–dimensional, the form E∗∗
is again called degenerate if the vector space of the Jacobi fields vanishing at
A and B is note reduced to 0 and the dimension of that vector space is called
the nullity of E∗∗. Therefore, E∗∗ is thus degenerate iff A and B are conjugate
along γ and the nullity of E∗∗ is the multiplicity of B.

Step 3 is the beginning of Morse’s contributions (see [Mil63]). He first
considered a fixed geodesic γ : [0, 1] →M with extremities A = γ(0), B = γ(1)
and the bilinear symmetric form E∗∗ : TΩ(γ) × TΩ(γ) → R. By analogy
with the finite–dimensional quadratic form, the index of E∗∗ is defined as the
maximum dimension of a vector subspace of TΩ(γ) in which E∗∗ is strictly
negative (i.e., nondegenerate and taking values E∗∗(W,W ) < 0 except for
W = 0). Morse’s central result gives the value of the index of E∗∗ and is
known as the index theorem.

Suppose a subdivision (2.685) is chosen such that each arc γ([ti−1, ti]) is
contained in an open set Ui ⊂M such that any two points of Ui are joined by
a unique geodesic arc contained in Ui that is minimal ; γ([ti−1, ti]) is such an
arc. In the infinite–dimensional vector space TΩ(γ), consider the two vector
subspaces:

1. TΩ(γ; t0, t1, · · · , tm) consisting of all continuous vector–fields t �→ W (t)
along γ, vanishing for t = 0 and t = 1, such that each restriction
W |[ti−1, ti] is a Jacobi field (hence smooth) along γ([ti−1, ti]); that sub-
space is finite–dimensional;

2. T ′ consisting of the vector–fields t �→ W (t) along γ, such that W (t0) =
0, W (t1) = 0, · · · ,W (tm) = 0.

TΩ(γ) is then the direct sum TΩ(γ; t0, t1, · · · , tm) ⊕ T ′; these two sub-
spaces are orthogonal for the bilinear form E∗∗, and E∗∗ is strictly positive
in T ′, so that the index of E∗∗ is equal to the index of its restriction to the
subspace TΩ(γ; t0, t1, · · · , tm).

To calculate the nullity and index of E∗∗, due to this decomposition, apply
their definitions either to vector subspaces of TΩ(γ) or to vector subspaces
of TΩ(γ; t0, t1, · · · , tm). The computation of the index of E∗∗ is done by
considering the geodesic arc γτ : [0, τ ] →M , the restriction of γ to [0, τ ], and
its energy

E(γτ ) = τ
∫ τ

0

‖ dγ
du
‖2 du.

Eτ∗∗ is the corresponding quadratic form on TΩ(γτ ), and λ(τ) is its index;
one studies the variation of λ(τ) when tau varies from 0 to 1, and λ(1) is the
index of E∗∗.
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The index theorem says: the index of E∗∗ is the sum of the multiplicities
of the points conjugate to A along B and distinct from B.

We have seen that the dimension of TΩ(γ; t0, t1, · · · , tm) is finite; it follows
that the index of E∗∗ is always finite, and therefore the number of points
conjugate to A along γ is also finite.

Step 4 of Morse theory introduces a topology on the set Ω = Ω(M ;A,B).
On the biomechanical configuration manifold M the usual topology can be
defined by a distance ρ(A,B), the g.l.b. of the lengths of all piecewise smooth
paths joining A and B. For any pair of paths ω1, ω2 in Ω(M ;A,B), consider
the function d(ω1, ω2) ∈M

d(ω1, ω2) = sup
0�t�1

ρ(ω1(t), ω2(t)) +

√∫ 1

0

(ṡ1 − ṡ2)2 dt,

where s1(t) (resp. s2(t)) is the length of the path τ �→ ω1(τ) (resp. τ �→ ω2(τ))
defined in [0, t]. This distance on Ω such that the function ω �→ EBA (ω) is
continuous for that distance.

Morse Homology of a Biomechanical Manifold

Morse Functions and Boundary Operators. Let f : M → R represents
a C∞−function on the biomechanical configuration manifold M . Recall that
z = (q, p) ∈ M is the critical point of f if df(z) ≡ df [(q, p)] = 0. In local
coordinates (x1, ..., xn) = (q1, ..., qn, p1, ..., pn) in a neighborhood of z, this
means ∂f

∂xi (z) = 0 for i = 1, ..., n. The Hessian of f at a critical point z
defines a symmetric bilinear form ∇df(z) = d2f(z) on TzM , in local coor-
dinates (x1, ..., xn) represented by the matrix

(
∂2f
∂xi∂xj

)
. Index and nullity of

this matrix are called index and nullity of the critical point z of f .
Now, we assume that all critical points z1, ..., zn of f ∈M are nondegener-

ate in the sense that the Hessians d2f(zi), i = 1, ...,m, have maximal rank. Let
z be such a critical point of f of Morse index s (= number of negative eigen-
values of d2f(zi), counted with multiplicity). The eigenvectors corresponding
to these negative eigenvalues then span a subspace Vz ⊂ TzM of dimension s.
We choose an orthonormal basis e1, ..., es of Vz w.r.t. the Riemannian metric
g on M (induced by the system’s kinetic energy), with dual basis dx1, ..., dxs.
This basis then defines an orientation of Vz which we may also represent by
the s–form dx1 ∧ ... ∧ dxs. We now let z′ be another critical point of f , of
Morse index s − 1. We consider paths γ(t) of the steepest descent of f from
z to z′, i.e., integral curves of the vector–field −∇f(γ). Thus γ(t) defines the
gradient flow of f

γ̇(t) = −∇f (γ(t)) , with
{

limt→−∞ γ(t) = z,
limt→∞ γ(t) = z′ . (2.691)

A path γ(t) obviously depends on the Riemannian metric g on M as
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∇f = gij ∂xif ∂xjf.

From [Sma60, Sma67] it follows that for a generic metric g, the Hessian∇df(y)
has only nondegenerate eigenvalues. Having a metric g induced by the system’s
kinetic energy, we let Ṽy ⊂ TyM be the space spanned by the eigenvectors
corresponding to the s− 1 lowest eigenvalues. Since z′ has Morse index s− 1,
∇df(z′) = d2f(z′) has precisely s − 1 negative eigenvalues. Therefore, Ṽz′ ≡
limt→∞ Ṽγ(t) = Vz′ , while the unit tangent vector of γ at z′, i.e., limt→∞

γ̇(t)
‖γ̇(t)‖ ,

lies in the space of directions corresponding to positive eigenvalues and is
thus orthogonal to Vz′ . Likewise, the unit tangent vector vz of γ at z, while
contained in Vz, is orthogonal to Ṽz, because it corresponds to the largest
one among the s negative eigenvalues of d2f(z). Taking the interior product
i(vz) dx1 ∧ ... ∧ dxs defines an orientation of Ṽz. Since Ṽy depends smoothly
on y, we may transport the orientation of Ṽz to Ṽz′ along γ. We then define
nγ = +1 or −1, depending on whether this orientation of Ṽz′ coincides with
the chosen orientation of Vz′ or not, and further define n(z, z′) =

∑
γ nγ ,

where the sum is taken over all such paths γ of the steepest descent from p
to p′.

Now, let Ms be the set of critical points of f of Morse index s, and let
Hsf be the vector space over R spanned by the elements of Ms. We define a
boundary operator

δ : Hs−1
f → Hsf , by putting, for z′ ∈Ms−1,

δ(z′) =
∑
n∈Ms

n(z′, z) z, and extending δ by linearity.

This operator satisfies δ2 = 0 and therefore defines a cohomology theory.
Using Conley’s continuation principle, Floer [Flo88] showed that the result-
ing cohomology theories resulting from different choices of f are canonically
isomorphic.

In his QFT–based rewriting the Morse topology, Ed Witten [Wit82] con-
sidered also the operators:

dt = e−tfdetf , their adjoints : d∗t = etfde−tf ,
as well as their Laplacian: ∆t = dtd∗t + d∗t dt.

For t = 0, ∆0 is the standard Hodge–de Rham Laplacian, whereas for t→∞,
one has the following expansion

∆t = dd∗ + d∗d+ t2 ‖df‖2 + t
∑
k,j

∂2h

∂xk∂xj
[i ∂xk , dxj ],

where (∂xk)k=1,...,n is an orthonormal frame at the point under consideration.
This becomes very large for t → ∞, except at the critical points of f , i.e.,
where df = 0. Therefore, the eigenvalues of ∆t will concentrate near the
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critical points of f for t→∞, and we get an interpolation between de Rham
cohomology and Morse cohomology.

Morse Homology on M . Now, following [Mil99, IP05b], for any Morse
function f on the configuration manifold M we denote by Critp(f) the set of
its critical points of index p and define Cp(f) as a free Abelian group gener-
ated by Critp(f). Consider the gradient flow generated by (2.691). Denote by
Mf,g(M) the set of all γ : R →M satisfying (2.691) such that∫ +∞

−∞

∣∣∣∣dγdt
∣∣∣∣2 dt <∞.

The spaces

Mf,g(x−, x+) = {γ ∈Mf,g(M) | γ(t) → x± as t→ ±∞}

are smooth manifolds of dimension m(x+)−m(x−), where m(x) denotes the
Morse index of a critical point x. Note that

Mf,g(x, y) ∼=Wu
g (x) ∩W s

g (y),

whereW s
g (y) andWu

g (x) are the stable and unstable manifolds of the gradient
flow (2.691). For generic g the intersection above is transverse (Morse–Smale
condition). The group R acts on Mf,g(x, y) by γ �→ γ(·+ t). We denote

M̂f,g(x, y) =Mf,g(x, y)/R.

The manifolds M̂f,g(x, y) can be given a coherent orientation σ (see [Sch93]).
Now, we can define the boundary operator, as

∂ : Cp(f) → Cp−1(f), ∂x =
∑

y∈Critp−1(f)

n(x, y)y,

where n(x, y) is the number of points in 0D manifold M̂f,g(x, y) counted with
the sign with respect to the orientation σ. The proof of ∂ ◦ ∂ = 0 is based
on gluing and cobordism arguments [Sch93]. Now Morse homology groups are
defined by

HMorse
p (f) = Ker(∂)/Im(∂).

For generic choices of Morse functions f1 and f2 the groupsHp(f1) andHp(f2)
are isomorphic. Furthermore, they are isomorphic to the singular homology
group of M , i.e.,

HMorse
p (f) ∼= Hsing

p (M),

for generic f [Mil65].
The construction of isomorphism is given (see [Mil99, IP05b]) as

hαβ : Hp(fα) → Hp(fβ), (2.692)
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for generic Morse functions fα, fβ . Consider the ‘connecting trajectories’, i.e.,
the solutions of non–autonomous equation

γ̇ = −∇fαβt , (2.693)

where fαβt is a homotopy connecting fα and fβ such that for some R > 0

fαβt ≡
{
fα for t ≤ −R
fβ for t ≥ R .

For xα ∈ Critp(fα) and xβ ∈ Critp(fβ) denote

Mfαβ ,g(x
α, xβ) = {γ : γ satisfies (2.693) and lim

t→−∞
γ = xα, lim

t→∞
γ = xβ}.

As before, Mfαβ ,g is a smooth finite–dimensional manifold. Now, define

(hαβ)� : Cp(fα) → Cp(fβ), by

(hαβ)�xα =
∑

xβ∈Critp(fβ)

n(xα, xβ)xβ , for xα ∈ Critp(fα),

where n(xα, xβ) is the algebraic number of points in 0DmanifoldMfαβ ,g(xα, xβ)
counted with the signs defined by the orientation ofMfαβ ,g. Homomorphisms
(hαβ)� commute with ∂ and thus define the homomorphisms hαβ in homology
which, in addition, satisfy hαβ ◦ hβγ = hαγ .

Now, if we fix a Morse function f : M → R instead of a metric g, we
establish the isomorphism (see [Mil99, IP05b])

hαβ : Hp(gα, f) → Hp(gβ , f)

between the two Morse homology groups defined by means of two generic
metrics gα and gβ in a similar way, by considering the ‘connecting trajectories’,

γ̇ = −∇g
αβ
t f. (2.694)

Here gαβt is a homotopy connecting gα and gβ such that for some R > 0

gαβt ≡
{
gα for t ≤ −R,
gβ for t ≥ R,

and ∇g is a gradient defined by metric g.
Note that f is decreasing along the trajectories solving autonomous gradi-

ent equation (2.691). Therefore, the boundary operator ∂ preserves the down-
ward filtration given by level sets of f . In other words, if we denote

Critλp(f) = Critp(f) ∩ f−1((−∞, λ]), and

Cλp (f) = free Abelian group generated by Critλp(f),
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then the boundary operator ∂ restricts to ∂λ : Cλp (f) → Cλp−1(f). Obviously,
∂λ ◦ ∂λ = 0, thus we can define the relative Morse homology groups

Hλp (f) = Ker(∂λ)/Im(∂λ).

Following the standard algebraic construction, we define (relative) Morse
cohomology. We set

Cpλ(f) = Hom(Cλp (f),Z), and

δλ : Cpλ(f) → Cp+1
λ (f), 〈δλa, x〉 = 〈a, ∂λx〉

and define
Hpλ(f) = Ker(δλ)/Im(δλ).

Since Critp(f) is finite, we have Hλp (f) = Hp(f) and Hpλ(f) = Hp(f).

Hodge–De Rham Theory in Biomechanics

Hodge Laplacian

A single biomechanical configuration manifoldM can be equipped with many
different Riemannian metrics g in local coordinates (apart from the one gen-
erated by its kinetic energy)

g = gij(u1, u2, ..., un) dui duj .

Beltrami had shown that it is always possible for such a metric to define an
operator (depending on the metric) that generalizes the usual Laplacian on
Rn and therefore induces the notion of harmonic functions on the Riemannian
manifold [BM82].

Hodge theory was described by H. Weyl as ‘one of the landmarks in the
history of mathematics in the 20th Century’. Hodge showed that it was pos-
sible to define a notion of harmonic exterior differential form: the metric g
on M canonically defines a metric on the tangent bundle TM , hence also,
by standard multilinear algebra, a metric on any bundle of tensors on M . In
particular, let (α, β) �→ gp(α, β) be the positive nondegenerate symmetric bi-
linear form defined on the vector space of p−forms on M . As M is orientable,
this defines a duality between p−forms and (n− p)−forms: to each p−form α
is associated a (n− p)−form ∗α, defined by the linear Hodge star operator ∗
(see subsection 1.2.5), characterized by the relations

β ∧ (∗α) = gp(α, β) v, ∗ ∗ α = (−1)p(n−p)α,

for all p−forms α, β, where v is the volume form on the Riemannian manifold
M . If d is the exterior derivative, it has a transposed (adjoint) operator for
that duality, the codifferential δ, defined as
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δ = −(∗) ◦ d ◦ (∗),

which maps p−forms onto (p− 1)−forms, such that

δα = (−1)np+n+1 ∗ d ∗ α.

Recall (from subsection 1.2.5 above) that the Hodge Laplacian, defined as

∆ = d ◦ δ + δ ◦ d,

transforms p−forms into p−forms and generalizes Beltrami’s Laplacian (1.30),
which is the special case for p = 0 (up to a sign). This defines harmonic (real
or complex valued) p−forms as those for which ∆α = 0, or equivalently,
dα = δα = 0.

In other words, let dv be the volume element of the chosen metric g. Then
for every p−form α we can define a norm functional

‖α‖ =
∫
X

(α, ∗α)gdv,

for which the Euler–Lagrangian equation becomes ∆α = 0.
Now, the pth Betti number of M can be defined as

bp = dimKer∆p,

so that the Euler–Poincaré characteristics of M is given by

χ(M) =
n∑
p=0

(−1)pbp =
n∑
p=0

(−1)p dimKer∆p. (2.695)

Finally, for any (p − 1)−form α, (p + 1)−form β, and harmonic p−form
γ (∆γ = 0) on the biomechanical configuration manifold M , the celebrated
Hodge–de Rham decomposition of a p−form ω [Gri83b, Voi02] gives

ω = dα+ δβ + γ.

Now, recall from section 1.2.12, that a large class of symplectic mani-
folds is given by the Kähler manifolds. Let M be a smooth manifold and g
a Riemannian metric on M . Let J be a complex structure on M , that is,
J : TM → TM , J2 = −Id, and J is g–orthogonal. M is called a Kähler man-
ifold if ∇j = 0, where ∇ is the Levi–Civita connection of g and J is regarded
as a (1, 1) tensor–field. Define a 2−form ω on M by ω(X,Y ) = g(JX, Y ), for
each vector–field X,Y on M . Then (M,ω) is a symplectic manifold.

Hodge theory takes place on the cohomology of the compact orientable
configuration manifold M and reflects the subtle interplay of the following
basic additional linear structures one can impose on M :

• Symplectic structure ω ∈ ΓC∞(M,Λ2T∨
M ), where ω is nondegenerate,

dω = 0.
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• Riemannian structure g ∈ ΓC∞(M,S2T∨
M ), where g is positive definite.

• Complex structure J ∈ ΓC∞(M,End(TM )), where J2 = − id, and J is
integrable.

The data (M,ω, g, J) satisfy the Kähler condition if ω, g and J are com-
patible in the sense that

ω(•, J(•)) = g(•, •),

where • is the strong compatibility condition allowing the comparison of dif-
ferent cohomology theories.

Recall that the de Rham cohomology of (M,J) is defined as

HkDR(M) =
Ker

(
Ωk(M) d−→ Ωk+1(M)

)
Im

(
Ωk−1(M) d−→ Ωk(M)

) .
de Rham cohomology classes are represented by harmonic (natural) dif-

ferential forms.
Let (M, g) be a compact oriented (real or complex) Riemannian manifold.

Let dv be the volume element of g. Then for every k−form α we can define

‖α‖ =
∫
M

(α, ᾱ)gdv.

The Euler–Lagrangian equation for the norm functional turns out to be dα =
δα = 0. A k−form α ∈ Ωk(M) is called harmonic if it satisfies one of the
following equivalent conditions:

• α is closed and ‖α‖ ≤ ‖α+ dβ‖ for all β ∈ Ωk−1(M).
• dα = δα = 0.
• ∆α = 0, where ∆ = dδ + δd is the Hodge Laplacian.

Hodge–Weyl theorem [Gri83b, Voi02] states that every de Rham cohomol-
ogy class has a unique harmonic representative.

Heat Kernel and Thermodynamics on M

Besides pure mechanical consideration of biomechanical system, there is an-
other biophysical point of view – thermodynamical, compatible with the hu-
man motion [Hil38]. Namely, the heat equation on the biomechanical configu-
ration manifold M ,

∂ta(t) = ∆a(t), with initial condition a(0) = α,

has a unique solution for every t ∈ [0,∞) and every p−form α on M . If we
think of α as an initial temperature distribution onM then as the configuration
manifold cools down, according to the classical heat equation, the temperature
should approach a steady state which should be harmonic [Dav89].
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To prove this, we define a stationary and hence harmonic operatorH(α) =
limt→∞ a(t). Also, a map α→ G(α) with

G(α) =
∫ ∞

0

a(t) dt

is orthogonal to the space of harmonic forms and satisfies

∆G(α) =
∫ ∞

0

∆a(t) dt = −
∫ ∞

0

∂ta(t) dt = α−H(α).

Here, the map α→ H(α) is called harmonic projection and the map α→ G(α)
is called Green’s operator.

In particular, for each p−form α we get a unique decomposition

α = H(α) +∆G(α).

This proves the existence of a harmonic representative in every de Rham
cohomology class, as follows.

Let α ∈ Ωp(M) be a closed form. Then

α = H(α) + dd∗G(α) + d∗dG(α).

But the three terms in this sum are orthogonal and so

‖d∗dG(α)‖ = 〈d∗dG(α), α〉 = 〈dG(α), dα〉 = 0,

since α is closed. Thus H(α) is cohomologous to α.
This thermal reflection on the biomechanics topology complies with the

basic biophysics of human muscles (see [Hil38]).

Lagrangian–Hamiltonian Duality in Biomechanics

The present section uncovers the underlying dual geometro–topological struc-
ture beneath the general biomechanics. It presents a parallel development of
Hamiltonian and Lagrangian formulations of biomechanics (see [IS01, Iva02,
IP01b, IP01b, Iva05a]), proves both differential–geometrical and algebraic–
topo-logical dualities between these two formulations, and finally establishes
a unique functorial relation between biomechanics geometry and biomechanics
topology.

Lagrangian formulation of biomechanics is performed on the tangent bun-
dle TM , while Hamiltonian formulation is performed on the cotangent bundle
T ∗M . Both Riemannian and symplectic geometry are used. The geometrical
duality (see [KMS93, BM82]) of Lie groups and algebras between these two
biomechanics formulations is proved as an existence of natural equivalence
between Lie and canonical functors. The topological duality (see [DP97]) be-
tween these two biomechanics formulations is proved as an existence of natural
equivalence between Lagrangian and Hamiltonian functors in both homology
and cohomology categories. In the case of reduced configuration manifold, the
Betti numbers and Euler–Poincaré characteristic are given.
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Geometrical Duality Theorem for M

Theorem. There is a geometrical duality between rotational Lagrangian and
Hamiltonian biomechanical formulations on M (as given by Figure 2.21). In
categorical terms, there is a unique natural geometrical equivalence

DualG : Lie ∼= Can

in biomechanics (symbols are described in the next subsection).
Proof. The proof has two parts: Lie–functorial and geometrical.
Lie–Functorial Proof. If we apply the functor Lie on the category •[SO(n)i]
(for n = 2, 3 and i = 1, . . . , N) of rotational Lie groups SO(n)i (and their
homomorphisms) we get the category •[so(n)i] of corresponding tangent Lie
algebras so(n)i (and their homomorphisms). If we further apply the isomor-
phic functor Dual to the category •[so(n)i] we get the dual category ∗

•[so(n)
∗
i ]

of cotangent, or, canonical Lie algebras so(n)∗i (and their homomorphisms).
To go directly from •[SO(n)i] to ∗

•[so(n)
∗
i ] we use the canonical functor Can.

Therefore, we have a commutative triangle:

•[so(n)i]
∗
•[so(n)∗i ]��

∼=
DualA

•[SO(n)i]

Lie

�
�

�
�
�
��

Can

�
�
�
�
�
��

LGA

Applying the functor Lie on the biomechanical configuration manifoldM ,
we get the product–tree of the same anthropomorphic structure, but having
tangent Lie algebras so(n)i as vertices, instead of the groups SO(n)i. Again,
applying the functor Can on M , we get the product–tree of the same an-
thropomorphic structure, but this time having cotangent Lie algebras so(n)∗i
as vertices. Both the tangent algebras so(n)i and the cotangent algebras
so(n)∗i contain infinitesimal group generators: angular velocities q̇i = q̇φi –
in the first case, and canonical angular momenta pi = pφi

– in the second
case [IS01]. As Lie group generators, both the angular velocities and the an-
gular momenta satisfy the commutation relations: [q̇φi , q̇ψi ] = εφψθ q̇θi and
[pφi
, pψi

] = εθφψ pθi , respectively, where the structure constants εφψθ and εθφψ
constitute the totally antisymmetric third–order tensors.

In this way, the functor DualG : Lie ∼= Can establishes the unique geo-
metrical duality between kinematics of angular velocities q̇i (involved in La-
grangian formalism on the tangent bundle of M) and kinematics of angular
momenta pi (involved in Hamiltonian formalism on the cotangent bundle of
M), which is analyzed below. In other words, we have two functors, Lie and
Can, from the category of Lie groups (of which •[SO(n)i] is a subcategory)
into the category of (their) Lie algebras (of which •[so(n)i] and ∗

•[so(n)
∗
i ] are
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subcategories), and a unique natural equivalence between them defined by the
functor DualG. (As angular momenta pi are in a bijective correspondence with
angular velocities q̇i, every component of the functor DualG is invertible.) �
Geometrical Proof. Geometrical proof is given along the lines of Riemannian
and symplectic geometry of mechanical systems, as follows (see 2.4.2 above, as
well as [MR99, IS01, Iva02, IP01b, Iva05a]). Recall that the Riemannian met-
ric g =<,> on the configuration manifold M is a positive–definite quadratic
form g : TM → R, given in local coordinates qi ∈ U (U open in M) as

gij �→ gij(q,m) dqidqj , where

gij(q,m) = mµδrs
∂xr

∂qi
∂xs

∂qj

is the covariant material metric tensor g, defining a relation between internal
and external coordinates and including n segmental massesmµ. The quantities
xr are external coordinates (r, s = 1, . . . , 6n) and i, j = 1, . . . , N ≡ 6n − h,
where h denotes the number of holonomic constraints.

The Lagrangian of the system is a quadratic form L : TM → R dependent
on velocity v and such that L(v) = 1

2 < v, v >. It is given by

L(v) =
1
2
gij(q,m) vivj

in local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM). The Hamiltonian of
the system is a quadratic form H : T ∗M → R dependent on momentum p
and such that H(p) = 1

2 < p, p >. It is given by

H(p) =
1
2
gij(q,m) pipj

in local canonical coordinates qi, pi ∈ Up (Up open in T ∗M). The inverse
(contravariant) metric tensor g−1, is defined as

gij(q,m) = mµδrs
∂qi

∂xr
∂qj

∂xs
.

For any smooth function L on TM , the fibre derivative, or Legendre trans-
formation, is a diffeomorphism FL : TM → T ∗M , F(w) · v =< w, v >, from
the momentum phase–space manifold to the velocity phase–space manifold
associated with the metric g =<,>. In local coordinates qi, vi = q̇i ∈ Uv (Uv
open in TM), FL is given by (qi, vi) �→ (qi, pi).

Recall that on the momentum phase–space manifold T ∗M exists:
(i) A unique canonical 1−form θH with the property that, for any 1−form
β on the configuration manifold M , we have β∗θH = β. In local canonical
coordinates qi, pi ∈ Up (Up open in T ∗M) it is given by θH = pidq

i.
(ii) A unique nondegenerate Hamiltonian symplectic 2−form ωH , which is
closed (dωH = 0) and exact (ωH = dθH = dpi ∧ dqi). Each body segment
has, in the general SO(3) case, a sub–phase–space manifold T ∗SO(3) with
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ω
(sub)
H = dpφ ∧ dφ + dpψ ∧ dψ + dpθ ∧ dθ.

Analogously, on the velocity phase–space manifold TM exists:
(i) A unique 1−form θL, defined by the pull–back θL = (FL) ∗ θH of θH by
FL. In local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) it is given by
θL = Lvidqi, where Lvi ≡ ∂L/∂vi.
(ii) A unique nondegenerate Lagrangian symplectic 2−form ωL, defined by
the pull–back ωL = (FL) ∗ ωH of ωH by FL, which is closed (dωL = 0) and
exact (ωL = dθL = dLvi ∧ dqi).

Both T ∗M and TM are orientable manifolds, admitting the standard vol-
umes given respectively by

ΩωH
,=

(−1)
N(N+1)

2

N !
ωNH , and ΩωL

=
(−1)

N(N+1)
2

N !
ωNL ,

in local coordinates qi, pi ∈ Up (Up open in T ∗M), resp. qi, vi = q̇i ∈ Uv (Uv
open in TM). They are given by

ΩH = dq1 ∧ · · · ∧ dqN ∧ dp1 ∧ · · · ∧ dpN , and
ΩL = dq1 ∧ · · · ∧ dqN ∧ dv1 ∧ · · · ∧ dvN .

On the velocity phase–space manifold TM we can also define the action
A : TM → R by A(v) = FL(v) · v and the energy E = A − L. In local
coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) we have A = viLvi , so
E = viLvi − L. The Lagrangian vector–field XL on TM is determined by the
condition iXL

ωL = dE. Classically, it is given by the second–order Lagrangian
equations

d

dt
Lvi = Lqi . (2.696)

The Hamiltonian vector–field XH is defined on the momentum phase–
space manifold T ∗M by the condition iXH

ω = dH. The condition may be

expressed equivalently as XH = J∇H, where J =
(

0 I
−I 0

)
.

In local canonical coordinates qi, pi ∈ Up (Up open in T ∗M) the vector–
fieldXH is classically given by the first–order Hamiltonian canonical equations

q̇i = ∂pi
H, ṗi = − ∂qiH. (2.697)

As a Lie group, the configuration manifold M is Hausdorff. Therefore for
x = (qi, pi) ∈ Up (Up open in T ∗M) there exists a unique one–parameter
group of diffeomorphisms φt : T ∗M → T ∗M such that d

dt |t=0 φtx =
J∇H(x). This is termed Hamiltonian phase–flow and represents the maximal
integral curve t �→ (qi(t), pi(t)) of the Hamiltonian vector–field XH passing
through the point x for t = 0.

The flow φt is symplectic if ωH is constant along it (that is, φ∗tωH = ωH)
iff its Lie derivative vanishes (that is, LXH

ωH = 0). A symplectic flow consists
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of canonical transformations on T ∗M , that is, local diffeomorphisms that leave
ωH invariant. By Liouville theorem, a symplectic flow φt preserves the phase
volume on T ∗M . Also, the total energy H = E of the system is conserved
along φt, that is, H ◦ φt = φt.

Lagrangian flow can be defined analogously (see [AM78, MR99]).
For a Lagrangian (resp. a Hamiltonian) vector–field XL (resp. XH) on

M , there is a base integral curve γ0(t) = (qi(t), vi(t)) (resp. γ0(t) =
(qi(t), pi(t))) iffγ0(t) is a geodesic. This is given by the contravariant velocity
equation

q̇i = vi, v̇i + Γ ijk v
jvk = 0, (2.698)

in the former case, and by the covariant momentum equation

q̇k = gkipi, ṗi + Γ ijk g
jlgkm plpm = 0, (2.699)

in the latter. As before, Γ ijk denote the Christoffel symbols of an affine connec-
tion ∇ in an open chart U on M , defined by the Riemannian metric g =<,>
as: Γ ijk = gilΓjkl, Γjkl = 1

2

(
∂qjgkl + ∂qkgjl − ∂qlgjk

)
.

The l.h.s ˙̄vi = v̇i + Γ ijk v
jvk (resp. ˙̄pi = ṗi + Γ ijk g

jlgkm plpm) in the
second parts of (2.698) and (2.699) represent the Bianchi covariant derivative
of the velocity (resp. momentum) with respect to t. Parallel transport on M
is defined by ˙̄vi = 0, (resp. ˙̄pi = 0). When this applies, XL (resp. XH) is
called the geodesic spray and its flow the geodesic flow.

For the dynamics in the gravitational potential field V : M → R, the
Lagrangian L : TM → R (resp. the Hamiltonian H : T ∗M → R) has an
extended form

L(v, q) =
1
2
gijv

ivj − V (q),

(resp. H(p, q) =
1
2
gijpipj + V (q)).

A Lagrangian vector–field XL (resp. Hamiltonian vector–field XH) is still
defined by the second–order Lagrangian equations (2.696, 2.698) (resp. first–
order Hamiltonian equations (2.697, 2.699)).

The fibre derivative FL : TM → T ∗M thus maps Lagrangian equations
(2.696, 2.698) into Hamiltonian equations (2.697, 2.699). Clearly there exists
a diffeomorphism FH : T ∗M → TM , such that FL = (FH)−1. In local
canonical coordinates qi, pi ∈ Up (Up, open in T ∗M) this is given by (qi, pi) �→
(qi, vi) and thus maps Hamiltonian equations (2.697, 2.699) into Lagrangian
equations (2.696, 2.698).

A general form of the forced, non–conservative Hamiltonian equations
(resp. Lagrangian equations) is given as

q̇i =
∂H

∂pi
, ṗi = − ∂H

∂qi
+ Fi(t, qi, pi),

(resp.
d

dt

∂L

∂vi
− ∂L

∂qi
= Fi(t, qi, vi)).
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Here the Fi(t, qi, pi) (resp. Fi(t, qi, vi)) represent any kind of covariant forces,
including dissipative and elastic joint forces, as well as actuator drives and
control forces, as a function of time, coordinates and momenta. In covariant
form we have

q̇k = gkipi, ṗi + Γ ijk g
jlgkm plpm = Fi(t, qi, pi),

(resp. q̇i = vi, v̇i + Γ ijk v
jvk = gij Fj(t, qi, vi)). �

This proves the existence of the unique natural geometrical equivalence

DualG : Lie ∼= Can

in the rotational biomechanics.

Topological Duality Theorem for M

In this section we want to prove that the general biomechanics can be equiva-
lently described in terms of two topologically dual functors Lag and Ham, from
Diff, the category of smooth manifolds (and their smooth maps) of class
Cp, into Bund, the category of vector bundles (and vector–bundle maps) of
class Cp−1, with p ≥ 1. Lag is physically represented by the second–order
Lagrangian formalism on TM ∈ Bund, while Ham is physically represented by
the first–order Hamiltonian formalism on T ∗M ∈ Bund.

Theorem. There is a topological duality between Lagrangian and Hamil-
tonian formalisms on M (as given by Figure 2.21). In categorical terms, there
is a unique natural topological equivalence

DualT : Lag ∼= Ham

in the general biomechanics.
Proof. The proof has two parts: cohomological and homological.
Cohomological Proof. If C = H•M (resp. C = L•M) represents the Abelian
category of cochains on the momentum phase–space manifold T ∗M (resp. the
velocity phase–space manifold TM), we have the category S•(H•M) (resp.
S•(L•M)) of generalized cochain complexes A• in H•M (resp. L•M) and if
A′ = 0 for n < 0 we have a subcategory S•

DR(H•M) (resp. S•
DR(L•M)) of

de Rham differential complexes in S•(H•M) (resp. S•(L•M))

A•
DR : 0→ Ω0(T ∗M) d−→ Ω1(T ∗M) d−→

d−→ Ω2(T ∗M) d−→ · · · d−→ ΩN (T ∗M) d−→ · · ·

(resp. A•
DR : 0→ Ω0(TM) d−→ Ω1(TM) d−→ Ω2(TM) d−→

· · · d−→ ΩN (TM) d−→ · · · ),

where A′ = ΩN (T ∗M) (resp. A′ = ΩN (TM)) is the vector space of all
N–forms on T ∗M (resp. TM) over R.
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Let ZN (T ∗M) = Ker(d) (resp. ZN (T ) = Ker(d)) and BN (T ∗M) =
Im(d) (resp. BN (TM) = Im(d)) denote respectively the real vector spaces of
cocycles and coboundaries of degree N . Since dN+1dN = d2 = 0, it follows
that BN (T ∗M) ⊂ ZN (T ∗M) (resp. BN (TM) ⊂ ZN (TM)). The quotient
vector space

HNDR(T ∗M) = Ker(d)/ Im(d) = ZN (T ∗M)/BN (T ∗M)
(resp. HNDR(TM) = Ker(d)/ Im(d) = ZN (TM)/BN (TM)),

we refer to as the de Rham cohomology group (vector space) of T ∗M (resp.
TM). The elements of HNDR(T ∗M) (resp. HNDR(TM)) are equivalence sets
of cocycles. Two cocycles ω1 and ω2 are cohomologous, or belong to the
same equivalence set (written ω1 ∼ ω2) iff they differ by a coboundary
ω1 − ω2 = dθ . Any form ωH ∈ ΩN (T ∗M) (resp. ωL ∈ ΩN (TM) has a
de Rham cohomology class [ωH ] ∈ HNDR(T ∗M) (resp. [ωL] ∈ HNDR(TM)).

Hamiltonian symplectic form ωH = dpi ∧ dqi on T ∗M (resp. Lagrangian
symplectic form ωL = dLvi ∧ dqi on TM) is by definition both a closed
2−form or two–cocycle and an exact 2−form or two–coboundary. Therefore
the 2D–de Rham cohomology group of human motion is defined as a quotient
vector space

H2
DR(T ∗M) = Z2(T ∗M)/B2(T ∗M)

(resp. H2
DR(TM) = Z2(TM)/B2(TM)).

As T ∗M (resp. TM) is a compact Hamiltonian symplectic (resp. La-
grangian symplectic) manifold of dimension 2N , it follows that ωNH (resp.
ωNL ) is a volume element on T ∗M (resp. TM), and the 2ND de Rham’s coho-
mology class

[
ωNH

]
∈ H2N

DR(T ∗M) (resp.
[
ωNL

]
∈ H2N

DR(TM)) is nonzero. Since[
ωNH

]
= [ωH ]N (resp.

[
ωNL

]
= [ωL]N ), then [ωH ] ∈ H2

DR(T ∗M) (resp.
[ωL] ∈ H2

DR(TM) ) and all of its powers up to the N–th must be zero as well.
The existence of such an element is a necessary condition for T ∗M (resp. TM)
to admit a Hamiltonian symplectic structure ωH (resp. Lagrangian symplectic
structure ωL).

The de Rham complex A•
DR on T ∗M (resp. TM) can be considered

as a system of second–order ODEs d2θH = 0, θH ∈ ΩN (T ∗M) (resp.
d2θL = 0, θL ∈ ΩN (TM)) having a solution represented by ZN (T ∗M)
(resp. ZN (TM)). In local coordinates qi, pi ∈ Up (Up open in T ∗M) (resp.
qi, vi ∈ Uv (Uv open in TM)) we have d2θH = d2(pidqi) = d(dpi∧dqi) = 0,
(resp. d2θL = d2(Lvidqi) = d(dLvi ∧ dqi) = 0). �
Homological Proof. If C = H•M, (resp. C = L•M) represents an Abelian
category of chains on T ∗M (resp. TM), we have a category S•(H•M) (resp.
S•(L•M)) of generalized chain complexes A• in H•M (resp. L•M), and if
A = 0 for n < 0 we have a subcategory SC• (H•M) (resp. SC• (L•M)) of chain
complexes in H•M (resp. L•M)
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A• : 0← C0(T ∗M) ∂←− C1(T ∗M) ∂←− C2(T ∗M) ∂←− · · ·

· · · ∂←− Cn(T ∗M) ∂←− · · ·

(resp. A• : 0← C0(TM) ∂←− C1(TM) ∂←− C2(TM) ∂←− · · ·
∂· · · ←− Cn(TM) ∂←− · · · ).

Here AN = CN (T ∗M) (resp. AN = CN (TM)) is the vector space of all fi-
nite chains C on T ∗M (resp. TM) over R, and ∂N = ∂ : CN+1(T ∗M) →
CN (T ∗M) (resp. ∂N = ∂ : CN+1(TM) → CN (TM)). A finite chain C
such that ∂C = 0 is an N−cycle. A finite chain C such that C = ∂B is
an N−boundary. Let ZN (T ∗M) = Ker(∂) (resp. ZN (TM) = Ker(∂)) and
BN (T ∗M) = Im(∂) (resp. BN (TM) = Im(∂)) denote respectively real vector
spaces of cycles and boundaries of degree N . Since ∂N−1∂N = ∂2 = 0, then
BN (T ∗M) ⊂ ZN (T ∗M) (resp. BN (TM) ⊂ ZN (TM)). The quotient vector
space

HCN (T ∗M) = ZN (T ∗M)/BN (T ∗M)
(resp. HCN (TM) = ZN (TM)/BN (TM))

represents an ND biomechanics homology group (vector space). The elements
of HCN (T ∗M) (resp. HCN (TM)) are equivalence sets of cycles. Two cycles C1

and C2 are homologous, or belong to the same equivalence set (written C1 ∼
C2) iff they differ by a boundary C1 − C2 = ∂B. The homology class of a
finite chain C ∈ CN (T ∗M) (resp. C ∈ CN (TM)) is [C] ∈ HCN (T ∗M) (resp.
[C] ∈ HCN (TM)). �

Lagrangian Versus Hamiltonian Duality

In this way, we have proved a commutativity of a triangle:

TanBund CotBund��
∼=

DualT

DiffMan

Lag

�
�
�
�
�
��

Ham

�
�
�
�
�
��

MFB

which implies the existence of the unique natural topological equivalence

DualT : Lag ∼= Ham

in the rotational biomechanics.
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Globally Dual Structure of Rotational Biomechanics

Theorem. Global dual structure of the rotational biomechanics is defined by
the unique natural equivalence

Dyn : DualG ∼= DualT .

Proof. This unique functorial relation, uncovering the natural equivalence be-
tween geometrical and topological structures of biomechanics:

•[so(n)i] ∗
•[so(n)

∗
i ]��

∼=
DualG

•[SO(n)i]

Lie

�
�
�
�

�
��

Can

�
�
�
�
�
��

LGA

�
F

�
G*

TanBund CotBund��
∼=

DualT

DiffMan

Lag

�
�
�
�
�
��

Ham

�
�
�
�
�
��

MFB

– has been established by parallel development of Lagrangian and Hamilto-
nian biomechanics formulations, i.e., functors Lag(Lie) and Ham(Can). �

2.5 Neurodynamics

2.5.1 Microscopic Neurodynamics and Quantum Brain

Biochemistry of Microtubules

Recent developments/efforts to understand aspects of the brain function at the
sub–neural level are discussed in [Nan95]. Microtubules (MTs), protein poly-
mers constructing the cytoskeleton of a neuron, participate in a wide variety
of dynamical processes in the cell. Of special interest for this subsection is the
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MTs participation in bioinformation processes such as learning and memory,
by possessing a well–known binary error–correcting code [K1(13, 26, 5)] with
64 words. In fact, MTs and DNA/RNA are unique cell structures that possess
a code system. It seems that the MTs’ code system is strongly related to a
kind of mental code in the following sense. The MTs’ periodic paracrystalline
structure make them able to support a superposition of coherent quantum
states, as it has been recently conjectured by Hameroff and Penrose [HP96],
representing an external or mental order, for sufficient time needed for efficient
quantum computing.

Living organisms are collective assemblies of cells which contain collective
assemblies of organized material, including membranes, organelles, nuclei, and
the cytoplasm, the bulk interior medium of living cells. Dynamic rearrange-
ments of the cytoplasm within eucaryotic cells, the cells of all animals and
almost all plants on Earth, account for their changing shape, movement, etc.
This extremely important cytoplasmic structural and dynamical organiza-
tion is due to the presence of networks of inteconnected protein polymers,
which are referred to as the cytosceleton due to their bone–like structure
[HP96, Dus84]. The cytoskeleton consists of MT’s, actin microfilaments, in-
termediate filaments and an organizing complex, the centrosome with its chief
component the centriole, built from two bundles of microtubules in a sep-
arated T shape. Parallel–arrayed MTs are interconnected by cross–bridging
proteins (MT–Associated Proteins: MAPs) to other MTs, organelle filaments
and membranes to form dynamic networks [HP96, Dus84]. MAPs may be
contractile, structural, or enzymatic. A very important role is played by con-
tractile MAPs, like dynein and kinesin, through their participation in cell
movements as well as in intra-neural, or axoplasmic transport which moves
material and thus is of fundamental importance for the maintenance and regu-
lation of synapses (see, e.g., [Ecc64]). The structural bridges formed by MAPs
stabilize MTs and prevent their disassembly. The MT–MAP ‘complexes’ or
cytosceletal networks determine the cell architecture and dynamic functions,
such a mitosis, or cell division, growth, differentiation, movement, and for us
here the very crucial, synapse formation and function, all essential to the liv-
ing state. It is usually said that microtubules are ubiquitous through the entire
biology [HP96, Dus84].

MTs are hollow cylinders comprised of an exterior surface of cross–section
diameter 25 nm (1 nm = 10−9 meters) with 13 arrays (protofilaments) of
protein dimers called tubulines [Dus84]. The interior of the cylinder, of cross–
section diameter 14 nm, contains ordered water molecules, which implies the
existence of an electric dipole moment and an electric field. The arrangement
of the dimers is such that, if one ignores their size, they resemble triangu-
lar lattices on the MT surface. Each dimer consists of two hydrophobic pro-
tein pockets, and has an unpaired electron. There are two possible positions
of the electron, called α and β conformations. When the electron is in the
β−conformation there is a 29o distortion of the electric dipole moment as
compared to the α conformation.
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In standard models for the simulation of the MT dynamics [STZ93,
SZT98], the ‘physical’ DOF – relevant for the description of the energy transfer
– is the projection of the electric dipole moment on the longitudinal symmetry
axis (x−axis) of the MT cylinder. The 29o distortion of the β−conformation
leads to a displacement un along the x−axis, which is thus the relevant phys-
ical DOF.

There has been speculation for quite some time that MTs are involved
in information processing: it has been shown that the particular geometrical
arrangement (packing) of the tubulin protofilaments obeys an error–correcting
mathematical code known as theK2(13, 26, 5)−code [KHS93]. Error correcting
codes are also used in classical computers to protect against errors while in
quantum computers special error correcting algorithms are used to protect
against errors by preserving quantum coherence among qubits.

Information processing occurs via interactions among the MT proto–
filament chains. The system may be considered as similar to a model of in-
teracting Ising chains on a triangular lattice, the latter being defined on the
plane stemming from filleting open and flattening the cylindrical surface of
MT. Classically, the various dimers can occur in either α or β conformations.
Each dimer is influenced by the neighboring dimers resulting in the possibility
of a transition. This is the basis for classical information processing, which
constitutes the picture of a (classical) cellular automaton.

Kink Soliton Model of MT–Dynamics

The quantum nature of an MT network results from the assumption that
each dimer finds itself in a superposition of α and β conformations. Viewed
as a two–state quantum mechanical system, the MT tubulin dimers couple to
conformational changes with 10−9−10−11sec transitions, corresponding to an
angular frequency ω ∼ O(1010)−O(1012) Hz [Nan95].

The quantum computer character of the MT network [Pen89] results from
the assumption that each dimer finds itself in a superposition of α and β
conformations [Ham87]. There is a macroscopic coherent state among the
various chains, which lasts for O(1 sec) and constitutes the ‘preconscious’
state [Nan95]. The interaction of the chains with (non–critical stringy) quan-
tum gravity, then, induces self–collapse of the wave function of the coherent
MT network, resulting in quantum computation.

In [EMN92, EMN99, MN95a, MN95b, Nan95] the authors assumed that
the collapse occurs mainly due to the interaction of each chain with quantum
gravity, the interaction from neighboring chains being taken into account by
including mean–field interaction terms in the dynamics of the displacement
field of each chain. This amounts to a modification of the effective potential
by anharmonic oscillator terms. Thus, the effective system under study is 2D,
possessing one space and one time coordinate.

Let un be the displacement field of the nth dimer in a MT chain. The
continuous approximation proves sufficient for the study of phenomena asso-
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ciated with energy transfer in biological cells, and this implies that one can
make the replacement

un → u(x, t), (2.700)

with x a spatial coordinate along the longitudinal symmetry axis of the MT.
There is a time variable t due to fluctuations of the displacements u(x) as a
result of the dipole oscillations in the dimers.

The effects of the neighboring dimers (including neighboring chains) can
be phenomenologically accounted for by an effective potential V (u). In the
kink–soliton model36 of ref. [STZ93, SZT98] a double–well potential was used,
leading to a classical kink solution for the u(x, t) field. More complicated inter-
actions are allowed in the picture of Ellis et al., where more generic polynomial
potentials have been considered.

The effects of the surrounding water molecules can be summarized by a
viscous force term that damps out the dimer oscillations,

F = −γ∂tu, (2.701)

with γ determined phenomenologically at this stage. This friction should be
viewed as an environmental effect, which however does not lead to energy
dissipation, as a result of the non–trivial solitonic structure of the ground–
state and the non–zero constant force due to the electric field. This is a well
known result, directly relevant to energy transfer in biological systems.

In mathematical terms the effective equation of motion for the relevant
field DOF u(x, t) reads:

u′′(ξ) + ρu′(ξ) = P (u), (2.702)

where ξ = x − vt, u′(ξ) = du/dξ, v is the velocity of the soliton, ρ ∝ γ
[STZ93, SZT98], and P (u) is a polynomial in u, of a certain degree, stemming
from the variations of the potential V (u) describing interactions among the
MT chains. In the mathematical literature there has been a classification of
solutions of equations of this form. For certain forms of the potential the
solutions include kink solitons that may be responsible for dissipation–free
energy transfer in biological cells:

u(x, t) ∼ c1 (tanh[c2(x− vt)] + c3) , (2.703)

where c1, c2, c3 are constants depending on the parameters of the dimer lattice
model. For the form of the potential assumed in the model of [STZ93, SZT98]
there are solitons of the form u(x, t) = c′1 + c′2−c′1

1+ec′3(c′2−c′1)(x−vt) , where again
c′i, i = 1, . . . 3 are appropriate constants.

A semiclassical quantization of such solitonic states has been considered
by Ellis et al.. The result of such a quantization yields a modified soliton
equation for the (quantum corrected) field uq(x, t) [TF91]
36 Recall that kinks are solitary (non–dispersive) waves arising in various 1D

(bio)physical systems.
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∂2
t uq(x, t)− ∂2

xuq(x, t) +M(1)[uq(x, t)] = 0, (2.704)

with the notation

M (n) = e
1
2 (G(x,y,t)−G0(x,y))

∂2

∂z2 U (n)(z)|z=uq(x,t), U (n) ≡ dnU/dzn.

The quantity U denotes the potential of the original soliton Hamiltonian, and
G(x, y, t) is a bilocal field that describes quantum corrections due to the mod-
ified boson field around the soliton. The quantities M (n) carry information
about the quantum corrections. For the kink soliton (2.703) the quantum cor-
rections (2.704) have been calculated explicitly in [TF91], thereby providing
us with a concrete example of a large–scale quantum coherent state.

A typical propagation velocity of the kink solitons (e.g., in the model of
[STZ93, SZT98]) is v ∼ 2 m/sec, although, models with v ∼ 20 m/sec have
also been considered. This implies that, for moderately long microtubules of
length L ∼ 10−6 m, such kinks transport energy without dissipation in

tF ∼ 5× 10−7 s. (2.705)

Such time scales are comparable to, or smaller in magnitude than, the deco-
herence time scale of the above–described coherent (solitonic) states uq(x, t).
This implies the possibility that fundamental quantum mechanical phenom-
ena may then be responsible for frictionless energy (and signal) transfer across
microtubular arrangements in the cell [Nan95].

Open Liouville Neurodynamics and Self–Similarity

Recall that neurodynamics has its physical behavior both on the macro-
scopic, classical, inter–neuronal level, and on the microscopic, quantum, intra–
neuronal level. On the macroscopic level, various models of neural networks
(NNs, for short) have been proposed as goal–oriented models of the spe-
cific neural functions, like for instance, function–approximation, pattern–
recognition, classification, or control (see, e.g., [Hay94]). In the physically–
based, Hopfield–type models of NNs [Hop82), Hop84] the information is
stored as a content–addressable memory in which synaptic strengths are mod-
ified after the Hebbian rule (see [Heb49]. Its retrieval is made when the net-
work with the symmetric couplings works as the point–attractor with the
fixed points. Analysis of both activation and learning dynamics of Hopfield–
Hebbian NNs using the techniques of statistical mechanics [DHS91], gives us
with the most important information of storage capacity, role of noise and
recall performance.

On the other hand, on the general microscopic intra–cellular level, energy
transfer across the cells, without dissipation, had been first conjectured to
occur in biological matter by [FK83]. The phenomenon conjectured by them
was based on their 1D superconductivity model: in 1D electron systems with
holes, the formation of solitonic structures due to electron–hole pairing results
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in the transfer of electric current without dissipation. In a similar manner,
Frölich and Kremer conjectured that energy in biological matter could be
transferred without dissipation, if appropriate solitonic structures are formed
inside the cells. This idea has lead theorists to construct various models for
the energy transfer across the cell, based on the formation of kink classical
solutions (see [STZ93, SZT98].

The interior of living cells is structurally and dynamically organized by
cytoskeletons, i.e., networks of protein polymers. Of these structures, micro-
tubules (MTs, for short) appear to be the most fundamental (see [Dus84]).
Their dynamics has been studied by a number of authors in connection with
the mechanism responsible for dissipation–free energy transfer. Hameroff and
Penrose [Ham87] have conjectured another fundamental role for the MTs,
namely being responsible for quantum computations in the human neurons.
[Pen89, Pen94, Pen97] further argued that the latter is associated with cer-
tain aspects of quantum theory that are believed to occur in the cytoskele-
ton MTs, in particular quantum superposition and subsequent collapse of
the wave function of coherent MT networks. These ideas have been elabo-
rated by [MN95a, MN95b] and [Nan95], based on the quantum–gravity EMN–
language of [EMN92, EMN99] where MTs have been physically modelled as
non-critical (SUSY) bosonic strings. It has been suggested that the neural
MTs are the microsites for the emergence of stable, macroscopic quantum
coherent states, identifiable with the preconscious states; stringy–quantum
space–time effects trigger an organized collapse of the coherent states down
to a specific or conscious state. More recently, [TVP99] have presented the
evidence for biological self–organization and pattern formation during em-
bryogenesis.

Now, we have two space–time biophysical scales of neurodynamics. Natu-
rally the question arises: are these two scales somehow inter-related, is there
a space–time self–similarity between them?

The purpose of this subsection is to prove the formal positive answer to the
self–similarity question. We try to describe neurodynamics on both physical
levels by the unique form of a single equation, namely open Liouville equation:
NN–dynamics using its classical form, and MT–dynamics using its quantum
form in the Heisenberg picture. If this formulation is consistent, that would
prove the existence of the formal neurobiological space–time self–similarity.

Hamiltonian Framework

Suppose that on the macroscopic NN–level we have a conservative Hamilto-
nian system acting in a 2ND symplectic phase–space T ∗Q = {qi(t), pi(t)}, (i =
1 . . . N) (which is the cotangent bundle of the NN–configuration manifold
Q = {qi}), with a Hamiltonian function H = H(qi, pi, t) : T ∗Q × R → R.
The conservative dynamics is defined by classical Hamiltonian canonical equa-
tions (1.17). Recall that within the conservative Hamiltonian framework, we
can apply the formalism of classical Poisson brackets: for any two functions
A = A(qi, pi, t) and B = B(qi, pi, t) their Poisson bracket is defined as
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[A,B] =
(
∂A

∂qi
∂B

∂pi
− ∂A
∂pi

∂B

∂qi

)
.

Conservative Classical System

Any function A(qi, pi, t) is called a constant (or integral) of motion of the
conservative system (1.17) if

Ȧ ≡ ∂tA+ [A,H] = 0, which implies ∂tA = −[A,H] . (2.706)

For example, if A = ρ(qi, pi, t) is a density function of ensemble phase–points
(or, a probability density to see a state x(t) = (qi(t), pi(t)) of ensemble at a
moment t), then equation

∂tρ = −[ρ,H] = −iLρ (2.707)

represents the Liouville theorem, where L denotes the (Hermitian) Liouville
operator

iL = [..., H] ≡
(
∂H

∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi

)
= div(ρẋ),

which shows that the conservative Liouville equation (2.707) is actually equiv-
alent to the mechanical continuity equation

∂tρ+ div(ρẋ) = 0. (2.708)

Conservative Quantum System

We perform the formal quantization of the conservative equation (2.707) in
the Heisenberg picture: all variables become Hermitian operators (denoted by
‘∧’), the symplectic phase–space T ∗Q = {qi, pi} becomes the Hilbert state–
space H = Hq̂i ⊗ Hp̂i

(where Hq̂i = Hq̂1 ⊗ ... ⊗ Hq̂N and Hp̂i
= Hp̂1 ⊗ ... ⊗

Hp̂N
), the classical Poisson bracket [ , ] becomes the quantum commutator

{ , } multiplied by −i/�

[ , ] −→ −i{ , } (� = 1 in normal units) . (2.709)

In this way the classical Liouville equation (2.707) becomes the quantum Li-
ouville equation

∂tρ̂ = i{ρ̂, Ĥ} , (2.710)

where Ĥ = Ĥ(q̂i, p̂i, t) is the Hamiltonian evolution operator, while

ρ̂ = P (a)|Ψa >< Ψa|, with Tr(ρ̂) = 1,

denotes the von Neumann density matrix operator, where each quantum state
|Ψa > occurs with probability P (a); ρ̂ = ρ̂(q̂i, p̂i, t) is closely related to another
von Neumann concept: entropy S = −Tr(ρ̂[ln ρ̂]).
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Open Classical System

We now move to the open (nonconservative) system: on the macroscopic NN–
level the opening operation equals to the adding of a covariant vector of
external (dissipative and/or motor) forces Fi = Fi(qi, pi, t) to (the r.h.s of)
the covariant Hamiltonian force equation, so that Hamiltonian equations get
the open (dissipative and/or forced) form

q̇i =
∂H

∂pi
, ṗi = Fi −

∂H

∂qi
. (2.711)

In the framework of the open Hamiltonian system (2.711), dynamics of any
function A(qi, pi, t) is defined by the open evolution equation:

∂tA = −[A,H] + Φ,

where Φ = Φ(Fi) represents the general form of the scalar force term.
In particular, if A = ρ(qi, pi, t) represents the density function of ensem-

ble phase–points, then its dynamics is given by the (dissipative/forced) open
Liouville equation:

∂tρ = −[ρ,H] + Φ . (2.712)

In particular, the scalar force term can be cast as a linear Poisson–bracket
form

Φ = Fi[A, qi] , with [A, qi] = − ∂A
∂pi

. (2.713)

Now, in a similar way as the conservative Liouville equation (2.707) re-
sembles the continuity equation (2.708) from continuum dynamics, also the
open Liouville equation (2.712) resembles the probabilistic Fokker–Planck
equation from statistical mechanics. If we have a ND stochastic process
x(t) = (qi(t), pi(t)) defined by the vector Itô SDE

dx(t) = f(x, t) dt+G(x, t) dW,

where f is a ND vector function, W is a KD Wiener process, and G is a
N ×KD matrix valued function, then the corresponding probability density
function ρ = ρ(x, t|ẋ, t′) is defined by the ND Fokker–Planck equation (see,
e.g., [Gar85])

∂tρ = −div[ρ f(x, t)] +
1
2

∂2

∂xi∂xj
(Qij ρ) , (2.714)

where Qij =
(
G(x, t)GT (x, t)

)
ij

. It is obvious that the Fokker–Planck equa-
tion (2.714) represents the particular, stochastic form of our general open
Liouville equation (2.712), in which the scalar force term is given by the
(second–derivative) noise term

Φ =
1
2

∂2

∂xi∂xj
(Qij ρ) .

Equation (2.712) will represent the open classical model of our macroscopic
NN–dynamics.
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Continuous Neural Network Dynamics

The generalized NN–dynamics, including two special cases of graded response
neurons (GRN) and coupled neural oscillators (CNO), can be presented in
the form of a stochastic Langevin rate equation

σ̇i = fi + ηi(t), (2.715)

where σi = σi(t) are the continual neuronal variables of ith neurons (repre-
senting either membrane action potentials in case of GRN, or oscillator phases
in case of CNO); Jij are individual synaptic weights; fi = fi(σi, Jij) are the
deterministic forces (given, in GRN–case, by fi =

∑
j Jij tanh[γσj ]− σi + θi,

with γ > 0 and with the θi representing injected currents, and in CNO–
case, by fi =

∑
j Jij sin(σj − σi) + ωi, with ωi representing the natural

frequencies of the individual oscillators); the noise variables are given as
ηi(t) = lim∆→0 ζi(t)

√
2T/∆ where ζi(t) denote uncorrelated Gaussian dis-

tributed random forces and the parameter T controls the amount of noise in
the system, ranging from T = 0 (deterministic dynamics) to T = ∞ (com-
pletely random dynamics).

More convenient description of the neural random process (2.715) is pro-
vided by the Fokker–Planck equation describing the time evolution of the
probability density P (σi)

∂tP (σi) = − ∂

∂σi
(fiP (σi)) + T

∂2

∂σ2
i

P (σi). (2.716)

Now, in the case of deterministic dynamics T = 0, equation (2.716) can be
put into the form of the conservative Liouville equation (2.707), by making
the substitutions: P (σi) → ρ, fi = σ̇i, and [ρ,H] = div(ρ σ̇i) ≡

∑
i
∂
∂σi

(ρ σ̇i),
where H = H(σi, Jij). Further, we can formally identify the stochastic forces,
i.e., the second–order noise–term T

∑
i
∂2

∂σ2
i
ρ with F i[ρ, σi] , to get the open

Liouville equation (2.712).
Therefore, on the NN–level deterministic dynamics corresponds to the con-

servative system (2.707). Inclusion of stochastic forces corresponds to the sys-
tem opening (2.712), implying the macroscopic arrow of time.

Open Quantum System

By formal quantization of equation (2.712) with the scalar force term defined
by (2.713), in the same way as in the case of the conservative dynamics, we
get the quantum open Liouville equation

∂tρ̂ = i{ρ̂, Ĥ}+ Φ̂, with Φ̂ = −iF̂i{ρ̂, q̂i}, (2.717)

where F̂i = F̂i(q̂i, p̂i, t) represents the covariant quantum operator of external
friction forces in the Hilbert state–space H = Hq̂i ⊗Hp̂i

.
Equation (2.717) will represent the open quantum–friction model of our

microscopic MT–dynamics. Its system–independent properties are [EMN92,
EMN99, MN95a, MN95b, Nan95]:
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1. Conservation of probability P

∂tP = ∂t[Tr(ρ̂)] = 0.

2. Conservation of energy E, on the average

∂t 〈〈E〉〉 ≡ ∂t[Tr(ρ̂ E)] = 0.

3. Monotonic increase in entropy

∂tS = ∂t[−Tr(ρ̂ ln ρ̂)] ≥ 0,

and thus automatically and naturally implies a microscopic arrow of time,
so essential in realistic biophysics of neural processes.

Non–Critical Stringy MT–Dynamics

In EMN–language of non–critical (SUSY) bosonic strings, our MT–dynamics
equation (2.717) reads

∂tρ̂ = i{ρ̂, Ĥ} − iĝij{ρ̂, q̂i}ˆ̇qj , (2.718)

where the target–space density matrix ρ̂(q̂i, p̂i) is viewed as a function of
coordinates q̂i that parameterize the couplings of the generalized σ−models
on the bosonic string world–sheet, and their conjugate momenta p̂i, while
ĝij = ĝij(q̂i) is the quantum operator of the positive definite metric in the
space of couplings. Therefore, the covariant quantum operator of external
friction forces is in EMN–formulation given as F̂i(q̂i, ˆ̇qi) = ĝij ˆ̇qj .

Equation (2.718) establishes the conditions under which a large–scale co-
herent state appearing in the MT–network, which can be considered respon-
sible for loss–free energy transfer along the tubulins.

Equivalence of Neurodynamic Forms

It is obvious that both the macroscopic NN–equation (2.712) and the micro-
scopic MT–equation (2.717) have the same open Liouville form, which implies
the arrow of time. These proves the existence of the formal neuro–biological
space–time self–similarity.

In this way, we have described neurodynamics of both NN and MT ensem-
bles, belonging to completely different biophysical space–time scales, by the
unique form of open Liouville equation, which implies the arrow of time. The
existence of the formal neuro–biological self–similarity has been proved.

Dissipative Quantum Brain Model

The conservative brain model was originally formulated within the framework
of the quantum field theory (QFT) by [RU67] and subsequently developed
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in [STU78, STU79, JY95, JPY96]. The conservative brain model has been
recently extended to the dissipative quantum dynamics in the work of G.
Vitiello and collaborators [Vit95, AV00, PV99, Vit01, PV03, PV04].

The canonical quantization procedure of a dissipative system requires to
include in the formalism also the system representing the environment (usually
the heat bath) in which the system is embedded. One possible way to do
that is to depict the environment as the time–reversal image of the system
[CRV92]: the environment is thus described as the double of the system in the
time–reversed dynamics (the system image in the mirror of time).

Within the framework of dissipative QFT, the brain system is described in
terms of an infinite collection of damped harmonic oscillators Aκ (the simplest
prototype of a dissipative system) representing the DWQ [Vit95]. Now, the
collection of damped harmonic oscillators is ruled by the Hamiltonian [Vit95,
CRV92]

H = H0 +HI , with
H0 = �Ωκ(A†

κAκ − Ã†
κÃκ), HI = i�Γκ(A†

κÃ
†
κ −AκÃκ),

where Ωκ is the frequency and Γκ is the damping constant. The Ãκ modes are
the ‘time–reversed mirror image’ (i.e., the ‘mirror modes’) of the Aκ modes.
They are the doubled modes, representing the environment modes, in such
a way that κ generically labels their degrees of freedom. In particular, we
consider the damped harmonic oscillator (DHO)

mẍ+ γẋ+ κx = 0, (2.719)

as a simple prototype for dissipative systems (with intention that thus get
results also apply to more general systems). The damped oscillator (2.719) is a
non–Hamiltonian system and therefore the customary canonical quantization
procedure cannot be followed. However, one can face the problem by resorting
to well known tools such as the density matrix ρ and the Wigner function W .

Let us start with the special case of a conservative particle in the absence
of friction γ, with the standard Hamiltonian, H = −(�∂x)2/2m+ V (x).

Recall (from the previous subsection) that the density matrix equation of
motion, i.e., quantum Liouville equation, is given by

i�ρ̇ = [H, ρ]. (2.720)

The density matrix function ρ is defined by

〈x+
1
2
y|ρ(t)|x− 1

2
y〉 = ψ∗(x+

1
2
y, t)ψ(x− 1

2
y, t) ≡W (x, y, t),

with the associated standard expression for the Wigner function (see [FH65]),

W (p, x, t) =
1

2π�

∫
W (x, y, t) e(−i py

� )dy.
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Now, in the coordinate x−representation, by introducing the notation

x± = x± 1
2
y, (2.721)

the Liouville equation (2.720) can be expanded as

i� ∂t〈x+|ρ(t)|x−〉 = (2.722){
− �2

2m

[
∂2
x+
− ∂2

x−

]
+ [V (x+)− V (x−)]

}
〈x+|ρ(t)|x−〉,

while the Wigner function W (p, x, t) is now given by

i� ∂tW (x, y, t) = HoW (x, y, t), with

Ho =
1
m
pxpy + V (x+

1
2
y)− V (x− 1

2
y), (2.723)

and px = −i�∂x, py = −i�∂y.

The new Hamiltonian Ho (2.723) may be get from the corresponding La-
grangian

Lo = mẋẏ − V (x+
1
2
y) + V (x− 1

2
y). (2.724)

In this way, Vitiello concluded that the density matrix and the Wigner func-
tion formalism required, even in the conservative case (with zero mechanical
resistance γ), the introduction of a ‘doubled’ set of coordinates, x±, or, alter-
natively, x and y. One may understand this as related to the introduction of
the ‘couple’ of indices necessary to label the density matrix elements (2.722).

Let us now consider the case of the particle interacting with a thermal
bath at temperature T . Let f denote the random force on the particle at the
position x due to the bath. The interaction Hamiltonian between the bath
and the particle is written as

Hint = −fx. (2.725)

Now, in the Feynman–Vernon formalism (see [Fey72]), the effective action
A[x, y] for the particle is given by

A[x, y] =
∫ tf

ti

Lo(ẋ, ẏ, x, y) dt+ I[x, y],

with Lo defined by (2.724) and

e
i
�
I[x,y] = 〈(e−

i
�

∫ tf
ti
f(t)x−(t)dt)−(e

i
�

∫ tf
ti
f(t)x+(t)dt)+〉, (2.726)

where the symbol 〈.〉 denotes the average with respect to the thermal bath;
‘(.)+’ and ‘(.)−’ denote time ordering and anti–time ordering, respectively;
the coordinates x± are defined as in (2.721). If the interaction between the
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bath and the coordinate x (2.725) were turned off, then the operator f of the
bath would develop in time according to f(t) = eiHγt/�fe−iHγt/�, where Hγ is
the Hamiltonian of the isolated bath (decoupled from the coordinate x). f(t)
is then the force operator of the bath to be used in (2.726).

The interaction I[x, y] between the bath and the particle has been evalu-
ated in [SVW95] for a linear passive damping due to thermal bath by following
Feynman–Vernon and Schwinger [FH65]. The final result from [SVW95] is:

I[x, y] =
1
2

∫ tf

ti

dt [x(t)F rety (t) + y(t)F advx (t)]

+
i

2�

∫ tf

ti

∫ tf

ti

dtdsN(t− s)y(t)y(s),

where the retarded force on y, F rety , and the advanced force on x, F advx , are
given in terms of the retarded and advanced Green functions Gret(t− s) and
Gadv(t− s) by

F rety (t) =
∫ tf

ti

dsGret(t− s)y(s), F advx (t) =
∫ tf

ti

dsGadv(t− s)x(s),

respectively. In (2.727), N(t − s) is the quantum noise in the fluctuating
random force given by: N(t− s) = 1

2 〈f(t)f(s) + f(s)f(t)〉.
The real and the imaginary part of the action are given respectively by

Re (A[x, y]) =
∫ tf

ti

Ldt, (2.727)

L = mẋẏ −
[
V (x+

1
2
y)− V (x− 1

2
y)
]

+
1
2
[
xF rety + yF advx

]
, (2.728)

and Im (A[x, y]) =
1
2�

∫ tf

ti

∫ tf

ti

N(t− s)y(t)y(s) dtds. (2.729)

Equations (2.727–2.729), are exact results for linear passive damping due
to the bath. They show that in the classical limit ‘� → 0’ nonzero y yields
an ‘unlikely process’ in view of the large imaginary part of the action im-
plicit in (2.729). Nonzero y, indeed, may lead to a negative real exponent in
the evolution operator, which in the limit � → 0 may produce a negligible
contribution to the probability amplitude. On the contrary, at quantum level
nonzero y accounts for quantum noise effects in the fluctuating random force
in the system–environment coupling arising from the imaginary part of the
action (see [SVW95]).

When in (2.728) we use

F rety = γẏ and F advx = −γẋ we get,
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L(ẋ, ẏ, x, y) = mẋẏ − V
(
x+

1
2
y

)
+ V

(
x− 1

2
y

)
+
γ

2
(xẏ − yẋ). (2.730)

By using

V

(
x± 1

2
y

)
=

1
2
κ(x± 1

2
y)2

in (2.730), the DHO equation (2.719) and its complementary equation for the
y coordinate

mÿ − γẏ + κy = 0. (2.731)

are derived. The y−oscillator is the time–reversed image of the x−oscillator
(2.719). From the manifolds of solutions to equations (2.719) and (2.731), we
could choose those for which the y coordinate is constrained to be zero, they
simplify to

mẍ+ γẋ+ κx = 0, y = 0.

Thus we get the classical damped oscillator equation from a Lagrangian theory
at the expense of introducing an ‘extra’ coordinate y, later constrained to
vanish. Note that the constraint y(t) = 0 is not in violation of the equations
of motion since it is a true solution to (2.719) and (2.731).

2.5.2 Macroscopic Neurodynamics

Hopfield’s Neural Nets

Ising–Spin Hopfield Neurons

Recall that Hopfield [Hop82)] gives a collection of simple threshold automata,
called formal neurons by McCulloch & Pitts: two–state, ‘all–or–none’, firing
or nonfiring units that can be modeled by Ising spins (uniaxial magnets) {Si}
such that Si = ±1 (where 1 = | ↑ 〉–‘spin up’ and −1 = | ↓ 〉–’spin down’; the
label of the neuron is i and ranges between 1 and the size of the network N).
The neurons are connected by synapses Jij .

A (firing) patterns {ξµi } represent specific Si−spin configurations (where
the label of the pattern is µ and ranges between 1 and q).

Using random patterns ξµi = ±1 with equal probability 1/2, we have the
synaptic efficacy Jij of jth neuron operating on ith neuron given by

Jij = N−1ξµi ξ
µ
j ≡ N−1ξi · ξj. (2.732)

Postsynaptic potential (PSP) represents an internal local field

hi(t) = JijSj(t). (2.733)

Now, the sequential (threshold) dynamics is defined in the form of discrete
equation

Si(t+∆t) = sgn[hi(t)]. (2.734)
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Dynamics (2.734) is equivalent to the rule that the state of a neuron is
changed, or a spin is flipped if and only if the total network energy, given by
Ising Hamiltonian

HN = −1
2
JijSiSj (2.735)

is lowered [Hop82), HT85]. Therefore, the Ising Hamiltonian HN represents
the monotonically decreasing Lyapunov function for the sequential dynamics
(2.734), which converges to a local minimum or ground state of HN . This
holds for any symmetric coupling Jij = Jji with Jii = 0 and if spin–updating
in (2.734) is asynchronous. In this case the patterns {ξµi } after convergence
become identical, or very near to, ground states of HN , each of them at the
bottom of the valley.

Data are stored in the neural net if, by a suitable choice of the Jij , several
specific patterns {ξµi } are made local minima of HN . If this can be achieved,
the neural net will function as content–addressable or (auto)associative mem-
ory. A network state which ‘somehow resembles’ one of the stored prototypes
corresponds to a location in the energy landscape which is close enough to
the minimum representing that prototype to lie in its basin of attraction.
By spontaneously moving downhill, or relaxing to the energy minimum, the
network recalls the data or reconstructs the prototype.

Suppose that we have somehow stored several (stationary) patterns {ξµi }
in the Jij and that the system is offered a noisy version of one of them. If the
noise was not too strong, the system remains in the valley associated with that
pattern and under its natural dynamics it will relax to the energy minimum
were the stored patterns live. That is, the system has recalled the pattern.

In statistical mechanics, one is usually given the synapses Jij and one of
the first tasks consists in finding the minima of the Ising Hamiltonian HN .
However, in the theory of neural networks, one is given the patterns {ξµi } and
one is asked to solve the inverse problem: finding synapses Jij such that the
patterns {ξµi } are minima of the Hamiltonian HN .

To see why the Hopfield model with synapses given by (2.732) has patterns
{ξµi } as attractors of the dynamics (2.734), note that the sequential dynamical
law embodies a two–step process, the evolution of the local field (PSP) (2.733),
which is a linear operation, and a nonlinear decision process (2.734).

Graded–Response Hopfield Networks

Recall that graded–response neurons have continuous input–output relation
(like nonlinear amplifiers) of the form Vi = gi(λui), where ui denotes the
input at i, a constant λ is called the gain parameter, and Vi is the output
[Hop84]. Usually, gi are taken to be sigmoid functions, odd, and monotonically
increasing (e.g., g(·) = 1

2 (1+ tanh(·)), while discrete Ising spins have gi(ui) =
sgni(ui). The behavior of the continuous Hopfield neural network is usually
described by a set of coupled RC–transient equations

Ciu̇i = Ii + JijVj −
ui
Ri

(2.736)
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where ui = g−1(Vi), Ri and Ci denote input capacitance and resistance, and
Ii represents an external source.

The Hamiltonian of the continuous system (2.736) is given by

H = −1
2
JijViVj +

N∑
i=1

R−1
i

∫ Vi

0

dV g−1(V )− IiVi. (2.737)

However, according to [Hop84], the synapses Jij retain the form (2.732)
with random patterns ξµi = ±1 with equal probability 1/2, and the synaptic
symmetry Jij = Jji implies that the continuous Hamiltonian (2.737) repre-
sents a Lyapunov function of the system (2.736), i.e., H decreases under the
continual neurodynamics governed by equation (2.736) as time proceeds.

More general form of synapses is

Jij = N−1Q(ξi; ξj),

for some synaptic kernel Q on Rq ×Rq. The vector ξi varies as i travels from
1 to N , but remains on a corner of the Hamming hypercube [−1, 1]q.

Hopfield overlaps

Assuming that the number q of stored patterns is small compared to the
number of neurons, i.e., q/N → 0, we find that the synapses (2.732) give rise
to a local field of the form

hi = ξµimµ, where mµ = N−1ξµi Si (2.738)

is the auto–overlap (or simply overlap)37 of the network state {Si} with
the pattern {ξµi }, measuring the proximity between them. We can see that
mµ = 1 (like peak–up in auto–correlation) if {Si} and {ξµi } are identical pat-
terns, mµ = −1 (like peak–down in autocorrelation) if they are each other’s
complement, and mµ = O(1/

√
N) if they are uncorrelated (like no–peak

in auto–correlation) with each other. Overlaps mµ are related to the Ham-
ming distance dµ between the patterns (the fraction of spins which differ) by
dµ = 1

2 (1−mµ).
As a pattern ξµi represents (in the simplest case) a specific Ising–spin Si–

configuration, then (ξµi )
2 = 1. If Si = ξµi for all i, then mµ = 1. Conversely,

if mµ = 1, then Si = ξµi . In all other cases mµ < 1, by the Cauchy–Schwartz
inequality. If ξµi and Si are uncorrelated, we may expect mµ to be of the
order of N−1/2, since the sum consists of N terms, each containing a ξµi . On
the other hand, if the Si are positively correlated with ξµi , then mµ is of the
order of unity. So the overlaps give the global information about the network
37 The auto–overlap resembles the auto–correlation function of a time–series, where

distinct peaks indicate that the series at the certain time t is similar to the series
at time t + ∆t.
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and hence are good order parameters, in terms of Haken’s synergetics (see
[Hak83]). Also, according to [Hop84], the extension to the continual network
is straightforward.

Using overlaps, the Ising Hamiltonian becomes

HN = −1
2
N

q∑
µ=1

m2
µ.

The similarity between two different patterns ξµi and ξνi is measured by
their mutual overlap or cross–overlap mµν (in other parlance it is called
Karhunen–Loeve matrix (see [FS92]), which extracts the principal compo-
nents from a data set)38, equal

mµν = N−1ξµi ξ
ν
i . (2.739)

For similar patterns the cross–overlap is close to unity whereas for uncor-
related patterns it is random variable with zero mean and small (1/

√
N)

variance.
The symmetric Hopfield synaptic matrix Jij can be expressed in terms of

the cross–overlaps mµν as

Jij = N−1ξµi (mµν)
−1ξνj = Jji,

where (mµν)−1 denotes the Moore–Penrose pseudoinverse of the cross–overlap
matrix mµν .

Besides the Hopfield model, the proposed pattern–overlap picture can be
extended to cover some more sophisticated kinds of associative memory, to
two of them:

(i) The so–called forgetful memories, characterized by iterative synaptic
prescription

J
(µ)
ij = φ(εξµi ξ

µ
j + J (µ−1)

ij ),

for some small parameter ε and some odd function φ. If φ(·) saturates as
| · | → ∞, the memory creates storage capacity for new patterns by forgetting
the old ones.

(ii) The so–called temporal associative memories, which can store and re-
trieve a sequence of patterns, through synapses

NJij = ξµi ξ
µ
j + εξ(µ+1)

i ξµj ,

where the second term on the right is associated with a temporal delay, so
that one can imagine that the second term ’pushes’ the neural system through
an energy landscape created by the first term.
38 The cross–overlap resembling the cross–correlation function of two time–series,

with several distinct peaks, indicating that the two series are very similar at each
point in time where the peaks occur
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Spiking Neural Nets

Recently, Izhikevich [Izh04] discussed biological plausibility and computa-
tional efficiency of some of the most useful models of spiking and bursting
neurons (see Figure 2.24). He compared their applicability to large–scale sim-
ulations of cortical neural networks.

Fig. 2.24. Neuro–computational features of biological neurons (with permission
from E. Izhikevich).
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Following [Izh04], we present some widely used models of spiking and
bursting neurons that can be expressed in the form of ODEs. Throughout
this subsection, v denotes the membrane potential. All the parameters in
the models are chosen so that v has mV scale and the time has ms scale.
To compare computational cost, we assume that each model, written as a
dynamical system ẋ = f(x), is implemented using the simplest, fixed–step
first–order Euler method, with the integration time step chosen to achieve a
reasonable numerical accuracy.

Integrate–and–Fire Neuron

One of the most widely used models in computational neuroscience is the leaky
integrate–and–fire neuron, (I&F neuron, for short) given by

v̇ = I + a− bv, If v ≥ vtrsh Then v ← c,

where v is the membrane potential, I is the input current, and a, b, c, and vtrsh
are the parameters. When the membrane potential v reaches the threshold
value vtrsh, the neuron is said to fire a spike, and v is reset to c. The I&F neuron
can fire tonic spikes with constant frequency, and it is an integrator. The I&F
neuron is Class 1 excitable system [Izh99]; it can fire tonic spikes with constant
frequency, and it is an integrator. It is the simplest model to implement when
the integration time step τ is 1 ms. Because I&F has only one variable, it
cannot have phasic spiking, bursting of any kind, rebound responses, threshold
variability, bistability of attractors, or autonomous chaotic dynamics. Because
of the fixed threshold, the spikes do not have latencies. In summary, despite
its simplicity, I&F is one of the worst models to use in simulations, unless one
wants to prove analytical results [Izh04].

Integrate–and–Fire Neuron with Adaptation

The I&F model is 1D, hence it cannot burst or have other properties of cortical
neurons. One may think that having a second linear equation

v̇ = I + a− bv + g(d− v), ġ = (eδ(t)− g)/τ ,

describing activation dynamics of a high–threshold K−current, can make an
improvement, e.g., endow the model with spike–frequency adaptation. Indeed,
each firing increases theK−activation gate via Dirac δ−function and produces
an outward current that slows down the frequency of tonic spiking. This model
is fast, yet still lacks many important properties of cortical spiking neurons.

Integrate–and–Fire–or–Burst Neuron

The integrate–and–fire–or–burst neuron model is given by

v̇ = I + a− bv + gH(v − vh)h(vT − v),

If v ≥ vtrsh Then v ← c, ḣ =
{ −h
τ− , if v > vh,
1−h
τ+ , if v < vh
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to model thalamo–cortical neurons. Here h describes the inactivation of the
calcium T−current, g, vh, vT , τ+ and τ− are parameters describing dynamics
of the T−current, and H is the Heaviside step function. Having this kind
of a second variable creates the possibility for bursting and other interesting
regimes [Izh04], but is already a much slower (depending on the value of v).

Complex–Valued Resonate–and–Fire Neuron

The resonate–and–fire neuron is a complex–valued (i.e., 2D) analogue of the
I&F neuron [Izh01], given by

ż = I + (b+ iw)z, if Im z = atrsh then z ←− z0(z), (2.740)

where z = x+ iy ∈ C is a complex–valued variable that describes oscillatory
activity of the neuron. Here b, w, and atrsh are parameters, i =

√
−1, and

z0(z) is an arbitrary function describing activity–dependent after–spike reset.
(2.740) is equivalent to the linear system

ẋ = bx− wy, ẏ = wx+ by,

where the real part x is the current–like variable, while the imaginary part y is
the voltage–like variable. The resonate–and–fire model is simple and efficient.
When the frequency of oscillation w = 0, it becomes an integrator.

Quadratic Integrate–and–Fire Neuron

An alternative to the leaky I&F neuron is the quadratic I&F neuron, also
known as the theta–neuron, or the Ermentrout–Kopell canonical model [Erm96,
Gut98]. It can be presented as

v̇ = I + a(v − vrest)(v − vtrsh), If v = vtrsh Then v ← vrest,

where vrest and vtrsh are the resting and threshold values of the membrane
potential. This model is canonical in the sense that any Class 1 excitable
system [Izh99] described by smooth ODEs can be transformed into this form
by a continuous change of variables. It takes only seven operations to simulate
1 ms of the model, and this should be the model of choice when one simulates
large–scale networks of integrators. Unlike its linear analogue, the quadratic
I&F neuron has spike latencies, activity dependent threshold (which is vtrsh
only when I = 0), and bistability of resting and tonic spiking modes.

FitzHugh–Nagumo Neuron

The parameters in the FitzHugh–Nagumo neuron model

v̇ = a+ bv + cv2 + dv3 − u, u̇ = ε(ev − u),

can be tuned so that the model describes spiking dynamics of many resonator
neurons. Since one needs to simulate the shape of each spike, the time step
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in the model must be relatively small, e.g., τ = 0.25ms. Since the model is
a 2D system of ODEs, without a reset, it cannot exhibit autonomous chaotic
dynamics or bursting. Adding noise to this, or some other 2D models, allows
for stochastic bursting.

Hindmarsh–Rose Neuron

The Hindmarsh–Rose thalamic neuron model [RH89] can be written as a 3D
ODE system

v̇ = I + u− F (v)− w, u̇ = G(v)− u, ẇ = (H(v)− w)/τ ,

where F,G, and H are some functions. This model is quite expensive to im-
plement as a large–scale spike simulator [Izh04].

Morris–Lecar Neuron

Morris and Lecar [ML81] suggested a simple 2D model to describe oscillations
in barnacle giant muscle fiber. Because it has biophysically meaningful and
measurable parameters, the Morris–Lecar neuron model became quite popular
in computational neuroscience community. It consists of a membrane poten-
tial equation with instantaneous activation of Ca current and an additional
equation describing slower activation of K current,

CV̇ = I − gL(V − VL)− gCam∞(V )(V − VCa)− gKn(V − VK),
ṅ = λ(V )(n∞(V )− n), where

m∞(V ) =
1
2

(
1 + tanh

[
V − V1

V2

])
, and

n∞(V ) =
1
2

(
1 + tanh

[
V − V3

V4

])
, λ(V ) = λ̄ cosh

[
V − V3

2V4

]
,

with parameters: C = 20µF/cm2, gL = 2mmho/cm2, VL = −50mV ,
gCa = 4mmho/cm2, VCa = 10mV , gK = 8mmho/cm2, VK = −70mV ,
V1 = 0mV , V2 = 15mV , V3 = 10mV , V4 = 10mV , λ̄ = 0.1 s−1, and applied
current I(µA/cm2). The model can exhibit various types of spiking, but could
exhibit tonic bursting only when an additional equation is added, e.g., slow
inactivation of Ca current. In this case, the model becomes equivalent to the
Hodgkin–Huxley neuron model [HH52, Hod64], which is extremely expensive
to implement.

Activation Dynamics of Graded–Response Networks

To design neurodynamical classifier activation dynamics, we start from the
fully recurrent, ND, RC transient circuit, i.e., a nonlinear vector differential
equation [Hay94, Kos92, Iva95]:
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Cj v̇j = Ij −
vj
Rj

+ wijfi(vi), (i, j = 1, ..., N), (2.741)

where vj = vj(t) represent the activation potentials in the jth neuron, Cj and
Rj denote input capacitances and leakage resistances, synaptic weights wij
represent conductances, Ij represent the total currents flowing toward the
input nodes, and the functions fi are sigmoidal.

Geometrically, equation (2.741) defines a smooth autonomous vector–field
X(t) in ND neurodynamical phase–space manifold M , and its (numerical)
solution for the given initial potentials vj(0) defines the autonomous neuro-
dynamical phase–flow Φ(t) : vj(0) → vj(t) on M .

In AI parlance, equation (2.741) represents a generalization of three well–
known recurrent NN models [Hay94, Kos92]:
(i) continuous Hopfield model,
(ii) Grossberg ART–family cognitive system, and
(iii) Hecht–Nielsen counter–propagation network.

Physiologically, equation (2.741) is based on the Nobel–awarded Hodgkin–
Huxley equation of the neural action potential (for the single squid giant axon
membrane) as a function of the conductances g of sodium, potassium and
leakage [HH52, Hod64]:

Cv̇ = I(t)− gNa(v − vNa)− gK(v − vK)− gL(v − vL),

where bracket terms represent the electromotive forces acting on the ions.
The continuous Hopfield circuit model:

Cj v̇j = Ij −
vj
Rj

+ Tijui, (i, j = 1, ..., N), (2.742)

where ui are output functions from processing elements, and Tij is the inverse
of the resistors connection–matrix becomes equation (2.741) if we put Tij =
wij and ui = fi[vj(t)].

The Grossberg analogous ART2 system is governed by activation equation:

εv̇j = −Avj + (1−Bvj)I+j − (C +Dvj)I−j , (j = 1, ..., N),

where A,B,C,D are positive constants (A is dimensionally conductance), 0 ≤
ε << 1 is the fast–variable factor (dimensionally capacitance), and I+j , I

−
j are

excitatory and inhibitory inputs to the jth processing unit, respectively.
General Cohen–Grossberg activation equations [CG83] have the form:

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk], (j = 1, ..., N), (2.743)

and the Cohen–Grossberg theorem ensures the global stability of the system
(2.743). If

aj = 1/Cj , bj = vj/Rj − Ij , fj(vj) = uj ,
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and constant mij = mji = Tij , the system (2.743) reduces to the Hopfield
circuit model (2.742).

The Hecht–Nielsen counter–propagation network is governed by the acti-
vation equation:

v̇j = −Avj + (B − vj)Ij − vj
∑
k 
=j
Ik, (j = 1, ..., N),

where A,B are positive constants and Ij are input values for each processing
unit.

Provided some simple conditions are satisfied, namely, say symmetry of
weights wij = wij , non–negativity of activations vj and monotonicity of trans-
fer functions fj , the system (1) is globally asymptotically stable (in the sense
of Liapunov energy functions). The fixed points (stable states) of the sys-
tem correspond to the fundamental memories to be stored, so it works as
content–addressable memory (CAM). The initial state of the system (2.741)
lies inside the basin of attraction of its fixed points, so that its initial state is
related to appropriate memory vector. Various variations on this basic model
are reported in the literature [Hay94, Kos92], and more general form of the
vector–field can be given, preserving the above stability conditions. Here is a
two–step generalization.

First, all of N neurons of equation (2.741) belong to the same layer, so
the M–layer generalized network is naturally governed by tensorial ’field’–
equation:

CLj v̇
L
j = ILj −

vLj
RLj

+wLij f
L
i (vLi ), (i, j = 1, ..., N, L = 1, ...,M), (2.744)

where, in the pattern–recognition formulation, js denote the pixels and Ls
correspond to the clusters.

The basic two–layer example of the tensorial system (2.744) is Kosko’s
adaptive bidirectional associative memory (ABAM) system, which represents
a two–layer generalization of the Cohen–Grossberg system (2.743):

v̇j = −aj(vj) [bj(vj)− fk(vk)mjk], (j = 1, ..., N), (2.745)
u̇k = −ak(uk) [bk(uk)− fj(uj)mjk], (k = 1, ..., N). (2.746)

Kosko has proved the global stability for the ABAM system (2.745) in case
of signal Hebbian and competitive learning [Kos92]. He has also proved the
global stability for its stochastic generalization random adaptive bidirectional
associative memory (RABAM) system:

v̇j = −aj(vj) [bj(vj)− fk(vk)mjk] + nj , (j = 1, ..., N),
u̇k = −ak(uk) [bk(uk)− fj(uj)mjk] + nk, (k = 1, ..., N).

where nj,k represents an additive zero–mean Gaussian white noise.
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Second, the fuzzyfied model of the system (2.744) can be get by replacing
the inputs ILj with the fuzzy membership functions ΨLj for each node (pixel)
j in each layer (cluster) L:

CLj v̇
L
j = ΨLj −

vLj
RLj

+ wLij f
L
i (vLi ), (i, j = 1, ..., N, L = 1, ...,M),

Other possibilities for the fuzzification include fuzzy parameters (CLj and RLj )
and fuzzy initial conditions (vLj (0)). Even activation functions fLj (·) could be
subject to the fuzzification process.

Learning Dynamics of Common Graded–Response Networks

A continuous unsupervised learning paradigm, i.e., continuous update law for
the third–order, mixed, synaptic tensor wLij , can be proposed in two forms
(generalized from [Kos92]):

Hebbian Learning Scheme

The generalized Hebbian learning scheme [Heb49] is defined by

ẇLij = −wLij + ΦLij(v
L
j , u

L
j , w

L
ij), (i, j = 1, .., N, L = 1, ...,M),

where three terms from the left to the right denote respectively a new–update
value, an old value and innovation of the synaptic tensor wLij . In this case the
nonlinear functions ΦLij are usually defined by one of the following learning
models:
(i) signal Hebbian learning, with innovation:

ΦLij = fLj (vLj )fLi (uLj );

(ii) differential Hebbian learning, with innovation:

ΦLij = fLj (vLj )fLi (uLj ) + ḟLj (vLj )ḟLi (uLj ),

where overdots denote ‘signal velocities’;
(iii) random signal Hebbian learning, with innovation:

ΦLij = fLj (vLj )fLi (uLj ) + nLij ,

where nLij denotes an additive, tensorial, zero–mean, Gaussian white–noise
process independent of the main ‘innovation signal’; and
(iv) random differential signal Hebbian learning, with innovation:

ΦLij = fLj (vLj )fLi (uLj ) + ḟLj (vLj )ḟLi (uLj ) + nLij .
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Tensorial competitive learning scheme

Tensorial competitive learning scheme has four particular update laws:
(i) deterministic competitive learning:

ẇLij = fLi (uLj )[fLj (vLj )− wLij ];
(ii) differential competitive learning:

ẇLij = ḟLi (uLj )[fLj (vLj )− wLij ];
(iii) random competitive learning, and

ẇLij = fLi (uLj )[fLj (vLj )− wLij ] + nLij ;

(iv) random differential competitive learning:

ẇLij = ḟLi (uLj )[fLj (vLj )− wLij ] + nLij ;

General Neurodynamical Stability

Lyapunov stability

A dynamical system ẋj = Fj(xj), j = 1, ..., N is stable if some Lyapunov func-
tion L decreases along the system’s trajectories: L̇ ≤ 0. A system is asymp-
totically stable if it strictly decreases along the trajectories: L̇ < 0. In a stable
equilibrium the trajectory may hover arbitrarily close to the equilibrium point
without reaching it. In an asymptotically stable system the state trajectory
reaches the equilibrium, and in general reaches it exponentially fast. Lyapunov
functions are usually chosen in a quadratic form, representing (negative) po-

tential L = −
N∑
j=1

x2
j or kinetic energy L = −

N∑
j=1

ẋ2
j of the system. By the

chain rule, L̇ = ∂L
∂xj
ẋj . In particular, gradient systems ẋj = − ∂L

∂xj
are stable.

For neural–networks purposes Lyapunov functions need only decrease and
be bounded [Kos92].

Convergence versus stability

In a single neural network both neurons and synapses change in time. There-
fore, we have three dynamical systems [Kos92]:
(i) the neural dynamical system ẋj ,
(ii) the synaptic dynamical system ẇjk, and
(iii) the joint neuronal–synaptic dynamical system (ẋj , ẇjk).

Equilibrium is steady state (for fixed–point attractors).
Stability is neuronal equilibrium: ẋj = 0.
Convergence is synaptic equilibrium: ẇjk = 0.
Then global stability is joint neuronal–synaptic steady state:

both ẋj = 0 and ẇjk = 0 hold.
Neurons fluctuate faster than synapses. In feedback neural networks this

dynamical asymmetry creates the stability–convergence dilemma: learning
tends to destroy the neural patterns being learned.
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GBAM Neurodynamical Classifier

System Architecture

Mathematically, the GBAM is a tensor field system (q, p,W ) defined on a
manifold M called the GBAM manifold. The system (q, p,W ) includes two
nonlinearly coupled (yet non–chaotic and stable) subsystems (see Figure 2.25):
(i) activation (q, p)–dynamics, where q and p represent neuronal 1D tensor–
fields, and (ii) self–organized learning W–dynamics, where W is a symmetric
synaptic 2D tensor–field.

Fig. 2.25. Diagram of the GBAM neurodynamical system.

GBAM Activation Dynamics

The GBAM–manifoldM can be viewed as a Banach space with a C∞−smooth
structure on it, so that in each local chart U open in M , an nD smooth
coordinate system Uα exists.

GBAM–activation (q, p)–dynamics, is defined as a system of two coupled,
first–order oscillator tensor–fields, dual to each other, in a local Banach chart
Uα, α = 1, ..., n on M :

1. An excitatory neural vector–field qα = qα(t) : M → TM , being a
cross–section of the tangent bundle TM ; and

2. An inhibitory neural 1–form pα = pα(t) : M → T ∗M , being a cross–
section of the cotangent bundle T ∗M .

To start with conservative linear (q, p)–system, we postulate the GBAM
scalar activation–potential V to be a negative bilinear form:

V = − 1
2ωαβq

αqβ − 1
2ω
αβpαpβ + qαpα, (α, β = 1, ..., n), (2.747)
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where n is the number of neurons in each neural field, while ωαβ and ωαβ

represent respectively inhibitory–covariant and excitatory–contravariant com-
ponents of the symmetric (with zero–trace) coupling GBAM synaptic tensor
W .

The Lyapunov–stable, conservative, linear (q,p)–dynamics is given as a
bidirectional (excitatory–inhibitory) gradient system:

q̇α = − ∂V
∂pα

= ωαβpβ − qα, ṗα = − ∂V
∂qα

= ωαβqβ − pα. (2.748)

As W is a symmetric and zero–trace synaptic coupling tensor, the conser-
vative linear dynamics (2.748) is equivalent to the rule that the state of each
neuron (in both excitatory and inhibitory neural fields) is changed in time if
and only if the scalar action potential V , defined by relation (2.747), is lowered.
Therefore, the scalar action potential V is a monotonically non–increasing
Lyapunov function V̇ ≤ 0 for the conservative linear (q, p)–dynamics (2.748),
which converges to a local minimum or ground state of V .

Applying the inputs Iα and Jα, we get the non–conservative linear (q, p)–
system equations:

q̇α = Iα + ωαβpβ − qα, ṗα = Jα + ωαβqβ − pα. (2.749)

Further, applying the sigmoid GBAM activation functions Sα(·) and Sα(·)
to the synaptic product–terms, we get the non-conservative nonlinear (q, p)–
system equations, which generalize the transient RC–circuit neurodynamical
model:

q̇α = Iα + ωαβSβ(pβ)− qα, ṗα = Jα + ωαβSβ(qβ)− pα. (2.750)

The equations in (2.750) represent a 2–input system that can be applied
e.g., to classification of two–feature data. The generalization to an N–input
system working in a ND feature–space is given by

q̇αe = Iαe + ωαβe Sβ(pβ)− qαe , ṗoα = Ioα + ωoαβS
β(qβ)− poα, (2.751)

where e(= 2, 4, ..., N) and o(= 1, 3, ..., N − 1) denote respectively even and
odd partitions of the total sample of N features.

The GBAM model (2.751) gives a generalization of four well–known re-
current NN models:

1. Continuous Hopfield amplifier–circuit model [Hop84]

Cj v̇j = Ij −
vj
Rj

+ Tijui, (i, j = 1, ..., N),

where vj = vj(t) represent the activation potentials in the jth processing unit,
Cj and Rj denote input capacitances and leakage resistances, ui = fi[vj(t)]
are output functions from processing elements, and Tij = wij is the inverse of
the resistors connection–matrix; and the functions fi are sigmoidal.
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2. Cohen–Grossberg general ART–system [CG83],

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk], (j = 1, ..., N),

with proved asymptotical stability.
3. Hecht–Nielsen counter–propagation network [Hec87],

v̇j = −Avj + (B − vj)Ij − vjIk,

where A, B are positive constants and Ij are input values for each processing
unit.

4. Kosko’s BAM (ABAM and RABAM) bidirectional models [Kos92]

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk],
u̇k = −ak(uk)[bk(uk)− fj(uj)mjk],

which is globally stable for the cases of signal and random–signal Hebbian
learning.

GBAM Self–Organized Learning Dynamics

The continuous (and at least C1–differentiable) unsupervised update law
for the coupling synaptic GBAM tensor–field W can be viewed both as an
inhibitory–covariant Hebbian learning scheme, generalized from [Kos92]:

ω̇αβ = −ωαβ + Φαβ(qα, pα), (α, β = 1, ..., n), (2.752)

and, as an excitatory–contravariant Hebbian learning scheme:

ω̇αβ = −ωαβ + Φαβ(qα, pα), (2.753)

where the three terms from the left to the right denote respectively the new–
update value, the old value and the innovation of the synaptic tensor W . In
this case the nonlinear (usually sigmoid) innovation functions Φαβ and Φαβ

are defined by one of following four Hebbian models:
Signal Hebbian learning, with innovation in both variance–forms:

Φαβ = Sα(qα)Sβ(pβ),
Φαβ = Sα(qα)Sβ(pβ); (2.754)

Differential Hebbian learning, with innovation in both variance–forms:

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ),

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ), (2.755)

where Ṡ−terms denote the so–called ‘signal velocities’ (for details see [Kos92]).
Random signal Hebbian learning, with innovation in both variance–forms:
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Φαβ = Sα(qα)Sβ(pβ) + nαβ ,
Φαβ = Sα(qα)Sβ(pβ) + nαβ , (2.756)

where nαβ = {nαβ(t)}, nαβ = {nαβ(t)} respectively denote covariant and con-
travariant additive, zero–mean, Gaussian white–noise processes independent
of the main innovation signal; and

Random differential signal Hebbian learning, with innovation in both
variance–forms:

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ) + nαβ ,

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ) + nαβ . (2.757)

Total GBAM (q, p,W )−neurodynamics and biological interpretation

Total GBAM tensorial neurodynamics is defined as a union of the neural
oscillatory activation (q, p)–dynamics (2.751) and the synaptic learning W–
dynamics (2.757), namely

q̇αe = Iαe + ωαβe Sβ(pβ)− qαe , (2.758)
ṗoα = Ioα + ωoαβS

β(qβ)− poα,
ω̇αβe = −ωαβe + Φαβe (qα, pα),
ω̇oαβ = −ωoαβ + Φoαβ(q

α, pα), (α, β = 1, ..., n),

where the tensorial innovation Φ–functions are given by one of Hebbian models
(2.754–2.757), α(= 1, ..., n) is the number of continuous–time (or, graded–
response) neurons in each neural–activation field, e(= 2, 4, ..., N) and o(=
1, 3, ..., N −1) denote respectively even and odd partitions of the total sample
of N features.

Artificial neural networks are generally inspired by biological neural sys-
tems, but in fact, some important features of biological systems are not present
in most artificial neural networks. In particular, unidirectional neural net-
works, which include all associative neural networks except the BAM model
introduced by [Kos92], do not resemble oscillatory biological neural systems.
GBAM is a generalization of Kosko’s ABAM and RABAM neural systems
and inherits their oscillatory (excitatory/inhibitory) neuro-synaptic behavior.
Such oscillatory behavior is a basic characteristic of a number of biological sys-
tems. Examples of similar oscillatory neural ensembles in the human nervous
system are:

– Motoneurons and Renshaw interneurons in the spinal cord;
– Pyramidal and basket cells in the hippocampus;
– Mitral and granule cells in the olfactory bulb;
– Pyramidal cells and thalamic inter–neurons in cortico–thalamic system;
– Interacting excitatory and inhibitory populations of neurons found in

the cerebellum, olfactory cortex, and neocortex, all representing the basic
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mechanisms for the generation of oscillating (EEG–monitored) activity in the
brain.

Therefore, GBAM can be considered as a model for any of above–
mentioned oscillatory biological neural systems.

Self–Organizing Lie–Derivative Neuro–Classifier

A Lie–derivative neuro–classifier is a self–organized, associative–memory ma-
chine, represented by oscillatory (excitatory/inhibitory) tensor–field–system
(x, v, ω) on the Banach manifold M . It consists of continual neural activation
(x, y)–dynamics and self–organizing synaptic learning ω–dynamics.

The continual activation (x, y)−dynamics, is defined as a system of two
coupled, first–order oscillator tensor–fields, dual to each other, in a local Ba-
nach chart Uα, (α = 1, ..., n) on M :

1) an excitatory neural vector–field xi = xi(t) :M → TM , representing a
cross–section of the tangent bundle TM ; and

2) an inhibitory neural one–form yi = yi(t) : M → T ∗M , representing a
cross–section of the cotangent bundle T ∗M .

The self–organized learning ω−dynamics is performed on a second–order
symmetrical synaptic tensor–field ω = ω(t), given by its covariant components
ωij = ωij(t) and its contravariant components ωij = ωij(t), where i, j =
1, ..., n.

Starting with the Lyapunov–stable, negative scalar neural action potential:

U = − 1
2 (ωijxixj + ωijyiyj), (i, j = 1, ..., n),

the (x, y)–dynamics is given in two versions, which are compared and con-
trasted:

(1) the Lie–linear neurodynamics with first–order Lie derivatives

ẋi = J i + LXU, ẏi = Ji + LY U,

and
(2) the Lie–quadratic neurodynamics with both first and second–order

Lie derivatives

ẋi = J i + LXU + LXLXU, ẏi = Ji + LY U + LY LY U,

where X = Si(xi), Y = Si(yi), Si represent sigmoid activation functions,
while LXLX , LY LY : F (M) → F (M) denote the second–order (iterated) Lie
derivatives.

Self–organized learning ω–dynamics is presented in the form of differential
Hebbian learning scheme in both covariant and contravariant forms

ω̇ij = −ωij + Si(xi)Sj(yj) + Ṡi(xi)Ṡj(yj), and

ω̇ij = −ωij + Si(xi)Sj(yj) + Ṡi(xi)Ṡj(yj), (i, j = 1, ..., n),

respectively.
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Self–Organizing Lie–Poisson Neuro–Classifier

A Lie–Poisson neuro–classifier is a tensor–field–system {µ} = (q, p, ω) on
a Poisson manifold (g∗, {F,H(µ)}±(µ)). Like a GBAM neuro–classifier, it
consists of continual activation (q, p)−dynamics and self–organized learning
ω–dynamics. In this case, both dynamics are defined by “neural activation
form” of the abstract Lie–Poisson evolution equation

Ḟ = {S(F ), H(µ)}, (2.759)

where S(·) = tanh(·) denotes the sigmoid activation function. A Hamiltonian
function H(µ), representing the total network energy, is given in the form

H(µ) =
1
2
ωijδ

ij +
1
2
ωijδij , (i, j = 1, ..., n),

where δij and δij are Kronecker tensors, while ωij = ωij(qi) and ωij = ωij(pi)
correspond to the contravariant and covariant components of the functional–
coupling synaptic tensor ω = ω(q, p), defined respectively by

ωij = ε qiqj , ωij = τ pipj ,

with random coefficients ε and τ .
Activation (q, p)–dynamics are given by

q̇i = Ii + {S(qi), H(µ)}, ṗi = Ji + {S(pi), H(µ)},

where Ii and Ji represent the two input features.
Two types of self–organized learning ω–dynamics are presented and com-

pared:
Lie–Poisson learning dynamics, in which synaptic update law is given by

inhibitory–covariant and excitatory–contravariant form of equation (2.759):

ω̇ij = {S(ωij), H(µ)}, ω̇ij = {S(ωij), H(µ)},

respectively.
Differential Hebbian learning (see [Kos92] for details), in both inhibitory–

covariant and excitatory–contravariant learning form:

ω̇ij = −ωij + Φij(qi, pi), ω̇ij = −ωij + Φij(qi, pi),

with innovations defined in both variance–forms as:

Φij = Si(qi)Sj(pj) + Ṡi(qi)Ṡj(pj), Φij = Si(qi)Sj(pj) + Ṡi(qi)Ṡj(pj).
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2.5.3 Oscillatory Phase Neurodynamics

In coupled oscillatory neuronal systems, under suitable conditions, the origi-
nal dynamics can be reduced theoretically to a simpler phase dynamics. The
state of the ith neuronal oscillatory system can be then characterized by
a single phase variable ϕi representing the timing of the neuronal firings.
The typical dynamics of oscillator neural networks are described by the Ku-
ramoto model [Kur84, HI97, Str00], consisting of N equally weighted, all–to–
all, phase–coupled limit–cycle oscillators, where each oscillator has its own
natural frequency ωi drawn from a prescribed distribution function:

ϕ̇i = ωi +
K

N

N∑
i=1

Jij sin(ϕj − ϕi + βij). (2.760)

Here, Jij and βij are parameters representing the effect of the interaction,
while K ≥ 0 is the coupling strength. For simplicity, we assume that all nat-
ural frequencies ωi are equal to some fixed value ω0. We can then eliminate
ω0 by applying the transformation ϕi → ϕi + ω0t. Using the complex repre-
sentation Wi = exp(iϕi) and Cij = Jij exp(iβij) in (2.760), it is easily found
that all neurons relax toward their stable equilibrium states, in which the
relation Wi = hi/|hi| (hi =

∑N
j=1 CijWj) is satisfied. Following this line of

reasoning, as a synchronous update version of the oscillator neural network
we can consider the alternative discrete form [AN99],

Wi(t+ 1) =
hi(t)
|hi(t)|

, hi(t) = CijWj(t). (2.761)

Now we will attempt to construct an extended model of the oscillator
neural networks to retrieve sparsely coded phase patterns. In equation (2.761),
the complex quantity hi can be regarded as the local field produced by all
other neurons. We should remark that the phase of this field, hi, determines
the timing of the ith neuron at the next time step, while the amplitude |hi|
has no effect on the retrieval dynamics (2.761). It seems that the amplitude
can be thought of as the strength of the local field with regard to emitting
spikes. Pursuing this idea, as a natural extension of the original model we
stipulate that the system does not fire and stays in the resting state if the
amplitude is smaller than a certain value. Therefore, we consider a network
of N oscillators whose dynamics are governed by

Wi(t+ 1) = f(|hi(t)|)
hi(t)
|hi(t)|

, hi(t) = CijWj(t). (2.762)

We assume that f(x) = Θ(x −H), where the real variable H is a threshold
parameter and Θ(x) is the unit step function; Θ(x) = 1 for x ≥ 0 and 0
otherwise. Therefore, the amplitude |W t

i | assumes a value of either 1 or 0,
representing the state of the ith neuron as firing or non–firing. Consequently,
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the neuron can emit spikes when the amplitude of the local field hi(t) is greater
than the threshold parameter H.

Now, let us define a set of P patterns to be memorized as ξµi = Aµi exp(iθµi )
(µ = 1, 2, . . . , P ), where θµi and Aµi represent the phase and the amplitude of
the ith neuron in the µth pattern, respectively. For simplicity, we assume that
the θµi are chosen at random from a uniform distribution between 0 and 2π.
The amplitudes Aµi are chosen independently with the probability distribution

P (Aµi ) = aδ(Aµi − 1) + (1− a)δ(Aµi ),

where a is the mean activity level in the patterns. Note that, if H = 0 and
a = 1, this model reduces to (2.761).

For the synaptic efficacies, to realize the function of the associative mem-
ory, we adopt the generalized Hebbian rule in the form

Cij =
1
aN
ξµi ξ̃

µ

j , (2.763)

where ξ̃
µ

j denotes the complex conjugate of ξµj . The overlap Mµ(t) between
the state of the system and the pattern µ at time t is given by

Mµ(t) = mµ(t) eiϕµ(t) =
1
aN
ξ̃
µ

jWj(t), (2.764)

In practice, the rotational symmetry forces us to measure the correlation of
the system with the pattern µ in terms of the amplitude component mµ(t) =
|Mµ(t)|.

Let us consider the situation in which the network is recalling the pattern
ξ1i ; that is, m1(t) = m(t) ∼ O(1) and mµ(t) ∼ O(1/

√
N)(µ �= 1). The local

field hi(t) in (2.762) can then be separated as

hi(t) = CijWj(t) = mteiϕ1(t)ξ1i + zi(t), (2.765)

where zi(t) is defined by

zi(t) =
1
aN
ξµi ξ̃

µ

jWj(t). (2.766)

The first term in (2.765) acts to recall the pattern, while the second term can
be regarded as the noise arising from the other learned patterns. The essential
point in this analysis is the treatment of the second term as complex Gaussian
noise characterized by

< zi(t) >= 0, < |zi(t)|2 >= 2σ(t)2. (2.767)

We also assume that ϕ1(t) remains a constant, that is, ϕ1(t) = ϕ0. By apply-
ing the method of statistical neurodynamics to this model under the above
assumptions [AN99], we can study the retrieval properties analytically. As a
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result of such analysis we have found that the retrieval process can be char-
acterized by some macroscopic order parameters, such as m(t) and σ(t).

From (2.764), we find that the overlap at time t+ 1 is given by

m(t+ 1) =
〈〈
f(|m(t) + z(t)|) m(t) + z(t)

|m(t) + z(t)|

〉〉
, (2.768)

where 〈〈· · · 〉〉 represents an average over the complex Gaussian z(t) with mean
0 and variance 2σ(t)2. For the noise z(t + 1), in the limit N → ∞ we get
[AN99]

zi(t+ 1) ∼ 1
aN

N∑
j=1

P∑
µ=2

ξµi ξ̃
µ

j f(|hj,µ(t)|)
hj,µ(t)
|hj,µ(t)|

+ zi(t)
(
f ′(|hj,µ(t)|)

2
+
f(|hj,µ(t)|)
2|hj,µ(t)|

)
, (2.769)

where hj,µ(t) = 1/aN
∑N
k=1

∑P
ν 
=mu,1 ξ

ν
j ξ̃
ν

kWk(t).

Kuramoto Synchronization Model

The microscopic individual level dynamics of the Kuramoto model (2.760) is
easily visualized by imagining oscillators as points running around on the unit
circle. Due to rotational symmetry, the average frequency Ω =

∑N
i=1 ωi/N can

be set to 0 without loss of generality; this corresponds to observing dynamics
in the co–rotating frame at frequency Ω.

The governing equation (2.760) for the ith oscillator phase angle ϕi can
be simplified to

ϕ̇i = ωi +
K

N

N∑
i=1

sin(ϕj − ϕi), 1 ≤ i ≤ N. (2.770)

It is known that as K is increased from 0 above some critical value Kc,
more and more oscillators start to get synchronized (or phase–locked) until all
the oscillators get fully synchronized at another critical value of Ktp. In the
choice of Ω = 0, the fully synchronized state corresponds to an exact steady
state of the ‘detailed’, fine–scale problem in the co–rotating frame.

Such synchronization dynamics can be conveniently summarized by con-
sidering the fraction of the synchronized (phase–locked) oscillators, and con-
ventionally described by a complex–valued order parameter [Kur84, Str00],
reiψ = 1

N e
iϕj , where the radius r measures the phase coherence, and ψ is the

average phase angle.
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Transition from Full to Partial Synchronization

Following [MK05], here we restate certain facts about the nature of the sec-
ond transition mentioned above, a transition between the full and the partial
synchronization regime at K = Ktp, in the direction of decreasing K.

A fully synchronized state in the continuum limit corresponds to the so-
lution to the mean–field type alternate form of equation (2.770),

ϕ̇i = Ω = ωi + rK
N∑
i=1

sin(ψ − ϕi), (2.771)

where Ω is the common angular velocity of the fully synchronized oscillators
(which is set to 0 in our case). Equation (2.771) can be further rewritten as

Ω − ωi
rK

=
N∑
i=1

sin(ψ − ϕi), (2.772)

where the absolute value of the r.h.s is bounded by unity.
As K approaches Ktp from above, the l.h.s for the ‘extreme’ oscillator (the

oscillator in a particular family that has the maximum value of |Ω−ωi|) first
exceeds unity, and a real–valued solution to (2.772) ceases to exist. Different
random draws of ωi’s from g(ω) for a finite number of oscillators result in
slightly different values ofKtp.Ktp appears to follow the Gumbel type extreme
distribution function [KN00], just as the maximum values of |Ω − ωi| do:

p(Ktp) = σ−1e−(Ktp−µ)/σ exp[−e−(Ktp−µ)/σ],

where σ and µ are parameters.

Lyapunov Chaotic Synchronization

The notion of conditional Lyapunov exponents was introduced by Pecora and
Carroll in their study of synchronization of chaotic systems. First, in [PC91],
they generalized the idea of driving a stable system to the situation when the
drive signal is chaotic. This leaded to the concept of conditional Lyapunov
exponents and also generalized the usual criteria of the linear stability theo-
rem. They showed that driving with chaotic signals can be done in a robust
fashion, rather insensitive to changes in system parameters. The calculation
of the stability criteria leaded naturally to an estimate for the convergence of
the driven system to its stable state. The authors focussed on a homogeneous
driving situation that leaded to the construction of synchronized chaotic sub-
systems. They applied these ideas to the Lorenz and Rössler systems, as well
as to an electronic circuit and its numerical model. Later, in [PC98], they
showed that many coupled oscillator array configurations considered in the
literature could be put into a simple form so that determining the stability
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of the synchronous state could be done by a master stability function, which
could be tailored to one’s choice of stability requirement. This solved, once
and for all, the problem of synchronous stability for any linear coupling of
that oscillator.

It turns out, that, like the full Lyapunov exponent, the conditional ex-
ponents are well defined ergodic invariants, which are reliable quantities to
quantify the relation of a global dynamical system to its constituent parts
and to characterize dynamical self–organization [Men98].

Given a dynamical system defined by a map f : M → M , with M ⊂
Rm the conditional exponents associated to the splitting Rk ×Rm−k are the
eigenvalues of the limit

lim
n→∞

(Dkfn∗(x)Dkfn(x))
1
2n ,

where Dkfn is the k × k diagonal block of the full Jacobian.
Mendes [Men98] proved that existence of the conditional Lyapunov ex-

ponents as well–defined ergodic invariants was guaranteed under the same
conditions that established the existence of the Lyapunov exponents.

Recall that for measures µ that are absolutely continuous with respect to
the Lebesgue measure of M or, more generally, for measures that are smooth
along unstable directions (SBR measures) Pesin’s [Pes77] identity holds

h(µ) =
∑
λi>0

λi,

relating Kolmogorov–Sinai entropy h(µ) to the sum of the Lyapunov expo-
nents. By analogy we may define the conditional exponent entropies [Men98]
associated to the splitting Rk ×Rm−k as the sum of the positive conditional
exponents counted with their multiplicity

hk(µ) =
∑
ξ
(k)
i >0

ξ
(k)
i , hm−k(µ) =

∑
ξ
(m−k)
i >0

ξ
(m−k)
i .

The Kolmogorov–Sinai entropy of a dynamical system measures the rate of
information production per unit time. That is, it gives the amount of ran-
domness in the system that is not explained by the defining equations (or the
minimal model [CY89]). Hence, the conditional exponent entropies may be
interpreted as a measure of the randomness that would be present if the two
parts S(k) and S(m−k) were uncoupled. The difference hk(µ)+hm−k(µ)−h(µ)
represents the effect of the coupling.

Given a dynamical system S composed of N parts {Sk} with a total of m
degrees of freedom and invariant measure µ, one defines a measure of dynam-
ical self–organization I(S,Σ, µ) as

I(S,Σ, µ) =
N∑
k=1

{hk(µ) + hm−k(µ)− h(µ)} .
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For each system S, this quantity will depend on the partition Σ into N parts
that one considers. hm−k(µ) always denotes the conditional exponent entropy
of the complement of the subsystem Sk. Being constructed out of ergodic
invariants, I(S,Σ, µ) is also a well–defined ergodic invariant for the measure
µ. I(S,Σ, µ) is formally similar to a mutual information. However, not being
strictly a mutual information, in the information theory sense, I(S,Σ, µ) may
take negative values.

2.5.4 Neural Path–Integral Model for the Cerebellum

Recall that human motion is naturally driven by synergistic action of more
than 600 skeletal muscles. While the muscles generate driving torques in
the moving joints, subcortical neural system performs both local and global
(loco)motion control: first reflexly controlling contractions of individual mus-
cles, and then orchestrating all the muscles into synergetic actions in order
to produce efficient movements. While the local reflex control of individual
muscles is performed on the spinal control level, the global integration of all
the muscles into coordinated movements is performed within the cerebellum.

All hierarchical subcortical neuro–muscular physiology, from the bottom
level of a single muscle fiber, to the top level of cerebellar muscular synergy,
acts as a temporal < out|in > reaction, in such a way that the higher level
acts as a command/control space for the lower level, itself representing an
abstract image of the lower one:

1. At the muscular level, we have excitation–contraction dynamics [Hat77a,
Hat78, Hat77b], in which < out|in > is given by the following sequence
of nonlinear diffusion processes: neural-action-potential � synaptic-
potential
�muscular-action-potential�excitation-contraction-coupling � muscle-
tension-generating [Iva91, II05]. Its purpose is the generation of muscular
forces, to be transferred into driving torques within the joint anatomical
geometry.

2. At the spinal level, < out|in > is given by autogenetic–reflex stimulus–
response control [Hou79]. Here we have a neural image of all individual
muscles. The main purpose of the spinal control level is to give both pos-
itive and negative feedbacks to stabilize generated muscular forces within
the ‘homeostatic’ (or, more appropriately, ‘homeokinetic’) limits. The in-
dividual muscular actions are combined into flexor–extensor (or agonist–
antagonist) pairs, mutually controlling each other. This is the mechanism
of reciprocal innervation of agonists and inhibition of antagonists. It has a
purely mechanical purpose to form the so–called equivalent muscular actu-
ators (EMAs), which would generate driving torques Ti(t) for all movable
joints.

3. At the cerebellar level, < out|in > is given by sensory–motor integration
[HBB96]. Here we have an abstracted image of all autogenetic reflexes.
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The main purpose of the cerebellar control level is integration and fine
tuning of the action of all active EMAs into a synchronized movement, by
supervising the individual autogenetic reflex circuits. At the same time,
to be able to perform in new and unknown conditions, the cerebellum
is continuously adapting its own neural circuitry by unsupervised (self–
organizing) learning. Its action is subconscious and automatic, both in
humans and in animals.

Naturally, we can ask the question: Can we assign a single < out|in >
measure to all these neuro–muscular stimulus–response reactions? We think
that we can do it; so in this Letter, we propose the concept of adaptive sensory–
motor transition amplitude as a unique measure for this temporal < out|in >
relation. Conceptually, this < out|in > −amplitude can be formulated as the
‘neural path integral ’:

< out|in >≡ 〈motor|sensory〉
amplitude

=
∫
D[w, x] eiS[x]. (2.773)

Here, the integral is taken over all activated (or, ‘fired’) neural pathways
xi = xi(t) of the cerebellum, connecting its input sensory−state with its out-
put motor−state, symbolically described by adaptive neural measure D[w, x],
defined by the weighted product (of discrete time steps)

D[w, x] = lim
n−→∞

n∏
t=1

wi(t) dxi(t),

in which the synaptic weights wi = wi(t), included in all active neural path-
ways xi = xi(t), are updated by the unsupervised Hebbian–like learning rule
1.245, namely

wi(t+ 1) = wi(t) +
σ

η
(wid(t)− wia(t)), (2.774)

where σ = σ(t), η = η(t) represent local neural signal and noise ampli-
tudes, respectively, while superscripts d and a denote desired and achieved
neural states, respectively. Theoretically, equations (2.773–2.774) define an
∞−dimensional neural network. Practically, in a computer simulation we can
use 107 ≤ n ≤ 108, roughly corresponding to the number of neurons in the
cerebellum.

The exponent term S[x] in equation (2.773) represents the autogenetic–
reflex action, describing reflexly–induced motion of all active EMAs, from
their initial stimulus−state to their final response−state, along the family of
extremal (i.e., Euler–Lagrangian) paths ximin(t). (S[x] is properly derived in
(2.777–2.778) below.)

Spinal Autogenetic Reflex Control

Recall (from Introduction) that at the spinal control level we have the autoge-
netic reflex motor servo [Hou79], providing the local, reflex feedback loops for
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individual muscular contractions. A voluntary contraction force F of human
skeletal muscle is reflexly excited (positive feedback +F−1) by the responses
of its spindle receptors to stretch and is reflexly inhibited (negative feedback
−F−1) by the responses of its Golgi tendon organs to contraction. Stretch
and unloading reflexes are mediated by combined actions of several autoge-
netic neural pathways, forming the motor servo.

In other words, branches of the afferent fibers also synapse with with in-
terneurons that inhibit motor neurons controlling the antagonistic muscles
– reciprocal inhibition. Consequently, the stretch stimulus causes the antago-
nists to relax so that they cannot resists the shortening of the stretched muscle
caused by the main reflex arc. Similarly, firing of the Golgi tendon receptors
causes inhibition of the muscle contracting too strong and simultaneous re-
ciprocal activation of its antagonist. Both mechanisms of reciprocal inhibition
and activation performed by the autogenetic circuits +F−1 and −F−1, serve
to generate the well–tuned EMA–driving torques Ti.

Now, once we have properly defined the symplectic musculo–skeletal
dynamics [Iva04] on the biomechanical (momentum) phase–space manifold
T ∗MN , we can proceed in formalizing its hierarchical subcortical neural con-
trol. By introducing the coupling Hamiltonians Hm = Hm(q, p), selectively
corresponding only to the M ≤ N active joints, we define the affine Hamil-
tonian control function Haff : T ∗MN → R, in local canonical coordinates on
T ∗MN given by (adapted from [NS90] for the biomechanical purpose)

Haff (q, p) = H0(q, p)−Hm(q, p)Tm, (m = 1, . . . , M ≤ N), (2.775)

where Tm = Tm(t, q, p) are affine feedback torque one–forms, different from the
initial driving torques Ti acting in all the joints. Using the affine Hamiltonian
function (2.775), we get the affine Hamiltonian servo–system [Iva04],

q̇i =
∂H0(q, p)
∂pi

− ∂H
m(q, p)
∂pi

Tm, (2.776)

ṗi = −∂H0(q, p)
∂qi

+
∂Hm(q, p)
∂qi

Tm,

qi(0) = qi0, pi(0) = p0i , (i = 1, . . . , N ; m = 1, . . . , M ≤ N).

The affine Hamiltonian control system (2.776) gives our formal description for
the autogenetic spinal motor–servo for all M ≤ N activated (i.e., working)
EMAs.

Cerebellum – the Comparator

Having, thus, defined the spinal reflex control level, we proceed to model the
top subcortical commander/controller, the cerebellum. It is a brain region
anatomically located at the bottom rear of the head (the hindbrain), directly
above the brainstem, which is important for a number of subconscious and
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automatic motor functions, including motor learning. It processes information
received from the motor cortex, as well as from proprioceptors and visual
and equilibrium pathways, and gives ‘instructions’ to the motor cortex and
other subcortical motor centers (like the basal nuclei), which result in proper
balance and posture, as well as smooth, coordinated skeletal movements, like
walking, running, jumping, driving, typing, playing the piano, etc. Patients
with cerebellar dysfunction have problems with precise movements, such as
walking and balance, and hand and arm movements. The cerebellum looks
similar in all animals, from fish to mice to humans. This has been taken
as evidence that it performs a common function, such as regulating motor
learning and the timing of movements, in all animals. Studies of simple forms
of motor learning in the vestibulo–ocular reflex and eye–blink conditioning are
demonstrating that timing and amplitude of learned movements are encoded
by the cerebellum.

The cerebellum is responsible for coordinating precisely timed < out|in >
activity by integrating motor output with ongoing sensory feedback. It re-
ceives extensive projections from sensory–motor areas of the cortex and the
periphery and directs it back to premotor and motor cortex [Ghe90, Ghe91].
This suggests a role in sensory–motor integration and the timing and execu-
tion of human movements. The cerebellum stores patterns of motor control
for frequently performed movements, and therefore, its circuits are changed
by experience and training. It was termed the adjustable pattern generator
in the work of J. Houk and collaborators [HBB96]. Also, it has become the
inspiring ‘brain–model’ in the recent robotic research [SA98, Sch98].

Fig. 2.26. Schematic < out|in > organization of the primary cerebellar circuit.
In essence, excitatory inputs, conveyed by collateral axons of Mossy and Climbing
fibers activate directly neurones in the Deep cerebellar nuclei. The activity of these
latter is also modulated by the inhibitory action of the cerebellar cortex, mediated
by the Purkinje cells.
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Comparing the number of its neurons (107 − 108), to the size of conven-
tional neural networks, suggests that artificial neural nets cannot satisfactorily
model the function of this sophisticated ‘super–bio–computer’, as its dimen-
sionality is virtually infinite. Despite a lot of research dedicated to its structure
and function (see [HBB96] and references there cited), the real nature of the
cerebellum still remains a ‘mystery’.

Fig. 2.27. The cerebellum as a motor controller.

The main function of the cerebellum as a motor controller is depicted in
Figure 2.27. A coordinated movement is easy to recognize, but we know little
about how it is achieved. In search of the neural basis of coordination, a model
of spinocerebellar interactions was recently presented in [AG05], in which the
structural and functional organizing principle is a division of the cerebellum
into discrete micro–complexes. Each micro–complex is the recipient of a spe-
cific motor error signal - that is, a signal that conveys information about an
inappropriate movement. These signals are encoded by spinal reflex circuits
and conveyed to the cerebellar cortex through climbing fibre afferents. This
organization reveals salient features of cerebellar information processing, but
also highlights the importance of systems level analysis for a fuller under-
standing of the neural mechanisms that underlie behavior.

Hamiltonian Action and Neural Path Integral

Here, we propose a quantum–like adaptive control approach to modelling the
‘cerebellar mystery’. Corresponding to the affine Hamiltonian control function
(2.775) we define the affine Hamiltonian control action,

Saff [q, p] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]
. (2.777)

From the affine Hamiltonian action (2.777) we further derive the associ-
ated expression for the neural phase–space path integral (in normal units),
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representing the cerebellar sensory–motor amplitude < out|in >,

〈
qiout, p

out
i |qiin, pini

〉
=

∫
D[w, q, p] eiSaff [q,p] (2.778)

=
∫
D[w, q, p] exp

{
i
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]}
,

with
∫
D[w, q, p] =

∫ n∏
τ=1

wi(τ)dpi(τ)dqi(τ)
2π

,

where wi = wi(t) denote the cerebellar synaptic weights positioned along
its neural pathways, being continuously updated using the Hebbian–like self–
organizing learning rule (2.774). Given the transition amplitude < out|in >
(2.778), the cerebellar sensory–motor transition probability is defined as its
absolute square, | < out|in > |2.

In (2.778), qiin = qiin(t), q
i
out = qiout(t); p

in
i = pini (t), pouti = pouti (t); tin ≤

t ≤ tout, for all discrete time steps, t = 1, ..., n −→ ∞, and we are allow-
ing for the affine Hamiltonian Haff (q, p) to depend upon all the (M ≤ N)
EMA–angles and angular momenta collectively. Here, we actually systemat-
ically took a discretized differential time limit of the form tσ − tσ−1 ≡ dτ
(both σ and τ denote discrete time steps) and wrote (qi

σ−qi
σ−1)

(tσ−tσ−1)
≡ q̇i. For

technical details regarding the path integral calculations on Riemannian and
symplectic manifolds (including the standard regularization procedures), see
[Kla97, Kla00].

Now, motor learning occurring in the cerebellum can be observed using
functional MR imaging, showing changes in the cerebellar action potential,
related to the motor tasks (see, e.g., [MA02]). To account for these electro–
physiological currents, we need to add the source term Ji(t)qi(t) to the affine
Hamiltonian action (2.777), (the current Ji = Ji(t) acts as a source JiAi of
the cerebellar electrical potential Ai = Ai(t)),

Saff [q, p, J ] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p) + Jiqi
]
,

which, subsequently gives the cerebellar path integral with the action potential
source, coming either from the motor cortex or from other subcortical areas.

Note that the standard Wick rotation: t �→ it (see [Kla97, Kla00]), makes
all our path integrals real, i.e.,∫

D[w, q, p] eiSaff [q,p] Wick−−−→

∫
D[w, q, p] e−Saff [q,p],

while their subsequent discretization gives the standard thermodynamic par-
tition functions,

Z =
∑
j

e−wjE
j/T , (2.779)
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where Ej is the energy eigenvalue corresponding to the affine Hamiltonian
Haff (q, p), T is the temperature–like environmental control parameter, and
the sum runs over all energy eigenstates (labelled by the index j). From
(2.779), we can further calculate all statistical and thermodynamic system
properties (see [Fey72]), as for example, transition entropy S = kB lnZ, etc.

2.5.5 Intelligent Robot Control

In this subsection we show a dynamic model of an intelligent robot interact-
ing with its environment. Recall that a general robot dynamics is described
by a nonlinear vector/matrix differential equation (see [Vuk75, VP82, VS82,
VK85a, VK85b, VSK85, VP85, VBS89])

H(q) q̈ + h(q, q̇) + JT (q)F = τ ,

where, q = q(t) is an nD vector of robot generalized coordinates; H(q) is
an n × n positive definite matrix of inertia moments of the manipulation
mechanics; h(q, q̇) is an nD nonlinear function of centrifugal, Coriolis, and
gravitational moments; τ = τ(t) is an nD vector of input control; JT (q) is an
n×n Jacobian matrix connecting the velocities of robot end–effector and the
velocities of robot generalized coordinates; and F = F (t) is an mD vector of
generalized forces, or, of generalized forces and moments from the environment
acting on the end–effector.

In the frame of robot joint coordinates, the model of environment dynamics
can be presented in the form [KV98, KV03a, KV03b]

M(q) q̈ + L(q, q̇) = ST (q)F,

where M(q) ∈ Rn×n is a nonsingular matrix; L(q, q̇) ∈ Rn is a nonlinear
vector function; and ST (q) ∈ Rn×n is the matrix with rank(S) = n.

The end–effector of the manipulator is constrained on static geometric
surfaces, Φ(q) = 0, where Φ(q) ∈ Rm is the holonomic constraint function.

In practice, it is convenient to adopt a simplified model of the environment,
taking into account the dominant effects, such as stiffness, F = K ′(x−x0), or
an environment damping during the tool motion, F = B′x, where K ′ ∈ Rn×n,
B′ ∈ Rn×n are semidefinite matrices describing the environment stiffness and
damping, respectively, and x0 ∈ Rn denotes the coordinate vector in Cartesian
coordinates of the point of contact between the end–effector (tool) and a
constraint surface. However, it is more appropriate to adopt the relationship
defined by specification of the target impedance

F =M ′∆ẍ+B′∆ẋ+K ′∆x, where ∆x = x−x0,

andM ′ is a positive definite inertia matrix. The matricesM ′, B′,K ′ define the
target impedance which can be selected to correspond to various objectives
of the given manipulation task.
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In the case of contact with the environment, the robot control task can be
described as robot motion along a programmed trajectory qp(t) representing a
twice continuously differentiable function, when a desired force of interaction
Fp(t) acts between the robot and the environment. Thus, the programmed
motion qp(t) and the desired interaction force Fp(t) must satisfy the following
relation

Fp(t) ≡ f (qp(t), q̇p(t), q̈p(t)) .

The control problem for robot interacting with dynamic environment is to
define the control τ(t) for t ≥ t0, that satisfies the target conditions

lim
t→∞

q(t) → qp(t), lim
t→∞

F (t) → Fp(t).

As a first example, the control algorithm based on stabilization of the
robot motion with a preset quality of transient responses is considered, which
has the form

τ = H(q)[q̈p −KPη −KDη̇] + h(q, q̇) + JT (q)F.

The familly of desired transient responses is specified by the vector differential
equation

η̈ = −KPη −KDη̇, η(t) = q(t)− qp(t), (2.780)

where KP ∈ Rn×n is the diagonal matrix of position feedback gains, and
KD ∈ Rn×n is the diagonal matrix of velocity feedback gains. The right side
of (2.780), i.e., PD–regulator is chosen such that the system defined by (2.780)
is asymptotically stable in the whole. The values of matrices KP and KD can
be chosen according to algebraic stability conditions.

The proposed control law represents a version of the well–known computed
torque method including force term which uses dynamic robot model and the
available on–line information from the position, velocity and force sensors.
Here the model of robot environment does not have any influence on the
performance of the control algorithm.

As the second example, control algorithm based on stabilization of the
interaction force with a preset quality of transient responses is considered,
which has the form

τ = H(q)M−1(q) [−L(q, q̇) + ST (q)F ] + h(q, q̇)

+ JT (q)
{
Fp −

∫ t

t0

[
KFP µ(ω) +KFI

∫ t

t0

µ(ω) dt
]
dω

}
,

where µ(t) = F (t)− Fp(t); KFP ∈ Rn×n is the matrix of proportional force
feedback gains; and KFI ∈ Rn×n is the matrix of integral force feedback
gains. Here, it has been assumed that the interaction force in transient process
should behave according to the following differential equation
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µ̇(t) = Q(µ), Q(µ) = −KFP µ−KFI
∫ t

t0

µdt. (2.781)

PI force regulator (continuous vector function of Q) is chosen such that the
system defined by (2.781) is asymptotically stable in the whole. In this case,
environment dynamics model has explicit influence on the performance of
contact control algorithm, also having influence on PI force local gains. Note
that without knowing a sufficiently accurate environment model (parameters
of matrices M(q), L(q, q̇), S(q)) it is not possible to determine the nominal
contact force Fp(t).

2.5.6 Brain–Like Control Functor in Biomechanics

In this final section we propose our most recent model [IB05] of the complete
biomechanical brain–like control functor . This is a neurodynamical reflection
on our covariant force law , Fi = mgija

j , and its associated covariant force
functor F∗ : TT ∗M → TTM (see section 2.4.3 above).

Recall that traditional hierarchical robot control (see, e.g., [VS82, VBS89])
consists of three levels: the executive control–level (at the bottom) performs
tracking of nominal trajectories in internal–joint coordinates, the strategic
control–level (at the top) performs ‘planning’ of trajectories of an end–effector
in external–Cartesian coordinates, and the tactical control–level (in the mid-
dle) connects other two levels by means of inverse kinematics.

The modern version of the hierarchical robot control includes decision–
making done by the neural (or, neuro–fuzzy) classifier to adapt the (manipu-
lator) control to dynamically changing environment.

On the other hand, the so–called ‘intelligent’ approach to robot control
typically represents a form of function approximation, which is itself based on
some combination of neuro–fuzzy–genetic computations. Many special issues
and workshops focusing on physiological models for robot control reflect the
increased attention for the development of cerebellar models [Sma99, SA98,
Sch99, Sch98, Arb98] for learning robot control with functional decomposition,
where the main result could be formulated as: the cerebellum is more then just
the function approximator.

In this section we try to fit between these three approaches for humanoid
control, emphasizing the role of muscle–like robot actuators. We propose a
new, physiologically based, tensor–invariant, hierarchical force control (FC,
for short) for the physiologically realistic biomechanics. We consider the mus-
cular torque one–forms Fi as the most important component of human–like
motion; therefore we propose the sophisticated hierarchical system for the sub-
tle Fi–control: corresponding to the spinal, the cerebellar and cortical levels
of human motor control. Fi are first set–up as testing input–signals to biome-
chanics, and then covariantly updated as feedback 1−forms ui on each FC–
level. On the spinal FC–level the nominal joint–trajectory tracking is proposed
in the form of affine Hamiltonian control; here the driving torques are given
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corrections by spinal–reflex controls. On the cerebellar FC–level, the relation
is established between canonical joint coordinates qi, pi and gradient neural–
image coordinates xi, yi, representing bidirectional, self–organized, associative
memory machine; here the driving torques are given the cerebellar corrections.
On the cortical FC–level the topological ‘hyper–joystick’ is proposed as the
central FC command–space, selector, with the fuzzy–logic feedback–control
map defined on it, giving the cortical corrections to the driving torques.

The model of the spinal FC–level formulated here resembles autogenetic
motor servo, acting on the spinal–reflex level of the human locomotor con-
trol. The model of the cerebellar FC–level formulated here mimics the self–
organizing, associative function of the excitatory granule cells and the in-
hibitory Purkinje cells of the cerebellum [HBB96]. The model of the cortical
FC–level presented in this section mimics the synergistic regulation of loco-
motor conditioned reflexes by the cerebellum [HBB96].

We believe that (already mentioned) extremely high order of the driving
force redundancy in biomechanics justifies the formulation of the three–level
force control system. Also, both brain–like control systems can be easily ex-
tended to give SE(3)−based force control for moving inverse kinematics (IK)
chains of legs and arms.

Functor Control Machine

In this subsection we define the functor control–machine (compare with sec-
tion (2.4.3) above), for the learning control with functional decomposition, by
a two–step generalization of the Kalman’s theory of linear MIMO–feedback
systems. The first generalization puts the Kalman’s theory into the pair of
mutually dual linear categories Vect and Vect∗ of vector spaces and linear
operators, with a ‘loop–functor’ representing the closed–loop control, thus
formulating the unique, categorical formalism valid both for the discrete and
continual MIMO–systems.

We start with the unique, feedforward continual–sequential state equation

ẋ(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), (2.782)

where the nD vector spaces of state X � x, input U � u, and output Y � y
have the corresponding linear operators, respectively A : X → X, B : U → X,
and C : X → Y . The modular system theory comprises the system dynamics,
given by a pair (X,A), together with a reachability map e : U → X of the
pair (B,A), and an observability map m : X → Y of the pair (A,C). If the
reachability map e is surjection the system dynamics (X,A) is called reach-
able; if the observability map m is injection the system dynamics (X,A) is
called observable. If the system dynamics (X,A) is both reachable and ob-
servable, a composition r = m◦e : U → Y defines the total system’s response,
which is given by solution of equation (2.782). If the unique solution to the
continual–sequential state equation exists, it gives the answer to the (mini-
mal) realization problem: find the system S that realizes the given response
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r = m ◦ e : U → Y (in the smallest number of discrete states and in the
shortest time).

The inverse map r−1 = e−1 ◦m−1 : Y → U of the total system’s response
r : U → Y defines the linear feedback operator K : Y → U , given by standard
feedback equation

u(t) = Ky(t). (2.783)

In categorical language, the feedforward system dynamics in the category
Vect is a pair (X,A), where X ∈ Ob(Vect) is an object in Vect and A :
X → X ∈ Mor(Vect) is a Vect–morphism. A feedforward decomposable system
in Vect is such a sixtuple S ≡ (X,A,U,B, Y, C) that (X,A) is the system
dynamics in Vect, a Vect–morphism B : U → X is an input map, and a Vect–
morphism C : X → Y is an output map. Any object in Vect is characterized
by mutually dual notions of its degree (a number of its input morphisms) and
its codegree (a number of its output morphisms). Similarly, any decomposable
system S in Vect has a reachability map given by an epimorphism e = A◦B :
U → X and its dual observability map given by a monomorphism m = C ◦A :
X → Y ; their composition r = m ◦ e : U → Y in Mor(Vect) defines the
total system’s response in Vect given by the unique solution of the continual–
sequential state equation (2.782) [IS01].

The dual of the total system’s response, defined by the feedback equation
(2.783), is the feedback morphism K = e−1 ◦m−1 : Y → U belonging to the
dual category Vect∗.

In this way, the linear, closed–loop, continual–sequential MIMO–system
(2.782–2.783) represents the linear iterative loop functor L : Vect⇒ Vect∗.

Our second generalization represents a natural system process Ξ[L], that
transforms the linear loop functor L : Vect⇒ Vect∗ – into the nonlinear loop
functor NL : CAT ⇒ CAT ∗ between two mutually dual nonlinear categories
CAT and CAT ∗. We apply the natural process Ξ, separately

1. To the feedforward decomposable system
S ≡ (X,A,U,B, Y, C) in Vect, and

2. To the feedback morphism K = e−1 ◦m−1 : Y → U in Vect∗.

Under the action of the natural process Ξ, the linear feedforward system
dynamics (X,A) in Vect transforms into a nonlinear feedforward Ξ–dynamics
(Ξ[X], Ξ[A]) in CAT , represented by a nonlinear feedforward decomposable
system, Ξ[S] ≡ (Ξ[X], Ξ[A], Ξ[U ], Ξ[B], Ξ[Y ], Ξ[C]).

The reachability map transforms into the input process Ξ[e] = Ξ[A] ◦
Ξ[B] : Ξ[U ] −→ Ξ[X], while its dual, observability map transforms into the
output process Ξ[m] = Ξ[C] ◦ Ξ[A] : Ξ[X] −→ Ξ[Y ]. In this way the total
response of the linear system r = m ◦ e : U → Y in Mor(Vect) transforms
into the nonlinear system behavior, Ξ[r] = Ξ[m] ◦ Ξ[e] : Ξ[U ] −→ Ξ[Y ] in
Mor(CAT ). Obviously, Ξ[r], if exists, is given by a nonlinear Ξ–transform of
the linear state equations (2.782–2.783).
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Analogously, the linear feedback morphism K = e−1 ◦ m−1 : Y → U in
Mor(Vect∗) transforms into the nonlinear feedback morphism Ξ[K] = Ξ[e−1]◦
Ξ[m−1] : Ξ[Y ] → Ξ[U ] in Mor(CAT ∗).

In this way, the natural system process Ξ : L � NL is established. That
means that the nonlinear loop functor L = Ξ[L] : CAT ⇒ CAT ∗ is defined
out of the linear, closed–loop, continual–sequential MIMO–system (2.782).

In this section we formulate the nonlinear loop functor L = Ξ[L] : CAT ⇒
CAT ∗ for various hierarchical levels of muscular–like FC.

Spinal Control Level

Our first task is to establish the nonlinear loop functor L = Ξ[L] : EX ⇒ EX ∗

on the category EX of spinal FC–level.
Recall that our dissipative, driven δ−Hamiltonian biomechanical system

on the configuration manifold M is, in local canonical–symplectic coordi-
nates qi, pi ∈ Up on the momentum phase–space manifold T ∗M, given by
autonomous equations

q̇i =
∂H0

∂pi
+
∂R

∂pi
, (i = 1, . . . , N) (2.784)

ṗi = Fi −
∂H0

∂qi
+
∂R

∂qi
, (2.785)

qi(0) = qi0, pi(0) = p0i , (2.786)

including contravariant equation (2.784) – the velocity vector–field, and co-
variant equation (2.785) – the force 1−form, together with initial joint angles
qi0 and momenta p0i . Here the physical Hamiltonian function H0 : T ∗M → R

represents the total biomechanical energy function, in local canonical coordi-
nates qi, pi ∈ Up on T ∗M given by

H0(q, p) =
1
2
gij pi pj + V (q),

where gij = gij(q,m) denotes the contravariant material metric tensor.
Now, the control Hamiltonian function Hγ : T ∗M → R of FC is in local

canonical coordinates on T ∗M defined by [NS90]

Hγ(q, p, u) = H0(q, p)− qi ui, (i = 1, . . . , N) (2.787)

where ui = ui(t, q, p) are feedback–control 1−forms, representing the spinal
FC–level u−corrections to the covariant torques Fi = Fi(t, q, p).

Using δ−Hamiltonian biomechanical system (2.784–2.786) and the con-
trol Hamiltonian function (2.787), control γδ−Hamiltonian FC–system can
be defined as
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q̇i =
∂Hγ(q, p, u)

∂pi
+
∂R(q, p)
∂pi

,

ṗi = Fi −
∂Hγ(q, p, u)

∂qi
+
∂R(q, p)
∂qi

,

oi = −∂Hγ(q, p, u)
∂ui

, (i = 1, . . . , N)

qi(0) = qi0, pi(0) = p0i ,

where oi = oi(t) represent FC natural outputs which can be different from
commonly used joint angles.

If nominal reference outputs oiR = oiR(t) are known, the simple PD
stiffness–servo [Whi87] could be formulated, via error function e(t) = oj−ojR,
in covariant form

ui = Koδij(oj − ojR) +Kȯδij(ȯj − ȯjR), (2.788)

where Ks are the control–gains and δij is the Kronecker tensor.
If natural outputs oi actually are the joint angles and nominal canoni-

cal trajectories
(
qiR = qiR(t), pRi = pRi (t)

)
are known, then the stiffness–servo

(2.788) could be formulated in canonical form as

ui = Kqδij(qi − qiR) +Kp(pi − pRi ).

Now, using the fuzzified µ−Hamiltonian biomechanical system with fuzzy
system numbers (i.e, imprecise segment lengths, masses and moments of in-
ertia, joint dampings and muscular actuator parameters)

q̇i =
∂H0(q, p, σµ)

∂pi
+
∂R

∂pi
, (2.789)

ṗi = F̄i −
∂H0(q, p, σµ)

∂qi
+
∂R

∂qi
, (2.790)

qi(0) = q̄i0, pi(0) = p̄0i , (i = 1, . . . , N), (2.791)

(see 2.4.3 above) and the controlHamiltonian function(2.787),γµ−Hamiltonian
FC–system can be defined as

q̇i =
∂Hγ(q, p, u, σµ)

∂pi
+
∂R(q, p)
∂pi

,

ṗi = F̄i −
∂Hγ(q, p, u, σµ)

∂qi
+
∂R(q, p)
∂qi

,

ōi = −∂Hγ(q, p, u, σµ)
∂ui

, qi(0) = q̄i0, pi(0) = p̄0i ,

where ōi = ōi(t) represent the fuzzified natural outputs.
Finally, applying stochastic forces (diffusion fluctuations Bij [qi(t), t] and

discontinuous jumps in the form of ND Wiener process W j(t)), i.e., using the
fuzzy–stochastic [µσ]−Hamiltonian biomechanical system
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dqi =
(
∂H0(q, p, σµ)

∂pi
+
∂R

∂pi

)
dt, (2.792)

dpi = Bij [qi(t), t] dW j(t) +(
F̄i −

∂H0(q, p, σµ)
∂qi

+
∂R

∂qi

)
dt, (2.793)

qi(0) = q̄i0, pi(0) = p̄0i . (2.794)

(see 2.4.3 above), and the controlHamiltonianfunction(2.787),γµσ−Hamiltonian
FC–system can be defined as

dqi =
(
∂Hγ(q, p, u, σµ)

∂pi
+
∂R(q, p)
∂pi

)
dt,

dpi = Bij [qi(t), t] dW j(t) +(
F̄i −

∂Hγ(q, p, u, σµ)
∂qi

+
∂R(q, p)
∂qi

)
dt,

dōi = −∂Hγ(q, p, u, σµ)
∂ui

dt, (i = 1, . . . , N)

qi(0) = q̄i0, pi(0) = p̄0i .

If we have the case that not all of the configuration joints on the config-
uration manifold M are active in the specified robot task, we can introduce
the coupling Hamiltonians Hj = Hj(q, p), j = 1, . . . , M ≤ N , correspond-
ing to the system’s active joints, and we come to affine Hamiltonian function
Ha : T ∗M → R, in local canonical coordinates on T ∗M given as [NS90]

Ha(q, p, u) = H0(q, p)−Hj(q, p)uj . (2.795)

Using δ−Hamiltonian biomechanical system (2.784–2.786) and the affine
Hamiltonian function (2.795), affine aδ−Hamiltonian FC–system can be de-
fined as

q̇i =
∂H0(q, p)
∂pi

− ∂H
j(q, p)
∂pi

uj +
∂R

∂pi
, (2.796)

ṗi = Fi −
∂H0(q, p)
∂qi

+
∂Hj(q, p)
∂qi

uj +
∂R

∂qi
, (2.797)

oi = −∂Ha(q, p, u)
∂ui

= Hj(q, p), (2.798)

qi(0) = qi0, pi(0) = p0i , (2.799)
(i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Using the Lie–derivative exact feedback linearization (see (2.3.1) above),
and applying the constant relative degree r (see [Isi89, SI89]) to all N joints
of the affine aδ−Hamiltonian FC–system (2.796–2.799), the control law for
asymptotic tracking the reference outputs ojR could be formulated as
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uj =
ȯ
(r)j
R − L(r)

f H
j +

∑r
s=1 γs−1(o

(s−1)j
R − L(s−1)

f Hj)

LgL(r−1)
f Hj

,

where standard MIMO–vector–fields f and g are given by

f =
(
∂H0

∂pi
, −∂H0

∂qi

)
, g =

(
−∂H

j

∂pi
,
∂Hj

∂qi

)
and γs−1 are the coefficients of linear differential equation of order r for the
error function e(t) = oj − ojR

e(r) + γr−1e
(r−1) + · · ·+ γ1e

(1) + γ0e = 0.

Using the fuzzified µ−Hamiltonian biomechanical system (2.789–2.791)
and the affine Hamiltonian function (2.795), affine aµ−Hamiltonian FC–
system can be defined as

q̇i =
∂H0(q, p, σµ)

∂pi
− ∂H

j(q, p, σµ)
∂pi

uj +
∂R(q, p)
∂pi

,

ṗi = F̄i −
∂H0(q, p, σµ)

∂qi
+
∂Hj(q, p, σµ)

∂qi
uj +

∂R(q, p)
∂qi

,

ōi = −∂Ha(q, p, u, σµ)
∂ui

= Hj(q, p, σµ),

qi(0) = q̄i0, pi(0) = p̄0i , (i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Using the fuzzy–stochastic [µσ]−Hamiltonian biomechanical system (2.792–
2.794) and the affine Hamiltonian function (2.795), affine aµσ−Hamiltonian
FC–system can be defined as

dqi =
(
∂H0(q, p, σµ)

∂pi
− ∂H

j(q, p, σµ)
∂pi

uj +
∂R(q, p)
∂pi

)
dt,

dpi = Bij [qi(t), t] dW j(t) +(
F̄i −

∂H0(q, p, σµ)
∂qi

+
∂Hj(q, p, σµ)

∂qi
uj +

∂R(q, p)
∂qi

)
dt,

dōi = −∂Ha(q, p, u, σµ)
∂ui

dt = Hj(q, p, σµ) dt,

qi(0) = q̄i0, pi(0) = p̄0i , (i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Being high–degree and highly nonlinear, all of these affine control systems
are extremely sensitive upon the variation of parameters, inputs, and initial
conditions. The sensitivity function S of the affine Hamiltonian Ha(q, p, u)
upon the parameters βi (representing segment lengths Li, masses mi, mo-
ments of inertia Ji and joint dampings bi, see [IS01, Iva91]), is in the case of
aδ−Hamiltonian FC–system defined as
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S(H,β) =
βi

Ha(q, p, u)
∂Ha(q, p, u)

∂βi
,

and similarly in other two aµ− and aµσ− cases.
The three affine FC–level systems aδ, aµ and aµσ, resemble (in a fuzzy–

stochastic–Hamiltonian form), Houk’s autogenetic motor servo of muscle spin-
dle and Golgi tendon proprioceptors [Hou79], correcting the covariant driving
torques Fi = Fi(t, q, p) by local ‘reflex controls’ ui(t, q, p). They form the
nonlinear loop functor L = Ξ[L] : EX ⇒ EX ∗.

Cerebellar Control Level

Our second task is to establish the nonlinear loop functor L = Ξ[L] : T A ⇒
T A∗ on the category T A of the cerebellar FC–level. Here we propose an os-
cillatory neurodynamical (x, y,ω)–system (adapted from [IJB99a]), a bidirec-
tional, self–organized, associative–memory machine, resembling the function
of a set of excitatory granule cells and inhibitory Purkinje cells in the middle
layer of the cerebellum (see [EIS67, HBB96]). The neurodynamical (x, y,ω)–
system acts on neural–image manifold MN

im of the configuration manifoldMN

as a pair of smooth, ‘1− 1’ and ‘onto’ maps (Ψ, Ψ−1), where Ψ :MN →MN
im

represents the feedforward map, and Ψ−1 : MN
im → MN represents the feed-

back map. Locally, it is defined in Riemannian neural coordinates xi, yi ∈ Vy
on MN

im, which are in bijective correspondence with symplectic joint coordi-
nates qi, pi ∈ Up on T ∗M .

The (x, y,ω)–system is formed out of two distinct, yet nonlinearly–coupled
neural subsystems, with Ai(q) (2.802) and Bi(p) (2.803) as system inputs, and
the feedback–control 1−forms ui (2.808) as system outputs:

1. Granule cells excitatory (contravariant) and Purkinje cells inhibitory (co-
variant) activation (x, y)–dynamics (2.800–2.803), defined respectively by
a vector–field xi = xi(t) : M → TM , representing a cross–section of the
tangent bundle TM , and a 1−form yi = yi(t) : M → T ∗M , representing
a cross–section of the cotangent bundle T ∗M ; and

2. Excitatory and inhibitory unsupervised learning (ω)–dynamics (2.803–
2.805) generated by random differential Hebbian learning process (2.806–
2.808), defined respectively by contravariant synaptic tensor–field ωij =
ωij(t) : M → TTMN

im and covariant synaptic tensor–field ωij = ωij(t) :
M → T ∗T ∗M, representing cross–sections of contravariant and covariant
tensor bundles, respectively.

The system equations are defined as
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ẋi = Ai(q) + ωij fj(y)− xi, (2.800)

ẏi = Bi(p) + ωij f j(x)− yi, (2.801)

Ai(q) = Kq(qi − qiR), (2.802)

Bi(p) = Kp(pRi − pi), (2.803)

ω̇ij = −ωij + Iij(x, y), (2.804)
ω̇ij = −ωij + Iij(x, y), (2.805)

Iij = f i(x) f j(y) + ḟ i(x) ḟ j(y) + σij , (2.806)

Iij = fi(x) fj(y) + ḟi(x) ḟj(y) + σij , (2.807)

ui =
1
2
(δij xi + yi), (i, j = 1, . . . , N). (2.808)

Here ω is a symmetric 2nd order synaptic tensor–field; Iij = Iij(x, y, σ)
and Iij=Iij(x,y,σ)respectivelydenote contravariant–excitatory and covariant–
inhibitory random differential Hebbian innovation–functions with tensorial
Gaussian noise σ (in both variances); fs and ḟs denote sigmoid activation
functions (f = tanh(.)) and corresponding signal velocities (ḟ = 1 − f2),
respectively in both variances;
Ai(q) and Bi(p) are contravariant–excitatory and covariant–inhibitory

neural inputs to granule and Purkinje cells, respectively; ui are the correc-
tions to the feedback–control 1−forms on the cerebellar FC–level.

Nonlinear activation (x, y)–dynamics (2.800–2.803), describes a two–phase
biological neural oscillator field, in which excitatory neural field excites in-
hibitory neural field, which itself reciprocally inhibits the excitatory one.
(x, y)–dynamics represents a nonlinear extension of a linear, Lyapunov–stable,
conservative, gradient system, defined in local neural coordinates xi, yi ∈ Vy
on T ∗M as

ẋi = − ∂Φ
∂yi

= ωijyj − xi, ẏi = − ∂Φ
∂xi

= ωijxj − yi. (2.809)

The gradient system (2.809) is derived from scalar, neuro-synaptic action
potential Φ : T ∗M → R, given by a negative, smooth bilinear form in xi, yi ∈
Vy on T ∗M as

− 2Φ = ωijxixj + ωijyiyj − 2xiyi, (i, j = 1, . . . , N), (2.810)

which itself represents a Ψ–image of the Riemannian metrics g : TM → R on
the configuration manifold M .

The nonlinear oscillatory activation (x, y)–dynamics (2.800–2.803) is get
from the linear conservative dynamics (2.809) by adding configura-tion–
dependent inputs Ai and Bi, as well as sigmoid activation functions fj and f j ,
respectively. It represents an interconnected pair of excitatory and inhibitory
neural fields.

Both variant–forms of learning (ω)–dynamics (2.804–2.805) are given
by generalized unsupervised (self–organizing) Hebbian learning scheme (see
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[Kos92]) in which ω̇ij (resp. ω̇ij) denotes the new–update value, −ωij (resp.
−ωij) corresponds to the old value and Iij(xi, yj) (resp. Iij(xi, yj)) is the
innovation function of the symmetric 2nd order synaptic tensor-field ω. The
nonlinear innovation functions Iij and Iij are defined by random differential
Hebbian learning process (2.806–2.807). As ω is symmetric and zero-trace
coupling synaptic tensor, the conservative linear activation dynamics (2.809)
is equivalent to the rule that the state of each neuron (in both neural fields)
is changed in time iff the scalar action potential Φ (2.810), is lowered. There-
fore, the scalar action potential Φ represents the monotonically decreasing
Lyapunov function (such that Φ̇ ≤ 0) for the conservative linear dynamics
(2.809), which converges to a local minimum or ground state of Φ. That is to
say, the system (2.809) moves in the direction of decreasing the scalar action
potential Φ, and when both ẋi = 0 and ẏi = 0 for all i = 1, . . . , N , the steady
state is reached.

In this way, the neurodynamical (x, y,ω)−system acts as tensor–invariant
self–organizing (excitatory / inhibitory) associative memory machine, resem-
bling the set of granule and Purkinje cells of cerebellum [HBB96].

The feedforward map Ψ : M → M is realized by the inputs Ai(q) and
Bi(p) to the (x, y,ω)–system, while the feedback map Ψ−1 : M → M is
realized by the system output, i.e., the feedback–control 1−forms ui(x, y).
These represent the cerebellar FC–level corrections to the covariant torques
Fi = Fi(t, q, p).

The tensor–invariant form of the oscillatory neurodynamical (x, y,ω)–
system (2.800–2.808) resembles the associative action of the granule and Purk-
inje cells in the tunning of the limb cortico–rubro–cerebellar recurrent network
[HBB96], giving the cerebellar correction ui(x, y) to the covariant driving
torques Fi = Fi(t, q, p). In this way (x, y,ω)–system forms the nonlinear loop
functor L = Ξ[L] : T A ⇒ T A∗.

Cortical Control Level

Our third task is to establish the nonlinear loop functor L = Ξ[L] : ST ⇒
ST ∗ on the category ST of the cortical FC–level.

Recall that for the purpose of cortical control, the purely rotational biome-
chanical manifold M could be firstly reduced to N–torus and subsequently
transformed to N–cube (‘hyper–joystick’), using the following geometrical
techniques (see (2.4.1) above).

Denote by S1 the constrained unit circle in the complex plane. This is an
Abelian Lie group. We have two reduction homeomorphisms

SO(3) � SO(2) � SO(2) � SO(2), and SO(2) ≈ S1,

where ‘�’ denotes the noncommutative semidirect product.
Next, let IN be the unit cube [0, 1]N in RN and ‘∼’ an equivalence relation

on RN get by ‘gluing’ together the opposite sides of IN , preserving their
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orientation. Therefore, M can be represented as the quotient space of RN by
the space of the integral lattice points in RN , that is a constrained torus TN :

RN/ZN = IN/ ∼∼=
N∏
i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = TN .

In the same way, the momentum phase–space manifold T ∗M can be repre-
sented by T ∗TN .

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation. By
the Tychonoff product–topology theorem, for every such quotient space there
exists a ‘selector’ such that their quotient models are homeomorphic, that is,
TN/ ∼∗≈ AN/ ∼∗. Therefore INq represents a ‘selector’ for the configuration
torus TN and can be used as an N–directional ‘q̂–command–space’ for FC.
Any subset of DOF on the configuration torus TN representing the joints
included in the general biomechanics has its simple, rectangular image in
the rectified q̂–command space – selector INq , and any joint angle qi has its
rectified image q̂i.

In the case of an end–effector, q̂i reduces to the position vector in external–
Cartesian coordinates zr (r = 1, . . . , 3). If orientation of the end–effector can
be neglected, this gives a topological solution to the standard inverse kine-
matics problem.

Analogously, all momenta p̂i have their images as rectified momenta p̂i in
the p̂–command space – selector INp . Therefore, the total momentum phase–

space manifold T ∗TN gets its ‘cortical image’ as the (̂q, p)–command space, a
trivial 2ND bundle INq × INp .

Now, the simplest way to perform the feedback FC on the cortical (̂q, p)–
command space INq × INp , and also to mimic the cortical–like behavior [1,2],
is to use the 2ND fuzzy–logic controller, in pretty much the same way as in
popular ‘inverted pendulum’ examples [Kos92, Kos96].

We propose the fuzzy feedback–control map Ξ that maps all the rectified
joint angles and momenta into the feedback–control 1−forms

Ξ : (q̂i(t), p̂i(t)) �→ ui(t, q, p), (2.811)

so that their corresponding universes of discourse, M̂ i = (q̂imax − q̂imin), P̂i =
(p̂maxi − p̂mini ) and Ui = (umaxi − umini ), respectively, are mapped as

Ξ :
N∏
i=1

M̂M i ×
N∏
i=1

P̂i →
N∏
i=1

Ui. (2.812)

The 2N–D map Ξ (2.811–2.812) represents a fuzzy inference system, de-
fined by (adapted from [IJB99b]):
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1. Fuzzification of the crisp rectified and discretized angles, momenta and
controls using Gaussian–bell membership functions

µk(χ) = exp[− (χ−mk)2
2σk

], (k = 1, 2, . . . , 9),

where χ ∈ D is the common symbol for q̂i, p̂i and ui(q, p) and D is the
common symbol for M i, P̂i and i; the mean values mk of the seven parti-
tions of each universe of discourseD are defined asmk = λkD+χmin, with
partition coefficients λk uniformly spanning the range of D, correspond-
ing to the set of nine linguistic variables L = {NL,NB,NM,NS,ZE, PS,
PM,PB,PL}; standard deviations are kept constant σk = D/9. Using
the linguistic vector L, the 9× 9 FAM (fuzzy associative memory) matrix
(a ‘linguistic phase–plane’), is heuristically defined for each human joint,
in a symmetrical weighted form

µkl = (kl exp{−50[λk + u(q, p)]2}, (k, l = 1, 2, . . . , 9)

with weights (kl ∈ {0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1.0}.
2. Mamdani inference is used on each FAM–matrix µkl for all human joints:

(i) µ(q̂i) and µ(p̂i) are combined inside the fuzzy IF–THEN rules using
AND (Intersection, or Minimum) operator,

µk[ūi(q, p)] = min
l
{µkl(q̂i), µkl(p̂i)}.

(ii) the output sets from different IF–THEN rules are then combined us-
ing OR (Union, or Maximum) operator, to get the final output, fuzzy–
covariant torques,

µ[ui(q, p)] = max
k
{µk[ūi(q, p)]}.

3. Defuzzification of the fuzzy controls µ[ui(q, p)] with the ‘center of gravity’
method

ui(q, p) =
∫
µ[ui(q, p)] dui∫

dui
,

to update the crisp feedback–control 1−forms ui = ui(t, q, p). These rep-
resent the cortical FC–level corrections to the covariant torques Fi =
Fi(t, q, p).

Operationally, the construction of the cortical (̂q, p)–command space INq ×
INp and the 2ND feedback map Ξ (2.811–2.812), mimic the regulation of
locomotor conditioned reflexes by the motor cortex [HBB96], giving the cor-
tical correction to the covariant driving torques Fi. Together they form the
nonlinear loop functor NL = Ξ[L] : ST ⇒ ST ∗.

A sample output from the leading human–motion simulator, Human Bio-
dynamics Engine (developed by the authors in Defence Science & Technology
Organisation, Australia), is given in Figure 2.28, giving the sophisticated 264
DOF analysis of adult male running with the speed of 5 m/s.
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Fig. 2.28. Sample output from the Human Biodynamics Engine: running with the
speed of 5 m/s.

2.5.7 Concurrent and Weak Functorial Machines

In this section we first present a concept of machine concurrency, as a modern
development of parallel and distributed information processing realized in
ANNs, and after that an abstract concept of functorial machine.

Concurrent Machines and Higher–Dimensional Automata

A sequential machine (i.e., an ordinary state–machine without concurrency)
is a set of states, also called 0−transitions, and a set of 1−transitions from a
given state to another one.

On the other hand, a concurrent machine consist of a set of states and
a set of 1−transitions, but has also the capability of carrying out several
1−transitions at the same time. A concurrent machine is a computer in which
several tasks can be performed at the same time. This can be a true parallelism
like in the case of several processors running concurrently, or a mono–processor
machine in which a unique CPU shares its time between several different tasks.

The homotopical analysis of concurrency consists of dealing with concur-
rent machines using the tools and methods of algebraic topology by work-
ing with execution paths up to homotopy [Gou95, FGR98]. The geometric
model of concurrent processes allows to formalize very precisely the notion
of dihomotopy. Two concurrent processes (i.e., the corresponding geometric
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models) are said dihomotopic when they can be geometrically continuously
deformed to each other without changing their computer–scientific properties
(see [Gau02a, Gau02b, Gau02c, GG03, Gau03]).

Consider a system with finitely many processes running altogether. We
assume that each process starts at (local time) 0 and finishes at (local time)
1; the P and V actions correspond to sequences of real numbers between 0
and 1, which reflect the order of the P ′s and V ’s. The initial state is (0, . . . , 0)
and the final state is (1, . . . , 1).

The basic idea is to give a description of what can happen when several
processes are modifying shared resources. Given a shared resource a, we see it
as its associated semaphore that rules its behavior with respect to processes.
For example, if a is an ordinary shared variable, it is customary to use its
semaphore to ensure that only one process at a time can write on it (this is
mutual exclusion). A semaphore is nothing but a register which counts the
number of times a shared object can still be accessed by processes. In the case
of usual shared variables, this register is initialized with value 1, processes try-
ing to access (read or write) on the corresponding variable compete in order to
get it first, then the semaphore value is decreased: we say that the semaphore
has been locked by the process. When it is equal to zero, all processes trying
to access this semaphore are blocked, waiting for the process which holds the
lock to relinquish it, typically when it has finished reading or writing on the
corresponding variable: the value of the semaphore is then increased.

For example, when the semaphores are initialized with value one, meaning
that they are associated with shared variables accessed in a mutually exclusive
manner, they are called binary semaphores. When a shared data (identified
with its semaphore) can be accessed by one or more processes, meaning that
the corresponding semaphore has been initialized with a value greater than
one, it is called a counting semaphore.

Given n deterministic sequential processes Q1, . . . , Qn, abstracted as a se-
quence of locks and unlocks on (semaphores associated with) shared objects,
Qi = R1a1i .R

2a2i · · ·Rniani
i (Rk being P or V , there is a natural way to un-

derstand the possible behaviors of their concurrent execution, by associating
to each process a coordinate line in Rn. The state of the system corresponds
to a point in Rn, whose ith coordinate describes the state (or ‘local time’) of
the ith processor.

Consider a system with finitely many processes running altogether. We
assume that each process starts at (local time) 0 and finishes at (local time)
1; the P and V actions correspond to sequences of real numbers between 0
and 1, which reflect the order of the P ′s and V ′s. The initial state is (0, . . . , 0)
and the final state is (1, . . . , 1). An example consisting of the two processes
T1 = Pa.Pb.V b.V a and T2 = Pb.Pa.V a.V b induces the 2D progress graph of
Figure 2.29.

The shaded area represents states which are not allowed in any execution
path, since they correspond to mutual exclusion. Such states constitute the
forbidden area. An execution path is a path from the initial state (0, . . . , 0) to



2.5 Neurodynamics 645

Fig. 2.29. Example of a progress graph (adapted from [Gau02a]).

the final state (1, . . . , 1) avoiding the forbidden area and increasing in each
coordinate – time cannot run backwards. We call these paths directed paths
or dipaths. This entails that paths reaching the states in the dashed square
underneath the forbidden region, marked ‘unsafe’ are deemed to deadlock,
i.e., they cannot possibly reach the allowed terminal state which is (1, 1) here.
Similarly, by reversing the direction of time, the states in the square above
the forbidden region, marked ‘unreachable’, cannot be reached from the initial
state, which is (0, 0) here. Also notice that all terminating paths above the
forbidden region are ‘equivalent’ in some sense, given that they are all char-
acterized by the fact that T2 gets a and b before T1 (as far as resources are
concerned, we call this a schedule). Similarly, all paths below the forbidden
region are characterized by the fact that T1 gets a and b before T2 does.

On this picture, one can already recognize many ingredients that are at
the center of the main problem of algebraic topology, namely the classifica-
tion of shapes modulo ‘elastic deformation’. As a matter of fact, the actual
coordinates that are chosen for representing the times at which P s and V s
occur are unimportant, and these can be ‘stretched’ in any manner, so the
properties (deadlocks, schedules etc.) are invariant under some notion of de-
formation, or homotopy. This is only a particular kind of homotopy though,
and this explains why a new theory has to be designed. We call it (in sub-
sequent work) directed homotopy or dihomotopy in the sense that it should
preserve the direction of time. For example, the two homotopic shapes, all of
which have two holes, of Figure 2.30 and Figure 2.31 have a different number
of dihomotopy classes of dipaths. In Figure 2.30 there are essentially four di-
paths up to dihomotopy (i.e., four schedules corresponding to all possibilities
of accesses of resources a and b) whereas in Figure 2.31, there are essentially
three dipaths up to dihomotopy [Gau02a, Gau02b, Gau02c, GG03, Gau03].

The natural combinatorial notion which discretizes this topological frame-
work is that of a precubical set, which is a collection of points (states), edges
(transitions), squares, cubes and hypercubes (higher–dimensional transitions
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Fig. 2.30. The progress graph corresponding to Pa.V a.Pb.V b | Pa.V a.Pb.V b
(adapted from [Gau02a]).

Fig. 2.31. The progress graph corresponding to Pb.V b.Pa.V a | Pa.V a.Pb.V b
(adapted from [Gau02a]).

representing the truly–concurrent execution of some number of actions). This
was introduced in [Pra91] as well as possible formalizations using n−categories
(see the next subsection), and a notion of homotopy [Lei03]. These precubical
sets are called higher–dimensional automata (HDA) because it really makes
sense to consider a hypercube as some form of transition, as in transition
systems, used in semantics of programming languages.

In general, an HDA labelled over an alphabetA, is a 7−tuple(Q,d,s, t, I,F, l)
where Q is a set (of states), d : Q → Nat, associating to each state q a di-
mension d(q); states of dimension 0 are called nodes, states of dimension 1 are
edges, states of dimension n represent lists of n transitions firing concurrently,
s, t : Nat∗Q → Q are partial functions (s(k, q) indicates the start and t(q, k)
the termination of the k-th transition in the list of transitions q) satisfying
[Pra91]:

s(k, q) defined iff t(k, q) defined iff k < d(q),
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k < d(q) ≥ d(s(k, q)) = d(t(k, q)) = d(q)− 1,
i ≤ j ≥ s(j, (s(i, q)) = s(i, s(j + 1, q)),
i ≤ j ≥ s(j, (t(i, q)) = t(i, s(j + 1, q)),
i ≤ j ≥ t(j, (s(i, q)) = s(i, t(j + 1, q)),
i ≤ j ≥ t(j, (t(i, q)) = t(i, t(j + 1, q)).

These requirements say that s(k, ) and t(k, ) applied to a state q representing
a list of d(q) > k transitions yield states representing lists of d(q)−1 transitions
obtained by leaving out transition number k and renumbering the transitions
with number > k. s(0, ) and t(0, ) applied on edges just yield the beginning
and ending nodes of those edges. Also, I is an element of Q with d(I) = 0 (the
initial state), F is a subset of Q whose members q satisfy d(q) = 0 (the set of
final states), l : Q → A is a partial function (the labelling function) defined
on states of dimension 1, satisfying [Pra91]:

d(q) = 2 and (k = 0 or k = 1) imply l(s(k, q)) = l(t(k, q)).

This requirement says that opposite edges in a square have the same label.
This because they represent the same transition, scheduled either before or
after the firing of another transition. Transitions or events can be defined as
equivalence classes of edges (with respect to the finest equivalence identifying
s(k, q) and t(k, q) for any q with d(q) = 2 and (k = 0 or k = 1)), and represent
occurrences of actions (elements of A) indicated by their label.

Let (Q, d, s, t, I, F, l) be an HDA. The projection function p : Nat∗Q→ Q
is a partial function defined by p(k, q) = s(0, s(1, ...s(k− 1, s(k+ 1, ...s(d(q)−
1, q)...))...)) if k < d(q), and p(k, q) undefined if k ≥ d(q). Clearly, d(p(k, q)) =
1 and s(0, d(p(i, q))) = s(0, d(p(j, q))) for i, j, k < d(q).

Now the labelling function can be extended to a total function l : Q→ A∗

by defining:

l(q) = l(p(0, q))l(s(0, q)) if d(q) > 1,
and l(q) = the empty string if d(q) = 0.

A path in a higher–dimensional automaton (Q, d, s, t, I, F, l) is a sequence
p(0)p(1)...p(n) in Q∗(n ≥ 0) such that for any 0 < i < n + 1 there is a k in
Nat such that p(i− 1) = s(k, p(i)) or p(i) = t(k, p(i− 1)).

Two paths P and P ′ are adjacent, denoted P ↔ P ′ if there are paths
Q,R and states p, p′ such that d(p) differs from d(p′) and P = QpR, while
P ′ = Qp′R [Pra91].

A path P ′ is an extension of a path P , denoted P < P ′ if there is a path
Q with P ′ = PQ.

A bisimulation between two higher–dimensional automata (Q, d, s, t, I, F, l)
and (Q′, d′, s′, t′, I ′, F ′, l′) labelled over A is a binary relation R between their
paths, such that their initial states (viewed as paths) are related, as well as:

– if (p(0)p(1)...p(n)) R (q(0)q(1)...q(m)) then n = m, p(n) ∈ F iff q(n) ∈ F ′,
and for 0 ≤ k ≤ n : l(p(k)) = l′(q(k)) (and thus d(p(k)) = d′(p(k))),
– if PRQ and P ↔ P ′ then there is a Q′ with Q↔ Q′ and P ′RQ′,
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– if PRQ and Q↔ Q′ then there is a P ′ with P ↔ P ′ and P ′RQ′,
– if PRQ and P < P ′ then there is a Q′ with Q < Q′ and P ′RQ′,
– if PRQ and Q < Q′ then there is a P ′ with P < P ′ and P ′RQ′.

Two higher–dimensional automata are called bisimulation equivalent if
there exists a bisimulation between them. Note that bisimulation equivalence
is an equivalence indeed. For 1D automata (with d(q) < 2 for all q ∈ Q)
a path is just an alternating sequence of nodes and edges – each edge going
from the node before it to the node after it, no two paths are adjacent and the
notion of bisimulation equivalence defined above coincides with the classical
one [Pra91].

Let A = (Q, d, s, t, I, F, l) be an HDA. Homotopy is the smallest equiva-
lence relation on the paths of A containing adjacency. The unfolding U(A)
of A is defined as the automaton (Q′, d′, s′, t′, I ′, F ′, l′), where: Q′ is the set
of all paths in A starting at I, modulo homotopy, d′[p(1)...p(n)] = d(p(n));
s′([p(1)...p(n)], k) = {q(1)...q(n − 1)|q(1)...q(n − 1)p(n) is homotopic with
p(1)...p(n) and s(p(n), k) = q(n−1)}; t′([p(1)...p(n)], k)=[p(1)...p(n)t(p(n), k)];
I ′ = [I]; F ′ = {[p(1)...p(n)]|p(n) in F}; and l′[p(1)...p(n)] = l(p(n)). It is
straightforward to check that U(A) is well–defined and is an automata indeed
[Pra91].

Two HDA (Q, d, s, t, I, F, l) and (Q′, d′, s′, t′, I ′, F ′, l′) labelled over A are
isomorphic if there exists a bijection f : Q→ Q′ (an isomorphism) satisfying
[Pra91]:

d′(f(q)) = d(q), f(I) = I ′, f(q) in F ′ iff q ∈ F , l′(f(q)) = l(q);
{s′(k, f(q))|k < d(q)} = {f(s(k, q))|k < d(q)}; and
{t′(k, f(q))|k < d(q)} = {f(t(k, q))|k < d(q)}.

The weak requirements for s and t allow to change the order in the list of
transitions represented by a state.

Working with dihomotopy classes of HDA allows to solve the state–space
explosion problem: the number of spaces to be traversed might be exponential
in the number of processes involved (see [Gau02a, Gau02b, Gau02c, GG03,
Gau03]).

Natural Geometrical Structures

Closely related to the higher–dimensional automata are various natural geo-
metrical structures, most of which are commonly called tangles.

For example, a 2D flow–chart–like complex 1D−structure could be a dia-
gram of the form [Lei02, Lei03]:
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Its 3D–generalization is a surface diagram with the same information–flow:

Moreover, if we allow crossings, as in a braid :

then we start getting pictures that look like knots which are again related to
higher categorical structures [Lei02, Bae97].

A category C with only one object is a monoid (= semigroup with unit)
M . A 2−category C with only one 0−cell is a monoidal category M. A braided
monoidal category is a monoidal category equipped with a map called braiding

A⊗B
βA,B� B ⊗A ,

for each pair A,B of objects.
The canonical example of a braided monoidal category is BR [Lei03]. This

has:
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1. Objects: natural numbers 0, 1, . . .;
2. Morphisms: braids, e.g.,

(taken up to deformation);
there are no morphisms m � n when m �= n;

3. Tensor product: placing side–by–side (which on objects means addition);
and

4. Braiding: right over left, e.g.,

Knots, links and braids are all special cases of tangles (see [RT90]). The
mysterious relationships between topology, algebra and physics amount in
large part to the existence of interesting functors from various topologically
defined categories to Hilbert, the category of Hilbert spaces. These topolog-
ically defined categories are always ∗−categories, and the really interesting
functors from them to Hilbert are always ∗−functors, which preserve the
∗−structure. Physically, the ∗ operation corresponds to reversing the direc-
tion of time. For example, there is a ∗−category whose objects are collections
of points and whose morphisms are tangles (see [Bae97, BD98]):

.

We can think of this morphism f : x→ y as representing the trajectories of a
collection of particles and antiparticles, where particles and antiparticles can
be created or annihilated in pairs. Reversing the direction of time, we obtain
the ‘dual’ morphism f∗ : y → x:
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.

This morphism is not the inverse of f , since the composite f ◦f∗ is a nontrivial
tangle:

.

Indeed, any groupoid becomes a ∗−category if we set f∗ = f−1 for every
morphism f .

The above example involves 1D curves in 3D space. More generally, topo-
logical quantum field theory studies nD manifolds embedded in (n + k)D
space–time, which in the k → ∞ limit appear as ‘abstract’ nD manifolds. It
appears that these are best described using certain ‘n−categories with duals’,
meaning n−categories in which every j−morphism f has a dual f∗.

Therefore, a tangle is a box in 3D space with knotted and linked string
embedded within it and a certain number of strands of that string emanating
from the surface of the box. There are no open ends of string inside the box.
We usually think of some subset of the strands as inputs to the tangle and
the remaining strands as the outputs from the tangle. Usually the inputs are
arranged to be drawn vertically and so that they enter tangle from below,
while the outputs leave the tangle from above. The tangle itself (within the
box) is arranged as nicely as possible with respect to a vertical direction.
This means that a definite vertical direction is chosen, and that the tangle
intersects planes perpendicular to this direction transversely except for a finite
collection of critical points. These basic critical points are local maxima and
local minima for the space curves inside the tangle. Two tangles configured
with respect to the same box are ambient isotopic if there is an isotopy in
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three space carrying one to the other that fixes the input and output strands
of each tangle. We can compose two tangles A and B where the number of
output strand of A is equal to the number of input strands of B. Composition
is accomplished by joining each output strand of A to a corresponding input
strand of B [KR95, KR99, Kau94].

A tangle diagram is a box in the plane, arranged parallel to a chosen
vertical direction with a left–right ordered sequence of input strands entering
the bottom of the box, and a left–right ordered sequence of output strands
emanating from the top of the box. Inside the box is a diagram of the tangle
represented with crossings (broken arc indicating the undercrossing line) in
the usual way for knot and links. We assume, as above, that the tangle is
represented so that it is transverse to lines perpendicular to the vertical except
for a finite number of points in the vertical direction along the tangle. It is
said that the tangle is well arranged, or Morse with respect to the vertical
direction when these transversality conditions are met. At the critical points
we will see a local maximum, a local minimum or a crossing in the diagram.
Tangle composition is well–defined (for matching input/output counts) since
the input and output strands have an ordering (from left to right for the
reader facing the plane on which the tangle diagram is drawn). Note that
the cardinality of the set of input strands or output strands can be equal to
zero. If they are both zero, then the tangle is simply a knot or link diagram
arranged well with respect to the vertical direction [KR95, KR99, Kau94].

The Reidemeister moves are a set of moves on diagrams that combinato-
rially generate isotopy for knots, links and and tangles [Rei48]. If two tangles
are equivalent in 3D space, then corresponding diagrams of these tangles can
be obtained one from another, by a sequence of Reidemeister moves. Each
move is confined to the tangle box and keeps the input and output strands of
the tangle diagram fixed.

Two (tangle) diagrams are said to be regularly isotopic if one can be ob-
tained from the other by a sequence of Reidemeister moves of type 0,2,3 (move
number 1 is not used in regular isotopy).

If A and B are given tangles, we denote the composition of A and B by
AB where the diagram of A is placed below the diagram of B and the output
strands of A are connected to the input strands of B. If the cardinalities of
the sets of input and output strands are zero, then we simple place one tangle
below the other to form the product [KR95, KR99, Kau94].

Along with tangle composition, as defined in the previous paragraph, we
also have an operation of product or juxtaposition of tangles. To juxtapose
two tangles A and B simply place their diagrams side by side with A to the
left of B and regard this new diagram as a new tangle whose inputs are the
inputs of A followed by the inputs of B, and whose outputs are the outputs
of A followed by the outputs of B. We denote the tangle product of A and B
by A⊗B.

It remains to describe the equivalence relation on tangles that makes them
represent regular isotopy classes of embedded string. Every tangle is a compo-
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sition of elementary tangles where an elementary tangle is one of the following
list: a cup (a single minimum – zero inputs, two outputs), a cap (a single max-
imum – two inputs, zero outputs), a crossing (a single local crossing diagram
– two inputs and two outputs).

Ultimate Conceptual Machines: Weak n−Categories

As traditionally conceived, an n−category is an algebraic structure having ob-
jects or 0−morphisms, 1−morphisms between 0−morphisms, 2−morphisms
between 1−morphisms, and so on up to n−morphisms. There should be
various ways of composing j−morphisms, and these composition operations
should satisfy various laws, such as associativity laws. In the so–called strict
n−categories, these laws are equations. While well–understood and tractable,
strict n−categories are insufficiently general for many applications: what one
usually encounters in nature are weak n−categories, in which composition op-
erations satisfy the appropriate laws only up to equivalence. Here the idea
is that n−morphisms are equivalent precisely when they are equal, while
for j < n an equivalence between j−morphisms is recursively defined as a
(j + 1)−morphism from one to the other that is invertible up to equivalence
[BD98].

Now, what makes it difficult to define weak n−categories is that laws
formulated as equivalences should satisfy laws of their own – the so–called
coherence laws – so that one can manipulate them with some of the same
facility as equations. Moreover, these coherence laws should also be equiva-
lences satisfying their own coherence laws, again up to equivalence, and so on
[BD98].

For example, a weak 1−category is just an ordinary category. In a category,
composition of 1−morphisms is associative:

(fg)h = f(gh).

Weak 2−categories first appeared in the work of Bénabou [Ben67], under
the name of bicategories. In a bicategory, composition of 1−morphisms is
associative only up to an invertible 2−morphism, the ‘associator ’:

Af,g,h : (fg)h→ f(gh).

The associator allows one to re–bracket parenthesized composites of arbitrarily
many 1−morphisms, but there may be many ways to use it to go from one
parenthesization to another. For all these to be equal, the associator must
satisfy a coherence law, the pentagon identity, which says that the following
diagram commutes:

(f(gh))i f((gh)i)�

((fg)h)i f(g(hi))�(fg)(hi)

�

�
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where all the arrows are 2−morphisms built using the associator. Weak
3−categories or tricategories were defined by [GPS95]. In a tricategory, the
pentagon identity holds only up to an invertible 3−morphism, which satisfies
a further coherence law of its own.

When one explicitly lists the coherence laws this way, the definition of
weak n−category tends to grow ever more complicated with increasing n. To
get around this, one must carefully study the origin of these coherence laws.
So far, most of our insight into coherence laws has been won through homo-
topy theory, where it is common to impose equations only up to homotopy,
with these homotopies satisfying coherence laws, again up to homotopy, and
so on. For example, the pentagon identity and higher coherence laws for asso-
ciativity first appeared in Stasheff’s work on the structure inherited by a space
equipped with a homotopy equivalence to a space with an associative product
[Sta63]. Subsequent work led to a systematic treatment of coherence laws in
homotopy theory through the formalism of topological operads [Ada78].

Underlying the connection between homotopy theory and n−category the-
ory is a hypothesis made quite explicit by Grothendieck [Gro83]: to any topo-
logical space one should be able to associate an n−category having points
as objects, paths between points as 1−morphisms, certain paths of paths as
2−morphisms, and so on, with certain homotopy classes of n−fold paths as
n−morphisms. This should be a special sort of weak n−category called a weak
n−groupoid, in which all j−morphisms (0 < j ≤ n) are equivalences. More-
over, the process of assigning to each space its fundamental n−groupoid, as
Grothendieck called it, should set up a complete correspondence between the
theory of homotopy n−types (spaces whose homotopy groups vanish above
the nth) and the theory of weak n−groupoids. This hypothesis explains why
all the coherence laws for weak n−groupoids should be deducible from homo-
topy theory. It also suggests that weak n−categories will have features not
found in homotopy theory, owing to the presence of j−morphisms that are
not equivalences [BD98].

Homotopy theory also makes it clear that when setting up a theory of
n−categories, there is some choice involved in the shapes of ones j−morphisms
– or in the language of topology, j−cells. The traditional approach to n−cate-
gories is globular. This means that for j > 0, each j−cell f : x → y has two
(j − 1)−cells called its source, sf = x, and target, tf = y, which for j > 1
satisfy

s(sf) = s(tf), t(sf) = t(tf)).

Thus a j−cell can be visualized as a globe, a jD ball whose boundary is
divided into two (j− 1)D hemispheres corresponding to its source and target.
However, in homotopy theory, the simplicial approach is much more popular.
In a simplicial set , each j−cell f is shaped like a jD simplex, and has j + 1
faces, certain (j − 1)−cells d0f, . . . , dnf . In addition to these there are (j +
1)−cells i0f, . . . , in+1f called degeneracies, and the face and degeneracy maps
satisfy certain well–known relations [BD98].
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2.5.8 Brain–Mind Functorial Machines

In this section we propose two models of the brain–mind functorial machines:
the first one is a psychologically–motivated top–down machine, while the sec-
ond one is physically–motivated bottom–up solitary machine.

Neurodynamical 2−Functor

Here we define the goal–directed cognitive neurodynamics as an evolution
2−functor E given by

C D�
k

A B�
f

�

h

�

g
CURRENT
NEURAL
STATE

E �
�

E(C) E(D)�
E(k)

E(A) E(B)�E(f)

�

E(h)

�

E(g)
DESIRED
NEURAL
STATE

(2.813)
In (2.813), E represents a projection map from the source 2−category of the
current neural state, defined as a commutative square of small categories
A,B,C,D, . . . of current neural ensembles and their causal interrelations
f, g, h, k, . . ., onto the target 2−category of the desired neural state, defined
as a commutative square of small categories E(A), E(B), E(C), E(D), . . . of
evolved neural ensembles and their causal interrelations E(f), E(g), E(h), E(k).

The evolution 2−functor E can be horizontally decomposed in the following
three neurodynamic components (see [Lew97, AL91]):

1. Intention, defined as a 3−cell:

Need1 ∗Need3

Need2 ∗Need4

Motive1,2 Motive3,4
INTENTION

� �
>

�

	

2. Action, defined as a 1−cell:
ACTION�

3. Locomotion, defined as a 2−cell:

Initial

Sustain

Monitor

��

�

�

�

LOCOMOTION

Now, each causal arrow in (2.813), say f : A→ B, stands for a generic ‘neuro–
morphism’, representing a self–organized, oscillatory neurodynamic system.
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We define a generic neuro–morphism f to be a nonlinear tensor–field (x, y,ω)–
system (2.814–2.819), acting as a bidirectional associative memory machine
on a ND Riemannian manifold MN of the human cortex. It is formed out of
two distinct, yet nonlinearly–coupled neural subsystems:

1. Activation (x, y)–dynamics (2.814–2.815), defined as an interplay of an
excitatory vector–field xi = xi(t) : MN → TM , representing a cross–
section of the tangent bundle TM , and and an inhibitory 1−form yi =
yi(t) :MN → T ∗M , representing a cross–section of the cotangent bundle
T ∗M .

2. Excitatory and inhibitory unsupervised learning (ω)–dynamics (2.816–
2.819) generated by random differential Hebbian learning process (2.818–
2.819), defined respectively by contravariant synaptic tensor–field ωij =
ωij(t) :MN → TTMN

im and covariant synaptic tensor–field ωij = ωij(t) :
MN → T ∗T ∗M, representing cross–sections of contravariant and covari-
ant tensor bundles, respectively.

(x, y,ω)–system is analytically defined as a set of N coupled neurodynamic
equations:

ẋi = Ai + ωij fj(y)− xi, (2.814)

ẏi = Bi + ωij f j(x)− yi, (2.815)

ω̇ij = −ωij + Iij(x, y), (2.816)
ω̇ij = −ωij + Iij(x, y), (2.817)

Iij = f i(x) f j(y) + ḟ i(x) ḟ j(y) + σij , (2.818)

Iij = fi(x) fj(y) + ḟi(x) ḟj(y) + σij , (2.819)
(i, j = 1, . . . , N).

Here ω is a symmetric, second–order synaptic tensor–field; Iij = Iij(x, y, σ)
and Iij=Iij(x, y, σ)respectively denote contravariant–excitatory and covariant–
inhibitory random differential Hebbian innovation–functions with tensorial
Gaussian noise σ (in both variances); fs and ḟs denote sigmoid activation
functions (f = tanh(.)) and corresponding signal velocities (ḟ = 1 − f2),
respectively in both variances; Ai = Ai(t) and Bi = Bi(t) are contravariant–
excitatory and covariant–inhibitory neural inputs to the corresponding corti-
cal cells, respectively;

Nonlinear activation (x, y)–dynamics, describes a two–phase biological
neural oscillator field, in which the excitatory neural field excites the in-
hibitory neural field, which itself reciprocally inhibits the excitatory one.
(x, y)–dynamics represents a nonlinear extension of a linear, Lyapunov–stable,
conservative, gradient system, defined in local neural coordinates xi, yi ∈ Vy
on T ∗M as

ẋi = − ∂Φ
∂yi

= ωijyj − xi, ẏi = − ∂Φ
∂xi

= ωijxj − yi. (2.820)
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The gradient system (2.820) is derived from scalar, neuro–synaptic action
potential Φ : T ∗M → R, given by a negative, smooth bilinear form in xi, yi ∈
Vy on T ∗M as

−2Φ = ωijxixj + ωijyiyj − 2xiyi, (i, j = 1, . . . , N),

which itself represents a Ψ–image of the Riemannian metrics g : TM → R on
the configuration manifold MN .

The nonlinear oscillatory activation (x, y)–dynamics (2.814–2.817) is get
from the linear conservative dynamics (2.820), by adding configuration de-
pendent inputs Ai and Bi, as well as sigmoid activation functions fj and f j ,
respectively. It represents an interconnected pair of excitatory and inhibitory
neural fields.

Both variant–forms of learning (ω)–dynamics (2.816–2.817) are given by
a generalized unsupervised (self–organizing) Hebbian learning scheme (see
[Kos92]) in which ω̇ij (resp. ω̇ij) denotes the new–update value, −ωij (resp.
ωij) corresponds to the old value and Iij(xi, yj) (resp. Iij(xi, yj)) is the in-
novation function of the symmetric 2nd order synaptic tensor–field ω. The
nonlinear innovation functions Iij and Iij are defined by random differential
Hebbian learning process (2.818–2.819). As ω is a symmetric and zero–trace
coupling synaptic tensor, the conservative linear activation dynamics (2.820)
is equivalent to the rule that ‘the state of each neuron (in both neural fields) is
changed in time if, and only if, the scalar action potential Φ (52), is lowered’.
Therefore, the scalar action potential Φ represents the monotonically decreas-
ing Lyapunov function (such that Φ̇ ≤ 0) for the conservative linear dynamics
(2.820), which converges to a local minimum or ground state of Φ. That is to
say, the system (2.820) moves in the direction of decreasing the scalar action
potential Φ, and when both ẋi = 0 and ẏi = 0 for all i = 1, . . . , N , the steady
state is reached.

Solitary ‘Thought Nets’ and ‘Emerging Mind’

Synergetic ‘Thought Solitons’

Recall that synergetics teaches us that order parameters (and their spatio–
temporal evolution) are patterns, emerging from chaos. In our opinion, the
most important of these order parameters, both natural and man made, are
solitons, because of their self–organizing quality to create order out of chaos.
From this perspective, nonlinearity – the essential characteristic of nature – is
the cause of both chaos and order. Recall that the solitary particle–waves, also
called the ‘light bullets’, are localized space–time excitations Ψ(x, t), propa-
gating through a certain medium Ω with constant velocities vj . They describe
a variety of nonlinear wave phenomena in one dimension and playing impor-
tant roles in optical fibers, many branches of physics, chemistry and biology.



658 2 Dynamics of Complex Systems

To derive our solitary network we start with modelling the conserva-
tive ‘thought solitons’, using the following three classical nonlinear equa-
tions, defining the time evolution of the spatio–temporal wave function Ψ(x, t)
(which is smooth, and either complex–, or real–valued) (see [NMP84, For90,
AC91, IP01a]; also compare with (2.4.2) above):

1. Nonlinear Schrödinger (NS) equation

iΨt = 2µ|Ψ |2Ψ − Ψxx , (2.821)

where Ψ = Ψ(x, t) is a complex-valued wave function with initial condi-
tion Ψ(x, t)|t=0 = Ψ(x) and µ is a nonlinear parameter representing field
strength. In the linear limit (a = 0) NS becomes the ordinary Schrödinger
equation for the wave function of the free 1D particle with massm = 1/2.
Its Hamiltonian function

HNS =
∫ +∞

−∞

(
µ|Ψ |4 + |Ψx|2

)
dx,

is equal to the total and conserved energy of the soliton. NS describes, for
example, nonlinear Faraday resonance in a vertically oscillating water, an
easy–plane ferromagnet with a combination of a stationary and a high–
frequency magnetic fields, and the effect of phase–sensitive amplifiers on
solitons propagating in optical fibers.

2. Korteveg–de Vries (KdV) equation

Ψt = 6ΨΨx − Ψxxx ,

with Hamiltonian (total conserved energy) given by

HKdV =
∫ +∞

−∞

(
Ψ3 +

1
2
Ψ2
x

)
dx.

KdV is related to the ordinary Schrödinger equation by the inverse scat-
tering method. KdV is a well–known model of 1D turbulence that was
derived in various physical contexts, including chemical–reaction waves,
propagation of combustion fronts in gases, surface waves in a film of a vis-
cous liquid flowing along an inclined plane, patterns in thermal convection,
rapid solidification, and others. Its discretization gives the Lotka–Voltera
equation

ẋj(t) = xj(t)
(
xj+1(t)− xj−1(t)

)
,

which appears in a model of struggle for existence of biological species.
3. Sine–Gordon (SG) equation

Ψtt = Ψxx − sinΨ,

with Hamiltonian (total conserved enegy) given by
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HSG =
∫ +∞

−∞

(
Ψ2
t + Ψ2

x + cosΨ
)
dx.

SG gives one of the simplest models of the unified field theory, can be
found in the theory of dislocations in metals, in the theory of Josephson
junctions and so on. It can be used also in interpreting certain biological
processes like DNA dynamics. Its discretization gives a system of coupled
pendulums.

Discrete solitons exist also in the form of the soliton celular automata
(SCA) [PST86]. SCA is a 1(space)+1(time)–dimensional ‘box and ball system’
made of infinite number of zeros (or, boxes) and finite number of ones (or,
balls). The value of the jth SCA cell ajt at a discrete time time t, is given as

ajt+1 =

⎧⎨⎩1, if ajt = 0 and
∑j−1
i=−∞ u

i
t >

∑j−1
i=−∞ a

i
t+1 ,

0, otherwise,

where ajt = 0 is assumed for |j| , 1. Any state of the SCA consists purely of
solitons (particularly, KdV–solitons), possessing conserved quantities of the
form of HKdV . All of these properties have motivated a number of suggestive
applications for a new kind of computational architecture that will use these
evolution patterns of SCA in order to give a ‘gateless’ implementation of
logical operations.

In practice, both SCA and KdV are usually approximated by the Toda
lattice equation,

q̈i = eq
i+1−qi − eqi−qi−1

, (i = 1, ..., N) (2.822)
with quasiperiodic qN+i(t) = qi(t) + c, or,
fast–dacaying boundary conditions lim

i→−∞
qi(t) = 0, lim

i→+∞
qi(t) = c.

The Toda equation (2.822) is a gradient Newtonian equation of motion

q̈i = −∂iqV, V (q) =
N∑
i=1

eq
i+1−qi

.

Otherwise, the Toda equation represents a Hamiltonian system

q̇i = pi, ṗi = eq
i+1−qi − eqi−qi−1

,

with the phase–space P = R2N with coordinates (pi, qi), standard Poisson
structure

{pi, pj} = {qi, qj} = 0, {pi, qj} = δji ,

and Hamiltonian function H =
N∑
i=1

(
1
2
p2i + eq

i+1−qi

), (i, j = 1, ..., N).
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Next, to make our conservative thought solitons open to the environment,
we have to modify them by adding:

1. Input from the senses, in the form of the Weber–Fechner’s law,

S(t) = ar log sr(t), (r = 1, ..., 5), (2.823)

where S = S(t) is the sensation, sr = sr(t) the vector of stimuli from the five
senses, and ar a constant vector; and

2. Disturbances, in the form of additive, zero–mean Gaussian white noise
η = η(t), independent from the main soliton–signal.

In this way, we get the modified solitary equations:

MNS : iΨt = 2µ|Ψ |2Ψ − Ψxx + ar log srΨ + η,

MKdV : Ψt = 6ΨΨx − Ψxxx + ar log srΨ + η,

MSG : Ψtt = Ψxx − sinΨ + ar log srΨ + η,

representing the three different models of the thought units.
Now we will form a single emerging order–parameter, the general factor,

that we call the Mind. It behaves like an orchestrated ensemble of thought
solitons, defined as systems of trainable, coupled soliton equations. Their ten-
sor couplings perform self–organizing associative learning by trial and error,
similar to that of the neural ensemble.

The dynamics of the soliton ensemble, representing our model of the ‘mind’
can be described as one of the following three soliton systems; each of them
performs learning, growing and competing between each other, and commu-
nicates with environment through the sensory inputs and the heating noise:

1. Coupled modified nonlinear Schrödinger equations

iΨkt = −Ψkxx + 2µk
∑
j 
=k

|Ψk|2Wj
k S

j(Ψ j)

+ νkΨk(1− εkΨk) + ar log srΨk + ηk,

2. Coupled modified Korteveg–de Vries equations

Ψkt = 6Ψkx Ψ
k − Ψkxxx +

∑
j 
=k

Wj
k S

j(Ψ j)

+ νkΨk(1− εkΨk) + ar log srΨk + ηk,

3. Coupled modified Sine–Gordon equations

Ψktt = Ψkxx − sinΨk +
∑
j 
=k

+νkΨk(1− εkΨk) + ar log srΨk + ηk,

where Ψk = Ψk(x, t), (k = 1, ..., n) is the set of wave functions of the solitary
thoughts, S(·) represents the sigmoidal threshold functions, νk and εk are
growing and competition parameters.
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Wj
k = Wj

k(Ψ) are tensorial learning couplings, evolving according to the
Hebbian learning scheme (see [Kos92]):

Ẇj
k = −Wj

k + Φjk(Ψ
k, Ψ j),

with innovation defined in tensor signal form (here Ṡ(·) = 1− tanh(·))
Φjk = Sj(Ψ j)Sk(Ψk) + Ṡj(Ψ j) Ṡk(Ψk).

Emerging Categorical Structure: MATTER⇒ LIFE ⇒MIND

The solitary thought nets effectively simulate the following 3−categorical
structure of MIND, emerging from the 2−categorical structure of LIFE, which
is itself emerging from the 1−categorical structure of MATTER:
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2.6 Psycho–Socio–Economic Dynamics

2.6.1 Force–Field Psychodynamics

In this section, which is written in the fashion of the quantum brain, we present
the top level of natural biodynamics, using geometrical generalization of the
Feynman path integral . To formulate the basics of force–field psychodynamics,
we use the action–amplitude picture of the BODY �MIND adjunction:

↓ Deterministic (causal) world of Human BODY ↓

Action : S[qn] =

∫ tout

tin

(Ek − Ep + Wrk + Src±) dt

−−−−−−−−−−−−−−−−−−−
Amplitude : 〈out|in〉 =

∫
Σ D[wnq

n] eiS[qn]

↑ Probabilistic (fuzzy) world of Human MIND ↑

In the action integral, Ek, Ep,Wrk and Src± denote the kinetic end po-
tential energies, work done by dissipative/driving forces and other energy

sources/sinks, respectively. In the amplitude integral, the peculiar sign
∫
Σ de-

notes integration along smooth paths and summation along discrete Markov
chains; i is the imaginary unit, wn are synaptic–like weights, while D is the
Feynman path differential (defined below) calculated along the configuration
trajectories qn. The action S[qn], through the least action principle δS = 0,
leads to all biodynamic equations considered so far (in generalized Lagrangian
and Hamiltonian form). At the same time, the action S[qn] figures in the ex-

ponent of the path integral
∫
Σ , defining the probability transition amplitude

〈out|in〉. In this way, the whole body dynamics is incorporated in the mind dy-
namics. This adaptive path integral represents an infinite–dimensional neural
network , suggesting an infinite capacity of human brain/mind.

For a long time the cortical systems for language and actions were be-
lieved to be independent modules. However, according to the recent research
of [Pul05], as these systems are reciprocally connected with each other, in-
formation about language and actions might interact in distributed neuronal
assemblies. A critical case is that of action words that are semantically related
to different parts of the body (e.g. ‘pick’, ‘kick’, ‘lick’,...). The author suggests
that the comprehension of these words might specifically, rapidly and auto-
matically activate the motor system in a somatotopic manner, and that their
comprehension rely on activity in the action system.
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Motivational Cognition in the Life Space Foam

Applications of nonlinear dynamical systems (NDS) theory in psychology have
been encouraging, if not universally productive/effective [Met97]. Its historical
antecedents can be traced back to Piaget’s [PHE92] and Vygotsky’s [Vyg82]
interpretations of the dynamic relations between action and thought, Lewinian
theory of social dynamics and cognitive–affective development [Lew51, Gol99],
and Bernstein’s [Ber47] theory of self–adjusting, goal–driven motor action.

Now, both the original Lewinian force–field theory in psychology (see
[Lew51, Gol99]) and modern decision–field dynamics (see [BT93, RBT01,
BD02]) are based on the classical Lewinian concept of an individual’s life
space.39 As a topological construct, Lewinian life space represents a person’s
psychological environment that contains regions separated by dynamical per-
meable boundaries. As a field construct, on the other hand, the life space
is not empty: each of its regions is characterized by valence (ranging from
positive or negative and resulting from an interaction between the person’s
needs and the dynamics of their environment). Need is an energy construct,
according to Lewin. It creates tension in the person, which, in combination
with other tensions, initiates and sustains behavior. Needs vary from the most
primitive urges to the most idiosyncratic intentions and can be both internally
generated (e.g., thirst or hunger) and stimulus–induced (e.g., an urge to buy
something in response to a TV advertisement). Valences are, in essence, per-
sonal values dynamically derived from the person’s needs and attached to
various regions in their life space. As a field, the life space generates forces
pulling the person towards positively–valenced regions and pushing them away
from regions with negative valence. Lewin’s term for these forces is vectors.
Combinations of multiple vectors in the life space cause the person to move
from one region towards another. This movement is termed locomotion and
it may range from overt behavior to cognitive shifts (e.g., between alterna-
tives in a decision–making process). Locomotion normally results in crossing
the boundaries between regions. When their permeability is degraded, these
boundaries become barriers that restrain locomotion. Life space model, thus,
offers a meta–theoretical language to describe a wide range of behaviors, from
goal–directed action to intrapersonal conflicts and multi–alternative decision–
making.

In order to formalize the Lewinian life–space concept, a set of action prin-
ciples need to be associated to Lewinian force–fields, (loco)motion paths (rep-
resenting mental abstractions of biomechanical paths [Iva04]) and life space
geometry. As an extension of the Lewinian concept, in this paper we introduce
a new concept of life–space foam (LSF, see Figure 2.32). According to this new
concept, Lewin’s life space can be represented as a geometrical functor with
globally smooth macro–dynamics, which is at the same time underpinned by
39 The work presented in this subsection has been developed in collaboration with

Dr. Eugene Aidman, Senior Research Scientist, Human Systems Integration, Land
Operations Division, Defence Science & Technology Organisation, Australia.
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wildly fluctuating, non–smooth, local micro–dynamics, describable by Feyn-
man’s: (i) sum–over–histories

∫
Σ paths , (ii) sum–over–fields

∫
Σ fields , and

(iii) sum–over–geometries
∫
Σ geom.

LSF is thus a two–level geometrodynamical functor , representing these two
distinct types of dynamics within the Lewinian life space. At its macroscopic
spatio–temporal level, LSF appears as a ‘nice & smooth’ geometrical functor
with globally predictable dynamics – formally, a smooth n−dimensional man-
ifoldM with local Riemannian metrics gij(x), smooth force–fields and smooth
(loco)motion paths, as conceptualized in the Lewinian theory. To model the
global and smooth macro–level LSF–paths, fields and geometry, we use the
general physics–like principle of the least action.

Now, the apparent smoothness of the macro–level LSF is achieved by the
existence of another level underneath it. This micro–level LSF is actually
a collection of wildly fluctuating force–fields, (loco)motion paths, curved re-
gional geometries and topologies with holes. The micro–level LSF is proposed
as an extension of the Lewinian concept: it is characterized by uncertainties
and fluctuations, enabled by microscopic time–level, microscopic transition
paths, microscopic force–fields, local geometries and varying topologies with
holes. To model these fluctuating microscopic LSF–structures, we use three
instances of adaptive path integral , defining a multi–phase and multi–path
(also multi–field and multi–geometry) transition process from intention to
the goal–driven action.

Fig. 2.32. Diagram of the life space foam: Lewinian life space with an adaptive
path integral acting inside it and generating microscopic fluctuation dynamics.

We use the new LSF concept to develop modelling framework for motiva-
tional dynamics (MD) and induced cognitive dynamics (CD).

According to Heckhausen (see [Hec77]), motivation can be thought of as a
process of energizing and directing the action. The process of energizing can be
represented by Lewin’s force–field analysis and Vygotsky’s motive formation
(see [Vyg82, AL91]), while the process of directing can be represented by
hierarchical action control (see [Ber47, Ber35, Kuh85]).
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Motivation processes both precede and coincide with every goal–directed
action. Usually these motivation processes include the sequence of the follow-
ing four feedforward phases [Vyg82, AL91]: (*)

1. Intention Formation F , including: decision making, commitment building,
etc.

2. Action Initiation I, including: handling conflict of motives, resistance to
alternatives, etc.

3. Maintaining the Action M, including: resistance to fatigue, distractions,
etc.

4. Termination T , including parking and avoiding addiction, i.e., staying in
control.

With each of the phases {F , I,M, T } in (*), we can associate a transition
propagator – an ensemble of (possibly crossing) feedforward paths propagat-
ing through the ‘wood of obstacles’ (including topological holes in the LSF,
see Figure 2.33), so that the complete transition functor T A is a product
of propagators (as well as sum over paths). All the phases–propagators are
controlled by a unique Monitor feedback process.

Fig. 2.33. Transition–propagator corresponding to each of the motivational phases
{F , I,M, T }, consisting of an ensemble of feedforward paths propagating through
the ‘wood of obstacles’. The paths affected by driving and restraining force–fields, as
well as by the local LSF–geometry. Transition goes from Intention, occurring at a
sample time instant t0, to Action, occurring at some later time t1. Each propagator
is controlled by its own Monitor feedback. All together they form the transition
functor T A.

In this subsection we propose an adaptive path integral formulation for the
motivational–transition functor T A. In essence, we sum/integrate over differ-
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ent paths and make a product (composition) of different phases–propagators.
Recall that this is the most general description of the general Markov stochas-
tic process.

We will also attempt to demonstrate the utility of the same LSF–formalisms
in representing cognitive functions, such as memory, learning and decision
making. For example, in the classical Stimulus encoding −→ Search −→
Decision −→ Response sequence [Ste69, Ash94], the environmental input–
triggered sensory memory and working memory (WM) can be interpreted
as operating at the micro–level force–field under the executive control of the
Monitor feedback, whereas search can be formalized as a control mechanism
guiding retrieval from the long–term memory (LTM, itself shaped by learning)
and filtering material relevant to decision making into the WM. The essential
measure of these mental processes, the processing speed (essentially deter-
mined by Sternberg’s reaction–time) can be represented by our (loco)motion
speed ẋ.

Six Faces of the Life Space Foam

The LSF has three forms of appearance: paths + field + geometries, acting
on both macro–level and micro–level, which is six modes in total. In this sec-
tion, we develop three least action principles for the macro–LSF–level and
three adaptive path integrals for the micro–LSF–level. While developing our
psycho–physical formalism, we will address the behavioral issues of motiva-
tional fatigue, learning, memory and decision making.

General Formalism

At both macro– and micro–levels, the total LSF represents a union of transi-
tion paths, force–fields and geometries, formally written as

LSFtotal := LSFpaths
⋃
LSFfields

⋃
LSFgeom (2.824)

≡
∫
Σ paths +

∫
Σ fields +

∫
Σ geom .

Corresponding to each of the three LSF–subspaces in (2.824) we formulate:

1. The least action principle, to model deterministic and predictive, macro–
level MD & CD, giving a unique, global, causal and smooth path–field–
geometry on the macroscopic spatio–temporal level; and

2. Associated adaptive path integral to model uncertain, fluctuating and
probabilistic, micro–level MD & CD, as an ensemble of local paths–fields–
geometries on the microscopic spatio–temporal level, to which the global
macro–level MD & CD represents both time and ensemble average (which
are equal according to the ergodic hypothesis).

In the proposed formalism, transition paths xi(t) are affected by the force–
fields ϕk(t), which are themselves affected by geometry with metric gij .
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Global Macro–Level of LSFtotal. In general, at the macroscopic LSF–
level we first formulate the total action S[Φ], the central quantity in our for-
malism that has psycho–physical dimensions of Energy × Time = Effort,
with immediate cognitive and motivational applications: the greater the action
– the higher the speed of cognitive processes and the lower the macroscopic fa-
tigue (which includes all sources of physical, cognitive and emotional fatigue
that influence motivational dynamics). The action S[Φ] depends on macro-
scopic paths, fields and geometries, commonly denoted by an abstract field
symbol Φi. The action S[Φ] is formally defined as a temporal integral from
the initial time instant tini to the final time instant tfin,

S[Φ] =
∫ tfin

tini

L[Φ] dt, (2.825)

with Lagrangian density given by

L[Φ] =
∫
dnxL(Φi, ∂xjΦi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF,
and ∂xjΦi are time and space partial derivatives of the Φi−variables over
coordinates.

Second, we formulate the least action principle as a minimal variation δ
of the action S[Φ]

δS[Φ] = 0, (2.826)

which, using techniques from the calculus of variations gives, in the form
of the so–called Euler–Lagrangian equations, a shortest (loco)motion path,
an extreme force–field, and a life–space geometry of minimal curvature (and
without holes). In this way, we effectively derive a unique globally smooth
transition functor

T A : INTENTIONtini
� ACTIONtfin

, (2.827)

performed at a macroscopic (global) time–level from some initial time tini to
the final time tfin.

In this way, we get macro–objects in the global LSF: a single path de-
scribed Newtonian–like equation of motion, a single force–field described by
Maxwellian–like field equations, and a single obstacle–free Riemannian geom-
etry (with global topology without holes).

For example, recall that in the period 1945–1949 J. Wheeler and R. Feyn-
man developed their action-at-a-distance electrodynamics [WF49], in complete
experimental agreement with the classical Maxwell’s electromagnetic theory,
but at the same time avoiding the complications of divergent self–interaction
of the Maxwell’s theory as well as eliminating its infinite number of field de-
grees of freedom. In Wheeler–Feynman view, “Matter consists of electrically
charged particles,” so they found a form for the action directly involving the
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motions of the charges only, which upon variation would give the Newtonian–
like equations of motion of these charges. Here is the expression for this action
in the flat space–time, which is in the core of quantum electrodynamics:

S[x; ti, tj ] =
1
2
mi

∫
(ẋiµ)

2 dti +
1
2
eiej

∫ ∫
δ(I2ij) ẋ

i
µ(ti)ẋ

j
µ(tj) dtidtj

with (2.828)
I2ij =

[
xiµ(ti)− xjµ(tj)

] [
xiµ(ti)− xjµ(tj)

]
,

where xiµ = xiµ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋiµ(ti) = dxiµ/dti is the velocity four–vector. The
first term in the action (2.828) is the ordinary mechanical action in Euclidean
space, while the second term defines the electrical interaction of the charges,
representing the Maxwell–like field (it is summed over each pair of charges;
the factor 1

2 is to count each pair once, while the term i = j is omitted to
avoid self–action; the interaction is a double integral over a delta function of
the square of space–time interval I2 between two points on the paths; thus,
interaction occurs only when this interval vanishes, that is, along light cones
[WF49]).

Now, from the point of view of Lewinian geometrical force–fields and
(loco)motion paths, we can give the following life–space interpretation to the
Wheeler–Feynman action (2.828). The mechanical–like locomotion term oc-
curring at the single time t, needs a covariant generalization from the flat 4D
Euclidean space to the nD smooth Riemannian manifold, so it becomes (see
e.g., [Iva04])

S[x] =
1
2

∫ tfin

tini

gij ẋ
iẋj dt,

where gij is the Riemannian metric tensor that generates the total ‘kinetic
energy’ of (loco)motions in the life space.

The second term in (2.828) gives the sophisticated definition of Lewinian
force–fields that drive the psychological (loco)motions, if we interpret electri-
cal charges ei occurring at different times ti as motivational charges – needs.

Local Micro–Level of LSFtotal. After having properly defined macro–
level MD & CD, with a unique transition map F (including a unique mo-
tion path, driving field and smooth geometry), we move down to the micro-
scopic LSF–level of rapidly fluctuating MD & CD, where we cannot define
a unique and smooth path–field–geometry. The most we can do at this level
of fluctuating uncertainty, is to formulate an adaptive path integral and cal-
culate overall probability amplitudes for ensembles of local transitions from
one LSF–point to the neighboring one. This probabilistic transition micro–
dynamics functor is defined by a multi–path (field and geometry, respectively)
and multi–phase transition amplitude 〈Action|Intention〉 of corresponding to
the globally–smooth transition map (2.827). This absolute square of this prob-
ability amplitude gives the transition probability of occurring the final state
of Action given the initial state of Intention,
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P (Action|Intention) = |〈Action|Intention〉|2.

The total transition amplitude from the state of Intention to the state of
Action is defined on LSFtotal

T A ≡ 〈Action|Intention〉total : INTENTIONt0 � ACTIONt1 , (2.829)

given by adaptive generalization of the Feynman’s path integral [FH65, Fey72,
Fey98]. The transition map (2.829) calculates the overall probability amplitude
along a multitude of wildly fluctuating paths, fields and geometries, perform-
ing the microscopic transition from the micro–state INTENTIONt0 occur-
ring at initial micro–time instant t0 to the micro–state ACTIONt1 at some
later micro–time instant t1, such that all micro–time instants fit inside the
global transition interval t0, t1, ..., ts ∈ [tini, tfin]. It is symbolically written as

〈Action|Intention〉total :=
∫
Σ D[wΦ] eiS[Φ], (2.830)

where the Lebesgue integration is performed over all continuous Φicon =
paths + field + geometries, while summation is performed over all discrete
processes and regional topologies Φjdis). The symbolic differential D[wΦ] in the
general path integral (2.830), represents an adaptive path measure, defined as
a weighted product

D[wΦ] = lim
N−→∞

N∏
s=1

wsdΦ
i
s, (i = 1, ..., n = con+ dis), (2.831)

which is in practice satisfied with a large N corresponding to infinitesi-
mal temporal division of the four motivational phases (*). Technically, the
path integral (2.830) calculates the amplitude for the transition functor
T A : Intention� Action.

In the exponent of the path integral (2.830) we have the action S[Φ] and
the imaginary unit i =

√
−1 (i can be converted into the real number −1

using the so–called Wick rotation, see next subsection).
In this way, we get a range of micro–objects in the local LSF at the short

time–level: ensembles of rapidly fluctuating, noisy and crossing paths, force–
fields, local geometries with obstacles and topologies with holes. However,
by averaging process, both in time and along ensembles of paths, fields and
geometries, we recover the corresponding global MD & CD variables.

Infinite–Dimensional Neural Network. The adaptive path integral
(2.830) incorporates the local learning process according to the standard for-
mula:New V alue = Old V alue+Innovation. The general weights ws = ws(t)
in (2.831) are updated by theMONITOR feedback during the transition pro-
cess, according to one of the two standard neural learning schemes, in which
the micro–time level is traversed in discrete steps, i.e., if t = t0, t1, ..., ts then
t+ 1 = t1, t2, ..., ts+1:
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1. A self–organized, unsupervised (e.g., Hebbian–like [Heb49]) learning rule:

ws(t+ 1) = ws(t) +
σ

η
(wds(t)− was (t)), (2.832)

where σ = σ(t), η = η(t) denote signal and noise, respectively, while su-
perscripts d and a denote desired and achieved micro–states, respectively;
or

2. A certain form of a supervised gradient descent learning :

ws(t+ 1) = ws(t)− η∇J(t), (2.833)

where η is a small constant, called the step size, or the learning rate and
∇J(n) denotes the gradient of the ‘performance hyper–surface’ at the
t−th iteration.

Both Hebbian and supervised learning are used for the local decision making
process (see below) occurring at the intention formation faze F .

In this way, local micro–level of LSFtotal represents an infinite–dimensional
neural network. In the cognitive psychology framework, our adaptive path in-
tegral (2.830) can be interpreted as semantic integration (see [BF71, Ash94]).

Motion and Decision Making in LSFpaths

On the macro–level in the subspace LSFpaths we have the (loco)motion action
principle

δS[x] = 0,

with the Newtonian–like action S[x] given by

S[x] =
∫ tfin

tini

dt [
1
2
gij ẋ

iẋj + ϕi(xi)], (2.834)

where overdot denotes time derivative, so that ẋi represents processing speed,
or (loco)motion velocity vector. The first bracket term in (2.834) represents
the kinetic energy T ,

T =
1
2
gij ẋ

iẋj ,

generated by the Riemannian metric tensor gij , while the second bracket
term, ϕi(xi), denotes the family of potential force–fields, driving the (loco)mo-
tions xi = xi(t) (the strengths of the fields ϕi(xi) depend on their positions xi

in LSF, see LSFfields below). The corresponding Euler–Lagrangian equation
gives the Newtonian–like equation of motion

d

dt
Tẋi − Txi = −ϕixi , (2.835)

(subscripts denote the partial derivatives), which can be put into the standard
Lagrangian form
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d

dt
Lẋi = Lxi , with L = T − ϕi(xi).

In the next subsection we use the micro–level implications of the action S[x]
as given by (2.834), for dynamical descriptions of the local decision–making
process.

On the micro–level in the subspace LSFpaths, instead of a single path de-
fined by the Newtonian–like equation of motion (2.835), we have an ensemble
of fluctuating and crossing paths with weighted probabilities (of the unit total
sum). This ensemble of micro–paths is defined by the simplest instance of our
adaptive path integral (2.830), similar to the Feynman’s original sum over
histories,

〈Action|Intention〉paths =
∫
Σ D[wx] eiS[x], (2.836)

where D[wx] is a functional measure on the space of all weighted paths, and
the exponential depends on the action S[x] given by (2.834). This procedure
can be redefined in a mathematically cleaner way if we Wick–rotate the time
variable t to imaginary values t �→ τ = it, thereby making all integrals real:∫

Σ D[wx] eiS[x] Wick�
∫
Σ D[wx] e−S[x]. (2.837)

Discretization of (2.837) gives the thermodynamic–like partition function

Z =
∑
j

e−wjE
j/T , (2.838)

where Ej is the motion energy eigenvalue (reflecting each possible motiva-
tional energetic state), T is the temperature–like environmental control pa-
rameter, and the sum runs over all motion energy eigenstates (labelled by
the index j). From (2.838), we can further calculate all thermodynamic–like
and statistical properties of MD & CD (see e.g., [Fey72]), as for example,
transition entropy S = kB lnZ, etc.

From cognitive perspective, our adaptive path integral (2.836) calculates
all (alternative) pathways of information flow during the transition Intention
−→ Action.

In the language of transition–propagators, the integral over histories
(2.836) can be decomposed into the product of propagators (i.e., Fredholm
kernels or Green functions) corresponding to the cascade of the four motiva-
tional phases (*)

〈Action|Intention〉paths =
∫
Σ dxFdxIdxMdxTK(F , I)K(I,M)K(M, T ),

(2.839)
satisfying the Schrödinger–like equation (see e.g., [Dir82])

i ∂t〈Action|Intention〉paths = HAction 〈Action|Intention〉paths, (2.840)
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where HAction represents the Hamiltonian (total energy) function available at
the state of Action. Here our ‘golden rule’ is: the higher the HAction, the lower
the microscopic fatigue.

In the connectionist language, our propagator expressions (2.839–2.840)
represent activation dynamics, to which our Monitor process gives a kind of
backpropagation feedback, a version of the basic supervised learning (2.833).

Mechanisms of Decision–Making under Uncertainty. The basic
question about our local decision making process, occurring under uncer-
tainty at the intention formation faze F , is: Which alternative to choose?
(see [RBT01, Gro82, Gro99, Gro88, Ash94]). In our path–integral language
this reads: Which path (alternative) should be given the highest probability
weight w? Naturally, this problem is iteratively solved by the learning pro-
cess (2.832–2.833), controlled by the MONITOR feedback, which we term
algorithmic approach.

In addition, here we analyze qualitative mechanics of the local decision
making process under uncertainty, as a heuristic approach. This qualitative
analysis is based on the micro–level interpretation of the Newtonian–like ac-
tion S[x], given by (2.834) and figuring both processing speed ẋ and LTM
(i.e., the force–field ϕ(x), see next subsection). Here we consider three differ-
ent cases:

1. If the potential ϕ(x) is not very dependent upon position x(t), then the
more direct paths contribute the most, as longer paths, with higher mean
square velocities [ẋ(t)]2 make the exponent more negative (after Wick
rotation (2.837)).

2. On the other hand, suppose that ϕ(x) does indeed depend on position x.
For simplicity, let the potential increase for the larger values of x. Then
a direct path does not necessarily give the largest contribution to the
overall transition probability, because the integrated value of the potential
is higher than over another paths.

3. Finally, consider a path that deviates widely from the direct path. Then
ϕ(x) decreases over that path, but at the same time the velocity ẋ in-
creases. In this case, we expect that the increased velocity ẋ would more
than compensate for the decreased potential over the path.

Therefore, the most important path (i.e., the path with the highest weight w)
would be one for which any smaller integrated value of the surrounding field
potential ϕ(x) is more than compensated for by an increase in kinetic–like
energy m

2 ẋ
2. In principle, this is neither the most direct path, nor the longest

path, but rather a middle way between the two. Formally, it is the path along
which the average Lagrangian is minimal,

<
m

2
ẋ2 + ϕ(x) > � min, (2.841)

i.e., the path that requires minimal memory (both LTM and WM, see LSFfields
below) and processing speed. This mechanical result is consistent with the ‘fil-
ter theory’ of selective attention [Bro58], proposed in an attempt to explain a
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range of the existing experimental results. This theory postulates a low level
filter that allows only a limited number of percepts to reach the brain at any
time. In this theory, the importance of conscious, directed attention is mini-
mized. The type of attention involving low level filtering corresponds to the
concept of early selection [Bro58].

Although we termed this ‘heuristic approach’ in the sense that we can
instantly feel both the processing speed ẋ and the LTM field ϕ(x) involved,
there is clearly a psycho–physical rule in the background, namely the averaging
minimum relation (2.841).

From the decision making point of view, all possible paths (alternatives)
represent the consequences of decision making. They are, by default, short–
term consequences, as they are modelled in the micro–time–level. However, the
path integral formalism allows calculation of the long–term consequences, just
by extending the integration time, tfin −→∞. Besides, this averaging decision
mechanics – choosing the optimal path – actually performs the ‘averaging lift’
in the LSF: from micro– to the macro–level.

Force–Fields and Memory in LSFfields

At the macro–level in the subspace LSFfields we formulate the force–field
action principle

δS[ϕ] = 0, (2.842)

with the action S[ϕ] dependent on Lewinian force–fields ϕi = ϕi(x) (i =
1, ..., N), defined as a temporal integral

S[ϕ] =
∫ tfin

tini

L[ϕ] dt, (2.843)

with Lagrangian density given by

L[ϕ] =
∫
dnxL(ϕi, ∂xjϕi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF, and
∂xjϕi are partial derivatives of the field variables over coordinates.

On the micro–level in the subspace LSFfields we have the Feynman–type
sum over fields ϕi (i = 1, ..., N) given by the adaptive path integral

〈Action|Intention〉fields =
∫
Σ D[wϕ] eiS[ϕ] Wick�

∫
Σ D[wϕ] e−S[ϕ], (2.844)

with action S[ϕ] given by temporal integral (2.843). (Choosing special forms
of the force–field action S[ϕ] in (2.844) defines micro–level MD & CD, in
the LSFfields space, that is similar to standard quantum–field equations, see
e.g., [Ram90].) The corresponding partition function has the form similar to
(2.838), but with field energy levels.
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Regarding topology of the force fields, we have in place n−categorical
Lagrangian–field structure on the Riemannian LSF manifold M ,

Φi : [0, 1] →M, Φi : Φi0 �→ Φi1,

generalized from the recursive homotopy dynamics (2.668) above, using

d

dt
fẋi = fxi

� ∂µ

(
∂L
∂µΦi

)
=
∂L
∂Φi

,

with [x0, x1] � [Φi0, Φ
i
1].

Relationship between Memory and Force–Fields. As already men-
tioned, the subspace LSFfields is related to our memory storage [Ash94].
Its global macro–level represents the long–term memory (LTM), defined by
the least action principle (2.842), related to cognitive economy in the model
of semantic memory [Rat78, CQ69]. Its local micro–level represents work-
ing memory (WM), a limited–capacity ‘bottleneck’ defined by the adaptive
path integral (2.844). According to our formalism, each of Miller’s 7± 2 units
[Mil56] of the local WM are adaptively stored and averaged to give the global
LTM capacity (similar to the physical notion of potential). This averaging
memory lift, from WM to LTM represents retroactive interference, while the
opposite direction, given by the path integral (2.844) itself, represents proac-
tive interference. Both retroactive and proactive interferences are examples of
the impact of cognitive contexts on memory. Motivational contexts can exert
their influence, too. For example, a reduction in task–related recall following
the completion of the task is one of the clearest examples of force–field influ-
ences on memory: the amount of details remembered of a task declines as the
force–field tension to complete the task is reduced by actually completing it.

Once defined, the global LTM potential ϕ = ϕ(x) is then affecting the
locomotion transition paths through the path action principle (2.834), as well
as general learning (2.832–2.833) and decision making process (2.841).

On the other hand, the two levels of LSFfields fit nicely into the two levels
of processing framework, as presented by [CL72], as an alternative to theories
of separate stages for sensory, working and long–term memory. According to
the levels of processing framework, stimulus information is processed at mul-
tiple levels simultaneously depending upon its characteristics. In this frame-
work, our macro–level memory field, defined by the fields action principle
(2.842), corresponds to the shallow memory, while our micro–level memory
field, defined by the adaptive path integral (2.844), corresponds to the deep
memory.

Geometries, Topologies and Noise in LSFgeom

On the macro–level in the subspace LSFgeom representing an n−dimensional
smooth manifold M with the global Riemannian metric tensor gij , we formu-
late the geometrical action principle



2.6 Psycho–Socio–Economic Dynamics 675

δS[gij ] = 0,

where S = S[gij ] is the n−dimensional geodesic action on M ,

S[gij ] =
∫
dnx

√
gij dxidxj . (2.845)

The corresponding Euler–Lagrangian equation gives the geodesic equation of
the shortest path in the manifold M ,

ẍi + Γ ijk ẋ
j ẋk = 0,

where the symbol Γ ijk denotes the so–called affine connection which is the
source of curvature, which is geometrical description for noise (see [Ing97,
Ing98]). The higher the local curvatures of the LSF–manifold M , the greater
the noise in the life space. This noise is the source of our micro–level fluctua-
tions. It can be internal or external; in both cases it curves our micro–LSF.

Otherwise, if instead we choose an n−dimensional Hilbert–like action (see
[MTW73]),

S[gij ] =
∫
dnx

√
det |gij |R, (2.846)

where R is the scalar curvature (derived from Γ ijk), we get the n−dimensional
Einstein–like equation: Gij = 8πTij , where Gij is the Einstein–like ten-
sor representing geometry of the LSF manifold M (Gij is the trace–reversed
Ricci tensor Rij , which is itself the trace of the Riemann curvature tensor of
the manifold M), while Tij is the n−dimensional stress–energy–momentum
tensor. This equation explicitly states that psycho–physics of the LSF is pro-
portional to its geometry. Tij is important quantity, representing motivational
energy, geometry–imposed stress and momentum of (loco)motion. As before,
we have our ‘golden rule’: the greater the Tij−components, the higher the speed
of cognitive processes and the lower the macroscopic fatigue.

The choice between the geodesic action (2.845) and the Hilbert action
(2.846) depends on our interpretation of time. If time is not included in the
LSF manifold M (non–relativistic approach) then we choose the geodesic ac-
tion. If time is included in the LSF manifold M (making it a relativistic–like
n−dimensional space–time) then the Hilbert action is preferred. The first ap-
proach is more related to the information processing and the working memory.
The later, space–time approach can be related to the long–term memory: we
usually recall events closely associated with the times of their happening.

On the micro–level in the subspace LSFgeom we have the adaptive sum
over geometries, represented by the path integral over all local (regional) Rie-
mannian metrics gij = gij(x) varying from point to point on M (modulo
diffeomorphisms),

〈Action|Intention〉geom =
∫
Σ D[wgij ] eiS[gij ] Wick�

∫
Σ D[wgij ] e−S[gij ],

(2.847)
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where D[gij ] is diffeomorphism equivalence class of gij(x) ∈M .
To include the topological structure (e.g., a number of holes) inM , we can

extend (2.847) as

〈Action|Intention〉geom/top =
∑

topol.

∫
Σ D[wgij ] eiS[gij ], (2.848)

where the topological sum is taken over all connectedness–components of
M determined by the Euler characteristic χ of M . This type of integral
defines the theory of fluctuating geometries, a propagator between (n −
1)−dimensional boundaries of the n−dimensional manifold M . One has to
contribute a meaning to the integration over geometries. A key ingredient in
doing so is to approximate (using simplicial approximation and Regge calcu-
lus [MTW73]) in a natural way the smooth structures of the manifold M by
piecewise linear structures (mostly using topological simplices ∆). In this way,
after the Wick–rotation (2.837), the integral (2.847–2.848) becomes a simple
statistical system, given by partition function Z =

∑
∆

1
C∆
e−S∆ , where the

summation is over all triangulations ∆ of the manifold M , while CT is the
order of the automorphism group of the performed triangulation.

Micro–Level Geometry: the source of noise and stress in LSF. The
subspace LSFgeom is the source of noise, fluctuations and obstacles, as well as
psycho–physical stress. Its micro–level is adaptive, reflecting the human ability
to efficiently act within the noisy environment and under the stress conditions.
By averaging it produces smooth geometry of certain curvature, which is at
the same time the smooth psycho–physics. This macro–level geometry directly
affects the memory fields and indirectly affects the (loco)motion transition
paths.

The Mental Force Law. As an effective summary of this section, we
state that the psychodynamic transition functor T A : INTENTIONtini

�
ACTIONtfin

, defined by the generic path integral (2.830), can be interpreted
as a mental force law , analogous to our musculo–skeletal covariant force law ,
Fi = mgijaj , and its associated covariant force functor F∗ : TT ∗M → TTM
[II05].

2.6.2 Geometrical Dynamics of Human Crowd

In this subsection we formulate crowd representation model as an emotion–
field induced collective behavior of individual autonomous agents [IS00].

It is well–known that crowd behavior is more influenced by collective emo-
tion than by cognition. Recall from previous subsection that according to
Lewinian psychodynamics, human behavior is largely determined by underly-
ing forces (needs). For him, a force–field is defined as ‘the totality of coexisting
motivational facts which are conceived of as mutually interdependent’ [Lew97].
He also stresses psychological direction and velocity of behavior.

On the other hand, a number of factor–analysis based studies show that
human emotion is not a single quantity, but rather a multidimensional space.
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For example, in [SFM98], authors assessed emotions with single adjective de-
scriptors using standard linear factor analysis, by examining semantic as well
as cognitive, motivational, and intensity features of emotions. The focus was
on seven negative emotions common to several emotion typologies: anger,
fear, sadness, shame, pity, jealousy, and contempt. For each of these emo-
tions, seven items were generated corresponding to cognitive appraisal about
the self, cognitive appraisal about the environment, action tendency, action
fantasy, synonym, antonym, and intensity range of the emotion, respectively.
These findings set the groundwork for the construction of an instrument to
assess emotions multicomponentially.

Crowd Hypothesis

We consider a human crowd C as a group of m autonomous agents Ai
(i = 1, ...,m), each of which carries its own nD motivational factor–structure
(compare with the standard BDI–agents, as described in subsection 2.6.8 be-
low). This nonlinear factor structure, which can be get using modern nonlinear
factor analysis techniques (see [YA01, Ame93, WA98, WA00]; also compare
with subsection 2.6.9 below), is defined by n hypothetical motivational factor–
coordinates qi = {qµi }, (µ = 1, . . . , n), spanning the smooth nD motivational
factor manifold Mi for each autonomous agent Ai.

We understand crowd representation as an environmental field–induced
collective behavior of individual autonomous agents. To model it in a general
geometrodynamical framework, we firstly define the behavior of each agent
Ai as a motion πi along his motivational manifold Mi, caused by his own
emotion field Φi, which is an active (motor) subset of Mi.

Secondly, we formulate a collective geometrodynamical model for the
crowd, considered as a union C = ∪iAi,in the form of a divergence equation
for the total crowd’s SEM–tensor C.40

Geometrodynamics of Individual Agents

To formulate individual agents’ geometrodynamics, we firstly derive two
higher geometrical structures from a motivational factor manifold Mi cor-
responding to an agent Ai: (i) the agent’s velocity phase–space, defined as a
tangent bundle TMi, and (ii) the agent’s momentum phase–space, defined as
a cotangent bundle T ∗Mi.

Now, the sections of TMi we call the agent’s vector–fields vi, which can
be expanded in terms of the basis vector–fields {eiµ ≡ ∂qµ

i
}, as vi = vµi e

i
µ.

Similarly, the sections of T ∗Mi we call the agent’s one–forms αi, which can
be expanded in terms of the basis one–forms {ωµi ≡ dq

µ
i }, as αi = αiµ ω

µ
i .

40 Throughout the text we use the following index convention: we label individ-
ual agents using Latin indices, and individual motivational factors using Greek
indices; summation convention is applied only to Greek factor indices.
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Here d denotes the exterior derivative (such that dd = 0). In particular, the
velocity vector–fields q̇i are defined on TMi as q̇i = q̇µi e

i
µ,while the momentum

one–forms πi are defined on T ∗Mi as πi = πiµ ω
µ
i .

Also, all factor–configuration manifoldsMi are assumed to be Riemannian,
admitting the metrics gi = 〈ωµi , ω

η
i 〉, determined by kinetic energies Ti =

〈q̇µi , q̇
η
i 〉 of individual agents Ai, each with the metric tensor gi = giµη ω

µ
i ⊗

ωηi . This implies that all vector–fields vi and one–forms αi are related by
g−induced scalar products

〈
ωµi , e

i
η

〉
= δiµη .

Emotional/Environmental Fields and Induced Agents’ Motions

Now, for each autonomous agent Ai three additional geometrodynamical ob-
jects are defined as:

1. Emotional/environmental potential one–form αi = αiµ ω
µ
i , which is the

gradient of some scalar function fi = fµi (qµi ) on Mi,

αi = dfi, in components, αiµ = ∂qµ
i
fµi ω

µ
i .

2. Psycho–physical current vector–field Ji = Jµi e
i
µ on Mi, defined through

its motivational charge ei as

Jµi = ei
∫
ti

q̇µi δ
n [qµi (ti)] dti,

where δn = δn [qµi (ti)] denotes the nD impulse delta–function defined on
Mi.

3. Emotional/environmental psycho–physical field is a two–form

Φi = Φiµη ω
µ
i ⊗ ω

η
i =

1
2
Φiµη ω

µ
i ∧ ω

η
i

onMi, defined as the exterior derivative (i.e., curl) of the emotional/enviro-
nmental potential αi,

Φi = dαi, in components, Φiµη = αiη;µ − αiµ;η.

The emotional/environmental psycho–physical field Φi is governed by two
standard field equations:

dΦi = ddαi = 0, in components, Φi[µη;ν] = 0, (2.849)
and

div Φi = giJi, in components, Φi;ηµη = giµη J
η
i , (2.850)

where [µη; ν] ≡ µη; ν + ην;µ + vµ; η. The first field equation (2.849) states
that for each agent Ai the motivational tension–field Φi is curl–free, while the
second field equation (2.850) states that the environmental psycho–physical
field Φi has its source in the psycho–physical current Ji.
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Now, the behavioral equation for each agent Ai, induced by his/her envi-
ronmental psycho–physical field Φi, reads

π̇i = eiΦiq̇i, in components, π̇iµ = eiΦiµη q̇
η
i .

This equation states that the force of an individual agent’s motion, or his/her
behavior, equals the product of his/her psycho–physical charge, environmental
psycho–physical field, and velocity (speed) of behavior.

Collective Crowd Geometrodynamics

Now we define the total crowd’s geometrodynamics as a union C = ∪iAi
of all individual agents’ geometrodynamics, to model their emotion–induced
behavior. For this we use the total crowd’s energy–momentum tensor (CEM)
and its divergence equation of motion.

As a union of individual Riemannian manifolds, the total crowd’s manifold
M = ∪iMi is also Riemannian, with the metrics g =

∑
i g
i equal to the

sum of individual metrics gi = giµη ω
µ
i ⊗ ω

η
i . Now, the crowd’s CEM tensor

C = Cµη ω
µ
M⊗ωηM = 1

2Cµη ω
µ
M∧ωηM (where ωµM denote the basis one–forms

on M) has two parts, C = C(E) +C(B), in components, Cµη = C(E)
µη + C(B)

µη ,
corresponding to the total crowd’s emotion and behavior, which we define
respectively as follows:

1. The CEM’s emotional part C(E) is in components defined as a sum of
individual agents’ motivational–tension fields,

C(E)
µη =

M∑
i=1

(
ΦiµνΦ

ν
iη − giµηΦiνλΦνλi

)
,

so the equation of the crowd’s emotion is defined in the form of the diver-
gence equation

C(E);η
µη =

M∑
i=1

ΦiµηΦ
η;ν
iν = −

M∑
i=1

Φiµη J
η
i .

This equation says that CEM’s emotional part C(E) is a collective moti-
vational field with a sink.

2. The CEM’s behavioral part C(B)asa sumof individual agents’motivational–
currents times momenta:

C(B)
µη =

M∑
i=1

giµη

∫
ti

πiη(ti) q̇
η
i (ti) δ

n [qµi (ti)] dti,

so the equation of the crowd’s behavior is defined in the form of the
divergence equation
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C(B);η
µη =

M∑
i=1

giµη

∫
ti

πiη(ti) q̇
η
i (ti) ∂qη

i
δn [qµi (ti)] dti

=
M∑
i=1

ei

∫
ti

Φiµη q̇
η
i δ
n [qµi (ti)] dti =

M∑
i=1

Φiµη J
η
i .

This equation says that CEM’s behavioral part C(B) is a collective behav-
ioral field with a source.

Therefore, the divergence equation for the total crowd’s CEM tensor, rep-
resents the crowd’s motivation–behavior conservation law

div C = div
(
C(E) +C(B)

)
= 0, in components, C(E);η

µη + C(B);η
µη = 0.

This gives our basic representation of an isolated crowd as a conserva-
tive spatio–temporal dynamical system. Naturally, additional crowd’s energy–
momentum sources and sinks can violate this basic motivational–behavior
conservation law.

2.6.3 Dynamical Games on Lie Groups

In this section we propose a general approach to modelling conflict resolution
manoeuvres for land, sea and airborne vehicles, using dynamical games on
Lie groups. We use the generic name ‘vehicle’ to represent all planar vehicles,
namely land and sea vehicles, as well as fixed altitude motion of aircrafts
(see, e.g., [LGS98, TPS98]). First, we elaborate on the two–vehicle conflict
resolution manoeuvres, and after that discuss the multi–vehicle manoeuvres.

We explore special features of the dynamical games solution when the un-
derlying dynamics correspond to left–invariant control systems on Lie groups.
We show that the 2D (i.e., planar) motion of a vehicle may be modelled as
a control system on the Lie group SE(2). The proposed algorithm surrounds
each vehicle with a circular protected zone, while the simplification in the
derivation of saddle and Nash strategies follows from the use of symplectic
reduction techniques [MR99]. To model the two–vehicle conflict resolution,
we construct the safe subset of the state–space for one of the vehicles using
zero–sum non–cooperative dynamic game theory [BO95] which we specialize
to the SE(2) group. If the underlying continuous dynamics are left–invariant
control systems, reduction techniques can be used in the computation of safe
sets.

Configuration Models for Planar Vehicles

The configuration of each individual vehicle is described by an element of the
Lie group SE(2) of rigid–body motions in R2. Let gi ∈ SE(2) denote the
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configurations of vehicles labelled i, with i = 1, 2. The motion of each vehicle
may be modelled as a left–invariant vector–field on SE(2):

ġi = giXi, (2.851)

where the vector–fields Xi belong to the vector space se(2), the Lie algebra
associated with the group SE(2).

Each gi ∈ SE(2) can be represented in standard local coordinates (xi, yi, θi)
as

gi =

⎡⎣ cos θi − sin θi xi
sin θi cos θi yi

0 0 1

⎤⎦ ,
where xi, yi is the position of vehicle i and θi is its orientation, or heading.
The associated Lie algebra is se(2), with Xi ∈ se(2) represented as

Xi =

⎡⎣ 0 −ωi vi
ωi 0 0
0 0 0

⎤⎦ ,
where vi and ωi represent the translational (linear) and rotational (angular)
velocities, respectively.

Now, to determine dynamics of the relative configuration of two vehicles,
we perform a change (transformation) of coordinates, to place the identity
element of the group SE(2) on vehicle 1. If grel ∈ SE(2) denotes the relative
configuration of vehicle 2 with respect to vehicle 1, then

g2 = g1grel =⇒ grel = g−1
1 g2.

Differentiation with respect to time yields the dynamics of the relative con-
figuration:

ġrel = grelX2 −X1g
rel,

which expands into:

ẋrel = −v1 + v2 cos θrel + ω1y
rel,

ẏrel = v2 sin θrel − ω1x
rel,

θ̇
rel

= ω2 − ω1.

Two–Vehicles Conflict Resolution Manoeuvres

Next, we seek control strategies for each vehicle, which are safe under (pos-
sible) uncertainty in the actions of neighbouring vehicle. For this, we expand
the dynamics of two vehicles (2.851),

ġ1 = g1X1, ġ2 = g2X2,

and write it in the matrix form as
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ġ = gX, (2.852)

with

g =
[
g1 0
0 g2

]
, X =

[
X1 0
0 X2

]
,

in which g is an element in the configuration manifold M = SE(2)× SE(2),
while the vector–fieldsXi ∈ se(2)×se(2) are linearly parameterised by velocity
inputs (ω1, v1) ∈ R2 and (ω2, v2) ∈ R2.

The goal of each vehicle is to maintain safe operation, meaning that
(i) the vehicles remain outside of a specified target set T with boundary

∂T , defined by
T = {g ∈M |l(g) < 0},

where l(g) is a differentiable circular function,

l(g) = (x2 − x1)2 + (y2 − y1)2 − ρ2

(with ρ denoting the radius of a circular protected zone) defines the minimum
allowable lateral separation between vehicles; and

(ii)
dl(g) �= 0 on ∂T = {g ∈M |l(g) = 0},

where d represents the exterior derivative (a unique generalization of the
gradient, divergence and curl).

Now, due to possible uncertainty in the actions of vehicle 2, the safest
possible strategy of vehicle 1 is to drive along a trajectory which guarantees
that the minimum allowable separation with vehicle 2 is maintained regardless
of the actions of vehicle 2. We therefore formulate this problem as a zero–sum
dynamical game with two players: control vs. disturbance. The control is the
action of vehicle 1,

u = (ω1, v1) ∈ U,
and the disturbance is the action of vehicle 2,

d = (ω2, v2) ∈ D.

Here the control and disturbance sets, U and D, are defined as

U = ([ωmin
1 , ωmax

1 ], [vmin
1 , vmax

1 ]),
D = ([ωmin

2 , ωmax
2 ], [vmin

2 , vmax
2 ])

and the corresponding control and disturbance functional spaces, U and D are
defined as:

U = {u(·) ∈ PC0(R2)|u(t) ∈ U, t ∈ R},
D = {d(·) ∈ PC0(R2)|d(t) ∈ U, t ∈ R},

where PC0(R2) is the space of piecewise continuous functions over R2.
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We define the cost of a trajectory g(t) which starts at state g at initial
time t ≤ 0, evolves according to (2.852) with input (u(·), d(·)), and ends at
the final state g(0) as:

J(g, u(·), d(·), t) : SE(2)× SE(2)× U ×D × R− → R,

such that J(g, u(·), d(·), t) = l(g(0)), (2.853)

where 0 is the final time (without loss of generality). Thus the cost depends
only on the final state g(0) (the Lagrangian, or running cost, is identically
zero). The game is won by vehicle 1 if the terminal state g(0) is either outside
T or on ∂T (i.e., J(g, 0) ≥ 0), and is won by vehicle 2 otherwise.

This two–player zero–sum dynamical game on SE(2) is defined as follows.
Consider the matrix system (2.852), ġ = gX, over the time interval [t, 0] where
t < 0 with the cost function J(g, u(·), d(·), t) defined by (2.853) As vehicle 1
attempts to maximize this cost assuming that vehicle 2 is acting blindly, the
optimal control action and worst disturbance actions are calculated as

u∗ = arg max
u∈U

min
d∈D

J(g, u(·), d(·), t), d∗ = arg min
d∈D

max
u∈U

J(g, u(·), d(·), t).

The game is said to have a saddle solution (u∗,d∗) if the resulting optimal
cost J∗(g, t) does not depend on the order of play, i.e., on the order in which
the maximization and minimization is performed:

J∗(g, t) = max
u∈U

min
d∈D

J(g, u(·), d(·), t) = min
d∈D

max
u∈U

J(g, u(·), d(·), t).

Using this saddle solution we calculate the ‘losing states’ for vehicle 1, called
the predecessor Pret(T ) of the target set T ,

Pret(T ) = {g ∈M |J(g, u∗(·), d(·), t) < 0}.

Symplectic Reduction and Dynamical Games on SE(2)

Since vehicles 1 and 2 have dynamics given by left–invariant control systems
on the Lie group SE(2), we have

X1 = ξ1ω1 + ξ2v1, X2 = ξ1ω2 + ξ2v2,

with ξ1, ξ2 being two of the three basis elements for the tangent Lie algebra
se(2) given by

ξ1 =

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ , ξ2 =

⎡⎣0 0 1
1 0 0
0 0 0

⎤⎦ , ξ3 =

⎡⎣0 0 0
1 0 1
0 0 0

⎤⎦ .
If p1 (resp. p2) is a cotangent vector–field to SE(2) at g1 (resp. g2), belong-
ing to the cotangent (dual) Lie algebra se(2)∗, we can define the momentum
functions for both vehicles:
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P 1
1 = < p1, g1ξ1 >,P 2

1 =< p1, g1ξ2 >,P 3
1 =< p1, g1ξ3 >,

P 1
2 = < p2, g2ξ1 >,P 2

2 =< p2, g2ξ2 >,P 3
2 =< p2, g2ξ3 >,

which can be compactly written as

P ji =< pi, giξj > .

Defining p = (p1, p2) ∈ se(2)∗ × se(2)∗, the optimal cost for the two-player,
zero-sum dynamical game is given by

J∗(g, t) = max
u∈U

min
d∈D

J(g, u(·), d(·), t) = max
u∈U

min
d∈D

l(g(0)).

The Hamiltonian H(g, p, u, d) is given by

H(g, p, u, d) = P 1
1 ω1 + P 2

1 v1 + P 1
2 ω1 + P 2

2 v1

for control and disturbance inputs (ω1, v1) ∈ U and (ω2, v2) ∈ D as defined
above. It follows that the optimal Hamiltonian H∗(g, p), defined on the cotan-
gent bundle T ∗SE(2), is given by

H∗(g, p) = P 1
1

ωmax
1 + ωmin

1

2
+ P 1

2

ωmax
2 + ωmin

2

2
+ |P 1

1 |
ωmax

1 − ωmin
1

2

− |P 1
1 |
ωmax

2 − ωmin
2

2
+ P 2

1

vmax
1 + vmin

1

2
+ P 2

2

vmax
2 + vmin

2

2

+ |P 2
1 |
vmax
1 − vmin

1

2
− |P 2

1 |
vmax
2 − vmin

2

2

and the saddle solution (u∗, d∗) is given by

u∗ = arg max
u∈U

min
d∈D

H(g, p, u, d), d∗ = arg min
d∈D

max
u∈U

H(g, p, u, d). (2.854)

Note that H(g, p, u, d) and H∗(g, p) do not depend on the state g and costate
p directly, rather through the momentum functions P j1 , P

j
2 . This is because

the dynamics are determined by left–invariant vector fields on the Lie group
and the Lagrangian is state independent [MR99].

The optimal Hamiltonian H∗(g, p) determines a 12D Hamiltonian vector–
field XH∗ on the symplectic manifold T ∗M = SE(2)×SE(2)×se(2)∗×se(2)∗

(which is the cotangent bundle of the configuration manifold M), defined by
Hamiltonian equations

XH∗ : ġ =
∂H∗(g, p)
∂p

, ṗ = −∂H
∗(g, p)
∂g

,

with initial condition at time t being g(t) = g and final condition at time
0 being p(0) = dl(g(0)). In general, to solve for the saddle solution (2.854),
one needs to solve the ODE system for all states. However since the original
system onM = SE(2)×SE(2) is left–invariant, it induces generic symmetries
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in the Hamiltonian dynamics on T ∗M , referred to as Marsden–Weinstein
reduction of Hamiltonian systems on symplectic manifolds, see [MR99]. In
general for such systems one only needs to solve an ODE system with half of
the dimensions of the underlying symplectic manifold.

For the two-vehicle case we only need to solve an ODE system with 6
states. That is exactly given by the dynamics of the 6 momentum functions

Ṗ ji = LXH∗P
j
i = {P ji , H∗(g, p)}, (2.855)

for i, j = 1, 2, which is the Lie derivative of P ji with respect to the Hamiltonian
vector–field XH∗ . In the equation (2.855), the bracket {·, ·} is the Poisson
bracket [IP01a], giving the commutation relations:

{P 1
1 , P

2
1 } = P 3

1 , {P 2
1 , P

3
1 } = 0, {P 3

1 , P
1
1 } = P 2

1 ,

{P 1
2 , P

2
2 } = P 3

2 , {P 2
2 , P

3
2 } = 0, {P 3

2 , P
1
2 } = P 2

2 .

Using these commutation relations, equation (2.855) can be written explicitly:

Ṗ 1
1 = P 3

1

(
vmax
1 + vmin

1

2
+ sign(P 2

1 )
vmax
1 + vmin

1

2

)
,

Ṗ 2
1 = P 3

1

(
−ω

max
1 + ωmin

1

2
− sign(P 1

1 )
ωmax

1 − ωmin
1

2

)
,

Ṗ 3
1 = P 2

1

(
ωmax

1 + ωmin
1

2
+ sign(P 1

1 )
ωmax

1 − ωmin
1

2

)
,

Ṗ 1
2 = P 3

2

(
vmax
2 + vmin

2

2
+ sign(P 2

2 )
vmax
2 + vmin

2

2

)
,

Ṗ 2
2 = P 3

2

(
−ω

max
2 + ωmin

2

2
− sign(P 1

2 )
ωmax

2 − ωmin
2

2

)
,

Ṗ 3
2 = P 2

2

(
ωmax

2 + ωmin
2

2
+ sign(P 1

2 )
ωmax

2 − ωmin
2

2

)
.

The final conditions for the variables P j1 (t) and P j2 (t) are get from the bound-
ary of the safe set as

P j1 (0) =< d1l(g), g1ξj >, P j2 (0) =< d2l(g), g2ξj >,

where d1 is the derivative of l taken with respect to its first argument g1 only
(and similarly for d2). In this way, P j1 (t) and P j2 (t) are get for t ≤ 0. Once
this has been calculated, the optimal input u∗(t) and the worst disturbance
d∗(t) are given respectively as
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u∗(t) =

⎧⎪⎪⎨⎪⎪⎩
ω∗

1(t) =
{
ωmax

1 if P 1
1 (t) > 0

ωmin
1 if P 1

1 (t) < 0

v∗1(t) =
{
vmax
1 if P 2

1 (t) > 0
vmin
1 if P 2

1 (t) < 0

d∗(t) =

⎧⎪⎪⎨⎪⎪⎩
ω∗

2(t) =
{
ωmax

2 if P 1
2 (t) > 0

ωmin
2 if P 1

2 (t) < 0

v∗2(t) =
{
vmax
2 if P 2

2 (t) > 0
vmin
2 if P 2

2 (t) < 0

.

Nash Solutions for Multi–Vehicle Manoeuvres

The methodology introduced in the previous sections can be generalized to
find conflict–resolutions for multi–vehicle manoeuvres. Consider the three–
vehicle dynamics:

ġ = gX, (2.856)

with

g =

⎡⎣ g1 0 0
0 g2 0
0 0 g3

⎤⎦ , X =

⎡⎣X1 0 0
0 X2 0
0 0 X3

⎤⎦ ,
where g is an element in the configuration spaceM = SE(2)×SE(2)×SE(2)
and X ∈ se(2) × se(2) × se(2) is linearly parameterised by inputs (ω1, v1),
(ω2, v2) and (ω3, v3).

Now, the target set T is defined as

T = {g ∈M |l1(g) < 0 ∨ l2(g) < 0 ∨ l3(g) < 0},

where

l1(g) = min{(x2 − x1)2 + (y2 − y1)2 − ρ2, (x3 − x1)2 + (y3 − y1)2 − ρ2},
l2(g) = min{(x3 − x2)2 + (y3 − y2)2 − ρ2, (x1 − x2)2 + (y1 − y2)2 − ρ2},
l3(g) = min{(x2 − x3)2 + (y2 − y3)2 − ρ2, (x1 − x3)2 + (y1 − y3)2 − ρ2}.

The control inputs u = (u1, u2, u3) are the actions of vehicle 1, 2 and 3:

ui = (ωi, vi) ∈ Ui,

where Ui are defined as

Ui = ([ωmin
i , ωmax

i ], [vmin
i , vmax

i ]).

Clearly, this can be generalized to N vehicles.
The cost functions Ji(g, {ui(·)}, t) are defined as

Ji(g, {ui(·)}, t) :
N∏
i=1

SEi(2)×
N∏
i=1

Ui × R− → R,
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such that Ji(g, {ui(·)}, t) = li(g(0)).
The simplest non–cooperative solution strategy is a so–called non–coopera-

tive Nash equilibrium (see e.g., [BO95]). A set of controls u∗i , (i = 1, ..., N)
is said to be a Nash strategy, if for each player modification of that strategy
under the assumption that the others play their Nash strategies results in a
decrease in his payoff, that is for i = 1, ..., N , and ∀ui(·),

Ji(u1, ..., ui, ..., uN ) ≤ Ji(u∗1, ..., u∗i , ..., u∗N ), (u �= u∗).

(Note that Nash equilibria may not be unique. It is also easy to see that for
the two–player zero–sum game, a Nash equilibrium is a saddle solution with
J = J1 = −J2.)

For N vehicles, the momentum functions are defined as in the two–vehicle
case:

P ji =< pi, giξj >,

with pi ∈ se(2)∗ for i = 1, ..., N and ξj defined as above.
Then the Hamiltonian H(g, p, u1, ...uN ) is given by

H(g, p, u1, ...uN ) = P 1
i ωi + P

2
i vi.

The first case we consider is one in which all the vehicles are cooperating,
meaning that each tries to avoid conflict assuming the others are doing the
same. In this case, the optimal Hamiltonian H∗(g, p) is

H∗(g, p) = max
ui∈Ui

H(g, p, u1, ...uN ).

For example, if N = 3, one may solve for (u∗1, u
∗
2, u

∗
3), on the 9D quotient

space T ∗M/M, so that the optimal control inputs are given as

u∗i (t) =

⎧⎪⎪⎨⎪⎪⎩
ω∗
i (t) =

{
ωmax
i if P 1

i (t) > 0
ωmin
i if P 1

i (t) < 0

v∗i (t) =
{
vmax
i if P 2

i (t) > 0
vmin
i if P 2

i (t) < 0

.

One possibility for the optimal Hamiltonian corresponding to the non–
cooperative case is

H∗(g, p) = max
u1∈U1

max
u2∈U2

max
u3∈U3

H(g, p, u1, u2, u3).

2.6.4 Nonlinear Dynamics of Option Pricing

Classical theory of option pricing is based on the results found in 1973 by
Black and Scholes [BS73] and, independently, Merton [Mer73]. Their pio-
neering work starts from the basic assumption that the asset prices follow
the dynamics of a particular stochastic process (geometrical Brownian mo-
tion), so that they have a lognormal distribution [Hul00, PB99]. In the case
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of an efficient market with no arbitrage possibilities, no dividends and con-
stant volatilities, they found that the price of each financial derivative is ruled
by an ordinary partial differential equation, known as the (Nobel–Prize win-
ning) Black–Scholes–Merton (BSM) formula. In the most simple case of a
so–called European option, the BSM equation can be explicitly solved to get
an analytical formula for the price of the option [Hul00, PB99]. When we con-
sider other financial derivatives, which are commonly traded in real markets
and allow anticipated exercise and/or depend on the history of the under-
lying asset, the BSM formula fails to give an analytical result. Appropriate
numerical procedures have been developed in the literature to price exotic
financial derivatives with path–dependent features, as discussed in detail in
[Hul00, WDH93, PBS01]. The aim of this work is to give a contribution to
the problem of efficient option pricing in financial analysis, showing how it is
possible to use path integral methods to develop a fast and precise algorithm
for the evaluation of option prices.

Following recent studies on the application of the path integral approach
to the financial market as appeared in the econophysics literature (see [Mat02]
for a comprehensive list of references), in [MNM02] the authors proposed an
original, efficient path integral algorithm to price financial derivatives, includ-
ing those with path-dependent and early exercise features, and to compare the
results with those get with the standard procedures known in the literature.

Theory and Simulations of Option Pricing

Classical Theory and Path–Dependent Options

The basic ingredient for the development of a theory of option pricing is a
suitable model for the time evolution of the asset prices. The assumption of
the BSM model is that the price S of an asset is driven by a Brownian motion
and verifies the stochastic differential equation (SDE) [Hul00, PB99]

dS = µSdt+ σSdw, (2.857)

which, by means of the Itô lemma, can be cast in the form of an arithmetic
Brownian motion for the logarithm of S

d(lnS) = Adt+ σdw, (2.858)

where σ is the volatility , A =
(
µ− σ2/2

)
, µ is the drift parameter and w is

the realization of a Wiener process. Due to the properties of a Wiener process,
(2.858) may be written as

d(lnS) = Adt+ σε
√
dt, (2.859)

where ε follows from a standardized normal distribution with mean 0 and
variance 1. Thus, in terms of the logarithms of the asset prices z′ = lnS′, z =
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lnS, the conditional transition probability p(z′|z) to have at the time t′ a
price S′ under the hypothesis that the price was S at the time t < t′ is given
by [PB99, BRT99]

p(z′|z) =
1√

2π(t′ − t)σ2
exp

{
− [z′ − (z +A(t′ − t))]2

2σ2(t′ − t)

}
, (2.860)

which is a gaussian distribution with mean z+A(t′−t) and variance σ2(t′−t).
If we require the options to be exercised only at specific times ti, i = 1, · · · , n,
the asset price, between two consequent times ti−1 and ti, will follow (2.859)
and the related transition probability will be

p(zi|zi−1) =
1√

2π∆tσ2
exp

{
− [zi − (zi−1 +A∆t)]2

2σ2∆t

}
, (2.861)

with ∆t = ti − ti−1.
A time–evolution model for the asset price is strictly necessary in a theory

of option pricing because the fair price at time t = 0 of an option O, without
possibility of anticipated exercise before the expiration date or maturity T (a
so–called European option), is given by the scaled expectation value [Hul00]

O(0) = e−rTE[O(T )], (2.862)

where r is the risk–free interest and E[·] indicates the mean value, which can
be computed only if a model for the asset underlying the option is understood.
For example, the value O of an European call option at the maturity T will be
max{ST −X, 0}, where X is the strike price, while for an European put option
the value O at the maturity will be max{X−ST , 0}. It is worth emphasizing,
for what follows, that the case of an European option is particularly simple,
since in such a situation the price of the option can be evaluated by means
of analytical formulae, which are get by solving the BSM partial differential
equation with the appropriate boundary conditions [Hul00, PB99]. On the
other hand, many further kinds of options are present in the financial mar-
kets, such as American options (options which can be exercised at any time
up to the expiration date) and exotic options [Hul00], i.e., derivatives with
complicated payoffs or whose value depend on the whole time evolution of the
underlying asset and not just on its value at the end. For such options with
path-dependent and early exercise features no exact solutions are available
and pricing them correctly is a great challenge.

In the case of options with possibility of anticipated exercise before the
expiration date, the above discussion needs to be generalized, by introducing
a slicing of the time interval T . Let us consider, for definiteness, the case of
an option which can be exercised within the maturity but only at the times
t1 = ∆t, t2 = 2∆t, . . . , tn = n∆t = T. At each time slice ti−1 the value Oi−1

of the option will be the maximum between its expectation value at the time
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ti scaled with e−r∆t and its value in the case of anticipated exercise OYi−1. If
Si−1 denotes the price of the underlying asset at the time ti−1, we can thus
write for each i = 1, . . . , n

Oi−1(Si−1) = max
{
OYi−1(Si−1), e−r∆tE[Oi|Si−1]

}
, (2.863)

where E[Oi|Si−1] is the conditional expectation value of Oi, i.e., its expec-
tation value under the hypothesis of having the price Si−1 at the time ti−1.
In this way, to get the actual price O0, it is necessary to proceed backward
in time and calculate On−1, . . . ,O1, where the value On of the option at ma-
turity is nothing but OYn (Sn). It is therefore clear that evaluating the price
of an option with early exercise features means to simulate the evolution of
the underlying asset price (to get the OYi ) and to calculate a (usually large)
number of expectation conditional probabilities.

Standard Numerical Procedures

To value derivatives when analytical formulae are not available, appropriate
numerical techniques have to be advocated. They involve the use of Monte
Carlo (MC) simulation, binomial trees (and their improvements) and finite–
difference methods [Hul00, WDH93].

A natural way to simulate price paths is to discretize (2.859) as

lnS(t+∆t)− lnS(t) = A∆t+ σε
√
∆t,

or, equivalently,

S(t+∆t) = S(t) exp
[
A∆t+ σε

√
∆t

]
, (2.864)

which is correct for any ∆t > 0, even if finite. Given the spot price S0, i.e., the
price of the asset at time t = 0, one can extract from a standardized normal
distribution a value εk, (k = 1, . . . , n) for the random variable ε to simulate
one possible path followed by the price by means of (2.864):

S(k∆t) = S((k − 1)∆t) exp
[
A∆t+ σεk

√
∆t

]
.

Iterating the procedurem times, one can simulatem price paths {(S0, S
(j)
1 , S

(j)
2 ,

. . . , S
(j)
n ≡ S(j)

T ) : j = 1, . . . ,m} and evaluate the price of the option. In such a
MC simulation of the stochastic dynamics of asset price (Monte Carlo random
walk) the mean values E[Oi|Si−1], i = 1, . . . , n are given by

E[Oi|Si−1] =
O(1)
i +O(2)

i + · · ·+O(m)
i

m
,

with no need to calculate transition probabilities because, through the extrac-
tion of the possible ε values, the paths are automatically weighted according
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to the probability distribution function of (2.861). Unfortunately, this method
leads to an estimated value whose numerical error is proportional to m−1/2.
Thus, even if it is powerful because of the possibility to control the paths
and to impose additional constrains (as it is usually required by exotic and
path-dependent options), the MC random walk is extremely time consum-
ing when precise predictions are required and appropriate variance reduction
procedures have to be used to save CPU time [Hul00]. This difficulty can be
overcome by means of the method of the binomial trees and its extensions
(see [Hul00] and references therein), whose main idea stands in a determinis-
tic choice of the possible paths to limit the number of intermediate points. At
each time step the price Si is assumed to have only two choices: increase to
the value uSi, u > 1 or decrease to dSi, 0 < d < 1, where the parameters u and
d are given in terms of σ and ∆t in such a way to give the correct values for
the mean and variance of stock price changes over the time interval ∆t. Also
finite difference methods are known in the literature [Hul00] as an alterna-
tive to time-consuming MC simulations. They give the value of the derivative
by solving the differential equation satisfied by the derivative, by converting
it into a difference equation. Although tree approaches and finite difference
methods are known to be faster than the MC random walk, they are difficult
to apply when a detailed control of the history of the derivative is required
and are also computationally time consuming when a number of stochastic
variables is involved [Hul00]. It follows that the development of efficient and
fast computational algorithms to price financial derivatives is still a key issue
in financial analysis.

Option Pricing via Path Integrals

Recall that the path integral method is an integral formulation of the dynamics
of a stochastic process. It is a suitable framework for the calculation of the
transition probabilities associated to a given stochastic process, which is seen
as the convolution of an infinite sequence of infinitesimal short-time steps
[BRT99, Sch81]. For the problem of option pricing, the path–integral method
can be employed for the explicit calculation of the expectation values of the
quantities of financial interest, given by integrals of the form [BRT99]

E[Oi|Si−1] =
∫
dzip(zi|zi−1)Oi(ezi), (2.865)

where z = lnS and p(zi|zi−1) is the transition probability. E[Oi|Si−1] is the
conditional expectation value of some functional Oi of the stochastic process.
For example, for an European call option at the maturity T the quantity of
interest will be max {ST −X, 0}, X being the strike price. As already empha-
sized, and discussed in the literature [Hul00, WDH93, PBS01, RT02, Mat02],
the computational complexity associated to this calculation is generally great:
in the case of exotic options, with path-dependent and early exercise features,
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integrals of the type (2.865) cannot be analytically solved. As a consequence,
we demand two things from a path integral framework: a very quick way to
estimate the transition probability associated to a stochastic process (2.859)
and a clever choice of the integration points with which evaluate the integrals
(2.865). In particular, our aim is to develop an efficient calculation of the
probability distribution without losing information on the path followed by
the asset price during its time evolution.

Transition Probability

The probability distribution function related to a SDE verifies the Chapman–
Kolmogorov equation [PB99]

p(z′′|z′) =
∫
dzp(z′′|z)p(z|z′), (2.866)

which states that the probability (density) of a transition from the value
z′ (at time t′) to the value z′′ (at time t′′) is the ‘summation’ over all the
possible intermediate values z of the probability of separate and consequent
transitions z′ → z, z → z′′. As a consequence, if we consider a finite time
interval [t′, t′′] and we apply a time slicing, by considering n+ 1 subintervals
of length ∆t = (t′′ − t′)/n+ 1, we can write, by iteration of (2.866)

p(z′′|z′) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
dz1 · · · dznp(z′′|zn)p(zn|zn−1) · · · p(z1|z′),

which, thanks to (2.860), can be written as [MNM02]∫ +∞

−∞
· · · (2.867)

· · ·
∫ +∞

−∞
dz1 · · · dzn

1√
(2πσ2∆t)n+1

exp

{
− 1

2σ2∆t

n+1∑
k=1

[zk − (zk−1 +A∆t)]2
}
.

In the limit n → ∞, ∆t → 0 such that (n + 1)∆t = (t′′ − t′) (infinite se-
quence of infinitesimal time steps), the expression (2.867), as explicitly shown
in [BRT99], exhibits a Lagrangian structure and it is possible to express the
transition probability in the path integral formalism as a convolution of the
form [BRT99]

p(z′′, t′′|z′, t′) =
∫
C
D[σ−1z̃] exp

{
−
∫ t′′

t′
L(z̃(τ), ˙̃z(τ); τ)dτ

}
,

where L is the Lagrangian, given by

L(z̃(τ), ˙̃z(τ); τ) =
1

2σ2

[ ˙̃z(τ)−A
]2
,
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and the integral is performed (with functional measure D[·]) over the paths
z̃(·) belonging to C, i.e., all the continuous functions with constrains z̃(t′) ≡
z′, z̃(t′′) ≡ z′′. As carefully discussed in [BRT99], a path integral is well
defined only if both a continuous formal expression and a discretization rule
are given. As done in many applications, the Itô prescription is adopted here
(see subsection 1.5.2 above).

A first, näıve evaluation of the transition probability (2.867) can be per-
formed via Monte Carlo simulation, by writing (2.867) as

p(z′′, t′′|z′, t′) =∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏
i

dgi
1√

2πσ2∆t
exp

{
− 1

2σ2∆t
[z′′ − (zn +A∆t)]2

}
, (2.868)

in terms of the variables gi defined by the relation

dgk =
dzk√

2πσ2∆t
exp

{
− 1

2σ2∆t
[zk − (zk−1 +A∆t)]2

}
, (2.869)

and extracting each gi from a gaussian distribution of mean zk−1 +A∆t and
variance σ2∆t. However, as we will see, this method requires a large number
of calls to get a good precision. This is due to the fact that each gi is related to
the previous gi−1, so that this implementation of the path integral approach
can be seen to be equivalent to a näıve MC simulation of random walks, with
no variance reduction.

By means of appropriate manipulations [Sch81] of the integrand entering
(2.867), it is possible, as shown in the following, to get a path integral ex-
pression which will contain a factorized integral with a constant kernel and a
consequent variance reduction. If we define z′′ = zn+1 and yk = zk − kA∆t,
k = 1, . . . , n, we can express the transition probability distribution as∫ +∞

−∞
· · ·

∫ +∞

−∞
dy1 · · · dyn

1√
(2πσ2∆t)n+1

· exp

{
− 1

2σ2∆t

n+1∑
k=1

[yk − yk−1]2
}
,

(2.870)
in order to get rid of the contribution of the drift parameter. Now let us
extract from the argument of the exponential function a quadratic form

n+1∑
k=1

[yk − yk−1]2 = y20 − 2y1y0 + y21 + y21 − 2y1y2 + . . .+ y2n+1

= ytMy + [y20 − 2y1y0 + y2n+1 − 2ynyn+1], (2.871)

by introducing the nD array y and the nxn matrix M defined as [MNM02]
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y =

⎛⎜⎜⎜⎜⎜⎜⎝

y1
y2
...
...
yn

⎞⎟⎟⎟⎟⎟⎟⎠ , M =

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 · · · −1 2 −1 0
0 · · · · · · −1 2 −1
0 · · · · · · · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.872)

where M is a real, symmetric, non singular and tridiagonal matrix. In terms
of the eigenvalues mi of the matrix M , the contribution in (2.871) can be
written as

ytMy = wtOtMOw = wtMdw =
n∑
i=1

miw
2
i , (2.873)

by introducing the orthogonal matrix O which diagonalizes M , with wi =
Oijyj . Because of the orthogonality of O, the Jacobian

J = det
∣∣∣∣dwidyk

∣∣∣∣ = det |Oki|,

of the transformation yk → wk equals 1, so that
∏n
i=1 dwi =

∏n
i=1 dyi. After

some algebra, (2.871) can be written as
n+1∑
k=1

[yk − yk−1]2 =
n∑
i=1

miw
2
i + y20 − 2y1y0 + y2n+1 − 2ynyn+1 =

n∑
i=1

mi

[
wi −

(y0O1i + yn+1Oni)
mi

]2

+ y20 + y2n+1 −
n∑
i=1

(y0O1i + yn+1Oni)2

mi
.

(2.874)
Now, if we introduce new variables hi obeying the relation

dhi =
√

mi
2πσ2∆t

exp

{
− mi

2σ2∆t

[
wi −

(y0O1i + yn+1Oni)
mi

]2
}
dwi, (2.875)

it is possible to express the finite–time probability distribution p(z′′|z′) as
[MNM02]∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏
i=1

dyi
1√

(2πσ2∆t)n+1
exp

{
− 1

2σ2∆t

n+1∑
k=1

[yk − yk−1]
2

}

=

∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏
i=1

dwi
1√

(2πσ2∆t)n+1
e−(y2

0+y2
n+1)/2σ2∆t

× exp

{
− 1

2σ2∆t

n∑
i=1

[
mi

(
wi −

(y0O1i + yn+1Oni)

mi

)2

− (y0O1i + yn+1Oni)
2

mi

]}

=

∫ +∞

−∞
· · ·
∫ +∞

−∞

n∏
i=1

dhi
1√

2πσ2∆t det(M)
(2.876)

× exp

{
− 1

2σ2∆t

[
y2
0 + y2

n+1 +

n∑
i=1

(y0O1i + yn+1Oni)
2

mi

]}
.
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The probability distribution function, as given by (2.876), is an integral whose
kernel is a constant function (with respect to the integration variables) and
which can be factorized into the n integrals∫ +∞

−∞
dhi exp

{
− 1

2σ2∆t

(y0O1i + yn+1Oni)2

mi

}
, (2.877)

given in terms of the hi, which are gaussian variables that can be extracted
from a normal distribution with mean (y0O1i + yn+1Oni)2/mi and variance
σ2∆t/mi. Differently to the first, näıve implementation of the path integral,
now each hi is no longer dependent on the previous hi−1, and importance
sampling over the paths is automatically accounted for.

It is worth noticing that, by means of the extraction of the random vari-
ables hi, we are creating price paths, since at each intermediate time ti the
asset price is given by

Si = exp {
n∑
k=1

Oikhk + iA∆t}. (2.878)

Therefore, this path integral algorithm can be easily adapted to the cases in
which the derivative to be valued has, in the time interval [0, T ], additional
constraints, as in the case of interesting path–dependent options, such as Asian
and barrier options [Hul00].

Integration Points

The above illustrated method represents a powerful and fast tool to calcu-
late the transition probability in the path integral framework and it can be
employed if we need to value a generic option with maturity T and with pos-
sibility of anticipated exercise at times ti = i∆t (n∆t = T ) [MNM02]. As a
consequence of this time slicing, one must numerically evaluate n − 1 mean
values of the type (9), in order to check at any time ti, and for any value of the
stock price, whether early exercise is more convenient with respect to holding
the option for a future time. To keep under control the computational com-
plexity and the time of execution, it is mandatory to limit as far as possible
the number of points for the integral evaluation. This means that we would
like to have a linear growth of the number of integration points with the time.
Let us suppose to evaluate each mean value

E[Oi|Si−1] =
∫
dzi p(zi|zi−1)Oi(ezi),

with p integration points, i.e., considering only p fixed values for zi. To this
end, we can create a grid of possible prices, according to the dynamics of the
stochastic process as given by (2.859)

z(t+∆t)− z(t) = lnS(t+∆t)− lnS(t) = A∆t+ εσ
√
∆t. (2.879)
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Starting from z0, we thus evaluate the expectation value E[O1|S0] with p =
2m+ 1,m ∈ N values of z1 centered on the mean value E[z1] = z0 +A∆t and
which differ from each other of a quantity of the order of σ

√
∆t

zj1 = z0 +A∆t+ jσ
√
∆t, (j = −m, . . . ,+m).

Going on like this, we can evaluate each expectation value E[O2|zj1] get from
each one of the z1’s created above with p values for z2 centered around the
mean value

E[z2|zj1] = zj1 +A∆t = z0 + 2A∆t+ jσ
√
∆t.

Iterating the procedure until the maturity, we create a deterministic grid
of points such that, at a given time ti, there are (p − 1)i + 1 values of zi, in
agreement with the request of linear growth. This procedure of selection of
integration points, together with the calculation of the transition probability
previously described, is the basis of the path integral simulation of the price
of a generic option.

By applying the results derived above, we have at disposal an efficient path
integral algorithm both for the calculation of transition probabilities and the
evaluation of option prices. In [MNM02] the application of the above path–
integral method to European and American options in the BSM model was
illustrated and comparisons with the results were get with the standard proce-
dures known in the literature were shown. First, the path integral simulation
of the probability distribution of the logarithm of the stock prices, p(lnS),
as a function of the logarithm of the stock price, for a BSM–like stochastic
model, was given by (2.858). Once the transition probability has been com-
puted, the price of an option could be computed in a path integral approach
as the conditional expectation value of a given functional of the stochastic
process. For example, the price of an European call option was given by

C = e−r(T−t)
∫ +∞

−∞
dzf p(zf , T |zi, t) max[ezf −X, 0], (2.880)

while for an European put it will be

P = e−r(T−t)
∫ +∞

−∞
dzf p(zf , T |zi, t) max[X − ezf , 0], (2.881)

where r is the risk–free interest rate. Therefore just 1D integrals need to be
evaluated and they can be precisely computed with standard quadrature rules.

Continuum Limit and American Options

In the specific case of an American option, the possibility of exercise at any
time up to the expiration date allows to develop, within the path integral
formalism, a specific algorithm, which, as shown in the following, is precise
and very quick [MNM02].
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Given the time slicing considered above, the case of American options re-
quires the limit ∆t −→ 0 which, putting σ −→ 0, leads to a delta–like transition
probability

p(z, t+∆t|zt, t) ≈ δ(z − zt −A∆t).
This means that, apart from volatility effects, the price zi at time ti will have
a value remarkably close to the expected value z̄ = zi−1 +A∆t, given by the
drift growth. In order to take care of the volatility effects, a possible solution
is to estimate the integral of interest, i.e.,

E[Oi|Si−1] =
∫ +∞

−∞
dz p(z|zi−1)Oi(ez), (2.882)

by inserting in (2.882) the analytical expression for the p(z|zi−1) transition
probability

p(z|zi−1) =
1√

2π∆tσ2
exp

{
− (z − zi−1 −A∆t)2

2σ2∆t

}
=

1√
2π∆tσ2

exp
{
− (z − z̄)2

2σ2∆t

}
,

together with a Taylor expansion of the kernel function Oi(ez) = f(z) around
the expected value z̄. Hence, up to the second–order in z − z̄, the kernel
function becomes

f(z) = f(z̄) + (z − z̄)f ′(z̄) +
1
2
f ′′(z̄)(z − z̄)2 +O((z − z̄)3),

which induces

E[Oi|Si−1] = f(z̄) +
σ2

2
f ′′(z̄),+ . . . ,

since the first derivative does not give contribution to (2.882), being the inte-
gral of an odd function over the whole z range. The second derivative can be
numerically estimated as

f ′′(z̄) =
1
δ2σ

[f(z̄ + δσ)− 2f(z̄) + f(z̄ − δσ)],

with δσ = O(σ
√
∆t), as dictated by the dynamics of the stochastic process.

2.6.5 Command/Control in Human–Robot Interactions

Suppose that we have a human–robot team, consisting of m robots and n hu-
mans. To be able to put the modelling of the fully controlled human–robot
team performance into the rigorous geometrical settings, we suppose that all
possible behaviors of m robots can be described by a set of continuous and
smooth, time–dependent robot configuration coordinates xr = xr(t), while all
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robot–related behaviors of n humans can be described by a set of continuous
and smooth, time–dependent human configuration coordinates qh = qh(t). In
other words, all robot coordinates, xr = xr(t), constitute the smooth Rieman-
nian manifold Mr

g (such that r = 1, ...,dim(Mr
g )), with the positive–definite

metric form
g �→ ds2 = grs(x)dxrdxs (2.883)

similarly, all human coordinates qh = qh(t), constitute a smooth Riemannian
manifold Nha (such that h = 1, ...,dim(Nha )) , with the positive–definite metric
form

a �→ dσ2 = ahk(q)dqhdqk. (2.884)

In this Riemannian geometry settings, the feedforward command/control
action of humans upon robots is defined by a smooth map,

C : Nha →Mr
g ,

which is in local coordinates given by a general (nonlinear) functional trans-
formation

xr = xr(qh), (r = 1, ...,dim(Mr
g ); h = 1, ...,dim(Nha )), (2.885)

while its inverse, the feedback map from robots to humans is defined by a
smooth map,

F = C−1 :Mr
g → Nha ,

which is in local coordinates given by an inverse functional transformation

qh = qh(xr), (h = 1, ...,dim(Nha ); r = 1, ...,dim(Mr
g )). (2.886)

Now, although the coordinate transformations (2.885) and (2.886) are com-
pletely general, nonlinear and even unknown at this stage, there is something
known and simple about them: the corresponding transformations of differ-
entials are linear and homogenous, namely

dxr =
∂xr

∂qh
dqh, and dqh =

∂qh

∂xr
dxr,

which imply linear and homogenous transformations of robot and human ve-
locities,

ẋr =
∂xr

∂qh
q̇h, and q̇h =

∂qh

∂xr
ẋr. (2.887)

Relation (2.887), representing two autonomous dynamical systems, given
by two sets of ordinary differential equations (ODEs), geometrically defines
two velocity vector–fields: (i) robot velocity vector–field, vr ≡ vr(xr, t) :=
ẋr(xr, t); and human velocity vector–field, uh ≡ uh(qh, t) := q̇h(qh, t). Recall
that a vector–field defines a single vector at each point xr (in some domain U)
of a manifold in case. Its solution gives the flow, consisting of integral curves
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of the vector–field, such that all the vectors from the vector–field are tangent
to integral curves at different points xi ∈ U . Geometrically, a velocity vector–
field is defined as a cross–section of the tangent bundle of the manifold. In our
case, the robot velocity vector–field vr = ẋr(xr, t) represents a cross–section
of the robot tangent bundle TMr

g , while the human velocity vector–field uh =
q̇h(qh, t) represents a cross–section of the human tangent bundle TNha . In this
way, two local velocity vector–fields, vr and uh, give local representations for
the following two global tangent maps,

TC : TNha → TMr
g , and TF : TMr

g → TNha .

To be able to proceed along the geometrodynamical line, we need next to
formulate the two corresponding acceleration vector–fields, ar ≡ ar(xr, ẋr, t)
and wh ≡ wh(qh, q̇h, t), as time rates of change of the two velocity vector–
fields vr and uh. Now, recall that the acceleration vector–field is defined as
the absolute time derivative, ˙̄vr = D

dtv
r, of the velocity vector–field. In our

case, we have the robotic acceleration vector–field ar := ˙̄vr defined on Mr
g by

ar := ˙̄vr = v̇r + Γ rstv
svt = ẍr + Γ rstẋ

sẋt, (2.888)

and the human acceleration vector–field wh := ˙̄uh defined on Nha by

wh := ˙̄uh = u̇h + Γhjku
juk = ẍr + Γhjkq̇

j q̇k, (2.889)

Geometrically, an acceleration vector–field is defined as a cross–section of the
second tangent bundle of the manifold. In our case, the robot acceleration
vector–field ar = ˙̄vr(xr, ẋr, t), given by the ODEs (2.888), represents a cross–
section of the second robot tangent bundle TTM r

g , while the human acceler-
ation vector–field wh = ˙̄uh(qh, q̇h, t), given by the ODEs (2.889), represents
a cross–section of the second human tangent bundle TTNha . In this way, two
local acceleration vector–fields, ar and wh, give local representations for the
following two second tangent maps ,

TTC : TTNha → TTM r
g , and TTF : TTM r

g → TTNha .

In other words, we have the feedforward command/control commutative
diagram:

TTNh
a TTM r

g
�TTC

� �

Nh
a M r

g
�

C

TNh
a TM r

g
�TC

� �
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as well as the feedback commutative diagram:

TTNh
a TTM r

g
� TTF

� �

Nh
a M r

g
�

F

TNh
a TM r

g
� TF

� �

These two commutative diagrams formally define the global feedforward
and feedback human–robot interactions at the positional, velocity, and accel-
eration levels of command and control.

2.6.6 Nonlinear Dynamics of Complex Nets

Recall that many systems in nature, such as neural nets, food webs, metabolic
systems, co–authorship of papers, the worldwide web, etc. can be represented
as complex networks, or small–world networks (see, e.g., [WS98, DM03]). In
particular, it has been recognized that many networks have scale–free topol-
ogy; the distribution of the degree obeys the power law, P (k) ∼ k−γ . The
study of the scale–free network now attracts the interests of many researchers
in mathematics, physics, engineering and biology [Ich04].

Another important aspect of complex networks is their dynamics, describ-
ing e.g., the spreading of viruses in the Internet, change of populations in
a food web, and synchronization of neurons in a brain. In particular, [Ich04]
studied the synchronization of the random network of oscillators. His work fol-
lows the previous studies (see [Str00]) that showed that mean–field type syn-
chronization, that Kuramoto observed in globally–coupled oscillators [Kur84],
appeared also in the small–world networks.

Continuum Limit of the Kuramoto Net

Ichinomiya started with the standard network with N nodes, described by a
variant of the Kuramoto model (2.760). At each node, there exists an oscillator
and the phase of each oscillator θi is evolving according to

θ̇i = ωi +K
∑
j

aij sin(θj − θi), (2.890)
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where K is the coupling constant, aij is 1 if the nodes i and j are connected,
and 0 otherwise; ωi is a random number, whose distribution is given by the
function N(ω).

For the analytic study, it is convenient to use the continuum limit equation.
We define P (k) as the distribution of nodes with degree k, and ρ(k, ω; t, θ) the
density of oscillators with phase θ at time t, for given ω and k. We assume
that ρ(k, ω; t, θ) is normalized as∫ 2π

0

ρ(k, ω; t, θ)dθ = 1.

For simplicity, we also assume N(ω) = N(−ω). Thus, we suppose that the
collective oscillation corresponds to the stable solution, ρ̇ = 0.

Now we construct the continuum limit equation for the network of os-
cillators. The evolution of ρ is determined by the continuity equation ∂tρ =
−∂θ(ρv), where v is defined by the continuum limit of the r.h.s of (2.890). Be-
cause one randomly selected edge connects to the node of degree k, frequency
ω, phase θ with the probability kP (k)N(ω)ρ(k, ω; t, θ)/

∫
dkkP (k), ρ(k, ω; t, θ)

obeys the equation

∂tρ(k, ω; t, θ) = −∂θ[ρ(k, ω; t, θ) (ω +

+
Kk

∫
dω′ ∫ dk′ ∫ dθ′N(ω′)P (k′)k′ρ(k′, ω′; t, θ′) sin(θ − θ′)∫

dk′P (k′)k′
)].

The mean–field solution of this equation was studied by [Ich04].

Path–Integral Approach to Complex Nets

Recently, [Ich05] introduced the path–integral (see subsection 4.4.6 above)
approach in studying the dynamics of complex networks. He considered the
stochastic generalization of the Kuramoto network (2.890), given by

ẋi = fi(xi) +
N∑
j=1

aijg(xi, xj) + ξi(t), (2.891)

where fi = fi(xi) and gij = g(xi, xj) are functions of network activations xi,
ξi(t) is a random force that satisfies 〈ξi(t) = 0〉, 〈ξi(t)ξj(t

′
)〉 = δijδ(t− t

′
)σ2.

He assumed xi = xi,0 at t = 0. In order to discuss the dynamics of this system,
he introduced the so–called Matrin–Siggia–Rose (MSR) generating functional
Z given by [Dom78]

Z[{lik}, {l̄ik}] =
(

1
π

)NNt
〈∫ N∏

i=1

Nt∏
k=0

dxikdx̄ike
−S exp(likxik + l̄ikx̄ik)J

〉
,

where the action S is given by
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S =
∑
ik

[
σ2∆t

2
x̄2
ik+ix̄ik{xik−xi,k−1−∆t(fi(xi,k−1)+

∑
j

aijg(xi,k−1, xj,k−1))}],

and 〈· · · 〉 represents the average over the ensemble of networks. J is the func-
tional Jacobian term,

J = exp

⎛⎝−∆t
2

∑
ijk

∂(fi(xik) + aijg(xik, xjk))
∂xik

⎞⎠ .
Ichinomiya considered such a form of the network model (2.891) in which

aij =
{

1 with probability pij ,
0 with probability 1− pij .

Note that pij can be a function of variables such as i or j. For example, in
the 1D chain model, pij is 1 if |i − j| = 1, else it is 0. The average over all
networks can be expressed as〈

exp

⎡⎣∑
ik

i∆tx̄ik
∑
j

aijg(xi,k−1, xj,k−1)

⎤⎦〉

=
∏
ij

[
pij exp

{∑
k

i∆tx̄ikg(xi,k−1, xj,k−1)

}
+ 1− pij

]
,

so we get

〈e−S〉 = exp(−S0)
∏
ij

[
pij exp

{∑
k

i∆tx̄ikg(xi,k−1, xj,k−1)

}
+ 1− pij

]
,

where S0 =
∑
ik

σ2∆t

2
x̄2
ik + ix̄ik{xik − xi,k−1 −∆tfi(xi,k−1)}.

This expression can be applied to the dynamics of any complex network model.
[Ich05] applied this model to analysis of the Kuramoto transition in random
sparse networks.

2.6.7 Complex Adaptive Systems: Common Characteristics

According to [AEH05], a complex adaptive system (CAS) consists of inhomo-
geneous, interacting adaptive agents, where the word adaptive means capable
of learning. An emergent property of a CAS is a property of the system as a
whole which does not exist at the individual elements (agents) level.

Typical CAS examples are the brain, the immune system, the economy,
social systems, ecology, etc... Most of living systems are CAS.
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Therefore to understand a complex system one has to study the system as
a whole and not to decompose it into its constituents. This totalistic approach
is against the standard reductionist one, which tries to decompose any system
to its constituents and hopes that by understanding the elements one can
understand the whole system.

The standard approaches to CAS modelling are: (i) ODEs, difference equa-
tions and PDEs; (ii) Cellular automata (CA) [Ila01]; (iii) Evolutionary game
theory [HS98]; (iv) Various agent based models; (v) Complex networks (see
previous subsection); and (vi) Fractional calculus [Sta00]. Most of these ap-
proaches are included in [Boc04].

Both the ODE and PDE approaches have some difficulties as follows
[LSA03]: (i) ODE and PDE assumes that local fluctuations havebeen smoothed
out, (ii) typically they neglect correlations between movements of different
species, and (iii) they assume instantaneous results of interactions.

Most biological systems show delay and do not satisfy the above assump-
tions. They concluded that a cellular automata (CA) [Ila01] type system called
microscopic simulation is more suitable to model complex biological systems.
We agree that CA type systems are more suitable to model complex biological
systems but such systems suffer from a main drawback namely the difficulty
of getting analytical results. The known analytical results about CA type
systems are very few compared to the known results about ODE and PDE.

A compromise was presented in [AEH05] in the form of a PDE, which
avoids the delay and the correlations drawbacks. It is called telegraph reaction
diffusion equation (TRD). To overcome the non–delay weakness in the Fick
law ,41 it is replaced by

J(x, t) + τ ∂tJ(x, t) = −D∂xc, (2.892)

where the flux J(x, t) relaxes, with some given characteristic time constant τ
and c is the concentration of the diffusing substance. Combining (2.892) with
the equation of continuity, one gets the modified diffusion equation, or the
telegraph equation, ċ = (D− τ) ∂x2c. The corresponding TRD equaton is
given by

τ c̈+
(

1− df(c)
dc

)
ċ = D∂x2c+ f(c), (2.893)

where f(c) is a polynomial in c. Moreover it is known that TRD results from
correlated random walk. This supports the conclusion that TRD equation
(2.893) is more suitable for modeling complex systems than the usual diffusion
one.
41 Recall that diffusion through a fluid is can be described by the Fick equation

∂tT = D∇2c, D > 0,

where T is the temperature, c is the concentration of a certain substance dissolved
in the fluid and D is the mass diffusivity.
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For example, a human immune system as a CAS was elaborated in [SC01].
The emergent properties of the immune system (IS) included:

* The ability to distinguish any substance (typically called antigen Ag) and
determine whether it is damaging or not. If Ag is non–damaging (damag-
ing) then, typically, IS tolerates it (responds to it).

* If it decides to respond to it then IS determines whether to eradicate it
or to contain it.

* The ability to memorize most previously encountered Ag, which enables
it to mount a more effective reaction in any future encounters. This is the
basis of vaccination processes.

* IS is complex thus it has a network structure.
* The immune network is not homogeneous since there are effectors with

many connections and others with low number of connections.
* The Ag, which enters our bodies, has extremely wide diversity. Thus mech-

anisms have to exist to produce immune effectors with constantly changing
random specificity to be able to recognize these Ag. Consequently IS is
an adaptive complex system.

* Having said that, one should notice that the wide diversity of IS contains
the danger of autoimmunity (attacking the body). Thus mechanisms that
limit autoimmunity should exist.

* In addition to the primary clonal deletion mechanism, two further bril-
liant mechanisms exist: The first is that the IS network is a threshold or
‘window’ one i.e., no activation exists if the Ag quantity is too low or too
high (This is called low and high zone tolerance).

* Thus an auto reactive immune effector (i.e., an immune effector that at-
tacks the body to which it belongs) will face so many self–antigens that
it has to be suppressed due to the high zone tolerance mechanism.

* Another mechanism against autoimmunity is the second signal given by
antigen presenting cells (APC). If the immune effector is self reactive then,
in most cases, it does not receive the second signal thus it becomes anergic.

* Also long term memory can be explained by the phenomena of high and
low zone tolerance where IS tolerates Ag if its quantity is too high or
too low. So persisting Ag is possible and continuous activation of immune
effectors may occur.

* There is another possible explanation for long term memory using the
immune system (extremal dynamics).

* Thus design principles of IS can explain important phenomena of IS.

The following Summary on CAS was given in [AEH05] (see also the liter-
ature cited there):

(i) CAS should be studied as a whole hence reductionist point of view may
not be reliable in some cases.
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(ii) CAS are open with nonlinear local interactions hence: (1) Long range
prediction is highly unlikely. (2) When studying a CAS take into consid-
eration the effects of its perturbation on related systems e.g. perturbation
of lake Victoria has affected mosquitoes’ numbers hence the locals qual-
ity of life. This is also relevant to the case of natural disasters where an
earthquake at a city can cause a widespread power failure at other cities.
(3) Expect side effects to any ‘seemingly wise’ decision. (4) Mathematical
and computer models may be helpful in reducing such side effects.

(iii) Optimization in CAS should be multi–objective (not single objective).
(iv) CAS are very difficult to control. Interference at highly connected sites

may be a useful approach. The interlinked nature of CAS elements com-
plicates both the unpredictability and controllability problems. It also
plays an important role in innovations spread.

(v) Memory effects should not be neglected in CAS. This lends more support
for the proposed TRD equation (2.893). Also, memory games have been
studied. Also, delay and fractional calculus are relevant to CAS.

(vi) Mathematical topics motivated by CAS include ODE and PDE (non–
autonomous, delayed, periodic coefficients, stability and persistence),
multi–objective optimization (including biologically motivated methods
e.g., ant colony optimization, extremal optimization, genetic algorithms,
etc.), difference equations, cellular automata, networks, fractional calcu-
lus, control (e.g., bounded delayed control of distributed systems), game
theory, nonlinear dynamics and fuzzy mathematics.

2.6.8 FAM Functors and Real–Life Games

Recall that the agent theory concerns the definition of the so–called belief–
desire–intention agents (BDI–agents, for short), as well as multi–agent sys-
tems, properties, architectures, communication, cooperation and coordina-
tion capabilities (see [RG98]). Its practical side concerns the agent languages
and platforms for programming and experimenting with agents. According to
[Fer99], a BDI agent is a physical or virtual entity which: (i) is capable of
acting in an environment, (ii) can communicate directly with other agents,
(iii) is driven by a set of tendencies (in the form of individual objectives or
of a satisfaction/survival function which it tries to optimize), (iv) possesses
resources of its own, which is capable of perceiving its environment (but to
a limited extent), (v) has only a partial representation of its environment
(and perhaps none at all), (vi) possesses skills and can offer services, (vii)
may be able to reproduce itself, (viii) whose behavior tends towards satis-
fying its objectives, taking account of the resources and skills available to it
and depending on its perception, its representation and the communications it
receives. Agents’ actions affect the environment which, in turn, affects future
decisions of agents.

Multi–agent systems have already been successfully applied in numerous
fields (see [Fer99] for the review). For example, the emerging field of cellular
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robotics relates to building robots on modular basis: a robot (say a manipu-
lator arm), is considered as a multi–agent system, and each of its constituent
parts (arm segments) is regarded as an agent (with the joints describing con-
straints on the set of acceptable movements). The coordination of movement
is thus a result of coordination involving an assembly of agents. It has been
claimed that techniques similar to those used for modelling the multi–agent
based eco–systems make it possible to accomplish complex movements with a
minimum of computation. The head agent attempts to achieve the goal which
has been set for it: if it can do it itself, it makes the movement and the system
comes to a halt; if not, it brings in the neighboring agent, giving it goals which
will help the head agent to get nearer to its objective. The process is repeated
recursively, each agent trying to achieve the goals set for it by transmitting
its desiderata to the neighboring agent.

This concept looks fine at the low resolution level. However, if we want a
more sophisticated, high–resolution behavior of the arm manipulator, then we
need to calculate a few derivatives of the nice and simple command ‘Move’.
This would give us proper robot kinematics: velocities and accelerations. In
addition, if we want some more realism, we need to include inertial, gravity
and friction forces, as well as to compensate them by driving forces. In this
way we come to the proper dynamical system. Even further, to make it a
proper control system, we need to add some feedbacks.

In this subsection we propose a high–resolution agent model , suitable for
human performance modelling and real–life games.

Adaptive Fuzzy Associative Maps

Our high–resolution agent model is a flexible and adaptive functorial struc-
ture. Its basic unit is a generic nonlinear MIMO–System

INPUT
SPACE

f �
FAM

OUTPUT
SPACE

(2.894)

where INPUT
SPACE

and OUTPUT
SPACE

are nonlinear functional spaces consisting of

a certain number of adaptive fuzzy processes (i.e., temporal fuzzy variables),
partitioned by overlapping membership functions, which are either standard
triangular/trapesoidal functions, or Gaussian functions of the form µ(z) =
exp

[
−(z−m)2

2σ2

]
, where z = z(t) denotes any fuzzy variable, while m and σ are

its adjustable parameters, mean and standard deviation, respectively. The

corresponding adaptive n×m−dimensional map Rn
f �

FAM
Rm denotes the

generalized fuzzy associative memory (FAM) (see [Kos92, Kos96]), that is, a
(possibly sparse) matrix Rij of fuzzy IF–THEN rules of the form:

IF x1 is µ(x)i1 AND ... xn is µ(x)in THEN y1 is µ(y)j1 AND ... ym is µ(y)jm
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each with its associated rule–importance weight wij ∈ [0, 1].
Given several FAM–maps of the form (2.894), we can perform their com-

position as well as fusion of the type

X
SPACE

f �
FAM

Y
SPACE

g �
FAM

Z
SPACE

�
h FAM

W
SPACE

Using composition and fusion of FAM–maps, we can form hierarchical
networks of nonlinear MIMO systems, for modelling human behavior real–life
games.

Both the rule–weights and Gaussian parameters (means and standard devi-
ations) are adjusted using two forms of unsupervised trial–and–error learning:
Hebbian learning , minimizing the error [Heb49] and reinforcement learning ,
maximizing the reward [SB98]. We use both types of learning only as a minor
parameter–adjusting tool, secondary to the primary fuzzy–logic instruction,
setting–up the system’s structure (i.e., FAM–map configuration). The learn-
ing is performed in discrete time steps, according to the general self–organized
rule:

new value = old value + innovation

The local learning dynamics is performed as a combination of the two
different ways:

1. Immediate, feedback–based, Hebbian learning rule [Heb49], occurring af-
ter each input–output system pass, comparing achieved output execution
with the desired one and not considering the long–term rewards. Here the
system learns its optimal performance:

innovation = |desired output− achieved output|

e.g., in case of the tennis game, this means the proper execution (i.e.,
precision, speed and spin) of the shot, without regard to the winning–
points. It follows the simple tactic: ‘Let me do my best shot, regardless of
the opponent’s actions’.

2. Long–term, reward–based, reinforcement learning rule [SB98], occurring
only after winning points and remembering the rewards. Here the system
learns its optimal policy :

innovation = |reward− penalty|

In the tennis case, this means only the winning–point, no matter what
was the actual execution of the shot. It follows the competitive tactics:
‘The goal is to beat the opponent, no matter how (within the rules)’.
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Tennis Game Application

Now we will formulate a continuous–time attack (AT) and counter–attack
(CA) model for the tennis game, with discrete–time learning. Tennis repre-
sents a competitive real–life situation within fully controlled conditions, de-
pending on the individual’s technical42, tactical43 and strategic44 skills as well
as operational psycho–physical strengths. Here, we will formulate an adaptive,
fuzzy–dynamics AT & CA, tennis performance model. Using compositions and
fusions of FAM–maps (as described above), we will design a generic simula-
tor for counter–attack and attack performance dynamics, based on the tennis
game. We have chosen the tennis game as it allows: (i) complete analysis in
every detail, (ii) full experimental validation, and (iii) training both in real–
life situations and in a machine–learning environment.

Attack Model: Tennis Serve

A. Simple Attack: Serve Only. The simple AT–dynamics is represented
by a single FAM map

TARGET
SPACE

fAT�
FAM

ATTACK
SPACE

In the case of simple tennis serve, this AT–scenario reads

O � om
OPPONENT−IN

fAT� SR � srn
SERV E−OUT

where the two functional spaces, Odim=2 � om and SRdim=3 � srn, contain
the fuzzy variables {om = om(t)} and {srn = srn(t)}, respectively opponent–
related (target information) and serve–related, partitioned by overlapping
Gaussians, µ(z) = exp

[
−(z−m)2

2σ2

]
, and defined as:

O
OPPONENT−IN

:
o1 = Opp.Posit.Left.Right : (center,medium,wide),
o2 = Opp.Antcp.Lft.Rght : (runCenter, stay, runWide),

SR
SERV E−OUT

:
sr1 = 1.Serve.Speed : (low,medium, high)
sr2 = 2.Serve.Spin : (low,medium, high)
sr3 = 3.Serve.P lacement : (center,medium,wide)

42 Technical skills in sports are judged by the biomechanical correctness of move-
ments.

43 Tactical skills in sports include ‘winners’, ‘changes of tempo’, and ‘applying pres-
sure’.

44 Strategic skills in sports include ‘planning ahead’ and ‘weighting the relative im-
portance of points’ along the match.
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In the fuzzy–matrix form this simple serve reads

O: OPPONENT−IN[
o1 = Opp.Posit.Left.Right
o2 = Opp.Anticip.Left.Right

]
fAT
�

SR: SERV E−OUT⎡⎣ sr1 = 1.Serve.Speed
sr2 = 2.Serve.Spin
sr3 = 3.Serve.P lace

⎤⎦
B. Attack–Maneuver: Serve–Volley. The generic advanced AT–dynamics
is given by a composition of FAM maps

TARGET
SPACE

fAT�
FAM

ATTACK
SPACE

gAT�
FAM

MANEUV ER
SPACE

In the case of advanced tennis serve, this AT–scenario reads

O � om
OPPONENT−IN

fAT� SR � srn
SERV E−OUT

gAT� RV � rvp
RUN−V OLEY

where the new functional space, RVdim=2 � rvp, contains the opponent–
anticipation driven volley–maneuver, expressed by fuzzy variables {rvp =
rvp(t)}, partitioned by overlapping Gaussians and given by:

RV
RUN−V OLEY

:
rv1 = RV.For : (baseLine, center, netClose)
rv2 = RV.L.R. : (left, center, right)

In the fuzzy–matrix form this advanced serve reads

O: OPPONENT−IN[
o1 = Opp.Posit.L.R.
o2 = Opp.Anticip.L.R.

]
fAT
�

SR: SERV E−OUT⎡⎣ sr1 = 1.Serve.Speed
sr2 = 2.Serve.Spin
sr3 = 3.Serve.P lace

⎤⎦ gAT
�

RV : RUN−V OLEY[
rv1 = RV.For
rv2 = RV.L.R

]

Counter–Attack Model: Tennis Return

A. Simple Return. The simple CA–dynamics reads:

ATTACK
SPACE

fCA�
FAM

MANEUV ER
SPACE

gCA�
FAM

RESPONSE
SPACE

In the case of simple tennis return, this CA–scenario consists purely of
conditioned–reflex reaction, no decision process is involved, so it reads:

B � bi
BALL−IN

fCA� R � rj
RUNNING

gCA� S � sk
SHOT−OUT

where the functional spaces Bdim=5 � bi, Rdim=3 � rj , Sdim=4 � sk, contain
the fuzzy variables {bi = bi(t)}, {rj = rj(t)} and {sk = sk(t)}, respectively
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defining the ball inputs, our player’s running maneuver and his shot–response,
i.e.,

B: BALL−IN⎡⎢⎢⎢⎢⎣
b1 = Dist.L.R.
b2 = Dist.F.B.
b3 = Dist.V ert
b4 = Speed
b5 = Spin

⎤⎥⎥⎥⎥⎦ fCA
�

R: RUNNING⎡⎣ r1 = Run.L.R.
r2 = Run.F.B.
r3 = Run.V ert

⎤⎦ gCA
�

S: SHOT−OUT⎡⎢⎢⎣
s1 = Backhand
s2 = Forehand
s3 = V oley
s4 = Smash

⎤⎥⎥⎦
Here, the existence of efficient weapons within the S

SHOT−OUT
arsenal–space,

namely sk(t) : s1 = Backhand, s2 = Forehand, s3 = V oley and s4 = Smash,
is assumed.

The universes of discourse for the fuzzy variables {bi(t)}, {rj(t)} and
{sk(t)}, partitioned by overlapping Gaussians, are defined respectively as:

B
BALL−IN

:

b1 = Dist.L.R. : (veryLeft, left, center, right, veryRight),
b2 = Dist.F.B. : (baseLine, center, netClose),
b3 = Dist.V ert : (low,medium, high),
b4 = Speed : (low,medium, high),
b5 = Spin : (highTopSpin, lowTopSpin, flat,

lowBackSpin, highBackSpin).

R
RUNNING

:

r1 = Run.L.R. : (veryLeft, left, center, right, veryRight),
r2 = Run.F.B. : (closeFront, front, center, back, farBack),
r3 = Run.V ert : (squat, normal, jump).

S
SHOT−OUT

:

s1 = Backhand : (low,medium, high),
s2 = Forehand : (low,medium, high),
s3 = V oley : (backhand, block, forehand),
s4 = Smash : (low,medium, high).

B. Advanced Return. The advanced CA–dynamics includes both the in-
formation about the opponent and (either conscious or subconscious) decision
making. This generic CA–scenario is formulated as the following composition
+ fusion of FAM maps:

ATTACK
SPACE

fCA�
FAM

MANEUV
SPACE

gCA�
FAM

DECISION
SPACE

hCA�
FAM

RESPON
SPACE

�
iCA FAM

TARGET
SPACE
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where we have added two new functional spaces, TARGET
SPACE

andDECISION
SPACE

,

respectively containing information about the opponent as a target, as well
as our own aiming decision processes. In the case of advanced tennis return,
this reads:

B � bi
BALL−IN

fCA� R � rj
RUNNING

gCA� D � dl
DECISION

hCA� S � sk
SHOT−OUT

�
iCA

O � om
OPPONENT−IN

where the two additional functional spaces, Odim=4 � om and Ddim=5 � dl,
contain the fuzzy variables {om = om(t)} and {dl = dl(t)}, respectively defin-
ing the opponent–related target information and the aim–related decision pro-
cesses, both partitioned by overlapping Gaussians and defined as:

O
OPPONENT−IN

:

o1 = Opp.Posit.L.R. : (left, center, right),
o2 = Opp.Posit.F.B. : (netClose, center, baseLine),
o3 = Opp.Anticip.L.R. : (runLeft, stay, runRight),
o4 = Opp.Anticip.F.B. : (runNet, stay, runBase).

D
DECISION

:

d1 = Aim.L.R. : (left, center, right),
d2 = Aim.F.B. : (netClose, center, baseLine),
d3 = Aim.V ert : (low,medium, high),
d4 = Aim.Speed : (low,medium, high),
d5 = Aim.Spin : (highTopSpin, lowTopSpin, noSpin,

lowBackSpin, highBackSpin).

The corresponding fuzzy–matrices read:

B: BALL−IN⎡⎢⎢⎢⎢⎣
b1 = Dist.L.R.
b2 = Dist.F.B.
b3 = Dist.V ert
b4 = Speed
b5 = Spin

⎤⎥⎥⎥⎥⎦,

R: RUNNING⎡⎣ r1 = Run.L.R.
r2 = Run.F.B.
r3 = Run.V ert

⎤⎦,

D: DECISION⎡⎢⎢⎢⎢⎣
d1 = Aim.L.R.
d2 = Aim.F.B.
d3 = Aim.V ert
d4 = Aim.Speed
d5 = Aim.Spin

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
O: OPPONENT−IN

o1 = Opp.Posit.L.R.
o2 = Opp.Posit.F.B.
o3 = Opp.Anticip.L.R.
o4 = Opp.Anticip.F.B.

⎤⎥⎥⎥⎥⎦,

S: SHOT−OUT⎡⎢⎢⎣
s1 = Backhand
s2 = Forehand
s3 = V oley
s4 = Smash

⎤⎥⎥⎦ .
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Generic FAM–Agents

Finally, we briefly describe a generic FAM–agent as a following complex adap-
tive system, designed from five adaptive FAM–maps and six hybrid functional
spaces:

COOPERATION
SPACE

�

i FAM

ATTACK
SPACE

f �
FAM

MANEUV
SPACE

g �
FAM

DECISION
SPACE

h �
FAM

RESPON
SPACE

�
j FAM

TARGET
SPACE

Each generic FAM–agent is supposed to communicate with other FAM–
agents and/or environment only by its inputs and outputs. It is both a feed-
back control system and an expert system, implementing: (i) feedbacks, (ii)
instructions and (iii) common sense. It is a high–resolution human perfor-
mance predictor–corrector system, which has to be designed in each specific
case by consulting an expert from the field.

A smart multi–agent organization represents a brain–like sensory–motor
system–of–systems, including hierarchical networks of generic FAM–agents,
with the unique input and output.

2.6.9 Riemann–Finsler Approach to Information Geometry

Model Specification and Parameter Estimation

Model as a Parametric Family of Probability Distributions

From a statistical standpoint, observed data is a random sample from an
unknown population. Ideally, the goal of modelling is to deduce the population
that generated the observed data. Formally, a model is defined as a parametric
family of probability distributions (see [MP03]).

Let us use f(y|w) to denote the probability distribution function that gives
the probability of observing data, y = (y1, . . . , ym), given the model’s param-
eter vector, w = (w1, . . . , wk). Under the assumption that individual obser-
vations, yi’s, are independent of one another, f(y|w) can be rewritten as a
product of individual probability distribution functions,

f (y = (y1, ..., ym) |w) = f (y1|w) f (y2|w) ... f (ym|w) . (2.895)
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Parameter Estimation

Once a model is specified with its parameters and data have been collected,
the model’s ability to fit the data can be assessed. Model fit is measured by
finding parameter values of the model that give the ‘best’ fit to the data in
some defined sense – a procedure called parameter estimation in statistics.

There are two generally accepted methods of parameter estimation: least–
squares estimation (LSE) and maximum likelihood estimation (MLE). In LSE,
we seek the parameter values that minimize the sum of squares error (SSE)
between observed data and a model’s predictions:

SSE(w) =
m∑
i=1

(yi − yi,prd (w))2 ,

where yi,prd (w) denotes the model’s prediction for observation yi. In MLE,
we seek the parameter values that are most likely to have produced the data.
This is obtained by maximizing the log–likelihood of the observed data:

loglik (w) =
m∑
i=1

ln f(yi|w).

By maximizing either the likelihood or the log–likelihood, the same solution is
obtained because the two are monotonically related to each other. In practice,
the log–likelihood is preferred for computational ease. The parameters that
minimize the sum of squares error or the log–likelihood are called the LSE or
MLE estimates, respectively.

For normally distributed data with constant variance, LSE and MLE are
equivalent in the sense that both methods yield the same parameter esti-
mates. For non–normal data such as proportions and response times, however,
LSE estimates tend to differ from MLE estimates. Although LSE is often the
‘de facto’ method of estimation in cognitive psychology, MLE is a preferred
method of estimation in statistics, especially for non–normal data. In par-
ticular, MLE is well–suited for statistical inference in hypothesis testing and
model selection. Finding LSE or MLE estimates generally requires use of a
numerical optimization procedure.

Model Evaluation and Testing

Qualitative Criteria

A model satisfies the explanatory adequacy criterion if its assumptions are
plausible and consistent with established findings, and importantly, the the-
oretical account is reasonable for the cognitive process of interest. In other
words, the model must be able to do more than redescribe observed data. The
model must also be interpretable in the sense that the model makes sense and
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is understandable. Importantly, the components of the model, especially, its
parameters, must be linked to psychological processes and constructs. Finally,
the model is said to be faithful to the extent that the model’s ability to capture
the underlying mental process originates from the theoretical principles em-
bodied in the model, rather than from the choices made in its computational
instantiation.

Quantitative Criteria

Falsifiability

This is a necessary condition for testing a model or theory, refers to whether
there exist potential observations that a model cannot describe [Pop59]. If so,
then the model is said to be falsifiable. An unfalsifiable model is one that can
describe all possible data patterns in a given experimental situation. There is
no point in testing an unfalsifiable model.

A heuristic rule for determining a model’s falsifiability is already familiar
to us: The model is falsifiable if the number of its free parameters is less
than the number of data observations. This counting rule, however, turns out
to be imperfect, in particular, for nonlinear models. To remedy limitations
of the counting rule, [BS85] provided a formal rule for assessing a model’s
falsifiability, which yielded the counting rule as a special case. The rule states
that a model is falsifiable if the rank of its Jacobian matrix is less than the
number of data observations for all values of the parameters. Recall that
the Jacobian matrix is defined in terms of partial derivatives as: Jij (w) =
∂E (yj) /∂wi (i = 1, ..., k; j = 1, ...,m) where E(x) stands for the expectation
of a random variable x.

Goodness of Fit

A model should also give a good description of the observed data. Good-
ness of fit refers to the model’s ability to fit the particular set of observed
data. Common examples of goodness of fit measures are the minimized sum
of squares error (SSE), the mean squared error (MSE), the root mean squared
error (RMSE), the percent variance accounted for (PVAF), and the maximum
likelihood (ML).

The first four of these, defined below, are related to one another in a way
that one can be written in terms of another:

MSE = SSE (w∗
LSE) /m,

RMSE =
√
SSE (w∗

LSE) /m,

PV AF = 100 (1− SSE (w∗
LSE) /SST ) ,

ML = f (y|w∗
MLE) .
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Here w∗
LSE is the parameter that minimizes SSE(w), that is, an LSE es-

timate, and SST stands for the sum of squares total defined as SST =∑
i (yi − ymean)

2. ML is the probability distribution function maximized with
respect to the model’s parameters, evaluated at w∗

MLE , which is obtained
through MLE.

Complexity

Not only should a model describe the data in hand well, but it should also
do so in the least complex (i.e., simplest) way. Intuitively, complexity has to
do with a model’s inherent flexibility that enables it to fit a wide range of
data patterns. There seem to be at least two dimensions of model complexity,
the number of parameters and the model’s functional form. The latter refers
to the way the parameters are combined in the model equation. The more
parameters a model has, the more complex it is. Importantly also, two models
with the same number of parameters but different functional forms can differ
significantly in their complexity. For example, it seems unlikely that two one–
parameter models, y = x+ w and y = ewx are equally complex. The latter is
probably much better at fitting data than the former.

It turns out that one can devise a quantitative measure of model complex-
ity that takes into account both dimensions of complexity and at the same
time is theoretically justified as well as intuitive. One example is the geometric
complexity (GC) of a model [PMZ02] defined as:

GC =
k

2
ln
n

2π
+ ln

∫
dw

√
det I(w), (2.896)

or
GC = parametric complexity + functional complexity,

where k is the number of parameters, n is the sample size, I(w) is the Fisher
information matrix (or, covariance matrix ) defined as

Iij (w) = −E
[
∂2 ln f(y|w)/∂wi∂wj

]
, i, j = 1, ..., k, (2.897)

or
Iij = −Expect.Value(Hessian(loglik (w))).

Functional form effects of complexity are reflected in the second term of GC
through I(w). How do we interpret geometric complexity? The meaning of ge-
ometric complexity is related to the number of ‘different’ (i.e., distinguishable)
probability distributions that a model can account for. The more distinguish-
able distributions that the model can describe by finely tuning its parameter
values, the more complex it is ([MBP00]). For example, when geometric com-
plexity is calculated for the following two-parameter psychophysical models,
Stevens’ law (y = w1x

w2) and Fechner’s logarithmic law (y = w1 ln (x+ w2)),
the former turns out to be more complex than the latter [PMZ02].
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Generalizability

The fourth quantitative criterion for model evaluation is generalizability. This
criterion is defined as a model’s ability to fit not only the observed data at
hand, but also new, as yet unseen data samples from the same probability
distribution. In other words, model evaluation should not be focused solely
on how well a model fits observed data, but how well it fits data generated
by the cognitive process underlying the data. This goal will be achieved best
when generalizability is considered.

To summarize, these four quantitative criteria work together to assist in
model evaluation and guide (even constrain) model development and selection.
The model must be sufficiently complex, but not too complex, to capture the
regularity in the data. Both a good fit to the data and good generalizability
will ensure an appropriate degree of complexity, so that the model captures the
regularity in the data. In addition, because of its broad focus, generalizability
will constrain the power of the model, thus making it falsifiable. Although all
four criteria are inter-related, generalizability may be the most important. By
making it the guiding principle in model evaluation and selection, one cannot
go wrong.

Selection Among Different Models

Since a model’s generalizability is not directly observable, it must be esti-
mated using observed data. The measure developed for this purpose trades
off a model’s fit to the data with its complexity, the aim being to select the
model that is complex enough to capture the regularity in the data, but not
overly complex to capture the ever-present random variation. Looked at in
this way, generalizability embodies the principle of Occam’s razor (or prin-
ciple of parsimony, i.e., the requirement of maximal simplicity of cognitive
models).

Model Selection Methods

Now, we describe specific measures of generalizability. Four representative gen-
eralizability criteria are introduced. They are the Akaike Information Crite-
rion (AIC), the Bayesian Information Criterion (BIC), crossvalidation (CV),
and minimum description length (MDL) (see a special Journal of Mathemat-
ical Psychology issue on model selection, in particular [MFB00]). In all four
methods, the maximized log–likelihood is used as a goodness–of–fit measure,
but they differ in how model complexity is conceptualized and measured.

AIC and BIC

AIC and BIC for a given model are defined as follows:

AIC = −2 ln f(y|w∗) + 2k,
BIC = −2 ln f(y|w∗) + k lnn,
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where w∗ is a MLE estimate, k is the number of parameters and n is the sample
size. For normally distributed errors with constant variance, the first term of
both criteria, −2 ln f(y|w∗), is reduced to (n·ln(SSE(w∗)) + co) where co is
a constant that does not depend upon the model. In each criterion, the first
term represents a lack of fit measure, the second term represents a complexity
measure, and together they represent a lack of generalizability measure. A
lower value of the criterion means better generalizability. Therefore, the model
that minimizes a given criterion should be chosen.

Complexity in AIC and BIC is a function of only the number of param-
eters. Functional form, another important dimension of model complexity, is
not considered. For this reason, these methods are not recommended for com-
paring models with the same number of parameters but different functional
forms. The other two selection methods, CV and MDL, described next, are
sensitive to functional form as well as the number of parameters.

Cross–Validation

In CV, a model’s generalizability is estimated without defining an explicit
measure of complexity. Instead, models with more complexity than necessary
to capture the regularity in the data are penalized through a resampling pro-
cedure, which is performed as follows: The observed data sample is divided
into two sub–samples, calibration and validation. The calibration sample is
then used to find the best–fitting values of a model’s parameters by MLE or
LSE. These values, denoted by w∗

cal, are then fixed and fitted, without any
further tuning of the parameters, to the validation sample, denoted by yval.
The resulting fit to yval by w∗

cal is called as the model’s CV index and is taken
as the model’s generalizability estimate. If desired, this single–division–based
CV index may be replaced by the average CV index calculated from multiple
divisions of calibration and validation samples. The latter is a more accurate
estimate of the model’s generalizability, though it is also more computation-
ally demanding.

The main attraction of cross–validation is its ease of use. All that is needed
is a simple resampling routine that can easily be programmed on any desktop
computer. The second attraction is that unlike AIC and BIC, CV is sensitive
to the functional form dimension of model complexity, though how it works
is unclear because of the implicit nature of the method. For these reasons,
the method can be used in all modelling situations, including the case of
comparing among models that differ in functional form but have the same
number of parameters.

Minimum Description Length

MDL is a selection method that has its origin in algorithmic coding theory
in computer science. According to MDL, both models and data are viewed
as codes that can be compressed. The basic idea of this approach is that
regularities in data necessarily imply the existence of statistical redundancy
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and that the redundancy can be used to compress the data [Gru99, Gru00,
GMP05]. Put another way, the amount of regularity in data is directly related
to the data description length. The shorter the description of the data by the
model, the better the approximation of the underlying regularity, and thus,
the higher the model’s generalizability is. Formally, MDL is defined as:

MDL = − ln f(y|w∗) +
k

2
ln
n

2π
+ ln

∫
dw

√
det I(w), (2.898)

or
MDL = lack–of–fit measure + param. complexity + functional complexity,

where the first term is the same lack of fit measure as in AIC and BIC; the
second and third terms together represent the geometric complexity measure
(2.896). In coding theory, MDL is interpreted as the length in bits of the
shortest possible code that describes the data unambiguously with the help
of a model. The model with the minimum value of MDL encodes the most
regularity in the data, and therefore should be preferred.

The second term in (2.898), which captures the effects of model complexity
due to the number of parameter (k), is a logarithmic function of sample size
n. In contrast, the third term, which captures functional form effects, is not
sensitive to sample size. This means that as sample size increases, the relative
contribution of the effects due to functional form to those due to the number
of parameters will be gradually reduced. Therefore, functional form effects
can be ignored for sufficiently large n, in which case the MDL value becomes
approximately equal to one half of the BIC value.

Probably the most desirable property of MDL over other selection methods
is that its complexity measure takes into account the effects of both dimen-
sions of model complexity, the number of parameters and functional form.
The MDL complexity measure, unlike CV, shows explicitly how both factors
contribute to model complexity. In short, MDL is a sharper and more accurate
method than these three competitors. The price that is paid for MDL’s supe-
rior performance is its computational cost. MDL can be laborious to calculate.
First, the Fisher information matrix (2.897) must be obtained by calculating
the second derivatives (i.e., Hessian matrix) of the log–likelihood function,
ln f(y|w). This calculation can be non–trivial, though not impossible. Second,
the square–root of the determinant of the Fisher information matrix must be
integrated over the parameter space. This generally requires use of a numerical
integration method such as Markov Chain Monte Carlo (see e.g., [GRS96]).

Riemannian Geometry of Minimum Description Length

From a geometric perspective, a parametric model family of probability dis-
tributions (2.895) forms a Riemannian manifold embedded in the space of all
probability distributions (see [Ama85, AN00]). Every distribution is a point
in this space, and the collection of points created by varying the parameters
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of the model induces a manifold in which ‘similar’ distributions are mapped
to ‘nearby’ points. The infinitesimal distance between points separated by the
infinitesimal parameter differences dwi is given by

ds2 = gij(w) dwidwj ,

where gij(w) is the Riemannian metric tensor. The Fisher information, Iij(w),
defined by (2.897), is the natural metric on a manifold of distributions in the
context of statistical inference [Ama85]. We argue that the MDL measure of
model fitness has an attractive interpretation in such a geometric context.

The first term in MDL equation (2.898) estimates the accuracy of the
model since the likelihood f(y|w∗) measures the ability of the model to fit the
observed data. The second and third terms are supposed to penalize model
complexity; we will show that they have interesting geometric interpretations.
Given the metric Iij(w) = gij(w) on the space of parameters, the infinitesimal
volume element on the parameter manifold is

dV = dw
√

det I(w) =
k∏
l=1

dwl
√

det I(w).

The Riemannian volume of the parameter manifold is obtained by integrating
dV over the space of parameters:

VM =
∫
dV =

∫
dw

√
det I(w).

In other words, the third term (functional complexity) in MDL penalizes mod-
els that occupy a large volume in the space of distributions.

In fact, the volume measure VM is related to the number of ‘distinguish-
able’ probability distributions indexed by the model. Because of the way the
model family is embedded in the space of distributions, two different param-
eter values can index very similar distributions. If complexity is related to
volumes occupied by model manifolds, the measure of volume should count
only different, or distinguishable, distributions, and not the artificial coordi-
nate volume. It is shown in [MBP00] that the volume VM achieves this goal.

Selecting Among Qualitative Models

Application of any of the preceding selection methods requires that the models
are quantitative models, each defined as a parametric family of probability
distributions.

Pseudo–probabilistic MDL Approach

The ‘pseudo–probabilistic’ approach [Gru99] for selecting among qualitative
models derives a selection criterion that is similar to the MDL criterion for
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quantitative models, but it is a formulation that is closer to the original spirit
of the MDL principle, which states:

‘Given a data set D and a model M , the description length of the data,
DLM (D), is given by the sum of (a) the description length of the data when
encoded with help of the model, DL(D|M), and (b) the description length of
the model itself, DL(M) : DLM (D) = DL(D|M) +DL(M). Among a set of
competing models, the best model is the one that minimizes DLM(D).’

The above MDL principle is broad enough to include the MDL criterion
for quantitative models as a specific instantiation. The first, lack–of–fit term
of the quantitative criterion (− ln f (y|w∗)) can be seen as DL(D|M), whereas
the second and third terms (k2 ln n

2π + ln
∫
dw

√
det I (w)) represent geometric

complexity as DL(M). Likewise, a computable criterion that implements the
above principle can be obtained with the pseudo–probabilistic approach. It is
derived from the Kraft–Inequality theorem in coding theory ([LV97]). The the-
orem proves that one can always associate arbitrary models with their ‘equiv-
alent’ probability distributions in a procedure called entropification [Gru99].

MDL Criterion for Qualitative Models

Entropification proceeds as follows. We first ‘construct’ a parametric family of
probability distributions for a given qualitative model in the following form:

p (y = (y1, ..., ym) |w) = exp

(
−w

m∑
i=1

Err (yi,obs − yi,prd (w))

)
/Z(w).

In this equation, Err(x) is an error function that measures the model’s pre-
diction performance such as Err(x) = |x| or x2, w is a scalar parameter, and
Z(w) is the normalizing factor defined as

Z(w) =
∑
y1

...
∑
ym

p (y = (y1, ..., ym) |w) .

The above formulation requires that each observation yi be represented by a
discrete variable that takes on a finite number of possible values representing
the model’s qualitative (e.g., ordinal) predictions.

Once a suitable error function, Err(x), is chosen, the above probability
distribution function is then used to fit observed data, and the best–fitting
parameter w∗ is sought by MLE. The description length of the data encoded
with the help of the model is then obtained by taking the minus logarithm of
the maximum likelihood (ML),

DL (D|M) = − ln p (y|w∗) .

The second term, DL(M), the description length of the model itself, is ob-
tained by counting the number of different data patterns the model can ac-
count for and then taking the logarithm of the resulting number. Putting these
together, the desired MDL criterion for a qualitative model is given by
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MDLqual = w∗
m∑
i=1

Err (yi,obs − yi,prd (w∗)) + lnZ (w∗) + lnN,

where N is the number of all possible data patterns or data sets that the
model predicts.

Finsler Approach to Information Geometry

Recall that information geometry has emerged from investigating the geomet-
rical structure of a family of probability distributions, and has been applied
successfully to various areas including statistical inference, control theory and
multi–terminal information theory (see [Ama85, AN00]). In this subsection
we give a brief review on a more general approach to information geometry,
based on Finsler geometry (see subsection 1.2.10 above).

A parameter–space of probability distributions, defined by

M = {x : p = p(r, x) is a probability distribution on R}

represents a smooth manifold, called the probability manifold [Ama85, AN00].
On a probability manifold M we can define a probability divergence D =
D(x, y), as

D(x, y) =
∫
M

p(r, x)f(
p(r, y)
p(r, x)

) dr,

where f(·) is a convex function such that f(1) = 0, f ′′(1) = 1,

which satisfies the following conditions [She05]

D(x, y) > 0 if x �= y,
D(x, y) = 0 if x = y,
D(x, y) �= D(y, x) in general.

On the other hand, if d = d(x, y) is a probability distance on a probability
manifold M , satisfying the following standard conditions:

d(x, x) = 0,
d(x, y) > 0, if x �= y,
d(x, y) ≤ d(x, r) + d(r, y) (triangle inequality),

then for any function ψ = ψ(h) with ψ(0) = 0, ψ(h) > 0 for h > 0, the
probability divergence on M is defined as

D(x, y) := ψ(d(x, y)). (2.899)

Recall that a Finsler metric L = L(x, y) is a function of tangent vectors
y at a point x ∈M , with the following properties:
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L(x, ty) = t2L(x, y) for t > 0, (2.900)

gij(x, y) :=
1
2
∂2L

∂yi∂yj
(x, y) > 0,

Fx(y) :=
√
L(x, y), Fx(u+ v) ≤ Fx(u) + Fx(v).

This means that there is an inner product gy at a pint x ∈M , such that

gy(u, v) = gij(x, y)uivj ,

so that our Finsler metric L(x, y) ∈M , given by (2.900), becomes

L(x, y) = gy(u, v) = gij(x)yiyj .

Therefore, in a special case when gij(x, y) = gij(x) are independent of y, the
Finsler metric L(x, y) becomes a standard Riemannian metric gij(x)yiyj . In
this way, all the material from the previous subsection can be generalized to
Finsler geometry.

Now, D(x, y) ∈M , given by (2.899), is called the regular divergence, if

2D(x, x+ y) = L(x, y) +
1
2
Lxk(x, y)yk +

1
3
H(x, y) + o(|y|3),

where H = H(x, y) ∈M is homogenous function of degree 3 in y, i.e.,

H(x, ty) = t3H(x, y) for t > 0.

A pair {L,H} ∈M is called a Finsler information structure [She05].
In a particular case when L(x, y) = gij(x)yiyj is a Riemannian metric,

and H(x, y) = Hijk(x)yiyjyk is a polynomial, then we have affine information
structure {L,H} ∈ M , which is described by a family of affine connections,
called α−connections by [Ama85, AN00]. However, in general, the induced
information structure {L,H} ∈M is not affine, i.e., L(x, y) is not Riemannian
and H(x, y) is not polynomial.
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Appendix: Tensors and Functors

3.1 Elements of Classical Tensor Analysis

Physical and engineering laws must be independent of any particular coordi-
nate systems used in describing them mathematically, if they are to be valid.
In other words, all physical and engineering equations need to be tensorial or
covariant. Therefore, for the reference purpose, in this subsection, we give the
basic formulas from the standard tensor calculus, which is used throughout
the text. The basic notational convention used in tensor calculus is Einstein’s
summation convention over repeated indices. More on this subject can be
found in any standard textbook on mathematical methods for scientists and
engineers, or mathematical physics (we recommend [MTW73]).

3.1.1 Transformation of Coordinates and Elementary Tensors

To introduce tensors, consider a standard linear nD matrix system, Ax = b.
It can be rewritten in the so–called covariant form as

aijx
j = bi , (i, j = 1, ..., n). (3.1)

Here, i is a free index and j is a dummy index to be summed upon, so the
expansion of (3.1) gives

a11x
1 + a12x2 + ...+ a1nxn = b1 ,

a21x
1 + a22x2 + ...+ a2nxn = b2 ,

...

an1x
1 + an2x

2 + ...+ annxn = bn ,

as expected from the original matrix form Ax = b. This indicial notation
can be more useful than the matrix one, like e.g., in computer science, where
indices would represent loop variables. However, the full potential of tensor
analysis is to deal with nonlinear multivariate systems, which are untractable
by linear matrix algebra and analysis. The core of this nonlinear multivariate
analysis is general functional transformation.
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Transformation of Coordinates

Suppose that we have two sets of curvilinear coordinates that are single–
valued, continuous and smooth functions of time, xj = xj(t), (j = 1, ...,m)
and x̄i = x̄i(t), (i = 1, ..., n), respectively, representing trajectories of motion
of some physical or engineering system. Then a general (m×n)D transforma-
tion (i.e., a nonlinear map) xj �→ x̄i is defined by the set of transformation
equations

x̄i = x̄i(xj), (i = 1, ..., n; j = 1, ...,m). (3.2)

In case of the square transformation, m = n, we can freely exchange the
indices, like e.g., in general relativity theory. On the other hand, in the general
case of rectangular transformation, m �= n, like e.g., in robotics, and we need
to take care of these ‘free’ indices.

Now, if the Jacobian determinant of this coordinate transformation is dif-
ferent from zero, ∣∣∣∣ ∂x̄i∂xj

∣∣∣∣ �= 0,

then the transformation (3.2) is reversible and the inverse transformation,

xj = xj(x̄i),

exists as well. Finding the inverse transformation is the problem of matrix
inverse: in case of the square matrix it is well defined, although the inverse
might not exist if the matrix is singular. However, in case of the square matrix,
its proper inverse does not exist, and the only tool that we are left with is
the so–called Moore–Penrose pseudoinverse, which gives an optimal solution
(in the least–squares sense) of an overdetermined system of equations. Every
(overdetermined) rectangular coordinate transformation induces a redundant
system.

For example, in Euclidean 3D space R3, transformation from Cartesian
coordinates yk = {x, y, z} into spherical coordinates xi = {ρ, θ, ϕ} is given by

y1 = x1 cosx2 cosx3, y2 = x1 sinx2 cosx3, y3 = x1 sinx3, (3.3)

with the Jacobian matrix given by(
∂yk

∂xi

)
=

⎛⎝ cosx2 cosx3 −x1 sinx2 cosx3 −x1 cosx2 sinx3

sinx2 cosx3 x1 cosx2 cosx3 −x1 sinx2 sinx3

sinx3 0 x1 cosx3

⎞⎠ (3.4)

and the corresponding Jacobian determinant,
∣∣∣∂yk

∂xi

∣∣∣ = (x1)2 cosx3.

An inverse transform is given by

x1 =
√

(y1)2 + (y2)2 + (y3)2, x2 = arctan
(
y2

y1

)
,

x3 = arctan

(
y3√

(y1)2 + (y2)2

)
, with

∣∣∣∣ ∂xi∂yk

∣∣∣∣ =
1

(x1)2 cosx3
.
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As an important engineering (robotic) example, we have a rectangular
transformation from 6 DOF external, end–effector (e.g., hand) coordinates,
into n DOF internal, joint–angle coordinates. In most cases this is a redundant
manipulator system, with infinite number of possible joint trajectories.

Scalar Invariants

A scalar invariant (or, a zeroth order tensor) with respect to the transforma-
tion (3.2) is the quantity ϕ = ϕ(t) defined as

ϕ(xi) = ϕ̄(x̄i),

which does not change at all under the coordinate transformation. In other
words, ϕ is invariant under (3.2). Biodynamic examples of scalar invariants
include various energies (kinetic, potential, biochemical, mental) with the cor-
responding kinds of work, as well as related thermodynamic quantities (free
energy, temperature, entropy, etc.).

Vectors and Covectors

Any geometrical object vi = vi(t) that under the coordinate transformation
(3.2) transforms as

v̄i = vj
∂x̄i

∂xj
, (remember, summing upon j−index),

represents a vector, traditionally called a contravariant vector, or, a first–
order contravariant tensor. Standard physical and engineering examples in-
clude both translational and rotational velocities and accelerations.

On the other hand, any geometrical object vi = vi(t) that under the coor-
dinate transformation (3.2) transforms as

v̄i = vj
∂xj

∂x̄i
,

represents a one–form or covector, traditionally called a covariant vector, or,
a first–order covariant tensor. Standard physical and engineering examples
include both translational and rotational momenta, forces and torques.

Second–Order Tensors

Any geometrical object tik = tik(t) that under the coordinate transformation
(3.2) transforms as

t̄ik = tjl
∂x̄i

∂xj
∂x̄k

∂xl
, (i, k = 1, ..., n; j, l = 1, ...,m),
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represents a second–order contravariant tensor. It can be get as an outer
product of two contravariant vectors, tik = uivk.

Any geometrical object tik = tik(t) that under the coordinate transforma-
tion (3.2) transforms as

t̄ik = tjl
∂xj

∂x̄i
∂xl

∂x̄k
,

represents a second–order covariant tensor. It can be get as an outer product
of two covariant vectors, tik = uivk.

Any geometrical object tik = tik(t) that under the coordinate transforma-
tion (3.2) transforms as

t̄ik = tjl
∂x̄i

∂xj
∂xl

∂x̄k
,

represents a second–order mixed tensor. It can be get as an outer product of
a covariant vector and a contravariant vector, tik = uivk.

Standard physical and engineering examples examples include:

1. The fundamental (material) covariant metric tensor g ≡ gik, i.e., inertia
matrix, given usually by the transformation from Cartesian coordinates
yj to curvilinear coordinates xi,

gik =
∂yj

∂xi
∂yj

∂xk
, (summing over j).

It is used in the quadratic metric form ds2 of the space in consideration
(e.g., a certain physical or engineering configuration space)

ds2 ≡ dyjdyj = gikdxidxk,

where the first term on the r.h.s denotes the Euclidean metrics, while the
second term is the Riemannian metric of the space, respectively.

2. Its inverse g−1 ≡ gik, given by

gik = (gik)−1 =
Gik
|gik|

, Gik is the cofactor of the matrix (gik);

3. The Kronecker–delta symbol δik, given by

δik =
{

1 if i = k
0 if i �= k ,

used to denote the metric tensor in Cartesian orthogonal coordinates. δik
is a discrete version of the Dirac δ−function. The generalized Kronecker–
delta symbol δijklmn (in 3D) is the product of Ricci antisymmetric tensors
εijk and εlmn,

δijklmn = εijkεlmn =

⎧⎨⎩ 0 if at least two indices are equal
+1 if both ijk and lmn are either even or odd
−1 if one of ijk, lmn is even and the other is odd

.
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For example, to derive components of the metric tensor g ≡ gij in standard
spherical coordinates, we use the relations (3.3–3.4) between the spherical
coordinates xi = {ρ, θ, ϕ} and the Cartesian coordinates yk = {x, y, z}, and
the definition, gij = ∂yk

∂xi
∂yk

∂xj , to get the metric tensor (in matrix form)

(gij) =

⎛⎝ 1 0 0
0 (x1)2 cos2 x3 0
0 0 (x1)2

⎞⎠ =

⎛⎝1 0 0
0 ρ2 cos2 ϕ 0
0 0 ρ2

⎞⎠ , (3.5)

and the inverse metric tensor

(gij) =

⎛⎝ 1 0 0
0 1

(x1)2 cos2 x3 0
0 0 1

(x1)2

⎞⎠ =

⎛⎝1 0 0
0 1
ρ2 cos2 ϕ 0

0 0 1
ρ2

⎞⎠ . (3.6)

Given a tensor, we can derive other tensors by raising and lowering its
indices, by their multiplication with covariant and contravariant metric ten-
sors. In this way, the so–called associated tensors to the given tensor are be
formed. For example, vi and vi are associated tensors, related by

vi = gikvk and vi = gikvk.

Given two vectors, u ≡ ui and v ≡ vi, their inner (dot, or scalar) product
is given by

u · v ≡ gijuivj ,
while their vector (cross) product (in 3D) is given by

u× v ≡ εijkujvk.

Higher–Order Tensors

As a generalization of above tensors, consider a geometrical object Rikps =
Rikps(t) that under the coordinate transformation (3.2) transforms as

R̄ikps = Rjlqt
∂x̄i

∂xj
∂xl

∂x̄k
∂xq

∂x̄p
∂xt

∂x̄s
, (all indices = 1, ..., n). (3.7)

Clearly, Rikjl = Rikjl(x, t) is a fourth order tensor, once contravariant and
three times covariant, representing the central tensor in Riemannian geom-
etry, called the Riemann curvature tensor . As all physical and engineering
configuration spaces are Riemannian manifolds, they are all characterized by
curvature tensors. In case Rikjl = 0, the corresponding Riemannian manifold
reduces to the Euclidean space of the same dimension, in which gik = δik.

If one contravariant and one covariant index of a tensor a set equal, the
resulting sum is a tensor of rank two less than that of the original tensor. This
process is called tensor contraction.
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If to each point of a region in an nD space there corresponds a definite
tensor, we say that a tensor–field has been defined. In particular, this is a
vector–field or a scalar–field according as the tensor is of rank one or zero. It
should be noted that a tensor or tensor field is not just the set of its compo-
nents in one special coordinate system, but all the possible sets of components
under any transformation of coordinates.

Tensor Symmetry

A tensor is called symmetric with respect to two indices of the same variance
if its components remain unaltered upon interchange of the indices; e.g., aij =
aji, or aij = aji. A tensor is called skew–symmetric (or, antisymmetric) with
respect to two indices of the same variance if its components change sign upon
interchange of the indices; e.g., aij = −aji, or aij = −aji. Regarding tensor
symmetry, in the following we will prove several useful propositions.

(i) Every second–order tensor can be expressed as the sum of two tensors,
one of which is symmetric and the other is skew–symmetric. For example, a
second–order tensor aij , which is for i, j = 1, ..., n given by the n× n−matrix

aij =

⎛⎜⎜⎝
a11 a12 ... a1n
a21 a22 ... an2

... ... ... ...
an1 an2 ... ann

⎞⎟⎟⎠ ,
can be rewritten as

aij =
1
2
aij +

1
2
aij +

1
2
aji −

1
2
aji , that can be rearranged as

=
1
2
aij +

1
2
aji +

1
2
aij −

1
2
aji , which can be regrouped as

=
1
2
(aij + aji) +

1
2
(aij − aji), which can be written as

= a(ij) + a[ij] ,

where a(ij) denotes its symmetric part, while a[ij] denotes its skew–symmetric
part, as required.

(ii) Every quadratic form can be made symmetric. For example, a quadratic
form aijx

ixj , that (for i, j = 1, ..., n) expands as

aijx
ixj = a11x1x1 + a12x1x2 + ...+ a1nx1xn

+ a21x2x1 + a22x2x2 + ...+ a2nx2xn

...

+ an1x
nx1 + an2x

nx2 + ...+ annxnxn,

with a non–symmetric second–order tensor aij , can be made symmetric in the
following way.
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aijx
ixj =

1
2
aijx

ixj +
1
2
aijx

ixj .

If we swap indices in the second term, we get

=
1
2
aijx

ixj +
1
2
ajix

jxi , which is equal to

=
1
2
(aij + aji)xixj .

If we now use a substitution,
1
2
(aij + aji) ≡ bij = bji, we get

aijx
ixj = bijxixj ,

where aij is non–symmetric and bij is symmetric, as required.
(iii) Every second–order tensor that is the sum aij = uivj + ujvi, or,

aij = uivj + ujvi is symmetric. In both cases, if we swap the indices i and
j, we get aji = ujvi + uivj , (resp. aji = ujvi + uivj), which implies that the
tensor aij (resp. aij) is symmetric.

(iv) Every second–order tensor that is the difference bij = uivj − ujvi, or,
bij = uivj − ujvi is skew–symmetric. In both cases, if we swap the indices i
and j, we get bji = −(ujvi−uivj), (resp. bji = −(ujvi−uivj)), which implies
that the tensor bij (resp. bij) is skew–symmetric.

3.1.2 Euclidean Tensors

Basis Vectors and the Metric Tensor in Rn

The natural Cartesian coordinate basis in an nD Euclidean space Rn is defined
as a set of nD unit vectors ei given by

e1 = [{1, 0, 0, ...}t, e2 = {0, 1, 0, ...}t, e3 = {0, 0, 1, ...}t, ..., en = {0, 0, ..., 1}t],

(where index t denotes transpose) while its dual basis ei is given by:

e1 = [{1, 0, 0, ...}, e2 = {0, 1, 0, ...}, e3 = {0, 0, 1, ...}, ..., en = {0, 0, ..., 1}],

(no transpose) where the definition of the dual basis is given by the Kro-
necker’s δ−symbol, i.e., the n× n identity matrix:

ei · ej = δij =

⎡⎢⎢⎢⎢⎣
1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1

⎤⎥⎥⎥⎥⎦ ,
that is the metric tensor in Cartesian coordinates equals g = δij . In general,
(i.e., curvilinear) coordinate system, the metric tensor g = gij is defined as
the scalar product of the dual basis vectors, i.e., the n× n matrix:



730 3 Appendix: Tensors and Functors

gij = ei · ej =

⎡⎢⎢⎢⎢⎣
g11 g12 g13 ... g1n
g21 g22 g23 ... g2n
g31 g32 g33 ... g3n
... ... ... ... ...
gn1 gn2 gn3 ... gnn

⎤⎥⎥⎥⎥⎦ .

Tensor Products in Rn

Let u and v denote two vectors in Rn, with their components given by

ui = u · ei, and vj = v · ej ,

where u = |u| and v = |v| are their respective norms (or, lengths). Then their
inner product (i.e., scalar, or dot product) u · v is a scalar invariant S, defined
as

S = ui · vj = gijuivj .

Besides the dot product of two vectors u,v ∈ Rn, there is also their tensor
product (i.e., generalized vector, or cross product), which is a second–order
tensor

T = u⊗ v, in components, T ij = ui ⊗ vj .
In the natural basis ei this tensor is expanded as

T = T ijei ⊗ ej ,

while its components in the dual basis read:

T ij = T (ei, ej),

where T = |T| is its norm. To get its components in curvilinear coordinates,
we need first to substitute it in Cartesian basis:

T ij = Tmn(em ⊗ en)(ei, ej),

then to evaluate it on the slots:

T ij = Tmnem · ei en · ej ,

and finally to calculate the other index configurations by lowering indices, by
means of the metric tensor:

T ij = gjmT im, Tij = gimgjnTmn.

3.1.3 Tensor Derivatives on Riemannian Manifolds

Consider now some nD Riemannian manifold M with the metric form (i.e.,
line element) ds2 = gikdxidxk, as a configuration space for a certain physical
or engineering system (e.g., human spine, or arm–shoulder complex).
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Christoffel’s Symbols

Partial derivatives of the metric tensor gik form themselves special symbols
that do not transform as tensors (with respect to the coordinate transforma-
tion (3.2)), but nevertheless represent important quantities in tensor analysis.
They are called Christoffel symbols of the first kind, defined by

Γijk =
1
2
(∂xkgij + ∂xjgki − ∂xigjk),

(
remember, ∂xi ≡ ∂

∂xi

)
and Christoffel symbols of the second kind, defined by

Γ kij = gklΓijl.

The Riemann curvature tensor Rlijk (3.7) of the manifoldM , can be expressed
in terms of the later as

Rlijk = ∂xjΓ lik − ∂xkΓ lij + Γ lrjΓ
r
ik − Γ lrkΓ rij .

For example, in 3D spherical coordinates, xi = {ρ, θ, ϕ}, with the metric
tensor and its inverse given by (3.5, 3.6), it can be shown that the only nonzero
Christoffel’s symbols are:

Γ 2
12 = Γ 2

21 = Γ 3
13 = Γ 3

31 =
1
ρ
, Γ 3

23 = Γ 2
32 = − tan θ, (3.8)

Γ 1
22 = −ρ, Γ 1

33 = −ρ cos2 θ, Γ 2
33 = sin θ cos θ.

Geodesics

From the Riemannian metric form ds2 = gikdxidxk it follows that the distance
between two points t1 and t2 on a curve xi = xi(t) in M is given by

s =
∫ t2

t1

√
gikẋiẋkdt.

That curve xi = xi(t) in M which makes the distance s a minimum is called
a geodesic of the space M (e.g., in a sphere, the geodesics are arcs of great
circles). Using the calculus of variations, the geodesics are found from the
differential geodesic equation,

ẍi + Γ ijkẋ
j ẋk = 0, (3.9)

where overdot means derivative upon the line parameter s.
For example, in 3D spherical coordinates xi = {ρ, θ, ϕ}, using (3.8),

geodesic equation (3.9) becomes a system of three scalar ODEs,

ρ̈− ρθ̇2 − ρ cos2 θϕ̇2 = 0, θ̈ +
2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2 = 0,

ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇ = 0. (3.10)
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The Covariant Derivative

Ordinary total and partial derivatives of vectors (covectors) do not transform
as vectors (covectors) with respect to the coordinate transformation (3.2).
For example, let yk be Cartesian coordinates and xi be general curvilinear
coordinates of a dynamical system (with i, k = 1, ..., n). We have: xi(t) =
xi[yk(t)], which implies that

dxi

dt
=
∂xi

∂yk
dyk

dt
, or equivalently, ẋi =

∂xi

∂yk
ẏk,

that is a transformation law for the contravariant vector, which means that
the velocity vi ≡ ẋi ≡ dxi

dt is a proper contravariant vector. However, if we
perform another time differentiation, we get

d2xi

dt2
=
∂xi

∂yk
d2yk

dt2
+

∂2xi

∂yk∂ym
dyk

dt

dym

dt
,

which means that d
2xi

dt2 is not a proper vector.
d2xi

dt2 is an acceleration vector only in a special case when xi are another
Cartesian coordinates; then ∂2xi

∂yk∂ym = 0, and therefore the original coordinate
transformation is linear, xi = aiky

k + bi (where aik and bi are constant).
Therefore, d

2xi

dt2 represents an acceleration vector only in terms of Newto-
nian mechanics in a Euclidean space Rn, while it is not a proper acceleration
vector in terms of Lagrangian or Hamiltonian mechanics in general curvilin-
ear coordinates on a smooth manifold Mn. And we know that Newtonian
mechanics in Rn is sufficient only for fairly simple mechanical systems.

The above is true for any tensors. So we need to find another derivative
operator to be able to preserve their tensor character. The solution to this
problem is called the covariant derivative.

The covariant derivative vi;k of a contravariant vector vi is defined as

vi;k = ∂xkvi + Γ ijkv
j .

Similarly, the covariant derivative vi;k of a covariant vector vi is defined as

vi;k = ∂xkvi − Γ jikvj .

Generalization for the higher order tensors is straightforward; e.g., the covari-
ant derivative tjkl;q of the third order tensor tjkl is given by

tjkl;q = ∂xq tjkl + Γ
j
qst
s
kl − Γ skqt

j
sl − Γ slqt

j
ks.

The covariant derivative is the most important tensor operator in general
relativity (its zero defines parallel transport) as well as the basis for defining
other differential operators in mechanics and physics.
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Covariant Form of Differential Operators

Here we give the covariant form of classical vector differential operators: gra-
dient, divergence, curl and Laplacian.
Gradient. If ϕ = ϕ(xi, t) is a scalar field, the gradient one–form grad(ϕ) is
defined by

grad(ϕ) = ∇ϕ = ϕ;i = ∂xiϕ.

Divergence. The divergence div(vi) of a vector–field vi = vi(xi, t) is defined
by contraction of its covariant derivative with respect to the coordinates xi =
xi(t), i.e., the contraction of vi;k, namely

div(vi) = vi;i =
1
√
g
∂xi(

√
gvi).

Curl. The curl curl(θi) of a one–form θi = θi(xi, t) is a second–order covariant
tensor defined as

curl(θi) = θi;k − θk;i = ∂xkθi − ∂xiθk.

Laplacian. The Laplacian ∆ϕ of a scalar invariant ϕ = ϕ(xi, t) is the diver-
gence of grad(ϕ), or

∆ϕ = ∇2ϕ = div(grad(ϕ)) = div(ϕ;i) =
1
√
g
∂xi(

√
ggik∂xkϕ).

The Absolute Derivative

The absolute derivative (or intrinsic, or Bianchi’s derivative) of a contravari-
ant vector vi along a curve xk = xk(t) is denoted by ˙̄vi ≡ Dvi/dt and defined
as the inner product of the covariant derivative of vi and ẋk ≡ dxk/dt, i.e.,
vi;kẋ

k, and is given by
˙̄vi = v̇i + Γ ijkv

j ẋk.

Similarly, the absolute derivative ˙̄vi of a covariant vector vi is defined as

˙̄vi = v̇i − Γ jikvj ẋk.

Generalization for the higher order tensors is straightforward; e.g., the abso-
lute derivative ˙̄tjkl of the third order tensor tjkl is given by

˙̄tjkl = ṫjkl + Γ
j
qst
s
klẋ

q − Γ skqt
j
slẋ

q − Γ slqt
j
ksẋ

q.

The absolute derivative is the most important differential operator in
physics and engineering, as it is the basis for the covariant form of both
Lagrangian and Hamiltonian equations of motion of many physical and engi-
neering systems.
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Application to Curve Geometry

Given three unit vectors: tangent τ i, principal normal βi, and binormal νi,
as well as two scalar invariants: curvature K and torsion T, of a curve γ(s) =
γ[xi(s)], the so–called Frenet–Serret formulae are valid1

˙̄τ i ≡ τ̇ i + Γ ijkτ j ẋk = Kβi,

˙̄βi ≡ β̇i + Γ ijkβj ẋk = −(Kτ i + Tνi),

˙̄νi ≡ ν̇i + Γ ijkνj ẋk = Tβi.

Application to Mechanical Definitions of Acceleration and Force

In modern analytical mechanics, the two fundamental notions of acceleration
and force in general curvilinear coordinates are substantially different from
the corresponding terms in Cartesian coordinates as commonly used in engi-
neering mechanics. Namely, the acceleration vector is not an ordinary time
derivative of the velocity vector; ‘even worse’, the force, which is a paradigm
of a vector in statics and engineering vector mechanics, is not a vector at all.
Proper mathematical definition of the acceleration vector is the absolute time
derivative of the velocity vector, while the force is a differential one–form.

To give a brief look at these ‘weird mathematical beasts’, consider a ma-
terial dynamical system described by n curvilinear coordinates xi = xi(t).
First, recall from subsection 3.1.3 above, that an ordinary time derivative of
the velocity vector vi(t) = ẋi(t) does not transform as a vector with respect
to the general coordinate transformation (3.2). Therefore, ai �= v̇i. So, we
need to use its absolute time derivative to define the acceleration vector (with
i, j, k = 1, ..., n),

ai = ˙̄vi ≡ Dv
i

dt
= vi;kẋ

k ≡ v̇i + Γ ijkvjvk ≡ ẍi + Γ ijkẋj ẋk, (3.11)

which is equivalent to the l.h.s of the geodesic equation (3.9). Only in the
particular case of Cartesian coordinates, the general acceleration vector (3.11)
reduces to the familiar engineering form of the Euclidean acceleration vector2,
a = v̇.

For example, in standard spherical coordinates xi = {ρ, θ, ϕ}, we have the
components of the acceleration vector given by (3.10), if we now reinterpret
overdot as the time derivative,
1 In this paragraph, the overdot denotes the total derivative with respect to the

line parameter s (instead of time t).
2 Any Euclidean space can be defined as a set of Cartesian coordinates, while any

Riemannian manifold can be defined as a set of curvilinear coordinates. Christof-
fel’s symbols Γ i

jk vanish in Euclidean spaces defined by Cartesian coordinates;
however, they are nonzero in Riemannian manifolds defined by curvilinear coor-
dinates.
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aρ = ρ̈− ρθ̇2 − ρ cos2 θϕ̇2, aθ = θ̈ +
2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2,

aϕ = ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇.

Now, using (3.11), the Newton’s fundamental equation of motion, that is
the basis of all science, F = ma, gets the following tensorial form

F i = mai = m ˙̄vi = m(vi;kẋ
k) ≡ m(v̇i + Γ ijkv

jvk) = m(ẍi + Γ ijkẋ
j ẋk), (3.12)

which defines Newtonian force as a contravariant vector.
However, modern Hamiltonian dynamics reminds us that: (i) Newton’s

own force definition was not really F = ma, but rather F = ṗ, where p is
the system’s momentum, and (ii) the momentum p is not really a vector, but
rather a dual quantity, a differential one–form3. Consequently, the force, as its
time derivative, is also a one–form (see Figure 3.1; also, compare with Figure
Figure 1.8 above). This new force definition includes the precise definition of
the mass distribution within the system, by means of its Riemannian metric
tensor gij . Thus, (3.12) has to be modified as

Fi = mgijaj ≡ mgij(v̇j + Γ jikv
ivk) = mgij(ẍj + Γ jikẋ

iẋk), (3.13)

where the quantity mgij is called the material metric tensor, or inertia ma-
trix. Equation (3.13) generalizes the notion of the Newtonian force F, from
Euclidean space Rn to the Riemannian manifold M .

Fig. 3.1. A one–form θ (which is a family of parallel (hyper)surfaces, the so–called
Grassmann planes) pierced by the vector v to give a scalar product θ(v) ≡< θ, v >=
2.6 (see [MTW73] for technical details).

3.1.4 Tensor Mechanics in Brief

Recall that a material system is regarded from the dynamical standpoint as
a collection of particles which are subject to interconnections and constraints
3 For example, in Dirac’s < bra|ket > formalism, kets are vectors, while bras are

one–forms; in matrix notation, columns are vectors, while rows are one–forms.
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of various kinds (e.g., a rigid body is regarded as a number of particles rigidly
connected together so as to remain at invariable distances from each other).
The number of independent coordinates which determine the configuration of
a dynamical system completely is called the number of degrees of freedom
(DOF) of the system. In other words, this number, n, is the dimension of the
system’s configuration manifold. This viewpoint is the core of our geometrical
dynamics.

For simplicity, let us suppose that we have a dynamical system with three
DOF (e.g., a particle of mass M , or a rigid body of mass M with one point
fixed); generalization to n DOF, with N included masses Mα, is straightfor-
ward. The configuration of our system at any time is then given by three
coordinates {q1, q2, q3}. As the coordinates change in value the dynamical
system changes its configuration. Obviously, there is an infinite number of
sets of independent coordinates which will determine the configuration of a
dynamical system, but since the position of the system is completely given by
any one set, these sets of coordinates must be functionally related. Hence, if
q̄i is any other set of coordinates, these quantities must be connected with qi

by formulae of the type

q̄i = q̄i(qi), (i = 1, ..., n(= 3)). (3.14)

Relations (3.14) are the equations of transformation from one set of dynamical
coordinates to another and, in a standard tensorial way (see [MTW73]), we
can define tensors relative to this coordinate transformation. The generalized
coordinates qi, (i = 1, ..., n) constitute the system’s configuration manifold.

In particular, in our ordinary Euclidean 3−dimensional (3D) space R3, the
ordinary Cartesian axes are xi = {x, y, z}, and the system’s center of mass
(COM) is given by

Ci =
Mαx

i
α∑N

α=1Mα
,

where Greek subscript α labels the masses included in the system. If we have a
continuous distribution of matter V = V (M) rather than the discrete system
of masses Mα, all the α−sums should be replaced by volume integrals, the
element of mass dM taking the place of Mα,

N∑
α=1

Mα ⇒
∫∫∫
V

dM.

An important quantity related to the system’s COM is the double symmetric
contravariant tensor

Iij =Mαxiαx
j
α, (3.15)

called the inertia tensor, calculated relative to the origin O of the Cartesian
axes xiα = {xα, yα, zα}. If we are given a straight line through O, defined by
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its unit vector λi, and perpendiculars pα are drawn from the different particles
on the line λi, the quantity

I(λi) =Mαp2α

is called the moment of inertia around λi. The moment of inertia I(λi) can
be expressed through inertia tensor (3.15) as

I(λi) = (Igij − Iij)λiλj ,

where gij is the system’s Euclidean 3D metric tensor (as defined above),
I = gijI

ij , and Iij = grmgsnI
mn is the covariant inertia tensor. If we now

consider the quadric Q whose equation is

(Igij − Iij)xixj = 1, (3.16)

we find that the moment of inertia around λi is 1/R, where R is the radius
vector of Q in the direction of λi. The quadric Q defined by relation (3.16) is
called the ellipsoid of inertia at the originO. It has always three principal axes,
which are called the principal axes of inertia at O, and the planes containing
them in pairs are called the principal planes of inertia at O. The principal
axes of inertia are given by the equations

(Igij − Iij)λj = θλi,

where θ is a root of the determinant equation

|(I − θ)gij − Iij | = 0.

More generally, if we suppose that the points of our dynamical system are
referred to rectilinear Cartesian axes xi in a Euclidean n−dimensional (nD)
space Rn, then when we are given the time and a set of generalized coordinates
qi we are also given all the points xi of the dynamical system, as the system
is determined uniquely. Consequently, the xi are functions of qi and possibly
also of the time, that is,

xi = xi(qi, t).

If we restrict ourselves to the autonomous dynamical systems in which these
equations do not involve t, i.e.,

xi = xi(qi), (3.17)

then differentiating (3.17) with respect to the time t gives

ẋi =
∂xi

∂qj
q̇j . (3.18)

The quantities q̇i, which form a vector with reference to coordinate trans-
formations (3.14), we shall call the generalized velocity vector. We see from
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(3.18) that when the generalized velocity vector is given we know the velocity
of each point of our system. Further, this gives us the system’s kinetic energy,

Ekin =
1
2
Mαgmnẋ

m
α ẋ

n
α =

1
2
Mαgmn

∂xmα
∂qi

∂xnα
∂qj

q̇iq̇j . (3.19)

Now, if we use the Euclidean metric tensor gij to define the material metric
tensor Gij , including the distribution of all the masses Mα of our system, as

Gij =Mαgmn
∂xmα
∂qi

∂xnα
∂qj

, (3.20)

the kinetic energy (3.19) becomes a homogenous quadratic form in the gener-
alized system’s velocities q̇i,

Ekin =
1
2
Gij q̇

iq̇j . (3.21)

From the transformation relation (3.20) we see that the material metric tensor
Gij is symmetric in i and j. Also, since Ekin is an invariant for all transforma-
tions of generalized coordinates, from (3.21) we conclude that Gij is a double
symmetric tensor. Clearly, this is the central quantity in classical tensor sys-
tem dynamics. We will see later, that Gij defines the Riemannian geometry of
the system dynamics. For simplicity reasons, Gij is often denoted by purely
geometrical symbol gij , either assuming or neglecting the material properties
of the system.

Now, let us find the equations of motion of our system. According to the
D’Alembert’s Principle of virtual displacements, the equations of motion in
Cartesian coordinates xi in Rn are embodied in the single tensor equation

gmn(Mαẍmα −Xmα )δxnα = 0, (3.22)

where Xiα is the total force vector acting on the particle Mα, while δxiα is
the associated virtual displacement vector, so that the product gijXiαδx

j
α is

the virtual work of the system, and we can neglect in Xiα all the internal
or external forces which do not work in the displacement δxiα. If we give the
system a small displacement compatible to with the constraints of the system,
we see that this displacement may be effected by giving increments δqi to the
generalized coordinates qi of the system, and these are related to the δxi in
accordance with the transformation formulae δxiα = ∂xi

α

∂qj δq
j .

Furthermore, in this displacement the internal forces due to the constraints
of the system will do no work, since these constraints are preserved, and
consequently only the external forces will appear in (3.22), so it becomes

gmn

[
Mα

d

dt

(
∂xmα
∂qj

q̇j
)
∂xnα
∂qi

−Xmα
∂xnα
∂qi

]
δqi = 0. (3.23)
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Now, using (3.19–3.21), we derive

Mαgmn
d

dt

(
∂xmα
∂qj

q̇j
)
∂xnα
∂qi

=
d

dt
(Gij q̇j)−

1
2
∂Gst
∂qi

q̇j q̇k =
d

dt

(
∂Ekin
∂q̇i

)
− ∂Ekin
∂qi

.

Also, if we put

Fi = gmnXmα
∂xnα
∂qi

, we get

Fiδq
i = gmnXmα δx

n
α = δW, (3.24)

where δW is the virtual work done by the external forces in the small displace-
ment δqi, which shows that Fi is the covariant vector, called the generalized
force vector. Now (3.23) takes the form[

d

dt

(
∂Ekin
∂q̇i

)
− ∂Ekin

∂qi
− Fi

]
δqi = 0.

Since the coordinates qi are independent this equation is true for all variations
δqi and we get as a final result the covariant Lagrangian equations of motion,

d

dt

(
∂Ekin
∂q̇i

)
− ∂Ekin

∂qi
= Fi.

If the force system is conservative and Epot is the system’s potential energy
given by

Fi = −∂Epot
∂qi

,

then, using (3.24) the Lagrangian equations take the standard form

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, (3.25)

where the Lagrangian function L = L(q, q̇) of the system is given by L =
Ekin − Epot (since Epot does not contain q̇i).

Now, the kinetic energy Ekin of the system, given by quadratic form (3.21),
is always positive except when q̇i is zero in which case Ekin vanishes. In other
words, the quadratic form (3.21) is positive definite. Consequently, we can
always find the line (or arc) element, defined by

ds2 = Gijdqidqj . (3.26)

A manifold in which ds2 is given by relation of the type of (3.26), geometrically
with gij instead of Gij , is called a Riemannian manifold.
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Riemannian Curvature Tensor

Every Riemannian manifold is characterized by the Riemann curvature tensor.
In physical literature (see, e.g., [MTW73]) it is usually introduced through the
Jacobi equation of geodesic deviation, showing the acceleration of the relative
separation of nearby geodesics (the shortest, straight lines on the manifold).
For simplicity, consider a sphere of radius a in R3. Here, Jacobi equation is
pretty simple,

d2ξ

ds2
+Rξ = 0,

where ξ is the geodesic separation vector (the so–called Jacobi vector–field),
s denotes the geodesic arc parameter given by (3.26) and R = 1/a2 is the
Gaussian curvature of the surface.

In case of a higher–dimensional manifold M , the situation is naturally
more complex, but the main structure of the Jacobi equation remains similar,

D2ξ

ds2
+R(u, ξ, u) = 0,

whereD denotes the covariant derivative andR(u, ξ, u) is the curvature tensor,
a three–slot linear machine. In components defined in a local coordinate chart
(xi) on M , this equation reads

D2ξi

ds2
+Rijkl

dxj

ds
ξk
dxl

ds
= 0,

where Rijkl are the components of the Riemann curvature tensor .

Exterior Differential Forms

Recall that exterior differential forms are a special kind of antisymmetrical
covariant tensors (see, e.g., [Rha84, Fla63]). Such tensor–fields arise in many
applications in physics, engineering, and differential geometry. The reason for
this is the fact that the classical vector operations of grad, div, and curl
as well as the theorems of Green, Gauss, and Stokes can all be expressed
concisely in terms of differential forms and the main operator acting on them,
the exterior derivative d. Differential forms inherit all geometrical properties
of the general tensor calculus and add to it their own powerful geometrical,
algebraic and topological machinery (see Figures 3.2 and 3.3). Differential
p−forms formally occur as integrands under ordinary integral signs in R3:

• a line integral
∫
P dx + Qdy + Rdz has as its integrand the one–form

ω = P dx+Qdy +Rdz;
• a surface integral

∫∫
Adydz + B dzdx + C dxdy has as its integrand the

two–form α = Adydz +B dzdx+ C dxdy;
• a volume integral

∫∫∫
K dxdydz has as its integrand the three–form

λ = K dxdydz.
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Fig. 3.2. Basis vectors and 1–forms in Euclidean R3−space: (a) Translational case;
and (b) Rotational case.

By means of an exterior derivative d, a derivation that transforms p−forms
into (p + 1)−forms, these geometrical objects generalize ordinary vector dif-
ferential operators in R3:

• a scalar function f = f(x) is a zero–form;
• its gradient df , is a one–form4

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz;

• a curl dω, of a one–form ω above, is a two–form
4 We use the same symbol, d, to denote both ordinary and exterior derivation, in

order to avoid extensive use of the boldface symbols. It is clear from the context
which derivative (differential) is in place: exterior derivative operates only on
differential forms, while the ordinary differential operates mostly on coordinates.
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dω =
(
∂R

∂y
− ∂Q
∂z

)
dydz +

(
∂P

∂z
− ∂R
∂x

)
dzdx+

(
∂Q

∂x
− ∂P
∂y

)
dxdy;

• a divergence dα, of the two–form α above, is a three–form

dα =
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dxdydz.

Fig. 3.3. Fundamental two–form and its flux in R3: (a) Translational case; (b) Rota-
tional case. In both cases the flux through the plane u∧v is defined as

∫ ∫
u∧v

c dpidqi

and measured by the number of tubes crossed by the circulation oriented by u ∧ v.

Now, although visually intuitive, our Euclidean 3D space R3 is not suffi-
cient for thorough physical or engineering analysis. The fundamental concept
of a smooth manifold, locally topologically equivalent to the Euclidean nD
space Rn, is required (with or without Riemannian metric tensor defined on
it). In general, a proper definition of exterior derivative d for a p−form β on a
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smooth manifold M , includes the Poincaré lemma: d(dβ) = 0, and validates
the general integral Stokes formula∫

∂M

β =
∫
M

dβ,

where M is a p−dimensional manifold with a boundary and ∂M is its (p −
1)−dimensional boundary, while the integrals have appropriate dimensions.

A p−form β is called closed if its exterior derivative is equal to zero,

dβ = 0.

From this condition one can see that the closed form (the kernel of the exterior
derivative operator d) is conserved quantity. Therefore, closed p−forms possess
certain invariant properties, physically corresponding to the conservation laws.

A p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,

is called exact (the image of the exterior derivative operator d). By Poincaré
Lemma, exact forms prove to be closed automatically,

dβ = d(dα) = 0.

Similarly to the components of a 3D vector v defined above, a one–form
θ defined on an nD manifold M can also be expressed in components, using
the coordinate basis {dxi} along the local nD coordinate chart {xi} ∈M , as

θ = θi dx
i.

Now, the components of the exterior derivative of θ are equal to the compo-
nents of its commutator defined on M by

dθ = ωij dxi dxj ,

where the components of the form commutator ωij are given by

ωij =
(
∂θi
∂xi

− ∂θi
∂xj

)
.

The space of all smooth p−forms on a smooth manifold M is denoted by
Ωp(M). The wedge, or exterior product of two differential forms, a p−form
α ∈ Ωp(M) and a q−form β ∈ Ωq(M) is a (p+ q)−form α ∧ β. For example,
if θ = aidxi, and η = bjdxj , their wedge product θ ∧ η is given by

θ ∧ η = aibjdxidxj ,

so that the coefficients aibj of θ∧η are again smooth functions, being polyno-
mials in the coefficients ai of θ and bj of η. The exterior product ∧ is related
to the exterior derivative d : Ωp(M) → Ωp+1(M), by
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d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

Another important linear operator is the Hodge star ∗ : Ωp(M) →
Ωn−p(M), where n is the dimension of the manifoldM . This operator depends
on the inner product (i.e., Riemannian metric) onM and also depends on the
orientation (reversing orientation will change the sign). For any p−forms α
and β,

∗ ∗ α = (−1)p(n−p)α, and α ∧ ∗β = β ∧ ∗α.
Hodge star is generally used to define dual (n − p)−forms on nD smooth
manifolds.

For example, in R3 with the ordinary Euclidean metric, if f and g are
functions then (compare with the 3D forms of gradient, curl and divergence
defined above)

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

∗df =
∂f

∂x
dydz +

∂f

∂y
dzdx+

∂f

∂z
dxdy,

df ∧ ∗dg =
(
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y
+
∂f

∂z

∂g

∂z

)
dxdydz = ∆f dxdydz,

where ∆f is the Laplacian on R3. Therefore the three–form df ∧ ∗dg is the
Laplacian multiplied by the volume element, which is valid, more generally,
in any local orthogonal coordinate system in any smooth domain U ∈ R3.

The subspace of all closed p−forms on M we will denote by Zp(M) ⊂
Ωp(M), and the sub-subspace of all exact p−forms on M we will denote by
Bp(M) ⊂ Zp(M). Now, the quotient space

Hp(M) =
Zp(M)
BpM

=
Ker

(
d : Ωp(M) → Ωp+1(M)

)
Im (d : Ωp−1(M) → Ωp(M))

is called the pth de Rham cohomology group (or vector space) of a manifoldM .
Two p−forms α and β onM are equivalent, or belong to the same cohomology
class [α] ∈ Hp(M), if their difference equals α − β = dθ, where θ is a (p −
1)−form on M .

3.1.5 The Covariant Force Law in Robotics and Biomechanics

Objective of this final tensor subsection is to generalize the fundamental New-
tonian 3D equation, F = ma, for a generic robotic/biomechanical system, con-
sisting of a number of flexibly–coupled rigid segments (see Figures 2.22–2.23
above), and thus to formulate the covariant force law .

To be able to apply the covariant formalism, we need to start with the
suitable coordinate transformation (3.2), in this case as a relation between
the 6 external SE(3) rigid–body coordinates, ye = ye(t) (e = 1, ..., 6), and
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2n internal joint coordinates, xi = xi(t) (i = 1, ..., 2n) (n angles, forming
the constrained n−torus Tn, plus n very restricted translational coordinates,
forming the hypercube In ⊂ Rn). Once we have these two sets of coordinates,
external–ye and internal–xi, we can perform the general functional transfor-
mation (3.2) between them,

xi = xi(ye). (3.27)

Now, although the coordinate transformation (3.27) is nonlinear and even
unknown at this stage, there is something known and simple about it: the
corresponding transformation of differentials is linear and homogenous,

dxi =
∂xi

∂ye
dye,

which implies the linear and homogenous transformation of velocities,

ẋi =
∂xi

∂ye
ẏe. (3.28)

Our internal velocity vector–field is defined by the set of ODEs (3.28), at
each representative point xi = xi(t) of the system’s configuration manifold
M = Tn × In, as vi ≡ vi(xi, t) := ẋi(xi, t).

Note that in general, a vector–field represents a field of vectors defined
at every point xi within some region U (e.g., movable segments/joints only)
of the total configuration manifold M (consisting of all the segments/joints).
Analytically, vector–field is defined as a set of autonomous ODEs (in our case,
the set (3.28)). Its solution gives the flow, consisting of integral curves of the
vector–field, such that all the vectors from the vector–field are tangent to
integral curves at different representative points xi ∈ U . In this way, through
every representative point xi ∈ U passes both a curve from the flow and its
tangent vector from the vector–field. Geometrically, vector–field is defined as a
cross–section of the tangent bundle TM , the so–called velocity phase–space. Its
geometrical dual is the 1–form–field, which represents a field of one–forms (see
Figure 3.1), defined at the same representative points xi ∈ U . Analytically, 1–
form–field is defined as an exterior differential system, an algebraic dual to the
autonomous set of ODEs. Geometrically, it is defined as a cross–section of the
cotangent bundle T ∗M , the so–called momentum phase–space. Together, the
vector–field and its corresponding 1–form–field define the scalar potential field
(e.g., kinetic and/or potential energy) at the same movable region U ⊂M .

Next, we need to formulate the internal acceleration vector–field, ai ≡
ai(xi, ẋi, t), acting in all movable joints, and at the same time generalizing
the Newtonian 3D acceleration vector a.

According to Newton, acceleration is a rate–of–change of velocity. But,
from the previous subsections, we know that ai �= v̇i. However,

ai := ˙̄vi = v̇i + Γ ijkv
jvk = ẍi + Γ ijkẋ

j ẋk. (3.29)
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Once we have the internal acceleration vector–field ai = ai(xi, ẋi, t), de-
fined by the set of ODEs (3.29) (including Levi–Civita connections Γ ijk of
the Riemannian configuration manifoldM), we can finally define the internal
force 1–form field, Fi = Fi(xi, ẋi, t), as a family of force one–forms, half of
them rotational and half translational, acting in all movable joints,

Fi := mgijaj = mgij(v̇j + Γ jikv
ivk) = mgij(ẍj + Γ jikẋ

iẋk), (3.30)

where we have used the simplified material metric tensor,mgij , for the system
(considering, for simplicity, all segments to have equal mass m), defined by
its Riemannian kinetic energy form

T =
1
2
mgijv

ivj .

Equation Fi = mgijaj , defined properly by (3.30) at every representative
point xi of the system’s configuration manifold M , formulates the sought for
covariant force law , that generalizes the fundamental Newtonian equation,
F = ma, for the generic physical or engineering system. Its meaning is:

Force 1–form–field = Mass distribution×Acceleration vector–field

In other words, the field (or, family) of force one–forms Fi, acting in all
movable joints (with constrained rotations on Tn and very restricted trans-
lations on In), causes both rotational and translational accelerations of all
body segments, within the mass distribution mgij

5, along the flow–lines of
the vector–field aj .

3.2 Categories and Functors

In modern mathematical sciences whenever one defines a new class of math-
ematical objects, one proceeds almost in the next breath to say what kinds
of maps between objects will be considered [Swi75]. A general framework for
dealing with situations where we have some objects and maps between ob-
jects, like sets and functions, vector spaces and linear operators, points in
a space and paths between points, etc. – gives the modern metalanguage of
categories and functors. Categories are mathematical universes and functors
are ‘projectors’ from one universe onto another. For this reason, in this book
we extensively use this language, mainly following its founder, S. MacLane
[MacL71].
5 More realistically, instead of the simplified metric mgij we have the material

metric tensor Gij (3.20), including all k segmental masses mχ, as well as the
corresponding moments and products of inertia,

Gij(x, m) =

k∑
χ=1

mχδrs
∂yr

∂xi

∂ys

∂xj
, (r, s = 1, ..., 6; i, j = 1, ..., 2n).
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3.2.1 Maps

Notes from Set Theory

Given a map (or, a function) f : A → B, the set A is called the domain of
f , and denoted Dom f . The set B is called the codomain of f , and denoted
Cod f. The codomain is not to be confused with the range of f(A), which is
in general only a subset of B.

A map f : X → Y is called injective or 1–1 or an injection if for every y
in the codomain Y there is at most one x in the domain X with f(x) = y.
Put another way, given x and x′ in X, if f(x) = f(x′), then it follows that
x = x′. A map f : X → Y is called surjective or onto or a surjection if for
every y in the codomain Cod f there is at least one x in the domain X with
f(x) = y. Put another way, the range f(X) is equal to the codomain Y . A map
is bijective iff it is both injective and surjective. Injective functions are called
the monomorphisms, and surjective functions are called the epimorphisms in
the category of sets (see below).

Two main classes of maps (or, functions) that we will use int this book are:
(i) continuous maps (denoted as C0−class), and (ii) smooth or differentiable
maps (denoted as C∞−class). The former class is the core of topology, the
letter of differential geometry. They are both used in the core concept of
manifold.

A relation is any subset of a Cartesian product (see below). By definition,
an equivalence relation α on a setX is a relation which is reflexive, symmetrical
and transitive, i.e., relation that satisfies the following three conditions:

1. Reflexivity : each element x ∈ X is equivalent to itself, i.e., xαx,
2. Symmetry : for any two elements x, x′ ∈ X, xαx′ implies x′αx, and
3. Transitivity : a ≤ b and b ≤ c implies a ≤ c.

Similarly, a relation ≤ defines a partial order on a set S if it has the
following properties:

1. Reflexivity : a ≤ a for all a ∈ S,
2. Antisymmetry : a ≤ b and b ≤ a implies a = b, and
3. Transitivity : a ≤ b and b ≤ c implies a ≤ c.

A partially ordered set (or poset) is a set taken together with a partial
order on it. Formally, a partially ordered set is defined as an ordered pair
P = (X,≤), where X is called the ground set of P and ≤ is the partial order
of P .

Notes From Calculus

Maps

Recall that a map (or, function) f is a rule that assigns to each element x in
a set A exactly one element, called f(x), in a set B. A map could be thought
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of as a machine [[f ]] with x−input (the domain of f is the set of all possible
inputs) and f(x)−output (the range of f is the set of all possible outputs)
[Stu99]

x→ [[f ]]→ f(x)

There are four possible ways to represent a function (or map): (i) verbally (by
a description in words); (ii) numerically (by a table of values); (iii) visually (by
a graph); and (iv) algebraically (by an explicit formula). The most common
method for visualizing a function is its graph. If f is a function with domain
A, then its graph is the set of ordered input–output pairs

{(x, f(x)) : x ∈ A}.

A generalization of the graph concept is a concept of a cross–section of a fibre
bundle, which is one of the core geometrical objects for dynamics of complex
systems.

Algebra of Maps

Let f and g be maps with domains A and B. Then the maps f + g, f − g, fg,
and f/g are defined as follows [Stu99]

(f + g)(x) = f(x) + g(x) domain = A ∩B,
(f − g)(x) = f(x)− g(x) domain = A ∩B,

(fg)(x) = f(x) g(x) domain = A ∩B,(
f

g

)
(x) =

f(x)
g(x)

domain = {x ∈ A ∩B : g(x) �= 0}.

Compositions of Maps

Given two maps f and g, the composite map f ◦g (also called the composition
of f and g) is defined by

(f ◦ g)(x) = f(g(x)).

The (f ◦ g)−machine is composed of the g−machine (first) and then the
f−machine [Stu99],

x→ [[g]]→ g(x) → [[f ]]→ f(g(x))

For example, suppose that y = f(u) =
√
u and u = g(x) = x2 + 1. Since y

is a function of u and u is a function of x, it follows that y is ultimately a
function of x. We calculate this by substitution

y = f(u) = f ◦ g = f(g(x)) = f(x2 + 1) =
√
x2 + 1.
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The Chain Rule

If f and g are both differentiable (or smooth, i.e., C∞) maps and h = f ◦ g is
the composite map defined by h(x) = f(g(x)), then h is differentiable and h′

is given by the product [Stu99]

h′(x) = f ′(g(x)) g′(x).

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable maps,
then

dy

dx
=
dy

du

du

dx
.

The reason for the name chain rule becomes clear if we add another link to
the chain. Suppose that we have one more differentiable map x = h(t). Then,
to calculate the derivative of y with respect to t, we use the chain rule twice,

dy

dt
=
dy

du

du

dx

dx

dt
.

Integration and Change of Variables

1–1 continuous (i.e., C0) map T with a nonzero Jacobian
∣∣∣ ∂(x,...)∂(u,...)

∣∣∣ that maps
a region S onto a region R, (see [Stu99]) we have the following substitution
formulas:

1. for a single integral, ∫
R

f(x) dx =
∫
S

f(x(u))
∂x

∂u
du,

2. for a double integral,∫∫
R

f(x, y) dA =
∫∫
S

f(x(u, v), y(u, v))
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ dudv,
3. for a triple integral,∫∫∫

R

f(x, y, z) dV =
∫∫
S

f(x(u, v, w), y(u, v, w), z(u, v, w))
∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣dudvdw
4. similarly for n−tuple integrals.

Notes from General Topology

Topology is a kind of abstraction of Euclidean geometry, and also a natural
framework for the study of continuity.6 Euclidean geometry is abstracted by
6 Intuitively speaking, a function f : R −→ R is continuous near a point x in its

domain if its value does not jump there. That is, if we just take δx to be small
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regarding triangles, circles, and squares as being the same basic object. Conti-
nuity enters because in saying this one has in mind a continuous deformation
of a triangle into a square or a circle, or any arbitrary shape. On the other
hand, a disk with a hole in the center is topologically different from a circle
or a square because one cannot create or destroy holes by continuous defor-
mations. Thus using topological methods one does not expect to be able to
identify a geometrical figure as being a triangle or a square. However, one does
expect to be able to detect the presence of gross features such as holes or the
fact that the figure is made up of two disjoint pieces etc. In this way topology
produces theorems that are usually qualitative in nature – they may assert,
for example, the existence or non–existence of an object. They will not, in
general, give the means for its construction [Nas83].

Topological Space

Study of topology starts with the fundamental notion of topological space. Let
X be any set and Y = {Xα} denote a collection, finite or infinite of subsets
of X. Then X and Y form a topological space provided the Xα and Y satisfy:

1. Any finite or infinite subcollection {Zα} ⊂ Xα has the property that
∪Zα ∈ Y , and

2. Any finite subcollection {Zα1 , ..., Zαn
} ⊂ Xα has the property that

∩Zαi
∈ Y .

The set X is then called a topological space and the Xα are called open
sets. The choice of Y satisfying (2) is said to give a topology to X.

Given two topological spaces X and Y , a function (or, a map)
f : X → Y is continuous if the inverse image of an open set in Y is an open
set in X.

The main general idea in topology is to study spaces which can be con-
tinuously deformed into one another, namely the idea of homeomorphism. If
we have two topological spaces X and Y , then a map f : X → Y is called a
homeomorphism iff

1. f is continuous (C0), and
2. There exists an inverse of f , denoted f−1, which is also continuous.

Definition (2) implies that if f is a homeomorphism then so is f−1. Homeomor-
phism is the main topological example of reflexive, symmetrical and transi-
tive relation, i.e., equivalence relation. Homeomorphism divides all topological
spaces up into equivalence classes. In other words, a pair of topological spaces,
X and Y , belong to the same equivalence class if they are homeomorphic.

enough, the two function values f(x) and f(x + δx) should approach each other
arbitrarily closely. In more rigorous terms, this leads to the following definition:
A function f : R −→ R is continuous at x ∈ R if for all ε > 0, there exists a δ > 0
such that for all y ∈ R with |y−x| < δ, we have that |f(y)−f(x)| < ε. The whole
function is called continuous if it is continuous at every point x.
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The second example of topological equivalence relation is homotopy. While
homeomorphism generates equivalence classes whose members are topological
spaces, homotopy generates equivalence classes whose members are continuous
(C0) maps. Consider two continuous maps f, g : X → Y between topological
spaces X and Y . Then the map f is said to be homotopic to the map g if
f can be continuously deformed into g (see below for the precise definition
of homotopy). Homotopy is an equivalence relation which divides the space
of continuous maps between two topological spaces into equivalence classes
[Nas83].

Another important notions in topology are covering, compactness and con-
nectedness. Given a family of sets {Xα} = X say, then X is a covering of
another set Y if ∪Xα contains Y . If all the Xα happen to be open sets the
covering is called an open covering. Now consider the set Y and all its pos-
sible open coverings. The set Y is compact if for every open covering {Xα}
with ∪Xα ⊃ Y there always exists a finite subcovering {X1, ..., Xn} of Y with
X1 ∪ ... ∪Xn ⊃ Y . Again, we define a set Z to be connected if it cannot be
written as Z = Z1 ∪ Z2, where Z1 and Z2 are both open and Z1 ∩ Z2 is an
empty set.

Let A1, A2, ..., An be closed subspaces of a topological space X such that
X = ∪ni=1Ai. Suppose fi : Ai → Y is a function, 1 ≤ i ≤ n, iff

fi|Ai ∩Aj = fj |Ai ∩Aj , 1 ≤ i, j ≤ n. (3.31)

In this case f is continuous iff each fi is. Using this procedure we can define
a C0−function f : X → Y by cutting up the space X into closed subsets Ai
and defining f on each Ai separately in such a way that f |Ai is obviously
continuous; we then have only to check that the different definitions agree on
the overlaps Ai ∩Aj .

The universal property of the Cartesian product : let pX : X × Y → X,
and pY : X × Y → Y be the projections onto the first and second factors,
respectively. Given any pair of functions f : Z → X and g : Z → Y there is a
unique function h : Z → X×Y such that pX ◦h = f , and pY ◦h = g. Function
h is continuous iff both f and g are. This property characterizes X/α up to
homeomorphism. In particular, to check that a given function h : Z → X is
continuous it will suffice to check that pX ◦ h and pY ◦ h are continuous.

The universal property of the quotient : let α be an equivalence relation on
a topological space X, let X/α denote the space of equivalence classes and
pα : X → X/α the natural projection. Given a function f : X → Y , there is a
function f ′ : X/α→ Y with f ′ ◦ pα = f iff xαx′ implies f(x) = f(x′), for all
x ∈ X. In this case f ′ is continuous iff f is. This property characterizes X/α
up to homeomorphism.

Homotopy

Now we return to the fundamental notion of homotopy. Let I be a compact
unit interval I = [0, 1]. A homotopy from X to Y is a continuous function
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F : X×I → Y . For each t ∈ I one has Ft : X → Y defined by Ft(x) = F (x, t)
for all x ∈ X. The functions Ft are called the ‘stages’ of the homotopy. If
f, g : X → Y are two continuous maps, we say f is homotopic to g, and write
f  g, if there is a homotopy F : X× I → Y such that F0 = f and F1 = g. In
other words, f can be continuously deformed into g through the stages Ft. If
A ⊂ X is a subspace, then F is a homotopy relative to A if F (a, t) = F (a, 0),
for all a ∈ A, t ∈ I.

The homotopy relation  is an equivalence relation. To prove that we have
f  f is obvious; take F (x, t = f(x), for all x ∈ X, t ∈ I. If f  g and F is a
homotopy from f to g, then G : X × I → Y defined by G(x, t) = F (x, 1− t),
is a homotopy from g to f , i.e., g  f . If f  g with homotopy F and g  f
with homotopy G, then f  h with homotopy H defined by

H(x, t) =
{
F (x, t), 0 ≤ t ≤ 1/2
G(x, 2t− 1), 1/2 ≤ t ≤ 1 .

To show that H is continuous we use the relation (3.31).
In this way, the set of all C0−functions f : X → Y between two topological

spaces X and Y , called the function space and denoted by Y X , is partitioned
into equivalence classes under the relation . The equivalence classes are called
homotopy classes, the homotopy class of f is denoted by [f ], and the set of
all homotopy classes is denoted by [X;Y ].

If α is an equivalence relation on a topological space X and F : X×I → Y
is a homotopy such that each stage Ft factors through X/α, i.e., xαx′ implies
Ft(x) = Ft(x′), then F induces a homotopy F ′ : (X/α) × I → Y such that
F ′ ◦ (pα × 1) = F .

Homotopy theory has a range of applications of its own, outside topology
and geometry, as for example in proving Cauchy theorem in complex variable
theory, or in solving nonlinear equations of artificial neural networks.

A pointed set (S, s0) is a set S together with a distinguished point s0 ∈ S.
Similarly, a pointed topological space (X,x0) is a space X together with a
distinguished point x0 ∈ X. When we are concerned with pointed spaces
(X,x0), (Y, y0), etc., we always require that all functions f : X → Y shell
preserve base points, i.e., f(x0) = y0, and that all homotopies F : X × I → Y
be relative to the base point, i.e., F (x0, t) = y0, for all t ∈ I. We denote the
homotopy classes of base point–preserving functions by [X,x0;Y, y0] (where
homotopies are relative to x0). [X,x0;Y, y0] is a pointed set with base point
f0, the constant function: f0(x) = y0, for all x ∈ X.

A path γ(t) from x0 to x1 in a topological space X is a continuous map
γ : I → X with γ(0) = x0 and γ(1) = x1. Thus XI is the space of all paths
in X with the compact–open topology. We introduce a relation ∼ on X by
saying x0 ∼ x1 iff there is a path γ : I → X from x0 to x1. ∼ is clearly an
equivalence relation, and the set of equivalence classes is denoted by π0(X).
The elements of π0(X) are called the path components, or 0−components of
X. If π0(X) contains just one element, then X is called path connected, or
0−connected. A closed path, or loop in X at the point x0 is a path γ(t) for
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which γ(0) = γ(1) = x0. The inverse loop γ−1(t) based at x0 ∈ X is defined
by γ−1(t) = γ(1 − t), for 0 ≤ t ≤ 1. The homotopy of loops is the particular
case of the above defined homotopy of continuous maps.

If (X,x0) is a pointed space, then we may regard π0(X) as a pointed set
with the 0−component of x0 as a base point. We use the notation π0(X,x0)
to denote p0(X,x0) thought of as a pointed set. If f : X → Y is a map
then f sends 0−components of X into 0−components of Y and hence defines
a function π0(f) : π0(X) → π0(Y ). Similarly, a base point–preserving map
f : (X,x0) → (Y, y0) induces a map of pointed sets π0(f) : π0(X,x0) →
π0(Y, y0). In this way defined π0 represents a ‘functor’ from the ‘category’ of
topological (point) spaces to the underlying category of (point) sets (see the
next subsection).

Combination of topology and calculus gives differential topology, or differ-
ential geometry.

Commutative Diagrams

The category theory (see below) was born with an observation that many
properties of mathematical systems can be unified and simplified by a presen-
tation with commutative diagrams of arrows [MacL71]. Each arrow f : X → Y
represents a function (i.e., a map, transformation, operator); that is, a source
(domain) set X, a target (codomain) set Y , and a rule x �→ f(x) which assigns
to each element x ∈ X an element f(x) ∈ Y . A typical diagram of sets and
functions is

X Y�
f

h
�
�
�
��
Z
�

g or

X f(X)�f

h
�
�
�
��
g(f(X))
�

g

This diagram is commutative iff h = g ◦ f , where g ◦ f is the usual composite
function g ◦ f : X → Z, defined by x �→ g(f(x)).

Similar commutative diagrams apply in other mathematical, physical and
computing contexts; e.g., in the ‘category’ of all topological spaces, the letters
X,Y, and Z represent topological spaces while f, g, and h stand for continuous
maps. Again, in the category of all groups, X,Y, and Z stand for groups, f, g,
and h for homomorphisms.

Less formally, composing maps is like following directed paths from one
object to another (e.g., from set to set). In general, a diagram is commutative
iff any two paths along arrows that start at the same point and finish at the
same point yield the same ‘homomorphism’ via compositions along successive
arrows. Commutativity of the whole diagram follows from commutativity of
its triangular components (depicting a ‘commutative flow’, see Figure 3.4).
Study of commutative diagrams is popularly called ‘diagram chasing’, and
provides a powerful tool for mathematical thought.
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Fig. 3.4. A commutative flow (denoted by curved arrows) on a triangulated digraph.
Commutativity of the whole diagram follows from commutativity of its triangular
components.

As an example from linear algebra, consider an elementary diagrammatic
description of matrices, using the following pull–back diagram [Bar93]:

Nat×Nat Nat�
product

Matrix A List A�entries

�

shape

�

length

asserts that a matrix is determined by its shape, given by a pair of natural
numbers representing the number of rows and columns, and its data, given by
the matrix entries listed in some specified order.

Many properties of mathematical constructions may be represented by
universal properties of diagrams [MacL71]. Consider the Cartesian product
X × Y of two sets, consisting as usual of all ordered pairs 〈x, y〉 of elements
x ∈ X and y ∈ Y . The projections 〈x, y〉 �→ x, 〈x, y〉 �→ y of the product
on its ‘axes’ X and Y are functions p : X × Y → X, q : X × Y → Y . Any
function h : W → X × Y from a third set W is uniquely determined by its
composites p ◦ h and q ◦ h. Conversely, given W and two functions f and g as
in the diagram below, there is a unique function h which makes the following
diagram commute:

X X × Y�
p Y�q

W

f
�
�
�
�� �

h g
�
�
�
��

This property describes the Cartesian product X × Y uniquely; the same
diagram, read in the category of topological spaces or of groups, describes
uniquely the Cartesian product of spaces or of the direct product of groups.
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The construction ‘Cartesian product’ is technically called a ‘functor’ be-
cause it applies suitably both to the sets and to the functions between them;
two functions k : X → X ′ and l : Y → Y ′ have a function k × l as their
Cartesian product:

k × l : X × Y → X ′ × Y ′, 〈x, y〉 �→ 〈kx, ly〉.

Groups and Related Algebraic Structures

As already stated, the basic functional unit of lower biomechanics is the special
Euclidean group SE(3) of rigid body motions. In general, a group is a pointed
set (G, e) with a multiplication µ : G × G → G and an inverse ν : G → G
such that the following diagrams commute [Swi75]:

1.

G

1
�
�
�
��

G G×G�(e, 1)
G�

(1, e)

�

µ 1
�
�
�
�	

(e is a two–sided identity)
2.

G×G G�µ

G×G×G G×G�µ× 1

�

1× µ
�

µ

(associativity)
3.

G

e
�
�
�
��

G G×G�(ν, 1)
G�

(1, ν)

�

µ e

�
�
�
�	

(inverse).

Here e : G → G is the constant map e(g) = e for all g ∈ G. (e, 1) means
the map such that (e, 1)(g) = (e, g), etc. A group G is called commutative or
Abelian group if in addition the following diagram commutes

G×G G×G�T

G

µ
�
�
�
��

µ
�

�
�
��



756 3 Appendix: Tensors and Functors

where T : G × G → G × G is the switch map T (g1, g2) = (g1, g2), for all
(g1, g2) ∈ G×G.

A group G acts (on the left) on a set A if there is a function α : G×A→ A
such that the following diagrams commute [Swi75]:

1.

A G×A�(e, 1)

1
�
�
�
��
A
�

α

2.

G×A A�α

G×G×A G×A�1× α

�

µ× 1

�

α

where (e, 1)(x) = (e, x) for all x ∈ A. The orbits of the action are the sets
Gx = {gx : g ∈ G} for all x ∈ A.

Given two groups (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to
(H, ·) is a function h : G→ H such that for all x and y in G it holds that

h(x ∗ y) = h(x) · h(y).

From this property, one can deduce that h maps the identity element eG of G
to the identity element eH of H, and it also maps inverses to inverses in the
sense that h(x−1) = h(x)−1. Hence one can say that h is compatible with the
group structure.

The kernel Kerh of a group homomorphism h : G → H consists of all
those elements of G which are sent by h to the identity element eH of H, i.e.,

Kerh = {x ∈ G : h(x) = eH}.

The image Imh of a group homomorphism h : G → H consists of all
elements of G which are sent by h to H, i.e.,

Imh = {h(x) : x ∈ G}.

The kernel is a normal subgroup of G and the image is a subgroup of H.
The homomorphism h is injective (and called a group monomorphism) iff
Kerh = eG, i.e., iff the kernel of h consists of the identity element of G only.

Similarly, a ring is a set S together with two binary operators + and ∗
(commonly interpreted as addition and multiplication, respectively) satisfying
the following conditions:
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1. Additive associativity: For all a, b, c ∈ S, (a+ b) + c = a+ (b+ c),
2. Additive commutativity: For all a, b ∈ S, a+ b = b+ a,
3. Additive identity: There exists an element 0 ∈ S such that for all a ∈ S,

0 + a = a+ 0 = a,
4. Additive inverse: For every a ∈ S there exists −a ∈ S such that a+(−a) =

(−a) + a = 0,
5. Multiplicative associativity: For all a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c),
6. Left and right distributivity: For all a, b, c ∈ S, a∗ (b+ c) = (a∗ b)+(a∗ c)

and (b+ c) ∗ a = (b ∗ a) + (c ∗ a).

A ring (the term introduced by David Hilbert) is therefore an Abelian
group under addition and a semigroup under multiplication. A ring that is
commutative under multiplication, has a unit element, and has no divisors of
zero is called an integral domain. A ring which is also a commutative multipli-
cation group is called a field. The simplest rings are the integers Z, polynomials
R[x] and R[x, y] in one and two variables, and square n× n real matrices.

An ideal is a subset I of elements in a ring R which forms an additive
group and has the property that, whenever x belongs to R and y belongs to
I, then xy and yx belong to I. For example, the set of even integers is an ideal
in the ring of integers Z. Given an ideal I, it is possible to define a factor ring
R/I.

A ring is called left (respectively, right) Noetherian if it does not contain
an infinite ascending chain of left (respectively, right) ideals. In this case,
the ring in question is said to satisfy the ascending chain condition on left
(respectively, right) ideals. A ring is said to be Noetherian if it is both left and
right Noetherian. If a ring R is Noetherian, then the following are equivalent:

1. R satisfies the ascending chain condition on ideals.
2. Every ideal of R is finitely generated.
3. Every set of ideals contains a maximal element.

A module is a mathematical object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. A module is abstractly very similar to a vector
space, although in modules, coefficients are taken in rings which are much
more general algebraic objects than the fields used in vector spaces. A module
taking its coefficients in a ring R is called a module over R or R−module.
Modules are the basic tool of homological algebra.

Examples of modules include the set of integers Z, the cubic lattice in d
dimensions Zd, and the group ring of a group. Z is a module over itself. It
is closed under addition and subtraction. Numbers of the form nα for n ∈ Z

and α a fixed integer form a submodule since, for (n,m) ∈ Z, nα ± mα =
(n±m)α and (n±m) is still in Z. Also, given two integers a and b, the smallest
module containing a and b is the module for their greatest common divisor,
α = GCD(a, b).
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A module M is a Noetherian module if it obeys the ascending chain con-
dition with respect to inclusion, i.e., if every set of increasing sequences of
submodules eventually becomes constant. If a module M is Noetherian, then
the following are equivalent:

1. M satisfies the ascending chain condition on submodules.
2. Every submodule of M is finitely generated.
3. Every set of submodules of M contains a maximal element.

Let I be a partially ordered set. A direct system of R−modules over I is an
ordered pair {Mi, ϕij} consisting of an indexed family of modules {Mi : i ∈ I}
together with a family of homomorphisms {ϕij :Mi →Mj} for i ≤ j, such that
ϕii = 1Mi

for all i and such that the following diagram commutes whenever
i ≤ j ≤ k

Mi Mk�ϕik

Mj

ϕjk

�
�
�
��

ϕij

�
�
�
�	

Similarly, an inverse system of R−modules over I is an ordered pair
{Mi, ψji} consisting of an indexed family of modules {Mi : i ∈ I} together with
a family of homomorphisms {ψji : Mj → Mi} for i ≤ j, such that ψii = 1Mi

for all i and such that the following diagram commutes whenever i ≤ j ≤ k

Mk Mi�ψki

Mj

ψkj

�
�
�
��

ψji
�
�
�
�	

3.2.2 Categories

A category is a generic mathematical structure consisting of a collection of
objects (sets with possibly additional structure), with a corresponding collec-
tion of arrows, or morphisms, between objects (agreeing with this additional
structure). A category K is defined as a pair (Ob(K), Mor(K)) of generic objects
A,B, . . . in Ob(K) and generic arrows f : A → B, g : B → C, . . . in Mor(K)
between objects, with associative composition:

A
f � B

g � C = A
f◦g� C,

and identity (loop) arrow. (Note that in topological literature, Hom(K) or
hom(K) is used instead of Mor(K); see [Swi75]).
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A category K is usually depicted as a commutative diagram (i.e., a diagram
with a common initial object A and final object D):

C D�
k

A B�
f

�
h

�
g

�

�

�

�
K

To make this more precise, we say that a category K is defined if we have:

1. A class of objects {A,B,C, ...} of K, denoted by Ob(K);
2. A set of morphisms, or arrows MorK(A,B), with elements f : A → B,

defined for any ordered pair (A,B) ∈ K, such that for two different pairs
(A,B) �= (C,D) in K, we have MorK(A,B) ∩ MorK(C,D) = ∅;

3. For any triplet (A,B,C) ∈ K with f : A → B and g : B → C, there is a
composition of morphisms

MorK(B,C)× MorK(A,B) � (g, f) → g ◦ f ∈ MorK(A,C),

written schematically as

f : A→ B, g : B → C

g ◦ f : A→ C
.

If we have a morphism f ∈ MorK(A,B), (otherwise written f : A → B,

or A
f � B), then A = dom(f) is a domain of f , and B = cod(f) is a

codomain of f (of which range of f is a subset) and denoted B = ran(f).
To make K a category, it must also fulfill the following two properties:

1. Associativity of morphisms: for all f ∈ MorK(A,B), g ∈ MorK(B,C), and
h ∈ MorK(C,D), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f ; in other words, the
following diagram is commutative

B C�g

A D�
h ◦ (g ◦ f) = (h ◦ g) ◦ f

�

f
�
h

2. Existence of identity morphism: for every object A ∈ Ob(K) exists a unique
identity morphism 1A ∈ MorK(A,A); for any two morphisms
f ∈ MorK(A,B), and g ∈ MorK(B,C), compositions with identity mor-
phism 1B ∈ MorK(B,B) give 1B ◦ f = f and g ◦ 1B = g, i.e., the following
diagram is commutative:
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B

f
�
�
�
��

A B�
f

C�
g

�

1B g

�
�
�
�	

The set of all morphisms of the category K is denoted

Mor(K) =
⋃

A,B∈Ob(K)

MorK(A,B).

If for two morphisms f ∈ MorK(A,B) and g ∈ MorK(B,A) the equality
g◦f = 1A is valid, then the morphism g is said to be left inverse (or retraction),
of f , and f right inverse (or section) of g. A morphism which is both right
and left inverse of f is said to be two–sided inverse of f .

A morphism m : A → B is called monomorphism in K (i.e., 1–1, or
injection map), if for any two parallel morphisms f1, f2 : C → A in K the
equality m ◦ f1 = m ◦ f2 implies f1 = f2; in other words, m is monomorphism
if it is left cancellable. Any morphism with a left inverse is monomorphism.

A morphism e : A→ B is called epimorphism in K (i.e., onto, or surjection
map), if for any two morphisms g1, g2 : B → C in K the equality g1 ◦e = g2 ◦e
implies g1 = g2; in other words, e is epimorphism if it is right cancellable. Any
morphism with a right inverse is epimorphism.

A morphism f : A→ B is called isomorphism in K (denoted as f : A ∼= B)
if there exists a morphism f−1 : B → A which is a two–sided inverse of f
in K. The relation of isomorphism is reflexive, symmetric, and transitive, i.e.,
equivalence relation.

For example, an isomorphism in the category of sets is called a set–
isomorphism, or a bijection, in the category of topological spaces is called
a topological isomorphism, or a homeomorphism, in the category of differen-
tiable manifolds is called a differentiable isomorphism, or a diffeomorphism.

A morphism f ∈ MorK(A,B) is regular if there exists a morphism
g : B → A in K such that f ◦ g ◦ f = f . Any morphism with either a left or a
right inverse is regular.

An object T is a terminal object in K if to each object A ∈ Ob(K) there
is exactly one arrow A → T . An object S is an initial object in K if to each
object A ∈ Ob(K) there is exactly one arrow S → A. A null object Z ∈ Ob(K)
is an object which is both initial and terminal; it is unique up to isomorphism.
For any two objects A,B ∈ Ob(K) there is a unique morphism A → Z → B
(the composite through Z), called the zero morphism from A to B.

A notion of subcategory is analogous to the notion of subset. A subcategory
L of a category K is said to be a complete subcategory iff for any objects
A,B ∈ L, every morphism A→ B of L is in K.

A groupoid is a category in which every morphism is invertible. A typical
groupoid is the fundamental groupoid Π1(X) of a topological space X. An
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object of Π1(X) is a point x ∈ X, and a morphism x → x′ of Π1(X) is a
homotopy class of paths f from x to x′. The composition of paths g : x′ → x′′

and f : x → x′ is the path h which is ‘f followed by g’. Composition applies
also to homotopy classes, and makes Π1(X) a category and a groupoid (the
inverse of any path is the same path traced in the opposite direction).

A group is a groupoid with one object, i.e., a category with one object in
which all morphisms are isomorphisms. Therefore, if we try to generalize the
concept of a group, keeping associativity as an essential property, we get the
notion of a category.

A category is discrete if every morphism is an identity. A monoid is a
category with one object. A group is a category with one object in which
every morphism has a two–sided inverse under composition.

Homological algebra was the progenitor of category theory (see e.g.,
[Die88]). Generalizing L. Euler’s formula f + v = e + 2 for the faces, ver-
tices and edges of a convex polyhedron, E. Betti defined numerical invariants
of spaces by formal addition and subtraction of faces of various dimensions; H.
Poincaré formalized these and introduced homology. E. Noether stressed the
fact that these calculations go on in Abelian groups, and that the operation
∂n taking a face of dimension n to the alternating sum of faces of dimen-
sion n − 1 which form its boundary is a homomorphism, and it also satisfies
∂n ◦ ∂n+1 = 0. There are many ways of approximating a given space by poly-
hedra, but the quotient Hn = Ker ∂n/ Im ∂n+1 is an invariant, the homology
group. Since Noether, the groups have been the object of study instead of
their dimensions, which are the Betti numbers.

3.2.3 Functors

In algebraic topology, one attempts to assign to every topological space X
some algebraic object F(X) in such a way that to every C0−function f :
X → Y there is assigned a homomorphism F(f) : F(X) −→ F(Y ) (see [Swi75,
DP97]). One advantage of this procedure is, e.g., that if one is trying to prove
the non–existence of a C0−function f : X → Y with certain properties, one
may find it relatively easy to prove the non–existence of the corresponding
algebraic function F(f) and hence deduce that f could not exist. In other
words, F is to be a ‘homomorphism’ from one category (e.g., T ) to another
(e.g., G or A). Formalization of this notion is a functor.

A functor is a generic picture projecting one category into another. LetK =
(Ob(K), Mor(K)) be a source (or domain) category and L = (Ob(L), Mor(L))
be a target (or codomain) category. A functor F = (FO,FM ) is defined as a
pair of maps, FO : Ob(K) → Ob(L) and FM : Mor(K) → Mor(L), preserving
categorical symmetry (i.e., commutativity of all diagrams) of K in L.

More precisely, a covariant functor, or simply a functor, F∗ : K → L is a
picture in the target category L of (all objects and morphisms of) the source
category K:



762 3 Appendix: Tensors and Functors

C D�
k

A B�
f

�
h

�
g

�

�

�

�
K

F(C) F(D)�
F(k)

F(A) F(B)�F(f)

�
F(h)

�
F(g)

�

�

�

�
LF∗�

Similarly, a contravariant functor, or a cofunctor, F∗ : K → L is a dual
picture with reversed arrows:

C D�
k

A B�
f

�
h

�
g

�

�

�

�
K

F(C) F(D)�
F(k)

F(A) F(B)� F(f)

�F(h) �F(g)

�

�

�

�
LF∗�

In other words, a functor F : K → L from a source category K to a
target category L, is a pair F = (FO,FM ) of maps FO : Ob(K) → Ob(L),
FM : Mor(K) → Mor(L), such that

1. If f ∈ MorK(A,B) then FM (f) ∈ MorL(FO(A),FO(B)) in case of the
covariant functor F∗, and FM (f) ∈ MorL(FO(B),FO(A)) in case of the
contravariant functor F∗;

2. For all A ∈ Ob(K) : FM (1A) = 1FO(A);
3. For all f, g ∈ Mor(K): if cod(f) = dom(g), then
FM (g ◦ f) = FM (g) ◦ FM (f) in case of the covariant functor F∗, and
FM (g ◦ f) = FM (f) ◦ FM (g) in case of the contravariant functor F∗.

Category theory originated in algebraic topology, which tried to assign al-
gebraic invariants to topological structures. The golden rule of such invariants
is that they should be functors. For example, the fundamental group π1 is a
functor. Algebraic topology constructs a group called the fundamental group
π1(X) from any topological space X, which keeps track of how many holes
the space X has. But also, any map between topological spaces determines a
homomorphism φ : π1(X) → π1(Y ) of the fundamental groups. So the fun-
damental group is really a functor π1 : T → G. This allows us to completely
transpose any situation involving spaces and continuous maps between them
to a parallel situation involving groups and homomorphisms between them,
and thus reduce some topology problems to algebra problems.

Also, singular homology in a given dimension n assigns to each topological
space X an Abelian group Hn(X), its nth homology group of X, and also to
each continuous map f : X → Y of spaces a corresponding homomorphism
Hn(f) : Hn(X) → Hn(Y ) of groups, and this in such a way that Hn(X)
becomes a functor Hn : T → A.

The leading idea in the use of functors in topology is that Hn or πn gives
an algebraic picture or image not just of the topological spaces X,Y but also
of all the continuous maps f : X → Y between them.
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Similarly, there is a functor Π1 : T → G, called the ‘fundamental groupoid
functor’, which plays a very basic role in algebraic topology. Here’s how we
get from any space X its ‘fundamental groupoid’ Π1(X). To say what the
groupoid Π1(X) is, we need to say what its objects and morphisms are. The
objects in Π1(X) are just the points of X and the morphisms are just certain
equivalence classes of paths in X. More precisely, a morphism f : x → y in
Π1(X) is just an equivalence class of continuous paths from x to y, where two
paths from x to y are decreed equivalent if one can be continuously deformed to
the other while not moving the endpoints. (If this equivalence relation holds
we say the two paths are ‘homotopic’, and we call the equivalence classes
‘homotopy classes of paths’ (see [MacL71, Swi75]).

Another examples are covariant forgetful functors:

• From the category of topological spaces to the category of sets;
it ‘forgets’ the topology–structure.

• From the category of metric spaces to the category of topological spaces
with the topology induced by the metrics; it ‘forgets’ the metric.

For each category K, the identity functor IK takes every K−object and
every K−morphism to itself.

Given a category K and its subcategory L, we have an inclusion functor
In : K −→ K.

Given a category K, a diagonal functor ∆ : K −→ K takes each object
A ∈ K to the object (A,A) in the product category K ×K.

Given a category K and a category of sets S, each object A ∈ K deter-
mines a covariant Hom–functor K[A, ] : K → S, a contravariant Hom–functor
K[ , A] : K −→ S, and a Hom–bifunctor K[ , ] : Kop ×K → S.

A functor F : K → L is a faithful functor if for all A,B ∈ Ob(K) and for
all f, g ∈ MorK(A,B), F(f) = F(g) implies f = g; it is a full functor if for
every h ∈ MorL(F(A),F(B)), there is g ∈ MorK(A,B) such that h = F(g); it
is a full embedding if it is both full and faithful.

A representation of a group is a functor F : G → V.
Similarly, we can define a representation of a category to be a functor

F : K → V from the 2−category K (a ‘big’ category including all ordinary,
or ‘small’ categories, see subsection (3.2.7) below) to the category of vector
spaces V. In this way, a category is a generalization of a group and group
representations are a special case of category representations.

3.2.4 Natural Transformations

A natural transformation (i.e., a functor morphism) τ : F ·→ G is a map
between two functors of the same variance, (F ,G) : K ⇒ L, preserving cate-
gorical symmetry:
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A B�
f

�

�

�

�K

F �

τ ⇓

G � G(A) G(B)�
G(f)

F(A) F(B)�F(f)

�
τA

�
τB

�

�

�

�
L

More precisely, all functors of the same variance from a source category K
to a target category L form themselves objects of the functor category LK.
Morphisms of LK, called natural transformations, are defined as follows.

Let F : K → L and G : K → L be two functors of the same variance from
a category K to a category L. Natural transformation F τ−→ G is a family
of morphisms such that for all f ∈ MorK(A,B) in the source category K, we
have G(f) ◦ τA = τB ◦ F(f) in the target category L. Then we say that the
component τA : F(A) → G(A) is natural in A.

If we think of a functor F as giving a picture in the target category L
of (all the objects and morphisms of) the source category K, then a natural
transformation τ represents a set of morphisms mapping the picture F to
another picture G, preserving the commutativity of all diagrams.

An invertible natural transformation, such that all components τA are
isomorphisms) is called a natural equivalence (or, natural isomorphism). In
this case, the inverses (τA)−1 in L are the components of a natural isomor-
phism (τ )−1 : G ∗−→ F . Natural equivalences are among the most important
metamathematical constructions in algebraic topology (see [Swi75]).

For example, let B be the category of Banach spaces over R and bounded
linear maps. Define D : B → B by taking D(X) = X∗ = Banach space of
bounded linear functionals on a space X and D(f) = f∗ for f : X → Y a
bounded linear map. Then D is a cofunctor. D2 = D ◦ D is also a functor.
We also have the identity functor 1 : B → B. Define T : 1→ D ◦D as follows:
for every X ∈ B let T (X) : X → D2X = X∗∗ be the natural inclusion – that
is, for x ∈ X we have [T (X)(x)](f) = f(x) for every f ∈ X∗. T is a natural
transformation. On the subcategory of nD Banach spaces T is even a natural
equivalence. The largest subcategory of B on which T is a natural equivalence
is called the category of reflexive Banach spaces [Swi75].

As S. Eilenberg and S. MacLane first observed, ‘category’ has been defined
in order to define ‘functor’ and ‘functor’ has been defined in order to define
‘natural transformation’ [MacL71]).

Compositions of Natural Transformations

Natural transformations can be composed in two different ways. First, we have
an ‘ordinary’ composition: if F ,G and H are three functors from the source
category A to the target category B, and then α : F ·→ G, β : G ·→ H are two
natural transformations, then the formula

(β ◦ α)A = βA ◦ αA, for all A ∈ A, (3.32)
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defines a new natural transformation β ◦ α : F ·→ H. This composition law
is clearly associative and possesses a unit 1F at each functor F , whose A–
component is 1FA.

Second, we have the Godement product of natural transformations, usually
denoted by ∗. Let A, B and C be three categories, F ,G, H and K be four
functors such that (F ,G) : A ⇒ B and (H,K) : B ⇒ C, and α : F ·→ G,
β : H ·→ K be two natural transformations. Now, instead of (3.32), the
Godement composition is given by

(β ∗ α)A = βGA ◦H (αA) = K (αA) ◦ βFA, for all A ∈ A, (3.33)

which defines a new natural transformation β ∗ α : H ◦ F ·→ K ◦ G.
Finally, the two compositions (3.32) and (3.32) of natural transformations

can be combined as

(δ ∗ γ) ◦ (β ∗ α) = (δ ◦ β) ∗ (γ ◦ α) ,

where A, B and C are three categories, F ,G, H, K, L, M are six functors,
and α : F ·→ H, β : G ·→ K, γ : H ·→ L, δ : K ·→ M are four natural
transformations.

Dinatural Transformations

Double natural transformations are called dinatural transformations. An end
of a functor S : Cop × C → X is a universal dinatural transformation from
a constant e to S. In other words, an end of S is a pair 〈e, ω〉, where e is an
object of X and ω : e ..→ S is a wedge (dinatural) transformation with the
property that to every wedge β : x ..→ S there is a unique arrow h : x→ e of
B with βc = ωch for all a ∈ C. We call ω the ending wedge with components
ωc, while the object e itself, by abuse of language, is called the end of S and
written with integral notation as

∫
c

S(c, c); thus

S(c, c) ωc→
∫
c

S(c, c) = e.

Note that the ‘variable of integration’ c appears twice under the integral sign
(once contravariant, once covariant) and is ‘bound’ by the integral sign, in
that the result no longer depends on c and so is unchanged if ‘c’ is replaced by
any other letter standing for an object of the category C. These properties are
like those of the letter x under the usual integral symbol

∫
f(x) dx of calculus.

Every end is manifestly a limit (see below) – specifically, a limit of a
suitable diagram in X made up of pieces like S(b, b) → S(b, c) → S(c, c).

For each functor T : C → X there is an isomorphism∫
c

S(c, c) =
∫
c

Tc ∼= LimT,
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valid when either the end of the limit exists, carrying the ending wedge to the
limiting cone; the indicated notation thus allows us to write any limit as an
integral (an end) without explicitly mentioning the dummy variable (the first
variable c of S).

A functorH : X → Y is said to preserve the end of a functor S : Cop×C →
X when ω : e ..→ S an end of S in X implies that Hω : He ..→ HS is an and
for HS; in symbols

H

∫
c

S(c, c) =
∫
c

HS(c, c).

Similarly, H creates the end of S when to each end v : y ..→ HS in Y there is
a unique wedge ω : e ..→ S with Hω = v, and this wedge ω is an end of S.

The definition of the coend of a functor S : Cop × C → X is dual to that
of an end. A coend of S is a pair 〈d, ζ〉, consisting of an object d ∈ X and a
wedge ζ : S ..→ d. The object d (when it exists, unique up to isomorphism)
will usually be written with an integral sign and with the bound variable c as
superscript; thus

S(c, c)
ζc→

c∫
S(c, c) = d.

The formal properties of coends are dual to those of ends. Both are much like
those for integrals in calculus (see [MacL71], for technical details).

3.2.5 Limits and Colimits

In abstract algebra constructions are often defined by an abstract property
which requires the existence of unique morphisms under certain conditions.
These properties are called universal properties. The limit of a functor gener-
alizes the notions of inverse limit and product used in various parts of math-
ematics. The dual notion, colimit, generalizes direct limits and direct sums.
Limits and colimits are defined via universal properties and provide many
examples of adjoint functors.

A limit of a covariant functor F : J → C is an object L of C, together
with morphisms φX : L → F(X) for every object X of J , such that for
every morphism f : X → Y in J , we have F(f)φX = φY , and such that the
following universal property is satisfied: for any object N of C and any set of
morphisms ψX : N → F(X) such that for every morphism f : X → Y in J ,
we have F(f)ψX = ψY , there exists precisely one morphism u : N → L such
that φXu = ψX for all X. If F has a limit (which it need not), then the limit
is defined up to a unique isomorphism, and is denoted by limF .

Analogously, a colimit of the functor F : J → C is an object L of C,
together with morphisms φX : F(X) → L for every object X of J , such that
for every morphism f : X → Y in J , we have φY F(X) = φX , and such that
the following universal property is satisfied: for any object N of C and any set
of morphisms ψX : F(X) → N such that for every morphism f : X → Y in J ,
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we have ψY F(X) = ψX , there exists precisely one morphism u : L→ N such
that uφX = ψX for all X. The colimit of F , unique up to unique isomorphism
if it exists, is denoted by colimF .

Limits and colimits are related as follows: A functor F : J → C has a
colimit iff for every object N of C, the functor X �−→MorC(F(X), N) (which
is a covariant functor on the dual category J op) has a limit. If that is the
case, then MorC(colimF , N) = limMorC(F(−), N) for every object N of C.

3.2.6 The Adjunction

The most important functorial operation is adjunction; as S. MacLane once
said, “Adjoint functors arise everywhere” [MacL71].

The adjunction ϕ : F * G between two functors (F ,G) : K 	 L of opposite
variance [Kan58], represents a weak functorial inverse

f : F(A) → B

ϕ(f) : A→ G(B)

forming a natural equivalence ϕ : MorK(F(A), B)
ϕ−→ MorL(A,G(B)). The ad-

junction isomorphism is given by a bijective correspondence (a 1–1 and onto
map on objects) ϕ : Mor(K) � f → ϕ(f) ∈ Mor(L) of isomorphisms in the two
categories, K (with a representative object A), and L (with a representative
object B). It can be depicted as a (non–commutative) diagram

B G(B)�
G

F(A) A� F

�
f

�
ϕ(f)

�

�

�

�
K

�

�

�

�
L

In this case F is called left adjoint, while G is called right adjoint.
In other words, an adjunction F * G between two functors (F ,G) of op-

posite variance, from a source category K to a target category L, is denoted
by (F ,G,η, ε) : K 	 L. Here, F : L → K is the left (upper) adjoint functor,
G : L ← K is the right (lower) adjoint functor, η : 1L → G ◦ F is the unit
natural transformation (or, front adjunction), and ε : F ◦G → 1K is the counit
natural transformation (or, back adjunction).

For example, K = S is the category of sets and L = G is the category
of groups. Then F turns any set into the free group on that set, while the
‘forgetful’ functor F∗ turns any group into the underlying set of that group.
Similarly, all sorts of other ‘free’ and ‘underlying’ constructions are also left
and right adjoints, respectively.

Right adjoints preserve limits, and left adjoints preserve colimits.
The category C is called a cocomplete category if every functor F : J → C

has a colimit. The following categories are cocomplete: S,G,A, T , and PT .
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The importance of adjoint functors lies in the fact that every functor which
has a left adjoint (and therefore is a right adjoint) is continuous. In the cat-
egory A of Abelian groups, this e.g., shows that the kernel of a product of
homomorphisms is naturally identified with the product of the kernels. Also,
limit functors themselves are continuous. A covariant functor F : J → C is
cocontinuous if it transforms colimits into colimits. Every functor which has
a right adjoint (and is a left adjoint) is cocontinuous.

The analogy between adjoint functors and adjoint linear operators relies
upon a deeper analogy: just as in quantum theory the inner product 〈φ, ψ〉
represents the amplitude to pass from φ to ψ, in category theory Mor(A,B)
represents the set of ways to go from A to B. These are to Hilbert spaces
as categories are to sets. The analogues of adjoint linear operators between
Hilbert spaces are certain adjoint functors between 2−Hilbert spaces [Bae97,
BD98]. Similarly, the adjoint representation of a Lie group G is the linearized
version of the action of G on itself by conjugation, i.e., for each g ∈ G, the
inner automorphism x �→ gxg−1 gives a linear transformation Ad(g) : g→ g,
from the Lie algebra g of G to itself.

3.2.7 n−Categories

Generalization from ‘Small’ Categories to ‘Big’ n−Categories

If we think of a point in geometrical space (either natural, or abstract) as
an object (or, a 0−cell), and a path between two points as an arrow (or, a
1−morphism, or a 1−cell), we could think of a ‘path of paths’ as a 2−arrow (or,
a 2−morphism, or a 2−cell), and a ‘path of paths of paths’ (or, a 3−morphism,
or a 3−cell), etc. Here a ‘path of paths’ is just a continuous 1–parameter
family of paths from between source and target points, which we can think
of as tracing out a 2D surface, etc. In this way we get a ‘skeleton’ of an
n−category, where a 1−category operates with 0−cells (objects) and 1−cells
(arrows, causally connecting source objects with target ones), a 2−category
operates with all the cells up to 2−cells [Ben67], a 3−category operates with all
the cells up to 3−cells, etc. This skeleton clearly demonstrates the hierarchical
self–similarity of n–categories:

0− cell :x •

1− cell :x •
f � • y

2− cell :x •

f

g

h
�

	∨
• y
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3− cell :x •

f

g

h i
j

� �
>

�

	
• y

where triple arrow goes in the third direction, perpendicular to both single
and double arrows. Categorical composition is defined by pasting arrows.

Thus, a 1−category can be depicted as a commutative triangle:

A F (A)�F

G(F (A))

G ◦ F
�
�
�
��

G
�
�
�
��

a 2−category is a commutative triangle:

A

f

g

α
�

	∨
B F (A)

F (f)

F (g)

F (α)
�

	∨
F (B)�F

G(F (A))

G(F (f))

G(F (g))

G(F (α))
�

	∨ G(F (B))

G ◦ F

�
�
�
�
�
�
��

G

�
�
�

�
�
�
��

a 3−category is a commutative triangle:

A

f

g

α β
ψ

� �
>

�

	
B F (A)

F (f)

F (g)

F (α) F (β)
F (ψ)

� �
>

�

	
F (B)�F

G(F (A))

G(F (f))

G(F (g))

G(F (α)) G(F (β))
G(F(ψ))

� �
>

�

	
G(F (B))

F ◦ G

�
�
�
�
�
�
�
�
�
��

G

�
�
�

�
�

�
�
�
�
��
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etc., up to n−categories.
Many deep–sounding results in mathematical sciences are get by the pro-

cess of categorification7 of the high school mathematics [CF94, BD98].
An n−category is a generic mathematical structure consisting of a collec-

tion of objects, a collection of arrows between objects, a collection of 2−arrows
between arrows [Ben67], a collection of 3−arrows between 2−arrows, and so
on up to n [Bae97, BD98, Lei02, Lei03, Lei04].

More precisely, an n−category (for n ≥ 0) consists of:

• 0−cells, or objects, A,B, . . .

• 1−cells, or arrows, A
f � B, with a composition

A
f � B

g � C = A
g◦f� C

• 2−cells, ‘arrows between arrows’, A

f

g

α
�

	∨
B, with vertical compositions

(denoted by ◦) and horizontal compositions (denoted by ∗), respectively
given by

A

f

g

h

α

β

�∨

∨

�

�
B = A

f

h

β◦α
�

	∨
B and

A

f

g

α
�

	∨
A′

f ′

g′

α′
�

	∨
A′′ = A

f ′◦f

g′◦g

α′ ∗ α
�

	∨
A′′

• 3−cells, ‘arrows between arrows between arrows’, A

f

g

α β
Γ

� �
>

�

	
B

(where the Γ−arrow goes in a direction perpendicular to f and α), with
various kinds of vertical, horizontal and mixed compositions,

7 Categorification means replacing sets with categories, functions with functors, and
equations between functions by natural equivalences between functors. Iterating
this process requires a theory of n−categories.
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• etc., up to n−cells.

Calculus of n−categories has been developed as follows. First, there is K2,
the 2–category of all ordinary (or small) categories. K2 has categories K,L, ...
as objects, functors F ,G : K ⇒ L as arrows, and natural transformations, like
τ : F ·→ G as 2–arrows.

In a similar way, the arrows in a 3–category K3 are 2–functors F2,G2, ...
sending objects in K2 to objects in L2, arrows to arrows, and 2–arrows to
2–arrows, strictly preserving all the structure of K2

A

f

g

α
�

	∨
B

F2� F2(A)

F2(f)

F2(g)

F2(α)
�

	∨
F2(B).

The 2–arrows in K3 are 2–natural transformations, like τ2 : F2
2·⇒ G2 be-

tween 2–functors F2,G2 : K2 −→ L2 that sends each object in K2 to an
arrow in L2 and each arrow in K2 to a 2–arrow in L2, and satisfies natu-
ral transformation–like conditions. We can visualize τ2 as a prism going from
one functorial picture of K2 in L2 to another, built using commutative squares:

A

f

g

α
�

	∨
B

G2
�
�
��

F2

�
�
�	

F2(A)

F2(f)

F2(g)

F2(α)
�

	∨
F2(B)

G2(A)

G2(f)

G2(g)

G2(α)
�

	∨
G2(B)

⇓

K2

L2

�

τ2(A)

�

τ2(B)

Similarly, the arrows in a 4–category K4 are 3–functors F3,G3, ... sending
objects in K3 to objects in L3, arrows to arrows, and 2–arrows to 2–arrows,
strictly preserving all the structure of K3

A

f

g

α β
ψ

� �
>

�

	
B

F3� F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

� �
>

�

	
F3(B)

The 2–arrows in K4 are 3–natural transformations, like τ3 : F 3·⇒ G between
3–functors F3,G3 : K3 → L3 that sends each object in K3 to a arrow in L3 and



772 3 Appendix: Tensors and Functors

each arrow in K3 to a 2–arrow in L3, and satisfies natural transformation–like
conditions. We can visualize τ3 as a prism going from one picture of K3 in L3

to another, built using commutative squares:

A

f

g

α β
ψ

� �
>

�

	
B

G3

�
�
�
��

F3

�
�
�
�	
F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

� �
>

�

	
F3(B)

G3(A)

G3(f)

G3(g)

G3(α) G3(β)
G3(ψ)

� �
>

�

	
G3(B)

⇓

K3

L3

�

τ 3(A)

�

τ 3(B)

Topological Structure of n−Categories

We already emphasized the topological nature of ordinary category theory.
This fact is even more obvious in the general case of n−categories (see [Lei02,
Lei03, Lei04]).

Homotopy Theory

Any topological manifold M induces an n−category Πn(M) (its fundamen-
tal n−groupoid), in which 0–cells are points in M ; 1–cells are paths in M
(i.e., parameterized continuous maps f : [0, 1] → M); 2–cells are homotopies
(denoted by  ) of paths relative to endpoints (i.e., parameterized continuous
maps h : [0, 1] × [0, 1] → M); 3–cells are homotopies of homotopies of paths
in M (i.e., parameterized continuous maps j : [0, 1] × [0, 1] × [0, 1] → M);
categorical composition is defined by pasting paths and homotopies. In this
way the following ‘homotopy skeleton’ emerges:

0− cell : x • x ∈M ;

1− cell : x •
f � • y f : x  y ∈M,

f : [0, 1] →M, f : x �→ y, y = f(x), f(0) = x, f(1) = y;
e.g., linear path: f(t) = (1− t)x+ ty;
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2− cell : x •

f

g

h
�

	∨
• y h : f  g ∈M,

h : [0, 1]× [0, 1] →M, h : f �→ g, g = h(f(x)),
h(x, 0) = f(x), h(x, 1) = g(x), h(0, t) = x, h(1, t) = y
e.g., linear homotopy: h(x, t) = (1− t)f(x) + tg(x);

3− cell : x •

f

g

h i
j

� �
>

�

	
• y j : h  i ∈M,

j : [0, 1]× [0, 1]× [0, 1] →M, j : h �→ i, i = j(h(f(x)))
j(x, t, 0) = h(f(x)), j(x, t, 1) = i(f(x)),
j(x, 0, s) = f(x), j(x, 1, s) = g(x),
j(0, t, s) = x, j(1, t, s) = y
e.g., linear composite homotopy: j(x, t, s) = (1− t)h(f(x)) + t i(f(x)).

If M is a smooth manifold, then all included paths and homotopies need
to be smooth. Recall that a groupoid is a category in which every morphism
is invertible; its special case with only one object is a group.

Category T T

Topological n−category T T has:

• 0–cells: topological spaces X

• 1–cells: continuous maps X
f � Y

• 2–cells: homotopies h between f and g : X

f

g

h
�

	∨
Y

i.e., continuous maps h : X × [0, 1] → Y , such that ∀x ∈ X, h(x, 0) = f(x)
and h(x, 1) = g(x)

• 3–cells: homotopies between homotopies : X

f

g

h i
j

� �
>

�

	
Y

i.e., continuous maps j : X × [0, 1]× [0, 1] → Y .
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Category CK

Consider an n−category CK, which has:

• 0–cells: chain complexes A (of Abelian groups, say)

• 1–cells: chain maps A
f � B

• 2–cells: chain homotopies A

f

g

α
�

	∨
B,

i.e., maps α : A→ B of degree 1

• 3–cells A

f

g

α β
Γ

� �
>

�

	
B: homotopies between homotopies,

i.e., maps Γ : A→ B of degree 2 such that dΓ − Γd = β − α.

There ought to be some kind of map CC : T T ⇒ CK (see [Lei02, Lei03, Lei04]).

Categorification

Categorification is the process of finding category–theoretic analogs of set–
theoretic concepts by replacing sets with categories, functions with functors,
and equations between functions by natural isomorphisms between functors,
which in turn should satisfy certain equations of their own, called ‘coherence
laws’. Iterating this process requires a theory of n−categories.

Categorification uses the following analogy between set theory and cate-
gory theory [CF94, BD98]:

Set Theory Category Theory
elements objects
equations isomorphisms

between elements between objects
sets categories

functions functors
equations natural isomorphisms

between functions between functors

Just as sets have elements, categories have objects. Just as there are func-
tions between sets, there are functors between categories. Now, the proper
analog of an equation between elements is not an equation between objects,
but an isomorphism. Similarly, the analog of an equation between functions
is a natural isomorphism between functors.
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3.2.8 Abelian Functorial Algebra

An Abelian category is a certain kind of category in which morphisms and
objects can be added and in which kernels and cokernels exist and have the
usual properties. The motivating prototype example of an Abelian category
is the category of Abelian groups A. Abelian categories are the framework for
homological algebra (see [Die88]).

Given a homomorphism f : A → B between two objects A ≡ Dom f and
B ≡ Cod f in an Abelian category A, then its kernel, image, cokernel and
coimage in A are defined respectively as:

Ker f = f−1(eB), Coker f = Cod f/ Im f,
Im f = f(A), Coim f = Dom f/Ker f,

where eB is a unit of B [DP97].
In an Abelian category A a composable pair of arrows,

•
f � B

g � •

is exact at B iff Im f ≡ Ker g (equivalence as subobjects of B) – or, equiva-
lently, if Coker f ≡ Coim g [MacL71].

For each arrow f in an Abelian category A the triangular identities read

Ker(Coker(Ker f)) = Ker f, Coker(Ker(Coker f)) = Coker f.

The diagram (with 0 the null object)

0 � A
f � B

g � C � 0 (3.34)

is a short exact sequence when it is exact at A, at B, and at C.
Since 0 → a is the zero arrow, exactness at A means just that f is monic

(i.e., 1–1, or injective map); dually, exactness at C means that g is epic (i.e.,
onto, or surjective map). Therefore, (3.34) is equivalent to

f = Ker g, g = Coker f.

Similarly, the statement that h = Coker f becomes the statement that the
sequence

A
f � B

g � C � 0

is exact at B and at C. Classically, such a sequence was called a short right
exact sequence. Similarly, k = Ker f is expressed by a short left exact sequence

0 � A
f � B

g � C.
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If A and A′ are Abelian categories, an additive functor F : A → A′ is a
functor from A to A′ with

F(f + f ′) = Ff + Ff ′,

for any parallel pair of arrows f, f ′ : b→ c in A. It follows that F0 = 0.
A functor F : A → A′ between Abelian categories A and A′ is, by defini-

tion, exact when it preserves all finite limits and all finite colimits. In partic-
ular, an exact functor preserves kernels and cokernels, which means that

Ker(Ff) = F(Ker f) and Coker(Ff) = F(Coker f);

then F also preserves images, coimages, and carries exact sequences to exact
sequences. By construction of limits from products and equalizers and dual
constructions, F : A → A′ is exact iff it is additive and preserves kernels and
cokernels.

A functor F is left exact when it preserves all finite limits. In other words,
F is left exact iff it is additive and Ker(Ff) = F(Ker f) for all f : the last
condition is equivalent to the requirement that F preserves short left exact
sequences.

Similarly, a functor F is right exact when it preserves all finite colimits. In
other words, F is right exact iff it is additive and Coker(Ff) = F(Coker f)
for all f : the last condition is equivalent to the requirement that F preserves
short right exact sequences.

In an Abelian category A, a chain complex is a sequence

...conecn+1

∂n+1� cn
∂n � cn−1

� ...

of composable arrows, with ∂n∂n+1 = 0 for all n. The sequence need not be
exact at cn; the deviation from exactness is measured by the nth homology
object

Hnc = Ker(∂n : cn � cn−1)/ Im(∂n+1 : cn+1
� cn).

Similarly, a cochain complex in an Abelian category A is a sequence

...conewn+1

dn+1� wn
dn � wn−1

� ...

of composable arrows, with dndn+1 = 0 for all n. The sequence need not be
exact at wn; the deviation from exactness is measured by the nth cohomology
object

Hnw = Ker(dn+1 : wn � wn+1)/ Im(dn : wn−1
� wn).

A cycle is a chain C such that ∂C = 0. A boundary is a chain C such that
C = ∂B, for any other chain B.

A cocycle (a closed form) is a cochain ω such that dω = 0. A coboundary
(an exact form) is a cochain ω such that ω = dθ, for any other cochain θ.



References

AAM76. Anderson, B.D., Arbib, M.A., Manes, E.G.: Foundations
of System Theory: Finitary and Infinitary Conditions. Lec-
ture Notes in Economics and Mathematical Systems Theory,
Springer, New York, (1976)

AC91. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution
equations and inverse scattering. London Math. Soc., 149,
CUP, Cambridge, UK, (1991)

Ada78. Adams, J.F.: Infinite Loop Spaces. Princeton Univ. Press,
Princeton, NJ, (1978)

ADJ97. Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum geometry.
Cambridge Monographs on Mathematical Physics, Cambridge
Univ. Press, Cambridge, UK, (1997)

AEH05. Ahmed, E., Elgazzar, A.S., Hegazi, A.S.: An Overview of
Complex Adaptive Systems. Mansoura J. Math. (to appear)

AFH86. Albeverio, S., Fenstat, J., Hoegh-Krohn, R., Lindstrom, T.:
Nonstandard Methods in Stochastic Analysis and Mathemat-
ical Physics. Academic Press, New York, (1986)

AG05. Apps, R., Garwicz, M.: Anatomical and physiological founda-
tions of cerebellar information processing. Nature Rev. Neu-
rosci., 6, 297–311, (2005)

AGM94. Alekseevsky, D.V., Grabowski, J., Marmo, G., Michor, P.W.:
Poisson structures on the cotangent bundle of a Lie group or
a principle bundle and their reductions. J. Math. Phys., 35,
4909–4928, (1994)

AGM97. Alekseevsky, D., Grabowksi, J., Marmo, G., Michor, P.W.:
Completely integrable systems: a generalization. Mod. Phys.
Let. A, 12(22), 1637–1648, (1997)

AGN94. Antoniadis, I., Gava, E., Narain, K.S., Taylor, T.R.: Topo-
logical amplitudes in string theory. Nucl. Phys. B 413, 162,
(1994)

AJL00a. Ambjørn, J., Jurkiewicz, J., Loll, R.: Lorentzian and Euclid-
ean quantum gravity – analytical and numerical results. In
M-Theory and Quantum Geometry, eds. L. Thorlacius and T.
Jonsson, NATO Science Series, Kluwer, 382-449, (2000)



778 References

AJL00b. Ambjørn, J., Jurkiewicz, J., Loll, R.: A nonperturbative
Lorentzian path integral for gravity. Phys. Rev. Lett. 85, 924–
927, (2000)

AJL01a. Ambjørn, J., Jurkiewicz, J., Loll, R.: Dynamically triangulat-
ing Lorentzian quantum gravity. Nucl. Phys. B 610, 347–382,
(2001)

AJL01b. Ambjørn, J., Jurkiewicz, J., Loll, R.: Nonperturbative 3d
Lorentzian quantum gravity. Phys. Rev. D 64, 044-011, (2001)

AJL01c. Ambjørn, J., Jurkiewicz, J., Loll, R.: Computer simulations of
3d Lorentzian quantum gravity. Nucl. Phys. B 94, 689–692,
(2001)

AK93. Ambjørn, J., Kristjansen, C.F.: Nonperturbative 2D quantum
gravity and Hamiltonians unbounded from below. Int. J. Mod.
Phys. A 8, 1259–1282, (1993)

AL05. Achimescu, S., Lipan, O.: Signal Propagation in Nonlinear
Stochastic Gene Regulatory Networks. 3rd Int. Conf. Path.
Netw., Sys. Rhodes, Greece 2005.

AL91. Aidman, E.V., Leontiev, D.A.: From being motivated to moti-
vating oneself: a Vygotskian perspective. Stud. Sov. Thought,
42, 137–151, (1991)

AL98. Ambjørn, J., Loll, R.: Non-perturbative Lorentzian quantum
gravity, causality and topology change. Nucl. Phys. B 536,
407–434, (1998)

Alo03. Alon, U.: Biological Networks: The tinkerer as an engineer.
Science 301, 1866-1867, (2003)

AM78. Abraham, R., Marsden, J.: Foundations of Mechanics. Ben-
jamin, Reading, (1978)

AM91. Aringazin, A., Mikhailov, A.: Matter fields in space–time with
vector non–metricity. Clas. Quant. Grav. 8, 1685, (1991)

Ama85. Amari, S.I.: Differential Geometrical Methods in Statistics.
Springer, New York, (1985)

Ame93. Amemiya, Y.: On nonlinear factor analysis. Proc. Social Stat.
Section. Ann. Meet. Ame. Stat. Assoc. 290–294, (1993)

AMR88. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor
Analysis and Applications. Springer, New York, (1988)

AN00. Amari, Nagaoka, H.: Methods of Information Geometry, Ox-
ford Univ. Press and Amer. Math. Soc., (2000)

AN99. Aoyagi, T., Nomura, M.: Oscillator Neural Network Retriev-
ing Sparsely Coded Phase Patterns. Phys. Rev. Lett. 83,
1062–1065, (1999)

AR95. Antoni, M., Ruffo, S.: Clustering and relaxation in long-range
Hamiltonian dynamics. Phys. Rev. E, 52, 2361–2374, (1995)

Arb98. Arbib, M. (ed.): Handbook of Brain Theory and Neural Net-
works (2nd ed.). MIT Press, Cambridge, MA, (1998)

Ark01. Arkin, A.P.: Synthetic cell biology. Curr. Opin. Biotech., 12,
638-644, (2001)

Arn78. Arnold, V.I.: Ordinary Differential Equations. MIT Press,
Cambridge, MA, (1978)

Arn88. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary
differential equations. Springer, New York, (1988)



References 779

Arn89. Arnold, V.I.: Mathematical Methods of Classical Mechanics
(2nd ed). Springer, New York, (1989)

Arn92. Arnold, V.I.: Catastrophe Theory. Springer, Berlin, (1992)
Arn93. Arnold, V.I.: Dynamical systems. Encyclopaedia of Mathe-

matical Sciences, Springer, Berlin, (1993)
AS92. Abraham, R., Shaw, C.: Dynamics: the Geometry of Behavior.

Addison–Wesley, Reading, MA, (1992)
Ash94. Ashcraft, M.H.: Human Memory and Cognition (2nd ed).

HarperCollins, New York, (1994)
Ati88. Atiyah, M.F.: Topological quantum field theory. Publ. Math.

IHES 68, 175–186, (1988)
AV00. Alfinito, E., Vitiello, G.: Formation and life–time of memory

domains in the dissipative quantum model of brain, Int. J.
Mod. Phys. B, 14, 853–868, (2000)

B-Y97. Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Books,
Reading, (1997)

Bae01. Baez, J.: The Meaning of Einstein’s Equation. arXiv: gr-
qc/0103044.

Bae02. Baez, J.: Categorified gauge theory. Lecture in the Joint
Spring Meeting of the Pacific Northwest Geometry Seminar
and Cascade Topology Seminar, (2002)

Bae97. Baez, J.: An introduction to n−categories. 7th Conference on
Category Theory and Computer Science, E. Moggi and G.
Rosolini (eds), Lecture Notes in Computer Science, Springer,
Berlin, (1997)

Bar93. Barry Jay, C. : Matrices, Monads and the Fast Fourier Trans-
form. Univ. Tech., Sidney, (1993)

Bau00. Baum, H.: Twistor and Killing spinors on Lorentzian man-
ifolds and their relations to CR and Kaehler geometry. Int.
Congr. Diff. Geom. in memory of Alfred Gray, Bilbao, Spain,
(2000)

BBR91. Birmingham, D., Blau, M., Rakowski, M., Thompson, G.:
Topological field theory. Phys. Rep. 209, 129, (1991)

BCG91. Bryant, R., Chern, S., Gardner, R., Goldscmidt, H., Griffiths,
P.: Exterior Differential Systems. Springer, Berlin, (1991)

BCO94. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-
Spencer theory of gravity and exact results for quantum string
amplitudes. Commun. Math. Phys. 165, 311, (1994)

BD02. Busemeyer, J.R., Diederich, A.: Survey of decision field theory.
Math. Soc. Sci., 43, 345–370, (2002)

BD95. Baez, J., Dolan, J.: Higher dimensional algebra and topo-
logical quantum field theory. J. Math. Phys. 36, 6073–6105,
(1995)

BD98. Baez, J., Dolan, J.: Higher–Dimensional Algebra III:
n−categories and the Algebra of Opetopes. Adv. Math.
135(2), 145–206, (1998)

Ben67. Bénabou, J.: Introduction to bicategories. In: Lecture Notes
in Mathematics. Springer, New York, (1967)

Ber35. Bernstein, N.A.: Investigations in Biodynamics of Locomotion
(in Russian). WIEM, Moscow, (1935)



780 References

Ber47. Bernstein, N.A.: On the structure of motion (in Russian).
Medgiz, Moscow, (1947)

BF71. Bransford, J.D., Franks, J.J.: The Abstraction of Linguistic
Ideas. Cogn. Psych., 2, 331–350, (1971)

BFR04. Bagnoli, F., Franci, F., Rechtman, R.: Chaos in a simple cellu-
lar automata model of a uniform society. In Lec. Not. Comp.
Sci., Vol. 3305, 513–522, Springer, London, (2004)

BGG03. Bryant, R., Griffiths, P., Grossman, D.: Exterior Differential
Systems and Euler–Lagrange partial differential equations.
Univ. Chicago Press, Chicago, (2003)
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FK83. Frölich, H., Kremer, F.: Coherent Excitations in Biological
Systems. Springer, New York, (1983)

Fla63. Flanders, H.: Differential Forms with Applications to the
Physical Sciences. Acad. Press, (1963)



786 References

Flo87. Floer, A.: Morse theory for fixed points of symplectic diffeo-
morphisms. Bull. AMS. 16, 279, (1987)

Flo88. Floer, A.: Morse theory for Lagrangian intersections. J. Diff.
Geom., 28(9), 513–517, (1988)

For90. Fordy, A.P. (ed.): Soliton Theory: A Survey of Results. MUP,
Manchester, UK, (1990)

FP04. Franzosi, R., Pettini, M.: Theorem on the origin of phase tran-
sitions. Phys. Rev. Lett., 92(6), 60601, (2004)

FPR04. Forger, M., Paufler, C., Römer, H.: Hamiltonian Multivector
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Mil99. Milinković, D.: Morse homology for generating functions of
Lagrangian submanifolds. Trans. Amer. Math. Soc. 351(10),
3953–3974, (1999)



References 799

MK05. Moon, S.J., Kevrekidis, I.G.: An equation-free approach to
coupled oscillator dynamics: the Kuramoto model example.
Submitted to Int. J. Bifur. Chaos, (2005)

MKA88. Miron, R., Kirkovits, M.S., Anastasiei, M.: A Geometrical
Model for Variational Problems of Multiple Integrals. Proc.
Conf. Diff. Geom Appl. Dubrovnik, Yugoslavia, (1988)

ML81. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant
muscle fiber. Biophys. J., 35, 193–213, (1981)

Mla91. Mladenova, C.: Mathematical Modelling and Control of Ma-
nipulator Systems. Int. J. Rob. Comp. Int. Man., 8(4), 233–
242, (1991)

Mla99. Mladenova, C.: Applications of Lie Group Theory to the Mod-
elling and Control of Multibody Systems. Mult. Sys. Dyn.,
3(4), 367–380, (1999)

MLS94. Murray, R.M., Li, X., Sastry, S.: Robotic Manipulation, CRC
Press, Boco Raton, Fl, (1994)

MM92. Marathe, K., Martucci, G.: The Mathematical Foundations of
Gauge Theories. North-Holland, Amsterdam, (1992)

MN95a. Mavromatos, N.E., Nanopoulos, D.V.: A Non-critical String
(Liouville) Approach to Brain Microtubules: State Vector re-
duction, Memory coding and Capacity. ACT-19/95, CTP-
TAMU-55/95, OUTP-95-52P, (1995)

MN95b. Mavromatos, N.E., Nanopoulos, D.V.: Non-Critical String
Theory Formulation of Microtubule Dynamics and Quantum
Aspects of Brain Function. ENSLAPP-A-524/95, (1995)

MNM02. Montagna, G., Nicrosini, O., Moreni, N.: A path integral way
to option pricing. Physica A 310, 450 – 466, (2002)

Moh91. Mohler, R.R.: Nonlinear systems, Vol. 2. Applications to bi-
linear control. Prentice Hall, Inc. (1991)

Mor34. Morse, M.: The Calculus of Variations in the Large. Amer.
Math. Soc. Coll. Publ. No. 18, Providence, RI, (1934)

MOS99. Mangiarotti, L., Obukhov, Yu., Sardanashvily, G.: Connec-
tions in Classical and Quantum Field Theory. World Scien-
tific, Singapore, (1999)

MP03. Myung, I.J., Pitt, M.A.: Model Evaluation, Testing and Se-
lection. To appear in K. Lambert and R. Goldstone (eds.),
Handbook of Cognition, Sage Publ., (2003)

MP94. Massa, E., Pagani, E.: Jet bundle geometry, dynamical con-
nections and the inverse problem of Lagrangian mechanics.
Ann. Inst. Henri Poincaré 61, 17, (1994)
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NU00a. Neagu, M. Udrişte, C.: Multi-Time Dependent Sprays and
Harmonic Maps on J1(T, M), Third Conference of Balkan So-
ciety of Geometers, Politehnica University of Bucarest, Roma-
nia, (2000)
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mensions, Bull. Amer. Math. Soc., 66, 373–375, (1960)

Sma67. Smale, S.: Differentiable dynamical systems, Bull. Amer.
Math. Soc., 73, 747–817, (1967)

Sma99. van der Smagt, P.: (ed.) Self–Learning Robots. Workshop:
Brainstyle Robotics, IEE, London, (1999)



806 References

Sni80. Sniatycki, J.: Geometric Quantization and Quantum Mechan-
ics. Springer-Verlag, Berlin, (1980)

Soc91. Socolovsky, M.: Gauge transformations in fibre bundle theory.
J. Math. Phys., 32, 2522, (1991)

Spa82. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors. Springer, New York, (1982)

Sta00. Stanislavsky, A.A.: Memory effects and macroscopic manifes-
tation of randomness. Phys. Rev. E 61, 4752, (2000)

Sta63. Stasheff, J.D.: Homotopy associativity of H−spaces I & II.
Trans. Amer. Math. Soc., 108, 275–292, 293–312, (1963)

Ste69. Sternberg, S.: Memory-scanning: Mental processes revealed by
reaction-time experiments. Am. Sci., 57(4), 421–457, (1969)

Ste72. Steenrod, N.: The Topology of Fibre Bundles, Princeton Univ.
Press, Princeton, (1972)

Ste93. Stengel, R.: Optimal control and estimation. Dover, New
York, (1993)

Sto68. Stong, R.E.: Notes on Cobordism Theory. Princeton Univ.
Press, Princeton, (1968)

STP95. Schaub, H., Tsiotras, P., Junkins, J.: Principal Rotation Rep-
resentations of Proper N x N Orthogonal Matrices. Int. J.
Eng. Sci., 33,(15), 2277–2295, (1995)

Str00. Strogatz, S.: From Kuramoto to Crawford: exploring the on-
set of synchronization in populations of coupled oscillators.
Physica D, 143, 1–20, (2000)

Str90. Strominger, A.: Special Geometry. Commun. Math. Phys.
133, 163, (1990)

STU78. Stuart, C.I.J., Takahashi, Y., Umezawa, H.: On the stability
and non-local properties of memory, J. Theor. Biol. 71, 605–
618, (1978)

STU79. Stuart, C.I.J., Takahashi, Y., Umezawa, H.: Mixed system
brain dynamics: neural memory as a macroscopic ordered
state, Found. Phys. 9, 301, (1979)

Stu99. Stuart, J.: Calculus (4th ed.). Brooks/Cole Publ., Pacific
Grove, CA, (1999)
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absolute covariant derivative, 80, 86
absolute time derivative, 699
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action of a Lie group, 56
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adjoint bundle, 359
adjoint functors, 766
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affine control system, 504
affine information structure, 722
affine jet bundle, 148
agent’s momentum phase–space, 677
agent’s velocity phase–space, 677
algebra homomorphism, 51
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background fields, 328
Banach manifold, 12
Banach space, 12
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belief–desire–intention agents, 705
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Berwald connection, 102
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Bianchi covariant derivative, 232, 546
Bianchi identity, 356
Bianchi relation, 323
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Bianchi symmetry condition, 85
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bilinear MIMO–system, 528
bisimulation, 647
black hole dynamics, 464
Black–Scholes–Merton formula, 688
body–fixed frame, 248
Bolza problem, 516
Boolean derivative, 2
Bose–Einstein condensate, 184
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bosonic string theory, 227
Bott periodicity, 127
Boundary element method, 486
boundary operator, 36
braided monoidal category, 649
brain–like control functor, 631
brane, 225, 428
Brouwer degree, 90
Brownian dynamics, 179
Brownian motion, 688
BRST symmetry, 355
BRST–symmetry, 440
bundle diffeomorphism, 123
Burgers dynamical system, 78, 478, 487
butterfly effect, 472

Calabi–Yau manifolds, 426, 432
Campbell–Baker–Hausdorff formula, 46
canonical 3–form, 279
canonical lift, 138
canonical Poisson structure, 279
canonical polysymplectic form, 344
canonical soldering form, 142
canonical tangent–valued 1–form, 141
canonical transformation, 104
Cartan equations, 279
Cartan magic formula, 49
Cartan relation, 139
Cartan theorem, 73
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Cauchy theorem, 245, 450
Cauchy–Riemann equations, 108
cellular robotics, 706
chain rule, 34
chaos theory, 470
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Chapman–Kolmogorov equation, 181,
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Chapman–Kolmogorov integro–
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Chapman–Kolmogorov law, 21, 27
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Chern–Pontryagin Lagrangian, 368
Chern–Simons gauge theory, 217, 366,
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Chern–Simons Lagrangian, 366
Chern–Simons Lagrangian density, 333,
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Christoffel symbols, 81, 232, 271, 309,
376, 506, 554, 731

circle bundle, 134
circle group, 250
cis–regulatory module, 523
Clifford algebras, 395
closed form, 35
closed string theories, 222
co–area formula, 415
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cocycle condition, 122, 125
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collision detection, 73
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complementary map, 149
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complex Laplacian, 114
complex manifold, 108
complex phase–space manifold, 243
complex structure, 109
complex–valued order parameter, 620
complexified tangent space, 110
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composite connection, 158
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conatural projection, 18
concurrent machine, 643
conditional Lyapunov exponents, 621
configuration bundle, 167, 268
configuration manifold, 4, 9, 15, 147
configuration space of sections, 147
conformal field theory, 227
conformal invariance, 429
conformal Killing form, 117
conformal Killing tensor–field, 117
conformally flat gauge, 429
connection, 167
connection homotopy, 84
conservation law, 173
constant of motion, 235
constrained Hamiltonian equations, 341
contact form, 174
contact forms, 149
contact manifold, 174, 175
contact map, 149
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contact transformation, 173
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control vector–fields, 488
controlled trajectory, 488
controlled Van der Pol oscillator, 493
coordinate 1−forms, 28
coordinate ball, 11
coordinate chart, 11
coordinate domain, 11
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correspondence principle, 183
cosmology, 408
cotangent bundle, 17
cotangent space, 17
covariant derivative, 154
covariant differential, 154, 275
covariant differentiation, 80
covariant force functor, 550, 631, 676
covariant force law, 550, 631, 676, 744,

746
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covariant Hamiltonian, 341
covariant Hamiltonian equations, 341
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cross–overlap, 603
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curvature operator, 85
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de Rham theorem, 38, 39
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derivation, 19
deterministic chaos, 556
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differential system, 266
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Dirac condition, 322
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Dirac equation, 116
Dirac matrices, 50
Dirac quantization, 314
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dissipative structures, 177
distribution, 133
distribution function, 177
divergence of the stress tensor, 483
divergence term, 173
Dolbeault cohomology, 113
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Duffing oscillator, 238, 242
dynamical chaos, 416
dynamical connections, 169
dynamical equation, 167
dynamical intuition, 9
dynamical similarity, 471

eddy, 475
effective group action, 56
Ehresmann connection, 152, 518
Einstein equation, 5, 8, 205, 389, 400
Einstein–Hilbert action, 205, 406, 423
emotion field, 677
energy conservation law, 369
energy functional, 99
equivariance condition, 135
Euclidean chart, 10
Euclidean image, 10
Euclidean metric, 12, 412
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Euclidean–Schwarzschild metric, 405
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Euler–Lagrangian functional derivative,
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Euler–Lagrangian operator, 278
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evolution operator, 21
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Faraday tensor, 323
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feedback linearization, 489
Feynman diagram, 224, 486
Feynman path integral, 177, 182, 186,
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Feynman–Vernon formalism, 598
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fibre–derivative, 69
Fick law, 703
Finite difference method, 486
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finite–time probability distribution, 694
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flag, 266
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flow property, 27
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foliation, 133, 501
force equation, 238
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fractal, 472
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free group action, 56
free motion equation, 270
free string, 221
Frobenius theorem, 501
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functional manifold, 478
fusion, 707
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gauge condition, 203
gauge group, 306
gauge potentials, 362
gauge transformation, 123
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Gauss–Bonnet formula, 78, 90, 420
Gauss–Bonnet theorem, 40
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Gaussian saddlepoint approximation,
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gene regulatory network, 523, 525
gene regulatory systems, 526
gene state coordinates, 525
general linear group, 58
general linear Lie algebra, 47
general principal vector–fields, 336
general theory of systems, 557
generalized Hebbian rule, 619
generalized vector–field, 67
generic energy condition, 401
genus, 420
geodesic, 24, 84
geodesic deviation equation, 6
geodesic equation, 84, 167
geodesic flow, 232
geodesic spray, 25, 232
geometrical intuition, 10
geometrical invariance group, 306
geometrodynamical functor, 664
Ginzburg–Landau equation, 476, 487
global space–time hyperbolicity, 399
graph, 119
Green–Schwarz bosonic string theory,
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group orbit space, 56

Haar measure, 55
Haken’s synergetics, 473
Hamel equations, 233
Hamilton–de Donder equations, 279,
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Hamiltonian action, 106
Hamiltonian connection, 276, 280, 281,

372
Hamiltonian conservation laws, 282
Hamiltonian dynamics, 18
Hamiltonian energy function, 234
Hamiltonian equations, 276
Hamiltonian form, 276, 277, 280, 288,
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Hamiltonian jet–field, 377
Hamiltonian map, 288
Hamiltonian mechanical system, 234
Hamiltonian vector–field, 234
Hausdorff space, 11
HDA–homotopy, 648
heat equation, 62, 72
Hebbian learning, 610, 707
Heisenberg picture, 197
helicity, 301
Hermitian inner product, 111
Hermitian metric, 111
Hessian, 83
high–resolution agent model, 706
higher–dimensional automata, 646
higher–order contact, 144
higher–order tangency, 144
Hilbert action principle, 8
Hilbert manifold, 12
Hilbert space, 12, 185
Hindmarsh–Rose thalamic neuron, 607
Hodge numbers, 114, 434
Hodge star operator, 32, 42, 323
Hodge theorem, 114
Hodge theory, 577
Hodge–diamond, 115
Hodgkin–Huxley equation, 608
Hodgkin–Huxley neuron model, 607
holomorphic cotangent space, 111

holomorphic tangent space, 110
holonomic atlas, 19
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holonomic connections, 169
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holonomic frames, 19
holonomous frame field, 19
holonomy, 323
homeomorphism, 109
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homological algebra, 761
homology group, 36, 761
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homotopy lifting property, 120
homotopy operators, 38, 496
horizontal density, 147, 325, 340, 394
horizontal distribution, 156
horizontal foliation, 156
horizontal forms, 140
horizontal splitting, 397
human crowd, 677
human–robot team, 697
hurricane, 474

ideal
differential, 174

imprecision of measurement, 556
independence condition, 175
inertial metric tensor, 271
infinite–dimensional neural network,

662
infinite–order jet space, 165
infinitesimal generators, 65
initial–date coordinates, 295
inner product space, 185
input signal generators, 525
input vector–fields, 488
insertion operator, 31
instanton vacua, 486
instruction, 707
integrable Hamiltonian system, 73
integral curve, 23
integral manifold, 133, 173, 174
integrate–and–fire neuron, 605
integrate–and–fire–or–burst neuron, 605
interior product, 31
invariant of Poincaré–Cartan, 277
invariant tori, 238
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involutive distribution, 133
isotropy group, 56
Itô lemma, 688
Ito stochastic integral, 180
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Jacobi identity, 51, 254
Jacobi operator, 173
jet, 144, 174
jet bundle, 146, 148
jet field, 152
jet functor, 149
jet space, 63, 82, 144
Jones polynomial, 439

Kähler condition, 578
Kähler form, 111
Kähler gauge, 465
Kähler manifold, 111, 577
Kähler metric, 111
Kähler potential, 466
Kähler structure, 111
Kalman filter, 4
Kalman regulator, 4
Killing equation, 116
Killing form, 248
Killing spinor–field, 116
Killing tensor–field, 117, 264
Killing vector–field, 116, 263
Killing–Riemannian geometry, 116
Killing–Yano equation, 117
Klein bottle, 121
Klein–Gordon Lagrangian, 202
Kolmogorov–Sinai entropy, 622
Korteveg–de Vries equation, 72, 658
Kuramoto model, 618
Kuramoto–Sivashinsky equation, 487

Lagrangian, 171, 231
Lagrangian constraint space, 277
Lagrangian density, 147, 202, 329, 667
Lagrangian dynamics, 17
Lagrangian–Poincaré equations, 234
laminar flow, 473
Laplace equation, 64
Laplace–Beltrami operator, 43, 83

Laplacian symmetry, 119
large eddy simulations, 485
laws of motion, 21
Lax type representation, 73
leaf space, 501
Lebesgue measure, 55
left ideal, 51
left–invariant Lagrangian, 233
left–invariant Riemannian metric, 248
Legendre bundle, 340
Legendre map, 69, 261, 277, 279, 326
Legendre submanifold, 174

transverse, 175, 176
Leibniz rule, 34
Lepagean equivalent, 278
Levi–Civita connection, 80, 266, 300,

394, 506, 518, 546, 577
Lewinian force–field theory, 663
Lewinian psychodynamics, 676
Lie algebra, 47, 254
Lie algebra homomorphism, 51
Lie bracket, 46, 136
Lie bracket property, 67
Lie derivative, 19, 43, 139, 235, 263,

274, 276
Lie functor, 53
Lie group, 52
Lie product, 501
Lie structural constants, 254
Lie subalgebra, 51
Lie–derivative neuro–classifier, 616
Lie–invariant geometric objects, 73
Lie–Lagrangian biomechanical functor,

551
Lie–Poisson bracket, 254
Lie–Poisson neuro–classifier, 617
lifted action, 106
light–controlled signal generators, 525
limit set, 237
line bundles, 126
linear connection, 152
linear controllability, 494
linearized Hamiltonian dynamics, 416
Liouville equation, 181
Liouville operator, 43
Liouville theorem, 256
Liouville–Arnold theorem, 259
Lipschitz condition, 25
living organism, 523
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locally accessible system, 504
locally topologically equivalent, 4
Lorentz metric tensor, 427
Lorentz–invariant theories, 223
Lorentzian dynamical triangulations,

207
Lorentzian–de Sitter metric, 412
Lorenz attractor, 472
Lorenz dynamics, 304
Lorenz flow, 304, 471
Lorenz mask, 472
Lyapunov exponent, 253, 416
Lyapunov stable, 298, 299

Möbius strip, 121
manifold, 4, 9
manifold structure, 10
manifold with boundary, 39
Markov assumption, 181
Markov chain, 179
Markov stochastic process, 179, 666
mass conservation principle, 480
Master equation, 181, 527
Maupertius action principle, 83
Maurer–Cartan equations, 74
maximal geodesic, 24
maximal integral curve, 23
Maxwell equations, 323
Maxwell–Haken laser equations, 473
mean curvature, 172
mean–field theory, 419
Melnikov function, 243
mental force law, 676
messenger RNA, 523
metric SEM–tensor, 366, 370, 376, 441
microtubules, 587
mirror symmetry, 434
model space, 12
momentum constraint equation, 411
momentum map, 105, 248, 263
momentum phase–space manifold, 69,

236, 274, 275, 280, 283, 552
monoid, 649
monoidal category, 649
Moore–Penrose pseudoinverse, 603
morphism of vector–fields, 27
Morris–Lecar neuron, 607

Morse function, 94, 417, 421
Morse lemma, 417
Morse numbers, 421
Morse theory, 93, 217, 417, 421
motion planning, 73
motivation–behavior conservation law,

680
motivational factor manifold, 677
motivational factor–structure, 677
multi–index, 62
multi–index notation, 173
multiindex, 31
multimomentum Hamiltonian, 377
multivector–field, 138

Nambu–Goto action, 227, 428
natural geometrical structures, 648
natural projection, 16
Navier–Stokes equations, 470, 484
neural path integral, 624
Newman–Penrose equation, 400
Newtonian equation of motion, 21
Newtonian fluid, 483
Nijenhuis differential, 143, 355
Noether conservation law

weak, 364
Noether conservation laws, 264
Noether current, 364, 366
Noether identities, 365
Noether theorem, 173
Noether–Lagrangian symmetry, 68
Noetherian ring, 757
non–Abelian field strength, 435
noncommutative product, 534
nondegenerate quadratic forms, 395
nonholonomic connection, 267
nonholonomic coordinates, 82
nonlinear control system, 488
nonlinear control theory, 224
nonlinear controllability criterion, 499
nonlinear factor analysis, 677
nonlinear MIMO–systems, 488
nonlinear Schrödinger equation, 658
nonlinear sigma model, 227
normal bundle, 124
normal vector–field, 22

one–parameter group of diffeomor-
phisms, 26, 237
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open string theories, 222
optimal performance, 707
optimal policy, 707
orbifold, 432
oriented strings, 223
oscillator neural networks, 618
overlap, 602

parabolic Einstein equation, 90
parallel transport, 6, 232, 547, 583
parameter–space of probability

distributions, 721
partition function, 216, 415, 438
path integral, 405, 518
path–integral expression, 201
path–integral formalism, 198
path–integral formulation, 197
path–integral quantization, 197
periodic orbit theory, 478
perturbation theory, 240
perturbative path integral, 205
perturbative string theory, 228
Peyrard–Bishop system, 418
Pfaff theorem, 174
Pfaffian forms, 138
Pfaffian system, 133, 173, 553
phase, 184
phase trajectory, 236
phase transition, 414, 418
phase–flow, 237
phase–space path integral, 194
Philip Hall basis, 502
Planck length, 222
Poincaré conjecture, 14
Poincaré duality, 115
Poincaré lemma, 35
Poincaré maps, 241
Poincaré–Cartan form, 175
Poincaré–Hopf theorem, 40
Poisson bivector–field, 139
Poisson bracket, 71, 107, 235, 274, 346
Poisson detection statistics, 184
Poisson evolution equation, 254
Poisson manifold, 254
Poisson tensor–field, 260
Polyakov action, 227
polysymplectic phase–space, 276
Pontryagin Maximum Principle, 516,

519

predictability & controllability, 1
presymplectic Hamiltonian systems, 274
principal bundle, 121, 134
principal connections, 158
Principle of Democracy, 409
probability amplitude, 197, 216
probability distance, 721
probability divergence, 721
probability manifold, 721
product topology, 476
progress graph, 645
projectable vector–field, 141, 165
projected connection, 267
prolongation, 62, 300
prolonged group action, 65
pull–back, 19
pull–back vector bundle, 125
pull–back–valued forms, 142
push–forward, 20

quadratic I&F neuron, 606
qualitative ODE theory, 253
quantum algebra, 318
quantum brain, 662
quantum bundle, 320
quantum coherent state, 183
quantum field theory, 216
quantum gravity, 204
quantum measure, 437
quaternions, 535

random variable, 177
random walk, 179
rank condition, 497
reachable sets, 489
reduced curvature 1–form, 480
reduced phase–space, 106
reducible constraints, 288
Regge calculus, 209
Regge geometries, 206
Regge simplicial action, 211
regular divergence, 722
Reidemeister moves, 652
reinforcement learning, 707
related vector–fields, 20
relative degree, 492
relativistic mechanics, 317
repeated jet space, 162
representative point, 9
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resonate–and–fire neuron, 606
Reynolds number, 471, 473
Reynolds–averaged Navier–Stokes

equations, 485
Ricci flow, 90
Ricci tensor, 7, 79, 85
Riemann curvature tensor, 6, 7, 78, 84,

272, 388, 675, 727, 740
Riemannian manifold, 21, 32
Riemannian metric, 546
Riemannian metric tensor, 78
right translation, 52
rigid body with a fixed point, 248
route to turbulence, 475
rule–importance weight, 707

saddle point approximation, 411
Sasakian metric, 302, 337
scalar curvature, 79, 85
scalar Gaussian curvature, 87
scalar–field, 481
scattering, 410
schedule, 645
Schouten–Nijenhuis bracket, 138
Schrödinger equation, 183, 193
Schrödinger operators, 318
Schrödinger picture, 197
Schrödinger quantization, 316
Schwarzschild metric form, 405
second tangent bundle, 128
second tangent maps, 699
second variation, 173
second variation formula, 87
second–countable space, 11
sectional curvature, 79
SEM conservation laws, 375
SEM–tensors

Hamiltonian, 380
Lagrangian, 373

separatrix, 238
sequential machine, 643

shear viscosity, 484
signal generators, 526
signature, 395
simplicial set, 654
Sine–Gordon equation,

sliding filament theory of muscular
contraction, 548

small–time local controllability, 504
small–time locally controllable, 489
smooth homomorphism, 52
soldering curvature, 155
soldering form, 142
space–time manifold, 4
sphere bundle, 121
spin networks, 206
spinor, 50
spinor Lie group, 393
state feedback, 503
state manifold, 488
state–space explosion problem, 648
static gauge, 428
stochastic forces, 556
stochastic integral, 179
Stokes fluid, 483
Stokes formula, 39
strange, 472
string corrections, 222
string tension, 227
string–field, 464
strong energy condition, 401
structure equations, 92
super–field, 456
super–space, 456
supercell thunderstorms, 474
superstring theory, 228
supersymmetry, 228
support of a vector–field, 26
surface forces, 482
symmetric affine connection, 80
symmetry, 173
symmetry group, 62
symplectic foliation, 279
symplectic form, 103, 140
symplectic group, 104
symplectic manifold, 104, 234
symplectic map, 104
symplectic potential, 315
symplectomorphism, 103
synthetic biology, 523

tachyon field, 228
tangent bundle, 16
tangent dynamics equation, 416
tangent map, 16, 17

475, 658

shape operator, 420
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tangent–valued r−forms, 140
tangent–valued horizontal form, 141
tangle, 650
tangle diagram, 652
temporal logic of actions, 2
tensor bundle, 18, 130
tensor–field, 18
tensor–product connection, 156
tetrad gravitational field, 392
thermodynamic partition function, 405
theta–neuron, 606
three–body problem, 251
time–dependent flow, 21
time–dependent mechanics, 268
time–dependent vector–field, 23, 27
Toda molecule, 247
topological group, 52
topological hypothesis, 414
topological invariant, 419
topological operads, 654
topological quantum field theory, 217
topological theorem, 416
tornado, 474
torsion of a connection, 155
torsion tensor, 267
transformation
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point, 172

transformation classical, 172
transformation gauge, 172
transient chaos, 475
transition amplitude, 185, 192
transition functions, 10, 122
transition probability, 185, 526
transition probability distribution, 693
transitive group action, 56
transversal bundle, 133
tricategories, 654
trivial fibration, 120
turbulence, 470
turbulent flow, 473
twistor equation, 116

unified field theory, 423

vacuum state, 184
vector bundle, 121, 124
vector input space, 3

vector output space, 3
vector state–space, 3
velocity equation, 238
velocity phase–space manifold, 15, 69,

167, 268, 552
velocity vector–field, 15
vertical bundle, 128
vertical connection, 153
vertical cotangent bundle, 131
vertical covariant differential, 158
vertical lift, 128
vertical tangent bundle, 131
vertical vector–field, 141
vertical–valued horizontal form, 142
Virasoro operators, 431
visual physical intuition, 424
volatility, 688
volume forces, 482
volume form, 43
volume viscosity, 484
vortex, 473
vorticity dynamics, 474

wave–particle duality, 184
weak conservation law, 333
weak energy condition, 400
wedge product, 31
Weyl homomorphism, 368
Weyl invariance, 429
Weyl tensor, 7
Wheeler–DeWitt equation, 411
Wick rotation, 213, 405
Wiener process, 180
Wigner function, 597
Wilson loop, 439
winding number, 245
Witten’s TQFT, 217
world–sheet, 221
world–sheet dynamics, 427

Yang–Lee theorem, 414
Yang–Mills gauge theory, 218, 340, 353
Yang–Mills Lagrangian, 333, 357, 362,

363
Yang–Mills relation, 323, 486
Yang–Mills theory

higher, 324
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24. J.A. Fernández and J. González: Multi-Hierarchical Representation of Large-Scale

Space. 2001 ISBN 1-4020-0105-3
25. D. Katic and M. Vukobratovic: Intelligent Control of Robotic Systems. 2003

ISBN 1-4020-1630-1
26. M. Vukobratovic, V. Potkonjak and V. Matijevic: Dynamics of Robots with Contact

Tasks. 2003 ISBN 1-4020-1809-6
27. M. Ceccarelli: Fundamentals of Mechanics of Robotic Manipulation. 2004

ISBN 1-4020-1810-X
28. V.G. Ivancevic and T.T. Ivancevic: Human-Like Biomechanics. A Unified

Mathematical Approach to Human Biomechanics and Humanoid Robotics. 2005
ISBN 1-4020-4116-0

29. J. Harris: Fuzzy Logic Applications in Engineering Science. 2005
ISBN 1-4020-4077-6

30. M.D. Zivanovic and M.K. Vukobratovic: Multi-Arm Cooperating Robots. Dynamics
and Control. 2006 ISBN 1-4020-4268-X

31. V.G. Ivancevic and T. Ivancevic: Geometrical Dynamics of Complex Systems. A Unified
Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho-
Socio-Economical Dynamics. 2006 ISBN 1-4020-4544-1

www.springer.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




