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PREFACE

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

—Robert Frost

This book is a product of my odyssey in certain branches of materials
physics and geophysics. A few years ago, while rereading Frost's poetry, I
realized that his words above described very well my decisions at crossroads.
My first job as a young Ph.D. physicist was in the research department of
Bell Telephone Laboratories, where I was to find elastic constants of solids
using physical acoustics under the mentorship of Warren Mason. For sev-
eral months, I had the good fortune to be in the same corridor as many
famous physicists, including Art Schawlow, Walter Bond, Brent Matthais,
Phil Anderson, Conyers Herring, Gregory Wannier, William Shockley, Wal-
ter Brattain, and John Bardeen. Five of these later obtained (in total) six
Nobel prizes. During my temporary stay in this corridor, while my new
physical acoustics laboratory was being assembled, I felt a strong impres-
sion from these colleagues that the cutting edge of research was in semi-
conductor physics, and it was tacitly assumed that I would apply the skills
of physical acoustics to this field. But I remember thinking that doing my
kind of research on semiconductors would be boring. I was fascinated with
glass physics and the acoustics of low symmetry silicates, so I took the road
"less traveled by." Much of my research was published in the Journal of
the American Ceramic Society and Physical Review, and I was associated
with great ceramicists like Jack Wachtman. I found that another market
for my research results was in geophysics, and I was soon invited to build
a second physical acoustics laboratory at the Lamont Geological Observa-
tory of Columbia University by its famous director, Maurice Ewing. Doing
physical acoustics in a geophysical institute was certainly an uncommon
endeavor. In 1964, Ed Schreiber, Nahiro Soga, and I nailed a sign over our
new laboratory there, proclaiming it the first "Mineral Physics Laboratory."

Ed and I showed the community that precision ultrasonic measure-
ments of sound velocity done under pressure (modest indeed by today's
standards) could yield valid equations of state in the shock wave pressure
regime. Nahiro and I demonstrated that high temperature elasticity obeyed
certain fundamental laws in solid state physics first presented by Max Born
and E. Griineisen in the 1920's and 1930's. Soon a number of other geo-



physical laboratories were in the ultrasonic sound measurement business.
At that time the diamond anvil cell (DAC) was discovered by geophysicists
and materials scientists, and there was a scramble to find properties of ox-
ides and ceramics at high pressure by the DAC. It was easy to foresee that
the high pressure field with the DAC was going to be popular, and so I gave
up pressure measurements altogether and opened up the field of acoustic
measurements of elastic constants at higher and higher temperatures.

In high temperature acoustics, I was fortunate to be associated with
Mineo Kumazawa, who came to Columbia University as a postdoc from
Nagoya. Mineo further developed this field with his students upon his re-
turn, naming it "rectangular parallelepiped resonance" (RPR). This was
in Japan, but Kumazawa's students worked in my UCLA lab as postdocs
in their turn. Even so, in the USA, my laboratory associates were trav-
elling alone until about four years ago, when Al Migliori at Los Alamos
independently discovered the technique, naming it "resonance ultrasound
spectroscopy" (RUS). I was delighted, of course, to see my dreams fulfilled
by the establishment of a new branch of physical acoustics that was being
pursued at several laboratories.

Now I choose a sparsely traveled path called physical thermodynam-
ics, once considered as a branch of theoretical physics. (This field became
somnolescent shortly after World War II, and I am trying to revive it). Ab
initio calculations of elastic constants at extreme conditions are producing
exciting results for oxides and ceramics and are destined to become a pop-
ular research field. Travelers on that road will reap many rewards, but I
will instead pursue physical thermodynamics.

Although my odyssey changed directions, I nevertheless found therein
a central theme for my research: equations of state (EoS) of solids. I
therefore taught a course on EoS in alternate years, first at Columbia and
then at UCLA. The lecture notes were refined by student participation and
by new research results in my laboratory and in other laboratories. These
notes are the basis of this book, which, I believe, is appropriate for first
year graduate students in geophysics and ceramic science.

In this book, equation of state means a functional relationship between
pressure P, volume V, and temperature Tfor a solid. Solids of interest here
are oxides and silicates, especially those with high density.

x
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PART I
THERMAL PHYSICS

There is more joy
in heaven in a good
approximation than in
an exact solution.

—Nobelist Julian Schwinger

Many useful approximations are to be found in this examination of
thermal physics. We find, for example, that the experimentally determined
thermal pressure is linear with T to quite high temperatures, and that sev-
eral important thermoelastic parameters are independent of T to high tem-
peratures. These and other good approximations are aspects of the grand
approximation called the high temperature limit of the quasiharmonic ap-
proximation of statistical mechanics, which is treated in Chapter 2.

Thermal physics is a cornerstone of equations of state at high tem-
perature. This treatment of "thermal physics" is somewhat different from
that found in texts with the same name, however, because it is focused on
the equation of state of solids, and, as a consequence, certain parts of the
traditional "thermal physics" are emphasized and expanded, while others
are ignored. There has been increased research emphasis on thermal effects
in the EoS, especially thermal pressure PTH , the coefficient of thermal ex-
pansivity a, and the Griineisen ratio parameter 7 (which relates pressure
and energy at constant V), all of which are treated here.

In the first two chapters I give the thermodynamic and statistical me-
chanical background needed throughout the book. Definitions of the phys-
ical properties required for the EoS, derived in terms of the free energy,
are also presented. Emphasis is placed on 7 in all its variations, the Debye
temperature 0, and the bulk modulus KT- The variation of PTH with T
and V is developed.

In the course of the derivations, several dimensionless thermoelastic
parameters arise. These play a role in physical thermodynamics similar to
the role of the Rayleigh number and the Nusselt number in hydrodynam-
ics. In the third chapter I develop theory showing how the thermoelastic
parameters vary with T and V at high temperature and high compression.
This is emphasized by using thermoelastic parameters that transform the



thermodynamic identities into differential equations. Such thermodynamic
equations are especially useful in changing from P, T variables to V, T vari-
ables, for any given physical property.

In the fourth chapter, I emphasize a and its relationship to many
properties in the EoS and cast it in terms of thermoelastic dimensionless
parameters. The variation of a with T, V, and P at extreme conditions is
presented. Special attention is given to the high P-high T behavior of a
for periclase, silicate perovskite, and iron.

In the fifth chapter I use some neglected properties of the Debye the-
ory to find the relationship between mechanical properties (such as sound
velocity, bulk modulus, and the pressure derivative of the bulk modulus)
and temperature and composition, all at P = 0. From this we identify a
subclass of oxides and silicates in which many physical properties can be
explicitly calculated from Debye theory. This subclass, called "Debye-like"
solids, includes those thought to comprise the deep interior of terrestrial
planets. The majority of oxides and silicates are not Debye-like solids, and
this explains why the Debye theory falls short of explaining physical prop-
erties of so many solids of interest to geophysics, ceramics, and mineralogy.

Though few in number, Debye-like solids, for which Debye theory
is a useful application, are nevertheless important. Corundum (A^Os),
sometimes called sapphire, and periclase (MgO) are emphasized because
they are of especial interest to ceramic sciences. Magnesium silicate per-
ovskite (MgSiOs), olivine ((Fe,Mg)2SiO4), and periclase are emphasized
because they of especial interest to solid earth geophysics. Periclase is a
linchpin of both disciplines, and as such it receives the most exhaustive
treatment.

The whole treatment of Part I rests squarely on the solid state science
done in Germany in the late 1920's and 1930's, especially that of Max Born,
Peter Debye, Albert Einstein, E. Griineisen, and Ludwig Boltzmann. The
discovery of quantum mechanics diverted these great scientists from ther-
mal physics, and the field was neglected for decades. Recent advances in
experimental research on ceramic and geophysical solids have required for
their interpretation a respectful revival of the theories of these scientists.

2



THE FREE ENERGY AND THE
GRUNEISEN PARAMETER

1.1. Introduction

A logical way to have constructed this book would have been to use the
first chapter to define all required parameters of equations of state by means
of derivations arising from a statistical mechanical approach. This is not
done here, because it is important first to define the basic parameters of
the equation of state in physical terms. I save the statistical mechanics pre-
sentation that is necessary to define high temperature and low temperature
properties for Chapter 2. In Chapter 1 I also emphasize the relationships
of physical properties to the thermodynamic functions.

Although I think this organization will be helpful to students, there is
a certain flaw in the logical flow of ideas. On three occasions I must define
a property in terms of derivations yet to be made in Chapter 2. My deci-
sion is based on the observation that a number of students in geophysical
disciplines and ceramics science who want to learn about equations of state
have not been trained in statistical mechanics. For them, Chapter 1 will
be helpful in learning the contents of Chapter 2.

1.2. The Helmholtz free energy

The Helmholtz energy T of a solid is used to find the pressure P. For many
solids found in geophysics and ceramics, T has three contributions:

1

where £57- is the potential of a static lattice at absolute zero; TV IB is the
vibrational energy due to the motion of the atoms as each is constrained
to vibrate around a lattice point; and Eei is the potential arising from
free electrons. In some solids other potentials, such as magnetization and
optical effects, can arise as contributions, but these are not important in
this treatment, which is largely concerned with insulators. Many minerals
are insulators; in such cases Eet can be ignored. For the case of iron, for
example, Eet cannot be ignored.

There are three thermodynamic functions by which P or V is related
to other thermodynamic variables:
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Helmholtz Energy

Gibbs Energy

Enthalpy

where S is the entropy; U is the internal energy; and Ji is the enthalpy.
Sometimes J- and Q are called free energies.

In thermodynamic systems where volume V and temperature T are the
independent variables, (1.2) is the most convenient energy function. Con-
sequently, the Helmholtz energy f will be used for most derivations. In
equilibrium studies for determining phase boundaries, however, the conve-
nient independent variables are P and T. In that case, the Gibbs energy Q
(1.3) is the recommended free energy function because the equilibrium at
fixed P is the one with minimum G.

By EoS we mean that pressure is defined in terms of two variables, V
and T, as follows

The equation of state (EoS) will be derived from f'.
In specifying (1.5) as the EoS, we are ignoring the contribution of

shear deformations to J-'. In planetary interiors this is justified because
the pressure P is large compared with the shear stresses. Similarly the
time variation of deformation is not significant in our EoS, although it
may be important in tectonic processes near the earth's surface, where the
deviatorial stresses are no longer small compared with pressure.

In terms of J-, the fundamental thermodynamic equations are (Landau
and Lifshitz, 1958):
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where CV is the specific heat at constant volume; KT is the isothermal bulk
modulus; and a is the volume coefficient of thermal expansion.

The pressure is also given by

"=(§),- "•'»
We also see that the expression for a, the thermal expansivity from (1-10)
and (1.11), is

1.3. Pressure: The equation of state

For an insulator, from (1.1), F — EST + EVIB- In Chapter 2, I will show
that for an insulator, EVIB = ETH + EZV and ET-O — EST + EZV, where
ETH is the thermal energy and EZV is the zero temperature vibrational
energy, a small term arising from quantum mechanics. A more convenient
expression for f, in which the T = 0 effects and the thermal effects are
clearly separated, is

where T = 0 indicates absolute zero.
Using (1.9) and (1.14),

Following (1.5) and (1.15), P is a function of V and T except at absolute
zero, where P = Pr=o(V)- In subsequent sections, I use (1.15) as the
standard definition of P for dielectric solids without free electrons.

Defining

we have the basic formulation

Let V be replaced by the dimensionless variable 77, often called the dilation,
77 = V/Vo, which shall be called here compression, where the subscript 0
indicates V at zero pressure. Then an alternate form of (1.17) is

For a metal at high temperature, as in iron in the earth's core, to provide
an example, an additional term, Pef(r),T), must be added to (1.18) because
the energy of free electrons (Eei in (1.1)) becomes important.

Either (1.17) or (1.18) is referred to in this book as the Equation of
State (EoS), and effects from the stress deviator are ignored.
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1.4. The Griineisen parameters

1.4.1. The Gruneisen ratio

The Griineisen ratio 7 (Gruneisen, 1912, 1926) is a very important ther-
modynamic parameter used to help quantify the relationship between the
thermal and elastic properties of a solid. Sometimes 7 is called the ther-
mal Gruneisen parameter (labeled fth in more recent literature), but in
this book we follow the nomenclature of the originator, Gruneisen (1912).
The Gruneisen ratio can be considered as the measure of the change of
pressure resulting from the increase of energy density at constant V. It is
dimensionless, as AP and AZV/V have the same units. A convenient form
is

If the change in pressure were exactly proportional to the change in energy
density, 7 would be independent of P and T, and experiments show this to
be nearly correct if one considers the case for the variation of 7 with T at
constant V. In fact, the "proportionality constant" usually lies between 1
and 2.

In order to evaluate (1.19) in parameters representing measurable phys-
ical properties, start with

According to (1.8), (dU/dT)v = Cv at unit mass. From calculus,

Equation (1.21) is the ratio of the compressibility to a. Thus

in agreement with (1.11). Equation (1.20) is therefore

Using (1.23), (1.19) becomes the most important definition of 7:
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Thus 7 given by (1.24) is composed of individual measurable phys-
ical properties, each of which varies significantly with temperature, but
the ratio of these properties as given by (1.24) does not vary greatly with
temperature, and sometimes not at all. For this reason (1.24) has been
traditionally called the Griineisen ratio, a name that will be used in this
text. Approximations to (1.24) for 7 will not involve the word "ratio" and
will receive special names and subscripts.

Although the Griineisen ratio tends to be nearly independent of T,
especially at high T, it generally decreases as the volume decreases. An
approximation often used for solids is

where p is the density. As we shall see in Chapter 3, (1-25) does not hold
for low temperatures (T < 6, the Debye temperature), but does hold for
temperatures in shock waves.

Note that if (1.25) holds true, then from (1.19)

The extent to which the approximation given by (1.25) is valid and useful
will be examined in Chapter 3. It is often not true at low T.

From (1.8) and (1.11), 7 is defined in terms of the free energy:

The derivative in the denominator of (1.27) could consist of a sum of terms.
Further, T could contain separate terms arising from phonons, defects, and
anharmonic effects. The exact equation for 7 can therefore be complex. As
we shall see, it is simplified in the limits of high and low T.

I A.I. Adiabatic decompression measurements for 7

Start with one of Maxwell's relationships:

where the cross derivative is held first at constant V, then at constant
T. Expand the right side of (1.28): (8P/dS)v = (dP/8T)v (8T/dS)v.
By using (1.8) and (1.11), this becomes -TaKT/Cv. Using (1.24), this
becomes Tj/V, so that (1.28) can also be written as
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where the cross derivative is held fast at constant V, then at constant T.
This equation is useful in theoretical formulations. It is the basic equation
by which the adiabatic temperature gradient within a planet interior is
determined.

Using the definition Kg — —V(dP/dV)s, where Kg is the adiabatic
bulk modulus (see Section 1.5.1), we obtain from (1.29)

Equation (1.30) is useful for experimental determination of 7, in which
(8T/dP)s is a measured adiabatic decompression (Boehler, 1981).

Consider a solid under pressure P at some T. Let an incremental
change AP be made, and let the system adjust adiabatically, resulting in a
measured change of AT in the solid. Then 7 at that P and T can be mea-
sured according to (1.30), provided information on K$ at that particular
P and T is available.

1.4.3. Variation off with volume

Griineisen (1912) defined a value for the volume derivative of each mode u>i
in the lattice 7,- according to

Equation (1.31) is often called a mode gamma. But 7 itself is also a simple
function of V, at least approximately.

Anderson (1967) suggested that the Griineisen ratio itself be of a form
similar to (1.31) in its relation to volume,

McQueen et al. (1970) specifically took q — 1, or (1.25), for their shock
wave analysis. This has been the practice in shock compression in many
works ever since.

Boehler and Ramakrishnan (1980) and Boehler (1982) measured 7 vs.
P for a number of solids using the adiabatic decompression method, (1.30),
and converted the data to a form like (1.32). A list of their measured
values of 70 and q is shown in Table 1.1 (Boehler and Ramakrishnan, 1980;
Boehler, 1982). This shows that the variation of 7 with V/Vo generally
gives q > 1 using (1.32). These results hold for relatively low pressure. For
quite high pressure and temperature, q is near 1, so that we may expect q
to change its value over a large pressure interval (see details in Chapter 3).
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Table 1.1. Experimental variation of 7 with V

Metals

Al
Cu
In
Fe
Pb
Na
K
Bi
Alkali
Halides
NaCl
KBr
KC1
Minerals

MgO
Mg2Si04
Quartz

7o

2.14
2.01
2.42
1.66
2.63
1.2
1.19
1.0

1.62
1.43
1.15

1.39
1.15
0.57

?

1.0
1.3
1.8
0.8
1.2
0.91
1.7
1.4

1.3
1.2
1.0

1.0
1.0
1.0

Source: Boehler and Ramakrishnan, 1980; Boehler, 1982.

1.4.4. The average of the mode gammas

The Griineisen parameter 7 is also defined in terms of lattice dynamic
theory, where the vibrations of a crystalline lattice are defined in terms
of an ensemble of harmonic oscillations known as Einstein functions (see
Chapter 2). The general definition of 7 then involves a summation and
an averaging of the terms describing how each of the lattice frequencies ut
varies with volume given by (1.31). For each harmonic oscillator (called a
mode), there is a mode gamma given by (1.31), there being 3pN modes in
the crystal (where p is the number of atoms in the basic cell). We shall
see this idea developed further in the next chapter, but for purposes of
definitions, we anticipate some of those results here.

The most common method of averaging the mode gammas is to assume
non-interacting oscillators and require that the energy, the pressure, and the
specific heat be thermodynamically consistent (Born and Huang, 1954), and
further that u>i be independent of T (but not of V). This is consistent with
the quasiharmonic approximation by which frequencies of the oscillators
obey (1.31). The quasiharmonic approximation of J- and its derivatives
will be treated in more detail in the next chapter.

9
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It is well known (Barren, 1955) that under this approximation

where d is the Einstein specific heat capacity defined in terms of w,- for
each mode. The summation is taken over the 3pN modes of the lattice in
the general case. Here N is Avogadro's number, and p is the number of
atoms in the vibrating cell. Equation (1.33) is too general to solve without
further approximations.

1.4.5. The Mie-Griineisen approximation: -fmg to 7

In the limiting case where all (d in Ui/d in V) are equal, 7,- is factored out
of the summation in (1.33). Then PTH is proportional to ETH in place of
(1.16), and we have the Mie-Griineisen expression for PTH given by

where the 7 in (1.33) is replaced by ymg, and where jmg refers to the
Mie-Griineisen EoS. Spectroscopic measurements of w,- versus P show that
the 7,- are not equal (see Section 1.4.9). So as long as the d of (1.33)
are not equal, (1.34) is not valid. At high T, where all Ci are equal (see
Chapter 2), 7 can be defined as approaching ymg. But for (1.34) to be
useful at high T, even as an approximation, the Griineisen ratio, (1.24),
must have some special properties at high T, which will be discussed in
Chapter 3. Altogether there are special limits placed on the reliability of
the Mie-Griineisen EoS.

1.4.6. The acoustic gamma jac approximation to 7

Barren (1957) showed that in general, for the high temperature approxi-
mation, the denominator of (1.33) approaches a limiting value, and (1.33)
becomes

A further approximation is made by ignoring all optic modes of the crystal
and also ignoring all acoustic modes except those at low wave number in
the summation of (1.35). Thus the summation up to 3pN is replaced by
a summation up to 3 (for the longitudinal and two shear acoustic modes).
Because most of the energy is in the high modes, this approximation appears
weak, but (1.35) is an average 7, and the approximation implies that the
average of the three acoustic modes is equal to the average of all modes.
Barren (1955, 1957) showed that for the acoustic modes (1.31) becomes
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where (i — 1,2,3) and t>,- is the sound velocity. An alternative to (1.35) is

where Mi is the elastic modulus associated with Vi found in (1.36).
The high temperature approximation (1.35) for a single crystal needs

to account for the fact that Vf varies with direction. Barron (1957) showed
that one must use

The reduction of (1.38) to materials isotropic to acoustic waves is obvious
because there are only two sound velocities and two values of the mode
gamma 7;. The isotropic 7's are

and

where G is the isotropic shear modulus.
The acoustic approximation to the Griineisen ratio, called jac, is thus

the average of the p wave mode jp and the two shear wave modes 7,:

Equation (1.41) can be applied immediately to isotropic polycrystalline
materials. However, most applications of (1.41) to minerals are made by
finding the equivalent isotropic elastic constants, K$ and G, of the single
crystal at each pressure and the average associated pressure derivatives of
the Kg and G values (see Quareni and Mulargia, 1988).

The comparison of jac with 7 ((1.24) or (1.30)) for many minerals is
shown in Table 1.2. In this table, we see that for dense minerals with high
coordination numbers, such as periclase, yac is close in value to 7. On the
other hand, for minerals with low coordination numbers, such as rutile, 7<,c
is not close in value to 7. This is explored further in Section 5.9.



Because both 7, and jp can be expressed in terms of different sets of elastic
constant pressure derivatives, alternate forms of (1.39) can be generated.
One form uses the pressure derivative of the bulk modulus K and the
Poisson ratio v, so that

\idv/dP is assumed to be zero, (1.42) reduces to the expression of 7 known
as the Slater gamma, 7,1 (Slater, 1939), which is traditionally derived from
entirely different premises. We then find that

Both experiments and lattice theory show that v increases with P, so that
(1.43) is only of historical interest.

Data in Table 1.2 indicate that the average of the first three modes
often gives a good approximation to the average of all 3pN modes of a
crystal, especially for the dense minerals. However, the value of -fac is not
close to that of 7 for minerals with low coordination, such as hematite.

12 THERMAL PHYSICS

Table 1.2. Values of 7 and jae for minerals, oxides, and three dense
rocks at zero pressure

Experimental Data 70: (1.24) 7aco: (1.42)

n A v>
 aRTV IP + 27'Compound K0 7, fp ^ p ^

Corundum 3.99 1.20 1.53 1.32 1.31
Periclase 4.20 1.40 1.71 1.54 1.50
NaCl 5.50 0.9 2.20 1.56 1.33
Spinel 4.18 0.49 1.33 1.13 0.79
Garnet 5.45 1.13 1.95 1.21 1.89
Hematite 4.53 0.64 1.53 1.91 0.94
Forsterite 5.37 1.24 1.92 1.15 1.47
Olivine 5.13 1.28 1.88 1.21 1.33
Rutile 6.76 0.55 2.09 1.28 1.07
a-iron 5.29 — — 1.81 1.81
Eclogite 5.5 0.93 1.90 1.25 1.25
Peridotite 5.3 1.52 2.15 1.72 1.73
Orthopyroxene 9.6 1.48 3.09 1.56 2.02
Trevorite 4.41 0.32 1.44 1.24 0.70
Earth's Lower Mantle — — — — 1.50
Source: Sumino and Anderson, 1984.
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1.4.7. Historical account of approximations to the Gruneisen ratio 7

In the 1950s and 1960s research on 7 was characterized by attempts to
find the volume dependence of 7 without taking possible changes of q,
shown in (1.32), into consideration. Simple analytical equations in terms
of K' = (dKx/dP)T all arise from severe approximations. Examples will
be found in the work of Dugdale and McDonald (1953); Barren (1957);
Vashchenko and Zubarev (1963), see next section; and Knopoff and Shapiro
(1969). In this era, the volume variation of 7 was described by the general
function - ( ( K 1 , P/KT) (See (1.43) and (1.46), for example).

In the 1970s research focused on the parameter q because of an ex-
pression derived by Bassett et al. (1968), who presented the idea that q,
itself a dimensionless quantity, was a function of other dimensionless quan-
tities, including ST (see (1.49a) and (1.63)). Attention thus shifted from
describing 7 as simply y(KT, P/Kr) to including q as a variable and to
the inclusion of ST in q. Most literature of that era was further simplified by
the deletion of the volume effect on CV found in the primary definition of
7, (1-24). The era included contributions by Thomsen (1970), Barsch and
Achar (1970), and Anderson (1974). At this time j(V) was found through
q(K', ST), where K' and ST were taken as independent of V. Neglect of
the volume dependence of the Cv term is allowable when T > 0, but not
when T < 0 (where 0 is the Debye temperature) or when Cv has a large
electron component.

In the late 1970s authors using (1.31) or its variants showed that for
temperatures below 0 but above room temperature, q > 1 for many miner-
als (a typical value was 1.5) (some q values from low pressure experiments
are found in Boehler and Ramakrishnan (1980)). At that time there was
insufficient thermodynamic information to find out whether q itself was a
variable. However, Palciauskas (1975) investigated the NaCl structure us-
ing lattice theory involving an assumed lattice potential. He found that
at room temperature q was higher than 1 (~ 1.8) for 1 < 77 < 0.85 and
descended to about 1 for 0.7 < 77 < 0.6. But until the early 1980s no
measurements showing that q itself is a function of V appear to have been
made.

Boehler (1983) measured 7 to a compression of rj = 0.7 for three alkali
metals, and from his plots we find that q ~ 1 at high compression where
T) < 0.8, and q > 1 (about 1.7) at compressions for 77 from 1 down to
0.9. As a result of Boehler's early work (in the 1980s), the suspicion arose
among many researchers that q itself may change with ry. Attention has
recently shifted to include the possible volume variation and magnitude of
q. It turns out that the volume dependence of ST — K' controls the volume
dependence of 7.

A more general thermodynamic approach is now possible because a
great deal of experimental information on the pressure and high tempera-
ture dependence of ST (described in detail in Chapter 3) has been acquired
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recently. This clearly shows that q is a strong function of rj, but only at low
temperatures (T < 8). Many earlier approximations have been abandoned.

The "free volume" expression for gamma was derived by at least two
different methods (Vashchenko and Zubarev, 1963; Irvine and Stacey, 1975).
I refer here to the later derivation by Irvine and Stacey (1975). Following
the path suggested by Brillouin (1946), who showed that the thermal pres-
sure may be considered as that required to keep the volume constant as
the temperature is raised, they expanded the "mutual forces between the
atoms at separation r" in a series expansion around TO to quadratic terms
and found the pressure necessary to keep AV zero at any given T, which
is the thermal pressure PTH- Irvine and Stacey (1975) took account of the
coupled three-dimensional vibrations, thus implicitly including the effects
of high frequency modes. The calculation was for an fee monatomic solid,
but was reported to be valid for all cubic solids.

They equated the PTH given by (1.44) to the classical high temperature
thermal pressure of a solid, -fmgp%kT, and solved for 7:

where the subscript refers to Vashchenko's and Zubarev's definition.
This was apparently the first derivation of an approximation to 7 that

included consideration of the high wave number modes and mode interac-
tion. Equation (1.45) has been used for 7 extensively in the Soviet literature
on EoS (see, for example, Zharkov and Kalinin, 1971).

1.4.8. The Barton-Stacey approximation ~fta-,

Stacey was dissatisfied with the PTH in (1.45) because the derivation as-
sumed that the correlation of motions along a bond was the same with
respect to dilation as that of those transverse to the bond. Thus, in a later
paper (Barton and Stacey, 1985), a correction was made, leading to
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where / = 2.35, not 2, as in (1.45).
At P = 0, (1.46) reduces to

which gives values much closer to the measurements of 7 than those given
by the Slater approximation, (1.43). The central force assumption be-
hind the above equation restricts validity to closely packed materials (see
Chapter 5). According to the above equation, the Griineisen constant is
intimately connected with the pressure derivative of the bulk modulus. The
thermodynamic foundation for the bulk modulus is examined in Section 1.5.
However, we shall see in Section 1.8 that, according to the Debye theory,
the effect of 8K/8P upon 7 may not be as large as indicated by 760-5 • The
equation for 7&0_, does not show an explicit dependence of 7 upon dG/dP.

1.4.9. On the temperature dependence off

The approximations to 7 given by jht (1-35), yac ((1-41) and (1.42)), and
7jo_, are all members of a class that can be described by an analytical
formula using the general function:

In the above equation, we see that there are no temperature effects ex-
cept those carried by Kj<. In the Mie-Griineisen EoS, where the ji are all
assumed equal, the resulting jmg is independent of T at all values of T. Ex-
perimentally it is known that at low temperatures (T < Q), the Griineisen
ratio (1.24) varies with T.

There are many other works in the class described by the above equa-
tion for 7. Examples include those of Dugdale and MacDonald (1953),
Barren (1957), and Knopoff and Shapiro (1969). In general they are based
on the assumption of high T, and thus an explicit temperature dependence
of 7 cannot be introduced. They are also based on either the quasiharmonic
approximation at high T or on the assumption that ETH — 3pNT, which
means that at high temperature 7 must be independent of temperature.
They cannot be safely applied to low temperatures (i.e., below the Debye
temperature limit, see Section 1.6).

Under the quasiharmonic approximation at high T, the individual
mode gammas are independent of temperature. However, the general case
of 7 is dependent on T because, as shown in (1.35), each jj under the
summation sign has a different limit in T, passing to the high temperature
value.

At low temperatures (T < Q), 7 varies with T, sometimes dramati-
cally, as the individual mode gammas selectively take dominance (Barron
et al., 1980). For alkali halides, 7 generally diminishes at low T compared
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with 7 at T = 6. But for oxides, such as A^Oa and MgO, 7 is high at T
near zero and descends as T increases; the curve smooths out at T = Q,
and stays more or less constant as T further increases (White and An-
derson, 1966). The thermodynamic approach shows that 7 is an explicit
function of two dimensionless parameters: one is K1 = (dKT/dT)P, and
the other, often known as the Anderson-Griineisen parameter, is

or

(see also (1.63)).
The explicit relationship between 7 and T involving ST and K' will be

presented in Chapter 2 with experimental results. After some foundations
in thermodynamic identities have been established in Chapter 3, a thermo-
dynamic theory on the V,T dependence of 7 will be presented. Here we
emphasize that ST and 63 are the dimensionless representations of the bulk
modulus temperature derivative.

1.4.10. The optic mode approximation to 7

Recent advances in high pressure spectroscopy (Chopelas, 1990a; Chopelas
and Boehler, 1992b) have allowed the determination of the pressure de-
pendence of the optic modes, yielding values for a variant of (1.31) given
by

where Kj- is the isothermal bulk modulus (see Table 1.3).
A number of optic modes and their pressure derivatives, say L, may

be used for finding the average 7, where it is seen that for the evaluation of
7 at a particular T, the evaluation of each Einstein specific heat term for
every modal frequency Uj is required. For L modes,

where x — hw/kT, and g(u) is the density of states. For examples of a
density of states g(u>), see Figs. 5.3-5.8. Lacking a formal solution of f(ui),
one uses an approximate density of states, often called a model of g ( u ) . As
an example of a model density of states, see Fig. 4 of Chopelas (1990a),
who calculated Cy for forsterite.
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Table 1.3. Measured infrared frequencies and mode
Griineisen parameters for silicate perovskite. Units,
frequencies, cm"1 (Chopelas and Boehler, 1992b)

WQ

246
251
281
333
379
387
499

-r(iRT
544
614
683
797

du/dP

0.21
0.21
0.137
0.207
0.170
0.210
0.328

0.25
0.25
0.25
0.30

l/u0(du/dP)

0.875
0.837
0.488
0.621
0.449
0.543
0.657

0.46
0.41
0.37
0.38

7.

2.1
2.1
1.19
1.52
1.10
1.33
1.61

1.1
1.0
0.91
0.93

* Williams et al., 1987.

Range of spectroscopic 7's found in
other silicates (high energy modes only)

Mineral 7; 's

Forsterite 0.4-0.6
/?-Mg2SiO4 0.7-1.1
7-Mg2Si04 0.9-1.2
Ilmenite 0.75-0.95
Majorite 0.70-0.85

In their theoretical analysis of silicate perovskite, Hemley et al. (1989)
found jopt = 2.0 at 298 K and 1.63 at 1000 K, approaching 1.59 at very
high T. This is also the typical behavior of the more general form of 7: a
gradual descent with T below the Debye temperature and independence of
T at high T (see Chapter 2).

Table 1.4 shows the modal values of w,- and 7,- calculated by Hemley et
al. (1989) for silicate perovskite. There is a wide spread in the values for the
various modal 7,-'s. The variation in the modal 7,-'s from the spectroscopic
data argues against the reliability of the use of jmg (especially at low T),
as -fmg hinges on the assumption that all 7; are equal. The calculation
°f 9; = (9 fn 7,/9 fa V)T for optic modes has been defeated because the
experiments above show strict linearity between u and P. To obtain a
reasonable value of q, there must be some curvature.
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Table 1.4. Calculated vibrational frequencies w,- and mode Griineisen
parameters 7, at zero pressure for silicate perovskite (MgSiO3). Units,
frequency, cm"1.

Mode
Identifi-
cation

Ag
Big
Bag
Ag
Blg

B2g
Big
Ag
Bag
B2g

Ag
Big
B3g

B2g

Bag
Ag
B2g

Ag
Blg

Big
Big
B3g
B2g

Raman

LJi Ji

95
101
138
203
278
338
342
373
428
458
461
482
515
678
679
683
770
771
771
773

1070
1113
1114

6.42
5.37
6.78
4.22
3.10
2.10
2.75
2.80
0.45
1.03
0.56
1.08
1.32
1.37
1.35
1.35
0.61
0.69
0.73
1.00
0.84
0.88
0.97

Mode Infrared
Identifi-
cation Ui Ji

Biu
BSU

B2u
B2u

Biu
B2u

BSU
B2u

BSU

B2u

Bau
B2u

BSU
Biu
B2u

Biu
B3u

Biu

B2u
Biu
BSU

B2u

BSU
B2u

232
238
250
292
307
360
382
400
418
443
470
641
705
710
760
771
773
900
909
917
920

1010
1019
1363

1.03
2.06
2.03
2.29
3.09
1.18
1.28
1.16
1.60
2.25
1.87
0.40
0.45
0.50
0.33
0.61
0.46
1.25
1.28
1.26
1.19
0.47
0.49
0.61

Mode Inactive
Identifi-
cation U>i Ji

Au 242 1.02
Au 294 1.97
Au 399 2.00
Au 502 0.30
Au 648 0.48
Au 889 1.31
Au 908 1.20

After Hemley et al., 1989.

1.5. The bulk modulus K

1.5.1. The adiabatic bulk modulus K$

Equation (1.10) gives KT in terms of the free energy f. KT is denned in
terms of the pressure and free energy as follows:
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where rj — v/v0. The bulk modulus, or incompressibility, is very important
because of its direct relationship with seismic or acoustic velocities or as a
parameter in the interpretation of compression measurements.

In seismic or acoustic measurements, adiabatic conditions are main-
tained in the compression-expansion cycle. Heat cannot flow in or out as
the wave passes because the wave period is small compared with the ther-
mal relaxation time. Thus, the adiabatic equivalent of (1.48) is the modulus
measured by acoustic, seismic, or resonance methods. Using the subscript
S for adiabatic conditions,

Although KS is larger than KT for minerals, the two values generally agree
within about one percent at room temperature. This difference is often less
than the variation reported by several experimentalists for KS on the same
solid.

Hence the subscripts T and S can often be dropped. No distinction
will be made between KS and KT for the majority of EoS cases described
in this treatment. However, the adiabatic-isothermal distinction must be
retained in some thermodynamic derivations, especially at high tempera-
tures where the difference (Ks — KT) is no longer small compared with KT-
The thermodynamic relationship used to transform KS to KT is shown in
Chapter 3.

1.5.2. The bulk modulus K at T = 0

The isothermal bulk modulus defined by (1.52) is a function of T and V.
By taking the volume derivative of P = P(rj, 0) + PTH(*), T) at constant T,
we have the general definition of the isothermal bulk modulus

KTH is quite small compared with KT and is often ignored. Because KTH
is a thermal correction and the thermal modes are all quiescent at absolute
zero, (dKTH/dT} -> 0 as T -> 0. Thus

The value of KT(T]) at room temperature is about one or two percent less
than KO(T/) at absolute zero for minerals of interest to geophysicists and
ceramic scientists, as is shown in Table 1.5.
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Table 1.5. Zero-pressure and room temperature values of the adiabatic
bulk modulus for minerals relevant to geophysics (in GPa)

Minerals

MgO
Forsterite
Corundum

At room
temperature
K5 (1,273)

164.0
128.6
252.1

At absolute zero
(extrapolated)

MI,O)
166.0
131.0
259.0

Source: Sumino and Anderson, 1984.

The difference between K at room temperature and at absolute zero
is about the same as the discrepancy reported by various experimentalists
for K at room temperature for the same solid, just as in the comparison
of adiabatic and isothermal values. For many oxides and ceramics the
room temperature values of K can be used for the zero-degree values of K.
Table 1.6 illustrates the range of values reported for NaCl, one of the most
commonly measured solids. The data show that the difference between K at
room temperature and absolute zero is often within the experimental error
of the K measurement at room temperature. Thus for minerals where 0 is
much higher than room temperature, one can replace K (1,0) by K (1, 273)
in the equation of state. However, this replacement would lead to serious
errors were it done for more compressible solids, such as alkali metals, noble
gas solids, and some metals. If 0 is much less than 300 K, as, for example,
for gold, then K (1,273) is not close to K (1,0).

Table 1.6. Values of the isothermal bulk modulus at room tempera-
ture (GPa) for NaCl from various authors as tabulated by Chhabildas
and Ruoff (1976)

Author

Chhabildas fc Ruoff
Ghafelchbashi &; Kolievad
Barsch &: Chang
Spetzler et al.
B artels fe Schule
Vaidya &; Kennedy
Fritz et al.
Haussiihl
Whitfield et al.
Yamamoto et al.

KSo

23.81
23.70
23.42
23.80
23.40
23.17
23.73
23.73
23.25
24.02

K'0

5.64
5.37
5.39
5.34
5.25
4.92
5.59
—

—

Technique

length change
ultrasonic
ultrasonic
ultrasonic
ultrasonic
piston- volume
shock wave
ultrasonic
Brillouin scattering
resonance (RPR)

References for authors found in Chhabildas and Ruoff, 1976.
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1.5.3. The pressure derivative of the bulk modulus K'

The pressure derivative of the bulk modulus K' measures the change of K
with P. This derivative is dimensionless. In general

The isothermal definition is

The adiabatic definition used in this book is

There is another adiabatic definition that corresponds to the conditions in
the earth's lower mantle

The parameter K' can be defined adiabatically or with mixed adiabatic or
isothermal conditions. As Table 1.7 illustrates, the value of K'Ta (K'T at
P = 0) is very close to that of K's (K's at P = 0) for closely packed solids,
so this distinction can often be ignored. Unless a particular mathematical
derivation requires that the adiabatic and isothermal definitions be main-
tained separately, the pressure derivative of either KT or K$ will be given
simply by K1. K' at P = 0 will often be identified by K'Q. In general the
value of KQ for minerals and oxides is reported to be between 3.5 and 7.0
(see Table 1.8), although there are a few notable exceptions, such as for
bronzite. For dense oxides with high coordination numbers, such as A^Oa,
A'g is near 4, whereas for minerals with low coordination numbers, such as
a-quartz, K'Q is higher.

Table 1.7. Measured room temperature values of K'TO and K'Sg

for several dense minerals, where K'Sa = (8Ks/dP)T at P — 0

Pressure
Derivative

^ = 0

K's0
K'TO

a-quartz

6.4
6.4

Forsterite

5.37
5.39

Spinel

4.18
4.19

Corundum

3.98
3.99

Source: Sumino and Anderson, 1984.
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Table 1.8. Representative values of K'0 for silicates and oxides

Solid

FeO
A1203

Fe2O3

MgO
CaO
Fe0.94O
BeO
ZnO
Si02(a-Q)

K{,

4.0
3.99
4.5
4.2
5.3
4.9
5.5
4.8
6.2

Solid

Fayalite, Fe2SiO4

Diopside, CaMgSi2Oe
Garnet, (Pj^Alie and others)
RutileTiO2

Spinel, Mg2Al2O4
Spinel, NiFe2O4
Forsterite, Mg2Si04
Olivine, Fog3Fa7
Silicate Perovskite (MgSiO3)

K'0
6.0
6.2
5.5
7.0
4.2
4.4
5.4
5.1
4.0

Average of the above = 5.4

After Sumino and Anderson, 1984. Perovskite data from Knittle
and Jeanloz, 1987. Data for Fe0.940 from Jackson et al., 1990.

1.5.4. The intrinsic temperature derivative of KT

For some solids, such as NaCl, the isochoric temperature derivative of KT,
often called the intrinsic temperature derivative of KT, is approximately

This can be described also as requiring that KT(V = VQ) versus T be
parallel to the T axis.

To find how KT varies with T at constant volume in terms of measur-
able quantities, we use the identity from calculus

In the case where (1.60) is valid, the above becomes

(dI<T/dP)T varies very slowly, if at all, with T, so the temperature de-
pendence of O.KT should be the same as the temperature dependence of
(dKr/dT}p. I find this to be true for a few solids, which will be shown in
Chapter 3.

An important dimensionless parameter is the ratio of (dKT/dT)p to
C*KT, —&T, given by (1.47). It is a thermoelastic parameter related to the
variation of a with density often called the Anderson-Griineisen parameter
(see Barren, 1979), but earlier called the second Griineisen parameter (see
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Fig. 1.1. The temperature dependences of the Anderson-Gruneisen parameters,
5? and 65, for KC1. They both approach constant values at high temperatures,
but at temperatures below 0/2 they take on high values (after Anderson and
Yamamoto, 1987). (Data in Appendix A-7).

Gilvarry, 1956). The general expressions for this parameter have two val-
ues depending on whether one considers the adiabatic or isothermal bulk
modulus. Equation (1.47) can also be expressed as

Equation (1.47) is defined by an isobaric condition, whereas (1.63),
x = T, is defined by an isothermal condition. Data exist for (1.63) for
P = 0, and it is of some interest to note that &T turns out to be virtu-
ally independent of temperature for several minerals at high temperatures
(T > 0) (Anderson et al., 1992a). Examples showing the variation of ST
and 6s for the cases of KC1 and Mg2SiO4 are shown in Figs. 1.1 and 1.2.
Equation (1.63) and its alternate (1.49) are regarded as the dimensionless
forms of —(8KT/dT)p. We shall see later that (1.60) is satisfied when
ST = K'0. In this case (1.62) is also satisfied. This case is found for NaCl,
but is not general.

A related dimensionless parameter arising from the ratio of (da/dT)p
to a2 is

It arises in derivatives of a function with respect to T when a is involved
in the function, as, for example, we shall see later for calculation of 7.
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Fig. 1.2. The temperature dependences of ST and 65 for Mg2SiO4. Above the
Debye temperature, Q = 762 K, ST and 63 appear to be independent of T (after
Isaak et al., 1989a). (Data in Appendix A-7).

1.6. The Debye temperature 6: A lower bound for high T

It is important that the region of high temperature be quantitatively defined
and bounded. For this purpose we need a brief discussion of two equations
in the Debye theory (a more general discussion of Debye theory will be
found in Chapter 2). The Debye temperature is defined in terms of sound
velocities by Section 2.8.1

The right side of (1.65) is evaluated where vm is in km/s and p is in g/cc. M
is the molecular mass; p is the number of atoms in the molecular formula; n
is the mean atomic mass; and k, ft, and TV are the usual atomic constants.
vm is the mean sound velocity given by

High temperature is defined here as regions where T > 0.
We note that seismic data (t>p, v,, p), coupled with an estimate of

the mean atomic mass, are sufficient to define 0 for the earth's interior.
Values of 0 as computed by (1.65) for a number of solids are shown in
Table 1.9. Note that for iron-free silicates, p, is close to 20.5; with a small
concentration of iron in silicates, this raises to about 21 (Watt et al., 1975).
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Table 1.9. Debye temperature Qac estimated from sound velocity
values at room T and P = 0. Units for 000 °K; for p, g/cc

Solid po p vp v, vm Qac

H20 (ice) 0.92 6.01 3.76 1.99 2.16 299
NaCl 2.16 29.22 4.63 2.70 2.99 316
KC1 1.99 37.28 3.92 2.26 2.51 228
RbCl 2.82 60.46 3.07 1.65 1.76 168
LiF 2.64 12.97 7.20 4.29 4.48 702
Agl 5.69 11.74 2.29 0.88 0.99 91
BeO 3.01 12.51 12.16 7.41 7.70 1280
MgO 3.58 20.15 9.71 6.05 6.67 942
CaO 3.34 28.04 8.12 4.92 5.44 673
Feo.920 5.84 35.09 6.54 2.85 3.22 440
ZnO 5.67 15.84 6.00 2.86 3.22 419
NiO 6.79 37.35 6.58 3.65 4.07 579
A12O3 3.99 20.39 10.85 4.40 4.98 1035
Fe203 5.27 31.94 7.91 4.16 4.65 641
SiO2 (a-Q) 2.65 20.3 6.05 4.10 4.47 572
SiO2 (coesite) 2.92 20.3 8.20 4.60 4.87 676
SiO2 (stishovite) 4.28 20.3 11.00 5.50 6.17 929
TiO2 4.23 26.63 9.26 5.13 5.71 781
Ge02 (rutile) 6.28 34.86 8.56 4.90 5.44 740
CaCO3 3.21 20.02 6.57 3.42 3.83 495
Mg2SiO4 3.21 20.10 8.58 5.02 5.57 760
(Mg.92,Fe.o8)2SiO4 3.31 20.79 8.42 4.89 5.43 739
Fe2SiO4 3.98 29.11 6.84 3.40 3.82 511
pyrope garnet 3.31 20.16 9.12 5.02 5.60 788
MgSi03 (perovskite) 4.21 20.12 10.94 6.69 7.38 1094
Fe (bcc phase) 7.87 55.85 5.90 3.25 3.62 473
W 183.9 183.9 5.20 2.86 3.18 383

Most v, and vp data from Sumino and Anderson, 1984. v,, vp, and vm

in km/s. Data for perovskite from Yeganeh-Haeri et al., 1989.

From Table 1.9, we see that vm is about 1.1 v,, and therefore 6ac is
controlled mostly by v,. The subscript on 0 is needed because 0 can also
be found from the density of states and the specific heat (see Chapter 5).

The value of Qac decreases with T as the velocities of sound decrease
linearly with T (Anderson et al., 1992a). Hence the change of 0 with T
is nearly linear. Values of 0ac versus T so obtained for four solids are
presented in Fig. 1.3. Extrapolation of 0ac to high T from the 300° value
for perovskite gives 0 w 990 at 1800 K. This extrapolation is accomplished
by making the perovskite line parallel to the corundum line (see Fig. 1.3).
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Fig. 1.3. Variation of Qac with T for four oxides and the earth's lower man-
tle. Solid lines represent measurements for three minerals; the triangle on the
300 K axis represents the ambient measurement for silicate perovskite (1094 K)
(Table 1.9); the square represents the hot uncompressed lower mantle value at
zero depth (940 K) (see Table 1.9). Dashed lines are parallel to the A12O3 curve.

1.7. The Debye temperature of the earth and the moon

The earth's Debye temperature can be computed from its seismic data
(1.65) and (1.66), if an assumption is made about the mean atomic weight,
fj.. The value of /i for minerals important to the earth's mantle does not
vary much from p = 21 (Watt et al., 1975).

Table 1.10 shows 0 for the earth's lower mantle using fj, = 21. For
the solid inner core, the value of the atomic weight of iron can be used for
/j. It is seen from Table 1.10 that 0 steadily increases with depth in much
the same way that temperature increases with depth. At all depths in the
lower mantle, the value of 0 is slightly more than 1/2T. This means that
the lower mantle is in the high temperature regime at all depths.
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Table 1.10. Computation of 6 and T/Q in the earth's lower mantle

z

(km)

771
971
1171
1371
1571
1771
1971
2171
2371
2571
2771
2871

Vp

(—}
1 S )

11
11
11

.096

.415

.716
12.002
12
12
12
12
13
13
13
13

.271

.527

.769

.998

.217

.424

.622

.718

v,

(—}V s )
6.193
6.338
6.470
6.590
6.700
6.801
6.893
6.978
7.058
7.133
7.204
7.238

(
4.
4.
4,
4.
4.
4.
5
5
5
5
5
5

P

^

"/

.437

.553
,668
.779
.889
.996
.101
.203
.303
.401
.496
.543

T

(K)

1908
1973
2034
2092
2147
2199
2249
2296
2341
2384
2426
2449

vm

(—}V s )
6.887
7.054
7.207
7.348
7.468
7.587
7.689
7.794
7.885
7.971
8.048
8.090

e

(K)

1031
1066
1098
1128
1155
1182
1205
1231
1253
1274
1294
1305

T/Q

1.85
1.85
1.85
1.85
1.86
1.86
1.87
1.87
1.87
1.87
1.87
1.88

P P/KTo

(GPa)

23.9
37.3
46.5
55.9
65.5
75.3
85.4
95.7
106.3
117.3
128.8
135.4

0.19
0.29
0.36
0.44
0.51
0.59
0.67
0.75
0.83
0.92
1.01
1.06

Data for depth, z, vp, v,, p, and P from Dziewonski et al., 1975; data
for T from Brown and Shankland, 1981. 0 at z - 0 is 940 K (hot) and
1040 K (ambient) (see Fig. 1.3).

The sound velocities of the lunar interior have been measured down
to about 900 km (Nakamura et al., 1974). The values recommended by
Toksoz (1979) are v, = 4.5 km/s and vp — 7.7 km/s. Assuming fj, = 22
and p = constant = 3.4 g/cc (Baumgardner and Anderson, 1981), 0 for
the lunar mantle was calculated by using (1.65). This calculation results
in 0 = constant = 680 K, a constant value from 60 to 400 km, and 0 =
constant = 630 K from 400 to 1000 km (see Table 1.11). We see that except
for the lunar crust, the interior of the moon is in the high temperature
regime, T > 0.

Table 1.11. P/K0 and T/Q for the lunar mantle; K0 = 11.2 GPa

Depth
(km)

20
70

400
638
838

1000

Pressure Temperature 0
(GPa) (°Q

0.9
3.2

19.2
28.6
35.4
40.1

62
153
601
881

1094
1260

680
680
680
630
630
630

P/Ko

.008

.029

.171

.255

.316

.358

T/Q

0.493
0.645
1.28
1.83
2.17
2.43

Data from Baumgardner and Anderson, 1981.
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1.8. fo: the Debye approximation to 7

Evaluating (1.37), where Q is given by (1.65), we have

or

Now the relationship between the sound velocities and the bulk modulus
K and Poisson's ratio v and the shear modulus G is given by

Thus in terms of the elastic moduli, G, K, and v

where G is the shear modulus. For v = 1/4, for example, we have from

As Knopoff and Shapiro (1969) pointed out, the contribution of the dK/dP
term is small compared with the contribution of the dGfdP term. This
means that the relative contribution of the transverse vibrations to 7 must
be large. This is seen more explicitly below.

Anderson (1965a) showed that little error is made in the computation
of jo if vm is replaced by v,. This is seen in Table 1.9, which shows that
vm is about 1.1 v,. He took as an approximation the Cauchy solid
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where v = 0.25. Neglecting the contribution ofQ.Q24dK/dP compared with
0.799 dG/dP in (1.71), we have the approximation

or

The ratio K$/G can be expressed in terms of v, so that

For v = 1/4, we have yD = -1/6 + .885 dG/dP to be compared with (1.71).
Equation (1.76) is far less cumbersome than (1.71) and gives close to the
same result. In other words, a fair approximation to 70 can be made by
ignoring all but the shear vibrational modes. The example of the Debye
7 is emphasized here to demonstrate that it may be dangerous to rely on
approximations to 7 that are functions of dK/dP only, unless dK/dP is
proportional to dG/dP and stays so as P and T change.

1.9. Electronic heat capacity contribution to 7 for iron

This book emphasizes the properties of insulator-type solids. However,
geophysicists are greatly interested in the properties of iron at high tem-
peratures because iron is the dominant solid in the earth's core.

Metals are distinguished from insulators by their large electrical and
thermal conductivity. An early idea about the conduction of electrons was
to assume that electrons act as a perfect gas. However, band theory clearly
shows that electrons cannot be considered as a gas because of electron-
electron interaction and the Pauli exclusion principle. This principle has a
considerable effect on the thermal behavior of the conduction electrons. In
fact, the electronic specific heat CVe is proportional to T at low T (compared
to T3 for insulators) and also proportional to T (compared to a constant)
at high T. The coefficient of T for CVe is small, so that the effect of Cve on
the total Cy is important only at very low T and very high T for metals.

In the elementary theory (Kittel, 1956), the number of electrons ex-
cited by the conduction of heat is limited to the high energy end of the
Fermi-Dirac distribution, which is the model of the electronic density of
states g(Ue), where Ue is the electronic internal energy. Kittel showed that

where Tj is the Fermi temperature, which defines the cutoff for g(Ue).
(Since Tj is of the order of 104 K, for ordinary temperatures Cye contributes
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a small fraction of the total Cy (about 10~3 K)). The situation is more
complicated for transition metals, however, and (1.77) is not justified.

Bukowinski (1977) calculated the electronic density of states of face-
centered cubic (fee) iron and from first principles found that ge(Ue) did
not terminate at the boundary of the Fermi-Dirac distribution: there were
broad peaks on both sides of lij, the Fermi energy limit. Bukowinski's
calculation of dUe/dT led him to conclude that Cye of iron is

e.g., Cve increases linearly with T. Jamieson et al. (1978) pointed out that
at temperatures much larger than 6000 K, Cye, being linear in T, could
exceed the lattice specific heat, and they suggested that Cve/R is in the
range of 1-2 at core temperatures. Boness et al. (1986) found that for
hexagonal closely packed (hep) iron, the density of states had broad peaks
on both sides of the Fermi energy limit, just as for fee iron. They calculated
dUe/dT and found Cye = 1.7 ± 0.7R for core conditions.

To find 7e, Boness et al. (1986) showed that (1.12) is replaced by

Bonness et al. (1986) found je = 1.27 ±0.03^ for fee iron and 1.34 ±0.02/2
for hep iron. But, considering the uncertainty of whether the core is hep
or fee, they reported je — 1.3 ± 0.7. Bukowinski's (1977) estimate for
fee iron is je = 1.5 ± 0.1 at core conditions. Jeanloz (1979) set the value
of je = 1.5 ± 0.3 for iron at core conditions. Jamieson et al. (1978) found
1.2 < je < 1-8. The value of the lattice 7 for iron is nearly the same. The
discussion of how je of iron is related to the 7 of the inner core and the
measurement of 7 of iron for inner core conditions are given in Section 10.8.

1.10. Problems

1. Find 7 for an Einstein solid, JE (assume that all values of u are equal,
and similarly for dui/dv, and use a single spring constant).

2. Find JE in terms of the potential, <j> = aw~1/3 + bw~n/3, where
w - p/p0.

3. We shall later find that for the Born-Mie potential, the 71 in Problem 2
is 3K'0 —7. What is JE for low pressure and also for very high pressure,
in terms of K'07

4. Derive (1.36) from (1.31). Hint: Use the condition that at low wave
numbers, k, the acoustic frequency, is proportional to k, according to
w,- = w,-k(t = 1,2,3).



STATISTICAL MECHANICS AND
THE QUASIHARMONIC THEORY

2.1. Introduction

In a solid the vibration amplitudes of the atoms about their equilibrium
position are small, and as a consequence, the quantity kT, representing the
thermal energy of the vibrating atom, is small compared with the inter-
action energy of adjoining atoms, excepting as T approaches the melting
point Tm.

If N is the number of molecules (or basic cells) in a solid, and p is the
number of atoms per cell, then the total number of degrees of freedom is
3p7V. Now 6 of these are for translation and rotation of the whole body, but
as TV is a huge number (Avogadro's number for ore mole), an infinitesimal
error is made by representing the vibrational degrees of freedom by 3pN.
Neglecting the rotational modes is not serious for dense minerals and oxides,
but could be serious for less dense minerals like CaC02-

If we assume the solid to be an insulator, then we do not have to
account for the electron degrees of freedom. They are important for metals
and for some insulators in which free electron motion necessitates some
corrections. But for most discussions we shall assume that we deal only with
the lattice part of the thermodynamic quantities of an insulator. However,
we shall comment occasionally on calculations for two metals: iron and
gold. Iron is important to geophysics because it is the main constituent of
the earth's core. Gold is important to high pressure experimental physics
because it is often used as a pressure calibrant (Jamieson et al., 1982;
Anderson et al., 1989).

In statistical mechanics of solids, it is customary to treat the 3pN
vibrational degrees of freedom as an ensemble of 3pN independent oscil-
lators. That is, each of the 3p7V oscillators is treated as though it had a
separate mode of vibration, where each mode has an energy determined by
the modal frequency w,-. We thus need to have an expression for the energy
of vibrational freedom of one oscillator and add these up for all 3pN modes.

In this approximation there is no mode interaction, and we need only
the total sum of all the vibrational energies. In the classical case the vibra-
tional energy will be equivalent to the vibrational energy of a diatomic gas.
The statistical mechanical derivations found in Landau and Lifshitz (1958)
are used as models for the derivations found throughout this chapter.

2
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2.2. The vibrational energy and the thermal energy

The derivation of the vibrational energy of a diatomic gas is often found
in the literature of physical chemistry. Taking u as the vibrational fre-
quency, the contribution to the Helmholtz energy due to the diatomic gas
vibrational energy for N molecules is (Landau and Lifshitz, 1958)

If a quantum mechanical treatment is made, a small term, called the zero
point energy, must be added to (2.1).

According to statistical mechanics, a system's quantum mechanical
energy levels completely determine the thermodynamic functions through
the expression

where Z is the partition function, which is found by taking the sum of all
the quantum energy levels. For a collection of independent oscillators, the
sum of the energy levels for each mode is

where c,- are the eigenvalues of the energy operator, given by

ifiu.- .fftw.-.fftw,-, e tc . . . . ,

so that for each mode, there are many energy levels.

Denning TVIB^ in terms of Z{ by (2.2)

where h is Planck's constant and k is Boltzmann's constant. There will
be a term similar to the above equation for each of the 3p7V modes in our
solid, and we must account for the possibility that each of the modes has a
different frequency, Uj. Thus the vibrational energy of the insulating solid
(no free electrons) is (Einstein, 1911)
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Summing over all modes we find, where each mode is in the form given
above,

Comparing (2.5) with (2.1), we see that there is an extra term in (2.5),
called the zero point energy,

Note that, unlike the last term in (2.5), there is no T in EZV- This term
arose by considering all the quantum state energy levels of an oscillator.

Replacing hui/kT with y, the modal definition is

and the expression for (2.5) becomes

where

J-TH is the energy arising from temperature excitation, called the thermal
energy. EZV is not affected by T, as shown in (2.6). Thus FTH —* 0
as T —> 0. However, FVIB —* EZV as T —> 0, and EZV is a non-zero
number. EZV is sufficiently small that for most numerical evaluations it
could be dropped, but it is useful to keep this term in TVIB for algebraic
manipulations done later on.

The expression for the Helmholtz energy for an insulator is thus

where EST is the potential of the static lattice at T = 0. To divide (2.10)
into temperature-dependent and nontemperature-dependent parts, we use

where

To divide (2.10) into vibrational and nonvibrational parts, we use

where FVIB is given by (2.8).
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2.3. The quasiharmonic approximation

Before we can find thermodynamic properties such as P and Cy from (2.11),
we must make decisions regarding the volume and temperature behavior of
Uj. In the quasiharmonic approximation, u is assumed to be dependent
on V but not on T. This makes all the thermodynamic properties directly
dependent on V. The temperature behavior of the thermodynamic proper-
ties comes from the fact that although u>i is not dependent on T, the sum
fcTj^ f.n (1 — e~yi) depends on T. When uij are different, then j/; are also
different, and the sum above becomes T dependent, especially at low T.

The internal energy U is found by applying (1.7) to (2.10), whereupon

The pressure P is found by applying (1.9) to (2.11), yielding

where

Equation (2.17) defines the mode gammas found in Chapter 1 (1.31). Equa-
tion (2.16) is rewritten as

where the thermal energy (2.9) effect on the pressure, called the thermal
pressure, becomes

Comparing (2.19) with (2.15), we see that

The specific heat is found by applying (1.8) to (2.14), yielding
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The expression for entropy is found by applying (1.6) to (2.10), yielding

The expression for otKf is found by applying (1.4) to (2.10), yielding

To get a we divide (2.23) by KT, found by KT = -V(dP/dV}T, where P
is given by (2.16).

Using (1.23), showing us that aKf = jCv/V, where Cv is per unit
mass, and equating this to (2.23), we find that

(Barron, 1955).
The bar over 7 indicates that this result is an approximation to 7

resulting from invoking the quasiharmonic approximation to the Helmholtz
energy. Equation (2.24) appears in Chapter 1 as (1.33).

2.4. The Mie-Griineisen equation of state

If we take j j out of the sum in (2.20), we must assume that all j j are equal
to each other and to 7. In this case

which is known as the Mie-Griineisen expression for thermal pressure, and
jmg stands for the Mie-Griineisen EoS Griineisen parameter. The Mie-
Griineisen EoS (Griineisen, 1912) was written as

where E'0(V) = dEST/dV.
Using ETH as defined by (2.15), we see that

which is different from (2.24), unless all j j are equal.
Thus, although jmg —* 7 at very high T, at intermediate temperatures

they are not the same. Thus fmg is an approximation to 7" (Barron, 1955).



36 THERMAL PHYSICS

2.5. The high-temperature limit of the quasiharmonic
approximation

2.5.1. The Helmholtz energy

At sufficiently high temperatures, the expression for FTH can be simplified
due to the convergence of certain series expansions. The argument in (2.5)
becomes small since hujj « kT. At high temperatures, we take advantage
of the expansion (Zharkov and Kalinin, 1971),

At high T, where y, is small, replace &i (1 - (1/2)%-) with -y,-/2. Then

Thus, the high-temperature representation of (2.9) is

and by using (1.2) and (1.12), the high T Helmholtz energy for insulators
is

We see that the last term above just cancels the zero point energy given by
(2.6), so that

This can be simplified by defining an average frequency o7, given by

in which case (2.32) becomes

2.5.2. The specific heat

Thus at high T, f includes only the static potential and the thermal energy
in the quasiharmonic approximation. Applying (1.7) to (2.32), we find the
high temperature internal energy to be
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Fig. 2.1. Cv versus T/Qo for 6 oxides and silicates (after Anderson et al., 1991).
Note that for Mg2SiO4 and two garnets, Cv rises with T/Qo at high T, indicating
the onset of anharmonicity effects. (Data in Table A-7).

where R is the gas constant, kN. Applying (1.8) to (2.35),

Equation (2.36), known as the classical Dulong and Petit limit, is the com-
mon test for anharmonicity in a solid.

In Fig. 2.1, we plot the data for specific heat versus T for several oxides
and silicates. We see that dCv/dT = 0 at high T for MgO and CaO, where
Cy is determined from the measured Cp by Cp = CV(1 + ajT). From
Fig. 2.1, we see that olivine and the two garnets apparently violate (2.36)
and apparently reflect anharmonicity in 7'. However, Cv can be determined
from Raman and infrared spectra, along with g ( u ) , (1.51). Calculating Cy
this way led Chopelas (1990b) to deduce that forsterite was not anharmonic.
Similarly, Hofmeister and Chopelas (1991) found pyrope and grossular not
to be anharmonic. Thus the evidence for anharmonicity of these three solids
is marginal. If the calculated Cv from Cp is incorrect, the error probably
arises from an inadequate determination of a.
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Fig. 2.2. 7 versus T/©Q for six minerals. Note that for the same minerals in
which 7 decreases slightly at high T (grossular, pyrope), Cv increases with T at
high T (after Anderson et al., 1991), as shown in Fig. 2.1. (Data in Table A-7).

2.5.3. The Gruneisen constant 7

The high temperature Gruneisen parameter is found from (2.25), and con-
sidering that as T —> oo, C,- —> k,

which, according to theory, is independent of T, as pointed out in Chapter 1
(1.35).

A plot of 7 versus T/Qo for several minerals is shown in Fig. 2.2.
There is an approximate trend for 7 to be independent of T at high T.
Where df/dT is not zero, we see the effect of Cv on 7 according to (1.24);
that is, departures from quasiharmonic theory in Cv create a departure in
the quasiharmonic theory of 7, although by a smaller amount. However,
these trends in 7 for forsterite, pyrope, and grossular may result from false
indications of anharmonicity in Cy (see Section 2.5.1).
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2.5.4. The high temperature thermal pressure

Applying (1.27) to (2.31), we find the high T pressure, which by using
(2.36) is

where the (3/8)6 term accounts for the approach of PTH to zero at absolute
zero. Thus at high T, the thermal pressure is close to the value

V is a function of T, and it is also equal to (M/p) where M is the
molecular weight, so that the above is

neglecting the terms independent of T.
We see that the quasiharmonic theory allows for PTH to be virtually

linear in T: at the highest measured T, aT ~ 0.05. But •y'1* is not, as
we shall see, exactly independent of T, although close to it. Thus there
are counter effects in T, and the 1 — aT term is often obscured. Thus to
a very good approximation PTH is linear in T under the quasiharmonic
approximation.

The thermal pressure relative to T = 0 for T > Q is given by

where the term (3/8)0 found in (2.38) is added out.
Fig. 2.3 shows that APT# is linear with T (for T > 6). Thus for APTH

the quasiharmonic approximation appears adequate up to T/Q K 2.0. This
range covers values of T/Q for the earth's mantle. The linearity of PTH
with T is not unique to silicates and alkali halides; it is also found for gold
(Anderson et al., 1989), in spite of the electronic specific heat in gold.

The slope of the &PTH — T curve from (2.41) is empirically a constant
above 0. Because PTH = faKTdT, we can define an average value of
aKT, <*KT, good for T above 0, such that

where // = M/p is the mean atomic weight (per atom). For non-iron bearing
silicate minerals, fj, varies little from mineral to mineral and is near the
value 21 (Watt et al., 1975). Also 7** does not vary greatly from mineral
to mineral, but it is often slightly temperature dependent. Using (2.42) for
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Fig. 2.3. A.PTH = PTH(T) - PTu(30Q) versus T/00 (subscript 0 stands for
ambient temperature) for nine solids. For T/0o > 1, APxH is strictly linear.
There is no evidence of a quadratic law, which indicates that anharmonicity is not
affecting PTH at T > ©o (Anderson et al., 1991). The slopes are proportional to
Po/f* as given by (2.42). Excluding solids with heavy cations, Fe, Ca, and K, the
parameter po/H scales as PQ. The intercepts of the curves with the T/0Q axis

depend on the value of QQ (from Anderson et al., 1992a). (Data in Table A-7).

fj. — constant, the slope increases from mineral to mineral as the ambient
density increases. Because to a good approximation, for silicates of constant
M/p, 0 = constp4/3 (Anderson, 1965b), we see that the value dPrn/dT
should increase as 03'4: In general, the mineral with the highest value of
po/(M/p) will have the highest slope, according to (2.42), and that is borne
out by the experimental results shown in Fig. 2.3.

2.5.5. The bulk modulus at high temperature

Using the operator —(d/dV)T on (2.38), we find that the bulk modulus
KT along an isochore is

where qht = (d In yht/d In V). The last term in (2.43) is often small.
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Thus at high T, the isochoric bulk modulus is decreasing with T ac-
cording to the slope

For qhi - 1, (dKfi/dT)v vanishes. To obtain the isobaric derivative,
(8KT/dT)p, we use the calculus expression:

Thus at high T, along an isobar,

The term on the far right of (2.43) is the thermal bulk modulus, KTH-
Using (2.42) in (2.46), we have

Replacing aKf with aKf in the above,

As an example we evaluate (2.47) for the case of MgO from the data
plotted in Fig. 2.3 (Anderson et al., 1992a). The average value of aKx is
found from the values of APT# between 1000 K and 1800 K. This shows
aKx to be 0.0064 GPa/K, which is close to actual measured values of cuKf
at high T reported by Anderson et al. (1992a). The high T value of K' = 4.5
(Anderson and Isaak, 1993) and ght = 1.4 (Anderson et al., 1993). Thus,
we find from (2.47), a predicted value of (dKT/dT}p = 0.031 GPa/K.
This result agrees well with the measurement showing (dK$/dT)p to be
0.03 GPa/K in the high T range (Anderson et al., 1992a). Isobaric data for
KT versus T are shown in Fig. 2.4.

Two important questions for geophysical interpretation of the earth's
mantle are: do the temperature derivatives of K^* change with T, and for
solid solutions, do they change as a consequence of cation substitution in a
solid solution?

Isaak (1993) found that the value of (dK^/dT)p was not affected by
substituting Fe for Mg (forsterite to olivine) provided one uses small con-
centrations of iron (less than 1%) for the substitution. He also found that
the slope (dK^/dT)p was more sensitive to the calcium content (pyrope
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Fig. 2.4. A plot of KT versus T for eight minerals at P = 0. Here we see that
the curves are linear (Anderson et al., 1992a). (Data in Table A-7).

to grossular garnet). A quick look at Fig. 2.4. indicates that tempera-
ture variations other than linear are small for the solids and oxides shown.
I believe this to be a general result, because it has been known for some
time that highly accurate ultrasonic data over narrower temperature ranges
are generally insufficient to detect higher order T dependence of elasticity.
Linearity begins at a T slightly less than Q, so curvature of K$ versus
T at low T is out of the range of the high T limit of the quasiharmonic
approximation.

2.5.6. Entropy and aKr

The entropy is found by applying the operator (d/8T)v to (2.34), obtaining

The entropy increases as ^n T in the quasiharmonic approximation at high
T. In contrast, Cy is independent of T in this approximation at high T, as
shown by (2.36). This also follows from the definition (dS/8T)v = Cv/T.

We note that if P is linear in T, then (dP/dT)v = aKT is independent
of T at high T. This is true (or approximately so) only at T above 0 (see
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Fig. 2.5. A plot of aAV versus T/Q for six minerals. aKj< tends to be inde-
pendent of T at high T (after Anderson et al., 1992a). (Data in Table A-7).

Fig. 2.5). The functional form of aKx resembles a Cv curve over the full
T range (Fig. 2.6).

Applying the operator (d/dT)v to the pressure, given by (2.38), we
have for isochores,

This is to be compared with (2.42). The actual measured aKf will have
more structure than uK? determined from PTH- The demonstration of
equality for the quasiharmonic approximation in the high T limit shows
that P is indeed linear with T. Further, this is confirmed experimentally.

To a fair approximation, a.Kf is parallel to the T axis for T > 0, as
shown in Fig. 2.5. However, we see from (2.49) that (aA'x) is proportional
to pQ/(M/p). Thus the slope of the APr/f versus T curve at P = 0 will
be proportional to p 0 / ( M / p ) . In Fig. 2.3, AlgOa, with the largest value
of po/(M/p), has the largest slope, and KC1, with the smallest value of
p o / ( M / p ) , has the smallest slope. For solids with values of M/p between
20.5 and 21.5, the slopes are ordered according to the value of p0.

The value of T/Qo for the earth's lower mantle is between 1.85 and
1.87 (Table 1.10). Fig. 2.3 shows that much of the data for &.PTH come
close to or exceed T/Q = 1.8. We conclude that anharmonicity effects
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Fig. 2.6. A plot of aKT at P - 0 versus T from T = 0 to high T for MgO
illustrating the resemblance of the aKf curve to the Cv curve in Fig. 2.1. (after
Anderson et al., 1992a) (Data in Table A-7).

beyond those incorporated into the quasiharmonic approximation need not
be considered for P for mantle minerals at mantle conditions.

2.5.7. a versus T at high temperature along isobars

Using the expression for K^ versus T given by (2.43) and the expression
for otK-f given by (2.42), we have

which is close to, and for some solids exactly equal to,

for the P = 0 isobar where a = (dK^/dT)p, given by (2.47). We note that
(2.51) is the quasiharmonic approximation in the high T limit. The values of
the constants in the denominator of (2.51) are such that a is approximately
linear with T above T = 0. This linear increase of a with T at high T does
not necessarily require the assumption of additional anharmonic terms in
J- beyond those in the quasiharmonic high T approximation.
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Using (3.4) and (3.14) and assuming

we have (da/8T)p = Sxct2. Integrating, expanding, and truncating,

where T* is the beginning T in the integration of (da/dT)P, and T* > Q.
Thus we conclude that linearity in a(T) for T > 0 requires that (2.51)

holds. In Fig. 2.7, a versus T over a wide temperature range for a number
of minerals is shown, demonstrating this linearity.

2.5.8. ST and q from the quasiharmonic theory at high T

From the definition of ST, (1-48), and using (2.47), we find

The above equation tells us that ST should be virtually independent of T at
high T. This is demonstrated in Fig. 2.8, which shows that roughly speak-
ing, ST is parallel to the T axis. We also note that if (dKr/ dP)T — K'0
is virtually independent of T, and the experimental evidence is in favor of
this, ST at high T should be slightly higher than K'Q, providing q > I .

From the quasiharmonic theory in the high T limit, we have derived
a very significant relationship between three important dimensionless ther-
moelastic constants at high T. The above equation can be expressed as

Equation (2.52) is appropriate for high T only. It can also be derived as
derivative. For the low temperature equation corresponding to (2.52), we
take the logarithmic derivative of 7, as defined by (1.24), yielding

At high T the above equation reduces to (2.53) because Cv is independent
of V above the Debye temperature.

2.6. Anharmonic corrections to the Helrnholtz energy

The definition of harmonic and anharmonic varies from one treatment to
another. In this book I use the word harmonic to mean that the modal
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Fig. 2.7. Measured thermal expansivity a versus T for seven minerals at high
T and P — 0 (modified from Anderson and Sumino, 1980). The knee of the
curve is near 0. Also see Fig. 4.6 for extrapolations. (Data in Table A-7).

frequencies are independent of both V and T. The properties of a three-
dimensional harmonic lattice have been determined by Barron (1955) and
Stacey (1993). Barron and Stacey find a to be negative and 70 = —0.74
and —0.45, respectively, for a closely packed harmonic lattice. In addition,
Stacey finds K'0 = 1, q = 1.23, and he points out that bond oscillations are
sinusoidal in a harmonic lattice. Further, I define the quasiharmonic ap-
proximation by the assumption that the modal frequencies are independent
of T but depend on V; i.e., (d In ui/d In T)v is zero. It can be asserted
that there is some anharmonicity in the quasiharmonic approximation be-
cause the bond oscillations are no longer strictly sinusoidal. But here I
define anharmonicity as contributions in T terms to the free energy beyond
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Fig. 2.8. ST versus T at P = 0 showing two cases: for MgO, dj- is larger than
A'Q; for Mg2SiOi, 8f is approximately K'Q (after Anderson et al., 1993).

those arising from the quasiharmonic thermal energy. As a consequence,
I consider a harmonic lattice, a quasiharmonic lattice, and an anharmonic
lattice as three distinct behavior patterns. Under my definition, anharmonic
properties are dormant except at quite high T, arising as a correction to
properties of a quasiharmonic lattice if and only if T is sufficiently large.

We have found that the quasiharmonic approximation is quite adequate
for thermal pressure and therefore for KT, the equation of state, and for a.
The quasiharmonic approximation is adequate for Cy of some solids, but
is inadequate for other solids. The quasiharmonic approximation may lead
to slight modification of the quasiharmonic prediction for those properties
where Cv enters into the equations: for example, for 7, dKy/dT and aKr-

I now correct the Helmholtz energy to account for the departures of
Cy from the quasiharmonic theory at very high T, and so I invoke some
additional anharmonic terms in T. It is known that strong vibrations of
atoms at very high T begin to affect the thermodynamic properties of a solid
in ways that are beyond those calculated by the quasiharmonic theory. The
first three corrections to the Helmholtz energy arising from these strong,
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temperature-induced motions are given by (Wallace, 1972)

(see also Landau and Lifshitz, 1958).
Using (1.7), we find that the anharmonic contribution to the internal

energy is

This gives a contribution to the specific heat of

In Fig. 2.1, we see a possible contribution of Cv,nh to forsterite and the
two garnets. There is no evidence, however, for a significant anharmonic
contribution to ALjOa, MgO, and CaO, at least for temperatures less than
T = 20, so this conclusion holds over a wide T/Q range. For forsterite and
garnets the two terms in (2.55) may combine to give nonlinear variations
in Cy,nh for T slightly larger than 0. Because the anharmonic corrections
in Cy lead to a positive Cyanh, and as the first term in (2.55) dominates
over the second, the sign of Ai(V) must be negative.

The anharmonic contribution to the thermal pressure is found from
using (1.9) on (2.54), giving possible additional terms to PTH'

If the coefficients above are non-zero, then extra terms are added to PTH
(2.36) at high T, making it of the form

where the a — (dAo/dV) and bT terms emphasize linearity at high T (note
that (2.57) is not to be used for T < 0). At high T the last term in
(2.57) would be negligible compared with bT, reducing (2.57) to a quadratic
equation. This quadratic dependence of PTH on T is shown by formula
(19.49) in Wallace (1972).

Figures 2.3 and 2.4 clearly show that PTH is linear in T over a wide
range in T/Q for T/Q > 1. The range of linearity of PTH vs. T is suffi-
ciently large that the cT2 and /iT~2 terms in (2.57) cannot be significant
compared with the bT term. We therefore conclude that either dAanh/dV
is negligible, or the terms in (2.56) add up to zero in a unique way. Thus
anharmonicity is not significant for the Equation of State for our selected
rocks and silicates, at least for pressures and temperatures corresponding to
those of the earth's deep mantle. This means also that subsequent volume
derivatives of P, such as the elastic constants, would also be independent of
anharmonicity effects in the T-P ranges of the earth's mantle. However, in
temperature derivatives of the free energy where a prior volume derivative
has not been made, such as used in finding the entropy and specific heat,
the anharmonic contribution needs to be considered, as shown in Fig. 2.1.
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2.7. The free energy and its physical properties at very
low temperature

2.7.1. The thermal contribution to f

In classical mechanics, all atoms are motionless at absolute zero, and their
interactive potential energy, EST, must be a minimum for equilibrium con-
ditions. (Quantum mechanics allows extra terms in T. There is the ex-
ceptional case of liquid helium, which remains liquid at absolute zero, and
P = 0 arising solely from a quantum mechanics term). For insulators we
can examine the consequence to f when u — kT/h is small, that is, at a
low value of the wave number k . This means that the vibrational spectra
of the solid are restricted to sound waves. If v is the velocity of sound,
and A is the wavelength of the sound wave, we have v = Aw and thus
kT = hv/A. Because the wavelength of sound is large compared with the
lattice constant a, we have

In this region of the vibrational spectrum, the frequency is related to the
wave vector k of three sound waves by the linear relation w< = u,-k, (i =
1,2,3). For these long wavelengths, the phonon distribution is exactly
analogous to the photon distribution of black body radiation, except that
there are three separate waves in the phonon distribution.

The number of allowed overtones in du for one direction of vibration
is

where V is the specific volume.
In a solid there are two transverse wave vibrations of velocity for each

longitudinal wave vibration, so that we have three separate summations to
make using (2.58).

Assuming an isotropic body with two equal shear velocities, the fre-
quency distribution is given by

or simply

where vm, the mean sound velocity, is given by



which emphasizes the point that vm is dominated by the value of v, as
(v,/Vp) is small compared with Z. Equation (2.60) is applicable to FTH
insofar as Debye theory is applicable.

The Planck distribution of photons over different energy levels is well
known. Using this for phonons, we change from a summation notation
given by (2.9) to an integral,

The upper limit of oo is allowed because of the rapid convergence of the
sum in (2.9) due to the small values of y± (kT is small compared with hu).

Although (2.61) is strictly true only for an isotropic body, it can be
used to calculate TTH f°r l°w symmetry crystals, provided v, and vp in
(1.70) are considered as space averages of the single-crystal velocities. The
factor 3/2 arises from the fact that sound oscillations have three possible
directions of oscillation.

Integrating by parts, (2.61) becomes

The definite integral has the value 7T4/15, so the low temperature value of
T becomes

Equation (2.64) is applicable to insulators. Consideration of free electrons
adds an additional term.

2.7.2. Physical properties at low temperature

From (1.7) we see that U is proportional to T4, and from (2.64) that ATH
is proportional to V and t>^3. From (1.6) and (1.8) we see that both 5 and
Cv are proportional to T3, and so both must vanish as T —>• 0 (Barren et
al., 1980), as EST and EZV are independent of T.
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Another version of (2.60) is

where
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Now, assuming that vm changes slowly with T as T —» 0, we have a
T4 term in PTH (Zharkov and Kalinin, 1971),

Thus the thermal pressure will vanish according to a T4 law, but the pres-
sure itself will have a finite value at absolute zero.

Similarly, the T4 term will occur in the thermal correction to KT, and
as T approaches zero, KT approaches a constant non-zero value found from
the derivative of PQ and PZV •

The value of the parameter 7 at T = 0 is found by applying (1.31) to
a single value of w, uijj, so that in terms of 0,

Thus we see that at low T, 7 is independent of T and does not vanish at
absolute zero, but approaches a limiting value, JT=Q (Barren, 1955). For
alkali halides, JT=O is smaller than 7^*, but for oxides and silicates, JT=O
is often larger then fht.

By taking the temperature derivative of P (2.65) at constant V, we
find that aKr is proportional to T3, just as is Cv• Therefore at low T the
curve of aKx will resemble a specific heat curve. In fact, it resembles a Cv
curve both at low and high T, as shown in Figs. 2.6. and 2.7.

If we take the temperature derivative of KT, we find that (dKf/dT)p

is proportional to T3 and must vanish as T —> 0. Similarly the second
derivative of KT with respect to T at constant P must also vanish at
absolute zero. The plot of (dKT/dT)P must be sigmoidal in shape, going
from zero at T — 0 but approaching a constant negative value at T > 6.
The plot of the experimental results of (8Ks/dT)p for Mg2Si04, shown in
Fig. 2.9, illustrates sigmoidal behavior.

At low temperatures there is little difference between (dK$/dT)p and
(dKT/dT)p. We see that KT, V, and 7 approach positive nonzero values
as T ->• 0, but that Cv, aKT, and (dKT/dT)p all approach zero as T -» 0.

From (2.50) we see that the expression for a as T —>• 0 has a constant
non-zero value in the denominator, but the term (dP/8T)v is in the nu-
merator. Taking the temperature derivative of (2.65) eliminates the terms
independent of T, leaving a T3 term controlling a at low T. Thus the
temperature dependence behavior of a resembles closely the temperature
dependence behavior of Cv and aKf near absolute zero: all three vanish at
absolute zero, and there is a low temperature T3 region. A plot of a versus
T shown in Fig. 2.7 illustrates the point that a resembles a Cv curve at
lower temperatures. But at T > 0, a increases steadily with T at constant
P, unlike either Q>KT or Cv- However, for constant V, (da/8T)v is often
zero at high T, parallel to the case where (dCy/dT)v is zero.
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Fig. 2.9. A plot of (dG/dT)p versus T and (dKs/dT)p for forsterite, where
G is the shear modulus, showing that these parameters are sigmoidal in shape
approaching zero at absolute zero (modified from Sumino et al., 1977).

2.8. The Debye theory interpolation

2.8.1. The Debye temperature

We have seen that at both low and high temperature within the realm
of the quasiharmonic approximation, a calculation of the thermodynamic
properties of a solid can be made with a fairly good degree of accuracy, using
(2.10) and (2.9) and adding an anharmonic term, (2.53), where required.

For intermediate temperatures the expression for J-TH cannot be ex-
actly evaluated because j/j must be known for all modes. Further approx-
imations are required, and they typically take the form of constructing an
approximate frequency spectrum. We saw that at low T, a frequency spec-
trum was constructed by replacing the sum by an integral in (2.61). At
high temperature, where all vibrations are excited, the equations reduce to
simple forms.

In the Debye approximation to the quasiharmonic theory, the expres-
sion for ATH given by (2.61) is virtually exact at low T. We propose to
extend ATH to higher temperatures, but for these the upper limit oo in
(2.61) has to be replaced by a finite frequency U>D because j/,- is no longer
a small number at higher T.

There being a large but finite number of modes, 3p./V, the distribution
function, when integrated over all frequencies, must equal this number.
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Thus using (2.58)

where vm is given by (1.66).
The Debye temperature is the temperature corresponding to UD , and

by using kQ = hup, we find that

where M/p — n is the mean atomic mass, p is in g/cc, and vm is in km/s.
When 0 is denned by the acoustic velocities, as in (1.65), as we shall
designate it as 0ac.

2.8.2. The Debye function

The expression for FTH in (2.9) through (2.54) becomes

Changing to the variable y, given by (2.7) rewritten in terms of 0 and using
(1.65),

where y = Q/T and 0 = (h/k)ur>- Integrating by parts and introducing
the Debye function D (Q/T),

we have

Equation (2.72) cannot be represented by an analytical expression, but
D(x) is tabled in many standard handbooks for ease in computation. The
zero vibrational energy, given by (2.6), becomes

or
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The Helmholtz energy for the Debye approximation is consequently

Determining the internal energy by using (1.7) on (2.75), we have

The recursion function of D (Q/T) is (Zharkov and Kalinin, 1971)

which is useful for determining P, Cy, and aKx from (2.75).

2.8.3. The Debye expressions for thermodynamic functions

Under the quasiharmonic approximation, w is a function of V, and therefore
0 is a function of V. We use (1.9) to find P (Zharkov and Kalinin, 1971)

where 7/j is the same as (2.66) except that 6 is QJJ. For high T limits,
(2.72) becomes

Operating on (2.75), we have the thermodynamic functions in terms of
D(Q/T):

The Debye expression for a is given by aKf/KT, which is (2.83) divided
by KT, (2.82). KT divided into uK? makes a decrease as V decreases.
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2.9. Thermodynamic functions from the partition function

In Section 1.2, we found that the partition function Z is related to the
accessible quantum states by (2.3). In a more general treatment, (2.3) is
replaced by

We have placed g, in (2.84) to account for possible degeneracy of the ith

state (the population may unevenly occupy the states). Here g:- indi-
cates the occupation n,- of a state, where

Whereas quantum mechanics deals with the detailed arrangement of atoms
and molecules, thermodynamics deals with their average behavior. The
average of the total energy of the system is the internal energy £/, so that

A mathematical property of the function in (2.84) is useful. We find
that

Placing (2.85) and (2.87) in (2.86), we find

The equation for Cv yields

The entropy is defined by

Placing (2.89) in (2.90) and recognizing that S(T - 0) = \k In Z ,

so that
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The Helmholtz energy f, which is really FVIB, is found by apply-
ing (1.2) to (2.88) and (2.91), yielding the same expansion as (2.2). The
pressure given applying (1.9) to (2.2) is

2.10. Problems

1. Derive (2.71).
2. Derive Uanh using all the terms in Tanh shown in (2.54).
3. Prove (2.77).
4. Prove that at high T, from (2.34)

5. Prove at high T, from (2.48)

6. Show that at low T

7. Prove at high T

where Jb £?" 1 = 3pR.
8. Show that at low T

9. Show that at low T

10. Show that at T » Q, from (2.78)

11. Show that at T » 6 from (2.78)



THERMOELASTIC PARAMETERS AT
HIGH COMPRESSION

3.1. Thermodynamic identities

I begin by listing the thermodynamic identities used in this book, many
of which are well known (see Stacey, 1977a; Brennan and Stacey, 1979;
Zemansky, 1943; and Bassett et al., 1968). Relationships of classical ther-
modynamics are very helpful in determining physical properties at extreme
conditions because many of the needed experimental data cannot be ob-
tained. The chief experimental information on the interior of the earth
is taken from seismic data, so the thermodynamic relationships appropri-
ate to geophysical problems are often recast emphasizing elastic proper-
ties. Compensating for the limited kinds of measurements available in high
P-high T materials sciences is a set of relationships and approximations,
set forth below, not customarily emphasized in thermodynamics as found
in physics and chemistry textbooks. With these identities a temperature
measurement, done isobarically, can be converted to pressure information.
Conversely, an isothermal pressure measurement can be converted to tem-
perature information. As we shall see, some thermodynamic identities can
easily be transformed into differential equations to help construct a theory
aimed at showing how a physical property can be defined at extreme P and
T.

3.1.1. Basic identities

3
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3.1.2. Identities using definitions of (IT, K', a, and rj

where a is given by (1-64)

3.1.3. Arising from calculus
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3.1.4. Approximations to identities in terms of 77 (high order
terms ignored, assuming 6T > 3 and 6T independent
of TJ, i.e., r] near 1)

3.1.5. Identities involving the temperature derivative of KT

The relationship between KT and K$ is given by

Taking the derivative of (3.23) with respect to Y at constant Z, we find

When Y = T and Z = P, we use (1.63) in (3.24) to find

£>T > f>s because (d in a/d In T)p is a positive number; (d fn y/d in T)p

is close to zero or a small negative number; and ayTSx is small compared
with 1. When Y = P and Z = T, we use (1.11) and (3.24) to find

where K'<; is as defined by (1.58) and



60 THERMAL PHYSICS

Because ajT > 0, and if, as is usually found, 6f = K'TO and q > 0, then
K'T > K's. The difference is small, often close to 0.1. The identities for 83
and Kg are

and

3.1.6. Identities involving the volume derivative of 7

A modification of a general equation derived by Bassett et al. (1968) is
(Yamamoto et al., 1987)

Equation (3.28) is particularly useful because all of its terms are experi-
mentally determinable, as high T measurements are often adiabatic. An
equivalent identity for q in terms of isothermally determined quantities is
found from (1.24). It is

In the high T region, the last term in (3.29) is dropped. Thus at high T,

Further, if 5f is close to K'T, q is close to unity.

3.1.7. Identities involving the thermal pressure using the general
equation of state

Using the general EoS,

where PTH is the thermal pressure, we see that (dP/dT)v = (dPTH/9T)v,
and from (3.3)

Thus, by integrating at constant volume,

which defines thermal pressure in terms of measurable parameters.
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3.1.8. Maxwell's relationships

Useful relationships are easily derived from Maxwell's relations (Slater,
1939):

Rewriting Maxwell's relations so as to incorporate the Griineisen ratio 7
and other measurable parameters, we have

3.2. The mean atomic mass, ft = M/p

The numerical evaluation of V found in thermodynamic equations is awk-
ward because molecular weight is sometimes not well specified, especially
in geophysical problems. It is often convenient to replace V with the ratio
of mass to density, where the mass is the molecular weight divided by the
number of atoms per molecule (n = M/p). This ratio is particularly useful,
as for silicate minerals // does not vary significantly from mineral to mineral
if the iron content of the minerals remains unchanged. The value of fj, for
a few minerals is given in Table 1.9. For mantle minerals it is assumed,
following Watt et al. (1975), that

Stacey (1977b) pointed out that it is convenient to identify thermody-
namic parameters whose values are proportional to mass and specify the
dimensions in terms of mass rather than moles. Thus S, H, U, J-, Q, and
V are proportional to mass, but P and T are not.



62 THERMAL PHYSICS

3.3. The cases for (dKT)/dT)v = 0 and (d(aKT)/dT)p - 0

Important simplifications of the equations in the previous sections result if,
as in the case for NaCl and Mg2SiO4 at zero pressure, we find w = 0 where

The parameter w can be measured in a pressure experiment (Boehler and
Kennedy, 1980; Yagi, 1978), but, using KT for X, (3.2) and (3.14) show that
it can also be found in a temperature experiment where elastic constants
and the thermal expansivity versus temperature are measured at one bar
(at sufficiently high temperature).

(dKT/dT)v is called the intrinsic temperature effect (D.L. Ander-
son, 1987). It is smaller than the extrinsic term, (8KT/dT)p, and often
close to 0 at P = 0. When w ^ 0, the bulk modulus arises from an in-
teratomic potential that is a function of T and not interatomic distance
alone. In general, as we shall see, w becomes smaller with compression at
constant T. It also becomes larger as T increases along an isochore. When
w / 0, a special term is added to the entropy at high T (see Chapter 13).

Supposing that w = 0 is valid, we see from (3.7) that

We see from (3.6) that if (3.43) is true,

Conversely, if (3.44) is experimentally shown to be true, then it follows that
(3.43) also holds.

From (3.32) it is seen that when (3.43) or (3.44) is true, (dPTH/dT)v is
not a function of V. In Section 3.5 we shall see that the condition ST = K-1

or (dKx/dT)v = 0 often holds for a trace in the T, 77 plane, but for many
solids (3.44) cannot hold generally throughout the T, T) plane. For one solid,
NaCl, (3.44) is true over a wide range of T at P = 0 (Birch, 1986). But for
most solids w ^ 0 at ambient conditions and high T for P = 0.

Figure 2.6 shows that aKx is virtually independent of T at high T
(above 0) for many solids. We note from (3.4) that this is equivalent to
requiring that a be independent of T along an isochore. But if (da/dT)v
is zero, then by means of (3.14), we find that

which should be true for T > Q. This is further developed in Chapter 4.
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It may appear strange that at high T, the slope (da/dT)p increases
with the power a2. Yet this is derived from the quasiharmonic theory,
without recourse to added anharmonic terms in the free energy.

In the quasiharmonic approximation (dP/dT)v is independent of T,
so that using (2.50)

Now KT is linear with T above the Debye temperature (see Fig. 2.4),
so that the above equation becomes

The above becomes da/dT = (6/const.) a2 on differentiation with re-
spect to T. Thus the nonlinear rise in a at high T results from the fact that
a is roughly inversely proportional to KT at high T, or aKf = constant.

3.4. Theoretical insight into the change of K' with T

In many EoS problems, it is of interest to know how (dK/dP)? varies with
temperature. This knowledge is often required to successfully extrapolate
room temperature data to higher temperatures.

We start with the identity given by (3.56)

In order to obtain a qualitative value of dK'/dT, we will examine how
each of the quantities on the right changes with 77 and T in this chapter.
We shall find that a, ST, (ST — K'), and k from (3.6) each descend as
77 decreases, so that we can expect the cross derivative to go down as 77
decreases. Further insight can be found from the data computed from the
theory of Isaak et al. (1990) using an ab initio method called the PIB
(potential induced breathing) model for MgO. From Isaak et al.'s data,
values of K' — (dKj< jdP^T versus 77 are found at various isotherms. Five
such isotherms are plotted in Fig. 3.1.

We note that 02KT/dPdT, (dK'/dT), is almost always positive. Only
when ST — K' becomes negative and is greater in magnitude than k can
d2Kx/dPdT be negative. 8? ~ K1 can be a small negative number at
high P (see Table 3.5), but it is then dominated by the value of k, which
is greater than 1. Typical values of the ambient d^K/dP/dT are 1.2 x
10~3K-1 for NaCl computed from (3.56) compared with the experimental
value 1 x W-3K~l; and for MgO, 0.43 x 1Q-3K~1 from (3.5b) compared
with the experimental value 0.3 x 10~3K~1 (Isaak, 1993).

Values of KT, K', and P for MgO, also computed from the PIB model,
are given in Table 3.1. Using the PIB method, the Helmholtz energy is com-
puted over small increments of volume and temperature. From tables of T,
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Fig. 3.1. The value of K' versus 7J along isotherms for MgO (modified from
Anderson and Isaak, 1993). Note that the value of 82KT/dTdP diminishes as
the value of r/ decreases. The triangles show the coordinate space (T, 77) where
ST = K'. This constitutes the basis for the ST — K1 = 0 trace (w = 0) shown
in Fig. 3.3.

V, and F, the various properties are found numerically by taking the appro-
priate derivatives of f, according to the equations given in Sections 1.2 and
1.5.3. Comparing the results of the PIB calculations for KT and K' with
experimental results on MgO, it turns out that the value of KT is off by
10%, but that of K' agrees within better than 2% (within the experimental
error (Isaak et al., 1990)).

The parameter d2K/8PdT can be interpreted as the temperature
derivative of K', dK'/dT. For MgO, K', which is a function of both T
and 77, is nearly constant along an adiabat (or geotherm in the earth) up to
about 20 GPa. Isaak (1993) has shown that the same occurs for G'. Beyond
20 GPa at high T, K' decreases to a limiting value near 3.4, where change
in temperature produces a minimal effect. For oxides and silicates there is
little change of d2K/8PdT from one mineral to another. An increase of
1000 K at fixed V will increase K' by about 10%. Unless K' is known to
better than 20%, there is little point in pursuing the effects of 82K/dTdP
at high P and high T. Experimentalists seldom agree on K' for a given
solid to better than 20% (see Table 1.6).



THERMOELASTIC PARAMETERS AT HIGH COMPRESSION 65

The value of d^Kj/OTdP decreases with increasing P; this is related
to the strong dependency of a on 77. At low values of 77, d^Kf/dPdT for
MgO has diminished greatly. At P and T corresponding to lower mantle
conditions, d^KfjdPdT decreases by about 1/3 from ambient conditions.
Thus the mixed derivative may not be a significant correction to the EoS
unless K' is known with precision. Uncertainties in K' may mask the effect
of the cross derivative on the value of P calculated from the EoS.

Table 3.1. Isotherms of K'(rf) and KT(rf) for MgO. Isotherms of
P(r))—the EoS—for MgO. Units of KT and P, GPa

•n
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

»7

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

*l

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

K1 (300)

2.85
2.99
3.13
3.27
3.42
3.57
3.74
3.94
4.15

KT (300)

1019
806
643
515
415
336
273
222
180

P(300)

260
187
133
94
64
41
24
10.3
0

K' (500)

2.86
3.01
3.15
3.30
3.45
3.61
3.79
3.98
4.21

KT (500)

1002
792
631
505
406
328
266
215
175

P(500)

255
183
130
91
62
40
23
10.0
0

K1 (1000)

2.88
3.04
3.20
3.36
3.53
3.72
3.90
4.11
4.36

KT (1000)

954
753
597
476
381
306
246
199
160

P(1000)

240
172
122
85
58
37
21
9.2
0

K1 (1500)

2.91
3.09
3.27
3.44
3.62
3.82
4.03
4.26
4.53

KT (1500)

901
709
560
444
354
283
226
181
144

P(1500)

224
160
113
79
53
34
19
8.3
0

K1 (2000)

2.96
3.16
3.35
3.54
3.73
3.94
4.18
4.44
4.74

KT (2000)

844
661
520
410
324
257
204
161
128

P(2000)

207
147
103
72
48
30
17
7
0

Source: From ab-initio MgO calculations; Isaak et al., 1990.
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3.5. The condition ST = K' in i),T space

Several important physical properties are controlled by the difference of two
thermoelastic dimensionless parameters: ST — K1. Here we deal with two,
aKT (3.7) and 82KT/dPdT (3.56).

Though both ST and K' have been explored at low pressure, it is
desirable to know these parameters over a large range of 77 and T space. At
the present time, the experimental approach is not rewarding, because to
define the parameters, we need both high pressure and high accuracy.

But by using the theoretical tools of first principles calculations, we
can find ST^, T) and K'(r], T). The oxide MgO has been explored by these
techniques because its band structure is simple, and it is an insulator (Isaak
et al., 1990). From the identities given by (3.2) and (3.7) we find

From the above equation, (8KT/dT)v = 0 results from 8? = K', or
vice versa. A good theoretical method for finding ST at high compression is
to find the temperature at which (dKT/dT)v vanishes along an isochore,
because in this case ST = K' and K' can be found at the value of V
and T from the EoS. If the volume and temperature dependences of the
Helmholtz energy are known, then the search for the condition at which
(dKx/dT)v = 0 is straightforward. The same data set that produced val-
ues of K, K', and P for MgO (Isaak et al., 1990) shown in Table 3.1 can
be used to find the T at which (dKx/dT)v vanishes along preselected iso-
chores (Anderson and Isaak, 1993), examples of which are given in Fig. 3.2.

Anderson and Isaak (1993) computed ^rC7?) for isotherms using results
of ab initio calculations for MgO obtained by the PIB approximation, in
which &T and 77 were found at a high compression value of 77 called 77C. The
original PIB calculations for MgO are from Isaak et al. (1990).

Because K' = (dI<T/dP)T versus 77 can be found along an isotherm by
equations of state, Anderson and Isaak (1993) evaluated f>f in terms of K'.
They found 77 (called r)c) at which 8f — K'. It is seen that 5j = K' at a
value of T where KT is at a minimum along a selected isochore. Anderson
and Isaak (1993) used the PIB calculation to find the value of T where
(dKx/dT)^ is zero for a preselected value of 77, which is 77,;. In this way pairs
of values of 77,., T were found throughout the 77, T plane where ST = K',
resulting in the plot of the trace when 8f = K' (Fig. 3.3).

Birch (1986) found that for NaCl, 6T is close to K' (Table 3.2) over
a large compression range. Thus for NaCl, (dKr/dT)v — 0 holds over a
wide range in both V and T. For gold (Anderson et al., 1989), in contrast
to NaCl, (dI<T/dT}v is a large negative number, an order of magnitude
greater than found for minerals, no doubt because the conduction electrons
in gold yield non-zero values of (8Cv/dV)T at high P and T. MgO and
KC1 are intermediate to the cases of gold and NaCl.
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Fig. 3.2. Calculated (PIB) values of bulk modulus KT at constant volume
versus T for MgO. The figure shows the minimum in KT for two different volumes.
Va is the zero pressure volume at room temperature, and VQ is the zero pressure
volume at the temperature indicated (after Anderson and Isaak, 1993).

Table 3.2. Dimensionless thermoelastic parameters for NaCl versus
pressure

P, kbar rj

0
10
20
30
40
50

100
150
200
250
300

Mean

1.000
0.963
0.932
0.907
0.885
0.865
0.791
0.740
0.700
0.669
0.642

values with respect

K'

5.5
5.0
4.8
4.6
4.4
4.2
3.8

/ 1 \fda\
6T (*)(OT)P 7

5.3
4.9
4.7
4.5
4.3
4.2
3.8

3.4 3.5
3.2
3.0
2.8

to

3.1
2.9
2.7

temperature

4.8
4.6
4.5
4.5
4.5
4.4
4.3
3.9
3.5
3.1
2.8

1.62 ±0.02
1.55 ±0.01
1.51 ±0.01
1.46 ±0.01
1.43 ±0.01
1.40 ±0.01
1.27 ±0.01
1.19 ±0.02
1.12 ±0.02
1.07 ±0.02
1.03 ±0.01

Source: After Birch, 1986.
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Fig. 3.3. The variation of 8? — K' — -(l/a/f^w in the 77, T space for MgO.
ST — K' is the trace in the T},T plane where w = 0, which was found know-
ing the value of T at which the slope of the KT versus T isochore vanished

((dKT/dT)v = 0), as in Fig. 3.2. Along lines of constant T, ST = K' becomes
larger as 77 becomes larger. At high compression, ST ~ K' changes very little as
T increases along an isobar. Dimensions of w are MPaK"1.

Using the information calculated from a number of cases, such as shown
in Fig. 3.2, the set of values of the coordinates (77, T) is found in 77, T space
for the condition ST — K'. The trace of the ST — K1 line (w = 0) in the T, rj
plane for MgO is shown in Fig. 3.3. For ST > K', w > 0, and for K'T > ST,
w < 0.

Birch (1986) analyzed the NaCl compression data of Boehler (1981)
and the NaCl shock compression data of Fritz et al. (1971), and he found
that up to a compression of 77 = 0.64, the value of ST is close to that of
K' (Table 3.2). This means that for this solid, (dKT/dT)v is close to zero
throughout a large pressure range at room temperature.

Using the data in Table 3.1 and the curve ST — K' in Fig. 3.3, the value
of r) at which ST = K' can be placed on the K'(r)) isotherm as shown by
the triangles on solid lines in Fig. 3.1. This point is one coordinate in the
ST versus 77 isotherm that ST must pass through. The other point on the
77 = 1 axis is given by a high T, P — 0 experiment, as shown in Fig. 3.4.
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Fig. 3.4. The lower 5 curves for K' (solid lines) were taken from Fig. 3.1.
Dashed lines represent ST(T)) for the various isotherms, all for MgO. Values of T)
where ST — K are found at the end of the dashed lines where ST^) intersects the
corresponding isotherm of K'(rf). The positions of these intersections agree with
positions of triangles in Fig. 3.1. and with calculations represented by Fig. 3.2
(data from Anderson et al., 1991) (modified from Anderson and Isaak, 1993).

3.6. The isothermal variation of 6r with compression

3.6.1. ST is linear in TJ from experiments

It is clear from several experiments that over a wide range of compression,
ST decreases approximately linearly as 77 decreases. However, within exper-
imental error <5y appears to be independent of 77 in the range 0.9 < 77 < 1
(Chopelas, 1990a,b) (see Fig. 4.1). Compressions less than 0.9 correspond
to those of the upper mantle and crust. Thus the dependence of 8r on 77
becomes important for deep planet interiors and for pressures above about
40 GPa when dealing with oxides and silicates. Below this pressure level,
the pressure dependence of ST may be ignored.

Some clue to the function of &T(V) might be found in the experiments
of Boehler (1983) on alkali metals. His measurements on Li, Na, and K
showed that [d fn (8T/dP)s/dV}r is linear with 77 down to a compression
of 0.6. If the measured data of NaCl (dT/dP)s versus P (Boehler, 1981)
are plotted as [d in (dT/dP)s f d V ] T versus 17, the data for the isotherms
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Solving for a from the above equation, we have

are straight lines down to 77 = 0.86. (dT/dP)$ is related to 7 using (1.3).
Equating the two definitions of 7, we have

ST is given by (1.63). Differentiating (3.47) to obtain ST,

where

The dimensionless m has been measured by Boehler and collaborators
for many different materials. Boehler reports that m is independent of
compression and apparently is virtually material independent. Values of m
published by Chopelas and Boehler (1992a) are shown in Table 3.3.

Table 3.3. m = [d In (8T/dP)s /dV]T, a dimensionless parameter

Pb
Al
Fe
Li
(C

a

K
a

a

NaCl
it

it

U

u

MgO
U

a

T(K)

298
298
298
298
473
673
298
473
673
298
473
673
873

1073
298
673
973

m

6.6
6.3
6.1
4.8
6.1
4.5
5.1
5.9
6.3
6.9
7.1
6.9
6.8
6.7
7.0
6.1
6.1

Solid

In
Cu
Hg
Na
a

a

Rb
Cs
KBr
RbCl
MeOH
EtOH
pentane
isopentane
olivine
tt
"

T(K)

298
298

298,398
298
473
673
298
298
298
298
298
298
298
298
298
673
973

m

6.9
5.5
7.3
4.8
4.7
5.8
6.8
6.9
6.4
6.5
6.1
6.0
6.8
7.0
7.8
8.1
6.7

Source: From Chopelas and Boehler, 1992a.
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At high T, dCp/dV -+ 0, so that (3.48) becomes

Chopelas (1990b) showed from spectroscopic work that (d En CV/9 in V)T

approaches 1 below the Debye temperature, so that at low T

There is a temperature dependence in ST at high pressure near the Debye
temperature, so we use the parameter a in

We see that a will be between 1 and zero, depending on the relative value
of T with 6.

This shows that according to the best available experimental data,
ST is linear in 77. However, the rate of change of ST with T) is small, and
for experiments where the limit in 77 is slightly less than 1, this linear
dependence cannot be discerned because of experimental limits. Thus the
determination of 8? from a versus P experiments by Chopelas (1990a),
0.9 < 77 < I indicates that ST may be independent of 77 over the range
0.9 < T) < 1, but allows ST to descend with further decreasing of 77 according
to (3.51).

3.6.2. &T(TI') follows a power law in 77

Birch's (1986) analysis of the NaCl compression data reported by Boehler
and Kennedy (1980) shows that ST is linear with compression (see Ta-
ble 3.2). It can be shown that a power law given by (3.52) fits the data as
well as a linear curve.

A statistical analysis shows that Birch's data for ST versus 77 for NaCl
are satisfied with either ST = -1.696 + 6.8797? or ST = 5.224711 45; the
correlation coefficient is 0.997 for each solution.

There is very little distinction between the linear law of ST{TJ) repre-
sented by (3.47) and the power law given by (3.48). The power law form
of ST(T)), (3.52), is very convenient for use in the mathematical expres-
sions found in thermodynamic identities. We assume, therefore, that the
ST versus 77 expression along isotherms for oxides and silicates is of the form

where K is a positive number near 1.4. In general, K may change with T.
Equation (3.49) is equivalent to the definition of K given by (3.6). Knowing
two points of ST for each isotherm in the ST — T) plane, we can solve for
ST(T)) and evaluate K in (3.53), as demonstrated below.
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3.6.3. Finding the value of K

To use (3.6) in a calculation of ST, the value of K must be known, but this
value will depend on the mineral and on temperature. We demonstrate
how K can be determined using MgO as an example.

To find K we need values of ST and TJ at two widely spaced values of 17 at
each isotherm. One set of ST values will be found from the experimentally
determined 6T at T) = 1, setting up the boundary condition (3.53). The
other set can be determined by theory at low 77. Anderson and Isaak (1993)
determined 8T for MgO at low 77 by finding the condition where w, (3.46),
vanishes, giving the value 77 at a designated T where ST — K1. They used
the ab initio calculation of free energy (PIB) by which KT is evaluated from
the isothermal variation of energy versus volume. They found K1 = ST at a
given set of r\ and T where w = 0. These two sets of ST for MgO yield K in
(3.53), which is evaluated for each isotherm. These isotherms are plotted
by using (3.54) and are illustrated by the dashed lines in Fig. 3.4.

The two values for ST (T?) obtained for MgO for each isotherm are shown
in Table 3.4. For completeness the values of &r(l) for MgO corresponding
to the isotherms are listed as follows: 300 K, 5.50; 400 K, 5.2; 500 K, 5.08;
600 K, 5.02; 700 K, 5.0; and for all higher temperatures <5To = 5.0.

Three equations for ST (il,T) are, for example,

The plot of ST (TJ) for 5 isotherms is shown in Fig. 3.5. Although the value
of K varies from one T to another, such variation has very little consequence
in the computation of a. The plot of ST versus T at various isochores for
MgO is shown in Fig. 3.6.

Table 3.4. Two values of ST (r/) along 18 isotherms for MgO

T ST (ife) ST (1) K T ST (r?c) 6T (1) K

300
400
500
600
700
800
900
1000
1100

3.00
3.10
3.
3.
3.
3,
3
3
3.

.20

.30

.35

.40

.45

.45

.50

(0.650)
(0.697)
(0.715)
(0.741)
(0.758)
(0.769)
(0.775)
(0.778)
(0.780)

5.50
5.20
5.08
5.02
5.00
5.00
5.00
5.00
5.00

1.41
1.34
1.39
1.40
1.45
1.52
1.50
1.48
1.44

1200
1300
1400
1500
1600
1700
1800
1900
2000

3.50
3
3
3
3
3
3
3
3

.50

.55

.55

.55

.60

.60

.60

.65

(0.781)
(0.783)
(0.782)
(0.782)
(0.781)
(0.779)
(0.778)
(0.776)
(0.774)

5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00

1.44
1.46
1.39
1.39
1.38
1.32
1.31
1.29
1.23

Source: Anderson and Isaak, 1993.
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Fig. 3.5. £>T(TT) along various isotherms for MgO, arising from information
plotted in Fig. 3.4.

Fig. 3.6. 6f(T) along various isochores for MgO, arising from information plot-
ted in Fig. 3.4 (modified from Anderson and Isaak, 1993).
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3.7. The isothermal variation of otKf with compression

Equation (3.7) shows how Q.KT must vary with the parameters ST and K'.
Rewriting (3.7) in an integrable form, we have

Equation (3.57) can be solved for values in the 77, T plane for regions where
6T - K' is known in the 77, T plane. The values of (ST - K') for each
set (ri,T) are needed to solve (3.57). The value (ST — K') can be found
from data represented in Figs. 3.1 and 3.5. The data ST — K' versus 77
along various isotherms for are listed in Table 3.5. We note that ST — K'
decreases with 77, and for high compression (low 77), ST — K' is negative.

The value of ST — K' affects the important parameter w — (dKr/dT)v
given by (3.46). Thus the calculated 8T-K' plotted in Fig. 3.3 affects values
of w. From this figure, it is noted that at 77 = 0.7, the value of ST — K' is
close to zero at all values of T above 0 (see Table 3.5). For low compression,
or 77 slightly less than 1 and high T, we see from Fig. 3.4 that ST > K', and
q > 1. At high compression and high T we see from Fig. 3.4 that ST < K',
and therefore q < 1.

To find how ST — K' affects aAV, (3.57) must be integrated using the
results shown in Table 3.5, giving aKx versus 77 (Fig. 3.7). This shows that
aKf varies very little with 77 within the lower mantle compression range
(0.74 < 77 < 0.9) and is consistent with the last column of Table 3.5 where
ST — K' for MgO varies slightly around zero. We see that along isotherms
at low compression, uK? descends as 77 decreases, but after the ST — K'
line is crossed, O.KT changes very little as 77 decreases. Along the 300 K
isotherm, 9 > 1, and aKf is a strong function of 77. From Fig. 3.7, it is
readily apparent that the results for T < 0 are substantially different from
those for T > 0.

The constancy of aA'x with 77 for lower mantle conditions verifies
Birch's (1952) assumption that aKf could be taken independently of the
earth's depth. It should be noted, however, that the "mantle conditions"
values of aKf are substantially higher than the ambient value of aKT,
according to Fig. 3.7.

Table 3.5. Values of 6T - K' versus 77 = V/V0 for MgO

V
0.60
0.70
0.80
0.90
1.00

300 K

- 0.173
0.199
0.604
0.995
1.350

500 K

- 0.323
- 0.041
0.272
0.563
0.792

1000 K

- 0.542
- 0.264
0.057
0.376
0.642

1500 K

- 0.452
- 0.340
0.044
0.293
0.466

2000 K

- 0.296
- 0.123
0.066
0.213
0.256

Source: From ab-initio MgO calculations Isaak et al., 1990.



THERMOELASTIC PARAMETERS AT HIGH COMPRESSION 75

Fig. 3.7. aKf versus f] along isotherms for MgO found by using 6j~ plotted in
Fig. 3.5 in the solution of (3.57). The path along a low T isotherm shows that
aK-f = constant is not valid for T < 0 (after Anderson et al., 1993).

Most silicates and oxides will be intermediate to the case of NaCl and
gold, and there will be regions in which aKx is not independent of 77,
whereas in other regions the converse is true. For MgO at P, T conditions
throughout the lower mantle, aKx is roughly independent of rj and T.
However, any path from low T to high T goes through regions where aI\T
varies greatly. Therefore for MgO it is not valid to assume that the value of
aKj- found at ambient conditions holds for conditions at high P and high
T. Other solids where (5x('],T') behaves as for MgO will probably have the
aKr behavior shown in Fig. 3.7. There are two extreme cases.

Birch (1986) showed that for NaCl above room temperature (and there-
fore above 0), AP/AT is constant along isochores, and hence oK? is inde-
pendent of T, and similarly AP/AT is constant along isochores, and hence
aKr is independent of T}. His analysis extended down to T] = 0.65 because
he incorporated shock compression data. Birch (1952) assumed that aKr
could, as a first approximation, be treated as independent of density in the
deep earth. As an alternate example, gold is a solid where aKj< strongly
depends upon 77 (Anderson et al., 1989). This behavior probably depends
on the conduction electrons, not found in insulators.
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3.8. The isothermal variation of 7 and q with compression

In this section we derive the functional relationship of 7, 77, and T. Because
7 = VoaKT'n/Cv, and as in the previous section we found the dependence
of aKx on 77 and T, our attention is focused on the dependence of Cv
on T and 77. At high compression and high T, Cv is invariant with both
variables, at least under the quasiharmonic approximation.

As we need to find (d In Cv/d In V)T, we start with the identity given
by (3.1)

Thus we must handle the temperature derivative of aKr at constant V.
After some algebraic manipulations, we arrive at

We see the importance of a in (3.10). Because a goes down with
temperature, we expect that (OCv/dV)T will be smaller at high T than at
lower T. Because (dCv/OV)T vanishes at T > Q, we observe that

In Fig. 3.8, it is shown that a' —> 6? at about the Debye temperature.
Further, as we have seen from Figs. 2.8 and 3.3, 8x approaches K' at high
pressure. The terms in the brackets in (3.10) add to a very small number
at high T, so the above equation is satisfied for T » 0. We can express
(3.10) in terms of quantities measured at zero pressure, and we find as a
good approximation

From Fig. 3.8 we see that a is large near room temperature and plunges
rapidly to a value near ST at T a little less than 0. It is the behavior of a
that influences the volume dependence of Cv at T below 0.

At high T, a —> ST and dSf/dT —>• 0, which agrees with the usual
boundary conditions (dCv/dV)T —>• 0 at high T. A plot of a and ST versus
T for MgO is shown in Fig. 3.8. Using data represented by Fig. 3.8 in
(3.21), Cv was determined and plotted as isochores in Fig. 3.9.

When the quantities in the brackets of (3.21) do not add to zero, then
(d in Cy/d £n V)T tends to increase with fT. But with increasing T, the
value in the brackets gets smaller. Due to opposing effects, the pressure
effect on Cy does not change much with T for a temperature region sub-
stantially above 0. Near and above 0, the volume effect on 0 is small.
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Fig. 3.8. A plot of a versus T and ST versus Ta.tr)— 1 for MgO. We note
that a and df converge at high T (after Anderson et al., 1993).

Fig. 3.9. Cy versus T for MgO at various isochores, indicating the shift from
the classical Cy curve for T < Q (after Anderson et al., 1993).
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Fig. 3.10. The plot of j(T) along various isochores for MgO (after Anderson
et al., 1993).

The data represented in Figs. 3.7 and 3.9 suffice to make the plot of
7(77,T), according to (3.46), shown in Fig. 3.10. For T > 6, (6 = 940 K),
7 is independent of T, or nearly so, along isochores. But for T < 0, 7
varies substantially with T at large compressions.

The isothermal plots of 7 versus TJ are shown in Fig. 3.11. In the low T-
low P region, the effect of the variation of Cv with r) and T is noticeable.
There is a significant difference between the results for r\ for T below and
above 0. The main conclusion is that for T > 0, T has a small effect on
7(77). Thus at high T, (8j/dT)v = 0 is a close approximation: in turn,
the Mie-Griineisen EoS is valid (see Section 1.4.5.) at high T and low 77.
Conversely, the Mie-Griineisen EoS is not reliable at high P and low T.

Isaak et al. (1990), using an approximation to first principles methods
(PIB), calculated 7 (P,T) for MgO. Their values of 7 (77,1000) are plotted
in Fig. 3.11 as a dashed line that falls quite close to the calculated 1000 K
isotherm at high compression, but shows more departure at r) = 1. De-
parture of the two methods at low compressions arises because laboratory
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Fig. 3.11. The plot of 7(77) along various isotherms for MgO arising from (1.24).
orA'T and Cv come from data plotted in Figures 3.7 and 3.8, respectively. The
computed value of 7(77) at 1000 K from Isaak et al. (1990) is also shown as the
lowest solid line labeled PIB (after Anderson et al., 1993).

data (Anderson et al., 1992a) are used to find 7 at rj — 1. Uncertainties in
the anharmonic correction to T make the theory weaker at r) = 1, although
it is quite robust at low values of 77. At r\ ~ 0.72, which corresponds to
the compression at the earth's core-mantle boundary pressure, 7 is close
to unity at all temperatures above 0, and therefore 67- w K1 or q m I.

The data shown in Fig. 3.11 are sufficient to evaluate q(r),T) using
(3.28). A plot of q versus 77 for various isotherms for MgO is given in
Fig. 3.12. It is clear that near ambient conditions, q is much larger than
for the shock wave regime. Conversely, the value of q is smaller than 1 if a
large P is exerted at T = 300 K. This points out the fallacy of expecting a
single value of q to hold for all pressure and temperature regimes, even for
the same solid. For the 2000 K isotherm, q is close to 1, though often less
than 1, over a wide compression range.

At high T, such as found in shock waves, q = 1, and

At lower values of T, the value of q is sensitive to 77; it is often suggested
that q obeys a power law in 77. in q versus £n 77 is plotted in Fig. 3.13.
The plot shows that £n q versus £n 77 is not linear in 77, but has curvature.
Thus a power law in 77 is inadequate for 9(77,T).
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Fig. 3.12. The plot of 9(77) for various isotherms for MgO. Note that at high
temperature, q is close to unity (after Anderson et al., 1993).

Fig. 3.13. The variation of In q with In 77 along isotherms, illustrating the
difficulty in representing q with a simple power law because of the curvature.
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3.9. Experimental insight into the value of d*KT/dP9T

In Section 3.4, we discussed the dimensionless thermoelastic parameters

We noted that theory suggested d^Kf/dPdT is almost always positive.
This follows from the fact that each parameter in (3.56) is a positive quan-
tity. Thus, only if ST — K' is negative and has magnitude greater than K
can d^Kr/dPdT be negative. However, at ambient conditions, ST is usu-
ally larger than K' (Anderson et al., 1992a). In his Table 1, D.L. Ander-
son (1988) listed dimensionless parameters for 54 minerals at ambient condi-
tions. We find K' < ST (where ST = {Kr}p in the notation of D.L. Ander-
son) for all but eight of the 54 minerals. Of these eight, Sf — K' > —0.60 for
five, and Sx — K' < —2.0 for three (including a-quartz). Since K > 1.0 for all
solids studied to date (see discussion below), we conclude that 82KT/OPdT
is positive at ambient conditions (the usual case).

Quantitative assessments of d^KfjdPdT require K. values. Isaak (1993)
reviewed the Chopelas and Boehler (1992a) work, derived from the original
work of Boehler (1982), showing that ST(TI) may be expressed as

where Cp is the constant pressure heat capacity, and m is defined by

From (3.59) we have (d6T/drj)T = m and

In Table 3.6 are listed « for several solid compounds calculated from
(3.60) and (3.61), all taken from Isaak's (1993) Table 1. a-quartz is anoma-
lous; all the others have positive values of dK'/dT.

Using the dK'/dT value for MgO from Table 3.6, we find K'(T) by

In the case of MgO, A''(To) is 3.8-4.2. Thus at 2000 K, we might expect
A" to increase by 0.55 and A"(2000) to be close to 4.4. From Fig. 2.8, for
MgO, the discrepancy between KQ at T = 300 K and ST at 1800 K is about
0.8. Therefore we conclude that A"'(T) increases with T, and, at high T,
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Table 3.6. Calculated d2KT/dP8T at ambient P,T for several
compounds (from Isaak, 1993)

NaCl
NaF
KBr
RbCl
MgO
Olivine
a-Quartz

a
(lO^K-1)

118
98

116
119
31
27
35

ST

5.67
5.80
5.64
5.81
5.26
5.94
3.28

K'

5.3
5.0
5.1
5.4

3.8-4.2
5.2
6.4

K

1.22
1.64
1.13
1.10
1.33
1.31
2.13

82KT/dPdT
(lO^K-1)

1.1 (0.4)
1.4 (0.3)
1.1 (0.3)
1.0 (0.3)
0.39 (0.10)
0.33 (0.09)

-0.11 (0.07)

From (3.30), equality between ST and K' leads to qht = 1, but Fig. 3.3
shows that while K'/&? increases with T, it cannot reach 1 (w = 0), even
at very large T, when TI is close to unity (but it could for small rf).

3.10. Comments

I have shown the power of the use of thermodynamic identities combined
with experimental data (P = 0)at high T to find solutions over the whole
TJ, T field for the thermoelastic parameters, ST, 7, 1, dK'/dT, and K'.

3.11. Problems

1. Prove (3.47).
2. Prove (3.21) is an approximation to (3.10) at values of r) near 1.



THERMAL EXPANSIVITY
AT HIGH P AND T

4.1. Introduction

The value of a, the volume thermal expansivity, defined as (1/V) (dV/dT)p,
enters into so many properties and thermoelastic parameters that it must
be especially emphasized. Consequently a full chapter is devoted to a.
In several thermoelastic parameters, a is a factor in the equation; e.g.,
7 = (aKTV/Cv);ST = -(l/aKT)(dKT/dT)p. Thus errors in the value
of a strongly affect computation of thermodynamic quantities. A thorough
understanding of a is necessary in dealing with several problems arising in
equations of state.

The importance of knowing the value of the thermal expansivity of
candidate materials of the earth's mantle at P, T conditions of the lower
mantle is well recognized. Attempts to find the high T, high P values
of a for mantle minerals have been made by Anderson (1967), Knittle et
al. (1986), Mao et al. (1991), Chopelas and Boehler (1992a), Hemley et
al. (1992), Anderson et al. (1992b), and Wang et al. (1994).

The main thermodynamic expression giving the relationship between
a and V is a thermodynamic identity, as discussed by Anderson (1967) and
Birch (1968), but strongly emphasized by D.L. Anderson (1987):

This parameter is identical to Anderson-Griineisen parameter,

discussed by Barren (1979). The thermodynamic identity (1.63) is de-
rived by combining (1.47) with the better known identity K^ (da/8P)T =
(dKT/dT)p (Anderson, 1967; Birch, 1968).

4.2. Thermal expansivity at high T and constant ij

We use the equation a = (aKj-} /Kf to evaluate the temperature depen-
dence of a. From (2.45) and (3.33), which define the temperature depen-
dence of a along an isochore, we have

4
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If there is an anharmonic contribution to Cy, it will show up as a non-
zero value of d £n Cy /d h\ T at high T, which itself is not temperature
dependent. A tendency of Cy to increase by anharmonic effects will be
exactly compensated for by a corresponding decrease in 7, so the product
"fCv will be nearly independent of T. The temperature dependence of a at
constant V, if any, will be found in the denominator, and in particular in
(dKT/dT)v T.

We have seen in Chapter 3 that at high compression and high tem-
perature, ST —*• K' and q —» 1, which means that (dKf/dT)v —> 0. Thus
we can expect that a will change very little with T at constant 77 in this
region.

The identity given by (3.4) shows us that if aKf is independent of T
at constant P (true for the quasiharmonic approximation), then

Thus we can expect that in the high compression regions, where ST —*• K1,
the a versus T curve along isochores will be flat.

4.3. Thermal expansivity versus T at high temperature
and constant pressure

In regions where (4.2) holds, it follows from (3.19) that

Using (3.3) to eliminate (da/dP)T, we obtain

When placed in (4.4) the definition of ST given by (1.47) yields

Equation (4.6) indicates that at high T along an isobar, where ST is
independent of T, the slope (da/dT)P increases with T. The fact that
ST is independent of T above 0 follows from the high temperature limit
of the quasiharmonic approximation and is confirmed by experiments, as
illustrated in Fig. 2.8. A simple integration of (4.6) yields
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or
(a/aT-) = [l-aT'6T(T-T0)]-

where the subscript T* refers to the beginning point in the high temperature
range above 0. We can approximate the above equation as

so that the high temperature a will be linear in T. Along higher pressure
isobars, ay* will be smaller, which results in a flatter curve of a versus T.

The independence of <5j- from T is a result of the high temperature limit
of the quasiharmonic approximation (see Chapter 2). Therefore the linear
dependence of a on T is not a result of the assumption of anharmonicity
beyond anharmonic effects implied in the quasiharmonic theory.

4.4. Thermal expansivity versus ij at constant T

4.4.1. The high temperature-high compression expression for a(rj)

As we have seen from Figs. 2.5 and 2.6, at high T aKf is roughly indepen-
dent of T] and T, a concept proposed by Birch (1952) as a computational
device to use when data are lacking. Thus a must decrease with P approx-
imately as KT increases with P. This can be seen by manipulating the
equation for a, (1.24):

where VQ = V at 77 = 1. Consider now the variables in (4.9) as functions of
77. From (1.32) we have

At high P and low 77, Cy is independent of T and TJ, at least in the quasi-
harmonic approximation. Thus, taking ao = a at 77 = 1,

In the high pressure region, K' changes but little with »y, so keeping
K' constant as an approximation, K is linear in P (Anderson, 1967)

Thus (4.11) becomes

From (2.52) at high T and low 77, 6T - K' + q - 1, and thus (4.13) is
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Figure 3.5 shows that 6? is in the range of 3 to 5. Thus the effect of
T) on a is rather strong. From Fig. 3.1 there are many regions in the shock
wave regime where ST = K', or q = 1. Thus at high T, ST can sometimes
be replaced by K' in (4.14) (Anderson, 1967; Birch, 1968), so that in this
case

The product of (4.12) and (4.15) is aKr = «o^T0-
If ST in (4.14) is replaced by the average value, ST, as in the mantle, a

useful approximate solution is (see Section 4.12)

To discover how a varies with 77 over a wide range of 77, we must consider
(4.15), where ST is allowed to be a function of 77.

4.4.2. An equation for a(r?) along isotherms

To solve (4.6) for the general case, we need ST(T),T). Anderson and Isaak
(1993) found that along isotherms,

where STO is the measured value of ST at P = 0. The justification of (3.49)
was presented in Section 3.6.

We eliminate ST between (3.49) and (4.6) and integrate to find the
following equation for a(r?) along isotherms:

where ao is the value of a at 77 = 1 for the isotherm considered. According
to (4.17) the slope of the In (a/ao) versus &i (p/po) curve is given by

The behavior of the &i (a/ao) versus In (p/po) curve of a typical mineral
is shown in Fig. 4.1. Here K = 1.5, 6Ta (T > 6) = 5, and 6To (T < 6) > 5
are assumed.

In regions of 77, T space where the measured ST appears independent
of r) (0.9 < T) < 1) within the error limits, it is correct to take

This formula was derived by Anderson (1967), discussed by Birch (1968),
and recently used by Chopelas and Boehler (1989).

For compression values corresponding to the wide pressure range of
the lower mantle, STO is not independent of 77, even as an approximation,
so that (4.14) does not apply, as demonstrated in Fig. 4.1.



THERMAL EXPANSIVITY AT HIGH P AND T 87

Fig. 4.1. Two cases for £n (a/ao) versus in (p/ po) showing that the slope,
ST, decreases as the compression increases (after Anderson et al., 1992b). Dashed
lines are for constant values of STO where ST is unchanged from STO •

4.4.3. Solution for a at high T and low rj for MgO

Measurements of a are along isobars, usually at P = 0. Figure 4.2 shows
the measured a for MgO at P = 0 and the calculated a at constant r),
where the origins of the TJ = 1 curve and the P = 0 curve coexist at 300 K.
Using the observation that aKT is virtually independent of T at T > Q
(see Figs. 2.5 and 2.6), we see that (4.2) is approximately valid. Hence the
isochoric a (labelled 77 = 1) is parallel to the T axis at high T. We use
(4.17) to find isochoric a's versus T for lower values of 77. These lead to a
series of isochores (not shown) parallel to the T] = 1 line.

Fig. 4.2. Experimental a versus T for MgO at P — 0 (Anderson et al., 1992a).
The calculated isochore labelled 77 = 1.0 is tied to the P = 0 curve at 300 K.
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Fig. 4.3. Isotherms of a/aa versus 77 for MgO [aa = 3.12 X 10 5K 1; condi-
tions at P = 0, T — 300 K] (modified from Anderson et al., 1992b). Note the
convergence of the isotherms at low T) and T > 0.

From (4.17) and Fig. 4.2, we find the relative alpha (a/aa), where aa

is the ambient value, versus 77 along various isotherms, as shown in Fig. 4.3.
The convergence of the isotherms at high T and low 77 suggests that the
3000 isotherm will be easily estimated. To get the value of P corresponding
to 77 and T, we use the data from the PIB calculations for MgO (Isaak et
al., 1990) that directly define a value of ^(77) along an isotherm. That the
4th degree EoS method and the PIB model produce the same values of K1

and K" for MgO was demonstrated by Isaak et al. (1992).
To find estimates of a/aa at high pressures, we must convert from 77

to P, requiring an EoS. This EoS must be of sufficient degree that K' may
be defined as a function of T. Table 4.1 lists corresponding values of 77, P
and a/aa shown in Figure 4.3, using EoS data from Table 3.1.

88
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Table 4.1. 17, P (GPa) and a/aa for MgO (aa = 3.12 x lO^K"1)

T(K)

300

1500

1

1.00
0.95
0.90
0.80
0.70
0.65

1.00
0.95
0.90
0.80
0.75
0.70
0.65
0.60

P

0
10
24
64
133
187

0
8
19
53
78
113
160
224

a/aa

1.00
0.76
0.58
0.35
0.21
0.16

1.56
1.22
0.95
0.60
0.48
0.38
0.31
0.25

T(K) *1

500 1.00
0.95
0.90
0.80
0.70
0

2000 1
0
0
0

.65

.00

.95

.90

.80
0.75
0.70
0.65
0.60

P

0
10
23
62
130
183

0
7
17
48
72
103
147
207

a/aa

1.23
0,,96
0.76
0.46
0.29
0

1
1

.24

.70

.32
1.04
0
0
.64
.51
0.40
0
0
.32
.26

T(K) r,

1000 1.00
0.95
0.90
0.80
0.70
0.60

2500 1.00
0.95
0.90
0.80
0.75
0.70
0.65
0.60

P

0
9
21
58
122
240

0
6
15
42
64
93
133
188

a/aa

1.42
1.11
0.87
0.55
0.36
0.24

1.89
1.47
1.15
0.70
0.55
0.43
0.34
0.27

4.4.4. Geophysical implications

We observe from Fig. 4.3 that at high compression, a is virtually indepen-
dent of T at T > 0. In the same figure, we see that a decreases rapidly with
increasing compression, and for isotherms where T is larger than 0 (920 K)
and for 77 < 0.8, 80 GPa or so, there is little temperature effect on a.

It would appear that at the pressures corresponding to the deepest
part of the lower mantle (100-120 GPa), T) ~ 0.68, the expansivity ratio
a/aa is near 0.33 independent of the temperature (as long as T > 0). This
gives a = 1 x 10~5K~1 at the P, T conditions at the base of the mantle,
which agrees well with the findings of Chopelas and Boehler (1992a).

The adiabatically uncompressed (hot) lower mantle is thought to be at
a temperature near 1800-2000 K. For P = 0 at 2000 K, a/aa = 1.70. The
pressure at the top of the lower mantle (670 km) is 24 GPa or about 77 = 0.88
at 2000 K from Table 4.1. For these conditions, we see from Table 4.1. that
the value of a/aa is close to 1. This means that at the conditions at the
top of the lower mantle, 667 km, the pressure and temperature effects on
a have nearly cancelled, and a (670 km) must be close to aa. Although V
is nearly quadratic with T at P — 0 (because a is increasing with T), V is
approximately linear with T at pressures and temperatures near the top of
the lower mantle (because here a is independent of T).

For pressures greater than 80 GPa or so, there is no significant dis-
tinction between a along the 1000, 2000, and 3000 K isotherms. Thus, a
is independent of T at high T. Generally a spans the range 0.33aa-1.4aa

throughout upper and lower mantle P, T conditions.
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4.5. Measurements of V versus T for silicate perovskite

The effect of temperature on volume P = 0 for Fe-bearing silicate perovskite
was first reported by Knittle et al. (1986), as shown by the squares in
Fig. 4.4, where V/V^s versus T at constant r\ is plotted. The value of a
is found by the appropriate slope of a curve passing through these data.
Because of the extent of the error bars, various interpretations have led to
quite different values of a, all of which satisfy the Knittle et al. data. A
curve passing through the lower parts of the error bars at low T and the
higher parts of the error bars at high T has relatively high curvature and
leads to a high value of a. Such a curve (not shown) was chosen by Knittle
et al., leading to their announced value of a — 4 x 10~5K~1/deg for aa.

Other experimenters have satisfied the Knittle et al. measured data
with lower values of a. Ross and Hazen (1989) found aa = 1.8 x 10~5K~1.
Navrotsky (1989), using the pressure dependence of entropy, found V/V^ss
versus T to be aa = 1.8 x 10~5K~1 (see Fig. 4.4).

Fig. 4.4. Relative volume, V/Vyss, of MgSiO3 perovskite at various tempera-
tures. The squares represent data of Knittle et al. (1986), the triangles those of
Ross and Hazen (1989). The solid curve is the high T extrapolation by Ross and
Hazen (1989); the dashed curve is calculated from (dS/dP)r, Navrotsky (1989).
The figure is modified from Navrotsky (1989).
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Such low values of a have been reported by others. Parise et al. (1990)
reported aa = 1.9 x 10~5K~1 at P = 0, and Mao et al. (1991) reported
a = 1.3 x 10"4K~1 at 10 GPa. Funamori and Yagi (1993) reported mea-
suring V versus T isobarically from 300 K to 900 K. This resulted in their
report of a > 1.7 x lO^K"1 at 36 GPa for MgSiO3 perovskite.

Wang et al. (1994) measured the volume expansion of (Mg,Fe)SiO3-
perovskite from 400 K to 1200 K along several isobars (see Fig. 4.5). They
found a = 2.7x lO^K-1 for Fe/(Mg + Fe) = 0.12 at 800 K at P = 0. Wang
et al. measured (8KT/dT)p = -0.023 GPa/degree, and, as KTa = 246 GPa
at P = 0 (Yeganeh-Haeri et al., 1989) or KT = 276 GPa at 8 GPa, 6T is 4.2
by (1.47). This value compares well with those for solids at modest pressure
(see Fig. 3.5). Wang et al. (1994) reported that 70 = 1-3 was consistent
with their data.

Fig. 4.5. V versus T at 3 isobars for orthorhombic perovskite (Mg,Fe)SiO3

(modified from Wang et al., 1994). The dashed lines represent a Suzuki equation
fit (see Section 4.7).
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4.6. Griineisen's theory of thermal expansivity (P = 0)

Many experimentalists use a variant of Griineisen's (1912) theory to repre-
sent their measured data on a(T) at P = 0. The primary data consist of
changes in length with regard to some standard length, LQ.

There are three directions of measurement in a crystal

and the change in volume is given by Y = YI + Y? + Y^.
Griineisen's theory (1912) involved using Y = A/Vb as a primary vari-

able, where

He assumed the Mie-Griineisen EoS, with its simplified expression for ther-
mal energy (see Section 1.34),

Another way of representing (4.21) is

Assuming infinitesimal elasticity, Griineisen got rid of PO by taking

He then expanded G (V) as a MacLaurin's series to the second order in A,
which leads to a quadratic equation in A, of the form

where

He reduced (4.23) to a linear equation in A by reapplying the infinites-
imal formula for A to the second term in the parentheses. This was justified
because the thermally induced dilation is small. Therefore (4.23) is replaced
by

Solving for A versus T,
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where

The thermal expansivity is found by differentiating (4.26) with respect
to T and with the conditions that dV/dT = 0 and dK'/dT = 0. These are
not exactly zero, but nevertheless are small compared with dErn/dT. We
have

Equation (4.26) or (4.28) is used semi-empirically to fit the experimental
data of Y versus T, and the parameters Q, ETH, and k are varied until
the fit is maximized. Once the parameters are known, (4.28) is used to
extrapolate or interpolate a. It is customary to use a Debye function for
ETH, s° that

where 0 is the Debye temperature. A procedure fitting measured V-T data
to the Griineisen equation will produce empirical values of 0, K'0, and 70-
These values should then be checked against other determinations of 0,
K'0, and JQ for the same mineral. If the values are reasonably close, the
Griineisen equation may be used with confidence to extrapolate for values
of a at a temperature above the measurement range. If they do not agree,
the resulting Griineisen equation is unreliable for extrapolation purposes.

The empirical values of the variables found in (4.28) corresponding to
the graph for forsterite, Fig. 2.7, found by Suzuki (1973) are: Q = 5.14 x
106/, k = 2.67, and 0 = 705°. From k, K'0 = 4.34, which is a little lower
than the acoustically determined value, 5.4 (Table 1.8). Some difference
is to be expected in view of the approximations and experimental errors
in K'. The value of the Debye temperature is considerably lower than the
specific heat value, 0 = 900°, but close to the acoustically determined
value, 0 = 767°. The value of Q can be used to estimate the ratio of
KTO/Y. Using the measured value, KTO = 126.2 GPa, -ymg is found to be
1.1 compared with the measured value for forsterite, 7 = 1.15 (Table 1.2.).
The values of K'Q, 0, and jmg thus determined from the fit to the Suzuki
equation for fosterite are nevertheless reasonable, so (4.28) is justifiably
used for representing a with T at high T.

After cross checking the parameters with independent measurements,
the Suzuki equation can be used to extrapolate to T beyond the limits
of measurements. Alternatively, (2.52) can be used for the extrapolation.
There is little difference between the results of the two methods. When
extrapolated, data from Fig. 2.7 lead to the dashed lines in Fig. 4.6.
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Fig. 4.6. Extrapolation of a for the solids in Fig. 2.7, as shown by the dashed
lines using (2.52). At higher temperatures (above 0) the expansivity is essentially
linear with a positive slope (modified from Suzuki et al., 1979).

4.7. Suzuki's theory of thermal expansivity

The Griineisen theory of thermal expansion has drawbacks that prompted
Suzuki et al. (1979) to reconsider (4.23) without the drastic assumption
induced by going from (4.23) to (4.25). Equation (4.23) is a quadratic
equation in A. Solving for the real root of (4.23) determines A, which is
referenced to the volume at T = 0. The expansivity, based on the volume
at an arbitrary reference temperature, is

where a\r is the ratio of volume at the reference T, Tr, and at T — 0 K;
av = V(Tr)/V(Q). Because T] = V/V0 = 1 + Y, the solution in terms of 77 is
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Fig. 4.7. Comparison of thermal expansivities of three polymorphs of Mg2SiO4.
a : a-phase; olivine of Suzuki (1975); although this specimen includes some frac-
tion of Fe component, the data are regarded as the most reliable and represen-
tative ones for a-Mg2SiO4. /3 '. /?-phase; Solution II, shown by a dotted line, is
for a lower value of 0 (830 K). The solid line shows Mg2SiO< for the preferred 0
(925 K). 7 : y-phase (modified from Suzuki et al., 1980).

If we wish to refer to the volume at room temperature, V (T0), where
V/V(Ta) = (V/V0) [V0/V (To)}, then (4.31) is replaced by

The analytical expression for a found by differentiation of (4.32) is quite
complicated. Numerical differentiation of (4.32) is recommended for a(T).
Equations 4.30, 4.31, and 4.32 are known as the Suzuki equations.
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Table 4.2. Values of V/V0 versus T and P for NaCl

P(GPa)

0
5
10
15
20
25
30
35

T(C)
25

1
.98020
.96268
.94690
.93248
.91913
.90667
.89492

100

1.00928
.98833
.96999
.95356
.93857
.92471
.91172
.89943

200

1.02253
.99989
.98024
.96277
.94699
.93251
.91907
.90647

300

1.03682
1.01247
.99124
.97248
.95571
.94056
.92678
.91416

400

1.05226
1.02575
1.02290
.98287
.96509
.94913
.93468
.92150

500

1.06908
1.04014
1.01538
.99382
.97478
.95776
.94241
.92845

Data reported by Boehler and Kennedy, 1980.

The thermal expansivities of three polymorphs of Mg2SiC>4 have been
measured and examined by Suzuki et al. (1979). The thermal expansion
was analyzed by (4.32), and the resulting thermal expansion coefficients
were plotted in Fig. 4.7.

It is interesting to note that the high temperature value of a for
forsterite is near 3.8 x 10~5K~1, whereas that for 7-Mg2SiO4—the high
pressure phase of forsterite—is closer to 2.6 x 10~5K~1. We might ex-
pect, therefore, that a phase change going to the denser phase ordinarily
decreases a if a transition to a denser phase increases KTO- This further
suggests that across a phase boundary, ctKf may change little.

4.8. High temperature expansivity of NaCl

Boehler and Kennedy (1980) measured the compression of NaCl over a
pressure range of 3.5 GPa and a temperature range of 25 — 500°C. These
data are shown in Table 4.2, where TJ is listed for a given P and T. All
the data are for temperatures above the Debye temperature, where the
approximation ETH = QRT is good.

From these data we can test for the limits of applicability of the
Suzuki equation (4.32). Using (4.24) and K'Ta = 5.35 at 300 K (Spetzler et
al., 1972), we find k = 2.18. Q is found by requiring that (4.31) be unity
at T0 = 298 K, which reveals that Q = 2l.57ETH0, where ETH0 = 6RT0,
and where V (T = 0) /V (298) = 0.95.

From (4.30) we find an imaginary root when ETH > (l/4k)Q, or when
T/TQ > 1.47. Thus, if we fix the parameters of (4.30) at room temperature
conditions, we see that we cannot account for the volume expansion at
the highest measurements (T = 2.63T0). What this means is that the
expansion G (V) into only two terms in (V — Vb) in (4.23) leading to (4.25)
is inadequate for very high temperature applications.
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We conclude that (4.26) and (4.28) are useful at intermediate tem-
peratures and at temperatures up to about 20, but not much higher, if
reasonably accurate values of the material parameters 0, K'T , and 7 from
a versus T measurements are required.

On the other hand, k and Q can be considered as arbitrary parameters
to make (4.26) or (4.32) fit measured expansivity data up to rather high
temperatures. This may be considered as a useful empirical representation
for interpolation of the data. But in that case, the derived values of K'Ta,
0, and 7 from k and Q will probably not have physical meaning. For
example, 70 may be too high, or 0 too low. The use of such values in other
thermodynamic formulas may be dangerous.

4.9. The uncompressed value of a in the lower mantle

The uncompressed thermal expansivity is intimately connected with the
choice of 70, the uncompressed Griineisen ratio. Let po be the uncompressed
(hot) value of p at some T, and poc be the uncompressed cold value of the
density. Then at P = 0,

defines the difference between the hot uncompressed and cold uncompressed
densities, where p0c represents the cold value of PQ.

From seismological studies, K'Ta = 4.2 (Bukowinski and Wolf, 1990)
in the lower mantle, so by using (4.24) we find k = 1.60. This low value
of k will insure the use of (4.31) or (4.32) to relatively high temperatures,
avoiding the problem of imaginary roots described above. ETH is the Debye
function in (4.29), specified at various temperatures by the value of 0.
Extrapolating the results of 0 of the mantle as listed in Table 1.10 back
to zero pressure or zero depth, we find 0 = 940 (hot) and 1040 (cold).
Because Q = KTOVO/JQ — KTOH/ (/>oe7o)> a choice is needed for poc and p,
for the lower mantle. Values of p0= = 4.22 and fj, = 21 are used. We will
take the value of KTo to be 210 G°Pa (hot) (Bukowinski and Wolf, 1990)
and 255 GPa (cold).

Once 70 has been chosen, Q0 is determined for the mantle. The un-
compressed volume ratio can thus be computed by differentiating (4.30) at
temperatures throughout the lower mantle, given an assumed value of 70.
The calculated V/ (V (T0)) is plotted in Fig. 4.8, where V (To) is the volume
at 300 K for various reasonable values of 70- The uncompressed expansiv-
ity coefficient, a — (dY/8T)p, is obtained by temperature differentiation
of the data shown in Fig. 4.8. The result for a versus T for uncompressed
lower mantle conditions is plotted in Fig. 4.9. Note from Fig. 4.9 that a for
1000°K at P = 0 is about 2.3 x lO^K"1, which is above the value found by
Wang et al. (1994), but below that recommended by Knittle et al. (1986).
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Fig. 4.8. Expansion of the uncompressed lower mantle vs. T: (K — V Q ) / V o , ac-
cording to (4.30) for various assumed values of 70. For 70 = 1-5, AV/Vb = 5% at
1900 K, the top of the lower mantle (modified from Anderson and Sumino, 1980).

Fig. 4.9. The thermal expansivity of the mantle calculated at zero pressure for
the thermodynamic parameters of the mantle used in (4.37) and from data plot-
ted in Fig. 4.6. Calculated a depends on an assumed value of the uncompressed
Gruneisen ratio, 70. Values of 70 from the thermal models of Brown and Shank-
land (1981), Anderson and Sumino (1980), and Stacey (1977b), are indicated, a
of a few minerals is shown (modified from Anderson and Sumino, 1980).
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Considering that the temperature of the upper-lower mantle bound-
ary is about 1900 K, the AV/V0 of the uncompressed mantle from 300 to
1900 K is about 4.5% according to Fig. 4.8, depending on the assumed
value of 70. The Brown and Shankland (1981) study and the Anderson and
Sumino (1980) study gave 70 = 1-5 and 70 = 1.4, respectively (Fig. 4.9).
A value of 7 much less than 70 = 1.3 will seriously limit the uncompressed
expansion of the lower mantle material.

The value of 7 decreases with pressure. From (4.17) we observe that
if a decreases from, say, 3 x 10~5K~1 at the surface to about 1 x 10~5K-1

at the base of the mantle, 7 must also decrease from 1.5 to something less
than unity, say 0.9, at the base of the mantle.

4.10. Obtaining a from 7 using data from seismic models

If 7 is known as a function of depth in the mantle, as obtained from the
seismic model solutions, a can be solved from (4.32). In the mantle, po and
KS are provided by seismic models (however, there is no information on
Cp). From the equation of 7, we obtain

Using as an approximation KT = KS (1 — ayT), and using V = n/ p
where fi = M/p, the mean atomic weight, (4.34) becomes

Thus a is determined at every depth if 7, T, /J, and Cy are known. Watt
et al. (1975) showed that throughout the lower mantle, n is constant and
close to n = 21. Neglecting specific anharmonic contributions and taking
T > 1.876 (see Fig. 1.7), Cv should be close to its Dulong and Petit limit
(24.44 J/K-g atom) if the Debye model is assumed. The value taken for
Cy means that we are assuming there is no anharmonicity on CV in the
mantle. Even if there were anharmonic effects at P = 0, they would be
suppressed by pressure (Hardy, 1980).

The difficulty with applying (4.35) is that 7 is not known accurately
with pressure (or depth). However, as shown in Chapter 1, if acoustic
velocity data are available, several useful approximations to the Griineisen
ratio can be employed. Two of them are jac, given by (1.52), and the "free
volume" 7UZ, given by (1.61).

Another method uses the entropy formula in the Debye theory (Brown
and Shankland, 1981). The lower mantle is approximately adiabatic, and
assuming that Debye's thermal energy equation satisfies the lower mantle,
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the temperature can be calculated so as to insure that the entropy S is
constant throughout the mantle. In the Debye model, G depends upon v,
and vp, and thus 0 is determined at every depth. It turns out that 0/T is
virtually a constant with z (see Table 1.10). Brown and Shankland (1981)
chose the Brillouin (1946) version of the Debye theory in which there are two
0's, Q, and 0p, for the corresponding vt and vp. The entropy depends now
on 0, and 0p, both of which are found by the seismic model to increase with
depth. The change in T required to keep SD invariant is computed, and the
temperature distribution is found throughout the lower mantle, providing
T is specified at the reference depth (Table 4.3) (See also Shankland and
Brown, 1985). Brown and Shankland took as the reference T at 771 km
the results of the experiments of Akaogi and Akimoto (1979).

Table 4.3. Calculation of T, a, and jDs by the
Debye model in the lower mantle of the earth

Depth
km

771
871
971
1071
1171
1271
1371
1471
1571
1671
1771
1871
1971
2071
2171
2271
2371
2471
2571
2671
2771
2871
2885

Temperature
K

1908
1941
1973
2004
2034
2064
2092
2120
2147
2174
2199
2225
2249
2273
2296
2319
2341
2363
2384
2405
2426
2446
2449

Thermal
Expansivity

105/K
a

2.19
2.09
1.98
1.91
1.83
1.74
1.67
1.60
1.55
1.47
1.43
1.35
1.31
1.25
1.21
1.17
1.12
1.08
1.04
1.00
.96
.92
.95

Griineisen
Parameter

7DS

1.29
1.27
1.25
1.24
1.23
1.20
1.19
1.17
1.17
1.14
1.13
1.10
1.09
1.06
1.06
1.04
1.02
1.00
.99
.97
.94
.93
.95

After Brown and Shankland, 1981.
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Choosing T(670) = 1600 C from the results of Akaogi and Akimoto
(1979), T is thus specified at all depths in the lower mantle (see Table 4.3).
Once T(z) is known, then using P(z) from the seismic model, the data are
numerically differentiated to obtain dT/dP. To complete the calculation,
an expression for 7 along an adiabat is needed.

Using the form of 7 given by (1.30), we find the value of fos to be

where the subscript D$ stands for the Debye function at constant entropy.
If the values of JDS and T are placed in (4.35), a is determined at all
depths. Calculated values of a, T, and 7 for the lower mantle are listed in
Table 4.3. PREM data is the source for data on p, v,, dv,/dp, and Kg.

Stacey (1977b) identified T and 7 independently and then calculated a
by (4.35). He assumed T at the inner core-outer core boundary (4168 K),
this temperature arising from the estimated solid-liquid equilibrium tem-
perature of the iron-sulfur eutectic. This was found by extrapolating to this
high pressure the melting point measurements of Usselman (1975). Stacey
computed the temperature drop through the outer core assuming adiabatic
conditions, using from the Griineisen constant the value computed by jV2,
which requires only seismic data. At the core-mantle boundary he found
T = 3157 K. He then calculated an adiabatic state in the lower mantle,
arriving at T - 2290 K at z = 671 km. The a distribution for the lower
mantle is given in Table 4.4. The values of 7 found for the lower mantle by
Stacey are slightly lower than those found by Brown and Shankland. At a
depth of 2771 km, he found 7 = 0.91, which rises steadily to 7 = 1.02 at
771 km. The value of 7 is really jvz, given by (1.46), and is thus wholly
determined by the seismic model, PREM.

Table 4.4. Thermal expansivity for the lower mantle

z
km

2771
2671
2571
2471
2371
2271
2171
2071
1971
1871

a
106/K

9.7
9.7
9.9
10.1
10.4
10.6
10.8
11.1
11.4
11.7

z
km

1771
1671
1571
1471
1371
1271
1171
1071
971
871
771

a
106/K

12.0
12.4
12.7
13.2
13.6
14.0
14.5
15.0
15.5
16.1
16.7

Calculated by Stacey, 1977b.
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4.11. Finding a from the assumption aKr = constant at
high P

In Section 3.7, we found that at high T and high compression the value
of aKT varies little with pressure. In 1952 Birch suggested that as an
approximation, aKx could be treated as independent of density in the deep
earth, so the idea that aKx is independent of P has historical justification.
Anderson (1982) assumed that oiKf — b is invariant with volume in a
thermal model where the thermal pressure at various depths is obtained by
the approximation

When Kg from the seismic model is known, a can be obtained as a function
of depth. Anderson (1982) computed the properties of an earth model using
(4.37) and a set of differential equations describing density, pressure, and
temperature, from which the value of aKT and thus a was determined
at each region of the earth. The elastic constant data for the core were
arbitrarily adjusted so that the moment of inertia and the mass vanish at
the earth's center. This enabled the best value of aKx to be computed for
each zone of the depth. The other physical properties were all consistent
with a, as they were constrained by interlocking differential equations. The
model allowed the values of p, T and Kg to be computed. The consistency of
the computed po and the computed Kg with seismic data on these constants
helped to verify the model.

Table 4.5. Calculated parameters for the earth, using the assumption
that PTH = P0 + (a + bT) and (4.45) for a

Depth
km

671
771
971

1171
1371
1571
1771
1971
2171
2371
2571
2771
2886

p Temperature P
Density K GPa

4.391
4.450
4.564
4.675
4.784
4.890
4.995
5.098
5.199
5.300
5.401
5.502
5.561

1707
1757
1855
1949
2040
2128
2214
2298
2381
2461
2541
2619
2664

23.89
28.32
37.32
46.52
55.92
65.53
75.36
85.42
95.74

106.36
117.31
128.67
135.42

Ks
GPa

303.4
316.6
343.2
370.1
397.3
424.8
452.7
481.0
509.8
539.3
569.4
600.5
618.9

a
106/K

21.43
20.53
18.94
17.56
16.36
15.30
14.36
13.51
12.75
12.05
11.42
10.82
10.50

After Anderson, 1982.
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Fig. 4.10. A log-log plot of a versus p in the lower mantle using data for four
thermal models of the earth's mantle. The straight line on the f n - in plot
shows that the data fit a power law between a and p according to (4.20) (after
Anderson et al., 1990). The a are from Brown and Shankland, 1981. The • is
from Stacey, 1977b; the A are from Baumgardner and Anderson, 1981; the o are
from Anderson. 1982.

The model is checked by observing that the resulting density distribu-
tion matches that given by seismic models. This approach produced the
results for a listed in Table 4.5. The value of 7, computed from (1.19),
rises steadily from 0.98 at a depth of 2771 km to 1.2 at 771 km, which,
when extrapolated to P = 0, yields 70 = 1.4. An interesting aspect of these
calculations is the result that jp = constant throughout the lower mantle,
in agreement with the expectation that at high T and low 77, ST —+ K' and
q —> 1, as shown in Section 3.5.
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4.12. at vs. p in the lower mantle from three thermal models

The values of a versus p taken from a versus z curves of the lower mantle
for three thermal models given in Tables 4.3, 4.4. and 4.5 are plotted in
a log-log plot in Fig. 4.10. According to (3.18) and (4.19), the slope of
the curve is —Sx- The curve shows that all the average values of ST lie
between 3.5 and 4, in spite of the temperature differences of the thermal
models. This range of values in 8f can thus be considered as arising from
the seismic model PREM. We see that it is the same as that found for 6? for
MgO in the compression range of the mantle (see Figs. 3.5 and 3.6). This
verifies the assumption by Chopelas and Boehler (1992a) that the value of
77i in their equation for 6f(r)) (3.48) for perovskite is close to the value they
measured for MgO. Hence the average ST over the P, T range of the lower
mantle for all lower mantle minerals should be between 3.5 and 4.

4.13. Thermal expansivity of silicate perovskite at high
P and T

4.13.1. The thermoelastic parameters

In Section 4.4.3, a(r},T) was found for MgO. There the experimental data
give a(T) at P = 0, the upper curve in Fig. 4.2. Using that data, a(T) at
77 = 1 was found, giving the lower curve in Fig. 4.2, to which (4.17) was
applied, yielding the data plotted in Fig. 4.3. For perovskite, we do not have
data on a(T) over a sufficiently large T range to proceed as we did for MgO.
We do, however, have information on the basic thermoelastic parameters
from which AV/Vo at P = 0 can be found by the Suzuki equation (4.32).
Thermoelastic parameters from four sources are shown in Table 4.6.

Table 4.6. Thermoelastic parameters for silicate perovskite

Material (Mg,Fe)SiO3 (Mg, Fe)SiO3 (Mg,Fe)SiO3 (Mg,Fe)SiO3

„ Anderson
TO11TCP

Knittle et al. Hemley et al. Wang et al. & Masuda
(1986)* (1992) (1994) (1994)

6(K)
KTo (GPa)
K'
VQ (ccmol"1)
To
^TO
K

825
260
4.0

24.39
2.20

1017
263
3.9

24.46
1.98
7.0J
0.8*

(1017)
261
4.0

24.46
1.3
4.3

1017
261
4.0

24.46
1.5
5.0
1.5

+ From Stixrude et al., 1992a. *The high temperature model.
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4.13.2. Isobars showing AV/V0 and a versus T at P = 0

AV/Vo versus T (P — 0) at constant 70 for the uncompressed lower mantle
according to Anderson and Sumino (1980)'s set of thermoelastic parame-
ters is found in Fig. 4.8. This figure shows that AV/Vo is about 5% for
T = 1900 K using 70 = 1.5. 70 = 1.5 is chosen because ~fac of the lower
mantle at P = 0 is 1.5 using PREM data (see Figs. 1.41 and 5.16). If we
take poc (cold) = 4.22 and p0(hot) = 4.00 (Bukowinski and Wolf, 1990) for
the lower mantle, taking T from 300 K to 1900 K at P - 0, then AK/Vb is
on average 5%; compare this value with the 70 = 1.5 solution in Fig. 4.8.
a(T) versus T for the uncompressed lower mantle (70 = 1.5) is shown in
Fig. 4.9: a at 800 K is close to 2.5 x 10~5 K-1.

If the thermoelastic parameters of silicate perovskite proposed by An-
derson and Masuda (1994) are used (except that 70 is arbitrary), the pattern
for AV/Vo versus T is as shown in Fig. 4.11. In that figure, the solution
for AV/Vo at T = 1900 K is 4.5% for To = 1.5, and 5% for To = 1.6. These
values are not significantly different from those found for the lower mantle
from the seismic data (Fig. 4.8).

In subsequent discussions, we will favor 70 = 1.5 for silicate perovskite.
This choice is consistent with the thermoelastic properties of MgO and the
lower mantle. Table 1.2 shows that for MgO, 7ac = 1.5, in close agreement
with 7 = 1.54. Thus yac is representative of 7 for this solid. For the earth's
uncompressed lower mantle (Anderson, 1979a), fac = 1.5. Since the earth's
lower mantle is composed mostly of perovskite and some magnesiowiistite,
it is apparent that 7 for silicate perovskite should be close to 1.5.

As shown in Fig. 4.11, the thermoelastic parameters from Knittle et
al. (1986) yield AV/V0 = 7.5% for T = 1900 K. This is 2.8% more than
the AV/V0 of the uncompressed lower mantle from 300 K to 1900 K. It
led them to conclude that the lower mantle had to have more iron than
the upper mantle. The Hemley et al. (1992) choice of 70 = 1.98 leads
to 6% for AV/Vo, which is higher by about 1% than AV/Vb of silicate
perovskite from ambient to 1900 K using Bukowinski and Wolf's (1990)
values of uncompressed po- This suggests a small change in iron content.

The choices of 6 and 70 are crucial for the solutions of a and AV/Vo
for lower mantle silicates. The value of 0 selected by Knittle et al. (1986)
is too low for perovskite (see Fig. 1.3), and when it is used, the Suzuki
equation will predict a relatively high AV/Vo• In Fig. 4.12, a versus T is
plotted from the integration of AV/Vb (Fig. 4.11), where the Anderson and
Masuda thermoelastic data (except for 70, which is adjustable) are used.
The intercepts on the y axis show the value of a at T = 800 K and P = 0
according to the choice of 70: 3.7 x 10~5K~1 for 70 = 1.98 (Hemley et
al., 1992); 2.75 x lO"5^1 for 7o = 1.5; and 2.4 x lO^K"1 for 70 = 1.3
(Wang et al., 1994). For comparison we observe that a = 4.3 x 10~5K-1

from the Knittle et al. choice of thermoelastic parameters. Their choice of
thermoelastic parameters leads to high values of a and AV/Vo.
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Fig. 4.11. AV/VO versus T at P = 0 from (4.32) using the thermoelastic
parameters of Anderson and Masuda (1994). The plot of the Suzuki equation
using the Knittle et al. (1986) thermoelastic data is shown by the large-dashed
line. The plot of the Suzuki equation using the Hemley et al. (1992) thermoelastic
data is shown by the small-dashed line. Arrow intercepts on the y axis are for
AV/Vb at 1900 K, depending on 70 (modified from Anderson and Masuda, 1994).

4.13.3. Isochores showing a versus T (constant rj)

To find a at higher compression, we first need to change from constant P
conditions to constant V conditions. In Section 4.4.3, this problem was
solved for MgO using (3.4), but we do not know aKf versus T for silicate
perovskite. Instead, we use the calculus identity (3.14) and evaluate the
term aKT(da/dT}P in (3.14) by using (3.3) and (1.63), yielding

In Section 2.9 it was shown that if a(T) (constant P) is linear in T at
high T, then

Placing this in (4.38) and integrating the resulting (da/dT)P, we find

where T* represents the beginning of the integration, T* > Q.
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Fig. 4.12. a versus T at P = 0 according to the Suzuki equation when the
thermoelastic parameters of Anderson and Masuda (1994) are used. 70 is variable.
The large-dashed lines are from the thermoelastic parameters proposed by Knittle
et al. (1986). The intercepts on the y axis show values of a at T = 800 K
according to the value of 70 (modified from Anderson and Masuda, 1994).

Expanding the right side of (4.39) out as a series and truncating after
the first term, we find (2.52), which agrees with the data. Using (2.52),
we guarantee that a(T) is parallel to the T axis. For T below 0, we
evaluate (4.38) from the data on a(T). Doing these two operations on the
appropriate P = 0 curve in Fig. 4.12 yields a(T) at 77 = 1, which is shown
in Fig. 4.13, along with the appropriate or(T) at P — 0 curve, selected from
Fig. 4.12 for the 70 = 1.5 case. From the 77 = 1 curve, other isochores
are found using (4.17), as shown in Fig. 4.13. We assume 8fa = 5.0 and
K = 1.5. The value of 8f0 is chosen considering the value of 6j>0 arising from
the rate of change of a with p for the lower mantle (see Fig. 4.10) and the
report by D.L. Anderson (1987) that 8s at deep mantle conditions is 1.8
(and therefore ST = 2.8). Calculations show that a(T) is insensitive to the
exact value of K for 1.1 < K < 1.9. The value K = 1.5 was assumed.

4.13.4. Isotherms of a versus P for silicate perovskite

The data in Fig. 4.13 can be presented in several forms. To change vari-
ables so as to find a(P, T), we must find the appropriate value of P for
a given V and T, P(V,T), or the EoS. Since P(V,T) = P(V,T = 0) +
PTH(V,T), we need to find the isothermal EoS and the thermal pressure
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for silicate perovskite. This is handled in Chapters 6 and 10. We note,
however, that to determine the thermal pressure, the value of a(0,0),
which is the subject of this chapter, and KT(®,Q), are needed. From
Fig. 4.12, a(0,1000) is 2.9 x lO^R-1. The value of #T(0,1000) requires
(dKT/dT)P. From the definition of 6T, (1.47), (dKT/dT)P can be found,
since 6T and #T(0,300) are known. We find (dKT/dT)P = 0.035 GPa/K,
and KT(Q,1QQQ) = 239 GPa to be self-consistent with 8T = 5.0 and
KT(0,300) = 263 GPa. Thus aKT = .00692 GPa/K. In Section 10.10,
the EoS of perovskite, based on these numbers, is presented in Table 10.6.
Using the EoS, values of a(V,T) in Fig. 4.13 are transformed into a(P,T)
and plotted as isotherms of a versus P in Fig. 4.14.

The value of a at 1900 K and P = 23.8 GPa (corresponding to the
670 km depth seismic discontinuity) from Fig. 4.14 is 2.4 x 10~5K~1. This
value is slightly higher than the values computed from actual mantle seismic
profiles: 2 x lO^K"1 by Brown and Shankland (1981) and 1.7 x lO^K"1

by Baumgardner and Anderson (1981) (see Section 4.10). It is slightly
lower, however, than the value computed by Chopelas and Boehler (1992a)
(3 x 10~5 K"1). In their 1992a paper Chopelas and Boehler acknowledged
that their earlier paper (1989) on a was in error because ST had been
assumed to be independent of P.

The value of a at 2900 K and P = 135 GPa corresponding to the
region of the mantle near the mantle-core boundary (0.9 x 10~5K-1) is rea-
sonably close to the finding of Chopelas and Boehler (1992a), 1 x 10~5K-1.
These two estimates are remarkably close to those determined by the in-
version of seismic profiles: 0.97 x 10~5K~1 by Stacey (1977b), 1 x 10~5K~1

by Baumgardner and Anderson (1981), and 1 x 10~5K-1 by Brown and
Shankland (1981).

A rather remarkable result shown by Fig. 4.14 is the convergence of
the isotherms at high P. Thus a is independent of T at high P, provided
T > 0. Apparently a depends only slightly on pressure, providing the
pressure range is higher than about 1/3 KTO- This convergence, when
considered with the remarkable agreement of values at 135 GPa described
in the paragraph above, suggests that many different thermoelastic models
will yield similar values of a at deep mantle-like conditions.

4.13.5. Isobars of AV/V0 versus T: the experimental cross-check

The a versus P isotherm curve can be transformed into a AV/Vb versus
P isotherm by integration. The isotherms of AV/Vb versus P can then be
cross-plotted to obtain isobars of AV/Vb versus T. Such isobars are the way
in which actual experimental data of AV/Vo versus T are often presented.
Comparing such isobars, derived from the Suzuki equation (4.32) and the
0(77) equation (4.17), with the experimental data is a way of checking the
validity of the assumed thermoelastic parameters.
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Fig. 4.13. Isochores of a versus T. The curve for P = 0 from Fig. 4.12
(70 = 1.5) is shown for reference (modified from Anderson and Masuda, 1994).

Fig. 4.14. Isotherms of a versus P using the thermoelastic parameters shown
in the inset and the equation of state. High T isotherms converge above 100 GPa
(modified from Anderson and Masuda, 1994).
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Fig. 4.15. Isobars of expansivity, AV'/Vo, versus T. Solid circles represent the
isobar experimental data of Wang et al. (1994) (10.8 GPa), open circles those of
Funamori and Yagi (1993) (36 GPa) (modified from Anderson and Masuda, 1994).

Such a comparison is made in Fig. 4.15, which shows plot of the iso-
baric 36 GPa experimental points of Funamori and Yagi (1993): some of
their points fall between our calculated 30 and 40 GPa isobars. Also plotted
are the isobaric 10.8 GPa experimental points of AV/Vb versus T of Wang
et al. (1994). Some of these lie close to the 10 GPa isobar. In Fig. 4.16,
the 36 GPa isobar calculated from Anderson and Masuda's thermoelas-
tic constants is compared to the experimental data of Funamori and Yagi.
The 36 GPa isobars calculated from the Hemley et al. thermoelastic con-
stants and from the Wang et al. thermoelastic constants are also presented.
There is a fair consistency between all solutions and the data. The effect
of increasing 70 is to shift the calculated isobar to the left. The effect of
increasing Sfa is to shift the calculated isobar to the right. Thus the high
values of STO and 70 of Hemley et al. produce an isobar not too far removed
from that using much lower values of 70 and STO reported by Wang et al.

4.13.6. Isotherms of p versus P: comparisons with PREM

There is geophysical interest in comparing the density distribution of silicate
perovskite with the density distribution from the PREM seismic model. As
p/po = (1 — AV/Vb)"1, a solution for the isotherms of p versus P only re-
quires a simple manipulation of the data behind the solid curves in Fig. 4.15.
The results are shown in Fig. 4.17.
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Fig. 4.16. The 36 GPa isobar of perovskite calculated from sets of thermoelastic
parameters, as indicated in inset, all compared with the Funamori and Yagi (1993)
experimental data (modified from Anderson and Masuda, 1994).

Fig. 4.17. Isotherms of p versus P for perovskite using 70 = 1-5 and 6fa = 5.0
(modified from Anderson and Masuda, 1994). Dashed line represents PREM.
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Fig. 4.18. Adiabat of p versus P computed from the thermoelastic parameters
of Anderson and Masuda (1994) (modified from Anderson and Masuda, 1994).

The 2000 and 3000 K isotherms in Fig. 4.17 are close to PREM. The
PREM solution, however, corresponds to mantle conditions that are adi-
abatic. A better comparison to PREM is made by using the appropriate
adiabat of silicate perovskite. The calculation requires that PTH change
with T along the adiabat. We use the adiabatic temperature distribution
of Brown and Shankland (1981) with T0 = 1900 K (28 GPa). The result is
shown in Fig. 4.18. There is less than 1% difference between the calculated
adiabatic p of PREM and that of silicate perovskite using the parameters
7o = 1.5 and STO = 5.0. Thus we find that a (70 = 1.5, STO = 5.0) per-
ovskite lower mantle agrees with PREM. Using a larger value of 70, 1.96,
Stixrude et al. (1992a) also reported agreement between their computed p
and PREM. The larger value of 70 by Hemley et al. (1992), 1.98, however,
leads to a = 3.8 x 10"5K~1 at 800 K, considerably larger than the a value
(2.8 x 10~5K"1), from the recommended value of 70, 1.5 (see Fig. 4.12).

4.14. Problems

1. Verify that (4.24) follows from (4.23).
2. Verify that (4.37) follows from (4.35) and (4.36).
3. Assuming P (77, T) = KT (T) f ( w ) , prove a/a0 = 1 - (P/KT) 6To.



OXIDES THAT ARE DEBYE-LIKE SOLIDS

5.1. Introduction

By physicists' standards, the materials of planets are not well characterized.
The material in the mantle of terrestrial planets is rocky and composed of
many minerals that belong to a few phase diagrams. The large potential
number of minerals in these phase diagrams is reduced and constrained by
the density of seismological models. Even so, uniqueness is not possible
because many minerals or combinations of minerals have the same density
at zero pressure. Density discrimination at high pressure and high temper-
ature could reduce the ambiguity further if the temperature of the planet
were well characterized (which it is not), and if the equation of state were
universally agreed upon (which it is not, as will be shown in Part II). Miner-
als that survive as candidates for planet interiors are of interest to ceramic
science.

The description of the physical properties of planet materials must be
general. A unique solution to composition cannot be made. There is little
possibility of assuring crystallographic class, precise chemical composition,
or mechanical history, much less purity and defect structure.

The corresponding physical theories applied to these planetary mate-
rials are also necessarily simplified, as the material parameters needed for a
more generalized theory are usually not obtainable. For this reason simple
theories found in the earliest stages of solid state science and promulgated
early in this century keep cropping up in theories of planet interiors.

A good example is the Debye theory of specific heat. Some such theory
is needed, because a means must be had to provide a transition between
the measured mechanical properties of a planet's interior (e.g., its seismic
velocities) and its calculated thermal properties (which cannot be measured
except at the surface).

The question of whether the application of such a simple theory leads
to meaningful results arises, and it is precisely this we wish to examine.

5.2. Packing fraction and coordination

Consider the packing of equal spheres. Let P.P. be the packing fraction of
a structure, equal to the ratio of the volume of the spheres forming the cell

5
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to the volume of the crystallographic cell itself, or

where n,- is the number of atoms of type i in the unit cell; Vi is the volume
of a single atom; and Vc is the volume of the unit cell (Fairbairn, 1943).
The summation extends over all atoms in the cell. For identical spheres of
radius r, the above equation becomes

where q is the number of spheres in the unit cell.
The coordination number M is a function of the crystal class, and the

packing fraction (P.P.) depends on the crystal class through M. Table 5.1
shows the results for various packing fractions. As M decreases, so does the
packing fraction. Even in the most densely packed solids, about one-fourth
of the structure is occupied by voids. The volume of voids in a simple cubic
structure is about 50% and 60% for diamond.

Birch (1961) showed that the ambient sound velocity vp is linear with
po and inverse with the mean atomic weight M/p. This is called Birch's
law. Thus the systematics of vp versus po scaled approximately as po/fJ.,
the invers'e of which is the average volume of the atom in the unit cell,

Equation (5.3) is also a measure of the packing of the ions in oxides and
silicates. The values of P.P. from (5.2), calculated using Pauling's (1960)
ionic radii and the average volume per ion using (5.3),, are presented in
Table 5.2 and correlated in Fig. 5.1.

Table 5.1. Degree of close packing of spheres

Lattice
types

close packing
of equal spheres

tetragonal

body-centered
cubic

face-centered
cubic

diamond

Coord,
no., M

12

10

8

6

4

Packing

q

3*

I'
&

TC

8

&TT
16*

fraction
(%)

74.0

69.8

68.1

52.3

34.0

Example
types

Zr (hex)
Fe (hep at high

protactinium

CsCl
(Fe, ambient)

NaCl
(Fe at high T)

C, Si, Ge

P)
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Table 5.2. Properties of silicates and oxides leading to packing fraction
(P.P.) and Vr values (M, molecular weight; p, number of atoms in M)

Mineral
name

Stishovite
Corundum
Kyanite
Periclase
Spinel
Pyrope

Pigeonite
Jadeite
Rutile
Hematite
Clino-
enstatite

Forsterite
Silimanite
Jeffersonite
Andalusite
Mullite
Diopside
Enstatite
Fayalite
Schefferite
Coesite
Sarcolite
Quartz
Akerman-
ite

Anorthite
Albite
Carnegieite
Anortho-
clase

Orthoclase
Cristo-
balite

Leucite
Vitreous

silica

Ideal
formula

Si02

A1203

Al2Si03

MgO
MgAl2O4

Mg2Al3-
SisOn

MgSi03

NaAlSi2O6

Ti02

Fe203

MgSi03

Mg2Si04

Al2Si05

MgCaSi206

Al2Si05

Al6Si2Oi3

CaMgSi206

MgSiO3

Fe2SiO4
MgCaSi2O6

Si02

Ca3Al2SiO2

Si02

Ca2Mg-
Si012

CaAl2Si2O8

NaAlSi3O8

NaAlSiO4

KNaAl2 -
Si6016

KAlSi308

Si02

KAlSi206

SiO2

Po

4.28
4.00
3.60
3.58
3.58
3.51

3.42
3.43
4.86
5.27
3.28

3.22
3.23
3.39
3.15
3.13
3.28
2.98
4.39
3.39
2.92
2.93
2.65
2.94

2.77
2.61
2.57
2.58

2.55
2.34

2.47
2.20

f
M/p

20.03
20.39
20.25
20.16
20.32
20.29

20.08
20.21
26.60
31.98
20.08

20.10
20.25
21.65
20.25
20.28
21.65
20.08
29.12
23.07
20.03
21.67
20.03
22.70

21.40
20.17
20.29
20.79

21.41
20.03

21.88
20.03

vc

23.40
42.48
75.02
18.74
65.87

192.71

48.93
98.23
27.40
50.46

110.05

72.84
33.62

106.48
85.74

226.81
110.05
55.47
77.36
91.24
34.30

283.54
37.79

154.35

167.40
167.47
92.13

349.22

181.93
42.80

142.27
45.52

Mons

V/Po

23.28
35.34
58.83
12.65
48.09

142.69

35.93
73.68
24.30
38.17
74.78

48.59
58.83
74.78
58.83

153.19
74.78
35.93
49.96
51.79
23.28

152.08
23.28
90.34

96.67
96.73
50.39

197.12

103.23
23.28

79.97
23.28

Vr

4.7
5.1
5.6
5.6
5.7
5.8

5.9
5.9
6.0
6.0
6.1

6.3
6.4
6.4
6.4
6.5
6.6
6.6
6.6
6.8
6.5
7.4
7.6
7.7

7.7
7.7
7.9
8.1

8.4
8.6

8.8
9.1

P.F.t

.99*

.84

.81

.68

.67

.76

.73

.75

.69

.76

.69

.72

.70

.70

.69

.68

.68

.65

.65

.57

.68

.54

.62

.59

.58

.57

.52

.58

.57

.55

.55

.51

tp.F. is the ratio Vlons/Vc. *
discussion of this unrealistic

M and p0 data from Deer et al., 1962. + For
P.P., see Section 5.3.
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Fig. 5.1. Packing fraction versus average volume per atom, Vr = (M/p)/p,
for 29 oxides and silicates as listed in Table 5.2. The number 12 on the ordinate
refers to the packing fraction of equal spheres for the coordination number 12.
The minerals are sorted into three classes (see text). MgO, MgjSiO^, and a-SiO2

are representatives, respectively, of Class C, Class B, and Class A.

Table 5.2 illustrates the point that a great many minerals have a value
of n close to 20.5. Exceptions to this are minerals containing Fe or Ca; in
those cases /i does not depart significantly from 23-31.

A plot of Vr versus the P.P. is shown in Fig. 5.1. This plot indicates
that there is a regular correspondence between these two variables. The
purpose of this curve is to demonstrate that a high P.P. corresponds to a
high density in the class of oxides and ceramics where y. has about the same
value.

We shall show that the position a rock-forming mineral has on the
curve shown by Fig. 5.1 determines the applicability of the Debye theory in
representing thermal and mechanical properties. The field of the curve is
divided into three zones. Class A consists of the open structures, which have
smaller density and smaller packing fractions. Class C consists of densely
packed structures, and Class B is intermediate. The center of Class B
corresponds approximately to a 68% packing fraction (i.e., body center
cubic packing of equal spheres).
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This division is not altogether arbitrary. Pauling (1960), assuming
spherical anions, pointed out that anions are in contact whenever the
cation-anion radius is less than 0.414. He listed the following as the radius
ratios with respect to the oxygen anion: Be2+, 0.25; Li+, 0.34; Si4+, 0.37;
A13+, 0.41; Mg2+, 0.47. This means that insofar as mechanical properties
are concerned, minerals in Class C can be represented as closely packed
oxygen spheres, with each oxygen sphere having a mean atomic weight of
near 21. Included in this class are stishovite, silicate perovskite, corundum,
periclase, and perhaps kyanite. For Class C, Vr < 5.8.

In Class A are found all the low-density SiO2 polymorphs, calcite,
feldspars, anorthite, and various open structure oxides like ZnO. In Class A,
Vr > 6.8. The borderline cases, which we shall lump together as Class B
minerals, all have a P.P. near 68%. These include some important oxides
and silicates—olivine, pyroxene, CaO, rutile, and the calcium garnets. For
Class B, 5.8 < Vr < 6.8.

For silicates and oxides of Class A, volume changes can occur by the
change of the angle between the tetrahedra without changing the cation-
anion radius significantly. Thus the P.P. may change with pressure or tem-
perature, even though the cation-anion distance remains relatively constant
(Hazen and Finger, 1982).

The classification of silicates here into three classes, based on pack-
ing fraction, is close to the classification of silicates made by D.L. Ander-
son (1969) on the basis of the bulk sound velocity and cell volume per Si02
unit.

5.3. Polyhedral groups in crystal chemistry and Vr

The primary classification scheme used here is based not on the P.F., but on
the average volume Vr. The P.P. scheme used is based on the assumption
that the radius of the oxygen ion is invariant with structure and density
(Fairbairn, 1943). Very likely the radius of the oxygen ions is less for
Class C than for Class A. We see from Table 5.1 that the P.P. for stishovite
is 0.99, based on ra = 1.32 A for the oxygen ion. This value leads to an
unreasonably high P.P., and so the TO of the oxygen ion for this mineral
must be smaller than Pauling's value. The significance of the classification
by Vr is that it identifies those silicates and oxides in which the oxygen-
oxygen repulsion is a dominant feature of the potential energy.

The classification of oxides and silicates by the magnitude of Vr is
analogous to the classification usually found in crystal chemistry (for ex-
ample, Hazen and Finger, 1979). A central concept of silicate chemistry
is the identification of the polyhedral of the cation (typically tetrahedral
when surrounded by four oxygens and octahedral when surrounded by eight
oxygens). Two-cation polyhedra may be linked by a shared face, a shared
edge, a shared corner, or by van der Waals forces.

The most dense oxides and silicates share faces or edges in three dimen-
sions. Fully edge-linked structures include stishovite, corundum, periclase,
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spinels, and garnets. Thus structures with shared cation polyhedra edges
are typically Class C, but there are some edge-linked polyhedral structures
found in Class B. In Class C, the oxygens are in contact, and the primary
factor in compression is oxygen-oxygen compression, although cation-anion
compression also plays a small role.

The least dense silicates, such as a-quartz, feldspar, and zeolites, have
primarily corner-linked tetrahedra. These are often called framework struc-
tures. In these minerals, volume change can occur by the change of angle
between the tetrahedra without significant change in the cation-anion dis-
tance. These structures are found in Class A. In addition, the less dense 6
fold coordinated oxides (CaO) and all the 4 fold coordinated oxides (ZnO)
are in Class A. For these solids, resistance to compression involves bending
of the cation—anion bond.

In some silicate structures, polyhedra share edges with some adjacent
polyhedra and link corners with others. These structures belong in Class B.
But also included in Class B are the garnets and spinels, for reasons that
will be discussed later. In Class B, volume compression arises from a mix of
oxygen-oxygen compression and oxygen-anion compression, although some
structures have bond angle changes under compression as well.

5.4. Comparing 6«e with Q from calorimetry, Q^t

We now propose to show that the Debye theory can be used to approximate
the properties of the Class C silicates, but not the Class A silicates. In
the classical theory of a thermal solid, Debye approximated the phonon
spectrum by assuming that all phonons are acoustic and the frequency of
the phonons is controlled by the sound velocities of an isotropic body, vp

and v, (see Section 1.6). This theory led to good approximations of specific
heat and entropy versus T at high T for metals by using the so-called
Debye function. In his derivation, Debye defined the relationship between
the Debye frequency UD and the mean sound velocity vm. Now uijj can be
converted to a temperature (the Debye temperature) by U>D = (k/h)Q.

The Debye temperature (see Chapter 1) as a function of p and sound
velocities is given by (1.65), where the fundamental constants are evaluated.

Using (1.65) the Debye temperature for any solid can be estimated from
data on sound velocities (Tables 1.9, 1.10, and 1.11 and Appendix A-7).

A test of the applicability of (1.65), shown above, is to compare it
with the value of 0 derived by matching specific heat curves to the Debye
function. Qac versus T can be calculated by using the measured velocity
versus T, as in (1.65). 6caj can also be calculated from measured specific
heat data by matching the specific heat data with a standard specific heat
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Debye function. The comparison of these two methods of finding 0 has
been well documented by Kieffer (1980, 1982), where the two values of 0
are close for oxides of Class C, like MgO, but where a large discrepancy
exists between the two 0's for silicates of Class A, such as a-quartz.

It is of some importance to know more about the conditions when

For this we examine briefly the moments of the vibrational frequency spec-
trum, g(u), often called the density of states.

5.5. The moments of the vibrational density of states

Detailed comparison of experimental data with reference to the Debye tem-
perature is best understood in terms of the moments of the frequency dis-
tribution as defined by

where the sum is taken over all the modes in the vibrational density of
states, fif(w); N is the number of atoms; and 3p7V is the number of vibra-
tional degrees of freedom. In the Debye theory for very low temperatures,
the expression for U>D is defined in terms of reciprocal frequencies (or sound
velocities) to the third power (see (1.65)). This corresponds to n = —3 in
(5.5).

The Debye moments 0(n) are defined in terms of the frequency mo-
ments by

and

At T = 0, the value of 0 is found from 0(—3). It turns out (Barron et
al., 1980) that

where the Qs and 0Cp are the values of 0 found at T = 0 from the
experimental values of entropy and specific heat.

The high temperature 0, ©oo, found from specific heat is related to
the second moment of the spectrum (Barron et al., 1980)

Considering oxides and silicates where 0 > 300 K, the sound velocities
at room temperature differ little from sound velocities at absolute zero (Sec-
tion 1.52). Therefore the use of (1.65) to find 0 from measured velocities
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corresponds closely to the case 6(-3). From Table 1.9, 0(-3) = 942 K for
MgO. The high temperature specific heat for MgO leads to 6(2) = 779 K
(Barron et al., 1980). Thus e(-3)/0(+2) = 1.2. We should not demand
better agreement from the experiments than observed from the calculated
0(n) curve. Barron et al. calculated this curve, shown in Fig. 5.2, and
we see that 6(—3)/6(+2) & 1.21, showing that the experiments follow the
theory fairly well. If we evaluate Qac at high T, there is good agreement be-
tween Qac and 0ca; for MgO because sound velocities decrease with T. On
that account, we could expect the Debye theory to give meaningful values
of many physical properties of MgO, and we say the solid is Debye-like.

For silicate perovskite, it has been found (Stixrude et al., 1992b) from
moments of the calculated density of states that 0(—3) = 950 K, and
0(+2) = 1095 K, which are reasonably close in value. (This closeness is
also seen in the case of MgO, as shown above). The theoretical numbers for
0 check out well with experiments, which yield 0ca; = 0(+2) = 920 ± 50
and 1000±50 from infrared and Raman frequencies (Stixrude et al., 1992b).
The low T Qac turns out to be 1090 K (see Fig. 1.3), but 0^ extrapolated
to 1700 K yields 990 K in agreement with 0ca; at high T (see Fig. 1.3).
The 0(n) curve for silicate perovskite was calculated by Wolf (1992) and
is also shown in Fig. 5.2.

Fig. 5.2. The curve of moments of 0£> plotted versus the moment n, 0j3(u),
for MgO and MgSiO3 perovskite. Wolf (1992) presented the perovskite curve,
and Barron et al. (1980) presented the MgO curve.
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Again we might expect many of the physical properties of silicate per-
ovskite to be calculable from a Debye model. Many materials do not have
reasonable agreement between 6(—3) and 0(+2). Bailey and Yates (1970)
show that 6(-3)/9(+2) = 400/900 = 0.44 for pyrolitic graphite.

Qr>(—3) is weighted heavily by low frequency modes, and 0/j(+2) is
weighted heavily by high frequency modes. In a pure Debye spectrum,
where g(u) is quadratic up to the cutoff at WD, ©zj(~3) — 0£>(-f2). If
there is a substantial fraction of modes in g(u) higher than UD, or if g(ui)
does not equal the Debye spectrum at low frequencies, then 0/j(—3) can-
not be close to 0jr>(+2). If these numbers are close, however, say within
15%, then QD(—3) = 6ac used in a Debye function D(Q/T) gives a good
approximation to the measured specific heat at high T. A Debye-like solid
requires that only a small fraction of the total modes lie above U>D (see
Figs. 5.3 and 5.4).

If a very intense peak occurs in the middle of g(ui), as in the case of
CaO, then 0i>(0) is n°t a very good approximation to 0p(+2).

The volume derivatives of Qo(n) define the Griineisen parameters in
their limits for two values of jj. In general.

For very low temperatures,

and for high temperatures,

7(—2) has a significant physical meaning. This moment gamma arises from
the root mean square determination of the amplitude of vibration (Wolf
and Jeanloz, 1984) and is related to melting (see Chapter 11).

5.6. The vibrational spectra (density of states) g(u)

For many problems in oxides and silicates, and especially so in geophysics,
sound velocity data at high T are much more plentiful than specific heat
or spectroscopic data at high T. It is very helpful, therefore, to know when
sound velocity data at high T can be safely used to find thermal properties.

5.6.1. Class C density of states

In this section we compare the density of states with the simple Debye
theory, to show when one might expect the simple Debye theory to apply
to a solid. The Debye theory is a good approximation to some physical
properties whenever the vibrational density of states, g ( u ) , is such that the
optical modes bunch together and are close to the u>o peak found from Qac.
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Fig. 5.3. The computed frequency spectrum or density of states for periclase,
MgO, as calculated by Sangster et al. (1970). It is compared with the Debye
spectrum, where ujj is computed by sound velocity measurements. Note that
the optical spectrum is mostly contained within the Debye spectrum, and that
the spectra converge at low frequencies—a Class C correlation.

The density of states for periclase (shown in Fig. 5.3) has been cal-
culated by Sangster et al. (1970). The Debye spectrum is also given as a
parabola, where the Debye frequency, WD = 19.68 X 1012 cps, is determined
from acoustic experiments according to (1.65). Agreement is good at low
frequencies, and the fraction of the spectrum lying to the right of WD is
small. This agreement between the Debye spectrum and the density of
states at low frequency is considered to be fairly good.
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Fig. 5.4. The computed frequency spectrum or density of states for silicate
perovskite, as calculated by Choudhury et al. (1988). It is compared with the
Debye spectrum computed by sound velocity measurements.

The density of states of silicate perovskite has been presented by
Choudhury et al. (1988). In Fig. 5.4 the density of states is compared
with the Debye spectrum determined by W£> = 21.5 x 1012 (from the sound
velocity measurements of Yeganeh-Haeri et al., 1989). Only a small fraction
of the optical modes lie outside UD, and there is good agreement between
the two optical spectra at low frequencies. It is expected, therefore, that
the Debye theory will be very useful for computing thermal properties of
this solid. To be noted is the similarity of the silicate perovskite spectrum
to the MgO spectrum (Fig. 5.3). In Section 5.5, we found for perovskite,
9£)(-3)/ejD(+2) = 0.87, and eac/9ca, = 1.18, and that at 1000° 0ac

approaches Qca\, indicating Debye-like behavior. Altogether there is good
evidence that silicate perovskite is to be classified as a Class C solid.
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Fig. 5.5. The computed density of states for silica glass calculated by Bell (1976)
compared with the Debye spectrum, where u>jj is computed from sound velocity
measurements. The frequency spectra match poorly at both high frequencies and
low frequencies.

5.6.2. Class A density of states

The density of states of silica glass has been calculated by Bell (1976) and
is reproduced in Fig. 5.5. The Debye spectrum, calculated by the Debye
approximation, (1.65), by means of UD, is indicated by the parabola. Here
it is seen that the Debye approximation is very poor, and a great deal of
the spectrum lies at frequencies higher than U>D. Also note that the low
frequencies of the density of states do not match the low Debye frequencies.



DEBYE-LIKE SOLIDS 125

,§
D)
w
0
fa
w
"o
>,
'w
CD
Q

Fig. 5.6. The density of states for CaO calculated by Bilz and Kress (1979),
where LJJJ is computed from sound velocity measurements. The agreement is
judged to be poor because of the large optical band in the mid-spectrum and the
large distribution of modes above uijj. The spectra favor high frequencies over
low frequencies.

5.6.3. Class B density of states

The calculated density of states for CaO (illustrated in Fig. 5.6) has been
presented by Bilz and Kress (1979). The Debye spectrum calculated by
means of up = 14.25 x 1012 s"1 is a poor approximation because of the
strong optical peak at about uj = 10 x 1012 s"1 and the large high frequency
tail, which make the high frequencies weigh heavily in the calculation of
©z>(+2). This poor correlation between the two spectra is reflected in



126 THERMAL PHYSICS

Fig. 5.7. The calculated density of states for forsterite (Rao et al., 1988), where
up = 16.1 X 1012 s"1 is calculated from sound velocity measurements. The
correlation of the two spectra is similar to that found for MgO, but there is a
longer high frequency tail in forsterite.

various poor correlations between measured properties and those derived
from simple Debye theory (for example, 7ac < 7; see Table 5.3).

The calculated density of states for Mg2Si04, presented by Rao et
al. (1988), is illustrated in Fig. 5.7. The correlation is similar to that
for MgO, but there are unplotted internal SiC-4 modes between 800 cm"1

and 1000 cm"1 (Chopelas, 1990b). This contributes to wZJ(+2), but not
U>D{—3). Mg2SiO4 is marginally close to Class C, and so correlations be-
tween measured properties and the Debye (calculated) properties are some-
times good, and sometimes not good.

Another representative of Class B is rutile, TiC>2- The density of the
states of rutile has been calculated by Traylor et al. (1971). This is shown
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in Fig. 5.8, along with the Debye spectrum using u>jj = 16.2 x 1012. Here
we see that the match is not good, but not bad either. A substantial part
of the spectrum lies above UD. Further, the match at the low frequency
end is not quite right.

These results reinforce the assertions made in the above sections. Solids
with a high P.F. (e.g., for rock-forming minerals at high density) will tend
to have a compressed vibrational density of states analogous to that of a
monatomic closely packed crystal.

5.7. Velocity systematics

We now show good correlations between ambient sound velocities from one
mineral to another in Class C. But the overall correlations are diminished

Fig. 5.8. The computed density of states for rutile, compared with the Debye
spectrum, where UD = 16.2 X 1012 s"1 is computed from sound velocity mea-
surements. Too much of the high frequency spectrum lies outside olujj, and the
convergence at low frequency is only fair.
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if members of Class A are added to the group. We also demonstrate that
the good correlation found in Class C is to be expected as a result of Debye
theory.

5.7.1. Velocity at constant mean atomic mass, p,

The Debye theory has been used to explain the relationship between the
elastic properties of mantle minerals and their densities (Shankland, 1972)
that has come to be called velocity-density systematics. Shankland pro-
poses that the form of an equation relating sound velocity to density at
constant mean atomic mass (e.g., /j, = M/p) is constant from mineral to
mineral. Data on the subject accumulated in the past 20 years have induced
authors to show that the velocity-density systematics concept is valid only
in the statistical sense, and that the number of exceptions make it less than
satisfactory as a general rule (Wang, 1978).

Nevertheless, we will emphasize in this section that the exceptions
to the original proposal for velocity-density systematics are the minerals
to which the Debye theory is not applicable (i.e., Class A). The velocity-
density systematics rules are reliable guides if one restricts the application
of velocity systematics to minerals in Class C. The derivations following
Debye's theory are most instructive. We review and follow the derivations
of Shankland (1971, 1972), which were presented in part earlier by Anderson
and Nafe (1965) and later amplified by Wang (1978).

There is a long history of velocity systematics starting with Birch
(1960, 1961). He demonstrated empirically that for minerals and rocks,
ambient sound velocity is linear in ambient density comparing mineral to
mineral. Variations of Birch's equations have appeared in D.L. Ander-
son (1967), Anderson (1965c, 1972), Shankland (1971) and Wang (1978).
Shankland brought Debye theory to confirm the empirical results for veloc-
ity systematics found by previous authors.

In the Debye theory examined by Shankland, the beginning was fo-
cused on a well known result in lattice dynamics; namely, that at low values
of the wave number k, the dispersion relationship between frequency and
wave number is linear,

where k = 1,2,3 for the two shear and longitudinal acoustic branches,
and Vk is the sound velocity for each branch. At the maximum cut-off
frequency in the vibrational spectrum (i.e., at the Debye limit), we have
the relationship

where TO is the lattice spacing constant at P = 0. In the Debye theory,
kmax is defined by the Debye frequency LLJD. Because the Debye theory
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treats only acoustical vibrations, the sound velocity, Vk(k = 1, 2, 3) is easily
solved. Using the above relationship between TO and kmax, (5.13) becomes

Now VQ = n/p, where /j is the mean atomic mass. Taking the derivative
of (5.14) with respect to p (at constant mean atomic mass) gives

The first term on the right is the Griineisen parameter, arising from Debye
theory (Griineisen, 1926). The subscript k takes on three values appropriate
for the longitudinal and two sound velocities. Thus

where 7t is a quantity arising from an acoustic mode of vibration. Equa-
tion (5.16) can be written as

Thus we expect that when oxides and minerals are sorted by constant ^ and
restricted to those whose density of states can be approximated by a Debye
spectrum, the variation of sound velocity with density from solid to solid
(all at ambient conditions) should obey (5.17). Using a slightly differing
approach relying on Griineisen's (1926) theory, Anderson and Nafe (1965)
derived (5.17) for the shear velocities.

Equation (5.17) is an exponential version of Birch's law, given by

Plotting (5.17) and (5.18) over the (ambient) density range found in oxides
and silicates shows that these two equations produce virtually identical
results. In (5.17) and (5.18) k can be s, I , or 6, representing the shear, lon-
gitudinal, or bulk sound velocity modes. A plot of u;, versus po for constant
fi is shown in Fig. 5.9 (taken from Shankland, 1972). For review articles on
the application of these equations, see Anderson (1972), Shankland (1977),
and Wang (1978).

At this point, I comment that many rock-forming oxides and silicates
that are exceptions to the rule given by (5.18) or its equivalent, (5.17),
have involved calcium-rich compounds (Simmons, 1964a,b) or silicates like
a-quartz with low Poisson's ratio values (Mao, 1974). Such solids, lying off
the curve given by (5.18), are not members of Class C and are characterized
by having low packing fractions or high values of Vr. They have densities
of states far too complicated to be represented by a Debye law, so (5.17) or
(5.18) is not appropriate. From Table 1.9, fj, for CaO is high, and because
Ca is nearly the same size as oxygen, its Vr value is high, giving support to
Simmons's findings.



130 THERMAL PHYSICS

Fig. 5.9. The correlation of bulk sound velocity Vj, with po at constant mean
atomic weight on a log-log plot. The straight lines represent the equation t>j =

«iPo'~1/3 (5-17) (Plotted from data of Shankland, 1972).

Some specific exceptions to (5.17) and (5.18) will now be noted. A
garnet's sequence may not all fall on a common line because the large Ca
atoms in some garnets would increase the value of Vr. Pyrope, with no Ca
and with a Vr = 5.66, is on the border of Class C, but almandine, having
a significant amount of Ca, has Vr = 6.26 (Babuska et al., 1978) and is a
Class B solid (see Fig. 5.1).
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Some oxides and glasses have coordination numbers M of 4 or 2, pro-
ducing optical modes of rotation that greatly broaden their densities of
states (Barron, 1937; Sato and Anderson, 1980). For ZnO, M = 4, which
places the oxide in Class A. In general, failure of (5.17) and (5.18) will
often be noted for sequences where crystal class and // are maintained con-
stant but a high coordination number is not (see data of Liebermann and
Ringwood, 1973; Davies, 1974; Shaw, 1976).

Many oxides and silicates have complicated vibrational spectra that
are unsuitable for comparison with a simple Debye spectrum. Placing ve-
locity data of these minerals in velocity-density correlations will lead to a
distortion of the correlation. That is why points representing CaO, TiO2,
and calcite are not plotted in Fig. 5.9. Chrisoberyl (A^BeO/j), with a low
value of Vc, (4.89), does not fit these ideas and is an unexplained aberration
to the pattern (Wang et al., 1975). This aberration has been attributed to
Be. For planet interiors, the chrisoberyl deviant can be ignored because Be
is a scarce element.

5.7.2. Velocity at constant crystal structure, variable p

In solid solutions where, for example, iron is substituted for magnesium,
the crystal structure is held constant, and the mass /z is varied. Some
simple rules resulting from the Debye approximation apply to this case also.
Following Shankland (1972), we introduce /j into the formula for frequency.
Consider a vibrating one-dimensional system with a spring constant g and
mass p. We find

Replacing u by u&kmax according to (5.13), we have

From the above,

It has been shown (Shankland, 1972) that the term on the right is close
to zero for minerals, because grjj is independent of mass. For ionic solids
the spring constant, being the second derivative of the force holding atoms
together, is, using the Born-Mie repulsion (Shankland, 1972),
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Fig. 5.10. DJ versus [i for a sequence of perovskite solids using Liebermann's
data (1982). The a is the predicted value of Uj for silicate perovskite (1982),
using the vj//1 '2 = constant best fit for the pervoskite data, represented by the
dashed line (figure modified from Liebermann, 1982).

where n is the repulsion coefficient (see (8.8)). For a sequence in the same
crystal class (isostructural), grg will not change, resulting in

where VM is the molecular volume; KTO is the bulk modulus; and x in-
dicates constant crystal class. Equation (5.21) is called the law of corre-
sponding states (Anderson, 1965c) and has been verified for many oxides
(D.L. Anderson and Anderson, 1970) and generalized to monatomic solids
(Anderson, 1972). That is to say, (5.21) holds for a sequence in a solid so-
lution. Liebermann (1975) showed that (5.21) holds for olivines and spinels
(see his Table 8), and also for a series of perovskites (Liebermann, 1982).

Because of (5.21), gr2, is independent of n, and (5.20) becomes simply

An equation equivalent to (5.22) is (Shankland, 1972)

vj^1/2 = constant. (5.23)

Liebermann (1982) tested (5.23) over a wide range in ft by considering a
sequence of perovskite solids (see Fig. 5.10).
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The square in Fig. 5.10 representing Mg silicate perovskite represents
an extrapolation using the mean value of uj^1/2 = constant. This extrapo-
lation leads to a predicted value of vt, that is about 7.8 km/s, as shown by
the location of the D in the figure. Using po — 4.2 gm/cc for perovskite, v$po
yields about KSO = 255 GPa, which is close to the experimental values of
KTO measured about a decade later, around 260 GPa, as listed in Table 4.6.
All the perovskites fit into the pattern of Fig. 5.10, which demonstrates that
perovskites satisfy not only (5.22) and (5.23), but also the assumption im-
plicit in (5.19); that is, their density of states can be represented by a single
Debye frequency. They are, therefore, Debye-like solids.

The details of applying the concepts behind (5.21) to framework sili-
cates were explored by Hazen and Finger (1979, 1982). They found

where s is the ionicity; Z\ and Zi are the ionic charges; and ra is the average
cation-anion bond distance.

5.7.3. Velocity at constant crystal structure, variable p

Keeping the crystal class constant but varying p, we have

where x stands for constant crystal class. But, because p = H/VM,

Using (5.22) in (5.25),

The term c' in (5.26) is a crystal structural factor determined by the
way the substitution of an ion of a differing mass affects the molecular
volume. Thus, c' is essentially a correction for the size of the ion and tends
to be nontrivial for solid solutions where calcium is substituted for iron or
magnesium. For sequences where the c' correction is small, (5.26) becomes

similar to the situation found for uj versus /j at constant x, (5.22).
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Fig. 5.11. Bulk sound velocity t)j versus PQ at constant crystal structure (mod-
ified from Fig. 2, Shankland, 1972). Values of /J are in parentheses. On a log-log
plot, (5.27) requires straight lines with a slope of —1/2. Lines connecting ox-
ides and silicates of Classes A, B, and C do not all show slopes of —1/2 on
this plot. If solids of Class A and Class B (ZnO, BeO, CaO, TiO2, MgCaSi2O6)
are removed from the plot, the remaining lines (C to C) have slopes close to —1/2.

Equation (5.27) is derived directly from (5.19), a model in which there
is a vibration of one atom responding to a linear spring; that is, the solid
is monatomic. Then Debye theory comes in by means of (5.13), so that u
is replaced by sound velocity vj. Thus (5.27) should be valid for Class C
solids, but should not necessarily hold for Class B solids. We should not
expect the slope of the ^n vj versus £n po curve to be —1/2 for Class A
solids. This is clearly demonstrated in Fig. 5.10, which is a plot of £n v/,
versus In po at constant crystal structure.

From this figure we see that the slope for many solid pairs is —1/2.
Disturbance of this simple pattern is found by the lines connecting CaO with
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MgO, BeO with ZnO, stishovite with TiO2, and MgCaSi04 with Mg2SiO4.
If BeO, ZnO, TiO2, and MgCaSiO4—all members of Class A—are removed
from the graph, and if CaO is also removed, the remaining pattern is regular
and follows (5.27).

These variants to the pattern predicted by (5.27) have been interpreted
as evidence of the corrections arising from the size effect given by c' in (5.26)
(Shankland, 1977; Wang, 1978). They can also be interpreted, as we do in
this chapter, as arising because certain solids do not abide by the Debye
approximation due to strong optical modes in the frequency spectrum, so
(5.19) does not apply. For calcium-rich silicates, both effects are important.

5.7.4. The isostructural variation of KTO with po in a solid solution

Consider a solid solution series of dense minerals for which (5.27) arising
from Debye theory is appropriate. One can write (5.18) in the exponential
form

t»t = bp-1/2, (5.28)

where b is an integrating constant, different for each crystal class.
Because vt = (Kg/p) , (5.28) predicts that Kg0 is independent of po

as the average atomic mass ^ changes from mineral to mineral in a solid
solution. D.L. Anderson (1976) noted that experimental evidence showed
that KSO depends little on density as iron content increases within a solid
solution. This, of course, could have been easily derived from (5.22), as
presented by Shankland (1972). D.L. Anderson found this relationship for
pyroxenes, olivines, dense garnets, and spinels. However, the magnitude
of b is sensitive to the crystal structure considered, as experimentalists
have confirmed repeatedly. For example, Weidner et al. (1982b) found that
for the orthopyroxenes the bulk modulus is virtually independent of iron
content (Fig. 5.12).

The bulk modulus is also virtually independent of iron content for the
olivines [Isaak, 1992 (see also Jackson et al., 1978)], as shown in Fig. 5.13.
KS is nearly independent of iron for the Mg/Fe solid solution of spinel. In
garnets, going from pyrope (Mg3Al2Si3Oi2) to almandine (Fe3Al2Si3Oi2),
there is virtually no increase in Kg where density varies from 3.56 to 4.32.
Babuska et al. (1978) reported that Ks = 173 GPa for pyrope and 178 GPa
for almandine.

For the solid solution periclase-wiistite, MgO-FeO, the value of Kg is
reported to vary with density. Kg for MgO (Spetzler, 1970) is 163 GPa,
8% less than the value reported by Mizutani et al. (1972). Jeanloz and
Sato-Sorenson (1982), however, reported KS = 157 GPa for wiistite. Mea-
surements of intermediate compositions of polycrystalline samples by Jack-
son et al. (1978) indicate that the value of Kg may rise as iron content
increases. It may be that the samples of single crystals used have variable
defect structures.
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Fig. 5.13. Bulk modulus versus fractional fayalite component at 300 K and
1500 K (modified from Isaak, 1992) (see Isaak for data references). Note that
bulk modulus is virtually independent of iron content, especially at high T.

Fig. 5.12. Bulk modulus versus fractional composition for the solid solution of
orthopyroxenes. Note that adiabatic bulk modulus is virtually independent of
composition and also that C\\ decreases with increasing iron content (modified
from Weidner et al., 1982b).
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Wiistite is a complex nonstoichiometric oxide that exists in a variety
of types characterized by differing ratios of octahedral to tetrahedral ferric
iron and by varieties of clustered defects (Hazen and Jeanloz, 1984). As a
consequence, there is a large reported range in bulk modulus for wiistite,
and the subject still open.

The issue of how KS varies in the MgO-FeO solid solution is not yet
decided; the answer will be determined by future measurements on defect-
controlled single crystals in the iron-rich end of the (Mg,Fe)O solution.
Acoustic experiments on FeO strengthen the proposition that Kg is in-
dependent of iron content in the MgO-FeO solid solution (Graham and
Kim, 1986).

5.7.5. The isostructural variation of shear constants with p in a solid
solution

Although the Debye theory is a guide to the variation of KS in a solid
solution, it is of little help in predicting how the isotropic shear modulus
changes in such a solid solution. For that, we need equations of lattice
dynamics. In a solid solution the bulk modulus is controlled by (5.22)
and (5.27) in response to simple rules concerning the change of atomic
potential with lattice spacing. But the shear constants depend critically on
the details of the lattice sums (Anderson, 1970; Anderson and Liebermann,
1970). Thus, we probably cannot have both the ambient shear constants
and the ambient bulk modulus independent of ambient density along a solid
solution line. This can be illustrated, for example, by the equations for 644
and C$ for the CsCl structure deduced from lattice sums (Anderson, 1970)
using a simple power law repulsive potential.

Using the central force approximation in CsCl crystal structure, An-
derson and Liebermann (1970) found that

In a solid solution series, AZiZ?e2 is nonvariant, and for P = 0, (5.29)
becomes

For CsCl at P = 0 (Anderson, 1970), the other shear constant is

As the density increases with substitution of heavier atoms, VQ usually
increases (Shankland, 1972). If so, according to (5.30), £44 must increase
if KSO remains constant, and according to (5.31), Cs must decrease as the
Fe/Mg ratio increases. The isotropic shear modulus will be intermediate
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between CH and Cs- Whether the isotropic shear modulus will rise or fall
with iron substitution depends very much on the actual equations for 644
and Cs, and for each crystal structure the equations of the shear constants
will be different from (5.30) and (5.31). For most structures, the isotropic
shear modulus decreases as the iron content increases.

For orthopyroxenes, in contrast to the CsCl structure, both 644 and
Cs decrease with increasing iron content, so the isotropic shear modulus
must also decrease (Fig. 5.14). The opposite case is found for the garnet
sequence, pyrope to almandine (Babuska et al., 1978; Leitner et al., 1980),
where the isotropic shear constant rises with increasing iron content even
though the bulk modulus is independent of iron content.

For the olivine solid solution, forsterite to fayalite, the shear modulus
drops with increasing iron content, both at low temperatures and high
temperatures, as shown in Fig. 5.15. This has been confirmed by Suzuki et
al. (1992), who found some interior points at about Fa/(Fa + Fo) = 1/2.

Fig. 5.14. For the solid solution of orthopyroxenes, both C44 and Cs decrease
as the iron content is increased (modified from Weidner et al., 1982b).
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Fig. 5.15. The variation of shear modulus G with fractional fayalite component
at 300 K and 1500 K (modified from Isaak, 1992).

The amount of change of the isotropic shear modulus or Poisson's ratio
with density depends on the lattice sum details of the atomic potential,
and in general these will not be known for materials that actually comprise
planet interiors. Thus, variation of the shear constants with the iron content
for assumed mixtures of silicates in planet interiors is presently unknown.
Consequently, there is no simple rule governing v, versus p in a solid solution
such as is given for vi versus p by (5.28).

5.8. The Griineisen ratio 7 and yae

Equations for the Griineisen parameters were presented in Section 1.4. We
also showed by (5.12) that JD(—3) = 7ac and that 7,0(0) = 7. We therefore
expect that ~fac will be close in value to 7 for the same solids for which Qac

is close in value to 0ca(. In Table 5.3 we show that for materials in Class C,
jac is close in value to the measured 7. On the contrary, for materials
in Class A, we find that jac is not close in value to the measured 7. For
members of Class B, jac is only somewhat close to 7, an intermediate case.
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Table 5.3. Values of fac estimated from sound velocities (at room
temperature) (1.41) compared with 70 found from (1.24) and (1.30)

Class C Solids
o-ironc

AlaOS
MgOa

Class B Solids
Forsteritea

Olivinea

TiOa

Spinel3

Garnet (alm.-spes.)a

Garnet (pyr.-alm.)a

CaO

Class A Solids
ZnOa

SiOj (quartz)a

SiO2-glassa

Soda-lime glassf

Lead-silica glassf

CaCOf,

Alkali halides
NaCla

KCla

Tac
(1.41)

1.81a

1.31
1.50

1.47
1.33
1.07
0.79
1.38
1.28
1.57

-0.44
0.46

-2.46
-0.33

0.09
-1.004

1.33
1.50

7o
(1.24) (1.30)

1.81C

1.32
1.54

1.15
1.21
1.28
1.13
1.01
1.37
1.72

0.81
0.66
0.036

0.567

1.56
1.54

Earth's lower mantle,
uncompressed: 7 = 1.5d

1.39b Earth's inner core,
compressed: 7 = 1.5d

1.15b

0.57b

0.03f

0.61
0.51

1.62e

Sumino and Anderson, 1984a; Boehler, 1982b, Guinan and Beshers,
1968C; Anderson, 1979ad; Boehler, 198P; Sato and Anderson, 1980f.

Table 5.3 is another example showing that Debye theory—here in the
form of yac—can be applied usefully to oxides and silicates of Class C (yac

and 7 are quite close in value) but not to Class A.

5.9. dKs/dP for closely packed oxides and silicates

In densely packed oxides, where cation radii are small compared with those
of oxygen, the oxygen ion plays a major role in compression. Ander-
son (1965b) suggested that the elasticity of a wide group of rock-forming
minerals is controlled primarily by the volumes and packing fractions of the
oxygen ions. Following this idea, Runcorn (1976) suggested that for dense
silicates the oxygen ion network could be approximated as a densely packed
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monatomic cubic solid, and that silicon, iron, and magnesium ions, being
small, play little part in determining elasticity. As an example, he pointed
out that for spinel, the oxygen ions are arranged in a face-centered cubic
lattice.

It is well known that the less densely packed oxides have relatively
high values of dKs/dP (Anderson et al., 1968; Anderson, 1972). Further,
it is generally found that K'0 decreases across a phase change going from
a low-pressure phase to a high-pressure phase. For example, K'Q is 5.2
for a-iron (bcc) (Guinan and Beshers, 1968), but is 4.37 for e-iron (hep)
(Jephcoat et al., 1986).

Runcorn (1976) went on to suggest that for densely packed solids,
whether iron or silicates, the repulsive potential between the atoms would
take a simple form, and we could expect the value of K'0 to be close to
(« + 7)/3, where n is the exponent on the interatomic relative spacing giving
a power-law repulsion. Thus all densely packed oxides, as well as iron,
should have a value near 4 for K'0, as n is close to 10 and K'Q — (n + 7)/3
for this repulsion law. It has long been noted that K'0 for closely packed
silicates is 4 or less (D.L. Anderson and Anderson, 1970).

Runcorn's suggestion seems to be borne out by experimental results
(Fig. 5.16). K'Q is 3.99 for A12O3 and 4.2 for MgO (Table 1.8). Wolf and
Jeanloz (1984) reported K'0 = 3.79 ± 0.4 for Mg2SiO4 perovskite.

As pointed out above, K'0 = 4.23 for hep iron. The stishovite data for
K'0 are reported variously by different authors. Early static high-pressure
measurements indicated that K'0 > 6 (Liebermann et al., 1976), but it was
noted that the value of K'0 inferred from shock waves was considerably
lower. The definitive measurements of K$a made by Weidner et al. (1982a)
using Brillouin scattering led them to suggest that K0 for stishovite was
substantially lower than for other rutile structure oxides. Thus K'0 for
stishovite may be close to 4.0, following the pattern in Fig. 5.16.

5.10. The Griineisen ratio of the earth's lower mantle

The high temperature acoustic gamma 7^* is derived in Chapter 1.

where the equivalent equations to (1.39) and 1.40) are

Because we have found from Section 5.6 that silicate perovskite is a Debye-
like solid, 7^* — 7, it follows that in the lower mantle, we probably will have
7a* = 7. There is the problem of FeO in magnesiowiistite to consider. There
are no data on the iron effect of FeO in magnesiowiistite, but there are some
data on the iron effect in (Mg, Fe)SiO4. Sumino and Anderson's (1984)
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Fig. 5.16. K'0 = (dKs/8P)T at P — 0 versus ambient density pg. At con-
stant M/p, a large value of po is correlated with a smaller value of K'0. The
dashed lines show isostructural correlation, suggesting that K'0 rises slightly for
solid solutions. For high values of pa and low values of M/p, K'0 W 4 (most data
from Sumino and Anderson, 1984; FCQ 940 data from Jackson et al., 1990).

summary shows that ~fac/~fcai is 0-86 for pure Mg2SiO4 and drops to 0.8 for
(Mgo.saFeo.07)28104. Thus the effect of Fe lowers 7ac by about 7% and is
probably even less discernible in the value of fac/7cai in magnesiowiistite.
The concentration of magnesiowiistite is small in the mantle rocks, however,
so the effect of iron on 7ac/7cai is probably not discernible for the average
rock of the lower mantle. This means that 7^' calculated by (5.33) is a good
representation of 7 in the lower mantle. That is to say, 7 can be closely
estimated by finding 7 with the sound velocity and density distribution.

We use the PREM data from Dziewonski and D.L. Anderson (1981)
with 5 significant figures to evaluate (1.41), (5.32), and (5.33). Values of
7a* for the lower mantle are listed in Table 5.4, which shows that 7^* is a
monotonically decreasing function (going from 1.40 to 1.0 from the top to
the bottom of the mantle by extrapolation).

To a good approximation, in 7 versus £n p data of the lower mantle
define a straight line with a slope of about 1.35 (Fig. 5.16), or q = 1.32, as
found by (1.32).
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Table 5.4.
model*

Calculation of jac for the lower mantle using the PREM

Depth
(km)

871
971
1071
1171
1271
1371
1471
1571
1671
1771
1871
1971
2071
2171
2271
2371
2471
2571

vp
(kms-1)

11.245
11.416
11.578
11.734
11.882
12.024
12.161
12.293
12.421
12.545
12.665
12.784
12.900
13.016
13.131
13.245
13.361
13.477

v,
(kms-1)

6.311
6.378
6.442
6.504
6.563
6.619
6.673
6.726
6.776
6.825
6.873
6.920
6.965
7.011
7.055
7.100
7.144
7.189

P
(g/cc)

4.504
4.563
4.621
4.678
4.735
4.790
4.844
4.898
4.951
5.003
5.055
5.106
5.157
5.207
5.257
5.307
5.357
5.407

TP

1.50
1.47
1.43
1.40
1.37
1.35
1.32
1.30
1.29
1.27
1.26
1.25
1.25
1.25
1.25
1.26
1.27
1.28

7s

1.15
1.14
1.13
1.10
1.08
1.06
1.05
1.04
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.01

7ac

1.26
1.24
1.22
1.20
1.18
1.16
1.14
1.13
1.11
1.10
1.09
1.09
1.08
1.08
1.08
1.09
1.09
1.10

"Calculations at depths < 871 km omitted because of roughness of
the seismic data near the 671 km discontinuity.

Fig. 5.17. The value of 70, 1.48, for the lower mantle determined from plotting
&i Tac versus In p from Table 5.4.
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Equation (2.52) demonstrates the relationship between q, 83, and K'0
at high T:

The value of K'Q is 3.34 for the lower mantle (Section 7.7); the value of q
from Fig. 5.17 is 1.35. Anderson (1979b) showed that, when coupled with
the requirements of 6(z) in the lower mantle, the seismic data are satisfied
for 0.5 < qhi < 2.2, so that qhi = 1 is a reasonable solution (see also
Fig. 10.11). In Section 3.8, it was shown that q is virtually independent of T
and r\ at high T. Thus we expect 8x — 3.3 ±0.2 at deep mantle conditions,
where 6S = ST - 7 (see Isaak et al., 1990). Taking 7 S 1.1 (Fig. 3.10),
(5.34) yields 6S « 2.1 ± 0.3. D.L. Anderson (1987) found 6S « 1.8 for
the deep lower mantle from considerations of mantle tomography, which is
reasonably close.

From Fig. 5.17 q in the lower mantle is 1.35, somewhat higher than
unity even though it has been repeatedly stressed that at extreme condi-
tions, q is near 1 (see, for example, Figs. 3.12 and 3.13). However, the
determination of q by Fig. 5.17 is not isobaric, but under conditions corre-
sponding to the geotherm (perhaps this is close to adiabatic). The adiabatic
correction is given by the calculus equation

where e refers to the earth's geotherm. The first term on the right of
(5.35) is the q calculated isothermally. The factors KT/J and (dT/8P)e

are positive, so the sign of (dj/dT)p determines whether qe is larger or
smaller than q. For the case of MgO, (8j/dT)p is slightly negative at high
T (Fig. 3.10 and (2.2)). Assuming this to hold for the lower mantle, then
(d In 7/3 in V)e is slightly larger than (d in y/d In V)T. Thus q^ > qht,
and Fig. 5.17 is reconciled with Fig. 3.12.

5.11. The seismic equation of state

D.L. Anderson (1967) presented an important and useful relationship be-
tween seismic velocity and density, which is

where A is a constant and r is related to the Griineisen constant. $ is the
same as v$ in (5.17). Using (5.17), we have

so that r = (27-2/3)"1, a typical value of which is 0.3-0.5. Thus the
seismic EoS (5.37) has a foundation in Debye theory.
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5.12. Entropy of closely packed minerals

Brown and Shankland (1981) showed that the entropy of closely packed
polyatomic minerals is more closely represented by a Debye model than is
entropy of minerals with open structures. Low coordinated solids (open
structures) tend to have acoustic entropies in excess of thermodynamic
measurement. Examples of silicates that do not follow the Debye theory
for entropy include framework silicates (quartz and albite), coesite, Ge02,
calcite, and ZnO.

5.13. The Kieffer model for density of states g(u)

It is clear from this chapter that Class C solids for which the Debye theory
is applicable for finding thermal properties are few in number compared to
those of Class A and Class B (Fig. 5.1). Something different is needed to
represent the vibrational density of states for Classes A and B.

In Class C, the vibrational density of states g(ui) is replaced by the
quadratic Debye frequency distribution in which all information on optical
modes is submerged. In the Debye model, it is assumed that all 3p7V
modes can be represented by acoustic modes, and that the acoustic sound
velocities determine the frequency of the highest mode, uijj- To find the
physical properties for solids of Classes A and B requires the use of the
actual g(u>), or a good approximation to it. Kieffer (1980, 1982) found a
good and useful approximation to g(u), a model in which g(u) is replaced
by delta functions and bands when the exact g(u) is unknown.

If the primitive cell has p atoms, 3p is the number of degrees of free-
dom (or modes) of the cell, and of these only 3 are acoustic modes. Each
of the three acoustic modes appears as a separate branch in g(w) and is
approximated by a sine wave. Low symmetry silicates have a large number
of atoms in the unit cell, so p is large, and the optic modes number 3p — 3
modes. They often occupy a large amount of frequency space. Kieffer's
(1980) model for forsterite is shown in Fig. 5.18.

Fig. 5.18. Kieffer's model
of g(ui) for forsterite, where
p = 80, showing the posi-
tions of the 3 acoustic curves
(two of which overlap), the
optical spectrum (less than
620 cm"1), and two Einstein
functions (after Kieffer, 1980).
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Fig. 5.19. Model density of states for ilmenite, MgSiO3. The three arrows are
the three acoustic modes. The boxes are optic continua, each with appropriate
height. The Einstein oscillators are represented as four thick, solid lines with
heights proportional to the number of modes represented. The overlapping boxes,
distinguished from one another by degrees of shading, represent continua, and the
tall box represents a narrow continuum. The scale on density of states is arbitrary
(after Hofmeister and Ito, 1992).

Kieffer's method was applied to ilmenite by Hofmeister and Ito (1992).
They took account of all measured optical modes and assigned continua
(boxes) to regions of the model spectrum where there are clusters of optic
modes, as shown in Fig. 5.19. The optical modes are classified as rotation,
translation, Raman, and infrared, requiring ten continua. There are four
Einstein functions and three acoustic Debye spectra, as shown in Fig. 5.19.
The continua limits were fixed by measured optical band limits.

They were able to determine entropy S and Cy of ilmenite using g(ui) in
Fig. 5.19 along with (1.51). They found excellent agreement between their
calculated Cp and measured Cp and between calculated S and measured
S over the experimental range, 100 K to 700 K. Thus the fif(ui) found by
Kieffer's method can be quite good and comparable in accuracy with ff(w)
found from theory (such as given in Fig. 5.3 for MgO).
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PART II
ISOTHERMAL EQUATIONS

OF STATE

...we never have perfectly clean-cut
knowledge of anything, but all our
experience is surrounded by a twilight
zone, a penumbra of uncertainty...
the penumbra is to be penetrated by
improving the accuracy of measurement.

—Nobelist Percy Bridgman

In the beginning of the science of the equation of state (EoS), pressure
was related to volume by two measurable parameters, Kfa and VQ, and
an empirical constant, £. Birch (1938, 1952) showed that £ is determined
by the value of K'0. At first, K'Q could not be measured independently,
and so uncertainty in K'0 defined the edge of the penumbra. Since the early
1960's, K'0 has been accurately determined by ultrasonic measurements un-
der pressure, providing researchers with a valuable three-parameter EoS.
This, however, only moved the penumbra, because researchers then de-
sired a four-parameter EoS that had an empirically chosen parameter,
K'Q = (82K/dP^)T. This parameter has defined the edge of the twilight
zone for many years. Today new, accurate experiments in physical acous-
tics are beginning to disclose the value of Kg as an experimental value
independent of the P, V measurement, and the penumbra of uncertainty is
about to be penetrated and shifted again.

The fourth order isothermal EoS is a function of the four measurable
parameters (all at P = 0), so that P = f((V/V0), KTo,K'0, K%). Three
chapters in this part are concerned with what the functional relationship /
might be in both third and fourth order EoS's. Assuming that the required
parameters have been measured, the EoS can be represented by f ( V , T).
Emphasizing that the isothermal EoS is strictly determinable only at T — 0,
we often use P = f ( V , 0) in Part II. We are concerned with the region
of variables where f(V, 0) is single-valued and continuous, with definable
derivatives, over a wide range of V, and so the effect of phase boundaries
on the EoS is not discussed.
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The EoS's considered can be lumped into three classes: (1) those based
on the solid mechanics definition of finite strain; (2) those based on assumed
relationships between the variables within the EoS, such as A''; and (3)
those based on interatomic potentials. These three classes, some of which
are given in terms of quantum mechanics parameters, will be discussed
separately in Chapters 6, 7, and 8. I will show that for most applications
of the EoS, there is little justification for choosing one EoS over another
strictly on the basis of fundamentals. The choice is made on the basis of
convenience and tradition.

Chapter 9 concerns shear constants and shear velocities. The theory of
lattice dynamics is applied to obtain the shear elastic constants for a cubic
single crystal. This is done in terms of certain derivatives of the potential.
Finite strain also can be used to define the shear constants in terms of third
order elastic constants. The variation of the shear constants with P and T
depends greatly upon the crystallographic structure, whereas the variation
of KT with P and T is insensitive to the crystallographic details.

A large number of equations in the literature are suitable for expressing
the isothermal pressure-volume relationship. It is now becoming recognized
that all such equations are essentially empirical. Equation of state calcu-
lations based on first principles methods using numerical methods (the ab
initio approach) are now being published, and these will be the course of
much future work. (A full treatment of the first principles methods belongs
in a theoretical textbook).

Ab initio calculations have been developed to calculate static and dy-
namic properties of solids, including ceramic solids and oxides important to
solid earth geophysics (see, for example, Hemley and Gordon, 1985; Mehl
et al., 1986; Cohen, 1987; Isaak et al., 1990). Ab initio theory is at the state
in which calculations of elastic moduli and their pressure and temperature
derivatives and melting boundaries are possible, where no experimental
data are used in the theory other than values of universal constants, such
as Planck's constant; atomic variables, such as mass; and structural in-
formation, such as the point group representation. Excellent agreement
between calculated and computed properties has been demonstrated in a
number of cases. (Principles of ab initio calculations applied to thermal
physics were discussed lightly in Part I, Chapter 5). Even with this pend-
ing triumph in EoS theory, there is still a need for analytical expressions,
although largely empirical, to represent and analyze the measured data,
and for extrapolation and interpolation. That is the justification for these
four chapters.
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FINITE STRAIN

6.1. Introduction

In this chapter we consider a few EoS's based on finite strain. The classical
theory of infinitesimal elasticity is based on two assumptions: 1) the strains
are uniquely determined by the stresses and are reversible, and 2) the strains
are limited to 'linear' elasticity; that is, they are so small that squares and
products are negligible. In finite strain, the first assumption is retained, but
the restriction to small strains is removed (Murnaghan, 1937). In general-
ized elasticity theory, finite strain representations go back to Love (1927),
but practical expressions for finite strain were developed by Birch (1938,
1952). He used Murnaghan's basic theory but restricted it to the case where
the initial stress is a large hydrostatic pressure. The crucial assumption in
finite strain theory is in the formal relationship between compression and
coordinate displacement (see Stacey et al., 1981). One form is

where c is the coordinate displacement (strain).
In Chapter 1, I defined EST as the lattice energy at P = 0 and T — 0.

The Helmholtz energy will increase with strain, so the total energy due
to compression will be f — EST + E(t), where E (e) = £"(77,6); that is,
at T = 0 where TV IB vanishes (1.2), there still may be E(f). The strain
energy, E (f), will be some assumed function of e, and the pressure at T — 0
is P (77) = 77 (dE/dnf)T, where P = 0 when E (77) -> 0. We shall see that a
large variety of paths can be used to obtain the desired EoS, P(l).

The relationship between 77 and strain is not unique (Knopoff, 1963).
An equally plausible alternative to (6.1) is

The difference between (6.1) and (6.2) arises from different reference states;
the former is the Lagrangian formulation, whereas the latter is the Eulerian
formulation (see Section 6.7). Other formulations, including a linear combi-
nation of (6.1) and (6.2), are possible; the number of different constructions
between 77 and e in finite strain is endless (Knopoff, 1965).
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6.1.1. The third order EoS

Because KTO, K'0, and po can be measured precisely in the laboratory,
they are available to define the isothermal EoS. Thus, any isothermal EoS
with only three arbitrary constants can be defined completely. Because the
pressure function P vanishes at V = VQ, these three parameters define four
related functions of the EoS, T — EST, P, KT, and K'0, at all pressures.
Higher order derivatives of KTO taken beyond K'Q have rarely been measured
in the laboratory, and reported measurements have large error bars. Thus
a fourth order equation of state (four arbitrary constants) usually involves
KQ, whose experimental determination is not very robust. The product
KTOK'Q is a dimensionless number near the value —10. A three-parameter
EoS has constants that are expressed in the constants in the potential. The
potential could include three terms in a polynominal expansion in strain

where e = f (77) when r> = V/V0 = p0/p. Now f -> U as T -> 0, (1.2).
In a strict sense, the isothermal EoS requires setting T to absolute

zero so that EVIB in (1-14) is zero. Also both W(Vb,0) and P(l,0) are
zero. Thus the parameters are KTO, K'Q, and po (through rj), used in the
EoS to represent conditions at T = 0. Using (6.3) and taking T = 0, the
three-parameter isothermal EoS is now symbolically defined as:

Now KT = KTO at rj = 1, so KT(J}} 0) is proportional to KTO, the other
variables being dimensionless. Also P has the same dimensions as KTO • The
parameter TI includes the parameter VQ. 14 — EST has dimensions of energy,
the same dimensions as KTaVo- Therefore, the above can be replaced by

The function E(f) does not have to be a series expansion in a second vari-
able such as found in (6.3). Many atomic theories regard the potential as
a specific function of volume or interatomic radius. These potentials, of-
ten called intermolecular pair potentials <f> used in place of e in (6.3), are
important to EoS's and will be discussed in Chapter 8.
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We do not have to restrict E(e) to three elastic parameters. To define
the isothermal EoS, we need as many experimental parameters as E(TJ) pa-
rameters. Let us suppose that we can identify certain terms in the potential
with the dielectric constant £Q and the index of refraction no. Then we use
the internal energy U to include £ and n\ (zero-pressure values) as well as
EST, giving a five-parameter isothermal EoS. In that case, there are six
associated functions:

Most of the equations in this chapter deal with the set of equations given
by (6.4). The Decker equation of state (Decker, 1971) for NaCl, however,
is based on the set of six equations above, as we shall see in Section 8.9.

6.1.2. Parameters in the isothermal EoS

Though the isothermal EoS, P(r),Q), is strictly applicable only at absolute
zero, it is often used to describe the EoS of geophysical materials at room
temperature or to duplicate the experimental data of materials taken at the
room temperature isotherm. The justification for this rests on the similarity
of the bulk modulus values of oxides and silicates at room temperature and
at absolute zero, i.e., for minerals with a high Debye temperature

(see Table 1.5). Such a statement cannot be made for soft solids like the
alkali metals; however, for the hard solids of geophysics and ceramic science,
room temperature is well below the Debye temperature, and KT changes
little between 0 K and 273 K.

There is little point in insisting that only the zero degree bulk modulus
data be used for the EoS, because the variation of the measured value
of KT (1,273°) from author to author is often as large as the difference
between KT (1,273°) and KT (1,0°) reported by the same author. An
example of this experimental uncertainty for NaCl, which is one of the
most carefully measured solids, is shown in Table 1.6. The experimental
uncertainty in KT(!, 273°) is even greater for solids less emphasized.

The pressure equation is affected more by KTO than K'0. Once KTQ

has been identified, the major features of the EoS are predictable. In this
chapter, P(r),0) = P(TJ) will be used to identify the isothermal EoS.
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Pressure experiments near absolute zero are difficult and therefore data
are scarce, but a great deal of room temperature isothermal data exist. Be-
cause most of the applications of EoS's made here are to hard solids, found
in geophysics and ceramics, P(rf) shall be understood to mean P(r), 273)
in this chapter. When the isothermal EoS is applied to softer solids (i.e.,
when 0 is near room temperature, as, for example, with gold), the longer
nomenclature is used (see details in Chapter 2).

In the experimental dimensionless EoS plot, P(rf) versus rj does not
change significantly from solid to solid. Here KT —+ KTO as 77 —> 1 and is not
an adjustable parameter. Dimensionless plots of EoS data tend to overlap
each other at low pressure because they have a common slope, —1. At higher
compressions they diverge but the divergence is not marked whenever the
values of K'0 are close for solids under comparison. In Table 1.8 it was
shown that values of K'0 generally lie between 4.0 and 6.5 for dense oxides
and silicates, with KQ — 5 a good representative value.

The experimental data for four halides (LiF, NaF, NaCl, and Nal) are
shown in Fig. 6.1, which also shows the remarkable overlap of the data on
a dimensionally reduced EoS curve 77 versus P/Ksa- The values of K'0 are
5.4 ± 0.15 for the four compounds. This figure demonstrates that a simple
theoretical EoS to match the data can be attained. A theoretical isothermal
EoS of the third order, (6.4), may be suitable to match the experimental
data of minerals at comparable compressions. From Fig. 6.1 we deduce that

where f(A'g) varies slowly with K'Q at constant 77.
The question is, what theoretical isothermal EoS is best? Unfortu-

nately, an arbitrary assumption about the potential, or equivalently the
strain energy function E(f), is behind the specification of f(rj). Thus we
shall see that often a presumed theoretical isothermal EoS rests on unproven
assumptions.

6.2. Basic assumption: a series in strain (c) for the energy
function E(e)

6.2.1. A series expansion for E(e)

The beginning of finite strain formulations discussed here is the relationship
between the compression 77 and the strain variable e; that is, e = f(r)).
Several functions of 77 have been successfully used in the EoS. It is often
convenient to expand E(e) as a series in c. This series expansion must be
truncated after a few terms, as the experimental information required by
the coefficients of the terms in the expansion is limited. The experimental
information consists of the bulk modulus and density at zero pressure, KTO
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Fig. 6.1. The dimensionless experimental data for V/VQ versus P/Ksa f°r four
alkali halides at room temperature (modified from Smith and McLean, 1973).

and po, and the higher volume derivatives, K'Q, KQ, etc. The accuracy of
K'0', A'Q", etc., based on experimental evidence is severely limited.

Let the symbol c' denote de/dV, c" = d2e/d2V, etc. Take the expansion
in the potential as a Taylor's series in the equation

where p denotes a power, not a derivative, in (.. The condition P(l) = PQ = 0
is satisfied by ignoring the term for p = 1. The factor KT0Vo has the di-
mensions of energy so that all coefficients Cp and c are dimensionless.

From (2.1) and (2.5) and dropping the subscript T0 for P and K in
(6.4) so that isothermal conditions are assumed for the remainder of this
section, we have E' — P, where £" is (8E/dV)T, and further

The derivatives of (6.5), where the subscript 0 refers to e = 0, are
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where

For n = 3 and £0 = 0, the €e'"e2 term in (6.10) vanishes, and all but
the (t')3 term behind the summation sign in (6.10) vanish, leaving

For P = 0, e = eo = 0. Since

then

Another expression for EQ is found from (6.9). For n = 2 and CQ = 0, the
terms behind the summation sign in (6.9) vanish, and EQ becomes

Equating (6.11) and (6.12),

Similarly,

Equating (6.14) and (6.20), C3 becomes



We have

where (.' = ( d c / d V ) ; e" = (dE'/dV); and e'" = ( d f " / d V ) . The third order
coefficient, C3, found by using £'0'/(£d)2 = ~5 and e'0Vb = 1/3 in (6.16), is
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The pressure equation to third order is:

The energy equation to third order is

As an example, consider Eulerian strain for f(^). From (6.2)
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Thus, to the third degree in Eulerian strain (at T = 0):,

and the EoS is

Equations (6.22) and (6.23) are commonly called the Birch-Murnaghan
equations of state (B-M EoS) of third degree written in terms of the strain
function. When incorporated into the above, (6.2) redefines these equations
in terms of the compression parameter 77.

There is no analytical obstacle to finding formulae for C^, C$, etc.
However, C± requires knowledge of K'0' in addition to A'g and KTO- KQ,
the second derivative of K with respect to V, is difficult to determine
experimentally, so C$ is mostly of interest in terms of convergent problems
in the series expansion of U — EST- The formula for C$ is

To those who are accustomed to dealing with stress calculations that
are linear and infinitesimal, the definition of strain such as given by (6.1)
may seem strange. Such formulae for e arise because of the requirements
that the strain energy be invariant under rotation. In finite strain theory,
the strain energy has terms arising from second order terms in strain that
cannot be neglected when c is about 0.1 and above. One reason why there
are a number of possible definitions of e(r/) that can possibly be used in
place of (6.1) is that the reference strain is arbitrary. The precise way in
which e is defined becomes significant when the strain is large.

The Lagrangian definition of strain, in contrast to (6.25), is

Evaluating £o/(e'o)2 Bs shown on the previous page, we find —1, so that
C-2 = 9, and by (6.16)

which is quite different from the Eulerian case seen in (6.21). Thus, Cz
can only be zero if K'0 is zero. This means that the Lagrangian formula
has fewer convergence problems at high P than the Eulerian formula for
any value 0 < K'0 < 4. A value of K'0 = 0 is appropriate, however, for
incompressible flow in liquids.
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An EoS in the third order is found from (6.22):

In terms of the compression TJ, it is (Thomsen, 1970)

In terms of the density ratio, w = p/po = I/7?* (6.26) is

6.3. Finite strain equations of state based on e(tj)

6.3.1. The Birch-Murnaghan isothermal equation of state

The most widely used isothermal EoS in solid geophysics is known as the
Birch-Murnaghan EoS, given by (6.23). The long use and wide application
of this EoS has engendered for it a certain authority in the literature. Nev-
ertheless, this EoS, like all other isothermal EoS's, is based on an unproven
assumption. In this case, the EoS rests on the assumption of Eulerian strain
(6.20). Other definitions of strain and their consequences will be presented
in subsequent sections. Knopoff (1965) has discussed the variety of possi-
bilities in assuming a strain function and the resulting ambiguity. There
is no a priori reason to assume (6.20) and the resulting (6.23), other than
for reasons of convenience, reasonability, and utility (see Sections 6.6 and
8.15).

Birch's original derivations were based on Murnaghan's theory of finite
elasticity. The EoS presented by Birch in his classic 1952 paper is the
same as (6.26) except that K'Q was not explicitly represented. Instead, a
parameter £ was used, denned by Birch as

In the body of his derivation, Birch was very careful about the physi-
cal meaning of £. However, some early authors who applied the B-M EoS
to a particular geophysical problem allowed £ to be a floating constant or
simply assumed a reasonable value of £. In the early days of this theory,
such approximations were unavoidable because K'0 had not yet been care-
fully measured. However, because K'0 has now either been measured or
constrained to narrow limits by associated measurements, the application
of the B-M EoS presently requires strict attention to (6.28).



The B-M EoS in the second degree is (Ca = 0)

The third order B-M EoS reduces to (6.32) when K'0 = 4. Dense
oxides, such as A^Oa, FeO, stishovite, and MgSiOa perovskite, have values
of K'Q close to 4 (Table 1.8). Consequently, the B-M second order EoS is
often a close approximation to the B-M third order EoS, and in the past it
has been used to estimate high-compression data when K'0 is unknown.

6.3.2. The Bardeen equation of state

Bardeen's (1938) EoS arises from an assumption of an interatomic potential
between atoms. The potential giving rise to the Bardeen EoS, which could
have been treated by the methods found in Chapter 8, is

This well-known potential and its resulting EoS have been applied to alkali
metals. The treatment of this EoS logically belongs in Chapter 8, but we
include it in this chapter to illustrate a point.

The EoS that results from (6.33) can be derived from a particular
strain function, f(t)). I therefore present it in this section to illustrate that
deriving an EoS from a strain function is a general approach. The strain
function appropriate to the Bardeen potential is
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In terms of the compression 77 and the experimentally determined con-
stants KTB and K'Q, the isothermal B-M EoS to third degree is

In terms of the density ratio, w,
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This is often called the infinitesimal definition of strain.
From (6.34) we have e(,7(e{,)2 = -4, and from (6.16),

Cz vanishes at K'0 = 3 in this EoS, just as C% vanishes for K'0 = 4 in the
B-M EoS. For many solids the third order term in this EoS will be small
due to the closeness of K'Q to 4. Thus, the second order EoS is of special
interest.

The third order EoS for the Bardeen potential is

In terms of rj,

For K' = 3, we have the second order Bardeen EoS (see also Section 8.15)

6.3.3. The Ullman-Pan'kov equation of state

As shown by (6.3), the potential E(t) is expanded into a Taylor's series in
which £ has been interpreted thus far as a finite strain function. However
it is not necessary that e, in some of its various forms, be strain in its
traditional sense, e can be any convenient dimensionless function of volume.
We have seen that the third order term is large or small depending on the
magnitude of K'0. Because the parameter K'0 is important in defining the
higher order terms, the function t can be chosen to include K'0 in such a
way as to facilitate convergence of the series. Ullman and Pan'kov (1976)
defined such an £(77) function with the result that Ca always vanishes and
with the feature that K'Q is in the exponent of 77 in the pressure equation,
i.e., they chose an e that is dependent on both 77 and K'0.

from which

Thus Cz = 0 if u = — K'0 — 1, which holds for any value of K'Q.
To the third order, the Ullman-Pan'kov equation of state (U-P EoS) is
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In terms of the compression r], it is

My purpose in placing the U-P EoS in this chapter is not necessarily
to recommend the use of (6.41) for oxides and silicates, but to illustrate
the point that (.(rf) can be chosen to facilitate convergence of the series ex-
pansion. We see that K'0 may be an exponent of 77 in finite strain theories,
similar to the kinds of EoS derived from atomic theories of solids. The
Eulerian and Langrangian functions e(n) are based on sound solid mechan-
ics derivations ( see Section 6.7), whereas the Ullman-Pankov derivation is
chosen to insure a mathematical implication.

6.4. Problems with truncation of the series

We have emphasized that the third order EoS is used because there is often
insufficient experimental information to make generalized statements about
fourth order and higher terms. This amounts to a truncation of the Taylor's
series expansion of the energy after the third term by making C± = 0. There
is a danger that the sum of all higher power terms is sufficiently large that
they are not negligible compared with the first three terms of the series.

Equation (6.23) should be replaced by

where Rn+4 is the remainder of the n + 4 and higher terms. We cannot
evaluate Rn+4 if the experimental value of K'0' is not sufficiently robust,
which is often the case. We can, however, find the conditions necessary to
find the vanishing C$ coefficient. If C$ is sufficiently small, we may assume

Equation (6.24) evaluates €4 in terms of K'0, KQ, and the function
e(7j). The equations for the four functions of 64 considered thus far are:

Birch-Murnaghan EoS

Thomsen EoS
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Bardeen EoS

Ullman-Pan'kov EoS

We see that if 64 is zero, then KQ is a function of K'0 and KQ. This is
unlikely from a physical point of view because the interatomic pair potential
has great variety when comparing from one compound with another.

Considering that the range K'0 varies from 3.5 to 6.5, we find the values
of KTOKTO shown in Table 6.1 for the case C$ = 0. The value of €4 in the
Ullman-Pan'kov EoS is remarkably close to that in the Birch-Murnaghan
EoS, especially in the range (3.5 < K'0 < 5.0) that is appropriate for plan-
etary interiors. KxKg is exactly the same for the two EoS's in the case
K'0 = 4.

For C$ to be sufficiently small that Rn+4 is negligible, K!f must have
a negative value. If it is positive, then C*4 is too large for the third order
EoS to approximate the correct P. Because Cs = 0 for K'TO — 4 in the
B-M EoS, the fourth order term will be larger than the third order term
for solids where K'0 = 4 ± e. This means that the B-M EoS in the third
order is no better, and perhaps even worse, than in the second order when
K'Q is close to 4.

We see that KQ = 0 or 64 = 0 are two very different assumptions and
should not be confused. The consequences of C^ = 0 are different with each
of the strain functions we have considered (See Table 6.1).

6.5. The fourth order isothermal equation of state

The fourth order EoS requires that terms for which n > 4 vanish in (6.5).
The EoS is

Table 6.1. Values of KTa K£ for C4 = 0

EoS K'0 : 3.5 5.0 6.5

Birch-Murnaghan
Thomsen
Bardeen
Ullmann-Pan'kov

- 3.639
-15.639
- 2.972
- 3.000

- 5.889
-29.889
- 8.222
- 6.000

-12.633
-29.889
-17.977
-10.000
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Once Ca and C$ are evaluated from the assumed strain function, P
can be written out explicitly. For example, the fourth order Lagrangian
EoS is

In general, P involves four material property parameters—KTO, K'0, K'Q',
and VQ—involved in the compression ratio TJ. In general the fourth order
EoS can be written:

Although a fourth order EoS requires four material property param-
eters, they need not necessarily be those given in (6.50). The material
property parameters shown in (6.50) are a direct consequence of expanding
the energy in a Taylor's series (6.3).

The Birch-Murnaghan EoS of fourth degree is (Stacey et al., 1981)

The equations for the isothermal bulk modulus of the Birch-Murnaghan
EoS Kf and its pressure derivative K'0 are

and where the bulk modulus

6.6. On the instability of the Eulerian equation of state

Stacey et al. (1981) pointed out that in the fourth order B-M EoS, the value
of K'0 is negative at densities exceeding
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They said, "Depending on the value of KoK'^, [the range where K'Q is
negative] may not be much beyond the terrestrial [range of pressure] and is
therefore a serious defect of the Eulerian equations." For K'Q lower than 4
this defect arises well within terrestrial pressures.

Hofmeister (1993) has analyzed the stability of the Eulerian formula-
tion of finite strain in terms of equivalent repulsive interatomic potentials.
She finds that an instability in the potential exists for K'0 < 4, and no
minimum exists for K'0 > about 7. Thus, stable results exist for applying
the B-M third order EoS for 3.9 < K'Q < 7.1. This is the usable region
and is satisfactory for most solids to which it is applied. However, for some
solids, like orthopyroxene, where K'0 w 11 (Webb and Jackson, 1990) and
liquids and glasses where 7 < K'Q < 23 (Bottinga, 1985), the B-M EoS is not
reliable. For ionic solids, when K'0 < 3 (Anderson and Liebermann, 1970),
the shear moduli become negative, and the structure is not stable.

6.7. More on the volume strain relation, e = f(rj)

In Section 6.1 it was pointed out that there is a non-uniqueness in the
definition of finite strain as evidenced by the choice between (6.1) and
(6.2). We now show how these equations may be derived.

Let r be a vector locating the final state and TO a vector defining the
initial strain position, then the vector strain is e, where

This is the accepted Lagrangian approach, where the deformation is in the
framework of the initial state. Similarly, the vector strain f defines the
deformation in the framework of the final state (the Eulerian approach):

Define e as the symmetric finite strain tensor in relation to e as

It is known from the most general foundations in finite strain theory
(Truesdell, 1966) that the stress tensor S is related to strain e when starting
with (6.56), by

where £< is the transpose of e. This is the Lagrangian formulation. Using
(6.57), the Eulerian approach, the general stress and strain relationship is
(Truesdell, 1966)
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where the components of the strain tensor c are

Independent of these equations, the relation between strain and volume
change for the Lagrangian case (Thomsen, 1970) is

and for the Eulerian case, is

For the case of hydrostatic stress, S —> P, there is great simplification, and
both (6.59) and (6.60) reduce to

which is the beginning point of this chapter. But, on the other hand, (6.62)
and (6.63) reduce to different equations when S —> P:

which are the same as (6.1) and (6.2) (except that early in this chapter we
do not distinguish between the two kinds of strain). Holding to identifying
separately the two kinds of strain, we have

The essential difference between the two kinds of strain is that the La-
grangian approach uses the original and unstrained state as the reference,
whereas the Eulerian approach uses the deformed state as the reference.
There is a potential incompatibility when a Eulerian strain-based EoS,
such as the B-M EoS, is used in conjunction with theories based on the
Lagrangian framework. Lattice dynamics-based derivations of Cfj, such as
described in Chapter 9, are Lagrangian based.

6.8. Problems

1. Derive Cs = —2,7K'0 for the Langrangian strain.

2. Find the analytical expression for K'0 for the Birch-Murnaghan EoS of
third degree.

3. Prove (6.28) and (6.39).

4. Derive (6.51) and (6.52).



CONSTRAINING PARAMETERS
TO GET THE EQUATION OF STATE

7.1. Introduction

In this chapter I present some examples showing EoS's that arise with the
assumption of special characteristics of EoS parameters. The majority of
EoS's in the literature arise from special and arbitrary assumptions about
the parameters. Of the many possibilities, we review three illustrative
cases: (1) an assumption about K' at high P, (2) an assumption about q,
and (3) an assumption about KT(P)-

The first case is attributed to Keane (1954), who suggested that dK/dP
is a monotonically decreasing function with pressure, eventually reaching a
limiting value of K'^ = (8K/dP)T as P —» oo. K'^ can be considered as
a floating parameter that is used to adjust the curve to pass through any
specified high pressure point in the P — rj plane or the P — w plane. The
Keane EoS is useful for interpolation between shock wave data and lower
pressure P-V data.

The second case is a thermodynamic approach (Brennan and Stacey,
1979), where the Griineisen parameter is written as a special function of
pressure (known as the "free volume" approximation), yielding a differ-
ential equation in P. With the help of the assumption relating 7 and
y = VQ/V = p/po, the differential equation is solved, yielding

The third case is attributed to Murnaghan (1944), who defined it as a
special case in his finite strain theory; K-p is taken to be linear in P (i.e.,
K1 = K',}.

7.2. The Keane EoS: dKT/dP-*!('„ at high P

Keane's boundary value assumption is that K'T is a monotonically decreas-
ing function passing from K'0 at y = 1 to K'X(P = oo)' for p » PQ. More
exactly,

Thus K1 is a monotonically decreasing function descending from K'0 at
P — 0 to a lower limit K'^ at large pressure.

r
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Fig. 7.1. The Murnaghan and Keane equations of state for potassium. The
values shown are from Monfort and Swenson (1965). The best value of K'^
appears to be 3.50, this value being sensitive to the precision of the highest
pressure (isothermal) shock wave data such as reported by Rice (1965).

Keane integrated (7.1) and obtained the following isothermal expres-
sions that constitute the Keane EoS:

and

Equation (7.2) is useful for describing both the pressure determined
from low pressure acoustic data and shock wave data measured on the same
substance (Anderson, 1966). KQ and K'0 are taken from the acoustically
determined laboratory data, and the value K'^ is adjusted so that the
pressure-density curve fits shock wave data points. Equation (7.3) is a
good interpolation formula for intermediate pressures (see Fig. 7.1).

The value of K'^ can be evaluated from the interatomic pair potential.
For many pair potentials, (K'0 — A'^) = 1/3. K'^ is the value of the bulk
modulus derivative at a very high pressure in which the crystallographic
structure remains intact and in which there is no phase change. For a
Fermi-Dirac gas, composed of nucleons, K'^ = 5/3.
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7.3. The Brennan-Stacey EoS and the Barton-Stacey EoS

In Chapter 2, we demonstrated that for some materials, (dKx/dT)v = 0,
or close to zero. This requires that g a l . Brennan and Stacey (1979)
showed that this condition leads straight to the Vashchenko-Zubarev (1963)
or "free-volume" formula for 7 (see Section 1.4.8).

The zero pressure value of (7.4) is

Since K' and K are differentials of P, (7.4) is a second order differential
equation in P. Integration of (7.4) yields KT of the Brennan-Stacey (1979)
EoS:

Integration of (7.6) yields the pressure,

Brennan and Stacey (1979) called (7.7) the thermodynamic formulation of
the equation of state because it arises from the thermodynamic condition
(dKf/dT)v = 0. For the general case of q, (7.7) is replaced by form
called the incomplete gamma function, which requires a numerically based
solution (Brennan and Stacey, 1979). Because fp = constant is consistent
with the thermodynamic properties of NaCl, the calculated pressure from
(7.7) can be tested against the 300 K measured isotherm data of NaCl (for
example, the isotherm deduced from shock wave measurements reported
by Fritz et al. (1971)). We use KT (300) = 23.84 GPa and K' = 5.35 from
Spetzler et al.'s (1972) acoustic measurements to evaluate (7.7), Psr-s-
The assignment of a value for 70 requires a choice: using (7.5), Jo is 1.84,
but the measurements of Yamamoto et al. (1987) yield 70 = 1.614. Both
values of 70 are used for P^r-s, to be compared with the Fritz et al. (1971)
experimental isotherm, Pp, as well as to the third order Birch-Murnaghan
EoS, PB-M- The comparisons are made in Table 7.1.
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Table 7.1. Comparison of analytically determined pressure with
experiment for NaCl

V/V0

1.0
0.95
0.90
0.85
0.80
0.75
0.7

Pressure
Experimental

GPa

PF

at 300 K

0.000
1.403
3.468
5.996
9.395

14.080
20.350

Pressure
Analytical Equation of

GPa

PBr-S

7o = 1.84

0.00
1.42
3.34
5.95
9.51

14.37
21.05

70 = 1-614

0.00
1.41
3.30
5.73
9.04

13.47
19.43

State

PB-M

0.000
1.398
3.289
5.838
9.266

13.871
20.05

PF from Fritz et al., 1971. PBT-S from the Brennan-Stacey EoS
(7.6). PB_M from the Birch-Murnaghan EoS (6.23).

We see that PBT-S follows the isotherm deduced from shock data, Pp,
rather well. It appears that the Brennan-Stacey formulation is quite sat-
isfactory for the isothermal EoS, provided that the solid under question
approximately satisfies the condition (dKT/dT)v=0.

Barton and Stacey (1985), using a molecular dynamics approach, com-
puted 7 for an fee crystal with central force atomic potential function and
found correlation of motions of neighboring atoms beyond what was ob-
served in the Brennan-Stacey model of 7, 7,^. This led to a correction
term / in the expression for jvz given by

Barton and Stacey (1989) showed that (7.8) yields the following differen-
tial equation, where ID = p / p o , and where / is considered as an arbitrary
parameter.

Taking q = 1 and the boundary conditions P = 0 and K'Ta — wP' at
w = 1, the solution of (7.9) becomes
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where the subscript Ba-S represents the Brennan-Stacey approximation to
P. At P — 0, 7 is constrained only by K'0. Equation (7.4) is replaced by

7.4. The Murnaghan EoS

Murnaghan (1937, 1944) noted in his general theory of finite strain that K
is linear in P to a good approximation up to high compressions.

which can be written as

and can be integrated to yield the isothermal Murnaghan EoS,

In spite of its simplicity, (7.14) is accurate up to surprisingly high pressures.
Anderson (1966) demonstrated that (7.14) duplicated experimental

data for a wide variety of materials up to pressures of the order of K f a / 2 .
Many experimentalists find the Murnaghan EoS very convenient to express
their results. Mao and Bell (1979) measured the compression of MgO up
to 94.1 GPa, which is about P/KTO = 0.62, using a diamond anvil pressure
cell. They found the data fit a Murnaghan EoS where KTO — 156 GPa
and K'T = 4.7. The parameters are in reasonable agreement with values
determined from other methods. A plot of their data is given in Fig. 7.2.
The dashed line is from shock wave data.

7.5. The KTtK% parameter

The EoS's described so far in this chapter have an implied value of Kx0K!f .
For the Keane EoS, differentiation of (7.1) with respect to P yields

For the Brennan-Stacey EoS, differentiation of (7.9) yields

For the Murnaghan EoS,

In these three cases, C± = 0. For the Brennan-Stacey EoS, KQ is negative,
just as we found for the cases of finite strain (Chapter 6).
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Fig. 7.2. V-P data for MgO, after Mao and Bell (1979). Circles on the graph
represent their measurements. Shock wave isotherm by Carter et al. (1971) is
shown by the dashed line. Parameters of the Murnaghan EoS —the solid line—
are: KTO — 159.9 GPa and K'TO = 4.56, acoustically measured by Anderson
and Andreatch (1966) (modified from Mao and Bell, 1979).

7.6. Other relationships leading to an EoS

We have by no means exhausted the possibilities for EoS's using reasonable
relationships between the thermodynamic parameters. Five more examples
are noteworthy. N. Mao (1970) suggested that K(dP/dK) is linear in P.
Grover et al. (1973) suggested a relationship between the logarithm of the
bulk modulus and volume. Slater (1939) denned pressure as a quadratic
polynomial in AV/Vo, where VQ refers to zero pressure volume; but for this
case, Stacey et al. (1981) pointed out that dK/dP becomes negative at
pf p0 = 1.7. If VQ is replaced by the instantaneous V in the quadratic poly-
nomial, dK/dP remains positive at all P, and the resulting EoS describes
mercury (Davis and Gordon, 1967). The Tait EoS (MacDonald, 1969) arises
by taking V as proportional to the logarithm of P.
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7.7. Compression in the earth's lower mantle

Bullen (1968, 1969) found that the seismic data of the earth, when trans-
formed into KS and P data, can be represented by linear functions. He
reported that to an accuracy of two percent, the two linear relations,

and

represent the results for the lower mantle and the outer core separately.
These empirical relations show that the earth's lower interior obeys

approximately the Murnaghan condition (6.11). However, the situation is
not quite comparable to that described in Section 6.4, because the earth's
geotherm is not isothermal. The temperature is steadily increasing with
pressure, approximately adiabatically, throughout the lower mantle. The
EoS derived from (7.17), of the form given by (7.14), will not be an isother-
mal EoS, but will closely approximate an adiabatic EoS. Bullen's discovery
has not been pursued because an adiabatic EoS does not contribute to the
understanding of temperature in the general EoS given by (1.17).

More recent seismic models verify that KS is linear in P, at least
through the upper portion of the lower mantle. Fig. 7.3 is a plot of KS
versus P for the lower mantle using the seismic solution of Dziewonski et
al. (1975).

Fig. 7.3. The variation of the adiabatic bulk modulus with pressure in the
lower mantle as determined from the PEM model seismic solution (Dziewonski
et al. 1975). The data fall on a linear curve (after Anderson and Sumino, 1980).
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Up to P — 100 GPa, very good linearity also exists for the PREM
seismic model. Thus the slope and intercept are well defined. The (hot)
values of K$ and Kga determined by Kg versus P using PREM data are
(Anderson and Sumino, 1980) 3.19 and 232.4 GPa.

The value of K'0 — 3.19 for the lower mantle in Fig. 7.3 is the adiabatic
derivative of the adiabatic modulus. This value is less than the typical
values of K'0 for silicates and mantle material candidates, as shown in Ta-
ble 1.8. Part of this discrepancy arises because of different therrnodynamic
conditions.

Representing conditions in the earth by the subscript e and isothermal
conditions by T, we have from calculus

The last term of (7.19) is negative because Kg diminishes with T, whereas
T increases with P in the earth.

For many compounds, (8Ks/dT)p is of the order of —0.015 GPa/deg.
The dT/dP gradient across the earth's upper mantle is near 10 deg/GPa,
so that the correction term is about -0.15. We therefore may expect that
the uncompressed lower mantle will have a value of K'0 (hot) = 3.34.

In Sections 3.4 and 3.5, we have shown that K' increases with T, where
32KT/dTdP is about 0.4 x lO^R-1, for MgO and olivine. Assuming this
value holds for silicate perovskite and the temperature for the uncompressed
lower mantle is 1900 K, K'Q should be greater by about 0.07 at 300 K than
at mantle temperatures. Thus K'0 (1900) = 3.34 becomes K'Q (300) = 3.41.
The latter value is still lower than the Knittle and Jeanloz (1980) mea-
sured value of K'0 for silicate perovskite, 3.9. However, the result for K'0
is sensitive to the method of extrapolation. Bukowinski and Wolf (1990)
found K'0 (hot) = 3.7 using the third order B-M EoS, and K'Q (hot) = 4.2
using the fourth order Birch-Murnaghan EoS. If applied to the third order
B-M EoS result on K'Q, the corrections above would make K'0 (300) almost
exactly coincide with the measured value of K'0 for silicate perovskite.

The uncompressed value of A'50 is temperature dependent and will
be higher at room temperature than at high T. Typical mantle materials
have a value of (dK/dT) = -0.015 GPa/deg. Going from KSa (1900)
to KSo (300) adds about 30 GPa, yielding an ambient KSo = 255 GPa.
Changing K$0 to KTO will require an increase of about 1.5 %. Thus the
final KTO for the cold uncompressed mantle will be close to the measured
value of KTO for silicate perovskite. Solving (7.14) for w, we find from the
data shown in Fig. 7.3 that po is near 4.00 ±0.01 for the hot uncompressed
lower mantle, and applying a thermal expansion correction, we find po(300)
close to 4.25 g/cc (as also found by Bukowinski and Wolf, 1990). Therefore,
the cold uncompressed lower mantle has EoS parameters that are quite close
to the laboratory measurements of silicate perovskite.



8

EQUATIONS OF STATE FROM THE
INTERATOMIC POTENTIAL

8.1. Introduction

In principle, the pressure can be exactly determined if the interatomic po-
tential can be exactly determined. Recently much progress has been made
to in realizing adequate interatomic potentials for geophysically important
solids having low crystal symmetry and large cell sizes. This has yielded
reasonably good EoS's starting from first principles. A brief summary of
these advances was covered in Chapter 5.

Here we will approach the subject of interatomic potentials heuristi-
cally, using approximations appropriate for simple cubic solids. This ap-
proach is appealing because of its simplicity and because aspects of the in-
teratomic potential expose parameters in the EoS that have physical mean-
ing.

Consider a simple structure in which the volume V of a mole of atoms
is determined by the separation of an adjacent pair of atoms, r. Then the
volume V is related to r by

where D is a structural factor accounting for the efficiency of packing.
Changing the variable V to r, the interatomic distance,

We are concerned with the change of T beyond EST due to a change
of r, similar to the change of T beyond EST due to a change of strain in
Chapter 7. In Chapter 7 we defined f - EST as the change due to r], E(r]).

Here we define T — EST as the change in interatomic potential <j> due
ior,<t>(r). Thus

Further,
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The attractive component of <^> is sufficiently different from the repulsive
component that it is useful to separate it into two components: 4>a and
(j>v. Below we neglect many-body terms, which are important in the gen-
eral approach and are often included for oxide EoS's. Further, we neglect
consideration of lattice strain as it arises from relative motion of tetrahedra
and octahedra in network silicates (Hazen and Finger, 1979, 1982). The
parameter </> is a consequence of the force between two atoms arising in the
presence of the surrounding crystal field, and not just the force between
two isolated atoms.

8.2. The attractive interatomic potential ^»

In the definition of the interatomic potential for a solid, assumptions must
be made about the chemical bonds holding the solid together and about
the range of effective force of the bonds. Most structures are made up of
mixtures of bond types, but here we make simplifying assumptions. For
minerals in geophysical problems, the ionic bond is by far the most impor-
tant. In an ionic solid, the electrons are bound to the nucleus, and the
solid is nonconducting or only slightly conducting. Visible light is trans-
mitted in thin sections; the solid has good cleavage; and it exhibits strong
infrared absorption. These and other physical properties, as found in many
oxides and silicates of interest to geophysics and ceramic science, justify
the assumption of ionicity in the attractive potential.

It is assumed that the structure is an ionic point lattice (i.e., all lattice
points are composed of charges whose attraction is given by a coulombic
potential). For the attraction of one ion pair separated by the ionic distance
r,-, the attractive potential is

where Z\ and Zi are the valences of the two ions; e. is the electric charge; <#0i

designates the attractive potential for one ion pair; and r,- is the interatomic
spacing between an arbitrary ion pair.

The above equation must be summed over all pairs in the lattice. When
this is done, we have an expression for the attractive potential energy:

where r is the nearest-neighbor interatomic distance, and A is the Madelung
constant, which is dependent on the crystallographic structure. A can be
found by the appropriate Ewald sum and is tabled in many references.
It is usually defined on the basis of a mole of the chemical formula of a
substance. In this case, A is a small number for a diatomic substance
(1.74576 for NaCl) and a much larger number for complicated unit cells
such as found for A^Os, as shown by Table 8.1.
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Table 8.1. Modified Madelung constant for a variety of structures
using two definitions

Structure

Rock salt
Cs chloride
Rutile
Corundum

Examples
of Solids

NaCl.CaO.AgCl
CsCl.TlCl
MgF2

Al2O3,Fe2O3

Coord.
No.

6
8

3,6
4,6

Energy/
atom pair

1.748
1.763
2.408
4.172

Energy/
valence bond

1.748
1.763
1.605
1.668

8.3. A simplification in the Madelung constant

For iron-free oxides and silicates, the "average" mean atomic weight // is
close to about 20.5, as shown in Table 1.9. This gets close to 22 when the
Fe/(Fe + Mg) ratio gets as high as 20%, but for the earth's mantle itself,
H is close to 21 (Watt et al., 1975). For this reason it is often useful to
convert specific volume V to n/p or constant/p. The Madelung constant of
minerals can then be converted to units of energy per valence bond instead
of energy per atom pair. In the former case the value of the Madelung
constant is virtually independent of structure, as Table 8.1 shows.

Thus the coulombic energy of many oxides and silicates can be well
approximated, defining M as the product of ZaZc (averaged) multiplied
by M corresponding to NaCl. Here ZaZc (ave) = £2 Xj Z j p Z a / ( x j + p),
where Xj is the number of cations; Za is the valence of the anion; and p is
the number of anions in the cell.

8.4. The repulsive energy term

The interatomic potential <j> must have a repulsive energy term or terms;
otherwise the lattice would collapse under the attractive forces. Calling the
repulsive energy of a particular ion pair ^u , the total repulsive energy of a
mineral is

Because the repulsive energy is very short ranged, the terms in (8.5)
become negligible after a few ion pair distances. In simple structures, the
repulsive energy can be represented satisfactorily by one, two, or three
terms:

where the subscript nn stands for nearest neighbors; the subscript nnn
stands for next nearest neighbors; and M and M' represent the coordination
number. In a biatomic ionic structure where the physical properties of anion
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and cation are quite different, two terms are required for the nnn repulsive
energy, and in that case the repulsion is well approximated by three terms:

where <fiv (a — a)nnn stands for anion-anion interaction and (j>v (c — c)nnn

stands for cation-cation interaction.
For many minerals of interest in geophysics and ceramics, the attractive

component of <j> is taken to be (8.4). Though this is common practice, there
are a great variety of proposals for the repulsive energy, (j>v. Authors have
differing opinions on the functional form of vnn and on the number of terms
in (8.6) needed to approximate </iv.

8.5. The Born-Mie equation of state

This case has the simplest repulsive energy term. No nnn terms are con-
sidered, and the nn term is given by an inverse power law:

where b is an arbitrary constant (M = 6, 8, 4 for NaCl, CsCl, and ZnS
structures, respectively, for example).

Now assume that (j> is the sum of (j)a + <j>v, by neglecting many-body
terms, magnetic terms, electronic terms, and internal strain. That is, <j> is
the sum of (8.4) and (8.8).

Now r) - V/V0 = (r/r0)
3, so that (see also Fiirth, 1944)

where the thermal energy is neglected (T = 0).
The three arbitrary parameters of </>(?;) are a, b, and n. Replacing the

parameter V with 77 = V/V0 in (8.1) and (8.2), P(VQ, 0) becomes P(l, 0).
The boundary condition P ( l , 0 ) = 0 eliminates one parameter, and the
others are found in terms of KTO and K1. At equilibrium,

and

Using (2.1),
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where again the condition T = 0 is implied by P{ff) and Kf(rf). When
J j - l ,

so

Using (2.5) on the above,

K.M = _ m ̂  = !Lti +1 f f ̂  ,-(-D/3 _ J
W \#/ dr; 3 3 L \" + 3/ ' J

As r\ —> 1,

Using (8.13) and (8.15) in the expressions for P, K, and K' (Ander-
son, 1970),

Note that the EoS is completely defined in terms of the parameters KTO

and KQ. This gives a physical meaning to the atomic parameters a, 6, and
n in terms of EoS parameters.

The Born-Mie EoS, (8.17), blows up at KTa = 8/3, but this is of little
physical significance, as most oxides and silicates have K'TO > 3. The Born-
Mie EoS, (8.18), has some similarity in its form to the U-P EoS (6.36). In
fact, at K'Ta = 3 the Born-Mie EoS is identical to both the U-P EoS and
the Bardeen EoS of the second degree.

Mammone (1980) applied the Born-Mie EoS to his measurements of
CaO. Choosing KTo = 1149 and K^ = 4.04, he found that the Born-Mie
EoS made a close fit to his data taken up to 64.1 GPa (P/KTo = 0.56).
This is shown in Table 8.2. The values chosen for KTO and K'T agree well
with other data in the literature.
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Table 8.2. Comparison of experimental compression for CaO
with theory using the Born-Mie EoS and the parameters
KTo - 1149 and K'Ta = 4.04.

Measured

P(GPa)

0.9
5.9
9.0
9.1

10.9
13.2
15.8
18.7
18.8
21.0
21.5
26.0
29.3
34.4
36.9
41.0
46.1
51.0
54.5
60.3
62.8
64.1

V/V0

0.9897
0.9640
0.9362
0.9339
0.9273
0.9073
0.8916
0.8750
0.8824
0.8676
0.8659
0.8591
0.8362
0.8208
0.8132
0.7980
0.7794
0.7710
0.7631
0.7507
0.7425
0.7410

V/V0

0.9924
0.9544
0.9341
0.9334
0.9226
0.9069
0.8959
0.8817
0.8812
0.8711
0.8689
0.8496
0.8373
0.8193
0.8110
0.7983
0.7836
0.7706
0.7618
0.7483
0.7427
0.7399

Theory

%

+0.27
-1.00
-0.22
-0.05
-0.51
-0.04
+0.48
+0.77
-0.12
+0.40
+0.35
+1.11
+0.13
-0.18
-0.27
+0.04
+0.54
-0.05
-0.17
-0.32
+0.03
-0.15

P/K0

0.0078
0.0513
0.0783
0.0792
0.0949
0.1192
0.1375
0.1628
0.1636
0.1828
0.1871
0.2263
0.2550
0.2994
0.3211
0.3565
0.4012
0.4439
0.4743
0.5248
0.5466
0.5579

From Mammone, 1980.

8.6. The Born-Meyer equation of state: the method of
potentials

Like the Born-Mie approximation in the previous subsection, the nnn terms
in (/>„ are neglected, but the nn term is given by a simple exponential,
commonly known as the Meyer repulsion term,

The potential energy at absolute zero is given by
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The EoS solutions are found by employing the same calculus given by (8.10)
to (8.15) (Kalinin, 1960),

and

where

These equations have been referred to as the Method of Potentials by many
authors in the USSR and are in common use by workers in the Schmidt
Institute of Physics of the Earth's Interior. Equation (8.22) has been used
to represent experimental data on many materials up to high pressure
(Zharkov and Kalinin, 1971; Zharkov et al., 1972; Zharkov and Trubit-
syn, 1978).

8.7. The Demarest equation of state for NaCl: nnn
repulsion

Demarest used (8.21) for (j>, but he added additional terms for the nnn
components of (j>v. There were two papers in which the nnn terms were
defined differently. In one of these (Demarest, 1974), he assumed that the
nnn repulsion was anion-anion, and he used the inverse power law, similar
to (8.8). In the other paper (Demarest, 1975), he assumed the nnn repulsion
was an exponential law, similar to (8.20).

The extra constants introduced by the nnn potential required extra
boundary values. He used the boundary conditions of the elastic constants
and their pressure derivatives by invoking not only KTO but also (C^)0,
the elastic shear constant, and by invoking (dC<i4/dP)0, as well as K'To.
Simple algebraic expressions for P(n) and K(rj) are not possible, and the
computer is needed for the final results. Demarest found that at high
compression P(n) and K(r)) are not sensitive to the choice of the nnn
potential. However, he found that at high compression the elastic shear
constants are quite sensitive to the choice of the nnn potential. Demarest's
main contribution is that he showed that the next nearest neighbor terms
are needed to make fine adjustments to the shear elastic constants and their
pressure derivatives in the EoS.

8.8. Van der Waals bonds in the potential ^a

A few authors have included the van der Waals interaction in <^a. This is a
weak attraction arising from the interaction of the dipole moments of two



190 ISOTHERMAL EQUATIONS OF STATE

neighboring atoms. A dipole moment arises because the electron cannot
be everywhere at once, and the electron shell's center of charge makes the
interionic distance different from the nuclear distance. The electrostatic en-
ergy due to two interacting dipoles varies as r~6. Even weaker interactions
exist for quadrapole—quadrapole interactions. These energy terms vary as
r~s, r~12, etc.

The van der Waals interaction energy is very weak, often about 1/100
of the strength of an ionic bond. In most minerals important to geophysics
and ceramics research, the van der Waals energy is so weak compared with
the coulombic attraction that it can be neglected altogether, although it
has been included in the case for NaCl discussed below.

8.9. The Decker equation of state for NaCl

Decker (1971) assumed (8.20) for three repulsion components of <j>v, and for
<j>ai he took (8.4) plus a term in r~6 and a term in r~8, altogether three
attractive components. The full explanation of all these six terms is found
in Seitz's (1940) book. Decker assumed that he needed all these terms
to find the EoS for the NaCl and CsCl structures. The Decker potential
represented as the internal energy at absolute zero is

Here d is the ratio of the nnn distance to the nn distance, and M' is the
nnn coordination number.

There are a large number of unknowns in (8.25). Some of them, like
c and d, were numbers taken from evaluations from previous papers, and
some of them, like 6+ and b~, were computed by Decker from polarizabilities
using the measured dielectric constant and the index of refraction. The
parameters c and d are essentially determined by using KTO and the lattice
parameter. However, K'0 is not used as a boundary condition to find c, and
so Decker's analyses departed substantially from methods common in most
EoS analyses.

The value of P(rj) is determined by computer calculations. Decker
added a term for the thermal energy, using the Debye theory covered in
Chapter 1. Decker published his EoS as a table of numbers listing P (77, T).
His tabled values, especially P(T], 273), have been used by many experi-
mentalists as a secondary pressure standard. The measured compression of
NaCl can be used as a pressure calibration through P (77, TO) in the Decker
table. Thus the relative compression of the measured sample to a standard
NaCl sample in parallel is enough to find P (77, TO) for the unknown sample.
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8.10. Equations of state for metals

In solid earth geophysics, when considering properties of the earth's core,
interatomic potentials appropriate to iron are often of interest. In the core,
the compression is of the order r) ~ 0.4. The Morse (1929) interatomic pair
potential has been favored by Welch et al. (1977) and Fazio et al. (1979)
and has been discussed by Zharkov and Kalinin (1971).

This potential consists of two purely covalent bonding terms:

where 0o is the binding energy at r — r0. Applying the formula for P and
substituting back as before,

where w = V$/V = p/po — 1/T)- It can be shown (Stacey et al., 1981) that

Formulas for K and K' are found in Stacey et al. (1981).
A variation of the Morse potential is the Rydberg potential,

The resulting pressure equation and the KTO (K'd) equation are

Stacey et al. (1981) presented, apparently for the first time, the derivation of
the pressure from the Davydov potential, which was mentioned by Zharkov
and Kalinin (1971).

from which

and
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Now, taking K'Ta = 5 as representative for iron in the high temperature
phases and solving for K'0, we find

K'0' - - 7.78, Morse

K'o' = - 8.82, Rydberg

K% = - 7.80, Davydov,

which are similar to those values found for other potentials. All suggest
KQ must be negative. That is, K' decreases gradually with pressure.

8.11. EoS parameters for iron at core pressures

Many attempts have been made to find a phase diagram of iron valid up
to core pressures (Birch, 1972; Liu, 1975; Anderson, 1986; Boehler, 1986;
Ross et al., 1990; Williams et al., 1991; Anderson, 1992; Boehler, 1994).
The phase diagram must be known to show which phase of iron is present
at the inner core pressure.

There are now six phases of iron and four triple points. Birch (1972)
knew of four phases: a (bcc), 7 (fee), e (hep), and a nonmagnetic i5 (also
bcc) sandwiched between a and 7, and restricted to very low pressures.
Boehler (1986) proposed a new high temperature phase, which he called 9,
that was required on the basis of his experiments. This high T phase was
also suggested by the theory of Young and Grover (1984), who indicated
that it is nonmagnetic bcc and called it a'. We shall designate this phase
as 0. Ross et al. (1990) proposed the phase boundary to be near 5000 K.
There is also a new phase called /3 (Saxena et al., 1993) found near 90 GPa.

One of Birch's (1972) proposed phase diagrams (which lacks the phases
/? and 6) is shown in Figure 8.1. Here the upper triple point is at 100 GPa,
making the core entirely within the c (hep) phase. The Ross et al. (1990)
proposal for a high temperature, high pressure bcc phase (called by them
a') would put the inner and part of the outer core within the phase 0. There
are theoretical arguments against a stable bcc phase at high pressure. Hence
we follow Boehler and call it 6. Thus, the EoS appropriate for pure iron at
inner core pressures and temperatures does not appear to be appropriate
for a bcc or an hep structure, whereas that appropriate for the upper part
of the outer core might arise from the new /? phase. The phase diagram as
of 1993 (Anderson, 1993) including 0 and /? is shown in Fig. 8.2.

Brown and McQueen (1980) measured the longitudinal wave velocity
set up in a solid after the compression shock wave had passed and before the
tensile shock wave had arrived, so they were able to record the longitudinal
sound velocity at a value of P and compare it with the bulk sound velocity at
that same P (recorded in Table 12.1). From this they found two transitions
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Fig. 8.1. The phase diagram of iron in T versus V/Vo space according to
Birch (1972). A and B represent pressure at the core—mantle boundary and the
inner-outer core boundary. The convergence of the j - f boundary and the f-liquid
boundary defines the c-j-l triple point at 100 GPa. Dotted lines are isobars. The
lines marked A and McQ are the Hugoniot from APtshuler et al. (1968) and
McQueen et al. (1970), respectively (modified from Birch, 1972).

indicated by a sharp decrease in vp: P — 200 GPa and P — 243 GPa.
At the higher pressure transition and higher P's, vp became exactly t>j,
so that v, —» 0. Thus the onset of melting in iron was found to be at
P = 243 GPa along the Hugoniot. The plot of vp versus P is shown in
Fig. 8.3. The melting temperature Tm at 243 GPa is then the calculated
T of the Hugoniot at the pressure (see also Chapter 12). Although Brown
and McQueen (1986) found Tm = 5800 ±500 K for the 243 GPa transition,
Williams et al. (1987) reported 6700 ± 400 K.

Parameters used in the EoS of iron are listed in Table 8.3. We consider
three phases of iron as possible candidates for the inner core, a(bcc), e(hcp),
and 7(fcc). Values of pa, KQ, and K'0 of these three phases are listed in
Table 8.3 (Anderson, 1986, 1993). (The parameters for the nonmagnetic
bcc phase are not the same as those for the a phase). There are four sets of
values of A'o and K'Q for e-iron in Table 8.3, but we see the tradeoff between
K0 and K'Q typical of P-V compression measurements in Fig. 8.4. The
value found for KQ from the experiments would be better determined if K'
could be constrained. The recommended approach is to assume C/i — 0.
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Fig. 8.2. A version of the phase diagram of iron (Anderson, 1993), including
the 6 phase (Boehler, 1986) and the new phase j3 (Saxena et al., 1993). This is
one of several interpretations (modified from Anderson, 1993).

Fig. 8.3. Elastic wave velocities (solid line) versus pressure along the Hugoniot
of iron (modified from Brown and McQueen, 1982). The dotted line is the calcu-
lated bulk sound velocity. The first break represents a solid-solid transition; the
second break represents a solid-liquid transition, both on the Hugoniot.
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Table 8.3. Equation of state parameters for phases of iron at room
temperature pressures

Iron phase
(P = 0,

T = 300 K)

a

a(nm)**

€

€

e

f

7

Liquid,
1900 K

Pa

g/cc

7.873
7.873
7.87

8.37

8.28

8.28

8.28

8.28

8.0

7.0

K0

GPa

166.6
166.6
167

284

178.2

156.2

173.2

182.7

18()t

136.0

K'o

GPa

5.29
5.97
4.9

5.3-6.0

5.15

5.4

4.37

4.4*

5.5

5.0

Source

Guinan &: Beshers, 1968
Rotter fe Smith, 1966
Mao fe Bell, 1979

Isaak and Masuda, 1993

Brown fc McQueen, 1982
(reduced shock wave data)

Mao & Bell, 1979
(static compression data)

Jephcoat et al., 1986

Andrews, 1973

Zaretsky fe Stassis, 1987
Stassis 1994 (at 1400 K)

Birch, 1972; Filipov et al.,
1966 (phase diagram data)

'Obtained from Andrews, Fig. 5,
values (Isaak and Masuda, 1993)

using KQ = 182.7 GPa. ** nonmagnetic
tExtrapolated to 300 K from 1400 K

The chosen values for e(hcp) iron at 300 K are the centroid of Fig. 8.4:
Po = 8.28, KTO — 172 GPa, and K'0 = 4.8. To compute p at the inner core
P, an isothermal equation of state, that is, Po(V), must first be chosen.

Fig. 8.4. The tradeoff
between K'0 and KTO for
f-iron, typical of static and
dynamic compression stud-
ies. We use the centroid
given by the mark X.
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It is sufficient here to show that two well known semi-theoretical isother-
mal EoS's can be used to test for the presence of impurities in the inner
core when PTH is considered. These EoS's, as applied below, are not en-
tirely empirical, nor are they used here as curve-fitting devices with floating
values of the parameters. The three parameters determined by experiment
or theory, PQ, KQ, K'Q, fix the density-pressure trajectory once the EoS has
been selected. We choose the third order Birch-Murnaghan EoS ((6.15),
(6.18), and (6.45)) and the Morse EoS (8.26). The use of the Morse equa-
tion for compressed iron has been recommended by a number of authors
(for example, Fazio et al., 1979; Welch et al., 1977). The Birch-Murnaghan
EoS is widely used among geoscientists.

8.12. Equations of state of iron at inner core pressures

The trajectories of the EoS curves for the e phase and the 7 phase cal-
culated by the B-M third order EoS and a-iron calculated by both the
Morse potential and the Birch-Murnaghan third order EoS for core pres-
sures (T — 300 K) are graphed in Fig. 8.5. Also included is the shock
experimental p-P curve of Brown and McQueen (1982) corrected to 300 K.
It is clear that e-iron has a density greater than 14 g/cc at inner core con-
ditions, somewhat greater than that of the inner core as determined by the
seismic PREM model (12.85 g/cc) and greater than that of 7-iron. 7-iron
appears to have a density somewhat greater than the PREM value and a-
iron. Since the calculations of P(V) do not include the effect of T, the
values of p appear to be higher than the PREM values of p. To correct
for T, we must add the thermal pressure term, PTH, as shown in (1.17).
This will shift the calculated values of p in Fig. 8.5 to the right, improv-
ing the agreement with PREM. (The value of PTH for the inner core will
be treated in Chapter 10). Curves 4 and 5 show the variance induced by
changing the EoS. The error bar on the 7 curve (3) shows the variance
induced by changing the value of K' over a reasonable range.

8.13. How to choose the best EoS: a general discussion

A number of formulations for analytical expressions for the EoS have been
presented in Chapters 6, 7, and 8, and I have stressed that all of them
arise from an unchecked and unprovable assumption concerning an assumed
interatomic potential, an assumed strain function, or an assumed boundary
condition that is not testable. I have also emphasized that all converge at
low pressures (P < \l1Kfa). Divergence of the various theories from one
another unfortunately occurs in the pressure region where the experimental
data begin to have large error bars. If a favored EoS does not duplicate
the experimental data at very high pressure, does one blame the data, the
EoS, or both? If one is confident of the experimental data or wants to
statistically treat the high-pressure experimental values of P(rj,Ta), the
best EoS for that solid can be determined (MacDonald, 1969).
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Fig. 8.5. The 300 K density trajectories of e (hep) iron, 7(fcc) iron, and a
(bcc) iron arise from the Birch-Murnaghan and Morse third order EoS. They are
compared to PREM data of the earth's core. The same trajectories corrected to
core temperatures are presented later (in Fig. 10.14). Curves 4 and 5 demonstrate
the difference between the B-M third order and the Morse EoS. The error bars
on 3 demonstrate the variance as a result of changing the value of K'0 by ±10%.

For rough approximations the Murnaghan EoS (6.18) is quite useful
because it is simple. Whenever the pressure is less than about (7^T0)/3,
all EoS's give the same result, so the Murnaghan EoS is good for low
compression. The Born-Mie EoS has distinct advantages if the problem at
hand has atomic variables, because it (8.11) is defined in terms of mass,
valence, and structure of the solid. The Born-Meyer EoS (8.12) is also
defined in terms of crystallographic variables. This EoS is well ingrained
in the Soviet literature, where it is called the Method of Potentials, and
many published tabular data are based on it. Further, as we shall see
in Chapter 9, the Born-Mie and the Born-Meyer EoS each can be related
directly to the shear elastic constants at high P, and thus help clarify the
physics of shear velocity at high pressure.

The Birch-Murnaghan EoS (8.13) is well ingrained in the geophysical
literature of the Western world, so its use is familiar to many readers. It
is also quite compatible with seismological data and is easily related to
the shear and longitudinal velocities of isotropic media. Furthermore, it
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has been shown to be compatible with the linear shock velocity-particle
velocity curve of shock wave analysis (Jeanloz, 1989). However, as we
showed in Chapter 6, it is not reliable except for the range in K'0 given by
3.4 < KQ < 7. Fortunately this covers most of the range in K'0 found in
minerals of the earth's interior (an exception is orthopyroxene). It is not
valid for liquids or composites where K'0 is larger than 7.

This book is not intended to treat the EoS of liquids, but they are
characterized as having large values of K'0, where the Birch-Murnaghan
EoS is not reliable. For these cases, the student is referred to EoS proposed
by Vinet et al. (1987), which is

An excellent discussion of the advantages of this EoS, as well as a
critique of the shortcomings of the B-M third order EoS for K'0 < 2.9,
K'0 > 7 is given by Hofmeister (1993). The EoS given by (8.36) is derived
by differentiating the binding energy of the solid (Rose et al., 1983).

8.14. The virial theorem equation of state

The virial theorem has identical form in classical and quantum-mechanical
physics (Landau and Lifshitz, 1958; Slater, 1968; McClellan, 1974). It
can be used to find the pressure and bulk modulus from the interatomic
potential or from quantum mechanical based calculations, as was done by
Bukowinski (1976) and Bukowinski and Knopoff (1976) for fee iron.

The virial theorem is derived from an expression for the kinetic energy,
which for solids is split into two parts: one for the particles and one for
the external forces on the nucleons. For the classical case, the first part is
the internal potential energy V. The second is the external force (pressure)
acting on the volume (McMillan and Latter, 1958), yielding

The kinetic energy is also KE = U - V, so that (8.37) is 3PV = 114 - V.
McMillan and Latter (1958) argued that the potential energy was the

interatomic potential <f>, so that 3PV = "2U — V becomes

Replacing U with (1.2), (8.38) becomes SPY = 2(f + TS) - <f>.

Differentiating the above and using (1.9) and (1.11), we have
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The last term in (8.39) is the high temperature approximation for
thermal pressure PTH in the quasiharmonic approximation. Multiplying
both sides by (l/tyV2/3, the left side becomes a differential, and

Changing from V to 7? and integrating the above, we have

Taking aKr as independent of 77 (justified in Chapter 10), PTH is

A case where PTH does depend on 77, a rare exception, is gold.
Libby and Libby (1972) suggested that <f> be given by

which is the <j>a (see (8.4)) in this chapter: in other words, 0 is assumed to
be the coulombic potential with no repulsion term. Using (8.42) in (8.40)
and taking T = 0, upon integration the Libby and Libby EoS is

The first derivative of the above yields KTQ = Z/o/9Vo, so that

This is also the second order Bardeen EoS, (6.39), controlled by one param-
eter, KTO- While KTD will vary from material to material, (6.39) requires
that K'0 have a constant value, 3, for all solids to which (6.39) is applied.
Libby and Libby (1972) compared data of metals with (6.39) with some
success, but the K'Q value of most solids (including most metals) is larger
than 3.

We note that for oxides and silicates, there is a strong repulsive term in
<f>, so that for these solids, so we must replace <j> in (8.40) with (j>a + (j>v, say
(8.4) and (8.5), and then integrate. This requires a numerical computation,
but the result is that K'0 takes on the same values as in the Born-Mie EoS,
where K'0 = (n + 7)/3, 6 < n < 10 (Anderson, 1970).

8.15. Choosing an EoS for the earth's lower mantle

Some equations presented in Chapters 5-8 are useful for extrapolations
into the earth's interior. Since the core-mantle boundary pressure is about
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Fig. 8.6. Percent difference in density for six EoS's compared to the B-M EoS
at K'0 = 3.34 (for the earth's lower mantle). The Murnaghan, the Born-Mie,
the Born-Meyer, and the Ullman-Pan'kov EoS's are equal to p of the Birch-
Murnaghan EoS to within one part in the third significant figure.

129 GPa, and candidate materials for the lower mantle have KQ near
250 GPa, extrapolations involve P/Kra < 0.5. Comparison between the
various isothermal EoS's at these values of P/KTO is appropriate.

The third order B-M EoS is taken as a standard and six other third
order EoS's are compared with it. Percentage differences are plotted in
Fig. 8.6. All but the Thomsen EoS have lower values of p/po than found
from the B-M EoS. The Born-Mie EoS and the U-P EoS are very close to
each other at K'Ta = 3.3, and they depart only slightly from the B-M EoS
(0.2%) at the core-mantle boundary pressure. The Born-Meyer EoS, or
Method of Potentials, is the closest to the Birch-Murnaghan EoS.

Within the uncertainties found between the various seismic models of
the mantle reported in the literature, one cannot choose between the four
isothermal EoS's—Birch-Murnaghan, Born-Mie, Born-Meyer, and Ullman-
Pan'kov. However, the Murnaghan EoS and the Thomsen (Lagrangian
formula) EoS have distinctly different behavior from that of the Birch-
Murnaghan EoS at lower mantle conditions. The value of K'Q, 3.34, in the
lower mantle (see Section 2.8) puts the B-M EoS of third degree (see Sec-
tion 6.6) on the edge of reliability. However, as so many EoS's have had the
same behavior as the B-M third degree EoS for lower mantle parameters po,
KQ, and K', the Eulerian formulation is satisfactory for the lower mantle,
although marginally so.



9

SHEAR VELOCITY AT HIGH PRESSURE

9.1. Introduction

A significant phenomenon in high pressure elasticity is that the behavior of
the shear elastic constants does not follow the simple rules found in the EoS,
which are restricted to relationships of the bulk modulus in P, V, T space.
The behavior of the EoS, such as found in Chapters 6, 7, and 8, is not very
structure dependent. On the other hand, the shear constants under pressure
are very dependent on structure even to the extent of being different from
point group to point group in the same crystal class. Two generalizations
stand out. (1) Whereas the bulk modulus is linear in pressure, at least
to values of P/Ko ~ 1/2, the shear elastic constants are, by comparison,
quite nonlinear. (2) The Poisson ratio increases with pressure for oxides
and ceramics that are densely packed.

In seismic models of the earth, it is found that the Poisson ratio a in-
creases with depth. This interesting phenomenon is interpreted as resulting
from the decrease of v,/vp as P increases. It can be shown from a number
of different approaches (continuum elasticity, lattice dynamics, and atomic
physics) that the shear velocity associated with the shear elastic constants
increases with P at a slower rate than the longitudinal velocity increases
with P. This is the primary reason why a for an isotropic body increases
with P. For single crystals, as pressure increases, the spread between the
highest and lowest shear velocity increases.

For heuristic purposes the subsequent sections discuss the pressure
dependence of the three elastic constants found in a cubic solid. In the last
sections the discussion is extended to solids of lower symmetry.

9.2. Elastic constant relationships in cubic solids (centro-
symmetry)

9.2.1. The shear constants versus pressure in the low pressure range

The following relationships of a cubic solid are useful. We have the bulk
modulus,

where all elastic constants are functions of P. If we consider isothermal
conditions close to absolute zero, then A's = KT = K. For the remainder
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of this chapter, but only here, KS is replaced by K (meaning conditions at
low temperature). We have the Cauchy relationship,

where er is a number measuring the residual departure from the Cauchy
condition, Ci2 = C^. If tr = 0, the Cauchy condition is maintained. Here
we assume that er is small and independent of pressure. (The pressure
independence of er is often assumed in lattice dynamic calculations). We
have the definition of the second shear constant,

The two shear constants can be written in terms of Cn and K:

and

From (9.4) we note that Cn > K for C$ to be non zero and non-
vanishing. From (9.6) we note that Cn < 3K + 2er — IP for Cj4 to be
non zero. These are strict outer limits on K, because the lattice will most
certainly become unstable if either Cs or £44 vanishes. The lattice may
in fact become unstable if either of these constants becomes small but non
zero (Demarest, 1974). We find that Cn is contained in the limits

Because 2er is small compared to 3K and IP when P is large, it will be
ignored.

Cu can vary between the lower limit of K and the upper limit of
ZK — 4P without incurring mechanical instability. By expanding the elas-
tic constants, (9.4) and (9.6), out as polynomials in pressure, it is easily
shown that the pressure derivatives of Cs and C44 are sensitive to both the
pressure derivatives, K'0 and (Cn)0. We note that if we take KQ = 0; that
is, if we assume that the bulk modulus is linear with pressure, the other
elastic constants may still be quadratic with pressure because Cn may be
quadratic with pressure.

Thus we see that although it is well known that up to large pressure
(P ~ (|) KQ) the bulk modulus is linear with pressure, either of the shear
constants can be nonlinear with pressure, even small pressure. Whether the
shear constants are linear depends very much on the behavior of Cn as a
function of pressure. It can be further demonstrated that the magnitude of
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the pressure dependence of the shear elastic constants depends very much
on the magnitude of the pressure dependence of C\\.

If we set (Cii)g close to a minimum allowable value, K'0, it is easily
shown that dCs/dP has a large positive value, whereas dC^/dP is a small
number. On the contrary, if (Cn)0 is close to the maximum allowable value,
3K'Q — 2, then (644)0 nas a Iar8e positive value, (3/2) (K'Q — I), whereas
C's has a very small pressure derivative.

9.2.2. Noncentrosymmetric lattices: lattice dynamic equations

The above holds for centrosymmetric cubic lattices. For cubic lattices in
which the atoms are not all on centrosymmetric sites, as for example, in
diamond or zinc sulfide, the expressions for the elastic constants have a cor-
rection term. This term arises because a net dipole is set up, in the absence
of centrosymmetric sites, by the fields of the atoms in certain distortions.
If this induced dipole is coupled with the stress, an additional term is sub-
tracted from the expressions for one or more of the elastic constants.

It turns out from calculations made using lattice dynamical techniques
that the noncentrosymmetric cubic lattices correspond to the case where
(C'ii)o ig a^ a minimum value. Thus for ZnS it is shown by Born (1923)
that (^44 is replaced by

where C and T> are pressure dependent operators, and F(P) is positive. In
all cases, the effect of this additional term is to decrease the shear elastic
constant below the value for a centrosymmetric lattice. In fact, for four-
fold coordinated structures, dC^/dP is often negative. Examples where
dC^/dP is negative are diamond, ZnO, ZnS, and TiO2-

The pressure dependence of C\\ and of the shear elastic constants is
greatly dependent on the crystallographic structure and varies from point
group to point group, even in the same crystal class. The elastic constants
are functions of the derivatives of the potential, and the operators on the
potential producing the elastic constants are often expressed in terms of
spherical coordinates.

The operators we discuss below are given by (Born, 1923)

where (/> is the interatomic potential between atom pairs. The elastic con-
stants of a cubic crystal are found by the operators 'P and Q by the following
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(Born, 1923; Anderson and Liebermann, 1970):

and

where i is summed over the lattice coordinates (x, y) in the cell. For non-
centrosymmetric lattices, like diamond,

where V is the volume per cell (two atoms), and I is the index on lattice
sites.

At high pressures, the repulsive term of the potential is far more impor-
tant to the value of the elastic constants than the attractive (or coulombic)
term, so for the many purposes described here, <f> can be replaced by <j>v(r),
the repulsive potential. To show how the operators are affected by lattice
sums, we ignore the attractive (or coulombic) component of the potential
and consider only the repulsive component of the potential. The operators
are then identified by the superscript R (meaning repulsive):

The summation of t in (9.11) on the repulsive component of C^ is not
taken beyond the M nearest neighbors because it is assumed (f>v(r) varies
so rapidly that it can be ignored at distances 2r and greater.

The question is then: How does the following vary with crystallo-
graphic structure?
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where C/j stands for the repulsive contribution to the value of C\\. In the
NaCl structure, the M = 6 nearest neighbors are located at [z*/r,t//r,
z'/r] positions given by [(1,0,0), (0,1,0), (-1,0,0), (0,-1,0), (0,0,1),
(0,0,—!)], so that only two positions are non zero in the sum taken by
(9.17). Thus the lattice sum arising from (9.17) is

Further, the lattice sum taken in (9.14) yields

because there are no atomic positions that have xl, y1, zl all non zero.
This means the C term in (9.13) is zero.

In the CsCl structure, the M = 8 nearest neighbors are located, in
terms of r/31/2, at [(1,1,1), (-!,-!,-1), (-!,-!,!), (1,1, -!),(!, -1,1),
(-1,1, -1), (-1,1,1), (1, -!,-!)]. The lattice sum arising from (9.17) is
therefore

There are eight atoms with xl components, but the relation between x1

and r involves the factor 1/31/2. In the sum given by (9.14), there are four
positive terms and four negative terms that cancel. This leads to

Thus, as for NaCl, the C2/X> in (9.13) is zero.
In the ZnS structure, the M = 4 nearest neighbors are located, in terms

of r/31/2, at [(1,1,1), (-!,-!, 1), (1, -1, -1), (-1,1, -1)]. The lattice sum
arising from (9.17) is

There are four atoms with xl components, but as in CsCl the relation
between xl and r involves the factor 1/31/2. In the sum given by (9.14),
there are four positive terms so that the resulting sum is non zero. This
leads to

We have now determined the operators for three crystallographic struc-
tures, which, when used on the repulsive potential, give us formulas for the
repulsive part of the elastic constants. Using (9.9) and (9.10) we can write
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the repulsive contributions to Cu and K in terms of derivatives of the
repulsive potential 4>v(r), as in Table 9.1.

The pressure P has a repulsive and a coulombic component. The
repulsive component is

Using (9.25) and Table 9.1, we compute the values of Cu and dCn/dP in
terms of K and P, and ignoring the contribution of the coulombic term so
that PR = P, we have for high pressure

The pressure derivatives are

To evaluate the above at low pressure, the full expressions for the elastic
components must also include the coulombic terms that are given in Ta-
bles 9.2 and 9.3. The contribution arising from coulombic terms changes
slowly with pressure (Anderson and Demarest, 1971), but the main contri-
butions to Cu at high pressure are given by (9.26) and (9.27). For many
high pressure physics problems, the coulombic term is ignored. A procedure
similar to that leading to (9.27<z) and (9.27fe) will produce the repulsive con-
tribution to CM and C\i in terms of the derivative of the repulsive potential
</>n(r) (Anderson, 1970).

Table 9.1. The derivative of the elastic constant parameters in terms
of the repulsive potential, <f>v(r) for Cu and K

Structure Cft KR

Source: Anderson, 1970.

Nad (M - 6)

CsCl (M = 8)

ZnS (M = 4)
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The differentials in Table 9.1 can be changed into variables involving
-P, K, Kg, and PQ, which are useful to show the trend of elastic constants
with pressure. This is done by expressing the derivative of the Cfj in terms
of the derivative for K. Assuming that <j>v consists of only interactions
arising from next nearest neighbors, the elastic constants are denned in
Table 9.2. To observe the qualitative effects of P on the Cij, ignore the last
term involving the factor (p//>o)4^3, which is weak compared to the first
two terms. To be noted is the strong contrast between 6*44 for the NaCl
and CsCl structures.

Table 9.2. The elastic constants for NaCl and CsCl structures, where
the potential is coulombic plus one central repulsive term M<frv (no
next-nearest neighbor potentials) (after Anderson, 1970)

NaCl CsCl

Elastic constants

Pressure derivatives

Cii: 3 t f - 2 P - ^
O

Ca: P+l

C44: -P+l

Cs: \(K~P)+\

C'n: 3#'-2-

C(2: 1 +

C44: -14-

C's: \(K'~l)-

Note:

--I +

-1-

«'-\-

K -^P + 1.3774
O

K + \P - 0.6887
O

K -\P- 0.6887
O

-P+ 1.033
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Table 9.3. Elastic constants for the ZnS and CaF2 structures (the poten-
tial is coulombic plus one central repulsive term M<j>v) (Anderson, 1970)

ZnS CaF2

Elastic constants

Cu: K- |P+ 0.06546

Ci2: K+'j-P- 0.03273

C44: K-\P- 0.03273

K -

K +

K-

Cs:

C*44:

C:

-P+ 1.17965

Pressure derivatives

£>:

C'n'. K'

C[2: K'

«'-!+
*•+!-
«•-!-
-1 +

C"°44

C' • K1
C44. A

f~" •°s-

f~" • C"°44- °44
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Table 9.4. Ratio of pressure derivatives of elastic constants to K'0

NaCl Structure
Measured
Pressure

Derivative

(Cu)'Q/K'0

(£44)0 /K'o

(Cs)'0/K'0

LiF

1.938

0.269

0.704

NaF

2.333

0.039

0.973

NaCl

2.217

0.074

0.9315

KC1

2.395

-0.074

1.04

KBr

2.42

-0.053

1.06

KI

2.74

-0.031

0.93

MgO

2.10

0.257

0.829

CsCl Structure
Measured
Pressure

Derivative

(Cii)o /K'0

(C44)0 /A'o

(csy0/K'0

CsCl

1.216

0.631

0.160

CsBr

1.169

0.628

0.123

Csl

1.209

0.700

0.157

Data from Anderson, 1970.

Table 9.2 shows that the pressure derivative of C\\ is much larger in
an NaCl structure than in a CsCl structure. In the former case, dCn/dP
should be a little smaller than 3K'Q, and in the latter case, a little smaller
than K'0. Putting this information in (9.2) and (9.5), we find dC^^/dP to
be very low, approaching zero, in the NaCl structures, and much larger in
the CsCl structure. Conversely, we find dCs/dP to be small for the CsCl
structure and larger for the NaCl structure. Also we see from Table 9.2
that the pressure derivative of €44 for the NaCl structure is small, near
zero, while the pressure derivative of the CsCl structure is large, near K'0.
Further, the situation is reversed for the pressure derivative of Cs- The
confirmation of these general relationships by experimental results is shown
in Table 9.4.

The validity of the general conclusions above is independent of the
choice of the potential function, <pv(r). To make quantitative predictions
of Cn and C44 at high pressure, cj)v(r) has to be specified. But the sound
velocities associated with the shear constants will have more curvature with
pressure than the bulk modulus irrespective of the choice of <f>v(r).

The general expression for the sound velocity associated with C,-j is



210 ISOTHERMAL EQUATIONS OF STATE

Consider the shear elastic constant C{j, which has a low value com-
pared to K. It either increases slowly with P or decreases with P, as shown
in Table 9.4. Because p increases steadily with P, it is possible that the
velocity associated with some shear mode can decrease with pressure or can
pass through a maximum and then decrease with pressure.

The maximum elastic constant in a solid (Cu) increases rapidly with
pressure, and the minimum elastic constant increases slowly, or decreases.
Thus, the spread between the maximum and minimum sound velocities
increases with pressure in solids. As a consequence, the value of Poisson's
ratio increases steadily with pressure.

9.3. Pressure derivatives for the repulsion model, v = 6/r"

The pressure derivatives of the elastic constants (including the coulombic
terms) are now easily established by using the relationship dK/dP = (p/K)
(dK/dp).

We saw in (8.15) that if <f>v(r) = b/rn, then K'0 = (n + 7) /3. Because
q = (n — 1) /9, we have for this potential q = C&K'o — 8) /9. Using this
definition of q, the ratio (C^)0 to K'Q is found for NaCl and CsCl and is
presented in Table 9.5 (Anderson, 1970).

The equations in Table 9.5 compare qualitatively well with measure-
ment for those solids where the Cauchy relation is closely obeyed (KC1 and
KBr). As the departure from C\i = C44 gets worse, the agreement between
the measured and predicted pressure derivatives gets worse. Nevertheless,
we can deduce the reason why dC^/dP is low and sometimes negative.

Table 9.5. Formulas for (ddj/dP) at P = 0 for two cubic lattices
using the repulsive potential v(r) = b/r"

Computed
Pressure

Derivative

(C-n)'o
K'0

(C-i2)'0
K'0

(C44)0

K'0
(Cs)'0

K'o

NaCl
Lattice

3 l (l3 *il2

1 (l +
K'0(

l +

1 ( HK-I IKo V
3 1 /3
2 K'0 (2

9.60 \
W0-Bj
4.8 \

*K'0 - 8j
4.8 \

1 "i T<~' 8 16KQ — «/

1 7'2 ^1 i v a 1JA0 - »/

! 1
K'0

1+ !+ K'0

I !
K'*

1 (
K'o V

CsCl
Lattice

(4u
(*u

16.53 \
3K'0-8)

8.265 \
3K'0-&)

/4 8.265 \
V3 ' 3K'0-&)

1 -l-
12.4 \

0 JSl 016J\Q — O/

From Anderson, 1970.
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From Table 9.5, we see that dC^/dP < 0 for K'Q < 4.2. See Fig. 9.2
for theoretical predictions of this effect. It is clear from Tables 9.2, 9.3, and
9.5 that any theory describing how the elastic constants (apart from K)
vary with pressure must account for the symmetry properties of the lattice
in detail. The elastic constants are different for each point group. All four
lattices described are cubic crystals, yet the two shear constants (Cj4 and
Cs) vary with pressure in quite different ways from one cubic lattice to
another.

In the NaCl lattice, 644 goes down with pressure (slightly), whereas
Cs goes up; in the CsCl lattice, 644 goes up sharply with pressure, whereas
Cg goes up for a small range of pressure and then down; and in the ZnS
lattice, both C44 and Cs go down with pressure. Yet for all three lattices,
K varies with P in an identical manner.

Following a procedure corresponding to that outlined in Section 9.2.2.,
Sammis (1970) calculated the elastic constants for NaCl and spinel MgAl204
using the repulsive potential known as the Born-Mayer potential, (8.20),
which he wrote in this form:

He found, as did Anderson and Liebermann (1970), who used the Born-Mie
form of 4>(v), (8.15), that dC^/dP for NaCl is close to zero at P — 0, and
that dC44/dP becomes negative as P increases.

In addition, Sammis applied his theory to spinel, MgAlaC^. He found
that although dC^/dP is positive at P = 0, it passes through zero at
about 50 GPa and becomes negative, e.g., the lattice becomes unstable,
at higher pressure (see Fig. 9.1). One sees this same qualitative behavior
in £44 for NaCl and Cs for CsCl and ZnS (see Fig. 3 of Anderson and
Liebermann, 1970).

9.3.1. The shear elastic constants for two phases of NaCl

A theoretical study of NaCl in its two structures, Bl (NaCl) and B2 (CsCl),
by Hemley and Gordon (1985) illustrates the large effect structure has on
the shear constants. Hemley and Gordon calculated elastic constants from
the binding energy, which included the long-range repulsive interaction, a
short-range coulombic interaction using an electron gas density functional,
and finally a term for the self energies of the component ions (the Hartrel-
Fock calculation of self energies). The variation of the elastic constants
for NaCl is shown in Fig. 9.2, and that for the CsCl structure of NaCl in
Fig. 9.3. Here we see the reversed roles of Cs and Cj4 between the two
phases, in agreement with the results of Tables 9.2 and 9,4.
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Fig. 9.2. Calculated pressure dependence of the elastic moduli for solid Nad
in the Bl (or NaCl) structure (after Hemley and Gordon, 1985).

Fig. 9.1. Theoretical pressure dependence of the shear constant C$4 for the
spinel structure under the assumption of two different values for the zero-pressure
bulk modulus (modified from Sammis, 1970).
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Fig. 9.3. Calculated pressure dependence of the elastic moduli for solid NaCl
in the B2 (or CsCl) structure (after Hemley and Gordon, 1985).

9.4. Averaging to get isotropic moduli and velocity

9.4.1. The Voigt-Reuss-Hill averaging scheme

Figure 9.2 and Table 9.2 indicate that the two shear elastic constants of the
NaCl structure diverge with pressure, whereas the shear constants of the
CsCl structure (B^) converge with pressure. What is needed is the isotropic
equivalent shear constant—some sort of average of Cs and 644. Two av-
eraging schemes, the Hill (1952) method and the Hashin-Shtrikman (1962)
method, are commonly used to find the isotropic equivalent of (7,-j. The
average values between the two methods are very close even though their
upper and lower limits are different. Here we use the Hill method, the av-
erage of the upper bound (superscript V) and the lower bound (superscript
R), because it is less complicated. The average isotropic shear modulus G
is found from Gv and GR, where
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Barsch (1968) gives different equations for the R limit, defining (9.30)
in terms of the thermodynamic rather than the effective elastic constants,
but I shall use the effective elastic constants in this chapter. The value of
G used is the arithmetic mean called the Hill average (Hill, 1952),

Kumazawa (1969) has argued for the use of the geometric mean,

According to Knopoff and Shapiro (1969), it is dangerous to assume
mean values for the pressure derivatives. If the average value of G is allowed
to oscillate between the two bounds as pressure is increased, the calculated
value of dG/dP can exceed the bounds given by (9.33) and (9.34). In
general, the average value of G will not behave erratically, and the true
value of dG/dP will be bounded by the derivatives of (9.33) and (9.34).

9.4.2. The shear velocities

Of special interest are the three isotropic velocities given by

It is useful to use the dimensionless forms of the above
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At P = 0 the dimensionless pressure derivatives of the isotropic sound
velocities are

9.4.3. Poisson's ratio in the Voigt limit for centra symmetric lattices

The value of Poisson's ratio is given by

The Cauchy relation for centrosymmetric lattices tells us that Ci2 —
C44 = IP. From this and (9.1) and (9.3) it follows directly that

At P = 0, v% = 0.25 for all values of K'0 for any centrosymmetric lattice.
That is, the value of vv is not affected by the choice of point group. Note
that, as K = Ko + K'0P, and K'0 is in general 3.9-7, then vv must increase
with pressure.

Similarly we find

The pressure derivative of i>, in dimensionless form, is

By using (9.46) in (9.44), the Voigt-Poisson ratio for a Cauchy solid is
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At P = 0, we have

Thus, both Poisson's ratio and its pressure derivatives have one value at
ambient conditions for all values of K'0 in the Voigt approximation for the
NaCl and CsCl lattices, a severe limit on applications of this simple theory.

The Voigt limit for the ZnS and CaF2 lattices is not so restricted
because C^ has the factor C2/X> subtracted from the central force calcu-
lations. Thus G/K is less for the ZnS lattice than for the CsCl lattice;
consequently, using (9.47), vv for the ZnS central force model is greater
than (or equal to) 0.25.

The value of VR will be greater than or equal to vv. This results from
the fact that in the averaging scheme, Gv > GR, as proven by Hill (1952).
Thus we conclude that the central force model has the following properties
for the four cubic lattices: the ambient value of Poisson's ratio is greater
than or equal to 0.25, the exact value depending on the hardness of the pair
potential (reflected by KQ) and the appropriate averaged result between the
Voigt and Reuss limits.

It is known that the value of VQ for some oxides is less than 0.25; for
example, in MgO it is 0.17. Noncentral components of the potential very
likely account for these low values. It has been shown (Anderson, 1970)
from data on alkali halides that the noncentral correction affects the value
of G much more than the value of K, and that the fraction G/K increases
as noncentral effects become more important. This, in turn, means that the
computed value of v decreases as noncentral effects become more important.

9.5. dv,/dP can be negative

The dimensionless pressure derivative of the shear velocity at zero pressure
is found by using the appropriate computed value of GO/KQ. There are four
structures and the Reuss and Voigt limits to solve. The most significant
point emerging is that there are different classes of solutions for the different
cubic lattices. For example, all possible solutions in the ZnS lattice require
that (dv,/dP)Q be negative. All possible solutions in the CsCl lattice require
that (dv,/dP)0 be positive. In contrast to these two lattices, for NaCl and
CaF2 some solutions allow a positive value of (dv,/dP)0 and some allow
a negative value. Within the assumption of central forces, the exact value
of [dv,/d(P/Ko)]0 depends on K'0 and the average chosen between the
limiting solutions.

These results are of significance to geophysical theories involving the
properties of matter at high pressure. They show that there is no single
solution for the elastic behavior of isotropic shear elasticity at finite strain.
Crystalline symmetry of the crystallites comprising the isotropic material
substantially affects the variation of shear velocity with pressure.



SHEAR VELOCITY AT HIGH P 217

It is clear that to predict exactly the experimental values of BeO, CaO,
and MgO, an exact theory from fundamentals that can account for the
Cauchy condition is required. Nevertheless we see that a great many oxides
and silicates should have negative values (or low positive values near zero)
for dv,/dP, especially for isotropic aggregates where the coordination of the
atoms is low. For the earth's deep interior, where the mineral structures
are closely packed and their coordination numbers are high, we therefore
suggest that [dv,/d(P/Ko)]0 is normal, such as the behavior suggested for
CsCl. Negative pressure derivatives of the shear velocity could be found in
crustal rocks, but not in deep mantle rocks.

9.6. Finite strain

Birch's (1938, 1952) early equations from second order finite strain theory
do not allow [d In v,/d(P/Ko)]Q to be negative or even take on a low posi-
tive value such as has been measured for spinel (Sammis, 1970) and garnet.
Birch's traditional equation is:

Note that as v < 0.5 according to (9.49), the pressure derivative of the
shear velocity must always be positive.

Sammis et al. (1970) corrected (9.49) by including some terms required
by the Eulerian expansion to second order in strain. Their solution adds
another term to (9.49) with two new independent parameters,

The second term added to (9.50) involves the third order elastic constants
independent of KQ and (G/Ko)0. Equation (9.50) is therefore consistent
with the implications discussed above: because mj and m? are indepen-
dent of K and G and can be negative, adjustments can be made in their
magnitude so that a negative derivative for (9.50) is allowed.

This means that a low (or negative) pressure derivative of v, may arise
because of the influence of third order elastic constants.

9.7. Shear velocity versus pressure

In Figs. 9.4 and 9.5, Equations (9.38), (9.39), and (9.40) versus pressure
are plotted for three values of KQ, where the Bom-Mie repulsion is used for
Q(v). The Hill arithmetic mean (9.33) of (GH/p)1/2 is used in computing



ISOTHERMAL EQUATIONS OF STATE

Fig. 9.4. Compression, bulk, and shear velocities versus pressure for the CsCl
and NaCl lattices (K^ = 5.0 and 6.0). The graphs terminate at a lattice instabil-
ity due to the vanishing of a shear constant (after Anderson and Demarest, 1971).

the sound velocities, uf; v, without a superscript indicates that the geo-
metric mean (9.34) was used. The sound velocities are terminated at the
pressure at which either Cs or C^ vanishes.

Generally the two methods used here to compute the velocity of an
aggregate predict similar results except in the neighborhood of a lattice
instability. When either 6*44 or Cs vanishes at a high P, according to our
equations, a lattice instability is predicted to occur. At such an instability,
the geometric mean predicts that the shear velocity will plunge to zero,
where the P-wave velocity will approach the bulk sound velocity, v$. On
the other hand, the Hill arithmetic mean predicts a leveling off of the shear
velocity and a slight decrease in dv^/dP at the point of lattice instability.
Thus for detection of an instability of a lattice, the geometric mean shear
velocity is preferred.

218
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Fig. 9.5. Compression, bulk, and shear velocities versus pressure for the ZnS,
CsCl, CaF2, and NaCl lattices for A'g = 4.5. The graphs are terminated at a
lattice instability due to the vanishing of a shear constant (after Anderson and
Demarest, 1971).

Although uj depends only on K'0, vp and particularly v, are quite
sensitive to the crystallographic structure. A comparison is made between
the velocities of four cubic lattices for equal values of K'0 in Fig. 9.5. In
the NaCl structure, v, initially increases with P, then flattens out, but
soon decreases with P. In the CsCl structure, the leveling off of v, occurs
at a much higher pressure. For the CaF2 structure, the behavior of v, is
similar to that of NaCl, and a negative slope in v, is predicted. For the
ZnS structure, v, strongly decreases with pressure.
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From these figures it is easily seen that the pressure variation of va is
quite unlike the pressure variation of i>j. i>j is always a slowly monotonically
increasing function of P. It is also apparent that the curves of v, vs. P for
NaCl and CsCl can be quite nonlinear. This nonlinearity has significant
implications for geophysical theories of the earth's mantle. There are geo-
physical applications of the result of the £44 behavior of spinel (Fig. 9.1).

Sarnmis (1970) pointed out that, as the upper mantle region between
400 km and 600 km is assumed to be mainly olivine in the spinel structure,
dv,/dz may approach a low and possibly negative value in this region.
This is the seismic region of the "low velocity zone." However, more recent
measurements by Gwanmesia et al. (1990) yield normal values of dG/dP
for (3 and Q-Mg2SiO4. In all these calculations the behavior of t;j is normal
for all structures, whereas that of v, has anomalies for solids with low
coordination numbers. We note that the v, versus P behavior of a low
pressure phase may not be duplicated in the high pressure phase (Figs. 9.2
and 9.3).

9.8. Poisson's ratio in closely packed cubic metals at high
pressure

9.8.1. Introduction

The previous discussion is appropriate to ionic structures and could pos-
sibly apply to silicate structures comprising the earth's mantle and crust.
The core of the earth is metallic, however, and ionic potentials may not
be appropriate. Falzone and Stacey (1980) analyzed the compression of a
generalized central force model of atomic interactions in the approxima-
tion that ignores the intrinsic rigidity of bond angles (i.e., a closely packed
metal). Their resulting equations account for the pressure dependences of
the elastic constants in an hep solid. It was presumed that this model would
be ideal for consideration of the elasticity of the earth's core.

Their approach was to find the energy appropriate to the deforma-
tions leading to 644, Cg, and K in terms of the shortenings (Ar) of the
interatomic distance, r.

9.8.2. The energy of deformation

The interatomic energy, given by Falzone and Stacey (1980), is

where 03 and /?2 represent bond interactions depending on different angles
of bonds. Each bond (i) is considered to have 4 neighboring (j) bonds at
60° and one (k) bond at 90°. Equation (9.51) represents the unit cell.
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Table 9.6. Values of changes in the bond length in a face-centered
cubic crystal deformed for shear strain €5 or volume strain AV/Vb;
the unstrained bond length is TO.

Volume change for all cases: r0 [l/3(AF/V0) - l/9(Ay/Vo)2j
Source: Falzone and Stacey, 1980.

Keeping the second order term in calculating the effect of volume com-
pression gives the following for the volume per atom:

The change in V is therefore

which gives the expression for AV at the bottom of Table 9.6.
The total energy of deformation is obtained by applying (9.51) to each

of the bond-length changes in Table 9.6. We count six bonds per atom with
12 neighbors. The orientations of all 12 bonds are listed in Table 9.6. The
strain energies per atom (volume V0 = r-g/21/2) are, for the three types of
deformation,

Bond Orientations [100] Shear [110] Shear

1,1,0;-1,-1,0

1,0,1;-1.0.-1

i,o,-i; -1,0,1

0,1,1; 0,-1,-1;

O.l.-l; 0-1,1

1,-1,0;-1,1,0



where the pressure P is

9.8.3. Elastic constants versus P

Taking the second derivative of the appropriate energy with respect to V
and isolating the pressure term, (9.57), we have

These equations satisfy the Cauchy relation if c*2 = /?2 = 0.
Eliminating <j>" from (9.58) and (9.60), we can express each of the

rigidity moduli in terms of K and P:

Equations (9.61) and (9.62) yield a conclusion similar to that for the
case of the central force ionic models discussed in the previous sections. Re-
gardless of the dependence of K on P (disallowing very strong variations of
the small parameters a^ and /?2 with P), both of the principal shear moduli
decrease with pressure relative to K. This solution is approximately the
same as the central force model, which we found for CsCl. Thus Poisson's
ratio increases strongly with pressure.

The plausible range of values for the parameters a-i and /?2 are found
by expressing them in terms of the crystal constants; at zero pressure, the
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relationships are:

Calculations using (9.63) and (9.64) show that a2 and /32 are a few percent,
but are as large as 0.2 for some metals.

Calculating the Hill average of the shear modulus G taken from (9.61)
and (9.62), Falzone and Stacey found the Hill average of Poisson's ratio to
be

They found that Poisson's ratio increased with P up to a value of 0.45
for P/K ~ 0.23. Thus the value of Poisson's ratio for the inner core found
seismically is completely in accord with the hypothesis that the core is com-
posed of a poly crystalline iron-like metal with central interatomic forces.
By small adjustments in «2 and /?2, they were able to fit the seismic PREM
model's values of v versus depth reasonably well.

9.9. Experiments for €44 versus P and », versus P for NaCl:
a test for the central force ionic equations

9.9.1. Introduction

As shown above, the shear constants £44 and Cs ~ l/2(C"n — Cn) and
their pressure derivative are very sensitive to details of the crystallographic
structure (the point group), whereas the bulk modulus K and its pressure
derivative are not. We showed above that at least one of the shear constants
has a pressure derivative that is small (or negative) compared to the bulk
modulus pressure derivative. This means that the pressure derivative of
the shear velocity of cubic solids where the coordination is low will be very
small and possibly negative. A good candidate for a negative dv,/dP is
ZnO, where the coordination of the cation is 4. The value of dv,/dP has
been reported to be negative for ZnO, although dK/dP is normal (Soga
and Anderson, 1967).

In the following we compare the NaCl values C\i, Cs, 644, vs, and
vp computed from three atomic potentials given in Chapter 8 against mea-
surements of these quantities at high pressure.

Three atomic potentials and their associated equations of state will
be considered. The first and simplest is the Born-Mie potential, (8.9). It
has a simple coulombic attraction—a summing of the 1/r potential over
all lattice sites leading to a Madelung constant in the numerator. The
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repulsion is a power law term, b/rn, where & and n are eliminated by using
the equilibrium condition yielding KQ and K'0.

The second example is the Demarest potential (Demarest, 1974, 1975).
The repulsion term in <^v(r) is given by an exponential form representing
the nearest neighbor (nn) interaction. Specific account is made of the
next nearest neighbor (nnn) interactions. The nnn term is assumed to be
exponential repulsion, similar to nn repulsion. Parameters in this potential
are evaluated using elastic constants, including the shear constants, and
their pressure derivatives.

The third example is the Decker (1971) potential. Decker tried to
account for all significant forces on the ions, including very weak bonds, and
to distinguish between various kinds of ion-ion interactions (Seitz, 1940).
He took into account the energy due to dipole-dipole interactions of the
ionic charges, and thus introduced the dielectric constant and the index
of refraction into the potential, following Seitz (1940). There are seven
parameters to be evaluated.

9.9.2. Elastic constant equations at high pressure

(a) The Born-Mie potential

Equations for C\\, Ci2, and Cm can be evaluated in terms of A's0, K',
and P from the potentials given in Chapter 7; for example, the Born-Mie
potential (8.9) and the Born-Meyer potential (8.21). The various constants
determined by experiment and used to describe the Born-Mie potential for
NaCl are r0 = 2.82 A; KQ = 23.94 GPa; K'0 = 5.28; and n = 8.8.

(b) Demarest's next nearest neighbor model

Demarest (1974) used a potential that involved three terms

The first term is a pure Madelung sum, and all other possible attractive
forces are neglected. The constants ri and rj are chosen from the Born-
Meyer repulsive parameter of Vukcevich (1970).

The pressure and elastic constants appropriate to (9.66) are listed in
Table 9.7. To apply these equations, the energies must be separated into
nn and nnn terms. Let 4>nnn(r] describe the nnn forces. The constants
are shown at the bottom of Table 9.7. (The prime refers to differentiation
with respect to r). For the simple potential given above, the parameters are
chosen arbitrarily from zero pressure data and the equilibrium condition.
Demarest (1975) also considered an nnn repulsive potential that separated
the last term in (9.66) into two terms, one for the cation-cation interaction
and one for the anion-anion interaction.



Values of A\, A^, B\, and B? calculated using procedures from
Peckham, 1967.

where the attractive terms, coulombic terms, van der Waals interaction,
and quadrapole-dipole interaction are summed over the entire lattice. The
Decker equation has terms for nearest neighbors (nn) and next nearest
neighbors (nnn). Decker evaluated many of the constants from theory.
This potential was considered an ideal for an ionic solid (Seitz, 1940).

9.9.3. Estimating the shear velocities at high P for NaCl

Data now exist on the variation of the shear velocity with pressure at high
pressure. Some of these data were taken for poly crystalline samples, so an
averaging scheme must be used to convert the extrapolated values of the
elastic constants to shear velocities.
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Table 9.7. Elastic constant expressions for the NaCl structure from
the Demarest potential (9.66) with a Born-Meyer type potential for
the next-nearest neighbor corrections (Pra = 0)

(c) The Decker potential

The Decker (1971) potential is given by
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Fig. 9.6. C*44 versus P/Kx0 from four potentials (8.9), (9.66), and (9.67). Com-
parison with experimental results of Spetzler et al. (1972) (dots) and Whitfield
and Bassett (1976) for NaCl (modified from Anderson and Mammone, 1979).

Spetzler et al. (1972) measured £44 and C$ versus P of NaCl up to
0.3 GPa. Whitfield and Bassett (1976) measured Cs and C44 up to about
1 GPa. Morris et al. (1976) measured v, of NaCl up to 23 GPa.

We have seen that simple potentials whose repulsive terms are purely
nearest neighbors have a very low or zero value of dC^/dP. At high pres-
sure an instability is indicated where £44 becomes soft. When other attrac-
tive forces such as the nnn potential given by Decker and by Demarest are
considered, then C44 may rise with pressure. This indicates the great sen-
sitivity of C44 to details of the potential in comparison to the insensitivity
of K'0. A plot of CM versus pressure is given for three computed potentials
in Fig. 9.6. Shown with this are the experimental data of Whitfield and
Bassett (1976) and Spetzler et al. (1972).

The curve illustrates the failure of the Decker equation of state to give
the experimental value of £44 at zero pressure. The Demarest third po-
tential has the best fit, which is not too surprising, as the nnn boundary
conditions require it to do so. This is seen in Table 9.6; the constants BI,
AI, and flj are chosen such that (^44 is also the experimental 644. Fur-
ther manipulation can be made such that (dC^/dP^Q is also the measured
dC44/dP. This was done so as to conform to Spetzler's data.
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Fig. 9.7. Mean values of vp/v, as a function of P/KTO computed from four
potentials. They are compared to the experimental results of Morris et al. (1976)
for NaCl (modified from Anderson and Mammone, 1979).

The Demarest potential, based on nnn using the Leonard Jones poten-
tial, is fairly good. The Born-Mie, with no regard for nnn, does quite well
for low P values of 644, but large deviations occur at high pressure. The
values of the ratio vp/v, at high pressure can be estimated for the various
potentials. This is shown in Fig. 9.7 and compared against the measure-
ments of Morris et al. (1976). At higher pressures the Demarest potential
and the Demarest third potential give good agreement with the experiment,
where for the latter, (£44)0 and (644)0 are boundary conditions.

In general, the predicted vp/v, curves give better agreement with ex-
periment than the predicted C^ curves. This arises because vp and v,
include information on C\\, Cs and C\i as well as £44. There is good
agreement on Cn for all the potentials. For C\i all but the Decker poten-
tial give good agreement. Therefore the average values of G are not off as
much as the C44 values, and, of course, K is not affected at all by £44.

The Decker potential, which is the most detailed potential, is not as
good as the simple Born-Mie potential. The Demarest third potential
stands out because it was set up so that the experimental values of C44
and dC/dP are used to evaluate two of the constants.
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Fig. 9.8. Values of v, as a function of P/KTO computed from four potentials.
The upper and lower limits of v,, rather than the mean values of v, as in Fig. 9.7,
are shown. Comparison is made with the experimental results of Frankel et
al. (1976) for NaCl (modified from Anderson and Mammone, 1979).

Frankel et al. (1976) reported measurements of the shear velocity of
polycrystalline NaCl against pressure up to P/KTO = 0.95. These data are
compared with the predicted values of shear velocity in Fig. 9.8. We used
the Reuss and Voigt calculations of G to obtain v,. The comparison between
the experimental v, and the mean of the v^ and v^ must be made. Frankel
et al.'s data fall considerably outside the limits of the Decker potential
prediction, so the Decker potential fails to represent the shear velocity of
NaCl. The data fall close to the lower limit of the Demarest potential and
between the upper and lower Born-Mie potential.

In testing the Decker EoS against experimental data of the shear ve-
locity at high pressure, it is found that other, simpler potentials give better
agreement. The Demarest potential gives quite good agreement even con-
sidering that ((744)0 and ((744)3 are used ss boundary conditions. The
Born-Mie equations give values of 644 too low and Cs too high at high P,
but these values compensate to give reasonable values of v,.

The calculations of Hemley and Gordon (1985) for NaCl give low values
of (?44 (Fig. 9.2) compared to experiment (Fig. 9.6), but nevertheless give
reasonable values of Cs compared to experiment.
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Fig. 9.9. The change of Poisson's ratio v with P for poly crystalline NaCl up
to 9 GPa. The experimental results of Morris et al. (1976) are given by the solid
line. The dashed lines show how v varies with P according to the theory of
Anderson and Demarest (1971), where the superscript H means the Hill average.

9.9.4. The variation of v with P for polycrystalline NaCl

Morris et al. (1976) measured the variation of v with P for NaCl, as shown
in Fig. 9.9. This demonstrates the typical way in which v varies with
P: a large slope, dv/dP, at low pressure, decreases as pressure increases.
Their experimental data are compared with the polycrystalline VH for NaCl
predicted by Anderson and Demarest (1971) based on use of the Born-
Mie repulsion <f>v in the energy term. The theory is presented for two
cases of K'Q (for the range of possible K', see Table 1.6). It is clear that
the theoretical and experimental data are sufficiently close that a different
repulsion potential to insure exact agreement could be found. From this
agreement and that described in Section 9.8, it is a general result that v
increases with P along an isotherm.
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9.10. Negative values of dv,/dP for silicates and oxides

For simple cubic solids we have found that if the coordination number is
low (such as 4 for ZnS), the derivative dv,/dP is low or negative, and if
it is high (such as 8 for CsCl), the derivative dv,/dP is relatively high;
NaCl (coordination number 6) is an intermediate case. This same princi-
ple holds for silicates. Values for the isotropic velocity pressure derivative
(taken at P = 0) fall into four groups according to the value of the ra-
tio (dv,/dP)/(dvt/dP). MgO and A12O3 have the highest value of this
ratio (greater than 0.4). Minerals with intermediate values (0.2-0.4) in-
clude CaO, Mg2SiO4, olivine, and pyrope garnet. Those with low values
(near zero) include BaO, Fe2Os, and TiO2- Solids with negative values of
the ratio include a-SiO2, Ca-garnet, CaCOa, beryl, MgAl2O4 (spinel), and
ZnO. However, /?-Mg2SiO4 (spinel structure) and -y-Mg2SiO4 have positive
values of dv,/dP (Rigden et al., 1992).

Thus for oxides with close packing and relatively high structural co-
ordination, dv,/dP is high. But for silicates with tetrahedral coordination
and corner-linked tetrahedra, where compression can occur by the change
of angles between the tetrahedra without significant change in cation-anion
distance, the value of dv,/dP is low and sometimes negative. Thus oxides
and silicates classified by the magnitude of dv,/dP fall into the same groups
(C, B, A) as discussed in Chapter 5.

In deep planet interiors, where minerals will be stable in the most
dense phases, the value of dv,/dP will be typical of that found for A^Os
and MgO. In the minerals of the earth's crust, on the other hand, the value
of dvs/dP can be low or even negative. This will be of importance in the
seismic interpretation of surface rocks made of limestone and sandstone.

It has been noted that for many silicates the ratio G/K is a constant
(solid to solid) (D.L. Anderson, 1987) at room temperature. This constancy
of the ratio may not persist as pressure increases. Fig. 9.4 shows that in the
CsCl structure v, and vj are rising with P in a proportional way, and we
could expect G/K to be invariant with P. But on the other hand for the
NaCl, ZnS, and CaF2 structures, the spread between DJ and v, increases
very rapidly with P, so that G/K would decrease appreciably with pressure.
For minerals in the deep planet, we expect that G/K will be invariant with
P to a good approximation. But for the crust of the earth, the appropriate
minerals may not follow the rule that G/K is invariant with P.

9.11. Calculating the velocity of sound near melting

If any two elastic constants are known in an isotropic solid, then all elastic
constants are known. At P = 0, the behavior of the shear modulus and the
bulk modulus versus temperature appears sufficiently well understood that
extrapolations can be made to high temperatures near Tm.

Soga and Anderson (1966) found that G is linear with T up to high T
for polycrystalline oxides. The computed isotropic G for single crystals at
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high T also appears linear with G (see, for example, the cases of NaCl and
KC1 ahead in Fig. 10.5; see also Fig. 15 in Anderson et al., 1992). Linearity
persists at all measured temperatures above the Debye temperature (An
exception is iron at seismic frequencies (Jackson, 1994)).

The adiabatic bulk modulus KS is slightly curved with T, as shown in
Fig. 2.4. However, the cross plot of KS with the enthalpy "H is linear. Be-
cause 7i is well known up to 3000 K, the bulk modulus can be extrapolated
to near the melting temperature using the Kg-H plot.

Anderson (1989) found that the values of G near Tm are 54.65 GPa,
115.7 GPa, and 70.9 GPa for Mg2SiO4, A12O3, and MgO, respectively. The
values of Ks near Tm are 98 GPa, 210 GPa, and 110 GPa for Mg2SiO4,
Al2Os, and MgO, respectively. This leads to values of v, and vp of 4.27 km/s
and 7.46 km/s, 5.54 km/s and 9.80 km/s, and 4.78 km/s and 7.96 km/s
for Mg2SiO4, Al20a, and MgO, respectively. The values of Tm used are
2163 K, 2325 K, and 3098 K for Mg2SiO4, A12O3, and MgO, respectively.

The method to extrapolate G with T recommended by D.L. Ander-
son (1988) is to assume that certain dimensionless parameters are inde-
pendent of T; that is, 8T = — (1/aAV) (<9A'j/<9T)p = constant and
T = -(l/aG)(dG/dT)p = constant. Integrating j dT along the P - 0
isobar yields

Providing a(T) at high T is constrained sufficiently, G(T) may be extrap-
olated to high T. A method of constraining a(T) into high temperature
regions where it is not measured is to use (4.8).

In summary, the procedure I recommend for extrapolating the isotropic
constants to high T at P = 0 is to use the linearity between KS and Ti to
find Ks(T) and to use the linearity between G and T to find G(T). Neither
of these extrapolation methods depends on knowledge of a at high T.

9.12. The intrinsic (SG/#T)V for oxides and silicates

For oxides and silicates, {G}v = (l/aKT) (8G/dT)v is about 1 to 2
less than W - (l/aKT)(dKT/dT)v, as shown by D.L. Anderson (1988)
(Fig. 9.10). With a few exceptions, {G}v is negative. The large negative
values of {G}v mean that the T effect on G is strong at constant V, and
there is a T effect (the "intrinsic" effect) even without dilation. Expanding
AG,

It is ordinarily assumed that G arises from the stress deviator and is
independent of volume. If AV has no effect on G, then the first term on
the right of (9.70) vanishes, and (9.70) becomes
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Fig. 9.10. Intrinsic temperature derivatives W and {G}v for oxides and sili-
cates (after D.L. Anderson, 1988). MgO data point recalculated below.

I now compute {G}v and W of MgO, as shown in Fig. 9.10. Anderson et
al. (1992) found (5G/dT)p = -2.48 x 10~2 GPa/K at ambient conditions.
aKT is 5.04 x 10~3 GPa/K. Using the calculus equation (3.14), and taking
(dG/dP)T = 3.01, (dG/dT)v = -1.0 x 10~2 GPa/K, and {G}v = -2.0.

Alternately, AA'T/AT = (dKT/8V)T AV + (dKT/dT)v AT, or

The data from Anderson et al. (1992) show that at ambient conditions,
(dKT/dT)p = -2.7 x 10~2 GPa/K, and K' = 3.8, from which we find
(dKT/dT)v = -0.78 x 10~2 GPa/K and W = -1.6. (Using the ab initio
calculations of Isaak et al. (1990), Anderson and Isaak (1993) found 6T —
K' = -W = 0.6 at T = 300 K and P = 0 (see Fig. 3.3)). The comparison
of the {G}v value, -2.0, with the (K' + W) value, 2.2, shows that the effect
of T on G is smaller than the effect of T on KT- However, in the absence
of a volume change, the effect of T is the comparison between the value of
{G}v, -2.0, and the value of W, -1.6. Thus the simple potentials used to
establish the EoS in Chapter 10 are inadequate to explain the T effect on
G. Unless T is built into the potentials, (8G/dT)v = 0.
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PART III
THERMAL PROPERTIES

AT HIGH PRESSURE

The human mind has never
invented a labor-saving
machine equal to algebra.

—J. Willard Gibbs

At first these words may sound strange to many of us who know Gibbs's
work and compare it with the ideas of algebra taught in high school. The
foundation of physical chemistry created by Gibbs is based on more pro-
found mathematics than found in most algebra primers. It should be re-
membered that Gibbs was appointed a professor of mathematical physics at
Yale after he had spent 6 years in Paris, Heidelberg, and Berlin attending
lectures from outstanding mathematics professors of the great universities
in those cities. Thus he must have acquired considerable knowledge of ab-
stract algebra. His algebra was more akin to the definition by Alfred North
Whitehead (Kline, 1985), who wrote, "Algebra is the intellectual instrument
which has been created for rendering clear the quantitative aspects of the
world." Indeed, in the Encyclopedic Dictionary of Mathematics, 2nd edi-
tion, the discussion of algebra requires 83 pages in which there are listed as
subclasses 10 mathematics topics, including words such as topology, rings,
groups, fields, and number theory.

Thus the scope of mathematical methods found in Gibbs work is to
him an aspect of algebra. The use of algebraic symbols and equations
enables one to rewrite lengthy prose in a compact form in which the eye
can quickly see what is being said. That is the labor-saving machine spoken
of by Gibbs.

The four chapters in Part III encompass four complex subjects that
are greatly simplified by the mathematics employed. Algebra, in the Gibbs
context, is needed to help comprehend these subjects, and the sequence
of the chapters reflects an increasing level of complexity in mathematical
symbolism.

Many advanced subjects involving the EoS require knowledge of cer-
tain thermal properties at high pressure and conversely. Four such subjects,
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including melting, thermal pressure, shock waves, and thermodynamic func-
tion, are chapters in this part.

The chapter on thermal pressure PTH shows how some of the properties
in Part I can be added to the isothermal EoS of Part II to obtain a complete
EoS. The underlying problems are: how does PTH vary with temperature,
and how does it vary with volume? It is shown that with rare exceptions,
PTH is independent of volume at high T. It is also shown that for T > 0,
PTH varies linearly with T for all solids considered in the book. This is
indeed a valuable approximation for the EoS at high T. Two important
applications, the thermal pressure of silicate perovskite and that of iron,
are discussed in detail.

The chapter on melting outlines the derivation of the Lindemann law
of melting and shows some of the reasons for its longevity, in spite of its
weak theoretical foundation. The Lindemann law of melting is strictly
valid only for a monatomic solid that can be well represented by a single
vibrational frequency. Thus the assumptions behind the Debye theory are
woven into the fabric of the Lindemann law. It is no surprise that the
Lindemann law has been used successfully for monatomic metals, including
iron. Nevertheless, it works fairly well for a few important oxides and
silicates, including that silicate especially important to geophysics, silicate
perovskite. It also has been verified for MgO. These oxides and silicates
have well packed structures and comprise a subset, called "Debye-like"
solids, discussed in Chapter 5.

The chapter on shocked solids concerns the EoS as defined by the
shock-wave Hugoniot and its relationship to the isothermal EoS. Included
is the method of calculating the temperature along the Hugoniot. An ap-
plication is finding the melting temperature in the phase diagram of iron.

The chapter on thermodynamic functions deals with calculations of
the entropy S, internal energy U, and the free energy f, based on the
thermoelastic parameters discussed in Chapter 3. Provided the thermoe-
lastic parameters ST and K' are known as a function of T and V, then S,
U, and f can be computed. Further, if the equation of state is known,
P = f ( V , T ) , then the free energy Q and the enthalpy "H can be determined
from S, U, and F. The complete set of thermodynamic functions, over a
wide range of temperatures and pressures is calculated and presented for
MgO.

Of especial interest is the isothermal variation of S with V, which
depends only on the integration of a.Kf • Thus S(V,T) is defined without
prior knowledge of Cy, f, °r the EoS, depending only on the measurements
of a and of KT at P = 0 and the volume variation of bf and K'. Once
S(V, T) has been established, then the Griineisen ratio is defined by taking
a special derivative of S again without prior knowledge of Cv, f or the
EoS.
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THE THERMAL PRESSURE

10.1. Introduction

A useful analogy exists between the thermal pressure of a solid and the
kinetic energy of a gas. The perfect gas law is an EoS for an ensemble of
ideal gas particles,

where N is Avogadro's number; k is the Boltzmann constant; and 3 ac-
counts for the three degrees of freedom of an individual particle. This
equation, one of the introductory concepts of kinetic theory, is found by
equating the mean kinetic energy of a particle to momentum transfer in a
unit time over a unit area. The kinetic energy, EK = 3NkT, is identical to
the kinetic pressure. Thus (10.1) can be written

The analog to the kinetic energy in gases is the thermal pressure in solids,
where we take thermal pressure proportional to thermal energy, (1.34),

In solids the kinetic energy arises from the motion of the atoms as they
vibrate back and forth, each constrained to oscillate around a particular
lattice point. There are significant differences between (10.2) and (10.3).
First, although Pjf — P for a gas, PTJJ is only a component and often a
small one of P for a solid. Second, jmg, the Mie-Griineisen version of the
Griineisen parameter, so important for solids, is absent in the EoS of a gas.
No such parameter arises because in ideal gases, F = FK = EK — TS, and
(dEK/dV)T = 0.

Anharmonic terms are unimportant when the equipartition of energy
assumption is appropriate. Assuming this is true, then for a solid,

where p is the number of atoms per molecule. Equation (10.3) becomes
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Contrast this to (10.1) for a perfect gas.
In general, 7mj7 is a function of both T and V at constant P. However,

in special cases jmg may only be a function of V; then "^mg —> 7 (see (1.34)).
One can make an assumption corresponding to the primitive assumption in
(10.1) for gases—that jm3 in (10.3) or (10.5) is independent of V and T.
This turns out to be a very crude assumption for solids, for in that event,
PTHV = (const.)EK at all T and V.

The next degree of sophistication in the EoS for gases, going beyond
(10.1), is to account for the finite size of the molecules, giving them a
volume b' in the contained volume V so that the V in (10.1) is replaced by
(V — b'). Corrections are also made for the cohesion of the molecules when
they are close. These two corrections on the free energy of a gas yield the
van der Waals EoS. This improved EoS greatly extends the applications
of gas thermodynamics and enables the prediction of physical phenomena,
such as triple points, not possible with the perfect gas law, (10.1).

The second degree of sophistication for solids is to consider how each
vibrational mode affects the thermal energy. A typical method is to take
the statistical mechanical description of a solid to be ETH , as was done in
Chapter 2, and to assume a system of uncoupled Einstein oscillators. When
defining ETH to be the vibrational energy, it is assumed that each modal
frequency is volume dependent but not temperature dependent. This is the
quasiharmonic approximation (see Chapter 2),

where p is the number of atoms per molecule, and ETHJ is *ne thermal
energy of the jih mode. At high temperature, (10.6) converges to

So the second degree of sophistication, the choice of (10.6) for ETH,
corresponds to imposing the Dulong and Petit limit upon the specific heat,
Cv- The many, although finite, mode frequencies, w,-, in (10.7) now are
replaced by an equivalent single parameter, 0, at high T. Then at high T
just below the Dulong and Petit limit,

An important example of (10.8) is the Debye function, described in Chap-
ters 1 and 5, but there could also be other functions of (0/T).

and
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The second degree of sophistication for gases does not always work
satisfactorily. Sometimes new corrections that arise from the electrostatic
forces of electron and nuclear interactions have to be considered. These
terms, called virial coefficients, require the 1/V in (10.2) to be replaced by
a polynomial in \/V.

Similarly, the third degree of sophistication is sometimes required for
solids. This is necessary when, at high T, (10.7) is not satisfactory, as
evidenced by some solids where

Equation (10.10) defines an anharmonic condition. Thus the third degree of
sophistication in thermal pressure of solids is to account for anharmonicity,
which for high temperature is written as

(see (2.54)) where the last three terms in (10.11) might correct for depar-
ture from the quasiharmonic model. To get PTH in this case requires the
determination of the so-called mode gammas. We have

where

We could determine all the mode gammas, at least in principle, but this
would require the evaluation of 3pN terms. Although it is possible to
determine a few of the mode gammas from experiment, most are unmea-
surable. Fortunately for many high temperature problems, the uncertainty
of this fundamental approach can be bypassed because of the high tem-
peratures involved in geophysical and ceramics problems, and further, be-
cause geophysical problems often deal with closely packed minerals (see
Chapter 5). Figure 2.1 indicates that (10.10) applies to forsterite and two
garnets, whereas for MgO, A12O3, and CaO, (8Cv/dT)P - 0.

Just as in the general EoS for gases, where the third degree of sophisti-
cation reduced to the van der Waals EoS in a wide P, T range, so for solids
the third degree of sophistication may reduce to a simplified form at high
temperature over a wide temperature and pressure range. In cases where
the product j(V, T)EfH is simply proportional to T, the third degree of
sophistication of solids reduces to the quasiharmonic approximation:
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as shown in (2.38). Equation (10.14) is called the quasiharmonic approx-
imation at high temperature, because the mode frequencies in (10.6) are
uncoupled, but w is a function of V, so the spring constants are not inde-
pendent of atomic spacing.

When Cv is independent of T at high T,

the anharmonicity is said to be nil.

10.2. Is there anharmonicity in thermal pressure?

In oxides and silicates, there is sometimes evidence of anharmonicity in
specific heat as a result of a test of whether (dCy /dT)p = 0. However, any
anharmonic terms placed in f will affect all properties that are determined
by the derivatives of J-, as well as Cv • Here we consider the effect of
anharmonicity on the thermal pressure, PTH-

From calculus we have

Substituting (1.22) in the above,

Equation (10.17) is especially appropriate at high temperatures where T >
9 and TQ — 6. The last term in (10.17) is independent of V to a first
approximation. To show this, use (1.24) to define

At high T, Cv is not very sensitive to V, and for minerals, 7 is roughly
proportional to V given by 7 = jo(V/Vo). In many cases, aKf depends
only slightly on V at high T (see Fig. 3.7). Thus (10.18) can be taken as
independent of V. Replacing (10.17) by

we note the integrand. At high temperature, a increases with T and KT de-
creases with T, so that to a good approximation, aKf is often independent
of T (Fig. 2.5). Equation (10.19) then becomes

where TQ is the temperature at which linearity of <nK.f begins. It is given
by
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Fig. 10.1. A schematic diagram showing the corrections that must be made

to the approximation (dPTH/9T)v = constant for a crystalline solid at high
temperature. The abscissa is T/Q, where 0 is the Debye temperature.

Equation (10.21) is a constant, determined by integrating aKx from
absolute zero up to the onset of the high temperature regime, TO, which
starts somewhere between 0.80 and 0, depending on the material. Below
TO the behavior of aKr resembles the low temperature part of the specific
heat curve (see Fig. 2.6), and (10.21) therefore defines the quantum correc-
tion. Above TO the departure of O.KT from constancy is a measure of the
anharmonicity of aKr, as shown in Fig. 10.1. The data for /J aI<T dT
for seven minerals and two alkali halides is shown in Fig. 2.3. Linearity
in PTH(T) - Prj/(300) is demonstrated for T > 0. This shows that the
average value of aKf, above 0, is independent of T (see (2.42)). It also
demonstrates that aKf is large or small as po/(M/p) is large or small.

10.3. Anharmonicity effect for thermal pressure at V < VQ

If T* is the limit in linearity of the PTH T curve found for the isochore
V = Vo, the application of pressure extends T* to higher values. This is
proven by Hardy's (1980) theory, which shows that the application of pres-
sure extends the boundary between the anharmonic and the classical regime
to higher temperatures. Thus anharmonic effects die off with increasing P.
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Fig. 10.2. A schematic diagram showing the pressure effect on the separation
of the classical region (where PT ~ T) from the anharmonic region for the
vibrational contribution to the pressure equation. The actual lines of separation
depend on the assumption of the repulsive potential function and the accuracy
demanded in definition of the departure from linearity between PTH al)d T (after
Hardy, 1980).

Figure 10.2 is an interpretation of one of Hardy's (1980) published
curves. The value of T* marks the boundary between the classical harmonic
and the (shaded) anharmonic region at P = 0. According to Hardy's re-
sults, the value of T* may increase by as much as threefold as the pressure
increases to P K KTO- In the lower mantle of the earth, where P tv KTO,
we might expect that T* is several times greater than the value it would
have in its uncompressed state (i.e., T* > 3000 K at the core-mantle
boundary). As a consequence, the linear curves in Fig. 2.3, measured
to T/QQ = 2.0, are in the range of the lower mantle temperature ratio
(T/Qo = 1.9; see Table 1.10) due to the pressure suppression of anhar-
monicity.

From the APr/r data on mantle minerals given in Fig. 2.3, it seems
reasonably safe to assume at this time that the whole of the lower mantle
is approximately classical and that a linear law,

where 6 is controlled by po and M/p, applies throughout the mantle.
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Linearity in PTH and T should not extend all the way to the solidus;
nonlinearity would probably occur in the vicinity of the melting boundary
of the solid. But even near the core-mantle boundary, the T of the mantle
may be far below the solidus.

10.4. Experimental results of the dependence of PTB on V

Evidence is presented below showing that for some solids, PTH is indepen-
dent of V and proportional to T, and for other solids the dependence on V
is marked, whereas PTH is proportional to T.

10.4.1. Evidence from alkali metals and alkali halides

The work of Swenson and his collaborator (Swenson, 1968; Monfort and
Swenson, 1965) on alkali metals is very illustrative because the bulk mod-
ulus is sufficiently low that experiments are possible up to P/KTO > 1-
Further, the Debye temperature is sufficiently low that experiments are
conducted well into the classical range.

The experiments on potassium where P versus V is measured at con-
stant T are especially instructive. From this experiment P(T) — P(Q) versus
T at constant V can be found. Monfort and Swenson's results go up to
2 GPa (KTo = 3.35 GPa, so P/KTa = 6); they range from -78 K to 300 K
(6 = 95 K), so 0.82 < T/Q < 8.2; and the volume goes from 33 cc/mole to
45.5 cc/mole, so V/Vo < 0.74. Their basic results, illustrated by the case
for potassium, are shown in Fig. 10.3 (top). From these results, the change
in pressure with T at constant V can be calculated, which gives &.PTH with
T at constant V, as shown in Fig. 10.3 (bottom). Above 0 the change in
&.PTH is linear with T and independent of V.

It is seen that at constant V the change in pressure is virtually propor-
tional to T, and that the higher the temperature, the larger the AP. This
is seen in Fig. 10.3 (top), where it is demonstrated that (8P/dV)T = 0, as
the P-T curves for various isochores all overlap. Figure 10.3 (top) shows
that the change in pressure versus T, as shown in Fig. 10.3 (bottom), is
linear as well as being independent of V.

Thus for potassium

and



250 THERMAL PROPERTIES AT HIGH PRESSURE

Fig. 10.3. (top): P versus V at three isotherms for potassium using data in
Fig. 10.8. (bottom): P versus T for potassium. All isochores such as given by the
top of this figure overlap, so PTH for potassium is volume independent (modified
from Monfort and Swenson, 1965).

But as P = Po(V) + PTH, the two equations above can be replaced by

Thus (10.22) is valid in potassium, at least up to T = 3.40, and P — QKTo-

and
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Equation (10.26) means that the slopes of the isochores on a P-T plot
are parallel at any given T, as shown in Fig. 10.3 (top). This means that the
thermal pressure is independent of volume, as shown in Fig. 10.3 (bottom).
We can demonstrate this mathematically by the principle that the order of
differentiation can be reversed in (10.29), giving

that is, (dPTH/9T)v is constant and independent of V. It is in fact zero,
from the upper plot in Fig. 10.3. This means that if the slopes of the
isotherms on a P-V plot are independent of T (as in Fig. 10.3 (top)) for
constant V, then all isotherms are parallel.

Now (dPrH/dT)v = aKf. Using the lower part of Fig. 10.3 combined
with (10.27),

Conversely, this means that a solid in which (dKf/dT)v = 0 has parallel
isotherms on a P-V plot, but the isochores superimpose on a P-T plot.

M.S. Anderson and Swenson (1975) found that the thermal pressure
isochore shifts slightly with V for solid xenon, solid krypton, and sub-
stantially more for solid argon, a different situation from that found for
potassium metal (Fig. 10.4). This requires that (dKx/dT)v be dependent
on volume. Even though there is a small, detectable volume dependence,
PTH is quite linear with T (the total separation between isochores corre-
sponds roughly to 10~3Vb). For the case of solid argon in Fig. 10.4, all
measurements are below the Debye temperature (0 = 100 K), and quan-
tum effects spread the distance between the isochores. For solid krypton
and solid xenon, the isochores do not overlap but are close. For these solids,
PTH is strictly linear in T, but (10.29) is not true.

In Fig. 10.5, the plot of KT(V = V0) versus T is made for NaCl and
KC1, showing that KT(V = V0) is parallel to the T axis for NaCl, but
slopes downward perceptibly with T for KC1. This shows that for NaCl,
(dKT/dT}v = 0, whereas for KC1, (dKT/dT)v / 0. The case for NaCl
is similar to that of the alkali metals. Table 10.1 shows that for NaCl
the thermal pressure is independent of volume along isotherms above 0.
On the other hand, KC1 behaves more like the noble gas solids, because
(dKx/dT)v is nonzero, and PTH depends on V.

Using (3.2), (10.28) yields
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Fig. 10.4. PTH versus T for solid xenon, solid krypton, and solid argon, show-
ing that PTH depends on V but is linear in T (0 = 55° for xenon, 65° for
krypton, and 100° for argon) (modified from M.S. Anderson and Swenson, 1975).

THERMAL PROPERTIES AT HIGH PRESSURE
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Fig. 10.5. The isochoric KT versus T for NaCl and KC1. For NaCl, KT(V = Va)
is virtually independent of T, whereas for KC1, Kx(V = VQ) decreases as T in-
creases (after Yamamoto et al., 1987 and Yamamoto and Anderson, 1987).
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Table 10.1. Change of thermal pressure PTH from room temperature
to reference temperature T, PTH(T) — PTH(25°C), at various compres-
sions for NaCl.

P (GPa) PTH(T) - P™(25°C) (GPa)
V/V0

25°C 100°C 200°C 300°C 400°C 500°C

1.00
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

0.000
0.247
0.509
0.788
1.84
1.389
1.732
2.087
2.464
2.864

0.216
0.22
0.223
0.215
0.214
0.214
0.214
0.213
0.213
0.213

0.501
0.500
0.510
0.499
0.499
0.499
0.502
0.502
0.50
—

0.785
0.784
0.783
0.783
0.784
0.786
0.789
0.792
—
—

1.067
1.067
1.068
1.068
1.071
1.071
1.078
1.084

—
—

1.349
1.348
1.348
1.348
1.348
1.349
1.351
—
—
—

Data computed from Boehler and Kennedy, 1980.
Note that PTH is nearly independent of volume above T — Q — 300 K.

10.5. The volume dependence of otK-f

Take the identity given by (3.2)

The right side is a small number compared with —(!/V)(dKT/dT)p. As-
suming it to be small compared with uK? at constant P, then by integrat-
ing the left side with respect to V

where the volume strain AT? is (1 — V/Va), and where Va is the reference
initial volume.

Now because (aKT/dT)v is typically a negative number, if not zero,
as seen from the slope of the KT(V — Vo) curve in Fig. 10.5 for KC1, an
increase in strain results in a lowering of aKx at high T.

To see the effect of a nonzero value of (dKx/dT}v on the thermal
pressure, we apply the general formula for PTH above T — 0,
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Now aKf can reasonably be taken to be independent of T above 0, as
discussed above in Section 10.2, so that by integrating (10.30) with respect
to T,

The effect of strain on PTH for the case of gold where (dKr/dT)v

is a large negative number is shown in Fig. 10.6. Here the slope of the
PTH — T curve is reduced with increasing ATJ. The large negative slope of
(dKT/dT)v with T for gold is shown in Fig. 10.7, illustrating the source
of the excessive strain dependence of PTH- However, Fig. 10.6 shows the
slope of PTH is straight, which indicates that [d(aKT)/dT]v = 0 for gold,
a normal behavior.

Fig. 10.6. Thermal pressure PTH plotted against temperature for different
values of strain Ar; for gold. Note the essentially linear characteristic of PTH
for T above ©. The plotted data points are for zero compression, i.e., T] — 1.
The dashed lines show PTH calculated for various compressions using the volume
correction to aKT (modified from Anderson et al., 1989).
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Fig. 10.7. Thermal data for gold. Note that KT(V = VQ) decreases with T
for reported values of {dKf0/dP)T, whereas [d(aKx)/'dT]p is virtually inde-
pendent of T at high T (see Fig. 10.6) (modified from Anderson et al., 1989).

10.6. (8KT/dT)v for noble gas solids

In their work on the EoS's of the noble gas solids, M.S. Anderson and
Swenson (1975) emphasized their result that (dKT/dT)v is zero, provided
T is above the Debye temperature. Figure 10.8 shows their work for solid
xenon, solid krypton, and solid argon. For xenon and krypton below 0,
KT at constant volume decreases perceptibly with T, but above 0, Kf is
independent of T. For solid argon, no data were taken above 0, so the test
cannot be made. We see these same features in A^Os (Fig. 10.9). Below
0 (1045 K) the slope of (8KT/dT)v is negative. Above 0, the slope of
KT(V = Vb) is nearly parallel to the T axis.
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Fig. 10.8. The temperature and volume dependences of the isothermal bulk
modulus for solid xenon, solid krypton, and solid argon, where isochores of KT
are plotted. The dashed lines terminate on the left, where P = 0. The arrows
indicate the Debye temperature, 0. Note that in each case the isochores are
independent of T above 9 so that (dKT/dT)v = 0 above T = 0 (modified
from M.S. Anderson and Swenson, 1975).
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Fig. 10.9. The variation of Ks, KT, and KT(V - V0) with T for A1203.
Note that the slope (dKx/dT)v is negative at room temperature, but increases
so that in the high temperature regime it approaches zero.

The data on the noble gas solids are instructive because as the volume
decreases, the curves of KT versus T (constant V) remain parallel. Thus we
can see that the value of (dKT/dT)v does not change for different isochores.
This is in accord with the theory of Hardy (1980), who found that as the
pressure increases, the anharmonicity must diminish. This information is
quite valuable because it shows that the behavior we see for the few oxides
and silicates we have measured is typical of that for a wide class of solids,
even solid noble gases, giving confidence in the generality of the application
to a wide class of minerals of direct interest in geophysics.

10.7. General comments on the behavior of PTH

As we have seen, when integrated at constant V, the experimental values of
&KT, will give PTH versus T, which above 0 is a straight line up to some
quite high temperature T*. At low temperature, PTH will depart from
linearity and approach absolute zero with zero slope, similar to the behavior
of enthalpy. Near T = 0, the value of PTH is in the so-called quantum
region, where the effect of individual Einstein oscillators is distinguishable
(Fig. 10.10). As the temperature is lowered, these oscillators one by one
become quiescent, and finally near absolute zero PTH versus T resembles
the enthalpy, H, versus T.
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Fig. 10.10. Schematic variation of PTH versus T, showing the relationship
between the intercept a and TCL, the onset of the classical region.

10.8. The thermal pressure of the lower mantle

10.8.1. The Debye approximation of the earth's thermal pressure

Some idea of the magnitude of the thermal pressure in the earth can be
obtained by computing the thermal pressure from the Debye theory (Chap-
ter 1). According to the Debye theory, the thermal part of the free energy
at high T is

The thermal pressure is PTH = — (9FTH/dV)T, so that

where D(Q/T) is the Debye function (Table A-6.2), and
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Fig. 10.11. A plot of the coefficient of determination, r2 versus q, associated
with the data of the seismic model of Dziewonski et al. 1975 using po = 4.2 g/cc
(modified from Anderson, 1979b).

Changing p/V to p/(M/p), where p is the number of atoms in the molecule,
and evaluating the numerical constants (taking M/p = ^21), (10.33) be-
comes

where p is in dimensions of g/ml. The Debye function will approach
unity when 0 > T, which is the case throughout the lower mantle, where
D(Q/T) = 0.99. Thus aKT becomes

where GO is the Debye temperature at zero pressure. Data for the acoustic
version of 6, (2.69), as a function of depth were found using seismic veloci-
ties of the PREM model (Dziewonski and D.L. Anderson, 1981) (Table A-
5). Taking po = 4.2 g/cc (the uncompressed but cold value of lower mantle
density), the values of 70 and 00 were determined for various assumed val-
ues of q according to the seismic model. The value of the coefficient of
determination r2 versus q was then computed and is shown in Fig. 10.11.

10.8.2. The value of q in the lower mantle

Equation (10.36) requires analysis of pjo throughout the lower mantle,
which is done from seismic data. Anderson (1979a) showed that the varia-
tion of 7/j with p found with (3.18) can be expressed as

From (10.37) and (2.66) relating 7, 9, and V, it follows that
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From Fig. 10.11 it is concluded that the seismic models of the lower
mantle and especially the density distribution are not sufficiently precise
to make a definitive choice of one value of q over any other in the band
0.5 < q < 2.2. It is clear that q = 1 or (T/D — PojD0 ig a quite reasonable
solution and does not violate any of the primary data. Choosing q = 1
for evaluating (10.37) and (10.38) and assuming that the lower mantle is
homogeneous, we evaluate 7/5 0 and PQ. Thus (10.36) is replaced by the high
T equation,

The best fit of the lower mantle seismic model data, as reported by An-
derson and Sumino (1980), yields po (cold) = 4.2 g/ml, JDO = 1.3 and
0o = 920. Thus, at high temperatures, (10.36) becomes

This value can be compared with the values found for the minerals. Refer-
ence to Fig. 2.5 shows that the high temperature value of aKf for AljOa
and MgO is very close to 6 MPa/deg, whereas the corresponding value for
olivine (low pressure phase) and that for fayalite is close to 4 MPa/deg.
Thus the uncompressed value of aKf in the lower mantle is in reason-
able accord with what is found for minerals, with PQ and 0 close to their
respective values for MgSiOa perovskite (see Fig. 1.3).

10.8.3. PTH in the lower mantle from thermal models

In computing the thermal pressure in the lower mantle, there is the potential
problem that oK? may be a function of V at constant T, such as was found
for gold (see Fig. 10.6). The recent values of aKx versus P (Boehler et
al., 1988; Chopelas, 1990) at room temperature indicate that this may be
a problem, at least at modest pressure. But as shown in Fig. 3.7, for MgO
at high T and high compression, aKT is more or less independent of V.

From (3.7) we see that

The values of K'T — ST versus T and V have been solved for MgO and are
shown in Table 3.4. At low compression, or 77 slightly less than 1, and at
high temperature, ST > K'T and q > 1, and aKx varies with V. At high
compression and high temperature, ST is close to or slightly less than K',
so that a Ay varies very little with compression at high compression, as
illustrated in Fig. 3.7. The evidence is that a AT is indeed independent of
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depth in the P,T conditions of the mantle. The expression for the &PTH
using (10.40) is thus

Anderson and Sumino (1980) found an empirical expression for the
thermal pressure of the lower mantle by a self-consistent analysis of seismic
and thermodynamic data on minerals. They discovered that all data ex-
amined were consistent, assuming a homogeneous lower mantle, if one also
assumes

Comparing (10.43) and (10.42), we have

The variation of PTH with depth in the mantle can be found from
(10.42) if T is known at each depth. Most solutions for T with depth
in the lower mantle arise from solving a thermal model of the earth, but
such a model has built into it certain assumptions about 7, i.e., for each
T distribution there is a certain assumed 7 function. Table 10.2 shows the
data on T for three thermal models.

Table 10.2. Temperature found from three thermal
models of the lower mantle

Temperature (K)

Depth
km

771
971
1171
1371
1571
1771
1971
2171
2371
2571
2771
2885

BfcST

1908
1973
2034
2092
2147
2199
2249
2296
2341
2384
2426
2449

A*

2096
2171
2255
2334
2425
2512
2570
2628
2680
2756
2804
2833

Stacey*

2290
2372
2445
2518
2585
2650
2713
2776
2840
2905
3005
3157

t Brown and Shankland (1981); * Anderson (1981);
*Stacey (1977b)
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Table 10.3. Thermal pressure referenced to 300 K from (10.3)
using T from three thermal models

263

Depth
km

771
971

1171
1371
1571
1771
1971
2296
2371
2571
2771
2885

BfeSt
&PTH
GPa
10.40
10.86
11.27
11.65
12.0
12.34
12.67
12.97
13.27
13.55
13.82
13.96

A*
&PTH
GPa
11.68
12.16
12.71
13.22
13.82
14.38
14.76
15.13
15.47
15.97
16.28
16.46

Stacey*
&PTH
GPa
12.94
13.47
14.42
14.85
15.28
15.68
16.10
16.51
16.93
17.58
18.23
18.57

Pressure
po

GPa

28.29
37.29
46.49
55.90
65.52
75.36
85.43
95.76

106.39
117.35
128.71
135.75

B&S
PTH/P

0.39
0.31
0.25
0.22
0.19
0.17
0.15
0.14
0.13
0.12
0.11
0.10

t Brown and Shankland (1981); * Anderson (1981); *Stacey (1977b);
°P from the PREM model.

Using the values of T from Table 10.2 and (10.44), PTH can be com-
puted for any of the thermal models. For example, using the Brown and
Shankland model for T, PTH versus depth of the mantle is computed by
(10.44); the resulting values are listed in Table 10.3. The value of the to-
tal pressure is taken from PREM, and the ratio of PTH to P is also given
in Table 10.3. From this we see that PTH/P is largest at the top of the
mantle and smallest at the base of the mantle. According to Table 10.3 the
change in PTH across the lower mantle is only about a few GPa, whereas
the change in P is 105 GPa.

10.8.4. PTH zr* the mantle from equations of state

The thermal pressure can be found from the pressure determined by seismic
methods and the pressure calculated by an equation of state for the 300°
isotherm: PTH — P(T,p) — P0(300,p), where P0 represents the ambient
isotherm. To compute PQ, we need the values of the equation of state con-
stants: p(300,0), #T(300,0), and ^(300,0). We need the uncompressed
values of these constants from the PREM model.

Using the PREM values of pressure and density and following the third
order Birch-Murnaghan EoS, Bukowinski and Wolf (1990) obtained the
uncompressed (hot) values p(T*,0) = 4.005 and A'5(T*,0) = 224 GPa,
where T* represents the hot temperature of the solid on decompression.
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Anderson and Sumino (1980) found almost identical results for their de-
compression calculation: p(T*,0) = 4.00, KS(T',Q) = 221 GPa. An-
derson and Sumino (1980) went further and reduced the temperature to
300 K and then changed from adiabatic to isothermal parameters, find-
ing: p(300,0) = 4.22 ± 0.02; #T(300,0) = 275 ± 6. In the Anderson and
Sumino (1980) paper, they used assumed unmeasured values of dKs/dT.
There has been a great deal of recent experimental work done where mea-
surements of (dKg/dT)p are taken at very high T (Anderson et al., 1992).
Consequently better temperature-reduced values now are p(300,0) = 4.2
and#T(300,0) = 270±5.

The ambient value of (dKT/9P)T is more elusive in the decompression
analysis. In the PREM (D.L. Anderson, 1989) data of the lower mantle,
dK/dP varies considerably with depth, having the following properties:
721-971 km, dK/dP < 3.0; 1071-1671 km, dK/dP < 3.6; 1771-2677 km,
dK/dP < 3.2; 2471-2741 km, dK/dP < 3.3. For the Birch Murnaghan
EoS, in the regions down to 1671 where the compression is < 1.17, it mat-
ters little whether dK/dP is 3.2 or 3.6. But in regions where the compres-
sion is > 1.2, the calculated pressure, Po(300, p), is sensitive to the actual
value of dK/dP. Therefore there is little error made in the calculated
value of PO by assuming dK/dP = (8Ks/dP)s is 3.25 for the whole lower
mantle. In the decompression analyses, consideration needs to be given to
values o{d2Ks/dP2 and d2Ks/dP8T. Isaak (1993) showed that these two
high derivatives are of opposite signs and tend to cancel out over much of
the mantle, so that we take (dKs/dT)s (300,0) to be 3.25. In changing
(8Ks/dT)s to (dKs/dT)T, we need to account for the factor (dI<s/dT)p

(found from 6s) and the factor (8T/dP)s (found from the thermal gradi-
ent). The correction to (8Ks/dP)s is 0.15, so that we may expect for the
lower mantle,

We note that these decompressed and ambient values are for the case of
using a Birch-Murnaghan EoS in the decompression analysis. Bukowinski
and Wolf (1990) stressed the point that the actual numerical values for Kg
and K' depend on the equations used in the decompression analysis.

We now compute the 300 K isotherm of pressure from the third order
Birch-Murnaghan EoS as given by (6.18), (6.15), and (6.25):

where

Results of (10.45) and PREM data for p are given in Table 10.4.



THERMAL PRESSURE 265

Table 10.4. Computations of Po(V) and PTH f°r the lower mantle
using the third order B-M EoS: KTa = 270 ± 5 GPa; K' = 3.4

Depth

km

771

971
1171
1371
1571
1771
1971
2171
2371
2571
2771
2885

pt
g/cc

4.44

4.56
4.67
4.78
4.89
5.0
5.10
5.20
5.30
5.40
5.50
5.56

f

-.0187

-.0282
-.0366
-.0450
-.0534
-.0616
-.0690
-.0765
-.0840
-.0912
-.0985
-.1028

Po/KTa

(10.45)

0.061

0.095
0.127
0.161
0.196
0.232
0.268
0.305
0.343
0.382
0.422
0.467

P0

GPa

16.5
±0.31
25.5
34.2
43.5
53.0
62.5
72.4
82.3
92.5

103.1
114.0
120.4
±2.30

P"

GPa

28.29

37.29
46.49
55.90
65.52
75.36
85.43
95.76

106.39
117.35
128.71
135.75

PTH
GPa

11.81

11.79
12.28
12.40
12.51
12.82
13.00
13.42
13.83
14.27
14.71
15.33

BfcS*
BM

0.93

0.97
0.96
0.98
1.00
1.00
1.02
1.00
1.00
0.99
0.98
0.95

tpREM density and *PREM pressure (D.L. Anderson, 1989);
•fBrown and Shankland PTH divided by Birch-Murnaghan EoS PTH-

The last column of Table 10.4 shows that the value of PTH from
the equation of state calculation in which no mantle temperature is used
agrees remarkably well with the value of PTH from the Brown and Shank-
land (1981) temperature distribution (Table 10.2) used in the calculation
of PTH (&PTH in Table 10.3, plus 0.53). From this we conclude: (1) there
is no evidence of anharmonicity effects (a T2 term) in PTH of the lower
mantle; (2) there is no evidence that PTH ig sensitive to volume change
in the lower mantle; (3) the best agreement comes by assuming the lower
temperature distribution found in Brown and Shankland (1981), in which
T = 1980 K at 771 km and T = 2500 K at 2285 km; and (4) the adiabatic
compression method of finding temperature is valid. Apparently there is no
need to assume significant superadiabatic gradients, such as arise from mod-
ulus relaxation or inhomogeneity corrections (Shankland and Brown, 1985)
because PTH from the B-M EoS and the seismically determined P agree
with the thermal calculation of PTH-

We note that KT(3QQ,Q) = 270 ± 5 GPa obtained from the decom-
pressed mantle values obtained by Bukowinski and Wolf (1990) agrees
with the experimental values obtained for orthorhombic silicate perovskite
(KTo = 266 GPa, Knittle and Jeanloz, 1987; KTo = 261 GPa, Mao et
al., 1991; KTo - 243 GPa, Yeganeh-Haeri et al., 1989).
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It is also significant that the temperature distribution of the mantle
obtained by Brown and Shankland and verified by Table 10.4 was obtained
by using as a starting temperature 1873 K at 670 km. This value is close
to that measured by Katsura and Ito (1989) for the transition from the 7
spinel form of olivine to the perovskite form of olivine: they found 1873 K
at 655 km.

The results of several equations for the thermal pressure versus temper-
ature in the lower mantle are summarized in Fig. 10.12. The experimental
results for PTH versus T at P — 0 for three solids are also plotted.

Fig. 10.12. Thermal pressure versus T for four thermal models of the lower
mantle. Also, for comparison, the experimental results of thermal pressure versus
T for three solids (MgO; A12O3; Mg2SiO4; see Fig. 2.3). We note that the extrap-
olated values of PTH at high T for minerals with high density values merge with
the computed values of PTH from PREM parameters at lower mantle conditions.
Experimental data on PTH from Anderson et al., 1992.
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It is seen that the experimental results for MgO and A12O3 extrap-
olate into the lower mantle solutions. However, the results for Mg2SiC>4
do not extrapolate into the lower mantle solutions, nor should this be ex-
pected. Mg2SiO4 (olivine structure), reported in Fig. 10.12, is appropriate
for the upper mantle. In the lower mantle, Mg2SiC>4 would be in the per-
ovskite structure, and having a denser packing in the high pressure phase
would have a correspondingly larger value of ctKx, yielding thermal pres-
sure slightly larger than the extrapolated A^Os thermal pressure.

The values of P0 = P0(p, 300) and P from PREM taken from Table 10.4
are plotted in Fig. 10.13. The difference P(PREM) - P0 is the thermal
pressure, PTH• The curves appear parallel, but they are not. The difference
P - P0 at 2885 km exceeds by 3.5 GPa the difference at 771 GPa. This
shows that the thermal pressure is only a small fraction of P at the core-
mantle boundary, whereas it is a much larger fraction (nearly 40%) at the
upper-lower mantle boundary.

Fig. 10.13. The variation of pressure with density. Curve A is the density from
PREM; curve B is the 300 K isobar computation of P using the third order Birch-
Murnaghan EoS. po, KTO, and K!p are obtained by decompressing PREM values,
then reducing the temperature to 300 K (after Anderson and Sumino, 1980).
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10.9. The thermal pressure of the inner core

10.9.1. aKr for the inner core

The general form of thermal pressure, analogous to (10.33), is

M/p, the average atomic weight for iron, is 55.83.
Thus, for iron,

where p is in g/cc.
An estimate of 7 for the inner core is needed. The effect of je on iron

was discussed in Section 1.9. For the lattice contribution alone, 7 was found
by Jamieson et al. (1978) to be 1.5 ± 0.3 for the inner core. One does not
simply add je to 7 to get the core 7, because they are of unequal weights.
As shown by Jamieson et al. (1978) and Stacey (1977a,b), adding a small
term to 7 (they recommended 0.1) suffices for the electronic contribution to
7, in place of the detailed calculation, due to the relative smallness of the
electronic contribution. Thus 7 of iron at core conditions should be near
1.6 ±0.3. From shock wave measurements, Jeanloz (1979) found 7 — 2.0 at
P = 0 for iron, becoming 1.5 at core conditions. Stacey (1977b) computed
•yvz from seismic density gradient data, finding 1.49 at 340 GPa. Ander-
son (1979a) computed yac from seismic density gradient data, obtaining
7 = 1.6 at 340 GPa. Brown and McQueen (1986) estimated 7 at high P
and T, 1.7 < 70 < 2.5 from their shock wave measurements. I shall use
7 = 1.8 for the inner core, and, using p = 13 g/cc, (10.47) is

10.9.2. Evaluation of T for the inner core

To find PTH from (10.49), we must assume the temperature of the inner
core. There is some question of its exact value. A common procedure is to
use the experimental information on the melting of pure iron at the inner
core-outer core (IC-OC) boundary pressure and then estimate the melting
point depression due to impurities in the outer core.

A great deal of effort has been expended in theories and experiments
to attempt to find the value of Tm at the IC-OC boundary pressure. At this
pressure the liquid and solid parts of the core are in thermal equilibrium.
Therefore the experimentally or theoretically determined melting point of
iron at this pressure gives insight into core temperatures. Some estimates
of Tm at 330 GPa are shown in Table 10.5.
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Table 10.5. Predicted melting temperatures Tm of pure iron at the
pressure of the inner-outer core boundary (from Anderson, 1993).

T °K-1 m *»-

GILVARRY (1957)
ZHARKOV (1962)
BUNDY & STRONG (1962)*
HIGGINS & KENNEDY (1971)*
BIRCH (1972)*
BOSCHI (1975)
LIU (1975)
BUKOWINSKI (1977) (fee iron)
BOSCHI ET AL. (1979)
ABELSON (1981)t
STEVENSON (1981)
BROWN & MCQUEEN (1982)§
ANDERSON (1982)§
SPILIOPOULOS fe STAGEY (1984)§
YOUNG & GROVER (1984)
ANDERSON (1986)§
POIRIER (1986)
BROWN k MCQUEEN (1986)§
ROSS ET AL. (1990)
WILLIAMS ET AL. (1987)
YOO ET AL. (1993)
POIRIER AND SHANKLAND (1994)

ANDERSON (1993)§
BOEHLER (1994)

6200
6200
6100-8100
4250
5100
6000
5125
5450
4500-7000
7800
6300
6200 ±500
5900 ± 700
6140 ±575
6600
6210 ±400
6000 ±300
5800 ± 500
6400
7700
6830
6160 ±250 (a)
6060 ±260 (7)
6200 ±200 (()
4850 ± 200

* Based on an extrapolation from experiments at 6 GPa.
t Based on the Monte Carlo theory.
§ Based on an extrapolation from experiments at 243 GPa.

The actual temperature of a pure iron core will be changed (probably
lowered) by the presence of impurities. The temperature of the inner core
will be influenced by the freezing point depression of the iron in the outer
liquid core at the IC-OC boundary. Poirier and Shankland (1994) estimate
this depression to be 500°C to 1000°C.

We use Tm from Anderson (1993) in Table 10.5 reduced by 700°K due
to the estimated freezing point depression to yield Tm — 5500 ± 500 K for
the core. Taking this value in (10.49), we have
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The error bars reflect uncertainty in Tm and in 7. This value will be
used to find p(z) by correcting the equation of state value of p computed
along the 300 K isotherm, p(300,T).

10.9.3. The equation of state for the inner core

Data for the parameters used in the equation of state are listed in Ta-
ble 8.3. Calculations of the 300 K isotherm equations of state were made in
Section 8.11 and were plotted in Fig. 8.5. To obtain these density trajecto-
ries at core temperatures, we keep p the same as in Fig. 8.5, while adding
APTH = 60 GPa to P(p,300), and the results are plotted in Fig. 10.14.

Fig. 10.14. The trajectories of e-iron, 7-iron, and ferromagnetic a-iron at core
pressures and temperatures found by shifting the trajectories in Fig. 8.5 to the
right along the P axis (APxH = 60 GPa). A comparison is made to PREM
density. Two EoS's, the Birch-Murnaghan third order and the Morse potential,
are used for two curves for a-iron. A pure f phase has a density too high for
PREM, but a pure fee phase may have a density close to that of the inner core.
Also shown is the experimental shock wave curve (Brown and McQueen, 1986).
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10.9.4. Impurities in the iron of the central core

If the core is made of f(hcp) iron, it is seen that the density at inner core
conditions is too large for PREM, and consequently the inner core must
be an alloy of iron and lighter impurities (Jephcoat and Olson, 1987). On
the other hand, if the inner core is made up of fee iron, the density of pure
iron will satisfy the values found by PREM (see Fig. 10.14), providing the
EoS parameters used for 7 iron are accurate. In this case a model of the
inner core's physical properties could be made of pure iron with negligible
impurities. An fee inner core implies that the crystallization of the inner
core has resulted in the rejection to the outer core of most of its light element
impurities in a process such as zone refining. The a phase curves are not
physically meaningful, as the EoS parameters used are for ferromagnetic
iron, and bcc iron at such high temperatures would not be ferromagnetic.
Nonmagnetic iron is dynamically unstable at high temperatures (Stixrude
and Cohen, 1994; Cohen et al., 1994; Sherman, 1994). No valid conclusion
can be made about the composition of the inner core until the structure of
iron phase at inner core conditions (see Fig. 8.2) is settled.

10.10. Thermal pressure and the EoS of silicate perovskite

I now demonstrate how the values of an equation of state can be generated
with limited knowledge of the thermal pressure. As a good approximation,
A.PTH is controlled by the value of aKf at T = 6. The tacit assumption is
that A.PTH is independent of V and proportional to T. The value of KT at
T = 300 measured by Mao et al. (1991) is 263 GPa. In Section 4.13.4
we found 8KT/dT = 0.035 GPa/K, so that A'T(1000) = #T(300) -
.0035 (1000-300) = 239 GPa. Using Fig. 4.12 for 70 = 1.5, the value of a at
1000 K is 2.9 x 10~5, so that aKT = .00692 GPa/K, and APTH = 6.92 (T-
300) x 10~3 GPa. Figure 10.15 compares APr/f for perovskite with that
of MgO. The value of PTH at 77 = 1 is shown as the top row in Table 10.6.

The EoS at T = 300 for perovskite was calculated from the data rep-
resented by Fig. 8 of Hemley and Cohen (1992) using a third order Birch
Murnaghan EoS; the resulting P(V) data are shown in Column 2 of Ta-
ble 10.6. The remaining columns show the resulting P(V, T), which includes
&PTH- These data are plotted in Fig. 10.16, except as isotherms in dimen-
sions of p(P).

The 2000 K isotherm of Fig. 10.16 is replotted in Fig. 10.17 and com-
pared to the 2000 K isotherm calculated by Hemley et al. (1992), who de-
rived their curve from experiments of Mao et al. (1991) taken up to 1100 K
and 30 GPa. Considering the assumptions involved, the agreement is quite
satisfactory. The Hemley et al. data show a shift of PTH by an increase
of 5 GPa over our calculation, so their APxn is about 20 GPa at 2000 K.
The parallel curves in Fig. 10.17 confirm the assumption that A/Vn is
independent of V, the result of which is listed in Table 10.6.
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Fig. 10.15. Comparison of PTH °f silicate perovskite with that of periclase
(modified from Anderson and Masuda, 1994).

Table 10.6. The EoS of silicate perovskite calculated from AP-r/f
using j0 = 1.5

ri = V/V0

1.000
0.980
0.960
0.940
0.920
0.900
0.880
0.860
0.840
0.820
0.800
0.780
0.760
0.740
0.720

P
T = 300

0.0
5.5

11.6
18.4
25.8
34.0
43.1
53.2
64.4
76.9
90.7

106.1
123.3
142.4
163.9

P
T=500

1.4
6.9

13.0
19.7
27.2
35.4
44.5
54.6
65.8
78.2
92.1

107.5
124.6
143.8
165.3

P
T - 1000

4.8
10.4
16.5
23.2
30.6
38.9
48.0
58.1
69.3
81.7
95.5

110.9
128.1
147.3
168.8

P
T = 2000

11.8
17.3
23.4
30.1
37.6
45.8
54.9
65.0
76.2
88.6

102.4
117.8
130.0
154.2
175.7

P
T = 3000

18.7
24.2
30.3
37.0
44.5
52.7
61.8
71.9
83.1
95.5

109.4
124.8
141.9
161.1
182.6
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Fig. 10.16. The isothermal p versus P plots of silicate perovskite produced
from the data in Table 10.6.

Fig. 10.17. Comparison of the 2000 K silicate perovskite isotherm in Fig. 10.16
with the density profile at 2000 K computed from Hemley et al. (1992) using the
Mao et al. data measured up to 1100 K and 30 GPa.
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10.11. Swenson's law

We have found that (5KT/dT)v is close to zero for many classes of solids:
alkali metals, noble gas solids, alkali halides, some metals, oxides, and ce-
ramics (a notable exception is gold). Anderson (1979c) noted this common
behavior in solids, and that using (3.2),

which he called "Swenson's law," because of Swenson's (1968) pioneering
work. Many experiments described in this chapter confirm (10.51).

The approximation (daKT/dV)T « 0 may be regarded as a begin-
ning point in defining PTH f°r the EoS of solids, just as the ideal gas law,
PV = nRT, is regarded as the beginning point for gases. (The ideal gas law
is approximately true for gases over an extended V, T space, but requires
modification as V gets quite small). Future theory for thermodynamics of
solids may follow this lead and use (10.51) as a first order effect in defining
PTH- Following the analogy of the ideal gas law, we can expect (10.51) to
be less and less true as V/Vb gets smaller, as, for example, in the case of
NaCl. On the other hand, as for MgO, w = (dKr/dT)v, though small at
T) = 1, gets even smaller for lower 77, as shown in Fig. 3.3. But these effects
are minor and do not perturb (10.51) significantly.

The fact that Swenson's law works for so many different kinds of solids
indicates that we are dealing with a correspondence principle that tran-
scends solid type and is probably independent of chemical bond type and
crystallographic class, as manifested in (dPTH/dT)v « 0.

10.12. Summary

As has been shown, the high temperature behavior of PTH is quite similar
for many classes of solids. The thermal pressure is linear in T, or very
nearly so, over a large T range and depends only slightly, if at all, on V.

Of significance is PTH of sodium metal measured up to near the solidus
by Swenson (1968). His results show that PTH is independent of volume and
linear in T up to the melting point; no effects of anharmonicity are observed
in PTH even just below melting. In the case of oxides and silicates, such a
high T measurement of PTH is n°t possible. However, it has been shown
that above T = Q and at P = 0, the measured value of aKT = (8P/dT)v

has some of the same characteristics as found for measured values of the
other solids listed above. aKT tends to be independent of T at high T, and
departures from this independence disappear at high pressure.

For alkali metals, the data show that when the isochoric values of KT
are parallel to the T axis, (10.51) applies, and thus A.PTH is independent
of volume. For the oxides and silicates measured so far, the data indicate
also that aKT is probably independent of V.
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MELTING

11.1. Introduction

Over the last 50 years a sustained effort to quantify theoretically the solid-
liquid phase transition has resulted in an enormous literature on the subject.
This has not brought about uniform agreement to any satisfaction, and,
indeed, as Cotterill (1980) pointed out, melting is still one of the least
understood of the common physical phenomena known to man.

There are two opposing camps on the theory of melting. The first is
that of the purists, who insist that melting requires imposing the thermody-
namic condition that the Gibbs free energies of solids and liquids are equal,
requiring that a detailed description of the atomic and electronic structures
of the solid and of the liquid be quantified (Tallon, 1982). This approach
is difficult because the details of the structure of the liquid are known with
far less precision than those of the solid. The second camp insists that the
nature of melting can often be understood by studying the stability prop-
erties of a solid near its melting point: melting is thought to result from
a lattice instability. The earliest instability criterion was made by Linde-
mann (1910), who suggested melting occurs when the amplitude of the vi-
bration of atoms reaches a value large enough that the solid lattice is shaken
apart. Other early instability criteria were the ideas that the isothermal
compressibility vanished at melting (Hertzfield and Goeppert-Meyer, 1934)
or that a shear elastic constant vanished at melting (Born, 1939).

Sometimes the more fundamental approach is required. If a solid-
liquid phase transition boundary is calculated from first principles, then
the Gibbs free energy of the liquid phase must be specified. This approach
is promising, and for a few cases of simple metals a lot of progress has been
made. Of importance to geophysicists is the calculation by this method of
the melting of iron at high pressures (Young and Grover, 1984; Cohen et
al., 1994; Sherman, 1994; Stixrude and Cohen, 1994).

When extrapolation from existing experimental data on melting to
extreme conditions is required, the second approach has proven useful, and
much of this chapter will emphasize the instability approach to melting.
Instability of the solid lattice is sometimes defined as the onset of the lack
of long range order (as shown by x-rays) or the sudden loss of rigidity (as
shown by the vanishing of the shear velocity). Some physicists have found
these two phenomena to be equivalent (P.W. Anderson, 1984).
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Fig. 11.1. Coexistence
curves for a typical pure
monatomic system in P, T
space: A is the triple point,
and C is the critical point;
curve A-B is an example
of a fusion curve with a
positive slope.

Much of the work reviewed in this chapter is based on thermodynamics.
The power of classical thermodynamics is available to melting theory be-
cause many applications do not require detailed knowledge of the structure
of the solid treated. The consequence of ignoring structural considerations
is that we cannot deal with theories of melting in which structural consid-
erations are important, such as, for example, the structure of melts and the
melting of molecular crystals, polymers, and rocks. Thus, this chapter em-
phasizes the phenomenological thermodynamics of melting. It is essentially
restricted, therefore, to discussions of monatomic solids, such as metals,
in which the vibrational density of states can be represented adequately
by one frequency, the Debye frequency required in Lindemann's theory of
melting. This approach can also be applied to oxides, silicates, and alkali
halides that are Debye-like solids. For these solids, the vibrational density
of states can be described adequately by a Debye frequency spectrum (see
Chapter 5).

11.2. The Clausius-Clapeyron equation

For a monatomic substance, three phase boundaries coexist: the vapor-
liquid, the solid-liquid, and the vapor-solid. All three phases can exist at
a single point, the triple point (Fig. 11.1).

The Gibbs free energy is constant at and across a phase transition.
Classification of a transition is often done through the derivatives of G.
The rc-order phase transition means that if the n th derivative of G is dis-
continuous, all n — 1 are continuous. Because

and VSOLID ^ VLIQUID, and further, as
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and SSOUD < "^LIQUID, the melting is a first order (discontinuous) phase
transition. We usually find

A special case of critical melting might exist. Several theories treat the
solid ^ liquid transition as continuous. Such a transition might occur if
AV; -> 0 and AS, -» 0.

With two phases at equilibrium, Q is formally the same for both phases.
Let L be the latent heat going from phase 2 to phase 1, or

at equilibrium. From the relationship between ~H and TS, we have at
melting L = T(S2 - Si), or H2 - TS2 = fti - TSi, which is another
statement that

This must be true at all points on the P-T curve. The phase boundary
may then be described as

Expanding <f AG out as a function of dT and dP, we have

The above is equal to

From this we find the Clausius-Clapeyron law along the solid-liquid
transition curve. Because d(£2 - Qi) = 0 at T = Tm, (11.7) is

where AVm is the volume change of fusion. Using L/Tm — ASm, at T = Tm

Values of AVj/V, AS,, and dTm/dP for a number of elements are
given in Table 11.1. Note that for some elements, like germanium, dTm/dP
is negative and accompanied by a negative volume change.
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Table 11.1. Entropy and volume changes across a melting boundary
with resulting dTm/dP

Element

Lithium
Sodium
Potassium
Rubidium
Cesium
Aluminum
Copper
Silver
Gold
Lead
Magnesium
Zinc
Cadmium
Indium
Tin
Antimony
Bismuth
Germanium
Argon
Krypton
Xenon

Crystal Structure

Body-centered cubic
Body-centered cubic
Body-centered cubic
Body-centered cubic
Body-centered cubic
Face-centered cubic
Face-centered cubic
Face-centered cubic
Face-centered cubic
Face-centered cubic
Hexag. close-packed
Hexag. close-packed
Hexag. close-packed
Tetrag. face-centered
Tetrag. body-centered
Rhombohedral
Rhombohedral
Cubic diamond
Face-centered cubic
Face-centered cubic
Face-centered cubic

AVj/V

0.0165
0.025
0.0255
0.025
0.026
0.060
0.0415
0.038
0.051
0.035
0.041
0.042
0.040
0.020
0.028

-0.0095
-0.0335
-0.05
-0.144

0.151
0.151

AS/
cal/mol"

1.59
1.68
1.65
1.79
1.69
2.74
2.30
2.19
2.21
1.90
2.31
2.55
2.44
1.82
3.41
5.25
4.78
6.28
3.35
3.36
3.40

dTm/dP
deg/GPa

35
86

169
187
257
55
33
45
59
83
63
37
53
43
32

-8
-38
-27
260
328
406

After Ubbelohde, 1965.

11.3. Development of the Lindemann law for melting

11.3.1. Energy of a vibrating linear chain

The statistical measure of amplitude motion is helpful in defining the melt-
ing temperature if one assumes that melting occurs with the onset of the
loss of distant order. Consider a system of p coupled atoms. The degree of
oscillatory motion in this one-dimensional chain is given by

where a1; 02, . . . are the amplitudes of the oscillations at a given instant of
time. The bar signifies a time average.

The basic physical idea behind Gilvarry's (1956a) formulation is that
when < a2 > is sufficiently large, a fraction of atoms in the system will
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have a very large amplitude and will be in a state more similar to that of a
classical gas than to that of a solid. < a2 > is a measurable quantity found
from x-ray experiments representing the average condition of the lattice at
high T (The critical amplitude a2 appropriate to those atoms in the gaseous
state is much larger than <a 2 >).

We proceed to find the mean energy of a Planck oscillator by inte-
grating over the elastic frequency spectrum of the solid. Brillouin (1946)
derived the energy of a monatomic linear chain in oscillatory motion as
follows:

Let the departure from equilibrium for an atom at site j be given by

At high temperature the values of Oj are distributed over a spectrum at
any given instant. The kinetic energy of the total chain is given by

Take the time-averaged value of the kinetic energy. We then have

Now

and

Thus the potential energy of the chain is

where E is understood now to be the energy per atom.
Equation (11.14) is a greatly simplified representation of the energy

in a solid at high T. For a monatomic isotropic crystal, the Debye model
requires that u be replaced by u = k/(47rh)Q, so that (11.14) is replaced
by
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where x = fi/T and Q(x) = 1 + z2/36 + z4/360 + ... (Gilvarry, 1956a).
The Debye theory is now mixed with Lindemann's theory.

For a polyatomic solid, m in (11.15) can be replaced by the reduced
mass and Q(x) by a more realistic value, by integration of the frequency
spectrum. These refinements are in the numerical constants. The values of
V, Q, and < a2 > are the important variables. These numerical constants
are removed by a subsequent differentiation.

11.3.2. Melting conditions using the Gilvarry criterion

Lindemann's (1910) theory was a relation between melting and the Einstein
vibrational frequency. To find the Einstein frequency, melting was assumed
to occur when the space between surfaces of atomic spheres on lattice points
vanished. Gilvarry (1956a) made this a theory of melting by proposing that
melting occurs when the root-mean-square amplitude is a critical fraction
e (called the Gilvarry criterion) of the distance separating nearest neighbor
atoms; that is, melting occurs when

Taking the logarithm of (11.15) and using (11.16), we have

All numerical values in the parens of (11.15), and also e, are in the constant
of (11.17).

Under adiabatic conditions of compression, the Debye temperature is
related to the density by (Griineisen, 1926)

where 7 is the Griineisen ratio. Using (11.18) in (11.17), the Griineisen
theory is introduced into the Lindemann-Gilvarry formulation:

where

The constants identifying the energy belonging to either a one-dimensional
or three-dimensional lattice disappear in (11.19) when the derivative of a
constant is taken. Equation (11.19) is appropriate for a solid at high T
for which a single value 0 is a reasonable representation of the thermal
properties, e.g., the solid is Debye-like. For a criterion on the identification
of a Debye-like solid, see Chapter 5. Note that a test of (11.19) may be a test
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of the Debye model as much as of the Lindemann model. Equation (11.19)
is for adiabatic compression. For isothermal compression the amplitude is
higher for constant E, and (11.20) is replaced by

11.3.3. The Lindemann law with the Gilvarry criterion

We now have a criterion giving AJ5 in terms of A/>, the Griineisen constant,
and < a2 >. Equation (11.19) is applied to a solid at the fusion temperature.

We now use (11.19) at melting and replace E with the classical formula
nRTm, where n accounts for the degrees of freedom. Thus (11.19) becomes
the Gilvarry criterion of melting,

The above equation is usually written without the parameter /, but to
eliminate / requires an additional assumption. To evaluate / we must
know how the value of e changes with density. Gilvarry proposed that e
remains constant as p increases. We now have a simple formula that shows
how Tm changes with p, which is now widely represented as the Lindemann
law for melting, though it should be called Gilvarry's law,

By taking / to be zero, we assume that (11.23) is true everywhere on
the fusion curve. Equation (11.23) is therefore a scaling law; that is, if we
know j ( p ) and we know one value of T along the fusion curve, we can find
T at every point along the fusion curve. Equation (11.23) is valid only for a
Debye-like solid because of Gilvarry's inclusion of (11.18) in the derivation.
A failure of (11.23) may be expected for a non Debye-like solid.

11.4. The Simon law: a special case of the Lindemann law

To evaluate the pressure variation of Tm, we need to use an equation of
state. Using the definition of the bulk modulus, (11.22) becomes

where (1/Kx) = ( \ / p } ( d p / d P } T - Let us assume KT is linear in P. Then

Equation (11.25) is a variation of the Simon melting law (Simon and Glatzel,
1929). Gilvarry showed (1956b) that the Simon melting law is really a com-
bination of the Murnaghan equation of state and the Lindemann law.
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11.5. The Kraut-Kennedy law based on the Lindemann
law

11.5.1. Kraut-Kennedy law description

Consider (11.22). By replacing dTm with Tm-Tma and dp/p with -&V/V0,
(11.22) can be written as

and where Tm, 7, and AV/V are appropriate to the melting boundary.
Equation (11.26), known as the Kraut-Kennedy (1966) equation of

melting, shows that Tm is linear with AV/Vo. Alkali metals obey the Kraut-
Kennedy equation to very large compressions (Luedemann and Kennedy,
1968), as do some metals (Fig. 11.2). But for many solids, (11.26) holds
only for small compressions; Fig. 11.3 shows the case for some alkali halides,
a silicate, and an oxide.

Fig. 11.2. Demonstration
that the Kraut-Kennedy law
(Tm linear in AV/Vo) is true
for many metals (modified
from Kennedy and Vaidya,
1970).

where
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The Kraut-Kennedy law is a simple restatement of the Lindemann
law, but, as shown in Fig. 11.3, it may be valid only at low pressure. The
linearity of Tm with &V/V was derived by Gilvarry (1956a) 10 years before
Kennedy's paper, but Gilvarry's contribution was not generally recognized
until Kennedy firmly pointed out the importance of relating the melting
temperature to volume instead of to pressure, as was the customary practice
before Kennedy's papers on the subject.

Fig. 11.3. Demonstration that the Kraut-Kennedy law (Tm linear in AV/Vo)
does not hold for a class of solids, except at low compressions (modified from
Kennedy and Vaidya, 1970). This class of solids includes alkali halides, some
silicates, and some oxides (diopside and AgO are examples of the latter two).
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Table 11.2. Constants in (11.25) and (11.26)

Substance

Li
Na
K
Rb
Cs
Cu
Ag
Au
Al
Te
NaCl
Ge
Sb

CVdeg
measured

0.55
1.66
1.60
1.75
1.68
3.96
5.26
8.12
4.70
4.45
4.88

-2.67
-0.28

7
room temp.

0.90
1.33
1.37
1.85
1.49
1.92
2.46
3.09
2.17
0.92
2.0
0.8
0.84

/
from (11.26)

-0.18
-0.17
-0.24
-0.65
-0.32
+0.39
+1.00
+1.30
-0.50
+ 1.72
+1.10
-1.73
-0.65

In most applications of the Kraut-Kennedy law, / is taken to be zero,
and 7 is the room temperature (low pressure) value. Using this value of /
may create some error (as 7 at melting is seldom known), but we can test
the validity of (11.26) by using values of C derived from Kennedy's many
experiments and the reported value of 7 to find the value of / shown in
Table 11.2.

Examination of Table 11.2 leads to the following: For the alkali metals
(Li, Na, K, Rb), the value of/ is small compared with that of 7. In this table
the value of 7 is taken from room or low temperature experiments, whereas
the value of 7 should be the value appropriate to the fusion curve. There is
no reason to believe 7 is exactly the same at Tm as at TO . We conclude that
(11.26) is reasonably satisfactory. The value of / may in fact be close to
zero due to the use of an incorrect value of 7. We see that if 7 is less than
about 1/3, the gradient of Tm with density may be negative by (11.25), as
in the case of germanium and antimony (Kraut and Kennedy, 1966) (see
Table 11.1). Thus it is possible to account for a negative fusion gradient
by the most elementary assumptions in the Lindemann law, the Kraut-
Kennedy law being a restricted case of the Lindemann law.

In the framework of the Lindemann law, / should be zero because e is
presumed to be independent of P. The values of / in Table 11.2 may be
non-zero due to errors in 7 or C. There have been few reports on how /
varies with P. One theoretical paper for MgO shows that / is zero up to
at least 300 GPa (see Section 11.9).

Recognizing that 7 is a decreasing function of density, C is not in-
variant with density but should gradually also decrease with density for



MELTING 285

higher values of AV/V. This changing slope behavior is shown experi-
mentally in some of Kennedy's later works (Akella et al., 1969; Kennedy
and Vaidya, 1970) (Fig. 11.3). Thus we expect that the Kraut-Kennedy
law is only strictly applicable in the pressure range where 7 is insensitive
to pressure (Leudemann and Kennedy, 1968). In the lower mantle of the
earth, 7 decreases steadily with density increase, satisfying jp — constant
(Anderson, 1979b). Similarly, a change of 7 with p will be found when the
pressure is sufficiently high.

11.5.2. From the Clausius-Clapeyron equation

Using the Clausius-Clapeyron equation (11.9), it is easy to show that

which is valid over the same range of density that dp/'p = (p — Po)/Po is
considered valid. Equation (11.28) can be placed in the Kraut-Kennedy
form given by (11.26) (Libby, 1966) if

The value of C from thermodynamic data using (11.29) compares reason-
ably well with the value of C measured by Kennedy and his colleagues for
a number of solids (Table 11.3). Thus the Kraut-Kennedy law has some
support from the Clausius-Clapeyron equation.

Table 11.3. Computation of Kraut-Kennedy constant C from the
Clausius-Clapeyron equation using (11.28)

Substance V AVj/V
cc/g-atom

Li
Na
K
Rb
Cs
Cu
Ag
Au
Al
Tl
NaCl

13.02
23.79
45.61
56.07
69.1

7.12
10.27
10.22
10.00
17.22
27.10

0.016
0.0755
0.025
0.025
0.026
0.051
0.033
0.051
0.060
0.072
0.250

KT

kbar

132
66
40
32
20

1371
1087
1803
764
366
232

Tm AS/ C
entropy units cal

454
390
335
331
302

1356
1234
1336
932
575

1093

1.58
1.68
1.65
1.80
1.68
2.30
2.25
2.21
2.74
1.77
6.7

0.94
1.49
2.01
1.83
1.73
3.82
3.23
7.75
4.37

10.86
5.19

C
obs

0.55
1.66
1.60
1.75
1.68
3.96
5.26
8.12
4.70
4.45
4.88
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11.6. The Lindemann law at high compression

At high compression the Lindemann law is more reliable if 7 is a function
of p, unlike the assumption 7 = constant used in deriving the Simon law
or the Kraut-Kennedy equation. In past chapters we have found that, over
certain ranges of P and T, a reasonable approximation is

(Figures 3.12 and 3.13 show the regions where (1.32) is not valid). Using
(1.32) in (11.23) and integrating, the relationship between Tm and p is
(Anderson, 1986)

The Spiliopoulos and Stacey (1984) equation takes q = 1 or

11.7. The Lindemann law at P = 0

11.7.1. Critical fractional amplitude for melting

Redefine (11.14) using (11.16) and assume a Debye-like solid by taking WD
for u>\

Here 8/37T2 replaces 1/2 as a more reasonable factor representing the in-
tegration of the elastic frequency spectra for a three dimensional solid
(Griineisen, 1926), and UD is the Debye frequency. We then have

The dimensionless value of e is of great interest. Solving for e,

where 0 is the Debye temperature (e should not vary within a crystal
class). Failure of (11.34) when it is tested against experimental data may
not necessarily imply failure of the Lindemann criteria. Such a failure may
arise because the solid tested is not a Debye-like solid (see Chapter 5).
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Fig. 11.4. Lindemann parameters calculated for monatomic metals by (11.34)
(modified from Cho, 1982).

The Lindemann derivation used the simplest model for a vibrating
solid, namely, a single characteristic vibrational frequency, here represented
by 9 (Ubbelohde, 1965). Gilvarry (1956c) found that e in (11.16) is of
the order of 0.1, but the value apparently depends on the crystal class.
Cho (1982) did an extensive study of metals to determine e and found that
the values of e did indeed depend on crystal class. He determined that
e = 0.12, 0.096, and 0.07 for bcc, fee, and hep, respectively (see Fig. 11.4).
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11.7.2. The Lindemann constant, C

Equation (11.34) can be viewed in another way. Rearranging the right side
of (11.34) and letting e be a constant, we have another scaling law relating
Tm, 9, and m. By this rearrangement we define a constant, traditionally
called the Lindemann constant, £

in which all parameters are readily available. Cho (1982) found L = 126
for bcc metals, 154 for fee metals, and 218 for hep metals. Values of L
for alkali halides and diamond structured elements are given in Table 11.4.
Cho showed that the uniformity of L is fairly good within each crystal class
structure.

J.P. Poirier (1988) found that oxides and fluorides in the perovskite
structure had a common value of e near 0.13, and he felt that this was
sufficient evidence that perovskites should be classified as obeying the Lin-
demann law (Table 11.5). Poirier (1988) defined a different £ parameter,
essentially the square of (11.35) without Tm:

He applied (11.36) to oxides and fluorides of the perovskite structure, cor-
relating £' and Tm, as shown in Table 11.5 and Fig. 11.5. The linearity
between £' and Tm was additional evidence that the perovskites obey Lin-
demann's law at low pressures given by (11.35), in spite of the fact that
silicate perovskite is a complicated silicate and certainly not a monatomic
solid (a founding assumption of the Lindemann law). Silicate perovskite,
however, is a Debye-like solid (see Chapter 5), and therefore can be treated
as a monatomic solid. Poirier used the linearity in Fig. 11.5 to estimate
Tmo for orthorhombic perovskite, MgjSiOa, and found Tma = 2564 K (see
Fig. 11.5), close to the zero pressure measurements of Heinz and Jean-
loz (1987) and Ohtani (1983).

Table 11.4. Lindemann parameter L for alkali halides and diamond-
like (d.l.) structures

Struc.
fee

NaCl
KC1
AgCl
KI
Rbl

L

210
195
239
180
189

T-*m

°K

1081
1049
728
959
915

Struc.
bcc

RbBr
AgBr

LiF
CaF2

L

206
229
200
211

Tim
°K

955
705

1115
1633

Struc.
(d.l.)t

Ge
Si
C

H20

L

209
195

*

217

T1 m

°K

1232
1683

~4000
273

'154-198; tdiamond-like.
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Table 11.5. Physical properties of the perovskites: Mmo\, molar mass
in g/mole; V, molar volume in cc/mole; vm, average acoustic velocity
in km/s; Tm, melting temperature in °K; 6, acoustic Debye tempera-
ture in °K; £'', Poirier ratio (Poirier, 1988); e, Gilvarry ratio

ABX3

KMgF3

KMnF3
KZnF3

KNiF3

KCoF3

RbMnF3

RbCoF3

ScA103

GdAlO3
SmAlOs
EuAlO3

YA103

CaTiO3
BaTiO3

SrTiOs
MgSi03

Mmol

120.41
151.04
161.32
154.97
155.01
197.40
201.54
120.00
232.25
225.35
226.94
163.89
135.98
232.24
138.52
100.41

V

38.23
44.16
40.13
38.84
40.58
45.69
42.34
28.04
31.22
31.39
31.30
30.63
33.55
38.62
35.84
24.43

Vm

4.29
3.43
3.43
3.53
3.38
3.13
3.31
6.19
4.43
4.57
4.41
5.09
5.63
3.77
5.29
7.39

T±m

1413
1308
1143
1403
1305
1259
1148
2143
2303
2373
2213
2223
2248
1898
2213

6

315
240
248
258
243
217
235
505
348
358
347
403
431
276
397
630

C

2.75
2.21
2.36
2.40
2.19
2.41
2.74
5.71
5.64
5.81
5.49
5.27
5.33
4.11
6.37
6.78

e

0.13
0.14
0.12
0.13
0.14
0.13
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.12
0.11

Fig. 11.5. Correlation of Tm with the quantity £' = mV2/30 X 10~7 at
P •=• 0 for 15 oxide (ABO3) and fluoride (ABF3) perovskites. The open square is
for silicate perovskite (modified from Poirier, 1988).
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11.8. Improvements on the Lindemann formulation

Many authors are dissatisfied with the assumptions behind the Lindemann
law of melting, and there have been several attempts to derive it from more
fundamental considerations. Lindemann's (1910) hypothesis was that melt-
ing occurred when the vibrations of the atoms became large enough to cause
atomic collisions. This vague criterion was quantified by Gilvarry (1956a),
who proposed that melting occurs when < a2 >:/2 exceeds a fraction of
the interatomic distance, r0.

Here we comment on four attempts to improve and/or justify (11.23).
In all these theories, refinements of the assumptions lead to placing a very
small correction term in (11.23).

(1) Gilvarry (1956a) started with the Debye-Waller formula for the
Bragg angle of an isotropic monatomic crystal

where M = constant; 0 = Bragg angle; A = wavelength; and Q is defined
in terms of the Debye function. Gilvarry's final equation is

The last term in the second set of parentheses is much less than unity.
(2) Stevenson (1980) derived a melting equation from a theory of the

liquid state that would be more appropriate for the liquid side of the tran-
sition curve. His equation is

where k is the Boltzmann constant. In a classical solid, Cy — 3fc, so the
above formula is close to (11.23).

(3) Stacey and Irvine (1977) derived their equation using the Clausius-
Clapeyron equation, (11.9), replaced by the equivalent form

They calculated the value of AT///L by considering a thermodynamic
cycle involving melting at constant pressure and at constant volume, a kind
of Carnot cycle passing through the liquidus and solidus. They found
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Because aTm is a number near 0.07 for all solids, 2~^2aTm — 0.23,
not substantially different from the 1/3 found in Lindemann's law (11.23).
What is important is that their basic assumption involves the Clausius-
Clapeyron equation, which is derived from the equilibrium of the Gibbs
free energy of solid and liquid as shown in Section 11.2.

(4) Poirier (1986) based his derivation on dislocation theory. He noted
that a concentration of dislocations introduces a dilation in the lattice ej
and that melting occurs when the concentration of dislocations destroys
the order locally; that is, when saturation occurs, or (j —> c^at. His theory
rests on the equality of the Gibbs free energy of the solid and molten states.
Saturation occurs, as determined by molecular dynamics simulation, when
about one-third of the atoms of a crystal are on a dislocation line. The
final equation found by Poirier is

The quantity in brackets is only slightly larger than unity, so that to a good
approximation, the original Lindemann law is verified.

11.9. Verification of the Lindemann law for a dense oxide

Cohen and Gong (1994) performed large scale simulations of clusters of
MgO using molecular dynamics for melting up to 300 GPa. They found
that melting occurs when the r.m.s. displacement of the ions reaches about
18% of the near neighbor distance (Fig. 11.16), in agreement with the
Lindemann-Gilvarry criterion (11.16). They concluded that for MgO, melt-
ing is indeed related to intrinsic instability of crystals, and then verified
Gilvarry's basic assumption that d In e/d In p vanishes over a large pres-
sure range. In their theory they made no reference to a critical frequency,
and their result is not handicapped by the assumption of a single value of
0. They did not assume a Debye-like solid.

Their potential is the nonempirical and many-body approach, called
the potential induced breathing (PIB) model (Boyer et al., 1985), which
was used to find thermoelastic properties of MgO (Isaak et al., 1990). The
thermoelastic properties of MgO found by PIB are in Chapters 3 and 4.

Cohen and Gong show that although melting is a first-order thermody-
namic phase transition, it is related in a fundamental way with an intrinsic
instability of the solid. This results in AVm changing from 5.4 cc/mol to
0.07 cc/mol K and A5m changing from 27 J/mol K to 16 J/mol K over the
equivalent pressure range. The liquid changes its coordination number M
from 4.5 at P = 0 to about 5.8 at 300 GPa, and, as a result, its bulk modu-
lus increases with P. At large P, the bulk modulus of the liquid approaches
that of the solid. The large change in KT with P results in AV changing
faster than AS, and consequently, dTm/dP decreases with P (200 K/GPa
at P = 0; 4 K/GPa at P = 300 GPa).
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Fig. 11.6. The Gilvarry criterion e = < a2 >1'2 /ro versus T along isobars
for MgO using MD calculation of 1000 atom clusters (modified from Cohen and
Gong, 1994). Open symbols are for the crystalline state, closed symbols for the
liquid state. We see that e. = 0.18, and de/dT is infinite at the transition. Here is
proof of Gilvarry's basic assumption, (11.20), because e is independent of density
over a wide pressure range.

11.10. The Lindemann law for oxides and silicates

The most quoted objection to the Lindemann law is that it works for some
classes of solids but not for other classes. But for oxides and silicates, the
Lindemann law is not always valid, as shown by the evidence of Wolf and
Jeanloz (1984), who proposed a modification of the Lindemann theory to
include anharmonicity and tested four minerals. They found (11.33) invalid
for diopside, fayalite, and pyrope (see Fig. 11.7 for diopside), but there was
excellent agreement with the data for forsterite (see Fig. 11.8).

In Section 11.3, we saw that the Lindemann formula is based on the
assumption of a monatomic solid, and, in particular, that a single frequency,
UD, enters the formula for the r.m.s. amplitude. Obviously an important
criterion is: how valid is the approximation that the frequency spectrum of
the oxide or silicate can be represented by a single number?

In Chapter 5 we found that if the structure has an efficient packing
(e.g., the packing fraction is large), then a single value of 0 will suffice to
describe thermoelastic properties, but if the structure has a small packing
fraction, a single value of 0 will not suffice.

Similarly we found in Section 5.5 that the moments of 7, a single
number, can represent a property. The moment -f(—2) is appropriate for the
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Fig. 11.7. Test of the Lindemann equation as a scaling law for diopside. The
Lindemann law fails for diopside (after Wolf and Jeanloz, 1984).

Lindemann formula (Wolf and Jeanloz, 1984), but it is still a single number
and inadequate for the class of solids described as Class A in Chapter 5.

Thus, according to the packing fraction (Table 5.2), diopside and fay-
alite are not Debye-like solids, and forsterite is a marginal case.

On the other hand, the dense silicates and oxides, especially MgO,
A^Oa, and MgSiOs perovskite, have well packed structures, and are there-
fore Debye-like solids. Just as MgO was shown to follow Lindemann's
law (see Fig. 11.6), silicate perovskite should also follow Lindemann's law.
There are some theoretical and experimental data for silicate perovskite
on whether Tm versus P follows a Lindemann pattern, but the results are
conflicting.

Using Lindemann's law, Poirier (1986) computed Tm versus P for
MgSiOa perovskite (shown in Fig. 11.9). Although Tm rose with P in
the Lindemann fashion, Ohtani (1983), also using Lindemann's law, found
Tm rose faster. Stixrude and Bukowinski (1990) found that Tm rose at an
even smaller rate by computing the Gibbs energy of both solid and liquid.

The experimental results are also mixed. Several separate experiments
of the Berkeley school (Heinz and Jeanloz, 1987; Knittle and Jeanloz, 1989;
Sweeney and Heinz, 1993) all found that there is little tendency of Tm

to rise with P in the Lindemann law fashion. On the other hand, Zerr
and Boehler (1993) of the Mainz group found experimentally that Tm rises
with P, close to the prediction of Ohtani (Fig. 11.9). From Table 11.5 and

MELTING
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Fig. 11.8. Test of the Lindemann equation as a scaling law for forsterite. The
Lindemann law succeeds for forsterite (modified from Wolf and Jeanloz, 1984).

Figs. 11.5 and 11.9, I conclude that a silicate perovskite probably obeys
Lindemann's law. Marginal cases involve forsterite and pyrope garnet, ac-
cording to the packing fraction criteria (Table 5.2). But, according to
Fig. 11.7, it appears that forsterite does follow Lindemann's law. The cri-
terion for Lindemann law application to oxides and silicates is whether 0£>,
a single number, adequately represents the thermal properties of that solid.

Lindemann's law, (11.22) and (11.32), is derived in terms of one ther-
mal parameter. If the thermal properties were represented by two parame-
ters instead of one, then a larger number of solids could be represented by
a simple (two parameter) theory. Mulargia and Quareni (1988) elaborated
upon the simple Lindemann theory by imposing separate Debye tempera-
tures (or frequencies) for the longitudinal waves and for the shear waves,
following the suggestion of Brillouin (1946). This was also the strategy of
Brown and Shankland (1981) to calculate the entropy (see Section 5.10.).
Mulargia and Quareni defined dTm/dP in terms of the pressure derivatives
of the two sound velocities. Using experimental data on sound velocities
versus pressure, they calculated dTm/dP and compared it with the mea-
sured dTm/dP of many solids, including oxides and silicates. They con-
cluded that the theory can be used for minerals and "quite confidently
to calculate. . .the melting curve in the earth's interior from seismic data."
They found that their interpretation of the Lindemann law worked for diop-
side. That presented by Wolf and Jeanloz (Fig. 11.7) did not.
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Fig. 11.9. Calculation of Tm for silicate perovskite according to: the Linde-
mann law in T,V space, Poirier, 1988 (P); the Lindemann law in T, P space,
Ohtani, 1983 (O); equating solid and liquid Gibbs energies, Stixrude and Bukowin-
ski, 1990 (SB); and molecular dynamics, Matsui and Price, 1991 (MP). Measure-
ment of Tm of silicate perovskite according to: Heinz and Jeanloz, 1987 (HJ);
Knittle and Jeanloz, 1989 (KJ); Sweeney and Heinz, 1993 (SH); and Zerr and
Boehler, 1993 (ZB) (after Zerr and Boehler, 1993).

The reason Mulargia and Quareni got better results on diopside than
did Wolf and Jeanloz is that the former authors effectively used two Debye
temperatures, one for shear velocity waves and one for longitudinal velocity
waves, resulting in a spread out Debye spectrum with two peaks. This
spread out Debye spectrum represents the density of states of diopside
better than a single parabolic curve. Wolf and Jeanloz (1984) concluded
from their study that the Lindemann law could not be extended to minerals
with complex interatomic forces and without close packing. This would
eliminate minerals with low packing fractions, like quartz and feldspar.

Summarizing the existing data, it appears that the Lindemann melting
law may not be valid for minerals and oxides with low coordination num-
bers, such as quartz and calcium carbonate, and, as a consequence, is not
valid for minerals in the earth's crust. If the Mulargia-Quareni formulation
is used, it is marginally valid for the crust. The Lindemann law appears to
be valid for the lower mantle itself and for dense oxides and silicates such as
those identified for the lower mantle. Because the Lindemann law requires
a single value of 0, upper mantle mineral structures may or may not obey
the Lindemann law (forsterite does, but fayalite does not).
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11.11. The elastic constant instability criterion for melting

From a physical point of view, the Gilvarry criterion of melting is somewhat
unsatisfactory. Although the Lindemann law appears to work in many
cases, it has not satisfied some readers who look for the physics principles
involved in melting. That is probably why there is a continuous literature
published on instability as a criterion for melting.

Born (1939) suggested that the loss of resistance to shear occurs at the
melting point. "In actual fact there can be no ambiguity in the definition,
or criterion, for melting. The difference between a solid and a liquid is that
the solid has elastic resistance against shear stress and the liquid does not."
If this idea is placed in terms of the elastic constant tensor, the cubic lattice
is stable, according to Bern's lattice theory, when three conditions hold:

These three conditions guarantee that the Helmholtz free energy, expanded
as a function of T and six independent strain components, is positive def-
inite; i.e., any increase in any strain increases the Helmholtz energy. The
first condition requires the bulk modulus to be non-zero; the second re-
quires the two shear moduli to be non-zero. Note that the criterion that
the elastic shear constants be non-zero brings an associated criterion that
the bulk modulus be non-zero. Born (1939) proposed that melting would
be preceded by a continuous decrease of one of the shear elastic constants
to zero at Tm, and so the vanishing of either shear constant is his criterion
of melting.

Durand (1936) showed experimentally that melting of the rocksalt
structure (type Bl) occurred near a temperature Tc when

that is, he extrapolated to the condition that C\\ = C\i to find melting.
However, much later experiments showed that the solid melts at a

slightly lower temperature than Tc, and this has led to the concept that
mode softening (as distinct from mode disappearance) leads to melting.
Calling the temperature of critical instability Tc, then Tc < Tm. Jackson
and Liebermann (1974), for example, find a good correlation between Tc and
Tm for alkali halides (Table 11.6). They also find good agreement between
the pressure derivatives of Tc and Tm. The onset of shear instability also
produces a divergent thermal expansion coefficient. An excellent review of
the literature of shear instability criteria of melting is found in Boyer (1985).
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Table 11.6. a) Comparison of critical temperatures Tc

at which Cs — 0 and melting temperatures Tm for rocksalt
halides (Cs = l/2(Cn - Ci2))

cs (dcs/dT)P
Material kbar kbar/deg

LiF
LiCl
LiBr
Lil
NaF
NaCl
NaBr
Nal
KF
KC1
KBr
KI
RbF
RbCl
RbBr
Rbl

330 -0.370
133 -0.210
104 -0.189
74 -0.155

364 -0.331
183 -0.201
146 -0.174
108 -0.144
255 -0.255
169 -0.186
145 -0.167
116 -0.145
207 -0.221
151 -0.174
133 -0.154
111 -0.136

Tc

C

914
655
572
499

1122
932
861
772

1022
931
890
822
959
890
886
838

Tm

C

842
614
547
450
988
801
755
651
846
776
730
686
775
715
682
642

b) Comparison of critical temperatures Tc at which
and melting temperatures Tm for rocksalt oxides

Cs (dCs/dT)P

Material kbar kbar/deg

MgO
CaO
SrO

1009 -0.340
820 -0.266
640 -0.211

Tc

C

2993
3108
3058

T*m
C

2800
2580
2430

c) Comparison of critical temperatures Tc at which
and melting temperatures Tm for B2 halides

Material

CsCl
CsBr
Csl

Cs (dCs/dT)P

kbar kbar/deg

80 -0.103
75 -0.098
62 -0.081

Tc

C

797
785
785

Tm

C

646
636
621

Tc/Tm

1.09
1.07

—
—

1.14
1.16

—
—
—

1.20
—
—
—
—
—

1.31

CS = Q

Tc/Tm

1.07
1.20
1.26

CS = Q

Tc/Tm

1.23
1.23
1.26
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The idea that the isothermal compressibility diverges; that is, KX —>• 0
as T —> Tm, goes back to Hertzfield and Goeppert-Meyer (1934). This idea
preceded Bern's (1939) suggestion, but it was disregarded by many during
the late 1940's and 1950's as attempts to prove that a shear instability
triggered melting dominated the scientific scene of melting theories as a
result of Bern's (1939) advances. The idea of a bulk modulus softening
(often called compressibility divergence) has returned through the research
of Boyer (1985). In fact, Boyer has found that compressibility divergence
must occur simultaneously with the shear mode softening. For this reason
Boyer coined the name "thermoelastic instability" in treating instability
related to the criteria Cn + 1C\i < 0; it requires consideration of stability
that is both thermodynamic and elastic in nature. Boyer also points out
that Tc for thermoelastic instability occurs such that Tm < Tc.

The Lindemann law of melting is also an instability model with a spe-
cial criterion. In the form given by (11.24), KT occurs in the denominator.
It is often overlooked that in the Lindemann formula KT must have a value
appropriate to the proximity of melting, and, as KT must descend fast near
Tm, it should be named Kfm. Actually, Kfm does not vanish because the
shear mode has not vanished either, but just as the shear constant is small
at Tm, so is Kfm. As a consequence, the use of (11.24) will produce a much
lower value of Tm than will (11.23) if the assumed value of KT is too high.
Great care is needed when using (11.24) to evaluate correctly the value of
Kfm, which is bound to be smaller than found by extrapolating KT using
measured high T values of (8KT/dT)p.

11.12. Compressibility divergence

The following derivation is parallel to the method used by Boyer (1985). He
used a theory of potentials, whereas this approach uses thermodynamics.
We break up the pressure according to (2.19) into its thermal pressure and
its isothermal component

We evaluate PTH(V, T) using the formula

so that

To get the pressure dependence of PTH, we use the identity
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From the identity (3.7), we find

Thus w(r), T) is the product of aKT and (&T — K') if solved separately. We
solve for aK-r explicitly using identity (3.7), finding

A plot of lines of constant w in the T, 77 plane is shown in Fig. 3.3.
Solving for APm in terms of w, we have

The behavior of (11.48) is quite different for solutions where TJ > 1
than for solutions where 77 < 1. Solutions for APj<# are quite asymmetric
around the TJ = 1 axis, especially at high T.

This can be seen by solving for aKr in terms of w, assuming that w
is a small number and a constant along an isotherm. In this case

We see that in 77 is positive for 77 > 1 and negative for 77 < 1, which
produces asymmetry in the PTH curves.

The effect of the upward curvature of the A.PTH curve in Fig. 11.10 is
to shift the minimum in the P curve to lower values of compression. This is
similar to the effect Boyer (1979) found by using first principles calculations
on an assumed interatomic potential for alkali halides.

&PTH for various isotherms is plotted and shown in Fig. 11.10. Also
plotted is the isothermal (T — 0) value of pressure designated by PQ(TI).
We note the rapid increase in slope of A.PTH with 77 for the isotherms with
large T. Thus, the total pressure is asymmetric.

We plot the total pressure P in Fig. 11.11 resulting from the static
and thermal pressure, as shown in Fig. 11.10. By taking account of the
pressure dependence of the thermal pressure, we see how the total pressure
varies with 77. In Fig. 11.11, the bulk modulus KT at P = 0 is the slope of
the intercept of P with the zero pressure isobar. We see that for increasing
temperature, the slope of the intercept for the isotherms becomes smaller
as T rises, showing that KT decreases with T such as shown, for example,
in Fig. 2.4. However, there is a temperature isotherm Tc for which the
isotherm is tangent to the zero pressure isobar; that is, the slope is zero.
Thus KTC —> 0, the condition that Boyer (1985) called compressibility di-
vergence, and that is his proposed criterion for melting.
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Fig. 11.10. The variation of thermal pressure with 77 for high T and 77. Note
that PTH curves upwards for high T and T) > 1.

Fig. 11.11. Plot of external pressure, P(rj,T) versus 77 along isotherms. The
centering locating ambient conditions is at P = 0 and 77 = 1. Values of PTH are

referenced to the centering position. The external pressure P(r),T) is equal to
PQ(T)) and PTH given in Fig. 11.10.
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For isotherms close to Tc, the bulk modulus is falling very rapidly
with T. At an isotherm Tc the slope of the T versus rj curve vanishes;
this is related to the melting temperature Tm- Thus the bulk modulus is
theoretically zero at the critical temperature Tc. Of course, this is never
realized, just as the vanishing of the shear constant is never realized.

Starting from the 300 K isotherm, where KT — KTO , KT becomes pro-
gressively smaller as T increases, decreasing steadily with T at first, and
then somewhat more precipitously near Tc. Thus, as Boyer (1985) showed,
one can describe melting as resulting from a continuous thermoelastic tran-
sition, notwithstanding the first order nature of melting.

Just as the compressibility is divergent at Tc, so is the specific heat.
The thermal diffusivity, d = Cppfk., where k is the thermal conductivity,
increases rapidly before Tc is reached, thus hastening the transition that
appears discontinuous and leading to the name "thermoelastic transition"
for Tc. The value of d is equivalent to an internal friction, preventing KT
from actually going to zero because T never reaches Te. A'rm may be smaller
than obtained by simple extrapolation of measured KT versus T data. In
Fig. 11.12 we show the relationship of Kfm to the extrapolated value of KT
using dKr/dT measured at lower T. This graphically illustrates that the
value of KT appropriate for the Lindemann's law transition may be much
lower than KT expected from experiment.

Fig. 11.12. A schematic representation of the variation of bulk modulus with
temperature in the neighborhood of melting.
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11.13. Compressibility divergence in the Lindemann law

In dealing with a rock composed of minerals in which the thermodynamic
properties are known, the melting temperature of the rock is a complex con-
sideration and requires a truly fundamental approach. Unlike the mineral
under pressure, the rock has a variety of Lindemann numbers, one for each
mineral. So the Lindemann law is of little help except as a description of a
mineral in the rock. A further complication is that the iron is redistributed
from mineral to mineral as P and T increase, so the composition is not
invariant in a mineral as depth increases, as once was thought.

As an example, we describe how Ohtani estimated the melting tem-
perature of silicate perovskite using many of the techniques discussed in
this chapter. He estimated the initial slope dTm/dP for silicate perovskite
from the Clausius-Clapeyron equation (77 ± 8 K/GPa), but this required
values of AV and AS. To obtain AV, he found the EoS of the melt and
the EoS of the mineral, and these gave him the change in volume at the
conditions of the beginning of the lower mantle. He obtained AS between
the liquid and the melt from calorimetric data on the solid. He then used
the Kraut-Kennedy equation (11.26) to get Tm as a function of AV/Vm by
evaluating the constant C from (11.29).

The value of C in the Kraut-Kennedy law given in (11.26) is found
from the derivative taken at low P

or

A measurement of dTm/dP over a limited range of pressure, the mea-
sured value of Tmo, and the value of KT establish the value of C. KT is
not reliably known at melting. It is customarily estimated by extrapolation
using knowledge of KT and (dKr/dT) at temperatures substantially below
melting. We note that if KT is overestimated, then C will be overestimated.
Finding that dTm/dP = 77K/GPa, and Tma = 2900°C, Ohtani computed
C — 29.6 from (11.50) using the extrapolated value of KT • He obtained
7500°K for Tm at 130 GPa, an increase over Tmo by 225%. This apparently
very rapid increase of Tm must be tempered by the lack of knowledge of KT
right at melting, Kfm. If Kfm is smaller than the linear extrapolated KT
due to compressibility divergence, as shown in Fig. 11.10, then C will be
correspondingly smaller, producing a smaller increase in Tm at the higher
pressures.

Ohtani's curve for Tm for silicate perovskite, shown in Fig. 11.9, is
2800° larger at 125 GPa than found by Poirier (1988), who used the form of
the Lindemann law not requiring knowledge of Kfm and given by (11.31). It
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is to be emphasized that Poirier and Ohtani both used the same Lindemann
theory and the same initial value of Tma, except one was the formulation
in Tm,p space and the other was that in Tm,P space.

Following Poirier's method, we put q = 1 (Anderson, 1979a) and
70 = 1.3 (Anderson, 1979b) in (11.30), finding

for the value of (p/po), where p corresponds to the core-mantle bound-
ary, and po corresponds to the 670 km depth condition (4.38/5.5 = .796).
Thus if Tmo is taken to be 2900 K (Ohtani, 1983) at 670 km, then we
find Tm = 4600 K at 2880 km, in agreement with Poirier's calculations
(see Fig. 11.9). But is 2900° less than Tm at the core-mantle boundary
computed by Ohtani.

Thus KT should be replaced by Kxm, meaning the value of KT at Tm

that may be influenced by compressibility divergence. That is, if compress-
ibility divergence occurs, (11.49) and (11.50) should be replaced by

or

where K?m < the extrapolated KT at Tc from lower T measurements (see
Fig. 11.10).

11.14. Melting of iron

The definition of melting of iron varies from author to author and exper-
iment to experiment. A variety of definitions were used by Boehler et
al. (1990) and Boehler (1993) in recent reports on the melting of iron up
to 200 GPa in the diamond anvil cell.

Boehler used four different methods to find the onset of melting for Tm

of iron, as shown in Fig. 11.13. He observed the onset of convective motion
by microscopic methods. He also measured the transition from a solid to a
liquid by observing the power-temperature response: melting occurred at a
sharp discontinuity. Another method was to monitor the intensity of a laser
beam reflected from the hot spot. At the onset of melting, the intensity
of the reflected light dropped sharply. These three methods agreed quite
well, as shown in Fig. 11.13. The fourth method is to observe a jump in
the temperature-resistance curve when electrically insulated iron wire was
heated along an isobar (Boehler, 1986).

Williams et al. (1987) measured melting of iron by quenching the sam-
ple and looking for visual evidence of melting on the cold solid sample.
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Fig. 11.13. Melting of Fe below 200 GPa (2 Mbar) (after Boehler, 1993). 3
refers to Boehler 1986; 2 refers to Boehler et al., 1990. The squares are taken from
changes in optical reflectivity at Tm. The large + signs represent detection of the
onset of convective motion. The ? refers to a new solid-solid phase boundary.

Their measurements of Tm above 30 GPa are consistently higher than those
of Boehler, and they show much larger error bars. The larger error bars
are typical of quenched samples found in petrology studies.

A different experimental approach to melting is to use the concept that
the shear velocity of a solid vanishes at Tm. The presence of a solid-liquid
transition in iron was detected in shock wave techniques by observing the
pressure at which vp —> DJ, because when vs = 0, vp — vi (Brown and
McQueen, 1986; Fig. 8.3).

Also, at the onset of melting, the magnetic susceptibilities of some met-
als show large, abrupt changes. This is especially true for iron and iron-rich
alloys in the bcc phase, where the change is about 20% (Ubbelohde, 1965);
the effect is less pronounced for iron in the fee structure.

From the theoretical point of view, the fundamental basis of melting
is the cooperative appearance of disorder. In many theories of melting,
disorder is caused by a critical concentration of lattice defects that break
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the crystalline order locally. These are called defect-mediated theories of
melting (Poirier, 1991).

Poirier developed a dislocation-mediated theory of melting for iron,
considering dislocations as a type of defect. He derived the equation of
the elastic energy stored in a crystal, taking into account the interactions
of dislocations (Poirier, 1986). It is defined in terms of the shear modulus
and other dislocation parameters, as well as 7. He was able to find the
total extra free energy due to the dislocations and obtain the expressions
for ASm and AVm due to a large concentration of dislocation. From the
Clausius-Clapeyron equation and the integrated dTm/dP, he found f as a
function of dislocation concentrations Cd and T and found that T vanished
at a particular value of the concentration of dislocations, called dislocation
saturation, but only for a particular value of T, identified as Tm. For T less
than Tm, T did not vanish. Using such a dislocation theory, Poirier and
Shankland (1994) found Tm for iron to depend on the structure, yielding
6160 K, 6060 K, and 5610 K for hep iron, fee iron, and bee iron, respectively.

11.15. The fundamental two-phase theory of phase
transition

A quantitative theory of melting demands a reliable expression for the Gibbs
energy of the liquid phase for a solid-liquid transition. This requires one
to quantify the disorder of the liquid. The entropy of melting is

where ASd is the entropy of disorder arising from the entropy difference
between the solid and the liquid. The liquid, always being more disordered,
requires AS<j to be positive upon melting. Equation (11.53) was verified
for metals by Oriani (1951). Using (1.22), we have

Stishov (1975) gave a review of the thermodynamics of melting that em-
phasized two-phase theories. Stishov's papers are important because they
give us techniques for finding the value of At5m. He showed, for example,
that there is a very simple relationship between the relative volume discon-
tinuity, AV/Vm, and the entropy discontinuity, AS/R. He found that for
many simple solids, ASm/R —» £n 1 as AV/Vm —* 0. Further,

This means that ASd = R £n "2. By taking Vm as a constant in (11.55),
(11.54) becomes
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At temperatures below melting, we have found that oK? is indepen-
dent of T, and, except for unusual cases like that of gold, virtually inde-
pendent of V. Therefore, dTm/dP may be a constant for a limited range:

Equation (11.57) indicates that dTm/dP is constant for a pressure in-
terval that is not too large. When the pressure range is large, we may
expect AVm to change more slowly than AiSm at high P, due to an effect
arising from a difference of compressibilities for the solid and the liquid.
In this case the value of Vt — V$ decreases with increasing pressure more
than A<Sm, and the melting line is curved downward (Bassett and Weath-
ers, 1994). It is possible that dTm/dP can be negative, as, for example, in
the cases of Ga, Sb, and Bi, where &Vm is negative (Ubbelohde, 1965).

Equations equivalent to those above apply to solid-solid transitions as
well. However, in most cases, the solid-solid curve is straight because both
AiS and AV are insensitive to volume and temperature change along the
Tm curve. However, A«S may have an abrupt change near P, T conditions in
which phenomena such as a ferromagnetic-paramagnetic transition occurs
because extra disorder entropy terms are added to the free energy. In such
regions the slope dT/dP will be curved (Bassett and Weathers, 1994), even
for a solid-solid transition.
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SHOCKED SOLIDS

12.1. Introduction

The generation of high pressures by shock waves relies on the inertial re-
sponse to rapid acceleration, instead of equilibrium of forces as in a fixed
static experiment. Although the time interval is short, very large pressures
(« 300 GPa) can be achieved with simultaneous high temperatures. The
shock wave can be visualized as a single stress discontinuity traveling in
an undisturbed medium followed by an approximately uniform stress and
subsequently by a relaxation of pressure. This is the shock-front profile.
There is a connection between the physical properties of the solid and the
structure of the shock front.

The study of the behavior of solids under extreme shock conditions is
rooted in hydrodynamics, finite elasticity, and plasticity. A highly stressed
solid is not a fluid, although, as a good approximation, much of the mathe-
matics of fluid hydrodynamics is applied to a shocked solid. Experimental
data on solids are usually analyzed as though the total stress is a pressure
and the total strain is a volume change, without regard to shear stresses.
But the success of the hydrodynamic approach applied to many shocked
solids should not lull the student away from the basic fact that the shock
is a one-dimensional plane wave, and further that shear stresses and yield
points are involved in the complete description of the state of the material
under shock.

The basic assumption is that there is thermodynamic equilibrium be-
tween the shocked and unshocked solid across the shock front. A further
assumption important to equations of state is that the stress observed in
the shock-front profile is hydrostatic. Thus the aniostropic stress distribu-
tion must be treated separately. In many cases the anisotropic correction
is small enough that it can be corrected for by a small offset in the pres-
sure ordinate, in the P, V plane between the hydrostatic curve and in the
measured curve. The yield stress of the solid, typically a few kilobars, is a
measure of the offset (although the shocked yield limit is ordinarily different
from the yield limit in a static tensile test).

The shock propagating in a linear direction starts out with a sound
velocity that is the longitudinal velocity of sound; that is, the stress is not
hydrostatic and cannot be represented strictly by hydrostatic pressure P.
Therefore, as this axial stress cannot be supported above the yield point of



308 THERMAL PROPERTIES AT HIGH PRESSURE

the material, the mode of deformation changes at the volume appropriate
to the yield stress.

In a shocked fluid where the stress is hydrostatic, and there is no yield
point, the wave velocity is controlled by the bulk velocity of sound. The
bulk sound velocity is numerically less than the longitudinal velocity of
sound (Fig. 12.1). This is expressed by the condition

As the stress is raised above the yield point ffyp in a real solid, the a\\ — V
curve passes through a cusp, and at higher stresses traverses a path closely
parallel to the hydrostatic P-V curve (Fig. 12.2). If the offset is small; that
is, if the yield stress is small compared with the stress level achieved at
state B, one may safely use the hydrostatic solution to describe the shock.

At state B, however, there is a certain amount of elastic strain energy,
and a certain amount of nonrecoverable energy dissipated through plastic
strain is stored in the solid. The elastic energy arises from ffyp, and dissi-
pation due to plastic energy arises from the fact that a uniaxial shock front
creates large shear stresses on planes at angles of about 45° to the shock
normal. Plastic flow (or its alternates, fracture or twinning) will occur
along these shear planes so that the maximum resolved stress along these
planes is held within the failure limits. The relief of these stresses occurs
at a certain rate, and the amount of dissipated plastic energy depends on
the time of the shock and the laws of plastic flow.

Fig. 12.1., left. The one-dimensional shock compared with the three-dimensional
or hydrostatic shock.

Fig. 12.2., right. The one-dimensional shock (A—B) parallels the hydrostatic
shock after the yield stress ffyp has been exceeded.



SHOCKED SOLIDS 309

Shocked solids are finite in size, and compressed waves are reflected
from the surface so that, after the stress has reached the level appropriate
to state B, it is eventually relieved (Fig. 12.3). If there were no further
ability to sustain shear stresses in the solid, the path in the <Tn-V plane
would be from B to C, to relieve the elastic energy. However, there is still the
capacity of sustaining a negative shear stress. The path actually traversed
is from B througn C to D below the hydrostatic curve. The length CD
depends on the relative time constants in the shock and the yield stress at
state B. At D, the material yields and then traverses the path from D to E
at zero stress, but often arrives at the volume Vg, which is different from
V0. (The curve BCD closely parallels OA, and DE closely parallels CO).
Thus, when the fragments of a shocked solid are reassembled, the volume
and shape of the reassembly is very often not equal to the shape or volume
of the material before the shock.

To describe the action of the shocked material accurately would require
that one describe all the ramifications implied by the curve OABCDE. This
is occasionally done by experts in the field, who show that some shock-
induced waves travel at longitudinal sound velocity, while others travel at
hydrostatic sound velocity.

Fig. 12.3. The path traversed in a shock compression (O,A,B,C,D,E), including
the decompression path DE.
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For a great many solids shocked at high values of pressure, however,
the curve OABCDE is a small departure from the curve OC. This permits
one to use hydrostatic pressure in place of uniaxial stress and to treat the
solid as if it were in hydrostatic condition, often a good approximation
to the actual state of the material. It is pedagogically useful to begin a
discussion of shock waves in the approximation that is called the hydro-
static Hugoniot, or simply the Hugoniot. Much useful information from a
shock experiment can be determined by the assumption of hydrostaticity,
but close observation shows that the compression phase of the shock has
important, time-dependent details, often called precursors. In this chapter,
we ignore these important physical details.

The next six sections rely heavily on the articles by McQueen et
al. (1964, 1967, 1970) and Fritz et al. (1971), and on the book by Zharkov
and Kalinin (1971). Some of the derivations that were sketched in the
original articles are expanded here in more detail.

12.2. The hydrostatic Hugoniot

The passage of an intense shock wave through a solid permits one to deter-
mine the EoS in several of its forms. The EoS, as it is used in shock wave
science, is often not the same set of thermodynamic variables as the set
used in static thermodynamics. In static EoS work, one seeks the pressure
as a function of volume and temperature, P(V, T). In shock wave experi-
ments, the EoS used in theory may be the caloric EoS, S(V,P), where S
is entropy, or the mechanical EoS, U(V, P), where U is the internal energy.
In fact, neither S(V, P) nor U(V, P) is the simplest EoS that arises from
the shock wave experiments. One often uses the experimentally measured
values, where U and P are replaced by experimental "Hugoniot" variables.

The experimentally observed quantities in shock wave work, measured
optically by high speed photography or by time-of-flight apparatus, are the
shock velocity Us and the particle velocity Up. An empirical relation Us
(Up) that passes through the set of points (Us, Up) can be found, there
being as many points as separate shock experiments on the solid. This rela-
tionship can be regarded as an EoS, as it contains all of the thermodynamic
information determinable at high pressure from a single shock. The usual
empirical relationship is found to be linear:

where s is the slope of the line, and CQ is the shock velocity at vanishing
pressure; it is identical to the bulk sound velocity, CQ = vi,0 = (Ksa/Po)1'^,
where Kga is the adiabatic bulk modulus at zero pressure, and i>j0 is DJ,
at zero pressure. For a few solids, (12.1) is not adequate, and a quadratic
relationship relating Us and Up must be used. A typical experimental
result on the Us-Up plane is shown in Fig. 12.4, which is the shock data
for iron (Marsh, 1980) and the resulting Hugoniot.



Fig. 12.4. The Us versus Up shock data for iron and the resulting Hugoniot
pressure PH versus V (after Marsh, 1980).

To transform the Us~Up empirical curve into a relationship between
the customary thermodynamic variables, one applies the conditions of con-
servation to both sides of the shock. If one assumes that there is a steady
state, there are the following relationships between any two points in the
shocked and unshocked states. The variables are shown in Fig. 12.5.

Fig. 12.5. The shock front is shown with the shocked variables on the left and
the unshocked variables on the right.
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We are using the notation E here to represent the energy of the solid under
deformation, following standard shock wave nomenclature. However, E is
identical to the internal energy U described in Chapter 1, and U will be
used subsequently.

12.3. The Hugoniot variables

The three conservation equations above can be manipulated to produce

Equation (12.4) is the increase of internal energy in the solid due to the
shock.

In (12.3) and (12.4), we have placed the subscript H on P and U
because these values lie on the so-called Hugoniot. This identification is
made because the locus of points (say, P and V), which satisfy (12.2),
(12.3), and (12.4), and which are plotted on the P-V plane, is neither an
isotherm nor an isentrope, as the temperature and entropy vary from point
to point along the P-V locus.

However, PH is only a function of V and Un(V)\ and UH is only a
function of V and Pn(V). This can be demonstrated using (12.1) and a
variable from the volume compression,

From (12.1),

Equations (12.3) and (12.4) become
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The Hugoniot variables PH an(i ^H are now functions of the experimental
variables CQ and s. Equations (12.6) and (12.8) contain observed quantities
on the right hand side. Equation (12.3) relates pressure with compres-
sion with various constants, all determinable from other experiments at
vanishing pressure. The same can be said for UH- Thus it is shown that
Un — Un(V\ and PH = Pn(V). A consistent thermodynamics can be
defined from the Us(Up) empirical relationship without regard to the tem-
perature. It is possible to define a "Hugoniot" bulk modulus by applying
the operator (-Vd/dV) to (12.8).

In this case KH means Kn(V).
The Hugoniot gives P, V data without knowledge of the temperature.

That is a great advantage in shock compression analyses. On the other
hand, it is correspondingly difficult to get information on temperature from
shock compression experiments. If one wishes to specify the internal energy,
entropy, or temperature along the Hugoniot, or if one wishes to compute
the isotherm or the isentrope from the above, some additional informa-
tion besides Us(Up) is needed. This additional information is provided by
assumptions about the Griineisen ratio 7, usually taking the form

We have shown in Chapter 1 that j decreases with density, and that a
good empirical approximation over a limited range of compression is (1.32)

Now if q = 1, which holds at high T (Fig. 3.12),

In this approximation we have from (1.24) an alternate form of (3.54),

and if Cv is independent of P and T at high T, as it often is, then (12.11)
reduces further to

or
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Fig. 12.6. The variation of q with T along various isochores for MgO. There
is convergence to q = 1.0 at shock wave temperatures (modified from Anderson
and Isaak, 1994).

an approximation recommended by Birch (1952) for use in the earth's deep
interior.

There are many cases where jp — constant is used in shock wave data
reduction. The main problem is the evaluation of 70. Thermodynamic
identities show that q —> 1 as the temperatures becomes large, as shown
in Fig. 12.6, which is related to Fig. 3.12 (Anderson et al., 1993). This
situation is probably good for all high shocked conditions.

It has been suggested that the relationship between q and 77 over a
wide range of T and 77 is given by

(Bukowinski, 1988). A similar form was suggested by Jeanloz (1989). But
this is not adequate to describe all the relationships plotted in Fig. 12.6,
unless q is a strong function of 77 and T. At high T, we see that dq/dT is
negative at 17 = 1 and positive at small 77 (see also Fig. 3.13, which shows
the slope of d £n q/d in 77 to be curved and temperature sensitive). The
above equation may be useful to describe the variation of q in limited T, 77
zones. But it is not sufficient to compare shock wave results (where q = 1)
with static compression measurements at T < Q.
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12.4. The isentropic bulk modulus

315

To use (12.11) in developing corrections to the "Hugoniot" EoS, we need
to develop some additional thermodynamic relationships. These relation-
ships will help us in comparing pressure and temperature derivatives of the
prime variables in a Hugoniot. Let us replace (12.4) with the following
thermodynamic function, called the Rankine-Hugoniot function,

The Rankine-Hugoniot equations given above can be usefully applied to
(12.4) and (12.10) by requiring that

and where

H = 0 defines the Hugoniot centered at PQ , VQ .

(Note that the function changes for each Hugoniot. It is a two-point scalar
in the P, V plane. One usually varies P, V, not Po,Vb-)-

Using dU — TdS — PdV, we expand the Hugoniot in P,V variables:

Using

in (12.16), we find

dH= \i-^L(Vo-V}]TdS

Expanding the Hugoniot out in general terms as a function of

Compare coefficients in (12.19) and (12.18), and we find the definitions of
(dH/dS)v and (8H/dV)s. We need differentials at constant H (dH = 0)
that help us obtain information from the shock wave experiment.
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From calculus, and using a dummy variable X.

Using (12.18)

Now for X, substitute P. From (3.34) and (3.38), (dP/dS)v = fT/V.
Placing this in (12.21), we find relations between the bulk modulus and
various constants:

Equation (12.22) shows the relationship between the Hugoniot bulk modu-
lus and the adiabatic bulk modulus. It can be written as:

Because 7 and AV = VQ — V are positive and 7 is near unity, [ l — f ( A V / 2 V ) }
is positive. The sign of (Kn — K$) is determined by the sign on the right.

Define the chord bulk modulus,

which is a straight line drawn from VQ of the origin to a V on the Hugoniot.
Then (12.23) becomes
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or

In terms of the slopes near the origin of the P-V plot, we see that
(P — PO)/(VO — V) is larger than (dP/dV)g, the former being a straight
line, or chord, and the latter curving upward. Therefore the right hand side
of (12.25) is positive. As a consequence, (8P/dV)s is less than the chord.
But the left hand side is also positive, and therefore the adiabatic slope is
less than the Hugoniot slope.

But beyond a certain compression, the isentropic slope is greater than the
chord slope; the signs reverse; and

12.5. Differentials along the Hugoniot

We now wish to show how entropy varies along the Hugoniot. The expan-
sion of S in terms of V and T is

Recalling that (dS/dV)T = aKT and (dS/dT)v = CV/T, and further
from (12.4) that aKT/Cv = ( j / V ) , we have

Using (12.23) in the above,

Use of (12.28) in (12.18) yields
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Comparing (11.28) to the expansion of H in terms of T and V,

we can define (8H/dT)v and (dH/dV)T. Thus

Immediately we see that

Proceeding along the same line, we find

<* = ™ + XlLdV, (12.34)
0 7 7

where a = jl - -f[(V0 - V)/2V] }. Solving for dP from (12.34)

These differentials along the Hugoniot demonstrate the importance of
knowing 7 at every value of V, P. Equation (12.29) shows that as Kn — Kg is
positive, and jT is positive, (dS/dV)H is negative; therefore, (dS/dP)H is
positive. As the pressure increases on the Hugoniot, the entropy increases.
From Fig. 12.6, we see that at high temperature j/V can be replaced by
To/Vo or 7o/?o, as a good approximation.

12.6. Changing from EoS parameters to shock parameters

Start with the expansion of S with the variables P and V:

The partial derivatives above are given by Maxwell's relations, (3.38) and
(3.39), so that
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In an isentropic process, dS = 0, so that

In isentropic compression ^5 is approximately represented by a linear ex-
pansion in P,

This equation is closely obeyed over most of the lower mantle, for example,
as shown in Fig. 7.3. (This is not to imply, however, that such a linear
relationship exists between the isothermal bulk modulus KT and P. It
does not, even when (12.38) is true).

Integrating (11.38) for P between 0 and P, and V between VQ and V,
we have the Murnaghan EoS (Section 7.4):

This gives us the value of PS at V when the centering point is at P = 0.
Comparison of (12.39) to the PTH is best made when the variables above
are changed to the shock wave variables CQ and s.

The variable s found in the Us-Up experimental relationship is de-
nned in terms of the derivatives of PH with respect to V. Ruoff (1967)
showed that by combining (12.1), (12.2), (12.3), and (12.39) and by assum-
ing UP —> 0 at TI —> 1,

Using the definitions of K$ and (8Ks/dP)s (see Section 1.5), he found
that

Equations (12.40) and (12.41) are the main connections between shock
wave variables and static equations of state. There are two shock wave
variables (s and CQ) and three static EoS variables (Kg0, K' and p0). Thus
the linear Us-Up relationship corresponds to the third order EoS. In the
derivation above, a Murnaghan-type EoS was used in isentropic compres-
sion. Pastine and Piascesi (1966) showed that a quadratic Us-Up curve gave
the above equations, (12.40) and (12.41), but that additional equations in-
volving K" arise. They based their derivation on repulsive and attractive
potentials, such as found in Chapter 8. Jeanloz (1989) showed that (12.40)
and (12.41) could also be derived by using an isothermal Birch-Murnaghan
EoS of third degree in the derivation. Details about additional terms aris-
ing when a quadratic Us-Up curve is used will be found in Ruoff (1967)
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and Jeanloz (1989). Thus (12.40) and (12.41) appear to represent any rea-
sonable third order EoS, and an additional equation involving KQ appears
for any reasonable fourth order EoS.

In the course of their derivation, Pastine and Piascesci (1966) showed
that near the origin, P = 0,

which is helpful in changing from Hugoniot variables to isentropic variables.
We evaluate PS, (12.39), from shock wave variables. From (12.41)

Using (12.40) and (12.42), we can re-evaluate (12.39), finding

This is to be compared with the definition of PH, (11.8), with PQ = 0:

12.7. Computing the temperature along the Hugoniot

We need T along the isentrope centered at VQ. From (1.29),

The temperature at V along the isentrope is thus

At high temperatures jp = constant, as justified by Fig. 12.6, so

Using (12.16) and taking dH — 0, dS along the Hugoniot is:

and
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dS expanded as a function of T and V is:

Thus

Placing (12.47) in (12.48), T along the Hugoniot TH is

The first term on the right side of (12.49) is the increment of tempera-
ture due to isentropic compression by dV, dT$, arising from (12.46), and the
second term is due to the change of temperature arising from (PH ~ PS) at
compression dV in order to shift from the isentrope to the Hugoniot. Thus
at constant V, the terms on the right are positive, and TH > T$.

Equations (12.47) and (12.48) are differential equations that must be
solved to get the temperature and entropy along the Hugoniot. To evaluate
TH, we note that, although the shock wave experiments give Pn(V), one
also needs the functions ~f(V) and Cv(V) along the Hugoniot. For many
purposes it is adequate to assume Cy = constant and yp = constant.

12.8. The temperature of shocked iron along the Hugoniot

Brown and McQueen (1982) presented data for the longitudinal velocity of
sound along the Hugoniot of iron. They determined the velocity of a pres-
sure release wave that propagates behind and overtakes the shock front.
This is the longitudinal velocity vp, which exceeds the value of the bulk
wave DJ traveling in the liquid. From their experiment, Brown and Mc-
Queen (1980) found two phase transitions in the solid: one at 200 GPa and
one at 243 GPa (see Fig. 8.3) along the Hugoniot. The 243 GPa transition
was found (Brown and McQueen, 1982) to be the transition from a solid to
a liquid. The iron Hugoniot was reported by Brown and McQueen (1986)
to be

The location of the pressure and volume of the solid-liquid and solid-
solid transition is known with considerable accuracy. The determination
of the temperature at these two phase transitions involves knowing the
temperature of the Hugoniot at the two pressures. This involves using
(12.49) where we assume p~( = pojo = constant, written in the form
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It has been shown (see Fig. 3.12) that -yp — joPo — constant holds
for typical shock wave temperatures. So the first problem is to evaluate
7o/>o = constant.

Because po of iron is known providing the phase is specified, the focus
is on the determination of 70- Brown and McQueen (1986) find a reasonable
value to be 70 = 1.7, by using po for the liquid state (7.0 Mg/m3). Thus
jp = 12 Mg/m3 was used in the integration of (12.50). But if it is assumed
that the properties of the solid side of the solid-liquid transition are needed,
then po is higher and fopo may be higher than 12 Mg/m3.

The next problem is to determine Cv- It is composed of the high
temperature lattice specific heat and also the contribution for electronic
states. The Brown and McQueen (1986) model of specific heat is

where je is the electronic 7; /?<, is proportional to the density of electrons
at the Fermi level; and D(T/&) is the Debye function for specific heat.
Boness et al. (1986) evaluated /3e and je with band structure calculations
and found /3t = 90.8 J Mg-^K"2 and je = 1.34.

The effect of the calculated electronic term is to add a small increment
to the lattice specific heat Cv = 3-R from Debye theory at T > 0. Jamieson
et al. (1978) found this electronic term to be equivalent to adding 1 to 2 R
to the Cv of the lattice, 3.R. Other calculations appear to give a lower
value for Cv. Thus Cv is expected to be 4R to 5R, which might include a
contribution to Cv from anharmonicity.

Using their own determination of Cv, Brown and McQueen computed
the values of T along the Hugoniot and presented the data shown in Ta-
ble 12.1. For transitions shown in Fig. 8.3, this computation yields the
following Tm:

s-( transition (243 GPa) Tm = 5800 ± 500 K

s-s transition (200 GPa) Tm = 4400 ± 500 K.

Both transitions are along the Hugoniot and are connected. To change
parameters so as to raise (or lower) the first transition T in (12.50) would
correspondingly raise (or lower) the second transition T.

Equation (12.50) can be thought of as composed of an isentrope term
plus a correction. The correction is relatively small unless the reduced
pressure P/KTo is high. Because P/KTa is 1.2 to 1.4 in the 200 to 243 GPa
range, the correction term will be of the order of 20% of the total TH.
Therefore for the calculated TH to shift upward or downward, there has to
be a rather large change in the value of 70-

Scientists who find Tm by measuring the radiance of shocked iron get
values much higher than listed above. Yoo et al. (1993) report that at
255 GPa, Tm = 6784 ± 500 K, giving a Tm at 243 GPa some 800° higher
than above, and Bass et al. (1990) report yet even larger Tm values.
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So there is the question of whether the Brown and McQueen value of
Tm (at 243 GPa) is too low. On the other hand, there is an opposite conflict
with Boehler's s-t transition Tm at 200 GPa, which is 4250 ± 200 K, lower
by about 150° than the s-s transition T found by Brown and McQueen
(4400 ± 500 K). The problem is, how can an s-t transition have a lower
value of Tm than the T of an s-s transition, both at the same PI That
would make the solid-solid transition at a higher temperature than the
solid-liquid transition. This raises the question of whether the Brown and
McQueen temperatures reported for 200 GPa are too high. On the other
hand, if one focuses on the radiance-type shock wave results, one might
argue that the solid-liquid value of Tm at 243 GPa reported by Brown and
McQueen is too low. It is clear from (12.50) that sets of values of 79 and
Cy* could be found to either raise or lower the Hugoniot temperature.

Taking the current values of Cv, the consequence of lowering the cal-
culated Tm substantially to satisfy the DAC data of Boehler is that 70
must be much lower than 1.5. The consequence of raising the calculated
Tm substantially to satisfy the shock wave radiance measurement of Yoo et
al. (1993) would be that 70 > 2.0.

Table 12.1. Calculated properties for iron on the Hugoniot

Pressure
GPa

40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Temperature
K

655
969

1355
1795
2274
2783
3311
3854
4407
4967
5531
6096
6662
7228
7792
8354
8914
9471

10024

Density
Mg/m3

9.49
9.99

10.40
10.74
11.04
11.30
11.54
11.75
11.94
12.12
12.28
12.44
12.58
12.71
12.84
12.96
13.07
13.18
13.28

Bulk
Sound

Velocity
km/s

5.67
6.21
6.67
7.08
7.45
7.89
8.19
8.41
8.69
9.96
9.22
9.47
9.71
9.94

10.17
10.39
10.60
10.81
11.02

From Brown and McQueen, 1986.
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Fig. 12.7. The radiance shock wave data and the solid-liquid melting boundary.
The s-s transition at 200 GPa and the s-t transition at 243 GPa from Brown and
McQueen (1986) (Fig. 8.3 and Table 12.1) are shown as triangles. The large open
square is the upper point of the s-t transition at 200 GPa found by Boehler (1993):
below 200 GPa, Boehler's data are represented by a solid line. The dashed-dotted
line between 200 GPa and 243 GPa is proposed by Anderson (1993) to separate
the 0 phase from the € phase, but this requires the addition of a triple point at
190 GPa (see inset). The inset shows how the branches of the assumed triple
point go through the data (Anderson, 1994); Anderson finds Tm(330) = 6000 K.
The open circles are the shock data of Yoo et al. (1993), and the closed squares
are the shock data of Bass et al. (1987). The dashed line is the solution proposed
by Yoo et al. (1993), yielding Tm(330) = 6830 K. The dotted line is the solution
proposed by Boehler (1994), yielding Tm(330) = 4250 K.

12.9. Tm of iron at 330 GPa: the inner—outer core interface

Data for Tm of iron for P > 200 GPa are shown in Fig. 12.7, where all
the radiance shock wave data are plotted as circles and solid squares, along
with Boehler's (1993) data on Tm from his diamond-anvil-cell measurements
plotted as solid lines, and the Brown and McQueen (1986) two shock-wave
data points plotted as triangles.
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As of May 1994, there is disagreement on Tm of iron at core conditions,
especially at 330 GPa. Boehler (1994) proposed that the Brown and Mc-
Queen s-s transition at 200 GPa and the s-t transition at 243 GPa should
have been reported at lower temperatures. By assuming the lowering of the
BfeM Tm at 243 GPa by 1100 K, he extrapolated his Tm curve from 200
to 330 GPa using the Kraut-Kennedy law (Fig. 12.8), obtaining thereby
Tm - 4250 ± 200 K at 330 GPa, the lowest value on record.

Yoo et al. (1994), ignoring the Boehler data and the B&M data, find
from their shock wave data Tm - 6830 ± 500 K at 330 GPa. The Williams
et al. (1987) solution for Tm at P = 330 GPa is 7600 ± 500 K, the highest
value on record, the high points having been determined by shock waves
(Bass et al., 1987). These two shock wave determinations of Tm are found
from a measurement of radiance from the shock, which arises from a two-
body system (iron foil against corundum block). The calculation of the
iron radiance alone requires one to compute the thermal diffusivity of the
shocked two-body system (Ahrens et al., 1990; Tan and Ahrens, 1990).

By setting a new triple point (t.p.) at 190 GPa, Anderson (1994)
reconciled the Boehler datum at 200 GPa and the Brown and McQueen
data (see insert, Fig. 12.7). This t.p. increased dTm/dP, and at 330 GPa,
Tm = 6000 ± 300 K. Although this solution passes within one of the error
bars of the shock wave data of Yoo et al. (1993), the radiance-type shock
wave data are ignored in Anderson's proposed solution.

Saxena et al. (1994) proposed that the /?-e boundary passes through
the s-s boundary of BfeM at 200 GPa and 4000 K (Fig. 12.8), and that it
intercepts the c-liquid boundary, establishing a triple point at 216 GPa and
4500 K. This places his Tm of pure iron near 6000 K for 330 GPa.

Neglecting error bars, the temperature spread for Tm(330) from all
extrapolations (Williams et al., 1991, to Boehler, 1994) is 4250-7600 K,
a large difference. If one disregards the uppermost point of the Bass et
al. data (Fig. 12.7) in view of the new, unpublished shock wave work of
Ahrens, who now estimates Tm(330) to be near 6930 K, the temperature
spread is about 2600 K. Poirier and Shankland (1994) calculated Tm(330)
from dislocation theory (Section 11.8) and found it to be 5600 K to 6160 K,
depending on the crystallographic structure (Section 11.14). This agrees
with the Saxena et al. (1994) Tm extrapolation and the Bukowinski (1977)
calculation. Until the conflicting data on Tm at high P from diamond cell
and shock wave experiments are reconciled, I recommend that a Tm value
of 6000 K for iron at 330 GPa be used for geomagnetism calculations.

12.10. \Vhat is the dominant iron phase in the inner core?

There is little agreement on the structure of pure iron at inner core con-
ditions (as of March, 1994). The hep phase ((.) has been justified for the
inner core by Saxena et al. (1994) by including the BfeM s-s 200 GPa
point but ignoring the d phase proposed by Boehler (1986) and by ignor-
ing the radiance-type shock wave results shown in Fig. 12.7. Williams et
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Fig. 12.8. Two cases for the phases of the inner core: left) Saxena et al.'s (1994)
proposal for € iron; and right) Boehler's (1994) proposal for the 0 phase of iron.
Anderson's (1994) proposal (Fig. 12.7) is similar to Boehler's except that Tm is
higher; 6 is suggested to have the fee structure; and 0 is cut off from /? by f.

al.'s (1991) phase diagram shows e as the inner core phase, but they ignore
the B«kM s-t 243 GPa point and all Boehler's diamond cell work. Boehler's
interpretation is that the B&M data are to be lowered and the radiance-
type shock wave work is to be ignored; the 9 phase (Boehler, 1986) is the
inner core, disallowing hep. Boehler (1994) extended 9 to include the new /?
phase. The structure of the inner core phase of iron has not yet been estab-
lished. Theoreticians (Cohen et al., 1994; Stixrude and Cohen, 1994) say
this phase cannot be bcc. Could the inner core iron phase be fee (7)? This
possibility harkens back to the theory of fee iron at inner core conditions by
Bukowinski (1977). Two current proposals for the phase diagram of iron,
showing the phase appropriate to the inner core, are shown in Fig. 12.8.

The amount of impurities in the iron of the inner core needed to match
PREM density depends on the density of the iron phase dominating the in-
ner core. An e inner core requires a large amount of light impurities (Jeph-
coat and Olson (1987)). We do not confidently know the density of fee iron
at inner core conditions. The neutron scattering results of Stassis (1994)
indicate that KT of fee iron is 143 GPa at 1428 K (the ambient value is
unknown. Extrapolation gives 170 GPa at ambient, higher than the value
in Table 8.3). Considering that p0 is high (8.00 g/cc), this high value of KTO

would make the density of fee iron lower at inner core conditions than indi-
cated by the EoS calculations shown in Fig. 10.14. If so, an fee inner core
phase may require some light impurities. But an fee inner core certainly
requires fewer impurities than an hep inner core. Thus it is important to
find the ambient values of KTO and K' of fee iron quite precisely.
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THERMODYNAMIC FUNCTIONS

13.1. Introduction

It is well known that the computations of thermodynamic functions (en-
tropy, for example) require knowledge of the thermal expansivity a and
compressibility /c, as well as the specific heat. The pressure (or volume) and
temperature variation of a and K contribute to the pressure (or volume) and
temperature variation of the thermodynamic functions. The tabulation of
these thermodynamic functions in the extreme ranges of temperature and
pressure requires a good understanding of the EoS, elasticity at very high
temperature, anharmonicity of the solid, and the thermal expansivity at
high temperature.

Recent experimental progress in the thermal EoS has clarified the vol-
ume and high-temperature corrections to the thermal pressure PTH and to
the isothermal bulk modulus KT (the reciprocal of the compressibility, K)
for MgO, Mg2Si04, and A12O3 (Goto et al, 1989; Isaak et al., 1989a,b).
This progress is represented by the ability to measure elastic constants at
high temperatures (in fact, as high as 1825 K) using new resonance mea-
surement techniques (Goto and Anderson, 1988).

The product aKf is an important correction needed for evaluating
entropy at high compression and volume. It has become apparent in the
last 10 years that it is best to treat aKf as a single parameter, as the
product varies little with pressure or temperature, whereas both a and KT
each varies significantly with pressure and with temperature.

Birch (1952) first proposed that for silicates and oxides, to a good ap-
proximation, O>KT should be independent of pressure. He based this idea on
experiments made by Bridgman (Birch, 1952) on alkali metals up to 3 GPa.
Anderson (1980) proposed that at high temperatures, aKx is independent
of T for oxides and silicates, and he followed up with a review paper that
confirmed this for many oxides and silicates (Anderson, 1984). The re-
search cited above, among others, has pinned down and supported Birch's
proposal, by detailed measurements on individual minerals. Although it is
of great value to geophysical theories to know that aKf is approximately
independent of pressure and temperature, for analysis of thermodynamic
functions, it is still important to precisely quantify the amount that aKf
varies with pressure and with temperature. In this text we shall deal with
otKf as a function of V and T, although its variation is small, at high
pressure and high temperature.
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In this chapter, I present the equations for the thermodynamic func-
tions appropriate to oxides and silicates. The equations are presented in
such a way that aKx is a major variable. I illustrate the procedure by pre-
senting data on the thermodynamics for MgO, for the temperature range
300-2000 K and in the pressure range up to 150 GPa. The complete data
set on all thermodynamic functions of MgO will be found in Anderson and
Zou (1989). We also discuss the experiments needed to improve accuracy
at extreme compression and temperature.

13.2. Basic equations for entropy

The entropy as a function of V and T can be found from

Consider isotherms dT — 0. Equation (13.1) becomes

From calculus

so

Integrating (13.3),

where T* represents the isotherm.
We need the dependence of O.KT with volume at constant temperature.

This is usually not available as direct experimental information. Using the
thermodynamic identity

because the properties on the right are known from high temperature ex-
periments. The term on the right is usually a small number, often zero.
We see this from the calculus equation
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The first term on the right is negative; the second term on the right, involv-
ing aKf from a high temperature experiment and K'T = (dKx/ dP)T from
a pressure experiment, is positive. These two terms are about equal in value.
Dividing the right side by aKT, we have (8KT/dT)v = — aKx (6r — K').

13.2.1. Entropy when (8KT/dT)v is independent ofV

Now consider that (dKr/dT)v is a small number, often sufficiently small
that its volume dependence, if any, can be ignored. In Chapter 3, we found

w is zero for NaCl at ambient conditions, but non zero although small for
most oxides and silicates. The variation of 6j> — K' — —w/aKT with V
and T is shown in Fig. 3.3. Equation (13.5) becomes

and upon integration

To evaluate the integrating constant, take aKr = (O;KT)O when V = VQ.
Thus

Placing (13.9) into (13.4),

Equation (13.11) is then

In the special case w = 0 (or (8KT/dT)v = 0), we have along the isotherm
T"

The entropy of MgO computed using (13.12) is found in Anderson and
Zou (1989). Because (aKx) is nearly independent of r; and T, [(10.39) and
(10.40)], we see that for the simple case of (13.13) entropy varies as (1 — rj).

Consider the isochore (constant volume) case, AV = 0. Using (13.1)
along with the identity (dS/dT)v = Cv/T,
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At high temperature when Cy can be assumed to be independent of T, as
found for many oxides and minerals (Fig. 2.1),

The isochore represents the volume at P = 0 and T = TO (standard room
temperature, 300 K).

13.2.2. Entropy when (dKT/dT)v is a function of V

Equation (13.6) is of the form

or

Using (13.3),

Along isotherms for different values of T), we have from (13.17)

From (13.17)

The change of entropy with volume going from VQ to V, or from 1 to
77 along an isotherm T* as given in (13.19), involves a double integral. But
one proceeds numerically by finding (&T — K') as a function of T and p
first.

Values for ST — K' as a function of rj along isotherms are shown in
Fig. 13.1 for the case of MgO. The value of (6T - K') is not zero, but it
is small. It represents a measure of the intrinsic (isochoric) change of bulk
modulus with T that can be seen from the identity given by (3.12), where

The solution for (11.47), aKr versus 77 along isotherms, has already been
plotted in Chapter 3 (Fig. 3.7) for MgO.

Units of aKTVa = aKr/Po are J/g-K. Typically po is in g/cc, a is in
units of 10-6/K, and KT is in J/cm2 (KT = 160 GPa = 1.60 x 105 J/cc;
a = 3.12 x 10~6; p = 3.587 g/cc, so aKT/pQ = 1.395 J/gK).
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Fig. 13.1. A plot of bf — K' versus T) at various isotherms for MgO. Above the
Debye temperature 8f — K' gets increasingly close to zero as the temperature
rises. Data taken from Figs. 3.4 and 3.5 (modified from Anderson et al., 1993).

When we integrate (13.19) using data shown in Fig. 13.1, we need the
constant of integration, which is the value of S at TO = 300 K. We are con-
structing our thermodynamics in the S(r/, T) field, but measurements are
taken at constant pressure, not constant T), so we must find the relationship
between S at constant TJ (called here S,,=i) and S at constant P (called
here Sp). The variation of entropy with constant T] (or V/V0), from T0 to
T* is given by

where Cy = Cp/(l + ajT). Standard conditions were taken as TQ = 300 K
and P = 1 bar. Thus at absolute zero 77 = 1.08. The entropy of S^=i at
300 K is found by using the tabled values of Sp for MgO and correcting by
calculating (Stull and Prophet, 1971)

We use the published value of SP(300) (Barren et al., 1959). We find
•S,, = 1(300) = 0.5705 J/g-K from the measurement SP(300) = 0.6743 J/g-K.
The data for S^ are tabled in Table 13.1 and plotted in Figs. 13.2 and 13.3.



332 THERMAL PROPERTIES AT HIGH PRESSURE

Fig. 13.2. S versus 77 along isotherms for MgO.

Fig. 13.3. S versus T along isochores for MgO (modified from Anderson and
Zou, 1989).
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Table 13.1

T) = V/V0

0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

. Entropy versus r\ at constant T, S(r),T), for MgO

5(r,, 300)

0.203
0.225
0.246
0.267
0.289
0.310
0.332
0.353
0.376
0.380
0.420
0.443
0.466
0.489
0.513
0.538
0.564
0.589
0.616
0.642
0.6705
0.699
0.727
0.755
0.784
0.812
0.841
0.870
0.898
0.927

5(77,500)

0.58
0.68
0.64
0.67
0.71
0.73
0.76
0.79
0.82
0.85
0.88
0.90
0.94
0.97
1.00
1.03
1.06
1.09
1.13
1.16
1.19
1.23
1.26
1.29
1.33
1.36
1.39
1.43
1.46
1.50

S(r), 1000)

1.30
1.34
1.37
1.41
1.44
1.48
1.51
1.54
1.58
1.61
1.64
1.68
1.71
1.74
1.78
1.81
1.85
1.88
1.92
1.95
1.99
2.02
2.06
2.10
2.13
2.17
2.21
2.24
2.28
2.32

S(T), 1500)

1.77
1.81
1.85
1.88
1.92
1.95
1.99
2.02
2.05
2.09
2.12
2.16
2.19
2.22
2.26
2.29
2.33
2.36
2.40
2.43
2.47
2.51
2.54
2.58
2.61
2.65
2.69
2.72
2.76
2.80

5(77,2000)

2.12
2.15
2.19
2.22
2.26
2.29
2.33
2.36
2.40
2.43
2.46
2.50
2.53
2.57
2.60
2.64
2.67
2.71
2.74
2.78
2.81
2.85
2.88
2.92
2.96
2.99
3.03
3.06
3.10
3.14

The variations of Cp with T at constant pressure (P = 1 bar) and the
computed Cy taken from the entropy (77 = 1), as well as the variation of
entropy with Sp and Sv (P = 1 bar, 77 = 1), are shown in Fig. 13.4. We find
Cy to be classical with little evidence of anharmonicity in our temperature
range. This is (dCv/dT) = 0, indicating that in the density of states, the
frequencies are a function of V but not of T up to at least 2000 K.

Sy, or S(V,T), is important for the Helmholtz energy, T — U — TSy.
On the other hand, Sp, or S(P,T), is important for the Gibbs energy
because Q = Ti - TSP. Here we use 5(rj,T) in place of S(V,T).
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Fig. 13.4. Entropy for MgO at constant P and constant 77 versus T and Cp
and Cy versus T (modified from Anderson and Zou, 1989).

13.3. The internal energy as a function of V and T for MgO

The variation of internal energy U with T at 77 = 1 above T = 300 is given
by

We find the value of W(300,1) by integrating Cp — Cy, as tabled by Barron
et al. (1959). This gives us the difference between the enthalpy and the
internal energy at 300 K. At standard conditions we find

for MgO where the value ft (300, P = 0) is 129.7 J/g for MgO, according
to Garvin et al. (1988). To obtain the volume dependence on U, we expand
the internal energy out versus dT and dV,

Consider the isotherm dT = Q(T = T") and the Maxwell relationship
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Replace (13.11)

Integrating (13.21) we have

Separating P into its two parts P = P(r=o) + PTH — Po + PTH, where PQ
is the isothermal EoS, and PTH is the thermal pressure, we have

Now PTH is sometimes slightly dependent on V, as cuKf is sometimes
slightly dependent on V and PTH = /0 uK? dT. The volume effect is
observable if w is not zero; nevertheless, w = (OKT/dT)v is always small.
The pressure effect arising from w is a small contribution to PTH, which
itself is small compared to PQ. Treating PTH as independent of V creates
an error in f PTH dV that is negligible compared to f P0dV.

Assume PTH to be independent of V\ then (13.35) becomes

The last term is

From (13.24), (13.25), and (13.26), we see that the change in internal energy
with r) along the T* isotherm is

where PQ refers to the zero pressure value appropriate to the isotherm, T*.
For P along the isotherm T = 0, we use the Birch-Murnaghan EoS of third
degree (where the subscript 0 on P means P at absolute zero),

From (13.3)
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Here w = V0/V = l/rj. VQ is absolute zero volume so that for p0 in (13.29),
we used 3.603 g/cc for MgO.

Accordingly,

The term K0V0 is also K0/pa - 166.2/3.603 GPa/(g/cm) = 4.61 x 104 J/g
for MgO. The value of /^ PT=O dV is useful and is tabled below as ̂  PQ djj.
We need the value of W(300,1), obtained by integrating Cp — Cv, such as
tabled in Barren et al. (1959), giving us W(300, P = 0)-W(300,1) = 0.9 J/g.
Stull and Prophet (1971) list ft(300, P - 0) as 182 J/g, so that W(300,77 =
1) is 127.3 J/g.

Table 13.2. Pressure,
MgO (GPa)

ri = V/V0

1.10
1.09
1.08
1.07
1.06
1.05
1.04
1.03
1.02
1.01
1.00
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.90

P(V,0)

-12.9894
-11.9697
-10.8962
- 9.7663
- 8.5767
- 7.3245
- 6.0063
- 4.6186
- 3.1577
- 1.6195
- 0.0000

1.7054
3.5019
5.3939
7.3871
9.4873

11.7004
14.0334
16.4925
19.0861
21.8212

P(r], 0) = PO(T)), and f^ Podr) versus

fiPodr,

0.7047
0.5799
0.4655
0.3622
0.2704
0.1909
0.1242
0.0710
0.0321
0.0081
0.0000
0.0084
0.0343
0.0788
0.1427
0.2271
0.3331
0.4619
0.6145
0.7924
0.9968

r) = V/V0

0.890
0.880
0.870
0.860
0.850
0.840
0.830
0.820
0.810
0.800
0.790
0.780
0.770
0.760
0.750
0.740
0.730
0.720
0.710
0.700
0.690

P(*},0)

24.7070
27.7522
30.9665
34.3603
37.9453
41.7326
45.7357
49.9680
54.4444
59.1812
64.1949
69.5049
75.1304
81.0934
87.4168
94.1260

101.2482
108.8132
116.8524
125.4013
134.4976

77 for

RPodri

1.2293
1.4914
1.7848
2.1111
2.4723
2.8704
3.3074
3.7856
4.3074
4.8754
5.4921
6.1605
6.8836
7.6646
8.5070
9.4144

10.3909
11.4407
12.5685
13.7791
15.0780

From Anderson and Zou, 1990.
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Table 13.3. Internal energy versus T at constant 77, U(T), T)

T
(K)

300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1300
1400
1500
1600
1700
1800
1900
2000

W(1.0,T) W(0.90,T) W(0.85,T)

(J/g)
127.3
175.0
225.7
278.5
332.8
388.3
444.5
501.4
558.8
616.6
674.7
733.1
791.8
850.7
909.7
968.8
1028.1
1087.4
1146.7
1265.6
1384.5
1503.6
1622.8
1742.0
1861.2
1980.5
2099.9

380
440
480
530
580
640
690
750
810
860
920
980
1040
1100
1160
1220
1280
1340
1400
1520
1640
1770
1890
2010
2130
2260
2380

790
840
880
930
980
1040
1090
1150
1210
1260
1320
1380
1440
1500
1560
1620
1690
1750
1810
1930
2060
2180
2310
2440
2560
2690
2810

W(0.80, T) If (0.75, T) U '(0.70, T)

1440
1500
1540
1590
1640
1700
1750
1810
1870
1930
1990
2050
2110
2170
2230
2300
2360
2430
2490
2620
2750
2880
3010
3140
3270
3400
3530

2450
2490
2540
2590
2640
2700
2760
2820
2880
2940
3000
3070
3130
3190
3260
3330
3390
3460
3520
3660
3800
3930
4070
4210
4340
4480
4620

3910
3960
4000
4050
4110
4170
4230
4290
4360
4420
4490
4550
4620
4690
4750
4830
4890
4970
5030
5180
5320
5470
5610
5760
5910
6050
6200

V0 is standard volume at T = 300 K and P = 1 bar.

P(f), 0) and the correction term f* P('n) drj versus TJ for MgO are shown
in Table 13.2. /^ P(»y) dr) = ^ P0dr) is found in (13.28), the equation
for internal energy U. U versus T along selected isochores is shown in
Table 13.3. U(T, TI = 1.1) is not shown, but is close in value to U(T, 0.9).

The isochoric plot of U versus T shows a steady increase with T (almost
a straight line) following the law (dU/8T}v = Cv. From T slightly below
0 to higher T, Cv does not change with T for MgO (see Fig. 2.1). The
isochores of U(T, T]) are symmetric about T] = 1. U (T, 1.1) has almost the
same set of values as U(T, 0.9). U has a minimum at T) = 1 for 300 K.
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13.4. The entropy versus P and T

Consider SP(T,P) expanded in dT and dP. Then

Consider the isotherm dT = 0; then

or

The functional relationship between a and P is not helpful, so we change
the differential parameter to dV using the definition of KT '•

Thus

Because rj is a function of T, we have

We see that the right side of (13.36) is the same as (13.19) except that the
limits of integration in 77 are determined by both P and T*.

Assume now that w is independent of V as a good approximation.
Then f aKx changes with 77 according to (13.11), and we have

In this approximation (Anderson and Zou, 1989),

where p0 = p(T",P-Q).
Along the isobar at P = 0

which gives the integrating base.
The values of Sp(T, P) versus T for MgO are plotted along isobars in

Fig. 13.5. There is a convergence of Sp(T,P) isobars at high P.



THERMODYNAMIC FUNCTIONS 339

Fig. 13.5. The isobaric plots of entropy Sp at constant P versus T for MgO.

13.5. The enthalpy versus P and T

Enthalpy U is related to U. Noting that CP = [d(U + PV)/dT]p, the
quantity (M + PV), heat content, occurs often enough to be given a symbol
and a name, enthalpy. Start with the identity,

or

The computation of fVadP is given by (13.35). Thus we see that

/0 V dP can be solved along an isotherm T* by the inverse equation of
state V = /(O, P). A more straightforward way is to change variables

so that
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The third degree Birch-Murnaghan equation for KT as a function of density

The temperature dependence of KT is neglected; the thermal bulk
modulus correction is sufficiently small compared to Kf at absolute zero to
be safely ignored. However, there is temperature dependence in the limits
of integration: V(T*,P) and V(T*,0) in (13.43). We give the value of the
integral / KTdri, (13.43), as V0/<f r)dP in Table 13.4. The value of the
integral f P dr) and the ambient value of T) for each P are also listed.

Table 13.4. The compression, r) = V/Vo, and the
functions Vo / TJ dP and Vo / P drj versus P for MgO

P
(GPa)

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130

r, = V/V0

1.000
0.972
0.948
0.926
0.907
0.889
0.873
0.858
0.845
0.832
0.820
0.809
0.798
0.788
0.779
0.770
0.762
0.754
0.746
0.739
0.732
0.725
0.719
0.712
0.706
0.701
0.695

v0f0
pr,dp

(GPa)

0.0000
4.9284
9.9261
14.4090
18.9896
23.4779
27.8822
32.2095
36.4658
40.6561
44.7850
48.8565
52.8739
56.8405
60.7591
64.6321
68.4619
72.2505
75.9999
79.7118
83.3877
87.0292
90.6377
94.2145
97.7606
101.2773
104.7655

VotfPdr,
(GPa)

0.0000
0.0684
0.2466
0.5200
0.8509
1.2542
1.6934
2.1805
2.6666
3.2168
3.7856
4.3621
4.9948
5.6216
6.2303
6.8836
7.5036
8.1624
8.8619
9.5089
10.1899
10.9064
11.5500
12.3365
13.0425
13.6542
14.4172

From Anderson and Zou, 1990.



THERMODYNAMIC FUNCTIONS 341

Fig. 13.6. Enthalpy versus T along isobars for MgO.

Using values of V 0 f f r ) d P in Table 13.4 and the value [S(T",P) -
<S(T"*,0)] found in Section 13.4, the enthalpy is evaluated and plotted in
Fig. 13.6.

As is well known from experiments, the enthalpy approaches 0 at T = 0
and P — 0 and also has zero slope at T = 0. Further, the enthalpy is propor-
tional to the adiabatic bulk modulus, at least at P = 0 (Anderson, 1989).
This can be seen from the definition of the Anderson-Griineisen parameter
given by (1.48), which can be written in the form

The evidence that 8s and J are independent of T at constant P is reviewed
in Chapter 2. Taking 657 to be independent of T and integrating the above

The last term in (13.44) is insignificant compared to the first and can be
neglected. This demonstrates that K$ is proportional to H which is proven
by demonstrating that a cross plot of 7i(T) and Kg(T) is a straight line
(Anderson, 1989). Because 7i(T) is measured at higher temperatures than
is Ks(T), the above correlation is useful for extrapolating KS to high tem-
peratures beyond the measurement limit (Anderson and Isaak, 1994).
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Fig. 13.7. y~(f}) along isotherms for MgO. The minimum is indicated by an
arrow that sets the P = 0 value of volume for the isotherm. PQ refers to ambient
volume (T = 300, P = 0). The shift in the minimum with T represents the
effect of Q on V at P = 0 (modified from Anderson and Zou, 1989).

13.6. The Helmholtz free energy

The Helmholtz free energy is given by

U(T, V) is in Table 13.3 and S(T, V) is in Table 13.1, so that the Helmholtz
free energy, f(T, V), found from (13.45), is plotted in Fig. 13.7.

Figure 13.7 shows that the Helmholtz energy can be determined from
experiments and used to test the theoretical energies found in first principles
or ab initio calculations. First principles methods are often divided into
two groups. There are self-consistent methods, such as linearized augment
plane wave (LAPW) calculations. In these methods the crystalline energy is
usually determined by solving Schrodinger's equation using no assumptions
other than the local density approximation to account for exchange and
correlation effects. There are also ab initio models in which a crystalline
charge density is assumed. Electron gas models, in which the crystalline
charge density consists of overlapping spherical atomic charges, are a type
of model. In both cases, the dependence of f on strain, V, and T is used
to calculate the thermoelastic properties of the solid. We emphasize that
T found from experiments, as in this chapter, can test the theoretical f.
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Fig. 13.8. Isobars of G(T) (modified from Anderson and Zou, 1989).

13.7. The Gibbs free energy

The Gibbs free energy is given by

Taking H(T,P) from data plotted in Fig. 13.6 and SP(P,T) from data
plotted in Fig. 13.5, the Gibbs free energy is found and plotted in Fig. 13.8.

The behavior of Q(T, P) can be related to entropy by the derivative

Thus the slopes of the curves in Fig. 13.8 are equal to the values of the
respective ordinates in Fig. 13.5. Thus if Q is known, S as a function of P
and T can be determined. Similarly, as

the volume can be determined as a function of P and T, provided Q (versus
T) is known. The Gibbs free energy is particularly important because of
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Fig. 13.9. T versus T) along isentropes for MgO found from data represented
by Table 13.1 plotted as solid lines. The isentrope found by Brown and Shank-
land (1981) for the earth's lower mantle is plotted as a dashed line for comparison.

the physical processes that occur at constant P and constant T, such as
melting or change in phase.

13.8. Isentropes for MgO and the lower mantle

Using the data behind Table 13.1, contours of constant entropy for MgO
were found; these are plotted in Fig. 13.9. Isentropes are of value when
analyzing properties that vary with 77 at constant S. It has been known
since Birch's (1952) paper that the earth's lower mantle is compressed un-
der nearly perfect isentropic conditions. Using the seismic velocities of the
lower mantle and Debye theory, Brown and Shankland (1981) specified the
value of entropy throughout the lower mantle. They found the temperature
profile by assuming an adiabatic mantle and, by fixing the lower T to ex-
periment, established the value of the lower mantle entropy. The isentrope
of the lower mantle is compared with the isentropes of MgO in Fig. 13.9.



THERMODYNAMIC FUNCTIONS 345

It is seen from Fig. 13.9 that the mantle isentrope exactly parallels the
isentropes of MgO. This means that the average of the mixture of minerals
comprising the mantle has isentropes paralleling the MgO isentropes. Thus
the dominant mineral of the lower mantle, silicate perovskite, must have a
set of parallel isotropes similar to those of MgO.

13.9. Finding 7 from the entropy

The temperature of an oxide or silicate increases with density according to
the adiabatic law (see Section 1.4.2.)

Ordinarily (1.29) is used to find T versus r\ by specifying the volume
and temperature dependence of 7. However, if the values of T and 77 are
known for constant S, as in Table 13.1 and Fig. 13.9, then (1.29) can be
used to find the isotherms of 7 versus 77 or the isochores of 7 versus T.

Using the contours of constant 5 as found in Fig. 13.9, 7 is found by
differentiation using (1.29) in the form

The calculation of j ( T , r j ) from (13.47) relies on the integration of
<*KT with respect to 77 along isotherms to find the entropy, followed by the
differentiation of the entropy contour. The method of calculating 7 used in
Chapter 3 relied on an entirely different path of integration of ctKf with
respect to 77. The result for 7 according to (13.47) is shown in Fig. 13.10.

13.10. Extrapolations to absolute zero limits for KT

Values of KT(O) and K'T appropriate to absolute zero were needed, and
computed as follows:

For MgO, Jackson and Niesler's (1982) results show #5(300) = 162.5 GPa,
and K's — 4.13. These lead to the following values:

KT(0) - 166.2 GPa, A"T(300) = 160.5 GP&,K^ = 4.17.

13.11. Important sources of uncertainty

Of importance to the calculation of the thermodynamic functions is the
parameter w given by (13.7); w = (8KT/dT)v. In general this is a small
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Fig. 13.10. The variation of 7 versus T along isochores for MgO found from
(13.47). Compare this with the 7 plotted in Fig. 3.10. Above the Debye temper-
ature and at high compression, there is very little difference.

number compared to (8KT/dT)p, but temperature and volume dependent,
as shown in Fig. 3.3. Its P = 0 value is computed from the measurements
given by the balance between (dKT/dT)p and aKx (OKT/dP)T, the first
term being negative and the second positive (see (13.7)). If (13.7) is close
to zero, then we know from a thermodynamic identity that (daKx/dV)T is
zero. But in general (13.7) is not zero, although it is often a small quantity.
In case it is not zero, we must measure or compute w through 8? — K'. To
treat w as if it were independent of compression when it is not, leads to
a small error in entropy at high T and large compression. Also important
is the value of the temperature dependence of (dK'/dT)p or d^Kr/dPdT.
For MgO, Isaak (1993) found d2KT/dTdP = 0.39 x lO^K"1 up to 800 K.
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APPENDIXES

What a sense of security
in an old book which Time
has criticized for us!

—James Russell Lowell

Table A—1. Physical constants and unit conversions

Avogadro number N 6.02214xlO-23mol-1

Planck constant h 6.62608xlCT34J s
Boltzmann constant k 1.38065xlO~23J K"1

1.38065xl(r16erg K"1

Gas constant R 8.31447 JK~1mol~1

1.98717 cal K^mol-1

Electronic charge e 1.60218xlO~19C
Speed of light c 2.997925xl08m s"1

Bohr radius a0 5.291xlO~nm

1 eV electron volt 1.6022xl(T19J
1 eV 23.05 kcal/mol
1000 cm"1 (spectroscopy) 1438.2 K Debye temp.
1000 K (Debye temp.) 695.3 cm"1 (spectroscopy)
1 J 107 erg
1 cal 4.1868xl07erg = 4.1868 J
1 atm 1.01325xl05N m~2

1 N 1 Jin-1 = 105 dyn
1 Nm-2 1 Pa

Table A—2. Prefix used for fractions and multiples

Fraction Prefix Symbol

10~2 centi c
10~3 milli m
10~6 micro m
10~9 nano n
10~12 pico p

Multiple Prefix Symbol

103 kilo k
106 mega M
109 giga G
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Table A-3. International system of units (SI units)

Table 3.1. Base units

Quantity

Length
Mass
Time
Thermodynamic temperature
Amount of substance

Unit

meter
kilogram
second
kelvin
mole

Symbol

m
kg
s
K
mol

Table 3.2. Derived units

Quantity Unit Symbol

Frequency hertz Hz
Energy joule J
Force newton N
Power watt W
Pressure pascal Pa

Definition

s-1

kg m2 s~2

kg m s~2 = J m^1

kg m2 s-3 = J s-1

kg m"1 s~2 = N m~ 2 = J m-3

Table 3.3. Cgs units and their relation to SI units

Quantity

Energy
Energy
Energy
Length
Length
Mass

Molecular mass
Volume
Concentration
Density
Force
Pressure

Pressure
Pressure
Pressure

Classical
Units

erg
electron volt
calorie
Angstrom
micron
atomic mass
unit
g/cc
liter
molarity
gm/cc
dyne
bar

GPa
MPa
kbar

Symbol

erg
eV
cal
A
A«
amu

M
1
M
P
dyn
bar

Definition

g cm2s~1

10-8cm
I(r4cm
1.6605
xl(T24g
g
103cm3

mol/1

g cm s~2

106 dyn
cm~2

10 kbar
.01 kbar
109 dyn

Relation to
SI Units

10~7J
1.6022xl019J
4.18 J
10-10m
10~6m
1.6605
x 10~27kg
10-3kg
10-3m3

mol/d m~3

103kg/m3

10~5N
105 Pa

0.01 Mbar
0.001 Mbar
100 MPa
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Table A—4. Atomic mass m of selected elements

357

z

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Element

Hydrogen (H)
Helium (He)
Lithium (Li)
Beryllium (Be)
Boron (B)
Carbon (C)
Nitrogen (N)
Oxygen (O)
Fluorine (F)
Neon (Ne)
Sodium (Na)
Magnesium (Mg)
Aluminum (Al)
Silicon (Si)
Phosphorus (P)
Sulphur (S)
Chlorine (Cl)
Argon (Ar)
Potassium (K)
Calcium (Ca)
Scandium (Sc)
Titanium (Ti)
Vanadium (V)
Chromium (Cr)
Manganese (Mn)
Iron (Fe)
Cobalt (Co)
Nickel (Ni)
Copper (Cu)
Zinc (Zn)
Gallium (Ga)
Germanium (Ge)
Arsenic (As)

m

1.0079
4.0026
6.941
9.0122

10.81
12.011
14.0067
15.9994
18.9984
20.179
22.9898
24.305
26.9815
28.086
30.9738
32.06
35.453
39.948
39.098
40.08
44.9559
47.90
50.9414
51.996
54.9380
55.847
58.9332
58.71
63.545
65.38
69.72
72.59
74.9216

z

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
73
74
75
76
77
78
79
80
81
82

Element

Selenium (Se)
Bromine (Br)
Krypton (Kr)
Rubidium (Rb)
Strontium (Sr)
Yttrium (Y)
Zirconium (Zr)
Niobium (Nb)
Molybdenum (Mo)
Technecium
Ruthenium (Ru)
Rhodium (Rh)
Palladium (Pd)
Silver (Ag)
Cadmium (Cd)
Indium (In)
Tin (Sn)
Antimony (Sb)
Tellurium (Te)
Iodine (I)
Xenon (Xe)
Cesium (Cs)
Barium (Ba)
Tantalum (Ta)
Tungsten (W)
Rhenium (Re)
Osmium (Os)
Iridium (Ir)
Platinum (Pt)
Gold (Au)
Mercury (Hg)
Thallium (Tl)
Lead (Pb)

m

78.96
79.904
83.80
85.468
87.63
88.906
91.22
92.906
95.94

101.07
102.906
106.4
107.868
112.40
114.82
118.69
121.75
127.60
126.905
131.30
132.905
137.34
180.948
183.85
186.2
190.2
192.2
195.09
196.967
200.61
204.37
207.2*

* variable
For each element, atomic number z, symbol and atomic mass are listed.



Table A-5. Values of the Earth model PREM condensed from Table A-l in D.L. Anderson (1989)

GJ
in
oo

Radius
(km)

0.
200.0
400.0
600.0
800.0

1000.0
1200.0
1221.5
1400.0
1600.0
1800.0
2000.0
2200.0
2400.0
2600.0
2800.0
3000.0
3200.0
3400.0
3480.0
3600.0
3630.0
3800.0
4000.0
4200.0
4400.0
4600.0
4800.0

Depth
(km)

6371.0
6171.0
5971.0
5771.0
5571.0
5371.0
5171.0
5149.5
4971.0
4771.0
4571.0
4371.0
4171.0
3971.0
3771.0
3571.0
3371.0
3171.0
2971.0
2891.0
2771.0
2741.0
2571.0
2371.0
2171.0
1971.0
1771.0
1571.0

Density
(g/«)

13.08
13.07
13.05
13.01
12.94
12.87
12.77
12.16
12.06
11.94
11.80
11.65
11.48
11.29
11.08
10.85
10.60
10.32
10.02
5.56
5.50
5.49
5.40
5.30
5.20
5.10
5.00
4.89

vp

(km/s)

11.26
11.25
11.23
11.20
11.16
11.10
11.03
10.35
10.24
10.12
9.98
9.83
9.66
9.48
9.27
9.05
8.79
8.51
8.19

13.71
13.68
13.68
13.47
13.24
13.01
12.78
12.54
12.29

v,
(km/s)

3.66
3.66
3.65
3.62
3.59
3.55
3.51

0
0
0
0
0
0
0
0
0
0
0
0

7.26
7.26
7.26
7.18
7.09
7.01
6.91
6.82
6.72

*(km2/sec2)

108.90
108.80
108.51
108.02
107.33
106.45
105.38
107.24
105.05
102.47
99.71
96.73
93.48
89.95
86.10
81.91
77.36
72.47
67.23

117.78
116.96
116.76
112.73
108.23
103.88
99.59
95.26
90.81

Ks

(GPa)

142
142
142
141
139
137
135
130
127
122
118
113
107
102
95.4
88.9
82.0
74.8
67.4
65.6
64.4
64.1
61.0
57.4
54.1
50.9
47.7
44.5

G
(GPa)

176
176
174
171
168
163
157
0
0
0
0
0
0
0
0
0
0
0
0

294
291
290
279
268
256
245
233
222

a

0.440
0.440
0.441
0.441
0.442
0.442
0.443
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.305
0.303
0.303
0.301
0.298
0.295
0.292
0.289
0.286

Pressure
(GPa)

363.9
362.9
360.0
355.3
348.7
340.2
330.0
328.9
318.7
306.1
292.2
277.0
260.7
243.2
224.8
205.6
185.6
165.1
144.2
135.8
128.7
127.0
117.3
106.4
95.8
85.4
75.4
65.5

dK/dP

2.33
2.33
2.33
2.33
2.34
2.34
2.34
3.75
3.54
3.40
3.32
3.29
3.29
3.32
3.36
3.41
3.47
3.52
3.56
1.64
1.64
3.33
3.24
3.17
3.13
3.14
3.19
3.27



Table A-5. Values of the Earth model PREM condensed from Table A-l in D.L. Anderson (1989)
(continued)

Radius
(km)

5000.0
5200.0
5400.0
5600.0
5650.0
5701.0
5771.0
5821.0
5921.0
5971.0
6061.0
6151.0

Depth
(km)

1371.0
1171.0
971.0
771.0
721.0
670.0
600.0
550.0
450.0
400.0
310.0
220.0

Density
(g/cc)

4.78
4.67
4.56
4.44
4.41
3.99
3.97
3.91
3.78
3.54
3.48
3.43

vp

(km/s)

12.02
11.73
11.41
11.06
10.91
10.26
10.15
9.90
9.38
8.90
8.73
8.55

v,
(km/s)

6.61
6.50
6.37
6.24
6.09
5.57
5.51
5.37
5.07
4.76
4.70
4.64

<(>
(km2/sec2)

86.17
81.28
76.08
70.52
69.51
64.03
62.61
59.60
53.78
48.97
46.71
44.50

Ks
(GPa)

41.3
38.0
34.7
31.3
30.7
25.6
24.9
23.3
20.4
17.4
16.3
15.3

G
(GPa)

210
198
186
173
164
124
121
113
97.7
80.6
77.3
74.1

ff

0.282
0.278
0.273
0.266
0.273
0.291
0.290
0.291
0.293
0.298
0.295
0.291

Pressure
(GPa)

55.9
46.5
37.3
28.3
26.1
23.8
21.0
19.1
15.2
13.4
10.2
7.1

dK/dP

3.38
3.52
3.67
3.84
3.00
2.40
2.37
7.88
7.46
3.37
3.30
3.23



CO
O5
O

Table A-6. Debye functions for high temperatures at P — 0 (condensed from Tables 265Ac
to 265 Ae from Landolt-Bornstein, Physical Chemical Tables, fifth enlarged printing. First
supplementary volume, edited by Walther A. Roth and Karl Scheel, Verlag von Julius Springer,
Berlin, 1927)

Table

e/T
0
i
2
3
4
5
6
7
8
9

10
11

Table

e/T
0
i
2
3
4
5
6
7
8

A-6.1.

0.0

5.957
5.669
4.918
3.947
2.996
2.197
1.582
1.137
0.8233
0.6041
0.4518
0.3446

A-6.2.

0.0

5.957
4.0175
2.6280
1.6891
1.0824
0.7007
0.4610
0.3129
0.2179

Cy (Specific Heat)

0.1

5.954
5.611
4.827
3.849
2.909
2.127
1.532
1.100
0.7977
0.5876
0.4392
0.3351

(W-Wo)/T

0.1

5.7354
3.8551
2.5159
1.6154
1.0359
0.6714
0.4440
0.3013
0.2105

0.2

5.945
5.549
4.737
3.750
2.822
2.059
1.481
1.065
0.7735
0.5695
0.4268
0.3264

(Internal

0.2

5.5221
3.6983
2.4090
1.5450
0.9912
0.6435
0.4266
0.2903
0.2037

e/T Between 0

0.3

5.930
5.482
4.638
3.653
2.737
1.992
1.433
1.031
0.7501
0.5523
0.4153
0.3188

Energy)

0.3

5.3131
3.5465
2.3046
1.4778
0.9486
0.6167
0.4101
0.2798
0.1969

0.4

5.909
5.412
4.543
3.556
2.653
1.928
1.386
0.9985
0.7266
0.5368
0.4041
0.3100

S/T

0.4

5.1110
3.4002
2.2054
1.4134
0.9077
0.5914
0.3942
0.2698
0.1900

and 11

0.5

5.883
5.337
4.444
3.459
2.573
1.867
1.341
0.9964
0.7042
0.5213
0.3942
0.3022

Between

0.5

4.9141
3.2590
2.1097
1.3516
0.8692
0.5676
0.3790
0.2601
0.1838

0.6

5.851
5.259
4.345
3.364
2.497
1.806
1.297
0.9354
0.6827
0.5064
0.3827
0.2946

0 and 9

0.6

4.7234
3.1229
2.0182
1.2903
0.8330
0.5443
0.3644
0.2508
0.1778

0.7

5.813
5.178
4.246
3.270
2.416
1.747
1.255
0.9062
0.6619
0.4921
0.3725
0.2873

0.7

4.5381
2.9920
1.9327
1.2365
0.7968
0.5222
0.3507
0.2421
0.1720

0.8

5.770
5.094
4.147
3.178
2.343
1.690
1.214
0.8775
0.6422
0.4780
0.3626
0.2802

0.8

4.3590
2.8660
1.8468
1.1830
0.7635
0.5012
0.3374
0.2337
0.1665

0.9

5.722
5.007
4.047
3.086
2.270
1.634
1.175
0.8495
0.6231
0.4647
0.3532
0.2733

0.9

4.1854
2.7446
1.7662
1.1314
0.7317
0.4809
0.3249
0.2255
0.1612



Table A-6.3. (f - F0)/T (Helmholtz Energy) 9/T Between 0 and 9

e/r
0
i
2
3
4
5
6
7
8

Table

e/r
0
i
2
3
4
5
6
7
8
9

10

0.0

00

4.079
1.742
0.8673
0.4709
0.2739
0.1685
0.1097
0.07464

A-6.4.

0.0

oo
8.097
4.3702
2.5564
1.5533
0.9746
0.6295
0.4226
0.2925
0.2087
0.1535

0.1

15.925
3.696
1.6168
0.8132
0.4449
0.2602
0.1614
0.1054
0.07199

S (Entropy)

0.1

21.650
7.551
4.1327
2.4286
1.4808
0.9316
0.6054
0.4067
0.2825
0.2025
0.1491

0.2

12.014
3.366
1.5025
0.7629
0.4204
0.2475
0.1543
0.1012
0.06951

0/r
0.2

0.3

9.815
3.077
1.3975
0.7165
0.3976
0.2353
0.1477
0.09730
0.06706

Between

0.3

17.536 15.128
7.064
3.9115
2.3079
1.4116
0.8910
0.5809
0.3915
0.2732
0.1959
0.1447

6.624
3.7021
2.1943
1.3462
0.8520
0.5578
0.3771
0.2640
0.1897
0.1405

0.4

8.314
2.820
1.3017
0.6733
0.3762
0.2241
0.1413
0.09357
0.06467

0 and 11

0.4

13.425
6.220
3.5071
2.0867
1.2839
0.8155
0.5355
0.3634
0.2547
0.1840
0.1367

0.5

7.195
2.591
1.2134
0.6332
0.3563
0.2136
0.1353
0.09002
0.06247

0.5

12.109
5.850
3.3231
1.9848
1.2255
0.7812
0.5143
0.3501
0.2463
0.1784
0.1333

0.6

6.316
2.385
0.1325
0.5952
0.3379
0.2030
0.1295
0.08660
0.06035

0.6

11.039
5.508
3.1507
1.8855
1.1709
0.7473
0.4939
0.3374
0.2382
0.1731
0.1293

0.7

5.601
2.199
1.0587
0.5613
0.3200
0.1940
0.1242
0.08342
0.05831

0.7

10.139
5.191
2.9914
1.7978
1.1168
0.7162
0.4749
0.3255
0.2303
0.1680
0.1257

0.8

5.009
2.032
0.9893
0.5291
0.3037
0.1851
0.1191
0.08033
0.05640

0.8

9.368
4.898
2.8361
1.7121
1.0672
0.6863
0.4565
0.3140
0.2229
0.1629
0.1223

0.9

4.505
1.879
0.9259
0.4990
0.2884
0.1766
0.1143
0.07737
0.05455

0.9

8.690
4.624
2.6921
1.6304
1.0201
0.6575
0.4392
0.3029
0.2158
0.1582
0.1190
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Tables A—7.1-7.16. Physical properties and thermoelastic parameters of
oxides and silicates at high T (Anderson and Isaak, 1994, Pt III ref.)

Table A—7.1. A^Oa: Thermal expansivity, specific heat, isotropic moduli

T
K

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

Table

T
K

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

P
g/cc

3.982
3.975
3.966
3.957
3.947
3.937
3.927
3.916
3.906
3.894
3.883
3.872
3.860
3.848
3.835
3.823

A-7.2.

e
K

1034
1029
1022
1015
1008
1001
994
986
979
971
963
955
947
939

a
10-5/K

1.62
1.99
2.23
2.40
2.51
2.59
2.66
2.73
2.80
2.88
2.96
3.03
3.09
3.15
3.20
3.25

Ks

GPa

253.6
252.6
250.9
248.6
246.6
244.4
242.4
240.0
237.8
235.2
232.6
230.0
228.1
225.9
224.8
221.8

G
GPa

163.0
161.1
158.8
156.6
154.2
151.9
149.5
147.1
144.6
142.2
139.7
137.2
134.8
133.5
131.2
127.5

CP

J/(gK)

0.779
0.943
1.040
1.103
1.148
1.180
1.205
1.223
1.244
1.257
1.267
1.277
1.286
1.296
1.306
1.318

AlaOa: Thermoelastic parameters and

6s

3.30
3.16
3.20
3.31
3.43
3.55
3.62
3.66
3.65
3.60
3.51
3.39
3.24
3.06

932 2.85
924 2.60

071

5.71
5.16
5.03
5.08
5.17
5.29
5.37
5.42
5.42
5.39
5.32
5.22
5.08
4.92
4.73
4.50

r

5.71
5.16
6.27
6.09
6.05
6.06
6.08
6.09
6.07
6.03
5.98
5.93
5.87
5.80
5.74
5.66

(67* — & s )

7

1.82
1.49
1.35
1.29
1.28
1.28
1.28
1.29
1.29
1.30
1.29
1.30
1.30
1.30
1.32
1.32

7

1.32
1.34
1.36
1.37
1.36
1.36
1.36
1.37
1.37
1.38
1.40
1.41
1.42
1.43
1.43
1.43

Debye

V

1.60
1.52
1.46
1.42
1.40
1.38
1.36
1.36
1.36
1.37
1.38
1.40
1.43
1.47
1.52
1.58

Cv

0.774
0.933
1.024
1.082
1.121
1.148
1.167
1.179
1.194
1.199
1.203
1.205
1.207
1.209
1.212
1.216

KT

GPa

252.0
249.9
247.1
243.8
240.8
237.7
234.8
231.4
228.2
224.5
220.8
217.1
214.0
210.7
207.5
204.7

temperature

C*KT
MPa/K

4.08
4.98
5.53
5.85
6.03
6.15
6.24
6.30
6.40
6.45
6.52
6.57
6.62
6.64
6.64
6.66

&PTH
GPa

0.00
0.45
0.98
1.55
2.15
2.76
3.43
4.01
4.64
5.93
5.93
6.59
7.24
7.91
8.57
9.24
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Table A-7.3. MgO (units the same as in Table A-7.1)

a Ks CP Cv KT

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

3.602
3.597
3.585
3.573
3.559
3.545
3.531
3.516
3.501
3.486
3.470
3.454
3.438
3.422
3.405
3.388
3.371
3.354

0.63
2.24
3.12
3.57
3.84
4.02
4.14
4.26
4.38
4.47
4.56
4.65
4.71
4.80
4.89
4.98
5.04
5.13

165.7
164.6
163.9
162.3
160.7
158.9
157.1
155.1
153.1
151.1
148.9
146.7
144.4
142.0
139.7
137.3
134.9
132.7

132.0
130.3
131.8
129.4
126.9
124.4
121.8
119.2
116.7
114.1
111.5
109.0
106.4
103.8
101.3
99.0
96.7
94.5

0.194
0.662
0.928
1.061
1.130
1.173
1.204
1.227
1.246
1.262
1.276
1.289
1.301
1.312
1.323
1.334
1.346
1.358

1.59
1.55
1.54
1.53
1.53
1.54
1.53
1.53
1.54
1.54
1.53
1.53
1.52
1.52
1.52
1.51
1.50
1.50

0.194
0.658
0.915
1.048
1.098
1.131
1.153
1.166
1.175
1.181
1.185
1.188
1.190
1.191
1.191
1.191
1.193
1.193

165.6
163.5
161.6
158.9
156.1
153.2
150.4
147.4
144.3
141.4
138.3
135.1
132.1
128.1
125.7
122.5
119.6
116.6

Table A-7.4. MgO (units the same as in Table A-7.2)

T

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

e
945
937
928
920
911
902
894
885
875
806
857
847
838
828
820
811

&s

2.83
2.79
2.81
2.86
2.92
2.98
3.04
3.12
3.21
3.30
3.41
3.47
3.50
3.46
3.36
3.12

<5y

5.26
4.83
4.69
4.67
4.70
4.74
4.78
4.84
4.92
4.99
5.08
5.12
5.13
5.07
4.95
4.66

r
5.73
5.34
5.17
5.08
5.05
5.03
5.02
5.05
5.08
5.09
5.10
5.04
4.92
4.75
4.56
4.34

(ST — 6.s)
7

1.57
1.33
1.23
1.18
1.16
1.15
1.13
1.12
1.12
1.11
1.10
1.09
1.07
1.07
1.06
1.03

V

1.40
1.40
1.38
1.37
1.35
1.34
1.32
1.31
1.30
1.28
1.26
1.24
1.22
1.21
1.20
1.23

aKf

5.04
5.67
6.00
6.16
6.23
6.28
6.32
6.32
6.31
6.28
6.22
6.19
6.16
6.13
6.03
6.00

&PTH

0.00
0.54
1.12
1.73
2.35
2.98
3.61
4.24
4.87
5.50
6.12
6.74
7.36
7.97
8.58
9.20
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Table A-7.5. Mg2SiO4 (units the same as in Table A-7.1)

a Ks G CP Cv KT

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700

3.222
3.213
3.203
3.192
3.181
3.170
3.159
3.147
3.135
3.122
3.109
3.096
3.083
3.069
3.055

2.72
3.03
3.22
3.36
3.48
3.59
3.70
3.81
3.92
4.05
4.16
4.27
4.39
4.50
4.62

128.6
127.1
125.4
123.7
121.9
120.2
118.3
116.6
114.8
112.9
111.1
109.2
107.5
105.6
103.7

81.6
80.3
78.9
77.4
76.0
74.5
73.1
71.6
70.1
68.6
67.1
65.6
64.1
62.7
61.2

0.840
0.990
1.068
1.119
1.156
1.186
1.211
1.235
1.256
1.277
1.296
1.315
1.334
1.352
1.370

1.29
1.21
1.18
1.17
1.16
1.15
1.15
1.14
1.14
1.15
1.15
1.15
1.15
1.15
1.14

0.831
0.976
1.048
1.093
1.124
1.148
1.167
1.183
1.197
1.210
1.220
1.231
1.240
1.249
1.257

127.3
125.2
123.1
120.8
118.6
116.3
114.0
111.7
109.4
106.9
104.6
102.2
99.9
97.6
95.2

Table A-7.6. Mg2SiO4 (units the same as in Table A-7.2)

T

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700

6

763
757
751
744
738
731
724
718
711
704
697
689
682
674
668

6s

4.45
4.20
4.15
4.15
4.16
4.13
4.08
4.05
4.00
4.02
3.97
3.90
3.92
3.93
3.96

df

5.94
5.58
5.49
5.48
5.49
5.47
5.46
5.47
5.46
5.49
5.44
5.37
5.38
5.40
5.42

r
6.07
5.66
5.54
5.50
5.46
5.45
5.44
5.45
5.43
5.38
5.32
5.24
5.22
5.19
5.16

(6T-iS)

7

1.16
1.14
1.14
1.14
1.15
1.17
1.20
1.25
1.28
1.28
1.28
1.28
1.27
1.28
1.28

f

1.20
1.21
1.20
1.20
1.20
1.18
1.20
1.22
1.20
1.21
1.20
1.21
1.23
1.19
1.20

aK?

3.46
3.80
3.97
4.07
4.13
4.18
4.22
4.26
4.31
4.33
4.36
4.37
4.39
4.40
4.39

&PTH

0.00
0.36
0.75
1.16
1.57
1.98
2.40
2.83
3.25
3.69
4.13
4.50
5.07
5.43
5.87
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Table A—7.7. Olivine FogoFaio (units the same as in Table A-7.1)

Ks G CP Cv KT

300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

3.353
3.343
3.333
3.322
3.311
3.299
3.287
3.275
3.263
3.251
3.238
3.225
3.212

2.66
2.99
3.21
3.35
3.46
3.55
3.64
3.71
3.79
3.86
3.93
4.00
4.07

129.3
127.7
125.9
124.1
122.2
120.3
118.9
117.0
115.1
113.2
111.4
109.6
107.8

78.1
76.8
75.3
73.9
72.5
71.2
69.8
68.5
67.1
65.8
64.4
63.1
61.7

0.816
0.957
1.032
1.080
1.112
1.145
1.171
1.194
1.216
1.236
1.256
1.275
1.294

1.25
1.19
1.17
1.16
1.14
1.13
1.12
1.11
1.10
1.09
1.08
1.07
1.06

0.808
0.944
1.013
1.055
1.086
1.109
1.129
1.147
1.163
1.177
1.191
1.203
1.216

128.0
125.9
123.6
121.2
118.2
116.6
114.7
112.1
110.0
107.8
105.6
103.4
101.3

Table A—7.8. Olivine FogoFaio (units the same as in Table A-7.2)

T

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Table A

T

300
350
400
450
500

e
731
725
719
713
706
700
699
688
681
675
669
662
665

-7.9.

P

5.378
5.369
5.359
5.349
5.339

6S

5.24
4.70
4.46
4.33
4.25
4.21
4.16
4.14
4.13
4.12
4.07
4.10
4.10

MnO:

a

3.46
3.58
3.68
3.77
3.85

6f

6.59
5.95
5.65
5.51
5.44
5.40
5.36
5.36
5.37
5.38
5.35
5.41
5.43

(units the

Ks

149.0
148.0
146.9
145.8
144.8

P (ST.

6.
5
5
5
5
5
5
5
5
5
5
5
5

.56

.92

.63

.50

.42

.38

.36

.35

.35

.36

.32

.39

.41

same as

G

68.3
67.6
66.7
65.6
64.4

1
1
1
1
1
1
1
1
1
1
1
1
1

-6s)
7

.07

.03

.02

.02

.04

.06

.07

.10

.13

.16

.18

.23

.26

<f aKf

1.17
1.17
1.17
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.19
1.19

3.37
3.76
3.97
4.05
4.11
4.14
4.18
4.17
4.17
4.16
4.15
4.14
4.13

APTH

0.00
0.36
0.75
1.15
1.56
1.97
2.38
2.80
3.22
3.63
4.05
4.46
4.88

in Table A-7.1)

CP

0.632
0.653
0.669
0.682
0.692

7

1.51
1.51
1.51
1.51
1.51

0

Cv

.623
0.641
0
0
0

.655

.665

.673

KT

146.7
145.2
143.7
142.2
140.7



366 APPENDIXES

Table A-7.10. CaO (units the same as in Table A-7.1).

T

300
400
500
600
700
800
900

1000
1100
1200

Table

T

300
350
400
450
500
550
600
650
700
750

Table

P

3.349
3.338
3.327
3.314
3.301
3.288
3.275
3.262
3.248
3.234

A-7.11.

P
2.159
2.146
2.132
2.118
2.104
2.089
2.074
2.059
2.043
2.026

A-7.12.

a

3.04
3.47
3.67
3.81
3.92
4.01
4.08
4.14
4.20
4.26

NaCl

a

11.8
12.2
12.7
13.2
13.7
14.3
14.8
15.4
16.0
16.6

KC1

Ks

112.0
110.5
109
107
106
104
103
101
100
98

(units

Ks

25.3
24.8
24.2
23.7
23.2
22.5
21.7
21.1
20.5
19.8

.1

.6

.2

.7

.3

.7

.2

.7

the

(units the

G

80.59
79.15
77.71
76.22
74.76
73.33
71.90
70.40
68.99
67.56

same as

G

14.71
14.27
13.81
13.39
12.96
12.53
12.11
11.68
11.25
10.80

same as

CP

0.752
0.834
0.880
0.904
0.921
0.933
0.943
0.952
0.959
0.965

in Table

CP

0.868
0.883
0.897
0.910
0.923
0.937
0.950
0.964
0.979
0.997

in Table

7

1.35
1.36
1.37
1.37
1.37
1.37
1.36
1.36
1.35
1.35

A-7.1)

7

1.59
1.60
1.61
1.62
1.64
1.64
1.63
1.63
1.63
1.63

A-7.1).

0
0
0
0
0
0
0
0
0
0

Cv

0.743
0.819
0.858
0.877
0.888
0.894
0.898
0.901
0.903
0.903

Cv

.822

.826

.829

.830

.830

.830

.830

.829

.828

.829

KT

110.6
108.5
106
104
102

.4

.3

.3
100.3
98
96
94
92

KT

24.0
23.2
22.4
21.6
20.8
19.9
19.0
18.1
17.3
16.5

.4

.3

.3

.3

a Ks CP Cv KT

300
350
400
450
500
550
600
650
700
750
800
850

1.982
1.971
1.959
1.948
1.935
1.923
1.910
1.897
1.883
1.869
1.855
1.840

11.0
11.3
11.7
12.1
12.6
13.2
13.7
14.2
14.7
15.2
15.7
16.2

17.8
17.3
17.0
16.6
16.1
15.7
15.4
15.0
14.5
14.0
13.6
12.0

9.47
9.18
8.91
8.64
8.39
8.13
7.85
7.57
7.29
6.98
6.67
6.41

0.689
0.701
0.713
0.724
0.735
0.745
0.756
0.767
0.778
0.791
0.806
0.823

1.44
1.42
1.42
1.42
1.43
1.44
1.45
1.46
1.46
1.44
1.43
1.39

0.657
0.664
0.669
0.672
0.674
0.675
0.676
0.676
0.677
0.679
0.683
0.691

17.0
16.4
15.9
15.4
14.7
14.2
13.7
13.2
12.6
12.0
11.5
10.9



APPENDIXES 367

Table A-7.13. CaO (units the same as in Table A-7.2).

T Q 6s <P aKr APm

300
400
500
600
700
800
900
1000
1100
1200

671
666
660
654
649
643
637
631
625
619

4.15
3.75
3.60
3.54
3.52
3.53
3.55
3.58
3.62
3.65

6.19
5.54
5.27
5.14
5.07
5.03
5.01
5.00
5.01
5.01

6.00
5.38
5.13
5.01
4.99
4.95
4.93
4.94
4.96
4.99

1.51
1.31
1.22
1.17
1.13
1.10
1.07
1.05
1.03
1.01

1.24
1.24
1.23
1.23
1.23
1.23
1.22
1.22
1.22
1.22

3.36
3.73
3.90
3.98
4.01
4.02
4.01
3.99
3.96
3.93

0.00
0.36
0.74
1.13
1.53
2.34
2.34
2.54
3.13
3.53

Table A-7.14. NaCl (units the same as in Table 7.2).

T

300
350
400
450
500
550
600
650
700
750

Table

T

e
304
300
296
291
287
283
278
274
269
264

A-7.15.

6

6s

3.47
3.56
3.65
3.72
3.80
3.91
4.03
4.14
4.23
4.34

Oj1

5.56
5.62
5.69
5.74
5.82
5.95
6.10
6.24
6.37
6.53

KC1 (units the

ss ST

r
5.05
5.00
4.95
4.90
4.86
4.83
4.79
4.77
4.76
4.76

same as

r

(ST — 6s)
7

1.32
1.29
1.27
1.25
1.24
1.25
1.27
1.29
1.31
1.35

in Table

(ST — is)
1

V>

1.29
1.26
1.23
1.20
1.18
1.16
1.13
1.11
1.10
1.08

7.2).

V

otKr

2.82
2.83
2.84
2.86
2.86
2.84
2.81
2.78
2.77
2.73

Q.KT

&PTH

0.00
0.14
0.28
0.43
0.57
0.71
0.85
0.99
1.13
1.27

&PTH

300
350
400
450
500
550
600
650
700
750
800
850

230
227
224
221
218
214
211
208
204
200
196
192

3.77
3.86
3.92
3.97
4.02
4.05
4.06
4.09
4.18
4.27
4.34
4.50

5.84
5.88
5.88
5.88
5.88
5.87
5.84
5.83
5.90
5.98
6.04
6.19

4.66
4.77
4.86
4.93
4.97
5.02
5.10
5.19
5.30
5.44
5.61
5.76

1.34
1.34
1.32
1.30
1.28
1.26
1.23
1.21
1.23
1.25
1.27
1.33

1.17
1.17
1.17
1.17
1.17
1.17
1.18
1.18
1.18
1.18
1.19
1.19

1.87
1.86
1.86
1.86
1.86
1.87
1.88
1.88
1.86
1.83
1.81
1.77

0.00
0.09
0.19
0.28
0.37
0.47
0.56
0.65
0.75
0.84
0.93
1.02
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Table A-7.16. MgAl2O4 (units the same as in Table A-7.1).

Ks G CP KT

300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

3.576
3.572
3.568
3.564
3.560
3.555
3.551
3.547
3.542
3.537
3.532
3.528
3.523
3.518
3.512

2.11
2.18
2.25
2.32
2.38
2.45
2.51
2.57
2.63
2.69
2.74
2.80
2.85
2.90
2.94

209.9
208.2
207.1
205.3
203.9
202.8
201.6
200.3
199.0
197.7
196.2
194.7
193.4
192.0
191.3

108.2
107.7
107.2
106.6
106.0
105.5
104.9
104.3
103.6
103.0
102.4
101.8
101.1
100.5
99.8

0.819
0.899
0.963
1.014
1.055
1.088
1.115
1.139
1.160
1.179
1.180
1.213
1.229
1.243
1.253

1.51
1.41
1.36
1.32
1.30
1.28
1.28
1.28
1.27
1.27
1.27
1.27
1.27
1.27
1.28

0.811
0.889
0.952
1.001
1.039
1.069
1.094
1.115
1.133
1.149
1.164
1.178
1.190
1.201
1.208

207.9
205.9
204.6
202.5
200.8
199.4
197.8
196.1
194.4
192.7
190.9
189.0
187.3
185.5
184.4

Table A-7.17. MgAl204 (units the same as in Table A-7.2).

T

300
400
500
600
700
800
900

1000

Table

T

300
350
400
450
500

6

862
858
854
850
845
840
835
830

A-7.18.

6

534
531
527
523
519

6s

6.03
5.72
5.49
5.27
5.10
4.96
4.85
4.74

MnO

6s

4.14
4.03
3.94
3.88
3.83

ST

7.73
7.36
7.07
6.82
6.62
6.47
6.35
6.24

(Units the

$T

5.96
5.82
5.71
5.64
5.58

r i
5.30
5.01
4.78
4.59
4.43
4.30
4.20
4.11

same as

r
8.33
8.14
8.01
7.95
7.94

ST-JS)
7

1.

1.

1.

1.

1.

1.

1.

1.

in

12
20
22
21
20
19
18
17

Table

($T — 6s)

1

1.20
1.18
1.17
1.16
1.16

V

0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90

A-7.2)

V

1.56
1.57
1.57
1.57
1.58

aKx &PTH

4
4
4
4
5
5
5
5

.38

.60

.79

.97

.11

.24

.33

.43

aKf

5.07
5.20
5.29
5.36
5.41

0.00
0.45
0.92
1.41
1.91
2.43
2.96
3.49

APTH

0,
0.
0.
0.
1.

.00

.26

.52

.79

.05
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Table A—7.19. Pyrope-rich garnet (units the same as in Table A-7.1)

T

300
400
500
600
700
800
900

1000

Table

T

300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

Table

T

300
400
500
600
700

P

3.705
3.696
3.686
3.675
3.664
3.653
3.642
3.631

A-7.20.

0

779
777
775
773
771
769
767
765
764
761
759
757
755
753
751

A-7.21.

P

4.400
4.388
4.375
4.362
4.348

a

2.36
2.64
2.80
2.90
2.97
3.03
3.07
3.11

Ks

171.2
168.9
167.0
164.9
163.2
161.3
159.3
157.3

Pyrope-rich garnet

6s

4.81
4.52
4.36
4.24
4.16
4.11
4.07
4.05
4.01
4.00
3.98
3.98
3.98
3.97
3.97

Fe2SiO4

a

2.61
2.74
3.00
3.12
3.22

ST

6.27
5.90
5.70
5.55
5.46
5.41
5.35
5.34
5.30
5.29
5.28
5.29
5.30
5.30
5.32

G

92.6
91.6
90.6
89.7
88.7
87.6
86.5
85.5

(units

r
4.29
4.07
3.96
3.90
3.86
3.86
3.86
3.88
3.89
3.92
3.94
3.98
4.02
4.06
4.10

(units the same

KS

138.0
135.9
134.0
131.8
129.3

G

51.0
49.7
48.8
48.0
47.4

CP

0.726
0.902
0.981
1.032
1.067
1.088
1.104
1.116

the same

(6T -Is)
7

0.97
1.00
1.00
1.00
1.00
1.02
1.04
1.04
1.04
1.05
1.06
1.07
1.09
1.10
1.11

7
1.50
1.34
1.29
1.26
1.24
1.23
1.22
1.21

Cv

0.718
0.889
0.964
1.010
1.040
1.057
1.068
1.076

as in Table A-7.

<f>

0.88
0.89
0.90
0.92
0.93
0.94
0.96
0.97
0.98
1.00
1.01
1.02
1.04
1.05
1.06

aK.f

4.00
4.25
4.40
4.51
4.59
4.64
4.68
4.69
4.72
4.74
4.74
4.74
4.73
4.73
4.71

KT

169.4
166.5
164.0
161.4
159.1
156.6
154.1
151.6

•2)

&PTH

0.00
0.21
0.42
0.65
0.87
1.10
1.34
1.57
1.81
2.04
2.28
2.52
2.75
2.99
3.23

as in Table A-7.1)

CP

0.673
0.746
0.793
0.830
0.863

7

1.21
1.18
1.16
1.13
1.11

Cv

0.667
0.736
0.779
0.813
0.842

KT

136.7
134.1
131.7
129.0
126.1
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Table A-7.22. Grossular garnet (units the same as in Table A-7.1)

T

300
400
500
600
700
800
900

1000
1100
1200
1300

Table

T

300
400
500
600
700
800
900

1000
1100
1200
1300

Table

T

300
400
500
600
700

P

3.597
3.589
3.581
3.571
3.562
3.552
3.542
3.532
3.522
3.512
3.501

A-7.23

0

824
820
816
811
806
801
796
791
786
780
715

A-7.24.

e
511
506
501
497
494

a

1.92
2.28
2.49
2.61
2.71
2.78
2.83
2.88
2.92
2.97
3.00

Grossular

&s

4.64
3.93
3.64
3.49
3.41
3.35
3.31
3.29
3.27
3.26
3.25

Fe2SiO4

6s

5.99
5.56
5.35
5.24
5.18

Ks

167.8
166.2
164.9
163.3
161.6
160.3
158.9
157.5
156.2
154.4
152.6

garnet

8f

6.30
5.36
4.98
4.80
4.70
4.64
4.60
4.58
4.57
4.57
4.58

G

106.9
105.7
104.5
103.1
101.8
100.5
99.1
97.7
96.4
94.9
93.4

(units the

r
6.09
5.27
4.97
4.87
4.84
4.86
4.90
4.96
5.03
5.11
5.20

CP

0.736
0.865
0.945
0.995
1.028
1.052
1.072
1.092
1.113
1.139
1.170

7

1.22
1.22
1.21
1.20
1.19
1.19
1.19
1.18
1.16
1.14
1.12

same as in Table

(HT — $s)
7

1.36
1.17
1.11
1.08
1.08
1.08
1.08
1.09
1.11
1.15
1.18

(units the same as in Table

5f

7.34
6.85
6.62
6.50
6.45

r (

9.34
7.49
6.02
4.69
3.43

ST-SS)
1

1.12
1.09
1.09
1.11
1.14

V

1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32

A-7.2)

f

1.54
1.33
1.09
0.85
0.60

Cv

0.730
0.855
0.931
0.977
1.006
1.025
1.041
1.056
1.073
1.095
1.121

A-7.2)

aKr

3.21
3.74
4.03
4.18
4.28
4.34
4.36
4.38
4.41
4.40
4.38

O.KT

3.56
3.82
3.95
4.02
4.06

KT

166.6
164.4
162.5
160.3
158.1
156.2
154.3
152.3
150.6
148.3
146.2

&PTH

0.00
0.36
0.75
1.16
1.57
1.98
2.40
2.83
3.25
3.69
5.40

APTH

0.00
0.37
0.76
1.16
1.56



GLOSSARY OF SYMBOLS

This grand book...the universe...
is written in the language of
mathematics and its characters...

—Galileo Galilei

aa

Otf

CtO

«2

a-iron

oiKf

a KT

(aKT)
ht

/?

Pe

fa

/?-iron

7

7-iron

coefficient of thermal ex-
pansion, constant V
a at ambient conditions
a at reference tempera-
ture, T*
a at zero pressure
ratio of elastic constants
for fee lattice
body centered cubic phase
of iron
dimensionless constant
involving a
T derivative of PTH
average value of aA'r
over T range

high T limit in quasihar-
monic approximation of
aKT

high pressure phase of
Mg2Si04

constant in definition of
electronic specific heat
ratio of elastic moduli
fee lattice

phase of iron at about
100 GPa

Griineisen ratio;
7 = (aKT)/pCv

face-centered cubic (fee)
phase of iron

7 approximation to 7 from
invoking quasiharmonic
approximation to Helm-
holtz energy. Average
over 3pN mode gammas

Toe acoustic gamma, the av-
erage of p wave mode
and two s wave modes

Jbj special case of 7mj in-
volving accounting of vi-
bration perpendicular to
interatomic bonds

ID Debye representation of

7
TD.S 7 for Debye model at

constant entropy
7e 7 mode for electronic

density of states
IE 7 approximation arising

from Einstein solid
7hi high temperature limit

of 7
7i mode gamma of index i
7j mode gamma of index j
~fmg Mie-Griineisen EoS 7
Joi the ith optical mode
Jopt 7 approximation arising

from optic modes and
their pressure variations

7p p wave mode; term in
7ac

a
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T» s wave mode; term in e, shear strain in deforma-
7oc tion of cation

7s 1 Slater gamma e'0 derivative of (. with re-
7th Older literature symbol spect to at V = V0

f°r 7 T stress tensor
7wz special case of ymg (vz e dielectric constant

refers to derivation by f (3K'0 _ 8) /9/^0

Vaschenko and Zubarev 77 compression, V/V0

(1963)) T)c the value of rj at which
7o 7 at P = 0 or 77 = 1 6T = K'
Tflj P = 0 value of jth mode 0-iron iron phase found above
7T=o 7 at absolute zero 200 GPa (structure is
F dimensionless derivative unknown)

involving (dG/8T)p Q Debye temperature
6S Anderson-Griineisen con- Qac acoustically determined

stant (adiabatic) Q
6T Anderson-Griineisen con- 6ca( 0 determined from spe-

stant (isothermal) cific heat data
STo JT at P = 0 ©p Q calculated from vp

A A = V - V0, change in 6, 6 calculated from v,
volume due to tempera- 0o 0 at P = 0 or rj = 1
ture change tf symmetric finite strain

AE change in E tensor
A£ change in Q K d £n ST/d fn V
AP change in P A length of sound wave
APrjj change in PTH P mean atomic mass, M/p
Ar change in interatomic v Poisson ratio

distance due to P VH Hill average for finding
AS change in entropy v
ASm change in S at melting VR Reuss average for find-
AT change in T ing v
AV change in V v

v Voigt average for finding
AVm change in V at melting i/

^2- relative AV of V at Tm
 v° Poisson ratio at zero pressure

Vm VQ v at P = 0
— relative AV due to P ^ (3/4)(4 - K'Q)

Vo TT numerical constant
e strain variable p density
e-iron iron phase that is hexag- ff general symbol for stress

onal close-packed component
fV", volume derivatives of (7n longitudinal stress
e e cryp (TH at yield point
fr departure from Cauchy E summation sign

condition ^ interatomic potential
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<j)a interatomic potential of A_a(V) coefficient in anharmonic
attractive neighbors Fanh

00. ith component of (j>a b numerical constant
<j>v repulsion potential due b integrating constant

to close atoms b numerical constant
<j>v. ith term of 4>v b~ numerical constant
<t>nnn(r) next nearest neighbor b+ numerical constant

repulsion c centi, symbol for 10~2

<t>'nn(r) derivative of near neigh- when used as prefix
bor repulsion c numerical constant

0nn( r) second derivative, near C speed of light
neighbor repulsion CQ shock velocity at vanish-

0nnn( r) derivative of next near- ing P\ also v0

est neighbor repulsion c' crystal structural factor
0nnn(r) 2nd derivative, <j>nnn(r) C constant in Tm equation:
0o binding energy at static Kraut-Kennedy law

equilibrium C operator for Cy (non-
f d£nv,/dlnvp centrosymmetric)
* K$/p = vb Q specific heat capacity for
V>j phase lag of atom at site Einstein mode in terms

j Of Ui

w modal frequency Q. generalized elastic con-
w average frequency stant of single crystal
w/? Debye frequency cutoff ^ constant of nth degree in
wi mode frequency, index i E"(e)
^io reflected spectral w term Cht high temperature limit

at P — 0 of Specific neaf, at con_
WJ mode frequency, index j stant volume
^km« frequency at maximum Cy specific heat at constant

wave number volume

J dummy variable Cy ^ contribution to Cv from
o partial derivative sign "" anharmonic terms
a numerical constant ^ electronic specific heat
a collection of numerical ^ that part of specific heat

constants J associated with frequency
a numerical constant w.
av ratio of V0 to F at T = 0 ' ^ . . . _ ,
„ T, , i- C-) constant arising in 2nda° Bohr radius °2 ° .
4 I.-* xc • i degree EoS; E (e)A arbitrary coefficient ° v '
A Madelung constant C*n C1,; arising from longi-
^o(V^) coefficient in anharmonic tudinal motion in single

T , crystal
->anh J

•"•!('') coefficient in anharmonic C"f| repulsive force contribu-
Fanh tion to Cn
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C*i2 elastic constant arising
from torsion of single crystal

644 elastic constant arising
from pure shear motion
in single crystal

Cs l/2(Cn - C12)
£44 C*44 plus correction term

in non-centrosymmetric
lattices

CR repulsive force contribu-
tion to C

d amplitude in sinusoidal
oscillation

d total derivative sign
d coefficient in Decker po-

tential, or in lattice ver-
sion, ratio of next near-
est neighbor to nearest
neighbor separation

< d2 > time-averaged value of d
T) non-centrosymmetric

operator for C,-;-
D(x) Debye function of pa-

rameter z, where x =
e/T

e strain vector
e electronic charge
e. critical fraction of lat-

tice spacing
e<j dilation of lattice due to

dislocation
e^at e<i at saturation
GO e at P = 0
C{ eigenvalues of energy in

Z
E oscillator strength; be-

comes EXHJ when mul-
tiplied by JfcT

E strain energy
E superscript referring to

Einstein
Eet additive potential for T

arising from electronic
density of states

Ej
EK

EST

ETH
ETH,
EVIB
Ezv

ET=Q

E(e)
E'

E"

E'"

E'0
EoS
f

/
f

f(w)

F,

T
-tank

phi

Fext

FTH

•rMJ-TH

Fermi energy
kinetic energy
potential of static lattice
at absolute zero
thermal energy
jth component of ETH
vibrational energy
zero temperature vibra-
tional energy
potential of static lat-
tice at absolute zero and
zero vibrational energy
T — EST > strain energy
derivative of E with re-
spect to f
second derivative of E
with respect to e
3rd derivative of E with
respect to f
(dEST/dV)T

equation of state
representing function as
in f(6/T)
coefficient in Morse potentia
finite strain deformation
constant
dimensionless EoS
factor
force on ith particle of
statistical system

Helmholtz energy

anharmonic term added
to Helmholtz energy

high temperature limit
of T in quasiharmonic
approximation

external force of system
acting on nuclei

y thermal component of
energy arising from T
excitation

high temperature limit
of FTH



GLOSSARY 375

FTHJ jth term in sum deter- h Planck's constant over
mining TTH 2?r

TV IB vibrational energy due H Hugoniot symbol
to motion of atoms as "H enthalpy
each is constrained to z subscript & summation
vibrate around a lattice index
point: TV IB — TTH + J subscript & summation
EZV index

TviBi ith term in sum deter- J Joule: unit of energy
mining TVIB k k = (l/1)(K'0 - 1)

FV\B classic vibrational term k Boltzmann constant
in f for insulator k wave number

Fv9
IB diatomic gas vibrational kS kilogram

energy kbar kilobar
g gram kHz kiloHertz
g representing function, as kT thermal energy related

in g(u) to vibrating atom
g spring constant in aim- K (general) bulk modulus,

pie vibrating system ^ ChaPter 9' K means

g(Ue) density of states, elec- s .
' , A pressure derivative of Aironic

g(v\ function of Poisson ratio y5 * /y^ ' Kc "chord" bulk modulus
r ,. r-r, • ,. KH Hugoniot bulk modulus

n(a\ function of Poisson ratio " ,. , - , ,, , ,M ) ( , • . ! . . . • , Ks adiabatic bulk modulus;a(u>\ density of states, vibra- . „, , . ...tfv ' , in Chapter 9, Ks repre-
tional . \_ '

sented by K
_ . , . , , , A'J- = K' Ks pressure derivativeG isotropic shear modulus r,f T_ _^ . . .

v K's = K'0 KSo pressure derivative
G geometric mean of G ° c p _ r\\

and GR , ( '
G Gibbs energy K™ (8Ks/dT)s

G1 pressure derivative of G ^ssa Ks$ at P = 0
GH Reuss upper bound for KT isothermal K

isotropic G Rht isothermal bulk modu-
Gv Voigt upper bound for Ius in high temperature

isotropic G limit
{G}V (l/aKT) (dG/dT)v thermal correction;

GPa GigaPascals
h hecto: 102 when used as KT KT pressure derivative

prefix Kxa bulk modulus at abso-
h presumed coefficient in lute zero

(anharmonic) PTH K'To KT[j pressure derivative
h Planck's constant (at P — 0)
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KQ general K at P = 0; also
short for KSO in Chap-
ter 9

K'0 pressure derivative K at
P = 0

/ liter
£n natural logarithm
L number of optic modes
L latent heat
£ Lindemann constant
£' Poirier version of Linde-

mann constant
m mass of atom
m micro
m milli
mi, m-i third order elastic con-

stants for isotropic sym-
metry

M molarity
M coordination number for

nearest neighbors
M molecular mass
M. generalized modulus of

elasticity
M1 coordination number for

anion-anion
M" coordination number for

cation-cation
M{ elastic modulus used in

Vi equation
n index of refraction
n repulsion parameter
n number of atoms in unit

cell
n nano: symbol for 10~9

nn subscript on v for near-
est neighbor repulsion

nnn next nearest neighbor in
repulsion

m number of atoms of type
i in unit cell

N Avogadro's number
N Newton: unit of force

P

P

P

P
pR

r
pR

Pa
PB-M

PB-S

Pet

PH
pht

PK
PTH
PTHank

PT=O
Pzv

Po
q
g
?
9
1ht

1o
Q
<2
Q*

r
ra

pico: symbol for 10 12

when used as a prefix
no. of atoms in vibra-
tional cell (2 for NaCl)
running index in series
of equations
pressure
repulsive force contribu-
tion to pressure
operator for lattice sum
operator for lattice sum
for repulsion
Pressure in Pascals
Birch-Murnaghan EoS
for P(V)
Brennan-Stacey EoS for
P(V)
P(V) from free electrons
P along Hugoniot path
pressure in high T limit:
quasiharmonic theory
kinetic pressure
thermal pressure
anharmonic component
of thermal pressure
= PO; P at T = 0
zero vibrational compo-
nent of pressure
= PT=O; P at T = 0
(3#£-8)/9#0

(dln~r/d}nV)T
(d In q/d &i V)T

number of atoms in cell
q in high T limit: quasi-
harmonic theory
q at T) = 1

K'TV0h
operator for lattice sum
operator for lattice sum
for repulsion
interatomic distance
average of cation-anion
bond distance
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R equilibrium distance for v, shear sound velocity
interatomic separation V volt

R residual after truncating V specific volume V
s series V internal potential energy
5 gas constant, kN Va v at ambient conditions
Sh* slope of Us, UP curve. Vc volume of unit cell

entropy ^ volume of single atom in
t S in high T limit: quasi- K
T harmonic theory VM molecular volume
Tf time V' EVi/Vc

T = 0 temperature V° specific volume at P = 0
T* Fermi temperature or 77 = 1

absolute zero w -(l/aKT)(dKT/dT)P

TH limit in T where anhar- = &T — K'
Ts monic effects begin w V0/V = p/pa = I/TJ

T along Hugoniot path W = -vt/aKT

u T along isentropic W Watt
U path x arbitrary variable
Uanh (l/3)(2 - K'0)

 X arbitrary variable
internal energy v time dependent ampli-

Ue anharmonic terms of in- tude of wave

ternal energy V dimensionless hui/kT
electronic energy V' V for m°de w,-

UK internal energy along Hugo- yi V for mode w;
niot path ^ relative volume change

Uhi U in high T limit: quasi- (v ~ Vo) /vo
harmonic theory Yi relative length change

Up particle velocity (^' ~~ ^o) f ^ a
Us shock velocity z dePth in earth

„ velocity of sound z integration variable
Vb bulk sound velocity z atomic number
„,. ith sound velocity; (i = Z partition function (sum

I 2, 3) of aH quantum energy

y,-. v arising from lattice levels)
motion in association ^1 ionic charge: atom 1
with C-- ^2 ionic charge: atom 2

,Jm mean sound velocity ^ z'"> component of Z
,Jnnn next nearest neighbor re- Z(w) frequency distribution:

pulsion, a term of <^ Debye theory
; v arising from longitudi- 3&T1 thermal energy per atom

nal motion 3pN modes in crystal
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SUBJECT INDEX

In the business of scholarship,
evidence is far more flexible than opinion.

—Hugh Nibley

a: see Thermal Expansivity
flt-iron: body-centered cubic iron: 192, see Iron
otK-F (otK'r):

As within differentials: [d (aKT)/dT]p: 57, 58, 260, 261; [d (aKT)/dT\v:
57, 58, 66, 76,250, 254, 328; [d(aKT}/dV}T : 57, 58, 62, 234; as func-
tion of f>T - K': 68; in (da/dT}p: 62, 84, 106; in (dCv/dT)T: 76;
in determining PTH: 60, 246, 247, 254, 255, 271; in (dTm/dP): 306;
in AG/AT: 232; in d2KT/dT8P: 58; in (dPTH/dT)v: 60, 268, 298,
299; in (dS/8V)T: 317; special case for [d (aKT) /9T]p: 256; special
case where aKT = constant: 63, 74, 75, 85, 86, 96, 102, 328

Data: inner core: 269; iron: 269; lower mantle: 261; perovskite: 108
Definition: as derived in quasiharmonic approximation: 35; as differen-

tial equation with parameters K' and <5y: 261; as factor in ST: 16; as
factor in equation for 7: 6, 12; as function of (dP/dlf)v: 6; depen-
dence on TJ as differential equation: 74; equal to (8P/dT)v: 4, 6; in
terms of T: 4, 40; occurrence in identities: 43, 44, 57, 58

Derivatives: using ST — K' to find isotherms of aKx versus 17: 74, 75;
using (dP/dT)v in quasiharmonic approximation at high T: 43, 44

Plot: isobaric aKf versus T for six minerals (MgO, A^Oa, CaO, MgO,
Mg2SiO4, pyrope, grossular): 43

Pressure variation: 58, 255, 269; independent of depth in earth: 262
Properties: in inner core: 268; isothermal variation with 77: 74; of lower

mantle: 260, 261; Swenson's law: 274; use in calculating 7(77, T): 345,
346; use in calculating entropy: 305, 328, 329, 330, 352; use in finding
a at high T: 44, 45; use in finding j ( T , r j ) : 78, 79; use in finding
(dKT/dT)p: 41; use in finding -(dKT/dT)v: 22, 62, 66; use in
finding PTH: 39, 40, 42, 62, 66; use in virial theorem EoS: 198, 199

Quasiharmonic approximation: high temperature limit: 35, 43; low tem-
perature limit: 51

Temperature variation: A12O3: 362; CaO: 367; grossular: 370; KC1:
367; MgAl2O4: 368; MgO: 363; Mg2SiO4: 364; MnO: 365; NaCl:
367; olivine: 365; pyrope: 369

Alkali halides: a: 92; 7: 140; jac: 140; 6T: 82; K: 82; Cs and Tm: 297;
K'0: 82; AS/: 278; &Vf: 278
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Alkali halides (cont.)
Plot, Tm versus AV/V0: 286

Alkali metals: 7: 284; KT: 285; AS,: 285; Tm: 285; AV): 285
Plots: P versus T along isochores: 250; P versus V along isotherms: 250

Anderson-Griineisen parameter ($5):
Definition: 16; as function of ST and 7: 54, 144
Plot, 6S versus T(P = 0): KC1: 23; MgO: 47; Mg2SiO4: 24, 47
Temperature variation: A12O3: 362; CaO: 367; grossular: 370; KC1:

367; MgAl2O4: 368; MgO: 363; Mg2SiO4: 364; MnO: 365; NaCl:
367; olivine: 365; pyrope: 369

Anderson-Griineisen parameter (£r):
Definition: 16, 231; in terms of a: 23, 83; (din (aKT)/d £nV)T: 58,

74, 261; in terms of ST - K' and aKT: 330; in terms of (dKT/dT)v:
58, 64, 68, 299, 329; in terms of d2KT/dTdP: 58, 63, 64; in terms of
&.PTH'- 299; in terms of w: 232, 329; plotted as isotherms in rj space:
331; plotted in T-V space for MgO: 68, 74; q: 45, 60

Differentials involving: (da/dT)p: 84, 106; (dCv/dV)T: 76
Equations in rj: ST as linear law: 70, 71, 81, 82; ST as power law: 86
In equations of major variables: 0(77): 86; a(T): 84, 85; ST in terms of

83, at high compression: 144; ST in terms of 6g, general: 54; involving
q and K': 85, 144

In thermodynamic identities: for k: 58; involving a: 23, 58, 83; involving
Cv: 76; involving (d2KT/dT8P): 58, 81

Plots, ST versus T (P = 0): Al2Oa, CaO, grossular, MgO, pyrope: 47;
Mg2SiO4 at P = 0: 24, 47

Plots, 6T versus T (P > 0): isochores of MgO: 73
Plots and values over (V,T) field: deep mantle, ST « K1: 79; earth's

lower mantle, slope of In a versus (.n p: 103; MgO, isotherms versus
77: 72, 73; MgO, isochores versus T, 73; MgO, V-T range for 6T = K':
66, 68, 69; NaCl, 6T versus P: 67; NaCl, using power law for ST(TJ):
71; using linear law for ST(T)) for Al, Fe, K, Li, MgO, NaCl, and Pb:
70, 71

Temperature variation: A1203: 362; CaO: 367; grossular: 370; KC1:
367; MgAl2O4: 368; MgO: 363; Mg2Si04: 364; MnO: 365; NaCl:
367; olivine: 365; pyrope: 369

Values at high T (P = 0): a-quartz: 82; KBr: 98; lower mantle: 103,
104; MgO: 82, 117; NaCl: 82; NaF: 98; olivine: 82; RbCl: 98; silicate
perovskite: 91, 104, 107

Anharmonicity:
Definition: corrections to Cv, Cv,nh'- 48; corrections to f, Fanh- 48;

corrections to PTH: 48, 246, 247, 248; corrections to U, Uanh: 48;
general: 47, 48

Earth's mantle, lack of anharmonicity in PTH- 43, 44, 259, 260, 264, 266
Harmonic lattice, properties of: 46
No anharmonicity in PTH for alkali metals, solid noble gases, or alkali

halides: 246, 247, 248, 252, 253
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Solids (grossular, Mg2SiO4, pyrope), evidence of anharmonicity: 37
Avogadro's number N: 356

/?-forsterite: high pressure phase of MgSiO^ 95
/J-iron: high pressure phase of iron: 194
Birch Murnaghan EoS, Eulerian:

Comparison with other equations of state: 200
Definitions: 2nd order EoS for P: 168; 3rd order EoS for KT: 340; 3rd

order EoS for P: 166, 264; 4th order EoS for KT: 168; 4th order EoS
for K': 172; 4th order EoS for P: 172; equation for C4: 170; equation
for Cs- 169; parameter £: 167

Lower mantle calculations: computation of Pj'Kfa using B-M EoS 3rd
degree: 264, 265; decompression of lower mantle by B-M EoS 3rd
degree leads to values of K'Q and A'TO, hot and cold: 263, 264

Stability: incompatibility with lattice dynamics: 174; instability outside
range of values for K': 173; invalid for liquids: 198; truncation of
series requires 64 to vanish: 171

Values of P, plots: P(TJ, 300) for a-iron, 7-iron, and £-iron to inner core
pressures by B-M 3rd order EoS: 197; P(p, 300) for cold upper mantle:
267

Values of P, tables: P(?/,0) for MgO by B-M 3rd order: 336; P(rj, 300)
for silicate perovskite by B-M 3rd order: 271; P(p, 300) for NaCl by
B-M 3rd order: 178

Boltzmann's constant ib: 32
Bulk modulus K:

Adiabatic-adiabatic derivative, (6Kg/dP)s,= K'ss: correction when
calculating K' from K'ss: 182; definition: 21

Calculating KT from Kg'. 59
Compressibility divergence: application to lower mantle: 303; general:

298; in Lindemann law: 302
Definition: adiabatic KS'- 19; chord KC' 316; Hugoniot KH: 316; in

terms of interatomic potential: 183; in terms of Kg' 316; isothermal
KT: 18

K' at infinite pressure, K'x'- Fermi-Dirac value of K'^: 182; in Keane
EoS:175, 176

K'0 versus po correlation: 140, 142; also see Velocity systematics
Pressure derivatives: conclusion that K'Sa = KTa =K'Q: 21; condi-

tions for K1 - ST: 62; for earth's lower mantle: 264; (8KT/dP)T,
(dKs/dP)T=Q: 211; value of K'0 for nine oxides and silicates: 22

Significance in EoS: Birch's parameter £ related to K'Q: 167; KT(\, 273)—>
KT(1,0): 161; F, KT, K', and P, all proportional to KTa: 160, 162,
163

Temperature derivative: intrinsic (dKT/dT)v: 22, 62, 231, 232, 254,
255, 330; (dKs/dT)p and its relationship to 6S: 16; (dKT/dT)p

and its relationship to 67: 16; Swenson's law: 274
Temperature derivative, (dKg/dT)P: for earth's mantle: 264



386 SUBJECT INDEX

Bulk modulus (cont.)
Temperature variation, KS and KT' A^Oa: 362; CaO: 366; grossular:

370; KC1: 366; MgAl2O4: 368; MgO: 363; Mg2SiO4: 364; MnO: 365;
NaCl: 366; olivine: 365; pyrope: 369

Uncompressed, P = 0: adiabatic, Ksa' 19; isothermal, KTO'. 19
Values, KSO'- Kg0 at room temperature compared to T = 0 (MgO,

Mg2SiC>4, and A^Os): 20; K$n and KTO for NaCl, various authors:
20

CaO:
Physical properties: 0ac: 25; /j: 25; pQ: 25; Cs: 297; K'Q: 22; Tm: 297

Compression ij: 5
Coordination number M: 184
Corundum, AljOa:

Physical properties, plots: aKT versus T/Q: 43; a(T) at P - 0: 46,
94, 98; 7 versus T/Q at P = 0: 38; Qac versus T(P = 0): 26; Cv

versus T/Q (P = 0): 37; KT(V = V0) versus T (P = 0): 258; K'0
correlated with p0: 142; PTH versus T: 266; APT# versus T/0: 40;
vt, correlated with po: 130

Physical properties, tables: values, 300 K to 1800 K: a, aKr, ~f, T, 8$,
ST, (6T - 6S)/y, 0, p, <{>, CP, Cv, G, KT, APTH: 362

Physical properties, values: aKf\ 43, 261; jac- 140; 70: 140; 0ac: 25; p:
115; po: 25, 115; anharmonicity (or lack of) in Cv'- 48, 245; Class C
Debye solid: 117, 293; close packing: 117; dv,/dvp: 230; G near Tm:
231; (8G/dT)v: 232; Ks: 20; Ks near Tm: 231; (dKT/dT)v: 232,
256, 258; K'Q: 12, 21, 22, 140, 168; Madelung constant: 184, 185; vp

near Tm: 231; v, near Tm: 231
Cross derivative of bulk modulus, d^Kx/dTdP'

Identity: 63, 65
Value at extreme conditions for several solids: 82

&St &T'- see Anderson-Griineisen parameter
Debye frequency UD; 53, 118
Debye moments 6(n): 119; 0(+2): 120, 121; 6(-3): 120, 121; plot,

MgO and stishovite: 120
Definition: 119
Special cases: at T = 0, where 0(-3) = 0ac: 119, 120; for curve of

moments: 120; for large T, 0(+2) = 0£f: H9; for magnesium per-
ovskite: 120; for MgO: 120; for solids in which Qac = Qca!: 118, 119,
120

Debye temperature 0:
Acoustic approximation 0ac: 24; as high temperature limit: 24; for

earth's lower mantle: 27; for lunar mantle: 27; relationship to acoustic
velocities: 24; values for many solids: 25

As lower boundary for high T classical equations: 7, 13, 14, 15, 16, 17,
20, 23, 42, 46, 48, 51, 62, 71, 75, 76, 77, 78, 80, 84, 85, 86, 87, 88, 89,
94, 95, 96, 107, 108, 162, 231, 246, 247
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Calorimetric definition Qcai'. 118
Comparing 0ac with calorimetric 0ca;: 118
Definition: 24, 53
Differential: (8Q/dV)T to get 7: 28, 51
Equation for lower mantle, Qac versus P: 260
In functions, Debye representation of: 7, jjj: 28; 7(n): 121; F: 54; KT'

54; P: 54; S: 54; W: 54
In relation to PTH- &PTH measurements test anharmonicity limit: 40,

43; dPTH/dT increases with 6: 40
Plot, Qae(T) up to 1900 K: A12O3: 26; lower mantle: 26; MgO: 26;

Mg2SiO4: 26; silicate perovskite: 26
Temperature variation of 0ac: Al^Os: 362; CaO: 367; grossular: 370;

KC1: 367; lower mantle: 260; MgAl2O4: 368; MgO: 363; Mg2Si04:
364; MnO: 368; NaCl: 367; olivine: 365; pyrope: 369

Values: a at T — 0: 108; Qac versus z for lower mantle: 27; 0ac versus
z for lunar mantle: 27; GO for lower mantle: 97; KT at T = 0: 108;
many solids: 25; Mg2SiO4: 25; silicate perovskite: 104

Debye theory: general: 15, 52
Applicability to oxides and silicates: 116; Class C solids (high packing

fraction) include those for which Qac = Qcai'- 117; closely packed
solids: 116, 117

Applied to physical properties: connection of moments of 7 to moments
of 0: 121; for otK.?: 246; for 7: 28, 51; for calculation of 7 and a
of lower mantle: 93, 100; for entropy of lower mantle: 99, 101; for
specific heat: 113; for thermal pressure: 244, 246, 247, 259; theory
for 7 in closely-packed structures: 139, 140, 141

Approximations in quasiharmonic theory lead to expressions for Debye
functions: 53, 54; aKT: 54; Cv: 54; energy E: 54; T: 53; KT: 54;
S: 54

Debye-like solids: 119, 120, 133, 280, 286, 291; 7 = jae: 139, 140; yac for
lower mantle: 143; alkali halides: 140; Al2Oa: 293; bulk modulus in
solid solutions: 135,136, 137; class of perovskites: 132, 133; dKT/dP:
140; in melting equation: 281; MgO: 120, 292, 293; relation to seismic
equation of state: 144; silicate perovskite: 123, 141, 288, 293; velocity
systematics: 131, 132, 133, 133, 135

For 7: 7aC for lower mantle: 143; in closely packed structure, jac = 7:
139, 140, 141; relationship o f © to 7: 28, 51

Function, D(Q/T): 53; equations for T, P, S, U: 54
In solid solution, leads to: KTO independent of p0: 135; K'0 independent

of po at constant crystal structure: 142
Plots, Debye spectra compared to density of states: CaO: 125; ilmenite:

146; MgO: 122; Mg2SiO4: 126; silica glass: 124; silicate perovskite:
123; TiO2: 127

Velocity systematics derived from, see Velocity systematics derived
from Debye theory

Zero vibrational energy EZV'- 33, 53
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Density distribution, inner core: f iron: 270; ferromagnetic a iron:
270; 7 iron: 270

Density distribution, perovskite: p versus P isotherm: 273; compari-
son with results of Hemley et al.: 273

Density of states (electronic): 29
Density of states (vibrational) g(u)'.

By author: Bilz and Kress: 125; Choudhury: 123; Hofmeister and Ito:
146; Kieffer: 119, 145; Rao et al.: 126; Sangster et al.: 122; Traylor
et al.: 12.6, 127

By solid: CaO: 123; MgO: 122; MgSiO3 (ilmenite): 145; MgSiO3 (per-
ovskite): 123; MgSiO4: 126, 145; silica glass: 124; TiO2 (rutile): 127

Moments of, Q(n): for MgO: 120; for MgSiOa (perovskite): 120; general:
119, 120

Depth in earth z, properties:
Plots: a(p): 103; 7ac(z): 143
Tables: a(z): 100, 101, 102; Tac(z): 143; JD(Z): 100; TJP(Z): 143; 75(2):

143; 0(z): 27; T(z): 100, 101, 102
Dielectric constant: 161, 190
Diopside: 293

Einstein specific heat capacity: 10, 32
Elastic parameters:

Bulk modulus, see Bulk Modulus
In terms of Ks: Cs: 202; Cn: 202; C12: 202; C44: 202
Isotropic shear modulus, see Shear Modulus, Isotropic
Repulsive contribution from potentials: bulk modulus KR: 206; Cs'-

207, 208; C&: 206; Ci2: 207, 208; C44: 207, 208
Enthalpy H:

Calculation o{7{(T,P): 339; importance of f^ V dP or JQ
P rjdP: 340;

relation to (dKs/dT)p: 341
Definition: 339; in Gibbs energy: 343
Differentials: (dH/dP)T in terms of a: 339
Plot: isobars oiH(T] for MgO: 341

Entropy S:
Anharmonicity effects: 48
Calculated by Debye model: 54, 145
Calculation of ~f(V,T) from T(rif) along isentropes: 345, 346
Constant throughout lower mantle: calculation of T and 7 at constant

S: 99, 100
Definitions: at very low T: 50; in Debye theory: 54; in terms of Cv'- 55,

329, 330, 331; in terms of f: 4; in terms of £: 276; in terms of Q and
U: 4; in terms of Kf. 330, 331; in terms of modal frequencies: 35;
in terms of U and T: 4; S(V, P) in shock wave analysis: 310; varies
along Hugoniot: 312, 313, 318

Differentials along isentropes: (8H/dV)s: 316; (dP/dV)s for Ks: 19,
319; (dT/dP)s for 7: 8, 61, 101; (8T/dV)s for 7: 7, 61, 300, 345
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Differentials dS: in terms of aKT: 4, 61, 198, 305, 317, 328; in terms
of dP and dV: 318; in terms of dT and dV: 328; (dS/dP)v: 318;
(dS/dT)v: 317; (dS/6V)H: 318; (8S/dV)P: 61, 318

Isentropes: T versus rj for lower mantle: 344; T versus r\ for MgO: 344
Melting: 305, 306
Plots: isobars of S(T) for MgO: 339; isochores of S(T) for MgO: 332;

isotherms of S(n) for MgO: 332; S(T) at V = V0 for MgO: 334
Table: S(ri,T) for MgO: 333
Temperature along Hugoniot for iron: 321

Equations of state, isothermal, finite strain: general: 160
Basis of Eulerian and Lagrangian strain deformation formula: 173
Byname: Bardeen: 168, 169; Birch-Murnaghan: 166, 167, 168; Thomsen

(Lagrangian): 166, 167; Ullman-Pan'kov: 169, 170
By structure: f(rj) relationship: 159; energy as function of e: 160; equa-

tion for Cs: 165; equation for C$: 166; equations for derivatives of e
with respect to V: 165; evaluation of coefficients, Cn in E(e): 164;
KTO, dominant parameter: 162; relationship between C± and KTOK'Q':
171, 179; series expansion in E(c): 163; truncation problems: 170

Instability of Birch-Murnaghan EoS: 172, 173
Use of Birch-Murnaghan EoS, for: core: 197; mantle: 264, 266, 267

Equations of state, isothermal, from constraining parameters:
Byname: Barton-Stacey: 178; Brennan-Stacey: 177; Bullen relationship

for lower mantle: 181; Keene: 175, 176; Murnaghan: 179, 181
Isothermal EoS series formulation: 163, 164, 170
Test of, Brennan-Stacey EoS versus Birch-Murnaghan EoS using exper-

imental data on NaCl: 178
Equations of state, isothermal, general:

By name: Bardeen: 168, 199; Barton-Stacey: 178; Birch-Murnaghan,
see Birch Murnaghan EoS; Born-Meyer: 200; Born-Mie: 186, 200;
Brennan-Stacey: 177; Davydov: 191; Decker: 190, 225, 226, 227,
229; Demarest: 187, 226, 227, 228; Eulerian, see Birch Murnaghan
EoS; Langrangian (Thomsen): 165, 200; Mie-Griineisen: 10, 35, 245;
Morse: 190, 197, 270; Murnaghan: 179, 200; Rydberg: 190; seismic:
144; Ullman-Pan'kov: 169, 200; Vinet: 198

Comparisons: for earth's lower mantle (300 K), six EoS's: 200; for
iron (300 K), Morse and Birch Murnaghan EoS: 195, 196, 197; pros
and cons of various formulations: 196, 197, 198

Definition: 4, 5
Equations of state, isothermal, interatomic potentials:

Basis of formulation: <j>v including nnn: 186; attractive potential <fra:
184; Madelung constants in <j>v: 185, 186; repulsive potential <j>v: 185;
three definitions of Madelung constant: 185

By name: Born-Meyer (method of potentials): 188; Born-Mie: 186;
Davydov: 191; Decker (NaCl): 190; Demarest (NaCl, including nnn
repulsion): 189; Morse: 191; Rydberg: 191; virial theorem: 198

Definition: in terms of <f>: 183
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Equations of state, solids:
Inner core (plot): 270
Iron, see Iron
Lower mantle PTH '• 263
Periclase, see Periclase
Perovskite, see Perovskite

Equations of state, thermal:
Comparisons: for inner core: 270; for perovskite versus PREM density

profile: 272, 273; generated by knowledge of thermal pressure: 271
Definition: general: 245; Mie-Griineisen: 10, 35; virial theorem: 198
Tabled values, P = f(V,T): MgO: 65, 89; silicate perovskite: 272

Fayalite, Fe2SiO4:
Physical properties, tables: values, 300 K to 700 K: a, 7, p, KS, KT,

CP, Cv: 369; values, 300 K to 700 K: aKT, T, 6S, 8T, (6T - 8s)h,
0, &PTH-- 370

Physical properties, values: Qac, p, p: 25, 115; G: 138, 139; K'Q: 12, 22
FeO:

Physical properties: Qac: 25; p.: 25, 115; p0: 23, 115; K'0: 22
Forsterite, M&SiO^

Physical properties, plots: aKr versus T at P = 0: 43; a(T) at P = 0:
94, 95; j(T) at P = 0: 38, 47; Ss and 8T versus T(P = 0): 24; 6T(T)
at P = 0: 47; Qac versus T(P = 0): 26; CV(T) at P = 0: 37; density
of states: 126, 145; (8G/dT)p for P = 0: 52; K'0 versus p0: 142;
(dKs/8T)p versus T(P = 0): 52; KT(T) versus T (P = 0): 42; PTH

versus T: 266, 267, 294; APTH versus T (P = 0): 40, 98; Tm versus
P: 292, 293; v» versus p0: 130, 134, 134

Physical properties, tables, values 300 K to 1800 K: a, aKT, ~f, T, 6$,
ST, (Sr ~ Ss) /7, 6, p, <f>, CP, Cv, G, KT, &PTH: 364

Physical properties, values: a at P = 0, T = 300: 94, 95; jac: 12, 140;
Jac/Jcai: 142; 7o: 9, 12, 98, 140; p: 25, 115; p0: 25, 115; anhar-
monicity terms in Cv' 48, 245; corrections to thermal pressure: 327;
Cv; 16; G near melting: 231; dG/dP: 220; K'0: 12, 21, 22, 93, 141;
Ks: 20; #T near melting: 231; (dKT/dT)P: 41; (dKT/dT)v: 62;
(8KT/9T)V, harmonicity indicator in Cy: 37, 38; marginal Debye-
like solid: 293, 294; obeys Lindemann's law: 295; q: 9; representative
of Class B: 116, 230; shear modulus drops with iron content: 138;
spectroscopic 7,-'s: 17; Suzuki equation Q: 93; Tm near melting: 231;
variables: 93; vp near melting: 231; v, near melting: 231

7, thermal. 7 :̂ popular substitute for Griineisen ratio 7: 6
T, -(l/aG)(dG/dT)P: 231
Gibbs energy Q:

Definition: 4; as function of P and S: 4; in terms of J-VIB' 4; in terms
ofH and S: 343; isobars of Q(T): 343
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Differentials: (dQ/dP)T = V: 343; (dG/dT)p = -SP: 343
Gold:

KT(V = V0): 256
Thermal pressure: 255, 256
Volume dependence of Q.KT: 254, 255

Grossular:
Physical properties, plots: aKT versus T: 43; f(T): 38; CV(T): 37;

KT(T): 42; APTtf versus T: 40
Physical properties, tables, 300 K to 1300 K: a, aKr, 7, T, 8s, &T,

(6T - & s ) / j , 6, p, <j>, Cv, G, KT, &PTH: 370
Physical properties, values: \t,\ 115; PQ: 115

Griineisen mode gammas:
Acoustic mode gamma jac: 11, 12, 140; acoustic p wave gamma jp: 11;

acoustic s wave gamma 7,: 11; average mode gamma 7: 10; optic
mode gamma J0pt' 16, 17; range of spectroscopic gamma: 16

Definition: 34
High T limit of average gamma yht: 10, 14
Individual vibrational mode gamma 7;: 9, 245

Griineisen parameter, electronic: 30
Griineisen ratio approximations:

jp = constant: 7, 79, 103, 177, 246, 313, 314, 318; found for MgO at low
V and high T: 79, 80

Acoustic 7ac: 10, 11; for: A^Os, a-iron, CaCOs, forsterite, glasses,
MgO, olivine, spinel, TiOz, ZnO: 12, 140; inner core: 140; lower
mantle: 143

Debye approximation 7^: 28; 70 in lower mantle: 100, 101; importance
of transverse vibrations: 28, 29

Einstein solid JE: 30
High-T approximation jht: 10, 11
In terms of K'0: 12, 13, 14, 15; Barton and Stacey ~fBa-s'- 14, 15; Bren-

nan and Stacey fsr-s'- 177, 178; Debye JD: 28; Mie-Griineisen ~fmg'-
35; Slater 7,;: 13; Vaschenko and Zubarev jvz: 14

Mie-Griineisen ymg: 10, 35, 244, 245
Optic gamma, average, yopt: 16
Quasiharmonic gamma: 35, 38, 47

Griineisen ratio for lattice 7:
As differential: (dj/dT)v: 62, 78; (d fri 7/9 £n V)T ,q: 59, 68, 76, 80;

(8Ks/dT)p: 341; (8P/dU)v = jp: 313; in dT/T: 321
As thermoelastic parameter: for silicate perovskite: 104
Compared with -fac: 12, 139, 140
Compression variation of 7: MgO: 70, 76
Contribution to 7 of electronic density of states: 29, 30
Definitions: 7 (standard): 6, 7, 246; adiabatic decompression: 8, 320,

345; as exponent in Q(p): 280; as power law in V: 8, 45, 59, 60, 85;
in limit of high T: 38; in limit of T = 0: 51; in terms of T: 7
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Griineisen ratio for lattice 7 (cont.)
Derived from isentropes of T and P: 345; plot of isochoric f ( T ) found

from T(P) at constant S: 345, 346
In various thermodynamic formulas: a: 83, 99; ST — ̂ s' 59; 6: 260,

280; calculation of T, adiabatic: 321; (dCv/dV)T: 59; Debye-Waller
formula: 290; dh: 317, 318; dS: 317; energy of vibrating chain:
280, 281, 282; H: 315, 316; KH: 316, 317; Kraut-Kennedy melting
law: 282; KS and Kf. 59; Lindemann melting formula: 281; Mie-
Griineisen EoS: 35, 243; moments, 7(77): 121, 139, 260; parameter
Q of Griineisen formula for a: 93, 97, 99; Poirier dislocation model:
290; (dPTH/dT)p: 268; relationship between KS(T) and H(T): 341;
Stacey melting model: 290; Stevenson melting law: 290; (3X/dP)s

and (dX/dT)s, X any variable: 58
NaCl, 7(7?) up to 300 K: 67
Plots: 7(T, 77), derived from entropy: 345; f ( T , r ) ) , found from ST — K':

78, 79
Quasiharmonic approximation: 35
Temperature dependence: 15, 38
Temperature variation, table, for: A^Oa: 362; CaO: 366; grossular: 370;

KCJ: 366; MgAl2O4: 368; MgO: 363; MgSiO3: 364; MnO: 368; NaCl:
67, 366; olivine: 365; pyrope: 369

Values: for inner core: 140; for lower mantle: 140, 141, 142, 143; for
NaCl: 9, 67; for six oxides (A12O3, CaO, grossular, MgO, Mg2SiO4,
pyrope): 38; negligible effect of iron on 7 of lower mantle minerals:
142

Values, P = 0 or rj = 1, yoi: iron: 322; MgO: 140; NaCl: 67; perovskite:
104, 105

Variation with V and T: 7 for MgO at deep mantle conditions: 79;
estimates for inner core: 268; from PIB theory for MgO: 78; from
thermodynamic theory for MgO: 79

Griineisen ratio moments 7(n):
Definitions: 121; high temperatures, 7(0) = JT=O'- 121; low tempera-

tures, 7(-3) = 7T=o: 121; melting, 7(-2): 292, 293

Helmholtz energy f:
Anharmonic terms in JF: 45, 48, 79
Calculation of K and K': theoretical values of T for MgO yield KT(T), T)

and K'(i}, T): 63, 64, 65
Definitions: at very low T: 50; high T limit of quasiharmonic approxi-

mation: 36; in terms of energy: 3; in terms of TTH'- 33; in terms of
T~VIB'- 33, 34; in terms of interatomic potential </>: 183; in terms of U
and S: 3, 342; quasiharmonic approximation: 34

Differentials for: a: 5; aKT: 4; 7: 7; KT: 4, 18; Ks: 19; P: 4; S: 4; U:
4

EoS theory: general: 159, 160, 173, 174; virial theorem EoS: 198
Melting theory: dislocation mediated melting: 305
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Plot: F(rj) along isotherms for MgO: 343
Thermal component FTH'- as function of u and 0: 53; at very low T: 50;

high T limit of quasiharmonic approximation: 36; in terms of Debye
function: 53

Vibrational component TV IB'- component of zero point energy EZV'- 33;
for PTH'• 33, 34; in terms of T: 4, 5; in terms of FTH'• 33; in terms
of Q: 4; in terms of vibrational modes u^: 32, 33; in terms of Z\ 32

Index of refraction n: 161, 190
Infrared frequencies: ilmenite: 146; silicate perovskite: 17
Insulators, class of solids: 3, 31
Interatomic potential for EoS: attractive potential (fia: 184; covalent

bonding: 191; exponential power law: 188; inverse power law: 186;
repulsive potential </>v: 185

Internal energy U:
Definitions: at very low T: 50, 56; high T limit to quasiharmonic ap-

proximation: 36; in terms of T: 4; in terms of Q: 4; in terms of 7i:
339; in terms of quantum energy states: 55; in terms of Z: 55; pro-
portional to mass of vibrating cell: 61; quasiharmonic approximation:
34; value at T = 0 in absence of strain: 160

Differentials: for 7: 6, 313; for Cvf- 29; for P: 5, 313; in terms of dT
and dV: 334; result when (dP/dU)v = constant: 7; (dU/dV}T: 334;
(dU/dV)T,Cv: 4, 55, 334

Electronic internal energy Ue: 29; Cv,' 30; density of states g(Ue): 29;
Uf, Fermi limit: 30

In equations of state: Bardeen: 199; Decker: 190; finite strain: 160,161;
general: 160, 161, 166, 170; virial theorem: 198

Shock wave analysis: Hugoniot internal energy Ujj'- 312; U — U(V,P):
310; UH = UH(V), T unknown: 313

U(T, TJ): equations: 334, 335, 336; integral evaluation needed for U(T, TJ),
Table 13.2: 336; table for isochores: 337

Internal potential energy V of a lattice: 198
Intrinsic temperature derivative, KT, (dKT/ffT)y = w:

Basis for Brennan-Stacey EoS: 177; plot of W = (l/aKT) w = 6T - K'
in T,TI space for MgO: 68; plot of W versus (dG/dT)v = {G}v for
various solids: 232

Consequences when w = 0, K' = ST: 62, 68, 177
Definition: w = (dKT/dT)v: 57, 62

Iron:
Density at core temperatures: discussion of T and &.PTH used in com-

puting trajectories: 268, 269; plot, trajectories of p versus P at core
temperatures for hep, bcc, fee phases extended to core pressures: 270

Density at low temperatures: discussion of EoS's used in making trajec-
tories: 196; plot, trajectories of p versus P at 300 K for hep, bcc, fee
phases: 197

Elastic wave velocities along Hugoniot: 194
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Iron (cont.)
In silicate and oxide solid solutions: for magnesiowiistite, A's0 possi-

bly independent of Fe/(Fe + Mg) ratio: 137; for orthopyroxenes and
olivines, KSO independent of Fe/(Fe + Mg) ratio: 135, 136; for spinels
and garnets, KSO independent of Fe/(Fe + Mg) ratio: 135; K'0 for
Fe0.940: 142; plot, K'0 rises slightly for Fe/(Fe + Mg) content in
solid solutions: 142; shear moduli in solid solution depend sharply
on Fe/(Fe + Mg) content: 137, 138, 139

Melting, Tm: techniques: 303, 304; plot: 304; table, Tm (330): 269
Phase diagram, discussion: bcc phase not allowed at core temperatures:

192; light elements in inner core: 271; new phases: 192; possibility of
fee phase at inner core conditions: 192

Phase diagram, plots: Anderson (6 phases): 194; Birch (3 phases): 193;
Boehler (5 phases): 304, 325; Saxena (5 phases): 326

Physical properties, values: 7 for a-iron: 140; jac for a-iron: 140; po for
hep, fee, and bcc iron: 195; K' for a-iron: 140, 195; K' for e-iron:
141, 195; KTO for hep, fee, and bcc iron: 195; tradeoff in KTO and K'
for hep iron: 195

Joule J: unit of energy: 355

K (with various subscripts), see Bulk modulus
KC1:

Physical properties, plots: 8g and &T versus T(P = 0): 23; KT(V = VQ),
Ks, and KT versus T(P = 0): 253; APTH versus T(P = 0): 40

Physical properties, tables, values, 300 K to 850 K: a, 7, p, Cp, Cv, G,
Ks, KT\ 366; values, 300 K to 850 K: aKT, T, 6S, <5T, (6T - Ss) /7,
6, CP, APTH: 367

Physical properties, values: yac: 140; 70: 9, 140; Qac: 25; po: 25; Cauchy
relation: 210; critical value Tc, vanishing of Cs: 287; (CS)'0/K'0: 209;
(CuY0/K'a: 209; (C^)'0/K^. 209; G linear in T: 231; (dKT/dT)v

non zero: 251; Lindemann parameter: 288; q: 9; Tm: 288
Kraut-Kennedy law, see Lindemann law
KTH, see Thermal energy

Lindemann law, also see Melting
Alternate derivations and suggested improvements on using: Clausius-

Clapeyron equation: 290; Debye-Waller formula: 290; dislocation the-
ory: 291; melting theory for liquids: 290

Approximations of: Kraut-Kennedy law: 282, 283; Kraut-Kennedy law
in terms of Clausius-Clapeyron parameters: 285; Kraut-Kennedy law,
Tm linear in AV/V"0: 282; Simon law, KT linear in T: 281; solids for
which K-K law Tm not linear in AV/V0: 283

Definition: 281, 286
Development: energy of linear chain: 279; importance of correct value of

KT at Tm: 298, 301, 302; introducing Debye assumption: 280; intro-
ducing Gilvarry criterion: 280; Lindemann law at high compression:
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286; Lindemann parameters (at P = 0), confirmation that e indepen-
dent of P for MgO: 291, 292; linear chain analog: 278; statement of
Lindemann law at P — 0: 281; suggested instability criteria: 275

Gilvarry's criterion: melting occurs when < a2 >1'2 fraction e, of r§:
280; plot: 292; that e. independent of P: 280

Lindemann parameters: plot and table, Tm with £' for perovskites: 289;
relation between Lindemann parameter £' and 0: 288; relation be-
tween Lindemann parameter C and Tm: 288; table, C. versus Tm for
alkali halides and diamond structures: 288

Mulargia-Quareni theory: modified Lindemann law using two Debye
temperatures for longitudinal and shear waves: 294; theory found
diopside to obey Lindemann parameter relationship: 294

Tests of Lindemann law, plots: confirmation, forsterite: 294; failure,
diopside: 293; Gilvarry criterion: 292; use in Tm for perovskite: 295

Lower mantle:
Adiabatic'K's along adiabat, K'ss'. 21;
Equation of state comparisons: 200
Lindemann law: valid for lower mantle minerals: 295
Physical properties, plots: f.n a versus £n p, slope ST- 103; 7<,c versus

p for lower mantle: 143; 0ac versus T at P = 0: 26; adiabat on T, 77
plot: 341; EoS comparison: 200; Ks versus P: 181; PTH(T): 266;
P(z) compared with P(z) at T = 300 K: 267; AV/V0 and a versus
T(P = 0), cold: 98

Physical properties, range of values: aKr constant in lower mantle: 74;
jp — constant: 103, 285; 83 at deep part of lower mantle: 107; &T
varies with z: 86; 77 ~ 0.8 in deep lower mantle: 89; equation for
aKT: 261, 262; K': 182, 200, 264, 265; A'5 linear in P: 181, 319; Ks

versus z: 65; d2KT/dTdP: 65; plot, in ~fac versus in p: 143; &PTH
linear with T: 248; T/0 about 1.9 and steady with z: 27; T and P
effects on a cancel at top of lower mantle: 89; value of 70 (1.98) that
leads to quite high value of AV/Vb: 105

Physical properties, tables: a(z): 100, 101, 102; jac, lower mantle: 143;
~f(z): 100; Qac versus z: 27; p versus z: 27; P/KTO versus z: 27;
A.PTH versus T: 263; PTH(Z)'- 265; P versus z: 27; T/QaCo versus z:
27; T(z): 27, 100, 102; vp versus z: 27; v, versus z: 27

Physical properties, values: a(0,1000): 97; a/ao ~ 1 x 10~5K~1 at base
of mantle: 89; 7ac(P = 0): 12; jaca = JQ: 141, 142, 143; 7o: 99, 104,
105; 7(771 km) = 1.2: 103; 7(2771 km) = 0.98: 103; 6T (average):
103, 104; 00 (cold) uncompressed: 26, 27; ©o (hot) uncompressed:
26, 27; po (cold): 105, 182; p0 (hot): 105, 182; p0 (800 K): 105;
best choice of &TO and 70: 105, 112; choice of 70 and 0o crucial
to thermodynamics of perovskite mantle: 105; KTO'- 265; AV/Vb
decompressed mantle (hot to cold): 182; AV/Vb (P = 0), (hot to
cold) from various assumptions about 70: 105

Maxwell's thermodynamic relations: 7, 61
Mean atomic weight p: 25, 115
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Mean sound velocity t>m: 24, 49, 50
Melting:

Clausius-Clapeyron equation: 276, 277
Instability criteria: compressibility divergence: 298, 302; soft shear con-

stant: 296, 297
Iron melting boundary experiments: Bass et al.: 324; Boehler: 303, 304,

324, 325; Brown and McQueen: 193, 194 324, 325; Saxena et al.: 194,
325; Yoo et al.: 324, 325

Kraut-Kennedy melting law: see Lindemann law
Lindemann law: see Lindemann law
Of iron at inner-outer core boundary pressure, extrapolation values:

Abelson: 269; Anderson: 269; Boehler: 269; Bukowinski: 269; Poirier:
269; Ross et al.: 269; Stevenson: 269; Williams et al.: 269; Yoo et al.:
269; Young and Grover: 269

Silicate perovskite melting boundary, measurements: Heinz and Jeanloz:
295; Knittle and Jeanloz: 295; Sweeney and Heinz: 295; Zerr and
Boehler: 295

Silicate perovskite melting boundary, theory: Ohtani: 295; Poirier: 291,
295; Stixrude and Bukowinski: 295

MnO:
Physical properties, tables, 300 K to 500 K: a, 7, p, Cp, Cv, G, KS,

KT: 365; aKT, T, Ss, 6T, (6T - <$s)/7, ©> <t>, APT/f: 368
Molarity: 356
Molecular mass: 24, 356

in
NaCl lattice structural parameters:

Equations for: CK = 0: 205; Cn in terms of K and P: 206; Cft
terms of Pn and Q71: 205; dCu/dP in terms of dK/dP: 206

Plots: Cn, Ci2, and Ks versus P (at P = 0) for NaCl structure: 212
Tables: Cs in terms of K and P: 207; C's in terms of K' and K/K0:

207; (Cs)'o/K'0, all in terms of K'0 according to Born-Mie repulsive
potential: 210; Cn in terms of K and P: 207; Cn in terms of K' and
K/K0: 207; C£ and K% in terms of ̂ : 206; (Cnyo/K'0, Ci2 in terms
of K and P: 207; C'12 in terms of K' and K/K0: 207; (£12)0/^0,
(C44)'0/K'0, CM in terms of K and P: 207; C^4 in terms of K1 and
K/KO-. 207

Values: C'S/K'0 for seven solids with NaCl structure: 209; (C*ii)'o/#o
for seven solids with NaCl structure: 209; (C^}'Q/K'Q for seven solids
with NaCl structure: 209

NaCl, solid:
Equation of state: Decker: 161, 190; Demarest: 189; experiment: 67,

163
Physical properties, plots (P = 0): Ks, KT, and KT (V — Vo), all versus

T: 253; APTH versus T: 40; AV/V0 versus T: 163
Physical properties, plots (P > 0): aKr versus 77: 75; d^K-r/dPdT:

82; m in relationship between <$T and 77: 69, 70, 71; Tm versus
P (T = 300): 283; V/V0 versus P (T = 300): 163
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Physical properties, tables: 0(77) versus T at 300 K: 67; 6T(rj) at 300 K:
67; Cu, C\i, and C±± in terms of variables in Demarest nnn EoS
theory: 225; degree of packing: 114; K'(rj) at 300 K: 12, 67; P(rj) at
300 K: 178; values, 300 K to 750 K,: a, aKT, 7, T, 6S,8T, (&r-fo)/7,
6, p, 4>, CP, Cv, G, Ks, KT, APTK: 366, 367; V/V0 versus P along
isotherms: 96

Physical properties, values: 7: 12, 140; jac: 12, 140; yp — constant:
177; 70: 9, 12; 6T = K'0: 62, 66; //: 25; p0: 25; coordination number:
186; KSa: 20; (dKT/8T)v: 66, 274, 329; K': 20; K'Q: 12; Lindemann
law parameters: 288; Madelung constant 184, 185; parameters for
Kraut-Kennedy law: 284, 285; q: 9

Shear constants and shear velocities: high value ofdv,/dP due to coor-
dination number: 230; plot, v versus P for NaCl: 229; plot, C44 with
P/K0: 226; plot, vp/v, versus P/K0 for NaCl: 227; plot, v, versus
P/K0 for NaCl: 228

Newton N, unit offeree: 356
Noble gas solids:

Physical properties: AS/: 278; AV}: 278
Physical properties, plots: KT versus T: 287; PTH versus T: 252

Olivine:
Physical properties: a0: 82; 7: 140; jac: 140; <5To: 82; eac: 25; K: 82; ft:

25; Po: 25; K'0: 82
Physical properties, tables, 300 K to 1500 K: a, aKx, 7, Sg, &T, (<$T —

Ss)/-r, 6, p, 0, CP, Cv, G, Ks, KT, APTff: 365
Operators, mathematical:

C: 204; in terms of Q for ZnS: 205
C44: 204
V: 204; in terms of P and Q for ZnS: 205
P: 203; as component of Cn: 205; for Cij in cubic solids: 204; in terms

of repulsion </>v: 204
Q: 203; for C;j in cubic solids: 204; in terms of repulsion (j>v: 204

P, see Operators, mathematical
Packing fraction, P.F.: average volume per atom: 115; classification into

three groups, A, B, C: 116; close packing of spheres: 114; definition:
114; tabled values: 115

Partition function 2: 32, 55; for entropy S: 55; for Helmholtz energy T:
32; for internal energy U: 55; for specific heat Cv'- 55

Periclase, MgO:
Conditions where ST = K': 66, 68, 69
Density of states: 122
Equation of state, isotherms: KT(r}): 65; K'(r/): 65; P(T?): 65, 89
Equation of state, parameters: pa: 25, 115; KSo: 20, 22; KTo: 65, 179,

180; K'0: 12, 22, 65; table, f"P0dr]: 336, 340; table, P(rj) along
isotherms up to 2000 K—EoS: 65; table, VofndP: 340; values, KT

and K' at high compression: 65, 66
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Periclase, MgO (con/.)
Melting: critical T for which Cs becomes soft: 297; Gilvarry criterion:

291, 292
No evidence of anharmonicity: 37, 245
Physical properties, plots (P = 0): d(T): 77; aKT versus T/Q: 43;

a(T): 46, 94; a(T) at 77 = 1: 87; 8T(T): 48; eac(T): 26; CV(T): 37,
334; CV(T) at constant 77: 334; XT(TJ) at constant T: 65; KT(T): 42;
K'(r)) at constant T: 65; low T aAV versus T1: 44; P(TJ) at constant
T: 65; APTH versus T: 40, 266, 272; S(T): 334; 5(T) at constant 77:
334

Physical properties, plots (P > 0): a/aa versus 77 along isotherms: 88;
aKT versus 77 along isotherms: 75; 7(77) along isotherms: 79; j(T)
along isochores: 346; ST(TI) along isotherms: 64, 73; (8x — K') versus
77 along isotherms: 331; 8f(T) along isochores: 73; CV(T) along iso-
chores: 77; F(TI) along isotherms: 342; Q(T) along isobars: 343; H(T)
along isobars: 341; K'(r)) along isotherms: 64; q(rj) along isotherms:
80; ^n q versus In 77 along isotherms: 82; S(j]) along isotherms: 332;
S(T) along isobars: 339; S(T) along isochores: 332; T versus 77 at
constant (6? — A''): 68; T versus 77 at constant S: 344; V/V0 versus
P at 300 K: 180

Physical properties, tables, values, 300 K to 1800 K: a, aKr, 7, T, 83,
8T, (8T-8s)/j, p, p, e, CP, Cv, G, Ks, KT, APTH: 363; 5(77)
along isotherms: 393; U(T) along isochores: 337

Physical properties, values: a, (a/aa) versus 77, otKr, J , T, 8s, 8?,
(5y(77) along isotherms: 89; (8? — K') versus 77 along isotherms: 74;
5(77) along isotherms: 333; (ST-Ss)/j, U(T) along isochores: 337

Shear dj and velocities: effect of NaCl structure on shear constants:
206, 207, 210; exact theory needed for Cauchy relation: 217; high
value of dv,/dvp: 230; low value of v. 216; pressure derivatives of
Cn, C44, Cs: 209; value of (dG/dT)v: 232; value of v, and vp near
Tm: 231

Velocity systematics, KT and K' systematics: 130, 134, 135, 137, 142
Perovskite, silicate, MgxFei_xSiOs (pv):

Debye-like solid: 133; Density of states: 123
Equation of state parameters: 104; close to those of earth's mantle: 182
Melting: Lindemann law followed because pv is Debye-like solid: 293;

measurements of Tm versus P according to Heinz and Jeanloz, Knittle
and Jeanloz, Sweeney and Heinz, Zerr and Boehler: 295; obeying
Lindemann criteria: 288, 289; theory of Tm versus P according to
Ohtani, Matsui and Price, Stixrude and Bukowinski: 295

Physical properties: a(T) at P = 0: 107; 6ac: 120; 0ac(T) at P = 0:
26; 6ca,: 120; 6(+2): 120; 0(-3): 120; density of states, g(u):
123; measured AV/V0 versus T at P = 0: 90, 111; moment of QD

versus moment 71: 120; packing fraction in Class C: 117; v\, versus /j,
isostructural set: 132
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Physical properties, plots (P > 0): a(T) at constant 77: 109; p(P)
along earth's adiabat: 112; p(P) along isotherms: 111; p(P) along
isotherms, EoS: 273; p(P) compared with PREM: 273; PTH versus
T: 272; Tm(P): 294, 295; AV/Vb versus T along isobars: 91, 109,
110; AV/Vb versus T at 36 GPa, comparison with experimental data:
110, 111

Physical properties, tables: P(rf) along isotherms, EoS: 89, 271, 272
Physical properties, values: aKT at P = 0, T = 1000 K: 108; a(0,9):

108; 7ac: 105, 141; 7,-: 17, 18; yopt: 17; Jo: 104, 105, 141; 6Ta: 104,
108; 6: 104, 105; 6ac: 25, 105; p. 25; Po: 25, 104, 133; ut: 17, 18;
Debye-like solid: 121, 123; K'0: 22, 104, 142, 168, 182; KSa: 133;
(dKT/dT)p: 108; d3KT/dTdP: 182; #TO: 104, 265; APTH: 271; vb:
133; V0: 104

Thermoelastic parameters (0, KTO, K', Vb, To, <5To, K) in sgt from: An-
derson and Masuda: 104; Hemley et al.: 104; Knittle et al.: 104;
Wang et al.: 104

Planck's constant h: 32. 355
Pressure:

Definitions: arising from free electrons: 5; arising from lattice sums of
repulsion PH: 206; at absolute zero, PT=O'- 5; component due to zero
vibrational energy, Pzv: 33, 36, 53; from T: 4; from U: 5; in high T
limits: 40, 41; in terms of interatomic potential: 183; kinetic pressure:
243

EoS, importance: electronic contribution Pei\ 5, 29, 30; thermal pressure
PTH- 5

Pyrope:
Physical properties, plots: aKT versus T: 43; j(T): 38; CV(T): 39;

KT(T\. 42
Physical properties, tables: values, 300 K to 1000 K: a, aKx, 7, T, &S,

6T, (Sr ~ 6s)h, 6, p, </>, CP, Cv, G, KT, Ks, APTH: 369
Physical properties, values: fac, 12, 140; 70: 12, 140; 9OC: 25; p: 25,

115; p0: 25, 115
also see Equation of state and Thermal pressure

q see Wave number
Q, see Operators
Quartz:

Physical properties: QO: 82; -jac: 140; 70: 9, 140; <5To: 82; 0ac: 25; «:
82; n: 25; p0: 25; K': 82; q: 9

Quasiharmonic approximation:
Conditions: 34, 45, 47, 54
Debye theory approximation for T below 6, yielding equations: al\x:

54; CV: 54; Ezv: 53; TTH: 53, 54; KT: 54; PTH: 54; S: 54; U: 54
Distinction from both anharmonicity and harmonicity: 45, 46, 47, 48,

245
High temperature limit, equation for J-TH and U: 36
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Quasiharmonic approximation (cont.)
Independence of T at high T for following properties: aKf'- 39, 42, 199;

7: 15, 34, 45; Cv- 42, 76, 85; mode gammas: 15
Linearity in T at high T for following property: PTH'- 43
Modifying statistical mechanical expression for U: 34
Physical properties at high T, equations: aKx versus T: 39, 43; a(T):

44; (da/dT)v = 0: 45, 84; (da/dT)P increases as a2: 44, 45, 63;
T(T): 38; CV(T): 37, 76, 77; TTH: 36; (dKT/dT)P: 41; (dKT/dT)v:
41; tfT(T): 40; PTH(T): 39, 245; S(T): 42

Special relationships at high T in quasiharmonic approximation: q as
function of <5y and K'0: 45, 46; 5 increases as fti T: 42

R, gas constant: 355
Remainder after truncation of E(c), Rn+4'- 170
Rutile, TiOa:

Density of states: 127
Physical properties: jac: 12, 140; 70: 12, 140; 9ac: 25; \i\ 25, 115; p0:

25, 115; q: 12

S: see Entropy
Shear elastic constants, cubic symmetry, from lattice dynamics:

Additional term in 644 required for ZnS lattice: 203
Cu, £12, (744, Cs change with P and KTo: CaF2: 208; CsCl: 207; fee

lattice: 222; NaCl: 207; ZnS: 208
Cn variation with P and Q: Cu in terms of P and Q: 204; C£ for

NaCl in terms of Pn and Q11: 204, 205; Cft for ZnS in terms of PR

and Qfl: 205; Cft in CsCl in terms of 7>fi and QR: 205
Cfi variation with <$>v'. C\\ variation with K? and P: 206; Cf\ in terms

of (£„ for CsCl, NaCl, and ZnS structures: 206
Cn, Ci2, C*44, Cs variation with K and P: fee lattice: 222; NaCl and

CsCl lattice: 207; ZnS and CaF2 lattice: 208
Cauchy relation: 202
Change with P, dC^^/dP large when dCs/dP small and vice versa: 203
Comparison of theory with experiments, 044 versus P: NaCl: 226
Definitions: Cs: 202; Cs in terms of K and P: 202; C44 in terms of K

and P: 202
KR variation with <j>v for CsCl, NaCl, and ZnO: 206
Nonlinearity in P: 202
Operators C and T> in terms of K and P: 208
Operators P and Q to find Cij from repulsive interatomic potential <j>v:

203
Operators PR and Qfl for repulsion components of potential </>v: 204
Plot, C44 versus P: CsCl lattice: 213; NaCl lattice: 212
Stability limits: Cs: 211; C7n: 202; C44: 211
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Shear elastic constants, cubic symmetry, pressure derivatives:
dCu/dP, dCn/dP, dC44/dP, dCs/dP change with P and KT: CaF2:

208; CsCl: 207; NaCl: 207; ZnS: 208
Data for pressure derivatives, (8Cij/dP)T: three CsCl structures, seven

NaCl structures: 209
Equations for pressure derivatives in terms of K'0: CsCl lattice: 210;

NaCl lattice: 210
Shear modulus, isotropic G:

Definitions: 213, 214; Reuss limit, Hill average: 213; Voigt limit: 213
G(T) versus T at high T: 231
Intrinsic temperature derivative, {dG/dT}y: 232
Poisson's ratio: fee lattice: 223
Temperature variation: A12O3: 362; CaO: 366; Fe2SiO4: 369; KC1: 366;

MgAl2O4: 368; Mg2Si04: 364; MgO: 363; NaCl: 366; Olivine: 365
Shear velocity:

Comparison of theory with experiment: vs versus P for NaCl: 228; v,/vp

versus P for NaCl: 227
Definitions: 209, 214; dimensionless pressure derivatives: 215; in terms of

K and G: 214; pressure derivatives in terms of finite strain variables:
217

dv,/dp can be negative: likely for Class A solids: 216; not possible for
Class A solids: 216; possible for Class B solids: 216

Plot, shear velocity versus P: CaF2 lattice: 219; CsCl lattice: 218, 219;
NaCl lattice: 218; ZnS lattice: 219

Poisson's ratio: 215; fee lattice: 223; NaCl at high P: 229; pressure
derivative: 216

Values, v, close to Tm for A12O3, MgO, Mg2SiO4: 231
Shock waves:

Commentary: assumption of hydrostaticity: 307, 310; assumption of
linearity between Us and Up: 310, 311; assumption of thermal equi-
librium: 307; conservation of mass, momentum, and energy, 312; ex-
perimental variables, Up and Us'- 310; linear stress wave: 308, 309;
Us and Up in terms of slope s and intercept CQ: 312

Differentials related to H: dH in terms of dS, dP, and dV: 315; rfH
in terms of dT and dV: 317; dS in terms of dP and dV: 320; dS in
terms of dV and dT: 317; dT on Hugoniot in terms of dV and dS:
321; on Hugoniot, dH = 0: 315; (dP/dV)s related to (dP/dV)chord:
317

Hugoniot bulk modulus KH, in terms of: K$ and 7: 316; K$ and chord
modulus, KC'- 316

Hugoniot: conservation equations in Hugoniot variables: 312; conserva-
tion equations, CQ and s: 312; definition: 315; Hugoniot pressure and
Hugoniot energy, CQ and s: 312; KH along Hugoniot path, CQ and s:
312, 313; variables, Us and UP: 312
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Shock waves (cent.)
Temperatures: at solid-solid transition and solid-liquid transition of iron

Hugoniot: 322; differential equation of dT on Hugoniot, dTn~. 321;
high pressure specific heat for iron: 322, 323; Hugoniot temperature
for iron: 321, 323; on isentrope: 320; radiance shock temperature
measurements of iron: 324

Variables, s and CQ\ CQ in terms of KSO'. 319; KH in terms of CQ and s:
313; s in terms of K': 319; Up in terms of CQ and s: 312; Us in terms
of CD and s: 312

Silica glass: jac: 140; 70: 140; density of states: 124
Specific heat:

Definition: terms due to possible anharmonicity: 48; at high T in quasi-
harmonic approximation: 37; effect on a: 85; effect on 7: 38

Determination from optical fif(cj): 16
Electronic contribution to: 29, 30
Plots: comparison of Cv and Cp versus T at P — 0 for MgO: 334; Cv

versus T/Q for oxides and silicates: 37
Temperature variation of Cv for: A^Os: 362; CaO: 367; grossular: 370;

KC1: 367; MgO: 363; Mg2SiO4: 364; MnO: 368; NaCl: 367; olivine:
363; pyrope: 369

Spinel, MgAljC^:
Physical properties, table, values, 300 K to 1000 K: a, aK^, J, F, 6$,

ST, (6r - <W7, P, <t>, CP, Cv, G, Ks, KT, APT/f: 368
Physical properties, values: 7ac: 12, 140; /r. 115; po'. 115; K'0: 12

Statistical mechanics:
Commentary: assumption of ensemble of independent Einstein oscilla-

tors: 31; difference between statistical mechanics versions of TV IB
and Tca\'. 32; J- and U in terms of modal frequencies: 33; quasihar-
monic approximation and its results, see Quasiharmonic Approx-
imation

Stress deviator in equations of state: 5, 309, 310
Swenson's law: 274

Temperature: along Hugoniot of iron: 321; of iron for inner core-outer
core boundary pressure: 269; of lower mantle: 262

Thermal bulk modulus: 41
Thermal energy: anharmonic terms in: 245; in quasiharmonic approxi-

mation: 244; of diatomic gas: 32; of solid: 31, 32
Thermal expansion, AV/Vfc:

Isobaric variation with T, P = 0: need for knowledge of 0 and 7: 104,
105; perovskite: 106, 110, 111

Isothermal variation with rj: NaCl: 96
Theory: Griineisen: 92; Suzuki: 94
Thermodynamic analysis for silicate perovskite, plot: 106
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Values: for lower mantle: 98; for NaCl: Boehler and Kennedy: 96; for
perovskite: Knittle et al.: 90, 107; Navrotsky: 90; Ross and Hazen:
90; Wang et al.: 91, 110

Thermal expansivity, a = 1/V (dV/dT)P:
Definition, in terms of: aKT: 44; ST and V: 83; 77: 58, 83, 85; F: 5; Ks:

99; KT: 99
For earth's mantle, plots: fti a versus fri p: 103, Anderson: 102, Brown

and Shankland: 100, Stacey: 101; for mantle's uncompressed a: 98
High-T extrapolation formulas: 44, 45, 62, 63, 84, 85
Isochoric variation with T (P = 0): silicate perovskite: 107, 109
Isochoric variation with T: silicate perovskite: 109; for MgO: 87, 88
Isothermal variation with P: silicate perovskite: 109
Low T behavior: 50
Temperature variation: Al2Oa: 362; CaO: 366; grossular: 370; KC1:

366; MgAl2O4: 368; MgO: 363; Mg2SiO4: 364; MnO: 365; NaCl:
366; olivine: 365; pyrope: 36

Theory: Griineisen: 93; Suzuki: 94
Thermal pressure Prtf-

Data on A.PTH relative to 300 K: plots of six solids: 40; tables: Al2Oa:
362; CaO: 367; grossular: 370; KC1: 367; MgAl2O4: 368; MgO: 363;
Mg2SiO4: 364; MnO: 368; NaCl: 367; olivine: 365; pyrope: 369

Definition: 246
Effect of V/V0 (or 77) on Swenson's law: 274; A12O3: 258; argon: 252,

257; gold: 255, 256; KC1: 253; krypton: 252, 257; NaCl: 253, 254;
potassium: 249; xenon: 252, 257

Lower mantle: 259, 262
A.PTH distribution: of earth's mantle: 263, 265, 266, 267
&PTH for inner core: 268, 269
A.PTH'- linear in T: 39, 246; relative to 0: 39; relative to T: 246; relative

to 300 K: 40
Quasiharmonic approximation: 34, 245; discussion for anharmonicity

in: 246; free volume form: 14; high-temperature limit: 35, 39; Mie-
Griineisen form: 10, 35, 245

Thermodynamic functions: Definitions: 4
Relationship to physical properties: 3

Thermodynamic identities: general: 57
Approximations for low 77: 58
From calculus: 58
In terms of dimensionless thermodynamic parameters: 58
In terms of thermodynamic variables, involving: a: 83; ST — K'- 58, 74;

Cv: 76; dKT/dT: 59; PTH- 60; q: 60
Maxwell's relationships: 61
Special cases: (d In (aKT)/dT)p = 0: 62; (dKT/dT)v = 0: 62

Thermodynamic properties of oxides and silicates: Table A—7
Thermoelastic parameters, plots:

aKT versus 77, isotherms: 75
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Thermoelastic parameters, plots (cont.)
7(7?) isotherms: 79 j(T) isochores: 78
6T(ri) at P = 0: 47; 6T(r)) isotherms: 73; ST(T) isochores: 73
K'iji) isotherms: 64
Lines of constant ST — K' in T, V space: 68
£n q versus £n r] along isotherms: 80

9(77) isotherms: 80; q(T) isochores: 314
Thermoelastic parameters, tables:

MgO: i^rC7?) isotherms: 72; (8? ~ K') versus 77 isotherms: 74; K'(r]]
isotherms: 65; KT(T)) isotherms: 65; P{j]) isotherms: 65, 89

Perovskite: ambient values: 70, &r0, 0, K, KTO, K'0, VQ: 104

14, see Internal energy
Up, Us, see Shock waves, variables e and CQ

Velocity systematics derived from Debye theory:
Bulk modulus correlations, equations: A'oVb = constant at constant

crystal structure: 132, 133; law of corresponding states: 132; seismic
EoS:144

Bulk modulus correlations, K$ independent of iron content: garnets:
135; magnesiowiistite: 135; olivines: 135, 136; orthopyroxenes: 135,
136

Compositional correlations: Birch systematics: 129; Kf-V systematics:
132; K'0 systematics: 142; law of corresponding states: 129, 132;
seismic EoS: 144; Shankland's representation: 130

Shear constants: correlation with po depends on crystal structure: 137,
138, 139

Types: at constant n, v\, versus po, Shankland: 133, 134; Ca-rich silicates
perturb i>j,0 versus p0 (constant /J.) correlations: 134, 135; in solid
solution, t>j,0 versus p, Shankland: 133, 134; isobaric (P = 0) vpa

versus p0, Birch: 129; isobaric (P = 0), v,D versus p0, Simmons: 129;
isobaric Vf,n versus p0: Wang, 129; t)j0 versus fj. correlation a property
of Class C: 134, 135

Vibrational degrees of freedom: 31
Vibrational energy:

Diatomic gas: 32; of insulator solid: 32
Relation to thermal energy: 33

Vibrational frequencies 10,-: 32,33
Vitreous silica see Silica glass

w, see Bulk modulus, temperature derivative
W, definition w = -w/(aKT): 232
W, Watt: 356
Wave number: k: 128
Wiistite, see FeO
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z, see Depth in earth
z, atomic number: 357
Z, see Partition function
ZnO:

Physical properties, values: 7: 146; yac'- 140; 0ac: 25; /j,: 25; PQ: 25; K'Q:
22
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