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Preface

This book is the result of the NATO Advanced Research Workshop on Frontiers in Planar 

Lightwave Circuit Technology, which took place in Ottawa, Canada from September 21-25, 

2004. Many of the world’s leading experts in integrated photonic design, theory and 

experiment were invited to give lectures in their fields of expertise, and participate in 

discussions on current research and applications, as well as the new directions planar 

lightwave circuit technology is evolving towards. The sum of their contributions to this book 

constitutes an excellent record of many key issues and scientific problems in planar lightwave 

circuit research at the time of writing.  In this volume the reader will find detailed overviews 

of experimental and theoretical work in high index contrast waveguide systems, micro-optical 

resonators, nonlinear optics, and advanced optical simulation methods, as well as articles 

describing emerging applications of integrated optics for medical and biological applications.  
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MICROPHOTONICS

Current challenges and applications 

S. Janz, P. Cheben, A. Delâge, B. Lamontagne, M.-J. Picard, D.-X. Xu, K.P. 

Yap, W.N. Ye 

Institute for Microstructural Sciences, National Research Council Canada 

Abstract:     This chapter gives an overview of the current challenges encountered in 

implementing devices based on high index contrast microphotonic waveguides, 

along with some new applications. An input coupler based on graded index 

(GRIN) waveguides is described. Theoretical and experimental results on 

using of cladding stress to eliminate the polarization dependence in SOI 

waveguide devices are reviewed.  Recent work on output coupling of data on 

many output waveguides using waveguide to free space coupler array is also 

described. Design rules are presented for increasing bandwidth and resolution 

of integrated waveguide microspectrometers, to address applications in 

spectroscopic sensing and analysis. Finally, the potential for high index 

contrast microphotonic waveguides in evanescent field sensing is explored.

Key words: Microphotonics, silicon-on-insulator, integrated optics, birefringence, silicon 

photonics, wavelength division multiplexing, evanescent field sensors, 

couplers, waveguides, waveguide loss

1.   INTRODUCTIO 

Optical waveguides and planar lightwave circuits have reshaped the field 

of optics over the last two decades. In classical free space optics light can 

only be delivered to a given point in space and time by line of sight 

propagation. The propagation direction is modified through refraction and 

reflection of freely propagating beams using bulk optical elements such as 

lenses and mirrors. In contrast, optical amplitude and phase information can 

be delivered through a waveguide to any specified location over an arbitrary 

path.  Waveguides can be used to split, route, and recombine light on 

  S. Janz et al. (eds.), Frontiers in Planar Lightwave Circuit Technology,
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integrated planar waveguide circuit (PLC) of a few centimeters in diameter, 

thereby achieving almost any optical function.  Modern optical 

telecommunications systems depend on waveguide technology for light 

generation by the waveguide based semiconductor lasers, transmission 

through optical fibre waveguides, and more recently for optical processing 

and routing using, for example, arrayed waveguide grating demultiplexers. 

As existing planar waveguide technologies evolve, waveguide optics will 

play an increasing role in telecommunications and penetrate the closely 

related technologies for optical interconnects in sensor and control networks, 

and between or within chips inside computers.

The challenge for the coming decade is to extend waveguide technology 

to new areas including chemical sensing, spectroscopy, medical 

instrumentation, biology, and space-based sensing.   The functionality and 

small size that waveguide optics provides can be used to great advantage in 

these areas, but the existing telecommunication devices do not meet the 

requirements of many of the latter applications.  For example most analytical 

spectroscopy applications involve optical wavelengths well outside the 

traditional C-band (  ~ 1525 – 1565 nm), in the ultra-violet, visible and 

infrared. New advances, particularly in the areas in microphotonics and high 

refractive index contrast materials now make it possible to adapt and extend 

the capabilities of integrated optics to address these applications.

Microphotonics begins where the structures that confine and guide light 

are on the same scale or smaller than the wavelength of light.  Microphotonic 

devices rely on the use of high index contrast material systems with a large 

refractive index step between the confining waveguide core and the 

surrounding cladding. In optical devices the wavelength sets the length scale 

for all interference and diffraction phenomena. The wavelength of light 

inside a medium, for a given vacuum wavelength 0, scales inversely with 

the index of refraction so that  = 0/n. Any optical device that relies on 

optical interference or diffraction can therefore also be scaled down by the 

same factor 1/n, yet give identical performance. The larger index step 

between the waveguide core and cladding also makes it possible to confine 

light into a smaller volume. Hence high index contrast material systems 

allow more reduction in size than the simple 1/n scaling rule would suggest. 

For example, while conventional glass waveguide with a core cladding index 

step of n=0.01 have cross sectional dimensions of approximately 5 m, Si 

waveguides with an air cladding ( n= 2.5) or SiO2 cladding ( n =2.0) can be 

as small as 250 nm in cross section and still confine most of the optical mode 

within the silicon layer. As a result, waveguide devices fabricated in high 

refractive index materials such as silicon can be much smaller than their 

equivalents in glass or polymer.
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The optical design rules for high index contrast materials are clearly very 

different from those for traditional glass waveguides, as suggested by the 

comparison in Table I. A unique feature in high index contrast materials is 

that the interaction of light with optical structures is non-perturbative, due to 

the large field discontinuities occurring at the interfaces. This allows much 

more scope for the design of optical components, but increases the difficulty 

in accurately designing and modeling waveguide structures since established 

perturbative solutions do not apply. 

The most common examples of high index contrast waveguides are 

silicon-on-insulator (SOI) waveguides, and silicon oxynitride

Table 1. Comparison of normal and high index contrast material systems 

Waveguide Material Bend Radius Waveguide

size

Interaction

Low n Glass, Polymer,  

III-V semiconductors 

> 1 mm > 1.0 m Perturbative  

High n SOI, SiOxNy > 1 m > 0.2 m Non-

perturbative

waveguides.  This combination of strong optical confinement and ability to 

manipulate light at the sub-wavelength scale give the optical designer 

unprecedented ability to design devices with high performance, small 

footprint, and to open up new application areas for optics. However this new 

capability in optical engineering has a cost. With decreasing device scale and 

higher index contrast, design tolerances rapidly become very difficult to 

meet. Polarization sensitivity and waveguide loss are difficult to control, and 

the coupling of light into and out of the devices is a major engineering 

challenge.  Given these difficulties, this chapter will try to answer two 

fundamental questions; does microphotonic technology make sense given the 

associated technical hurdles, and can cost-effective manufacturing processes 

can be developed for microphotonic components?

2. MICROPHOTONIC WAVEGUIDE 

SPECTROMETERS

Waveguide based spectrometers came to maturity with the advent of 

optical telecommunications and wavelength division multiplexing (WDM) 

systems. Spectrometers of various forms are the essential component for 

WDM networks, where they are used to multiplex several wavelength 

channels together onto a single fibre, demultiplex or separate the different 

wavelength channels at the end of the fibre link, and also to allow 

regeneration, processing, and routing of single channels or groups of 

channels at various points in the network. State-of-the-art waveguide 

demultiplexers have reached very high levels of performance. The most 

common wavelength channel spacing is  = 0.8 nm (100 GHz), and the 
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crosstalk between adjacent channels is often below -40 dB (a factor of 

10000). Polarization sensitivity can be reduced to the level where the peak 

wavelength of any given output channel shifts by less than 0.01 nm for 

arbitrary changes in the input polarization. Finally the total insertion loss of 

telecommunications demultiplexers can be significantly less than 3 dB, 

including fibre to waveguide coupling loss.

Nevertheless, spectrometers or demultiplexers for telecommunications 

are specialized devices designed to function over a very narrow range of 

operating parameters.  The operating wavelength range is usually just the 

bandwidth of the Er
+
-doped fiber amplifier (EDFA) from  = 1525 nm to  = 

1565 nm. For many applications in spectroscopy it may useful to have a free-

spectral range over a much wider wavelength range or have much finer 

wavelength channel spacing than 0.8 nm, e.g. for high-resolution 

spectroscopy. Although some devices with much denser channel spacing 

have been reported
1-3

, little work has been done to extend the performance of 

these devices to compete directly with laboratory spectrometers based on 

free space optics.

The operation of an echelle grating based waveguide spectrometer
1,3

,

shown schematically in Figure 1 is perhaps easiest to visualize since it is 

essentially a grating spectrometer fabricated in the two-dimension waveguide 

plane. Light is coupled to an input waveguide which terminates at a slab 

waveguide section, through which the light propagates freely within the 

waveguide plane to illuminate a curved grating etched vertically into the slab 

waveguide layers. Light is diffracted from the grating and focused into a spot 

on the output focal plane (or more accurately, the focal line in a two 

dimensional optical system), as in a free space grating spectrometer. The 

output waveguides, each one positioned to accept diffracted light at a 

specific wavelength, are arrayed at appropriate spacing along the focal line. 

Figure 1. Schematic layout of an echelle grating waveguide spectrometer. 

Echelle grating

Input waveguide

m
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Each output waveguide leads to either an output fiber or photodetector, 

depending on the function of the spectrometer chip. The wavelength 

resolution is determined by several factors. The first is the change in 

diffraction angle  with wavelength, d /d which determines the rate at 

which the diffracted beam sweeps past a given output waveguide on the focal 

line as the wavelength changes. The angular dispersion is directly 

proportional to the order of the grating, M; the path length difference 

between rays diffracted from adjacent grating facets expressed in units of 

optical wavelength. The grating order also sets the operating wavelength 

range of the spectrometer, since the free spectral range is given 

approximately by /M.  The second factor affecting resolution is the width of 

the input waveguide mode. The spectrometer creates an image of the input 

waveguide mode at the output focal plane – hence the smaller the input mode 

size the better the spectrometer resolution . Thus the mode size plays the 

same role as the slit width in a conventional free space spectrometer.  

Finally, the resolution is limited by the spot size of the diffracted beam at the 

focal plane. In telecommunications applications, the latter two parameters are 

coupled, since waveguide mode width and the focal spot size must be 

matched to achieve maximum coupling into the output waveguide for 

specific wavelength channels.

Figure 2. Schematic layout of an arrayed waveguide grating spectrometer/demultiplexer. 
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Despite recent developments in waveguide echelle grating technology, 

most telecommunication spectrometers and demultiplexers are still based on 

arrayed waveguide grating (AWG) designs, as shown in Figure 2. In an 

AWG, the grating has been replaced by an array of waveguides, in which 

each adjacent waveguide is a fixed increment longer than the next 

waveguide. This length increment, when expressed in wavelengths, is just 

the order M of the AWG. Thus each waveguide in the array plays the same 

role as a single grating tooth in the echelle grating device, and the physical 

principles of operation of the two designs are otherwise identical.

In adapting waveguide spectrometers to new applications, the immediate 

challenge is to either improve the resolution of the spectrometer, or to extend 

the spectrometer bandwidth beyond the 40 nm range typically found in 

telecommunications devices. As discussed in the previous section, the size of 

the spectrometer and all the parameters that set spectrometer resolution are 

dependent upon the wavelength of light in the material. The grating order M 

is the physical path length difference, in wavelengths, between light rays 

diffracted from adjacent grating teeth or propagating through adjacent 

waveguides in an AWG. The waveguide mode size is dependent on the 

wavelength of light, and the smallest achievable focal spot size is of course 

limited by diffraction and thus depends on wavelength as well. This suggests 

that spectrometer performance can be enhanced simply by using materials 

with high index of refraction. Waveguide mode size, the focal spot 

diffraction limit, and grating order (for a given physical path length) all scale 

inversely with increasing index of refraction. It follows that a spectrometer 

based on glass waveguide with effective index near n = 1.5, can be scaled 

down by more than a factor of two with no other design changes, by using 

silicon waveguide with index n = 3.5, and have identical performance to the 

original glass device.  This simple scaling is probably the most compelling 

reason to consider high refractive index materials for extending the 

performance of waveguide spectrometers, as well as other interferometric 

devices.

From the equations describing the performance of an AWG 

demultiplexer, one can show that spectrometers with up to 1000 nm 

bandwidth and a resolution of 0.1 nm are possible using the SOI 

microphotonic waveguides with widths less than 1 m and very low 

diffraction orders. As a more modest demonstration of what can be done, we 

have designed a simple AWG with 100 channels and a 0.08 nm channel 

spacing (i.e. the spectrometer resolution) and a free spectral range of 20 nm
4
.

Such a spectrometer can be used in applications such as gas sensing, where 

the bandwidth would be targeted at a specific set of vibration overtone
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Figure 3. (a) Plan view image of a SOI waveguide microspectrometer with 0.08 nm channel 

spacing and 20 nm free spectral range. (b) Plan view and a cross-section scanning electron 

microscope view of the waveguide apertures at the combiner output. 

absorption lines
5
, or for measuring small frequency shifts in such lines for 

Doppler velocimetry.  A plan view of the first such spectrometer is shown in 

Figure 3(a). This spectrometer has an order M = 80 waveguide grating, with 

250 waveguides in the array section. The overall device size is 

approximately 5×5 mm, small enough that it can be incorporated in a wide 

variety of analytical instruments with very little impact on instrument 

footprint.

A key design feature of this spectrometer is to narrow the input and 

output waveguide apertures at the combiner sections, as shown in Figure 3 

(b). These apertures play the same role as the input and exit slits in a 

conventional free space grating monochromator, where the instrument 

wavelength resolution  is proportional to the input and out put slit widths. 

By reducing the waveguide mode width at the entrance of the combiner slab 

waveguide section, it is possible to improve the spectrometer resolution by a 

similar scaling factor, provided lithography and fabrication tools of sufficient 

spatial resolution are available and the fundamental limit set by diffraction is 

not reached. Using SOI waveguides with a very high index contrast between 

the Si waveguide core and the SiO2 cladding, it becomes possible to design 

and fabricate waveguides with dimensions as small as a few hundred 

nanometers
6,7

. Such manipulation of the waveguide mode width is only 

possible when using high index contrast materials such as SOI. In 

conventional glass waveguides with an index step of the order of 1%, the 

waveguide mode width cannot be compressed to less than a few microns. If 

the glass waveguide core is decreased further the optical confinement is 

insufficient to prevent the waveguide mode to expand again. In our 

spectrometer design the waveguide is tapered down from a conventional SOI 

ridge waveguide formed in a 1.5 um thick SOI layer, with ridge width of 1.5 
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um and an etch depth of 0.8 um, to a 0.7 um wide rectangular channel 

waveguide that is etched down to the oxide layer, as shown in Fig. 4. These 

narrow apertures are the key to achieving high resolution. They launch the 

light into the spectrometer at the input combiner, and collect the light at the 

output side of the output combiner. Although such a deeply etched channel 

waveguide provides a narrow aperture, it is capable of supporting higher 

order modes. To ensure that the spectrometer crosstalk is not degraded by 

inadvertently exciting higher order modes at the spectrometer input, 

adiabatic converters are used to couple all the power in the ridge mode into 

the fundamental mode of the rectangular aperture waveguide. This is 

accomplished using the two level taper mode converter design shown in 

Figure 4. The converter design consists of a deep etched lateral taper that 

first transforms the waveguide from a ridge waveguide to a channel 

waveguide of the same width, and then tapers down the channel waveguide 

to the desired 0.7 m aperture.  Figure 5 shows simulations of the mode 

coupling efficiency from fundamental mode of the ridge waveguide to the 

fundamental mode of the deeply etched channel waveguide. The results show 

that when the two sections of the taper approach 100 m in length, mode 

conversion to higher modes is less than -30 dB.

Figure 4. (a) Design of an SOI two level taper leading to a waveguide aperture in the 

microspectrometer, and the corresponding mode size at the indicated positions. (b) An SEM 

view of the fabricated mode converters.

(b)

10 m

(b)

10 m
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Figure 5. BPM simulations of the power coupling efficiency from the fundamental mode of 

the initial  1.5 m wide ridge waveguide to the fundamental and cumulative higher order 

modes at the end of the 0.7 m aperture waveguide. 

Insertion loss measurements were performed on a series of fabricated 

mode converters of different lengths. Series of two, four and six converters 

of identical length were fabricated end to end. By measuring the total 

waveguide insertion loss with increasing number of converters, an indication 

of the converter excess loss could be obtained. As in the case of the 

microspectrometer aperture waveguides, the ridge waveguides were formed 

in a 1.5 um thick SOI, with a 1.5 um wide ridge width. The mode converter 

tapers down to a 0.7 m wide channel waveguide. The measured insertion 

loss for converters that are 50, 100, 200 and 300 m long are independent of 

converter length. These results indicate that the additional insertion loss of a 

single converter is less than 1 dB, and since the ridge waveguides are single 

mode, most of the power is maintained in the local fundamental mode.

In summary, the use of a narrowed aperture waveguide can be employed 

to increase spectrometer resolution. Here we have described a simple mode 

converter that can be used to couple light from a ridge waveguide to aperture 

waveguide (i.e. a narrow rectangular channel waveguide etched to the buried 

oxide layer) with negligible higher order mode generation. 
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3.  POLARIZATION 

The waveguide effective index N, and hence the propagation wave vector 

= N (2 / 0) of a waveguide mode depends on the polarization state of the 

waveguide mode. Some waveguides will have modes with complex 

polarization distributions, but in most cases the mode electric fields are 

predominantly oriented along either the perpendicular axis (transverse 

magnetic or TM mode) or parallel axis (transverse electric or TE mode) to 

the substrate plane.  In this discussion, the polarization birefringence is 

assumed to be the difference between the effective index of the fundamental 

TM and fundamental TE modes, N = NTM - NTE . In a perfectly symmetric 

waveguide (i.e. a waveguide of isotropic material with a square or circular 

cross-section) the orthogonally polarized modes are degenerate and N = 0, 

but in most other cases birefringence is present. Since the propagation 

wavevector of light in the waveguide is proportional to the effective index, 

birefringence causes an unwanted polarization dependent response in all 

interferometric devices such as spectrometers, Mach-Zehnder interferometers 

and ring resonators. For example, if the index birefringence is N, the peak 

wavelength of a waveguide spectrometer channel will differ by ~ 0

N/N for the two orthogonally polarized modes. Similarly, the phase of TE 

and TM polarized light after propagating through a waveguide of length L 

will differ by ~ (2 / 0 )·L.

The source of polarization anisotropy may be the intrinsic birefringence 

of the waveguide material itself, as is the case of LiNbO3, or may be induced 

by anisotropic stress fields in the waveguide layer
8
. The latter is often the 

case in waveguides formed by film deposition or epitaxial growth. Finally, 

there is a geometrical birefringence determined by the shape of the 

waveguide and the boundary conditions for the electromagnetic field across 

the waveguide core-cladding interfaces. Since the tangential electric field is 

continuous across a boundary, while the normal component of the 

displacement D = E must be continuous, the field distributions near the 

interface for orthogonally polarized modes can be very different for TE and 

TM modes, as for the Si channel waveguide modes shown in Figure 6. The 

difference in field distribution is naturally reflected in the difference in 

effective index between these modes. Since this geometrical birefringence is 

determined by the field amplitude at the interface, and by the dielectric 

constant discontinuity at the waveguide cladding interfaces, N increases as 

the waveguide shrinks and as the index contrast between core and cladding 

becomes larger.
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Figure 6. TE and TM polarized waveguide modes for a 0.6 x 0.3 m rectangular waveguide 

embedded in an SiO2 cladding. The arrows indicate the dominant electric field polarization. 

In a typical high index contrast SOI ridge waveguide with width and 

height approaching one micron,  can easily be larger than 10
-3

. In 

applications such as wavelength demultiplexing and high-resolution 

spectroscopy, the birefringence should be less than N ~ 10
-5

 for acceptable 

polarization insensitive performance. The birefringence problem may be 

circumvented by adopting a polarization diversity strategy, wherein the two 

orthogonally polarized components of an incoming optical signal are 

separated and directed through two waveguide circuits each optimized to 

process a single polarization state correctly. The polarization diversity 

approach requires polarization splitters, filters, and converters, all of which 

can introduce complexity and undesirable compromises in overall system 

performance. The difficulty encountered by coherent communications 

systems, which rely on polarization diversity, to be accepted by the 

telecommunications industry in the past suggests that polarization diversity is 

unlikely to be commercially viable.

In the case of SOI ridge waveguides, a specific aspect ratio (e.g. the ratio 

of  ridge width and ridge height) can often be found for which the 

geometrical birefringence is zero
9
.  While this approach can be effective in 

controlling birefringence, for small waveguides it becomes increasingly 

difficult to fabricate waveguides with dimensions within the tolerances 

required to reduce birefringence to an acceptable level. Also, by adopting 

this approach the waveguide ridge aspect ratio is fixed by the birefringence 

constraint, and it is difficult to design the waveguide to meet other 

performance criteria such as mode confinement, bend loss, and higher order 

mode suppression.

0.6 x 0.3 m Si waveguide0.6 x 0.3 m Si waveguide
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by the stress birefringence created by a cladding layer. By applying 

claddings of different thickness and internal stress, the total waveguide 

birefringence can be precisely controlled. Furthermore the birefringence of 

waveguides of arbitrary shape can be corrected, thus allowing considerably 

more freedom to design waveguide independently of birefringence 

constraints.

Through the photoelastic effect, stress will modify the refractive index of 

silicon according to the relations 

where z is along the waveguide propagation direction, and y points along the 

surface normal. The local stress field at any point in the waveguide is 

described by the three stress tensor components x, y and z , and C1 and C2

are the stress optic constants given in Table 2. Here nx and ny are the 

effective refractive indices for light polarized along the x- and y-axes 

respectively, while n0 is the unperturbed index of refraction.

The stress tensor elements i are related to the strain field k in the 

material by the equations

where E is Young's modulus,  is the Poisson ratio, and  is the thermal 

expansion coefficient. The last term in each of these equations represents the 

strain in the material that would arise from thermal expansion in the absence 

of external forces, for a temperature change T.
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Recently a new approach has been proposed and demonstrated by Xu et 

al.
10

, in which the geometrical birefringence in an SOI waveguide is balanced 
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Table 2. Mechanical and optical constants of Si and SiO2 (refractive index N is given at 

=1550 nm) 

Material E  (GPa)   (K
-1

) N  C1   (GPa
-1

) C2   (GPa
-1

)

Si 130 0.27 3.6 ×10
-6

 3.476 -17.79×10
-3

 5.63×10
-3

SiO2 76.7 0.186 5.4 ×10
-7

 1.444 0.65×10
-3

 4.5×10
-3

The thermal expansion coefficient of silicon is approximately seven times 

larger than that of SiO2, as given in Table 2. When SiO2 is deposited, 

typically at temperatures of several hundred degrees C, an in-plane 

compressive stress develops in the oxide layer as the Si wafer is cooled by 

T to room temperature. For a uniform 2-dimensional thin film deposited on 

a substrate, the in-plane stress obtained from Equation 2 is:

where x and z are taken to be in the wafer plane, and y is normal to the 

surface. The coefficients E and are the Young’s modulus and the Poisson 

ratio of the SiO2 film, as given in Table 2. In a uniform film, the film stress 

film depends on the difference between in thermal expansion coefficients, s

and  of the silicon substrate and SiO2 layer, respectively. Assuming the 

system is cooled by T = 400 ºC, the calculated film stress is film =  -115 

MPa. The out-of-plane stress y is zero, since no force acts perpendicular to 

the surface. However, in response to the in-plane stress, a uniform SiO2 film 

will expand along the surface normal with a tensile strain given by 

In real films, the deposition conditions, composition, and subsequent 

annealing also determine the stress. Stresses are usually larger than predicted 

by the simple thermal model, with values in the range from film = -200 to -

300 MPa for PECVD grown SiO2 films. This thermal stress is the dominant 

source of birefringence in glass waveguides, and hence its control and 

elimination are among the fundamental issues in silica waveguide device 

design. Surprisingly, this same stress mechanism provides a simple and 

elegant method of eliminating the birefringence in SOI waveguides.

As an illustrative model, consider a rectangular silicon-on-insulator 

channel waveguide embedded in an oxide cladding, as shown in Figure 7.
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Figure 7. Schematic diagram of a Si channel waveguide, buried in a SiO2 cladding under 

compressive stress x = film in the horizontal plane.The equations indicate the approximat

strains x and y estimated according to the simple model described in the text.

The in-plane strain x inside the Si is expected to be dominated by intrinsic 

thermal expansion since the Si is effectively lattice matched to the substrate 

with only a thin intervening layer of SiO2. However, the Si channel will be 

stretched along the surface normal by the oxide, with approximately the 

same tensile strain as in the oxide given by Equation 2. In reality the Si 

waveguide will deform in a more complex way, but this simple picture 

shows how a strongly anisotropic strain field is created within an embedded 

Si waveguide by a uniform cladding. The approximate magnitude of the 

resulting birefringence can be estimated using the strain given by Equation 2 

to estimate the stress anisotropy in the Si waveguide
11

. For typical SiO2 film 

stresses ( film = -200 to -400 MPa) the stress birefringence turns out to be 

comparable in magnitude (i.e. | N| ~ 10
-3

) and more importantly, opposite in 

sign to the geometrical birefringence of a typical SOI ridge waveguide. As a 

result of this fortuitous circumstance, careful manipulation of the cladding 

film stress can be used to eliminate the total waveguide birefringence.

Designing an SOI ridge waveguide to have zero birefringence requires a 

numerical model that calculates both the stress distribution within the SiO2

cladding and the Si waveguide core, as well as the optical field distribution 

of the TE and TM waveguide modes. Well established mode solving 

methods can be used to evaluate the electromagnetic fields, but the stress 

calculation can be problematic. The model system must extend far enough 

that stress artifacts originating at the edge of the calculation window 

boundary do not perturb the calculated stress in the vicinity of the waveguide 

ridge. The dimensions required for the calculation window may be as large 

as 100 m. At the same time, the spatial resolution of the calculation must be 
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fine enough to accurately model the local stress distribution at the sub-

micron scale in a ridge waveguide that is only a few microns in size.

The finite element method (FEM) is used by Xu et al.
10,12

 for both the 

mechanical problem of determining the strain distribution, and the 

electromagnetic problem of solving for the waveguide modes. The model 

system consists of an SOI wafer with the top Si layer patterned to form the 

ridge waveguide, and the desired SiO2 cladding placed over the entire wafer 

and ridge waveguide. The width and height of the model system, i.e. the 

calculation window, were chosen to be large enough that edge effects would 

be negligible, as discussed below. Initially the layers are in equilibrium and 

there is no stress in any of the model layers. The stress field is generated by a 

simulated cooling of the waveguide, where the temperature change T is 

chosen to induce an oxide film stress film equivalent to that measured on 

experimental wafers. This procedure should reproduce the stress distribution 

due to thermal  expansion mismatch. However, as  noted above, intrinsic 

Figure 8. The generalized plane strain model, ordinary plane strain model, and the normalized 

plane strain model as applied to a single SOI ridge waveguide. 
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cladding system, but there is no reliable quantitative model for predicting 

this intrinsic stress. Implicit in this work is the assumption the stress 

distribution created by the simulated cooling of the model system is an 

accurate representation of the total stress distribution in the corresponding 

real waveguide cladding system. The excellent agreement eventually 

achieved between experimental measurements and theory suggests that the 

assumption is a reasonable one. 

A variety of models and approximations have been used to analyze stress 

in waveguides
13,14

. In plane strain models, the strain distribution is allowed to 

vary in the x and y directions, but remains constant along the z-direction. The 

problem is thereby reduced from three to two dimensions. Plane strain 

models are appropriate for systems that do not change in cross sectional 

profile along one direction, and are very long compared with relevant 

structural features, as in the case for ridge waveguides. Three different 

versions of plane strain model are shown in Figure 8.  The generalized plane 

strain model allows the strain to vary freely in the x and y plane. 

Unfortunately, using the generalized plane strain model for a system large 

enough to yield an accurate stress distribution can involve excessive 

model of Figure 8(b) has been used previously to analyze stress in 

waveguides. In this model the z-component of the strain, z, is set to zero 

everywhere. Setting z = 0 in Equation 2 gives rise to the following equations 

relating stress, strain and thermal expansion. 

Although the ordinary plane strain model requires far less computational 

resources, constraining z to be zero creates a sizable spurious stress field. 

Physically, this artifact arises as the model system is cooled by T.

Contraction can only occur in x and y, since the system length is locked 

along z. The presence of the stress artifact will i) shift the average refractive 
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   the  waveguide-  material stress will also contribute to the   total  stress in    

computation time  and  memory  usage.   The  simpler  ordinary  plane  strain 
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index, and ii) cause an error in the calculated stress anisotropy in the x-y 

plane (and hence birefringence). The anisotropy error is due to changes in the 

effective thermal expansion along x and y when the substrate is under tensile 

stress along the z-axis. The shift in calculated birefringence is of the order of 

10% for SOI waveguides
12

, but can be larger when the Poisson ratios of the 

layers in the structure are sufficiently different.

The accuracy of stress and birefringence calculations can be improved by 

an extension of the ordinary plane strain model, proposed by Ye et al. 
12

, in 

which the strain along z is again fixed but now set equal to the thermal strain 

of the substrate, z = s T, after simulated cooling. If the substrate is much 

thicker than the layers composing the waveguide and cladding (i.e. substrate 

bending is negligible) this model should give equivalent results to the 

generalized plane strain model.  The equations for this normalized plane 

strain model can be written in a form where x and y are again independent 

of z, and are formally identical to the Equation 5 defining the ordinary plane 

strain model. 

Comparing Equations 5 and 6, it is evident that the stress distribution in 

the x-y plane can be calculated simply by using the ordinary plane strain 

model with the thermal expansion coefficient  in Equation 5 replaced by a 

renormalized expansion coefficient

Proceeding by solving Equation 5 with  in this manner will yield an 

incorrect value for ´z , but since ´z  is by assumption independent of x and 

y, the correct value is obtained simply adding a constant to the z from 

equation 4: 
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The normalized plane strain procedure therefore requires the same 

modest computational resources as the ordinary plane strain model. 

Furthermore, the same algorithms used for the ordinary plane strain model 

can be employed, since the revised model simply requires the substitutions 

defined by Equations 7 and 8.

Finally, neither the normalized plane strain model or the ordinary plane 

strain model can correctly calculate the effect of bending of the entire 

waveguide/substrate system by the stress in the SiO2 layers, since by 

assumption the strain along z is independent of x and y. The modification of 

film stress in the Si waveguide layer and SiO2 layers can be estimated using 

known relations
12,15

. While this correction may be significant when the 

substrate thickness is comparable to the total SiO2 thickness, it is negligible 

for typical Si substrate thicknesses 500 m or more. In any case, after 

packaging of devices, the bending stress is can be comparable to local 

stresses induced by the bonding the chip to a carrier. 

One further approximation greatly improves the efficiency of stress 

distribution calculations.  The wafer bending is directly proportional to the 

stiffness, or Young’s modulus Es, of the substrate wafer. If bending can be 

neglected (e.g. when the substrate is much thicker than the oxide film), one 

can set Es to be arbitrarily large
12

. The film stresses in the oxide and Si 

waveguide layers are determined mainly by the thermal expansion of the 

substrate, not by the substrate elastic constants, so this approximation will 

have little effect on the calculated stress distributions in Si waveguide or 

SiO2 layers. The advantage of assuming a stiff substrate is a substantial 

reduction in edge effects for the numerical stress calculation. Using the large 

Es approximation, the calculation window for a typical SOI waveguide can 

be reduced from 100 x 100 m to 40 m wide by 5 m deep, with no change 

in the calculated stress field in the vicinity of the waveguide ridge. 

Combining the large Es approximation with the normalized plane strain 

procedure, stress distributions in SOI waveguides can be obtained that are 

equivalent to those using the full generalized plane strain model, but with 

several orders of magnitude reduction in computation time and resources.

Using the model described here, the anisotropic stress field inside the 

silicon ridge waveguides shown in Figure 9 were calculated. Applying 

Equation 1 to evaluate the anisotropic index of refraction, the FEM mode 

solver was used to determine the effective index values NTE and NTM  for the  
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Figure 9.  (a) Calculated in-plane ( x ),  and (b)calculated  out-of-plane ( y ) stress fields 

inside a Si ridge waveguide 

TE and TM polarized fundamental modes. The resulting birefringence value 

N = NTM-NTE incorporates the contribution of the geometric birefringence 

and the stress induced birefringence. 

The geometrical birefringence of SOI can be compensated in waveguides 

over a range of waveguide dimensions and cross-sectional shapes, using SiO2

films with modest film thickness (e.g. < 1 m), and film stresses between 

film = -200 to -400 MPa, as commonly found in oxides deposited by 

conventional PECVD.   For example, Figure 10 shows the calculated 

birefringence in a 1.5 m wide trapezoidal ridge waveguide, with a ridge 

depth of 1.5 m etched into a 2.2 m silicon layer. The variation of the total 

birefringence with SiO2 cladding thickness is shown for films with stresses 

ranging from film = 0 to -300 MPa. With no cladding stress, the 

birefringence is approximately N ~ 10
-3

, already unacceptably large for 
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most applications in telecommunications and spectroscopy. However,  the
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Figure 10. Calculated variation with cladding thickness of the birefringence in a SOI ridge 

waveguide, for different SiO2 cladding film stress values. The model waveguide is formed in a 

2.2 m thick Si layer and has a typical trapezoidal wet etched ridge profile, with a  base width 

of 3.8 m,  a top width of 1.1 m, and an etch depth or 1.47 m.

stress field created by SiO2 film with film = -300 MPa and a thickness of  0.6 

m fully cancels this large geometrical birefringence, resulting in a 

polarization independent waveguide.

Waveguide birefringence can be measured using an arrayed waveguide 

grating (AWG) demultiplexer, in which the waveguide array is composed of 

the waveguides under test. The birefringence will induce a shift in the 

wavelength,  = ·( N/N) for each output channel, as the input polarization 

is varied between TE and TM.  In our experiment a nine wavelength channel 

AWG with a 1.6 nm (200 GHz) channel spacing was used. The device used 

to obtain the data in Figure 11 had trapezoidal ridge waveguides of width 1.1 

m, formed in a 2.2 m thick Si layer using a 1.5 m deep etch. Figure 11 

shows the calculated and measured wavelength shifts  for increasing SiO2

cladding thicknesses. Remarkable agreement is achieved between theory and 

experiment. Furthermore, these results demonstrate experimentally that a 

polarization independent AWG demultiplexer can be fabricated using SOI 

waveguides with a SiO2 cladding less than 1 m thick and a typical film 

stress of -320 MPa.  Figure 12 shows the TE and TM polarized spectra of 9 
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Figure 11. Comparison of calculated and measured birefringence for different SiO2 cladding 

thicknesses for a trapezoidal waveguide formed in a 2 m thick Si layer as shown in the inset. 

The ridge base width is 3.8 m, the top width is 1.1 m, and the etch depth is 1.47 m.

of a birefringence compensating 0.6 m thick SiO2 layer. In this case the 

cladding induced stress is reduced from  ~ 0.6 nm to achieve a fully 

birefringence compensated device with a polarization dependent wavelength 

shift of less than 0.05 nm.

The use of cladding stress to correct birefringence of a range of 

waveguide sizes allows a considerable degree of freedom in designing SOI 

waveguides to meet other performance criteria such as higher order mode 

suppression and reduced loss at waveguide bends. The birefringence can then 

be corrected as a final step using deposition of the appropriate cladding. This 

technique also allows the waveguide shape and dimensions to be chosen for 

relaxed dimensional tolerances, again with polarization correction applied as 

a last step. The cladding correction technique is also amenable to post 

fabrication birefringence tuning by annealing to modify the film stress, or 

adding or removing a small amount of cladding 
11

.

 Since the effect of a SiO2 cladding on mode shape is negligible, there is 

no mode mismatch loss or PDL associated with the junction between 

waveguide sections with and without claddings. Therefore it is possible to 

apply tailored cladding  patches at  discrete locations  in a planar waveguide
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Figure 12. SOI AWG channel spectra (a) before and (b) after cladding stress compensation. 

circuit with no insertion loss penalty. Although the initial experimental 

demonstration of this technique involved correction of an AWG 

demultiplexer, oxide stress can be applied in many situations including 

polarization correction of ring resonators, waveguide grating filters, and 

Mach-Zehnder interferometers. Cladding stress can also be used to create a 

specific non-zero birefringence for polarization control devices including 

polarization filters and splitters. 

4. INPUT COUPLING 

The potential advantages of Si microphotonic components can be offset 

by the difficulty in coupling light into and out of waveguides with micron or 

submicron dimensions. In most applications, light is coupled from an optical 
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fibre or free space beam with a beam waist of at least several microns. 

Conceptually, the simplest approach for coupling light from a large to a 

small waveguide is to use an adiabatic mode converter, in which the 

waveguide size in continuously tapered down over a long enough distance 

that all the light remains in the local fundamental mode. This approach is 

easily implemented in two-dimensions, i.e. in the wafer plane, by tapering 

the waveguide width using conventional lithography and etching. However, 

three-dimensional fabrication methods are required to taper both the width 

and height of the waveguide. Such three dimensional waveguide tapers have 

been fabricated using gray scale lithography to vary the etch rate linearly 

along a waveguide. In one such coupler, a taper varying in thickness from 10 

to 0.5 m
16

 has been produced, with measured coupling efficiencies of 60% 

from fibre to waveguide.  By using a two-dimensional inverted taper coupler, 

the need for true three-dimensional fabrication is avoided. The waveguide 

width is tapered adiabatically in the opposite sense, from its nominal on chip 

width to an extremely narrow waveguide
17

. As the waveguide narrows down 

below a critical value, the mode begins to expand not only laterally but also 

in the vertical direction. By adjusting the final width of the waveguide the 

mode size can be closely matched to the much larger fibre mode. Although 

the need for three-dimensional fabrication is avoided, high-resolution 

lithography (e.g. using e-beam) is still required to produce tip diameters of 

the order of 100 nm in size. Coupling efficiencies of -3.3 dB have been 

measured. Other approaches include the use of gratings to couple light from 

an initial large input waveguide to successively smaller waveguides
18

, or 

from free space beams. All the above approaches require high-resolution e-

beam or deep UV lithography, and correspondingly accurate fabrication 

procedures.

We have proposed an alternative coupling scheme that uses a graded-

index (GRIN) waveguide lens monolithically integrated on the waveguide 

chip
19

. A conventional cylindrical GRIN lens has a refractive index that 

decreases quadratically with radius from the central axis of the cylinder. 

Light launched along the cylinder axis comes to a focus in a length f, after 

which the beam repeatedly diverges and converges. Such bulk optic GRIN 

lenses are used in the packaging and fiber pig-tailing of optoelectronic 

components. Our proposed GRIN waveguide coupler is shown schematically 

in Figure 13 for an SOI waveguide.  The guiding layer, in this example, is 

formed by a thin silicon layer on a SiO2 buried oxide layer cladding. The 

much thicker GRIN coupler layer is deposited on top of this waveguide. 

Ideally, the refractive index N(x) of this GRIN layer should have a quadratic 

dependence on distance x from the base of the layer, 
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where N0 is the refractive index of the waveguide layer and a is a constant. 

By analogy with a conventional cylindrical GRIN lens, one may expect that 

light launched into the composite structure formed by the Si waveguide and 

GRIN layer in figure 3 should also periodically come to a focus and then 

diverge, provided the bottom edge of the waveguide core acts as a perfect 

mirror. The coupler is then formed by etching away the GRIN layer beyond 

the first focal point of the lens so that light remains confined in the Si 

waveguide beyond that point. In fact, the bottom surface of the waveguide is 

never a perfect mirror, since even for total internal reflection there will be a 

finite phase difference in the reflected beam. Nevertheless, calculations using 

the beam propagation method (BPM) and also exact modal expansion 

propagation suggest the analogy is almost exact for a quadratic index profile. 

  Silicon-on-insulator (SOI) and silicon oxynitride (SiOxNy) on silica are 

the most common waveguide material systems for high index contrast 

microphotonics. For the SiOxNy system, layers with index of refraction 

ranging from n = 1.46 (SiO2) and n = 2.0 (Si3N4) can be grown using 

PECVD. Coupling to SOI waveguides requires GRIN layers of much higher 

refractive index to match the index of Si (n = 3.47 at  = 1550 nm). Materials 

ranging in composition from amorphous silicon to silicon dioxide can also be 

grown by PECVD with the index of refraction ranging from n = 1.46 (SiO2)

to n ~ 3.4 (a-Si)
19

. Figure 14 shows the optical intensity distribution for light 

at wavelength  =1550 nm propagating through a SiOxNy GRIN coupler 

structure composed of a 0.5 m Si3N4 waveguide with a 3.5 m GRIN layer.

Figure 13. GRIN waveguide lens on SOI, consisting of a thick graded index a-SixOy layer 

deposited on a thin Si waveguide. 
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Figure 14. Intensity distribution for light at wavelength  = 1550 nm propagating through a 

SiOxNy GRIN coupler structure composed of a 0.5 m Si3N4 waveguide with a 3.5 m SiOxNy

GRIN layer.

The index changes from n = 1.5 at the top surface to n = 1.9 at the boundary 

between the waveguide and GRIN structure. This coupler achieves a 90% 

coupling efficiency from a 4 m top hat intensity profile to the Si3N4

waveguide. Similar calculations show that effective couplers can be 

fabricated using a step index profile with as few as two or three discrete 

layers
19

. Figure 15 (a) shows refractive index profiles for continuous, two 

layer, and single layer a-Si GRIN couplers as depicted schematically in 

Figure 13.  Figure  15  (b gives  the  corresponding  coupling  efficiency  into

Figure 15. (a) Index profile for one, two and three layer GRIN waveguide coupler structures 

and (b) corresponding coupling efficiencies.
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the 0.5 um SOI waveguide, as the coupler length is varied.  Figures 16 a)-d) 

show the tolerances of the a-Si GRIN coupler with respect to input mode 

position, angular misalignment of the input fiber, input wavelength, and 

polarization. It is particularly noteworthy that this coupler is remarkably 

wavelength insensitive over a bandwidth of 200 nm, and the polarization 

dependent loss is as low as 1 dB. 

x y

angular misalignment, (b) input mode displacement, (c) input wavelength, and (d) 

polarization.

Figure 16.  Tolerances of the a-Si O  GRIN coupler efficiency with respect to (a) input mode 
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The fabrication of GRIN waveguide coupler can be much simpler than of 

other coupler structures. The basic GRIN structure can be grown with a well 

calibrated PECVD machine. Patterning the GRIN coupler requires 

lithography with a 1 m resolution. The GRIN coupling scheme does 

require that the input facet position relative to the end of the coupler section 

is within 1 m of the focal point. The input/output facets of glass and SOI 

waveguide die are often diced and polished, with a resulting uncertainty in 

final  facet  position  of  several  tens  of microns.  To  address  this  problem, 

we have developed a process that forms a lithographically defined coupling 

facet for an SOI waveguide. The facet position is therefore determined to 

within the spatial accuracy of the lithography and processing.  Although 

essential for implementation of a GRIN coupler, lithographically defined 

coupling facets considerably simplify device fabrication, since labor 

intensive mechanical polishing is no longer required. Figure 17 shows a 

scanning electron microscope (SEM) image of a typical waveguide facet 

produced by deep etching. The facet was etched using an ICP etcher at -

120°C using O2 + SF6 gas mixture. Waveguide to fiber insertion loss 

measurements results for waveguides with etched facets were better than or 

comparable to those obtained by polishing.

Figure 17. A lithographically defined ridge waveguide facet waveguide formed by ICP 

etching.



28 S. Janz, et al.

5. OUTPUT COUPLING OF MULTICHANNEL 

DEVICES

Applications of integrated optics to other areas such as chemical sensing 

and spectroscopy may involve the simultaneous acquisition of optical signals 

in large number of optical waveguides. For example, monitoring a full 

spectrum in real time using a high resolution waveguide spectrometer may 

involve the continuous measurement and processing of information (i.e. the 

optical intensity) on hundreds of output channels. Existing packaging 

technologies used in telecommunications applications rely on the alignment 

and bonding of fibre arrays to the edge of the waveguide chip. Alternatively,

the waveguide chip may be aligned with linear photodetector array. As the 

number of output waveguides increases, the cost and effort of fibre or 

detector array alignment and attachment grows quickly.  Furthermore, if the 

output waveguide spacing is set by the fibre diameter (e.g. 125 m) or the 

photodetector array pitch, the chip size can become excessively large. An 

alternative approach to this packaging problem is to terminate each output 

waveguide with a coupler that redirects the guided light into a free space 

beam propagating approximately normal to the chip surface. By arranging 

showing imaging detector array used for channel intensity acquisition.

the output  couplers  in an  appropriate  square grid pattern, for example  that

Figure 18. Array of waveguide to free space couplers (a) in top view and (b) in a side view 
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shown in Figure 18, the resulting array of free space beams can be monitored 

using a two dimensional imaging array such as a CCD or CMOS arrays for 

wavelengths less than = 1.0 m, or commercially available IR detector 

arrays for further in the infra-red. As an example, an image of the output 

coupling array in Figure 18(a) can be captured by the imaging detector array 

as shown in Figure 18 (b). Precise alignment becomes unnecessary in such 

an output coupling scheme. The pixels responding to a given waveguide can 

be identified during a calibration procedure, and simply allocated to that 

channel through the controlling software. Imaging arrays are available at 

relatively low cost with array dimension well over 1000×1000 pixels, and 

pixel sizes of the order of a few microns. The only draw-back to this 

approach is that the speed of data acquisition is limited to the read-out time 

of the imaging array used. The output coupling array arrangement can lead to 

a significant reduction in packaging cost for high channel count devices, 

wherever the spectrum acquisition time need not be shorter than the typical 

array read-out times.

As is clear from the preceding discussion, a manufacturable waveguide to 

free space output coupler is another essential component that would allow 

integrated optics to penetrate into fields of application beyond 

telecommunications. The simplest form of waveguide to vertical beam 

coupler is a total internal reflection mirror etched into the waveguide, as 

shown in Figure 19.  This figure presents a cross-section diagram of such a 

structure designed for a 2 m SOI waveguide. Mirrors of this form can be 

fabricated using a directional dry etch to create an undercut facet at 

approximately 45  to the vertical. Figure 19(b) shows an example of such an 

Figure 19. (a) Cross-sectional view of the calculated field distribution  in a total internal 

reflection (TIR) coupler in a 2 m SOI waveguide, and (b) an etched TIR structure in SOI. 
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etched structure in SOI. As a final step, the surface of the Si waveguide can 

be coated with an antireflection coating to minimize back reflections into the 

waveguide circuit, and increase the efficiency of the coupler. Finite 

difference time domain calculations of light propagating through the coupler 

shown in Figure 19(a) predict a 96.5% coupling efficiency from the 

waveguide mode to the free space beam, the latter with a 56  divergence 

angle at full width half maximum (FWHM) of the optical intensity. An 

important advantage of this simple TIR coupler is that it is both wavelength 

and polarization independent, unlike couplers based on second-order gratings 

or photonic crystals structures. To be useful for applications such as a 

multichannel waveguide spectrometer, the output couplers must be fabricated 

at numerous specified locations on a wafer. Preliminary work suggests that 

structures similar to that shown in Fig. 18 can be fabricated using a single 

angle dry etch through appropriately placed windows in an etch mask. Other 

alternative forms of output coupler include gratings of integer M wavelength 

pitch (i.e. M-  gratings), and photonic crystal or waveguide holograms. As 

discussed above, since such structures depend on the relative wavevector 

difference of the grating and the optical mode, they will always be inherently 

polarization and wavelength dependent.

6. CLADDING AND INTERFACE EFFECTS 

The interaction of light with cladding materials comes to the fore as the 

waveguide size decreases. In the case of Si waveguides, as waveguide width 

shrinks below 1 um, an increasing fraction of the optical mode propagates in 

the cladding material. At the same time, the effective index of the waveguide 

becomes increasingly dependent on the refractive index of the cladding, and 

more susceptible to waveguide loss caused by scattering due to interface 

roughness.  Using a well known expression developed by Payne and Lacey
21

,

the maximum attenuation coefficient due to scattering loss expected from a 

waveguide with root-mean-square (rms) sidewall roughness  is

Here n is the waveguide material index of refraction, k0 is the free space 

wavevector, and d is the waveguide core width. This expression makes no 

reference to the length scale of the roughness, for example through inclusion 

of the correlation length. Hence it is only an estimate of the maximum 

attenuation that would occur if the roughness correlation length was 
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comparable to the wavelength of light. An important prediction of this 

expression is the inverse fourth power dependence of the scattering loss on 

waveguide dimension.  This dependence on waveguide width has been 

confirmed by experimental measurements on SOI waveguides
22

. Using a 

more detailed version of scattering loss theory from Reference 21, Figure 20 

shows the calculated insertion loss for an SOI slab waveguide with rms 

surface roughness of  = 10 nm, and a roughness correlation length of Lc =  

500 nm.  For waveguides smaller than 2 um, the predicted propagation loss 

rapidly diverges. In the case of square SOI channel waveguides, the loss 

increases with decreasing width as for the slab waveguide, but Grillot et al.
23

show that as the dimensions decrease below 300 nm, the interface losses 

begin to decrease as the mode expands into the cladding. It is clear that 

viable microphotonic technology will depend on fabrication techniques that 

can eliminate roughness between the waveguide core and cladding. 

  The various approaches to removing surface roughness include thermal 

oxidation to preferentially consume asperities on the waveguide surface, 

resulting in loss improvement from 32 dB/cm to 0.8 dB/cm for a 0.5 um 

wide SOI waveguide
24

. The residual rms roughness after oxidation 

smoothing was 2 nm. Another method is to use a wet etch after conventional 

dry etching to form Si ridge waveguides. The resulting rms roughness is also 

approximately 2 nm.  Recent developments in lithography are also having an 

Figure 20. Calculated insertion loss for an SOI slab waveguide with surface roughness 

parameterized by rms = 10 nm and Lc = 500 nm. 
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impact on achievable waveguide loss. For example, the use of deep UV 

lithography and dry etching has yielded 0.5 x 0.33 m
2
 waveguides with 

losses as low as 2.4 dB/cm
25

 .

As waveguides shrink, the waveguide mode will shrink along with the 

waveguide cross-section, until the index step between the core and the 

cladding is insufficient to confine the mode. If the waveguide core size is 

decreased further, the mode begins to expand into the cladding.  For glass 

waveguides, this dimension threshold is near 4 m cross-section, while for Si 

waveguides this threshold is about one order of magnitude smaller, near 0.4 

m. Figure 21 shows the mode size evolution for square waveguides of 

different sizes composed of glass and silicon. This behaviour is the basis of 

the inverse taper mode coupler described in Section 4, but also has other 

useful implications. For example, a microphotonic waveguide where a 

significant fraction of the mode field propagates in the cladding can be 

considered a composite system, the properties of which are determined by 

both the core material and the cladding material. It is therefore possible to 

combine silicon waveguides with electro-optic or magneto-optic materials to 

create devices not possible in silicon alone. This has been exploited by 

Osgoode et al.
26

 to create optical isolators based on SOI waveguides clad 

with magnetic garnet films. Potentially a practical solution to the quest for a 

high-speed modulator may be a combination of Si and an electro-optic 

polymer cladding. Because of the strong waveguide more cladding 

interaction, it may also be possible to fabricate optical structures such as 

gratings and strip loaded waveguides directly into polymeric materials 

deposited on SOI waveguides. The strong interaction of the waveguide mode 

with the  cladding  in microphotonic waveguides  also  suggests  important  

for glass and SOI waveguides. W is the width and H is the height of the waveguide. 

Figure 20. Variation of mode size with core cladding index step and waveguide dimensions 
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Figure 21. Schematic diagram of  (a) an evanescent field sensor, and (b) a simple waveguide 

circuit where the sensor is incorporated into a Mach-Zehnder interferometer. 

applications in sensing and detection using evanescent field waveguide 

sensors.

A schematic of an evanescent field sensor is shown in Figure 22. The 

light is guided by the waveguide core layer, but the evanescent tail of the 

mode extends into the cladding. In Figure 22 the upper cladding consists of a 

thin molecular recognition layer (e.g. antibody receptors), an adsorbed layer 

of molecules attached to the receptor molecules, and finally a liquid medium 

containing the molecules to be detected. The effective index of the guided 

mode is modified by the molecules adsorbed on the surface of the 

waveguide. The effective index can be measured accurately, for example by 

placing the evanescent field sensor in a Mach-Zehnder interferometer (as 

shown in Figure 22) or a ring-resonator, and the number of adsorbed 

molecules can be inferred from changes in an optical signal.

The concept of evanescent field sensing is well known and has been 

exploited for applications such as chemical and biological sensing. The 
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application of microphotonic SOI waveguides to this area may however 

bring significant increases in sensitivity. To maximize the interaction of the 

waveguide mode with the adsorbed molecular layer, there are two conflicting 

requirements. First the evanescent field should not extend too far into the 

liquid upper layer since then the fraction of the field overlapping the 

molecule layer, relative to that in the liquid, will decrease.  The exponential 

decay coefficient of the evanescent field in the upper cladding is given by 

where Neff is the effective index of the waveguide mode, while n1 is the index 

of the upper liquid cladding. This equation suggests that it is preferable to 

have a large difference between the effective index and the liquid index – in 

other words a large core-cladding index step may be preferred.

On the other hand, the ratio of the field propagating in the molecular layer to 

the total waveguide mode field should be as large as possible. This suggests 

that the waveguide core should be small. Combining these two heuristic 

considerations suggests that very small microphotonic waveguides in high 

index contrast materials as the best approach for making evanescent field 

sensors. This conclusion is illustrated by the calculations shown in Figure 23, 

showing the relative index change induced by the addition of a 4 nm layer 

with  index n = 1.5 deposited on top of SOI and glass waveguide layers 

respectively.

   The sensitivity of the SOI waveguides is two orders of magnitude 

greater than that of glass. As the silicon waveguide layer is decreased from 

0.5 to 0.2 m in thickness, the index change increases by more than one 

order of magnitude both for TE and TM polarized light, and there is a large 

polarization anisotropy in the induced index shift. This last effect suggests a 

potential for polarimetric detection using SOI evanescent field sensors. 

Despite the promise of SOI waveguide for this application, little work has 

been done to date in sensors using this material system. However, given the 

increasing interest in optical techniques for genomics research, biological 

and chemical sensing, and pathogen detection, this seems a very promising 

and natural application of microphotonics technology. The use of silicon for 

this type of sensor is also particularly suitable given the large amount of 

research being carried out on methods for the functionalization of silicon and 

SiO2 surfaces. 
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Figure 22. Calculated waveguide effective index shift due to the presence of a 4 nm thick 

layer with refractive index n = 1.5 on top of the waveguide core. This layer is intended to 

emulate the the adsorption of a layer of large organic molecules. The index shift is shown for   

SOI and glass waveguides of varying core layer thickness. The uppermost layer is assumed to 

be water (n = 1.3). The inset shows an expanded view of the SOI data.

7. SUMMARY 

This chapter has reviewed some of the important themes encountered in 

implementing technologies based on high index contrast microphotonic 

waveguides. The applications driving research in this area divide into two 

broad areas. One direction is to extend existing telecommunications 

technology further into the local area network and into the computer itself, 

where it is anticipated that optics will eventually take over the task of 

transporting data from board to board, chip to chip, and possibly even within 

chips. The other direction involves extending the capabilities of integrated 

optics beyond the narrow specifications of the telecommunications world, to 

address applications in spectroscopic measurement and analysis, and 

chemical and biological sensing. The two specific device examples 

highlighted here waveguide microspectrometers and evanescent field 
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sensors. In both cases it is clear that the capabilities of microphotonics in 

high index contrast materials such as SOI can be used to great advantage in 

improving and extending the performance of optical devices.

As with any new technology, a number of technical problems arise when 

implementing integrated optics in a new area: input coupling, waveguide 

loss, polarization dependence, and finally output coupling and acquisition of 

the signal or data. We have described potential solutions for some of these 

perennial issues with the emphasis on simple, manufacturable solutions 

compatible with standard fabrication tools and facilities. For example, the 

birefringence induced polarization sensitivity of Si waveguides can be 

corrected using the stress of a thin SiO2 cladding with the appropriate 

thickness and film stress. An input coupler based on a simple graded index 

structure has been proposed, the fabrication of which is well within the 

capabilities of a calibrated PECVD deposition system, and standard 

photolithography. Output coupling and packaging for large scale data 

acquisition may be best addressed using arrays of waveguide to free space 

beam couplers, combined with commercially available imaging arrays. The 

combination of simple solutions to outstanding problems as described here, 

with the new design possibilities microphotonic technology offers, will lead 

to the expansion of integrated optics as the technologies originally created by 

the telecommunications industry mature and new applications in many fields 

are realized.
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Abstract: Optical microcavities trap light in compact volumes by the mechanisms of 
almost total internal reflection or distributed Bragg reflection, enable light 
amplification, and select out specific (resonant) frequencies of light that can 
be emitted or coupled into optical guides, and lower the thresholds of lasing. 
Such resonators have radii from 1 to 100 µm and can be fabricated in a wide 
range of materials. Devices based on optical resonators are essential for 
cavity-quantum-electro-dynamic experiments, frequency stabilization, optical 
filtering and switching, light generation, biosensing, and nonlinear optics. 

Key words: optical resonators; photonic crystal defect cavities; whispering gallery modes; 
integrated optics; add/drop filters; photonic biosensors; spontaneous emission 
control; quantum wells/dots; semiconductor microdisk lasers; optical device 
fabrication. 

1. INTRODUCTION 
Optoelectronic devices based on optical microresonators that strongly 
confine photons and electrons form a basis for next-generation compact-size, 
low-power and high-speed photonic circuits. By tailoring the resonator 
shape, size or material composition, the microresonator can be tuned to 
support a spectrum of optical (i.e., electromagnetic) modes with required 
polarization, frequency and emission patterns. This offers the potential for 
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developing new types of photonic devices such as light emitting diodes, low-
threshold microlasers, ultra-small optical filters and switches for 
wavelength-division-multiplexed (WDM) networks, colour displays, etc. 
Furthermore, novel designs of microresonators open up very challenging 
fundamental-science applications beyond optoelectronic device 
technologies. The interaction of active or reactive material with the modal 
fields of optical microresonators provides key physical models for basic 
research such as cavity quantum electrodynamics (QED) experiments, 
spontaneous emission control, nonlinear optics, bio-chemical sensing and 
quantum information processing (Yokoyama, 1992, 1995; Yamamoto, 1993; 
Chang, 1996; Vahala, 2003). We shall briefly review the state-of-the-art in 
microresonator design tools, fabrication technologies and observed optical 
phenomena, and outline the challenges for future research.  

2. MECHANISMS OF LIGHT CONFINEMENT AND 
RESONATOR BASIC FEATURES 

Optical resonators can be fabricated by exploiting either (almost) total 
internal reflection (ATIR) of light at the interface between a dielectric (e.g. 
semiconductor) material and the surrounding air or distributed Bragg 
reflection (DBR) from periodical structures such as multilayered structures 
or arrays of holes. The spectra of optical modes supported by 
microresonators are shape and size dependent. The large variety of resonator 
geometries that can be realized by using either or combining both of the 
light confinement mechanisms opens up a wide field of research and device 
opportunities.  

For various applications it is often critical to realize a microresonator 
with compact size (small modal volume, V), high mode quality factor, Q, 
and large free spectral range (FSR). Ultra-compact microresonators enable 
large-scale integration and single-mode operation for a broad range of 
wavelengths. Q-factor is a measure of the resonator capacity to circulate and 
store light, and is usually defined as the ratio of the energy stored to the 
energy dissipated in the microresonator. In practical device applications, the 
high Q of the microresonator mode translates into a narrow resonance 
linewidth, long decay time, and high optical intensity. Wide FSR (the 
spacing between neighbouring high-Q resonances) is often required to 
accommodate many WDM channels within the erbium amplifier 
communications window. The ratio Q/V determines the strength of various 
light-matter  interactions  in   the  microresonator, e.g., enhancement  of   the  
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Table 1.Types and characteristics of optical microresonators. 

Resonator type Light confinement 
Dominant modes 
Features 

Resonator type Light confinement 
Dominant modes 
Features 

Microsphere 

Lefevre-Seguin, V., 
1999, Opt. Mater. 
11(2-3):153-165. 

© 1999 Elsevier B.V. 

ATIR 

WGMs 

Ultra-high Q-factors 
(107 - 9 x 109); large 
mode volumes; 
dense modal 
spectrum (all modes 
are degenerate); 
challenging on-chip 
integration 

Microtorus 

Armani, D.K. et al, 
2003, Nature 421:905-

908. 

ATIR  

WGMs 

Mode volumes 
lower than for 
spheres; very high 
Q-factors (5 x 108); 
reduced azimuthal-
mode spectrum; 
suitable for on-chip 
integration 

Microdisk 
(microring) 

 

 
Baba, T. et al, 1997, 
IEEE Photon. 
Technol. Lett. 
9(7):878-880.  
© 1997 IEEE 

ATIR  

WGMs 

Small mode 
volumes; high Q-
factors (104 – 105); 
higher-radial-order 
WG modes are 
eliminated in the 
ring resonators; 
suitable for planar 
integration 

Quadrupolar 
(racetrack) 
microresonator 

 

Gmachl, C. et al, 1998, 
Science 280:1556-

1564. © 1998 AAAS 

ATIR 

WGMs, bow-tie 

Relatively low Q-
factors (850-1500), 
highly directional 
emission and high 
FSR of the bow-tie 
modes; WGM Q-
factors lower than in 
circular microdisks, 
efficient coupling to 
planar waveguides 

Micropost/pillar 

 

 
Solomon, G.S. et al, 

2001, Phys. Rev. Lett. 
86(17):3903-3906.  
© 2001American 
Physical Society  

DBR in vertical 
direction  
 
ATIR in horizontal 
direction 
 
Fabry-Perot 
oscillations 
 
Small mode 
volumes; relatively 
high Q-factors 
(1300-2000); easy 
coupling to fibres 

Photonic crystal 
defect microcavity 

 

 
Painter, O.J. et al, 
1999, J. Lightwave 

Technol. 17(11):2082-
2088. 

© 1999 IEEE 

ATIR in vertical 
direction 

DBR in horizontal 
direction 

Symmetry-
dependent spectrum 
of defect modes 

The smallest mode 
volumes; high Q-
factors (4.5 x 104); 
suitable for planar 
integration 
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spontaneous emission rate, and should be maximised for microlaser 
applications and QED experiments. However, high-Q microresonators of 
optical-wavelength size are difficult to fabricate, as the WG-mode Q-factors 
decreases exponentially with the cavity size, and thus in general the 
demands for a high Q-factor and compactness (large FSR, small V) are 
contradictory. 

A very wide range of microresonator shapes has been explored over the 
years for various applications (Table 1 lists some of the most popular optical 
microresonator types as well as their dominant modes and basic features). 
The most widely used are rotationally symmetric structures such as spheres, 
cylinders, toroids, and disks, which have been shown to support very high-Q 
whispering-gallery (WG) modes whose modal field intensity distribution is 
concentrated near the dielectric-air interface (Fig. 2). Silica microspheres 
exhibit the highest (nearly 9 billion) Q-factors (Braginsky, 1989; 
Gorodetsky, 1996; Vernooy, 1998; Laine, 2001; Lefevre-Seguin, 1997), yet 
have a very dense spectrum of multiple-degenerate WG modes, which 
complicates their application for spectral analysis or laser stabilization. 
Recently proposed micro-toroidal resonators (Ilchenko, 2001; Armani, 2003; 
Vahala, 2003; Polman, 2004) not only demonstrate very high WG-mode Q-
factors approaching those of microspheres but also enable reduction of WG-
mode volume, increase of resonator FSR, and on-chip integration with other 
components. 

 
                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                                     

                          

                          

                          

                          

                          

                          

                                

                                

                                

                        

                          

                          

 
 (a) (b) 

Figure 1. Near-field intensity portraits (16.6% contours) of the high-Q WG10,1 modes 
supported by a silica microsphere (a) and a GaAs microdisk (b). 

Circular high-index-contrast microring and microdisk resonators based 
on planar waveguide technology with diameters as small as 1-10 µm are 
able to support strongly-confined WG modes with typical Q-factors of 104-
105 and are widely used as microlaser cavities (Levi, 1993; Baba, 1997, 
1999; Cao, 2000; Zhang, 1996) and add/drop filters for WDM networks 
(Hagness, 1997; Little, 1997, 1999; Chin, 1999). Recently, record Q-factors 
have been demonstrated in wedge-edge microdisk resonators (Q in excess of 
1 million, Kippenberg, 2003) and in polished crystalline microcavities 
(Q>1010, Savchenkov, 2004). 
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Along with circular microdisk resonators, cavities of elliptical (Noeckel, 
1994; Backes, 1999; Boriskina, 2003; Kim, 2004), quadrupolar (Noeckel, 
1994; Gmachl, 1998; Fukushima, 2004; Gianordoli, 2000; Chin, 1999) and 
square (Poon, 2001; Ling, 2003; Manolatou, 1999; Hammer, 2002; Fong, 
2003; Guo, 2003; Boriskina, 2004, 2005) shapes have attracted much 
interest. Depending on their size and degree of deformation, these 
microresonators can support several types of optical modes with 
significantly different Q-factors, near-field intensity distributions, and 
emission patterns (WG-like modes in square resonators (Fig. 2a), bow-tie 
modes in quadrupoles (Fig. 2b), distorted WG modes, volume and two-
bounce oscillations, etc.). Such resonators offer advantage for various filter 
and laser applications as they provide splitting of the double-degenerate WG 
modes, directional light emission and more efficient microresonator-to-
straight-waveguide coupling. 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

  

 
 (a) (b) (c) 

Figure 2. Near-field intensity portraits of a WG-like mode in (a) a square microdisk resonator 
and (b) a bow-tie mode in a quadrupolar (stadium) resonator and (c) a monopole mode in a 
hexagonal photonic crystal defect cavity (Boriskina, 2005). 

Planar photonic crystal (PC) microcavities (Fig. 2c), formed, e.g., as 
arrays of air holes etched into a slab, have been demonstrated to 
simultaneously exhibit high Q-factors and ultra-small, wavelength-scale 
modal volumes (Foresi, 1997; Benisty, 1999; Chow, 2000; Yoshie, 2001; 
Kim, 2002; Akahane, 2003; Srinivasan, 2004; Noda, 2000; Painter, 1999; 
Boroditsky, 1999). In these cavities, the photonic-bandgap effect (fulfilment 
of the Bragg reflection conditions for all the propagation directions in a 
certain frequency range) is used for strong light confinement in the cavity 
plane, and TIR, for light confinement at the air-slab interface (Russel, 1996; 
Krauss, 1999). Modern fabrication technologies enable precise control of the 
PC cavity geometry, and the inherent flexibility in hole shape, size, and 
pattern makes fine-tuning of the defect mode wavelengths, Q-factors, and 
emission patterns possible (Painter, 2001; Coccioli, 1998).  

In micropost and micropillar resonators (Gayral, 1998; Solomon, 2001; 
Pelton, 2002; Benyoucef, 2004; Santori, 2004), the transverse mode 
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confinement is due to TIR at the semiconductor-air interface, while 
confinement in the vertical direction is provided by a pair of distributed 
Bragg reflectors. Thus, these microresonator structures can be seen as 1-D 
PC defect cavities in a fibre. They support Fabry-Perot-type modes with 
relatively high Q-factors and small modal volumes, which makes them 
promising candidates for microlaser applications and the observation of 
cavity-QED phenomena.  

Other types of optical microcavities employing the DBR mechanism of 
light confinement include planar annular Bragg resonators (Scheuer, 2005), 
based on a radial defect surrounded by Bragg reflectors, and their 3-D 
equivalent, spherical Bragg “onion” resonators (Liang, 2004). 

3. RESONATOR MATERIAL SYSTEMS 

Progress in the design and fabrication of high-quality optical 
microresonators is closely related to the development of novel optical 
materials and technologies. The key material systems used for 
microresonator fabrication include silica, silica on silicon, silicon, silicon on 
insulator, silicon nitride and oxynitride, polymers, semiconductors such as 
GaAs, InP, GaInAsP, GaN, etc, and crystalline materials such as lithium 
niobate and calcium fluoride. Table 2 summarises the optical characteristics 
of these materials (see Eldada, 2000, 2001; Hillmer, 2003; Poulsen, 2003 for 
more detail). 

Silica glass is a widely used resonator material, which combines the 
advantage of a very low intrinsic material loss, a large transparency window, 
and compatibility with standard fibre-optic technologies, e.g., efficient 
coupling to optical fibres (Sandoghdar, 1996; Gorodetsky, 1996; Laine, 
2001; Cai, 2000; Ilchenko, 2001). The silica-on-silicon technology that 
involves growing silica layers on silicon substrates is one the most widely 
used technologies to fabricate planar microresonator devices (Eldada, 2001; 
Kippenberg, 2003; Armani, 2003; Polman, 2004), although microring 
resonators made of compound glasses (Ta2O5-SiO2) have also been 
demonstrated (Little, 1999). A glass platform is relatively inexpensive, and 
as the index contrasts are smaller than for semiconductors, larger-size 
single-mode resonators can be fabricated by using cheaper lithographic 
techniques. However, wavelength-scale resonators with wide FSR in high-
index-contrast silicon or silicon-on-insulator material systems (Little, 1998; 
Akahane, 2003; Dumon, 2004) are crucial for ultra-compact integration of 
photonic integrated circuits. Another relatively new planar resonator 
platform is based on using silicon nitride and oxynitride (Krioukov, 2002; 
Melloni, 2003; Barwicz, 2004). It enables the index contrast to be adjusted 
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by as much as 30% by changing the resonator material composition in 
between that of SiO2 and Si3N4. 

Table 2. Properties of some key optical microresonator material systems. 
Material system λ emission Refractive index at 1.55µm 
Fused silica (SiO2); Silica 
on silicon 

 1.44-1.47 

Silicon on insulator (SOI)  3.4757 
Silicon oxynitride (SiOxNy)  1.44-1.99 
Polymers  1.3-1.7 
Gallium Arsenide (GaAs) 0.8-1.0 µm 3.3737 
Indium Phosphide (InP) 1.3-1.7 µm 3.1 
Gallium Nitride (GaN) 0.3-0.6 µm 2.31 
Lithium Niobate (LiNbO3)  2.21(2.14) 

 
Of course, GaAs, InP, and GaN- based semiconductors have attracted 

much attention as the materials for microresonator device fabrication (Baba, 
1997; Hagness, 1997; Solomon, 2001; Gianordoli, 2000; Kim, 2002; 
Painter, 1999; Grover, 2001, 2004; Zhang, 1996; Kneissl, 2004), as they 
enable very compact resonator structures that can perform passive (coupling, 
splitting and multiplexing) and active (light generation, amplification, 
detection, modulation) functions in the same material system. Most 
semiconductor microdisk and planar PC resonators consist of thin 
heterostructure layers. Such structures enable local modification of the 
energy-band structure of the semiconductor (quantum wells) and thus 
control of the material emission wavelength (Einspruch, 1994). Recently, 
there has been a lot of interest in semiconductor resonators with artificially 
engineered material band structure based on low-dimensional 
heterostructures, such as one-dimensional quantum wires and zero-
dimensional quantum boxes/dots (Arakawa, 1986). 

Polymer materials (Eldada, 2000; Rabiei, 2002, 2003; Chao, 2003, 2004) 
offer great potential for use in advanced optoelectronic systems as they offer 
low material costs, up to 35% tunability of the refractive index contrast, 
excellent mechanical properties, very low optical loss, large negative 
thermo-optic coefficient and low-cost high-speed processing. Other 
attractive materials for high-Q microresonators fabrication, which combine a 
wide optical transparency window, a good electro-optic coefficient and 
nonlinearity, are crystalline materials such as calcium fluoride and lithium 
niobate (Ilchenko, 2002; Savchenkov, 2004, 2005). 

In addition to semiconductor materials discussed above, there are other 
material systems in which electroluminescence has already been 
demonstrated, even in the visible wavelength range. These materials include: 
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microporous silicon fabricated by electrochemical etching of crystalline 
silicon wafers in a hydrofluoric acid (Chan, 2001), Erbium-doped silicon 
(Polman, 2004; Hillmer, 2003; Gardner, 2005), phosphate glass (Cai, 2000) 
and organic materials, e.g., para-phenylene-vinylene (Krauss, 1999; Hillmer, 
2003). Furthermore, polymers that are not intrinsically functional can be 
doped with organic laser dyes, rare-earth light-amplifying complexes, and 
electro-optic dyes. Such materials can be used to fabricate laser 
microresonators and have an advantage over III-V semiconductors in either 
compatibility with silicon microelectronics or cost and ease of fabrication.  

4. FABRICATION TECHNOLOGY 
Recent advances in nanofabrication technology offer the possibility of 

manufacturing novel optical microresonator devices with dimensions of the 
order of the optical wavelength in a variety of natural and artificial material 
systems. Integrated micro-ring and micro-disk resonators as well as PC 
defect microcavities are usually micro-fabricated on wafer substrates using 
well-developed integrated-circuit deposition, lithographic and etching 
techniques (Elliott, 1989). During the fabrication process, wafers are 
typically cycled through three main steps: wafer preparation, lithography, 
and etching. Some of these steps may be repeated at various stages of the 
fabrication process. A schematic drawing of a typical micro-resonator 
fabrication sequence is presented in Fig. 3. 

The first stage of the fabrication process (wafer preparation) usually 
involves the growth or deposition of material layers of different composition 
to create vertical layered structures able to support guided waves. The 
layered structure might be formed using various wafer growth techniques, 
such as molecular beam epitaxy, chemical or physical vapour deposition, or 
wafer bonding, depending on the material system. The choice of the growth 
technique depends on the desired resonator structure, material system, and 
required precision. For example, semiconductor materials usually require 
several successive growths to make the vertical structure, while polymer 
layers can simply be sequentially spun onto a substrate. 

Molecular beam epitaxy (MBE) is an expensive yet widely used 
technique for producing epitaxial layers of metals, insulators and III-V and 
II-VI based semiconductors, both at the research and the industrial 
production level (Herman, 1996). It consists of deposition of ‘molecular 
beams’ of atoms or clusters of atoms, which are produced by heating up a 
solid source, onto a heated crystalline substrate in ultra-high vacuum. MBE 
is characterized by low growth temperatures and low growth rates and thus 
enables producing high-precision epitaxial structures with monolayer 
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control. Other wafer growth techniques include chemical vapour deposition 
(Foord, 1997) of reactant gases broken down at high temperatures, which 
can be used to deposit GaN, GaInAsP, Si, SiO2, Si3N4, and polymer 
materials; sputter (or physical vapour) deposition, which is a process of 
controlled deposition of energetic ionized particles of SiO2, Si3N4, metals, 
and alloys (Little, 1999); and wafer bonding, or fusing of two materials (e.g., 
Si to glass, Si to Si, III-V semiconductors to SiN or SiO2) at the atomic level 
(Tishinin, 1999). 

 

(1) W afer growth (2) Photoresist 
sp in-coating

(3) M asks
preparation 

(4 ) Exposure to 
radiation 

(5) Photoresist 
developm ent 

(6a) A nisotropic 
dry etch 

(7 ) Photoresist 
strip  

(6b) Selective 
isotropic w et etch  

Figure 3. Schematic procedure of microdisk resonator fabrication. 

A resonator structure is then imaged onto a wafer through a multi-step 
lithography process. To make the wafer (usually covered by a thin oxide 
film) sensitive to an image, a photoresist is spread on the wafer by a process 
called spin coating. Then, a photomask (a glass emulsion plate with a 
resonator pattern) is placed on top of the wafer. Light is projected through 
the voids in the photomask and images the mask pattern on the wafer. 
Several types of lithography with various resolutions can be used depending 
on the resonator type, size, and fabrication tolerances: optical (λ=160-430 
nm; feature size ~ 0.13 µm), extreme ultraviolet (λ=13 nm; feature size ~ 45 
nm), X-ray (λ=0.4-4 nm; feature size ~ 25 nm), or electron (ion) beam 
(λ=0.03 Ǻ; feature size ~ 10-20 nm). When exposed to light, the resist either 
polymerizes (hardens) (if a negative resist is used) or un-polymerizes (if a 
positive resist is used). After exposure, the wafer is developed in a solution 
to dissolve the excess resist. 

Once the resist has been patterned, the selected regions of material not 
protected by photoresist are removed by specially designed etchants, 
creating the resonator pattern in the wafer. Several isotropic (etching occurs 
in all directions at the same etch rate) and anisotropic (directional) etching 
processes are available. Wet chemical etching is an isotropic process that 
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uses acid solutions to selectively dissolve the exposed layer of silicon 
dioxide. However, to produce vertical resonator sidewalls, anisotropic dry 
etching is required. In the most commonly used dry etching technique, 
plasma etching, ions reacting with atoms of the wafer are created by 
generating plasma by rf discharge. Dry etching techniques also include 
sputter etching, ion milling, reactive etching, and reactive ion beam etching. 
Another type of anisotropic etching technique is anodic etching - wet 
etching with an applied electric field. After the etching process, the 
remaining photoresist is removed. In most cases, several etching techniques 
are combined to form a desired resonator structure. For example, in the 
fabrication of microdisk resonators mounted on posts (Baba, 1997) or 2-D 
PC microcavities (Painter, 1999; Hennesy, 2003), the pattern is first 
transferred into a heterostructure by an anisotropic dry etch and then a 
microdisk or a PC cavity membrane is released by selective wet etching of 
the substrate. 

Microsphere resonators can also be manufactured with standard wafer 
processing technologies. Usually, silicon posts topped with silica blocks are 
created on the wafer and then are molten into spherical shapes by controlled 
heating. However, the most common technique to fabricate silica 
microsphere resonators of several hundred microns in diameter is to simply 
melt a tip of an optical fibre by hydrogen flame or electric arc heating 
(Braginsky, 1989; Sandoghdar, 1996; Gorodetsky, 1996; Laine, 2001). To 
fabricate microspheres of smaller diameters, the fibre can first be thinned by 
tapering or etching (Cai, 2000). In the heating process, once the silica 
temperature passes the melting point, the surface tension forces shape the 
fused silica into a near-perfect spherical form. After the sphere is removed 
from the flame, solidification occurs almost instantaneously. The resulting 
microsphere has extremely smooth surface with Angstrom-scale surface 
deformations resulting in very high Q-factors of the WG modes. 

Similar technique can also be used to fabricate silica microtorus 
resonators by compressing a small sphere of low-melting silica glass 
between cleaved fibre tips (Ilchenko, 2001). The combined action of surface 
tension and axial compression results in the desired toroidal geometry. 
Recently, a process for producing silica toroidal-shaped microresonators-on-
a-chip with Q factors in excess of 100 million by using a combination of 
lithography, dry etching and a selective reflow process have been 
demonstrated (Armani, 2003). By selectively heating and reflowing a 
patterned and undercut microdisk with the use of a CO2 laser a toroidal 
resonator with the atomically smooth surface was obtained. 

The thermal-reflow process (or hot embossing) has also been used to 
reduce significantly sidewall surface roughness in polymer (polystyrene) 
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microring resonators (Chao, 2004). This is a very useful technique because it 
enables post-fabrication fine-tuning of microresonator performance. 
However, for the fabrication of complex, multilayer devices this procedure 
is less useful as the high temperatures needed to reflow the polymer film 
could also disturb lower cladding layers and possibly alter optically active 
dopant molecules. 

A need for submicron-scale patterning as well as stringent etching 
tolerances of conventional fabrication techniques often result in either very 
high fabrication costs or high scattering losses and frequency detuning in 
microresonator-based devices. An emerging lithographic technology that can 
achieve sub-10 nm pattern resolutions beyond the limitations set by the light 
diffractions or beam scattering in the conventional methods is a nanoimprint 
technique (Chou, 1996; Guo, 2004). Based on the mechanical embossing 
principle, nanoimprint technology is used not only to create resist patterns as 
in lithography but also to directly pattern microresonator structures in 
polymers. Nanoimprinting utilizes a hard mould (which plays the same role 
as the photomask in photolithography) with predefined nanoscale features to 
mechanically imprint into a heated polymer film. The created thickness 
contrast pattern is `frozen’ into the polymer during a cooling cycle. 

Recently, as processing techniques for the synthesis of monodispersed 
nanoparticles of various shapes have matured, considerable effort has been 
directed to study the mechanisms of their self-assembly as an inexpensive 
and fast method of fabrication of photonic structures. Electrostatic self-
assembly is an emerging technology that can create microresonator 
structures with tailored optical properties. For example, self-assembled 
arrays of polystyrene microspheres coupled to each other and to rib 
waveguides are expected to or already find application in wavelength 
selection (Tai, 2004), waveguiding (Astratov, 2004), optical sensing, and 
optical delays. Finally, recent advances in polishing techniques have allowed 
the fabrication of large (~5 mm-diam & 100-micron thick) disk and toroidal 
microresonators of crystalline materials, such as lithium niobate and calcium 
fluoride (Ilchenko, 2002; Savchenkov, 2005) that find use as high-efficiency 
microwave and millimetre-wave electro-optical modulators. 

5. DEVICES AND APPLICATIONS 
It is difficult to overestimate the growing importance of optical 
microresonators in both fundamental and applied research, and thus it is 
hardly possible to cover in detail the progress in all the areas of their 
application. In the following sections, we shall briefly review some of the 
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major existing and emerging microresonator applications and outline the 
challenges calling for novel resonator geometrical designs, spectral 
characteristics, material properties, or robust fabrication procedures.   

5.1 Integration with other components 
One of the most difficult challenges in the design and fabrication of 

integrated microresonator-based photonic devices and systems is the 
efficient coupling of light into and out of a microresonator without 
compromising its narrow resonance linewidth. Furthermore, the cost and 
robustness of fabrication, simplicity of the microresonator-to-coupler 
alignment as well as ability to provide on-chip integration are very important 
factors in the development of advanced microresonator couplers. The most 
widely used microresonator coupling devices are evanescent-field couplers 
of various geometries such as prisms, tapered fibres, planar and PC 
waveguides, etc. (see Fig. 4).  

Prisms Half-block fibre couplers Tapered optical fibres 

Angle-polished fibre tips Planar and photonic-crystal waveguides  

Figure 4. Various types of microresonator coupling devices. 

The efficiency of optical power transfer in/out of a microresonator can be 
controlled by manipulating the overlap between the resonator and coupler 
mode fields, matching of the mode propagation constants, or changing the 
length of the evanescent-field coupling region. Prisms have traditionally 
been used to couple light into microspheres (Gorodetsky, 1996; Vernooy, 
1998) and more recently, to square resonators (Pan, 2003), although they 
require bulk optics for focusing and alignment of the light source. Coupling 
to microsphere (Serpenguzel, 1995; Cai, 2000; Spillane, 2002) and 
microtoroid resonators (Kippenberg, 2004) through tapered fibres has 
several distinct advantages such as the built-in coupler alignment, relatively 
simple fabrication, possible on-chip integration, and control of the coupling 
efficiency by the change of the fibre thickness. However, integrated, wafer-
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fabricated microresonators are usually coupled into a photonic circuit 
through either planar (rib) waveguides (Hagness, 1997; Little, 1997, 1999; 
Chin, 1999; Grover, 2004; Zhang, 1996; Melloni, 2003) or PC waveguides 
(Noda, 2000).  

The very small size and strong optical confinement of integrated planar 
microdisk and microring resonators, which make them promising candidates 
for large scale integration, also make them very sensitive to fabrication 
errors that can drastically spoil coupling efficiency. For example, if a 
circular microdisk is laterally coupled to a waveguide via a submicron-width 
air gap, the coupling efficiency strongly depends on the gap width. Accurate 
and repeatable fabrication of such narrow gaps by lithographic and etching 
techniques is a rather challenging task. The smaller the microdisk, the more 
difficult it is to control the coupling coefficient. For 2–5 µm-sized 
microdisks, the resolution of the fabrication method is often not high enough 
to achieve the desired narrow air gaps (<0.1 µm), and to enhance coupling, 
microdisks are fused to bus waveguides (Grover, 2004). Efficient lateral 
coupling across wider air gaps can be achieved by increasing the coupling 
interaction length by either curving the adjacent waveguide along the 
microdisk (Zhang, 1996; Hagness, 1997; Chin, 1998) or using elliptical, 
racetrack or square microresonators (Chin, 1999; Boriskina, 2003; 
Manolatou, 1999; Hammer, 2002; Fong, 2003). It has been also predicted 
that resonator-waveguide coupling may be enhanced by exploiting the 
higher field concentration at the increased-curvature portion of an elliptical 
microdisk resonator (Boriskina, 2003).  

5.2 Wavelength-selective components for WDM systems 
Microdisk, microring, and PC defect resonators are versatile building 

blocks for very large scale integrated photonic circuits, as they are ultra 
compact (105

 devices/cm2) and can perform a wide range of optical signal 
processing functions such as filtering, splitting and combining of light, 
switching of channels in the space domain, as well as multiplexing and 
demultiplexing of channels in the wavelength domain.  

Wavelength-selective bandstop (Fig. 5a) or add/drop (Fig. 5b) filters that 
can combine or separate different wavelengths of light carrying different 
information are essential components for controlling and manipulating light 
in optical transmission systems. High-Q microdisks/microrings evanescently 
coupled to bus waveguides have been extensively explored for WDM 
channel dropping due to their ability to select a single channel with a very 
narrow linewidth (Hagness, 1997; Little, 1997, 1999; Chin, 1999; Boriskina, 
1999; Grover, 2004). To compromise between the requirements for a narrow 
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channel linewidth, structure compactness, and wide FSR, the radii of the 
microresonators used in filters are usually in between 5 and 30 micron, 
resulting in filters with a FSR of 20-30 nm. By using PC defect 
microcavities, further miniaturization of optical filters can be achieved (Fan, 
1998). PC-microcavity filters can be realized by either introducing a single 
defect in the vicinity of the PC waveguide (Noda, 2000) or by integrating PC 
defect microcavities directly into a sub-micrometer-scale silicon waveguide 
(Foresi, 1997; Chow, 2004). 
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Figure 5. Schematics of (a) a bandstop (all-pass) and (b) add/drop filter designs, and (c) a 
transmission characteristic of a 3.0-µm-diameter GaAs microring resonator coupled to a bus 
waveguide. 

An ideal filter should have a box-like spectral response with a flat 
passband, sharp roll-off from passband to stop band, and large out-of-band 
rejection. However, the transmission characteristic of a single 
microresonator is a series of Lorentzian-shape sharp resonance peaks at 
wavelengths corresponding to the excitation of the high-Q modes in the 
microresonator (Fig. 5c). For closely spaced channels, however, a 
Lorentzian response may not provide adequate roll-off to minimize cross-
talk between different channels. To overcome this limitation, higher-order 
filters formed by cascading multiple resonators have been introduced (Little, 
1997; Hryniewicz, 2000; Grover, 2002; Melloni, 2003; Savchenkov, 2003, 
2005). Such filters have flat responses around resonances, much faster roll-
off, and larger out-of-band signal rejection. Vernier filter tuning by 
combining microring resonators of different radii has also been successfully 
used to suppress non-synchronous resonances of different microrings and 
extend the resulting filter FSR (Yanagadze, 2002). 
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Optical characteristics of active microresonators (and thus spectral 
properties of the resonator-based filters) can be dynamically tuned by 
changing their refractive indices, for example, by using the thermo-optic or 
electro-optic effects. Tunable microring resonators have been used to 
demonstrate optical modulation using the electro-optic effect in polymer 
(Rabiei, 2002), all-optical switching using free-carrier injection in GaAs–
AlGaAs (Ibrahim, 2003), and absorption-induced wavelength switching and 
routing (Little, 1998). Furthermore, significant enhancement of non-linear 
effects in microresonators made possible the demonstration of Kerr 
nonlinear phase shift (Heebner, 2004) and optical wavelength switching and 
conversion (Absil, 2000; Melloni, 2003) in microresonator structures.  

Linear arrays of optical microresonators evanescently coupled to each 
other can also be used for optical power transfer (Fig. 6). This type of  
coupled-resonator optical waveguide (CROW) has recently been proposed 
(Yariv, 1999) and then demonstrated and studied in a variety of material and 
geometrical configurations, such as sequences of planar microrings (Poon, 
2004), arrays of coupled microspheres (Astratov, 2004), and chains of 
photonic crystal defect cavities (Olivier, 2001). 

                                        

                                        

                                     

                                        

                                        

                                     

  

Excitation beam  

Figure 6.  Near-field pattern inside a short chain of evanescently coupled microdisks excited 
by a directional beam grazing a rim of the left-hand-side resonator (Boriskina, 2005). 

Among the advantages offered by CROWs is the possibility of making 
reflection-less waveguide bends as well as a significant slowing of light 
pulses. Reduction of the light group velocity in CROWs can be explored in a 
variety of optical applications such as delay lines, optical memory elements, 
and components for nonlinear optical frequency conversion, second-
harmonic generation and four-wave mixing (Poon, 2004; Melloni, 2003; 
Heebner, 2004; Mookherjea, 2002). 
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5.3 Biochemical sensors 
Microresonators supporting high-Q modes also have great potential in the 
development of inexpensive, ultra-compact, highly sensitive and robust bio- 
and chemical sensors on a chip. As compared to linear optical waveguide 
biosensors, microresonator-based devices benefit from much smaller size 
(several µm rather than a few centimetres) and higher sensitivity. Several 
phenomena can be used for detection. For example, cylindrical 
microresonators, operating on the WG modes, have been shown to enhance 
the intensity of the fluorescence emitted by biological materials (Blair, 
2001). However, most microresonator sensors rely on the measurement of 
transmission or scattering characteristics of a microresonator exited by an 
optical waveguide mode in the presence of biological material on the 
resonator surface or in the surrounding solution. These sensors can detect the 
resonance frequency shift caused by the change of the resonator effective 
refractive index or increased absorption (Boyd, 2001; Krioukov, 2002; 
Vollmer, 2003; Chao, 2003). Alternatively, the sensors can measure the 
change in phase and/or intensity of the light at the output of the waveguide 
in the forward direction at a fixed wavelength (Rosenblit, 2004). 

High Q-factors of microresonator modes are crucial for achieving high 
sensitivity of the sensors. Indeed, the higher the Q-factor, the steeper the 
slope between zero and unity in the transmission characteristic of a 
microresonator, resulting in higher sensor sensitivity. Another way to 
enhance the slope between the zero and the unity transmission (and thus 
improve the sensor sensitivity) is to use a microresonator structure that 
generates a sharp asymmetric Fano-resonance line shape (Chao, 2003). 

5.4 Spontaneous emission control, novel light sources 
and cavity QED 

Another major application for microresonators is in development and 
fabrication of novel light sources such as resonant-cavity-enhanced light-
emitting diodes (LEDs), low-threshold microlasers, and colour flat-panel 
displays. In wavelength-sized microresonator structures, semiconductor 
material luminescence can be either suppressed or enhanced, and they also 
enable narrowing of the spectral linewidth of the emitted light (Haroche, 
1989; Yokoyama, 1992; Yamamoto, 1993; Krauss, 1999; Vahala, 2003).  
     Since 1946, when it was first proposed that the spontaneous emission 
from an excited state of an emitter can be significantly altered if it is placed 
into low-loss wavelength-scale cavity (Purcell,1946), various microresonator 
designs for efficient  control  of  spontaneous  emission  have been explored 
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Figure 7. Difference in the spontaneous emission enhancement in a LED (a) and a 
microcavity laser (b); Density of electronic states in bulk semiconductor material and low-
dimensional semiconductor heterostructures (c).    

including microdisk (Levi, 1993; Baba, 1997, 1999; Backes, 1999; Cao, 
2000; Fujita, 1999, 2001, 2002; Zhang, 1996), microsphere (Cai, 2000; 
Shopova, 2004; Rakovich, 2003) and micropost (Pelton, 2002; Reithmaier, 
2004; Santori, 2004; Solomon, 2001; Gayral, 1998) resonators as well as PC 
defect cavities (Painter, 1999; Boroditsky, 1999; Gayral, 1999). Depending 
on the Q-factors (resonance linewidths) of the modes supported by the 
microresonator in the spontaneous emission range of the resonator 
material, the two situations illustrated in Fig. 7 can be realized. In a cavity-
enhanced LED (Fig. 7a), the material gain bandwidth is smaller than the 
cavity resonance bandwidth, and emission of the whole material gain 
spectrum is enhanced. In a semiconductor laser (Fig. 7b) with a laser 
microcavity supporting high-Q modes, the emission at one (or several) of the 
modal wavelengths is strongly enhanced (being predominantly stimulated 
emission), while the emission at all other wavelengths is suppressed. The 
amount by which the spontaneous emission rate is enhanced for an emitter 
on resonance with a cavity mode is characterized by the Purcell factor, 
which is proportional to the mode Q-factor and inversely proportional to the 
mode volume. 

Clearly, to increase the enhancement factor, it is necessary to design and 
fabricate high-Q, small-V microresonators. However, cavity-enhanced LEDs 
based on the microresonators with high-Q modes must have equally narrow 
material spontaneous emission linewidths (Fig. 7a), which are not easily 
realized in bulk or heterostructure quantum-well microresonators. The 
recently proposed concept of an active material system, semiconductor 
quantum dots (QDs) (Arakawa, 2002) combines the narrow linewidth 
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normally associated with atomic emitters and the high gain achievable in 
semiconductors. The QD emission spectrum exhibits delta-function-like 
lines with ultra-narrow linewidths (Fig. 7c). QDs of various sizes can now 
be fabricated by self-assembly, and have been integrated as emitters (so-
called artificial atoms) in microdisk (Cao, 2000), PC defect (Yoshie, 2001; 
Hennesy, 2003), micropost/micropillar (Santori, 2004; Solomon, 2001; 
Gayral, 1998; Benyoucef, 2004), and microsphere (Shopova, 2004; 
Rakovich, 2003) resonators. The challenge is then to carefully design and 
tune the microresonator modal and geometrical properties to manipulate and 
increase the strength of coupling between the QD and an optical field of the 
resonator mode (Pelton, 2002; Hennesy, 2003). 
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Figure 8. (a) Detuning of the higher-radial-order WG modes in a microring resonator of 
radius a with an increase of the inner radius c (Boriskina, 1999; 2002); and (b) splitting of a 
double-degenerate WG mode in a microgear resonator with simultaneous enhancement of the 
Q-factor of the working mode and suppression of the parasitic mode (Boriskina, 2004). 

In the microcavity lasers, only a small portion of the spontaneous 
emission couples into a single (or several) optical modes (Fig. 7b). It should 
also be noted that optical modes of rotationally symmetrical microresonators 
are either multiple (microspheres) or double (microdisks, microrings, 
circular micropillars, etc.) degenerate. This often leads to the appearance of 
closely located doublets in their lasing spectra due to fabrication errors 
(sidewall roughness and shape imperfections, etc.) and thus causes spectral 
noise, mode hopping and polarization instabilities (Gayral, 1998; Fujita, 
1999; Boriskina, 2004). Among recently proposed modified resonator 
designs that remove the mode degeneracy and help separate two closely 
located modes are elliptical (Gayral, 1998; Boriskina, 2003; Kim, 2004), 
square (Guo, 2003; Boriskina, 2005), microgear (Fujita, 2001, 2002; 
Boriskina, 2004), and notched (Backes, 1998; Boriskina, 2005) 
microresonators. 
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Figure 9. Directional far-field emission patterns of the WG modes in (a) an elliptical 
(Boriskina, 2003) and (b) a notched (Boriskina, 2005) microdisk resonator. 

If, as a result of optical or electrical pumping, the optical gain in the 
resonator active material begins to dominate optical loss, stimulated 
emission in the microresonator begins to dominate spontaneous emission. To 
improve the microlaser efficiency, it is desirable to reduce the threshold 
input energy at which lasing (stimulated emission) begins to occur. The laser 
threshold depends on the size of a laser microresonator, the lasing mode 
optical confinement, the gain/absorption balance of the resonator material 
and the presence of several competing modes within a material spontaneous 
emission range. Reducing the number of available modes in the spontaneous 
emission range would therefore both reduce the threshold and improve the 
laser noise characteristics. This can be achieved by either detuning the 
wavelengths of all the modes but one against the spontaneous emission peak, 
or decreasing their Q-factors and thus reducing spontaneous emission into 
these modes. For example, all the higher-radial-order WG modes in 
microdisk resonators, with the fields occupying large areas inside the disk, 
can be suppressed by removing material from the resonator interior (Fig. 8a) 
by piercing holes (Backes, 1999) or forming microring resonators (Hagness, 
1997; Boriskina, 1999, 2002). Enhancement of the working mode Q factor 
in a microgear (circular microdisk with a periodically corrugated rim) laser 
has also been achieved (Fujita, 2002), together with the suppression of the Q 
factor of the other mode of a doublet appearing due to splitting of a double-
degenerate first-radial-order WG mode of a circular microdisk (Fujita, 2001; 
Boriskina, 2004; Fig. 8b). Another way to reduce the threshold in a 
microcavity laser is to increase the fraction of spontaneous emission into the 
lasing mode by improving the spectral alignment between the material gain 
peak and the microcavity mode wavelength (Fujita, 2001; Cao, 2003).  



58 Trevor M. Benson et al. 
 

Finally, most practical optoelectronic applications require light sources 
with a directional light output, e.g., for efficient coupling into the narrow 
acceptance cone of an optical fibre. In the micropost and micropillar 
resonators, emission occurs in a single-lobe pattern (Gayral, 1998; Pelton, 
2002), which makes their coupling to fibres relatively straightforward. 
However, due to a rotational symmetry of the structure, the emission 
patterns of the WG modes in microspheres or circular microdisks are not 
unidirectional. Instead, they have as many identical beams as twice the 
azimuthal index of the WG mode. One of the ways to directionally extract 
the light from such microresonators is to use output couplers, e.g., 
evanescent-field couplers of various configurations described in Section 5.1. 
Alternatively, microresonators with non-circularly-symmetric geometrical 
shapes can be designed to obtain directional emission patterns. Directional 
light output has been observed from deformed spherical resonators; 
quadrupolar, elliptical (Noeckel, 1994; Gmachl, 1998; Backes, 1999; Lee, 
2002; Boriskina, 2002; Kim, 2004; Fig. 9a), and egg-shaped (Shima, 2001; 
Boriskina, 2002) microdisks; microdisks with patterned gratings and tabs 
(Levi, 1992); micropost and disk resonators with spiral cross-sections 
(Chern, 2003; Kneissl, 2004); and microdisks with notches and openings 
(Chu, 1994; Backes, 1999; Boriskina, 2006; Fig. 9b). 

6. SIMULATION METHODS 
All the above-discussed technological advancements in microresonator 
fabrication and functional applications call for innovative computational 
methods for solving Maxwell’s equations, which govern the electromagnetic 
fields in the resonator structures. Development of rigorous yet efficient 
simulation methods and CAD tools is necessary to fully exploit the potential 
of the new generation of microresonators, substantially reducing the cost and 
time of the design stage, to create novel devices, and to study new optical 
phenomena in microcavities. 

Unfortunately, Maxwell’s equations can be solved analytically for only a 
few simple canonical resonator structures, such as spheres (Stratton, 1997) 
and infinitely long cylinders of circular cross-sections (Jones, 1964). For 
arbitrary-shape microresonators, numerical solution is required, even in the 
2-D formulation. Most 2-D methods and algorithms for the simulation of 
microresonator properties rely on the Effective Index (EI) method to account 
for the planar microresonator finite thickness (Chin, 1994). The EI method 
enables reducing the original 3-D problem to a pair of 2-D problems for 
transverse-electric and transverse-magnetic polarized modes and perform 
numerical calculations in the plane of the resonator. Here, the effective 



Micro-optical Resonators 59
 
refractive index of the 2-D structure is taken as the normalized propagation 
constant of the fundamental guided mode in an equivalent planar waveguide 
with the same thickness and material as the microresonator. 

The finite-difference time-domain (FDTD) method (Chu, 1989) has been 
a main workhorse in modelling and design of optical microresonators (both 
in 2-D and 3-D) over the past few decades, due to its simplicity and 
flexibility (Fujita, 2001; Fong, 2003, 2004; Ryu, 2004; Painter, 2001; 
Pelton, 2002; Hagness, 1997; Vuckovic, 1999; Rosenblit, 2004). However, 
the FDTD method suffers from relatively large dispersive error, staircasing 
errors at resonator boundaries, and reduction of accuracy to the first order at 
material interfaces. Furthermore, optical microresonators are often placed 
into complex open space domains, in which case discretization of the 
problem can lead to errors caused by non-physical backreflections from the 
edges of the computational window. For large and complex domains, and 
especially in full-vectorial 3-D simulations, development of faster 
algorithms becomes imperative to reduce the cost of computations, as the 
grid size required by using the FDTD method becomes prohibitively 
expensive for even modern advanced computers. For example, CPU times 
for the FDTD computations of the characteristics of a 2.25 µm-diameter 
semiconductor microring resonator evanescently coupled to a straight 
semiconductor waveguide reached 35 hours on a 1-GHz, 4-GB RAM 
platform (Fujii, 2003). 

By using fast algorithms based on approximate techniques such as 
geometrical optics, “billiard theory”, paraxial approximation, etc. useful 
insight into the ray dynamics within optically large microresonators can be 
obtained (Chowdhury, 1992; Noeckel, 1994, 2000; Jiang, 1999; Poon, 2001; 
Guo 2003; Huang 2001; Fong, 2004). However, the accuracy of such 
methods is clearly not adequate for studying the modal spectra of 
microresonators whose dimensions are of the order of an optical wavelength. 
Among other popular first-order numerical tools for the microresonator 
design are: algorithms based on the Coupled Mode Theory (Yariv, 1973; 
Little, 1997; Manolatou, 1999; Chin, 1998, Hammer, 2002), which are able 
to provide fast initial designs of waveguide-coupled circular and square 
microdisk resonators; and the Spectral Index method (Greedy, 2000), which 
has been successfully applied to study the WG mode characteristics of high-
index-contrast circular microdisk resonators mounted on substrates (Fig. 10). 

Accurate yet computationally efficient techniques that have been already 
demonstrated to yield solutions to a variety of  design  problems in optics 
and photonics are based on the formulation of the problem in terms of either 
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Figure 10. Field distributions for two WG modes in a microdisk resonator on a substrate 
predicted by the Spectral Index method (Greedy, 2000). 

volume or surface integral equations (IEs). A clear advantage of such 
formulations is that the problem size is reduced by moving it from the open 
infinite domain to a finite one (a volume or a surface of the microresonator), 
which reduces the required computational effort. Furthermore, the use 
of artificial absorbing conditions is completely avoided, together with the 
danger of unwanted non-physical back-reflections, and microresonators 
located in the layered media can be modelled without loss of accuracy 
(Boriskina, 1999, 2002, 2003; Chremmos, 2004). The IE formulation of 
Maxwell’s equations, in its continuous form, is exact provided that the full 
equivalence takes place. By using various Galerkin-type discretization 
schemes with low- and high-order basis functions (Harrington, 1968), 
numerical algorithms with various convergence rates (and thus various 
computational costs to reach a desired accuracy) can be constructed, with 
higher-order schemes providing the most computationally efficient solutions 
(Atkinson, 1997; Nosich, 1999). Due to the flexibility of the method, it has 
been successfully applied to study modal characteristics of symmetrical and 
asymmetrical microresonator structures in 2-D, such as circular, elliptical, 
hexagonal, stadium, and notched microdisk resonators (Wiersig, 2003; Lee, 
2004; Boriskina, 1999-2005; Kottmann, 2000, Chremmos, 2004). In 3-D, IE 
techniques have been developed mainly to analyse dielectric resonators of 
electrically small size typical for microwave applications (Kucharski, 2000; 
Glisson, 1983; Umashankar, 1986; Liu, 2004).  

It should be noted, however, that the Q factors of open microcavities do 
not characterise directly the threshold gain values of the corresponding 
semiconductor lasers. To overcome this difficulty a new lasing eigenvalue 
problem (LEP) was introduced recently (Smotrova, 2004). The LEP enables 
one to quantify accurately the lasing frequencies, thresholds, and near- and 
far-field patterns separately for various WG modes in semiconductor laser 
resonators. However, the threshold of a lasing mode depends on other 
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factors, including presence of several competing modes within a material 
spontaneous emission range and detuning of the lasing wavelength against 
the spontaneous emission peak. To account for these effects, a spontaneous 
emission coupling factor (β factor) of a given mode can be calculated, which 
is defined as the ratio of the spontaneous emission rate into that mode and 
the spontaneous emission rate into all modes (Bjork, 1991). Various 
approaches to calculate the β factor have been described in the literature, 
including classical and quantum mechanical methods as well as FDTD 
(Bjork, 1991; Chin, 1994; Vuckovic, 1999; Xu, 2000). 

7. CONCLUSIONS 
Recent advances in the nanofabrication technology offer the possibility of 
manufacturing novel optical microresonator devices with unprecedented 
control in a variety of natural and artificial material systems. High-Q micro- 
and nano-scale resonators have already proven to be excellent candidates for 
optical signal processing in low-cost high-density photonic integrated 
circuits, significant enhancement of detection sensitivity in biosensors, and 
compact and efficient laser sources with enhanced functionality. Continued 
development of new materials with specially designed properties such as 
quantum wires and dots as well as 3-D photonic crystal structures is 
expected to yield more ideal high-performance optical resonators. These 
novel resonator designs will fuel future growth of broadband all-optical 
networks and will impact basic research in quantum physics and quantum 
information science. However, emerging resonator-based devices and 
applications as well as growing industrial competition impose strict 
requirements on the accuracy and performance of the existing resonator 
design and simulation tools calling for the development of advanced 
methods and algorithms. 
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Abstract: A choice of methods suitable for modeling high-refractive-index photonic 

waveguide structures is reviewed. Special attention is paid to methods based 

on mode matching. Basics of the transfer matrix mode solvers for multilayer 

structures, the (two-dimensional) bidirectional mode expansion and 

propagation method, and the film mode matching methods for straight and bent 

waveguides and circular microresonators with two-dimensional cross-sections 

are described in some detail. 
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waveguide theory, photonic crystals, waveguide bends. 

1. INTRODUCTION 

With the evolution of guided-wave optics, high refractive-index contrast 

waveguides play ever more important role in modern photonic devices. 

“Classical” integrated-optic devices developed mostly for applications in 

optical communication make use of waveguides with mode field profiles 

close to those of optical fibers, in order to minimize coupling loss between 

the integrated-optic chip and the fiber. For example, the change of the 

refractive index due to titanium diffusion in Ti:LiNbO3 channel waveguides 

widely used in high-speed electro-optic modulators is typically smaller than 

10
–2

, a value similar to that of standard single-mode step-index fibers. 

However, it is known that such weakly guiding waveguides are very prone to 

radiation loss from waveguide bends. To keep the bending loss low, the radii 

of curvature of waveguide bends have to be of a centimeter scale. This 

feature makes the high-scale integration of photonic devices difficult. The 

high-scale integration is the only viable way to cost reduction of integrated 
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photonic components and devices, however, and their high cost is the main 

obstacle for their mass application in access and metropolitan optical 

networks. Increased refractive index contrast allows us to dramatically 

reduce the radius of waveguide bends while keeping the radiation loss low, 

and thus significantly increase the possible density of photonic integration.

Properties of high-contrast waveguide structures differ from those of low-

contrast weakly-guiding waveguides in two main aspects. Mode fields of 

high-contrast waveguides are usually very strongly localized close to the 

waveguide ‘core’, which makes an efficient coupling to standard weakly 

guiding optical fibers a nontrivial problem. Eigenmodes of high-contrast 

waveguides have also much more strongly pronounced polarization features. 

This can be easily understood if we consider the general vectorial equation 

for the electric field that stems from Maxwell equations: 

2 2 2
0 0

  2( ) , /k n k× × = =E r E , (1) 

where  is the free-space wavelength of the field, and ( )n r  is the refractive 

index distribution. From the Maxwell divergence equation 
2 0( )n =E

we get 
2( ln ) ,n=E E  so that Eq. (1) can be rewritten in the form

( )
2 2 2

0
ln ( )n k n+ + =E E r E 0 . (2) 

For weakly guiding structures, the second term can be neglected, and we 

obtain the standard Helmholtz equation in which individual components of 

the electric field intensity vector E  remain uncoupled. For high contrast 

waveguides this is clearly not the case. The second term in Eq. (2) in which 

the transversal electric field components are mutually coupled must be 

retained.

Before we start to analyze high-contrast structures in more detail, it is 

worth to clarify the meaning of this term. We will distinguish between 

waveguides alone and more complex waveguide structures; waveguides will 

be considered as structures whose refractive index distribution  is 

independent of one spatial coordinate – longitudinal, z  for straight 

waveguides and azimuthal,  for circularly bent waveguides. In planar 

waveguides, the refractive index depends on a single transversal coordinate 

x  only. Propagation in waveguides is fully described by the set of their 

eigenmodes and propagation constants. They are calculated with the help of 

mode solvers. Waveguide structures can be considered as structures 

consisting of a concatenation (or a more general arrangement) of sections of 

different waveguides. For modeling field distribution in more complex 

waveguide structures excited with a given input field, a number of different 

versions of beam propagation methods are available. For the proper choice 
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of modeling tools it is helpful to distinguish between the refractive-index 

contrast in the waveguide structures in the transversal and longitudinal

directions. We can then classify the waveguide structures into four groups 

according to their transversal and longitudinal refractive index contrast. For 

the calculation of eigenmodes of transversally low-contrast waveguide 

structures, i.e., weakly guiding structures, scalar or semivectorial mode 

solvers can be used, while fully vectorial mode solvers are needed for 

transversally high-contrast waveguides. In structures with small longitudinal 

refractive index contrast, the back-reflection can be often neglected, and 

unidirectional tools like standard beam propagation methods are adequate, 

while for modeling structures with strong and/or rapid variations of the 

refractive index in the longitudinal direction, bidirectional tools must be 

used. A typical choice of proper modeling tools for different types of 

structures is summarized in Table 1. 

Table 1. Types of structures and appropriate modeling tools 

Type of the waveguide structure Appropriate modeling tool 

 low transversal and low longitudinal 

contrast

scalar (or semivectorial) mode solvers, 

unidirectional propagation 

 low transversal contrast, 

high longitudinal contrast 

scalar (or semivectorial) mode solvers, 

bidirectional propagation 

 high transversal contrast, 

low longitudinal contrast 

vectorial mode solvers, 

unidirectional propagation 

 high transversal contrast, 

high longitudinal contrast 

vectorial mode solvers, 

bidirectional propagation 

This scheme has to be applied deliberately; it is not difficult to find 

examples that do not fit there, like a waveguide distributed Bragg reflector 

grating. Its longitudinal refractive index contrast of the grating is typically 

very low, but a strong total back-reflection can be built up by coherent 

superposition of back-reflections from its individual grooves. Only 

bidirectional methods are therefore adequate for its modeling. A good critical 

overview of mode solvers and beam propagation method can be found in 

books.
1, 2

. In the following, structures with high transversal contrast 

corresponding to the last two rows of Table 1 will be preferably considered. 

All methods mentioned in Table 1 operate (typically) in the frequency 

domain; a monochromatic optical wave is usually considered. Two basically 

different groups of modeling methods are currently used: methods operating 

in the time domain, and those operating in the spectral domain. The 

transition between these two domains is generally mediated by the Fourier 

transform. The time-domain methods became very popular within last years 

because of their inherent simplicity and generality and due to vast increase in 

both the processor speed and the memory size of modern computers. The 

same computer code can be often used to solve many problems with rather 

Modeling of high-contrast photonic contrast structures 
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different geometries, including the spectral dependence of components and 

devices and ultrashort pulse propagation even in the presence of optical 

nonlinearities. The finite-difference time domain method
3
 (FDTD) is perhaps 

the most typical representative of numerical time-domain methods.

In this contribution, we will not consider the time-domain methods, 

however. We will try to present here a more or less systematic explanation of 

a modal approach to mode solvers and propagation methods. Modeling 

software tools are often based on finite difference
4
 (FD) or finite-element

5,6

(FE) methods. These methods require discretization in two dimensions for 

the mode solvers and in three dimensions for the propagation methods. 

Similarly as in the case of a FDTD method, FD and FE methods are flexible 

but their requirements on computer resources (memory and speed) are 

generally high, especially for fully vectorial 3-D methods. The well-known 

method of lines
7
 (MoL) requires discretization in one transversal direction 

only, but for efficient calculation, its code has to be ‘tailored’ to the 

waveguide structure under investigation. We will describe here the principles 

of methods based on mode matching
8,9

 that are known to be very accurate, 

computationally efficient and have generally low requirements on the 

computer memory, especially for structures with piecewise constant 

refractive-index profile. The mode matching method is applicable to lossy 

and radiating structures whose eigenmodes have complex propagation 

constants, too, at the expense of longer calculation time. The advantages of 

the mode matching method for modeling high-contrast waveguides stem 

mainly from its semi-analytic character. The total vectorial field in the 

modeled structure is represented by the superposition of eigenmodes of 

smaller parts (sections, slices) of the structure. These fields can be often 

expressed analytically, so that they are accurately represented even in very 

thin layers with strongly different refractive indexes, and the discontinuity of 

electric field components normal to the interfaces is fully taken into account. 

First we briefly present the fundamentals of the well-known transfer 

matrix method
10

 for the calculation of eigenmodes in a 1-D (planar) 

multilayer waveguide. This method forms the basis for the bidirectional 

propagation methods as well as for the vectorial mode solvers discussed 

later. The application of boundary conditions of the type of perfectly 

matched layers to mode matching methods
11,12

 will be briefly discussed, too. 

Then we explain the basics of the (2-D) bidirectional mode expansion and 

propagation method
13,14

, including modeling of finite periodic structures with 

the help of Bloch modes. Special attention will then be paid to modeling of 

(straight and) bent waveguides,
15-19

 and ring and disk microresonators with 2-

D cross-sections.
20,21
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2. GUIDED WAVES IN A MULTILAYER STRUCTURE 

A multilayer structure represents a very general form of a planar (1-D) 

waveguide. Any graded-index planar waveguide can be approximated by a 

multilayer waveguide; in this case, the graded-index profile is approximated 

by a staircase function. It is fair to admit here that the guided modes of a 

(usually weakly guiding) graded-index waveguide can be more effectively 

calculated by numerical integration of the pertinent differential equations
22

than by using a staircase approximation. However, high-contrast waveguides 

that are of interest here are almost exclusively formed by layered structures. 

Let us consider a multilayer structure plotted schematically in Fig. 1. It 

will be taken as a fundamental building block of any more complex guided-

wave structure considered here. Let the optical wave propagate along the 

longitudinal coordinate z , and x  is the transversal coordinate.

Figure 1. A multilayer structure as an optical waveguide. 

We shall consider only multilayers of finite transverse extent. Such 

structures are formed by L  layers of finite thicknesses, with refractive 

indexes  1 2, , , ,
l
n l L= . The coordinates of the interfaces between 

adjacent layers are denoted by , 1 2 1, , ,
l
x l L= , and 

0
x  and 

L
x  are the 

outer coordinates of the structure. We will suppose for a while that the 

multilayer is enclosed between a pair of perfect electric or magnetic 

conductors (electric or magnetic “walls”). More complex boundary 

conditions will be briefly discussed later.

An efficient formalism for the calculation of eigenmodes of the 

multilayer is known as the transfer matrix method
10

. We will briefly outline 

its fundamentals.

For numerical modeling of wave propagation in a structure, it is always 

advisable to relate the spatial coordinates to the wavelength of the 

propagating wave. We thus normalize the spatial coordinates as follows: 

0 0 0 0
         2, , , /
l l

k x k x k z k= = = = , (3) 

Modeling of high-contrast photonic contrast structures 
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where  is the free-space wavelength. The time-harmonic dependence of the 

form exp( )i t  with 2 /c=  is supposed and suppressed, c  being the 

speed of light. Due to the symmetry of the structure, waves of two different 

polarizations can propagate independently: TE waves with field components 

, ,
y x z
E H H , and TM waves with components , ,

y x z
H E E . The eigenmode of 

the structure propagates with its own propagation constant  or its effective 

refractive index 
0

/N k= . The mode field components can then be 

normalized using the following relations: 

0 0 0 0

0 0 0 0

0 0 0 0

TE polarization                          TM polarization

2       2

2     2

2    2

( )exp( ), ( )exp( ),

( )exp( ), ( )exp( ),

( )exp( ), ( )exp( ).

y y

x x

z z

E k Z f iN H k Y f iN

H k Y h iN E k Z h iN

H i k Y g iN E i k Z g iN

= =

= =

= =

-

 (4) 

Here,
1 1 2

0 0 0 0

/( / )Z Y µ= =  is the free-space wave impedance, and the 

functions ( ), ( ), ( )f g h  are dimensionless mode field distributions. From 

Maxwell equations we easily obtain the following relations among the 

functions:

( )

1( ) ( )
( ) , ( ) , ( ) ( ),

( ) ( )

df df N
g g h f

d d
= = =  (5) 

where
2( ) ( )n=  is the permittivity profile of the structure (a piecewise 

constant function), and the parameter  is used to distinguish the 

polarization: 0=  for TE waves, 1=  for TM waves.

Within each layer, ( )  is constant. The pair of first-order differential 

equations (5) for ( )f  and ( )g  can then be solved analytically. We obtain 

,
( ) ( )

( )
( ) ( )

( )
cos sin

( ) ,

sin cos

l

l

l l l l

l
l

l

l l l l

l

f f

g g

±

±

±

=

±

±

=

M

M

 (6) 

where
2 1 2 2/( ) ,

l l l l
N n= = . The propagation by the distance 

inside the l -th layer can  thus be represented by the transfer matrix

( )
l

±

M . Both functions ( )f  and ( )g  describe tangential field 
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components. Because of field continuity conditions at the interfaces, they are 

identical at both sides of the interface. At the outer boundaries, 

0
0( ) ( )

L
f f= =  for TE polarization at the electric walls and for TM 

polarization at the magnetic walls, while 
0

0( ) ( )
L

g g= =  for TE 

polarization at the magnetic walls and TM polarization at the electric walls.

The eigenmodes of the structure have to satisfy the boundary conditions 

at both outer boundaries simultaneously. The propagation constant of a mode 

(or, more practically, its effective refractive index squared,
2
N ) can be 

found using the following very simple procedure. We start from both outer 

boundaries where we choose (rather arbitrarily) the values of 
0
( )f  and 

( )
L

f , or 
0
( )g  and ( )

L
g , according to the boundary conditions. Then we 

choose a suitable position 
l

 within the multilayer structure where the field 

of the mode being calculated is expected to be strong (or at least nonzero). 

(A good choice might be e.g. one of the interfaces of the layer with the 

largest refractive index.) The total transfer matrix for the transition from the 

bottom boundary 
0

 to this position
l

 is given by the product 
+

M  of 

matrices
l

+

M  of each layer with l l . Similarly, the matrix representing 

the transition from the upper boundary 
L

 to 
l

 is given by the product M

of matrices 
l
M  of layers with decreasing layer counter, 

1 1, , , .l L L l= +  The resulting field components ( ), ( )
l l

f g  at the 

interface
l

 must be unique. This condition can be written in the form 

( ) ( )0

0 0

L
f f

+

=M M 0  (7) 

or a similar one if 
0
( )g  and ( )

L
g  are nonzero. After simple manipulations 

we obtain from Eq. (7) the dispersion equation in the simple form 

11 21 21 11
0M M M M

+ +

=  (8) 

that combines the elements of the matrices 
+

M  and M . Equation (8) has to 

be numerically solved for the effective refractive index 
2
N  squared. Having 

known
2
N  and thus N , the mode field distribution can be calculated by the 

repetitive application of Eq. (6). 

It is well known that for lossless media, all squared effective indexes 2
m
N

are real, and for any transversally limited structure they form a discrete non-

growing sequence. The field distributions ( )
m
f  and ( )

m
h  of the m-th

mode are mutually orthogonal, have the same phase at each point  of the 

cross-section, and the set of functions corresponding to all modes is 

complete. The orthogonality relations can be taken in the form 

Modeling of high-contrast photonic contrast structures 
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( ) ( ) ( )

( )

( )

0 0

2

L L

m

m mm m mm

N
f h d f f d

n
= = . (9) 

The fact that any field in the multilayer structure can be expressed by a 

superposition of its eigenmodes will be heavily used later as a basic principle 

of the film mode matching method. 

Let us now briefly consider the case of a lossy structure when some of the 

refractive indexes 
l
n  are complex. The whole algorithm remains unchanged, 

but the effective refractive indexes of modes 
m
N  as well as the mode field 

distribution functions ( )
m
f , ( )

m
h  and ( )

m
g  become complex. It 

means that the roots 2
m
N  of the dispersion equation (8) have to be localized 

in the complex plane. A very simple algorithm of “root tracking” works 

reasonably well in most cases of planar (1-D) structures. First, the structure 

is considered as lossless, and all real effective indexes of modes are found. 

The imaginary parts of 2
l
n  are then gradually increased, and the motion of 

the roots in the complex plane is tracked using a simple Newton (or Newton-

Rawson) algorithm that takes into account analytic properties of the 

dispersion function. Note that the orthogonality condition given by Eq. (9) 

also remains unchanged, without any complex conjugation sign.

An important problem worth to be briefly discussed here is the problem 

of boundary conditions. The perfectly conducting walls considered so far 

behave as perfect reflectors. If an open region has to be simulated, the back-

reflected waves must be suppressed. One possibility is to use strongly 

absorbing layers with complex refractive indexes close to the boundaries. 

However, a nonzero reflection always takes place at the interface between a 

lossless and an absorbing layer, due to the difference in the refractive 

indexes. Thus, a number of layers with gradually  increasing absorption has 

to be used near the boundary, which increases the complexity of the problem 

(more layers are often required for absorbers than for the structure to be 

modeled itself). An original and efficient solution was proposed by 

Bérenger
23

. He proposed to use a layer of a special artificial inhomogeneous 

medium that absorbs radiation but does not bring about any reflection at the 

boundary with the neighboring lossless layer. Because of this feature, it is 

called a perfectly matched layer (PML). From the point of view of classical 

electrodynamics, it can be considered as medium with nonzero uniaxially 

anisotropic electric and magnetic conductivities. We will not describe the 

properties of the PML in details here. Recently it has been shown
24

 that from 

the formal point of view, the PML is fully equivalent to ‘stretching’ of the 

transversal spatial coordinate of the isotropic and lossless layer into the 

complex plane; it means that the thickness of the PML can be considered to 
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L-th layer the mode field can be represented by a superposition of two plane 

waves propagating upwards and downwards, with the spatial dependence of 

the form ( )[ ]exp i N ± , where 2 2
L
n N= . If the upper 

coordinate of the layer 
L

 is complex, 
L L L

i= + , the downward 

propagating wave is attenuated by the factor 

2exp( )
L L
R =  (10) 

with respect to the upward propagating wave. Here, 
L
R  is clearly the 

resulting amplitude reflectance of the PML. From this very simple 

consideration it is apparent that the attenuation of any PML is finite but 

exponentially growths with increasing the imaginary part of the coordinate. It 

is also the larger the smaller is 2N . It means that the PML attenuation is the 

smallest for the fundamental mode of the multilayer and rapidly grows with 

the mode number. 

Since PMLs are lossy, the eigenmodes of multilayers with PML are 

generally complex, so that their effective indexes have to be localized in the 

complex plane. The great advantage of PML’s is that they can be very easily 

incorporated into the modeling software based on mode matching, and their 

behavior can be easily understood from their interpretation in terms of 

complex coordinate stretching. 

The transfer matrix method as a mode solver for multilayer structures 

proved to be efficient and reliable even for structures with extremely large 

refractive index contrast consisting of the combination of dielectric and 

metallic layers supporting propagation of surface plasmons
26

. The optical 

permittivity of such metals is complex, with large negative real part. In 

combination with high-index dielectric layers they probably represent 

structures with the largest experimentally attainable refractive index contrast. 

The possibility to choose the “matching interface” 
l

 properly, i.e., if need 

be, differently for different modes, makes the method very flexible. Contrary 

to the application of the method to the longitudinal propagation in the 

bidirectional mode expansion and propagation method, it is usually very 

stable. The stability is perhaps the most strongly compromised for the lowest 

order modes in structures containing thick low-index layers, in which the 

transversal propagation constants 2 2
l l

n N=  are large imaginary. 

However, proper formulation of the algorithm can minimize the danger of its 

failure. Higher-order modes are less prone to instabilities of this kind due to 

their smaller values of 2N  and thus larger values of 2
l

.

be complex
12,25

. Let us take the mode field with the effective index N . In the 

Modeling of high-contrast photonic contrast structures 
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3. BIDIRECTIONAL MODE EXPANSION AND 

PROPAGATION 

Bidirectional mode expansion and propagation method (BEP) is a rather 

simple but powerful, general and accurate method for modeling wave 

propagation in structures in which back-reflections are important
13,14,27,

. For 

brevity we shall consider here only its two-dimensional version. The 

waveguide structure to be modeled is schematically depicted in Fig. 2. It 

consists of a concatenation of longitudinally uniform waveguide sections, 

each of which is considered as a multilayer waveguide. The lengths of the 

input and output sections are supposed to be infinite.

2
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Figure 2. Waveguide structure as a concatenation of several multilayer waveguide sections. 

The principle of the BEP method can be easily explained using simple 

physical arguments. As before, the symmetry of the problem allows us to 

consider the TE and TM polarizations independently. Suppose that the 

structure is excited from the left by a forward propagating monochromatic 

wave in the input section, 0s = . Our task is to calculate the field 

distribution in the whole structure. In each longitudinally uniform section 

 0  1 1, , , ,s s S= … + , the propagating wave can be decomposed into forward 

and backward propagating eigenmodes of the section. In the output section, 

1s S= + , only the forward propagating modes can appear. If the same 

number M  of modes is considered in each section, in each ‘inward’ sections 

1 2, ,s S=  we have 2M  unknown amplitudes while in each of the input 

and output sections there are only M  unknown amplitudes (reflected modes 

in the input section and outgoing modes in the output one). Thus, we have 

altogether 2 1( )S M+  unknown amplitudes. At each interface between the 

neighboring sections, two tangential field components ( and
y x
E H  for the 

TE polarization and and 
y x
H E  for the TM polarization) are to be 

continuous. This gives 2 1( )S +  equations for the field dependences on the 

transversal coordinate x . Expanding these functions into eigenmodes of the 
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corresponding sections we get altogether 2 1( )S M+  linear equations for 

unknown mode amplitudes. Having solved this system of linear equations, 

we have solved the problem. 

Different longitudinal sections in the structure may generally have very 

different refractive index profiles, and thus their eigenmode functions can 

strongly differ, too. As they have to be well-represented by the superposition 

of modes of other sections, the number M  of considered eigenmodes needs 

to be sufficiently large (typically from tens to hundreds), and it means that 

many of these modes are evanescent in the direction of propagation (for their 

effective indexes, 
2

0Re{ }N < ).

The procedure just described, although formally correct, is not suitable 

for practical implementation. There are several known approaches that do not 

require to solve the set of a large number of 2 1( )S M+  linear equations 

simultaneously. The most straightforward approach is based on the transfer 

matrix method that is formally similar to that explained in the previous 

section. However, the contributions of both forward and backward 

propagating modes are combined in the individual transfer matrix elements. 

For evanescent modes, the contributions from the exponentially decaying 

modes become soon negligible in comparison with those of the exponentially 

growing modes, and because of this, the whole procedure becomes 

numerically unstable. Other approaches are therefore preferred. One of them, 

known as the impedance method (or more correctly, immittance method) 

operates with the ratios between the field components instead of the 

components themselves. Even if the components themselves become to be 

very large or very small, their ratios remain finite and well-behaved. Another 

approach, the scattering matrix method, will be discussed later in some 

detail, too. 

3.1 Basic considerations 

We shall now formulate the problem more rigorously. Let us consider the 

field in the s-th section. It can be expressed as a superposition of all its 

modes in the following way: 

( ) ( )

( ) ( )

1 1

0 0 0 0

0 0

1 1

0 0 0 0

0 0

1

0 0 0 0

0 0

TE polarization TM polarization

2        2

2    2

2     2

( ) , ( ) ,

( ) ( ), ( ) ( ),

( ) , ( )

M M

s s s s

y m y m

m m

M M

s s s s

x m m x m m

m m

M M

s s s s

z m z m

m m

E k Z f p H k Y f p

H k Y h q E k Z h q

H i k Y g p E i k Z g p

= =

= =

= =

= =

= =

= =

-

1

.

 (11) 
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Here, the longitudinal evolution of the modes is described by the 

functions ( )
s

m
p  and ( )

s

m
q  instead of a simple exponential term as in Eq. 

(4) since we have to take into account both forward and backward 

propagation modes. Substituting Eq. (11) into Maxwell equations and taking 

into account the relations described by Eq. (5) we find that the functions 

( )
s

m
p  and ( )

s

m
q  have to satisfy the following very simple set of first-

order differential equations: 

( )

( )

( )

( )

,

.

s

s s

s

s s

d
i

d

d
i

d

=

=

p
N q

q
N p

 (12) 

Here,
s
N  is a diagonal matrix of effective refractive indexes of the 

modes of the s-th section, and 
s
p  and 

s
q  are the column vectors of mode 

field amplitudes ( )
s

m
p  and ( )

s

m
q , respectively. From these equations it 

is easy to find the relations between the mode field amplitudes ( )
s
p  and 

( )
s
q  at the position  and those at the position shifted by  within the 

same waveguide section s:

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

s

,

cos sin
.

sin cos

s s

s

ss

s s

s s

i

i

+

=

+

=

p p

A
qq

N N

A

N N

 (13) 

Here, ( )
s
A  is the transfer matrix describing the translation by  within 

the section s. The mode field amplitudes ( )
s
p  and ( )

s
q  can be 

alternatively expressed in terms of the amplitudes of forward and backward 

propagating modes sa  and sb ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

exp , ,

exp .

s s s s s

s s s s s

i

i

= = +

= =

a N p a b

b N q a b

 (14) 

Note that for high-order modes, ( ) ( )cos coshs s

m m
N N=  and 

( ) ( ) ( )sin sinh coshs s s

m m m
i N N N= , and as a result, 

the matrix ( )
s
A  becomes singular. An alternative approach to solve this 

problem, the immittance matrix method, will be discussed in the next 

section, another one, the scattering matrix method, is described in
14

.
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3.2 Immittance matrix method 

In this approach, we introduce the immittance matrix ( )
s
U  by the 

relation

( ) ( ) ( )
s s s

=q U p . (15) 

The term ‘immittance’ is used for the sake of generality; for TE modes, the 

physical meaning of the matrix sU  is namely the transversal admittance (it 

mutually relates the field components 
x
H  and 

y
E ) while for TM modes it is 

impedance (the field components 
x
E  and 

y
H  are related). It can be derived 

from Eq. (13) by algebraic manipulations that upon translation from  to 

+ , the immittance matrix is transformed as follows: 

[ ]

( ) ( )

11 1 1 1

s

( ) ( ) ,

tan , sin .

s s s s s s

s s s

i i+ = +

= =

U t s U t s

t N s N

 (16) 

Note that all elements of diagonal matrices 1s
t  and 1s

s  remain limited, 

especially those corresponding to high-order evanescent modes.

As has already been mentioned, at the interface between two neighboring 

sections, two transversal field components are continuous. Their distributions 

can be expressed by two expansions corresponding to modes of each section. 

From Eq. (11) we get for the interface between sections s and t

1 1 1 1

0 0 0 0

( ) ( ) , ( ) ( )
M M M M

s s t t s s t t

m m m m m m m m

m m m m

f p f p h q h q

= = = =

= = . (17) 

Multiplicating these equations subsequently by functions ( )
m
f  and ( )

m
h

from both sections, integrating over  and taking into account the 

orthogonality conditions of Eq. (9) we finally receive 

,t ts s t ts s
= =p O p q O q , (18) 

where tsO  and tsO  are matrices of overlap integrals with elements 

0

0

2

2

1

1

( ) ( ) ,

( ) ( ) .

L

L

ts t t s
mmm m ms

ts t t s
mmm m mt

O N f f d
n

O N f f d
n

=

=

 (19) 
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From Eq. (18) one easily concludes that the immittance matrix is 

transformed at the interface in the following way: 

t ts s st
=U O U O . (20) 

The calculation of field distribution in the whole waveguide structure 

using the immittance matrix starts from the output section. As there are no 

backward propagating modes in the output section, 1S+
=b 0 , it follows 

from Eq. (14) that 1 1S S+ +
=p q , from which we get using Eq. (15) 

1S+
=U I , (21) 

where I  is the unity matrix. Having known the immittance matrix at the 

output section, we can successively calculate its value everywhere in the 

structure using Eq. (20) for the transformation between the sections and 

Eq. (16) inside each section. In this way we get the immittance matrix at the 

input section, 0s = . The amplitudes of the incident (forward propagating) 

modes 0
a  are expected to be known. From Eqs. (14) and (15) one can easily 

find the amplitudes of the backward propagating modes: 

( ) ( )
10 0 0 0

= +b I U I U a  (22) 

and thus the amplitude 0 0 0
= +p a b , too. Then, the field distribution in 

the whole structure can be calculated using the transformation relations given 

by Eq. (18) between the sections and the transformation 

( ) ( )[ ] ( )
11 1s s s s si i+ = + +p U t s p  (23) 

within the uniform section s . Eq. (23) can be derived from Eqs. (15) and 

(16) and, in contrast to Eq. (13), it is numerically stable. The value of 

( )s
+q  needed for the calculation of the field distribution can be 

obtained from Eq. (15) since the corresponding value of the immittance 

matrix ( )
s

+U  has already been calculated in the first step. 

Although the process just described seems to work well, there are still 

some details worth mentioning. From Eq. (18) one can easily conclude that 

( ) ( )
1 1
,ts st ts st

= =O O O O . (24) 

But it is true only if the complete system of eigenmodes is considered. In 

reality, we can use only a finite number M  of eigenmodes in each section, 

and in this case Eq.(24) is not accurately satisfied. As it has been discussed 
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in detail by Berends
29

, if a finite number of modes is considered, there are in 

fact four different possibilities how to transform the mode amplitudes p  and 

q  between the two sections. From these four possibilities, two choices 

satisfy the reciprocity, the other two not, but even if reciprocity is preserved, 

it does not mean that that particular algorithm is more accurate than the 

others. The best way we can go is to apply one of the reciprocal algorithms 

and use it as consistently as possible. 

3.3 Bloch modes in periodic waveguides 

Quite often the waveguide structure to be modeled contains one or more 

parts that exhibit periodicity in the direction of propagation. Typical 

examples are deeply etched gratings in waveguides
29-31

 and waveguides in 

photonic crystals
14,32

. Such a waveguide structure is schematically plotted in 

Fig. 3. Besides the input, output and some other sections, it contains also a 

periodic structure with four periods; each period (incidentally) consists of 

two waveguide sections. 

y

xL

x0

x

input 

guide 

output

guidePeriodic  structure

z
B

Figure 3 . Waveguide with a periodical structure. 

Wave propagation in periodic structures can be efficiently modeled using 

the concept of Bloch (or Floquet-Bloch) modes
33,31

. This approach is also 

applicable for the calculation of band diagrams of 1-D and 2-D photonic 

crystals
34,35

. Contrary to classical methods like the plane-wave expansion
36,37

,

the material dispersion can be fully taken into account without any additional 

effort. For brevity we present here only the basic principles of the method. 

The Bloch mode can be defined as a wave corresponding to the 

eigenmode of the transfer matrix of one period of the structure. Let A  is the 

transfer matrix describing wave transition from the left to the right of one 

period, calculated by successive applications of Eq. (13) to each section and 

Eq. (13) to each interface between sections within the period. The Bloch 

mode then has to satisfy the condition 

Modeling of high-contrast photonic contrast structures 
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exp( )
n n

n
n n

i=

p p

A
q q

. (25) 

The field distribution of the n-th Bloch mode is determined by the field 

amplitudes
n
p  and 

n
q , its “propagation constant” is /B

n B
k = , where 

 is the period length. It is known that the “propagation constant” B
n
k  is 

defined only in relation to the length of the whole period, ; any multiple of 

the grating wave number 2 /K =  can be added to B
n
k , without any 

physical effect. The real part of B
n
k  is therefore usually selected from the 

interval 2  2( / , /K K  which forms the first Brillouin zone of the 1-D 

periodicity. In general, even for the lossless structure, B
n
k  can be complex, 

with nonzero imaginary part. It means that the Bloch modes behave like 

evanescent modes of a standard waveguide, i.e., decay in the direction of 

propagation. In this case, the frequency of the mode is considered to belong 

to the forbidden gap (bandgap) of the periodic structure. The dependence of 
B
n
k on the frequency (or the wavelength) determines the band structure of the 

1-D periodicity. The band diagram for many 2-D structures can be calculated 

using this approach, too, by considering wave propagation along different 

directions of the 2-D structure and taking the periodicity in the particular 

direction of propagation as a 1-D periodicity. 

The transfer matrix method is known to be often unstable. If this is the 

case for the matrix A, other methods can be alternatively used to calculate 

the Bloch modes and their “propagation constants”
34,35

.

The transversal field distribution of Bloch modes at the longitudinal 

position
B

 of the interface between two period is defined (see Fig. 3) can be 

explicitly written as

( ) ( ) ( ) ( ),B B
n mn m n mn m

m m

f P f h Q h= = , (26) 

where
mn
P  and 

mn
Q  are m-th elements of the vectors 

n
p  and 

n
q ,

respectively. The Bloch modes form a new basis that can be used to expand 

field propagating in a periodic structure:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

.

B B
m m B n n B

m n

B B
m m B n n B

m n

f p f p

h q h q

=

=

 (28) 

From Eqs. (26) it immediately follows that the relations between the 

“standard” mode amplitudes 
m

q,
m
p  and “Bloch” amplitudes ,B B

n n
p q  are
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,B B
m mn n m mn n

n n

p P p q Q q= = . (29) 

These amplitudes play in a periodic structure similar roles as “standard” 

amplitudes in a “standard” waveguide structure. For example, the 

transformation of the amplitudes ( ) ( ),B B
n B n Bp q  by propagation through 

l  periods of the structure takes the very simple form 

( ) cos( ) sin( ) ( )

sin( ) cos( )( ) ( )

B B
n B n n n B

B B
n nn B n B

p lK l i l p

i l lq lK q

+

=

+

. (30) 

The approach based on Bloch modes can be easily cast into the stable 

immittance formalism. We can introduce the “Bloch immittance matrix” 

similarly as in Eq. (15) 

( ) ( ) ( )
B B B

B B B
=q U p ; (31) 

one can also easily find the transformation from standard to Bloch 

immittance matrix: 

1B
=U Q U P , (32), 

where P  and Q  are matrices with elements 
mn
P  and 

mn
Q , respectively. 

The immittance matrix is transformed by l  periods of the structure in the 

way analogous to Eq. (16), 

[ ]

( ) ( )

11 1 1 1( ) ( ) ,

tan , sin ,

B B
B B
lK i i

l l

+ = +

= =

U t s U t s

t s

 (33) 

where  is a diagonal matrix with elements 
n

. Thus, the Bloch mode 

formalism can be easily incorporated into the BEP method for the efficient 

analysis of periodic waveguide structures with any number of periods. 

Applications of such an approach can be found in
30,31,34,35

.

4. VECTORIAL MODE SOLVERS 

In this section we will discuss the mode matching method applied to 

vectorial modeling of straight and bent channel waveguides with 2-D cross-

Modeling of high-contrast photonic contrast structures 
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sections. For straight waveguides, this method is known for more than a 

decade as the film mode matching method (FMM)
8,9

. Although it is 

numerically very efficient and accurate, it was generalized for bent 

waveguides only very recently
20,21,38

, mostly because of numerical difficulties 

with cylindrical functions. In the next two parts we will briefly discuss FMM 

for both straight and bent waveguides in the same way. 

4.1 Straight waveguides 

Let us consider a straight channel waveguide with the cross-section 

schematically shown in Fig. 4. The cross-section can be subdivided by lines 

parallel with the (vertical) x  axis into “slices” 1  2  , , ,s S=  with 

interfaces positioned at the lateral coordinates 
1 2 1
, , ,

S
y y y . Each slice is 

formed by a vertical stack of layers numbered by  1  2, , , ,l l L= … . In the 

vertical direction, the waveguide is bound by perfectly conducting electric or 

magnetic “walls” positioned at 
0

x x=  and 
L

x x= . If need be, they can be 

substituted by PMLs as described before. 

Figure 4 . Cross-section of a straight channel waveguide. 

The physical principle of the FMM method is quite similar to the BEP 

method and can be described as follows: the field in each slice can be 

represented by the superposition of both sets of its TE and TM eigenmodes. 

Let us suppose that in each slice we take into account M  modes of each 

polarization. Because of field continuity conditions at the interfaces between 

the slices, the modes within the slices propagate under different angles with 

respect to the axis of propagation z ; these angles are adjusted so that their 

propagation constants along z  direction are all identical. The modes reflect 

from the interfaces between slices, and as a result, in each of the inner slices, 

two waves of each mode can propagate, which differ in the sign of their 
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propagation constants in the lateral direction y . The two outermost slices 

can be left open in the lateral direction, i.e., they are considered as 

semiinfinite. As a result, each of their modes can propagate as a single 

(outgoing) wave only. We thus have altogether 4 1( )M S  unknown mode 

field amplitudes. From the field continuity conditions at the interfaces we get 

4 1( )S  equations. Expanding them into the corresponding M  eigenmodes 

of the slices we can arrive to the set of 4 1( )M S  homogeneous linear 

equations. Zeros of its determinant correspond to the propagation constants 

of the eigenmodes of the channel waveguide as a whole, and the 

corresponding field amplitudes determine the mode field distribution.

From this brief description it is apparent that ‘slice’ modes of both TE 

and TM polarizations are mutually coupled by the continuity conditions at 

the interfaces between slices. As a result, the mode fields of a channel 

waveguide have all components of the electric and magnetic field nonzero. 

In this way, the vectorial properties of mode fields are taken into account. 

The procedure just described is physically easily understandable but not 

suitable for numerical implementation. We now briefly describe its 

numerically efficient version based on the immittance matrix approach. 

We start again with the normalization of coordinates and fields. Because 

of two-dimensional cross-section of the waveguide, it is now suitable to 

introduce the normalized quantities in the following way: 

( ) ( ) ( ) ( )

0 0 0

0

0 0 0 0

1
     

2  2

, , , ,

, , , , , , , , , .

x k y k z k
k

x y z Z k x y z Y k

= = = =

= =E e H h

 (34) 

It can be easily found that Maxwell equations get the simple form 

2,i i n× = × =e h h e . (35) 

It is known
39,19

 that the complete electromagnetic field in each slice s  can 

be expressed in terms of Hertz electric and magnetic vectors s h  and s e

that are both parallel with the x  coordinate axis. (It is a consequence of the 

invariance of the refractive index distribution of the slice with respect of the 

coordinates y  and z ). The field components in the slice s  are given by the 

expressions

s

s
1

, ,

, .

s h s h h s h

s e s e e s e

i

i

= × = × ×

= × × = ×

e h

e h

 (36) 
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It can be shown that Maxwell Eqs. (35) are satisfied if the Hertz vectors 

have the form 

( ) ( ) ( )

( ) ( ) ( )

0

0

exp ,

exp ,

s h s h s h
m m z

m

s e s e s e
m m z

m

f p iN

f p iN

=

=

x

x

 (37) 

where 0
x  is the unit vector in the direction of the x  axis, 

z
N  is the effective 

refractive index (normalized propagation constant), the functions ( )
s h
m
f  and 

( )
s e
m
f  are the field distribution functions of TE and TM modes of the slice 

s , respectively, and ( )
s h
m
p  and ( )

s e
m
p  are the local amplitudes of the TE 

and TM modes, respectively. They satisfy the very simple equations 

( ) ( ) ( )

2
2 2 22

2
0, , ,

s
m s s s s

ym m ym z xm

d p
N p N N N h e

d
+ = + = = , (38) 

where s
xm
N  are effective refractive indexes of the “slice” modes with the 

field distributions ( )
s
m
f .

Equations (37) are very similar to Eqs. (11). It is thus not surprising that 

the evolution of the amplitudes ( )
s
m
p  can be described in the form of the 

“lateral transfer matrix”, similarly as in Eq. (13): 

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

1

,

,

cos sin
,

sin cos

.

s
m

s
m

s s s
ym ym ms

y m
s
ms s s

y m ym ym

s
ms

m

p

q

N N p
N

q
N N N

d p
q

d

+

=

+

=

=

 (39) 

From the field continuity conditions at the interface between the slices s  and 

t  we can derive the relations analogous to Eqs. (18) and (19), 

( )

( )

1
2 2 ,

,

s s st t t
x x

T
s ts t st t

=

=

p N O N p

q O q X p

 (40) 
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where sp  is a column vector

0 1 1 0 1 1
( , , , , , . , )s s h s h s h s e s e s e T

M M
p p p p p p=p , (41) 

0 1 1 0 1 1, , , , , ,( , , , , , , , )s s h s h s h s e s e s e
x x x x M x x x M
diag N N N N N N=N , (42) 

analogous relations hold for tp  and t
x
N , and stO  and stX  are overlap 

matrices

( )

,,

, ,
, ,

,

s t hes t hh
z

s t s t

Ts t ee t s he
z

N

N

= =

0 OO 0

O X
0 O O 0

 (43) 

with the elements
8,9

0 0

0

2

2
)

, ,

.

L L

L L

s e t e
m nst hh s h t h st ee

mn m n mn t

s h t e t e s h t e
m n xn m nst he

mn t s h t
xm

f f
O f f d O d

f d f N d f f
O d d

d N d

= =

= +

 (44) 

Note that the TE and TM modes are now mutually coupled at the interface. 

The coupling is represented by the matrix stX .

For increased numerical stability, we introduce the immittance matrix 

( )
s
U  by the usual relation 

( ) ( ) ( )
s s s

=q U p . (45) 

The transformation of the immittance matrix within the single slice is given 

by the relation analogous to Eq. (16), 

( ) ( )

( ) ( )

1
1 1 1 1

1 s

( ) ,

sin , tan ,

s s s s

s s s s s
y y y y

+ = +

= =

U t s U t s

s N N t N N

 (46) 

where s
y
N  is a diagonal matrix with the elements

0 1 1 0 1 1, , , , , ,, , , , , , ,s h s h s h s e s e s e
y y y M y y y M
N N N N N N , (47) 

The transformation between the slices s  and t  reads now 
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( ) ( )
1

2 2 .
T

t st s s st t st
x x

= +U O U N O N X  (48) 

Since the calculation window is left open in the y  direction, all modes in 

the outermost slices 1s =  and s S=  must be outgoing. A more detailed 

inspection shows that in this case, the immittance matrices in these slices are 

diagonal and constant: 

1 1 , S S
y y y

i i= =U N U N . (49) 

To find the eigenmode, we choose a suitable lateral position  where the 

mode field is expected to be nonzero and calculate the values +
U  and U

of the immittance matrix at that position starting from both sides as indicated 

in Fig. 5. Since the tangential field components at that position must be 

continuous, we easily arrive to the set of linear equations 

( ) ( )
+

=U U p 0 . (50) 

Zeros of its determinant determine the effective refractive indexes 
z
N  of the 

eigenmodes, and from the corresponding nontrivial solutions ( )p  we can 

calculate the complete vectorial field distribution everywhere in the cross-

section using Eqs. (36) – (40) or their more stable equivalents.

Figure 5 . Searching of the eigenmode of a channel waveguide. 

It is interesting to note that if the matrix stX  in Eqs. (40) and (48) is 

neglected, we obtain two independent sets of equations in which TE and TM 

modes of the slices do not mutually couple. They represent semivectorial 

approximations to the fully vectorial problem. 
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An example of the vectorial field distribution of the quasi-TE00 mode of a 

rib waveguide with a comparatively large refractive index profile is shown in 

Fig. 6.

Figure 6 . Vertical (left) and horizontal (right) magnetic field components of the quasi-

TE00 mode of the rib waveguide. Refractive indexes of the substrate, the guiding layer and the 

superstrate are 1.9, 2.2 and 1.0, respectively, the rib width and height are 1 µm and 0.5 µm, 

respectively, the wavelength is 1.3 µm.

Fig. 7 presents another example of a very high-contrast waveguide – a 

rectangular buried waveguide covered by a gold layer. Strong hybridization 

of the waveguide mode with the antisymmetric surface plasmon is clearly 

manifested.

Figure 7.  Left: cross-section of a buried waveguide covered by a gold layer. Right: Field 

distribution of a quasi-TM-polarized mode. (Courtesy of J. Petrá ek, TU Brno.) 

4.2 Circularly bent waveguides and microresonators 

The FMM mode solver for circularly bent waveguides can be constructed 

in a very similar way as for straight waveguides. The cross-section of a bent 

waveguide is schematically depicted in Fig. 8. We will suppose that the 

cross-section of an azimuthally invariant waveguide can be subdivided into 

Modeling of high-contrast photonic contrast structures 
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radially (and azimuthally) uniform slices, each of which consists of a 

multilayer structure (see Fig. 8). The waveguide is considered to be bound in 

the axial (vertical) direction by perfect walls or PMLs.

Figure 8 . Cross-section of a circularly bent channel waveguide 

The cylindrical coordinates and the field vectors can be normalized in the 

same way as for the straight waveguide:

( ) ( ) ( ) ( )

0 0

0

0 0 0 0

1
  =    

2  2

, , , ,

, , , , , , , , , .

k r k x
k

r x Z k r r x Y k r

= = =

= =E e H h

 (51) 

As the refractive index within the slice depends on the vertical coordinate 

only, TE and TM modes can propagate independently in the slices, and Eqs 

(35) and (36) are fully applicable to this geometry without any change, too. 

Since we are interested in the propagation of waves in the azimuthal 

direction, it is advantageous to decompose the Hertz vectors into the 

eigenmodes of the slice as follows: 

( ) ( ) ( )

( ) ( ) ( )

0

0

exp ,

exp ,

s h s h s h
m m

m

s e s e s e
m m

m

f p i

f p i

=

=

x

x

 (52) 

where  is the azimuthal propagation constant of the mode being searched. 

The mode amplitudes ( )
s h
m
p  and ( )

s e
m
p  are now required to satisfy the 

Bessel equation 

( )

2 2
2

2 2

1
0, ,

s s
m m s s

xm m

d p d p
N p h e

d d
+ + = = . (53) 
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A general solution of this equation can be written in the form 

1( )( ) ( ) ( )s s s s s s
m m xm m xm
p B J N C H N= + , (54) 

where J  and 1( )H  are the Bessel function and the Hankel function of the 

first kind, respectively. Note that the propagation constant plays the role of 

the order  of the cylindrical functions. In the innermost slice 1s =  that 

contains the center of rotation, only the J  function is a physically 

acceptable solution. Similarly, in the outermost slice s S=  that is unlimited 

in the radial direction, only 1( )H  can be retained since it describes the 

radially outgoing wave. 

Equation (54) can suffer from numerical instabilities. Therefore we adopt 

the immittance matrix approach. First we define the column vector of mode 

amplitudes ( )p  in the same way as in Eq. (41). Then the immittance matrix 

is introduced by the relation 

( )

( ) ( )

d

d
=

p
U p . (55) 

From this definition it follows that at the outer interface 
1
 of the 

innermost slice 1s = , and at the inner interface 
1S
 of the outermost slice 

s S= , the immittance matrix takes the values 

( ) ( ) ( )

( ) ( ) ( )

1
1 1 1 1

1 1 1

1
1 1

1 1 1
( ) ( )

,

,

x x x

S S S S
S x x S x S

J J

H H

=

=

U N N N

U N N N

 (56) 

respectively. From Eqs. (54) and (55) one can derive the transformation of 

( )s
U  from 

a
 to 

b
 within any slice. After lengthy but straightforward 

manipulations one obtains the relation 

( )
1

( ) ( )
b a
=U G H U F E , (57) 

where the matrices , , ,E F G H  can be found to be 

Modeling of high-contrast photonic contrast structures 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1 1

1 1 1

1 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

,

x x b x b x b x b

x x a x b x a x b

x x b x a x a x a

x x a x a x a x s

H J H J

H J H J

H J H J

H J H J

=

=

=

=

E N N N N N W

F N N N N N W

G N N N N N W

H N N N N N
1,W

 (58) 

with

( ) ( ) ( ) ( )
1 1( ) ( )

x b x a x a x b
H J H J=W N N N N . (59) 

Note that for better readability, we omitted the left superscript s  that should 

appear at all matrices in Eqs. (57) to (59). 

For the transformation of the immittance matrix between the slices s  and 

t , Eq. (48) is valid without any formal change. Instead of Eq. (43) the 

matrices of overlap integrals are now given by

( )

,

st he
st hh

sst st

st ee T
ts he

s

= =

0 O
O 0

O X
0 O O 0

. (60) 

The elements of the matrices are given by Eq. (44) without any change, too. 

The remaining part of the mode seeking procedure can formally proceed 

exactly in the same as for the straight waveguide: starting from both 

innermost and outermost slices, two values of the immittance matrix in some 

suitably chosen radial position  are found and are then used to construct 

the set of homogeneous linear equations for the mode field amplitudes: 

( ) ( ) ( )
+

=U U p 0 . (61) 

Similarly as before, nontrivial solutions to this equation correspond to 

eigenmodes of the bent waveguide. 

This formally simple procedure is very difficult to perform, however. 

Because of radiation from the bend, the azimuthal propagation constant  to 

be found is complex. Since the bend radius of the waveguide is typically 

larger than the wavelength, the real part of  can be large, too. Moreover, a 

number of modes of each slice with very different values of their effective 

indexes are to be considered simultaneously.  It causes very serious 
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numerical problems. Equations (58) and (59) cannot be evaluated on the 

basis of individual cylindrical functions since it would often lead to products 

of the type 0 . Instead, the cross-products of cylindrical functions in Eqs. 

(58) have to be calculated using recurrence relations
40,41

. For reliable 

calculation of cylindrical functions of generally complex argument and 

order, special procedures based on uniform asymptotic expansions
40

were

developed
21,38

.

Note that this procedure is suitable also for the calculation of eigenmodes 

in circular ring and disk microresonators. The cross-sections of disk 

microresonators are usually simpler, without any mid-slices, which leads to 

shorter calculation times. However, good estimate of initial values of the 

propagation constants of the disk modes for their search in the complex plane 

is more difficult, and their mode spectrum is denser than for ring 

microresonators with similar radii of curvature. 

In Fig. 9, the mode field distributions of the fundamental quasi-TM00

modes of ring and disk microresonators are mutually compared. Note that the 

radiation is directed mainly into the substrate, and it is stronger from the ring 

since the field in the disk is localized closer to the center.

Figure 9 . The comparison of mode fields of ring (left) and disk (right) microresonators. 

Outer radii of both microresonators are R = 50 µm, the height of the guiding layer is 1 µm, the 

ring width is also 1 µm. The refractive indexes of the substrate, the guiding layer and the 

superstrate are 1.45, 1.59 and 1.0, respectively, the wavelength is 1.55 µm. Upper figures: 

vertical electric field component; lower figures: horizontal (radial) electric field component. 

Modeling of high-contrast photonic contrast structures 
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5. CONCLUDING REMARKS 

In this chapter, a semianalytical approach to the analysis and modeling of 

high-contrast guided wave photonic structures based on mode matching was 

briefly reviewed. Due to its principles, it is best suited for modeling 

structures with piecewise constant refractive index distribution, which is very 

often the case in modern guided-wave photonics: most photonic wires, disk 

and ring microresonators and photonic crystal structures belong into this 

class. Although modeling of truly 3-D structures like devices based on 2-D 

photonic crystals in planar optical waveguides or membranes remains still 

rather challenging, for structures with essentially 2-D refractive index 

distribution the method has proven to be very efficient and accurate. While 

its application to structures with rectangular geometry has been known for 

more than a decade, its extension to circular bends and microresonators has 

appeared only very recently.

Readers may be interested that 2-D and even 3-D modules based on the 

mode matching method can be found in several commercial software 

packages for modeling and design of integrated photonic devices.
41,42

. An 

excellent software package CAMFR by P. Bienstman for 2-D mode 

expansion and propagation modeling not only for rectangular geometry but 

also for structures with rotational symmetry like vertical cavity lasers and 

resonant LEDs is freely available on the web
44

.
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SURFACE PLASMON RESONANCE (SPR) 

BIOSENSORS AND THEIR APPLICATIONS IN 

FOOD SAFETY AND SECURITY 
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Chaberská 57, Prague, Czech Republic 

Abstract: Surface plasmon resonance (SPR) biosensors show vast potential for detection 

of chemical and biological analytes in numerous important areas. This chapter 

discusses the underlying principles and configurations of SPR biosensors and 

reviews applications of SPR biosensor technology in food safety. 

Key words: optical sensor; biosensor; surface plasmon; surface plasmon resonance; 

foodborne pathogen; toxin; food safety; security. 

1. INTRODUCTION 

In recent years, we have witnessed remarkable progress in the 

development of affinity biosensors and their applications in areas such as 

medical diagnostics, drug screening, environmental monitoring, 

biotechnology, food safety, and security. Illnesses caused by foodborne 

pathogens and toxins present serious problem with substantial public health 

impact and economic implications. Therefore, detection of food safety-

related substances is of paramount importance to food producers, processors, 

distributors and regulatory agencies. To address this urgent need, various 

affinity biosensors such as electrochemical sensors
1
, piezoelectric sensors

2
,

electrical impedance sensors
3
, and optical sensors

4
 have been developed. 

Optical affinity biosensors demonstrated for detection of analytes implicated 

in food safety include in particular fluorescence-based sensors
5
  and label-
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free sensor technologies such as grating coupler sensors
6
, resonant mirror 

sensors
7
, and surface plasmon resonance (SPR) sensors

8
.

2. FUNDAMENTALS OF SURFACE PLASMON 

RESONANCE SENSORS 

2.1 Surface plasmons and their optical excitation 

Surface plasmon-polaritons (SPP), also referred as to surface plasma 

waves, are special modes of electromagnetic field which can exist at the 

interface between a dielectric and a metal that behaves like a nearly-free 

electron plasma. A surface plasmon is a transverse-magnetic mode (magnetic 

vector is perpendicular to the direction of propagation of the wave and 

parallel to the plane of interface) and is characterized by its propagation 

constant and field distribution. The propagation constant,  can be expressed 

as follows:

M D

M D
c

, (1) 

where  is the angular frequency, c is the speed of light in vacuum, and D

and M are the dielectric functions of the dielectric and metal
9,10

. This 

equation describes a surface plasmon that propagates along the interface if 

the real part of M is negative and its absolute value is smaller than D. At 

optical wavelengths, this condition is fulfilled for several metals of which 

gold is most commonly used in SPR biosensors. The real part of the 

propagation constant is related to the effective refractive index, N : 

Re Re
M D

M D

c
N , (2) 

where Re{} denotes the real part of a complex number. The imaginary part 

of the propagation constant is related to the modal attenuation b:

0.2 0.2
Im{ } Im

ln10 ln10

M D

M D

b
c

 , (3) 
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Figure 1. The effective refractive index (upper plot) and attenuation (lower plot) of a surface 

plasmon as a function of wavelength for a surface plasmon at the interface between gold and a 

non-dispersive dielectric (dielectric refractive index: n = 1.32). 

where Im{} denotes the imaginary part of a complex number. Spectral 

dependencies of the effective refractive index and mode attenuation for a 

surface plasmon propagating along the interface between a gold and a non-

dispersive dielectric are shown in Fig. 1.Distribution of the electromagnetic 

field of a surface plasmon is shown in Fig. 2. Apparently, the field of the 

surface plasmon is concentrated at the metal-dielectric interface and 

decreases exponentially into both media with an increasing distance from the 

interface. For a surface plasmon at the gold – aqueous environment interface, 

the penetration depth (the distance from the interface at which the amplitude 

of the field falls to 1/e of its value at the surface) is typically 20-30 nm and 

100-500 nm in  metal and dielectric, respectively, in visible and near infrared 

regions.   The   surface   plasmon   penetration   depth   in   the   dielectric   is
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Figure 2. Distribution of the magnetic field intensity of a surface plasmon at the interface 

between gold and dielectric (refractive index of the dielectric – 1.32) in the direction 

perpendicular to the interface (x-y plane) for the wavelength of 850 nm. 

particularly important for SPR sensing, as it determines the region probed by 

the SPR sensor. 

In optical sensors based on surface plasmon resonance (SPR), surface 

plasmons are excited by light waves. An optical wave can excite a surface 

plasmon if the component of the light’s wave vector that is parallel to the 

interface, matches that of the surface plasmon. As the propagation constant 

of a surface plasmon at the metal-dielectric interface is larger than that of the 

light wave in the dielectric, the surface plasmon cannot be excited directly by 

light wave incident on a metal surface. Therefore, the wave vector of light 

wave needs to be increased to allow excitation of a surface plasmon by the 

light wave. This can be accomplished, for instance, by passing light wave 

through an optically denser medium. A light wave passes through a high 

refractive index prism and is totally reflected at the prism base generating an 

evanescent wave penetrating a thin metal film (Fig. 3). This evanescent wave 

propagates along the interface with the propagation constant which can be 

adjusted to match that of the surface plasmon by controlling the angle of 

incidence. Thus, the matching condition can be fulfilled allowing light 

coupling to the surface plasmon. This method is referred to as the attenuated 

total reflection (ATR) method
10

.

Assuming that the prism has only a minor influence on the propagation 

constant of the surface plasmon at the interface of a metal and a low 

refractive index dielectric, the coupling condition can be approximately 

expressed as follows: 
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sin( ) Re
M D

P

M D

 (4) 

where denotes the angle of incidence, P , M and D denote the dielectric 

functions of the prism, metal film and dielectric medium (sample); P > D.

 Prism

coupler

Sample

Metal layer

 SPP

Figure 3. Optical excitation of surface plasmon-polaritons (surface plasmon) by the attenuated 

total reflection (ATR) method. 

The excitation of a surface plasmon is accompanied by the transfer of the 

light wave energy into the energy of the surface plasmon and its subsequent 

dissipation in the metal film. This process results in a drop in the intensity of 

reflected light (Fig. 4). 
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Figure 4. Reflectivity in the Kretschmann geometry of ATR consisting of an SF14 glass prism 

(refractive index – 1.65), a gold layer (thickness – 50 nm), and a low refractive index 

dielectric medium (refractive index – 1.32), and wavelength - 800 nm. 
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2.2 Surface plasmon resonance (SPR) sensors 

When a surface plasmon propagates along a metal-dielectric interface, its 

electromagnetic field probes the dielectric (sample). Any change in the 

refractive index of the dielectric within the evanescent field of the surface 

plasmon results in a change in the propagation constant of the surface 

plasmon. In surface plasmon resonance (SPR) sensors, changes in the 

refractive index at the sensor surface are measured by measuring changes in 

the propagation constant of a surface plasmon. Based on which characteristic 

of the light wave interacting with a surface plasmon is measured, SPR 

sensors can be classified as SPR sensors with angular modulation, 

wavelength modulation, intensity modulation, phase modulation, and 

polarization modulation. The angular and wavelength modulations are the 

most frequently used modulations in SPR sensors as they offer high 

resolution and do not require a complex instrumentation. In SPR sensors 

with angular modulation, the component of the light wave’s wave vector 

parallel to the metal surface matching that of the surface plasmon is 

determined  by measuring the  coupling  strength  at a  fixed wavelength  and 

Figure 5. SPR sensor based on ATR method and angular modulations (upper) and 

corresponding reflectivity calculated for two different refractive indices of sample (lower). 

Sensor configuration: SF14 glass prism, 50 nm thick gold layer, sample, wavelength – 682 

nm.
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multiple angles of incidence and determining the angle of incidence yielding 

the strongest coupling (Fig. 5)
11,12

.

In SPR sensors with wavelength modulation, the component of the light 

wave’s wave vector parallel to the metal surface matching that of the surface 

plasmon is determined by measuring the coupling strength at a fixed angle of 

incidence and multiple wavelengths and determining the wavelength yielding 

the strongest coupling (Fig. 6)
13

.

Figure 6. SPR sensor based on ATR method and wavelength modulations (upper) and 

corresponding reflectivity calculated for two different refractive indices of sample (lower). 

Sensor configuration: SF14 glass prism, 50 nm thick gold layer, sample, incident angle – 54º. 

2.3 Surface plasmon resonance affinity biosensors 

In affinity biosensors based on spectroscopy of surface plasmons, 

biomolecular recognition elements immobilized on the surface of a SPR-

active metal layer recognize and capture analyte molecules present in a 

liquid sample. This analyte binding results in an increase in the refractive 

index at the sensor surface. The refractive index increase gives rise to an 

increase in the propagation constant of the surface plasmon which is 

measured by measuring a change in one of the characteristics of light 

interacting with the surface plasmon. 
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Figure 7. Concept of affinity biosensor based on surface plasmon resonance. 

SPR biosensors are label-free detection devices – binding between the 

biomolecular recognition element and analyte can be observed directly 

without the use of radioactive or fluorescent labels. In addition, the binding 

event can be observed in real-time. SPR affinity biosensors can, in principle, 

detect any analyte for which an appropriate biomolecular recognition 

element is available. Moreover, analyte molecules do not have to exhibit any 

special properties such as fluorescence or characteristic absorption or 

scattering bands.

3. IMPLEMENTATIONS OF SPR BIOSENSORS 

An SPR biosensor consists of two key elements - an optical system for 

excitation and interrogation of surface plasmons and a biospecific coating 

incorporating biomolecular recognition elements which interact with target 

molecules in a sample. 

3.1 Biomolecular recognition elements 

Various types of biomolecular recognition elements have been exploited 

in affinity biosensors. These include antibodies
14

, aptamers
15

, peptides
16

, and 
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molecularly imprinted polymers
17

. These biomolecular elements have to be 

immobilized on the sensor surface in a manner ensuring the conservation of 

biological activity of immobilized biomolecular recognition elements and 

non-fouling background. Another desirable property is regenerability - the 

possibility to regenerate the biomolecular recognition elements (i.e. break 

their complex with the analyte molecules and make the biosensor available 

for another use). 

In general, methods for immobilization of biomolecular recognition 

elements on gold films exploit physicochemical interactions such as 

chemisorptions
18

, covalent binding
19

, electrostatic coupling
20

, and high-

affinity molecular linkers in multilayer systems (e.g. streptavidin – biotin
21,

22
, proteins A or G

23
, and complementary oligonucleotides

24
), and photo-

immobilization (e.g. albumin derivatized with aryldiaziridines as a photo-

linker
25

). One of the most remarkable techniques in surface chemistry is the 

spontaneous  self-organization  of n-alkylthiols or  disulfides  on  gold . Self- 

Figure 8. Immobilization of antibodies via self-assembled monolayers of alkylthiols 

terminated with functional group (left) and self-assembled monolayers of alkylthiols 

terminated with biotin and subsequent capture of streptavidin (right). 

assembled monolayers (SAMs) have  been employed in many 

immobilization methods for spatially-controlled attachment of biomolecular 

recognition elements to surfaces of sensors
26

. In order to provide a desired 

surface concentration of biomolecular recognition elements on gold, mixed 

SAMs of long-chained (n = 12 and higher) n-alkylthiols terminated with 
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functional group for further attachment of biomolecular recognition elements 

and short-chained alkylthiols for a non-fouling background have been 

developed
27, 28

.

3.2 Multichannel SPR sensor platforms based on ATR 

SPR affinity biosensors are based on the measurement of refractive index 

changes induced by the interaction between the biomolecular recognition 

element immobilized on sensor surface and analyte in the sample. Therefore, 

accuracy of SPR measurements can be compromised by interfering effects 

which produce a change in the refractive index but are not associated with 

the capture of target analyte (e.g. non-specific interaction between the sensor 

surface and sample, background refractive index variations due to sample 

temperature and composition fluctuations). The effect of these interferences 

can be reduced by using multichannel SPR sensors in which certain sensing 

channels are used for detection and others are used as a reference channels. 

Figure 9. SPR sensor with four parallel sensing channels (provided by S. Löfås, Biacore AB.) 

In recent years, numerous configurations of multichannel SPR sensors 

have been proposed. The most straightforward approach to multichannel 

sensing is based on parallel architecture of sensing channels. In the prism-

based SPR biosensors with angular modulation and parallel architecture, a 

series of convergent monochromatic beams is focused on a row of sensing 

channels, where they excite surface plasmons and the reflected light from a 

row of sensing channels is projected onto a two-dimensional detector array,
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Figure 10. SPR dual-channel sensors based on wavelength division multiplexing (WDM) of 

sensing channels. WDM of sensing channels by means of altered angles of incidence 

(upper)
35

. WDM of sensing channels by means of a high refractive index overlayer (lower)
36

.

Fig. 9
29-30

. In prism-based SPR sensors with wavelength modulation and 

parallel architecture, series of collimated polychromatic beams are made 

incident on a row of sensing channels and SPR spectra encoded into the 

spectrum of reflected light wave are analyzed by means of multiple 

spectrographs
31

.

Recently, an alternative approach to multichannel sensing based on the 

wavelength division multiplexing (WDM) technique has been developed. In 

the WDMSPR sensors, SPR spectra from multiple channels are encoded in 

different wavelength regions of a single polychromatic light wave. 

Subsequently, SPR signals for all the sensing channels can be extracted from 



112 Ji í Homola

a single spectrum. This is accomplished by changing the angle of incidence 

of the incident light beam
32

 or by a dielectric overlayer deposited over a part 

of the SPR-active surface
33

, Fig. 10. In the first approach, a polychromatic 

light wave is made sequentially incident on two different areas of an SPR-

active metal film under two different angles of incidence. Upon each 

incidence, a surface plasmon of a different wavelength is excited. In the 

latter approach, a polychromatic light beam of a larger cross-section is made 

incident on an SPR-active metal film, a part of which is overlaid by a thin 

high refractive index overlayer. This film shifts the surface plasmon 

occurring at a metal-dielectric overlayer interface to longer wavelengths. 

The WDMSPR sensor approach offers the benefit of multichannel 

performance without increasing complexity and costs of the sensor system. 

In addition, the WDMSPR sensors make it possible to discriminate effects 

occurring in the proximity of sensor surface (specific binding, non-specific 

adsorption) from those occurring in the whole medium (interfering 

background refractive index fluctuations) which is a prerequisite for robust 

referencing
34

.

4. SPR BIOSENSORS FOR DETECTION OF 

ANALYTES IMPLICATED IN FOOD SAFETY 

4.1 Detection formats used in SPR biosensors 

SPR affinity biosensors have been developed to detect an analyte in a 

variety of formats. The choice of detection format for a particular application 

depends on the size of target analyte molecules, binding characteristics of 

available biomolecular recognition element, and range of concentrations of 

analyte to be measured. The main detection formats used in SPR biosensors 

include direct detection (Fig. 11), sandwich assay (Fig. 12) and inhibition 

assay (Fig. 13).

Direct detection is usually preferred in applications, where direct binding 

of analyte of concentrations of interest produces a sufficient response. If 

necessary, the lowest detection limits of the direct biosensors can be 

improved by using a sandwich assay. Smaller analytes (molecular weight < 

10,000) are usually measured using inhibition assay. 
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Figure 13. Detection formats used in SPR affinity biosensors: competitive inhibition assay. 
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4.2 SPR biosensor-based detection of food contaminants, 

food-borne pathogens and toxins 

Major chemical contaminants implicated in food safety include 

pesticides, herbicides, mycotoxins and antibiotics
35

. These analytes have 

been targeted by numerous groups developing SPR biosensors. As these 

analytes are rather small (typical molecular weight < 1,000), inhibition assay 

has been a preferred detection format. Examples of chemical contaminants 

detected by SPR biosensors include pesticides atrazine and simazine 

(detection limits 0.05 ng/ml
36

 and 0.1 ng/ml 
37

, respectively), mycotoxin 

Fumonisin B1 (detection limit 50 ng/ml 
38

), and antibiotics Sulphamethazine, 

Sulphadiazine (detection limits 1 ng/ml 
39

 and 20 ng/ml 
40

, respectively). 

Molecular weight of the main bacterial toxins ranges from 28,000 to 

150,000, which makes it possible for most sensitive SPR biosensors to 

measure their concentrations directly or using a sandwich assay. Examples of 

food safety-related toxins detected by SPR biosensors include Botulinum 

toxin (detection limit 2.5 g/ml
 41

), E. coli enterotoxin (detection limit 6 

g/ml
 42

) and Staphylococcal enterotoxin B (detection limit 5 ng/ml and 0.5 

ng/ml for direct detection and sandwich assay, respectively
 43

).

Direct detection of Staphylococcal enterotoxins B (SEB) is illustrated in 

Fig. 14 which shows binding of SEB to the wavelength-modulated SPR 

sensor surface coated with respective antibodies for five different SEB 

concentrations
43

. Figure 15 shows the sensor response to binding after 30-

minute   SEB   incubation  and   initial  binding  rate  as  a   function  of  SEB
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Figure 15. Detection of Staphylococcal enterotoxin B using an SPR biosensor. Sensor 

response as a function of SEB concentration. 

concentration. Both these metrics can be correlated with analyte 

concentration and used as a “sensor output”. 

Bacterial pathogens are relatively large targets (> 1 m) and therefore, 

their presence can be detected directly with an optional amplification by 

secondary antibodies (sandwich assay). Examples of foodborne bacterial 

pathogens detected by SPR biosensors include Escherichia coli (detection

limit 5×10
7
 cfu/ml

 44
), Listeria monocytogenes (detection limit 10

6
cfu/ml

 45
)

and Salmonella enteritidis (detection limit 10
6
 cfu/ml

 45
).

5. SUMMARY 

Early detection and identification of analytes implicated in food safety is 

of paramount importance in numerous sectors, including agriculture, food 

industry, regulatory authorities, and security organizations. SPR biosensors 

emerge as an alternative to time-consuming and laborious laboratory 

techniques. Major advantages of SPR biosensors are fast response, ability to 

detect multiple analytes at a time and capacity to perform the measurements 

in the field. SPR biosensors have been able to detect small and medium size 

analytes such as food chemical contaminant and bacterial toxins at 

practically relevant concentrations. Detection limits for large analytes such 

as bacterial pathogens still need to be improved to meet today needs. The 

SPR biosensor technology has potential to meet the analytical needs in many 

other significant areas such environmental monitoring, medical diagnostics, 

drug development, etc.
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Abstract: The present article reviews three different optical biosensing mechanisms that 

can be implemented in a multibiosensor technology platform: surface plasmon 

resonance, magnetooptical surface plasmon resonance and optoelectronic 

biosensing (evanescent wave detection) using integrated Mach-Zehnder 

interferometer devices. In the last case, the use of standard silicon 

microelectronics technology opens the possibility for integration of optical, 

fluidics based and electrical functions within a single optical sensing circuit 

leading to a complete lab-on-a-chip design solution. All three mechanisms can 

be efficiently used as an early warning system for biological and/or chemical 

warfare.

Key words: optical biosensor; surface plasmon resonance; magnetooptical surface plasmon 

resonance; multibiosensor technological platform 

1. INTRODUCTION   

There exists a critical need for field  deployable biosensors that are able 

to detect in a fast and highly sensitive way biological and chemical warfare 

agents in air and water samples.  There is also agreement that the best 

defence against these type of agents is early detection and/or identification. 

Therefore, biological and chemical warfare (BCW)  are fields where new 

type of analyzers (faster, direct, smaller and cheaper than conventional ones) 

are demanded. In order to have reliable diagnostic tools for the rapid 

detection and identification of bio and chemical  warfare agents, new 

methods allowing label-free and real time measurement of simultaneous 
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interactions (such as harmful agent/receptor or DNA recognition) must be 

developed
1,2

. Biosensing devices, mainly those fabricated with 

micro/nanotechnologies, are powerful devices which can fulfill these 

requirements and have the additional value of being portable to perform 

“point-of-care” analysis
3
. These devices can also have the multiplexing 

capability of a single biodetection platform for performing pathogen 

identification much faster than in routine laboratory analysis. The biological 

receptor for the detection of BCW agents could be either DNA strands that 

can bind to a specific pathogen present in the environment, either antibodies 

that can recognize specific sites on bacteria or bind to surface proteins
4
. The 

optical biosensors to be developed today and in the near future should be 

able to work with both types of receptors as well as to trigger a signal after 

their specific biomolecular interaction. 

In order to conceptually analyze the main components and functionality 

of a multibiosensor technological platform that could be used as an early 

warning system for biological and/or chemical warfare, we will review three 

different optical biosensor technologies: 

a platform based on a portable surface plasmon resonance sensor (SPR) 

(actually in commercialization); 

a platform based on a newly developed concept of biosensing using a 

novel magnetooptical surface plasmon resonance (MOSPR); 

a platform based on optoelectronic biosensors (evanescent wave 

detection) using integrated Mach-Zehnder interferometer devices.

In the last case, the use of standard silicon microelectronics technology allow 

the possibility for integration of optical, fluidics and electrical functions on a 

single optical sensing circuit leading to a complete lab-on-a-chip 

technological solution. With this sensor a detection limit in the  femtomole 

range is achievable in a direct format. 

2. OPTICAL BIOSENSORS 

Optical biosensors are providing increasingly important analytical 

technologies for the detection of biological and chemical species
5,6

. Most of 

the optical biosensors make use of optical waveguides as the basic element 

of their structure for light propagation and are based on the same operation 

principle - the evanescent field sensing. In an optical waveguide, light travels 

inside the waveguide confined within the structure by total internal reflection 

(TIR). Light travels inside the waveguide in the form of “guided modes”. 

Although most of the light power is confined within the guided modes, there 

is a part of it (evanescent field, EW) that travels into the outer medium 

surrounding the waveguide core, which is usually some hundred nanometers 

thick. This EW field can be used for sensing purposes in the following way: 
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when a receptor layer is immobilized onto the waveguide, the exposure of 

such a surface to the partner analyte molecules produces a biochemical 

interaction, which induces a change in its optical properties. This change is 

detected by the evanescent wave. The extent of the optical change will 

depend on the concentration of the analyte and on the affinity constant of the 

interaction, obtaining, in this way, a quantitative sensor of the interaction. 

The evanescent wave decays exponentially as it penetrates the outer medium 

and, therefore, only detects changes taking place on the surface of the 

waveguide since the intensity of the evanescent field is much higher in this 

particular region. For that reason it is not necessary to carry out a prior 

separation of non-specific components (as in conventional analysis) because 

any change in the bulk solution will hardly affect the sensor response. In this 

way, evanescent wave sensors are selective and sensitive devices for the 

detection of very low levels of chemicals and biological substances and for 

the measurement of molecular interactions in-situ and in real time
7
.

The advantages of the optical sensing are significantly improved when 

the above approach is used within an integrated optics context. Integrated 

optics technology allows the integration of passive and active optical 

components (including fibres, emitters, detectors, waveguides and related 

devices) onto the same substrate, allowing the flexible development of 

miniaturised compact sensing devices, with the additional possibility to 

fabricate multiple sensors on a single chip. The integration offers some 

additional advantages to the optical sensing systems such as miniaturization, 

robustness, reliability, potential for mass production with consequent 

reduction of production costs, low energy consumption and simplicity in the 

alignment of the individual optical elements
8
.

3. BIOCHEMICAL ASPECTS OF OPTICAL 

BIOSENSORS

Biosensor devices must operate in liquids as they measure effects at a 

liquid-solid interface. Then, the immobilization of the receptor molecule on 

the sensor surface is a key step for the efficient performance of the sensor
8
.

When the complementary analytes are flowing over the surface, they can be 

directly recognized by the receptor through a change in the physico-chemical 

properties of the sensor. In this way, the interacting components do not need 

to be labeled and complex samples can be analyzed without purification.

The chosen immobilization method must retain the stability and activity 

of the bound biological receptor. Generally, direct adsorption is not adequate 

and leads to significant losses in biological activity and random orientation 

of the receptors. Despite these difficulties, direct adsorption is widely 

employed since it is simple, fast and does not required special reagents. 
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Immobilization methods based on covalent coupling are preferable, as 

covalent coupling gives a stable immobilization and the receptor do not 

dissociate from the surface or exchange with other proteins in the solution.

Various surface chemistries can be employed for covalent bonding
9
 but 

one of the most used one is to form, by chemical modification of the 

surface
10

, a self-assembled monolayer (SAM) and couple the receptor using 

the end of the SAM via a functional group  (-NH2, -COOH, or other). The 

functionalization of the transducer by SAMs also depends on the surface 

type. Transducers with gold are usually modified with thiols while oxidized 

surfaces (as SiO2 or Si3N4) can easily be modified with silane chemistry. For 

example, a widespread method is the functionalization of single-strand DNA 

(ss-DNA) with an alkane chain terminated by a thiol (-S-H) or disulfide 

group (-S-S). Sulphurs form a strong bond with gold, thus thiol-derivatized 

ss-DNA spontaneously forms a single self-assembled monolayer upon 

immersion on clean gold surfaces. Several aspects must be taken into 

account in the development of the immobilization procedures such as the 

non-specific interactions, the optimization of the surface density of the 

receptor in order to prevent steric hindrance phenomenon, or the regeneration 

of the receptor
10

.

We have developed immobilization procedures at the nanometer-scale 

attempting to fulfill all the requirements described above, based on thiol-

chemistry and silanization depending on the type of sensor surface type and 

the specific application
11

. Different examples will be shown in the 

descriptions of each of the biosensor platforms which are given below.

4. SURFACE PLASMON RESONANCE BIOSENSOR 

One of the most employed and comprehensively developed optical 

biosensors is the SPR sensor, because of its sensitivity and simplicity
12,13

.

The SPR is an optical phenomenon due to the charge density oscillation at 

the interface of two media with dielectric constants of opposite signs (as for 

example a metal and a dielectric). Optical excitation of a surface plasmon 

can be achieved when a TM polarized light beam propagates at a given angle 

(the angle of resonance) across the interface between a thin metal layer and a 

dielectric medium (see Figure 1).
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Figure 1. Schematic diagram showing the working principle of a surface plasmon resonance 

biosensor.

When resonance occurs, a sharp minimum in the intensity of the reflected 

light at the angle of resonance is observed: a plot of reflectivity vs. incident 

angle in Fig. 2 shows the dip at that angle. To excite a surface plasmon wave 

with an electromagnetic wave incident at the interface, the resonant condition 

has to be fulfilled: the propagating vectors of the surface plasmon ( sp) and 

the electromagnetic wave ( x,d) must be equal (see Fig. 1). It should be noted 

that surface plasmons are TM waves and, therefore, can only be excited by p-

polarized light. The notation used in the following will be: 
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sp = surface plasmon, d= dielectric medium, o = air, m= metal. The wave 

vector of the incident light  in air ( o) is : 

oo

c
k

where  is the frequency and o the dielectric constant in air. Once in the 

dielectric medium, the wave vector component parallel to the surface ( x,d)

must satisfy the resonant condition: 

dm

dm

dxd
sin

c
k

2

            

where  is the incident angle, m is the dielectric constant of the metal and d

is the dielectric constant of the prism. From this equation it can be concluded 

that the SPR propagation can supported only if mr < - d . This means that the 

surface plasmon can only exist if the dielectric permeability of the metal and 

dielectric medium are of opposite sign. This condition is only achieved at 

frequencies in the infrared to visible part of the spectrum by several metals of 

which gold and silver are the most employed. The use of silver gives more 

sensitive devices but with less stability than for gold. In general, surface 

plasmons are generated within the visible light frequency range with rapidly 

increasing loss in the IR. The thickness of the metal film is critical for the 

minimum reflectance value. The optimal thickness depends on the optical 

constants of the boundary media and on the wavelength of light. For gold, 

the optimal thickness is 45 nm at =790 nm . 

The most common method of optical excitation to achieve the resonant 

condition is to use total internal reflection in prism-coupler structures, as 

already shown in Fig. 1. This is called the Kretschmann configuration. The 

resonant angle is very sensitive to variations of the refractive index of the 

medium adjacent to the metal surface, which is within sensing distance of the 

plasmon field and then, any change of the refractive index (due, for example,  

to a homogeneous change of material or to a chemical interaction) can be 

detected through the shift in the angular position of the plasmon resonance 

angle. In both cases the surface plasmon resonance curve shifts towards 

higher angles, as can be observed in Fig. 2. This fact can be used for 

biosensing applications. The sensing mechanism is based on variations of the 

refractive index of the medium adjacent to the metal sensor surface during 

the interaction of an analyte to its corresponding receptor, previously 

immobilized at the sensor surface in the region of the evanescent field. The 

recognition of the complementary molecule by the receptor causes a change 

in  the refractive  Index and  the SPR  sensor monitors that change.  After the



Optical Biosensor Devices 125
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Figure 3. Portable SPR sensor prototype system including sensor, optics, electronics and flow 

delivery system. 

molecular interaction, the surface can be regenerated using a suitable reagent 

to remove the bound analyte without denaturing the immobilized receptor. 

SPR biosensors have been used to measure a large variety of small size 

compounds, as for example environmental pollutants
14,15

 and the same 

principle can be applied to the detection of harmful pathogens. These assays 

require the use of antibodies (monoclonal or polyclonal), which are the key 

components of all immunoassays, since they are responsible for the sensitive 

and specific recognition of the analyte. The application of immunoassays to 

environmental monitoring also involves the design of hapten derivatives of 

low molecular weight molecules, such as pesticides or harmful chemical 

compounds, to determine the antibody recognition properties
16

. Once hapten 

synthesis and monoclonal antibody production have been accomplished, the 

use of SPR biosensing technique provides a real-time monitoring of binding 

interactions without the need of labeling biomolecules. 

We have developed a portable SPR sensor prototype (see Fig.3) as a 

highly sensitive field analytical method for environmental monitoring
17

. As a 

proof of its utility for the detection of pathogens, we have detected  several 

pesticides including the chlorinated compound DDT, the neurotoxins of 

carbamate type (carbaryl), and organophosphorus compounds (chlorpyrifos). 

Organophosphate compounds are well-known irreversible inhibitors of 

acetylcholinesterase at cholinergic synapses that cause the disruption of 

nerve signal transduction. They have been considered as powerful 

neurotoxins with a threatening potential as chemical warfare agents. The 

chemical structure of these compounds is shown in Fig. 4. 
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Figure 4. Chemical structures of the neurotoxins pesticides evaluated. 
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For the determination of these compounds a binding inhibition 

immunoassay, consisting of the competitive immunoreaction of the unbound 

antibody present in an analyte-antibody mixture with the hapten derivative 

immobilized at the sensor surface, has been applied. With the aim of 

assuring the regeneration and reusability of the surface without denaturation 

of the immobilized molecule, the formation of an alkanethiol monolayer was 

carried out to provide covalent attachment of the ligand to the functionalized 

carbodiimide surface in a highly controlled way.  For DDT, the assay 

sensitivity was evaluated in the 0.004 - 3545 µg/l range of pesticide 

concentration by the determination of the limit of detection 0.3 µg/l and the 

I50 value 4.2 µg/l.

For carbaryl, (see Figure 5) the dynamic range of the sensor is 0.12-2 

µg/l, with an I50 value for standards in buffer of  0.38 µg/l and a detection 

limit of  0.06 µg/l. Likewise the immunoassay for chlorpyrifos 

determination, afforded a high sensitivity (I50= 0.11 µg/l) working in the 

0.02-1.3 µg/l range.

The performance of the inhibition immunoassay enables the SPR 

biosensor  to monitor  the immunoreaction  between the  hapten immobilized 

(left) Chlorpyrifos (right) Carbaryl.

on the sensor surface and the monoclonal antibody, from the incubation of a 

mixed antibody-analyte solution. In addition, the reusability of the sensor 

was demonstrated after 250 assay cycles, without significant variations of 

the average maximum signal. The reusability of the sensor combined with 

the small time of response (approximately 15 min), makes the SPR 

immunosensing a valuable method for real-time and label-free analysis of 

environmental samples. This immunnosensing technique together with the 
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portable surface plasmon resonance sensor developed can be applied as a 

fast and cost-effective field-analytical method for the monitoring of chemical 

and biological warfare agents if the corresponding receptor is available. 

5. MAGNETOOPTICAL SURFACE PLASMON 

RESONANCE SENSOR 

In order to achieve a higher sensitivity than the one provided by the SPR 

technology, we have developed a new biosensor device called Magneto-

Optic Surface Plasmon Resonance (MOSPR) sensor
18

. The novel MOSPR 

sensor is based on the combination of the magneto-optic (MO) effects of the 

magnetic materials and the surface plasmon resonance. This combination 

can produce a great enhancement of the magneto-optic effects in the p-

polarized light when the resonant condition is satisfied. Such enhancement is 

very localized at the surface plasmon resonance and depends strongly on the 

refractive index of the dielectric medium, allowing its use for optical 

biosensing.

The MOSPR sensor can be designed by means of the introduction of a 

magnetic layer and measuring the changes of the MO effects using the 

typical designs of the SPR sensors. In a Kretschmann arrangement, the 

enhancement of the MO Kerr effects in the reflected light can be achieved 

through the combination of Co/Au multilayers. Such MO Kerr effects will 

depend on the direction of the magnetization of the magnetic layer with 

respect to direction of propagation of the incident light. This behavior is due 

to the anisotropy introduced by the magnetization in the dielectric tensor of 

the magnetic layer. For example, if the magnetization is in the plane of the 

magnetic layer and perpendicular to the propagation plane of the light 

(transversal configuration), the MO effect produces a relative change of the 

reflectivity of the p-polarized light (Rpp):
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layer of 31 nm, in the transversal configuration of the magnetization. Right: reflectivity of the 

multilayer compared with the case of a gold layer of 50 nm. 

Therefore, when the SPR is excited, the Rpp(0) is largely reduced while the 

magneto-optic components ( Rpp) are maintained, producing the sharp 

enhancement of the MO effect in the reflected light. 

Figure 6 shows the MO effects of the p-polarized light in transversal 

configurations for a system formed by a Co/Au multilayer in a Kretschmann 

arrangement similar to the inset of Fig. 6, left, in which the incident medium 

is glass (ng = 1.5200), and the outer medium is water (nw = 1.3323). These 

calculations assume that the thickness of cobalt and gold are 12 and 31 nm, 

respectively, while their refractive index are nCo = 2.24+ i 4.06 and nAu = 

0.20+ i 3.08 at a wavelength of the light of 632 nm. 

Figure 6 also compares the reflectivity of this multilayer structure with 

the reflectivity of a gold layer of 50 nm (Fig 6, right). It can be observed that 

the introduction of cobalt widens the reflectivity curve due to its higher 

absorption leading to the reduction of the sensitivity of the sensor in the 

reflectivity measurements. However, the MO effects are very localized and 

show a very sharp curve. As a consequence, small variations of the refractive 

index will induce large changes in the MO response, as Fig. 6, left,  

illustrates with the representation of the changes of the MO effect under a 

variation of 10
-3

 of the refractive index.

The experimental set-up of the MOSPR is very similar to that of standard 

SPR sensors, the only difference being the introduction of a magnetic layer 

and a magnetic actuator to control the magnetization state of the magnetic 

layer. The measurements of the relative variations of the reflectivity require 

a change in the state of the magnetization as can be deduced from equation 

given earlier. Such change can be performed easily with a coil or with 

magnets since the saturation magnetic field of the Co layers is low. In this 

configuration, the incident monochromatic light is p-polarized and prism 

coupled to produce the surface plasmon, and the reflected light is collected 

Figure 6. Left: MO effects of a Co/Au multilayer with a 12 nm thick Co layer and a gold 
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with a photodiode. A flow cell and a peristaltic pump are used to control the 

different solutions required in the experiments. And, finally, the sensor is 

mounted on a rotation stage for the angle interrogation. 

The evaluation of the sensitivity and the limit of detection of the device 

have been performed passing solutions of water and ethanol of different 

refractive index (from 1.3323 to 1.3343), and measuring in real time the 

variations of Rpp/Rpp at a fixed angle of incidence. In Figure 7 shows the 

MO response of the MOSPR normalized by the minimum detectable signal, 

which was 1x10
-3

in these experiments. These results are compared with the 

evaluation of the sensitivity of a standard SPR, using the same experimental 

set-up. In this situation the minimum detectable reflectivity was 5x10
-4

. The

comparison of both measurements shows that the sensitivity in term of 

changes of refractive index of the MOSPR sensor is approximately three 

times the sensitivity of the SPR (see Fig. 7). These sensitivities represent a 

limit of detection of the MOSPR and SPR sensors of 5x10
-6

 and 1.5x10
-5

,

respectively. Once the sensitivity in changes of refractive index is evaluated, 

we  test  the  biosensing  response of  the  MOSPR  device  with  the 

detection   of   the  physical   adsorption   of  bovine   serum  albumin  (BSA)
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Figure 7. Comparison of the normalized signal of the MOSPR and the SPR sensors due to 
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BSA proteins (10 g/ml in PBS). 

molecules, flowing a solution of 10 g/ml of biomolecules in phosphate 

buffer saline (PBS). As Figure 8 illustrates, the normalized signal of the 

MOSPR sensor is again around three times the normalized signal of the SPR. 

These preliminary results have demonstrated the enhancement of the 

sensitivity of the MOSPR sensor with respect to the SPR sensor. However, 

this enhancement becomes stronger with the optimization of the 

experimental set-up and the improvement of the stability of the metallic 

layers. Such optimizations will probably enhance the limit of detection of the 

MOSPR up to one order of magnitude, opening the way to the direct 

detection of extreme low concentrations of small molecules. The simplicity 

of the experimental set-up, the immunity to the fluctuations of the light 

source and the compatibility with the well-known thiol immobilization 

chemistry of gold add interest to this novel biosensor concept.

6. MACH-ZEHNDER INTERFEROMETRIC 

BIOSENSOR

In a Mach-Zehnder interferometer (MZI) device
19

 the light from a laser 

beam is divided into two identical beams that travel the MZI arms (sensor 

and reference areas) and are recombined again into a monomode channel 

waveguide  giving  a  signal  which   is  dependent  on  the  phase  difference
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Figure 8. Comparison of the response of the SPR and MOSPR sensor to the adsorption of 
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(left);  3-D view of the MZI structure (right).

between the sensing and the reference branches. Any change in the sensor 

area (in the region of the evanescent field) produces a phase difference (and 

therein a change of the effective refractive index of the waveguide) between 

the reference and the sensor beam and then, in the intensity of the 

outcoupled light. A schematic of this sensor is shown in Figure 9. 

When a chemical or biochemical reaction takes place in the sensor area, 

only the light that travels through this arm will experience a change in its 

effective refractive index. At the sensor output, the intensity (I) of the light 

coming from both arms will interfere, showing a sinusoidal variation that 

depends on the difference of the effective refractive indexes of the sensor 

(Neff,S) and reference arms (Neff,R) and on the interaction length (L) : 

( )I Io N
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N
eff R

L= + − 
  

 
  

 
  

 
  

1

2

1
2

cos
, ,

π

λ

Here  is the wavelength. This sinusoidal variation can be directly related to 

the concentration of the analyte to be measured. 

For evaluation of specific biosensing interactions, the receptor is 

covalently attached to the sensor arm surface, while the complementary 

molecule binds to the receptor from free solution. The recognition of the 

complementary molecule by the receptor causes a change in the refractive 

index and the sensor monitors that change. After the molecular interaction, 

the surface can be regenerated using a suitable reagent in order to remove the 

bound analyte without denaturing the immobilized receptor as in the case of 

the surface plasmon resonance sensor. 

 The interferometric sensor platform is highly sensitive and is the only one 

that provides an internal reference for compensation of refractive-index 

fluctuations and unspecific adsorption. Interferometric sensors have a 

broader dynamic range than most other types of sensors and show higher 

sensitivity as compared to other integrated optical biosensors
19,20

. Due to the 

high sensitivity of the interferometer sensor the direct detection of small 

Figure 9. Mach-Zehnder interferometer configuration scheme and its working principle 
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molecules (as for example environmental pollutants where concentrations 

down to 0.1 ng/ml must be detected) would be possible with this device.

 The detection limit is generally limited by electronic and mechanical 

noise, thermal drift, light source instabilities and chemical noise. But the 

intrinsic reference channel of the interferometric devices offers the 

possibility of reducing common mode effects like temperature drifts and 

non-specific adsorptions. Detection limit of 10
-7

 in refractive index (or 

better) can be achieved with these devices
21

 which opens the possibility of 

development of highly sensitive devices, for example, for in-situ chemical 

and biologically harmful agent detection.

 For biosensing applications the waveguides of the MZI device must be 

designed to work in the monomode regime and to have a very high surface 

sensitivity of the sensor arm towards the biochemical interactions. If several 

modes were propagated through the structure, each of them would detect the 

variations in the characteristics of the outer medium and the information 

carried by all the modes would interfere between them. The design of the 

optical waveguide satisfying the above requirements and the dimensions of 

the Mach-Zehnder structure, is performed by using home-made modeling 

programs such as the finite differences methods in non-uniform mesh, 

effective index method and the beam propagation method. Parameters such 

as propagation constants, attenuation and radiation losses, evanescent field 

profile, modal properties and field evolution have been calculated
21

. In order 

to accomplish the above requirements two MZI technologies have been 

developed.

If we want to use TIR waveguides for the sensors, we must come to an 

agreement between single-mode behaviour, low attenuation losses for the 

fundamental mode and high surface sensitivity. For those reasons, the 

structure that has been finally chosen
22

, for an operating wavelength of 0.633 

µm, has the following geometry: (i) a conducting Si wafer of 500 m

thickness, (ii) a 2 m thick thermal silicon-oxide layer on top with a 

refractive index of 1.46, (iii) a LPCVD silicon nitride layer of 250 nm 

thickness and a refractive index of 2.00, which is used as a guiding layer. To 

achieve monomode behaviour is needed to define a rib structure, with a 

depth of only 4 nm, on the silicon nitride layer by a lithographic step. This 

rib structure is performed by RIE and is the most critical step in the 

microfabrication of the device. Finally, a silicon-oxide protective layer is 

deposited by LPCVD over the structure with a 2 m thickness and a 

refractive index of 1.46, which is patterning and etching by RIE to define the 

sensing arm of the interferometer. The final devices (within all its fabrication 

6.1  MZI nanodevice based on TIR waveguide 
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processes) are CMOS compatible. In Figure 10 the cross-section of the MZI 

TIR waveguide is shown. 

Note that a rib of only 4 nm in needed for monomode and high biomolecular sensitivity 

characteristics.

6.2 MZI Microdevice based on ARROW waveguide 

In the ARROW (Antiresonant Reflecting Optical Waveguides) 

configuration, light confinement is based on Anti-Resonant Reflections 

rather than total internal reflection (TIR). The optical confinement of light in 

these waveguides is based on the total internal reflection at the air-core 

interface and a very high reflectivity, of 99.96%, at the two interference 

cladding layers underneath the core
23

 (see Fig. 11).
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Figure 10. Cross-section of the optical waveguides used in the Mach-Zehnder interferometer. 

Figure 11. Cross-section of the optimized ARROW structure for MZI biosensing. 
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Each layer behaves as a quarter wave plate and, for a given wavelength, their 

refractive indexes and thickness have to be accurately selected. This 

structure is a kind of leaky waveguide (it does not support guided modes) 

that have an effective single-mode behaviour because higher order modes 

are filtered out by loss discrimination due to the low reflecting of the 

interference cladding. These waveguides exhibit low losses and permit larger 

dimensions than conventional waveguides (micrometers instead of 

nanometers). They have good discrimination against higher-order modes 

and, therefore, show virtual monomode behaviour. Moreover, they show a 

selective behaviour in polarization and wavelength and a high tolerance for 

the selection of the refractive index and thickness of the interference layers. 

 For the development of a highly sensitive MZI biosensor, we have 

designed an ARROW configuration which verifies the two conditions of 

monomode behaviour and high surface sensitivity
24

. This optimized 

waveguide consist on a rib-ARROW structure with a silicon oxide core layer 

(ncore=1.485) and thickness higher than 2 m; a silicon oxide second 

cladding layer with a refractive index of 1.46 and a fixed thickness of 2 m

and a silicon nitride first cladding layer, 0.12 m thick, with a refractive 

index of 2.00. The waveguide is overcoated with a thin silicon nitride layer 

(nov =2.00) and with a silicon oxide layer (n=1.46) with a thickness of 2 m.

The rib depth is 60% of the core thickness and the rib width should be lower 

than 8 m to obtain single-mode behaviour. The structure of the ARROW 

device can be seen in Fig. 11. 
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This ARROW waveguiding concept solves the two main limitations of the 

conventional TIR waveguides: the reduced dimensions for monomode 

behaviour (an important subject for further technological development and 

mass-production of the sensors) and the high insertion-losses in the optical-

interconnects fiber-waveguide. With ARROW structures we can have 

monomode behaviour with a core thickness of the same size as the core of a 

single-mode optical fiber, suitable for efficient end-fire coupling. But a 

comparison between the evaluated surface sensitivity for both types of 

optical waveguides (TIR versus ARROW), as can be seen in Fig. 12, shows 

the higher sensitivity of the TIR device. Both designs, TIR and ARROW 

have advantages and disadvantages, and depending on the specific 

application one or another can be employed. 

 All the MZI devices are fabricated in clean room facilities. The wafer 

with the sensors is cut in individual pieces containing 14 devices each and 

polished for light coupling by end-face. A schematic and a photograph of 

one integrated MZI device is shown in Fig. 13. For measuring, the devices 

are implemented with a microfluidics unit, electronics, data acquisition and 

software for optical and biochemical testing. Chemical characterization for 

evaluating the sensor sensitivity was performed by using sugar solution with

refractive indexes varying from 1.3325 to1.4004 ( n�0.0002), as determined 

by an Abbe refractometer operating at 25ºC. The solutions with varying 

refractive indexes were introduced alternatively. With these measurements, a 

sensitivity calibration  curve was evaluated,  where the phase response of the 

junction and sensor area. 

Figure 13. Photographs of the integrated Mach-Zehnder interferometer: details of the MZI Y-
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refractive indices. 

sensor is plotted versus the variation in the refractive index, as is depicted in 

Fig. 14.For this device, the lower detection limit measured was no,min = 

2.5x10
-6

 corresponding to an effective refractive index change of N = 

1.4x10
-7

. We estimate that the lowest phase shift measurable would be 

around 0.03x2 . The detection limit value corresponds to a very high surface 

sensitivity around 2.10
-4

 nm
-1

.

 As a proof of the utility of MZI technology towards detection of 

pathogens, we have applied the MZI nanobiosensors for the detection of the 

insecticide carbaryl which has neurotoxin properties. For the pesticide 

analysis the same procedure as for SPR based on inhibition immunoassay is 

employed. The only difference is that for MZI biosensors the immobilization 

procedure used is a silanization process of the silicon nitride sensor surface. 

Once this chemical modification is ready, a concentration of 10 µg·ml
-1

 of 

the protein receptor in a buffer solution (PBST, Phosphate Buffered Saline 

Tween) with pH 7 at a constant flow rate of 20 µl·min
-1

 was introduced. As  

shown in Figure 15 (left), the phase change in the first part of the process is 

fast, but as the surface is progressively occupied the phase response 

varies more slowly. The total phase change is 16.2 × 2 , corresponding to 

the adsorption of a homogeneous antigen monolayer of average thickness d 

 3.2 nm (surface covering of 1.9 ng·mm
-2

). After that, the inhibition 

immunoanalysis is performed. Fig. 15 (right) shows the calibration curve 

obtained for the analysis of carbaryl pollutant by using the MZI 

nanobiosensor.
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immunoassay of the pollutant carbaryl by using the MZI nanodevice (right). 

7. TOWARDS A CMOS COMPATIBLE LAB-ON-A-

CHIP MICROSYSTEM

The main advantage of the development of Mach-Zehnder devices 

fabricated with standard microelectronics technology comes from the 

possibility to develop a complete “lab-on-a-chip” by optoelectronic 

integration of the light source, photodetectors and sensor waveguides on a 

single semiconductor package together with the flow system and the CMOS 

electronics. The reagent receptor deposition can be performed by ink-jet, 

screen-printing or other technologies. A complete system fabricated with 

integrated optics will offer low complexity, robustness, a standardized 

device and, what is more important, portability. Devices for on-site analysis 

or point-of-care operations for biological and chemical warfare detection are 

geared for portability, ease of use and low cost. In this sense, integrated 

optical devices have compact structure and could allow for fabricating 

optical sensor arrays on a single substrate for simultaneous detection of 

multiple analytes. Mass-production of sensors will be also possible with the 

fabrication of miniaturised devices by using standard microelectronics 

technology
25

.

For the development of a complete MZI microsystem several units must 

be incorporated on the same platform: (i) the micro/nanodevices, (ii) the 

flow cells and the flow delivery system, (iii) a modulation or compensation 

system for translating the interferometric signals in direct ones, (iv) 

integration of the light sources and the photodetectors (v) CMOS processing 

electronics. Several steps are undergoing for achieving that. Until now, we 

Figure 15. Covalent binding of the protein receptor (left); Calibration curve of the 
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have fully developed the first step (i) but steps (ii) and (iii) are under 

development as well, as can be seen in Fig. 16. The microflow cells are 

specifically designed and fabricated using a novel fabrication method of 3-D 

embedded microchannels using the polymer SU-8 as structural material. 

Integration of sources will be achieved by connection of optical fibers or 

using embedded gratings. 

chip” microsystem. 

8. CONCLUSIONS 

 For the rapid detection and identification of biological and chemical 

warfare agents, reliable multi-biosensor systems allowing label-free and real 

time measurement of simultaneous interactions must be developed. We have 

discussed the advances in the development of different optical biosensor 

platforms: a portable surface plasmon resonance Sensor (actually in 

commercialization) and an integrated Mach-Zehnder interferometer device 

made on Si technology. The feasibility of the different biosensor platforms 

have been proved by the immunological recognition of several pesticides 

including the chlorinated compound DDT, and the neurotoxins of carbamate 

Figure 16. Steps towards the optoelectronics integration of MZI biosensors in a “lab-on-a-
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type (carbaryl) and organophosphorus type (chlorpyrifos which resembles 

SOMAN chemical warfare agent). These results open the way for further 

development of portable and multianalyte platform for the detection of 

several biological and chemical warfare agents in-situ and in real-time. 

This work has been supported by the national projects BIO2000-0351-P4. 

MAT2002-04484 and DESREMOL ((2004 20FO280). The authors want to 

thank to Dr. A. Montoya (UPV) for the immunoreagents. 
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NONLINEAR PERIODIC STRUCTURES BY 

DIRECT INTEGRATION OF MAXWELL'S 

EQUATIONS IN THE FREQUENCY DOMAIN 

Ji í Petrá ek

Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic 

Abstract: A simple numerical method for direct solving Maxwell's equations in the 

frequency domain is described. The method is applied to the modelling of one-

dimensional nonlinear periodic structures. 

Key words: Kerr nonlinearity, nonlinear optics, nonlinear periodic structures, optical 

bistability

1. INTRODUCTION 

Many interesting phenomena can arise in nonlinear periodic structures 

that possess the Kerr nonlinearity. For analytic description of such effects, 

the slowly varying amplitude (or envelope) approximation
1
 is usually 

applied. Alternatively, in order to avoid any approximation, we can use 

various numerical methods that solve Maxwell's equations or the wave 

equation directly. Examples of these rigorous methods that were applied to 

the modelling of nonlinear periodical structures are the finite-difference 

time-domain method,
2
 transmission-line modelling

3
 and the finite-element 

frequency-domain method.
4

Here I describe a simple numerical method for solving Maxwell's 

equation in the frequency domain. As the structure to be analysed is one-

dimensional, Maxwell's equations turn into a system of two coupled ordinary 

differential equations that can be solved with standard numerical routines. 
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Figure 1. Schematic view of the one-dimensional layered structure. The vertical lines denote 

discontinuities of refractive index distribution.   The monochromatic plane wave is incident in 

the y direction with the electric field amplitude Ainc. The amplitudes of reflected and 

transmitted waves are Aref and Atr , respectively. 

2. FORMULATION 

Consider a one-dimensional optical structure that consists of nonlinear 

layers.  The structure is illustrated in Fig. 1. Assuming no field variation in 

the x and z directions and the convention exp(i t) for the time dependence of 

the fields, Maxwell's equations take the form 

 (1) 

 (2) 

Here k /c is the vacuum wavenumber, the refractive index 

 (3) 

changes in y direction only and functions n0(y) and n2(y) are the linear and 

Kerr nonlinear indices, respectively. 

The total length of the structure is L. For sake of simplicity the semi-

infinite outer layers are supposed to be linear and homogeneous so that 

electric field inside of the outer layers can be expressed using the amplitudes 

of incident, reflected and transmitted waves (denoted as Ainc, Aref and Atr,

respectively)

 (4) 
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Now we can find boundary conditions for the coupled system (1) and (2). 

Ex(y) and cBz(y) are continuous for any y. The conditions at y = 0

tr
)0( AE

x
 (6) 

tr
0)0( AyncB

z
 (7) 

are easily derived using equations (4) and  (1), and the continuity of fields at 

y = 0. Similarly using (5), (1) and continuity at y = L we obtain

 (8) 

 (9) 

Here n(y<0) and n(y>L) denote the refractive indices in the outer layers. The 

last two equations can be solved with respect to the amplitude Ainc with the 

result

 (10)

Usually the amplitude of the incident wave is known and the task is to find 

the other amplitudes and field profiles. In this case the numerical method can 

be described as follows.

We start with some arbitrary guess for Atr and use (6) and (7) as the initial 

conditions for numerical integration of Eqs. (1) and (2). The integration can 

be easily carried out with common numerical routines provided that n
2
(y,Ex)

is continuous i.e. inside of the layers. Therefore at the boundary between 

adjacent layers the continuity condition for the field components should be 

used. At the end of the integration Ex(L) and cBz(L) are known and (10) is 

used to calculate Ainc(Atr). This amplitude depends on the initial guess Atr and 

is generally different from the known amplitude of the incident wave that we 

denote Ainc,0. In order to find the correct value of Atr we solve the algebraic 

equation

The solution is simple provided that the structure does not exhibit multistable 

behavior:   the   equation   has   just   one   real   solution   in   the   interval 
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(0, |Ainc,0|) and we can directly use a root finding routine (e.g. Brent method). 

The opposite case is more complicated as it is necessary to carefully scan the 

interval (0, |Ainc,0|) in order to get multiple solutions. 

3. EXAMPLE: SLOW-WAVE OPTICAL 

STRUCTURE

To demonstrate the method an example of a slow-wave optical structure 

is modelled. Such structures consist of a cascade of directly coupled optical 

resonators in order to enhance the nonlinear effects.
5
 The structure used here 

was recently defined within Working Group 2 of the European Action COST 

P11 (http://w3.uniroma1.it/energetica/slow_waves.doc). One period of the 

structure consists of one-dimensional Fabry-Perot cavity placed between two 

distributed Bragg reflectors (DBR) and can be described by the sequence 

H
1/2

(LH)
26

LH
4
L(HL)

26
H

1/2
                                                        (12) 

where H and L are quarter-wave layers at wavelength 0 = 1.55 µm with n0 =

2.60 and n0 = 2.36, respectively. Both layers are nonlinear with the same 

value of n2. There are H
1/2

 layers at the ends in order to form an uninterrupted 

DBR when joining two or more periods.

One period of such a structure can be considered as a finite periodic 

grating with a defect layer in its middle and that is why a very narrow 

resonance (defect mode) appears inside of the band gap. 

The task is to calculate the wavelength dependence of intensity 

transmission coefficient T  |Atr/Ainc|
2
 near resonance 0 for various levels of 

nonlinearity and various numbers of periods. Here I present the results for 

structures of finite length (1, 2 or 3 periods) that are surrounded with semi-

infinite linear medium with the same linear refractive index as H.

The results are shown in Figure 2. Spectra are plotted for various values 

of normalised input intensity inc n2|Ainc|
2
 which can be considered as the 

strength of the nonlinearity. A positive nonlinearity, inc > 0,  that shifts the 

spectra to the right was used. As expected the nonlinearity (spectral shift) is 

enhanced with increasing number of the periods. Moreover the structures 

with 2 and 3 periods exhibit bistable behavior for  > 0. In this case bistable 

switching is controlled by frequency tuning while input intensity is fixed.

Bistability controlled by input intensity (wavelength fixed) can also be 

observed. Figure 3 shows input-output intensity characteristics ( t n2|Atr|
2

being the normalised intensity of transmitted wave) when  > 0 and 

demonstrates that the use of slow-wave structures significantly affects 

appearance of bistability and its threshold.
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Figure 2. Transmission spectra for the slow-wave structure. 
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Figure 3. Input-output characteristics for  > 0.

4. CONCLUSIONS 

I described a simple method suitable for rigorous modelling of nonlinear 

one-dimensional structures in the frequency domain. The method was 

applied to model COST P11 task on slow-wave optical structures. It was 

demonstrated that the use of slow-wave structures significantly decreases 

bistablity threshold.
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Abstract: Investigation of spatiotemporal dynamics of optical pulse in step-index planar 

waveguide with Kerr nonlinearity is presented which is based on numerical 

solution of a (2D+T) wave equation for slowly varying amplitude of the total 

field. Effect of emission of radiation field that is specific for open dielectric 

waveguides is taken into account. This emission can be observed, first, as a 

result of light beam propagation through waveguide junctions, and second, due 

to some effects that vary the temporal distribution of an ultra-short optical 

pulse propagating in a regular nonlinear waveguide. Two types of junctions in 

weakly-guiding planar waveguides are under consideration: both waveguides 

have the same width and refractive index profile but possess different non-

linear properties, and both waveguides have the same refractive index profile 

and nonlinearity but their widths are different. In the quasi-static 

approximation, the problem of optical pulse propagation through the junctions 

is reduced to the solution of a 2D equation for the pulse envelope with time 

coordinate given as a parameter. Spatial transformations of the stationary 

components of the pulse behind the junctions are studied in detail depending 

on their power and waveguide width. The approach is based on general 

methods of the theory of Hamiltonian dynamical systems and consists of the 

following steps: (i) finding the set of stationary nonlinear modes, (ii) 

investigation of power-dispersion diagrams, and (iii) investigation of global 

dynamics. Transmittance versus power dependencies demonstrate the 

applicability of the junctions for pulse shaping and power controlling. In the 

case of ultrashort optical pulses, self-steepening effect and second-order group 

velocity dispersion effect are shown to prevent formation of stable 

spatiotemporal pulse distribution owing to the emission of radiation field 

outside the guiding region.

Key words:  Kerr nonlinearity, planar waveguides, optical pulses, numerical modeling, 

nonlinear modes, waveguide junctions. 
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1. INTRODUCTION 

Dielectric waveguides are now widely used in optical networks and 

optoelectronic devices. Contrary to closed metallic waveguides, the dielectric 

waveguides are open structures, so that a part of light beam power can be 

radiated out the guiding region into the outer space. Investigation of 

electromagnetic field transformation on macroscopic discontinuities of open 

waveguides is still important, in spite of the fact that many relevant 

theoretical problems were under consideration during the last decades.

Radiation propagating through a dielectric waveguide is concentrated in a 

micrometer-size spatial domain. The intensity of the electrical field can be 

very high over a long length, so that some nonlinear phenomena become well 

observable: second harmonic generation, Raman scattering and 

supercontinuum generation, formation and propagation of optical solitons.

Recent interest in the study and elaboration of novel guiding structures 

and materials is conditioned mostly by the availability of laser sources 

generating ultrashort optical pulses. Until recently, the studies of laser pulse 

self-effects in dielectric waveguides have been mainly concerned with the 

time-domain interactions or “time focusing”, while the effect of spatial self-

focusing was considered negligible because the Kerr constant in dielectrics 

is, as a rule, small (for fused silica, the Kerr constant nK ~10
–16

 cm
2
/W), so 

that the transverse structure of the mode field was thought to be stable for 

intensities ~ MW/cm
2

of picosecond pulses
1,2

. This was a reason to consider 

self-phase modulation and diffraction of optical pulses separately. By this 

way, propagation of picosecond optical pulses in one-dimensional nonlinear 

medium with dispersion of dielectric permittivity has been well studied. In 

the case of a positive Kerr nonlinearity and anomalous group-velocity 

dispersion (GVD) the formation of temporal solitons has been proved.

However, as was shown in recent experiments on propagation of 

femtosecond optical pulses, the self-focusing effect is observed in bulk fused 

silica, and, for pulse peak intensity about 100 GW/cm
2
, complicated 

dynamics of the spatiotemporal distribution gives rise to pulse splitting and 

to breakup of Gaussian beam
3
. In addition, for new materials with strong, in 

comparison with silica waveguides, Kerr nonlinearity (in chalcogenide 

glasses, nK ~10
–14

 cm
2
/W, and in organic materials, nK ~10

–12
 cm

2
/W), non-

linear contribution to the refractive index in the core of a waveguide made of 

such a material may be of the same order as the contrast of the linear 

refractive index. Thus, it is reasonable to consider not only the temporal but 

also the spatial effects arising upon propagation of femtosecond pulses in 

waveguides made of conventional and novel materials. 

Theoretical treatment of the femtosecond pulse propagation in a bulk 

Kerr medium with the dispersion of dielectric permittivity was based on the 
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solution to the generalised nonlinear S hrodinger equation (GNLSE) with 

account of transverse spatial derivatives. In a general case, the main tool of 

the analysis is numerical simulation, mostly based on grid methods with the 

use of split-step technique
3,4,5

.

Concerning to optical waveguides, such numerical modelling has been 

performed in the papers
6,7

. The spatiotemporal effects observed at modelling 

of bandwidth-limited femtosecond pulse propagation in nonlinear step-index 

optical waveguide with account of material dispersion (MD), finite time of a 

nonlinear response of waveguide material (FTNR) and the dependence of the 

group velocity on the field intensity (self-steepening effect (SS)) have been 

analysed in detail. A stable spatiotemporal distribution behind a region of 

unsteady-state regime in nonlinear waveguide has been observed just in the 

quasi-static approximation, when the MD, FTNR and SS effects have not 

been taken into consideration. With account of these effects, the pulse 

envelope continuously varies while the pulse propagates in nonlinear 

waveguide. The variation leads to the emission of some power fraction from 

the guiding region and prevents formation of a stable spatiotemporal 

distribution.

The main purpose of this paper is to consider a two-dimensional non-

stationary (2D+T) problem of a nonlinear waveguide excitation by a non-

stationary light beam and to study spatiotemporal phenomena arising upon 

propagation of the beam in a step-index waveguide, first, in the quasi-static 

approximation and, second, with account of MD and SS effects.

The theoretical approach is based on the solution to the mixed type 

linear/nonlinear generalized Schrodinger equation for spatiotemporal 

envelope of electrical field with account of transverse spatial derivatives and 

the transverse profile of refractive index. In the quasi-static approximation, 

this equation is reduced to the linear/nonlinear Schrodinger equation for 

spatiotemporal pulse envelope with temporal coordinate given as a 

parameter. Then the excitation problem can be formulated for a set of 

stationary light beams with initial amplitude distribution corresponding to 

temporal envelope of the initial pulse. 

 We consider two examples of waveguide junctions (Fig.1): structure A,

when both waveguides have the same width and refractive index profile but 

possess different nonlinear properties (for simplicity, we assume that input 

waveguide is linear), and structure B, when both waveguides have the same 

refractive index profile and nonlinearity but their widths are different.
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Figure 1. Structures under consideration.

For the problem of a nonlinear waveguide excitation by a stationary light 

beam we apply a convenient mathematical formalism based on the solution 

to the mixed-type linear/nonlinear Schrodinger equation for the slowly 

varying amplitude of electrical field. Stationary localised solutions of the 

equation are usually referred to as nonlinear modes and have been analysed 

for different kinds of planar waveguides
8
 (predominantly for thin linear films 

bounded by nonlinear media). The global dynamics case, when the deviation 

from stationary solutions is large, is still under investigation, however. 

Global dynamics are directly related to the problem of light beam diffraction 

at nonlinear waveguide discontinuities, but until recently investigations of 

diffraction at discontinuities in linear optical waveguides, on one hand, and 

of nonlinear phenomena in optical waveguides, on the other, existed as two 

separate areas of research.

Concerning to the stationary light beams, our approach is based on 

general methods of the theory of Hamiltonian dynamical systems and 

consists of the following steps: finding the set of stationary nonlinear modes, 

investigation of their stability and investigation of global dynamics. Results 

of transmittance evaluation for each of the junctions can be generalized in 

the quasi-static approximation to the case of non-stationary light beam.

Propagation of optical pulses through the junctions is simulated 

numerically. Modelling technique based on the finite-difference beam 

propagation method (FD-BPM)
9
 is used. Variation of the pulse duration 

behind the junctions is evaluated, first, in the quasi-static approximation. 

Next, the second-order GVD and SS effects are accounted for in the 

numerical algorithm via insertion of higher-order terms responsible for 

nonlinearity and group velocity dispersion into the wave equation. In this 

case, the electrical field amplitude is assumed to be slowly varying both in 

longitudinal direction and time. 
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2. METHODOLOGY 

A common way to treat the problem of a picosecond pulse propagation in 

regular dielectric waveguide with Kerr nonlinearity was to solve the non-

linear Schrodinger equation (NLSE) for the slowly varying temporal 

amplitude of electrical field
1,2

.

For femtosecond optical pulses, the GNLSE with higher order nonlinear 

and dispersion terms was used. In some cases, both the NLSE and the 

GNLSE are integrable, and the dynamics of their solutions have been studied 

quite well
1
. When the self-focusing effect is taken into account, some 

additional terms appear in the GNLSE so that the equation may become non-

integrable. Then the dynamics of its solutions cannot be studied by analytical 

methods, for example, by the inverse scattering technique
8
. In a general case, 

the main instrument of analysis is numerical modelling based predominantly 

on the grid methods with the split-step technique applied
3,4,5

.

Propagation of non-stationary light beam in a nonlinear medium with 

material dispersion is described by the scalar wave equation for the linearly-

polarized y-component of electrical field E(x,z,t):

2 2 2

2 2 2 2

1
0

E E D

z x c t
+ =  (2.1) 

with the electrical displacement

( ) ( ) ( ), , , , , ,
l nl

D x y t D x y t D x y t= +  (2.2)  

where the linear part is

2

0
0

( , , ) ( , , ) ( , , )
l

D x z t n x z t E x z t t dt  (2.3) 

and the nonlinear part is 

0
( , , ) 2 ( , , )

nl
D x z t n nE x z t . (2.4) 

Here
0
n is the linear refractive index and n is the nonlinear part of the 

refractive index. Linear dispersion of the refractive index is accounted for in 

(2.2), (2.3). In general, nonlinear dispersion has to be taken into 

consideration, too. However, due to non-resonant character of the electronic 

nonlinearity in fused silica it is possible, as a first approximation, to neglect 

the nonlinear dispersion.
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Non-stationary self-effects of the light beam depend on the pulse duration 

with respect to the time R of nonlinear response of the medium. When the 

response is instantaneous, the refractive index at the time t is defined by the 

value of electrical field at the same moment. If the time of a nonlinear 

response is finite, the nonlinear part of the refractive index satisfies the 

following reduced matter equation
1,2

:

R K

n
n n I

t
+ =  (2.5) 

where ( )
1 2 2

0 0
2

/
( , , ) / / | ( , , ) |I I x z t k E x z tµ= =  is the intensity of 

the light beam. 

Rigorous treatment of the self-action problem needs the transformation of 

Eq.(2.1), (2.5) into a system of integro-differential equations. However, if 

just some orders of group velocity dispersion and nonlinearity are taken into 

account, an approximate approach can be used based on differential 

equations solution
1
. When dealing with the 1D+T problem of optical pulse 

propagation in a dielectric waveguide, one comes to the wave equation with 

up to the third order GVD terms taken into account:

2 2

2
1 0

2 22 3 2 2 2
0

2 32 3 2 2 2 2 2 2

1
2 2

0

(| | ) | |
| |

(| | )

R

E E EE E
ik i E E E

z u t t t

E EE E E n E
i

t t z c t k c t

+ + +

+ + =

 (2.6) 

where 2
0 0

2
K

n n k= ,
1 0

/( )
K
n k c= , 2

2 2 0
/k k= , ( )

3
3 3 0

3/k k= , k

is the mean wavenumber of the pulse, c is light velocity in vacuum, u  is the 

group velocity, ( )
0

2 2
2

/k k= is the second-order dispersion 

coefficient, ( )
0

3 3
3

/k k= is the third-order dispersion coefficient, 
0

 is 

the initial pulse duration (the time coordinate t and
R

 are normalized to 

0
).

In the moving coordinate system (
0

, /z z t t z u= = ), under the 

assumption that ( ) ( ) ( )0
, , expE z t E z t i t i z=  where ( ),E z t  is a 

slowly varying function of both z  and t  so that the second derivatives in 

Eq.(2.6) can be neglected, ( ),E z t  satisfies the so-called reduced wave 

equation : 
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2 32 3

2 2
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R

E E E E
ik i E E E
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E E
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t t

+ +

+ =

  (2.7) 

Dealing with the (2D+T) problem of TE wave propagation, one has to 

take into account some additional terms responsible for light beam 

diffraction in the waveguide with linear refractive index profile nl(x):

2 2

2 2 2

12

2 2 3

2

0 2 32 3

(| | )
2 ( ( ) ) 2

| |
| | 0

l

R

E E E E
i k n x E i

z x t

E E E
E E E i

t t t

  (2.8)

Here complex amplitude of the pulse envelope ( ), ,E x z t  is also a slowly 

varying function of z and t . Spatiotemporal distribution of the electric field 

is described by ( ) ( ) ( )0
, , , , expE x z t E x z t i t i z= ,  being the 

longitudinal wavenumber of the waveguide mode at the pulse peak. 

In the quasi-static approximation (
1 2 3

0
R

= = = = )
1
, Eq.(2.8) 

can be written as follows: 

2

2 2 2 2
02

2 0( ( ) ) | |
l

E E
i k n x E E E
z x
+ + + = (2.9)

where the temporal dependence of ( ), ,E x z t gives the pulse envelope with 

time coordinate t  as a parameter. Formally, Eq.(2.9) is the same as the wave 

equation for stationary light beam propagating in a nonlinear planar 

waveguide (see Eq. 3.1 below).

In the problem of pulse diffraction on waveguide junctions, the quasi-

static approximation is feasible if the diffraction length of the light beam is 

much shorter than the characteristic length of the pulse variation owing to the 

mentioned above MD, FTNR and SS effects which influence the pulse 

envelope. Then the results obtained for stationary light beam can be used in 

the analysis of the non-stationary beam self-focusing. 

If the pulse width is of the order of picoseconds or shorter, the terms with 

1
0  have to be taken into account. In the case of plane waves, this effect 

(usually referred to as the SS effect) leads to a change in the shape of the 

temporal envelope and to the shift of the pulse peak  with respect to the 

center of the moving coordinate system. Another effect significant for 
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ultrashort pulses is the time of finite nonlinear response of the medium 
R

(for electronic nonlinearity in fused silica it can be about 10
–14

seconds).

As Eq.(2.8) is not integrable, numerical methods are to be used. In an 

open dielectric waveguide, some part of power can be lost via emitting 

radiation field on waveguide discontinuities. As it is well known, 

propagation of radiation field can be simulated by different methods based 

on expansion in terms of normal modes or orthogonal functions.
10

 If, 

however, dielectric permittivity of the medium depends on the wave 

intensity, such methods are not efficient. In our opinion, for simulation of the 

spatial and temporal transformations in a nonlinear waveguide, it is most 

expedient to use the representation of the total field without any expansion of 

the sought solution. One of the most efficient and widely used numerical 

techniques based on total field representation is the finite-difference beam 

propagation method (FD-BPM)
9
.

In our numerical model, Eq.(2.8) was transformed into a six-point finite-

difference equation using the alternative direction implicit method (ADIM)
9
.

At the edges of the computational grid ( ),X X  radiation conditions were 

applied in combination with complex scaling over a region |x|>X2, where 

2 2
( , )X X  denotes the transverse computational window. For numerical 

solution of the obtained tridiagonal system of linear equations, the sweep 

method
11

 was used.

The nonlinear part of the susceptibility was introduced into the quasi-

linear finite-difference scheme via iterations, so that at any longitudinal 

point, the magnitude of |E|
2
 calculated at the previous longitudinal point was 

used as a zero approximation. This approach is better than the split-step 

method
1,2

 since it allows one to jointly simulate both the mode field 

diffraction on irregular sections of the waveguide and the self-action effect 

by introducing the nonlinear permittivity into the implicit finite-difference 

scheme which describes the propagation of the total field.

In the solution of the Cauchy problem for Eq.(2.8) and Eq.(2.9), the 

initial field distribution was taken Gaussian in time: 

20 2( , , ) ( )exp( ( ) / )
c

E x t x t t= (2.10)

with the transverse profile corresponding to the fundamental linear TE mode 

of a planar waveguide: 

cos( / )/ cos( ),
( )

exp( / )/ exp( ),

ux a u x a

x
wx a w x a

=

>

  (2.11) 
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where u  and w  are the core and cladding parameters of a linear mode, 

respectively. In the time envelope (2.10), 
c
t corresponds to the central 

frequency of the pulse and is located in the middle of the computational grid 

( )0c
t = . Note that the waveguide dispersion is not taken into account in the 

initial distribution because the Gaussian envelope of the bandwidth-limited 

pulse corresponds to the absence of group-velocity dispersion
1
 (the 

longitudinal wavenumber  is assumed to be frequency-independent).

In order to analyze pulse shaping, the following parameters have been 

evaluated:

the pulse duration: 
2 0

2( ) ( , )/ ( , )
n n n
z M X z M X z=   (2.12) 

the pulse displacement: 
1 0

( ) ( , )/ ( , )
n n n
D z M X z M X z= (2.13)

the pulse asymmetry:

3
3 2

3 1 2 1
2( ) ( ( , ) ( , )) ( , ) ( , )

n n n n n
A z M X z M X z M X z M X z= (2.14)

where

2 0 1 2 3( , ) | ( , , ) | , , , ,
n b

n b

X t

i
i n

X t

M X z dx t dt E x z t i= = ,  (2.15) 

with integration within the limits of the computational window over the time 

coordinate ( ),b b
t t  and over the transverse coordinate ( ),

n n
X X ,

0 1 2, ,n = . If 0n = , then 0
n
X = ; the above parameters are calculated at 

the waveguide axis. If 1n =  then 
1
X a= , if 2n =  then the spatial integral 

in (2.15) is calculated over the computational window ( )2 2
,X X .

As output parameters we have also used the relative variation of the pulse 

duration,

( ) ( )[ ] ( )0 0( ) /
n n n n
z z=   (2.16) 

and the normalized energy of the pulse: 

2 20( ) | ( , , ) | | ( , , ) |
b n b n

b n b n

t X t X

n

t X t X

T z dtdx E x z t dtdx E x t=  (2.17) 

( )1 2,n = , which is transferred in the positive z -direction within the 

waveguide core 
1

( )X a= , and also within the transverse computational 

window ( )2
20X a= .
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Figure 2. Relative computational error upon solving Eq.(2.8), (2.9); z=2mm, a=2�m.

As initial distribution corresponds to the linear mode (2.11) of the given 

waveguide, the deviation of ( )
n
T z  with respect to unity may be considered 

as a measure of the error in this method. The results presented in Fig.2 allow 

one to analyze the accuracy of the method depending on the type of finite-

difference scheme (Crank-Nicholson
11

 or Douglas
12

 schemes have been 

applied) and on the method of simulation of conditions at the interface 

between the core and the cladding for both (2D+T) and 2D problems.

Refined finite-difference schemes were obtained by introducing 

corrections at the interface between the core and the cladding according to 

the method proposed in
13

 (the value of the transverse grid step x  was 

chosen to meet the condition d N x=  where N  is an integer). 

The following values of parameters have been used in the calculations: 

the refractive index of the waveguide core nco = 1.491, the refractive index of 

the waveguide cladding ncl = 1.487, the wavelength at the maximum of the 

initial temporal distribution = 1.53µm, 
2

2 3/ /X X = , 80X = µm,

8
b
t = , 2 µmz = , and 0 04.t = .

We do not consider here the dependence of the group velocity on the 

beam divergence and the related spatiotemporal effects in the nonlinear 

medium
1
 leading to additional changes in the pulse shape. In the region of 

the core, these effects are small, and the radiation field power for the levels 

of the input pulse power considered here is low.
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3. STATIONARY LIGHT BEAMS  

In papers
6,7

, unsteady-state regime arising upon propagation of the 

stationary fundamental mode from linear to nonlinear section of a single-

mode step-index waveguide was studied via numerical modeling. It was 

shown that the stationary solution to the paraxial nonlinear wave equation 

(2.9) at some distance from the end of a nonlinear waveguide has the form of 

a transversely stable distribution (“nonlinear mode”) dependent on the field 

intensity, with a width smaller than that of the initial linear distribution.

The nonlinear modes are usually referred to as solutions to the nonlinear 

Helmholtz equation in the waveguide cross-section
8
. For their investigation, 

power-dispersion diagrams are commonly used that give values of critical 

powers and are helpful in stability analysis of the fundamental mode.
8

We consider here step-index waveguides that are nonlinear both in the 

core and in the cladding, and their junctions (Fig.1): structure A, junction of 

waveguides that possess different nonlinear properties, in particular, linear 

and nonlinear waveguides of the same width, and structure B, junction of 

two waveguides which possess the same nonlinearity and refractive index 

contrast; their widths are different, however. The first structure is regular for 

low-intensity light beams, the second structure is inherently irregular. One-

way propagation of a light beam through the structures can be reduced to the 

solution of the Cauchy problem with an initial field transverse distribution 

correspondning to the mode profile of the first waveguide of the junction. 

In terms of nonlinear dynamical systems, the second waveguide of the 

junction can be considered as a system that is initially more or less far from 

its stable point. The global dynamics of the system is directly related to the 

spatial transfomation of the total field behind the plane of junction. In 

structure A, the initial linear mode transforms into a nonlinear mode of the 

waveguide with the same width and refractive index. In the structure B, the 

initial filed distribution corresponds to a nonlinear mode of the first 

waveguide; it differs from nonlinear mode of the second waveguide, 

however. The dynamics in both cases is complicated and involves nonlinear 

modes as well as radiation. Global dynamics of a non-integrable system 

usually requires numerical simulations. For the junctions, the Cauchy 

problem also cannot be solved analytically.

We find below a set of stationary nonlinear modes for the step-index 

nonlinear waveguide, investigate their stability and global dynamics. The 

latter is simulated numerically by the FD-BPM as a solution to the Cauchy 

problem for waveguide junctions under consideration. 
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3.1 Theoretical approach 

Consider a step-index dielectric waveguide with a linear refractive index 

profile,  (   (( ) ), )
l co cl
n x n x a n x a= > .

If the linear refractive index contrast 
co cl

n n n= is small and also if 

a nonlinear change to the refractive index is comparable with n then the 

back reflections from the junctions can be ignored because the reflection 

coefficient is of the order of [ n/(nco+ncl)]
2
, i.e. approximately 10

-6
for the 

refractive index contrast adopted here. These physical assumptions are 

inherent in using paraxial approach for the solution of the scalar wave 

equation for the stationary transverse electrical field of TE light beam 

propagating through the junction: 

2

2 2 2 2
02

2 0( ( ) ) | |
l

E E
i k n x E E E
z x
+ + + =   (3.1) 

Here ( , )E x z  is slowly varying amplitude of the total electrical field 

( )( , ) ( , )expE x z E x z i z i t= ,  is a parameter responsible for fast 

oscillations of the total field in longitudinal direction. 

If  is taken as a longitudinal wavenumber of a linear mode, then we can 

use standard notation of linear waveguide optics
14

: 2 2 2 2 2/
co

k n u a= ,

( )x a and 2 2 2 2 2/
cl

k n w a= , ( )x a> . Here k  is a vacuum 

wavenumber, u and w  are the core and cladding parameters of a linear 

mode, respectively, 2 2 2u w V+ = , where 2 2
co cl

V ka n n=  is a linear 

waveguide parameter. 

Eq. (3.1) can be converted into a more convenient form by setting 

kx= ,
2
/A n I= , with

2
2 ( )
l K

n n x n= , 2 2
co cl
n n= , and 

taking into account that 2 2 2 2
2

/k n I A V a= :

2

2

2
2 0( ) | |

A A
i g A A

z
+ + + = , (3.2)

where ( )
2 2/g u V= ,

2

a
, 2 2/w V ,

a
> ,

a
V ka= = ,

2 2/a V= .

Eq.(3.2) is the mixed type linear/nonlinear Schrödinger equation and 

belongs to a specific class of equations which are close to, but not exactly, 

integrable. The lowest-order integrals that remain constant in the system 

described by Eq.(3.2)  as z changes are the dimensionless power: 
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2| ( , ) |P A z d=   (3.3)  

and the Hamiltonian:

2 2 4
1 1

2 2
(| ( , )/ | ( ) | ( , ) | | ( , ) | )H A z g A z A z d=   (3.4) 

where
2 2
kX= .

In numerical simulations, the time-averaged power

2 20( ) | ( , ) | / | ( , ) |
n n

n n

n
T z A z d A d=   (3.5) 

propagating in the positive z-direction, normalized to its initial value at 

0z =  has been evaluated by integration within the waveguide core ( )1n =

and within the computational window ( )2n = .

The Hamiltonian was also evaluated by integration within the 

computational window: 

2

2

2 2 4
1 1

2 2
( ) (| ( , )/ | ( ) | ( , ) | | ( , ) | )H z A z g A z A z d=  (3.6) 

3.2 Nonlinear modes in planar waveguides 

Stationary (i.e. for 0/A z = ) localized solutions to Eq.(3.2) represent 

nonlinear modes in the planar waveguide and may be found in an analytical 

form via matching the partial solutions of Eq.(3.2) at the core/cladding 

boundary. The partial solutions are: Jacobi elliptical function
15

 in the core 

and 1 *cosh ( ) /A w w V V  in the cladding (the functional 

dependence similar to a fundamental soliton in a uniform nonlinear medium). 

Here *  is a parameter which depends on the boundary conditions. Contrary 

to the modes of a linear waveguide, the transverse profile of a nonlinear 

mode depends on the power in the mode.

In this paper, we have used the next numerical scheme to evaluate 

transverse profiles of the nonlinear modes. First, continuity conditions for

( )A  and /A at the core-cladding boundary have been applied for a 

known solution in the cladding, 1 *cosh ( ) /A w w V V , with the 

field magnitude ( )aA . In this way, initial conditions have been obtained for 

the calculation of the nonlinear mode profile in the core. Then, by variation 
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of the fitting parameter *  in numerical calculation of Eq.(3.2) we have 

found such a value that meets the symmetric ( )( )0
0/

z
A z

=
=  or 

antisymmetric ( )( )0 0A =  condition for the mode amplitude at the 

waveguide axis. Examples of the transverse profiles for symmetric 

fundamental nonlinear mode corresponding to several values of the nonlinear 

mode power P are shown in Fig. 3. The mode with larger power has 

narrower transverse profile so that the power is more confined in the 

waveguide core. 

0 1 2 3 4
0

1

2

3

4

|A|

0

1

2

3

Figure 3. Transverse profiles of a symmetric nonlinear mode with P=1 (1), 5 (2), 10 (3). 

Vertical dashed line denotes the core/cladding boundary. 

In general, the features of a nonlinear mode in a step-index planar 

waveguide depend on the parameter /
K
n I n – the ratio of the 

nonlinear part of the refractive index to the linear contrast of the 

waveguide. If
K
n I n , the transverse profile of the symmetric 

nonlinear mode coincides with the profile of the linear fundamental 

mode. If 
K
n I n , the high-intensity light beam has the same 

transverse profile as a spatial soliton of a uniform nonlinear medium. 

Upon its propagation in the waveguide, the high-intensity light beam 

is not influenced by the core/cladding boundary. 

In this paper, we are interested in structures with 
K
n I n when non-

linear and waveguiding effects are comparable. For the estimation of the 

range of powers we are interested in, take into account that for the weakly-

guiding structure 2
2

/ / .
K
n I n n I A= Then the relationship 
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between the dimensionless power (3.3) and the parameter /
K
n I n can be 

presented as a power dependence of 2
0
A where

0
A  is the axial value of the 

nonlinear mode amplitude (Fig.4).

According to the results, 1 10/
K
n I n< <  for the range of 

dimensionless powers which approximately fall into the interval 2<P<10.

The latter is the range of powers that we are mostly dealing with in this 

paper.
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Figure 4. Axial value of |A|
2
 depending on power of the mode, a = 2 µm.

For the analysis of a nonlinear mode stability which is important for a 

problem of nonlinear waveguide excitation, consider the power dispersion 

diagrams (Fig.5). 

Branches corresponding to the symmetric mode (solid lines) meet the 

condition 0/dP d >  so that the mode possesses global stability 

independently on its power
8
. Branches corresponding to anti-symmetric 

mode (dashed lines) show critical powers which depend on the waveguide 

width. The values of critical power denote the upper power limit for a single 

mode regime in the nonlinear waveguide with a given V  (or core width). 
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Figure 5. Power dispersion diagrams of symmetric mode (solid lines) and anti-symmetric 

mode (dashed lines) for some values of a (a=1.5�m, 2.0�m, 4.0�m).

Concerning to the higher-order modes, a universal criterium of their 

stability is not yet available
8
. In this paper, the stability of nonlinear modes 

was analysed numerically via solution of the Cauchy problem for Eq.(3.2) 

with ( ) ( )0,A A=  where ( )A  is the transverse profile of a nonlinear 

mode. In the simulations, anti-symmetric modes demonstrated decay and 

emission of power outside the guiding region. Meanwhile, the fundamental 

symmetric mode was stable along any propagation distance. 

As it is well known
8
, stationary solutions to Eq.(3.2) occur at the extrema 

of the Hamiltonian for a given power. The solutions that correspond to global 

or local minimum of H for a family of solitons are stable. The representation 

of the output nonlinear waveguide as a nonlinear dynamical system by the 

Hamiltonian allows to predict, to some extent, the dynamics of the total field 

behind the waveguide junction. 

In Fig.6, the Hamiltonian corresponding to the symmetric nonlinear mode 

in a regular waveguide versus the linear waveguide parameter V is presented 

for some given values of power P. The dependences have minima that move 

to smaller values of V with the increase of the beam power 

( 5 0 7min, .P V= , 8 0 6min, .P V= , 10 0 5min, .P V= ).
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Figure 6. Hamiltonian (3.4) calculated with A( ) corresponding to symmetric nonlinear mode 

versus the linear waveguide parameter V for some values of power P (3.3). 

Figure 7. Hamiltonian (3.4) calculated with ( )A  corresponding to linear mode versus the 

linear waveguide parameter V for some values of power P (3.3). 

If a nonlinear waveguide is excited by a light beam which is not matched 

with nonlinear mode, the initial value of the Hamiltonian ( )0
lH  is greater 

than nlH . In order to estimate how far is the structure A initially from its 

stable state, the Hamiltonian (3.4) with a linear mode profile given by (2.11) 

has been calculated. In Fig.7, ( )0
lH  depending on V  is presented for some 

values of light beam power.

The difference l nlH H  shows how far is the structure A initially from 

its stable point (Fig.8). In the considered range of V , for powers 7P < , the 

difference is greater in narrower waveguides (curves P = 3 and P = 5 in 

Fig.8). For larger powers, a positive slope of the curve is also observed in 

some range of V  (curve P = 10 in Fig.8).
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Figure 8. Difference l nlH H  versus the linear waveguide parameter V for some values of 

power P (3.3). 

3.3 Propagation through the junctions 

In numerical simulations, the FD-BPM
9
 was applied to Eq.(3.2). We used 

a transverse grid ( ),b b
 with 50

b
= . Transverse and longitudinal grid 

steps were 0 005.=  and 0 1.z = , respectively. In order to avoid 

reflections from the transverse grid boundaries, complex scaling of 

coordinates
16

 was applied in the range 
2 b
< < in combination with 

radiation conditions at the grid edges.
17

For the structure A, we used the initial conditions ( ) ( )0
0,A F= ,

0
F

being the amplitude and ( )  the transverse profile of a linear mode given 

by (2.11). For the structure B, we used the initial conditions ( ) ( )0,A A= ,

( )A being the transverse profile of a nonlinear mode calculated for a given 

power P by the numerical method described in section 3.2. 

Power of radiation field has been estimated by checking the total power 

determined by (3.5). The difference between the initial power ( )2
0 1T =  and 

the power ( )
2
T z  at the point z  is equal to the normalized power losses 

( )
radP z . It is important to note that as the computational window has finite 

dimensions, some part of radiation leaks out the window behind the plane of 

junction so that the total power decreases (as the total power in the 

unbounded domain is conserved, the system remains Hamiltonian). 

3.3.1 Junction of linear and nonlinear waveguides 

An example of a linear mode transformation into the nonlinear mode in 

the  structure  A is  shown in Fig.9.  Unsteady-state regime
14

 is observed  that
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Figure 9. Unsteady-state regime in nonlinear waveguide of the structure A, a = 1.8 �m, P = 7. 

comprises self-focusing of the light beam in nonlinear waveguide and 

emission of some part of power outside the guiding region. In the waveguide 

core, the unsteady-state regime has a finite length and is followed by a 

steady-state regime where only nonlinear mode propagates in the core (Fig.9, 

z > 4 mm).

As a result of self-focusing, power propagating within the core ( )
1
T z

increases behind the region of unsteady-state regime (Fig.10). Meanwhile the 

total power of the light beam calculated within the computational window 

decreases due to emitting of radiation field outside the window. 

Figure 10. Longitudinal variation of the normalized power (3.5) propagating within the core 

of the nonlinear waveguide of the structure A for some values of power P (3.3), a = 1.8Μm.
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Figure 11. Longitudinal variation of the power of radiation field (solid lines) and of the 

Hamiltonian (3.6) (dashed lines) for some values of initial power P (3.3), a = 1.8 µm.

The normalized power of the radiation field 
2

1( ) ( )radP z T z=  grows 

with the initial beam power P (Fig.11, solid lines). The Hamiltonian of the 

system decreases over the length of the unsteady-state regime (Fig.11, 

dashed lines) because the linear mode tends to transform into the nonlinear 

mode. However, the steady-state value of the Hamiltonian fH  (calculated at 

100 mmz = ) is greater than the value nlH  evaluated for the nonlinear 

mode of the same power as the initial light beam because a part of power has 

gone with radiation field. The difference between these values of the 

Hamiltonian f nlH H H=  is shown in Fig.12 versus the linear 

waveguide parameter V.

For the comparison, the steady-state value of radP  (calculated at 

100 mmz = ) depending on V is also plotted. Over the set of numerical 

experiments, the initial power was fixed (P = 3). In accordance with 

estimations of the Hamiltonian (Fig.8), the spatial transformation of an initial 

light beam and power losses are greater in narrower waveguides. 

Such a behavior of the total field is observed provided that the beam 

power is smaller than a definite value Ps which depends on the waveguide 

width (for a = 1.8 m, Ps ~ 8). The spatial dynamics of a light beam with 

P > Ps is more complicated because nonlinear self-effects in radiation field 

increase so that the formation of soliton-like light beams propagating in the 

waveguide cladding is observed. 
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Figure 12. Power of radiation field (solid line) and variation of the Hamiltonian (3.6) (dashed 

line) versus the waveguide parameter, z = 100 mm, P = 3. 

Figure 13. Normalized power (3.5) propagating within the core of the nonlinear waveguide A 

versus the initial power P for some values of the core half-width a, z=100 mm. 

The transmittance of the structure A depending on the input power P was 

evaluated via calculation of 
1
( )T z  (Fig.13) and 

2
( )T z  (Fig.14). It is seen that 

self-focusing of the light beam in the core of nonlinear waveguide increases 

with input power, but rate of the increase diminishes so that for the powers 

P > 7 (a = 1.8 µm) and P > 4 (a = 3.0 µm) the dependence is weak. Negative 

slope of the curve in this range results from the mentioned above soliton-like
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Figure 14. Normalized power (3.5) propagating within the computational window in a 

nonlinear waveguide A versus the initial power P for some values of the core half-width a,

z = 100mm. 

behavior of the radiation field. Power propagating in the positive z-direction

within the computational window diminishes with the input power.

This dependence has a character close to linear in the considered range of 

initial powers. By this way it is demonstrated that transmittance of the 

structure is power dependent, and moreover, the transmittance-versus-power 

relation is different depending on the spatial domain over which the light 

beam intensity is integrated. 

3.3.2 Junction of nonlinear waveguides 

Contrary to the linear/nonlinear junction, the transmittance of a nonlinear 

step-like discontinuity (structure B, Fig.1) is less than unity for low-intensity 

light beams. Under the assumption of a unidirectional propagation, the 

transmittance can be evaluated by matching the transverse components of 

electrical field of TE polarization at the plane of junction: 

1 1 2 2
radF F A= + , (3.7)

where
1
 and 

2
 are the transverse profiles of the fundamental linear mode 

(defined by (2.11) with the replacement x ) in the first and second 

waveguides of the junction, F1 and F2 are amplitudes of the modes, 

respectively. radA  represents the radiation field which is usually expressed 

as an integral over the continuum of radiation modes
14

. The linear 

transmittance of the structure lT  can be evaluated as a ratio of the output 

beam power to the input beam power with the account of orthogonality 

conditions for linear modes of the second waveguide: 
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Figure 15. Transmittance of linear step-like discontinuity for some values of a1 ( a1 = 2.2 �
2.6 �m, 3.0 �m).

2 2
2 1

| ( , ) | / | ( , ) |lT A z d A z d=   (3.8) 

The transmittance depends on the half-widths 
1
a and

2
a , not only on the 

ratio
2 1
/a a (Fig.15). In the unidirectional approximation, the value of the 

linear transmittance is the same for light beams propagating in opposite 

directions through the discontinuity. 

The transmittance of the nonlinear step-like discontinuity in cylindrical 

waveguide has been evaluated
18

 under the assumption that profiles of low-

intensity nonlinear modes can be approximated by profiles of linear modes. 

According to the results, nonlinear transmittance is less or greater than the 

linear one depending on waveguide parameters of the first and the second 

waveguides, 2 2 1 2
1 1

/( )
co cl

V ka n n= , 2 2 1 2
2 2

/( )
co cl

V ka n n= , respectively.

However, the difference between transverse profiles of linear and nonlinear 

modes can be significant for the considered range of powers (Fig.8). That is 

why numerical modeling of nonlinear mode propagation through the 

discontinuity is a reasonable way to study the spatial transformation of the 

mode field.

The transmittance nlT of the structure B, 

2 1

2 1

2 2
2 1

1 2| ( , ) | / | ( , ) | , ,
n n

n n

nl
n
T A z d A z d n= =   (3.9)

µm,
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was evaluated by intensity integration over the core of the structure (n = 1, 

1
1 1
ka= , 2

1 2
ka= ) and over the computational window (n = 2, 

1 2
2 2 2 2

kX= = = ). In Fig.16, relative variation of 
2
nlT with respect 

to lT  is presented for some values of the input power depending on the 

waveguide parameter 
2
V  of the second waveguide, with a given half-width 

a1 of the first waveguide.

If the nonlinear increase of the refractive index is close to its linear 

contrast, the transmittance of the structure B can be less or greater than its 

linear transmittance depending on a1, a2 (P = 3, solid line in Fig.16). If the 

nonlinear increase of the refractive index is greater than its linear contrast, 

the transmittance of the structure B is always greater than its linear 

transmittance (P = 5, dashed line in Fig.16). In the limit of very intensive 

light beams (P > 20) the transmittance is total, 1nlT =  (dotted line in 

Fig.16).

Contrary to the linear/nonlinear junction, the transmittance of the 

structure B has a tendency to grow with input power up to unity in the limit 

( )0 1P  (Fig.17). The values of the nonlinear transmittances are different 

for light beams propagating in opposite directions through the discontinuity.

Figure 16. Transmittance of nonlinear step-like discontinuity in comparison with linear 

1transmittance (Fig.15) for some values of initial power P (3.3), a  = 3.0�µm,
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Figure 17. Transmittance of nonlinear junctions (a1(µm) a2(µm)) calculated at z=100mm by 

intensity integration within the computational window (horizontal lines denote linear 

transmittance).

If the intensity is integrated within the core of the structure B, the 

transmittance grows or decreases with power behind the down-step structure 

or up-step structure, respectively (Fig.18). In the limit P(0) >>1 this 

transmittance tends to unity. 

Figure 18. Transmittance of the nonlinear junctions (a1 a2 in µm) calculated at z = 100 mm 

by intensity integration within the core of the structure B. 
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3.4 Conclusions 

In this section, a problem of nonlinear waveguide excitation by stationary 

light beam has been investigated. In the analysis, an approach traditional for 

nonlinear optics and based on solution to nonlinear paraxial wave equation 

has been used. The range of light beam powers that induce nonlinear 

variation of refractive index comparable with linear contrast of the step-

index waveguide has been considered. 

The analysis reveals the complicated power-dependent spatial dynamics 

of a light beam propagating through the junctions of nonlinear waveguides. 

In a waveguide which is single-mode for low intensity fields, higher non-

linear modes can be excited provided that the beam power is large enough. 

Critical power of a higher mode excitation is greater in narrower 

waveguides. The higher-order modes are unstable so that for any transverse 

profile of input field, stable profile of the fundamental nonlinear mode is 

finally observed in the second waveguide of the junction behind a region of 

unsteady-state regime. Power of radiation field emitted over the region of 

unsteady-state regime depends on power of the input light beam. Thus, light 

transmission by junctions of nonlinear waveguides is power-dependent, and 

moreover, it is different for light beams propagating in opposite directions 

through the junction.

Two kinds of nonlinear junctions considered above have different 

functions with respect to the power of input light beam. The transmittance of 

the linear/nonlinear junction decreases with input power. The efficiency of 

the nonlinear action of the structure is greater in narrower waveguides. The 

transmittance of the junction of nonlinear waveguides has extremes in 

dependence on the input power but grows up to unity in the limit of high-

intensity light beams.

All the above results can be directly used in the problem of optical pulse 

propagation through the junctions provided that the quasi-static 

approximation is feasible. As the transmittance of a waveguide junction 

depends on power of a stationary component of the pulse, variation of an 

input pulse envelope behind the junction should be observed.

4. NON-STATIONARY LIGHT BEAMS 

In this section, propagation of an optical pulse in a step-index nonlinear 

waveguide is simulated by the numerical technique described in Section 2. 

As a comparative parameter, the power P
peak

 evaluated by (3.2) (P
peak

= P) at 

the pulse peak (t = tc) of the initial temporal distribution (2.10) of the pulse is 

used. First, we consider the problem of a nonlinear waveguide excitation by 
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the non-stationary light beam using the quasi-static approximation. Next, role 

of the SS effect and the second-order GVD effect, separately, in 

spatiotemporal dynamics of optical pulse in step-index nonlinear waveguide 

is analyzed.

4.1 Quasi-static approximation: propagation through the 

junctions

In the quasi-static approximation, Eq.(2.9) has been solved numerically 

by the FD-BPM for each stationary component of temporal distribution of 

the light beam. Amplitudes of the stationary components were specified by 

the form of pulse temporal envelope. The initial pulse envelope was assumed 

Gaussian.

Crank-Nicholson and Douglas schemes with improved interface 

conditions have been applied to transform Eq. (2.9) into a finite-difference 

equation.

4.1.1 Junction of linear and nonlinear waveguides 

In the structure A, the transverse profile of the initial pulse varies behind 

the junction due to the self-focusing effect. In the nonlinear waveguide of the 

structure, a fraction of an initial pulse power is emitted from the guiding 

region (Fig.19).

According to the results of Section 3.3.1 obtained for a stationary light 

beam, power losses in the nonlinear waveguide of the structure A grow with 

power. As the temporal distribution of the initial pulse in the linear 

waveguide is Gaussian (given by (2.11) with the pulse peak at t = tc)

radiation field is emitted predominantly from the central part of the pulse in 

the nonlinear waveguide. Then the radiation field has also a temporal 

envelope with a peak power at t = tc.

After the radiation field has gone, the diffraction of the light beam is 

compensated by the self-focusing effect, so that the spatiotemporal 

distribution becomes stable (Fig.20). 
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z

x

Linear waveguide Non-linear waveguide

Figure 19 .  Pulse propagating through the structure A.

Figure 20. Longitudinal variation of the pulse energy propagating within the core T1 (2.17)

(solid line) and pulse duration at the waveguide axis 0 (2.12) (dashed line) normalized to its 

initial value, a = 3µm, P
peak

 = 4. 

Thus, in the quasi-static approximation, the length of the unsteady-state 

regime in the core of the nonlinear waveguide is finite, as in the case of the 

stationary light beam propagation (see Fig.10, 11). 

Behind the junction, power of the field propagating within the core 

increases due to the self-focusing effect, while the pulse duration at the 

waveguide axis decreases. In the quasi-static approximation, this effect does 

not depend on the initial pulse duration. Total losses vary with power at the 

pulse peak similar to the case of stationary wave propagation in the structure 

A, i.e. they increase with the power (Fig.21, compare with Fig.11).
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As it was shown in Sec. 3.3.1, the self-focusing of stationary light beam 

and consecutively the power fraction propagating within the core of a 

nonlinear waveguide of the structure A grow with the initial beam power 

(Fig.10, 13). In the case of optical pulse propagation, this results in the 

variation of the pulse spatiotemporal distribution behind the junction so that 

the pulse shape and duration (2.12) depend on the transverse coordinate. In 

the core, the pulse peak is self-focused more than the pulse wings. The power 

evaluated over the computational window decreases with the input power 

and has the smallest value at the pulse peak due to greater emission of 

radiation field from this part of the pulse.

Another result of Sec. 3.3.1 is that the transmittance of the structure A is 

power dependent, moreover the transmittance evaluated via intensity 

integration within the core (T1) and within the computational window (T2)

depends on the initial beam power differently (Fig.13,14). The pulse duration 

also depends on the domain ( ),
n n
X X  over which the moments Mi (2.15) of 

the temporal distribution of the pulse are integrated. The pulse duration 

versus Xn is presented in Fig.22.

Figure 21. Longitudinal variation of the pulse energy propagating within the computational 

window T2 (2.17), a = 3.0µm
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Figure 22. Normalized pulse duration calculated by intensity integration within the spatial 

domain ( ),
n n
X X  in the waveguide cross-section, depending on the dimensions of the 

domain, a = 3.0µm.

If the beam power is measured within the waveguide core (X1 = a) or

within a smaller domain, these results show compression of the pulse. This 

effect is the most pronounced at the waveguide axis (X0 = 0). If the beam 

power is evaluated over a domain with |Xn| > a at the same distance from the 

plane of junction, the result may be quite different so that the pulse duration 

can be greater than its initial value (solid and dotted lines in Fig.22).

The pulse duration at the nonlinear waveguide axis and integrated within 

the waveguide core decreases with the peak power of the initial pulse 

(Fig.23).

Figure 23. Pulse duration calculated at the waveguide axis depending on peak power of the 

initial pulse, z = 8 mm, a=3.0 µm. 
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This dependence is linear for the range of powers corresponding to the 

linear part of the transmittance-versus-power dependence in Fig.13 (dashed 

curve).

4.1.2 Junction of nonlinear waveguides 

According to the results of Sec. 3.3.2, the transmittance of the structure B 

depends on the geometry of the junction and on the dimensions of the 

domain ( ),
n n
X X  in the waveguide cross-section where the light beam 

intensity is integrated. For this junction we use the same excitation scheme as 

for the structure A, so that the spatiotemporal distribution of the initial pulse 

is given by (2.10), ( 2.11) in a linear waveguide with the same width as the 

first waveguide of the structure B. 

The relative variation of the pulse duration (2.16) calculated via 

integration of the light beam intensity within the core of the structure is 

shown in Fig.24. First, as the pulse propagates through the junction of linear 

and nonlinear waveguides, its duration decreases. Then, when the pulse 

propagates through the structure B, its duration varies in accordance with 

estimations of nonlinear transmittance in p.3.2.2. In the step-down or step-up 

discontinuity, the pulse compression or broadening is observed, respectively, 

provided that the beam power is integrated within the core of the structure. 

Figure 24. Longitudinal dependence of the relative variation of the pulse duration (2.16) 

behind the junction of nonlinear waveguides. a1 = 3.0 µm , a2 = 4.0 µm (solid line); 

a1 = 3.0 µm , a2 = 2.0 µm (dashed line), P
peak

 = 3. 
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4.2 Account of the self-steepening effect  

In the numerical modeling of optical pulse propagation with account of 

the SS effect, Eq.(2.8) with 
2 3

0
R
= = =  has been solved. The Crank-

Nicholson scheme was used to transform Eq.(2.8) into a finite-difference 

equation.

Since group velocity of optical pulse propagating in a medium with the 

Kerr nonlinearity is intensity-dependent, the central part of the pulse 

propagates more slowly than its edges. As a result, the pulse peak shifts from 

the center of the computation window, and, in the region of its tail, one can 

observe the SS effect (Fig.25). The SS effect decreases in waveguide 

cladding so that temporal distribution of the pulse is close there to its initial 

Gaussian form. 

Calculations of the pulse displacement and asymmetry by (2.12) and 

(2.13) (Fig.26 and Fig.27, respectively) show that the pulse group velocity 

increases linearly with propagation distance, while the symmetry of its 

leading and trailing parts is broken, with the degree of asymmetry growing 

rapidly with distance. For a given peak power, the degree of asymmetry 

grows more strongly for shorter pulses. 

For a given pulse power, the SS effect depends on the transverse profile 

of the field and is less pronounced in waveguides with thinner cores (the 

dashed lines in Fig.26, 27 are plotted for a waveguide with d = 2.4µm). 

Figure 25. Spatiotemporal distribution of the pulse with the self-steepening effect taken into 

account, z = 5 mm, 0 = 30 fs, a = 3.0 µm, P
peak

 = 3. 
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Figure 26. Longitudinal variation of the pulse displacement  (2.13) at the waveguide axis in 

nonlinear waveguide of the structure A with respect to the center of moving coordinate 

system, 0=70fs (1), 60fs (2), 50fs (3), a=3.0µm  (solid lines), a= 2.4µm (dashed line), 

P
peak

=3.

Figure 27. Longitudinal variation of the pulse asymmetry  (2.14) calculated at the waveguide 

axis in nonlinear waveguide of the structure A, 0=70fs (1), 60fs (2), 50fs (3), a=3.0µm  (solid 

lines), a=2.4µm  (dashed lines), P
peak

=3.

This weakening of the SS effect can be explained by emission of 

radiation field due to the SS effect predominantly from high-intensity central 

parts of the pulse, the emission being greater in waveguides with thinner core 

(see Section 3). 

Power losses resulting from the SS effect are observed at the earliest 

stages of the unsteady-state regime in the nonlinear waveguide of the 

junction (Fig.28).  The losses  grow significantly  beginning at some distance 
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Figure 28. Longitudinal variation of power of the light beam calculated over the 

computational window in nonlinear waveguide of the structure A, 0(0)=20fs  (dashed line), 

0(0)= 10fs  (dotted line), solid line corresponds to the quasi-static approximation. 

from the junction (z = 2.5 µm in Fig.28) where the maximum at the pulse tail 

becomes very sharp. This steepening of the pulse tail is followed by its 

splitting. The point where the pulse splitting begins is determined by the 

initial pulse duration ( z 2.5µm for �0=20fs and z 3.5µm for �0=30 fs in 

Fig. 28). In order to study further spatiotemporal dynamics of the pulse, other 

numerical methods free of the slowly varying envelope approximation have 

to be used. 

4.3 Account of the second-order GVD effect 

In numerical modeling of optical pulse propagation with account of the 

second-order GVD effect, Eq.(2.8) with 
2 3

0
R
= = =  has been solved. 

The Crank-Nicholson scheme was used to transform Eq.(2.8) into a finite-

difference equation. 

Consider now how the solution obtained in the quasi-static approximation 

changes if the second-order group velocity dispersion is taken into account. 

It is seen from Fig. 29 that in a nonlinear waveguide of the structure A with 

the MD and the SS effects is first observed that spatial and temporal 

parameters of the field vary similarly to the case of the quasi-static 

approximation. Then, at a given power, spatiotemporal distribution varies 

depending on the value and sign of the dispersion coefficient k2. The pulse 

duration decreases in the case of anomalous GVD (k2 < 0) and increases in 

the case of normal GVD (k2 > 0). 
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Figure 29. Longitudinal dependence of the relative variation of the pulse duration at the 

waveguide axis for some values of k2 (k2=0.001,-0.001,0.004,–0.004), in fs
2
/µm.

P
peak

 = 3 (solid lines), 4 (dashed lines), 0 = 16 fs, a = 3.0 µm; qsa – quasi-static 

approximation.

It is seen that longitudinal dependences of the variation in the pulse 

duration plotted for k2 of the same modulus but different signs are 

approximately symmetrical with respect to the curve obtained in the quasi-

static approximation. Hence, at normal GVD, the pulse duration is shorter 

than the initial one as a result of the self-focusing effect until, owing to 

GVD, this duration continuously increases to its initial value (denoted by 

asterisks) and then exceeds it. The size of the region within which the pulse 

compression is observed at k2 > 0 decreases with increasing |k2|. In turn, 

normal GVD weakens the self-focusing effect and leads to continuous 

decrease in power of the pulse fraction propagating in the core (Fig.30, 

k2 > 0). On the contrary, the anomalous GVD enhances the self-focusing 

effect, so that the power in the core increases (Fig.30, k2 < 0). At a given k2,

these effects are more pronounced for a pulse with a higher peak intensity 

P
peak

(compare solid and dashed curves in Fig.30). 

The relative decrease 0 of the pulse duration depends approximately 

linearly on P
peak

 when k2 < 0 (Fig.31). For k2 > 0, at high powers (e.g. 

P
peak

 > 2 in Fig.31), the relative increase of the pulse duration is also almost 

linear. In this case, such propagation is possible when the pulse duration 

virtually does not depend on the power of the initial beam. This might result 

from a balance between the self-focusing effect which decreases the pulse 

duration (dashed line in Fig.31) and the normal GVD effect which broadens 

the pulse. 
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Figure 30. Longitudinal dependence of power of the pulse  (2.17) propagating within the 

waveguide core for some values of k2 (k2=0.001,-0.001,0.004,–0.004), in fs
2
/µm. P

peak
 = 3 

(solid lines), 4 (dashed lines), 0 = 16fs, a = 3.0µm; qsa – quasi-static approximation. 

Figure 31. Relative variation of the pulse duration at the waveguide axis depending on the 

power at the pulse peak, for some values of k2 (k2=0.001,-0.001,0.004,-0.004), in fs
2
/µm;

z=4mm, 0=30fs.

In addition, the results presented in Fig.31 show that, for a given P
peak

, the 

spatiotemporal dynamics of the pulse is more pronounced in a medium with 

the higher nonlinearity. For example, the value P
peak

 = 2 corresponds to |A|
2
=

1 (see Fig.4) and consequently 
0

0 003.
K
n I n=  (here I0 is the axial 

value of the intensity at the pulse peak). This value corresponds to the 

maximum  admissible peak intensity I0  100 GW/cm
2
 of a femtosecond 

pulse that propagates in a silica waveguide with nK  10
-16

 cm
2
/W. The 
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higher values of P
peak

 correspond to the pulse propagation, e.g., in a 

chalcogenide waveguide with nK  10
-14

cm
2
/W. Whereas in the silica 

waveguide, the variation  amounts to 1–2%, in the chalcogenide 

waveguide it is around 10–20%. 

The character of variations in the spatiotemporal field distribution in the 

guiding region depending on the sign of the GVD is shown in Fig.32. The 

most noticeable effect of dispersion manifests itself in the waveguide core, 

where in the case of normal GVD, the pulse continuously broadens 

simultaneously with the compression of its transverse distribution (Fig.32a). 

In the case of anomalous GVD, a so-called “light bullet” is formed (Fig.32b), 

which looks like a sharp increase in the intensity at the peak of the 

spatiotemporal distribution. 

In the region of unsteady-state regime, the radiation field is emitted from 

the core into the cladding, the character of the field distribution in the 

cladding being almost independent on the sign of the GVD (Fig.33). This is a 

satellite pulse propagating in the cladding with the peak power at the point t

= tc the same as for the initial pulse. In the case of normal GVD the pulse 

formed by radiation field has greater duration in comparison with the case of 

an anomalous GVD. 

It is noteworthy that in this case, in contrast to the quasi-static 

propagation, the region of unsteady-state regime is not finite because the 

balance between diffraction and nonlinear refraction in dispersive medium is 

disturbed by the same effect which was discussed concerning to the SS effect 

in Sec. 4.2. Specifically, due to continuous variation in the temporal 

distribution of the pulse, the transverse distribution also changes and a 

fraction of the field is emitting continuously from the guiding region. 

Figure 32. Spatiotemporal distribution of optical pulse propagating in a nonlinear waveguide 

with positive GVD (k2 > 0) (a)  and negative GVD (k2 < 0)  (b), z = 4 mm, P
peak

 = 3, 0 = 16 fs, 

|k2| = 0.01 fs
2
/µm, a = 3.0 µm.
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Figure 33. Emission of the radiation field from the guiding region resulting from the second-

order GVD effect (contour plot, logarithmic scale), k2 > 0 (a) k2 < 0 (b), z = 4mm, P
peak

 = 3, 

0 = 16 fs, |k2| = 0.01 fs
2
/µm, a = 3.0 µm.

4.4 Conclusions 

In this section, a problem of a nonlinear waveguide excitation by a non-

stationary light beam has been investigated. Optical pulse propagation 

through the junctions of nonlinear waveguides was simulated by the 

numerical technique described in Section 2.

In general, joint action of a nonlinear refraction, self-phase modulation 

and GVD influences the pulse propagation. If the diffraction length of the 

light beam is much shorter than the characteristic length of pulse variation 

owing to the second-order GVD and SS effects considered above which 

influence the pulse envelope, the quasi-static approximation is feasible. In 

the quasi-static approximation, the analysis is based on the results of 

investigation of the stationary light beam propagation presented in Section 3. 

The spatiotemporal distribution of the non-stationary light beam is shown to 

become stable behind a region of unsteady-state regime after propagation 

through a waveguide junction. The pulse shape differs from the initial one 

because central part of the pulse is self-focused more than its wings. The 

pulse duration calculated via the intensity integration within a finite domain 

in the waveguide cross-section depends on the dimensions of the domain. If 

the dimensions are much greater than the core width, the pulse broadening is 

observed in the nonlinear waveguide of the structure A. However the pulse 

duration calculated at the waveguide axis is less than the initial pulse 

duration. Spatiotemporal dynamics of an optical pulse propagating in the 

structure B is more complicated. The character of the pulse shaping depends 

on widths of the joined waveguides as well as on the peak power of the 
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initial pulse. If the peak power is large enough the pulse compression is 

observed behind the junction independently on the structure geometry 

provided that the intensity is integrated over a spatial domain with 

dimensions much greater than the core width. If the intensity is integrated 

over the core of the structure B, the pulse duration decreases or increases, 

respectively, in the step-down or step-up discontiniuty.

If the diffraction length of the light beam is comparable with the 

characteristic length of pulse envelope variation owing to the second-order 

GVD and SS effects, these effects are to be taken into consideration together 

with the self-focusing effect. In this case, the negative GVD enhances and 

the positive GVD weakens the self-focusing effect. The opposite action of 

the positive GVD effect and the self-focusing effect can be used for the 

stabilization of optical pulse duration with respect to variations of the pulse 

power.

In general, as the variation of the temporal profile of the non-stationary 

light beam due to the SS effect or the second-order GVD effect is 

continuous, emission of radiation field from the guiding region is also 

continuous upon propagation of the pulse. This emission prevents formation 

of a spatiotemporal soliton in the step-index guiding structures. 

It is important to note that feasibility of the numerical technique used in 

this work is limited. In addition to limitations discussed in Sections 2, 3 it 

has been proved that sharp variations in temporal and spatial profiles of the 

non-stationary light beam cannot be simulated in the frames of the paraxial 

approach. That is why the method of modeling presented here can be applied 

to pulse durations greater than 10 fs.

5. CONCLUSION 

In this paper, spatiotemporal dynamics of non-stationary light beam 

propagating through the junctions of step-index nonlinear waveguides have 

been investigated. 

Theoretical approach based on solution to the (2D+T) parabolic wave 

equation traditional for methods of nonlinear optics has been used. This 

approach is feasible if linear refractive index contrast in the waveguide is 

small and comparable with the nonlinear part of the refractive index. Then 

the back-reflected field can be ignored.

The results presented in this work demonstrate that the spatiotemporal 

phenomena arising upon propagation of high-intensity optical pulses in step-

index optical waveguides are significant under some conditions and should 

be accounted for in modeling and design of integrated optical devices. In 

miniature devices (waveguide gratings with the period comparable to the 
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wavelength, etc.), even if the quasi-static approximation might not be 

feasible, the results of the quasi-static self-focusing can be applicable. In a 

waveguide segments longer than the diffraction length, the influence of the 

MD and SS effects should be significant. 

These results can be used for comparative analysis in the elaboration of 

nonlinear implementations of more rigorous computational methods, free of 

the slowly varying envelope approximation. 

All the specific phenomena described above result from the emission of 

radiation field outside the guiding region. This effect has already been 

demonstrated as useful for pulse compression
18

and all-optical power 

limiting.
19

 It can be also applied for pulse shaping and optical gating. The 

variations of spatiotemporal envelope of non-stationary light beam resulting 

from the self-effects in nonlinear waveguides are to be accounted for in some 

novel laser technologies, for example, in waveguide writing by high-intensity 

femtosecond pulses. 
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Abstract: We investigate efficient frequency-doubling of low energy femtosecond pulses 

in bulk and waveguide nonlinear crystals, thereby demonstrating how to 

achieve a compact and portable ultrafast blue light source.  Using a 

femtosecond Cr:LiSAF laser (fundamental wavelength  860 nm), we examine 

the relative merits of the process of second harmonic generation (SHG) using 

bulk potassium niobate, bulk aperiodically-poled KTP, periodically-poled and 

aperiodically-poled KTP waveguide crystals. While SHG conversion 

efficiencies up to 37% were achieved using the waveguides, non-traditional 

strong focusing in the bulk samples yielded efficiencies of 30%.  We have 

developed several theoretical models to accurately describe the temporal and 

spectral properties of the generated blue light, as well as the observed 

saturation behavior of the conversion process in the waveguide structures. 
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1. INTRODUCTION 

The recent progress in photobiology research, such as microscopy, optical 

micromanipulation and bio-medical  imaging continues to justify the need 

for compact, low-cost visible and near-infrared lasers that demonstrate true 

portability and practicality.  The development and exploitation of photonics-

based techniques that are applicable to biology and medicine is of particular 

interest.  Laser sources at the shorter blue and ultraviolet wavelengths 

provide clear advantages over infrared lasers in allowing for stronger beam 

focusing, enhanced resolution in multi-dimensional imaging techniques
1
 and 

high-resolution spectroscopy
2
.  By using ultrashort-pulse lasers in preference 

to continuous-wave sources, it is possible to investigate ultrafast biological 

processes
3
, increase the resolution of microscopy

4,5
, and amplify subtle 

signals in nonlinear and multi-photon techniques
6-8

.  Femtosecond pulses in 

the blue spectral region have already been utilized in the study of protein 

dynamics
9
.

Straightforward frequency-doubling of near-infrared femtosecond lasers 

remains one of the simplest and most efficient access routes into the blue 

spectral region, due mainly to the inherently high peak intensities of the 

ultrashort laser pulses.  While conventional titanium-sapphire lasers have 

long been the market leader in providing femtosecond pulses in the near-

infrared, their impractical size, cost and power requirements render such 

sources impractical for space-limited on-site applications in bio-medical and 

clinical laboratories.  Consequently, we have recently demonstrated how 

small-scale femtosecond Cr:LiSAF lasers have much to offer in combining 

superior operational efficiencies with impressive design flexibility
10

.

In this paper, we begin by describing second harmonic generation (SHG) 

in the femtosecond regime.  We then present several theoretical models 

which accurately describe efficient SHG of femtosecond pulses in both bulk 

and waveguide nonlinear crystal structures, and detail the design and 

fabrication processes of these samples. We describe how a compact 

Cr:LiSAF laser design can be used to demonstrate an attractively simple 

approach to developing a portable ultrafast blue light source
11

.  With this 

femtosecond Cr:LiSAF laser (operating at around 850 nm), we then 

experimentally access the blue spectral region with a series of SHG 

investigations using four types of nonlinear crystal.  The performance of 

aperiodically-poled potassium titanyl phosphate (appKTP) in bulk and 

waveguide form is assessed in comparison to bulk potassium niobate 

(KNbO3)
12

 and periodically-poled KTP (ppKTP) waveguide
13

.  Each 

nonlinear crystal is placed in a very simple extra-cavity single-pass 

arrangement at room temperature, requiring minimal wavelength and 

temperature stabilization.  The ultrashort-pulse blue light generated from all 
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four nonlinear crystals is either femtosecond or picosecond in duration. This 

investigation provides the means to compare and contrast the relative merits 

of bulk and waveguide nonlinear materials, as well as periodically- and 

aperiodically-poled structures.  Observations show that, while superior 

infrared-to-blue SHG efficiencies are achieved with bulk KNbO3 and the 

ppKTP waveguide, aperiodically-poled structures permit  higher blue peak 

powers, shorter blue pulses and broader tunability in the blue spectral region.  

To support our experimental findings, we analyze the crystal performances 

against our mathematical models, before concluding with a discussion and 

summary.

2. FREQUENCY-DOUBLING OF FEMTOSECOND 

PULSES

2.1 Background 

The theoretical study of second harmonic generation (SHG) using 

focused Gaussian beams by Boyd and Kleinman
14

 has long been a reliable 

resource for those studying frequency conversion processes.  However, the 

Boyd-Kleinman theory applies only to cw beams, and cannot be relied upon 

to correctly describe harmonic generation using ultrashort (femtosecond) 

pulses.  We have recently published a theoretical model
15

 that describes SHG 

of femtosecond pulses in bulk nonlinear crystals, by taking into account the 

associated critical effects of group velocity mismatch (GVM).  Our model 

explains successfully the experimentally observed behavior of SHG in the 

femtosecond regime
12,16

, in contrast to the somewhat inaccurate predictions 

of Boyd and Kleinman.  We have also adapted this model to describe SHG 

of femtosecond pulses in waveguide nonlinear crystals
11,13

, which accurately 

describes the observed saturation of the SHG conversion process. 

The efficiency of any parametric process is subject to limitations imposed 

by GVM, which describes a temporal walk-off between the interacting 

beams.  This walk-off arises from a mismatch in the group velocities, and 

becomes particularly significant in the ultrashort pulse regime.  Second 

harmonic generation under conditions of large GVM is characterized by a 

nonstationary length, 
nst

L , defined by 
nst

L , where  is the time 

duration of the fundamental pulses, and the GVM parameter, 2 11/ 1/v v ,

where 2v  and 1v  are the group velocities of the second harmonic (SH) and 

fundamental wave respectively.  The nonstationary length, 
nst

L , is the 

distance at which two initially overlapped pulses at different wavelengths 

become separated by a time equal to .  In the ultrashort pulse limit (i.e. 

for
nst

L L , where L  is the length of the nonlinear media) and for the case 
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of an unfocused fundamental beam, the generated SH pulses are longer in 

time by a factor /
nst

L L .  In contrast to the well known quadratic dependence 

for the frequency doubling of cw waves, this process depends linearly on the 

length of the nonlinear media, L .  As a result of this deleterious temporal 

broadening effect, nonlinear media are often chosen such that 
nst

L L .

However, while this may ensure generated SH pulses having durations close 

to that of the fundamental pulses, the interaction length is reduced and the 

SHG efficiency is compromised.

 The natural way to increase the efficiency of such a frequency 

conversion process is to use a focused fundamental beam (or, alternatively, a 

waveguide structure).  An established theory of SHG using focused cw 

beams
14

 predicts, for negligible birefringence walk-off, an optimal focusing 

condition which is expressed by the ratio /L b = 2.83, where b  is the 

confocal  parameter (
2

1 01
b k w , where 

01
w  and 

1
k  are the focal spot radius 

and the wave vector of the fundamental wave respectively).  However, this 

theory applies only to the long-pulse or cw case, where GVM is negligible 

(
nst

L L ).  Our recently published theoretical model
15

 defines, for the first 

time, the optimum focusing conditions for SHG using focused beams in the 

ultrashort-pulse regime, where GVM is significant (i.e. where 
nst

L L ).

  Despite the limitations imposed on the length of the nonlinear media by 

the unwanted effects of GVM, several experimental papers on frequency 

doubling in KNbO3

12,16-19
, LBO

20
 and BBO

20
 have recently demonstrated that 

efficient SHG is possible by focusing femtosecond (120-200 fs) pulses in 

“thick” nonlinear media where the ratio /
nst

L L > 20.  These experiments 

have demonstrated that a conversion efficiency exceeding 60% is possible 

and, as we have shown
12

, the duration of the generated near-transform-

limited SH pulses remained within the femtosecond regime, increasing only 

2-3 times with respect to the fundamental duration.  In these experiments the 

optimal ratio /L b was found to be in the region of 10, which is far from the 

known Boyd and Kleinman ratio of /L b = 2.83.  To our knowledge, no other 

theoretical investigations exist that can predict the optimal focusing for SHG 

under conditions of large GVM, as we discuss here.   In the reported work of 

Weiner and Yu
16,19

 a simple model is proposed that predicts well the 

efficiency of the SHG process in bulk nonlinear crystals, as well as 

identifying that an increase in SHG efficiency relates to an increase in the 

/L b  ratio.  Their model, however, does not predict the existence of optimal 

values for /L b  and phase mismatch as obtained in both experiments 

discussed above.  Also, it cannot describe the evolution of the SH temporal 

shape inside the crystal and does not give an optimal focusing position inside 

the nonlinear media.

Our theoretical model for SHG in bulk nonlinear crystals, which 

describes the process of SHG under conditions of large GVM, assumes an 
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undepleted fundamental beam, and that both the fundamental and SH beam 

have Gaussian transverse distributions. The results of the model are later 

compared with experimental data from SHG experiments using focused 

femtosecond pulses in the bulk nonlinear crystals of potassium niobate 

(KNbO3) and aperiodically-poled potassium titanyl phosphate (appKTP).  

This model is presented in section 2.2. 

In the case of SHG in waveguide nonlinear crystals, we describe a 

theoretical model which accounts for the temporal behavior of the interacting 

pulses and the possible z-dependence of the phasematching condition.  The 

model also describes the observed saturation and subsequent decrease in 

SHG conversion efficiency in the waveguide samples, as a result of two-

photon absorption (TPA) of the second harmonic (SH) wave.  The results of 

this model are later compared with experimental data from SHG experiments 

using femtosecond pulses in the waveguide nonlinear crystals of 

periodically-poled potassium titanyl phosphate (ppKTP) and appKTP.  This 

model is presented in section 2.3. 

2.2 Theoretical model to describe SHG of focused 

femtosecond pulses in periodically-poled and 

aperiodically-poled bulk nonlinear crystals 

As discussed above, we have recently reported a theoretical model that 

defines the optimal conditions for SHG using focused beams in the 

ultrashort-pulse regime.  The model
15

, verified by experiment
12

, is suitable 

for cases when birefringence walk-off can be neglected, such as SHG with 

non-critical phasematching (as with KNbO3) and SHG in a homogeneous 

quasi-phasematched structure
21

.  It provides information on the efficiency of 

the SHG process, the pulse duration of the SH pulses (figure 1a), and the 

modification of the phasematching tuning curves.  It also allows for 

optimization of the SHG process by selecting the optimal phase mismatch, 

focusing strength (figure 2) and position of focusing within the crystal.

Here we will show that our previous model
15

 can be extended to describe 

the process of SHG with focused beams in aperiodically-poled nonlinear 

media (i.e. those with inhomogeneous mismatch).

While inhomogeneous mismatch can result from a non-constant 

temperature variation along the sample length, we will instead consider the 

typical case of a 
2

 crystal with linearly chirped quasi-phasematched 

(QPM) grating.  The crystal is a nonlinear medium with a locally varying 

phasematching parameter.  For a linearly chirped quasi-phasematched 

(QPM) grating the mismatch phase factor, ( )z , which controls the second 

harmonic   generation   process  at   point  z   can  be  presented  in  the  form

 Efficient frequency-doubling of femtosecond pulses 
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Figure 1. Temporal profiles and relative intensities of the generated SH pulses calculated for 

several values of focusing strength, m = L/b, and ratio 40
nst

L L  for: (a) uniform 

(periodically-poled) nonlinear media
15

; and (b) linearly chirped (aperiodically-poled) quasi-

phasematched grating with = 0.2 m ( 2
10.3

g
D mm ). The fundamental pulse shape (grey 

line)  is shown for comparison. 

2

0
( )

g
z k z D z , which allows the  localized  wavevector  imbalance to be 

presented as 
0

( ) ( ) / 2
g

k z d z dz k D z , where 
g

D  is calculated 

from LD
g

2

0
and

0 2 1 0
2 2 /k k k . The quantity 

0zLz  defines the change of the grating period across the 
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sample length, L, and 20
0

zLz  is the mean grating period.  

It is useful to note that for sufficiently long samples (as is the case for both 

KNbO3 and appKTP samples used in our experiments, described in sections 

7.1 and 7.2), the variation of the grating period across the sample, 

defines the wavelength acceptance bandwidth, 
fund

, of the SHG process in 

the case of unfocused or weakly focused beams: 

1

0

2

0

2

fund

d k

d
 (1) 

The parabolic equations derived in a slowly varying envelope 

approximation that describe the second harmonic generation (SHG) of 

ultrashort pulses in media with locally inhomogeneous wave-vector 

mismatch, have the form: 

0
1

2
1

11

A
tvk

i

z
 (2) 

)(exp
1

2

2

122

22

ziAiA
tvk

i

z
 (3)  

where
1

A and
2

A denote the complex amplitudes of the fundamental and 

the second harmonic wave respectively, and are functions of three spatial 

coordinates and one temporal coordinate, tzyxAA
jj

,,, .  stands for 

the operator 
2222

yx .  The nonlinear coupling coefficient, 
2
, is 

calculated as 
21SHGeff,2

2 nd , where the magnitude of 
SHGeff,

d  depends 

on the method of phase-matching and the type of the nonlinear medium that 

is used.  The depletion of the fundamental beam, birefringence walk-off and 

absorption losses for the both interacting waves are neglected.

Following the previously described method
15

 we obtain an expression for 

the SH amplitude, S(L, p), at the output of a nonlinear media with linearly 

chirped (aperiodically-poled) quasi-phase-matched (QPM) grating: 

pmbHAipLS
tro

,,,,,
2

2
 (4) 

with
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1

1

22

2

)4/(exp
1

d

2

1
,,,,

m

m

gtr
ubiDuiu

p
T

iu

u
pmH  (5) 

where
m

Lkbk
oo

22
;

b

L
m ;

nst
L

L

m

b

2

1

2
 and indicates the 

position of the focused spot inside the crystal: 0  corresponds to center of 

the crystal; 1 to the focus at the input face; 1 to the focus at the 

output face.  In addition, p is the local time,  is the GVM parameter, and 

is related to the full-width at half-maximum (FWHM) fundamental pulse 

duration,
0

, by 
0
/1.76 .

The energy of the second harmonic (SH) is found by integrating the SH 

intensity over space and time while assuming Gaussian spatial and 

hyperbolic secant temporal profiles.  The normalized efficiency, 
0

(%pJ
-1

) , 

of the SHG process is then calculated by:

10

12

3

22

10
3

16
tr

o

eff

o

Lh

nnc

d
 (6) 

where n2 and n1 are respectively the refractive indices at the second harmonic 

and fundamental wavelengths, and htr is a transient focusing factor calculated 

from

'',,,,
4

3
,,,

2

dppmH
m

mh
trtr

 (7) 

The absolute efficiency,  (%), in the absence of depletion of the 

fundamental wave is defined by 0Wfund, where Wfund  is the fundamental 

pulse energy in pJ.  At higher pump intensities, when the depletion of the 

fundamental is weak but essential, the corrected value for the absolute 

efficiency,  (%), can be found by
20

:

ofund

ofund

W

W

100

100
 (8) 

By controlling the parameter 
g

D , defined above as LD
g

2

0
, we 

can apply this model to accurately describe the SHG process in linearly 

chirped (aperiodically-poled) QPM structures with focused beams. 

0
g

D  corresponds to homogeneous (periodically-poled) QPM 
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gratings, and for this case the model provides the results described 

previously
15

. 0
g

D ; 0 corresponds to inhomogeneous (aperiodically-

poled) QPM structures, and the results of the model in describing the 

generated SH pulse shape are presented in figure 1b.  Figure 2 provides 

theoretical curves which define the optimal SHG focusing conditions for 

different values of .
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Figure 2. Dependence of optimal focusing strength, 
optopt

bLm , on the ratio, 
nst

LL for

different values of . Crystal length is 4L  mm. The efficiency of the SHG process can be 

maximized by selecting the correct focusing lens for a given ratio 
nst

LL .

As can be seen from the comparison of figure 1a and figure 1b, the SH 

pulse duration is shorter when the SHG process takes place in linearly 

chirped QPM structures.  The output pulses also have certain amount of 

phase chirp, which can be exploited to achieve further pulse shortening
22,23

.

Figure 1 perfectly illustrates the advantage of using relatively thick nonlinear 

crystals with focused beams: the generated SH intensity is higher and the 

pulses are shorter in the case of tight focusing (i.e. larger m  = L/b).

As illustrated in figure 2 the strong dependence of the optimum focusing 

strength, mopt = (L/b)opt, on the ratio L/Lnst (which is typical for materials with 

constant k ) no longer applies when dealing with aperiodically-poled 

structures (those with a linear change of k  in z ).
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We believe that our model can be extended even further to accurately 

describe other nonlinear optical interactions such as sum and difference 

frequency mixing, as well as higher-order harmonics generation. 

2.3 Theoretical model to describe SHG of femtosecond 

pulses in waveguide nonlinear crystals 

As mentioned earlier, second harmonic generation using femtosecond 

pulses is characterized by group velocity mismatch (GVM), which accounts 

for the temporal walk-off between the fundamental and second harmonic 

pulses in propagation through the nonlinear medium.  The nonstationary 

length, Lnst, introduced earlier and defined by Lnst = /  (where  is the time 

duration of the fundamental pulses, and 2 11/ 1/v v ) also plays a vital 

role when considering SHG of femtosecond pulses in waveguide structures.  

When the sample thickness, 
nst

LL , the regime is called ‘nonstationary’ 

and there are two important consequences:  a) the generated SH pulses are 

/
nst

L L  times longer than the fundamental pulse; and b) in contrast to the 

well known quadratic dependence of the SH efficiency on the length of the 

nonlinear media, the process of SHG with femtosecond pulses in the 

nonstationary regime depends linearly on the length of the nonlinear media.  

The reason for this linear dependence reflects the fact that the second 

harmonic signals generated in each of the different crystal slices with length 

nst
L  do not interfere constructively - the energy of the generated SH is 

simply the sum of the SH energies generated in each slice.  This allows us to 

use a very simple formula to describe the process of SHG in the 

nonstationary regime (
nst

LL ), which applies to both SHG in bulk media 

with unfocused beams, and to SHG in waveguided crystals.

In deriving the formula we require, let us first recall that the amplitude of 

phasematched SHG in a sample with 
nst

LL in an undepleted 

approximation is described by the differential equation: 

11

2
AAi

dz

dA

2
 (9) 

The solution of Eq. (9) gives for the power of the SH wave: 

2

2

1

2

2

2

2
nst

effo

L
A

P

nc
P  (10)
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where P1 is the power of the fundamental wave, and eff
A  is the effective 

cross section of the waveguide.  Rewriting this expression in terms of energy 

we obtain an expression for the SHG efficiency: 

2

2

22
2

nst

eff

fund

ofund

L
A

W

ncW

W
 (11) 

where W2 and Wfund are respectively the SH and fundamental pulse energies.  

If now the waveguide length is several times longer than 
nst

L , then  the 

output energy is scaled by the factor
nst

LL / :

eff

fund

o

eff

nsteff

nstfund

o

nd

A

LW

cn

d

L

L

A

LW

nc
23

2
2222

2
82

 (12) 

For bulk samples the effective cross-section, 
2

01eff
A w .  It can be seen from 

Eq. (12) that SHG energy conversion in the nonstationary regime (
nst

LL )

depends linearly on the length of nonlinear media and does not depend on 

the pulse duration.  Equation (12) can be recovered from the results of 

Weiner
16

 if we take weak focusing approximation of their Eq. (4).

 We remind the reader that Eq. (12) is derived under conditions where the 

effects of pump depletion are neglected.  In much the same way as it was 

described in section 2.2, we can expand the application of Eq. (12) for the 

range of higher pump intensities for which the depletion of the fundamental 

is weak but essential.  The corrected value for the SHG efficiency, 
cor

,

which accounts for the effects of pump depletion is
20

:

nd

nd

cor

1
 (13) 

We will later use Eq. (13) for analyzing the experiments of SHG in ppKTP 

and appKTP waveguides (described in section 7).  For now, we compare the 

analytical solution of Eq. (13) with the direct numerical solution of the 

differential equations in Eq. (14), which account for the temporal behavior of 

the interacting pulses, the nonlinear losses of the SH wave, and the possible 

z-dependence of the phasematching condition:  

 Efficient frequency-doubling of femtosecond pulses 
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*

1 1 2 1

1

2 2 *

2 2 1 2 2

2

1
exp ( )

1
exp ( )

v

v

A i A A i z
z t

A i A i z A A
z t

 (14) 

where A1 and A2 are the complex amplitudes of the fundamental and SH 

waves respectively and are functions of (z, t).  The nonlinear coupling 

coefficients, 1,2, are calculated as  
1,2 , 1,2

2 /( )
eff SHG

d n , where the 

magnitude of 
,eff SHG

d  for QPM waveguides is 
, 33

(2 / )
eff SHG

d d , and is

an overlap integral and is < 1.  The parameter, 
(3)

2 2
(3 / 4 ) Im( )n  where 

(3)
Im( )  is the imaginary part of the third-order nonlinear susceptibility

24
.

The role of this term in the second equation of Eq. (14) is to account for the 

nonlinear losses observed in the experiments with both ppKTP and appKTP. 

The phase factor in system Eq. (14) is defined as 
0

( )z k z  for the ppKTP 

waveguide, and as before 
2

0
( )

g
z k z D z  for the appKTP waveguide. 

In figure 3 we compare the analytical solution of Eq. (12) and Eq. (13) 

with the numerical solution of Eq. (14) for the SHG conversion efficiency 

for three different pulse profiles (hyperbolic secant, Gaussian and 

rectangular).  It can be seen that the simplified model perfectly describes the 

process of SHG when 
nst

LL 5 .  Further, the analytical model of Eq. (12) 

and Eq. (13), valid for samples much longer the nonstationary length 
nst

L ,

does not depend on the pulse shape.

 The effects of two-photon absorption (TPA) of the SH wave are included 

in the second equation of Eq. (14), in the form of the parameter 
(3)

2 2
(3 / 4 ) Im( )n , in order to explain the imbalance of the conservation 

of energy at the waveguide output.  Experimental observations
13

 have shown 

that, for input fundamental pulse energies of around 60 pJ, the ratio of 

1, 2, 1,
( ) /

out out in
P P P  reached 75%, where P1 and P2 are respectively the average 

powers of the fundamental and SH beams.  As the exact value of 
(3)

Im( )  for 

KTP at 430 nm is, to our knowledge, not available in the literature, we have 

used these measured nonlinear-type losses in energy to set the value of the 

parameter, , in the system of Eq. (14). 

The theoretical curves obtained from the solution of Eq. (14), with 
2

0.03L , are shown later in figure 18.  If we take 
,eff SHG

d = 3.6 pm/V, the 

value of  used in the calculation corresponds to a TPA coefficient of 

3.8 cm/GW, which is close to the reported TPA coefficient of KNbO3

(3.2 cm/GW)
 25

.
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Figure 3. Comparison of simplified analytical solution for 
cor

 (black line) given by Eq. (13), 

and numerical solution of Eq. (14).  Depletion effects are included for three different temporal 

pulse shapes: secant hyperbolic (gray line), Gaussian (dash line) and rectangular (short dash 

line). Nonlinear losses are neglected ( = 0). Calculations are performed for a KTP waveguide 

with cross-sectional dimensions of 2 × 2 m (deff = 4.6 pm/V).  Input pulse energy is 1 pJ. 

3. FABRICATION OF WAVEGUIDE CRYSTALS 

Efficient nonlinear optical frequency conversion requires phasematching, 

large pump intensities, long interaction lengths and materials with large 

nonlinear optical coefficients. The limitations imposed on nonlinear optical 

mixing processes due to the low peak powers found in most quasi-cw and cw 

lasers can be overcome by creating waveguides in the nonlinear material.

The waveguide confines the beam, allowing for a high intensity over long 

interaction lengths. This can lead to a significant increase in the optical 

conversion efficiency, thus making guided wave nonlinear optical 

conversion ideal for applications requiring cw or low peak power quasi-cw 

lasers. Furthermore, efficient optical mixing throughout the entire 

transparency range of the crystal can be achieved by using a quasi-

phasematched (QPM) process.

In a QPM nonlinear optical process, the waveguide is segmented into 

regions with alternating anti-parallel ferroelectric domains.  For SHG, the 
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period of the domain grating for first order QPM is determined by the quasi-

phasematching condition
26,27

:

2 1

2 1

2 1n n
 (15) 

where  is the period of the domain grating, 1,2 and n1,2 are respectively the 

wavelength and index of refraction of the fundamental and SH fields.  For 

waveguides the index of refraction terms in Eq. (15) incorporate both the 

bulk properties of the crystal (as determined from the relevant Sellmeier 

equations) and the additional dispersion due to modal confinement in the 

waveguide.

The relationship between phasematched, non phasematched and quasi-

phasematched interactions in the case of SHG is illustrated in figure 4.  The 

quadratic curve shows the SHG growth for a phasematched process, while 

the sinusoidal curve represents the growth in the case of no phasematching.  

In a QPM process, when the fundamental and second harmonic fields are get 

out of phase, the periodically poled regions flip the phase of the second 

harmonic field allowing the SHG field to grow as it propagates through the 

crystal.  In contrast to the usual birefringent phasematching, quasi-

phasematched mixing processes can be exploited over the entire 

transparency range of the crystal. 

Figure 4. The graph shows the SHG output as a function of distance through a nonlinear 

crystal for various phase matching conditions.
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The waveguides used in the experiments described in section 7 were 

fabricated using photolithography to transfer a mask containing the 

waveguide patterns to a KTP wafer and then using an ion-exchange process 

to embed the waveguides.  The exact steps to fabricate the waveguides in a 

KTP wafer are outlined in figure 5 and are described in detail below. 

The initial step is to layout the waveguide pattern using the AutoCAD

software.  The waveguide pattern is segmented, with the period of the 

segmentation equal to the required QPM period for SHG (e.g. for conversion 

of 850 nm the grating period is ~4 m).

The waveguide pattern is transferred to the KTP substrate using 

photolithography as shown in the first four steps in figure 5.  The first step in 

the photolithography process is to spin on a thin layer of photoresist that 

evenly covers the surface of a z-cut KTP substrate.  The photomask, with 

waveguide design, is imaged onto the photoresist using a projection

Figure 5. The five steps required to transfer the waveguide pattern to the KTP substrate.

Figure 6. The illustration depicts the ion-exchange process that occurs in the oven. 
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lithography system.  A developing process removes the exposed photoresist 

so only the unexposed regions of the KTP are covered.  Next, a thin 

aluminum or SiO2 coating is deposited onto the wafer.  Submerging the 

wafer in acetone removes the remaining resist along with any aluminum (but 

not the SiO2) in the exposed area creating a waveguide pattern. 

The KTP chips are individually immersed in a molten bath of a mixture 

of RbNO3 and Ba(NO3)2 . Within this bath, the Rb ions diffuse into the 

unmasked portions of the KTP chip, while the K ions diffuse out of the 

substrate and into the bath, shown in the illustration in figure 6.  In the 

diffused regions, the rubidium ions increase the index of refraction relative to 

the undiffused KTP and thus form the optical waveguide.  Note that due to 

the presence of barium, there is an increase in the index of refraction and the 

ferroelectric domain in the diffused region is reversed and hence the term 

chemical poling is used for this process.

4. FABRICATION OF BULK CRYSTALS 

4.1 Birefringent nonlinear crystals 

The bulk potassium niobate (KNbO3) crystal was grown using the top 

seeded solution growth (TSSG) method, which is one of the commonly used 

‘flux growth’ techniques.  In the TSSG method, the desired crystal is grown 

from a solvent containing the dissolved constituent components.  Crystals are 

grown at a temperature below their melting point which prevents 

decomposition before melting or any unwanted phase transitions. 

KNbO3 is a ferroelectric crystal of the ‘perovskite’ family, which 

transforms from cubic to tetragonal, tetragonal to orthorhombic, and 

orthorhombic to rhombohedral phase at temperatures of  418°C, 203°C, and -

50°C respectively.  Once the bulk KNbO3 crystal is slowly cooled down to 

room temperature to avoid unwanted cracks, it is then cut into blocks and 

poled by applying an electric field at a temperature just below the phase 

transition (~200°C) in order to generate a single domain.  The required 

efficient phasematching interaction within such a nonlinear crystal has 

traditionally been accessed by exploiting the crystal’s birefringence (as with 

KNbO3).  In general, however, this birefringent approach severely limits the 

flexibility in choice of nonlinear material and active wavelength.

4.2 Quasi-phasematched nonlinear crystals 

The alternative is quasi-phasematching (QPM), where the desired crystal 

can be designed for a specific wavelength and fundamental spectral 
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bandwidth with an appropriate periodic structure.  For the case of incident 

femtosecond pulses, characterized by significantly wider spectral bandwidths 

than continuous-wave sources, this is of particular interest as the spectral 

shape can be matched to the periodic structure.  In addition, pulse shortening 

(or expansion) is possible by selectively arranging the different frequency 

converting regions.  Finally a higher conversion efficiency can be obtained 

with QPM because the strongest nonlinear component, d33, can be accessed, 

which is not the case for birefringent phasematching.  Effective QPM has 

been demonstrated in many crystals, including LiNbO3

28
, LiTaO3

29
, RTP

30

and RTA
31

, but we will concentrate here on KTP
32

.

Periodically-poled KTP can be conveniently used at room temperature 

and can withstand high intensities without showing any sign of damage. The 

samples used in this work were made from flux-grown KTP, and the periodic 

structure was fabricated by electric-field poling according to the technology 

developed by Karlsson et al
32

.  Flux-grown KTP can show substantial  

composition  variations  even  though  the  optical  properties are

Figure 7. Conductivity map of KTP showing the ionic current variation over the wafer. 
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seen as identical. The composition variation, which is observed as a 

conductivity variation when an electric field is applied over the sample, can 

be detrimental for periodic poling.  It is commonly seen that a sample with 

large degrees of such variations will result in three areas of composition, 

over poled, periodically-poled and unpoled regions.  A typical conductivity 

map for a flux grown KTP wafer is seen in figure 7.  As this figure 

illustrates, the change in conductivity (which can be as large as a factor of 

two) occurs mainly along the b-axis, whilst it is more or less constant along 

the a-axis. 

The electric circuit used for the periodic poling as well as for the 

conductivity measurements is shown in figure 8.  A high-voltage amplifier 

(Trek 20/20C) amplifies a waveform generated by an arbitrary signal 

generator (Agilent 33120A).  The serial resistance of resistor R1 limits the 

current passing through the sample during poling.  The voltage over the 

sample is determined through the V1, which is the voltage over R3 and which 

forms a voltage divider parallel to the sample.  By properly selecting the 

resistance R2, the voltage is measured by an oscilloscope.  The current 

through the sample is determined from the voltage V2, which is the voltage 

over the small resistance R4, in series with the sample.  Resistances R1, R2,

and R3 are set as 15 k , 100 M , and 1.6 M , respectively.  R4 was 

changed according to the measurement requirements.  Contacts were made 

with a saturated solution of KCl. 

During the spontaneous polarization reversal in an area, A, a charge of 

dtiAPQ
s

2  is deposited, which causes the poling current, i, to flow 

through the circuit.  In low-conductivity ferroelectrics such as LiNbO3 the 

domain inversion can be controlled by monitoring the current flowing in the 

poling circuit during the charge transport, and an integration of the current to 

determine the deposited charge over a specific area.  However, for KTP the 

ionic conductivity is substantial in the c-direction at room temperature.  The 

total measured current is then the sum of the poling current and the ionic 

current, and difficulties have arisen when attempting to separate these two 

contributions in order to obtain an accurate observation of the polarization 

switching process.  The total current consists of two contributions, the ionic 

current, proportional to voltage U
2
 and the poling current which rises sharply 

at voltages close to a coercive field.  Ideally, the poling current should self-

terminate as the whole area, A, under electrode is reversed. 

To achieve better control of the poling, we have developed an on-line 

electro-optic monitoring technique
30

. The technique is based on the 

accumulated change of the electro-optic response when the domains grow 

through the crystal from the patterned side to the opposite side.  A He-Ne 

beam polarized 45° to the z-axis is launched along the x-axis of the crystal 

(figure 9).  When an electric field  is  applied, the output polarization state of
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Figure 8. The electrical circuit used for all the polarization-switching experiments, as well as 

for the conductivity measurements. 

the He–Ne beam will be changed due to the electro-optic effect.  This results 

in a time dependent variation of the polarization state during the rise and the 

fall of the pulse.  During the rest of the pulse, when the field is constant, the 

polarization state will be time dependent only if the sign of the electro-optic 

effect is reversed, i.e. the crystal is being poled.

The change of polarization state can be observed by measuring the 

intensity of the He-Ne beam through a polarizer orthogonal to the initial 

polarization. The intensity at the detector will then show a periodic 

oscillation during poling, which will stop when the poling starts (figure 9). 

When the poling parameters are chosen carefully, and when the crystal is 

homogeneous, only the area under the electrodes are poled, and no over-

poling is obtained. 

Figure 9. Schematic for monitoring the poling process
30

.
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Let us now concentrate on the specific sample used in this work.  For the 

bulk appKTP crystal (used experimentally in section 7), the commercially-

obtained KTP wafer was flux-grown, c-cut, single domain, 1 mm thick, and 

with the c-faces polished to an optical finish.  For practical reasons, the 

wafers were cut into 10  5 mm
2
 pieces after the conductivity measurements.

In flux-grown KTP, the ionic conductivity along the c-axis can vary by as 

much as an order of magnitude over a single wafer
33

.  This was found to 

severely complicate the periodic poling. Thus, we first mapped the 

conductivity distribution on each wafer.  Using the set-up of figure 8, 5-

millisecond positive square electrical pulses of 1.5 kV in magnitude were 

applied to the c
-
-face of the wafer using an In-covered probe of 1 mm in 

diameter, while the c
+
-face was uniformly contacted using a saturated 

solution of KCl.  The probe was scanned over the wafer surface, measuring 

the ionic current through the resistor R4, which was set to 10 k .

A typical measured ionic-current map of a KTP wafer, which illustrates 

the conductivity distribution, is seen in figure 7.  The measured current of 

100 A yields an absolute value of the conductivity at 1 mm
2
 of about 

8.5 × 10
-7

 S/cm.  It shows a parabolic variation along the b-axis, increasing 

by a factor of 2 from to the edges to the center, whereas it remains almost 

constant along the a-axis.  The concentration of K
+
 vacancies, which is the 

main contributor to the ionic conductivity, is very sensitive to crystal growth 

temperature.  Thus, the variations in conductivity over the KTP wafer are 

most probably due to a temperature gradient during crystal growth that 

results in a spatially varying stoichiometry.  In this work, samples with low 

conductivity from the edge of the wafer whose conductivities are relatively 

low (7  10
-7

 S/cm) were chosen. To get even more homogeneous 

conductivity and to get good nucleation for domain reversal we ion-

exchanged the sample in pure RbNO3 for 6 hrs at 350˚C.  Rb is then 

diffusing into the surface layer of the crystal replacing K and filling K-

vacancy positions
32

.  The reduction in conductivity is a consequence of  the 

larger ionic radius of Rb in the KTP lattice.  These atoms will hence drift 

more slowly through the crystal in the applied field, which is the same as 

having a lower ionic conductivity. The Rb ion exchange is faster in regions 

of higher K-vacancies (higher conductivity) and this will then help to make 

the material more homogeneous in conductivity and hence improve the 

periodic poling. A second advantage of the ion-exchange is that the crystal 

will have a thin low conductive layer (a few µm) on the surface which then 

will take a corresponding larger part of the electric field when voltage is 

applied over the sample. The domains will nucleate in this layer and then 

propagate through the bulk of the sample to the opposite side again helping 

creation of a periodic domain structure of high quality. 
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The sample was patterned with periodic photoresist using conventional 

photolithography.  In the poling the photoresist works as an isolator on the 

sample surface and the area under the mask will stay un-inverted while the 

areas under the openings are the regions that will be inverted during periodic 

poling.  The back-side of the sample was coated with an Al film to prevent 

depletion of K from the sample during the following E-field poling.

The sample, with patterned area of 4×4 mm
2
 was contacted with 

KCl:H2O liquid electrodes, and two 2.2 kV pulses (6 ms long) were applied. 

The sample was then tested in an SHG experiment and the back metal 

electrode and the photoresist was removed. 

In order to write the periodic structure onto the KTP crystal, a 

photolithographic mask was constructed.  Conventional masks have a single-

grating period, typically ranging from 3.4 m to 3.6 m for first-order QPM 

applications, which is patterned over the whole length of the crystal
28-32

.  In 

recent years, paralleled with improvement of e-beam and UV-laser 

lithography technologies, novel grating structures have appeared, such as 

multi-gratings, Fibonacci sequenced gratings, and aperiodic (chirped) 

gratings
34-36

.  For the case of aperiodically-poled gratings, a linear chirp is 

deployed over a mask with length L, having a starting period of s and an 

ending period of f.  The chirp parameter, , is then simply calculated from 

 = ( s - f)/L.  In our case the manufactured mask length had a length of 

L = 4 mm, with a starting and ending period of s = 4.1 m and f = 4.3 m,

respectively, and a chirp-parameter of  = 0.05.  These parameters are valid 

for an idealized linear chirp. However, when manufacturing the actual 

grating the limiting factor is the resolution of the lithographic process; for 

our chirped grating a resolution of 0.05 m was used. 

5. PORTABLE FEMTOSECOND INFRARED LASER  

Our recent investigations into efficient frequency-doubling of 

femtosecond pulses in waveguide and bulk nonlinear crystals have allowed 

us to propose the design of a portable ultrafast blue light source
11

, which 

takes advantage of a previously reported ultra-compact femtosecond 

Cr:LiSAF laser design
10,37-40

.  The extremely low pump-threshold conditions 

(~22 mW to sustain modelocking) associated with this Cr:LiSAF laser 

permit the use of inexpensive (~US$40) single-narrow-stripe AlGaInP red 

laser diodes (50-60 mW) as a pump source
41

.  Their modest electrical drive 

requirements (~100 mA current, ~200 mW electrical power) mean that these 

diodes require no active electrical cooling and can easily be powered for a 

number of hours by regular 1.5 V penlight (AA) batteries.  With a maximum 

pump power from two pairs of pump laser diodes of ~200 mW, the 
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Cr:LiSAF laser crystal does not require any cooling.  As a result, relatively 

inexpensive femtosecond Cr:LiSAF lasers with optical output powers up to 

45 mW, robustly modelocked with a semiconductor saturable absorber 

mirror (SESAM), are achievable from entirely self-contained and portable 

units with dimensions of 22 cm  28 cm.  [A version of this laser design 

incorporating one pair of pump laser diodes is shown in figure 10]  A second 

pair of pump laser diodes can easily be incorporated onto the baseplate to 

maximize operational performance (figure 12). 

The modest electrical drive requirements of these diodes, and the 

resulting option to power the laser with standard penlight (AA) batteries, 

allow these Cr:LiSAF lasers to boast an impressive electrical-to-optical 

efficiency of over 4 %, which until recently
42

 was the highest reported 

overall system efficiency of any femtosecond laser source.  The amplitude 

stability of the laser output was observed to be very stable with a measured 

fluctuation of less than 1% for periods in excess of 1 h. These measurements 

were made on a laser that was not enclosed and located in a lab that was not 

temperature-controlled. In a more enclosed and controlled local environment 

we would expect the amplitude fluctuations of this laser to be extremely 

small. While the output powers achievable from these lasers have been 

limited by the available power from the AlGaInP red laser pump diodes, 

there are already strong indications that commercial access to higher-power 

suitable diode lasers is imminent. 

Figure 10. Photograph of ultra-compact, portable femtosecond infrared laser pumped by two 

inexpensive (~US$40) single-narrow-stripe AlGaInP diodes and powered by standard penlight 

(AA) batteries
10

.  An oscilloscope in the background records an intensity autocorrelation of 

the femtosecond pulses. 
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6. SIMPLIFIED SECOND HARMONIC 

GENERATION SCHEME 

By incorporating a straightforward but highly efficient frequency-

doubling scheme into the compact femtosecond infrared laser of figure 10, a 

portable ultrafast blue light source can be achieved.  To generate blue light 

(~425 nm), all that is required is a single extracavity lens to focus the 

~850 nm light from a Cr:LiSAF laser through a nonlinear frequency-

doubling crystal in a single pass configuration (figure 11).  A half-wave plate 

(HWP) may also be required to select the appropriate linear polarization. 

The phasematching conditions of all four doubling crystals investigated 

in this paper comfortably allow efficient and optimal blue-light generation at 

room temperature.  In addition, the phasematching acceptance bandwidths 

(which define the accuracy to which the crucial parameters of nonlinear 

crystal temperature, fundamental wavelength and incident angle must be 

maintained to successfully optimize the SHG process) are sufficiently 

relaxed to require minimal attention once the process has been optimized.  

Each nonlinear crystal is mounted on a basic thermoelectric cooler (TEC) 

which provides some current-controlled temperature stabilization should it 

be required.

Figure 11. Simplified efficient blue generation scheme.  A single pass of pulsed infrared light 

through an extracavity lens and nonlinear crystal is all that is required.  A half-wave plate 

(HWP) may also be included if necessary. 

7. EXPERIMENTAL PERFORMANCE OF 

WAVEGUIDE AND BULK NONLINEAR 

CRYSTALS 

Investigations into the relative performance of the four nonlinear crystal 

types were carried out using the femtosecond Cr:LiSAF laser illustrated in 

figure 12.  Although this laser configuration differs slightly from the laser 

configuration of figure 10 (with an extra pair of pump laser diodes for 

increased output power
10

, and an intracavity prism to allow wavelength 
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tuning), these modifications do not compromise the small scale or potential 

portability of the laser construction. 

With four single-narrow-stripe pump laser diodes (two providing up to 

60 mW at 685 nm, and two providing up to 50 mW at 660 nm) the laser was 

capable of generating 120-210 fs pulses at a repetition-rate of 330 MHz and 

average output powers up to 45 mW.  By simply tilting the angle of the 

output coupler, selection of the central operating wavelength was also 

possible between 825 nm and 875 nm (defined by the reflectivity bandwidth 

of the SESAM mirror).  The infrared output beam was strongly linearly 

polarized (due to the Brewster surfaces of the Cr:LiSAF laser crystal) and the 

beam quality was measured to have an M
2
 = 1.1.  The stability of the pulsed 

output over a number of hours was observed to be excellent, together with 

negligible power degradation.

Each nonlinear crystal was assessed in an extracavity single-pass 

arrangement at room temperature (figure 11).  A half-wave plate was 

required for certain nonlinear crystals to provide the correct linear 

polarization.  The relative performance of the four nonlinear crystals is 

summarized below in sections 7.1 to 7.4. 

Figure 12. Laser configuration for SHG experiments, incorporating four single-narrow-stripe 

(SNS) red laser diodes and a prism (P) for wavelength tuning (DM: dichroic mirror; HWP: 

half-wave plate; PC: polarization cube; HR: high reflector; 1.5 %: output coupler). 
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7.1 Bulk KNbO3

Bulk potassium niobate (KNbO3) is well suited to our needs, because 

birefringent type-I non-critical phasematching (NCPM) can be exploited for 

highly efficient SHG of ~850 nm at room temperature
12,16,17

.  This NCPM 

avoids any spatial walk-off between the fundamental and second harmonic 

beams, as well as maximizing the angular acceptance of the phasematching 

process.

Using an experimentally-optimized focusing lens (f = 15 mm; spot radius, 

w = 4.3 m) and a 3 mm KNbO3 crystal (cut for NCPM at 22 C and 858 nm; 

AR-coated), up to 11.8 mW of blue average power with a spectral width up 

to SH = 1.4 nm at 429 nm was generated with only 44.6 mW of incident 

fundamental.  The maximum observed SHG conversion efficiency was as 

high as 30 %.  The overall efficiency of the electrical-to-blue process was 

over 1 %, and the blue pulses were measured by autocorrelation to be 

~500 fs in duration
12

.

The measured full-width-at-half-maximum (FWHM) wavelength and 

temperature acceptance bandwidths were 2.7 nm and 5 C respectively.  The 

beam quality parameter of the generated femtosecond blue beam was 

observed to be M
2
= 1.8.  We believe the quality of the blue beam 

deteriorated slightly from the fundamental beam (M
2
= 1.1) as a result of the 

strong focusing.  Because exact phasematching conditions are satisfied only 

at the beam centre, peripheral rays propagate under conditions of slight 

mismatch and as such accumulate phase distortions. 

7.2 Waveguide ppKTP 

Potassium titanyl phosphate (KTP) is another suitable nonlinear crystal 

for SHG, given that it can be waveguided and periodically-poled to readily 

satisfy quasi-phasematching (QPM) conditions at room temperature.  This 

waveguide ppKTP crystal, periodically-poled for SHG of ~850 nm and not 

AR-coated, had cross-sectional dimensions of ~4×4 µm in diameter and was 

11 mm in length (including a 3 mm Bragg grating section
43

 which did not 

affect the performance of the Cr:LiSAF pump laser). 

 With an appropriate aspheric lens (f = 6.2 mm) to optimize the coupling 

of the fundamental light into the waveguide, up to 5.6 mW of average output 

blue power with a spectral width of SH = 0.6 nm at 424 nm was achieved 

for 27 mW of incident fundamental.  Accounting for a coupling efficiency of 

70%, the associated internal SHG conversion efficiency within the 

waveguide was calculated to be as high as 37 %
13

.  With the Cr:LiSAF laser 

requiring no more than 1.2 W of electrical drive, this corresponds to an 

overall electrical-to-blue system efficiency of 0.5 %.  Evidence of a 
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saturation and subsequent decrease in overall efficiency of the SHG process 

(figure 18) has been attributed to two-photon absorption of the second 

harmonic (SH) wave
13

.  The superiority of the ppKTP waveguide at low 

pulse energies is evident when comparing the slope efficiency per unit length 

of this experimental data (6.9 %pJ
-1

cm
-1

) with other similar SHG 

experiments using bulk KNbO3 (1.0 %pJ
-1

cm
-1 16

, 0.73 %pJ
-1

cm
-1 12

) and 

waveguide ppKTP (0.15 %pJ
-1

cm
-1 44

).

A broad temperature acceptance bandwidth of T ~30 C (FWHM) 

centered at 18 C easily permitted room-temperature operation.  The 

characterization of fundamental pulses entering (  ~170 fs;  ~0.32) 

and leaving (  ~195 fs;  ~0.37) illustrated that these pulses were 

dispersed only slightly on propagation through the waveguide. 

7.3 Bulk appKTP 

While periodically-poled materials are typically characterized by very 

narrow spectral acceptance bandwidths (< 1 nm), aperiodically-poled 

structures (characterized by a linear gradient in grating period) have the 

advantage of providing sufficiently broad spectral acceptance bandwidths to 

utilize more of the spectrum associated with picosecond
45

 and femtosecond
46

pulses.  They can also simultaneously provide some pulse compression of 

sufficiently pre-chirped incident pulses
22,23

.

The bulk appKTP crystal was 4 mm in length, and was not AR-coated.  

The grating periods varied from 4.1 m to 4.3 m in order to provide a 

fundamental bandwidth of 7 nm, for SHG at room temperature centered at 

851 nm.  With an experimentally-optimized focusing lens (f = 15 mm; w = 

4.3 m), 3.2 mW of blue average power was produced at 429 nm with 

SH up to 1.4 nm, from 27 mW of incident fundamental.  This corresponds 

to an SHG conversion efficiency of 11.8 %, and an overall electrical-to-

optical system efficiency of 0.3 %.  The wavelength acceptance bandwidth 

was measured to be 4.5 nm.  In attempting to measure the temperature 

acceptance bandwidth, a negligible deterioration in SHG efficiency was 

observed when adjusting the bulk appKTP crystal temperature between 10 C

and 50 C.

Although the absolute efficiency of the SHG process is lower than that 

achieved from the KNbO3 crystal, figure 13a illustrates that, either with 

suitable pre-chirping of the fundamental pulses or recompression of the 

generated blue pulses, the bulk appKTP crystal is able to provide ultrashort 

blue pulses with higher peak powers, Ppk [Ppk = Ep/ SH, Ep is the pulse 

energy and SH is the second harmonic pulse duration].  Insufficient power 

was available to measure SH from the bulk appKTP crystal, but SH for 

our  experimental   conditions  was   calculated  to  be ~370 fs,   with ~270 fs



215

Figure 13. (a) Relative blue pulse peak powers from bulk appKTP and bulk KNbO3 crystals. 

(b) Dependence of SHG efficiency on fundamental spectral bandwidth of femtosecond 

Cr:LiSAF laser. 

possible with suitable compression.  The data for the KNbO3 crystal used in 

figure 13a was calculated using measured values of  = 540 fs and 

 = 0.39
12

.

The bulk appKTP crystal is the least impressive of the four nonlinear crystals 

in terms of absolute SHG efficiency (figure 20).  While the nonlinear 

coefficient, deff, of KTP (7.8 pmV
-1

) is less than that of KNbO3 (12.5 pmV
-1

),

an additional explanation is evident from figure 13b, which is measured for 

constant fundamental pulse energy.  This clear dependence of SHG 

efficiency on fundamental spectral bandwidth (broadened by the insertion of 

more glass from the intracavity prism in figure 12) is surprising, given the 

fact that the bulk appKTP crystal was designed for broad fundamental pulses 

(  ~7 nm).  However, the single-pass SHG scheme of figure 11 allows  

tight  focusing  of  the  fundamental beam in the centre of abulk nonlinear 

crystal in order to generate sufficiently high intensities for efficient nonlinear 

conversion.  Although the aperiodic structure in the bulk appKTP crystal 

varied from 4.1 m to 4.3 m over a length of 4 mm, the associated confocal 

parameter (estimated to be the distance over which SHG takes place) is only 

0.3 mm.  Therefore, in the case of such tight focusing, the fundamental field 

will not experience the full gradient of the aperiodic structure.  As such, the 

effective fundamental bandwidth is narrowed. The optimum 7 nm bandwidth 

indicated by figure 13b represents an expected expansion of the wavelength 

response due to the broadband fundamental. 

 Efficient frequency-doubling of femtosecond pulses 



216 B. Agate et al.

7.4 Waveguide appKTP 

The need for tight focusing in the bulk appKTP crystal (above) at 

relatively low power levels (~30 mW) resulted in some narrowing of the 

available phasematching bandwidth.  This is easily avoided by using a 

waveguided structure, where the full aperiodicity of the appKTP structure 

can be utilized. 

The waveguide appKTP crystal had cross-sectional dimensions of 

~4  4 m, and length of 12 mm.  The waveguide, which was not AR-

coated, was designed for single-mode transmission, and for a fundamental 

bandwidth of 11 nm (i.e. for SHG of 839 – 851 nm).  The linear grating chirp 

is represented by a change in grating period from 3.8 m to 4.0 m.

With a suitable coupling lens of 6.2 mm focal length, up to 5.4 mW of 

blue average power at around 422 nm was obtained from 24.8 mW of 

fundamental.  The internal SHG efficiency  reached a maximum of 32 %, 

with an overall system electrical-to-blue efficiency of 0.4 %. The effects of 

utilizing the full aperiodicity of the appKTP waveguide structure was evident 

when observing the generated blue spectral bandwidths.  Whereas the bulk 

appKTP crystal provided blue spectra with bandwidths of around 1 nm, 

broader blue spectra up to ~2.5 nm were observed (figure 14b), which 

supported shorter duration blue pulses.  The structured oscillatory nature of 

the blue spectral profile, also recently observed elsewhere
47

, is discussed in 

section 8.2. 

Figure 14.(a) Spectrum of fundamental pulses transmitted through the appKTP waveguide 

crystal (  ~5 nm). (b) Typical structured spectra of the second-harmonic blue pulses leaving 

the appKTP waveguide, with a FWHM spectral bandwidth of up to approximately 2.5 nm 

(thin line); and typical unstructured spectra of the second-harmonic blue pulses leaving the 

appKTP bulk crystal (thick line). 
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Tunability of the blue light from 418 nm to 429 nm was also possible, via 

simple tuning of the Cr:LiSAF pump laser.  This 11 nm tuning range 

coincides with the fundamental acceptance bandwidth of 11 nm for which 

the appKTP waveguide was designed. 

8. COMAPARISON OF EXPERIMENTAL RESULTS 

WITH THEORETICAL MODELS 

8.1 Bulk nonlinear optical crystals 

In modeling the SHG performance of the bulk nonlinear optical crystals, 

we have assumed the incident fundamental pulses are characterized by a 

hyperbolic secant temporal profile, and therefore 
fund

FWHM 1.76 .  For 

the case of KNbO3, the maximum optical-to-optical SHG efficiency achieved 

was 30%.  The corresponding value of 
nst

L/L  under these conditions, with a 

GVM parameter, 
3KNbO
= 1.2 ps/mm, is 

nst
L/L = 30.  The values of beam 

waist,
01

w , and confocal parameter, b , are calculated from conventional 

ABCD matrices using the measured beam diameter, d , before the focusing 

lens.  The experimental uncertainties in the determination of 
01

w  and b  are 

5% and 10% respectively. 

Figure 15. Experimental values of SHG efficiency using the bulk KNbO3 crystal (data points), 

and the predictions of our model (gray curve)
15

and another model (black curve)
16,19

 for L/Lnst

= 30, as a function of the focusing strength, m = L/b. The theoretical curves are normalized to 

their values for L/b = 10, which was the experimental optimal focusing strength
12

. The 

maximum experimental point refers to a SHG efficiency of 30%. 
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In figure 15 we show the experimental values of normalized SHG 

efficiency as a function of the focusing strength, m = L b .  The experimental 

data is plotted together with theoretical predictions from our model described 

here, as well as the model published in references
16,19

.  Both models assume 

the ratio L/L = 30
nst

, and both theoretical curves are normalized for L/b = 10 .

We see from figure 15 that our model describes correctly the existence of a 

maximum in the dependence of SHG efficiency on focusing strength.  To 

determine whether our model predicts the absolute efficiency, we have made 

use of the initial part (< 20%) of the experimental data.  Working with 

different published values for the second order nonlinearity constant, 
32

d , of 

KNbO3

48-50
we find that the corrected value of 12.5

32
d pm/V published in 

reference
49

 gives the best agreement not only with the experiment reported 

here, but also with the experimental work published previously
16,19

.

Fitting the experimental data from the KNbO3 experiment with Eq. (8), 

we find an experimental value of 
slope

= 0.30 %pJ
-1

, whereas the theoretical 

value from Eq. (6) is 
slope

= 0.32 %pJ
-1

 (using deff = 12.5 pmV
-1

,  = 210 fs 

and, from the model
15

, a calculated value of htr = 0.137).  The agreement is 

illustrated in figure 17.  We consider this agreement between experiment and 

theory to be very good, taking into account that the theoretical values are 

calculated from the empirically-determined 
fund

 and b  which have a 10% 

error margin.  The agreement for the lengthening of the SH pulse, 
SH fund

,

is also excellent, as can be seen from ( ) 2.6
SH fund EXP

 and 

( ) 2.4
SH fund THEORY

.  At this point we would like to note that the model 

described by Weiner and Yu
16,19

 cannot explain the change in SH pulse 

durations.  This is because these models are built on the restricting 

assumptions of unchanging pulse shapes and constant duration for both 

interacting waves. 

Experimentally, it was not possible to measure the dependence of the SH 

pulse duration on focusing strength due to the low sensitivity of the pulse 

duration measurement system.  Instead, the dependence of the SH pulse 

spectral width was measured as a function of focusing strength.  In figure 16 

the experimentally measured narrowing of the SH spectral width with an 

increase of ratio b L  is compared with the theoretical prediction from our 

model.  To plot the theoretical curve in figure 16 we have assumed 

transform-limited pulses with a temporal profile given by  

fund sh sh fund
f f = .  Due to the presence of GVM, the increase in the 

confocal parameter, b , leads to a broadening of the SH pulse, and therefore 

to a narrowing of the SH spectra.  On the other hand, for very  small values 

of the confocal parameter, b , the SHG process is stationary and the 

transformation of the spectra behaves as if in the long-pulse limit.  We can 

see that the model presented here also describes the spectra of the generated
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SH pulses, although the presumption that the SH pulses have a hyperbolic 

secant temporal profile is quite approximate.  Correct accounting of the SH 

pulse shape would improve the accuracy of the model even further.  

Significantly, the model reported in references
16,19

 is not able to describe 

such a dependence for the reasons discussed above.  Although our analysis 

has assumed fundamental pulses with no frequency chirp, it is possible to 

extend the present model to describe SHG with chirped fundamental pulses. 

In another study of SHG in the femtosecond regime, an experiment to 

determine the optimal focal position within a bulk KNbO3 crystal has been 

carried out
17

.  It was shown that, at low powers below the saturation regime, 

the optimal position of the focal spot is indeed in the center of the crystal as 

predicted by our present model. 

Fitting the experimental data for the bulk appKTP crystal to Eq. (8), we 

obtain the experimental value 0 = 0.16 %pJ
-1

.  From Eq. (6) we calculate the 

theoretical value of 0 = 0.16 %pJ
-1

 (using deff = 7.8 pmV
-1

, 0 = 210 fs and a 

calculated value of htr = 0.087).  Once again, figure 17 illustrates the 

accuracy of the model to experimental observations. 

Figure 16. Experimentally measured evolution of the SH pulse spectral width relative to the 

fundamental spectral width for the bulk KNbO3 crystal (data points), and the theoretical 

prediction of our model calculated for L/Lnst = 30, as a function of the ratio b/L
15

.
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It is worth repeating that the relatively low efficiency for the appKTP 

crystal is due to the fact that deff (KTP) < deff (KNbO3).  Performing the same 

assessment with lithium niobate (LiNbO3) should yield up to four times the 

efficiency, because deff (LiNbO3) = 17.6 pmV
-1

.  Unfortunately, insufficient 

power was available to measure the duration of the blue pulses from the bulk 

appKTP crystal.  However, our calculations show that the generated blue 

pulses would be characterized by an uncompensated duration of 370 fs.  

These pulses could be compressed to around 270 fs in order to access higher 

peak powers. 

8.2 Waveguide nonlinear optical crystals 

When using the waveguide ppKTP crystal experimentally, the 

dependence of internal SHG efficiency on input power is characterized by a 

maximum efficiency of 37 %.  A further increase in fundamental pulse 

energy then leads to a saturation and subsequent decrease in the efficiency of 

the SHG process (figure 18).  This behavior was also observed in the 

waveguide appKTP crystal (figure 18), and has been reported elsewhere
44,47

.

As we have suggested previously
13

, two-photon absorption (TPA) of the 

second-harmonic (SH) wave is the most likely explanation for this behavior. 

Figure 17. Theoretical predictions versus experimental data for the performance of the bulk 

nonlinear crystals, KNbO3 and appKTP.



221

In figure 18 we also provide theoretical curves for the performance of the 

waveguide crystals, which account for the observed effects of TPA.  The 

horizontal scales are normalized to match the initial slopes of the 

experimental curves.  It is clear that the presence of TPA causes the slight 

decrease in SHG efficiency once saturation of the SHG process has begun.  

The fact that the measured efficiency is less than that predicted by the theory 

shows that the model can be improved further.  This could be achieved by 

accounting for other effects such as nonlinear losses of the SH wave due to 

presence of the fundamental wave, self-phase and cross-phase modulation 

and blue-light induced red absorption (BLIRA)
25,51

.  Thermally-induced 

phase mismatch may also be present as the blue wavelength is close to the 

absorption edge of the crystal. 

Theoretical output spectra for the fundamental and SH waves for the 

appKTP waveguide are shown in figure 19.  It can be seen that they closely 

represent the observed experimental oscillatory nature of the SH spectra, and 

the smooth profile of the fundamental output, as shown in figure 14.  Our 

calculations predict that the oscillations in figure 19b become more 

exaggerated as we tune away from the perfect phasematching condition.  In 

addition, the calculated acceptance bandwidth for our waveguide appKTP 

crystal of fund = 12.6 nm is in excellent agreement with the tests carried out 

on the sample after fabrication. 

Figure 18. Saturation of SHG efficiency in the waveguide  (ppKTP and appKTP) experiments 

(point data).  Theoretical predictions incorporating the effects of two-photon absorption for 

the SH wave and group velocity mismatch are also shown for the ppKTP (dashed line) and 

appKTP waveguides (solid line).
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Figure 19. Theoretically calculated output spectra for (a) the fundamental and (b) second 

harmonic wave.  See figure 14 for experimental spectra. 

9. DISCUSSION AND SUMMARY 

Of the four nonlinear crystal types investigated in this paper (figure 20), 

bulk KNbO3 was superior in terms of generated blue average power 

(11.8 mW) and generated beam quality.  KNbO3 is also less susceptible to 

the observed saturation and subsequent decrease in SHG efficiency observed 

in both waveguide crystals.

 The appKTP waveguide provided similar maximum internal SHG 

efficiency (32 %) to that of a ppKTP waveguide (37 %), and the steep rise in 

SHG efficiency proves the effectiveness of such waveguides under low 

pump-pulse-energy conditions.  In addition, the broad wavelength 

acceptance bandwidth of the appKTP waveguide enabled the blue pulses to 

be tuned from 418 nm to 429 nm by frequency tuning of the Cr:LiSAF laser. 

Blue spectral widths of up to ~2.5 nm and corresponding theoretical 

analyses confirm that significantly shorter blue pulse durations are obtained 

when aperiodic poling rather than periodic poling is used.  As a result, higher 

peak power blue pulses can be generated with the bulk and waveguide 

appKTP crystals.  Bulk appKTP is not ideally suited to low-power sources 

that require tight focusing to access sufficiently high intensities, although 

another advantage is the absence of efficiency saturation.  Conveniently, all 

four crystals perform well at room temperature such that minimal 

wavelength and temperature stabilizations are required. 

The theoretical model of SHG with focused beams in both homogeneous 

and linearly-chirped aperiodically-poled structures predicts very well the 

results from the bulk KNbO3 and bulk appKTP crystals.  The model of SHG 

in the two waveguide crystals explains qualitatively the saturation and 
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subsequent decrease of the SHG efficiency, but requires further refinement 

to explain more fully the experimentally-observed absolute efficiency. 

The advantages of using bulk, waveguide, periodically-poled or 

aperiodically-poled media can be exploited with the intended application in 

mind.  The relative performance of the four nonlinear crystals is summarized 

in Table 1. 

Figure 20. Relative experimental performance of the four nonlinear crystals investigated in 

this paper as a means to efficiently and practically generate ultrafast blue light from a compact 

and portable femtosecond Cr:LiSAF laser. 

Table 1.  Summary of the performance of the four nonlinear crystals 

 bulk KNbO3

waveguide

ppKTP
bulk appKTP 

waveguide

appKTP

L 0.3 0.8 0.4 1.2 

1.2 1.2 1.2 1.2 

b 0.31 - 0.25 - 

f 15 - 15 - 

PSH 11.8 5.6 3.2 5.4 

SHG 30 37 12 32 

slope 1 6.9 0.4 2.3 

EpSH 36 17 10 16 

SH <1.4 0.6 <1.4 ~2.5 

L: nonlinear crystal length (cm); : GVM parameter (ps.mm
-1

); b: confocal parameter (mm) ; 

f: focal length (mm); PSH : blue average power (mW); SHG: maximum SHG conversion 

efficiency (%); slope: SHG slope efficiency per unit crystal length (%pJ
-1

cm
-1

); EpSH: blue 

pulse energy (pJ); SH: blue spectral bandwidth (nm). 
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10. CONCLUSIONS 

We have performed a thorough experimental and theoretical investigation 

into efficient frequency-doubling of low energy femtosecond pulses.  

Evaluation of periodically-poled and aperiodically-poled bulk and 

waveguide structures has been presented.  Several theoretical models 

accurately describe the temporal and spectral properties of the generated 

second harmonic (blue) light, as well as the observed saturation behavior of 

the conversion process.  All experimental evaluations have been carried out 

with a potentially portable, diode-pumped femtosecond Cr:LiSAF laser. 
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H:LiNbO3 AND H:LiTaO3 PLANAR OPTICAL 

WAVEGUIDES: FORMATION AND 

CHARACTERIZATION

I. Savova, I. Savatinova 

Institute of Solid State Physics, 72 Tzarigradsko chaussee Blvd., 1784 Sofia, Bulgaria 

Abstract: This paper summarizes the results of our systematic study of PE and APE 

planar waveguides in LiNbO3 and LiTaO3. We focused on the optical and 

structural characterization of PE layers formed on Z-cut substrates. The 

refractive index change was measured and the propagation losses were 

estimated. Raman spectroscopy was used as a method providing direct 

information about the phonon spectrum. The latter was related to the structure 

and the properties of the protonated waveguides. 

Key words: LiNbO3, LiTaO3, proton exchange, Raman spectra 

1. INTRODUCTION 

LiNbO3 is a widely used ferroelectric crystal with various applications in 

the nonlinear optics and integrated optics (IO). Another attractive material 

for IO devices is LiTaO3. Its electrooptic (EO) and nonlinear (NL) 

coefficients are comparable to those of LiNbO3, and its photorefractive 

damage threshold is more than an order of magnitude higher than that of 

LiNbO3 in the visible range. 

Several methods can be used for waveguide fabrication in LiNbO3.

Among them, titanium in-diffusion and proton exchange (PE)
1
 are the most 

popular ones since they lead to the formation of well-confined and low-loss 

layers. PE is mainly applied because it results in a considerable decrease of 

the photorefractive effect in LiNbO3. However, waveguides obtained by pure 

PE have reduced EO and NL coefficients and usually a post exchange 

annealing (APE) is required for restoration of the EO activity. 
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Currently, the APE technique is used almost exclusively for formation of 

waveguides in LiTaO3 as well
2
, because it is simple and can be performed at 

temperatures below the Curie point. 

Various crystalline phases can be formed in HxLi1–xNbO3 and HxLi1–xTaO3

systems. The crystalline structure depends on both the exchange and 

annealing conditions. Seven crystallographic phases ( , 1, 2, 1, 2, 3, 4)

were reported for PE LiNbO3 in
3
, and six ones ( , , 1, 2, 3, 4) for PE 

LiTaO3 in
4
. More than one phase may be present in a layer. In addition, the 

formation of phases, stable at high temperature and metastable at room 

temperature, was also reported
5
.

This paper summarizes the results of our study of PE and APE wave-

guides in LiNbO3 and LiTaO3. We focused on the optical and structural 

characterization of PE layers formed on Z-cut substrates. The refractive 

index change was measured and the propagation losses were estimated. 

Raman spectroscopy was used as a method providing direct information 

about the phonon spectrum. The latter was related to the structure and 

chemical bonds of a given crystalline phase. Such information may be useful 

for correct identification of both phase composition and the microscopic 

mechanisms responsible for the observed variation of the properties from 

phase to phase. 

2. EXPERIMENT 

PE layers were formed in Z-cut LiNbO3 and LiTaO3 congruent crystals 

by using a variety of proton sources, such as benzoic acid – pure 

(C6H5COOH) or diluted with lithium benzoate (C6H6COOLi); pyro-

phosphoric acid (H4P2O7), etc. The plates were immersed in the acid melt for 

various periods of time (up to 8 h in the case of LiNbO3 and up to 42 h for 

LiTaO3 substrates) at a temperature in the range of 200 – 240
o
C. Some of the 

samples were subsequently annealed at temperatures up to 420
o
C for periods 

of time varying from 10 min to 2 h. 

The lateral surfaces of the samples were polished to allow micro-Raman 

profiling measurements. 

The waveguides were optically characterized at  = 632.8 nm. The 

effective mode indices were determined by the m-line technique, based on a 

standard two prism coupling set-up. The refractive index depth profiles of 

the fabricated waveguides were reconstructed by the means of the inverse 

WKB procedure
6
.

The propagation losses and their dependence on the effective mode index 

were estimated with the scattering detection method
7
 at  = 632.8 nm. 
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The Raman spectra were registered either in backscattering or in right 

angle geometry. In the former case, a micro Raman set-up was used with a 

100× objective (NA = 0.95). In the latter case, a waveguide Raman 

spectroscopy was utilized in order to confine the exciting beam within the 

layer (a prism coupling technique was used). A  = 488 nm or  = 514.5 nm 

radiation of an Ar
+
 laser were used for excitation. 

3. RESULTS AND DISCUSSION 

Covering a wide range of fabrication and annealing parameters, we 

obtained PE layers in different HxLi1–xNbO3 and HxLi1–xTaO3 phases. The 

waveguides were multimode, with refractive index changes, thicknesses and 

number of optical modes depending on the proton concentration. The PE 

process leads to an increase in the extraordinary refractive index only, the 

maximal measured increase being ne = 0.12 for PE LiNbO3, and ne = 0.02 

for PE LiTaO3. Figures 1 and 2 summarize the corresponding refractive 

index profiles calculated from the effective index measurements. 

The as-exchanged layers exhibited good guiding properties with 

propagation losses typically less than 1 dB/cm for the higher order modes 

(m = 0, 1, 2). However, prolonged annealing at high temperatures led to 

significant increase of the propagation losses. For example, for a HxLi1xNbO3

sample exchanged for 1 h at 200
o
C in C6H5COOH and subsequently 

annealed at temperatures up to 375
o
C for 14 h, the value of the attenuation 

coefficient increased to 4–6 dB/cm. 

Since each HxLi1–xNbO3 and HxLi1–xTaO3 phase is characterized with 

specific crystal lattice parameters and chemical bonding, we carried out a 

systematic research on the relationship between the proton concentration and 

the Raman spectra for various phases. The spectra of PE LiNbO3 and LiTaO3

layers with various proton concentration are presented in Figs. 3 and 4, 

respectively. The variations of the Raman spectra for both types of layers 

confirmed the formation of different phases. However, Raman spectroscopy 

was not sensitive to all previously reported phases
3
. For example, we were 

not able to register any difference between the Raman spectra of 1 and 2

phases of HxLi1–xNbO3. Similar results were reported by Rams et al
8
. From 

Figs. 3 and 4 it can be assumed that the proton exchange leads to the 

following structural changes: 
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Figure 1. Refractive index profiles of

HxLi1–xNbO3 planar waveguides:

Z-30: PE in C6H6COOH at 225
o
C for 8 h; 

P-1: PE in H4P2O7 at 240
o
C for 8 h; APE at 

320
o
C for 2.5 h; 

B2: PE in C6H6COOH at 240
o
C for 7 h; 

APE at 260
o
C for 1 h; 

B1: PE in C6H6COOH + 1% C6H6COOLi

at 233
o
C for 8 h.

Figure 2. Refractive index profiles of 

HxLi1–xTaO3 planar waveguides: 

LT-1: PE in C6H6COOH at 240
o
C for 31 h; 

APE at 400
o
C for 2 h; 

LT-2: PE in C6H6COOH at 240
o
C for 8 h; 

APE at 265
o
C for 1 h and at 295

o
C for 1.5 h; 

Z-4: PE in C6H6COOH at 240
o
C for 8 h; 

APE consecutively at 265, 295, 320, 350, 

400, 420
o
C for 1 h; 

Z-6: PE in C6H6COOH at 225
o
C for 42 h; 

APE at 320
o
C for 1 h. 

– At low H
+
 concentration (in the  phase range for HxLi1–xNbO3 and in 

the  and  phase range for HxLi1–xTaO3) the amount of protons is not 

enough to cause any considerable structural changes and the HxLi1–xMO3

(M=Nb, Ta) spectra are similar to those of the pure crystals, only the FWHM 

of the bands is larger because of disruption of the translational symmetry due 

to the incorporation of protons. New bands at 65 cm
-1

 and in the range 500 to 

700 cm
–1

 due to the formation of Nb(Ta)-OH complexes are also observed. 

An interesting peculiarity of the HxLi1–xTaO3 layers is that the PE lifts the 

directional dependence of the oblique E phonons and degenerates their LO-

TO components – effect similar to the paraelectric phase transition exhibited 

by ferroelectrics. 

– With increase of the proton concentration (in the range of 1,2 phase 

HxLi1–xNbO3 and 1,2 phase HxLi1–xTaO3), the protons are chaotically 

distributed in the crystal lattice, the registered spectra are diffused and the 

bands can hardly be separated. The bands at 65 cm
-1

 and in the range 500 to 

700 cm
-1

 are among the most intensive spectral features. 
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Figure 3. Raman spectra of HxLi1–xNbO3

waveguides with various proton 

concentration.

Figure 4. Raman spectra of HxLi1–xTaO3

layers with various proton 

concentration.

– With further increase of the H
+
 concentration (in i phase range for 

HxLi1–xNbO3) many new bands were observed. The fact that the low 

concentration boundary of the  phases is approximately x = 0.5 leads to the 

assumption for some kind of ordering of Li
+
 and H

+
, as reported

1
. On one 

hand, it can be assumed that the protons form a (nearly) ordered sub-lattice. 

Such a structure would have a phonon spectrum different from that of a pure 

LiNbO3, see
9
. On the other hand, the PE probably leads to a reduction of the 

crystal symmetry, i.e. due to the incorporation of H
+
, the two Li sites in the 

unit cell may become non-equivalent. In such case, the symmetry would be 

reduced from C3v to C3. As a result, the number of molecules per unit cell 

would remain the same, but new bands would appear in the vibration 

spectrum.

In PE LiTaO3, due to the lower diffusion coefficients, we could not 

fabricate waveguides with proton concentration, for which presence of new 

bands is characteristic for the Raman spectra. 

For high proton concentration (in the  phase range for both HxLi1–xNbO3

and HxLi1–xTaO3), formation of phases stable at high temperature (200 to 

240
o
C) and metastable at room temperature, was also be detected by Raman 

spectroscopy. A change in the low frequency (<1000 cm
–1

) Raman spectra 

was observed for HxLi1–xNbO3. For both HxLi1–xNbO3 and HxLi1–xTaO3 layers 

a change in the position and the form of the OH stretching band was 

detected.

In summary, the optical and structural properties of PE and APE planar 

waveguides in LiNbO3 and LiTaO3 were studied. Raman spectroscopy was 

used to monitor the formation of various phases. 
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Abstract: A new diffractive device for light coupling between a planar optical waveguide 

and free space is proposed. The device utilizes a second order waveguide 

grating to diffract the fundamental waveguide mode into two free propagating 

beams and a sub-wavelength grating (SWG) mirror to combine the two free 

propagating beams into a single beam. The Finite Difference Time Domain 

(FDTD) simulations show that the SWG mirror improves the coupling 

efficiency of the waveguide fundamental mode into the single out-coupled 

beam from about 30% to 92%. A high efficiency (>80%) is predicted for a 

broad wavelength range of 1520 - 1600 nm. The proposed device is compact (~ 

80 m in length), it eliminates the need for blazing the waveguide grating, and 

it is simple to fabricate using standard CMOS processes. 

Key words: silicon-on-insulator (SOI), sub-wavelength waveguide grating, grating mirror, 

finite-difference time-domain (FDTD), numerical simulations, CMOS 

1. INTRODUCTION 

A major problem in the design and fabrication of integrated optics 

devices is the efficient coupling between compact planar waveguides and the 

outside macroscopic world. This problem has been identified from the 

earliest years of integrated optics.
1

Many original solutions have been found 

since, but the coupling still remains a challenge particularly for waveguides 

of sub-micrometer dimensions
2
 made in high index contrast materials such 
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III-V semiconductors, silicon oxynitride, and silicon-on-insulator (SOI). 

Originally proposed by Dakss et al.
3
 and Kogelnik and Sosnowski

4
 in 1970, 

waveguide gratings are often used as waveguide to free-space couplers and 

their fundamentals are well established.
5-8

 Some of the most relevant 

waveguide grating coupler applications include surface emitting horizontal 

cavity semiconductor lasers,
9,10

 coupling between planar waveguides and 

optical fibers,
11-12

beam shaping outcoupling elements and waveguide 

holograms,
13-15

 and photonic crystal based coupling structures.
16-19

An out-coupling waveguide grating is typically a second order grating 

with first-order diffraction designed to produce two beams diffracted into the 

superstrate (typically air) and the substrate, respectively. To maximize its 

efficiency it is required to increase the directionality of the out-coupling by 

enhancing one of these diffracted beams and suppressing the other.  

Suppressing one of the first order diffracted beams can be achieved by using 

blazed (asymmetric) grating profiles,
20-21

 typically fabricated by reactive ion 

beam etching with the ion beam incident at an angle to the waveguide plane 

normal. However, the fabrication of precise grating profiles is quite 

demanding and is generally associated with a strong dependence of the 

directionality and the efficiency of the coupler on various grating parameters 

such as its depth, blaze angle, and duty cycle.
15,22

 One of the possible ways to 

obviate the need for blazing is to use a simple rectangular (symmetric) 

grating and redirect one of the free propagating beams by a multilayer or 

metallic mirror
11,23,24

 or a photonic crystal structure,
16-17

 so that both 

diffracted beams add in phase. However, the fabrication tolerances for 

making the multilayer and photonic bandgap structures are demanding.

2. DEVICE GEOMETRY 

We propose a simple waveguide coupler comprising a waveguide grating 

and a sub-wavelength grating mirror, the former diffracting a guided wave 

into two free propagating waves and the latter recombining the two free-

propagating waves. The main advantage of this device is that no blazing is 

required for the waveguide grating and a single layer of a transparent (non-

metallic) material is sufficient for the mirror effect. The schematic of the 

device is shown in Figure 1. A grating with a period g= 0/neff is formed by 

partially etching the silicon waveguide core (where neff is the effective index 

of the fundamental mode in the grating section, and 0 is the free-space 

wavelength). The first order diffraction at a wavelength  (in the proximity 

of 0) yields two out-of-plane diffraction orders propagating in 

approximately opposite directions out of the waveguide plane, with the 
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respective angles in the air a and in the substrate s with respect to the 

waveguide plane normal:

)]/()arcsin[(
,,
knKkn

saeffsa
,

where K = 2 / g is the modulus of the grating vector, k = 2 /  is the free-

space propagation constant, and na and ns are the refractive indices of the air 

and the substrate, respectively.
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Figure 1. A schematic of the waveguide grating coupler with a sub-wavelength grating mirror. 

A second-order grating is etched in the single crystal silicon (c-Si) waveguide core. The first 

order diffraction of the input field (1) yields two out-of-plane diffraction orders (2 and 3) that 

are recombined in-phase by reflecting the upward propagating order by the amorphous silicon 

(a-Si) grating mirror. a: a-Si sub-wavelength grating mirror; b: SiO2 spacer; c: waveguide 

grating; d: Si waveguide core; e: SiO2 bottom cladding; f: Si substrate.

These two diffraction orders are recombined by reflecting the upward 

propagating order by a sub-wavelength grating (SWG) mirror. Our SWG 

mirror was inspired by a free-space mirror proposed by Mateus et al.
25

 In the 

implementation shown here, the mirror comprises a periodic array of 

amorphous silicon pillars deposited on a low refractive index SiO2 spacer, 

the latter also filling the waveguide grating trenches. It is assumed that a-Si 

has the same refractive index, n ~ 3.46, as single crystal Si at  ~ 1.5 m)

The grating mirror acts as a phase mask with all the diffraction orders 

(including the zero order) being suppressed. For light incident normally on 

our grating mirror, the scalar grating equation is: sin a = m / swg, where m 

is the diffraction order, all the diffraction orders being evanescent 

(suppressed) for swg< , hence the term sub-wavelength grating The mirror 

function can be intuitively explained by the fact that the portion of light 

transmitted through each a-Si pillar is phase shifted  or odd multiples 
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thereof with respect to the light transmitted in between, the two parts 

canceling each other. This results in a suppressed transmission through the 

SWG layer, the latter hence acting as a mirror. The thickness of the SiO2

spacer is chosen in a way that the resulting co-propagating beams add in-

phase modulo 2 . Also, it is advantageous to eliminate any partial reflections 

of the two co-propagating beams as they cross the core-cladding and the 

cladding-substrate interfaces. This can be achieved by choosing the bottom 

cladding of a quarter-wavelength thickness, or odd multiples thereof, such 

that the Fresnel reflections at the two interfaces interferometrically cancel 

each other. Here a thicker bottom cladding (3 /4 ~ 0.78 m) was chosen to 

minimize the leaking of the fundamental mode into the substrate.

3. THE FDTD SIMULATION METHOD 

The FDTD approach is based on direct numerical solution of the time 

dependent Maxwell’s curl equations. In the 2D TM case the nonzero field 

components are Ex, Hy and Ez, the propagation is along the z direction and the 

transverse field variations are along x. In lossless media, Maxwell’s 

equations

zHtE
yxr

//
0

xEzEtH
zxy
///

0

xHtE
yzr

//
0

are discretized by means of central difference approximations for the 

numerical derivatives in space and time.
18

r0
 is the dielectric 

permittivity and 
0
is the magnetic permeability of the vacuum. The 

sampling in space is on a sub-wavelength scale. Typically, 10 to 20 steps per 

wavelength are needed. The sampling in time is selected to ensure numerical 

stability of the algorithm. The time step is determined by the Courant limit: 
22

/1/1/1 zxct . The numerical scheme is excited by an input cw 

field equivalent to the fundamental mode profile of the initial segment of the 

waveguide. The optical wave propagates until it reaches a stationary state 

within the computational domain. A Discrete Fourier Transform (DFT) 

procedure is applied in the last time period of the simulation to provide the 

complex values of the field components indicated above. The z- and x-

components of the Poynting vector are used to give an estimate for the power 

flow in both longitudinal and transverse directions. 
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4. SIMULATION RESULTS 

To study the output coupling efficiency of the device we have performed 

an analysis based on two-dimensional Finite Difference Time Domain 

(FDTD) simulations. Figure 2 shows some of the results. The input field is 

TM polarized waveguide fundamental mode (  = 1.55 µm) and the 

waveguide is along the z axis. The simulation window dimensions are 80 m

(horizontal) by 4 um (vertical). The mesh size is 0.022 m in both 

dimensions. The simulation ran for a total 40,000 time steps each of dt = 

9.8 10
-17

s. The waveguide grating is 0.4 m deep etched in a 1 m thick 

silicon waveguide core. The SWG mirror is formed in a 0.45 m thick a-Si 

layer. Duty ratios of the SWG mirror and the waveguide grating are rswg =

dswg / swg = 0.74 and rg = dg / g = 0.5, respectively. The periods of the 

respective gratings are swg = 0.7 µm and g = 0.46 µm. The thickness, the 

period and the duty ratio of the sub-wavelength grating have been chosen to 

maximize device bandwidth, taking into account the calculations in ref. 

Error! Bookmark not defined.. The SiO2 spacer thickness is 0.25 m, the 

substrate is silicon, and the superstrate is the air.
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Figure 2. The FDTD simulation results for the electric field components Ex (a) and Ez (c) and 

the Poynting vector component Sz (b) and Sx (d). The waveguide is along z axis, the dashed 

lines contouring the non-etched 0.6 µm thick region of the core.
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The panels a and b in Figure 2 show the electric field component Ex and 

the Poynting vector component Sz, respectively.  The out-of-plane beam 

propagation (in +x direction) is evident from Ez and Sx evolution (Figure 2, 

panels c and d), where the Poynting vector component Sx = -Re(Ez Hy*)/2.

This design of the one-dimensional grating mirror is effective for out-of-

plane propagating waves perpendicular to the SWG grooves (i.e. for TM-like 

polarized waveguide modes). 

It has been demonstrated
25

 that the efficiency of a SWG grating is 

maximum for a free propagating wave with the electric field vector 

perpendicular to the grating grooves. To use the SWG mirror effectively for 

the TE-like polarized guided mode would require SWG grooves oriented 

parallel to the waveguide direction z, that would demand a 3D FDTD 

simulation. Based on these arguments, it appears possible to optimize the 

mirror efficiency for both TE- and TM-like polarizations by arranging the a-

Si pillars in a two dimensional array.

Figure 3 shows the spectral dependence of coupler efficiency with (curve 

a) and without (curve b) the SWG mirror, respectively, for TM polarization. 

The coupling efficiency was calculated as Px/P0 , where P0  is the power in 

the waveguide at z = 0 (see Figure 2), and Px is power in the out-of-plane 

propagating wave calculated by integrating the Sx component of the Poynting 

vector  along  the  bottom  edge  of  the  computation  window.
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Figure 3. Coupler efficiency for a waveguide grating with (a) and without (b) the sub-

wavelength grating mirror.
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The calculation of the coupling efficiency is an automatic post-processing 

feature of the FDTD software used to perform the simulations.
26

 It is 

observed that the grating mirror improves the coupling efficiency from 30% 

to 92% near 1550 nm. The coupling efficiency larger than 80% is achieved 

over a broad wavelength range of 1520 - 1600 nm. The central wavelength 

can be adjusted by scaling of device dimensions, i.e. the periods of the two 

gratings and thicknesses of the layers. From the fabrication point of view, the 

tolerance on the oxide spacer thickness appears critical, as an accurate 

thickness is required for in-phase superposition of the two diffracted beams. 

According to our FDTD calculations, the oxide spacer thickness tolerance of 

0.05 m (i.e. 20%) yields an efficiency of >92% near the central 

wavelength.

The device shown in Figure 1 provides coupling between the fundamental 

waveguide mode and the free propagating beam in the downward direction, 

hence in a substrate emitting geometry. Similar coupling function can also be 

achieved in the upward direction (surface emitting), for example making use of 

a double SOI platform, as it is shown in Figure 4. Here, the waveguide grating 

is formed in the first Si layer and the SWG mirror in the second Si layer of the 

double SOI wafer. In this geometry, the calculated coupling efficiency was 

found to be similar to that of the downward coupling device. 
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Figure 4. A schematic of a surface emitting waveguide coupler with a sub-wavelength grating 

mirror formed in a double SOI platform. a:  cladding, SiO2; b: waveguide grating; c: 

waveguide core, 1st Si layer of SOI; d: cladding, 1st buried oxide (box) layer of the SOI; e: 

sub-wavelength grating mirror, 2nd Si layer of the SOI; f: 2nd box layer of the SOI; g: the Si 

substrate.
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5. CONCLUSIONS 

In the coupler examples shown here the light guided in a planar waveguide 

is diffracted into a free-propagating beam, but the principle described here also 

applies for light coupling from an optical fiber to a planar waveguide device. 

Important advantages of the proposed coupler are that it is simple to fabricate 

using standard CMOS process, it can be made compact in size, and deposition 

of multilayer dielectrics or metals is avoided. No blazing of waveguide grating 

is required, so that simple grating etching processes can be used. The SWG 

mirror can also be used with blazed waveguide gratings to further enhance the 

coupling efficiency.  The Si-based materials have been chosen here to benefit 

from the compatibility with the standard CMOS process, but the coupler 

scheme may also be useful to other, particularly high index contrast waveguide 

platforms.
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Abstract: The design of integrated optics (IO) devices requires dedicated numerical 

algorithms and related software. Today's commercial tools cover a wide range 

of the needs, and manifold tasks can be solved this way. A short survey on 

specific IO-design tools and other design software that is related to particular 

aspects of IO is given. The basic physics and math behind the graphical user 

interface is discussed in some detail for a few of the popular schemes for mode 

solving and field propagation. Aspects of system design and the multi-physics 

character of IO-microsystems are considered, and the potential complexity of 

IO-design is demonstrated for a micro-optical coupling of a fibre and a 

photonic crystal waveguide.

Key words: integrated optics, design software, mode solver, field propagation, multi-

physics, photonic crystal coupling

1. INTRODUCTION 

Numerics has been used intensively in the field of integrated optics (IO) 

since its early days, simply due to the fact that even the basic example of the 

slab waveguide requires the solution of a transcendental equation in order to 

calculate the propagation constants of the slab- guided modes. Of course, the 

focus was directed to analytical methods, primarily, as long as the power of a 

desktop computer did allow for a few coupled equations and special 

functions only e.g. to describe the nonlinear directional coupler in a coupled 

mode theory (CMT) picture
1
. During the years, lots of analytic and semi-

analytic approaches to solve the wave equation have been developed in order 
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to calculate eigenmodes and to study the evolution of the electromagnetic 

field within an integrated optical device. Nonlinear material properties, as 

they are utilized for ultra long-haul soliton based data transport nowadays,  

and anisotropic media and high index contrast which require full-vectorial 

schemes, were incorporated in the design procedures. From time to time IO-

theory could borrow ideas from related disciplines like acoustics, optics of 

the atmosphere, and micro-wave theory. So, e.g. the beam propagation 

method
2
 (BPM), the method of lines

3
 (MoL) and the finite difference time 

domain method
4
 (FDTD) became popular in IO, as well. This, of course, was 

directly related to the incredible dynamic of change of hardware power, 

which made CPU speed of multiple GHz and memory of multiple Gbyte 

accessible even at the PC level.

Today, there an established software tool set does exist for the primary 

task, the calculation of modes and the description of field propagation. 

Approaches based on the finite element method (FEM) and finite differences 

(FD) are popular since long and can be applied to complex problems
5,6

. The 

wave matching method
7
, Green functions approaches

8
, and many more 

schemes are used. But, as a matter of fact, the more dominant numerical 

methods are, the more the user has to scrutinize the results from the physical 

point of view. Recent mathematical methods, which can control accuracy 

absolutely – at least if the problem is well posed, help the design engineer 

with this
9
.

Real devices may suffer from batch dependent material losses, 

anisotropy, inhomogeneities due to fabrication tolerances etc., which 

intensifies the need for parametric models to change over from a description 

of the electromagnetic field within a FD- or a FE-grid to a more complex 

device and system level description. This is accomplished with the modelling 

of the evolution of modal amplitudes, generally, which usually is applied in 

those specific modelling tools which have been developed for point-to-point 

communication system design including modulation schemes, signal 

regeneration, pulse- and soliton propagation, etc. And, there are waveguide 

related topics like laser modelling, grating design, and even the free-space 

coupling via micro-optics which belong to the multitude of tasks the IO-

design engineer is faced with.

Thus, an efficient design of IO devices does not require reliable software 

and an adequate understanding of the underlying physics and numerics, only. 

Moreover, problem complexity requires to use dedicated software tools and 

corresponding interface routines, and the inventiveness of the design 

engineer is in demand when gaps are to bridge. To this end, this paper will 

memorize some of the popular software tools and numerical methods behind, 

and will direct the readers attention to several diversified applications. 
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In section 2, different categories of software tools are listed – with no 

claim of completeness, of course, and some comments on the design flow, in 

general, are given. In section 3, physics and math of different modelling 

approaches are elucidated in some detail, and section 4 concentrates on 

requirements of device design with respect to specific applications. In section 

5, a complex example related to the fibre-chip coupling of high numerical 

aperture (NA) photonic crystal (PhC) waveguides illustrates the need for 

schemes, which allow for a multi-scale modelling of electromagnetic field 

propagation.

2. SOFTWARE TOOLS FOR IO-DESIGN     

It is not surprising that the giant boom in telecommunications at the end 

of the last century did contribute to the development and commercialisation 

of IO-software tools, massively. Various software companies have been 

founded which did enter an emerging market, and at R&D facilities and 

institutes lots of proprietary, (and casually freeware) tools have been 

established.

For a snapshot what software is applied in IO-design, with no claim of 

completeness, of course, it is advisable to define several categories. The first, 

naturally, is the category of mode calculation and field propagation.

There, in alphabetical order, commercial tools are provided by e.g. 

Apollo Photonics
10

, Concept to Volume
11

 (C2V), JCM-Wave
12

, Optiwave 

Systems
13

, Photon Design
14

, and RSOFT Design Group
15

. The tool set of 

Apollo Photonics covers Material Design, Waveguide Design, Device 

Design, Circuit Design, and FOMS, a Fibre Optic Mode Solver, where 

device and circuit design are intended to develop complex waveguide 

circuitry. C2V, which did start as BBV more than a decade ago, comes with 

its OlympIOs platform with Prometheus, TempSelene, and StressSelene, 

where ODIN is a related tool for mask-layout. As indicated by the names, 

extra attention is payed to multi-physics aspects of IO, which take into 

account e.g. temperature-dependent refractive index changes and stress-

induced birefringence. J(ames) C(lerk) M(axwell)-Wave, a spin-off from the 

Zuse-Institut in Berlin, is a newcomer in the field. Its FEM-based mode- 

solver relies on adaptive grid refinement techniques with  special emphasis 

on reliable error estimation techniques. Optiwave Systems offers OptiBPM 

and OptiFDTD, including mode solver capabilities, and OptiFIBER. In 

contrast to the preceding tools, FIMMWAVE offered by PhotonDesign is 

based on the wave matching method, and the field propagation tool, 

FIMMPROP, is based on eigenmode expansion. CrystalWave addresses the 

light propagation in photonic crystals. BeamPROP and FullWAVE are the 
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tools by RSOFT, again FD-based, and with state of-the-art capabilities for 

the design of intricate IO-devices. 

A next category comprises tools which are IO-related via the topic or 

kindred ship, covering waveguide-gratings, -lasers etc. Apollo Photonics has 

FOGS, a fiber optics grating solver, and ALDS, an advanced laser diode 

simulator for the design of active elements in III-V's, including Fabry-Perot, 

distributed feedback, and distributed Bragg Reflector configurations. 

Optiwave Systems has an CMT-based tool for fiber and waveguide grating 

design, OptiGrating, and OptiAmplifier is a tool for Erbium-doped and 

Raman fiber amplifiers. OptiHS covers the electronical and optical properties 

of semiconductor heterostructures. CLADISS-2D, offered by Photon Design, 

is a design tool for laser diode and travelling wave amplifiers, which in its 

origin stems from the University of Gent. It includes a wide variety of 

geometries and electronical effects, as well. RSOFT offers tools for grating 

and laser modelling, GratingMOD, and LaserMOD, too. BandSOLVE is a 

stand-alone tool for the calculation of band-structures in PhCs, and 

DiffractMOD models diffraction provoked by 3-dimensional periodic 

structures. Virtual Photonics Inc.
16

(VPI) has its VPIcomponentMaker tools 

based on the transmission line laser model, which address fixed and tuneable 

lasers as well as semiconductor optical amplifier (SOA) signal processing 

and wavelength conversion.

A third category of software tools is dedicated to the design of optical 

communication systems. Necessarily, those tools include parametric models 

of all the components in the system, lasers, modulators, waveguide circuits 

for wavelength division multiplex (WDM), the fibre with its intrinsic 

nonlinearity, dispersive effects, mixed electrical and optical signals, etc. This 

at the end allows for e.g. bit-error-rate (BER) calculation, system analysis, 

and system optimisation, potentially. Optiwave Systems’ product in this field 

is OptiSystem. A tool with not too much market penetration, PHOTOSS
17

,

goes back to initial work at the university of Dortmund, Germany. RSOFT 

has OptSIM and LinkSIM, and a special tool for multimode communication 

system design named ModSYS. VPItransitionMaker are tools offered by 

VPI, which address either WDM or cable access systems.

Specific tools do exist for the laser design, too, where the focus is 

directed more to semiconductor device and process simulation, potentially. 

Crosslight Software Inc.
18

 delivers PICS3D for the 3D simulation of 

semiconductor optoelectronic devices, Integrated System Engineering
19

 has 

DESSIS-Laser in its program, an advanced semiconductor laser simulator, 

and there are many tools for the design of vertical cavity semiconductor 

lasers (VCSL), a special topic which is omitted for brevity.

As well, software developers with background in FEM and multi-physics 

did extend their activities towards electromagnetics and optics. ANSYS
20

,
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with its multiphysics and high-frequency electromagnetics capabilities 

stepped into optical and radio-frequency passives, i.e. fibre optics and micro-

stripline waveguides, to some extent. Computational Fluid Dynamics 

Research Corporation
21

 got active in FDTD modelling, its CFD-Maxwell is a 

full vector solver on arbitrary grids, and there are several more related 

activities.

But, concerning IO-design, there are much more commercial software 

tools which are of relevance. If high index contrast and deep gratings are 

considered, CMT-approaches are questionable. Wave matching, or 

rigorously coupled wave analysis (RCWA), equivalently, then is an 

appropriate ansatz. Thus, tools like Grating Solver
22

 or UNIGIT
23

 can be 

taken into account profitably for waveguide geometries as well.  Thin film 

software is essential if anti-reflective (AR) coating is considered, a must for 

e.g. efficient coupling to waveguides in high index materials. Tools like 

Essential McLeod
24

 or Film Wizard
25

 are widely used, and slab waveguide 

problems may be enclosed in thin film analysis, too, e.g. in TRAMAX
26

. If 

more general problems including scattering are addressed the multiple 

multipole method may be considered, there a tool Max-1
27

 is offered. The 

coupling from and to the waveguide may include micro-optical components, 

e.g. in fibre-switch fabrics. There, commercial ray-trace and wave 

propagation software like CODE V
28

, ZEMAX
29

, GLAD
30

 or VirtualLab
31

,

to name a few only, can be successfully applied when appropriate interfaces 

to BPM, FDTD or other guided-wave software do exist. Furthermore, 

waveguide fabrication requires the transfer of the design data to the wafer in 

exactly the same manner as micro-electronics or silicon micro-mechanics. 

Thus, corresponding mask-layout tools, e.g. DesignWorkshop-2000
32

, Mask-

Generation-System-6
33

 or C2V's
11

 layout editor ODIN may be applied to 

generate appropriate data sets for waveguides, electrodes, marks, etc., as 

needed for passive and active waveguide circuitry.

Beside commercial software, there a limited number of free programs for 

the IO-design and related topics does exist. The Centre for Ultrahigh 

Bandwidth Devices for Optical Systems in Sydney presents CUDOS-MOF, 

multipole-based utilities for micro-structured fibres. For the analysis of PhC-

bandstructures, MIT-Photonic-bands is a plane-wave-expansion based tool of 

the ab-initio-group at MIT
35

. From the Applied Analysis and Mathematical 

Physics-Group of the University of Twente e.g. an implementation of the 

wave matching method
36

 is available. From Zuse-Institut in Berlin one can 

download HelmPole
37

, a finite element solver for scattering problems on 

unbounded domains in an implementation based on perfectly matched layers 

(PML). CAMFR
38

, which stands for cavity-modeling framework, is a free 

vectorial eigenmode expansion tool with PML from INTEC, Gent.
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Last not least, there is a great variety of proprietary IO-design software 

that has been developed at research facilities and university institutes. E.g., at 

the TU Delft the S-matrix oriented software Photonic CAD
39

 was established 

several years ago, an innovative IO design framework based on Hewlett 

Packard's Microwave Design System. Actual academic work e.g. addresses 

modes of bent waveguides, BMS-3D
40

 is a quite new bend mode solver of 

the IRE, Prague, or FDTD-schemes with non-uniform grids
41

, a topic of  

special importance to improve computational efficiency when multi-scale 

feature sizes are requested, to name a few of recent tasks, only. 

The considerable number of software tools that may be applied in the IO-

design is what is supplied to help the IO design engineer to master his 

specific task. The individual tools have their individual scope, naturally, have 

different capability characteristics, and, have different prices. And, the 

demands are different, as well. They may go from a R&D-design to a design 

for manufacture, can cover a quite different device complexity, and can 

require a device sketch or complete mask data, finally.

Supply and demand is interrelated, consequently, and for various standard 

tasks, which belong to the generalized design flow, figure 1, software 

assistance is readily available.

So, influences of process variations, which e.g. might affect the layer 

height achieved by the deposition process, the waveguide width achieved by 

the etch process, etc.,  enter the refractive index distribution. In order to 

either estimate the impact on the optical characteristics, or to optimise the 

design, the established IO-design software tool-sets offer multi-dimensional 

parameter sweeps, scripting capabilities, models for electro-optically or 

thermo-optically induced refractive index changes, etc. Moreover, for 

optimisation external modules that rely on appropriate strategies can be used, 
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which then rule the optical engines. For instance, the tool Kallistos of Photon 

Design can optimise FIMMWAVE device geometries, and ODA – Optical 

Design Automation by Photeon Technologies
42

, acts on its individual BPM, 

ray-trace and FDTD tools. As well, the implementation of specific genetic 

algorithms that refer to commercial IO-design software has been reported
43

.

Once the device geometry is designed, technological aspects have to be 

considered, concerning adjustment of waveguides and fibres, waveguides 

and electrodes, concerning control structures etc. Finally, the complete 

design data are exported to one of the standard data formats that are accepted 

by the mask-shop, GDSII or DXF, usually. This again is assisted by all the 

established IO-design software tool-sets.

But, some aspects of the design are covered less-usually, and some are 

still challenging. So, if multi-physics effects are considered, internal models 

included in the IO-design environment cover the dominant aspects. For an 

intended electro-optical (EO) and thermo-optical (TO) device operation this 

works well, but perturbations by non-ideal material properties or the like are 

neglected easily. Concerning mechano-optical properties, stress-induced 

birefringence is rarely considered, there C2V has a pioneering position. What 

is rare, too, are interfaces to process simulation, project management, and 

yield analysis. This of course is somewhat beyond the IO-design, but belongs 

to an overall development process, too. What still remains challenging is the 

design and analysis of compact high index-contrast devices, e.g. the 

estimation of PhC-waveguide losses within the light-cone, the calculation of 

branching losses of PhC-waveguides, or the 3D fibre to PhC-chip coupling.

Moreover, what is still unrealistic is an automated all-in-one design tool 

suitable for every purpose. Thus, the design engineer first of all has to know 

what the requirements of the specific design task are, and, what software 

capabilities are needed, consequently. This determines, what tool or what set 

of individual tools is appropriate, basically. If missing, interface routines 

between tools have to be established. This may refer to the electromagnetic 

field itself, simply, or may e.g. cover the extraction of a parametric model of 

the temperature-induced refractive index change out of a series of FEM runs, 

if the design of a TO-switch is considered.

3. IO-DESIGN   –   SOME PHYSICS AND MATH  

Modal analysis and field propagation techniques are the basic means in 

the design process for IO-devices if the spatially resolved optical field is 

considered. The numerical burden to be managed depends on the geometry 

under consideration and the approximations used, i.e. there quite different 
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levels of complexity can occur. What might be left to the designer is to find 

a reasonable compromise of accuracy and design efficiency. Similarly, when 

complex waveguide circuitry is pondered, a change of the abstraction level 

can be required to retain design efficiency by the use of parametric models, 

which are based on results of modal analysis and propagation techniques, 

consequentially. So, the following sections will consider mode solvers, field 

propagation, and more general aspects with respect to system design.

3.1 Mode Solvers    

Starting from Maxwell's equations with the ansatz of monochromatic, z-

propagating fields, tzkiHE
z

exp~, , transversal and longitudinal 

components get decoupled if the refractive index distribution is z-

independent. Two physically equivalently meaningful equations for the 

transversal electric and the transversal magnetic field,

result, and its solutions are the modes supported by the geometry. The 

vacuum wave number k0 relates effective refractive index of the guided 

mode, eff or neff, equivalently, and the propagation constant 

effz
kk ˆˆˆ

0
  , /2

0
k .

The tick mark of the propagation constant indicates that it might be 

complex valued, either due to a complex valued dielectric constant or 

refractive index, ),(ˆ),(ˆ yxsqrtyxn , equivalently, or due to a leaky wave 

geometry. For brevity, in the following tick marks are omitted. 

The effort to solve Eqs.(1) evidently depends on the refractive index 

profile. For isotropic media in a one-dimensional refractive index profile the 

modes are either transversal-electric (TE) or transversal-magnetic (TM), thus 

the problem to be solved is a scalar one. If additionally the profile consists of 

individual layers with constant refractive index, Eq.(1) simplifies to the 

Helmholtz-equation, and the solution functions are well known. Thus, by 

taking into account the relevant boundary conditions at interfaces, semi-

analytical approaches like the Transfer-Matrix-Method (TMM) can be used. 

For two-dimensional refractive index profiles, different approaches can be 

ttttefft
EEk ˆln)ˆˆ(

22

0
 (1a) 

ttttefft
HHk ˆln)ˆˆ(

22

0
 , (1b)
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approximations like the effective index method (EIM) may work sufficiently 

well for isotropic media
44

. Scalar and semi-vectorial approaches can be 

improved by e.g. the weighted index method
45

, perturbation and variational 

methods
46

, or the spectral index method
47

. Direct numerical solutions of 

Eq.(1), including anisotropic material properties, like WMM, FDM and FEM 

became more and more popular with recent hardware improvements.

In the following the attention will be directed to TMM and EIM as 

numerically inexpensive methods, and WMM, FDM, and FEM as fully-

vectorial mode solvers. A few examples will be used to illustrate notable 

peculiarities with the mode calculation. 

3.1.1 Slab waveguides 

The well-known TMM allows tackling arbitrary loss-less and lossy multi-

layer configurations. Continuous profiles can be approximated by a 

corresponding layer sequence, simply, thus TMM is a quite general tool.

For TE-polarization, )0,,0(
y

EE , and 

0)()(
22

02

2

xExk
dx

d

yeff
 (2) 

is to be solved. The corresponding x- and z-components of the H-field

follow from Maxwells curl-equation. TMM starts with the decomposition of 

the fields into its parts propagating in +x and x direction, where j indicates 

the layer number, cf. figure 2,

jjjjjj
HHHEEE . (3) 

Figure 2. Layer stack geometry.

pursued. If the refractive index contrast is quite limited, scalar 
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The x-component of the wave number follows from 

2222

0

2

0 zjxjj
kknkk . (4) 

The tangential field components within each layer are related by 

jy

TE

jjyjxjz
EEkH

1

0
 (5) 

With the relation of the  field components across a layer

)exp(
jjxj

dkit  (6) 

and the continuity of the tangential fields at any interface, the electric 

fields at the left and the right of the layer sequence are directly related by a 

2 x 2 matrix. A guided mode is a stationary state with no power flow into the 

layer stack, neither from substrate, nor from cladding, i.e. the dispersion 

relation is 

0
0

0
a

E

dc

ba

E
rl

 (7) 

What has to be considered explicitly is the uniqueness of kx . This is 

assured by the branch cut

0)()(
xx

kk , (8) 

which ensures the proper sign of the Poynting vector when reflection and 

transmission are considered, and, for guided modes, the field decay in 

substrate and cladding. Thus, a(
2

) is an analytic function, and any 

appropriate root finding method can be applied to Eq. (7) 
49,50

.

A potential complication within TMM can be anticipated directly from 

Eq.(6) concerning the field calculation. The accuracy of the root search is 

limited by numerics, e.g. to double precision in 
2
. Thus, a residual value of 

a does exist, which can cause an improper field growth in a region where the 

field should be evanescent, due to a big value of d. This e.g. may happen 

when a simple, real-valued graded index profile, which guides several 

modes, is considered. Thus, even for the simple 1D-case examples, attention 

has to be turned to potential effects of numerics, and, as a general remark, 

numerical stability and accuracy is a quite general topic in IO-design. 

An interesting configuration is a waveguide with a thin, high-index 

overlay. This is shown in figure 3 for a 4-layer configuration operating at 
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 = 0.633µm, where a monomode glass-waveguide with n = 0.005 carries a 

film of a medium with (novl) = 4.0 in an air-covered system. If the 

configuration is loss-free, the increase of the optical thickness causes the cut-

off of a second mode, and the mode of the glass-waveguide shifts towards 

the high-index medium. But, when the overlay is lossy, the behaviour is quite 

different. There, after the cut-off of the second mode, the mode in the glass-

waveguide is the mode with the lowest (neff), and around the cut-off of the 

second mode (neff) has a Lorentzian-shape. This gives evidence to the fact 

that if leaky modes are considered, simple orthogonality does not longer 

apply. Although known since long
51

, this particular resonance feature is still 

of interest
52

, e.g. for impedance matched vertically integrated photodetectors. 

Figure 3. neff  vs. overlay thickness, left: (novl) = 0, right: (novl) = 0.2. 

Figure 4. Dispersion curve vs. cladding index for SPP-configuration at =0.6µm,

substrate ns=1.45, waveguide thickness 4µm, n=0.01, buffer index 1.40,

buffer thickness 0.5µm, Au thickness 50nm. 

TMM handles thin metallic films as well, as they are used in IO-sensors 

based on surface-plasmon-polaritons (SPP). SPPs appear at the dielectric-

metal interface for TM polarization, exclusively. The sensor principle is to 

have a waveguide mode and the SPP close to resonance, and screen the 

resonance vs. angle or vs. wavelength to detect refractive index changes of 

the cladding. Figure 4 shows the resonance of the absorption vs. the 
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refractive index to be probed, which indicates a resolution of some 10
-4

 for 

this elementary configuration. 

The intention of the discussions of those examples is to punctuate that 

leaky wave configurations and numerical problems even in basic dielectric 

slab waveguides may require some in depth knowledge about the 

mathematical and physical backgrounds. This can be even more important if 

numerical algorithms are regarded, which are less strict than TMM, as it 

applies e.g. to finite difference approaches and mode discretization schemes, 

where the number of points or modes, respectively, enters the quality of the 

solution. And, as well, the thickness of the substrate and cladding considered 

within the configuration as well as the boundary conditions (BC) along the 

periphery of the computational window may affect both mode index and 

field.

3.1.2 2D Mode solvers – Effective Index Method 

The basic idea of the EIM is to use a separation ansatz for the x- and the y-

dependency of the field, )()(),( yxyx . For piecewise constant 

refractive indices the wave equation thus reads as 
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which leads to the conditional equation
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The x-dependent separation constant  is the y-component of the wave-

vector, and acts as an effective index profile, cf. figure 5,
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Thus, in both transversal directions a 1D-mode search, cf. Eq.(7), does 

apply subsequently, which is easily performed by TMM. From Fig. 5 it is 

intuitively clear that TE and TM is reversed for the mode calculations in y 

and x. Taking this into account, polarization effects are incorporated into 

EIM to some extent.
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Figure 5. Rib waveguide and corresponding EIM-scheme. 

What makes EIM susceptible to be mistaken are configurations with 

regions, where no guided mode can be determined. If more than an estimate 

of the propagation constant is required, e.g. in order to calculate the half-beat 

length of a buried channel waveguide directional coupler configuration from 

the mode indices of the symmetric and anti-symmetric supermodes, EIM 

should be superseded by a more accurate method. 

The reduction of the mode search in the step-like or smoothly varying 

two-dimensional index profile to two consecutive inexpansive calculations 

for a one-dimensional index profile is the main advantage of EIM, which 

makes it a 'work horse' for limited index contrast. But, what is always to be 

considered is the fact, that the separation ansatz used is an approximate one, 

only. If highly precise mode indices are essential e.g. in the design of 

interferometric devices, more rigorous calculations are inevitable. 

Nevertheless, a useful first guess for effective mode indices is readily 

obtained by EIM for various configurations. And, what is to be appreciated 

explicitly, the reduction of dimension can speed up propagation schemes by 

orders of magnitudes. This may greatly help with the design of area-intensive 

waveguide circuitry.

3.1.3 2D Mode solvers - Wave Matching Method 

The primary ansatz of the WMM
7
, which is familiar as the transversal 

resonance method in the microwave community, is to enclose the cross-

section of the waveguide between horizontal metallic walls, figure 6.

By this, in all the different vertical slices complete discrete sets of  1D- 

TE- and TM-modes with predefined maximum order can easily be obtained 

semi-analytically.
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Figure 6. Sketch of WMM-geometry, matching line indicated by bullets. 

The field in each vertical slice m thus can be represented by a weighted 

sum of products of y-dependent functions, the slab modes for each 

polarization (2 sketched within slice m-1), and corresponding x-dependent 

functions,

)()(
)(

1

)()(
yxu

m

kk

m

k

m
  . (12) 

If a specific kz -value is used as a trial value for a 2D-waveguide-mode, 

the x-component of the wave-vector which applies to slab-mode k in slice m

follows from kk ,  

22)()(

z

m

k

m

xk
kkk  . (13) 

Thus, the x-dependency xki
x

exp~  of the field, Eq.(12), and its 

derivative is given within the slice in terms of (complex) sine and cosine-

functions with argument (kx x), which relates the fields across any slice. Field 

continuity determines the coupling of modal amplitudes at slice interfaces, 

which is taken into account by means of appropriate coupling matrices – this 

resembles TMM above. By applying appropriate BC which may either be 

magnetic, electric or even PML
53

 ones at the left and at the right of the 

configuration, mode matching at an inner interface establishes a transverse 

resonance condition, which is fulfilled for appropriate kz , i.e. for the 

effective refractive indices of guided modes. 

WMM represents a stable mode solving technique, where, similar to 

TMM, continuous geometrical profiles and gradient index media require a  

staircase-approximation. Accuracy is affected if boundaries are too close to 

the guiding structure, or if the number of 1D modes is too low, which both is 

easy to check. So, WMM is a stable and accurate mode-solving technique. It



Integrated Optics Design: Software Tools and Diversified Applications 259

y

can be applied to lossy configurations, and anisotropic material properties 

can be considered to some extent, too. One noteworthy peculiarity is the fact 

that the matching line should be situated at x-positions where non-negligible 

field components of the modes of interest can be expected, i.e. a zero would 

hide a solution.

As an example, one and the same layer sequence of the SPP-

configuration is reused, now in a rib configuration of 5µm width, figure 7. 

For a surrounding medium of na = 1.35, with 250 1D-modes and an 

appropriate computational domain an effective refractive index of 

neff  = 1.4575628 + i 2.899 10
-5

 is found. 

3.1.4 2D Mode solvers – Finite Difference Methods 

FDM is one of the methods where the whole problem is fully discretized 

in both transversal coordinates and no suppositions concerning a special 

geometry are made. For a standard uniform mesh grid-points (xi , yk), are 

located at xi =(i-1) x and yi =(k-1) y, respectively. Derivatives are 

approximated by finite differences by e.g.

2
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for the individual field components, and the Laplace-operator in (1b) thus 

gives the typical five-point-stencil, see figure 8. For the H -field all field 

components are continuous along interfaces, which makes the H-formulation

the preferred one for various numerical approaches. With piecewise constant 

refractive indices from equation (1b) the 2D-Helmholtz-equation,

0ˆˆ
22

0 tt
Hk    , (15) 

Figure 7. SPP rib waveguide configuration, E  mode field.
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follows for the transversal magnetic field. With the divergence equation 

0H and with EiH
0

, z-components and respective boundary 

conditions at any interface can be expressed in terms of the transversal H-

field, and vectorial modes of isotropic and an-isotropic configurations can be 

accessed. The FD-discretization of the wave equation results in an algebraic 

equation system whose coefficient matrix is sparse and banded, and, in case 

of a scalar approximation, self-adjoint, too.

Compared to the scalar or semi-vectorial problem the matrix-dimension is 

increased by a factor of four for a vectorial formulation, and the matrix is 

non-Hermitean,

y
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yyyx

xyxx
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H
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DD

H
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2

   . (16) 

The number of grid-points by far exceeds the number of physical 

meaningful modes, i.e. iterative matrix solvers can be used advantageously, 

and thus the numerical burden is kept within reasonable limits.

Figure 8. Finite difference grid with 5-point stencil. 

Usually, after the geometry of a problem is defined, an appropriate spatial 

resolution is chosen, and some accuracy requirements for eigenvalues and 

fields are defined as well. But, it should be noticed explicitly that for a fixed 

grid the accuracy requirement imposed on a solver routine is a measure of its 

convergence rate, i.e. of accuracy of the numerical solution only. If the 

discretized model does not image the physical problem correctly, even a 

perfect numerical solution is not the solution of the physical problem. This 

includes, similar to WMM, the potential influence of the dimension of the 

computational window as sketched in Figure 8. If the  decay of the mode 

field is too slow, mode field and effective refractive index  will be affected 

by the window and the BC applied there.  Especially near cut-off this would 

require a massively increased transverse cross-section for conventional BC, 

von Neumann or Dirichlet ones, which would dramatically increase the 
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workload. If transparent BCs are incorporated into the solver routine54, the 

overall effort is reduced considerably. Although PML is employed for mode 

solvers successfully as well, there is still some doubt concerning its accuracy 

in case of leaky and evanescent modes
55

.

What is to be noted with respect to accuracy, too, is the fact that a refined 

discretization gives a better approximation to the physical problem. But, 

excessive run-time increase and accumulating round-off errors limit this 

approach. If the ˆln
t

term in Eq.(1) is discretized directly, this internally 

requires to smooth the discontinuities of the dielectric constant at interfaces 

to prevent from indefinite expressions. This, of course changes the geometry 

under consideration, again the more the coarser the mesh is. If Eq.(15) is 

discretized with implicit consideration of boundary conditions, figure 8 

demonstrates intuitively that material interfaces affect the inherent accuracy 

of the FD-approximation. Improved finite-difference equations operating at a 

nine-point stencil have been reported which greatly improve accuracy 

whereas a moderate total effort in mesh density is retained
56,57

. What should 

be noted here is the fact that similar improvements have been reported for 

boundary element approaches recently
58

.

Typically, problems may occur with highly degenerate and closely spaced 

modes, which may be hard to resolve. In the first case, independent of the 

mode solving scheme, a slight break of symmetry usually helps, in the latter 

case the design engineer is well advised to use a general purpose mode solver 

where the initial guess for mode field and/or mode index can be accessed to 

direct the mode search.

For FD schemes, especially if constant grid spacing is used, SPP-

configurations can get problematic. A metallic layer of  say 20 nm thickness 

enforces a resolution of a few nm only, thus the number of transverse grid 

points can get excessive if fibre-matched waveguides determine the overall 

computational window. Multi-grid algorithms
59

 reduce the cost of mode 

solving advantageously
60

.

3.1.5 2D Mode solvers – Finite Element Methods 

Similar to FD- in FEM-schemes the cross-section under consideration is 

divided in a set of little areas, rectangles or triangles, preferentially. Now, 

within the finite elements, the field is defined not only by nodal amplitudes, 

but expressed within the whole element in terms of low-order polynomial 

functions. If e.g. the full magnetic field is considered, Maxwells curl 

equations give

0
2

0

1
HkHrotrot . (17) 
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In case of real  with arbitrary anisotropy this is equivalent to the 

functional

dHHkHrotHrotHF
2

0

1
  . (18) 

The variation of Eq.(18) results in a generalized eigenvalue problem,

0
2

0
HBkHA  , (19) 

with solutions for H which correspond to the vectorial mode fields. 

Spurious modes occur, if 0H is not considered explicitly. The 

divergence condition can be taken into account explicitly by adding a 

penalty-term
61

 to Eq.(18), or by the use of special finite elements, so called 

edge- or Whitney elements
62

, which are inherently free of divergence. 

Formulations restricted to the transversal field 
t

H  result in fewer nodal 

amplitudes, but a matrix inversion is needed to eliminate Hz and matrix 

sparsity of the eigenvalue problem is violated
5
.

Recent mathematical methods combine fully vectorial formulations

zzz
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which result in a quadratic eigenvalue problem for kz, with mesh 

refinement and reliable error estimation techniques
9,63

. With appropriate BC 

and well adapted solver routines, complex problems can be tackled. Coming 

back to the SPP-configuration of figure 7, with JCMWave
64

 an effective 

mode index of = 1.4575627 + i 2.896 10
-5

 results with an assured accuracy 

of 10
-6

. The comparison with the result of the WMM shows excellent 

coincidence, and the solution can be considered trustworthy.

What is to be noticed, finally, is the fact that different FEM-schemes may 

impose restrictions to the dielectric constant, e.g. they may require loss-less 

materials or  a specific structure of the -tensor. Sometimes, FEM-problems 

are posed the way that eigen-frequencies for specified kz are computed, 

which is less common to the optical design process. Nevertheless, a special 

advantage of FE-based grids is the fact, that almost any complicated 

geometry can be included easily into standard triangulation schemes.

3.2 Field Propagation Schemes 

For z-invariant structures the spatial field evolution is simply ruled by



Integrated Optics Design: Software Tools and Diversified Applications 263

ziyxHazyxH exp,,,  (21) 

if the modal amplitudes are known at z=0, and only forward propagating 

fields are considered for the moment. Discontinuities in z perturb the 

unidirectional propagation and cause scattering in forward and backward 

propagating modes, and modal amplitudes for reflected and transmitted 

waves are related by means of the continuity requirements of the tangential 

fields
65

. Usually, radiation modes are necessary to model waveguide 

discontinuities correctly, and evanescent modes may have considerable 

influence, too. Thus, the calculation of adequate mode-sets can be quite 

expansive for 2D waveguide-cross-sections. But, if only a few modes are 

relevant in a specific device like a multi-mode-interference (MMI) coupler, 

MoL-BPM
66

 and eigenmode-expansion
67

 (EME) are very efficient for device 

analysis, simply due to the fact that in each z-invariant section propagation is 

just a complex factor applied to the individual amplitude. If the number of 

different sections is limited, even a periodic section sequence can be 

incorporated into the scattering matrix evaluation with reasonable effort. 

What is to be pointed out explicitly again is the fact that EME is bi-

directional in nature, which allows tackling waveguide resonator problems, 

where e.g. BPM fails.

Probably most popular for the modelling of field propagation in IO-

design is BPM, which applies to z-variant geometries, too. The method is 

derived from the Helmholtz-equation, here for brevity depicted in scalar 

notation for one transverse direction, only,

0,
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The common exponential ansatz E ~ exp(i k0 n0) now is used with a mean 

or reference refractive index n0, and Eq.(22) is transformed to 

EnknkPiE
z

00

2
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2

0
. (23) 

This first order differential equation now governs the evolution of an 

initial field. For a finite step length the propagation is approximated by

00
exp zEzOizzE (24)
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From Eq.(23) the main limitation of BPM is apparent – one algebraic sign 

of the root which corresponds to one propagation direction has to be chosen. 

To evaluate Eq.(23) the square root is expanded, which in first order,

Enzxnk
xnik
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00

,
2

1
, (25) 

gives the paraxial approximation of the wave equation, i.e. the Fresnel-

equation. This approximation is valid only for limited index contrast and 

limited angular spectrum, of course. Quite different solution techniques can 

be applied to Eq.(25), where Fast-Fourier-transform (FFT) based split-step 

methods
2
 have been the first, historically. In order to model high index 

contrast appropriately, higher order expansions of Eq.(23) are required. 

Adequate techniques for wide-angle BPM have been developed for FFT- and 

FD-based schemes
68,69

.

Appropriate propagation step length, accuracy of the propagator 

expansion, refractive index contrast, and reference refractive index are 

interrelated, thus BPM-results should be validated for different step length. 

The spatial sampling in the transversal dimensions sensibly affects accuracy, 

too. All the relevant geometrical aspects of the device must be reflected by 

the sampling sufficiently. Whereas regular grids are used for FFT- and most 

of the FD-based BPM implementations, FEM-schemes offer more flexibility 

in grid definition, but at the price of a somewhat more intricate code. Semi- 

and full-vectorial analysis in 3D is state of the art, as well as the 

consideration of lossy, anisotropic or nonlinear media
70-72

.

The extension of the classical BPM towards bi-directional propagation is 

of special interest for long
73

. Combinations with EME
74

 and e.g. complex 

operators representations
75

, have been tried for this.

Within standard BPM-schemes almost any geometry n(x,y,z) can be 

considered except for abrupt z-dependent changes of the refractive index. 

Fortunately, IO-devices usually are intended to have low loss, good 

transmission and low back-reflection, which is congruent with the above 

limitation. Thus, BPM got such popular over the years 

One special topic for field propagation techniques in general is the 

minimization of the effect of the transversal boundaries. Uncared, they 

correspond to abrupt changes of the refractive index distribution, and back-

reflections from the boundary into the computational domain do occur. After 

the obvious ansatz of absorbing BC, TBC
54

 and PML
53

 indicate the major 

improvements so far, which eliminate the problem almost completely.
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A rigorous treatment of field propagation is accessible for IO-design, too, 

when the FDTD-method
76

 is applied to optical waveguide elements like 

micro-cavity   resonators
77

.   Similar to   Eq.(23)   Maxwell's   curl  equations 

HE
t

EH
t

00
,  (26) 

constitute an initial value problem in time, which can be solved directly in a 

finite difference scheme
4
. Now, FD- discretization applies to all spatial 

coordinates and time as well. Thus, the field evolution in time can be 

modelled in its full complexity, i.e. continuous wave and pulse propagation 

are accessible, and dispersive and nonlinear material properties can be 

included in the analysis by adequate models for frequency- and field- 

dependent dielectric function.

The main limitation of FDTD is the need for computer memory and run-

time, dominantly. The Courant criterion limits the time step of FDTD in 

order to ensure numerical stability, 

222
/1/1/1/1 zyxct    . (27)

So, with a spatial resolution of at least /20, which applies to the 

wavelength in the medium, roughly 50000 data are required for the field per 

cubic wavelength, and time steps are ultimately in the sub-fs range for 

optical frequencies.

Figure 9. Phase plot for PhC-waveguide, vertical white lines indicate unit cell extension.

If applicable, EIM may help to reduce dimensionality, which decreases 

the numerical burden by more than an order of magnitude, definitely. 

Evidently, the use of FDTD in integrated optics design is restricted to small 

device structures, only. But, FDTD-calculations may offer a deeper insight 
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into details of the spatial field distribution of linear and nonlinear photonic 

devices which is hardly accessible by other methods.

E.g., figure 9 demonstrates the variation of the phase front along a unit 

cell of a W1-PhC-waveguide, which is formed by just one missing row of air 

holes in a silica embedded silicon film. This for instance is an indication that 

a direct butt-coupling from and to photonic crystal waveguides would be 

affected by the relative position of the PhC-interface relative to the unit-cell. 

3.3 General Aspects of System Design 

What has been considered so far are issues of numerics for waveguide 

analysis, dominantly, which have to be related to the applications which are 

relevant in a specific IO-design process. E.g. for an adiabatic power splitter 

in a fibre adapted waveguide geometry BPM is the appropriate tool, and a 

scalar approach is sufficient for isotropic media, at least. If, at the other hand, 

an interferometric device is considered, an intimate knowledge of the 

effective propagation constants is advisable. And, since any deviation from a 

quadratic core geometry breaks polarisation degeneracy even for isotropic 

media, semi- or fully-vectorial analysis is mandatory to evaluate polarization 

dependent device operation. A detailed eigenmode analysis additionally 

helps to select an adequate field propagation scheme. If EIM looks 

reasonable, a punctual comparison of the results of a 2D and a 3D 

propagation model should assure a 2D approach, provided that similar spatial 

resolutions fit to the computers memory.

accuracy issues 

 model issues  

 eff iciency issues

application issues: 

     adiabatic power divider 

     interferometric sensor 

      WDM device   ... 

selection of appropriate tool(s) 

 reduction of dimension (3 spatial / 2 spatial)   ?

Figure 10. Principal considerations concerning application of design tools.

So, it is one of the basic responsibilities of the design engineer to analyse 

the requirements and issues of the specific design task in order to facilitate an 

efficient operation with a sufficient accuracy, figure 10. If e.g. the design 

considers a WDM system, say an optical-add-drop-(de-)multiplexer 
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(OADM), there the step from waveguide design to system design is to be 

included, necessarily, and a change of the abstraction level is required.

If a multitude of individual waveguides is contained in a complex 

circuitry, then parametric models for basic entities are preferentially used, 

which apply to the optical signal level, i.e. to complex (mode) amplitudes.

L

Figure 11. 4-port devices: power splitter, relative phase shifter, directional coupler. 

The characteristics of those basic entities like power splitters, combiners, 

directional couplers etc. can be related to some basic waveguide properties, 

and the 4-port devices are described by 2 x 2 matrices, Eqs(28),
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1

1 X

X

U
splitter

2/exp0

02/exp
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shiftphase
(28)

BC

CB
U

DC
             . 

2-port devices like straight waveguides, amplifiers and attenuators are 

simply characterised by a complex constant. A waveguide (sub-)system 

consisting of N waveguides, figure 12, corresponds to a N
2
-port.

i

...                     ... 

Figure 12. Subsystem i with 6 waveguide paths. 
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From the individual elements matrices, cf. Eqs.(28), a NxN transfer 

matrix for a (sub-)system can be constructed
78

,

00000

0000

0000

00000

00000

00000

BC
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i

i

U     . (29) 

If those matrices U are made unitary and are related to their mean phase 

shift, stacking gives the transfer matrix of the full network, 

i

iniout
SUS  , (30) 

which relates the signal at input and output sides. At this abstraction level 

e.g. signal modulation may be applied to any relevant waveguide path, and 

the systems characteristics can be analysed with PSPICE, for instance, or 

with any of the sophisticated tools mentioned in section 2. 

4. SPECIFIC APPLICATIONS AND 

REQUIREMENTS

 Standard IO-devices rely on just one layer containing waveguides, and 

very few vertically stacked layers are used for some exceptional geometries 

like ring resonators
79

. In the wafer plane a multitude of waveguides can 

occur, and the requirements on the positioning of individual sections of a 

waveguide path are quite strict. What helps with the layout is a library of 

basic elements, linear waveguides, tapers, bends, splines etc., which allow 

for an relatively easy composition of waveguide paths and complete devices. 

The commercial tools for IO-design
10,11,13,15

 contain quite general CAD 

systems with sets of basic elements and arrangement facilities by hierarchical 

structures and user programmability. Concerning the individual waveguide 

plane, the layout is quite similar to micro-electronics, and export to formats 

like GDSII and DXF is standard, correspondingly.

For standard design tasks which may contain pretty high numbers of 

individual waveguides like star couplers and AWGs, standard solutions do 

exist in parametric form. But, standard solutions may fail. For DWDM the 
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typical banana AWG design
80

 works well, but for CWDM other solutions
81

have to be used or found. The AWG is a typical example where design steps 

at a higher abstraction level are required as mentioned above. Typically, in 

the AWG-design, star couplers for splitting, combining and some amplitude 

shaping, potentially, are treated by BPM. But the individual phase shifts in 

the array waveguides of the AWG are handled by corresponding complex 

factors for the mode amplitudes. To be correct, this requires accurate 

knowledge of the effective refractive index of the guided mode including 

potential polarization effects, naturally. 

Fig. 13 shows an example where data for an irregular structured 

multilayer thin-film-filter (TFF) are imported into a waveguide design. A 

FDTD-simulation carried out in order to check the influence of the internal 

resonator-like structure of the TFF onto the waveguide device shows a 

significant transversal shift for oblique incidence. This hinders symmetrical 

multi-port designs, but may be used for specific WDM functionality
82

.

Figure 13. Waveguide mode impinging from the right onto a multi-cavity TFF. 

In IO there a great variety of materials is used, and their optical constants 

may be affected e.g. by film deposition technologies. What is thus required is 

the access to data for material dispersion with relation to technological 

parameter as well, either as Sellmeier or related formula, or as tabulated 

values. Additionally, refractive indices respond to temperature, which may 

be intended for device operation in case of a TO-switch, or unintended in 

field use. The temperature dependence of the refractive index can be 

attributed to the individual material, simply, but the influence of heater 

electrodes needs special consideration. If an IO design-tool comes with 

inherent TO or EO capabilities, those effects are taken into account in the 

optical design directly.

Just another approach is to calculate e.g. the temperature distribution 

within a separate program like ANSYS™, figure 14, and to transfer the 

temperature induced index change to the IO design. If the refractive index 

change due to the heater can be represented in a parametric model of a
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Figure 14. Temperature distribution beneath a heater electrode. 

fictive waveguide type which adds the TO-induced index change to the 

initial waveguide layout, a great design flexibility is achieved. 

Equation (31) shows an instance of a temperature profile function which 

incorporates the thickness of a specific polymer tpoly, the width of the heater 

electrode wheat, and the heat generation rate Hv as parameter, and constants c1

and c2 are fitted from calculated temperature profiles,
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vheatpolyheatvheatpoly

        . (31) 

If the resulting refractive index profile due to the 'electrode waveguide' is 

coded in a DLL, this gives a very efficient z-dependent refractive index 

update in a BPM-run. Such an approach gains attractiveness, e.g. when quite 

different cross sections are necessary or intended for the modelling in the 

thermal and the optical domain.

In order to optimise individual structures in the IO-design the definition 

of parameter-loops and scanning routines is required. In combination with 

this, post-processing of BPM-runs to evaluate channel-specific mode 

amplitudes, system transmission etc. is necessary, as well, which is assisted 

by commercial IO-design tools, naturally. This facilitates the generation of 

parametric models for any optical sub-system, cf. figures 11 and 12, which at 

the end is a prerequisite for an efficient system design. 

Design in integrated optics always is intimately connected with 

technology. Thus, if the experiment indicates deviations of actual and design 

data, clarification of facts is needed, where again parametric models ease the 

work. What beside signal level measurements turns out to be quite useful are 

detailed measurements of the refractive index distribution, e.g. by the method 

of the refracted near-field
83

. If the measured index profile is transferred to the 

IO-design tool, propagation constant, field profile and related characteristics 

can be analysed in detail. Based on this, design or technology parameter can 

be updated accordingly.

If the coupling from and to the waveguide is considered, design-tool 

interfaces are naturally defined via the spatially discretized optical field. 
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What is required, accordingly, are field import and export for propagation 

tools, and field export from the mode solver, too, in order to be able to 

evaluate overlap integrals, q.v. the subsequent section, too. 

5. MICRO-OPTICAL COUPLING OF FIBRE AND 

PHOTONIC CRYSTAL WAVEGUIDE 

The fibre-chip coupling of high numerical aperture (NA) waveguides 

including photonic crystal (PhC) waveguides is a demanding problem, 

mainly due to the apparent mismatch of mode field diameters (MFD) which 

can exceed a ratio of 1:20. For the necessary MFD adaptation several 

strategies can be tracked. Tapering of waveguide cross-sections is widely 

used for waveguides in III-V's
84

, and this approach is used for PhC-

waveguides as well
85

. If monolithic taper integration conflicts technological 

constraints e.g. due to the material used, an increased assembly effort for 

hybrid integration has to be accepted. Apt for hybrid integration are either 

individual 3D-tapers
87

, or focussing micro-optical elements
88

. From the point 

of view of IO-design the coupling with micro-optical elements is of special 

interest, since it requires a multi-scale modelling of electromagnetic field 

propagation as well as the consideration of the Bloch-wave nature of the 

guided mode of the PhC-waveguide.

Spot size reduction of an optical beam is generally limited if focussing in 

air is considered due to the NA limit of unity. If the angular spectrum of the 

waveguide mode field comes close to or exceeds this limit, two ways can be 

considered. The first one is to widen the mode field by a 2D-taper in such a 

way that it comes close to a diameter which is available with focus formation 

in air. The second one is to focus in a high index lens material, and to attach 

the lens to the IO-chip, finally, just similar to what is achieved with a solid 

immersion lens
89

. The principal geometry is shown in figure 15.

The light emanating from the fibre goes through an glass wafer of 

appropriate thickness and is collimated by a refractive spherical or slightly 

aspherical surface. Next, the collimated beam enters a high speed Si-micro-

lens and gets focussed. The focus is situated directly at the back surface of 

the wafer, thus, if the lens has close contact to the subsequent chip, the 

waveguide mode is efficiently excited. Whereas the field diameter in the 

free-space sections in glass, air, and at the entry surface into the silicon is 

much greater than the wavelength, close to focus it shall get as narrow as 

possible, intentionally.
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dummy 

plane

coupling 

plane

PhC-

chip
. . .

Figure 15. Fibre-chip coupling scheme. 

Thus, an efficient ray-trace analysis can be used for the design of the 

refractive surfaces, but if the field comes close to focus wave propagation 

schemes are required. What is mandatory for high index contrast waveguides 

and PhC-waveguides in particular is a fully-vectorial field analysis just from 

the beginning, i.e. polarization ray-tracing is a must. The ray-trace procedure 

is used until an artificial dummy-plane is reached. In this plane, from the ray 

data the electric field is obtained by means of the intensity law of 

geometrical optics and the well-known relation between electric and 

magnetic fields
90

. Due to the fact that a plane wave description holds when 

the field diameter is still quite extended, the corresponding curl-equation can 

be evaluated without derivatives,

HEkHiE
00

rot , (32) 

taking into account the plane waves direction given by the ray-trace engine. 

What is to be noticed explicitly is the fact, that large longitudinal field 

components do occur simply due to the noticeable inclination of the outer 

rays towards the optical axis. To propagate the optical fields up to the focus a 

fully vectorial model is needed, again. In the dummy plane the field 

dimension is much too big to fit to a FDTD-scheme, thus another method is 

required. Since the distance from the dummy to the coupling plane is 

homogeneous, i.e. it is free-space propagation, the angular spectrum 

propagation
90

 (ASP) can be applied. Thus, all field components in the 

dummy plane are Fourier-transformed, propagated, and transformed back 

which gives the field in the coupling plane, as depicted for the electrical 

field,
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 Finally, FDTD may be used to model the coupling of the focal field into 

the PhC-waveguide, potentially with the presence of an air or glue gap. Even 

such a simulation procedure with adapted numerical methods for each part of 

the propagation requires a considerable computation time. To speed up the 

simulation process for system optimisation remarkably, the FDTD-

simulation can be replaced by a formula for the coupling efficiency to a 

conventional high-index or a PhC-waveguide
91
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which goes back to orthogonality and reciprocity for Bloch-waves
92

. In 

Eq.(34) subscripts Foc and W indicate transversal focal and waveguide 

fields, respectively, and the integration includes the whole coupling plane. 

The fields at both sides of the coupling plane are normalized by

1
)(

*
)(

*
)()(

z

HEHEdydx
tttt

  , (35)

i.e. to unity energy flux in z-direction. Equation (34) is focused on 

dominating modes or fields, respectively, and doesn't take into account all 

possible coupling losses, e.g. due to edge modes at a PhC interface. The 
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validity of this approximation should be checked at least for the final result 

of an optimisation by FDTD. Nevertheless, Eq.(34) implies the main features 

of the coupling process which are of relevance. The integration of the 

product of the focal and modal fields over the coupling plane reflects the 

criterion of MFD adaptation for maximum coupling efficiencies, and the 

cross product of electric and magnetic fields at the left and the right of the 

coupling plane reflects the impedance dependent coupling efficiency. 

Furthermore, Eq.(34) is phase sensitive, thus it takes into account potential 

coupling losses due to defocus or due to a nontrivial phase distribution of the 

Bloch mode of a PhC-waveguide. And, by the normalization chosen, a 

mismatch of  group velocity is related to a mismatch of the absolute value of 

the electromagnetic fields in Eq.(34), directly.

As an example a PhC-waveguide configuration is considered, where a 

silicon film embedded within silica, i.e. an insulator-on-silicon-on-insulator 

(IOSOI) geometry, provides guiding in the vertical direction, and a missing 

row of air holes in the  direction of a triangular lattice ensures the 

guiding in the horizontal direction, figure 16. 

Si02

x
y

Figure 16. IOSOI PhC-waveguide geometry. 

The period of the W1-PhC-waveguide under consideration amounts to 

a = 530 nm, the hole radius is 0.366a, and the Si-film is 210 nm thick. For 

the operating wavelength of 1.55 µm a MFD of the fibre of 10.3 µm is 

assumed. The lens surfaces are described by

4

4

2

2
22

2

/11

1
rr

Rr

r

R
z  (36)  

with lens radius R  and asphere parameters 2 and 4, whereas r is the radial 

coordinate in the transversal plane. For lens parameter R = -1.77 mm, 2 = -

0.46, 4 = -2.01 for the collimating glass lens, and R = 0.13 mm, 2 = 0.16, 

4 = 2.05 for the silicon lens a full-width-half-maximum focal spot size of 

about f ~ 0.38 µm with negligible diffraction rings is obtained for the 

Poynting vector in the propagation direction, Sz , figure 17.
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Figure 17. z-component of time-averaged Poynting vector in the focal plane.

The PhC-waveguide mode used to evaluate the generalized coupling 

integral, Eq.(34), is determined by an adaptive FEM-solver
93

, and the 

resulting coupling efficiency is ~80%, if an appropriate AR-coating of the 

lenses is assumed. This marvellous result is double-checked by a transfer of 

the fully-vectorial field to FDTD shortly in front of the focus, where the 

transversal cross section is narrow enough so that a FDTD-model fits into a 

PC's memory, figure 18.

Figure 18. Coupling to PhC-waveguide, Ex , x-z-plot at half the film height. 

The intensity transmitted to the waveguide can be related to the Poynting 

vector of the incident free-space radiation and that of the PhC-mode a few 

microns away from the interface, which confirms the 80% coupling 

efficieny.

6. CONCLUSIONS 

Today, various capable software tools and bundles facilitate IO-design 

and the power of modern PCs allows tackling quite complex design 

problems. Due to the diversity of IO-applications, the diversity of customer 

needs and the diversity of algorithms quite different software tools do exist. 

In order to select and apply adequate programs for a certain design task 



correctly, it is indispensable to analyse the requirements due to an intended 

application and to translate this to capability requirements concerning the 

software. What the design engineer has to have in mind as well are efficiency 

issues, which reflect both potential speed-ups by reduction of dimensionality, 

and the use of specific tools for specific aspects of the design including 

interface routines, if necessary.

Naturally, the design complexity in IO does imply a sufficient familiarity 

with the physics and math of the routines commonly used. This helps, too, 

when the design includes aspects that are not covered by commercial 

software and therefore requires filling or bridging gaps with own 

development work.
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Abstract: In this work, we report the use of two-dimensional multimode interference (2D 
MMI) couplers for the construction of three-dimensional multimode 
interference phased array (3D MMI PHASAR) demultiplexers.  The 2D MMI 
coupler is thus studied in details and the results are used in the design of a 3D 
MMI PHASAR. The analysis of the 3D MMI PHASAR shows that there is an 
appreciable performance enhancement and size reduction compared to the 
planar MMI PHASAR 

Key words: integrated optics, DWDM, two-dimensional waveguides, 3D integrated optics, 
wavelength demultiplexing, PHASAR 

1. INTRODUCTION 

Planar integrated optics technology is a very reliable technology that has 
been used in the production of many photonic circuits for different 
applications. However, this planar technology has its own limitations either 
on the level of the circuit size or the signal routing. To overcome these 
limitations, three-dimensional (3D) integrated optical circuits are required. 
However, 3D optical circuits1-4 are still technologically complicated and 
need more development. One of the promising solutions to build 3D optical 
circuits is the use of multi-layer technology. 

In this case, the lightwave devices could be stacked in different layers 
resulting in an appreciable decrease in the overall device area. Also, the 
signal routing in three-dimensions avoids the problem of waveguide 
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crossing. Two-dimensional multimode interference (2D MMI) couplers5,6 are 
capable of coupling the input signal into a large number of outputs in 
different levels with a very good uniformity, bandwidth and fabrication 
tolerance. This makes them very suitable for the multilevel coupling function 
in three-dimensional integrated optics. 

Three-dimensional wavelength demultiplexing has also been recently 
introduced7 as the multilevel extension of the planar AWG. It, however, 
suffers from difficulties in its packaging. On the other hand, the 3D MMI 
PHASAR8 is compatible with the planar waveguide fabrication technologies 
and has no special packaging problems. 

2. TWO-DIMENSIONAL MULTIMODE 
INTERFERENCE (2D MMI) COUPLERS  

The 2D MMI structures are multimode waveguides in both the transverse 
directions. The modal interference along the propagation causes self and 
multiple images in the whole transverse plane. Thus, to have Nx × Ny images 
we need to have  
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where Sx and Sy are the excitation symmetry factors in the x and y directions 
respectively and they are equal to 1 for general excitation, 3 for paired 
excitation and 4 for symmetric excitation. Lπx and Lπy are the beating lengths 
of the 2D MMI in the x and y directions respectively. The beating lengths 
are given by 
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where β00 , β 10 , β01  are the propagation constants of the fundamental mode, 
the  mode of order (1,0) and the mode of order (0,1) respectively. Wxeff and 
Wyeff are the effective width and height of the 2D MMI with a core refractive 
index of ng at the free space wavelength λ. Figure 1(a) shows the 3 × 3 
multiple images formed in a 80 × 80 µm2 2D MMI hollow waveguide 
fabricated in silicon using deep reactive ion etching (DRIE)9. The guide 
itself is shown in Figure 1 (b). 
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(a) (b) 
Figure 1.  (a) The 3 × 3 multiple images formed in a 2D MMI hollow waveguide (b) SEM of 
the 80 × 80 µm2 silicon hollow waveguide showing the guide cross-section 

 According to the previous results, 2D MMI structures could be used as 
3D power splitters/combiners. It is capable of splitting the input signal into a 
large number of output ports with a good power splitting uniformity and a 
reasonably small insertion loss. Figure 2(a) shows a schematic diagram of a 
1 × 65 2D MMI power splitter, which splits the input signal into 5 rows and 
13 columns as shown in the 3D finite difference beam propagation method 
(3D FDBPM) simulation demonstrated in Figure 2(b). This 2D MMI has a 
133 × 82 µm2 cross-sectional area and a length of 5546 µm. Figure 3(a) 
shows the image uniformity produced by the 2D MMI in comparison with a 
planar 1 × 65 MMI power splitter having a width of 490 µm and a length of 
14673 µm. We can notice the improved uniformity of the 2D MMI as well 
as the appreciable area reduction (approximately 10 times reduction in area). 
The spectral responses of both power splitters are shown in Figure 3(b). We 
can see that the 2D MMI has a larger bandwidth than its planar counterpart.      

 

        (a)              (b) 
Figure 2. (a) A schematic diagram of a 2D MMI  1 × 65 power splitter, and (b) a 3D FD-BPM 
simulation of the output intensity distribution showing 1 × 65 power splitting. 
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       (a)              (b) 
Figure 3. (a) A comparison of uniformity for the 1 × 65 planar and 2D MMI power splitters. 

(b) A comparison of the bandwidth of the 1 × 65 planar and 2D MMI power splitters. 

3. 3D MMI PHASAR 

To demonstrate the importance of the 2D MMI in 3D integrated optics, 
we use it for the constructions of a 3D MMI PHASAR demultiplexer. The 
schematic diagram of the 3D MMI PHASAR8 demultiplexer is shown in 
Figure 4. It is the 3D generalization of the planar MMI PHASAR10. And it is 
basically an interferometric device, where the input signal is divided using a 
2D MMI splitter into N (Nx × Ny) parts, and then different signal portions 
acquire a wavelength dependant relative phase difference and finally 
recombine in a 2D MMI combiner. Thus, the single mode interconnecting 
waveguides are the dispersive element in the PHASAR, where the dispersion 
is achieved by the path difference between different waveguides. A block 
diagram of the MMI PHASAR is shown in Figure 5. 

Figure 4. A schematic diagram of a 3D MMI PHASAR demultiplexer. 
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Figure 5. A block diagram of a 3D MMI PHASAR demultiplexer. 

To evaluate the performance of the 3D MMI PHASAR we compare it 
with a planar MMI PHASAR with the same specifications. For this purpose 
the PHASAR is designed for the multiplexing of 65 DWDM channels with a 
channel separation of 0.2 nm (25 GHz). We used the planar and the 3D 
power splitters analyzed in the previous section in the splitting and 
combining in both designs. The longest path length for the interconnecting 
waveguides of the 3D MMI PHASAR is much smaller than its planar rival. 
This is the main advantage of using the third dimension. Modal analysis is 
used to simulate the spectra response of both devices. Figures 6(a) and 6(b) 

  

       (a)              (b) 
Figure 6. (a) The spectral response of the planar 65 channel MMI PHASAR. (b) The spectral 
response of the 3D 65 channel MMI PHASAR. 



286 Ayman Yehia Hamouda and Diaa Khalil
 

 

 
show the output channel spectra of the planar and 3D MMI PHASARs,   
respectively. A comparison between both devices is summarized in Table 1. 
We can see that the 3D MMI PHASAR has a much better response 
compared to its planar rival.  

Table 1. A comparison between the planar and 3D MMI PHASAR 
 Area IL Flatness 3-dB BW 20-dB BW 30-dB BW XT 

Planar 330 cm2 1.3 dB 4 dB 0.015 nm 0.056 nm 0.067 nm 16 dB 
3D 20 cm2 0.7 dB 0.5 dB 0.065 nm 0.142 nm 0.33 nm 45 dB 

 

4. CONCLUSION 

In this work, we presented the 2D MMI couplers as a basic component 
for 3D integrated optics. Two basic applications of the 2D MMI, the power 
splitter and 3D MMI PHASAR, are studied and compared to their planar 
equivalent. The simulations show an appreciable performance enhancement 
in both cases. These promising devices open the door to multilevel 
integrated optical circuits with higher packing density and better 
performance. 
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