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Preface 

Environmental Chemistry is a relatively young science. Interest in this subject, 
however, is growing very rapidly and, although no agreement has been reached as 
yet about the exact content and limits of this interdisciplinary subject, there appears 
to be increasing interest in seeing environmental topics which are based on chemistry 
embodied in this subject. One of the first objectives of Environmental Chemistry 
must be the study of the environment and of natural chemical processes which occur 
in the environment. A major purpose of this series on Environmental Chemistry, 
therefore, is to present a reasonably uniform view of various aspects ofthe chemistry 
of the environment and chemical reactions occuring in the environment. 

The industrial activities of man have given a new dimension to Environmental 
Chemistry. We have now synthesized and described over five million chemical 
compounds and chemical industry produces about one hundered and fifty million 
tons of synthetic chemicals anually. We ship billions of tons of oil per year and 
through mining operations and other geophysical modifications, large quantities of 
inorganic and organic materials are released from their natural deposits. Cities and 
metropolitan areas ofup to 15 million inhabitants produce large quantities ofwaste 
in relatively small and confined areas. Much of the chemical products and waste 
products of modem society are relased into the environment either during production, 
storage, transport, use or ultimate disposal. These released materials participate in 
natural cycles and reactions and frequently lead to interference and disturbance of 
natural systems. 

Environmental Chemistry is concerned with reactions in the environment. It is 
about distribution and equilibria between environmental compartments. It is about 
reactions, pathways, thermodynamics and kinetics. An important purpose of this 
Handbook is to aid understanding of the basic distribution and chemical reaction 
processes which occur in the environment. 

Laws regulating toxic substances in various countries are designed to assess and 
control risk of chemicals to man and his environment. Science can contribute in two 
areas to this assessment: firstly in the area of toxicology and secondly in the area of 
chemical exposure. The available concentration ("environmental exposure 
concentration") depends on the fate of chemical compounds in the environment and 
thus their distribution and reaction behaviour in the environment. One very 
important contribution of Environmental Chemistry to the above mentioned toxic 
substances laws is to develop laboratory test methods, or mathematical correlations 
and models that predict the environmental fate of new chemical compounds. The 
third purpose of this Handbook is to help in the basic understanding and development 
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of such test methods and models. 
The last explicit purpose of the handbook is to present, in a concise form, the most 

important properties relating to environmental chemistry and hazard assessment for 
the most important series of chemical compounds. 

At the moment three volumes of the Handbook are planned. Volume 1 deals with 
the natural environment and the biogeochemical cycles therein, including some 
background information such as energetics and ecology. Volume 2 is concerned with 
reactions and processes in the environment and deals with physical factors such as 
transport and adsorption, and chemical, photochemical and biochemical reactions 
in the environment, as well as some aspects of pharmacokinetics and metabolism 
within organisms. Volume 3 deals with anthropogenic compounds, their chemical 
backgrounds, production methods and information about their use, their environ­
mental behaviour, analytical methodology and some important aspects of their toxic 
effects. The material for volumes 1, 2 and 3 was more than could easily be fitted into 
a single volume, and for this reason, as well as for the purpose of rapid publication 
of available manuscripts, all three volumes are published as a volume series (e.g. Vol. 
1; A, B, C). Publisher and editor hope to keep the material of the volumes 1 to 3 up 
to date and to extend coverage in the subject areas by publishing further parts in the 
future. Readers are encouraged to offer suggestions and advice as to future editions 
of "The Handbook of Environmental Chemistry". 

Most chapters in the Handbook are written to a fairly advanced level and should 
be of interest to the graduate student and practising scientist. I also hope that the 
subject matter treated will be of interest to people outside chemistry and to scientists 
in industry as well as government and regulatory bodies. It would be very satisfying 
for me to see the books used as a basis for developing graduate courses on 
Environmental Chemistry. 

Due to the breadth of the subject matter, it was not easy to edit this Handbook. 
Specialists had to be found in quite different areas of science who were willing to 
contribute a chapter within the prescribed schedule. It is with great satisfaction that 
I thank all authors for their understanding and for devoting their time to this effort. 
Special thanks are due to the Springer publishing house and finally I would like to 
thank my family, students and colleagues for being so patient with me during several 
critical phases of preparation for the Handbook, and also to some colleagues and the 
secretaries for their technical help. 

I consider it a privilege to see my chosen subject grow. My interest in Environ­
mental Chemistry dates back to my early college days in Vienna. I received 
significant impulses during my postdoctoral period at the University of California 
and my interest slowly developed during my time with the National Research Council 
of Canada, before I was able to devote my full time to Environmental Chemistry in 
Amsterdam. I hope this Handbook will help deepen the interest of other scientists in 
this subject. 

This preface was written in 1980. Since then publisher and editor have agreed to 
expand the Handbook by two new open-ended volume series: Air Pollution and 
Water Pollution. These broad topics could not be fitted easily into the headings ofthe 
first three volumes. 
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All five volume series will be integrated through the choice of topics covered and by 
a system of cross referencing. 

The outline of the Handbook is thus as follows: 
I. The Natural Environment and the Biogeochemical Cycles, 
2. Reactions and Processes, 
3. Anthropogenic Compounds, 
4. Air Pollution, 
5. Water Pollution. 

Bayreuth, June 1991 Otto Hutzinger 

Fifteen years have passed since the appearance of the first volumes of the solid 
scientific information in Environmental Chemistry has been well received, and with 
the help of many authors and volume-editors we have published a total of24 books. 

Although recent emphasis on chemical contaminants and industrial processes 
has broadened to include toxicological evaluation, risk assessment, life cycle analysis 
and similar approaches there is still a need for presentation of chemical and related 
facts pertaining to the environment. The publisher and editor therefore decided to 
continue our five volume series. 

Bayreuth, March 1995 Otto Hutzinger 
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Introduction 

In the last two decades mankind has become increasingly aware of environmen­
tal problems, and particularly chemical aspects ofthe environment. The main 
reasons for this trend are not only objective causes such as apparent massive 
environmental pollution and resulting damage to the ecosphere and mankind, 
but also the fact that human beings have become more environmentally aware. 

Our environment is increasingly endangered by a growing population, 
constantly developing industrialization combined with increasing consumption, 
reinforced traffic growth and environmental catastrophes resulting from 
accidents. The potential and actual pollution of all areas of the environment, the 
possible serious consequences for the ecosphere and, last but not least, for 
mankind, require the study of all environmental media and processes. 

In general, chemical processes in the environment are very complicated 
because they occur in open systems, are often irreversible and heterogeneous 
and these processes are in most cases essentially influenced by biological and 
physical activities. The effects of pollutants and their chemistry in the 
environment, on the ecosphere and human beings are very complex: 
-There are many noxious substances in the environment. 
-The pathways of these pollutants in the environment to where they actually 
do damage are essentially unknown. 
- The mechanism of the reactions and the efforts of pollutants in 
combination and with components of the other parts of the ecosphere are 
mostly unknown. 
-The environmental concentrations of pollutants are often below or in the order 
of their effect thresholds. The time of latency between emission or discharge 
and the obvious beginning of a change or an accident is sometimes very long. 

Therefore the present level of knowledge of environmental processes and 
reactions is not very high and there is an essential need to obtain more 
information on environmental chemistry and the possible consequences for 
mankind. 

One of the aims of modern environmental research is to obtain more and 
more objective information on the very complex chemical processes in the 
environment. However, the enormous development of chemometrics over the 
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last two decades has given us a powerful tool for solving this task. 
Chemometrics is a relatively young chemical subdiscipline. Its general 

purpose is the application of statistical and mathematical methods, as well as 
methods based on mathematical logic with the objective of finding an optimum 
way for solving chemical problems and for extracting the maximum of 
information from experimental data. 

The application of chemometric methods in the field of environmental 
chemistry becomes necessary and useful because of the following main 
reasons: 
- Both natural and anthropogenic processes in the environment are mostly 
characterized by multidimensional changes of compounds and/or pollutants in 
different environmental compartments. 
Anthropogenic emissions are often typically characterized by their 
multicomponentormultielement character. Typical examples are emissions of 
airborne particles from heating plants into the atmosphere or discharges of 
refinery effluents into rivers or lakes. 
These substances can react synergically or competitively. It means the 
interactions of pollutants with one another and with natural components of 
environmental media also have to be considered. 
-Questions in the field of environmental chemistry are often connected with 
problems of analytical chemistry. Hence, the experimental data obtained 
contain information on different environmental processes and also on the 
variance caused by analytical error. An important purpose of applying 
chemometric methods has to be the minimization or if possible the elimination 
of the analytical error. 
-The last twenty years have been characterized by an explosive development 
of information processing and also by rapid development of instrumental 
analytical chemistry. These changes have given us the means for more detailed 
and precise monitoring of the environment and the reactions of chemical 
substances in various media. 
The necessity of mananging and handling the flood of data obtained from 
environmental studies and monitoring is another reason for the application of 
chemometric methods. The main aim is the extraction of relevant information 
concerning the pollution state, spatial and/or temporal changes of pollution, 
and the identification of emittents or dischargers. 

The modelling ofthe behaviour of pollutants in and between environmental 
areas, their impact on human beings and the assessment of environmental and 
toxicological risks also requires the application of chemometric methods. 

In other words, chemometrics in environmental chemistry should be a tool 
for a deeper and more objective study of the complex processes. 
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This book describes important basic principles of chemometric methods 
together with typical examples in the field of environmental chemistry and gives 
an overall view on the function and the power of chemometrics as an instmment 
for the explanation of environmental problems. 

The topics of the book are the application of chemometric methods to the 
whole process (this means all of the steps) of environmental chemical 
investigations, modern methods of data analysis for the interpretation and 
modelling of environmental data, and the application of chemometric methods 
for quality assurance and control. 

Starting with focusing of readers interest on the topics of chemometrics 
today the first part of the book consists of a discussion of the very important 
problems of environmental sampling and in the description ofbasic principles 
of modern chemometric methods for experimental design and optimization. 
Subsequently, analytical measurement combined with the application of 
modern chemometric methods such as correlation techniques and information 
theory for signal processing and resolution is discussed. 

The next sections describe the very important problem of calibration in the 
field of environmental analytical chemistry. Newer parametric and robust 
methods of multiple linear regression are applied for modelling of environmen­
tal systems. Because more multielement and multicomponentanalytical methods 
are available for solving environmental questions the extension and application 
of univariate figures of merit to multivariate calibration is described in detail. 

Investigations in environmental chemistry are often connected with problems 
caused by the scattering character of pollutants in the environment. Therefore 
one section deals with the important problem of the application of robust 
procedures to identify multiple outliers. 

As discussed above, methods of data analysis, mostly methods of multivariate 
statistics, are definitely necessary to extract the latent information contents of 
environmental data. The section on pattern analysis and classification is 
followed by a description of principles oflibrary search and expert systems. In 
the section on "Empirical pattern recognition/Expert system approach for 
classification and identification oftoxic organic compounds from low resolution 
mass spectra" powerful combined application of modern principles to data 
analysis is demonstrated. 

The next sections deal with the problem of modelling processes in important 
environmental areas such as the atmosphere and geosphere, and modelling 
quantitative stmcture-activity and stmcture-property relationships as the basis 
for the assessment of potential damage to the ecosphere and/or human beings. 

How can the applied analytical method be validated? How can the laboratory 
working for solving environmental problems be evaluated? How can we 
manage and handle data and laboratory information? Answers to these topical 
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questions with particularconsideration ofthe aspects of quality assurance and 
control are given in the subsequent three sections. 

The last section ofthe book "Automated techniques for the monitoring of 
water quality" describes, as an example for the very important environmental 
compartmentthe "hydrosphere", the instruments as the "hardware" which are 
available for environmental monitoring. This equipment is the technical basis 
for the application of chemometric methods. 

The purposeofthe book "Chemometrics in environmental chemistry" is the 
description of basic principles of modem chemometric methods applied to 
representative problems of environmental chemistry. In addition, the 
contributions demonstrate that, in each environmental problem under 
investigation, constructive cooperation between the chemometrician and the 
environmental specialist is necessary for obtaining concrete and objective 
answers which are close to reality. 

The general aim of this book is to arouse the interest of the environmental 
scientist who has not yet concerned himself with statistical and mathematical 
problems when applying chemometric methods to his own field of work. 

Jiirgen Einax 
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Summary 

Environmental sampling and data collection is an activity that requires skill and expertise in many 
of the traditional scientific disciplines. Previous authors have addressed the subject from the point of 
view of a single medium, a single discipline or, compliance with a regulatory program. In this 
chapter, a general plan is presented which considers environmental sampling as a special case 
of the scientific method of investigation. Decisions regarding all aspects of sampling (statistical 
design, sample locations, tools, analytical procedures, etc.) must be made in consideration of the study 
objectives. The plan presents a framework for developing clear study objectives and collection of data 
that will lead to resolution of the objectives. Examples are presented in surface water, shallow soil, 
deep soil, and groundwater. 
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Overview of the Sampling Process 

Most readers are aware of cases where many years and millions of dollars have 
been spent studying a hazardous waste site and scientists still cannot agree what 
needs to be done or even if there is a quantifiable human health hazard. Politicians 
and the general public are increasingly frustrated with such "studies." 

There are many reasons why studies are costly and fail to deliver on promises. 
First, environmental science is an evolving field. Standard procedures do not exist 
for many aspects of sampling and data analysis. Where standards exist, they are 
often blindly applied to a situation where they are inappropriate. Second, the 
environmental field is interdisciplinary. Working professionals are required to 
communicate across traditional fields. This requires specialized practitioners to 
integrate the principles of the more traditional disciplines such as chemistry and 
biology. Third, the institutional and legal framework under which the studies are 
conducted do not understand and at times seem to be completely incompatible 
with the basic principles of environmental practice. As a result work plans are 
often a series of checklists designed to meet an endless list of requirements 
rather than a well thought out game plan for conducting a scientific inquiry into a 
specific problem. These factors and others lead to a situation where environmental 
investigations appear to be a group of scientists contradicting each other and 
making up the rules as they go along. 

Although there is tremendous variability in the size, scope, and purpose of 
environmental investigations, there are some general principles that can be devel­
oped. These principles have been formulated into a general plan that is applicable 
to most investigations. This plan is based on the supposition that environmental 
sample collection, measurements, and data analysis are all pieces of the scientific 
investigation process. The plan describes how each of the basic elements of a 
conventional work plan: experimental design, sample collection, analytical and 
other measurement procedures, data analysis, and quality control are conceived, 
developed and, implemented in order to reach the ultimate objectives of the 
investigation. In addition, four controlling forces: environmental science, statistics, 
practical constraints, and regulatory requirements serve as guides which define the 
limits of the investigation. This plan provides a general framework for the devel­
opment of the sampling and analysis work plan and serves as the basis of rest 
of the chapter. 

Many other references describing the environmental sampling and data anal­
ysis process are available. These tend to present the subject from the point of 
view of a particular discipline. For example Keith [1, 2] discusses sampling from 
the point of view of analytical chemists. Barcelona [3] discusses sampling for 
groundwater geohydrologists, while Ward et al. [4] is for surface water profes­
sionals. Gilbert [ 5] has written one of the more popular books on environmen­
tal statistics. Schreuder and Czaplewski [ 6] present a conceptual framework for 
forest ecosystem monitoring. Sara [7] describes the investigation of hazardous 
waste sites under the Corrective Action program of the Resource Conservation 
and Recovery Act. 
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Types of Environmental Investigations 

Environmental investigations are conducted for many reasons. The purposes 
of the investigation are formally presented as a series of study objectives. 
These objectives are then used to define all other aspects of the investigation 
including what is sampled, how the samples are collected, what measurements are 
made, and how the data are analyzed. Most problems that arise over the course 
of investigations can be traced to a lack of clearly defined objectives that are 
understood by all parties involved. Discussions concerning the appropriateness or 
acceptability of a particular procedure can only be conducted in terms of con­
sistency with the study objectives. For example, a certain statistical test may be 
appropriate for a background characterization study but not suitable for a trend 
detection analysis. 

Although most reviews of sampling are_organized by media or the regulations 
under which the investigation is being conducted, a more enlightening method of 
classification is by the differing study objectives. Some of the common types of 
investigations are defined here. Also, a few examples of how the objectives will 
determine how environmental data are collected and analyzed are provided. 

A study may be conducted in order to define the baseline status of an ecosys­
tem. This is a basic requirement in conducting an Environmental Impact Statement 
under the National Environmental Policy Act. Often permit applications for a sur­
face water discharge or air emission require a baseline study. These investigations 
may serve as the basis for other work such as risk assessment or evaluation of 
alternatives. Such studies can be exhaustive and include several years of field­
work. In areas that are well studied, much of the information can be collected 
through a literature review. 

Usually baseline studies assume steady state conditions. Accordingly varia­
tions in measurements are attributed to seasonal variation or assigned to sam­
pling error. Some baseline studies try to quantify environmental processes such 
as geochemical weathering, transport of sediment, phase transitions, and biologi­
cal activity. Results may be reported as sediment loss in tons per acre per year 
or primary production in mg carbon fixed per square meter of land or surface 
water per year. 

Parameters that are measured during baseline studies are attempts to quantify 
some of the more basic environmental processes. These are quantifications that 
are averaged over time periods of months or sometimes years. Variables such 
as surface water flows, precipitati{)n, and air temperature are frequently mea­
sured. In water quality studies pH, conductance, temperature, major cations and 
anions, and nitrogen and phosphorous are typical starting parameters. Other spe­
cific constituents are measured as they become relevant. In the biological world, 
baseline studies begin by determining the dominant species that are present and 
then quantifying the populations. Community diversity indices are sometimes used 
to indicate the general state of the ecosystem. 

When evidence suggests that there has been a release to the environment of 
a substance, an extent of contamination study is conducted. An example would 
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be a Remedial Investigation conducted under the Comprehensive Environmen­
tal Response, Compensation, and Liability Act. There may be hearsay accounts 
of chemical X being spilled or dumped. The soil or water may be discolored. 
Vegetation may be sparse. In such cases, preliminary studies are conducted to 
confirm the contamination and to determine its extent. Often the contaminant, or 
at least its class, is known so the analyte list is short. Sample locations are usually 
selected at the most concentrated areas and at what is believed to be the edge. 
This methodology is referred to as judgement sampling. Such a scheme may be 
appropriate for the study objective but will make various statistical tests inappro­
priate. For naturally occurring contaminants, it may be necessary to determine 
background levels. 

Impact of contamination. Once the extent of contamination is known, its 
effect on the ecosystem is determined. These studies are required for the purposes 
of risk assessment and for the establishment of liability. While there is an attempt 
to further delineate the spatial and temporal extent of the contaminant, the focus 
is on the environmental fate of the contamination. The physical state of the con­
taminant and the potential for mobility must be determined. For example, it may 
be determined if metals are suspended, dissolved or complexed. The phase of 
organic contaminants (gaseous, dissolved in soil moisture, or adsorbed to sur­
faces) may be determined. A sub category of the impact study is the risk 
assessment. Here the potential for the contaminant to enter and move through 
the biosphere is evaluated along with its probability to impact the environment 
or human health. 

Predictive studies are conducted to predict the response of an ecosystem to 
some type of natural or induced stress. A large scale example is the group of 
studies that predicts the response of a regional aquatic system to policies that 
regulate the emissions of sulfur dioxide and hence affect the acidity of the rain­
fall in the region that are being conducted under National Acid Precipitation 
Program. A small scale example would be to predict the rate of remediation of 
an aquifer during the operation of a pump and treat system. Almost all of these 
studies require the use of sophisticated mathematical models. Such models require 
the input of various parameters for calibration. It is critical that the planners of 
the investigation understand the data needs of the models. Typically a predictive 
study is carried out in two major steps. The first is model calibration and sensi­
tivity analysis. The second is a verification process in which a model is shown 
to be capable of predicting ecosystem parameters with reasonable precision. It 
is important that an investigation provide two sets of data that are essentially 
independent. 

In a compliance monitoring study a permitted facility that discharges to the air 
or surface water is required to demonstrate that it is operating within prescribed 
discharge limits. Another example would be personnel monitoring for health and 
safety considerations. Such monitoring plans typically contain details concerning 
the timing, locations and procedures for collection of samples, analytical proce­
dures for quantitation, statistical tests and reporting format. The emphasis is not 
only on obtaining accurate data but also on obtaining consistent data that can be 
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used for comparison to different time periods or different facilities. In order to 
reduce costs, the operators of the facility may wish to measure parameters that 
are indicative of the concentrations of a larger number of contaminants. 

Process control sampling provides real time data that are used to monitor 
waste treatment facilities and provide the operators with the data necessary to 
insure that the facility is functioning properly. While the emphasis is on real time 
data there has been development of many sophisticated continuous monitoring 
equipment. The importance is placed on a short list of indicator parameters rather 
than a complete list of all analytes of concern. 

In surveillance and enforcement monitoring there is usually a focus on a 
short list of analytes. The objective is to determine whether a concentration is 
above or below a standard. Therefore techniques are chosen that provide a high 
level of accuracy at the specified level. Because the study is generating evidence 
that must meet all legal challenges, significant quality control requirements are 
imposed on the study. 

General Plan 

A general plan (Fig. I) has been developed that serves as framework for con­
ducting environmental investigations. Although it cannot cover every detail of all 
sampling exercises, it serves as a guide to the thought process that must be fol­
lowed with planning and implementing a sampling event or program. This plan is 
presented as a simplified, linear, top to bottom flow diagram. However, it allows 
for adjustments and refinements to be made at appropriate points. For example, 
as new information becomes available one must go through several iterations of 
the plan. Some iterations may be formally designated as phases while others may 
be simple adjustments to sample collection procedures. As long as the thought 
processes is followed, the plan will remain valid and it will function as a useful 
tool in planning and implementing sampling and data analysis programs. 

There are five major steps or elements of the plan: 1) formulation of study 
objectives, 2) development of the sampling and analysis plan, 3) sample and 
data collection, 4) data analysis, and 5) refinement of the old and formula­
tion of new questions. These elements are described in Table I. In addition, 
there are four controlling forces that guide the entire process (Fig. 2). These are 
1) environmental science, 2) statistics, 3) regulatory requirements, and 4) practi­
cal considerations. These forces will serve as guides throughout the process al­
though their relative importance will vary from project to project. The application 
of these controlling forces, particularly statistics and environmental science, is the 
main focus of this chapter. 

The first step is the development of the overall study objectives. These are 
formal statements describing the purpose of the investigation. Their development 
may seem to be an obvious step and hardly worthy of discussion. However, 
experience has shown that the importance of developing clear and concise study 
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Inference ---+ Hypothesis 
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INFORMATION 

Fig. 1. General plan for environmental investigations 
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Fig. 2. Controlling forces for environmental in­
vestigations 

objectives and communicating these objectives to all members of the project team 
cannot be understated. As previously stated, the details of the entire sampling 
plan are dependent on the study objects. Decisions regarding choice of sample 
collection procedure or analytical method can only be addressed by asking the 
question: "How does it provide data that can be used towards fulfilling the study 



Environmental Sampling 

Table 1. Major elements of an environmental sampling and analysis plan 

Element 

Study objectives 

Sampling and analysis 
plan, experimental 
design 

Sample procedure 

analytical procedures 

Collect data 

Data analysis 

Formulate new 

Questions 

Information 

Function or purpose 

What is the purpose of the study? 

What will be sampled? 
How many samples will be collected? 
How will individuals be selected? 
What statistical analysis and models will be used? 

How will samples be collected? 
How will samples be preserved? 
How will sample be prepared for analysis? 

How will attribute be quantified? 

What are the measurements? 
What are the observations? 

What do the data say about the population? 

Build on newly acquired information 

Answers the study objectives 

7 

Examples 

Extent of contamination 
Impact of contamination 
Baseline characterization 

Simple random 
Grid 
Nested 

Grab 
Depth integrated 
Sample preservation 

Field instruments 
Gas chromatograph/mass 

spectrometer 

Concentration of iron 
Color of soil 

Graphical 
Mapping 
Tabular 
Modeling 
Statistics 
Geostatistics 

Are conclusion applicable to 
other: 
sites? 
seasons? 
constiuents? 

Extent of contamination 
Impact of contamination 
Baseline characterization 

objectives?" For example, the analytical chemists have a choice between analyz­
ing for total lead or extractable lead in a soil sample. If the study objective is 
to determine the extent of lead contamination, then total lead analysis is prob­
ably appropriate. On the other hand, if the study objective is to perform a risk 
assessment, then the extractable lead is probably a more appropriate measure of 
the potential for lead to migrate through the ecosystem. 

The process of developing the objectives is outlined in Table 2. The steps 
are to start with the study questions and then to develop the information require­
ments followed by the data requirements. The distinctions between these three 
steps may seem vague but what is important is the thought process. The study 
questions lay out in plain English what the basis of the study is going to be. The 
information requirements define what is needed to answer the questions. Once 
the information requirements are established, the data required are specified. The 
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Table 2. Examples of the formulation of study objectives 

Study questions Information requirements Data requirements Study objective 

Is there environmental con- Background and ambient Background and ambient Identify the constituents 
tamination at the site? levels of the constitu- concentrations of con- which originated from 

ents of concerns stituent X anthropogenic sources 

What is the extent of con- Distribution of contaminant Concentrations of contam- Perform an extent of con-
tamination at the site? X in various environ- inant X at various tamination study 

Can the contamination be 
treated? 

What is the danger to the 
population human at the 
site due to contaminant 
X? 

mental media points in space at var­
ious points in time 

Physical, chemical and 
biological nature of 
contaminant X and how 
it is affected by applica­
tion of treatment tech­
nologies 

Chemical form the contam­
inant potential to move 
in the environment po­
tential to move through 
the biosphere 

Removal efficiencies in 
bench scale treatability 
studies as various op­
eration parameters are 
adjusted 

Species distribution, retar­
dation coefficients, dif­
fusion and dispersion 
coefficients, reaction 
rate constants 

Perform a treatability study 
of contaminate X in me­
dia Y 

Perform a risk assessment 

scientific analysis of the study questions involves the development of informa­
tion. A distinction is made here between data and information. Data are facts, 
quantities, or observations whereas information is defined as knowledge derived 
from facts. The derivation of this knowledge is what constitutes the scientific 
process. 

A tool that is useful for developing study objectives is the conceptual model. 
This is a simplified description of the fundamental environmental processes that 
are controlling behavior of the constituents, organisms, and phenomenon of con­
cern. It is developed on the basis of the findings of similar studies. Initially this 
model is very simple. During the course of the investigation the model becomes 
more sophisticated. It evolves from a conceptual model to a quantitative or pre­
dictive model. It can be a rigorous analytical or stoichastic or statistical model. 
As shown below, the development of the conceptual model helps the investigator 
to determine the data requirements. 

As an example, the study question may be "What is the extent of 
contamination of lead in surface soils at a site?" The information required is 
the establishment of the distribution of lead in soil, the data requirements are the 
measurements of lead in mglk:g dry weight at various locations at the site and the 
study objectives are to perform an extent of contamination study. A conceptual 
model is developed that attributes the lead contamination to a single source (a pile 
of mine tailings) and the transport to a single process (airborne dust). This model 
is used to help define spatial extent of sample collection. The contamination would 
be expected to be greatest in the direction of the prevailing wind and extend as 
far as dust particles could be transported by the wind. 

It is almost always less expensive to review and build on the findings of others 
than to implement an investigation where nothing is known. The most efficient 
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application of environmental science maximizes the utilization of information that 
has been previously obtained towards answering the study objectives. This usually 
begins with a literature review beginning with a general overview of the subject 
and quickly focuses in on the specific study questions. For example if the study 
question is to determine the yield of an aquifer at a specific location, the review 
would begin with general knowledge of flow in porous media. It would then 
focus in on the regional geology and the information that has been developed 
from existing wells. It may turn out that the aquifer yield is essentially dependent 
on the thickness of one permeable formation. As a result, the study objective can 
be refined to measuring the thickness of the permeable formation. 

The historical data review is a step that is often neglected in the planning 
process. It is too easy to discard or ignore previously collected data because 
of incomplete documentation, questionable procedures, or because the sample 
locations were less than ideal. This tragedy is referred to as "throwing away useful 
information." Even the best planned and most expensive investigations result in 
a less than ideal accumulation of data. In emphasizing the iterative nature of 
the environmental investigation process, it is pointed out that each study should 
build on the results of previous ones. A skillful environmental scientist should 
be able to infer useful information from all but the most sketchy data sets. The 
procedure for conducting the historical data review is to ask four questions. They 
are: 1) what data are available?, 2) how complete are the data?, 3) what is the 
quality of the data? and, 4) what data are missing? At a minimum, historical data 
should provide assistance in determining the range of sampling, the experimental 
design (simple, random, stratified, etc.), and the number of samples required to 
meet the study objectives with the desired precision. In the lead in soil example, 
historical data may be utilized to estimate the concentration gradient which would 
be helpful in planning the spacing of sample points. Alternatively, it may be 
useful in estimating the order of magnitude of the contamination. This will assist 
in determining whether the samples need to be concentrated or diluted prior to 
analysis. 

The sampling and analysis plan is the heart of any environmental investiga­
tion. It is a basic requirement of most regulators and is typically specified as a 
major milestone in project planning. Too often the sampling and analysis plan is 
merely a laundry list of equipment and procedures for field collection and labo­
ratory analysis. While these components are important, they do not constitute a 
complete plan. The plan should be thought of as a guide book for conducting 
sampling and analysis. In the real world, conditions are constantly changing. A 
well conceived plan will allow the investigators to make the proper adjustments 
that will assure that the data collected will answer the study objectives. There­
fore, in addition to the detailed sample collection and analysis procedures, the 
plan must also discuss the study objectives, statistical design, and proposed data 
analysis procedures. 

In this chapter, the term experimental design is defined as a statistical term. It 
is the processes of eliminating known sources of bias, and reducing or quanti­
fying the sources of variation. During the design process, the investigator must 
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determine the sample selection scheme, the number of replicates at various levels, 
and the procedures for sample randomization. Good experimental design leads to 
an efficient sampling program, i.e. the most useful information is obtained for the 
least cost. Many statistical tools are only valid for specific experimental designs. 
Once the number of samples required at each level is determined, a safety factor 
is included to account for units unavailable for collection, samples broken or lost 
during shipment, or errors in measurement or analysis. 

There are two basic types of studies. In an experimental study, the variables 
of interest are fixed or controlled at predetermined values for each run of the 
experiment. A waste treatability study at specific concentrations of a contaminant 
would be an example. In an observational study, there are many variables of 
interest that cannot be controlled, but they are measured and analyzed. A back­
ground characterization would be an example. In the environmental field, both 
types of studies are conducted and sometimes a mixture of both is used. It will 
be shown that controlling variation through careful design is almost always a 
more cost effective technique for reducing variance than to collect more samples. 

The target population is that about which inferences are to be made and is 
divided into population units. For some studies, applying the definitions is an 
obvious and straightforward exercise while in others it involves making arbitrary 
decisions. For a treatability study it must be determined whether the target pop­
ulation is the effluent over the course of a day, week, or life of the treatment 
process or, possibly the effluent from all wastes that are treated. Obviously the 
choice would affect the range of time over which samples are collected. In bio­
logical studies, the population unit is typically that of an individual of a species 
or a group of species while in other studies, it may be arbitrarily defined as one 
square meter of soil at a specified depth or one liter of surface water. 

Next, the attributes to be measured are determined. The parameters about 
which conclusions are to be drawn are measured. Other parameters which may 
affect variability are measured in both experimental and observational studies. 
For example, parameters such as pH, temperature, and alkalinity are commonly 
monitored in studies involving water chemistry. However, too often little thought 
is given to the determination of the attribute list and the "measure everything" 
approach is employed yielding an analyte list numbering in the 1 OOs. This is a 
very inefficient sample design. The experimenter's knowledge of environmental 
science is relied on to determine these attributes. 

The ideal experimental design must be tempered with all of the practical 
constraints such as cost, duration of the project, and availability of the population 
for sampling. Procedures for optimizing some of the basic sample designs will 
be developed later in this book. At this point, tradeoffs are made between costs 
and the expected precision that can be attached to the study conclusions. If it 
becomes obvious that the study objectives cannot be met within all of the project 
constraints, then decisions must be made regarding revision of the objectives 
versus increasing the time and/ or budget of the investigation. 

The sample analyses are usually specified before the collection protocols are 
finalized. This is because most analytical methods have some sample collection 
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requirements with them. The analytical procedures are typically selected from 
a library of reference methods. Again these must be selected with considera­
tion of the requirements of the investigation. The criteria are sample matrix, 
detection level, precision, and accuracy. Use of "accepted" methods is typically 
advocated when defensibility of the study is an issue. Too often laboratory man­
agers are asked to recommend analytical methods in a vacuum. This may result 
in the specification of inappropriate methods or methods that cost more than is 
necessary. 

Specification of a reference method may not settle all of the sample analysis 
issues. Often a pretreatment step such as sub-sampling, phase separation, parti­
cle size separation, or sample clean-up is required. The criteria for selection of 
pretreatment procedures must be included in the plan. When unusual analytes or 
complex matrices are involved some method development may be required. 

The preparation of the sample collection protocols is a straightforward, 
although detailed and at times tedious process. The items that need to be consid­
ered are presented in Table 3. The level of detail required for each item varies 
from project to project. Most plans borrow heavily from or directly reference 
previously developed protocols. Major environmental programs typically have a 
library of standard operating procedures that can be utilized. The details of the 
collection protocol must be determined in conjunction with the rest of the plan. 
For example, the sample volume, the container type, and the preservative are 
selected based upon the analytical procedure that will be used. In another 
example, a unit selected from sampling may be unavailable. The sampler needs 
to know if that unit can be skipped or if an alternative unit needs to be sampled. 
This question can only be answered in consideration of the experimental design 
and the proposed data analysis procedures. 

Table 3. Items to be included in the sampling protocol 

Pre sampling 
site preparation 
equipment list 
decontamination 
conLainers, labels, paperwork, etc. 

Sample collection 
number of samples 
location and time 
alternative locations 
field measurements 
field observations 

Sample handling 
field treatment 
preservative 
containers 
labelling 
temporary storage 
shipment 

Personnel protection 
training requirements 
protective clothing 
personnel monitoring 
contingency plans 

Quality control 
custody forms 
documentation 
spikes and duplicates 
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In terms of time and manpower, data collection is the largest task of an 
environmental investigation. With proper planning, it should be the most straight­
forward. Any collection program will encounter hitches such as equipment failure, 
units unavailable, changing weather. With experience, an environmental scientist 
can prepare a sampling and analysis plan that anticipates changing conditions and 
allows for contingencies. 

One aspect of data collection that is not adequately addressed is data man­
agement. A tremendous volume of data flows into project headquarters from a 
variety of electronic and hard copy sources. Issues such as input, preprocessing, 
storage, quality control, and providing access to the data must be addressed prior 
to data collection. Procedures for the development of a data management plan 
are discussed elsewhere [8]. 

Once the data has been collected, environmental scientists and statisticians 
begin the process of data analysis. As previously stated, the basic outline of data 
analysis is a requisite part of any sampling plan. Many experimental designs have 
specific statistical tests associated with them. However, data analysis is a creative 
process. It takes skill and experience to glean useful information from the large 
quantities of data that are collected in most studies. 

The first step is exploratory data analysis. Summary statistics such as means, 
variances, and ranges are calculated for all parameters. Graphs are produced that 
show how parameters vary in time, space, or other parameters. Attempts are made 
to classify the data into groups of differing levels or trends for graphing or cal­
culation of summary statistics. A mass balance may be performed. This exercise 
usually results in the formation of hypotheses (in addition to those originally 
developed) that can be tested by more rigorous statistical procedures. 

Statistical tests consist of planned and unplanned analyses. Planned tests are 
those that were conceived prior to reviewing any of the data. Unplanned tests 
are those that are suggested by the exploratory data analysis. Some statisticians 
require greater levels of significance in order to reject null hypothesis that are 
suggested by the data. Since there is a lack of any consensus regarding signif­
icance levels in the environmental field, the distinction between the two types 
of analysis will not be emphasized here. Briefly, the statistical analysis process 
is one of formulating a hypothesis, performing an appropriate test, drawing a 
conclusion, and assigning a level of confidence to that conclusion. 

Another type of data analysis is modelling. Environmental models can be 
as simple as a linear calibration curve or as complex as the global atmospheric 
models that are used to predict the impact of carbon dioxide emissions on global 
warming. Such models are referred to as mechanistic or deterministic. They are 
based on the premise that all processes follow the laws of chemistry, physics, 
and biology. If scientists were only smart enough to understand these laws and 
to measure all of the parameters that cause processes to occur, then the rate 
and extent of all processes can be predicted. Of course, the laws are not fully 
understood and everything cannot be measured with the required accuracy. There­
fore all models are necessarily simple and the predictions are approximations. 
The models serve as useful tools for the understanding of the factors that con-
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trol environmental process. Indeed, statistical analysis is a form of modelling. It 
involves models that allow for variance or that component of differences that can 
only be explained by chance. These are called stoichastic models. 

The final step is the formulation of new questions. This is not presented 
as a guarantee of full employment for environmental scientists. It is merely a 
statement of the scientific process. No single study can result in the final definitive 
law that is never questioned. The new questions may be slight modifications of 
the initial study questions or they may be based on totally unexpected results. 
As shown in Fig. 1, when these questions arise they are pursued by a number 
of options. These are: a reanalysis of the data, collection and analysis of more 
samples, collection and/ or analysis of essentially the same samples by alternative 
techniques, a revised experimental design, or the development of entirely new 
study questions. 

Surface Water Sampling 

Water is a very important medium in the environment. It commonly exists in the 
gaseous, liquid and solid form and readily makes transitions between these phases. 
In its liquid form, its unique chemical properties allow it to dissolve a tremen­
dous diversity of ionic and nonionic constituents to varying degrees. Its unique 
physical properties (temperature-density relationships, surface tension, electrical 
conductivity, and viscosity) affect the way water moves and suspends and moves 
particulate matter. Indeed water is the medium of life. All living forms either 
exist in water or have developed a cellular structure to contain a water medium. 
The presence and availability of surface water (quantity) and its chemistry (water 
quality) are an integral component of most environmental investigations. Environ­
mental scientists know and are constantly expanding their understanding of how 
these two concepts are interrelated. This section reviews the instantaneous and 
continuous measurement of surface water flow and the collection of samples for 
the determination of dissolved and suspended constituents in the following sur­
face water bodies and flows: rivers, streams, lakes and reservoirs, surface water 
runoff, estuaries, liquid waste streams. 

Study Objectives 

In many water resources investigations quantifying the flow of water in surface 
streams is the primary objective. The time scale of concern for the variation in 
flow has a tremendous range. For storm water management and flood control 
projects instantaneous flow quantities and the response of a watershed to a storm 
event are the focus. Where water use is seasonal such as for irrigation, the 
variation in monthly mean flows may be the key parameter. In arid regions of 
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the world where there is considerable year to year variation in weather, the time 
scale may extend to a decade or longer. 

In water quality investigations, quantifying the spacial and temporal variation 
of parameters is the primary objective. In rivers the spacial variation is typically 
described along the dimension parallel to the river bed. In simple lake systems 
depth is used as the dimension of variability. Studies frequently are conducted 
to investigate how the parameters of concern vary with time or with flow. For 
example, in areas of contaminated runoff surface waters are more polluted during 
high flow conditions while in pristine regions the highest flows are associated 
with snowmelt which tend to dilute surface waters. 

The mass transport of a contaminant through a system is frequently the 
focus of an environmental investigations. Because mass is the product of flow 
and concentration and, there is variability inherent in both of these parameters, 
extreme caution must be taken in acquiring and interpreting this attribute. First 
the significance of a statistic that is the product of two factors, each with their 
own error must be determined. Secondly, because the concentration is often a 
function of flow, the two parameters are rarely independent. Thirdly, most inves­
tigations are often unable to collect all of the desired measurements. As a result, 
a mass balance analysis is often used to calculate a flow or concentration value 
by difference. In light of these factors, it is often difficult to perform a rigorous 
statistical analysis on mass transport data. 

In water quality investigations, the use of indicator parameters is frequently 
employed as a means to reduce the cost of sample analysis. Sanitary 
engineers have employed the concept of Biochemical Oxygen Demand (BOD) 
and Chemical Oxygen Demand (COD) as single parameters that measure the 
biodegradability or the total organic contamination of a water body or a waste. 
Public health professionals have used counts of Escherichia coli as a measure of 
the potential for water to transmit diseases. The simple measurement of electri­
cal conductivity is used to estimate the concentration of dissolved ionic species 
in water. Although the analytical procedures for the determination of these and 
other indictor parameters are well established, care must be taken in their inter­
pretation. Each dissolved ion has a different electrical conductivity and therefore 
make the conductivity of a high sodium water not comparable with that of a 
high calcium water. Between waters that have the same relative ratios of major 
ions the conductivity may be a very useful means of comparison. In the early 
phases of an investigation, the establishment of useful indicator parameters is a 
recommended objective. 

Background Information 

An effective and efficient surface water sampling program can be designed and 
implemented only after a review of the general knowledge of the behavior of 
surface waters and the constituents contained within has been conducted. This 
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information is then augmented with site specific data obtained through field mea­
surement and sample collection. As discussed in the first section, this interactive 
process continually builds on previously acquired knowledge. 

Figures 3 and 4 are graphical presentations of stream flow data showing the 
range of time scales that are typically encountered in the environmental field. 
Figure 3 shows the response of a stream to a storm event. These data are used for 
designing flood control structures and for evaluating the impact of storm water 
runoff on water quality. It is obtained from field measurements is total flow and 
hydrologic analysis is used to separate the total flow into the direct runoff and 
the base flow (that resulting from groundwater inputs) components. In small to 
medium size streams it is not uncommon for the peak flow to increase more than 
two orders of magnitude during a storm event. A review of Fig. 3 might suggest 
that either continuous measurements or those taken at very short time steps are 
required to obtain this data for a storm event. However, the general shape of the 
direct runoff curve can be estimated from a knowledge of the basin morphology. 
Alternatively, if the peak flow and the time to peak are known, the direct runoff 
curve can be approximated with a triangle. 

Figure 4 shows annual flow of the Colorado River at Less Ferry, Arizona. 
Note that even though the data are annual mean flows there is still a tremendous 
variability. The range is from a minimum of 5.64 in 1933 to a maximum of 24.0 
in 1917. Also note that periods of low flows such as in the early 1930s and the 
early 1950s tend to be grouped together. A casual inspection of Fig. 4 would 
suggest that a record as long as 20 years may not be long enough to obtain an 
accurate estimate of the average flow. In order to be comparable, data obtained 
after 1956 would have to be adjusted for the effects of major upstream water 
projects such as the Glen Canyon Dam. 
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In the United States, stream flow is monitored by the Geological Survey 
(USGS). This organization maintains a network of approximately 4000 stations 
where stream flow is recorded. The data are published in annual reports (Water 
Supply papers) that are organized by watershed. These data are also available in 
electronic format. It is rare that a USGS station with a sufficient length of record 
is located at the study site. A variety of hydrologic procedures are available [9] 
to apply the flow data of a nearby station to the study site. The simplest approach 
would be to install a gauging station at the study site and develop a short term 
record (1-5 years). A correlation relation could be developed between the flow 
at the study site and that of a nearby station with a longer record. 

The typical distribution of instantaneous velocities and suspended sediment 
in a natural stream channel at a given cross section are shown in Fig. 5. These 
diagrams were developed for a regular section (i.e. that stream bed is relatively 
straight and there are no flow obstructions). At any point in the distribution of 
velocity as a function of depth may be approximated by a parabola with velocity 
of zero at the bottom and a maximum at approximately 20% of the total depth 
when measured from the surface. The distribution of suspended sediment is also 
complex. Generally, a stream is mixed just below a hydraulic jump, an outlet of 
a flume, or the nappe of a weir. As the water flows downstream, the sediment 
is settling downward with a velocity proportional to the square of the particle 
diameter and is being resuspended by the scouring action of the flow. 

In temperate regions of the world, freshwater lakes of moderate depth or 
greater (5 meters) exhibit seasonal patterns of thermal stratification [11, 12]. 
This stratification has tremendous implications on the water quality and the 
biology of lakes. Figure 6 shows the typical distributions of temperate and dis­
solved oxygen during the period of summer stratification for a oligotrophic and a 
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Fig. 5. Typical distributions of velocities (top) and suspended sediment (bottom) in surface water 
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eutrophic lake. Because of differences in density, the warmer water rests on top 
of the colder bottom layers. This may result in layers with radically different 
water quality. The warmer upper layer is referred to as the epilimnion while 
the colder lower layer is called the hypolimnion. In the oligotrophic lake the 
increase in dissolved oxygen with depth is due to the higher saturation values in 
the higher temperatures. In the eutrophic lake, oxygen is consumed by biolog­
ical activity. In the epilimnion the oxygen is replenished by diffusion from the 
atmosphere, while in the hypolimnion, with no external supply oxygen, levels are 
diminished over the course of the summer. The complete depletion of oxygen in 
the hypolimnion is common in eutrophic lakes. This in turn affects the biology as 
well as reducing the redox state of elements such as nitrogen, sulfur, and iron. Use 
of field instruments such as temperature probes and meters for dissolved oxygen, 
pH, and conductance to record measurements at various depths at monthly inter­
vals are extremely useful for preliminary studies that indicate the seasonal 
behavior of a lake system. Other factors such as basin morphology, inflows, 
outflows, and weather will have significant impacts on vertical and horizontal 
mixing in lakes as well as sediment deposition patterns. See Lehrman [13] for a 
more detailed discussion. 

The role of sediments in aquatic systems is frequently inadequately addressed 
in environmental investigations. The subject has been reviewed on a fundamental 
basis by Stumm [14] and on a practical basis by Horowitz [15]. Many envi­
ronmental processes such as adsorption, ion exchange, precipitation and even 
biological uptake occur at interfaces. Because of their large surface to volume 
ratios suspended particulates serve as the focus of these processes. Trace metals 
and hydrophobic organic substances tend to have low solubility and their trans­
port in aquatic systems is governed by their ability to interact with surfaces. Also, 
the chemical form of trace metals gives clues to its origin or its bioavailability. 
For example, a common technique is to fractionate the particulate trace metals 
into the following partitions: crystalline, bound to oxides, and bound to organic 
matter. The crystalline fraction may be considered as having a geologic origin and 
generally unavailable for biological uptake. The fraction bound to oxides may 
have been adsorbed from the solution and hence recently mobilized and more 
likely to be from an anthropogenic source. The fraction associated with the 
organic coatings of the particulates may be biologically active. Particulates can 
serve as scavengers of contaminants by removing material from the dissolved 
phase. Scientists can exploit this property in using deposits of sediments as inte­
grators of environmental quality. 

The physical behavior of particulates in aquatic systems is most strongly gov­
erned by the particle size. The Stokes settling velocity of a 0.5 mm sand grain 
is 0.21 m/s while that of a 5 J.lm clay particle 2.1 x 10-5 m/s. The distribution 
of suspended sediment shown in Fig. 5 is obviously a simplification. In a fluvial 
system with moderate turbulence, the sand sized particulates settle rapidly and 
only become resuspended during periods of high flow while the clay sized par­
ticulates may never settle. In lakes lower levels of turbulence and long residence 
times result in a general downward flux of particulate matter and a buildup of 
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sediments at the bottom. In all but the most extremely oligotrophic lakes, signifi­
cant amounts of organic matter would be expected in these sediments. Biological 
decomposition and the lack of an external source of oxygen cause the reduction 
of major elements such as nitrogen, sulfur, and iron. This in turn results in sig­
nificant variations in the ecosystem over a very short change in depth. Seasonal 
turnover may bring oxygen to the upper layers of bottom sediment and cause other 
transformations. See Wetzel ( 1983) for further discussion. In estuaries, flowing 
fresh waters tend to have a higher sediment load than ocean water. As the current 
fresh water decreases, sediment is deposited. Tidal induced currents play a major 
role in the deposition of these sediments. 

Flow Measurement 

The velocity-area method for the measurement of discharge in a natural stream 
channel is a basic tool of hydrology [16]. The ideal point at which the mea­
surement is to be taken should be a straight section of channel with no irregular 
obstructions to flow. The section should be free of eddies, reversed currents, or 
other irregular flow patterns. Shallow streams can be easily accessed by wading 
across the stream. Deeper streams may be measured from a bridge. Permanent 
stations have a cable car assembly to convey the personnel and equipment across 
the stream. Flow is measured by dividing the cross section into segments and 
measuring the average velocity in each section. A rectangle is used to approxi­
mate the shape of each segment. Total flow is calculated by Eq. (1 ). 

Q= Evidiwi 

where: 

Q = total stream discharge, ft3 /s or m3 /s 

Vi = average velocity in subsection, ft/s or m/s 

di = depth of subsection, ft or m 

Wi = width of section ft or m 

(1) 

A variety of instruments are available for velocity measurement {Table 4 ). 
The so called Price meter consists of a wheel of cone-shaped buckets which 
rotate in a horizontal plane. The rate of rotation is proportional to flow velocity. 
The Pigmy meter is a miniaturized version of the Price meter. Another variation 
is the propeller meter. These devices are designed with a combination of fins and 
counterweights to assure that they are properly aligned with the flow of water. 
As the bucket assembly or propeller rotates it emits a small electric signal. The 
rate of rotation is detected either by a set of headphones or an electronic module 
which translates the rotation directly into velocity readings in a digital display. A 
more modem current meter design is the electromagnetic current meter in which 
a capacitor is contained in a probe. The flow of water past the probe induces 
an electric current. An electronic device converts the current to a velocity. All 



20 

Table 4. Velocity meters 

Name 

Model2100 
Price meter 
Pygmy meter 
4150 Flow Logger 

Model260 

Supplier 

Swolfer 
Teledyne Gurley 
Teledyne Gurley 
Isco 

Marsh-McBimey 

Measurement principle 

Propeller 
Rotating bucket 
Rotating bucket 
Depth - pressure transducer 

velocity - Doppler ultrasonic 
Electromagnetic 

Thomas E. Barnard 

Notes 

Electronic readout 0.1-25 ft/s 
0.2-25 ft/s 
0.05-3.0 ft/s 
Calculates discharge based on 

readings 
-5 to 20 ft/s 

of these meters can be used to measure velocities between 0.5 and 20 ftls. The 
current meter is attached to a calibrated wading rod. This rod has a sliding scale 
which assists the operator in determining depth and in setting the meter to the 
proper depth. For deep depths where measures are taken from a bridge or a cable 
car, the meter is suspended from a cable. 

Chemical tracers are used for both velocity measurements and for analysis of 
flow paths in complex flow patterns such as seepage from waste piles or founda­
tions drains. Tracers are ideal where for small flows and where access is difficult. 
The selection of a tracer is based on two criteria. First they should not interact 
with the water solution and secondly they should be easily detectable over large 
concentration rages and at low levels. Materials used as tracers include sodium or 
potassium which are detected with ion selective electrodes, radioactive substances 
such as 180 or deuterium eH) and, fluorescent dyes such as Rhodamine. The 
tracer is introduced into the stream in a concentrated form. The measuring point 
should be located at point far enough downstream to insure adequate mixing in 
the plane perpendicular to the flow direction. 

The stream discharge is calculated using the mass balance analysis in Eqs. (2) 
and (3). 

Mn = Mdn = C X V = LCcJn,iLit (2) 

where 

Min mass of tracer placed in stream, J.lg 
Mdn = mass of tracer detected at point downstream, J.lg 
C = average concentration, J.lg/1 
V volume, 1 
CcJn, i concentration of tracer at point downstream at time i, J.lg/1 
Lit time step between concentration measurements, s 

since: 

Q= V/t 

(3) 
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where: 

Q = discharge in 1/ s 

The concentration of the tracer as it moves downstream is shown in Fig. 7. 
Note that as the trace moves downstream, the shape of the distribution is distor­
ted by the longitudinal dispersion in the stream. The total area under the curve 
(in units of j.tg-h/1) is diluted by an increase in discharge. An alternative method 
is to pump a concentrated solution of the tracer into the stream at a constant 
rate. The concentration is measured downstream until it reaches an equilibrium 
level. The discharge is calculated by Eq. ( 4 ). 

Q = q { Ct - Ceq } 
Ceq- Cb 

where: 
q flow of tracer 
c1 concentration of tracer in injection 
Ceq equilibrium concentration of tracer at sample point 
cb background concentration of tracer 

(4) 

See Kilpatrick and Cobb [ 17] for further discussions on the use of chemical 
tracers for flow measurement. 

For improved accuracy and ease of measurement engineered control sections 
are usually place in locations where long term flow measurements are desired. 
Control sections employ the concept of critical flow. In open channels the flow of 
water through a given cross section is either controlled by conditions occurring 
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Fig. 7. Concentration of tracer downstream of injection point 
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upstream or downstream. When flow is controlled by downstream conditions, it is 
referred to as subcritical flow. Supercritical flow is flow controlled by upstream 
conditions. The transition between these states is referred to as critical flow. 
It occurs when the minimum amount of hydraulic energy is moving through a 
given cross section and is noted by observing a standing wave. Devices that cause 
flow to achieve critical flow are very accurate tools for measuring flow. In all 
cases a relationship is developed between the upstream elevation of the surface 
of the water and the discharge through the control section. Two common types 
of control sections that are used in open channel flow measuring are weirs and 
flumes. 

Sharp crested or thin-plate weirs are structures where the nappe separates 
from the weir. Rectangular weirs can extend across the full channel width or 
may be contracted. V-notch weirs can be constructed at any angle but 45, 60, 
and 90° are the most common. The selection of the type of weir is based upon 
the range on flows that are anticipated as well as other factors such as the channel 
geometry. The basic equations describing the flow over weirs are presented in 
Eqs. (5)-(7). The terms are defined in Fig. 8. The weir coefficient, Cw includes 
factors that account for friction losses and correct for units. Values for Cw are 
list in Table 5. For low flows Cw is a function of H. More accurate determi­
nations of Cw should be obtained by calibration [ 16]. H, the elevation of the 
surface of the water above the crest of the weir is measured in feet for English 
units and meters for SI units. The minimum flows are based on a value of H of 
0.2 ft. At flows below these values the nappe begins to cling to the crest and the 
flow equations are no longer valid. The maximum flows are usually determined 
by the maximum depth of flow that can be allowed in the stream channel. See 
Grant [19] for a more detailed discussion on the use of weirs in flow 
measurement. 

(5) 

c:. c: .!2 0 u ·~ 
5: 5: 
c: c e e E e 
~ : e e 
"i "i 
~ ~ 

Fig. 8. Sharp crested weirs showing dimensions used in Eqs. (5)-(7). Contracted sharp crested weir 
is on left, V-notch weir is on right [18] 
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Table 5. Discharge coefficients for sharp crested weirs 

Discharge in ft3 /s 

Equation Weir Minimum 
Type number coefficient discharge1 

Rectangular 
full width 11.5 3.33 0.298 
contracted 11.6 3.33 0.286 

V-notch 
45° 11.7 1.035 0.019 
60° 11.7 1.443 0.026 
90° 11.7 2.50 0.077 

1 Wjs per foot of width for rectangular, ft3 /s for V-notch 
2 m /s per meter of width for rectangular, m3 /s for V-notch 

Q = Cw(b- H)H312 

Q = CwHs;z 

23 

Discharge in m3 /s 

Weir 
coefficient 

1.84 
1.84 

0.57 
0.80 
1.38 

Minimum 
discharge2 

0.0277 
0.0266 

5.38 X 10-4 

7.36 X 10-4 

2.18 X 10-3 

(6) 

(7) 

For larger channels an natural rivers, broad crested weirs are often constructed 
with concrete. Because there is no separation of the flow from the surface of the 
control section, placement of a weir results in less alteration of natural flow 
conditions. The geometry can have a rectangular profile or it can have a curved 
upstream or downstream edge. The general relationship between surface elevation 
and flow is described by Eq. ( 5) although Cw is a function of the smoothness of 
the weir and the overall channel geometry. Variations on the basic broad crested 
weir have been developed in order to insure similar flow conditions over a larger 
range of flows. These include the Crump weir and flat-V weir. See Shaw [18] 
for further discussions. 

The Parshall flume has been used extensively for flow measurement. It has the 
advantage of requiring a low drop in surface elevation and most suspended sedi­
ment will pass through the control section. In addition, floating objects will read­
ily pass through the flume. It is constructed so that the critical flow is achieved 
through the converging section. Large Parshall flumes can be constructed of cast 
in place or precast concrete. Smaller flumes are available from a variety of sup­
pliers and can be obtained as portable models. There are 22 standard designs 
with a flow range from 0.091/s to 93 m3 /s. They are used in locations such as 
headworks to treatment plants, irrigation channels, and inside of gravity sewers. 
Parshall flumes are rated by the throat width. Minimum and maximum flows for 
each of the standard designs are available from references such as Herschy [16]. 
As long as free flow is maintained, the discharge can be accurately measured as 
a function of h1 the upstream elevation given in Eq. (8) 

Q=Khl (8) 

where 

Q = discharge m3 /s 

K = coefficient 
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h1 =water surface elevation in converging section, m 

u = coefficient 

Thomas E. Barnard 

A variety of devices are available for measuring and recording water level. 
The simplest is the simple staff gauge. These tools are calibrated by feet 
(0.01 ft increments) or by meter (0.01 m increments) and are designed to be 
easily read when a portion of the scale is submerged. The gauges may be coated 
with a porcelain or plastic material for protection against weather. Gauges are 
attached to permanent structures where they may be read from a convenient 
location. 

Recording gauges are usually located in a stilling well. The well serves two 
functions. First it protects the recording equipment from the physical forces of 
moving ice and water and secondly it moderates short term fluctuations in wa­
ter level caused by turbulence and wave action. In older installations, a floata­
tion device is connected via a pulley and counterweight system to a recording 
device. The device can be a strip chart, punched tape, or magnetic tape recorder. 
Such devices require frequent servicing and are prone to mechanical breakdown. 
Modem equipment utilize pressure transducers to measure depth or ultrasonic sen­
sors placed directly over the water to measure the distance. These devices can be 
attached to data loggers to electronically record water levels at preprogrammed 
time increments. Note that in using engineered control sections for discharge 
measurement, the location of the water level reading is critical to the accuracy 
of the measurement. 

Permanent flow stations utilize a rating curve to convert water level readings 
to discharge. For natural channels the velocity area method is utilized to generate 
discharge measurements. Because of the geometry of most channels is irregular 
and the hydraulic properties of the floodplain are usually different from that of 
the channel rating curves tend to not be regular. Ideally, measurements taken at 
the extreme low and high flows and at regular intervals in between would be 
taken. However this is not practical. High flow readings are especially difficult 
to obtain as they may present a safety concern to field personnel. An additional 
problem is that sediment deposition, scouring and ice flows change the channel 
geometry and hence the rating curve. In order to enable the computerized use of 
the rating curve an empirical equation is fitted to the data. 

When engineered control sections are utilized, care must be taken to 
insure that the textbook equations adequately describe the flow behavior. 
Dingman [9] recommends field calibration whenever possible. The most common 
problem is extreme flows that are beyond the calibration range. Other problems 
include uneven settlement taking water level readings at the wrong locations. 

Surface Water Sample Collection 

It is difficult to make any general statements concerning the design of a net­
work of surface sample stations in the absence of consideration of study objec-
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tives. Ward and Loftis [20] presented a five step approach for the design of a 
water quality monitoring systems. This approach is consistent with the general 
model that was developed in the first section. The study objectives are the basis 
for determining the location of sampling points, schedule for sample collection, 
parameters to be qualified and the analytical procedures to be used. The number 
of samples (number of stations x sampling frequency) must be based on a valid 
statistical design as discussed by Ward and Loftis [21]. The population unit is 
usually arbitrarily defined as a standard volume (liter, gallon, etc) of water. The 
determination of whether dissolved or total (including suspended) concentrations 
should be measured as well as the use of indication parameters must be based 
on the knowledge of the environmental behavior of the constituents of concern 
and the study objectives. To overcome the temporal variability of water quality 
the use of organisms and sediment as indicators of longer term concentrations is 
encouraged. 

Sample locations are selected based on a knowledge of the general behavior 
of body of water. In fluvial systems a common location is downstream of the 
point of mixing of a side stream or a discharge. This point may be several 
miles downstream in larger streams where laminar flow condition occur. In lakes 
typical sample locations may be the midpoint of the epilimnion and hypolimnion 
in the deepest part of the lake. Using the outflow of a lake to characterize 
the general chemistry is often a poor choice because this flow generally reflects 
only the epilimnion. Sampling frequencies are again determined on the basis of 
the study objectives and the environmental behavior the constituents of concern. 
In streams typical quarterly or monthly intervals that are commonly used to meet 
regulatory requirements are probably inadequate to define trends or cycles. A bet­
ter approach may be to have defined time of sampling on the basis of flows. Such 
a scheme would sample at peak flows and during the low dry weather flows and 
would probably be a better technique for making mass balance determinations. 
In lakes a common technique is to sample during fall and/or spring turnover and 
during well stratified conditions. 

Table 6 lists equipment that is commonly used in surface water sampling. 
The table is not meant to be comprehensive. It gives one example of a piece of 
equipment that is used for common sampling activities. Small streams and shal­
low flat waters are sampled with simple hand equipment. Dippers are available 
with handles up to 12 feet for the collection of 500 to 1000 ml for the collec­
tion of samples at the surface or at a free fall point such as weir. The dipper 
is filled and the sample is poured into a sample bottle. The device is usually 
made of polyethylene for easy cleaning. Shallow depths can be sampled with the 
subsurface sampler. The sample bottle is clamped to the end of this device and 
the screw top is attached to a suction cup. A rod extends from the suction cup 
to the opposite end of the device. The bottle is lowered to the desired depth 
and the top is unscrewed by twisting the rod. After the bottle is filled the top is 
screwed back on and the bottle is lifted. The buoyancy of the empty bottle and 
the weight of the filled bottle limit the depth of collection to a few feet and the 
total length of the device to 12 feet. 
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The collection of samples of suspended sediment can be accomplished with 
a flow proportional sampler. The device is lowered into the stream with a rod 
or cable. Stabilizing fins assure that the assembly is pointed into the flow. As 
this device is lowered into a stream, water enters the nozzle at a rate propor 
tional to the stream velocity and enters the collection bottle. The sampler travels 
a vertical path from the surface to the bottom and returns to the surface while 
maintaining a constant velocity. The bottle is removed. The normal procedure is 
to collect samples in this manner at evenly spaced intervals across the stream. 
At each segment, the bottle is removed and emptied into a larger composite 
bottle. This procedure results in a flow weighted composite sample. Chapter 3 of 
the water data acquisitions manual (Interagency Advisory Committee on Water 
Data [22]) contains more details on procedures and equipment for suspended 
sediment sampling. 

Deeper samples are collected with devi~s such as the Kemmerer sampler. 
This device is an open cylinder with spring loaded end caps. It is lowered by 
rope or cable to the desired depth and a weighted messenger is allowed to drop 
down the line. The messenger trips a release and causes the end caps to snap 
shut. The Kemmerer sampler is used to obtain large volume samples of dissolved 
and suspended matter as well as biological samples. Although larger faster swim­
ming organisms will escape collection. Bomb samplers are equipped with seals 
that keep the sample chamber empty until a plunger is activated. The device is 
weighted to overcome the buoyancy effects of the empty chamber. 

Biological samples are collected from lakes with plankton nets. The apparatus 
consists of cone shaped nylon net with a detachable filter bucket at the end. It is 
lowered to a desired depth and towed horizontally. For quantitative analysis the 
amount of water entering the net is metered. Nets are available with mesh open­
ings ranging from 60-1000 J.lm. The use of this and other zooplankton collection 
devices is discussed by Wetzel and Likens [23]. 

A variety of grab and coring devices have been used for the collection of 
bottom sediments. The simple core sampler consist of a stainless steel tube (typi­
cally 2" dia. ), a sharpened nosepiece, plastic liners, and a core catcher. In shallow 
waters, the rod is attached to a rod and can be pushed into the bottom sediment. 
In deeper waters, the device is attached to a cable and dropped. Stabilizing fins 
maintain a vertical orientation and attached weights can increase the penetration 
into the sediment. The core catcher prevents sediment from escaping the sampler 
when it is raised. Because considerable force may be required to raise the device, 
a winch may be necessary. The Ekman dredge is one of the many grab samplers 
that are available. This device has spring loaded jaws that are retracted when the 
device is lowered to the bottom. A weighted messenger is dropped and it trips 
the jaw release. Sediment samplers generally do an adequate job of collecting 
organic and fine inorganic sediments. All have some degree of problems asso­
ciated with sample disturbance. See Mudroch and McKnight [24] for a more 
detailed discussion bottom sediment collection. 

Automatic samplers are frequently used for the collection of time or flow 
weighted composite samples in small streams and in waste flows. These devices 
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consist of a peristaltic pump either a circular array of small bottles or a large 
bottle. The bottles can be pre-filled with the appropriate preservative. Advanced 
models store the sample bottles in a refrigerated chamber. The devices are pro­
grammed to collect samples at timed intervals. Advanced models are connected 
to a flow measuring device and a computer sets the duration of sample and hence 
the volume of sample, at a value proportional to the flow. For each sample cycle, 
the line is rinsed with source liquid and then the appropriate sample volume is 
pumped to the collection bottle. When operating in discrete sample mode, the 
bottle array is then rotated one step in preparation of the next sample cycle. 

While automatic samplers offer convenience, errors are associated with the 
sample intake and with contamination. The intake should be located downstream 
of a zone of natural mixing and the pump should be operated so that intake 
velocities are the same as those in the stream channel. As shown in Fig. 5 in 
flowing water suspended sediment concentration is a function of depth. Intakes 
placed too shallow will cause low measurements while intakes placed at the 
bottom of the channel with high intake velocities will scour settled sediment 
and cause erroneously high measurements. The most common cause of leaching 
organics from sampling equipment is the addition of plasticizers that are added 
to make plastics flexible. Hence the tubing of the peristalic pumps is the most 
likely source of sample contamination. Tygon and Teflon are the most commonly 
used tubing materials. See Newburn [10] and references cited therein for further 
discussions on automatic sampling equipment. 

Surface Soil Sampling 

Soil is a medium that serves a large number of physical, chemical and biolog­
ical functions in the environment. It provides a base for building foundations, 
roads and slopes. It temporarily stores water in surface depressions and in pores 
and then conveys it across the surface or downward to plants and the ground­
water table. It provides a surface for a variety of chemical reactions that may 
retain or alter nutrients and contaminants before they move in the biosphere and 
the groundwater table. Soil provides the habitat for a tremendous assortment of 
microbes, plants and animals. Finally dissolution of soil minerals through weath­
ering reactions provides the source of many constituents of ground and surface 
water. 

Surface soil is the upper layer of the earth where parent geologic material 
are transformed into a series of layers or horizons. Environmental scientists must 
understand the nature of the soil system and how soil processes affect environ­
mental quality. This section discusses investigations into the physical, chemical, 
and biological properties of shallow surface soils; defined as the soil that can be 
sampled with hand tools. The sampling for and the determination of geotechnical 
properties of soils is not covered here. Investigations into deeper geologic mate-
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rials that require power equipment are covered in the section on deep soil and 
groundwater sampling. 

Study Objectives 

The study objectives serve as the basis for selection of specific parameters through 
the process described earlier. Environmental investigations in soil are generally 
concerned with determining how soil affects some process such as the move­
ment or the transformation of a constituent. For the purposes of discussion the 
parameters of soil that are typically quantified in environmental investigations are 
organized in Table 7. Because of the heterogeneous nature of soil most of the 
parameters provide only indirect information concerning the environmental pro­
cesses under investigation. Studies that utilize the standard sampling and analysis 
procedures without a clear understanding of what they are measuring will have 
a difficult time resolving the study objectives. 

Siting studies are frequently conducted to determine the suitability of the soil 
to support some function. These studies focus on a particular soil property listed 
in Tables 7 and 8. For example, if a site is to be used as leachfield for the 
subsurface disposal of effluent from a septic tank, then the hydraulic conductivity 
of the soil is the most important parameter. Additional parameters would be 
the surface slope and the distance between the proposed disposal zone and the 
groundwater table. If a soil was being investigated as a barrier to contain waste 
then in addition to the hydraulic conductivity, a description of the ability of 

Table 7. Typical soil properties that are utilized in environmental investigations 

Category Parameter Environmental significance 

Particle size 

Bulk 

Hydraulic 

Geotechnical 

Visual 

Soil profile 

Chemical 

Biological 

Particle size distribution, texture 
class, uniformity coefficient, 
effective size 

Porosity, void ratio, bulk density, 
moisture content 

Slope, infiltration capacity, perme­
ability, distance to groundwater, 
effective porosity, specific yield 

Compaction ratio, Atterberg limits 

Color, mottling, facies codes 

Soil horizons 

Mineralogy, 
nutrient level, 
cation exchange capacity, 
fraction of organic matter, 
contamination concentration 

Vegetation cover, micro fauna, 
bacterial activity 

Used to describe distribution of particle sizes 

Ratio moisture and gas to total soil volume 

Defines ability of water to move into and 
through soil matrix 

Defines response of soil to mechanical stress 

Indicates mineralogy, degree of oxidation, 
structure of pores 

Define extent of pedogeneic processes 

Describes chemical makeup of soil solids 
and the extent of interaction between 
solid and liquid phase 

Describe the extent and rate of biological 
activity in soil matrix 
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Table 8. Site use, soil functions and sampling objectives 

Soil properties to be evaluated 

Facility Soil Function Field Laboratory 

Building, Provide base Slope, distance to groundwater Texture, geotechnical properties 
roadway 

Leachfield Liquid waste disposal Slope, distance to groundwater Moisture level, permeability 

Texture, mineralogy, exchange/ 
adsorption capacity, permeability 

Landfill Contain contamination Distance to groundwater 

Park Support vegetation Slope, profile Fertility, texture 

the soil to chemically interact with the waste would become part of the study 
objectives. Parameters such as surface mineralogy, cation exchange capacity and 
fraction of organic matter would be measured. The study could be conducted on 
the native soil or on soil that will be imported to the site. 

In extent of contamination studies the total concentration of a constituent is 
usually measured first. Additionally two other issues must be addressed. The first 
is the determination of which phase (gas, liquid, or solid) the contaminant resides. 
The solid phase may be further divided into the fractions that are absorbed, 
precipitated and in the primary minerals. The second issue is the background level 
of the constituent. For synthetic organic chemicals the presence of any amount is 
usually regarded as contamination. However, for metals and naturally occurring 
radionuclides, the need to determine background levels is also a data requirement. 
This is accomplished by an appropriate statistical design of the sampling and 
analysis program. 

The study of the potential for migration of contamination for migration is 
based on the potential transport pathways. If wind is the mechanism then only 
the contamination attached to the surface of the smallest soil particles will move. 
If groundwater is the mechanism then only the fraction of the contaminant that is 
soluble may move. The rate of movement of groundwater must be determined. In 
addition the ability of soil solids to adsorb or otherwise interact with the dissolved 
contaminant must be quantified. If the transport mechanism is biological uptake 
then the ability of indigenous plants or other organisms to uptake the contaminant 
is an information requirement. 

Background Information 

The analysis of soil properties can be divided into three scales as shown in 
Table 9. On a micro scale soil is a heterogeneous matrix that contains multiple 
phases as shown in Fig. 9. Solid particles of different chemical structure, size · 
and shapes are interspaced with voids that contain water and gas. Properties are 
expressed on an unit expressed on a unit volume ( cm3 ), unit mass (kg on a dry 
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Table 9. Scales of soil properties 

Study Unit 
Scale dimensions name 

Micro 3 Ped 

Meso Pedon 

Macro 2 Soil series 

Solid 

Typical 
umt size 

I kg 
I cm3 

0.5-2 m 

1- 100 ha 

Gas 

Example parameters 

Porosity 
Moisture content 
cation exchange capacity 

Profile 

Soil series 
Slope 
Infiltration capacity 

Moisture 

Fig. 9. Schematic diagram showing phases in soil matrix 
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weight basis) or may be unitless. The meso scale properties are based on the 
concept of soil genesis. It is concerned with the expression and properties of soil 
layers or horizons. The basic unit is the soil pedon which is the smallest volume 
that can be called a soil. It extends from the soil surface to the lower limit of 
pedogenically altered geologic material. The lateral dimensions are large enough 
to permit study of the nature of any horizons present (typically 1 m2 ). The macro 
scale has a fixed vertical dimension equal to the depth of soil. The basic unit, the 
soil map unit which is the smallest area of soil with the same profile, vegetation 
cover and, surface slope. 
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As a result of its complex nature a variety of parameters have been devel­
oped to describe soils. Although these parameters provide only indirect answers 
to the study objectives, environmental investigators rely heavily on the sampling 
procedures and test methods developed in the geotechnical and soil science disci­
plines in conducting their studies. Geotechnical tests measure how soil responds 
to mechanical stress while soil science tests are concerned with the ability of soil 
to support vegetation under various agricultural practices. It is important that the 
environmental scientist understand the definitions of these parameters, how they 
are measured, and how they can be used towards the understanding of overall 
environmental processes. It is also important that environmental scientists under­
stand the classification systems that have been developed to describe soil. 

Soils are classified by their particle sizes and the distribution of sizes. Particles 
larger than approximately 0.074 mm can be sorted by a seive analysis. Smaller 
particle sizes are determined by hydrometer analysis of a dilute suspension of the 
soil. The terms gravel, sand, silt and, clay are applied to various ranges of particle 
sizes. Because natural soils contain a distribution of particle sizes, two parameters 
have been developed to describe the distributions. The uniformity coefficient, Cu 
is the ratio of the particle size that is 60% finer by weight d60 to the grain size 
that is 1 0% finer by weight, d 10: 

(9) 

As Cu approaches unity, the closer the particles are in size and the volume of 
voids becomes larger. Conversely, large values of Cu indicate a greater distribu­
tion of particle sizes and because the smaller particles will situate themselves 
in between the large ones, the overall volume of voids would be expected to be 
less. The USDA textural classification is based on the distribution of particles 
less the 2 mm in diameter. The textural name is based on the fractions of sand, 
slit and clay in the soil as shown in Fig. 10. 

Bulk properties describe the overall density and the ratio of gas and moisture 
to total volume. Moisture content is often very dynamic in soil. Hydraulic proper 
ties describe the ability of water to move through the soil matrix. Infiltration rate 
is the rate at which water enters the soil from its surface. Permeability quantifies 
the rate at which a fluid moves through the soil matrix under pressure. Effective 
porosity is a measure of the pores that are connected and available for fluid flow. 
Specific yield is the amount of water that will drain from a saturated soil due to 
the force of gravity. 

The geotechnical parameters describe the response of a soil to mechanical 
stress and changing moisture conditions. Soils in which the adsorbed water and 
particle attraction work together to produce a body of which holds together and 
deforms plastically are known as cohesive soils. The soils that do not exhibit 
this behavior are known as cohesiveness. These soils generally contain larger 
size grains and the response to stress in dependent on interactions between par 
tides. The degree of cohesiveness and the extent of plastic behavior is a function 
of the clay and moisture content. The Atterberg limits describe the moisture 
content at which soil exhibits specific behavior. Environmental scientists must 
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ML 
f--"--\---.---,---+--.--.--.---,----.---Y 100 

100 90 80 70 60 50 40 30 20 10 0 

Sand Percent sand Silt Sand Silt 
Percent sand 

SOIL SCIENCE CLASSIFICATION ENGINEERING CLASSIFICATION 

Symbols for engineering classification system 

CH inorganic clays of high plasticity 
CL inorganic clays of low to medium plasticity 
ML inorganic silts and very fine sands 
SC clayey sands, poorly graded sand-clay mixtures 
SM silty sands, poorly graded sand-clay mixtures 
SP poorly graded sands, gravelly sands little or no fines 

Fig. 10. Soil textural classification systems. Soil science system developed by US Department of 
Agriculture and the engineering system is from the American Society of Testing and Materials. 
Adopted from [25] 

appreciate the fact that as soils are subjected to stress they can release water 
through consolidation and the hydraulic properties will change. This in turn has 
impact on the transport of constituents through the soil. 

Soil particles form larger aggregates with planes of weakness known as 
peds [26]. The study of the structure of soil at this level and smaller is called soil 
micromorphology. Visual observation of the soil is used to understand the chem­
ical behavior of the soil matrix. Microscopes are used to view features smaller 
than 200 J.!. The abundance, shape and color of features such as voids, cutans, 
and mottles are noted. 

The mineral structure of soil particles have been divided into three broad 
categories in Table 10. Primary minerals were formed when the original magma, 
molten at very high temperatures, was cooled. Two types of magma are recog­
nized based on their contents of silica. The first is granitic having a Si02 content 
greater than 60% and the second is basaltic with less than 50% Si02. Primary 
minerals are very stable in the environment at the surface of earth today. How­
ever, physical and chemical processes are slowly breaking them down through a 
process referred to as weathering in Equation (10). 

primary 
minerals 

+ carbonic acid, 
organic acids 

--+ secondary 
minerals 

+ soluble 
components (10) 
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Table 10. Categories of minerals found in soil 

Category Examples Environmental significance 

Primary Micas Initial source for groundwater and secondary mineral constituents 
Feldspars generally inert from environmental point of view silica is the 
Silica most inert 

Secondary Silicate clays Clays have high ion exchange capacity oxides have high absorp-

Organic 

Al, Fe oxides tion capacity swelling behavior will decrease permeability 
Gypsum 

Humic substances Formed by incomplete degradation of organic materials acid­
base, ion exchange and absorptive properties effect contaminant 
transport 

Carbonic acid originates from the dissolution of C02 in water and its 
hydrolysis while the decomposition of organic matter serves as the source of 
the organic acids. The weathering process results in the release of the more solid 
elements such as Na and K while the less soluble elements (Si, Fe, Al) remain in 
the reformed three dimensional structure of the secondary minerals. The fate of 
elements of intermediate solubility (Ca and Mg) depends on the many factors 
such as temperature, water, and the structure of the primary minerals. 

Secondary minerals are of a greater interest from an environmental point of 
view because: 1) they have a large surface area, and 2) the chemical structure 
of the surface is such that there is a great amount of interaction between the 
soil solution and the mineral surface. The specific surface area of clay size par 
ticles range from 1 m2/gm for a 2 Jlm particle to over 760 m2/gm for smectites 
and vermiculites. Isomorphous substitution of Al+3 for Si+4 and Mg+2 for Al+3 
in the lattice of clay minerals and substitution of dissociable -OH for 0 at the 
edges of the particles results in a net negative charge at the surfaces. This surface 
charge is balanced by an excess of cations from the soil solution. These cations 
are readily exchangeable and hence has a great impact on the chemistry of the 
solid solution. 

The structure of silicate clays consist of three dimensional layers of Si, Al, 
and 0. Kaolinite is an example of a 1: 1 clay. It is made of alternating lay­
ers of tetrahedral and octahedral sheets to from hexagonal particles. It's surface 
charge and hence its ability to flocculate is largely a function of the pH and con­
centration of cations in the soil solution. Montmorillonite is an example of a 
2 :1 clay. It has an octahedral sheet coordinated with two tetrahedral sheets. 
Hydrated cations and water molecules can become strongly bound between layers 
resulting in the shrinking and swelling behavior of montmorillonite. 2 : 1 clays 
typically have a greater charge than the 1 : 1 clays. A typical cation exchange 
capacity for Montmorillonite is 100 meq/gm [27]. 

A large number of crystalline aluminium and iron hydroxides, oxyhydroxides 
and oxides are found in soils. They exist in numerous chemical forms ranging 
from amorphous Al(OH)3 and Fe(OH)J to the stable minerals such as gibbsite 
(Ah03) and goethite (Fe203) [28, 29]. The oxides are formed by the precipitation 
of hydroxides followed by slow dehydration and rearrangement or polymerization 
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reactions. Aluminium and iron oxide minerals are generally found in the clay 
sized fraction of soils or as coating layers of clays or primary minerals. The 
environmental significance of the oxides is the absorptive behavior that is a result 
of the surface charge. In the crystalline structure, the outermost oxygen position 
can be occupied by either 0, -OH, or H20. These functional groups undergo 
ionization reactions H+ and oH- ions in the soil water and result in a net 
surface charge that is a function of pH. As a result oxides can have a positive 
or negative surface charge. The charged surfaces undergo adsorption/desorption 
reactions with nutrients (NH! and PO~-) and many environmental contaminants 
that exist as charged species. 

Organic materials in soil consist of a hetrogeneous mixture recognizable plant 
debris; macro molecules such as polysaccharides, proteins and lignins and; humic 
materials. Microbial action removes the decomposable portions of the material 
leaving behind a relatively stable substance called humic material. Environmental 
investigators are interested in humic materials because of their ability to inter­
act with other soil constituents. Because its structure defies characterization, it 
is frequently divided into three categories with operational definitions. Fulvic 
acids are soluble in acid and basic solutions are have a molecular weight less 
that 10 000. Humic acids are insoluble in acid and soluble in base and have a 
molecular weight of 10 000-100 000. Humin is insoluble in acid or base and 
has a molecular weight greater than 100 000. Humic materials contain carboxylic 
and phenolic functional groups which provide acidity and undergo complexation 
reactions with cations in the soil. Parameters such as exchangeable acidity are 
used to quantify this behavior. A second characteristic is the ability of soil organic 
matter to adsorb hydrophobic substances such as those containing chlorine. 

Although soil may be considered as saturated (no gas) or dry (no moisture), 
in the natural environment all three phases exist at measurable levels. Soil gas 
tends to have higher levels of carbon dioxide and lower levels of oxygen than the 
atmosphere. In zones of higher moisture and biological activity it is often void 
of oxygen. Soil water tends to have a much higher ionic strength than natural 
surface waters. In addition soils can have microenvironments where radically 
different soil properties exist. 

Natural soil forms horizons as part of the pedogenic process. A soil hori­
zon is "a distinct layer of soil, approximately parallel to the soil surface with 
characteristics produced by the soil forming process" [30]. The definitions of the 
major horizons are presented in Table 11. Subdivisions of the major horizons are 
designated with Arabic numerals. Transitional horizons are also defined. Mature 
soils generally have 0, A, B and C horizons. E horizons are frequently found in 
forested soils. Immature soils are lacking or have incomplete expression of one or 
more horizons. The process of soil formation involves 1) the buildup of organic 
matter, 2) the weathering of the primary minerals accelerated by organic acids, 
and the build up of secondary minerals such as clays and oxides. The pedogenic 
process is affected by factors such as age of soil, primary minerals, and climate. 

The basic unit of soil science is the padon. It is defined as the smallest 
volume that can be recognized as a soil individual. Its lower limit is the vague 
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Table 11. Definitions of soil horizons (adopted from [30]) 

Category 

Organic 

Mineral 

Name 

0 

A 

B 

c 

Description 

Organic horizons of mineral soils include horizons (I) formed or forming 
above the mineral part of mineral soil profiles: (2) dominated by fresh or 
partly decomposed organic material: and (3) containing more than 30% 
organic matter if the mineral fraction has no clay. Intermediate clay con­
tent requires proportional organic matter content equal to 20 + (0.2 x % 
clay). 

Mineral horizons consisting of (I ) horizons or organic matter accumulation 
formed or forming at or adjacent to the surface; (2) horizons that have 
lost clay, iron or aluminum, with resultant concentrations of quartz or 
other resistant minerals of sand or silt size; or (3) horizons dominated by 
I or 2 above but transitional to an underlying B or C concentration 

Horizons which feature one or more of the following; (I ) an ill uvial concen-
tration of silicate clay, iron, or aluminum alone, or in combination, (2) 
a residual concentration of sesquioxides or silicate clays, alone or mixed 
that has formed by means other that solution and removal of carbonates 
or more soluble salts, (3) coatings of sesquioxides adequate to give a 
conspicuously darker, stronger, or redder colors than the overlying and 
underlying horizons in the same sequm; or ( 4) an alteration of material 
from its original condition in sequm lacking conditions I, 2, and 3 that 
obliterates original rock structure, that forms silicate clay, liberates oxides, 
or both, and that forms a granular, blocky, or prismatic structure 

A mineral horizon or layer excluding bedrock, that is either like or unlike 
the material from which the solum is presumed to have formed, relatively 
little affected by pedogenic processes, and lacking properties diagnostic 
of A or B. 

E Mineral horizon in which the main feature is loss of silcate clay, iron, alu-
minum, or some combination of these, leaving a concentration os sand 
and silt particles of quartz or other resistant materials 

R Hard bedrock including granite, basalt, quartzite and indurated limestone or 
sandstone that is sufficiently coherent to make digging impractical 

and somewhat arbitrary limit between soil and "not soil". The lateral dimensions 
are large enough to permit study of the nature of any horizons present. The soil 
profile is defined as the vertical exposure of the horizons of soil. This inspection 
will give an indication of the heterogeneity of the soil and help to determine 
sample locations. 

Numerous systems for classification of soils have been developed [26]. The 
classification system used in the United States is described in Soil Taxonomy [30]. 
This system has evolved under the direction of the Soil Conservation Service to 
a hierarchy that considers the geologic origin, mineralogy, moisture condition, 
vegetation, and pedogenic processes. Table 12 lists the six levels of classification 
used in this system. The highest level is order while the lowest is series. 

Maps of soil series are available in the United States in scales ranging from 
1: 15 840 to 1:24 000. Modem soil maps are printed on aerial photographs and 
are grouped by counties. The associated text contains a description of the char­
acteristics and suitability of each series. Soil maps are an excellent source of 
information for preliminary environmental studies. They can be used for an ini-
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Table 12. Levels of classification in US Comprehensive Soil Classification System 

Category 

Order 

Sub order 

Great groups 

Sub group 

Family 

Series 

Examples 

Spodosols 
Vertisols 

Alb 
Fluv 

Carob 
Torr 

Typic 
Vertic 

Fine loamy 
Carbonatic 

Pocono 
Chippewa 

Interpretation 

Acid ashy gray sands over a 
dark sandy loam shrinking 
and swelling dark clay soils 

Presence of albic horizon flu­
vial deposit 

presence of cambric horizon 
usually dry 

Represents central concept of 
great group has properties 
of vertisol 

15 - 35% clay, > 15% sand 
> 40% carbonate 

Deep, well drained, gently 
sloping deep, poorly drain­
ed, nearly level 

Type of classification 

Soil forming process, presence/ 
absence of major diagnostic 
horizons 

Soil moisture, parent materials, 
organic content 

Degree of expression, base sta­
tus, temperature, moisture 
status 

Intergradations to other great 
groups 

Textural, mineralogy and temper­
ature classes 

Arrangement of horizons, color, 
texture, structure 

tial assessment of the suitability of the soil to support various functions such as 
those listed in Table 7. Karlen and Fenton [31] discuss the use of soil maps for 
planning of soil sampling. It is noted that soil mapping is generally focused on 
undisturbed soils. Areas where urban development or surface mining has radically 
altered the soil are identified but no other information is provided. 

Soil Sample Collection 

Soil sample designs must be based on the knowledge of the distribution of the 
parameters of concern. In most cases the designs are stratified with depth. For the 
initial phases of the investigation, the most obvious stratification scheme is to use 
the major horizons. In disturbed soils the vertical strata are selected arbitrarily. 
A one meter square is often selected as the soil unit. In order to reduced variance 
it is common to subsample with the selected unit and composite subsamples. The 
procedure for compositing must consider potential alteration of soil properties. 
The vertical extent of sampling depends on the study objectives. For example soil 
fertility studies deal primarily with the A horizon while studies involving water 
movement would focus on the B horizon where permeability would probably be 
reduced. 

The sampling equipment and collection procedures for surface soils have been 
developed by the soil science and geotechnical engineering fields. Special adap­
tations have been made for environmental considerations. The commonly used 
tools are listed in Table 13. The table is not meant to be comprehensive. It gives 
one example of a piece of equipment that is used for common sampling activi­
ties. There are two basic approaches to soil sampling. In the excavation method, 
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Table 13. Tools for collecting soil and participate material samples 

Name Supplier Material Comments 

Hand tools 
Shovel Numerous Iron, stainless steel Used for preliminary excavation 

Scoop Weaton Polyethylene Variety of sizes available 

Trier Weaton Stainless steel Extract plug from pile of material 

Bucker auger AMS Steel, hardened high car- 11-7" dia., models for regular, 
bon steel tips sand, mud 

Core Clements Hardened stainless steel, May be pushed with T -handle, 
PETG tubes driven with mallet or pushed 

with foot pedal 

Sludege sampler Weaton Stainless steel 1000 ml capacity, 6' long handle 

Power tools 
Backhoe Numerous Hardened steel Provide access for observation or 

hand sampling 

Flight auger AMS Steel, hardened tungsten 11-2" dia. solid, 3" hollow, 
carbon steel tips 

a trench is dug with a shovel or a backhoe in order to provide across to the 
sample depth. Discrete samples are collected with hand tools after scraping away 

disturbed soil. In the probe method, an auger or coring tube is pushed, screwed 

or driven into the soil to the prescribed depth. The tool retains the sample as 
it is withdrawn. The probe method is faster and results in less disturbance of 
the sample as well as the site. The excavation method is required for a visual 
analysis of the meso scale properties of the soil such as delineation of horizons. 

Also, wedges of sand or clay that constitute only a small portion of the total soil 
volume yet may have a great environmental significance are often missed with 
probing. 

The shovel is a basic tool for soil sampling. Manufacturers have made special 
adaptations to the standard shovel. They are available in shapes that facilitate 

digging a deep, narrow hole. Sampling shovels are made of stainless steel and 

can be coated with rubber. Scoops are available in a variety of shapes, sizes and 

materials. The size should be selected so that one scoop full will contain more 
than one sample volume. Typical materials are stainless steel and polyethylene. 

When granular material is stockpiled it forms a cone shaped pile. Large par­

ticles tend to role to the bottom of the pile. Collection of a representative sample 

requires special consideration. The first step is to have a clear definition as to 

what constitutes the population and population unit as discussed in the first section 

of this chapter. If the unit to be sampled is large and the particle sizes are larger 

than l" then sub-sampling procedures should be implemented. If the material is 

relatively homogeneous and the particle sizes are small then a device such as the 
trier can be used. This device was developed for sampling of grains and requires 

a small amount of cohesiveness. It is pushed into the material, rotated 180° and, 

retracted. This results in the collection of a plug of material. 
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A large variety of augers and coring tools are used to collect soil samples. 
Augers are attached to a T -shaped handle to facilitate screwing the device into the 
soil. They are typically made of stainless steel with tungsten coated high carbon 
bits. Outside diameters range from I ! to 7 inches. Models with larger openings 
are used for mud and other cohesive materials. Extension rods with threaded 
ends can be added to allow the device to be screwed any depth although the 
required effort increases significantly beyond 6 feet. Flighted augers in diameters 
of I ! and 2 inches can be driven vertically or horizontally. The most common 
application is to prepared a hole for the collection of soil gas or moister or the 
placement of an instrument. Collection of soil samples with a hollow stem auger 
is more appropriate. Coring tubes can be pushed, screwed or, driven into the soil. 

Sample disturbance is always a concern in soil sampling. While disturbance 
can be minimized, it can never be eliminated. Because removing a sample 
involves release of compressive forces and motion, there will be some alteration 
to the void structure. Properties that involve the void structure such as porosity 
and permeability and constituents that are partitioned in the void spaces such as 
moisture and volatile organcis are suspectable to alteration. Some laboratory pro­
cedures specify that a sample maintain its original orientation from the point of 
collection until the analysis is completed. The level of effort required to reduced 
disturbance depends on the parameters being measured and the laboratory proce­
dure that is used. In the excavation method, disturbance is reduced by removing 
material that has been scraped, compacted or otherwise effected by the excava­
tion. Small hand tools are then used to select the sample from the unaffected zone 
and quickly placing the sample in its container. In the probing method most of 
the disturbance occurs when the same is extruded from the core or auger. Most 
collection procedures specify that only material from the inner zone that has not 
touched the surfaces of the device be placed in the sample container. Samples 
can be removed from coring tubes with plungers. While this action maintains the 
core as a single unit, the removal compresses the core and will distort the micro 
structure. An alternative technique is to collect the sample in an internal sleeve. 
This sleeve is removed from the device and the ends are immediately capped. 
The assembly is left intact until it undergoes analysis. Subsamples are obtained 
by cutting perpendicular to the sleeve. This technique is commonly used when 
volatile organic compounds are being measured. 

Contamination is always a concern in soil sampling. Samples can be con­
taminated by the collection tool or by carryover from a previous sample. Tools 
are suspectable to scraping by the sharp edges of soil particles. Many tools have 
replicable tips. Others are coated with plastic or rubberized material. However, 
these coatings tend to be even more suspectable to abrasion. The general clean­
ing procedure is to first remove all visible traces of soil with a dry brush. Next 
the tool should be washed in either in tap water or a dilute solution of a mild 
detergent. The final rinse should be with distilled or deionized water. Extensive 
field decontamination procedures with solutions of acid or organic solvents are 
generally not recommended. Tools showing extensive surface abrasion should be 
replaced or used only for preliminary excavations. 
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Authors of sampling plans need to be aware of the subsampling and pro­
cessing that samples undergo prior to the measurement of the desired parameter. 
While not always explicitly stated most soil sample designs involve either the 
compositing or multi level sampling at some point. Laboratory procedures almost 
always require some subsampling prior to analysis. A typical mass of a soil sam­
ple is 500 gm while a typical aliquot for chemical analysis may be 5-50 mg. 
Some analytical procedures specify that this aliquot be selected randomly while 
others specify that organic debris or particles greater than a certain size not be 
analyzed. Samples analyzed for total concentration require extensive grinding in 
order to get the constituent into solution prior to measurement. In many cases 
the soil property associated with a certain size fraction is the parameter of inter­
est. Common soil sample handling procedures are listed in Table 14. In addition 
to physical processing, a large number of chemical fractionation schemes have 
been utilized to extraction certain minerals. See Murdroch and MacNight [24] 
for details on extraction procedures for core samples and Klute [32] for specific 
methods of soil analysis. 

Deep Soil and Groundwater Sampling 

In this section deep soils are loosely defined as the unweathered geologic mate­
rials below the developed soil that was discussed in the section on surface soil 
sampling. In the environmental field deep soils are investigated for their role in 
the transformations and transport of constituents. Biogeochemical transformations 
typically take place at the surface of the soil particles. Transport can occur in 
saturated groundwater, in the unsaturated zone, as a nonaqueous liquid or in the 
gaseous phase. The sampling of deep soils is typically the most expensive part of 
environmental investigations. There are several reasons for this. First, the prob­
ing and drilling of this deep involves the collection of relatively small samples 
from a complex three dimensional matrix. The nature of the medium between 
locations can only be inferred. Second, once sample locations for groundwater 
are set they cannot be moved. Only additional wells can be installed. Thirdly, 
the most important parameter in groundwater investigations, the velocity is rarely 
measured directly. It is calculated from the aquifer properties and the measured 
hydraulic gradient. 

Table 14. Soil and sediment sampling handling procedures 

Process 

Splitting 
Mixing 
Drying 
Grinding 
Sieving 
Extraction 

Equipment or procedure 

Cone and quarter, riffle 
V -shaped cone 
Air, oven, freeze 
Mortar and pestles, ball and pebbl mills 
Dry, wet 
Chemical solven 

Applications 

Subsampling, aliquot selection 
Compositing, batch preparation 
Moisture content, pretreatment 
Total constituent analysis 
Texture classification, fractionation 
Mineralogy, constituent analysis 
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As is common in the environmental field, tools developed in other disciplines 
are utilized. In deep soils, procedures developed in geology, hydrogeology, oil 
exploration, and geotechnical engineering are all utilized to gain an understanding 
of the behavior of constituents in deep soils. However, care must be taken not 
to become too indoctrinated in specific procedures, as these procedures must be 
selected and adapted in environment investigations. 

Study Objectives 

The development of a clearly defined set of study objectives serves as the initial 
step towards conducting an efficient and effective deep soil investigation. The 
study question are first defined and then translated to information requirements 
and then data requirements. These requirements are then combined with other 
information, through the process described in the first section into the study 
objectives. 

In the early phases of the investigations, study questions focus is on the 
existence and availability of groundwater. The direction and magnitude of flows 
must also be addressed. The amount of water in an aquifer, the rate at which it 
can pumped and the change in water table elevation during pumping are typical 
study questions. Groundwater quality investigations analyze the chemistry and 
the spacial and temporal components of its variability. A study question may 
concern the existence of contamination. As discussed in the surface water section, 
these studies may require extensive sampling and analysis of the background or 
ambient groundwater quality. Once identified, the spacial extent of contamination 
needs to be defined. The natural processes that affect contaminated groundwater: 
convection, diffusion and, dilution are then investigated. 

Not all transport in deep soil is via saturated groundwater. Many constituents 
enter the soil at the surface and are transported downward in the vadose zone. 
Others move through the soil as gases. The distribution of constituents within 
three phase system (Fig. 9) is more complex that the two phase system of satu­
rated flow. The study question may be: What is the phase distribution of contam­
inates and what are the factors that effect that distribution? The data requirements 
would then be the concentration of that constituent in each phase and a determi­
nation of the environmental factors that correlate to the distribution. Further study 
questions would involve the rate of movement of unsaturated water and gases 
through the vadose zone. The information requirements would be the infiltration 
capacity and soil moisture potential as well as the rate of gas flux. 

Geologic materials are studied from the point of view of how they affect 
the movement of groundwater and contaminants. The stratigraphy or macro scale 
variation is examined in order to yield information on the existence water bearing 
zones. The chemical properties are measured in order to gain an understanding 
of the interaction between the groundwater, contamination and deep soils. As 
the investigation progresses predictive studies are performed to determine the 
behavior of the contamination under various scenarios. 
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Background Information 

An effective and efficient surface deep soil and groundwater investigation can be 
designed and implemented only after a review of the general knowledge of the 
behavior of groundwater and the constituents contained within has been con­
ducted. This information is then integrated with information on the regional 
geology and whatever data can be acquired from previous borings and existing 
wells at or near the study site. The physical and chemical properties of the soil 
matrix were discussed previously. The major difference is in deep soils the min­
erals tend to be less oxidized and contain very little organic material. Therefore 
less chemical interaction is expected between the solid and liquid phases. 

The background review begins with the regional topography. In the United 
States topographic maps on scales ranging from I : 24 000 to 1 : 100 000 are avail­
able for a minimal charge. Topographic and hydrologic features as well as land 
use can easily be identified with these maps. Regional geologic maps define 
the extent of the uppermost formation. Cross sections and stratigraphic columns 
provide general information on each of the formations in the area such as age, 
thickness, rock characteristics, and water bearing properties. Drilling or boring of 
deep soils is often done for water supply, oil extraction or geotechnical sampling. 
Logs of these drillings are often filed with public agencies. 

A survey of existing wells can be utilized to provide a preliminary understand­
ing of groundwater flow and quality in an area. Although significant differences 
exist between supply and monitoring wells, the water supply wells should provide 
good data on piezometric elevations and qualitative information on aquifer yield 
and water quality. Typically, the survey is limited by incomplete information on 
well completion information and wells being located outside the study area. 

Data Collection and Sampling Techniques 

Geophysical techniques are measurements of the earth's ability to transmit, 
reflect or refract some portion of the electromagnetic spectrum. These techniques 
provide indirect measures of density, conductivity, clay content, moisture content 
and, other properties of the geology and aquifer. They utilize differences in the 
measurements can be taken from the air, on the surface or, downhole. Measure­
ments can be made can be taken quickly and readings can be taken continuously 
and are therefore use for finding anomalies such as contamination or buried struc­
tures. The principal advantage of these procedures is that they provide a 2 or 3 
dimensional picture of an attribute of the geology. The major disadvantage is 
that the measurements are indirect and must be calibrated with site specific field 
observations before they can provide useful scientific information. See Benson 
[33] for a more complete discussion on this subject. 

There are two techniques for accessing deep soils and acquiring samples of 
soil and groundwater: boring and punching. Drilling is used here as a general 
term for the variety of coring, augering and hammering techniques that have been 
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developed. In the environmental field, the method of choice is the continuous 
flight hallow stem auger. In this procedure, a drill advances ahead of 5 foot 
lengths of screw type augers with outside diameters ranging from 2.5 to 10 
inches. As the assembly rotates cuttings are conveyed up the hole. Periodically, 
the drilling is stopped and undisturbed soil samples are obtained with a split-barrel 
or thin-walled tube samplers. These devices are driven into the hole ahead of the 
drilling head. The sampling device is withdrawn from the hole and the sample is 
extracted. Augering works well in depths less than 150 feet in granular materials. 
Circulation fluids (water, mud, air or foam) are used to reduce resistance to 
drilling and to help convey cuttings to the top of the whole. In deeper holes or 
in rock formations, rotary drilling is required. 

Groundwater samples are obtained by means of a properly designed, con­
structed, and developed monitoring well. This subject has been extensively 
reviewed by others [34, 35] and will only be briefly summarized here. The basic 
components of well are defined in Fig. 11. The purpose of the structure is to 
allow for the collection of an undisturbed sample of water from a specific point 
in the aquifer. Monitoring wells are designed around the processes that will alter 
the sample as it is removed from the well. The most significant consideration 
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is alteration of groundwater during sample collection. The filter pack and the 
well screen are designed so that fines will not be carried from the aquifer into 
the well. The geometry of the well screen is a compromise between collection 
of sample from a discrete point in space as possible, providing a large enough 
sample volume, and not inducing large flow velocities during sample collection. 

Groundwater samples are obtained with hand bailers, syringes or pumps [36]. 
Bailers probably are the most versatile tool and result in less sample alteration 
during purging and sample collection. They are available in diameters rang­
ing from less than 1 inch to 3 inches. The disadvantages of bailers are the 
small sample volumes, labor intensive efforts required for they operation, and the 
potential for contamination from the line. Syringe devices are used for small sam­
ple volumes and where transfer of analyte in of the gas phase is a concern. A vari­
ety of pumps are available for sample collection including suction lift, gas driven, 
submersible, and bladder. Suction pumps are limited to approximately 26 feet 
or shallower. Other factors include flow rates, material of construction and 
power requirements. Due to the labor intensive decontamination requirements 
many long term monitoring programs utilize permanently dedicated pumps for 
each well. 

It is difficult to discuss groundwater sampling without addressing alteration 
of the sample during the collection procedure [37]. Removal of water from a 
well induces abnormal velocities in the aquifer which may alter the movement of 
constituents. As groundwater is removed it is subjected to atmospheric pressures 
and gas composition quite different from that in the geosphere. Movement of 
0 2 and C02 in to or out of the sample will effect the redox potential, pH, and 
alkalinity of the sample. This in tum will affect the speciation and solubility of the 
constituents. In addition, volatile hydrocarbons are easily lost from the sample. 
Alteration is reduced by design of the monitoring well, pumping selection and 
purging prior to sample collection. Samplers have an almost unlimited number of 
options available with preparing the sampling protocol. Decisions regarding pump 
selection, pumping rates, purge volumes, and sample handling must be made in 
accordance with the study objectives and site specific conditions. 

The measurement of the piezometric surface in monitoring wells or simple 
piezometers can be done with manual or automated methods [38]. Manual proce­
dures for measuring static water levels include the wetted tape and the electronic 
probe. The bottom two or three feet of a steel tape is marked with carpenters 
chalk and it is placed below the water level in the well. The distance between 
the water mark and the top of the casing is noted. Modem battery operated elec­
tric probes have a tip that sense water. The presence of water is noted with a 
light and/or audible signal. The tip is attached to a calibrated electric cable. Both 
methods require that the top of casing elevation be accurately determined with 
a survey. Aquifer tests require multiple measurements over a short time steps. 
Use of pressurized air lines with gauges or pressure transducers is common. 
Since aquifer tests require only the change in water level in response to water 
withdrawal or addition, absolute calibration of these devices is not required. 
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Because many environmental investigations focus on a relatively shallow zone 
(less than 100 feet) and because of the large expense involved in traditional 
drilling and monitoring well installations, vendors have developed a variety of 
probing or punching equipment [39]. These tools use low power hydraulic jacks 
attached to small motorized vehicles to push small diameter probes into the 
soil as it is displaced. Tips are available for collection of soil, groundwater or 
soil gas samples at desired depths. Multiple samples can be obtained from each 
hole. After sample collection, the tool is withdrawn from the hole. Probing offers 
advantages. It is much faster than traditional drilling techniques. It can be used 
in applications where smart sampling techniques are appropriate such as follow­
ing a plume of contaminated groundwater. The technique produces essentially no 
spoils that typically constitute a waste disposal problem. 

Conclusion 

The lead in soil example will be used to demonstrate the iterative nature of 
environmental investigations. Figure 12 shows three successive iterations. The 
initial study objective is to perform an extent of contamination study in surface 
soils. Based upon a conceptual model with a single source and a single transport 
mechanism, a sampling plan is developed and implemented. Core samples ex­
tending from the surface of the soil down to I 0 em are collected and analyzed for 
total lead. Data analysis reveals that there is a bimodal distribution to the lead 
contamination. This suggests that there is at least one additional source of lead 

ITERATIONS 
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3 DIMENSIONAL EXTENT 

MOBILITY 

INFORMATION 

Fig. 12. Iterations in example investigation 
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contamination. It is hypothesized that a second tailings pile that was removed 
several years ago is that source. A second round of sampling is proposed with 
the same sampling procedures except that the spacial extent of the sampling is 
extended to include the area believed to be contaminated by the second tailings 
pile. This logic is indicated by the lines with the shortest dashes in Fig. 12. 

Upon further review it is discovered that lead concentration varies with the 
length of each core sample. The study question is revised to "What is the 
extent of contamination of lead in surface soils at a site and how does it vary 
with depth?" The information required is the establishment of the three dimen­
sional distribution of lead in soil, the data requirements are the measurements of 
lead in mg/kg dry weight at various locations and at various depths at the site 
and the study objectives to perform a three dimensional extent of contamination 
study. Samples are collected at the same locations and are extended to a depth of 
25 em. The variation of total lead along each core is analyzed. This third iteration 
is indicated by the medium length dashes on Fig. 12. 

After the extent of contamination has been quantified, questions are raised 
regarding the potential for the lead to contaminate an underlying aquifer. The 
study questions is revised to "How mobile is the lead?" The information required 
is the chemical form of the lead and the data required becomes fractionation of 
total lead (soluble, exchangeable, mineral, etc). In addition, data regarding the 
movement of water through the soil column would also be required. This fourth 
phase of the study is indicated by the longest dashed in Fig. 12. 

The simple collection of data does constitute a scientific investigation. In 
fact, automated equipment for sample collected and data logging may lead to 
the collection of an overwhelming amount of data of questionable quality and 
useability. The skilled environment scientist must utilize all available information 
and resources into an organized plan. This plan must be flexible enough to adjust 
for changing conditions and new information while at the same time provide a 
framework for overall logic. 
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Introduction 

The name chemometrics was first proposed by the Swedish physical organic 
chemist, S. Wold, when submitting a grant application in the early 1970s. A 
few years later, he joined with the American analytical chemist B.R. Kowalski 
to establish the (International) Chemometrics Society (ICS). Despite this formal 
origin of the name, there have been many diverse strands of development relating 
to modem chemometrics. 

Analytical Applications 

Analytical chemistry applications have been most publicised. There are several 
reasons for this, the main being that much of the revolution in use of chemo­
metrics has been linked to the revolution in computerised laboratory based instru­
mentation. Measurements are required not only in analytical chemistry, but also in 
geology, medicine, environmental science and so on. Many of the early users of 
chemometrics techniques published in journal such as Analytical Chemistry and 
Anal. Chim. Acta (Computer Technology and Optimisation Section). Regular 
reviews, such as in Analytical Chemistry [1-7] and the Analyst [8], did much 
to classify the literature in the subject. Many less formal articles were written 
in journals such as Trends in Analytical Chemistry and Analytical Proceed­
ings. The membership of the ICS was overwhelmingly composed of analytical 
chemists. Although there was a strong organic strand from the Umea group, quite 
a number of their early papers related to analytical methods such as chromato­
graphy, NMR and pyrolysis. 

In some regions, the term chemometrics was slow to take off. Major ideas 
were developed in the Benelux countries, largely under the guise of analytical· 
chemistry. The early books on Quality Control in Analytical Chemistry [9] and 
Evaluation and Optimisation of Laboratory Methods and Analytical Procedures 
[10] were written by analytical chemists, who did not regard themselves primarily 
as chemometricians, during the 1970s or early 1980s. As the name chemometrics 
spread, the Benelux groups gradually reclassified themselves chemometricians, but 
brought a wider variety of methods to the subject: quality control, signal pro­
cessing and information theory were particularly strong interests of the Nijmegen 
group, for example. This "marriage of convenience" between a US/Scandinavian 
tradition of multivariate pattern recognition and a Benelux tradition of mathemat­
ical analytical chemistry, formed a strong focus for the introduction of chemo­
metrics techniques into analytical chemistry. 

A final important strand of analytical chemistry is the tradition of using sta­
tistical methods to assess the accuracy, precision and quality of data [11]. Many 
analytical chemists felt chemometrics was simply the next step, and a logical 
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progression from traditional analytical chemistry. Many early books were writ­
ten by such major figures such as Youden [12] and Davies and Goldsmith [13], 
demonstrating, in the precomputer age, the importance of using statistical meth­
ods in the chemical industry. However, such people rarely regarded themselves 
as chemometricians. 

One of the difficulties with analytical chemistry is that there is always a con­
flict of interests between analytical chemists and workers in more applied areas. 
For example, should a user of chromatography equipment in an environmental 
laboratory be regarded as an environmental scientist or as an analytical chemist? 

Statistics 

There are many well established areas of applied statistics. These include econo­
metrics, biometrics, medical statistics and so on. Although the word chemo­
metrics was not invented by statisticians, many statisticians regard chemometrics 
as a natural area. 

Chemistry is the central science, spanning soft science such as biology and 
medicine, and hard science such as physics. Chemists require a variety of different 
statistical approaches. Quantum chemistry and statistical mechanics are essential 
tools of the physical chemist and have been developed over very many years. 
Although originating within mathematics and physics, chemists have now moved 
the subjects forward independently, so that these areas have their own notation, 
journals and conferences. A major feature of this type of statistics is that the 
sample size is extremely high and so predicted physical models can be mea­
sured with an exceptionally high degree of accuracy. On the soft side of science, 
environmental studies, for example, result in comparatively low levels of repro­
ducibility, and there may be major measurement problems. Consider the example 
of measuring the organic compounds and productivity at sampling sites in an 
ocean. Each sample is extremely expensive, and the reproducibility of the data 
may be poor. Completely different statistical problems arise here. 

Traditionally, geologists, biologists, economics, sociologists and clinicians 
have turned to statisticians to solve their problems. Chemists tend to be more 
numerate and are able to develop their own statistics. However, the problems of 
reproducibility and the multivariate nature of data mean that traditional statisti­
cal methods cannot always be applied to chemical problems. In chemometrics, 
many measurements can be made per sample. Even in the example of sampling 
sites in an ocean, once the samples are available, it is possible to measure the 
relative amounts of different organic fractions, phosphates, nitrates, algal produc­
tivity etc. (Fig. 1 ). Many of the chemical measurements may also be replicated. 
This contrasts to other areas such as econometrics, where samples cannot easily 
be replicated, and where there are a limited number of possible measurements. 



52 

// 
Sample----

~7\~ete. 
Toe Algal produetlvlty 

Phosphate Nitrate 

1\ 
replicates 

Richard G. Brereton 

Fig. 1. Typical scheme for sampling in 
chemometrics as applied to looking at the 
chemistry of oceans: a large amount of infor­
mation can be obtained from a single sample, 
and the information can be replicated 

This ability to replicate and take several measurements distinguishes chemo­
metrics from most other branches of applied statistics. Hence, unique statistical 
approaches are required. 

There are many uniquely interesting features of chemometric statistics. The 
PLS (partial least squares) method [14-16] is very commonly used, probably the 
major success story of chemometrics. Factor analysis has a very unique status 
in chemometrics [17, 18]. In conventional statistics, factors are mainly used to 
simplify data: for example psychometricians determine factors from intelligent 
tests that signify different types of ability. It is possible to believe the results or 
disbelieve them. Factor analysis is often used for graphical simplification [19]. In 
chemometrics, factors usually correspond to real compounds, such as the spec­
tra and elution profiles of different coeluents in DAD-HPLC (High Performance 
Liquid Chromatography) [20--22], and have a precise physical meaning. Conven­
tional statisticians do not distinguish strongly between PCA and factor analysis, 
yet within chemometrics the two approaches have quite different implications. 
Another feature of chemometrics is the ability to perform PCA (principal com­
ponents analysis) without mean-centring data. In conventional statistics, variation 
about a mean is the most significant form of variation: for example, measure­
ments may be taken on a number of banknotes and used to determine whether 
a banknote is forged or not. A model of the "average" banknote is determined. 
Elaborate tests, such as the F-test [23], have been developed to find a variation 
about a mean. In chemometrics, often the most significant variation is above a 
baseline (e.g. in chromatography or spectroscopy) and not around a mean, so that 
different procedures both for analysing the data and for assessing significance are 
necessary [24]. 

One of the most used statistical package is SAS (Statistical Analysis Sys­
tem). Despite the very large user base, chemometricians will be disappointed by 
many omissions from the package. For example, there are often major limita­
tions in the number of variables, and when many variables are used algorithms 
and calculations tend to be slow. Common chemometric methods such as PLS 
or SIMCA (soft independent modelling of class analogy) [25] are missing. Even 
the ability to perform principal components analysis (PCA) on uncentred data is 
missing. Factor rotations are restricted to abstract rotations, which are of little 
use to chemometricians. 
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Therefore, there is a very wide gap between most other branches of applied 
statistics and chemometrics. Statisticians tend to have an interest in a small num­
ber of chemometrics methods such as PLS which have wider applications outside 
chemistry, but most of the development of specific approaches (e.g. in factor anal­
ysis) occurs within the chemical community. Over the past few years, chemists 
have learned the basis of multivariate statistics, and are adapting methods to their 
own problems. 

Organic Chemistry 

The original organic chemistry interest in chemometrics was quite strong. How­
ever, many of the earlier work concentrated on analytical organic chemistry, 
involving instrumental methods such as NMR (Nuclear Magnetic Resonance) 
[26], pyrolysis [27] and chromatography [28]. 

Independently, other investigators, not calling themselves chemometricians, 
applied computational approaches to large chemical databases. Problems of struc­
ture representation, crystallographic databases, and spectroscopy required mul­
tivariate methods for pattern recognition. Some examples are as follows: use 
of pattern recognition in NMR (nuclear magnetic resonance spectroscopy) [29], 
crystallography [30, 31 ], and data storage and retrieval [32]. There is much 
literature on computational chemistry, much of it touching on approaches that 
relate strongly to chemometrics. However, this group does not call itself chemo­
metricians. 

Another major area of organic chemistry is the field of QSAR (Quantitative 
Structure Activity Relationships) where structural parameters are related to 
activities [33-36]. These activities may be dipole moments, potential toxicity of 
compounds or spectroscopic properties. A great deal of classical physical organic 
chemistry concerns QSAR studies. The Hammett relationship where structural 
parameters are related to reaction rates of substituted benzenes is well known [37]. 
Chemometricians extend this to multivariate situations where properties/activities 
are quite complex, such as the biological effect on an organism. Again, many 
applications of QSAR are not reported in the so-called chemometrics literature. 
QSAR has been especially well developed within the pharmaceutical industry, 
where the potential activity of drugs can be predicted from structural properties, 
and is complementary to molecular modelling. In environmental science, QSAR 
has a major role to play. Measured properties such as LDSO and mutagenicity 
can be related to the structural properties. Most chemometric approaches such 
as PCA, classification and PLS can be successfully employed in environmen­
tal QSAR studies. Within certain regions, such as Scandinavia, these results are 
reported in the chemometrics literature, and other regions such as the US tend 
to report the results in the environmental literature. 
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Physical Chemistry 

Physical chemists have been using techniques related to chemometrics for many 
years. Classical examples are factor analysis [17, 38] and the use of maximum 
entropy to enhance the quality of NMR [39-41], MS (mass spectrometric) [42] 
and chromatographic [ 43] data. Problems of noise and peak resolution are as 
interesting to physical chemists as they are to analytical chemists. A few phys­
ical chemists, such as Malinowski, have published in the chemometrics litera­
ture, but most have published in other areas, such as specifically spectroscopic 
journals. One of the classical books, on deconvolution [44], is rarely cited by 
chemometricians, yet contains a vast amount of information and ideas relevant 
to chemometrics. One reason for this division is that analytical chemistry tends 
to be weakly organised in relation to physical chemistry in regions such as the 
UK, so physical chemists tend to dominate the instrumental literature in certain 
geographical regions. 

A difficulty of this division is that many chemometricians do not know about 
techniques that could be very relevant to their work. Most classical chemo­
metricians are schooled in multivariate analysis, and are reluctant to advocate 
approaches they do not understand or have not developed. Hence, there is a 
major division between analytical and physical chemists. Despite this, books on, 
for example, curve fitting [45] are very widespread within physical chemistry, and 
the discipline of data simplification in spectroscopy and deconvolution should be 
regarded as part of chemometrics. 

Computer Science 

Yet another strand comes from computer science. Many methods, such as cluster 
analysis, optimisation, PCA, and regression analysis, have been developed 
by mathematically oriented computer scientists. Some of the best books describ­
ing the theoretical basis of chemometric methods have been written by computer 
scientists. The "Numerical Recipes" books are widely used throughout science 
[46-48]. 

With the modem development of microprocessor based instrumentation, and 
the ability to acquire, and the need to analyse, large quantities of data in a short 
time span, an understanding of computing is essential to the modem day chemo­
metrician. Environmental chemists, in particular, have the ability to monitor, con­
tinuously, a large number of processes, such as the quality of water, and need 
rapid, on-line, methods for determining if the quality is outside defined limits. 
On-line monitors should be inexpensive, and be able to make decisions quickly. 
This can be done by programming microprocessors effectively, often requiring 
some knowledge of memory management, and rapid algorithms. 
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At the other extreme, large databases may be set up, especially in the 
environmental area, by major bodies such as the EPA (Environmental Protection 
Agency). Good knowledge of database structures [49] is required for search­
ing for information, and obtaining good environmental predictions. Often some 
methods familiar to chemometricians, such as cluster analysis, are part of these 
databases. 

Environmental Chemistry 

Environmental chemistry is a major application area for chemometrics. Chemo­
metrics should be distinguished from environmetrics. The latter normally involves 
univariate statistics of samples collected from the field. In most cases, chemo­
metrics implies some instrumental analysis has been performed on the chemical 
data, either from field studies or in the laboratory. 

There is no well defined division between chemometrics and conventional 
statistics, but the following example illustrates a possible distinction. Consider 
the example of growing plants in differing levels of heavy metals such as Pb, 
Cd, Hg etc. [50, 51]. After a few days, the lengths of roots and shoots are 
measured, and a quantitative model is established between the plant growth and 
the heavy metal concentration. Although quite sophisticated statistical analysis is 
required, and well designed experiments are essential for meaningful interpretation 
of data, the methods required derive from conventional statistics. There are only 
two measurements per plant, and the replication problem is severe. Chemometrics 
might be used if a large number of chemical measurements were taken on the 
plants, e.g. concentrations of various chemicals: in such cases, there will be more 
possibilities of replication (the plant tissue extracts can be analyzed several times 
by HPLC, for example), there will be a large number of measurements per plant 
(hence multivariate methods can be obtained) and there may be problems of 
instrumental deconvolution (e.g. if spectroscopy or chromatography is employed 
in the measurement process). 

The potential applications to environmental chemistry are vast, and overlap 
with applications discussed above. More details are found elsewhere in this publi­
cation, so only a few sample areas are listed. The interaction with geologists and 
geochemists is particularly important. The area of statistics in geology is well 
established, and there are many potential applications of sophisticated chemo­
metric methods to geochemical data [52-54]. These often involve simplifying 
data, and looking at long term or geographical trends. Factor analysis plays a 
major role, for example, in looking at sources of potential pollutants [55-57]. 
Simple exploratory data analysis can relate chemistry to geography, and also to di­
rections of pollutants [58]. Classification methods can be used to relate analytical 
data to groups of samples, e.g. polluted and unpolluted mussels [59]. Calibration 
has a very major role to play. Many biological parameters, such as mortalities, 
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mutagenicity and toxicity, can be related to chemical composition [60--62]. QSAR 
is an important area: large databases of potentially toxic compounds can be built 
up. Composition activity relationships are a specific application [63, 64]. An 
understudied area is the potential of chemometrics to relate several blocks of 
measurements using calibration and Procrustean methods, and so determine the 
cheapest approach for measurement [65-67]. For example, if the parameter of 
interest is the toxic effect on mammals, simple bacterial tests might be substi­
tuted: these are cheaper and involve less legal difficulties. Clinical chemists have 
used these approaches for many years- e.g., bacterial tests on potentially active 
drugs could be substituted for tests on rats. In environmental chemistry, another 
major problem involves field tests. A rigorous method of monitoring the com­
position and potential toxicity of fumes in factories might be by using GC-MS 
(gas chromatography mass spectrometry) but not many factories could afford to 
do this routinely. Can a simpler method such as IR (infrared) or UV/VIS (ultra­
violet visible) spectroscopy be substituted? Calibrating one method to another 
helps. Obviously, deconvolution and enhancement of sophisticated instrumental 
signals such as occur in GCMS, DAD-HPLC and AS (atomic spectroscopy) has 
major potential in environmental chemistry, where detailed information on sam­
ples is required. Chlorophyll degradation, where complex mixtures are produced 
when algae die in aquatic environments, is an example where quantification and 
detection is hard [22]. 

Environmental chemistry poses considerably harder problems to the chemo­
metrician than straight analytical chemistry. Normally there are several parameters 
of interest. One or more non chemical parameters are usually measured. Exam­
ples are as follows. ( 1) Physical dimensions such as lengths of organisms, e.g. 
root lengths of plants or shell deformities of mussels. (2) Survival data, e.g. the 
time taken for 50% of a population to die. (3) Bioassays such as the change in 
cell counts. ( 4) Physiological data such as measured cardio-vasculatory variables. 
(5) Depth in sediments or water columns. (6) Tests on dead meat such as force 
and deformation of muscle. (7) Biological productivity levels such as planktonic 
productivity. (8) Microbiological parameters such as mutagenicity. (9) Distance 
along rivers or from sites of potential pollution. (10) Human mortality rates over 
a long period. ( 11) Geochemical maturity of oils. 

Generally, the interest is to relate the chemistry to these response parameters. 
Sometimes the response parameters are only of indirect scientific interest. For 
example, the study effect of a potential pollutant on human beings may be the 
main objective of an investigation. However, it is not practicable to perform tests 
on humans, and more acceptable tests, such as mutagenicity of bacterial popula­
tions, may be chosen instead. In some cases it is possible to calibrate the directly 
measured variable to another variable of interest, e.g. in geochemistry, where 
depth is related, but in a non-linear fashion, to geological time: elaborate statis­
tics (e.g. use of forminifera counts) may be required to estimate the depth/age 
calibration curve, but when sampling a core this curve is initially unknown. 

The environmental chemist generally uses one of two types of chemical data. 
The first involves employing an instrumental technique to determine the relative 
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composition of elements or organic compounds in a sample. Common methods in­
clude atomic spectroscopy, chromatography, and mass spectrometry. Quantitative 
data is sometimes obtained, e.g. isotope ratio mass spectrometry. Alternatively, 
chemical structure data is sometimes used as in QSAR studies. Sometimes an 
extra, signal processing step is required to handle the instrumental data before it 
can be interpreted by statistical methods, e.g. signal deconvolution. 

In most cases of chemometrics in environmental chemistry, some relationship 
is obtained between the chemical and non-chemical datasets. Methods such as 
calibration, factor analysis, classification and response surface modelling have 
been developed to establish this relationship. 

Environmental chemistry is an interdisciplinary subject, there being very lit­
tle "pure environmental chemistry" and interfaces with many other areas. Figure 
2 illustrates some of the main interfaces between different disciplines. Conven­
tionally, only areas 7 and 9 would unambiguously be regarded as chemometrics. 
Historically, however, many workers in area 11 would class themselves as chemo­
metricians, whereas only selective workers in area 14 publish in the chemometrics 

Fig. 2. Interface between major disciplines 
Env = Pure environmental chemistry 
An = Pure analytical chemistry 
Phys = Pure physical chemistry 
Org = Pure organic chemistry 
Stats = Pure Statistics 
I Physical/organic chemistry: example- kinetics of organic reactions 
2 Analytical/physical chemistry: example- electrochemistry 
3 Organic/physical/analytical chemistry: example - developing new mass spectrometry 
4 Organic/analytical chemistry: example- new assignment methods in NMR 
5 Environmental/analytical/organic chemistry: example- chromatographic detection of toxins 
6 Environmental/organic chemistry: example - synthesis of potential toxins 
7 Analytical chemistry and statistics: examples -linear calibration, "conventional chemometrics" 
8 Analytical/physical chemistry and statistics: example - maximum entropy spectral deconvolution 
9 Environmental/analytical chemistry and statistics: for example - use of factor analysis to resolve 
HPLC peaks of mixtures of potential pollutants. 
I 0 Environmental/analytical chemistry: example - atomic spectroscopy of heavy metals 
II Environmental/organic chemistry and statistics: example- QSAR of possible pollutants 
12 Environmental chemistry and statistics: example- measuring root lengths of plants and relating to 
chemistry 
13 Physical chemistry and statistics: example - statistical mechanics 
14 Organic chemistry and statistics: example - QSAR of drugs 
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literature, despite a great number of methods in common with area 11. Work­
ers in areas 8 and 13 rarely regard themselves as chemometricians. There is 
extensive literature in area 12, much of it relevant to chemometrics, but using 
conventional statistical approaches, most of which were available long before the 
word chemometrics was invented. 

Most chemometrics in environmental chemistry is at the interface between 
analytical and environmental chemistry and statistics. It is hard to understand 
chemometrics without some appreciation of its relationship other disciplines. 

Information about Chemometrics 

Literature 

Although there is much literature relevant to chemometrics, most of the organ­
ised literature is within the area of analytical chemistry. The regular reviews in 
the journal Anal. Chem. [1-7] concentrate primarily on analytical applications. 
There are two main chemometrics journals, J. Chemometrics and Chemometrics 
Intel/. Lab. Systems. The former is more theoretical, whereas the latter is 
more applied and concentrates on conference proceedings and analytical applica­
tions. The tutorial articles from Chemometrics. Intel/. Lab. Systems have been 
reprinted in two volumes [68, 69]. 

There are several texts on chemometrics. The book by Sharaf et al. [70] is 
somewhat theoretical, but was the first comprehensive text with chemometrics in 
its title. The book by Massart et al. [71] is an excellent general text, but ori­
ented strongly towards the analytical chemistry laboratory manager. The book by 
Brereton [72] is a more low level and introductory text. However, all three are 
strongly oriented towards analytical chemistry applications. A series of mono­
graphs by Research Studies Press in collaboration with Wiley on Chemometrics 
presents a broader range of topics [73-77]. Some of the many other books are 
referenced [78-82]. 

Specialised areas of chemometrics are covered in great detail in certain books. 
Notably these are pattern recognition [83-87], calibration [88], experimental 
design [89-91] and factor analysis [17]. 

Numerous journals publish articles relating to chemometrics. 

Meetings and Courses 

The original group of chemometricians was quite small, consisting mainly of 
specialist computer programmers and statisticians applying their work to chem-
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ical data, hence meetings in the 1970s were informal in nature. As awareness 
of chemometrics increased during the 1980s, the number of meetings expanded 
substantially. 

A notable early meeting that brought many international experts on chemo­
metrics together was held at the NATO Advanced Study Institute in Cosenza in 
1983 [79]. The US NBS (National Bureau of Standards) organised a meeting 
where chemists and statisticians met together [92]. 

Within the area of analytical chemistry, there are several ongoing series of 
meetings, namely CAC (Chemometrics in Analytical Chemistry), COMPANA 
(organised by the University of Jena) and COBAC (Computer Based Methods in 
Analytical Chemistry). Most of these meetings have resulted in proceedings being 
published, mainly in the journals Chemometrics Int. Lab. Systems and Anal. 
Chim. Acta. The COBAC meetings have now largely been subsumed within 
major conferences. 

There are a vast number of regional meetings, but one of the most inter­
national is the Scandinavian Symposium in Chemometrics (SSC) series, whose 
substantial proceedings have been published in the journal Chemometrics Int. 
Lab. Systems [93, 94]. Informal meetings have also been arranged by the Umea 
group over a number of years. 

A predominantly statistical series of meetings entitled "Statistics in Chem­
istry and Chemical Engineering" has been held as part of the Gordon confer­
ences in the US every year since 1951. More applied meetings, emphasising the 
application to spectroscopy, are the Snowbird meetings on "Computer Enhanced 
Spectroscopy" held in the US. 

There have been a number of conferences specifically oriented towards envi­
ronmental chemists. These include meetings organised by the EPA (Environmen­
tal Protection Agency) on "Progress in Chemometrics" and a meeting organised 
by the lSI (International Statistical Institute) on "Chemometrics and Environ­
metrics" in Bologna in 1993. 

It is not possible to enumerate all the meetings organised in the area of 
chemometrics, but one of the misfortunes of the rapid and highly diverse devel­
opment of the subject is that there is no general meeting where experts from 
many different disciplines meet together. 

Major courses were slow to evolve, but one of the first was organised by Sci­
entific Symposia in the UK. Since 1987, interdisciplinary workshops in chemo­
metrics have been organised by the University of Bristol. A large number of 
courses have been organised in Europe under the umbrella of the COMETT 
scheme between 1990 and 1994. With the advent of good texts, numerous courses 
have evolved over the last few years, but most are heavily oriented towards 
certain well defined application areas. Various manufacturers of chemometrics 
software (see below) have also developed courseware, most notable being 
lnfoMetrix in Seattle, US, CAMO A/S in Trondheim, Norway and Umetri in 
Sweden. 

There is no overall international group representing all strands of chemo­
metrics. Active statistical organisations include the ASA (American Statistical 
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Association) and lSI (International Statistical Institute). Analytical chemists have 
formed several national groups. Pharmaceutical and organic chemists tend to re­
gard chemometrics as part of computational chemistry, although there are several 
organisations involved in chemical structure/QSAR/molecular modelling studies. 
The EPA in the US has an active interest in chemometrics. Surprisingly, NASA 
is also an active supporter of chemometrics activities. 

Software 

Introduction 

It is impossible to discuss modem chemometrics without an appreciation of new 
software developments. The general acceptance of chemometrics depends on the 
wide availability of modem, user-friendly software and cheap, powerful micro­
processors. 

There is a wide variety of software packages and methods, and the best 
approach depends greatly on the background of the user. In computing, a wide 
variety of ranges of sophistication exist side-by-side. In a typical department, 
there may be one or two systems managers who understand technical manuals 
and documentation, set up new systems, interface with manufacturers and train 
other users. A few programmers may exist. It is not necessary to understand 
how computers work, or even set up new systems, to be effective programmers. 
Many programmers rely on other people, with a greater technical knowledge of 
computers, to maintain systems. At a less computationally sophisticated level are 
users of packaged software, either developed in-house or else commercially pur­
chased. Many such people will be laboratory based scientists. Finally, there will 
be secretarial and related staff whose main use of computers is wordprocessing 
and graphics. Different packages exist for each group. All uses of computers are 
legitimate and equally important. Hence, in chemometrics, likewise, there has 
emerged a wide variety of software. 

Early Chemometrics Software 

In the 1970s, most computer users developed programs for mainframes. Punched 
card and paper tape input, off-line printers and job submissions on shared main­
frames were typical for this era. 

Many of the early chemometricians were also strong programmers. Very few 
scientists used computers unless they, too, were good at programming. Hence 
rather cumbersome, off-line, software was developed during these early days. The 
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main emphasis was on producing libraries of subroutines, often in FORTRAN. 
A very large number of chemometric approaches were coded into these early 
packages. Notable packages are as follows. ARTHUR is a fairly comprehensive 
package of FORTRAN subroutines, mainly for pattern recognition, developed by 
the Seattle group [95]. Despite their vintage, these routines span a wide variety 
of methods, and the code is still useful nowadays. Developments by InfoMetrix 
still make use of these early routines. The SIMCA package [96] was developed 
by the Umea group, mainly for PCA and classification purposes, although PLS 
was added later. This package should be distinguished from the method of soft 
independent modelling of class analogy, although in the early days the two 
were almost indistinguishable, the package promoting the method and vice versa. 
Malinowski developed software for factor analysis called TARGET [97], again, 
largely in the form of subroutines. User-friendliness was not a main issue. A very 
wide number of "indicator functions" for determining the number of significant 
components in mixtures by factor analysis were included. Some chemometrics 
routines were deposited with the QCPE (Quantum Chemistry Program Exchange) 
in the US [98). Hopke's group developed a package FANTASIA [99]. 

Most of these early packages have been incorporated into more modern 
microprocessor based software as discussed below. 

Statistical Macrolanguages 

Parallel to this development of software specifically for chemometrics, were large, 
international, developments of packages for statisticians. Originally intended for 
mainframes, most packages now run on microcomputers. 

Probably the largest statistical package is SAS (Statistical Analysis System) 
[100-102]. Originally mainly for statistics, it has been substantially expanded 
to include very extensive graphics, matrix routines, econometrics and time series 
analysis, database, interactive access, quality control and so on. SAS is an industry 
standard. It comes with its own language, making it easy to perform tasks such 
as PCA in a few lines of code, and very powerful macros for handling complex 
datasets. Many statisticians find this language easy to use, but, on the whole, 
chemists dislike it, as it requires a certain amount of programming and thinking 
in a statistical manner. Despite this, around 700 people are employed by the 
company, there are innumerable conferences, manuals, newsletters and books, 
and SAS is implemented on most common computer systems. Having started 
as a statistical language primarily for off-line use on ffiM mainframes, it now 
is available under Windows on PCs. A weakness, alluded to above, is that SAS 
does not contain some common chemometric methods such as PLS, many types of 
factor rotations and SIMCA. Using the SAS IML (Interactive Matrix Language), 
it is, though, possible to code these approaches in. Once into the SAS system, 
the graphics and data handling are excellent. 
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BMDP (Biomedical Data Processing) [103] and SPSS (Statistical Packages for 
Social Sciences) [104] are well established packages that contain a large number 
of routines for pattern recognition. Although the graphical and general facilities 
are much less than with SAS, there are, nevertheless, well supported packages, 
and are available on PCs. Some statisticians, especially in the food industry, prefer 
the GENSTAT package [105]. This is, indeed, very elegant, but is maintained 
only by a small number of people, and cannot possibly match the facilities of 
large commercial concerns. Despite this, regular conferences are held, and books 
written, on GENSTAT, and some mathematically minded chemometricians find 
it a useful development tool. CLUSTAN [106] is a package primarily for cluster 
analysis, used mainly by biometricians. 

A recent development is the S-plus package for statisticians [107, 108]. This 
runs on both Unix and DOS systems, and is strongly oriented towards interactive 
graphics. It contains its own macrolanguage, which allows users to develop new 
methods and then create new commands which involve these new approaches. 
For the statistically oriented user, this is a very powerful approach. A statistician 
would regard algorithms such as PCA or PLS as easy to program and understand. 
For the novice environmental chemist, however, S-plus is not suitable. 

There are several other statistical packages, many now running on micros, 
such as SYSTAT [109, 110] and Minitab [111]. These are limited in capabili­
ties, but very easy to use, and good, general, introductory packages that can be 
purchased cheaply and used for simple problems without much difficulty. 

The major advantage of the large statistical packages is that there is a very 
big user base. This means substantial support in terms of newsletters, confer­
ences, books, courses and help. It also means that most packages are regularly 
updated and take into account new developments in hardware. A final, and 
extremely important, factor is that most of these packages are "industry standard". 
This particularly applies to SAS -the routines are very thoroughly validated and 
can, therefore, be used as benchmarks. The difficulties are that none of these 
packages are oriented towards chemometrics, and that some statistical expertise 
is required to use the packages and understand the manuals. Although most pro­
fessional statisticians will find the packages easy to use, this does not mean that 
environmental scientists will necessarily like them. Software is normally designed 
with the user's needs uppermost in mind, and an approach that is favoured by a 
statistician may not be favoured by a laboratory based scientist and vice versa. It 
is, however, useful that active chemometrics research groups have at least one of 
these packages available for benchmarking and for testing out new methodology. 

Early Microprocessor Based Packages 

In the early to mid 1980s, there was a flood of new microprocessor based chemo­
metrics software. The majority worked on PCs under DOS. This phase also 
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resulted in the development of efficient new algorithms. Early microprocessors 
were often limited in memory, and also fairly slow. PCA algorithms such as SVD 
(Singular Value Decomposition) work on an entire data matrix. If 20 variables 
are measured, this involves setting up 20 x 20 matrices, and performing operations 
such as inversion to calculate 20 principal components. For the users of off-line 
mainframes, it did not matter if the size of such problems became quite large. 
A job was submitted in the afternoon and the next morning a printout arrived 
in a pigeon hole. If the job took a very long time, applications would be made 
for extra funds for computer time, or, in the long term, even a new computer. 
When the first microprocessor applications were developed, there emerged seri­
ous difficulties resulting in the need to develop better code. Calculations could 
be seen to happen interactively and it was not acceptable to have to wait several 
hours before an answer became available. The NIPALS algorithm and associ­
ated cross-validation [112-115] was developed with efficient computing needs 
in mind. Instead of calculating all the principal components, NIP ALS extracts 
one component at a time, and cross-validation being used to determine whether 
sufficient components had been calculated. If 20 environmental variables are mea­
sured, there may only be 3 or 4 significant factors, so no need to calculate all 
20 components. 

Many microprocessor based package of that vintage are still available, and 
are often quite cheap. The microprocessor based SIMCA package continued its 
development over the 1980s, continually evolving. Ein*Sight [116] is a micro­
processor based evolution of ARTHUR. 

SPECTRAMAP [117] was developed by Lewi and colleagues, primarily for 
pattern recognition, mainly PCA with associated scaling. The scope of this pack­
age is limited, but within its limitations it. provides excellent graphics and is 
widely used by pharmaceutical statisticians. This package is written in APL [118]. 
SIRIUS [119] was developed by the University of Bergen. Tutorial versions of 
both these packages are available for small datasets, with the text Multivariate 
Pattern Recognition in Chemometrics [87]. Both packages are DOS based, and 
are compiled, so that source code is not available. 

PARVUS [120] is a large collection of routines for pattern recognition written 
by the group in Genoa. Although very interesting for chemometricians, such a 
package is written in BASIC and is rather slow with fairly limited graphics. How­
ever, source code is available, and the package is a useful exploratory tool. Some 
knowledge of programming is useful. During the early 1980s, various students in 
the Nijmegen group wrote routines in BASIC, primarily for teaching chemomet­
rics, which have been bundled into CLEOPATRA [121]. The difficulty is that 
this package is not very user-friendly and quite expensive, but was an important 
historical landmark for computer based teaching of chemometrics. A difficulty 
with academic groups building up routines over the years is that microprocessor 
technology is likely to move quite fast, so the software rapidly becomes out of 
date. 

SPIDA [122] is a set of statistical routines, many of which are interesting 
to chemometricians. It also contains a small language rather like S-plus, but is 
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not so large or elaborate. It is, however, an affordable DOS based package that 
includes a variety of programs for clustering, PCA, factor rotations etc. and it is 
not too difficult to incorporate new macros such as PLS. 

Academic groups in particular continue to contribute a wide variety of chemo­
metrics packages, many of which are available openly on networks. Most pack­
ages, though, are maintained and marketed by small groups, and many, because 
they have taken several years to build up, are DOS based and written in languages 
such as BASIC or FORTRAN and are fairly limited in capacity. 

Historically, the widespread distribution of microprocessor based packages in 
the mid 1980s did a great deal to catalyse the use of chemometrics methods. 

Modern Developments in Packaged Chemometrics Software 

Although there are a vast number of packages on the market, the most fruitful 
ones are those maintained by large groups of people or commercial organisations. 
Often these packages are quite specialised and expensive, but there is good user 
support, newsletters, updates and maintenance. 

UNSCRAMBLER [123-125] has been developed over 10 years, and is mar­
keted by CAMO A/S. Many of the principles arise from the work of H. Martens 
in multivariate calibration. A very large number of workshops are organised by 
this group, in addition to newsletters and associated literature. The original pack­
age was primarily concerned with multivariate calibration, although now there 
are modules for experimental design and calibration. Great effort has been put 
into good graphics and help facilities. It is strongly oriented to the processing 
of instrumental data such as NIR (Near Infrared) spectroscopy. A weakness at 
present is that the package is DOS based rather than Windows based, and re­
quires a maths coprocessor, although this limitation may change shortly. It is 
very widespread within chemical laboratories. 

Umetri have developed interactive Windows based versions of their packages 
SIMCA3B and MODDE. InfoMetrix continue with a large number of interactive 
packages, notable of which is Pirouette [126]. These are major developments 
from the original SIMCA and ARTHUR software discussed above SCAN, pro­
duced by Minitab, is a recently available package. 

Many chemometricians like to think in terms of matrices, being able to 
manipulate them and visualise data. MatLab [127, 128] is widespread. It requires 
some understanding of algorithms and is not packaged software in the same way 
as UNSCRAMBLER or SIMCA3B. However, it does run on both Macintosh and 
PC compatible computer. There are many MatLab macros for PCA, PLS, factor 
analysis and so on, and so this language can be considered a valuable devel­
opment tool for the chemometrician who has some understanding of the basics 
of algorithms and does not wish to program from scratch. Because it is used 
by scientists for many disciplines, not just in chemometrics, it is likely to be 
available for some years, and to be properly supported. 
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Instrumental and Applications Software 

Over the last decade, many instrument manufacturers have incorporated some 
chemometrics routines into their software. Particularly important have been many 
standard methods for signal enhancement, such as digital filters, smoothing func­
tions etc. Optimisation methods such as simplex for tuning signals are very 
common. Outside the direct realm of chemometrics, a large amount of Fourier 
transform software has been developed. Several instrument manufacturers have 
incorporated PCA, PLS, PCR and some simple factor analysis approaches into 
their software, especially in the area of NIR spectroscopy. Maximum entropy has 
been widely applied to a variety of instrumental datasets, and some instrument 
manufacturers market the package with their operating systems; MS is a good 
example here. 

In the area of QSAR and molecular modelling, there is also a very large num­
ber of commercial software approaches, most including some form of PCA, multi­
variate calibration and clustering/ classification facilities. Many database packages 
contain clustering algorithms. 

One weakness of commercial packages is that there is rarely any interpretative 
facility. The methods are presented as options for data processing, and it is often 
possible to obtain completely meaningless answers if the methods are misapplied. 
Often various options such as scaling methods are included "by default" and it 
may require a great deal of technical knowledge to change these. A good example 
involves determining the number of significant components in IR spectroscopy. 
A large number of methods can be employed [129, 130], and it is not untypical 
for answers to vary between 2 and 20 for identical datasets. It is unwise to 
use black boxes from instrument manufacturers, or packaged software, unless the 
background to the methods is first understood. 

A major difficulty is that instrument manufacturers are very conservative as 
to the amount of effort they are prepared to put into implementing chemometric 
software. Most instrumental software must be user friendly, and great empha­
sis is placed on good graphics, windows, mouse and icon control, menus etc. 
The algorithms are only a very small part of a commercial package. Instrument 
manufacturers do not like releasing packages with a poor user interface. The 
choice of system is often made by technicians who are more attracted to multi­
colour, interactive graphics than to advanced statistical output. Therefore, many 
instrument manufacturers prefer to invest resources on the interface, and many 
state-of-the-art chemometrics methods are not implemented on commercial soft­
ware. It takes several years for a method to become widely accepted before 
commercial companies invest time and funds in widespread implementation. 

One exception involves development of chemometric sensors to perform very 
specific and limited tasks. For example, a device is available that will monitor 
water quality by electronic absorption spectroscopy using chemometric methods 
to deconvolute the spectrum. This device can then be used to warn if nitrates 
and other potential pollutants are above a threshold, and so check the water 
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purification methods. The package is sold as a "black box" and is only useful in 
one context. 

Another common problem is that instrument manufacturers very rarely release 
source listings, so the user is absolutely dependent on the implementation. 

Programming Environments 

Many chemometricians develop their own methods by writing specific programs. 
There are a large number of languages and environments. The first problem 

is to choose a hardware configuration. Until recently many numerically intensive 
programs were written on powerful minicomputers such as a VAX (under VMS) 
or a SUN (under Unix). However, the power of microprocessors has increased 
dramatically recently. A 486 PC with 16 Mbyte memory, 500 Mbyte disc space, 
the Windows operating system, colour Super VGA is routinely available, and has 
the capacity of a departmental minicomputer of a few years ago. Hence many 
new developments in chemometrics software are microprocessor based. 

Traditionally, a great deal of numerical software has been written using 
the FORTRAN language [131-133]. This is one of the original programming 
languages, specifically developed for numerical work. It has evolved a great 
deal from the original specifications, with FORTRAN-77 and FORTRAN-90 
appearing. The original language was fairly unstructured, concentrating largely on 
numerical methods, with very few facilities for input/output or structured loops 
such as "if .. then .. else" facilities. The present specifications are somewhat hy­
brid, and most microprocessor implementations are very awkward to use if good, 
modern, Windows based graphics and mouse control are required. The main 
advantage is that there is a great deal of historical continuity. In chemometrics, 
both the ARTHUR and TARGET packages were written in FORTRAN. Large 
numerical analysis libraries, such as the NAG (Numerical Algorithms Group) 
[ 134] library have been developed over many decades and have been adapted to 
microprocessor applications. 

C [135-137] is an attempt to improve on FORTRAN. It has been much 
used by computer scientists over the last decade. A specific advantage is the 
ability to manage memory, which is automatically handled by the compiler in 
FORTRAN. For microprocessor based implementations this is a major advantage, 
as it allows the best use of the available memory. This language is very flexible 
and structured, but has several disadvantages. First, strong knowledge of comput­
ing is required for use of this language, meaning that it is not easy to develop 
numerical software. Second, because so many facilities are under the control of 
the programmer, it is much easier to make mistakes: the compiler will not auto­
matically correct these errors or optimise the code. Whereas the programmer can 
do almost anything, he/ she has to think more carefully about the consequences 
of his/her actions. 
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Quite a lot of early microprocessor based software was written in BASIC. 
There are a large number of implementations of BASIC, many of the early ones 
having poor structure. Early editions of BASIC were also interpretative, meaning 
that programs ran slowly. However, this language was included with most micro­
processor based systems in the early 1980s. FORTRAN was originally developed 
as a mainframe programming language, so early microprocessor implementations 
of FORTRAN were not very successful. BASIC served a useful purpose for 
microprocessor based numerical routines. Early editions of the SIMCA pack­
age were written in BASIC. There were innumerable early "dialects" of BASIC, 
causing a great deal of confusion when reading the literature. 

Another language sometimes used was PASCAL [138] which derived from 
Algol. This was originally developed as a mathematician's language, good on 
symbolic programming, but its numerical facilities are fairly limited. For example, 
there is no direct facility for powers: they have to be calculated via logarithm 
functions. 

A revolution happened in the late 1980s with the introduction of OOP (Object 
Oriented Programming) [139-141] and the Windows operating system [142]. An 
object is something that has both functionality and properties. A good example 
is a square: it has an area, a position, a circumference, a diagonal etc. A generic 
class of squares could be developed, each member with specific properties. The 
programmer defines a number of objects, each with their own properties. In 
the Windows operating system objects may be scroll bars, menus, icons etc. 
Events activate objects. For example, clicking a mouse on an icon may activate 
a program; clicking a menu item selects certain actions associated with the menu 
icon. Programs are no longer "linear", but the software consists of a number of 
objects. Another feature of OOP is that it is possible to define a hierarchy of 
objects. In chemometrics, it may be possible to define a class of "graph" objects 

The graph objects may be subdivided, lower down the hierarchy, into scores, 
loadings, eigenvalues etc. Matrix objects may be subdivided into vectors, square 
matrices etc. all with their own, specific, properties. 

OOP changes the way programmers work. One of the most successful OOP 
environments is C++ [143-144]. This is an extension of C including object 
oriented methods, among other features. Vast class libraries have been developed 
for C++. Microsoft link C++ to the Windows operating system, so classes 
of objects include scroll bars, menus, windows and so on. This programming 
environment is exceptionally flexible, but not best suited for most chemometrics 
programmers, the difficulty being that it takes a great deal of time to set up class 
libraries and define basic properties of objects. It can be useful for large team 
efforts, where one type of operation is going to be performed repeatedly. 

VISUAL BASIC [145-147] is a relatively recent OOP environment of 
increasing popularity. Although it includes "BASIC" in its name, and has a 
certain degree of compatibility with previous versions of this language, it has 
evolved very far from BASIC. A very flexible object oriented environment is 
provided, but an additional advantage is that conventional code, such as straight 
numerical routines, can be attached to objects. Scientific programming should not 
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be entirely within an object oriented environment: some algorithms work best in 
a linear fashion, so a combination of both traditional and object oriented meth­
ods is favoured. OOP methods are very useful for control of programs and good 
user interfaces, whereas conventional methods are best for traditional algorithms. 
One disadvantage of VISUAL BASIC is that the compiled code is quite slow, 
although this may change as implementations improve. 

Other OOP environments worth mentioning are as follows. VISUAL C++ is 
an extension to C++ with some of the facilities of VISUAL BASIC. Toolbook 
[148] is an excellent environment for a Windows interface, but is not very useful 
for numerical programming. Linking Toolbook to a numerical package such as 
VISUAL BASIC or C would seem an optimal solution. 

In conclusion, the chemometrician has a very wide variety of programming 
environments to choose from. The choice must depend on many factors as fol­
lows. The technical ability of the programming has to be taken into account. The 
hardware and operating system should be considered. The importance of a user 
interface must be considered at the beginning of a project. The time scale of the 
project, and whether it is necessary to interface to other people's programs are 
important. There is no one single optimal language or approach, but the ability to 
develop "homegrown" software is important for development of state-of-the-art 
methods. 

Conclusion 

We have provided an overview of modem chemometrics. One of the difficulties in 
this field is that there is a very wide variety of groups of people, all with different 
backgrounds and expectations. Some investigators do not class themselves as 
chemometricians, despite the relevance of their work to chemometrics. Other 
investigators, such as mainstream analytical chemists, are often very keen to be 
classed as chemometricians. 

A wide variety of people will want to know about and use chemometrics 
methods in view of the diversity of approaches to this very broadly based subject. 
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The application of statistical experimental design and optimization (SEDOP) to environmental chem­
istry research is presented. The use of SEDOP approaches for environmental research has the potential 
to increase the amount of information and the reliability of results, at a cost comparable to, or lower 
than, traditional approaches. We demonstrate how researchers can attain these benefits by adhering to 
a systematic program of design and execution of experiments, including the analysis and interpretation 
of results. The lack of general knowledge about experimental statistical techniques had hindered their 
widespread application in the environmental field. To benefit from the SEDOP advantages, the United 
States Environmental Protection Agency (USEP A) has an ongoing project to investigate applications 
of statistical design to environmental chemistry problems. There exist standard experimental arrange­
ments (designs) to address all phases of a research program, from identifying important effects, to 
modeling the behavior of the experimental system of interest, to optimizing the operating conditions 
(e.g., minimizing waste or maximizing reproducibility). The most useful standard design arrangements 
(both for system characterization and optimization) are introduced, together with a discussion of their 
applicability to pollutant analysis as well as their strengths and weaknesses. Practical environmental 
applications from the literature are presented and discussed from the perspective of the approaches 
and techniques that they illustrate. Examples include optimization of analyte extraction, instrument 
calibration, method comparison, ruggedness testing, selection of indicator contaminants, and pollution 
prevention. The implementation of statistical experimental design today is greatly facilitated by the 
use of available software for the selection of designs, the planning of experiments, the analysis of 
data, and the graphical presentation of results. 
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Introduction 

An introduction to experimental design and optimization is presented for envi~ 
ronmental scientists and engineers as tools for the development and evaluation 
of methods for monitoring chemicals in the environment. Knowing the quality 
of environmental measurements is crucial to understanding and protecting the 
environment. A key component of the quality of environmental data is the relia­
bility of the methods used to produce them. Environmental researchers can obtain 
the desired information for method development in an efficient manner through 
the systematic planning of experiments and the analysis of results. Statistical 
experimental design and optimization techniques (collectively referred to here 
as SEDOP) provide a framework for a systematic approach to experimentation. 
The use of SEDOP techniques in chemistry, also referred to as the design of 
experiments (DOE), is a subject of chemometrics. Chemometrics is the study of 
the application of mathematical, statistical, and computational methods to chem­
ical data for the extraction of useful information [1]. Researchers are growing 
accustomed to the use of chemometric methods for environmental data analysis 
[2, 3] (hence the term environmetrics [4]), but the use of chemometric techniques 
during the planning phase of experiments is not as common. 

The most efficient and reliable approach to the acquisition of experimental 
data is to introduce statistical considerations at the planning and design stage. 
The application of seemingly sophisticated statistical methods to the analysis of 
data acquired from poorly-designed experiments may lead to erroneous conclu­
sions about the results. Beebe and Pell recommend that chemometrics should be 
used at every phase of an experimer1tal study [5]. This approach requires the 
clear establishment of the relationships among the desired information and the 
way that the experiments are to be conducted, the way that the data are to be 
analyzed, and the way that the results are to be interpreted. 

The application of experimental design in the complex framework of 
environmental chemistry varies according to the research project's objectives 
and its stage of development. Even if the overall goal might be the optimiza­
tion and understanding of a process, several sub-goals are frequently encoun­
tered in environmental chemistry research for analytical applications: increasing 
accuracy, precision, or specificity; maximizing sensitivity; minimizing the limit 
of reliable measurement (e.g., detection limits); assessing reproducibility (such 
as interlaboratory testing); optimizing particular performance characteristics; test­
ing for method ruggedness (tolerance); and improving the understanding of a 
system's behavior. In general, experimentation has the goals of determining the 
effect of a factor (variable) upon an output, minimizing the variability for an 
experimental system, and optimizing an output. 

We discuss herein some of the available SEDOP methodologies and software 
tools, review how these techniques have been applied in environmental chemistry 
research, and provide guidelines for the application of experimental design to an 
environmental experimental program. 
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System Theory and Response Surfaces 

A conceptual model for the formulation of experimental design applications is 
based on system theory [6]. A system consists of inputs transformed by a process 
to produce outputs. The inputs are called "factors" and the outputs are called 
"responses." An analytical system is represented in Fig. 1. Conceptual modeling 
of the elements involved in the experiment as components of a system helps 
establish a framework for definitions, relationships, and methodologies. Choosing 
the "levels" (values) for the factors is a fundamental aspect of experimental 
design. A given set of levels for the factors in the system (called a treatment 
combination) constitutes an experiment, with the resulting values for the responses 
being a product of the system's transform. 

The domain of values that factors can take is termed the "factor space." 
Factors may be controllable by the researcher (with an acceptable degree of 
precision) or not. From that perspective, factors are classified as controllable or 
non-controllable. Quantitative factors are those with a continuum of values, such 
as the acidity of a chemical solution, conveyor speed, or pumping rate; qualitative 
factors have discrete values, such as the type of acid used in a process, the 
physical configuration of a pilot plant, or a field sampling tool type. Most of 
the factors involved in chemical research are quantitative rather than qualitative. 
The conceptual modeling step for the physical system of interest identifies known 
factors and known responses. 

The experimental system, as defined here, includes all elements related to the 
study, including equipment, materials, human intervention, procedures, and factor 
settings. In the field of experimental environmental chemistry, the physical system 
of interest could represent a measurement method for pollutant concentrations, 
an industrial chemical process in which waste should be minimized, or a pilot 

Sample--~ 

Reagents 

PROCESS 

Fig. 1. Conceptual model of an ex­
perimental system as applied to en­
vironmental analytical chemistry 
with input (factors), process, and 
output (response) components 
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Fig. 2. Pseudo three-dimen­
sional representation of a 
response surface for two 
factors (temperature and pH). 
The response (percent recov­
ery) is represented by the 
vertical axis 

plant for remediation of contaminated material. The environmental chemist or 
engineer might typically study parameters related to analytical conditions, material 
processing procedures, and sampling methodologies. 

Response values can be related to factor levels by a mathematical function 
(model). The graphical representation of such a model is the "response surface." 
Figure 2 shows an example of a response surface for a response (percent recov­
ery) as a function of two factors (temperature and pH). This response surface 
(an elongated dome with a maximum, tilted with respect to the main axes) is 
being used as an example here, but experimental systems can have a number 
of shapes, including minima, saddles, ridges, planes, and others. The common 
calibration curve used in analytical chemistry is a response surface with one 
factor (usually concentration). Obviously, the shape of the response surface is 
not known to the researcher at the outset of a study. Since experimental mea­
surements are usually relatively few and are affected by noise, the estimate of 
a system's response surface is subject to uncertainty. One of the main purposes 
of statistical experimental design is to model at least some portion of a response 
surface to distinguish the effects of important factors over noise. 

Experimental Design 

Researchers want answers to specific questions concerning the reliability of 
results, such as what is the most appropriate experimental arrangement to 
obtain the desired information, what is the probability of obtaining the same 
results if an experiment is repeated, what is the probability that the observed 
results are due to the attributed causes, what is the probability that the observed 
results are not a purely random occurrence, what are the optimal operating condi­
tions for a process, and how well can we predict the results for experiments that 
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have not been conducted? Statistical approaches to experimental design can pro­
vide a quantitative measure of the reliability of results and a degree of confidence 
in the conclusions. 

The term experimental design has been used in a general way to include 
intuitive decisions taken by the researcher to fix the levels of the factors based 
on experience and system constraints. Some factors will not be varied in a study. 
Fixed factors then define the framework of the system (e.g., equipment, technique, 
and materials). 

Statistical experimental design refers in particular to the selection of 
appropriate treatment combinations for the factors that will be varied (treatment 
factors). These factors are the subject of statistical analysis and their values are 
explicitly set for a given experiment. At a later time during a project some of 
the fixed factors might be added as treatment factors in the study. For example, 
the objective of a project could be to study what the best flow rate is for a solid­
phase extraction (SPE) for sample preparation, if it has been pre-determined that 
SPE is the method to be used. In this case, flow rate might be a treatment factor 
and extraction type a fixed factor. Alternatively, the project could study if SPE 
is a good choice at all, as compared to liquid-liquid extraction, in which case 
extraction type is a treatment factor. 

Traditionally, the only resource available to the researchers at the planning 
stage of the work has been heuristic knowledge (based on chemical principles, 
experience, and common sense), as a substitute for a knowledge of experimen­
tal statistics. If the factor levels were varied non-systematically (intuitively or 
randomly) to gain an understanding of an experimental system, it might take a 
large number of experiments to obtain any useful information. Figure 3 depicts 

J: a. 

Temperature (0 C) 

Fig. 3. Example of random experi­
mentation by intuitively varying more 
than one factor at a time (shotgun 
approach). Dots represent the con­
ditions for an individual experiment 
(i.e., the settings of temperature and 
pH). This is a two-dimensional rep­
resentation of a response surface (see 
Fig. 2) by iso-response contours ( iso­
pleths) for the response of interest, 
percent recovery in this case. Treat­
ment combinations in an isopleth 
yield the same percent recovery 
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an example of this "shotgun approach" (using a two-dimensional representation 
of the response surface in Fig. 2). 

The most common systematic approach is to vary one of the factors in a 
series of experiments while all of the other factors are held constant (one-factor­
at-a-time approach) [7]. An example is shown in Fig. 4. This approach is widely 
taught as a systematic alternative to intuitively changing several factors at a 
time (shotgun approach), but it could also produce misleading results in many 
actual situations. A major flaw of the one-factor-at-a-time approach is that it is 
unable to reveal any information about interactions between factors. Interactions 
are interdependencies among the factors, present when the effect of a factor 
depends on the level of one or more of the other factors. In our example this 
condition is indicated by the fact that the main axis of the response surface is 
tilted with respect to the factor level axes. In the case depicted in Fig. 4, an 
apparent maximal percent recovery was found for a temperature of 115 oc and 
then the pH was varied to find its maximal effect upon recovery at that tem­
perature. This approach fails to locate the true optimum. The apparent optimal 
conditions are on a ridge, again due to the interaction between factors. A better 
approach might be to vary more than one factor at a time, based on a statistical 
design, and analyze the results accordingly. 

The application of statistical concepts to the design of experiments can be 
traced back to the pioneering work of R.A. Fisher, started in England in the 
1920s [8]. Experimental design methods have been used extensively in agricul­
tural experimentation, social sciences, and manufacturing [9, 10]. In fact, many of 
today's concepts and nomenclature for statistical experimental design can be 
traced back to the agricultural heritage. Chemists have also originated experi­
mental design techniques to serve specific chemical applications [ 11]. 

:c c. 
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Fig. 4. Example of one-factor-at-a­
time experiment. The temperature is 
varied while the pH is kept constant, 
and then the temperature is fixed for 
the highest recovery found while the 
pH is varied 
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Experimental Statistics Concepts 

Statistically based experimental design provides tools to address common prob­
lems that are inherent to experimentation and hard to address by a purely intu­
itive design of experiments. These include failing to quantify experimental error 
(i.e., uncertainty or noise), wrongly assigning causal relationships between vari­
ables or responses that appear to be correlated, and "confounding" of individual 
factor effects because of the complexity of the system being studied [10]. 

In the framework of statistical experimental design, mathematical modeling 
provides a tool for simulating the physical behavior of the system, while statistics 
provides a methodology for quantifying how well the physical process is known. 

A well-designed experiment should provide the information sought at a rea­
sonable cost. The desired (or needed) information and a reasonable cost are to 
be defined according to the researcher's view of the problem. For example, the 
number of levels included in the design (i.e., number of different factor values 
tried) must be enough to cover the portion of the factor space that is of interest, 
but not so many that the design would not be cost-effective. 

For statistical considerations, experiments can be described mathematically by 
an equation of the form 

y=f(x)+r (1) 

where y is an observed response value, f(x) is a function model that describes 
the effects of a set of independent variables (factors), x, on the response variable, 
and r is the error term (uncertainty) that represents departures of the actual data 
from the model. The r term is also called the "residual" or "error" (sometimes 
represented by e in the literature). For statistical considerations, the magnitude of 
the observed responses in a set of experiments ( i = 1, ... , n) can be represented by 
its total sum of squares (related to the variance of the data set): SSy = E~= 1 l. 
Sums of squares have the property of being additive; thus, from Eq. ( 1 ): 

SSy = SSr + SSr (2) 

where SSr is the sum of squares due to the treatment factor effects, f(x), and SSr 
is the sum of squares due to the residuals (error). The formulas for the calculation 
of SSr and SSr are omitted in the interest of simplicity, but they can be found in 
the general experimental statistics literature [10]. SSr and SSr can be broken up 
into additive components depending on the experimental design and model used. 
The sums of squares will be discussed later in the context of their relevance 
to the practical aspects of statistical experimental design. For the purpose of 
distinguishing signal over noise as well as possible, a good experimental design 
will make SSr as large as experimentally feasible ( SSr ~ SSr ). 

To increase the magnitude of SSr, researchers can, among other things, use 
a wide range for factor values (e.g., a wide range of temperature and pH) and 
include more replicated experiments. It is usually possible in chemical research to 
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obtain an a priori estimation of the experimental error; this permits the placement 
of the experimental points at a distance large enough to distinguish between the 
effects and the error [12]. To decrease the error contribution, improvements to 
the experimental system and procedures should be implemented. From an exper­
imental design viewpoint, as many of the potentially influential factors (and their 
interactions) as possible should be taken into account in the design and analysis 
by including them in f(x ). Potentially influential factors that are not of interest 
(e.g., laboratory technician skill) become noise factors. They can be excluded 
from the noise term by fixing their values for the entire study if possible. When 
this arrangement is not possible, experiments can be run in blocks respective to 
the noise factors, thus separating their effect (a technique called "blocking"). 

It should be noted that, when trying to model an experimental system, 
r could contain contributions not only from random experimental error, but also 
from any systematic factor effects not taken into account in the experimental de­
sign or the proposed model's f(x). The deviations of the experimental results 
from the mathematical model not due to purely experimental error are called the 
"lack-of-fit" contributions. 

Experimental Uncertainty and Replication 

Experimental measurements are always affected by error. A prerequisite for sta­
tistical analysis of experimental results is that the system under study be in 
"statistical control", meaning that if any given treatment combination is repeated 
many times, the different responses obtained will be affected only by a small 
random error (i.e., follow a random pattern of variability about their mean). A 
set of values that meet this criterion often have a "normal" statistical distribu­
tion. This occurs when the system responses are due to the underlying transform 
modified only by relatively minor disturbances that happen randomly (noise) and 
are not attributable to a systematic cause. If the data follow a normal distribu­
tion, then a simple parametric statistical comparison of the results to standard 
statistical distributions can be done to determine if the observed effects may have 
occurred by mere chance or are real (at a preset level of confidence). For sta­
tistical purposes, it is further assumed that all of the experiments have the same 
error variance. Another aspect of statistical control is that the factor effects be 
distinguishable over the noise. Researchers should make sure that the system is 
in statistical control before inferences are made from the statistical analyses of 
the results or any possible conclusions will have a low confidence. This might 
happen in a case where the magnitude of the noise variability is comparable or 
exceeds the magnitude of the factor effects (SSr ~ SSr or SSr < SSr ). 

The only way to assess the experimental uncertainty is by running 
"replicates," which are repetitions of the same treatment combinations. The 
more replicates included in a design, the better the estimate of noise variabil­
ity, SSr/(n- f), where n is the total number of experiments and f the number 
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of distinct treatment combinations (n - f is the total number of replicates). 
For laboratory replicates, if collected under proper care, the sample variance will 
be due to purely experimental error and the sample distribution should approxi­
mate a normal distribution. For pollutant concentrations at hazardous waste sites, 
data commonly follow a log-normal distribution. 

Blocking and Randomization 

Because there are unknown and uncontrollable factors (that have not been 
blocked), their effects should be minimized by randomization. One of the major 
assumptions of the normal distribution of errors is that the determinations are 
random; that is, any one of the outcomes has the same probability of occurring. 
The test order should be randomized. This can be accomplished by designing the 
experiments in such a way that the order in which they are carried out is deter­
mined by a random drawing (i.e., a coin toss, random number table, or computer 
random number generator). Restrictions to randomization will occur when the 
levels of one or more factors are experimentally difficult to change [13]. 

Statistical Testing 

A set of values of the same kind (i.e., those that belong to the same statistical 
population) represent a statistical sample of the population if the values were 
obtained under statistical control. Characteristics of a statistical sample are its 
mean value and its spread (i.e., variance or standard deviation). 

The data set is assumed to be a sample from a general population, and val­
ues of the statistics from the sample are compared with the expected values of 
parameters from the population. If each datum of the set is statistically inde­
pendent and its collection follows a random pattern, then descriptive statistics of 
the sample, such as the mean (average), y, the variance, s~, and the standard 
deviation, sy, can be used to compare that set with other sets meeting similar 
requirements. The comparison is made in the light of an appropriate reference 
distribution (found in tables of basic statistics texts) which represents what the 
data set would be like if it met the test criteria. 

Tests of significance can determine (with a pre-established risk of being 
wrong) if a set of values belongs to a given population. This procedure is based 
on the formulation of a hypothesis (Ho, the "null hypothesis"), and its "alternative 
hypothesis" (H, ). A statistical test of significance will disprove the null hypoth­
esis or not (thus accepting the alternate hypothesis or not). Statistical analysis 
allows researchers to determine confidence intervals (as a range of values) with 
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the condition that this range will contain the true value of a calculated parameter 
(such as a mean) with a selected probability. 

There are two key elements for statistical tests of significance and confidence 
interval determination: the level of risk that the researcher is willing to accept and 
the number of values in the set( s) being tested. Flatman and Mullins [ 14] discuss 
how to set the levels of confidence for environmental studies, both for the risk 
of wrongly accepting a false null hypothesis and the risk of wrongly rejecting 
a true null hypothesis. The number of observations determines the degrees of 
freedom for statistical parameters, which are a measure of the representativeness 
for the parameter value. Degrees of freedom are the number of independent 
comparisons that can be made in a data set. Mathematically, the degrees of 
freedom, v, are given by the number of independent observations, n, minus the 
number of population parameters, p, which must be estimated from the sample, 
that is v = n - p. For example, it is completely unreliable to try to determine 
which of two analytical methods gives the most accurate results from only one 
analysis of a reference standard by each analytical method. The one analysis 
(n = 1) for each of the two methods would be used to represent the mean 
(p = 1) for each method, leaving no other degrees of freedom (v = n- p = 0) 
for other comparisons (such as variance). Properly obtained sets of results for 
each analytical method might be statistically tested with a comfortable level of 
confidence. When testing for the statistical significance of a factor effect over 

noise, the ratio of the variances (~~~~~:.=- 1 ~) is compared against standard F-test 
values. If the calculated ratio is larger tharf the appropriate distribution table value, 
the effect is considered statistically significant. Hence, the need for ~ ~ -!!:-. 

Statistical results should be interpreted with caution. For exampk, a stati~ti­
cally significant correlation between two variables does not necessarily prove a 
cause and effect. The variables could merely be concomitant because they both 
depend on another common underlying factor. 

The procedure described is the common parametric test procedure. 
Non-parametric statistics could be used when there is an appropriate reference 
set of historical data and the normal distribution assumptions are known to be 
false in the particular situation [9]. 

Experimental Design Strategies 

After the experimental system is defined, the next step is to focus on which par­
ticular factors and responses are to be studied and why. Depending on what is 
known and what needs to be known about the system, researchers may be inter­
ested in screening for important factors, quantifying factors effects, comparing two 
or more methods (systems), optimizing a system's response, or gaining a formal 
understanding of the system's transform (e.g., through mathematical modeling). 
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A sensible strategy is to divide the study of a complex system into stages, 
with limited questions being answered at each stage. For the sake of efficiency, 
a practical sub-set of the known factors should be chosen as the object of study. 
If this cannot be done with the available information, a preliminary set of exper­
iments can help identify what factors are important. Once that is known, other 
designs can be used to answer more fundamental questions, such as what is the 
best setting for the main factors or how does each factor influence the system's 
response. 

The various types of research strategies described below often require or 
benefit from the use of statistical designs. A typical approach to a sequential 
SEDOP study is to screen the factors, looking for important effects (statisti­
cally significant), and then search for the optimum combination of the important 
factors [15]. 

Screening for important factors is often one of the first steps in understanding 
the conditions that determine the performance of a system. It is good practice to 
try to identify which factors are important and which factors are not. This will 
allow informed decisions to be made about which variables should be controlled 
or studied further and which can be neglected without affecting the system's per­
formance. This approach saves time and cost. Identifying which factors contribute 
to imprecision is crucial to method improvement. 

Modeling the system is necessary when a fundamental understanding of the 
underlying principles and relationships among the relevant factors is desired. 
Calibration relates specific instrument responses to the properties of interest 
(e.g., concentration). It is probably the most common type of modeling in the 
environmental laboratory. Calibration curves are usually linear relationships. 
While method development techniques are applied only at certain specific stages, 
calibration is used throughout the life of the method to assure the day-to-day 
accuracy of the assay. 

Optimization is often involved in analytical method development (finding the 
factor setting that produce an optimal response of interest). Typically, optimiza­
tion is attempted after the system has been well characterized by previous studies. 
An alternative, and possibly more efficient, approach is to try to optimize the con­
ditions first and then determine which factors are of importance in the region of 
the optimum. If necessary, additional experiments can be carried out after the 
optimization to obtain a better understanding of how the system behaves in the 
region of the optimum [16]. 

Comparison of methods is utilized to decide between alternative analytical 
techniques or to establish their equivalence. Comparison of methods is common 
in method improvement or validation, and in interlaboratory studies. This type 
of comparative study is present at the first stages of method development to 
evaluate the reproducibility and accuracy of the candidate method. It is also 
useful to test the ruggedness and interlaboratory performance of the procedure in 
the final validation process, after the method has been developed and optimized. 
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Statistical Experimental Design Methodologies 

There are well-documented experimental designs and optimization techniques that 
can enable the environmental researcher to achieve the goal of the study with 
efficiency and reliability. Some statistical designs provide quantitative measures 
of confidence in the results. Other techniques help place the experiments in the 
factor space in a way that will maximize the chances of obtaining meaningful 
results, facilitating the statistical, mathematical, or intuitive analysis of the results 
after the experiments are conducted. 

Setting up a group of experiments (an experimental plan) involves selecting 
the design type according to the project's current goals and then choosing the 
specific factor levels (treatment combinations) for the experiments. Researchers 
could use standard design arrangements or develop custom designs based on the 
statistical theory of optimal design [17]. 

Design characteristics, applicability, and strategies for standard designs and 
optimal designs are presented here to guide researchers in the planning process. 
The omitted details for the application of, and numeric calculations for, each 
design can be found elsewhere in the literature and appropriate references are 
included with each design. Mastering the procedural details is less important 
today, since powerful computer software that takes care of the record keeping 
and calculations is becoming increasingly available. A summary of the strengths 
and weaknesses of each design is included to help researchers in the design 
selection process. 

Most of these designs are orthogonal and balanced [18], simplifying the ana­
lysis through mathematical relationships and permitting the assessment of main 
factor effects (since there is an equal number of test runs under each level of 
each factor). Orthogonality simplifies the statistical analysis and assures that the 
factors are uncorrelated, rendering independent variances. Even though standard 
designs specify settings for the factors at each treatment combination, some­
times system limitations prevent the execution of experiments exactly as planned. 
Unfortunately, deviations from the prescribed setting for the factor levels or any 
missing experiments will destroy the orthogonality properties, precluding the stan­
dard analysis of the results and possibly reducing the value of the information 
obtained. If the deviations from the standard factor values are known, they can 
be taken into account at the time of data analysis to obtain results that are more 
representative of the system's behavior [19]. 

The standard experimental design types discussed here are calibration designs, 
comparison of means, randomized paired comparisons, Latin squares, full factorial 
designs, fractional factorial designs, saturated fractional factorial designs, Plackett­
Burman designs, Box-Behnken designs, central composite designs, and simplex 
mixture designs. Although these designs have been proven to be very effective in 
chemical research, many of them have not been explored to their full potential 
in environmental chemical applications. 
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Comparison of Means 

During method development, improvement, and modification, researchers are fre­
quently faced with the task of deciding between two or more alternatives. For 
example, the decision might be between two different methods, or the decision 
might involve two or more different variations of the same procedure. Comparison 
of means (a completely randomized design) and block designs (see next section) 
are useful for statistical inference about the significance of presumed effects due 
to changes in experimental conditions. 

Statistical infenmce can be used to determine the difference, or lack of dif­
ference, between two or more sets of data at a given level of confidence. These 
significance tests can be used as effective and reliable tools for comparing treat­
ments. 

For the comparison of two treatments (corresponding to sample data sets A 
and B), with means, YA and y8 , respectively, it is possible to establish if the 
difference between these means is statistically significant or might be attributed 
to random variations. The standard deviations of the data sets are assumed to be 
equal. 

The null hypothesis states that there is no difference between the treatments, 
Ho: YA- J1s = 0. An acceptable level of confidence (usually 95%) is specified 
for the test. Disproving this null hypothesis strongly suggests that the alternative 
hypothesis, H, : y A - y8 # 0, is true at the given level of confidence, and that 
there is strong evidence to deny that the treatments are equivalent. 

To try to disprove the null hypothesis, it is necessary to determine the fre­
quency that the observed difference between the averages would occur by chance 
alone. This is done by calculating the statistics for the samples and comparing 
their value to a reference distribution, usually by reading the appropriate entry 
in statistical distribution tables (e.g., Student's t-table ). These tables also take 
into account the number of degrees of freedom in the sample (which depeRds on 
the number of observations) and the desired percent level of confidence in the 
result. The procedure described is the common parametric test procedure. Non­
parametric statistics could be used when there is an appropriate reference set of 
historical data and the normal distribution assumptions are known to be false in 
the particular situation [9]. 

The Student's t distribution approximates the normal distribution very closely 
for a number of degrees of freedom larger than 15 [10]. For the comparison of 
two sample means, with the null hypothesis, Ho : Jl.A - Jl.B = 0, and alternative 
hypothesis, H 1 : Jl.A- Jl.B # 0, the Student's t statistic can be calculated from the 
sample 

t _ Ys- YA 
0

- SAs)l/nA + 1/ns 
(3) 



Experimental Design and Optimization 89 

where SAB is the pooled standard deviation, estimate 

nA +nB- 2 

(nA- 1) Si + (nB- 1) s~ 
(4) 

A Student's t table should be consulted to find at what level of confidence 
the test statistic, t0 , becomes larger than the tabular t value for the corresponding 
number of degrees of freedom (nA + n8 - 2). If the probability of the difference 
between the sample averages occurring by chance is large, then the alternative 
hypothesis cannot be accepted that there is no statistically significant difference 
between the treatments. 

The chemical meaning of this finding (that there is no highly probable, 
statistically significant difference between the compared treatments) will depend 
on the experimental objectives. If a new method is being validated in comparison 
with one known to be good, then, under such findings, the new method cannot 
be assumed to be different from the reference method at the given level of confi­
dence. The same holds true for the interlaboratory testing of a method, resulting 
in the acceptance of the procedure as rugged. In contrast, if the purpose of the 
experiments is to determine if a new detector is more sensitive than an existing 
one (i.e., the detector has a larger response for the same concentration of analyte ), 
then it would be desirable to disprove the null hypothesis, thus demonstrating 
statistically that there is a difference between the two detectors. A larger number 
of experiments may be necessary or the noise (sy) may need to be reduced to 
prove the hypothesis with greater confidence. 

The experimental design consideration for the application of this method­
ology is that the statistical independence of the determination should be assured. 
The conditions for two treatments should be such that they differ only in the 
characteristics being compared, holding everything else constant. If the conditions 
of statistical independence and freedom from bias are not met, then we can try 
to overcome this difficulty by blocking and randomization. 

Block Designs 

Randomized Block 

Sometimes in comparative experimentation there are factors that cannot be held 
constant for all of the experiments and are not included in the factors being 
studied. These factors are called background factors. If the sources of variation are 
known and controllable, then blocking can be used to assure that all of the factor 
levels are applied to all of the different experimental conditions. For example, 
in comparing two sample cleanup eluent mixtures for analysis of extractables 
in soil matrices, it might not be possible to assure that every batch of sorbant 
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material will be the same. An experiment could be designed in such a way that 
the same number of runs (experiments) with each eluent is performed on each 
batch of sorbant. All of the runs made on a batch of sorbant represents a block 
of experiments. 

Blocking can be a naturally occurring phenomenon. Time is a common block­
ing factor. Because runs performed close together in time are likely to be more 
similar when time trends are present, it is advisable to design experiments blocked 
in time (i.e., blocks performed consecutively) whenever possible. 

The use of more than one instrument, batch, or technician, indicates a need 
for blocking, and the treatments within each block (experimental units) should 
be randomized. 

Randomized Paired Comparisons 

A commonly occurring blocking pattern is the use of blocks of pairs of runs 
performed in random order. In this case, for the comparison of two treatments, 
each block of two runs will contain one of each treatment. This design is known 
as a randomized paired comparison and is the smallest blocking plan. The analysis 
of the data is not performed in terms of comparing the statistics of the two 
treatments, but by comparing the statistics of the differences between paired runs 
to the reference distribution. 

Randomized paired comparisons are applicable only to the situation of one 
factor with two levels. For more complex situations other blocking patterns might 
need to be employed. 

Latin Squares 

Latin square designs can estimate the effect of one factor while minimizing the 
effects of two interfering background factors. The Graeco-Latin square design is 
used to block against three background factors, and hyper-Graeco-Latin squares 
are used for blocking against more than three background factors. 

Latin square designs are employed when there are two background variables 
(e.g., technician and sample type) which each have the same I number of levels 
as the number of treatments under study resulting in a I x I design. As is common 
with blocking designs, this is particularly applicable to categorical or qualitative 
factors (those with values that cannot be ordered, as opposed to quantitative 
factors, with numerically ordered values). 

Latin square designs have the characteristic that the levels of the primary 
factor (treatments) are completely randomized with respect to the background 
variables, and each combination occurs once along each row and column. Figure 5 
shows an example of a Latin square design. In this example, technician and 
sample type are background factors that are expected to be uncorrelated with 
each other. The effect of the method, though, is expected to depend heavily on 
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Fig. S. Latin squares design for the comparison 
of four methods (A, B, C, and D). The un­
wanted effects of different technicians and sam­
ple types are separated by using them as blocks 
(four technicians and four sample types as back­
ground variables). Each method is run once with 
each technician and each sample type 

sample type. The Latin square design and its analysis make possible the resolution 
of the method effect by itself. The analysis of Latin square experiments allows 
the calculation of a pure variance component for the primary factor or treatments, 
as well as for each of the background variables. 

The randomized block design can only block a single background factor. 
Some designs are generalizations of the Latin square- Graeco-Latin squares and 
hyper-Graeco-Latin squares allow blocking of several background factors simul­
taneously. Other block designs, such as balanced incomplete block designs and 
Y ouden squares, accommodate for a number of treatments larger than the number 
of experimental units in each block [8]. 

Full Factorial Design 

Block designs are useful in experiments in which many levels of a single factor 
are being used. For experiments involving several or many factors, usually at 
only two or three levels, factorial type designs are often preferred. 

Full, or complete, factorial designs "are experiments which include all 
combinations of several different sets of treatments of factors" [20]. Factorial 
designs are commonly represented for ease of analysis by coding the levels of 
the factors (such as -1 for the low level and + 1 for the high level in two­
level designs). By far the most commonly used design is the two-level (2k ), 
followed by three-level (3k) factorial. Figure 6 shows a two level, two factor 
(22 ), full factorial design overlaid on response contours. Compare this figure to 
the one-factor-at-a-time approach (Fig. 4 ). The 22 factorial covers more of the 
factor space, whereas the one-at-a-time experiment is stuck on a ridge. The one­
factor-at-a-time procedure is not able to detect interactions because each factor is 
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Fig. 6. Full factorial design for two 
factors at two levels. Each factor level 
appears in combination with all levels 
of the other factor 

changed while holding everything else cons1.ant [21]. Even in the case of no inter­
action, there is much better ground for making conclusions about the main effect 
of a factor, since the effect has been observed in a variety of experimental con­
ditions. Note also that the main characteristics of the response surface are more 
effectively represented with only four experiments for the 22 factorial design, 
whereas the one-factor-at-a-time approach may require many more experiments. 

The experimental data can be represented by the equation 

(5) 

where Yi is the measured response from the i-th experimental run, Xi is a vector 
of predictor variables for the i-th run, f is a vector of p functions that model 
how the response depends on Xi, B is a vector of p unknown parameters, and ri 
is the experimental error for the i-th run [8]. 

A linear model for the effects of two factors and their interaction would be 

(6) 

Full factorials are arranged in such a way that all of the measurements con­
tribute information about the effect of changing the factor levels. This is a major 
advantage of the full factorial design. 

For quantitative variables, the parameters, in matrix form, B, may be estimated 
by the least squares method. The estimates of the parameters can thus be obtained 
through matrix operations on the design, X, and response, Y, matrices: 

(7) 
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This permits the estimation of the responses according to the model. 
An analysis of variance (ANOVA) will give information about the appropri­
ateness of the model employed and the experimental precision. 

If the residuals are uncorrelated and their variance is constant, then the 
variance-covariance matrix, V, of the least square estimators, iJ, is 

(8) 

where X is the n x p matrix whose i-th row is f(xi) and s; is the variance of 
the residuals, or SSr / ( n - p ), where SSr is the sum-of-squares of the residuals 
and (n - p) are the degrees of freedom. 

The variance of the estimated response at x is 

var(Y) = i f(x)(X'X)- 1f(x). (9) 

Since both Eqs. (8) and (9) show that the experimental design depends on 
the p x p dispersion matrix, (X' X)- 1 , a good experimental design will make this 
matrix small, [8] usually by covering a broad domain of experimental conditions 
and by carrying out a reasonably large number of experiments [6]. To minimize 
the variance of residuals (make s; small), it is recommended to use appropriate 
mathematical models, and to carry out precise and repeatable experiments. The 
amount of variation due to lack of experimental reproducibility is called the 
purely experimental uncertainty (or pure error). 

The statistical significance of the effects can be determined in several ways. 
A simple method is to use a Student's t test to evaluate the difference between 
the mean responses at the two levels of a given variable, even for qualitative 
(categorical) variables. 

Statistical tests for significance must be interpreted with caution and within the 
context of the known practical aspects of the experimental system being studied. 
For example, sometimes a model seems to have both highly significant factor 
effects and a highly significant lack-of-fit [6]. This situation may arise when a 
model fits the data well and at the same time the experimental results are very 
reproducible. The latter condition might exaggerate the relative importance of 
any lack-of-fit (the test is based on a ratio between the variances for lack-of­
fit and purely experimental uncertainty). In this case, the statistically significant 
lack-of-fit is of no practical significance and can be ignored. 

Full factorials have the disadvantage that as the number of factors under 
study, k, at a number of levels, /, increases, the number of experimental runs, 
n, increases exponentially (n = /k). For a higher number of factors, or for the 
preliminary screening of factor effects, fractional factorial designs are used. 

The factor combinations in a full factorial are designed in such a way that 
information is obtained about the main effects, and all possible factor combination 
interactions. For a system with k factors, there are k(k- 1 )/2 possible two-factor 
(second order) interactions. However, in many applications, only the main effects 
are of interest, and, in chemical systems, interactions involving more than two 
factors are uncommon. As the number of factors or levels increases, the full 
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factorial becomes inefficient in terms of the amount of useful information added 
per run [7]. 

Screening Designs 

Fractional factorials, saturated fractional factorials, Plackett-Burman, and Taguchi 
are fractional designs, i.e., not every combination of the factor levels is included. 
They are used for screening significant factors. These partial designs do not have 
the degrees of freedom that would be required to assess the separate effects of 
higher-order interactions. When interactions are assumed to be negligible or are 
of no interest, the few degrees of freedom available are used to obtain informa­
tion about the useful lower order effects. The idea is to design the experiment 
with fewer level combinations (experiments) such that some of the studied lower 
order and main effects will be confounded or confused with higher order effects. 
Because of this confounding, one cannot tell if the higher- or lower-ordered term 
contributes more to the given effect (thus, the higher- and lower-ordered terms are 
called aliases). However, since it is unlikely that higher-ordered terms contribute 
very much, the effect is usually attributed to the lower-ordered term of the aliased 
factors and their interactions. This is possible in chemical experimentation where 
the experimental error is usually relatively small. For disciplines like biology or 
agriculture, a large number of experiments may be required [22]. 

It should be noted that if the confounded interactions had an effect then there 
will be ambiguities and errors in interpreting the results (viz., discerning which 
alias caused the effect), which is the drawback of this otherwise more efficient 
design [20]. The ability to gather factor effect information in less runs is not 
gratis. 

Fractional Factorial Designs 

Fractional or "partial" factorials [8] constitute a general category that includes 
designs with different levels of fractionality. For example (see Fig. 7), a half­
fractional factorial is equivalent to half of a complete factorial (two different 
half-fractional designs can be obtained from one complete factorial, each with 
half the number of experiments). A drawback for this more efficient design is 
that it prevents the possibility of discerning the main effects confounded with the 
factor interaction effects. To observe the interaction effects we would have to run 
the other half of the complete factorial. 

Fractional factorial designs are generally designated by Jk-p, where I is the 
number of levels, k is the number of factors, and p denotes the degree of fraction­
ation (p is the number of "generators") [10]. A two level fractional factorial, 
be represented as 2k-p. Thus, 2-P is the fraction of the full factorial, 2k. For 
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Fig. 7a, b. Possible fractional factorial designs for three factors at two levels (temperature, pH, and 
extraction time). Each design (a or b) is a half-fractional factorial (only half of the possible eight 
factor level combinations in a 23 full factorial are used). The treatment combinations included in the 
design are indicated by dot" 

example, a 2 7- 4 fractional factorial design is a 1 / 16 (2 - 4 ) fraction of the 2 7 full 
factorial design. 

The statistical analysis of fractional factorial experiments is similar to the 
analysis of full factorial designs. Fractional factorials are recommended for quick 
and economical screening determinations like collaborative tests and method 
revision [21]. 

Saturated Fractional Factorial Designs 

A fractional factorial design in which each degree of freedom is used to esti­
mate an effect is said to be saturated. The saturated fractional factorial design is 
obtained by associating (confounding) every interaction with a factor [23]. This 
class of fractional factorials can be made to be very efficient (i.e., low propor­
tion of experiments to factors), allowing for the exploration of the main effects 
of the k factors in k + 1 runs. This is useful when there are many variables to 
screen for effects (e.g., 15 variables can be screened in 16 experiments with a 
215 - 11 design). 

A potential disadvantage of saturated designs is that they can be constructed 
only for cases where the number of factors, k, is equal to a power of two minus 
one (i.e., k = 3, 7, 15, ... ). This type of design should be used only in situations 
where any interactions are known to be negligible, since the calculated effect for 
each of the added factors will be averaged with that of its confounded interactions 
and there is no way to separate the two effects without more experimentation. 
Screening studies are a good application for fractional designs, and the missing 
experiments can be run later to complete a full factorial, if needed. 

Plackett-Burman Designs 

Plackett-Burman designs were introduced in 1946 by R. Plackett and J. Burman 
[24]. They constitute a variation on saturated fractional designs. Again, k factors 
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can be studied in k + 1 runs (only the main effects are estimated). These de­
signs can be used only when k + 1 is a multiple of 4 (i.e., k = 3, 7, 11, ... ). 
This enlarges the opportunities offered by the saturated factorial design, which it 
complements. The orthogonality property is a characteristic of Plackett-Burman 
designs. 

Taguchi Designs 

This is a group of designs, originally developed by Plackett and Burman [24] and 
widely applied by Taguchi [25] for process quality improvement, aimed at finding 
the combination of levels for controllable factors that will minimize the effects 
of noise factors and thus achieve a more rugged performance of the system. 
These designs are based on the concept of parameter design. Parameter design 
focuses on the noise portion of system behavior (i.e., minimization of the error 
variance). Noise factors, which are uncontrollable during system operation under 
typical conditions, can be included in the experimental design at controlled levels 
to find ways of minimizing their effects through the control of the other system 
factors. A goal of Taguchi designs is to maximize the signal-to-noise ratio (S / N), 
where the signal (S) represents the desired response and the noise {N) represents 
the uncontrollable variability. Taguchi designs are highly efficient and are as easy 
to analyze as saturated fractional factorial experiments. 

Calibration Designs 

Calibration designs relate an instrument response to a chemical property (or 
another relevant input) in a quantitative way, along with an estimated measure­
ment of precision [26]. 

Fundamentally, calibration is a special application of curve fitting (modeling, 
when the fundamental function is known). It allows the determination of the 
parameters of a mathematical equation that will allow the prediction of the sys­
tem's response for a given setting of the factor level. The fitted model is then 
used in an inverse way to predict the chemical property of the analyte from the 
responses [27]. 

Calibrations can be classified as direct, indirect, internal standard, and standard 
addition. The calibration design mode chosen for a given analysis will depend 
on the available knowledge about the system. Direct calibration is the common 
calibration method in which the model that relates responses to concentration 
is known approximately. When the model is unknown, it might be estimated 
statistically by least squares fitting (indirect calibration). When a drift of the 
system with time is known to exist, internal reference methods can be used to 
correct for the deviation. Finally, if matrix effects are present, the generalized 
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standard addition method (GSAM) can serve as a tool to compensate for these 
matrix effects [28]. 

The final objective of calibration designs can be stated as making inferences 
about an unknown concentration vector, X, from an observed response vector, 
Y [28]. The relationship between Y and X is calibrated with the experimental 
data, Yi, Xi (i = 1, 2, ... , n ), where i is one of a total of n experiments. This is 
the inverse of the more common situation of trying to predict Y from X. 

By far the most common model used in calibration is the straight line (first 
order linear model): 

(10) 

where Po and P1 are model parameters (in this case, the straight-line intercept 
and slope, respectively). 

Models are commonly fitted by the method of least squares. To obtain useful 
results, enough levels and replicates for degrees of freedom need to be included in 
the design. The degrees of freedom needed to determine the variance of residuals 
is n - p, the degrees of freedom needed to determine the variance due to lack 
of fit is f - p, and the degrees of freedom needed to determine the variance 
due to purely experimental uncertainty is n- f. Therefore, it is desirable to have 
n > f > p. A rule of thumb is to have at least three degrees of freedom for 
determining each of the variances, requiring that f 2:: p + 3 and n 2:: f + 3. For 
the model described by Eq. (10), which contains two parameters (p = 2), it is 
recommended that at least five distinctly different factor combinations (levels) be 
used (f = p + 3 ), with at least three of those combinations being replicated, for 
a total of no less than eight ( n = f + 3) experiments. 

If a model is proven inadequate (i.e., non-statistically significant estimated 
parameters), the data can be fitted to other models in search of a proper fit. 
Again, as more parameters are added to the model, more degrees of freedom 
will be required. 

Response Surface Modeling Designs 

The quantitation of the effects of factors and their interactions that can be ob­
tained from factorial designs is very useful information. Many times, however, 
the analyst is interested in getting a more fundamental idea of how the sys­
tem under study works. Building an appropriate mathematical model to describe 
the system's behavior and determining its parameters will provide this deeper 
understanding. Such a model predicts responses for untried treatment combi­
nations within the explored region. Another dimension, and probably the most 
important for the chemist, is the ability to drive the system to its optimal condi­
tions by calculating the treatment combination that would maximize (or minimize) 
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the model response. The goal is to estimate the form of the system's response 
by a function. When plotted (on two factors) that function may look something 
like Fig. 2. 

The set of techniques that allows us to explore and predict the system's 
response through a mathematical model is called "response surface methodology" 
[29, 30]. Response surface designs are used to generate the necessary data to 
estimate the parameters in a model similar to Eq. (11) or a sub-set of it [13], 
which is an example of a full "second order" model for two factors: 

(11) 

The linear model is fitted to the data by a least squares method in most cases. 
The model should be linear for the parameters, but factors can have higher-order 
terms to model curvature and interaction. The variables involved have to be 
quantitative and continuous. 

Full factorial, fractional factorial, Box-Behnken, and central composite de­
signs fall into the general category of response-surface designs. Rubin et al. [20] 
recommend the use of response surface designs after the number of factors to be 
tested has been reduced and there is some idea of the area where the optimum 
values for those factors is located. 

Central Composite Designs 

Central composite designs are built out of the corresponding full factorial design 
(levels low and high) with a larger superimposed star design, giving it a spherical 
shape (Fig. 8). The star design is made out of two axial treatment combinations 
at the lowest and highest levels for each factor, keeping all of the others fixed at 
the mid-point, plus a center point experimental unit at that middle level for all 
factors. 

The levels of the axial experimental points are set at the same distance from 
the center point as the inner points. For three factors, the inner points and the 
axial points are on the surface of a sphere. This can give central composite 
designs the properties of rotatability [18]. 

It is advisable to use a central composite design after running a factorial 
design when no major effects were indicated or a better understanding is desired 
[20]. A factorial design could have indicated a lack of factor effects if it was 
positioned in an area of the response surface with a relatively high curvature. The 
central composite design could be easily completed from the already performed 
factorial design by carrying out the missing experiments. One use of central 
composite designs is to determine relationships in the region of the optimum, 
usually after screening out the unimportant variables. 

The statistical analysis of central composite designs is more elaborate than 
the analysis of factorials. On the other hand, the central composite is overall a 
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Fig. 8. Central composite design on 
two factors. Each factor appears at five 
levels, which provides for the accurate 
determination of curvature. The full 
factorial pattern (center four points) 
allows for the determination of inter­
action effects 

very efficient design and its analysis allows one to detect any inappropriateness in 
the model being tested (lack-of-fit). The central composite design gives a better 
estimation of the model parameters than do the factorial designs and provides 
a check for variance constancy [13]. The full second order model (including 
quadratic and interaction terms) can be fitted with the number of degrees of 
freedom provided by the central composite treatment combinations [7]. 

Box-Behnken Designs 

Full factorials become inefficient not only with an increase in the number of 
factors, but also as the number of levels employed increases. Box-Behnken is a 
type of fractional design that allows the use of three levels for designs with more 
than two factors [31]. 

Box-Behnken designs are constituted by an assembly of sub-sets of 22 facto­
rials for each possible pair of factors with all of the other factors held constant 
at the midpoint level, plus a center point which is usually replicated (see Fig. 9). 

The need for three, and higher, level designs arises when the analyst wants 
to determine the effect of quadratic, and higher-ordered, terms in a linear model 
similar to the one given below for two factors (extendable to any number of 
factors): 

(12) 

These quadratic terms account for the curvature of the response, i.e., when 
the effect of a factor causes an increase and then a decrease (or vice versa) in the 
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Fig. 9. Box-Behnken design on three 
factors (temperature, pH, and extrac­
tion time). Each factor is at three 
levels (a center point experiment 
with three replicates is included) 

response. This type of effect cannot be picked up from a two-point (implying a 
straight line) determination, as in two-level designs. Box-Behnken designs provide 
information on the quadratic terms, as well as on the main effects, and on the 
interaction terms. 

Simplex Mixture Designs 

Mixture designs apply to experimental situations in which the response depends 
on the relative amounts of the variables, but not on the absolute amount of each 
[8]. They are used to evaluate formulations and to determine the effects of the 
different components in them. This is particularly true of many chemical systems 
whose behavior depends on the mole fractions, or proportions, of the components. 

If Aj, ... , Xk denotes the k factors, measured as proportions (ratios), then for 
each experimental run we have 0 ::; Xj ::; 1 and L::f=l Xj = 1 for all j = 1, ... , k. 

Given this constraint, for three factors, the feasible region for experimenta­
tion is a triangle (see Fig. lOa). In general, such a region is called a (k- I)­
dimensional simplex, where k is the number of factors [13]. Figure lOb shows 
an example of a mixture experimental design. 

Scheffe [32] introduced a family of models for mixture designs and proposed 
the class of lattice designs. In this arrangement the runs are placed in a uniform 
lattice of points around the mixture simplex, allowing one to explore the response 
throughout the whole simplex design. 

In many mixture experiments, some or all of the components are subject to 
additional constraints, either independently (e.g., minimum or maximum concen­
trations), or in combination (e.g., mixing ratios). These added constraints reduce 
the feasible factor space within which it may be not possible to set up a regular 
lattice. A design approach to this type of system is to make runs at the extreme 
points and centroids of the constrained region (extreme vertices designs). 
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MeOH 

a b 

Fig. 10. a Factor space plane for a three-component mixture. b Simplex mixture design for the 
formulation of a mixture of water, methanol, and ethanol. The proportions of the mixture components 
add up to unity 

Optimal Designs 

Optimal designs are statistical experimental designs tailored to offer the best per­
formance with respect to a given criterion [ 17]. The design could be optimal 
with respect to the minimization of variance (and therefore the uncertainty of 
the results), the setting of factor levels, the minimization of experimental vari­
ance, or the minimization of the number of experimental runs to achieve a given 
confidence. 

The experimental design affects the variance-covariance matrix and the preci­
sion of the parameter estimates. For example, for a straight-line model, 
Yli = Po + p,xli + rli, the most precise estimate of Po in a two-level design 
is obtained when the two experiments are centered around x 1 = 0. The factor 
level setting that will maximize the precision of the P1 parameter estimates is that 
with the two experiments placed as far apart as possible. In most real situations, 
practical boundaries impose a limit in the spread of factor levels [6]. 

Experimental designs generally seek to cover as much factor space as pos­
sible (e.g., maximizing JX'XJ) while still being in a workable and modelable 
range of factor space. These two aspects are complements and must be kept in 
balance; e.g., if JX'XJ- 1 is made small, another level may have to be added to 
the treatment combinations to get the higher order effects in the model. 

Response Optimization Designs 

Optimization brings a process to its peak of performance within the standards 
set as acceptable. The property taken as the optimization indicator depends 
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on the objectives of the study. For example, in gas chromatography we could 
try to optimize the overall resolution of the chromatogram by using a desira­
bility function [33], or we could optimize the separation of only two analytes 
of interest, or we could attempt to minimize the time required for an analysis 
without failing to meet some minimum performance requirement. An optimum 
is the combination of factor settings that yields a response (maximal or mini­
mal) exceeding response values in its vicinity. Systems can have more than one 
optimum, with a global optimum and local optima. A graphical representation 
of the optimization process is that of searching for the "mound" of a response 
surface, such as the one depicted in Fig. 2. In actuality, each system will have 
its characteristic response surface, which could include minima, ridges, and other 
topographical features. 

In this section we discuss only response surface methods for optimization and 
not other techniques such as linear programming. 

Response surface modeling can be applied to system optimization. If a second­
order (or higher) model has been successfully fitted to the experimental responses, 
the location of the optimum can be determined mathematically. Canonical ana­
lysis [10] can be applied to simplify the higher-order equations that describe 
the response surface, eliminating first-order and interaction terms. This procedure 
involves setting the derivatives with respect to each factor to zero. A simpler 
interpretation of the response surface shape and the effect of individual factors 
can then be made. The resulting simplified equations indicate the location of the 
stationary point. 

Evolutionary Operations 

Evolutionary operation (EVOP) [34] is an optimization method based on carry­
ing out a series of factorial designs moving in the direction of the calculated 
improvement (steepest ascent up the mound). Figure 11 shows the progress of 
a box-type EVOP on a response surface. The size of the factorial design can 
be systematically reduced to achieve better precision; however, doing this could 
reduce the chances of ever getting to the optimum. For a two-factor situation, a 
typical experimental pattern for each iteration is a two-level factorial (22 ) with 
a center point (five treatment combinations). Additional runs as replicates of the 
center point could be added for the assessment of precision. 

Steepest Ascent 

The technique of steepest ascent (or descent) moves a pattern of experiments in 
the direction of the optimum response (largest slope) in sequential, iterative sets 
of experiments. The direction on the response surface in which the· experimen­
tal pattern will be moved for each iteration can be determined by finding the 
local portion of a response isopleth (contour line). The direction perpendicular to 
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Fig. 11. Progress of a box-type evolu­
tionary operations optimization study. 
After the first five-point factorial (with 
center point), each subsequent itera­
tion is placed in the direction of the 
largest effect 

the isopleth will indicate the general direction of maximal (or minimal) gain in 
response. Experimental runs are continued along the path of steepest ascent (or 
descent) until progress stops (no change in response) or factor interactions and 
curvature start having a pronounced effect. This approach has a better chance of 
success when previous studies have revealed that the response fits a linear first­
order model reasonably well. Interaction and curvature (second-order effects) may 
prevent the experiment iterations from following the most efficient path in the 
response surface or produce erratic results (e.g., large residuals) [35]. 

The steepest ascent or modeling approaches to optimization are not very 
appropriate for applications where the cost of the potentially large number of 
experiments could be prohibitive. 

Sequential Simplex 

The sequential simplex was originally introduced as a technique to optimize 
industrial manufacturing processes [36]. Since then, this technique has been 
extended to general system optimization. Simplex optimization has had wide 
utilization in analytical chemistry experimentation [37, 38]. 

A simplex is a geometric figure in hyperspace with one more vertex than the 
number of dimensions in the factor space. Thus, each vertex represents a different 
treatment (different factor levels). This geometric figure has the property of being 
transformed into a new simplex by the replacement of only one vertex. Use of 
the sequential simplex does not require building and fitting a mathematical model 
of the response surface. 
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The initial simplex for k factors takes only k + 1 experiments, and only one 
more experiment at a time is necessary to move across the response surface (see 
Fig. 12). This makes it a very efficient technique in terms of the number of 
experiments required. 

The basic progress mechanism to find the optimal response for the fixed size 
simplex (see Fig. 13a) is to "reflect" itself into a potentially better response area. 
The first step is to evaluate the response at all of the initial vertexes and identifY 
the best (B), next-to-the-best (N), and the worst ( W) responses. For a fixed-size 
simplex, the next step is to eliminate the worst response vertex and reflect it into 
the new vertex (R) across the remaining face's centroid (P) to create the new 
simplex. The reflection step is repeated to advance along the response surface. 
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Fig. 12. Example of a two-dimen­
sional fixed-size simplex progressing 
on a response surface toward the 
optimum. After the first three-point 
simplex, each subsequent iteration is 
accomplished with one additional 
experiment 

Fig. 13. a Fixed-size reflection (R) through the centroid of the opposing face to the worst-response 
vertex ( W), P · B is the best response vertex and N is the next-to-the-worst vertex response. b 
Variable-size simplex movements: reflection (R), contraction toward worse-response vertex 
(Cw ), contraction toward reflection vertex (CR), and expansion (E) 
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The responses have to be at least rankable, but not necessarily quantitative, in 
nature. For the simplex to progress well the process must be in statistical control 
(to be able to see factor effects over the noise). 

The variable-size simplex, introduced as a modification of the original 
algorithm [39], can make faster progress towards an optimum than the fixed­
size simplex. In this version, the simplex has an option to move in one of four 
different ways (see Fig. 13b ), and each move is still done by replacing the worst 
vertex by a new one through its opposed face's centroid (P). The response corre­
sponding to the reflection is evaluated before every move and if it falls between 
the current best (B) and the next-to-the-best (N) vertexes it is taken as the new 
vertex. When the new (R) response is better than the prior best, an expansion 
across a double distance is evaluated. If the new response, R, is still better than 
B, the expansion (E) would become the new vertex, enlarging the size of the 
simplex and speeding the progress. 

For new R vertexes with a response less optimal than the current N response 
the simplex will contract by half the distance, toward W if the R response was 
worst than the response at W ( C w contraction), or toward R if it falls between the 
W and N responses (CR contraction); this is particularly useful in the region of 
the optimum, where the simplex collapses onto the local maximum (or minimum) 
and pinpoints the optimum with precision (see Fig. 14 ). In many cases it is 
profitable to start with a variable-size simplex as big as possible and let it collapse 
into the optimum. 

Fitting non-linear models is another application of the sequential simplex 
method, where the parameter values that optimize the fit are sought. Thus, the 
variables for the simplex are the parameters of the model and the response is the 
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Fig. 14. Example of a two-dimensional 
variable-size simplex progressing on a 
response surface toward the optimum. 
The size of the simplex can adjust 
with each iteration for more efficient 
progress and a more accurate determi­
nation of the optimum 
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sums of squares of the residuals (SSr ). The goal of the simplex is to locate a set 
of parameter estimates that give minimum residuals (i.e., the best fit) [40]. 

Environmental Applications of SEDOP 

At present, few applications of SEDOP to the field of environmental science can 
be found in the literature, as was the case for the field of chemistry a few years 
ago, before the methods and benefits became better known [18]. 

The United States Environmental Protection Agency (USEP A), international 
entities, and private industry develop, evaluate, and implement analytical pro­
cedures for environmental pollutant analysis. Some procedures are officially 
approved by government regulating entities for the analysis of specific hazardous 
substances. Since method development, validation, and approval is a long and 
costly process (and official method changes require considerable effort), it is 
important that method development and evaluation be done in an efficient and 
reliable manner. 

Because of space constraints, the details for the following applications of 
SEDOP are not given; however, those details may be found in the literature 
references provided. Such references may serve as useful templates for similar 
studies under consideration. 

Optimization of Analyte Extraction Procedures 

Optimization of a Supercritical Fluid Extraction Procedure 

A multi-phase experimental design approach was implemented by Ho and Tang 
[41] to optimize the supercritical fluid extraction (SFE) of 29 environmental pol­
lutants from a liquid-solid extraction cartridge. Compounds included polynuclear 
aromatic hydrocarbons (P AHs) and organochlorine pesticides. These compounds 
are representative of larger classes of compounds of environmental concern. 
A 23 factorial experimental design was initially performed to study the relative 
importance of three SFE variables: pressure, temperature, and extraction time. 
Pressure was found to have a statistically significant effect on the recovery of all 
of the compounds studied. The next most influential variable was found to be 
extraction time (with a statistically significant effect on the recovery of only some 
of the PARs). Temperature was the least influential factor. Following the factorial 
design, a variable-size sequential simplex was used to optimize the SFE condi­
tions to obtain the best overall recoveries of the compounds studied. For those 
analytes still demonstrating low recoveries in pure supercritical carbon dioxide 
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after the optimization, the addition of methanol as a modifier afforded quantitative 
recoveries. 

Assessment of the Effects of Premeasured and Mixed Acid Composition 
in Microwave Digestion Recoveries 

Experimental designs to assess the effects of pressure and mixed acids composi­
tion on antimony (Sb) and barium (Ba) recoveries during microwave digestion 
were performed [42]. A 23 full factorial and a mixture design were used. For two 
acids (HCl and HN03) the experiments were performed in a constrained mixture 
space: the total acid solution volume (including the two acids and water) could 
not be greater than 10 ml. Experimental data based on those designs revealed 
that, in all cases, high acid concentrations (either HCl and I or HN03 ) resulted in 
enhanced recoveries. Pressure did not seem to be a factor for Sb recovery but 
did seem to be important for Ba recovery. 

A Paired-Comparison Design for Solvent Extraction Glassware 

A randomized paired-comparison design was used to assess and compare the 
accuracy and precision of two types of solvent extraction glassware for semi­
volatile pollutants (including pesticides) [ 40]. The objective was to determine if 
a new extraction apparatus performed better than the one in current use. Splits for 
six samples a day (spiked with eleven indicator analytes) were extracted using 
each apparatus and analyzed during six different days. Analyses were performed 
as close as possible in time by gas chromatography/mass spectrometry (GC/MS) 
for each extract pair. For accuracy, the differences in experimental percent re­
covery for each analyte were computed and a t-test at the 95% confidence level 
was performed to ascertain if the observed differences were simply due to sam­
pling fluctuations. For precision, percent relative standard deviations were com­
puted for the data obtained from each type of glassware. There was a risk that 
the analyses performed during a day were correlated with one another and did 
not represent truly independent samples in the way expected when computing 
the standard deviation. The magnitude of analytical variability, which could mask 
any extraction differences, was assessed by calculating intra-analysis-day and total 
variance components. It was found that the intra- and inter-analysis-day variances 
were comparable. According to the study, the new extraction glassware produced 
statistically ~ignificant lower recoveries and higher recovery variability than the 
current glassware for all but one of the analytes tested. There was also some 
indication of lower day-to-day reproducibility with the new apparatus for some 
analytes, judging by the higher degree of differences between the intra-day and 
the total variability for this type of glassware. 
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Instrument Optimization 

Sequential simplex optimization was applied to a particle beam liquid chromato­
graph/mass spectrometer (LC/MS ). This instrument has unique advantages for 
the analysis of non-volatile pollutants, such as chlorinated phenoxy acid herbi­
cides and P AHs with high molecular weights. The optimization study focused on 
the factors that affect the performance of the particle beam interface. In this sec­
tion of the instrument the mobile phase is desolvated and a particle beam of the 
analyte is directed into the ion source of the mass spectrometer. The response to 
be maximized was total ion current. The factors studied were capillary distance 
relative to the nebulizer orifice, desolvation chamber temperature, probe distance 
to the source, and helium flow rate into the nebulizer. A variable-size simplex 
was used for the optimization. The study was concluded after the response ceased 
to increase significantly for several iterations. Best response was considered to 
be the optimum. Plots of the response vs the individual factor settings showed 
that only one of the four factors (capillary distance) had a defined optimal level, 
apparently without interaction with the other factors. This condition caused the 
simplex to wander about a local optimum once the capillary distance factor had 
been optimized. The effects of the other three factors in the response (relative to 
noise) were not significant enough to allow the simplex to find and follow slopes 
of response improvement on the response surface based on those factors. 

Calibration 

Because temperature is one of the most important factors in microwave diges­
tion for the analysis of inorganic analytes, the functional relationship between 
microwave power setting (xi) and actual watts delivered (yi) must be known for 
calibration purposes. As a result of improved control over digestion conditions, 
the intralaboratory and interlaboratory variability of inorganic analysis should be 
reduced, which is particularly important for environmental trace metal analysis. 
Given a known relationship, the desired watts can be delivered to a sample be­
ing digested by the proper adjustment of the microwave setting either manually 
or by computer (robotic) control. Several studies have applied experimental de­
sign techniques to the characterization of microwave oven power calibration. It 
has been found that each individual microwave digestion instrument may present 
different power calibration characteristics [43]. 

An experimental design [ 40] included two different calibration experiments 
at thirteen levels, each with a several days interval between each calibration to 
determine long-term repeatability and trends. Completely randomized triplicates 
were used to estimate purely experimental uncertainty (short-term repeatability) 
for a total of 39 experiments for each calibration. This many data points provided 
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more than enough degrees of freedom for the statistical testing of model lack-of­
fit. A third calibration set at eight new levels (in triplicates) was carried out for 
confirmation of the results. 

Several calibration models were fitted to the microwave data, including the 
straight-line model not constrained to go through the origin, Yli = f3o+/3tXti+r!i, 
the constrained straight-line model, Yti = f3 1xli +r!i, and the second-order model, 
Yli = f3o + f3txli + f3uxii + r!i, using the method of least squares. A straight line 
calibration curve relating watts delivered to microwave power setting was found 
to have a good fit for the three data sets. In statistical terms, the F-ratio for the 
lack-of-fit was relatively small and not very significant, failing to show that the 
lack of fit was real. Even though a straight line calibration curve constrained to go 
through the origin fitted as well as the unconstrained straight line for the resulting 
data set (the /31 term was significant, but /30 was not and the goodness of fit was 
comparable for both models), it was recommended to use the constrained line 
form. This was because the uncertainties of the constrained straight line were 
assumed to be proportional to the response; the data did not seem to support 
this assumption. The uncertainties of the unconstrained straight line were more 
constant across the domain of the factor space, and probably better represented 
the situation investigated in these studies. It was found that for some microwave 
ovens the region of higher power setting (90-100%) followed a straight line with 
a different slope than the lower power range, and therefore two calibration curves 
were required. This phenomenon, identified through the calibration design, was 
determined to be due to two separate electronic circuits controlling the microwave 
power. 

Figure 15 shows the characteristics of the data, including the fitted line and 
confidence intervals. The repeatability of the actual watts delivered (to assess the 
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Fig. 15. Calibration curve (straight­
line model unconstrained' through the 
origin) with 95% confidence (predic­
tion) intervals for microwave power 
setting experiments [ 40] 
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ruggedness of associated analytical methods) was determined as the maximum 
confidence (prediction) interval in the estimated response over the domain of the 
experiment for one new measurement of power at a single factor level (it was 
found to be ±20 W over a range of 0 to 600 W). 

Ruggedness Testing 

An approach to ruggedness (tolerance) testing for a method is to run experiments 
over a range of levels expected to be encountered during actual method use for 
factors suspected of having an effect on response variability. The response for 
a rugged (robust) method does not vary that much with changes in the factors 
of interest. A ruggedness study for microwave digestion power settings was con­
ducted to determine the effect of variations in the two power settings required 
for sample digestion using EPA Method 30 15 metal analysis in a water matrix 
by inductively-coupled plasma/atomic emission spectroscopy [40]. Three-level, 
two-factor (32 ) full factorial experimental designs were employed, with the two 
power settings as factors. Separate sets of experiments were run for unlined 
microwave digestion vessels and lined vessels [ 42]. One of the samples in the 
study was split into three additional aliquots to give an estimate of the repro­
ducibility of the system. Since the elements analyzed for were at the parts-per­
billion level (environmental trace elements), the relationship between the reported 
concentration and the digestion power settings was not modeled. Variability at 
this low concentration level is primarily due to noise [44,45]. Instead, various 
second order models were fitted to nine relative cumulative response values for 
each of the treatment combinations. The fact that none of the models tried had 
a good fit indicated that any existing variation was not controlled by the tested 
factors for the unlined-vessel experiments. Therefore, the method was rugged 
with respect to the power settings over the range investigated. For lined-vessels, 
second-order models showed a good fit, revealing that there was an effect of 
power setting on recovery. Thus, the method was found to be sensitive to the 
type of digestion vessel used in the microwave portion of the analytical proce­
dure. A similar evaluation of EPA Method 3051 (soil matrix) showed that the 
method was not rugged over the range of microwave digestion power settings 
investigated for both the lined and unlined vessels [42]. 

Single-factor ruggedness testing (one microwave digestion power setting) 
was conducted for EPA Method 3050 [40]. In this case a one-factor calibration 
design had to be used. Model fitting revealed that there was no statistically sig­
nificant correlation between the measured element concentration and the power 
setting, but plots of the data revealed that there was up to a 20% change in ele­
ment concentration as the microwave digestion power was varied by ±I 0%. The 
method was deemed to be not rugged over the microwave power settings 
investigated. 
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Method Comparison 

The high cost of laboratory analysis of environmental samples and the need for 
faster decision-making concerning pollution remediation has raised interest in 
field analytical methods. Since laboratory methods have been established, char­
acterized, and accepted for most pollutants of interest, new field methods and 
instruments are frequently evaluated through a comparison with existing labora­
tory methods. 

Gas Chromatograph/Mass Spectrometer Comparison 

A mobile analyzer was evaluated as an alternative to laboratory-based technolo­
gies currently employed in the characterization and cleanup of hazardous waste 
sites [ 46, 4 7]. The mobile instrument consisted of a portable mass spectrometer 
optionally coupled to a portable gas chromatograph (GC) for the analysis of 
pollutants in soil, water, and air. Natural soil samples contaminated with P AHs 
and polychlorinated biphenyls (PCBs) and surface water samples spiked with 
selected volatile organic compounds were collected and analyzed on-site. Sample 
replicates were analyzed by the mobile GC/MS instrument and by confirmatory 
laboratories using standard USEPA methodologies. This allowed the comparison 
of data acquired using both methodologies. 

Two experimental designs were carried out to investigate the comparability 
of the methods. In experiment 1, duplicate standard reference materials (SRMs) 
for PAHs and PCBs were analyzed each day for 15 consecutive days by both 
the mobile instrument and the confirmatory laboratory. In experiment 2, seven 
replicates of each sample were analyzed by both the mobile instrument and the 
confirmatory laboratory each day with a total of five samples for each sample 
type. This experiment was designed to provide information on the inter-method 
variability for each sample. A series oft-tests and F tests were used to analyze 
the experimental results. 

For experiment 1, a pooled t-test for the equality of the means between the 
two laboratories and an F test for equality of between-batch precision for the two 
laboratories were used. For experiment 2, separate t-tests were performed for each 
analyte. The type oft-test used depended on the result of the F test. When the 
variances between the laboratories were equivalent to a statistically significant 
confidence level, a standard t-test which assumes equal variance was used. When 
the variances were statistically not equivalent, a t-test accommodating unequal 
variance was used [ 48). The null hypothesis of equal means was not rejected for 
ten cases (batch-analyte combinations). Comparisons were not possible for all 
of the analytes due to a lack of data points above the detection limit, as often 
happens with natural environmental samples. 

The results were mixed, with each method having significantly greater mean 
concentration values for some analytes (26 cases for the mobile instrument and 
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33 cases for the confirmatory laboratory). In general, it was concluded that the 
mobile instrument data was comparable to the confirmatory method data, although 
the mobile environmental monitor data quality was poorer (lower between-batch 
precision). 

Field Portable Gas Chromatograph Comparison 

The performance of a field portable, multi-port GC for the analysis of volatile or­
ganic compounds was compared to EPA Method 502.2-"Volatile Organic Com­
pounds in Water by Purge and Trap Capillary Column Gas Chromatography with 
Photoionization and Electrolytic Conductivity Detectors in Series" [49]. A multi­
phase experimental design was conducted. Test samples were set up for paired 
analysis to study various aspects of the field analysis. A set of samples was mea­
sured by portable GC and also sent out for laboratory analysis by Method 502.2, 
while another set was prepared in the field and splits were measured at both 
locations. A third set of samples was used to determine differences between two 
field analysis modes (on-line and off-line) at the site's pump and treatment plant. 
A final set of samples was measured before and after transportation to determine 
the combined effects of time and transportation. A total of 411 paired analyses 
were performed. Measurements were converted to percent recoveries (%R) so 
that the results could be expressed on the same scale. The differences between 
the sample pairs were assessed by paired t-tests with a hypothesis of no difference 
in mean %R. The major advantages of the paired comparison t-test are simplicity 
and ease of interpretation. The paired-sample t-test amounts to blocking all other 
effects, and focusing only on the one effect of interest. Robustness is attained at 
the cost of degrees of freedom. An analysis of variance (ANOVA) was used to 
evaluate sample data with respect to the time of sample collection, the day-to-day 
variability, the mode of analysis (on-line/off-line, field/laboratory), and the GC 
sample port. 

The results were also analyzed by fitting a straight-line model to each set of 
results and calculating the ratios between pairs of results for each sample (by 
analyte ). The cost of replicates was prohibitive, which precluded more sophisti­
cated statistical analysis. Complete equivalency between analytical results would 
be evidenced by a straight line with the slope equal to unity or the ratios equal 
to unity. To discern the effect of time, the ratios were plotted against the time 
between the corresponding analyses, which was expected to reveal any time trends 
in the differences. It was found that the field and laboratory results were consis­
tent (although a proportional interlaboratory bias existed) for the analytes in the 
study. Analysis, both at the laboratory and at the field, under different conditions 
showed excellent intralaboratory agreement. Time and/or transportation effects 
appeared to be minimal for the samples investigated. 
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Selection of Indicator Compounds 

Tosato et al. [50] predicted that the aquatic toxicities of 100 mono-substituted 
benzene compounds could be represented by the experimental values of eight 
compounds. The critical compounds were identified using a factorial design. This 
is a strategy for assessing and ranking the hazards of chemicals for which little 
or no data on their toxic effects are available. Missing data for chemicals were 
predicted on the basis of test data generated for a minimum number of specific 
compounds that were adequate representatives of the relevant series. Modeling 
of the data for the prediction was done by partial lest squares (PLS) [51], a 
multivariate modeling algorithm. The reliability of the predictions was verified 
by comparing predicted and experimental toxicities of additional compounds. 

Pollution Prevention 

Statistical designs have also been applied to the reduction of environmental pollu­
tion from chemical processes. An industrial process was optimized for increased 
yield and reduced by-products using a three-level factorial-type design [52]. Five 
factors were investigated, including the relative proportion of two reagents, the 
relative proportion of solvent, the temperature of the reactor, and the reaction 
time. Regression models [10} and PLS were used to analyze the data. The total 
waste reduction exceeded 90%, while at the same time the economics improved 
due to an increased throughput, less severe reaction conditions, and an increased 
yield of reaction product. Previous attempts to improve the process with a one­
factor-at-a-time approach had failed to produce sufficient improvements. 

Guidelines for the Application of Statistical 
Experimental Design 

The following gives some guidelines for a general approach to the SEDOP pro­
cess, which is summarized as a flow chart in Fig. 16. Experimental designs 
for environmental chemical applications should take into account all factors and 
sources of variability of interest. Major relevant effects could include matrix ef­
fects, sub-sampling effects, sample preparation effects, sample analysis effects, 
and data treatment effects. Field studies have the additional effects of sample col­
lection, preservation, transport, and holding time. Spiked samples and SRMs are 
affected by spiking procedures. The stability of the latter should be always taken 
into account when they are used in a study. 
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Fig. 16. A general step-wise approach to statistical experimental design and optimization. The process 
might be repeated iteratively during a study as sub-goals are attained and new questions emerge based 
on the information being gathered 

General Approach and Implementation Considerations of SEDOP 

The time to formulate an experimental design is well before the study begins. 
Experimental design should not become a remediation device to be used midway 
into an experiment, attempting to save a study that is heading out of control. 
After all, experimental design is an up-front planning tool and is integral to 
good quality assurance. As such, the project startup is the time to ask questions 
(formulate hypotheses) and scrutinize the study. 

Any experimental design can be constructed if the environmental chemist 
expresses three key elements: common sense, good chemical intuition, and a 
concentrated effort to decide exactly what the study should accomplish. It is this 
last element that usually needs the most work. Remember, meaning is given to the 
data depending on the questions (experimental design) asked [53]. Questioning 
is the first step in the scientific process. Sound logic and statistical reasoning will 
help provide appropriate answers through experimentation. 
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Researchers are encouraged to learn the basic principles of experimental statis­
tics and their applicability to their research problems. Box et al. state that "it is 
possible for scientists to conduct an investigation without statistics, [but] a good 
scientist becomes a much better one if he uses statistical methods" [10]. 

It has been our experience to approach environmental studies as a team of 
scientists and chemometricians. However, these guidelines are appropriate whether 
working together as a team or as an individual scientist. 

An obstacle to the widespread use of designed experiments is that the sys­
tematic design of experiments often appears to be more complex than a purely 
intuitive approach. Researchers using a specific experimental design for the first 
time will usually not know all of the proper questions to ask or the appropriate 
answers to those questions [13]. Problems arise both from the ignorance of the 
existence of the methodologies and from their misapplication: researchers know 
what they want to accomplish, but have no clear knowledge of how to do it; this 
is the commonly encountered "what-to-how" gap. 

The first step is to have a general information-gathering meeting with all the 
people involved in the study (managers, scientists, chemometricians, and tech­
nicians). Ask the members what they think the goals and objectives (including 
data quality objectives) of the study should be. Ask them what the study is to 
accomplish. It may be surprising to all of the participants as to the disparity of 
the answers. A consensus must be reached before further progress can be made. 

How specific the route is to the answers depends upon the detail given in 
those questions. It is actually somewhat difficult (or at least frustrating) to design 
an experiment for an objective as vague as "we want to develop a method for 
lead." Such ambiguity, although it is a start, could result in a wide array of 
designs which may not gather enough information (a waste of effort) or too 
much information (a waste of resources). Further discussion of the problem may 
show the way to proceed. 

A more specific objective may be "we want to develop a rapid semi­
quantitative screening environmental field method for lead in water covering the 
ppb to ppm range (the design may not have to be that rugged); the method is to 
be developed for an urban area (a specific client is indicated) because inner-city 
children have recently developed high blood lead levels (there may be resource 
implications)." 

Much more complex designs may be required if the detailed objective is "we 
want to develop a quantitative environmental laboratory method for lead in water, 
'good' to four significant figures with a detection limit down to 50 ppt, and with 
a linear dynamic range of five orders of magnitude; the method will be used 
to compare the performance (must be rugged) of several contracted laboratories 
(could be legal implications)." However, even the best experimental design may 
not be able to assist with over-ambitious objectives. 

All of these details may specify the type of design. It all depends upon how 
the questions are asked. Some pertinent questions are: 

- what are the resources available (personnel, time, budget, equipment)?; 
- what are the constraints (e.g., safety boundaries)?; 
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- what is an acceptable level of quality (precision, accuracy, ruggedness)?; 
- what is the importance of false positive and false negative (power) rates?; 
- who is the end user (a visit to the client may be warranted)?; and 
- are there regulatory or organizational implications? 

Be sure that all parties involved have some time to re-evaluate the objectives 
of the study before proceeding. It may be useful to give out a questionnaire after 
this meeting. 

After the general meeting, gather specific historical technical information 
(from the scientists and technicians doing the actual experiments) regarding what 
preliminary experiments were done, what went wrong in their view, what went 
right, whether or not the system is in statistical control, and whether or not there 
is an historical system response variance that can be used to develop a design. 
Observe the system under actual operating conditions. Ask questions and get 
diagrams. 

A specific meeting with the same participants from the general meeting should 
now be conducted. (If a questionnaire was handed out, go over it with the group.) 
Determine what are the specific questions to be answered (the hypotheses to be 
tested). Identify the components of the system: 

- define the system; 
- identify all input variables that may be considered as factors (chemical intuition 

is important here); 
- specify factor ranges (intuition, preliminary data, safety boundaries); 
- speculate on possible input contributions for noise and uncontrollable variables; 
- identify all output variables, specifying the response( s) of interest to the study; 

and 
- specify how the study will be conducted (by whom, over what period of time). 

Several designs are usually possible and the choice is a compromise be­
tween information gain and cost. For example, if a design that gathers data about 
the effect of four factors of interest is much more costly than a design that 
gathers data about only two factors, then a researcher might seriously consider 
if the research objectives could be accomplished to a satisfactory degree with 
the two-factor design. Sometimes other cost tradeoffs occur, such as using a less 
concentrated (or cheaper) reagent and compensating by running the process at a 
higher temperature. 

The next step may be to do a preliminary study (for familiarization) if the 
investigators are not used to operating the system under the conditions outlined 
at the specific meeting. The chemometrician is encouraged to participate at this 
point, at least as a casual observer. This study should demonstrate if the system 
is in statistical control. 

An optimization study might then be performed only if there are relatively 
few factors (less than four or five) to be investigated and there still is not a 
general sense of where the factor space should be for further experimentation. 
Otherwise, a screening design such as a Plackett-Burman or a fractional factorial 
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might be considered to determine which factors have the largest effects upon 
the response of interest. This will cut down on the number of factors to be 
investigated, resulting in fewer experiments. Recall that only the main effects will 
be revealed by these designs. It is not possible at this point to resolve any factor 
interaction effects because of the confounding between aliases in these designs. 
However, these interaction effects can be resolved later with other designs. If 
detailed information about the system is not required beyond finding the region 
of the optimum or what the main effects are, then this is a permissible place to 
stop. 

When a more in-depth understanding of the system is desired (modeling 
for interaction and higher-ordered factor effects over noise), then more complex 
designs may be tried, although it is probably best to run a simplex optimization 
design before using Box-Behnken or central composite designs when modeling 
higher-order effects. 

It is recommended that factorial designs with three-to-seven center points be 
used. The center points can be used to estimate the variance at the mid-point of 
the conditions of the design. This estimate can be used to represent an historical 
variance, in the ANOV A for model testing, or to see if the system is in statistical 
control; it can also be used to look at curvature in modeling factor effects. 

Optimization experiments are sometimes run at this stage when an objective 
of the study is to search a specified factor space for the global maximum (e.g., 
maximize extraction percent recovery) or the global minimum (e.g., minimize 
model residuals) on a response surface. 

Box-Behnken or central composite designs might now be used to model 
higher-order effects upon the response in the area of the optimum to gain a 
better understanding of the system and to be able to make predictions under 
somewhat different conditions in that region of factor space. 

If the analysis of the experimental results meets the design objectives, then 
the conditions of the system may be specified. Those conditions would then be 
used to determine other performance measures, such as a method detection limit, 
a method linear dynamic range, precision, and accuracy. 

An intralaboratory ruggedness study could be done to substantiate the pre­
vious findings. This should be done to examine the tolerance of factors, i.e., to 
see if perturbations in the factor settings have a pronounced effect upon the 
response- this should be fairly predictable based upon the results. A rugged 
method should lie on a flat portion of the response surface, such as at an opti­
mum. Ruggedness studies may also be performed to see if the variance remains 
constant over the factor domain. 

An interlaboratory validation study [54] is finally done to confirm that 
the study holds true and is reliable for the general scientific community. For 
environmental chemical interlaboratory validation studies, there are three variance 
components to consider: sample variance, intralaboratory variance, and interlab­
oratory variance. Sample variance is often overlooked. It is imperative that all 
of the laboratories receive identical samples. Therefore, care must be taken in 
sample preparation and transportation and holding-time effects must be estimated 
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(a separate study in itself). lntralaboratory variance should already be quantified 
and in control (be sure that each laboratory follows exactly the same conditions 
for every set of replicate analyses). Interlaboratory variance should be small if 
the method is rugged (robust) and is what should be measured if the other two 
variances (sample and intralaboratory) are controlled. It is a measure of variation 
in operators, environment, reagents, equipment, time and possible unknown or 
uncontrollable factors. If the interlaboratory variation is large and the method is 
still regarded as being rugged, then experimental designs can be used to explore 
the effects of these factors. 

Some Common Pitfalls 

The intuitive phase of designing experiments can narrow down the elements of 
the problem left to be studied by statistical designs, but enough margin should be 
allowed for the SEDOP approach to operate. If the design has adequately covered 
the factor space to explore the system, valuable information that the researcher's 
experience and intuition may have discounted, a priori, could be unveiled. 

The system should be proven to be in statistical control. Error variability 
should be demonstrated to be relatively small with respect to factor effects 
before any quantitative assessment of factor effects, modeling, or optimization 
are attempted. For example, an instrument evaluation study based on a Box­
Behnken design had to be aborted after the initial data was gathered due to the 
high variability observed in the results for the center point replicates [42]. The 
subject of the study was a newly-designed thermal desorption GC/MS instrument 
for the analysis of P AHs in soil. If the data analysis had been completed, only 
the effect of noise would have been modeled. The recommended course of action 
was to perform mechanical improvements and conduct other studies that would 
help bring the instrument under control (e.g., determination of sources of vari­
ability). Common sources of variability, such as different operator's skills, should 
be identified and neutralized or accounted for in the design (e.g., using blocking). 

Common problems encountered in method comparison studies (and other 
environmental applications of statistical design) are missing data, concentrations 
below the detection limit for one or more laboratories, or no spike added for 
particular compounds in an experimental batch [47]. These anomalies reduce 
both the number of data points available for statistical analysis and the degrees 
of freedom for the associated statistical tests. It is important to determine, use, 
and report the degrees of freedom available for each individual test performed 
in the data analysis. 

Sometimes a shortage of enough degrees of freedom to lend confidence to 
the results is created by a poor design. A common case is calibration studies. 
Researchers should realize that even for a straight-line fit (yu =Po+ P1xu + r1i) 
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enough degrees of freedom are necessary to resolve the lack-of-fit of the 
model from the purely experimental error in the residuals through replicated 
experiments [55]. 

The experimental design (and the corresponding data analysis method) should 
be well established before the experiments are carried out. If the collected data 
reveal that the original experimental design was inadequate, then the study might 
have to be repeated or augmented with additional experiments. Experimental 
design planning may even reveal, before the experiments are started, that the 
researcher's questions cannot be answered satisfactorily (with statistical signifi­
cance) or that more resources than those available will be necessary to reach 
reliable conclusions. A common outcome from the application of the SEDOP 
approach is a saving in the number of experiments and, consequently, cost. The 
use of statistical experimental design requires researchers to state the questions 
to be answered, which is also a benefit in itself. 

Researchers should be committed to conduct the prescribed experiments 
fully and according to the specifications of the design. Sometimes, in practice, 
researchers take the liberty of making changes in the experiments without being 
aware of the impact for the statistical analysis of the results. Communication and 
consulting between the designers and the researchers at every stage of the project 
can avert many problems along this line. Advisors should make an effort to 
understand all of the relevant aspects of the system being studied as thoroughly 
as possible to avoid hidden flaws and impractical designs. For example, in a 
design tailored to determine the effect of holding time in the analysis of certain 
pesticide standards, it was discovered (after completion of the experiments) that 
the laboratory staff made the holding time control solutions from the same cali­
bration standards used throughout the study. Thus, the week-to-week variability 
of these solutions were correlated and very limited conclusions could be drawn. 
When the researchers receive the experimental design from an advisor, and there 
is no interaction with the advisor until the results are sent back, there is a greater 
risk of major failures. 

Armed with this knowledge, using existing software, and consulting with 
chemometricians and statisticians, environmental researchers should be able 
to start discovering and accessing the benefits of the SEDOP techniques on 
their own. 

Experimental Design and Optimization Software 

The availability of software that assists in the experimental design and optimiza­
tion process gives researchers added flexibility and freedom. In fact, for iterative 
techniques, such as sequential simplex, it is almost impractical to depend on an 
external advisor for the analysis of each result before the researchers are able to 
plan for the next iteration of the study. 
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Microcomputer-based software for the set up, tracking, and data analysis of 
statistically-designed studies is widely available. Morgan [35] presented a criti­
cal summary of ten different software packages applicable to statistical design. 
Researchers are encouraged to use the available computer programs instead of 
relying on manual calculations or self-programmed software. A number of statis­
tical computer packages include experimental design capabilities. Advantages of 
the use of these integrated packages are that, in general, they tend to have bet­
ter graphics display capabilities (e.g., three-dimensional response surface plots) 
and that common statistical procedures are included. Some computer programs 
are designed exclusively for experimental design and have the capabilities for 
the analysis of one or several [56-58] design types. These programs can pro­
vide more flexibility and features in the experimental design area than general 
statistical packages. 

Computer programs that help with the planning of statistically-designed stud­
ies have become available in the last few years. For example, programs are 
available to design a factorial-type experiment, optimize the treatment combi­
nations for D-optimality, and then select a non-random order for carrying out 
the experiments to give the greatest rate of accumulation of information. Some 
programs with a multi-stage approach to planned experimentation include experi­
ment definition, design and work sheet generation, analysis of collected data, and 
interpretation of results. Such software helps in the set up of an experimental 
design for the objectives of screening or response surface modeling. Also, there 
are expert systems for the selection of the appropriate experimental design types 
for a given research situation [58, 59]. It is relatively easy to analyze collected 
data, but no data analysis technique can extract non-existent information from a 
poorly-designed study. Even though much chemometric research focuses on data 
treatment techniques, the usefulness of those techniques is often related to the 
characteristics of the experimental design that was used to collect the data in 
the first place. Many different techniques for data analysis can easily be tried on 
existing data sets with computer time as the primary cost [8]. Nonetheless, Currie 
et al. [60] attribute some of the misuse of statistical techniques to the widespread 
use of microcomputers, which has made those techniques readily available to 
inexperienced users. 

Notice. The U.S. Environmental Protection Agency (USEPA), through its Office 
of Research and Development (ORD), partially funded and collaborated in the 
research described here. It has been subjected to the Agency's peer review and 
has been approved as an EPA publication. The U.S. Government has a non­
exclusive, royalty-free license in and to any copyright covering this article. 

References 

I. Kowalski B, BrownS, Vandeginste B (eds) (1987). Journal of Chemometrics 1(1) 
2. Behar N (ed) (1988) Proceedings of the workshop: Progress in Chemometrics. Chemometrics 

and Intelligent Laboratory Systems 3: 15 



Experimental Design and Optimization 121 

3. Proceedings of the symposium: Chemometrics with Environmental Applications (1991). Journal 
of Chemometrics 5:3 

4. Beer T (1991) Applied environmetrics hydrological tables. Applied Environmetrics, Victoria, 
Australia 

5. Beebe KR, Pell RJ (1994) Today's Chemist at Work 21:24 
6. Deming SN, Morgan SL (1990) Experimental design: a chemometric approach. Elsevier, 

Amsterdam 
7. Barker TB (1985) Quality by experimental design. Marcel Dekker, New York 
8. Steinberg OM, Hunter WG (1984). Technometrics 26(2):71 
9. Natrella MG (1963) Experimental statistics. National Bureau of Standards, Washington, DC 

(Handbook 91) 
10. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters: An introduction to design, 

data analysis, and model building. John Wiley & Sons, Inc., New York 
II. Youden WJ, Steiner EH (1975) Statistical manual of the Association of Official Analytical 

Chemists. Association of Official Analytical Chemists, Washington, DC 
12. Read DR (1954) Biometrics 10:1 
13. Snee RD (1985) Journal of Quality Technology 17(4):222 
14. Flatrnan GT, Mullins JW (1984) The Alpha and beta of Chemometrics in Breen JJ, Robinson 

PE (eds) Environmental applications of chemometrics (ACS Symposium series 292), American 
Chemical Society, Washington, DC 

15. Driver RM (1970) Chern Brit 6:154 
16. Deming SN (1985) Journal of Research of the National Bureau of Standards 90(6):479 
17. Carlson R ( 1992) Design and optimization in organic synthesis. Elsevier, Amsterdam 
18. Bayne CK, Rubin IB (1986) Practical experimental designs and optimization methods for 

chemists. VCH Publishers, Deerfield Beach 
19. Milliken GA, Johnson DE (1984) Analysis of messy data, volumes I and 2. Van Nostrand 

Reinhold, New York 
20. Rubin IB, Mitchell TJ, Goldstein G (1971) Anal Chern 43(6):717 
21. Wernimont G (1968) Materials Research & Standards 9(9):8 
22. Box GEP (1952) Analyst 77:879 
23. John PWM (1971) Statistical design and analysis of experiments. MacMillan, New York 
24. Plackett RL, Burman JP (1946) The Design of Optimum Multifactorial Experiments Biometrika 

33:305 
25. Ross PJ (1988) Taguchi techniques for quality engineering. McGraw-Hill, New York 
26. Youden WJ (1951) Statistical methods for chemists. John Wiley & Sons, New York, pp 40-49 
27. Draper NR, Smith H (1981) Applied regression analysis. John Wiley & Sons, New York 
28. Brown PJ (1982) R. Statist. Soc. B44(3):287 
29. Box GEP, Wilson KB (1951) Journal of the Royal Statistical Society, Series B 13:1 
30. Hill WJ, Hunter WG (1966) Technometrics 8:571 
31. Box GEP, Behnken OW (1960) Technometrics 2(4):455 
32. Scheffe H (1958) Journal of the Royal Statistical Society, Series B 20:344 
33. Harrington EC (1965) Industrial Quality Control (4):494 
34. Box GEP, Draper NR (1969) Evolutionary operation. John Wiley & Sons, New York 
35. Morgan E (1991) Chemometrics: Experimental design. John Wiley & Sons, Chichester 
36. Spendley W, Hext GR, Himsworth FR (1962) Technometrics 4:441 
37. Deming SN, Morgan SL (1983) Anal Chim Acta 150:183 
38. Walters FH, Parker CR, Morgan SL, Deming SN (1991) Sequential simplex optimization. CRC 

Press, Inc., Boca Raton 
39. Neider JA, Mead R (1965) Computer Journal 7:308 
40. Deming SN, Garner FC, Nocerino JM (1991) Annual report: Chemometric applications in quality 

assurance research (report number EPA/600//X-91/160). US Environmental Protection Agency, 
Las Vegas 

41. Ho JS, Tang PH (1992) J Chromatogr Sci 30(9):344 
42. Nocerino JM (1993) Annual report: Chemometric applications in quality assurance research (re­

port number EPA/540/X-93/501) US Environmental Protection Agency, Las Vegas 
43. Hillman DC, Nowinski P, Butler LC. Nocerino JM (1993) American Environmental Laboratory 

5(3):28 
44. Horwitz W (1982) Anal Chern 54:67A 
45. Horwitz W (1985) Anal Chern 57:454 
46. Silverstein ME, Klainer SMH, Ecker VA, Satterwhite G, Munslow WD (1991) Superfund Inno­

vative Technology Evaluation Program project and quality assurance plan for demonstration of 
the Bruker mobile mass spectrometer. US Environmental Protection Agency, Las Vegas 



122 Ramon A. Olivero et al. 

47. Chaloud D, Silverstein M, Rosenfeld J, Hulse S (1991) Demonstration of the Broker Mobile 
Environmental Monitor. (report number EPA/600/X9l/079). US Environmental Protection 
Agency, Las Vegas 

48. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. W.H. Freeman and Company, New York 
49. Mayer C, Amick N, Davis C, Ecker V, Deming SN, Palasota J (1993) Automated on-site mea­

surement of volatile organic compounds in water: A demonstration of the A+RT, Inc. Volatile 
Organic Analysis System (report number EPA/600/R-93/109). US Environmental Protection 
Agency, Las Vegas 

50. Tosato ML, Vigano L, Skagerberg B, Clementi S (1991) "A New Strategy for Ranking Chemical 
Hazards: Framework and Application" Environ Sci Techno! 25(4):695 

51. Geladi P, Kowalski BR (1986) Anal Chim Acta 185:1 
52. Wold S, Carlson R, Skiigerberg B (1989) The Environmental Professional 11:127-131 
53. Hendrix CD (1983) Chemtech 598 
54. Wernimont GT, Spendley W (eds) (1985) Use of statistics to develop and evaluate analytical 

methods. Association of Official Analytical Chemists, Washington, DC 
55. Deming SN (1986) Clin Chern 32:1702 
56. Nachtsheim J (1987) Journal of Quality Technology 19(3):132-160 
57. CAMO (1994) Unscrambler. CAMO USA, Redwood Shores, California 
58. Olivero RA, Seshadri S, Deming SN (1993) Anal Chim Acta 277:441 
59. Quinnell R (1993) EON 
60. Currie LA, Filliben JJ, DeVoe JR (1972) Anal Chern 44(5):497 



Signal Processing and Correlation Techniques 

H.C. Smit 

University of Amsterdam, Laboratory for Analytical Chemistry, Nieuwe Achtergracht 166, 
1018 WV Amsterdam, The Netherlands 

List of Symbols and Abbreviations ............................ 124 
Introduction ............................................ 125 
Signal Processing: Intensity Determination, Estimation .............. 127 
Signal Estimation Methods ................................. 129 

Regression Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 
Correlation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
Matched Filtering (Matched Linear Systems) . . . . . . . . . . . . . . . . . . . 132 
Maximum Entropy Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

Correlation Techniques in Separation Methods . . . . . . . . . . . . . . . . . . . . 135 
Correlation Chromatography ............................... 135 
Instrumental and Computer Requirements . . . . . . . . . . . . . . . . . . . . . 139 
Comparison with Single Injection Chromatography . . . . . . . . . . . . . . . 140 
Derived Correlation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

Summary 
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Introduction 

Analytical chemical information is crucial in environmental chemistry. Precise 
measurements of a variety of pollutants, both in air and water, in the presence 
of complex matrices is an important task of the analyst. Often low detection 
limits are required because of the low concentration of many species of interest. 
Selective low noise analytical methods are essential in this field. Usually a di­
rect measurement of a component within the matrix is not possible; a preceding 
selectivity enhancement step is necessary, for instance a suitable specific chemical 
reaction preceding a spectroscopic measurement. 

The application of chemometrical methods like multivariate calibration al­
lows the simultaneous (spectroscopic) determination of more than one compo­
nent. However, only the extension to a few components is possible and in general 
separation from the matrix is still necessary. 

Chromatography is an important tool in environmental analysis. That means 
that the desired analytical information has to be extracted from (dynamic) sig­
nals, peaks in the case of chromatography. The application of multi-channel 
(e.g. diode arrays) detection implies information extraction from multidimensional 
signals. Other analytical techniques (FAA, electro-analytical methods) also pro­
duce dynamic signals. 

The concept of a signal is directly related to system theory and it plays an 
important role in several scientific disciplines. In a simplified approach a system 
can be considered as a unit transforming a set of input stimuli, x1(t),x2(t) ... xn(t), 
to a set of output stimuli, y 1(t), y 2(t) ... ym(t), by some operation T (Fig. 1 ). In 
vector notation: 

E(t) = F {!:(t)} . (1) 

These stimuli are called signals. Signals include a vast variety of stimuli such as 
chemical concentrations, acoustic waves, electric voltages, etc. Mostly, a signal is 
considered as a function of time (dynamic signal), although this is not a necessary 
condition. 

Problems in the processing of analytical chemical signals are caused by low 
signal-to-noise (SIN) ratios, because of the low concentrations to be measured, 
particularly in environmental chemistry, and by selectivity problems caused by 
a non-ideal separation. Noise can be defined as everything contributing to the 
uncertainty in the determination of the measurement value. 

Fig. 1. System input and output sig­
nal vectors. T is the system operator 
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Permissible signals and noise can be divided into two partitions: determin­
istic, being known functions of time, and stochastic, being unknown or random 
functions of time. While in case of stochastic signals, no functional relation exists 
between the value of the signal at different times, statistical parameters are usually 
assumed to be known. Signal processing has apparently a mathematical/statistical 
nature. 

Often, some signal parameters (height, area, etc.) being characteristic for the 
desired quantity (e.g. concentration) have to be determined from the total signal. 
Examples of simple signal processing are peak height determination and peak area 
determination. In case of more complex signal processing, more parameters of the 
signal have to be determined. Mostly this implies the formulation of mathematical 
models and an approximation of the measured (deterministic) signal. Real-world 
deterministic signal functions are seldom exactly known and one is often forced 
to accept an approximation that may be close to the true function, but not exactly 
equivalent. A measure of closeness has to be formulated. 
If considerable noise is present, signal approximation is replaced by signal estima­
tion. Optimum estimation can be formulated as: find the best estimate of a noisy 
signal value at each constant in time; or: find the best estimate of the relevant 
signal parameter. The latter is usual in analytical chemistry. In chromatography, 
for instance, quantitative evaluation implies the estimation of the "intensity" of 
peaks. Usually peak height or peak area is used as intensity parameter. However, 
neither is optimal with respect to the remaining uncertainty in the results. 

Each signal processing procedure assumes some prior information, but in 
optimal estimation procedures all available and obtainable prior knowledge is used 
to maximize the precision. One may conclude that the final precision in the results 
depends on the SIN ratio, on the choice of the processing procedure (optimal/non­
optimal) and, in case of advanced signal processing, on model errors, both with 
respect to signal models and statistical noise models. 

One may suggest that the influence of the factors mentioned is increasing if 
the selectivity of the measurement method is decreasing. It is possible to calculate 
quantitatively this influence on the precision, for instance in case of unresolved 
chromatographic peaks. Maximizing the precision is not the only reason to opti­
mize signal processing. Analytical chemical results are used, e.g., for setting or 
monitoring regulation pertaining to environmental guidelines. 

Signal processing is an important part of the analytical procedure, having 
great influence on the final precision. Standardization and comparison of results 
from different laboratories are hardly possible if this part is not well defined 
and if the final analytical results are to a great extent dependent on unknown, 
uncontrollable and unpredictable software. "Integration" software in chromatog­
raphy is notorious in that respect. 

One has to strive for well defined standardized optimum signal processing, 
including uncertainty calculations. The latter is not yet common, not even in 
simple processing like integration, where the fundamental theory of uncertainty 
calculations has been derived quite a long time ago. In more advanced signal 
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processing it is even more difficult, not to mention multi-variate data (signal) 
analysis, where uncertainty calculation is almost an unexplored area until now. 

Analytical signal processing can be considered to belong to the class of 
chemometrical techniques because of the use of advanced mathematical and sta­
tistical methods. There is another way of using chemometrics in the development 
of analytical methods. An analytical system can be considered as an information 
channel. In some cases the usual input stimuli (input signals) are not optimal with 
respect to utilizing the information capacity of the analytical information channel; 
the information rate can be increased drastically using the proper input signals. 
Simple signal processing is out of the question then; the calculation and data 
handling capacities of computers have to be used. Examples of this approach 
are the different modes of Correlation Chromatography (CC), also known as 
multiplex chromatography and multiple input chromatography [1]. 

The most important advantage of CC over conventional chromatography is the 
rapid increase in the precision (SIN ratio) at the cost of sample in a relatively 
short time. Compared to preconcentration techniques, possible changes in the 
sample composition, a known disadvantage of preconcentration [2], are avoided, 
giving much more precise results. In addition, CC can be used to monitor changes 
in concentration [3], being a kind of continuous chromatography. 

Correlation chromatography is essentially a differential technique, which can 
be used to eliminate the influence of matrix peaks or to determine very sensitively 
minor changes in the composition of samples as a function of place or time (Dif­
ferrential CC (DCC)) [4]. In Simultaneous CC (SCC) more than one sample can 
be "separated" (no real separation takes place) in the same chromatographic col­
umn under exactly the same conditions [5]. CC requires a stationary system, and 
temperature programming or gradient elution is not possible. However, Single­
Sequence CC (SSCC) is an intermediate between conventional single-injection 
chromatography and CC, allowing for instance the application of gradient elu­
tion [6]. Chemical Modulation CC (CMCC) adds extra selectivity to the method, 
apart from the selectivity from the column or a special detector [7]. Not only CC 
is possible, but the same principles can be used in Correlation Capillary Zone 
Electrophoresis (CCZE), with the same advantage. The considerable decrease 
of the detection limit is particularly important here. Work in this field is in 
progress [8]. 

Signal Processing: Intensity Determination, Estimation 

Generally, quantitative evaluation of analytical signals implies intensity determi­
nation. Often the signal shape is not very important. The magnitude of some 
signal parameters, like the level of a constant signal, peak height, peak area, 
etc., are a direct measure for the desired quantitative analytical information, e.g. 
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concentration. Without noise the determination of amplitudes and peak areas is 
simple and straightforward. However, in the presence of noise, determination be­
comes an estimation. An (optimum) estimation procedure can be formulated as 
follows: find the best estimate of the noisy signal value at each instant of time, 
or find the best estimate of the relevant signal parameter. The "best estimate" 
means optimal with respect to some criterion, generally minimization of the "least 
squares". 

If one signal parameter has to be estimated, the ensemble concept has to 
be introduced. Each estimation can be considered as one sample of parameter 
estimations of a set (ensemble) of similar signals plus noise. The square of the 
deviations from the true value has to be a minimum. Often the estim!!tion can 
be improved by signal preprocessing, in general filtering, particularly smoothing. 
A filter is a device that is transparent for the (utility) signal but rejecting parts 
of the noise. It selects a particular frequency or a frequency range, called a 
passband, and suppresses ideally all the other frequencies. One has to keep in 
mind, however, that sometimes the result only serves cosmetic purposes: there is 
no reduction in the final uncertainty or the precision is even worsened [9]. 

Simple intensity parameter estimation like peak height or peak area is not 
optimum with respect to uncertainty in the results. An optimum estimation pro­
cedure uses all available and obtainable prior information to maximize the preci­
sion. This prior information consists of preknowledge of the signal and the noise 
using parameterized models. Signal models are mathematical expressions with 
adjustable parameters, describing the shape of the signal as a function of time. 
The parameters have to be determined in such a way that the functions fit the 
real peak shape satisfactorily. 

The sum ·l of the squared deviations of the (discrete) signal amplitude values 
from the fitting function, weighted with the uncertainty in the datapoints, is used 
as goodness of fit criterion: 

(2) 

where m = number of data, Yi = datapoints, y( ti) = fitting function, and 
u2 = uncertainty (variance) in the datapoints. The fitting function can be lin­
ear or non-linear in the parameters. 

Noise is modelled with the Probability Density Function (PDF), the Auto­
correlation Function (ACF) and the Power Spectral Density (PSD), which can 
be derived directly from the ACF by Fourier transformation. The final uncertainty 
in the analytical result, defining the quality of the measurement, depends on a 
number of factors, e.g. the very important sampling errors, preprocessing of the 
sample, etc. Uncertainty due to signal processing is caused by measurement noise 
and, particularly in the case of advanced signal processing, by signal and noise 
model errors. 

Some work on uncertainty in signal processing has been published. An 
example is the calculation of the influence of noise on signal integrating methods 
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[9]. For instance the uncertainty in peak area determination due to baseline noise 
can be expressed in the variance a[ of the integrated noise, integrated in an in­
terval with time duration T. The variance a[ can be derived as a function of the 
properties (ACF, PSD) of the noise and the integration time T. An important 
result is that the uncertainty increases with increasing integration time. For in­
stance in case of (bandlimited) white noise, a[ is proportional to the integration 
time. Low frequency noise is more dangerous in that respect, e.g. in case of 
flicker noise ( l / f noise), where the noise power is reversed proportional to the 
frequency, and the variance a[ is proportional to the square of the integration 
time. 

Signal Estimation Methods 

Regression Techniques 

In signal processing the general name "linear and non-linear regression analysis" 
is adopted for signal and curve fitting techniques where the parameters ( coeffi­
cients) of a model (function) are optimized with respect to a minimum value of 
x2• A linear function can be expressed as a sum of separate terms, each multi­
plied by one and only one coefficient. The most simple example is a straight line, 
f(t) = a+bt, where t =time, and a and bare constants. However, (orthogonal) 
polynomials [ l 0] are also applied as linear fitting functions. 

The procedure may act as a smoothing filter if the number of polynomial 
terms is limited. If the model is non-linear in the parameter, non-linear regression 
is required, which is a much more complicated procedure [ll-13]. It implies 
simultaneously minimizing x2 with respect to each of the parameters A) in the 
model: 

(3) 

Assuming a model with n parameters aj, X must be taken as a continuous func­
tion of the parameters, describing a hypersurface in an n-dimensional space. The 
minimum value of x2 has to be found. 

Several procedures are known, although the Levenberg-Marquardt algorithm is 
used most, combining the gradient-search method of least squares and the method 
of linearizing the fitting function. One problem can be that not the real optimum 
(minimum x2 ), but a local optimum, is found; therefore it is advisable to repeat 
the procedure with different initial values of the parameters. Another possible 
weak point is that non-linear regression assumes "white" noise and dominating 
low-frequency noise causes difficulties. 

Figure 2a shows a fitted HPLC-chromatogram with phenols and nitro-phenols, 
using a Fraser-Suzuki peak model. Figure 2b shows the residuals, the difference 
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Fig. 2. a Non-linear regression fit of High Performance Liquid Chromatogram. Phenols and nitro­
phenols. b Residuals of the fit 

between the fit, and the chromatogram after fitting. The x2 can be considered as 
a quantitative measure of the goodness of fit. 

Correlation Detection 

If, in contrast with (non-linear) regression, the signal shape is completely known 
except for the intensity, then correlation detection can be applied. In correlation 
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detection the noise is also assumed to be white, i.e. the power of the noise is 
equally distributed along the frequency axis in frequency range of the utility sig­
nal; the PSD is flat. It is a relatively simple optimum signal processing procedure. 
The procedure involves shifting a completely known model peak shape along the 
time axis and calculating the integral of the product of the model shape and the 
real signal for each time shift. The amplitude (intensity) of the real signal is 
the only signal parameter not known in advance. Figure 3 shows the procedure 
applied to a noisy peak, resulting in a less noisy peak. The original peak shape 
is not maintained; the original peak is skewed, the resulting peak is symmetric. 
However, each point has a known relation to the other points of the peak, deter­
mined by the (known) original peak shape, and each point is also directly related 
to the desired intensity of the real peak. 

Of course, the maximum (top) is optimum with respect to the minimum un­
certainty, and is used as an estimate for the unknown intensity. The increase in 
the SIN ratio is not drastic, about 1.5-2, depending on the peak shape, and if 
compared with integration using optimum integration limits. However, in prac­
tice, the determination of optimum integration limits is difficult, as is known from 
several integration software packages in chromatography. The peak top determi­
nation in correlation detection is simpler and in comparison the final increase in 
precision is higher . 

.. 
b 

c 

Intensity 

Fig. Ja-c. Correlation detection: a signal s(t) = 
peak f(t)+ noise n(t); b model function 
/J(t- -r), where t =time shift; c correlation de­
tector output = integral of the product 
s(t).fJ(t- t) as a function oft 



132 H.C. Smit 

Matched Filtering (Matched Linear Systems) 

Matched filtering (MF), i.e. the application of matched linear systems (MLS), is 
a signal-processing method directly related to correlation detection. In the latter 
white noise is assumed. If, however, the noise is non-white and if not only 
the signal shape but also the power spectrum (power spectral density, PSD), is 
known, this extra pre-knowledge can be used for further reducing the uncertainty 
in the intensity determination by MF [14, 15]. The description of a signal can be 
approached via either the time domain or the frequency domain. 

As already mentioned, if the shape of a signal is known exactly, then it is 
sufficient to know the amplitude of each frequency in the frequency spectrum of 
the signal obtained by Fourier transforming in order to determine the intensity of 
the signal, because a functional relationship exists between the spectral compo­
nents given by the known signal model in the frequency domain. However, noise 
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Fig. 4. a Peak model. b Output of the matched filter, assuming noise with a flat (white) spectrum. 
c Output of the matched filter, assuming flicker (I I f) noise, i.e. the power of the noise is inversely 
proportional to the frequency. The input peaks in b and c are taken to be almost noise-free in this 
instance to demonstrate the effect of matched filtering on the output peak shape 
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Fig. Sa-c. Signal intensity estimation by integration and matched filtering. The bars are indicating 
the confidence intervals: a noisy peak; b integral of the noisy peak; c matched filter output resulting 
from the noisy peak input 
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contributes to the total (signal plus noise) power in each part of the frequency 
spectrum; in case of non-white (coloured) noise it is different for each frequency. 

A matched filter acts by selectively enhancing or suppressing certain frequen­
cies in the total signal; the frequencies in the signal are weighted according to 
the ratio of signal power to noise power frequency. Not one single frequency but 
all relevant frequencies are used to determine the signal intensity. 

The complex frequency response of an MF is: 

H(J"m) = S*{jw) e-jwp. 
m N(m) 

(4) 

where w = (angular) frequency; j = complex parameter (l = -l);S*{jm) = 
complex conjugate of the signal model in the frequency domain; N ( w) = power 
spectral density of the noise; and p. = time shift introduced by the MF. 

In Fig. 4 a realistic signal model (peak) and the resulting (noise-free) output 
of a "matched" filter adapted for white noise and for 1 If or flicker noise with 
dominating low frequencies are shown. In this example no noise is present in 
the input signal to show the influence of matched filtering on the resulting signal 
shape. Note that the output signal is broadened and symmetric, even in case of 
a skewed input signal. However, only the output peak top with the highest SIN 
ratio is required for the desired intensity information. 

Figure 5 shows the intensity estimation of a noisy peak (Fig. Sa), by 
integration (area determination, Fig. 5b) and by matched filtering (Fig. 5c ). The 
confidence intervals for both methods are depicted by the bars. Obviously, 
matched filtering is superior to integration, as could be expected. 

Maximum Entropy Method 

A signal-recovering method of growing importance in analytical chemistry is the 
Maximum Entropy Method (MEM), derived from Shannons information theory 
[16] and reexamined by Jaynes [17]. MEM has been successfully applied to 
a number of problems, e.g. the reduction of noise, image restoration, and the 
determination of unknown parameters from incomplete data. It is rather easy 
to explain how MEM is done, but it is difficult to understand why it works. 
Maybe a good starting point for making MEM understandable in a simple way 
is emphasizing the relation to the old principle of insufficient reason in statistics, 
described in terms of the probability of events. This principle states that without 
any prior knowledge it must be assumed that all events have equal probabilities. 
The base of this statement is that probability is interpreted here as a measure of 
the state of knowledge about the events. If the events would not have the same 
probability, then any change in (the indices of) the events would give different 
probabilities without a change in the state of knowledge. 
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Entropy is directly related to probability. Probability is a measure of the 
uncertainty about occurrence or non-occurrence of an event in a single perfor­
mance of an experiment. One can assign a measure of uncertainty not to the 
occurrence or non-occurrence of not a single event, but of any event of a par­
tition (collection of mutually exclusive events) of the underlying experiment. This 
measure is called entropy of the probability distribution and is denoted by H. 
The relationship between H and the probabilities pj is 

n 

H = - .2: pf log Pj . 

j=l 

(5) 

An important property of entropy [Brillouin] is that it can be proved that it 
assumes a maximum value when all probabilities of the events are equal. In 
this given example maximizing the entropy is conceptually equivalent to the 
insufficient reason principle and results in the most probable solution. More 
generally, MEM is defined as the determination of the probabilities of the events 
of a partition, subject to given constraints, by maximizing the entropy. These 
constraints may be phrased as expected values, but MEM has applications in 
non-probabilistic problems as well. MEM is justified by the same reasoning as 
in the given example of equal probabilities; the resulting solution is the most 
probable one. 

A typical advantage of MEM is the drastic simplification of the analysis in 
practice, and therefore MEM is a valuable tool in the solution of applied prob­
lems. The arising problems can generally be solved numerically. The solution in­
volves the determination of a function several parameters. Well known variational 
techniques can be used, involving Lagrange multipliers and Euler's equations. 

Summarizing, MEM is a robust signal-recovering method, improving the pre­
cision of the detection. It is particularly useful in analytical chemical applications, 
when limited a priori information concerning the expected signal is present. 

Correlation Techniques in Separation Methods 

Correlation Chromatography 

A separation system like a chromatograph or a capillary zone electrophoresis 
system can be considered as an information channel. However, in these techniques 
the information capacity of this channel is very little utilized. The input stimulus, 
an approximately pulse-shaped injection with limited amplitude (concentration) 
and time duration, results in an impulse response, e.g. a chromatogram, but during 
the separation only a small part of the column is occupied. The components in 
the input sample are diluted considerably. 
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The application of correlation techniques allows the use of multiple injections 
as an input, resulting in a much more efficient use of the separation power of 
the column, finally resulting in a drastic reduction of the noise and the detection 
limit. This is particularly important in environmental analysis, where low con­
centrations of components of interest occur in the presence of a complex matrix. 
Correlation Chromatography is a typical example of this chemometric technique, 
with impressive results in (ultra-) trace analysis [18, 19]. 

A schematic set-up of a CC-system, with mechanical valves controlling the 
multiple injection, is shown in Fig. 6a. This mechanical modulation can be 
replaced by a chemical modulation system (Fig. 6b ). The response is a massive 
noise-like group of fused peaks with a greatly raised baseline; separate peaks 
cannot be visualised. Using the known input function, the resulting output and 
correlation techniques, the computer can calculate a "correlogram" almost similar 
to a normal chromatogram, although with a much higher SIN ratio. The longer 
the system is run the higher the SIN ratio will be. 

In trace analysis, trace compounds, otherwise not detectable by conventional 
single injection techniques, can be measured at the cost of a larger amount of 
sample and a longer analysis time. In general, in environmental analysis sufficient 
sample is present. To get an impression of the possibilities of the method, one 
can say that an increase by a factor of 2 in the analysis time compared to 
conventional chromatography decreases the detection limit by about one order of 
magnitude. A further reduction is about proportional to the square root of the 
time. The multiple injection pattern at the input has to fulfil certain demands. 
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Fig. 6. a Set-up of a correlation chromatograph, mechanical modulation system. b Chemical modu­
lation system 
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Usually a so-called Pseudo Random Binary Sequence (PRBS) pattern p(i) is 
used, where i is the discrete time. A PRBS is a binary "noise" with only two 
levels, + 1 and -1, or 1 and 0, corresponding to injection of sample or mobile 
phase, respectively. 

A PRBS has a specific length M, the sequence length of 28 - 1 periods 
(n is a positive integer) controlled by a clock determining the minimum time 
~t of the 1 or 0 state. M clockperiods correspond to I = 28 - 1 injections. 
Essentially, a PRBS is a logic function combining the properties of a true (binary) 
random pattern and a reproducible deterministic (periodic) pattern. It allows low 
estimate variance of statistical quantities such as correlation functions if taken 
over an integral number of sequences. Besides, the signal power of a PRBS, 
determining the power of the detector response, is much higher than that of the 
conventional impulse-like injection function with similar amplitude. The power 
is equally spread over the frequency range of the chromatographic system if the 
clockperiod is chosen sufficiently short. This white noise property is an essential 
condition for CC application. The binary levels can be used to control simple 
on/ off valves. 

The detector signal resulting from the multiple injections is built up of chro­
matograms h (i) shifted in time, plus detector noise n (i): 

M-1 

y(i) = ~)h(j), p(i- j)] + n(i). (6) 
j=O 

The PRBS length has to be equal to or longer than the time duration of a 
comparable single injection chromatogram. After one pseudo-random sequence, 
the pre-sequence, the detector signal becomes circular. 

A correlogram, almost similar to the conventional chromatogram, can be cal­
culated using the inverse of the PRBS, defined as the function p-1{i), producing 
a Kronecker delta function ~(i) after circularly cross-correlating with p (i): 

1 
Rp-Ip(i) M = - p- 1u + i). P U) = ~(i) (7) 

with ~(i) = 1 fori= 0 and ~(i) = 0 for i=!=O. 
The cross-correlation of the detector signal y(i) with the inverse p-1 (i) results 
in a correlogram: 

I M-1 

Rp-1y(k) = M 2)p-1(i + k) · y(i)]. 
i=O 

Combining Eqs. (6) and (8) gives 

n,-•,<k> ~ ~ { hU> ~ ~[r1U H>. p(i- ill} 

l M-1 

+M LP- 1(i+k)·n(i). 
i=O 

(8) 

(9) 
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One of the special properties of a PRBS is that the inverse calculated with one 
point per period and levels 1 and 0 is the same PRBS, but with levels +M I I and 
-Mil. Considering the levels for p-1(i+k), p-1(1 +k)·n(i) can be replaced 
by (Mil)· n(i, k). 
Inserting Eq. (7) into Eq. (9) gives 

M-1 1 M-1 M 
Rp-ty(k) = ~)h{j)LI (k- j) + M L T · n(i,k). 

i=O i=O 

(10) 

The first term is a convolution of the impulse response (chromatogram) and a 
Kronecker delta function resulting in the same impulse response. Concerning the 
second term, adding M non-correlated points for every k results in noise with a 
standard deviation (SD) of M 112 times the original SD of the noise: 

Ml/2 
Rp-ty{k) = h(k) + - 1-n(k) ~ h(k) + J2{in(k). (11) 

The autocorrelogram of the input sequence is sometimes referred to as the 
"virtual injection" profile because it can be proved that the cross-correlogram is 
identical to a chromatogram obtained from an injection with a profile equal to 
that autocorrelogram. The procedure can be continued with an arbitrary number 
of sequences. The longer the system is run the higher the SIN ratio will be, 
assuming the chromatographic system is stationary. Ultratrace compounds can be 
detected precisely without the necessity of cumbersome and often irreproducible 
preconcentration step. 
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Fig. 7. a Single injection (SI) chromatogram of polynuclear aromatic hydrocarbons (PAHs). b Cor­
responding correlogram of the PAHs 
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Fig. 8. HPLC calibration graph 
of phenol with fluorimetric de­
tection 

Figure 7 shows a typical example of CC applied in environmental analysis 
[20]. An HPLC-trace and the corresponding correlogram of a mixture of polynu­
clear aromatic hydrocarbons (P AHs) is shown. 

In Fig. 8, a calibration graph, determined with CC as well as with single 
injection chromatography, demonstrates the analytical performance of CC. Phe­
nol was measured over five decades of concentrations: 0.01-100 Jlg I- 1, with a 
conventional HPLC-system with fluorimetric detection. The two higher concen­
trations (10--100 Jlg 1-1) were determined by conventional reversed phase HPLC, 
the two lower concentrations (0.01-0.1 Jlg l- 1) by correlation HPLC with 16 and 
3 sequences of correlation time, respectively. The bars indicated on the calibra­
tion graph represent the peak area ±3o), when (J1 is the standard deviation of 
the integrated noise. The inner bars at the 1 Jlg 1- 1 level represent the correlation 
results and the outer bars the single injection results. 

The detection limit for the single injection experiments, defined as 3(J1, was 
about 0.5 Jlg 1-1, the detection with the 10 ng 1-1 concentration was estimated 
to be 3 ng 1- 1 (= 3 ppt = 3 parts per trillion) [19]. 

Instrumental and Computer Requirements 

The injection device is the most noteworthy modification of the separation system 
to be used with multiple injections. Such a device has to satisfy high demands 
concerning reproducibility, switching speeds, no wear and tear problems, absence 
of memory effects, and computer controllability. Incorrect injection causes dis­
turbances (ghost peaks, correlation noise), proportional to the amplitudes of real 
peaks, at specific relative positions on the time axis. Correlation noise limits the 
determination of traces in the presence of main components. 

At the moment a reliable, accurate and simple injection system, meeting all the 
demands of correlation HPLC, is obtainable. Concerning the computer hardware 
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requirements, a standard PC with 640-k byte memory plus a hardware card for 
controlling the switching valves and an AD-converter (12 bits, minimum sampling 
frequency 10 Hz) including an anti -aliasing filter is sufficient. 

Appropriate software is essential, it has to include the generation of an arbi­
trary number of PRBSs with selectable duration of the clockperiod and 2n - 1 
clockperiods in a sequence; n is an integer usually between 5 and 12. Further­
more, a straightforward cross-correlation algorithm has to be included, which can 
eventually be replaced by an off-line Hadamard transform procedure, speeding up 
the calculation. 

Several features like the display of the selected parameters (clock-period, 
sequence length, number of sequences, detector signal, the on-line calculated 
chromatogram, and the injection PRBS) make such a program much more user­
friendly. 

Comparison with Single Injection Chromatography 

The much lower detection limits without preconcentration compared to single 
injection chromatography makes CC very suitable for trace analysis. Besides, 
the accuracy and reproducibility of the determination satisfies high demands 
compared to preconcentration techniques, generally showing poor performance 
in that respect. A mostly unknown property is that in CC non-linear affected 
separations (due to e.g. a non-linear distribution isotherm), improve drastically, 
although some correlation noise may arise [25]. 

Some disadvantages of CC are the required extra sample, the extra time, the 
high demands on the injection system, and the possible correlation noise. An 
important disadvantage may be that in CC stability (stationarity) of the system is 
required; gradient elution or programmed temperature techniques are out of the 
question. 

Derived Correlation Techniques 

As already mentioned, quite a number of modifications of CC, each with special 
properties and each with potential applicability in environmental analysis, are 
developed: SSCC, DCC, SCC, CMCC. 

Single Sequence CC can be considered as an intermediate between single 
injection chromatography and CC. It overcomes the difficulty that in CC sta­
tionarity of the system (no varying condition influencing the retention time, the 
peak shape, etc.) is required. In SSCC a large volume sample is injected into the 
column. The width of this rectangular input pulse is acceptable with respect to 
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peak broadening and resolution of the broader peaks with longer retention times, 
but is too large for a satisfactory resolution of narrow peaks. 

The method implies that rectangular injection shape is modulated with a fine 
structure according to a PRBS. The first part of the chromatogram is calculated 
by a deconvolution procedure without a loss of resolution, and the last part can 
be processed in the conventional way. This opens the possibility of applying 
gradient elution or programmed temperature after elution of the narrow peaks. 
For the whole chromatogram the S / N increases considerably, but not as much 
as in normal CC. 

In Fig. 9 the results are shown of injections of different concentrations of 
a mixture of m-dihydroxybenzene, o-dihydroxybenzene, p-cresol, a-cresol, 2,3-
dimethylphenol, 2,4-dihydroxyphenol, and toluene, both in SSCC and in single 
injection HPLC. The eluent was methanol-water (50:50, v/v) [6]. Concentration 
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Fig. 9a, d, g. Chromatograms. b, e, h SSCC detector signals. c, f, i SS correlograms. These are for 
different concentrations- see text 
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from top to bottom: 3-5 ~g ml- 1, 0.3--0.5 ~g ml- 1, and 30--50 ng ml- 1 for each 
component. 

In CC only differences between sample and adapted eluent or possibly another 
sample are measured, resulting in a correlogram with positive and even negative 
peaks. This property can be used to suppress to a great extent the correlation 
noise directly due to (unimportant) main components in the correlogram, interfer­
ing in the determination of trace components. Often these main components are 
well known and the concentrations of these components in the eluent can easily 
be made almost equivalent to the concentrations in the sample. The result is a 
drastic reduction of the correlation noise, either caused by imperfect injections 
or by a non-linear distribution isotherm. 

Differential Correlation Chromatography can be useful in environmental ana­
lysis, particularly in trace analysis of samples with a relatively complex matrix. 
A possible application of DCC is the monitoring of potential sources of pollution 
at the subtrace level by determining the difference in concentration before and 
after the source of pollution [4]. Another application is monitoring variations 
in concentrations with time, of course after taking some precautions concerning 
conservation of the samples. 

A peculiar modification of CC is Simultaneous Correlation Chromatography. 
The principle of this technique is injecting not one but a number of different 
samples, each according to a pseudo-random pattern, mutually completely un­
correlated. If required, the same components, of course with generally different 
concentrations, may be present in the samples. The different correlograms are cal­
culated by cross-correlating the very complex output with the corresponding input 
pattern [5]. In practice a long PRBS with a length equal to the sum of the dura­
tion of the n different corresponding chromatograms has to be used. sec does not 
reduce the analysis time, because the duration of the correlogram is n times the 
duration of one chromatogram. All different samples are injected according to the 
same long PRBS, however, each with a different time shift equal to an integral 
number of chromatogram durations. A possible application is high precision chro­
matography, where calibration and measurements are affected simultaneously in 
the same column under identical conditions. The noise reduction property of CC 
is maintained and, a very accurate calibration and determination can be achieved. 

A relatively novel application of correlation techniques in separation methods 
is Correlation Capillary Zone Electrophoresis. In Capillary Zone Electrophoresis 
( CZE) the high detection limit is a serious problem due to the required small 
amount of sample and the small detector volume. The application of correlation 
techniques is obvious and work in this field is in progress. Some preliminary 
results, showing the possibilities of CCZE, are presented [8]. Figure 10 shows 
a set-up of a CCZE-system. Most attention has to be paid to the development 
of a suitable injection system, where electro kinetic injection is probably most 
suitable. Typical problems to be overcome are the influence of the high-voltage 
switching in the sensitive detector and the required stationary of the system. 

In Chemical Modulation Correlation Chromatography the mechanical modu­
lation by switching valves is replaced by a chemical conversion of components 



Signal Processing and Correlation Techniques 143 

HIGH VOLTAGE 

---·-1 COMPUTER ~--·-·--8-·-·- ·-i 

CAP ILLARY 

OETECTOR 

SAMPLE BUFFER HUFFER 

Fig. 10. Set-up of a correlation CZE system 

in the sample, also controlled by a PRBS (Fig. 6b ). Extra selectivity is added 
to the system because the chemical modulation can be specific for one or more 
components. There is no separate carrier gas or eluent: the analyte, e.g. ambient 
air or water, and possibly modified for optimum separation, is used as the mobile 
phase, which may be an advantage but which may also reduce the flexibility . No 
moving parts are present, but the chemical modulator is generally more sensitive 
to pollution. Much pioneering work in this field has been done by Phillips et a!. 
[3, 7]; several destructive and non-destructive modulators were developed. 

In the literature many principles of chemical modulation, both in GC and in 
HPLC, are described, e.g. thermal decomposition modulation [21 , 22], thermal­
catalytic modulation, spark modulation [23], and electrochemical concentration 
modulation [24]. The (potential) possibilities are promising for applications in 
environmental analysis, as can be concluded from the results obtained so far. For 
instance, traces of methane in ambient air were monitored with a thermal-catalytic 
modulator, hydrocarbons (e.g. ethane) in air were determined by a (destructive) 
hot wire thermal decomposition modulator, and phenol was determined in canal 
water with an electrochemical concentration modulator, a correlation HPLC sys­
tem. The relatively slow dynamic behaviour of a chemical modulator can be the 
source of ghost peaks and correlation noise [24]. 

Discussion 

Optimal signal processing and the application of correlation techniques can be 
very valuable in environmental analysis. The sometimes drastic decrease in the 
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uncertainty in the determination and the corresponding lowering of the detection 
limit make these techniques very useful. However, hardware (injection system) 
for CC and the related techniques and software are not commercially available. 
The techniques are not easy to understand or easy to implement. This is probably 
the reason why the applications in practice have been restricted so far. 
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Summary 

Even a sophisticated signal processing suffers more or less from strong peak overlap or low signal­
to-noise ratio. This discussion emphasizes not only the practical use of the Kalman filter but also 
the statistical and probabilistic aspects of it. The precision or relative standard deviation (RSD) of 
the estimates obtained from the Kalman filter is considered in a simple model where white noise is 
the only randomness. The RSD of the filter estimates is shown to be predicted from the degree of 
peak overlap and from the peak width and area with accuracy. The reliability of quantitative data 
can be evaluated with the predicted precision as a standard without repeated simulations. Mutual 
information has the equivalent meaning to the precision and is a useful concept for the optimization 
of instrumental conditions, especially for multi-peak output. The Kalman filter is selected as signal 
processing here on account of its mathematical simplicity and relevance to all the subjects discussed 
here. 



146 Y. Hayashi and R. Matsuda 

List of Symbols and Abbreviations 
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area of peak j 
the ensemble mean of a random variable in the square brackets over the 
repeated measurements ( i = I, ... , n) 
width of Gaussian peak j (standard deviation) 
sampling intervals of an analog-to-digital converter 
Function of Mutual Information 
relative standard deviation 
signal intensity at data point k 
Kalman gain at data point k 
error variance at data point k 
value of white noise at data point k (random variable) 
standard deviation of white noise Wk 
quantity of target material to be estimated (e.g., concentration) 
observed data at data point k 
data point (k = l, ... ,N) 
the number of repeated measurements or experiments 
the number of data points 
the estimate for X at the i-th measurement ( i = 1, ... , n) 
the estimate for X at data point k 
cutoff point for peak j (the starting point of Kalman filtering) 
filter-off point for peak j (the ending point of Kalman filtering) 
resolution often used in chromatography 
FUMI for peak j 
FUMI for all the peaks in a data set (total information) 
intact information for peak j (information free from peak overlap) 
information loss (caused by peak overlap) 
position or retentiont time of peak j 
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Introduction 

Various mathematical methods have been developed to deconvolute overlapped 
signals into their individual signals [1]. Such techniques are certainly useful in the 
situations where further separation is impossible or difficult to carry out through 
HPLC (high performance liquid chromatography) or other analytical instruments 
in separation science. However, even sophisticated signal processing is neither 
omnipotent nor can be relied upon too much. In general, the more strongly the 
signals overlap the more error the mathematical technique is accompanied by. 
Therefore, this discussion not only explains the practical use of signal processing 
but also emphasizes the statistical aspect of it. 

Kalman filtering is taken here as signal processing, because: (i) the relative 
standard deviation (RSD) for the filter estimates is theoretically predictable from 
the peak shape, noise level and overlap without resorting to the repeated simu­
lations in a simple measurement model; (ii) the precision of the filter (1/RSD) 
is equivalent to Shannon's information. 

This information theory of signal processing will have wide applicability in 
environmental chemistry. The environmental levels and human exposure of sub­
stances which are detected only at low levels can be evaluated from both the 
observed quantity and its predicted precision. Various data from different instru­
ments or from diverse environments will be compared with the universal quality 
criterion (precision). Governmental action for chemical safety programs can also 
be planned according to the universal judgement of environmental data. 

This discussion is devoted to the improvement in the precision of trace and 
subtrace analyses, but also considers the judgement of the statistical reliability of 
the data provided by the signal processing. 

Measurement Model 

Figure 1 illustrates the measurement model used throughout this discussion. The 
data set of measurement 1 contains Gaussian peak signal, F1. ... , FN, in N data 
points. A random noise, called white noise, w~. ... , WN, is superimposed over the 
signal. The white noise is characterized by zero mean and normal distribution. An 
observed value, Yk, at data point k is described as Yk = Fk + Wk (k = 1, ... , N). 

Signal processing of the data set of measurement 1 provides an estimate, X{ 1 ), 
for the analytical quantity such as concentration. A recursive signal processing 
such as Kalman filtering provides an estimate, xk. at every data _point (see below) 
as it proceeds from k =I. Any one of theN estimates, X1, ••• ,XN, obtained from 
measurement 1 can be the result, X(1). For example, the last estimate, XN, will 
often be selected because of its stochastic reliability (X(J) = XN; see below). 
The repetition of the above measurement produces n estimates, X ( 1 ), ... , X ( n ). 
The RSD of the n estimates is the concern of this discussion. 
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Measurement I: 

Signal Processing A A A A 

XJ ... Xk ... XN ---- X (I) 

I •........• k •......... N 

Measurement 2: 

A A A A 

XJ ... Xk ... XN ___.. X(2) 

Measurement 3: 

Signal Processing A A A A 

X! ... Xk ... XN ___.. X(n) 

1, ........• k, ........• N j j j j 
Variance 

Fig. 1. Data and estimates in measurement model. The estimate, X (i), of the i-th data set or mea­

surement i is one of the estimates, X1, ... ,XN, obtained by the signal processing of the data set. The 
S / N which is defined as the height of the peak maximum divided by the SD of the white noise 

( W = Wk) is I 0 in this figure. The relationship shown in Eq. ( 5) is indicated 

The n data sets differ only in the noise appearance from each other, while 
the entire areas, widths (standard deviation) and positions (mean) of the 

Gaussian peaks and standard deviation (SD), ffi, of the white noise are kept 
constant. That is, the peak shape, F1. ... ,FN and noise level, Wk. are invariant 
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during all the measurements from 1 to n. The estimates, X( 1 ), ... ,X(n ), will vary 
from each other due to the random noise. Thus, the mean and variance of the 
estimates should result from a large number of data sets, n. The statistical study 
based on the artificial randomness is called a Monte Carlo technique [2]. The 
situation of Fig. 1 mimics the repeated measurements on the same samples under 
the same operating conditions of an analytical instrument. 

In a linear measurement model, the amplitude of the signal for a target ma­
terial is directly proportional to concentration, X, at every data point except for 
the white noise: 

Yk = FkX + Wk (measurement model). (1) 

The aim of signal processing is to estimate the concentration, X, from the ob­
served noisy data, Y1, ... , Yk, ... , YN. For example, a value near unit concentration 
(X= 1) will result from the data of the model signal, F1. ... ,FN, and noise, Wk. 

A BASIC program for generating the white noise of zero mean and unit SD 
from the uniform random number ranging between 0 and 1 (RND) is surprisingly 
simple: 

lOAVE=O 

20 FORJ = 1 TO 12: AVE= AVE +RND: NEXT 

30 NOISE= AVE- 6 

The white noise (NOISE) can be produced by adding 12 uniform random numbers 
and by drawing 6 from the sum. A product, b*NOISE, is identical to the white 
noise with zero mean and SD of b. In addition, the variance of the uniform 
distribution is 1/12 (see line 20 of the program). The central limit theorem [3] 
should be referred to. 

Kalman Filter 

Algorithm 

Detailed formulation of the Kalman filter is available in the chemical [ 4--7], 
engineering [8, 9] and mathematical [1 0] literature. As the Kalman filter proceeds 
from data point 1 to k of a data set in the measurement model (Eq.( 1) and Fig.l ), 
it provides an estimate, xk. of the concentration at data point k: 

(2) 

where Lk is called Kalman gain. The update estimate, Xk, is supplied by cor­
recting the last estimate, Xk-I. alone without referring to any previous estimate, 
Xi, ... ,Xk-2 (recursive property). Innovation, Yk-FkXk-1. represents the discrep­
ancy between the update measurement, Yk, and the last estimate, FkXk-1·• in the 
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scale of Yk (not X). Thus, the Kalman gain, Lk. serves as a weighting factor for 
the correction. 

In the Kalman filter analysis, the model signal, Fk. and noise level, Wk. are 
assumed to be known at every data point before the signal processing is started. 
In Eq. (2), Yk is observable at data point k and the last estimate, Xk- 1, can be 
known recursively from the last estimation. Therefore the Kalman gain, Lk, is 
the only requirement for achieving the update estimation. An arbitrary value of 
X0 should be assumed at the estimation at k = 1. 

The Kalman gain at data point k can be obtained through error variance, Pk: 

Pk-lFk 
Lk = --=------

Wk2 + Pk-1Fk2 
(3) 

(4) 

Given an arbitrary value of P0 , the Kalman gain can be calculated from Eqs. (3) 
and ( 4) as follows: Po ---+ L1 ---+ P1 ---+ Lz ---+ ••• ---+ Pk ---+ ••• ---+ PN. In practice, a 
large initial value of Po is preferable for successful filtering [ 4]. The arbitrariness 
of Po and Xo vanishes as the filtering advances [8]. 

The observed value, Yk. estimate, Xk. and white noise, Wk. are random vari­
ables because of the randomness. On the other hand, the Kalman gain and ef!:Or 
variance involve only the deterministic value, Fk. and statistical constant, Wk. 
and are not random variables. The clear distinction between the random variables 
and usual variables is a key to understanding the theory of Kalman filtering. 

Time-Course of Filtering 

Figure 2 shows the time-courses of the noise-contaminated data, Yk (a), estimate, 
Xk(b ), error variance, Pk( c), and Kalman gain, Lk( d) [II]. As the signal of the 
Gaussian peak begins to predominate in the noisy data, Yk. the error variance, 
Pk. abruptly decreases. In this region A, the filtering process exhibits conspicuous 
activity which is characterized by a large value of Kalman gain, Lk. This activity 
is reflected on the abrupt change in estimate, Xk: the last estimate, Xk-1. is 
improved more and more as new information, Yk, is collected during region A. 

After this active region A, the estimate, Xb is no longer altered appreciably 
by the further acquisition of the information, Yk. Now the filter does nothing, 
even if fully supplied with the raw data, Yk. containing the useful information 
on the desired quantity, X. The error variance is a monotone-decreasing function 
with data point, k. This means that the estimation error never increases, as the 
information concerning the analyte quantity is accumulated increasingly. 

The commonly used least squares method is similar to the Kalman filter in 
that the model peak, Fk. is fitted to the real data, Yk. However, one of the most 
important differences is that the common least squares method works on the real 
data with equal weight at every data point or with preset weights in the algorithm. 
The Kalman gain which corresponds to the weight is out of control and uniquely 
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Fig. 2a-d. Time-course of the observed value: a Yk; b estimate, iL c error variance, Pk; d Kalman 
gain, Lk (From (II]) 

determined from the peak shape and noise level as shown in Eqs. (3) and ( 4 ). 
So is the active region of the filter. 

Precision of Estimates 

We consider the precision of the filter estimate, -~L at data point k in the simple 
measurement model of Fig. 1. The Kalman filter has the notable property that the 
observed RSD of the n estimates, X( 1 ), ... ,X(n) ( = xk ), is equal to the error 
variance and is also predictable from the peak shape and noise level [12]: 

(SA) 

(5B) 

- Ff + F} + ... + Ff 
(5C) 
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where the SD of the white noise is assumed to be constant at any data point 
( wk = W) and the true concentration of the target material is unity: X = 1 and 
E[X(i)] = 1. Equation (5C) is derived from Eqs.(3) and (4) [12]. 

We should note that the statistic is defined over the series of measurements 
as shown in Eq. (SA). By analogy with the definition in spectral analysis [13], 
the variance, Pk, may be referred to as "ensemble" variance. The ensemble mean 
and ensemble variance of the white noise, E [Wk] and E [W~ ], are equal to the 
. d . . . I I '"'N Wi d I '"'N w,2 Th" time mean an time vanance, respective y, N L..,k=l k an N-l L..,k=l k. 1s 

property is called ergodic [13]. The time mean is carried out over time N with 
measurement i kept constant and the ensemble mean over the n measurements 
with time remaining constant. Of course, the time mean and variance of the filter 
estimates make no sense in discussing the statistical reliability of the filter. 

The three ways to assess the precision of the filter are: (i) statistical method 
using Eq.(5A); (ii) numerical method using Eq.(5B); (iii) probability theory using 
Eq. (5C). These different approaches are in good agreement statistically [14]. The 
statistical method cannot be started, until all the n estimates are secured. On 
the other hand, all the dem~nds of the theoretical approach (iii) are the model 
peak, Fk. and noise level, W. The numerical method and theoretical approach 
dispense with the repeated simulations to perform the error prediction, but the 
error variance, Pk, at data point k results from the consecutive calculations from 
k=l. 

Influence of Peak Area and Width on Precision 

The Kalman filtering of a Gaussian peak j with area, Aj, and width, O"j (SD), over 
the infinite region (Eq. 5) takes another useful form of the precision [12, 14]: 

(6) 

where L1 T denotes the sampling interval for the analog-to-digital conversion. As 
the number, k, of raw data processed by the Kalman filter increases, the estimation 
becomes more precise and the error variance converges to the lower limit shown 
in Eq. (6). 

The effects of the entire area and width of a Gaussian peak on the filter 
precision can be seen from Eq. (6). The RSD decreases with increasing area, Aj, 
but increases with increasing peak width, O"j. That is, a larger (larger A), sharper 
(smaller u) signal provides higher precision. If the peak area is fixed, the highest 
precision can be obtained from the sharpest signal, called delta function, which 
takes all the signal intensities exclusively at a single data point. 
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Information Retrieved from Overlapped Signals 

The stochastic properties of signals are summarized: 
(A) as the peak broadens, the precision decreases (i.e., RSD increases); 
(B) as the peak area increases, the precision increases; 
(C) as the noise decreases, the precision increases; 
(D) as the peak overlaps with another, the precision decreases. 
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Factors A and B refer to the property indigenous to a peak or signal-to-noise 
ratio (S/N), but D the topological relationship between neighboring peaks. The 
word, precision, can be replaced by "information" or "FUMI" without altering 
the meaning (see below). 

The multi-dimensional filter is often employed in tackling the resolution of 
multi peaks. However, a one-dimensional filter, called a scalar filter [II], can be 
considered for this problem on account of the following advantages: ( i) theoretical 
simplicity for the error prediction of the filter estimates; ( ii) applicability of the 
error prediction to another peakresolving methods such as the adaptive Kalman 
filter (a version of the regular filter [7] ). 

Signal Overlap and Scalar Kalman Filter 

The scalar Kalman filter has its own time region over which it works on a single 
peak. The shaded regions in Fig. 3 illustrate the filtering for peaks j and j + I. 
The complete isolation of these regions enables the scalar calculation of each 
precision of multi peaks by Eq. (5C); the squared signal intensities are summed 
up only in the region. 

From the filtering region for peak j, the signal of the adjacent peak j + 1, 
higher than 0.05% of the apex of peak j is excluded. The signal of the adjacent 
peak j + 1 first reaches the highest acceptable signal at the filter-off point, Kr (j), 

j + I 

KcU+l) 

Fig. 3. Filtering regions of scalar 
Kalman filter for peak resolution. 
(Kc (j), Kf (j)) denotes the filtering 
region of peak j and ( Kc U+ I), Kf (j+ 
I)) that of peak j + I. (From [12]) 
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of peak j. The cutoff point, Kc (j), is so far from the peak center that the sum 
of the signal intensities beyond the cutoff point is negligibly small. 

If peak j overlaps with one more peak j- 1 from the left, the shaded Gaussian 
peak lacking both the edges appears over the filtering region. The cutoff point, 
Kc (j), of peak j coincides with the highest acceptable signal limit of the adjacent 
peak j- 1. The width of the region (Kc (j), Kr (j)) is governed by the signals 
of adjacent peaks and not by peak j itself. This definition of overlap is quite 
natural and useful for evaluating the quantification of a small peak adjacent to 
a large disturbing peak, e.g., an HPLC assay of a small impurity of an optical 
isomer present only in a small amount [14). 

The error of the multi-dimensional Kalman filter for q peaks can be described 
by the determinant of the q-dimensional error variance, Pk. The calculation of 
this precision by a personal computer becomes time-consuming, as the dimension 
or the number of peaks increases. Moreover, the simple mathematical expression 
of the error like Eqs. (5C) or (6) will be more difficult to derive from the multi­
dimensional error variance. 

Scalar Kalman Filter for Signal Resolution 

In Fig. 4, the RSD of the filter estimates is plotted against the resolution, Rs, 
for two Gaussian peaks obtained from HPLC [14]. The resolution is defined as 
Rs = [(tj+l - ~)/(~ + tj+J)]VN/2 where N denotes the number of theoretical 
plates (constant) and fj the position (mean) of peak j. The first eluted peak is 
fixed in position and the second eluted peak is moved with its width changed 
according to the fundamental equation: N = (tj/Uj f. 

As the resolution decreases from Rs = 1.0, the RSD for the moving peak 
increases abruptly, because the peak overlap narrows the filtering region (Kc U), 
Kr (j)) and reduces the denominator of Eq. (5C). The slight decrease in the S/N 
arising from the peak broadening, as Rs increases from 1.0, is the direct cause of 

2.-----------------~ 

OL---L---L---L---L-~ 

0 5 10 15 20 25 
Resolution 

Fig. 4. Effect of overlap on precision of scalar Kalman 
filter applied to chromatography. o: the results from the 
Monte Carlo simulation and common least squares fitting;­
: theoretical curve from Eq. (9) (RSD = exp [ -r/1 (j)]). 
(From [14]) 
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Table 1. The filter estimates from five experiments for the naphtha­
lene and diphenyl mixture. 

No. Naphthalene Diphenyl 
-------

Scalar Filter 2-D Filter Scalar Filter 2-D Filter 

I 99.8 100.4 100.2 100.1 
2 98.0 99.6 101.2 101.1 
3 100.1 100.5 99.6 99.6 
4 99.7 99.9 100.4 100.4 
5 101.0 100.4 100.3 99.5 
Mean 99.7 100.2 100.3 100.1 
RSD (%) 1.09 0.39 0.57 0.65 

(From Ref. [I I]) 
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the gradual increase in the RSD. The resolution at the minimum RSD of Fig. 4 
is called the optimal resolution [12]. 

Below Rs = 1.0, the RSD for the peak is more than that calculated from the 
entire peak shape without overlap (Eq.6). There exists information loss caused by 
overlap (see below). Above Rs = 1.0, however, the active region of the peak, e.g., 
region A in Fig. 2, is completely covered by the filtering region ( Kc (j), Kr (j)) 
and the peak can successfully be resolved by the scalar filter with the overlap-free 
precision (Eq. 6), even if the peak appears to be overlapped in the time scale. 

The precision of the Kalman filter (-) is identical to that of the common 
least squares curve fitting (o) in the example and Eq. (5C) can also be an exact 
description of .the RSD for the latter [14]. This coincidence is not surprising, 
because they have an equivalent mathematical structure [II]. 

Table I lists the estimates of the scalar and two-dimensional Kalman filters in 
an HPLC determination for a mixture of naphthalene and diphenyl (Rs ~ 1 and 
SIN ~ I 06 ) [II]. The observed RSD values for the filters are both satisfactory 
and indistinctive within experimental error; since the reproducibility of the HPLC 
system itself was 0.24%. The bias of the filters is at most 0.3% (the true value of 
the estimates is 100) and is much better than that of the well-known perpendicular 
dropping in many situations. The theoretical values calculated from Eq. (5C) fall 
below the observed ones, but are corrigible (see final section). 

Adaptive Kalman Filter for Signal Resolution 

Situations often arise where an ''unknown" peak interferes with a target "known" 
peak to be quantified. The adaptive Kalman filter has more flexibility and abil­
ity to remove the adverse contributions of the unknown peaks than the regular 
Kalman filter [7, 15]. The regular filter can only analyze the known peaks exactly, 
because the peak shape, Fk, should be known or modeled before the measurement 
and filtering. Despite a slightly different algorithm, the precision of the adaptive 
filter can also be predicted in the similar way to the scalar Kalman filter [15]. 
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Fig. 5. Overlapped Gaussian signals. (a) mixture spectrum (W = 2 x 10-3 ); (b) unknown peak 
(peak maximum height 0.332 ); (c) known peak (peak maximum height 0.663 ). The widths of both 
the peaks are 6 nm. The SIN is 665 for the known peak. The area ratio of the unknown to known 
peaks is 1/2. (From [15]) 

Figure 5 illustrates the mixture spectrum (a) of the unknown Gaussian peak 
(b) and known Gaussian peak (c) with added white noise [ 15]. The overlap with 
the unknown peak would critically deteriorate the precision and accuracy of the 
regular filter. The adaptive filter, however, corrects the estimates by referring 
to the innovation which represents the gap between the estimated spectrum and 
actual spectrum. 

Figure 6 shows the influence of the peak overlap on the precision of the 
estimates of the known peak (lower line) and unknown peak (upper line). The 
estimates of the target known peak are obtained by the adaptive filter and the area 
of the unknown peak is estimated by the subtraction of the estimated contribution 
of the target peak from the mixture spectrum. The known peak is ten times 
the unknown peak in area and has even higher precision. As the known peak 
approaches the fixed unknown peak, the RSD of the estimates increases especially 
below 620 om (Rs = 0.83 ). In the region of the severe overlap below 606 om, 
the adaptive filter mistakes the fused peaks for a single large peak, which causes 
a decrease in the RSD values. 

The error prediction based on Eq. (5C) (dotted lines) is also excellent in this 
example. The observed statistics were obtained from 500 repeated simulations for 
each degree of separation, but the predicted RSD values resulted from a single, 
noisy spectrum. This is why the predicted RSD curves in Fig. 6 are noisier 
than the observed curves. As is expected, a larger area of the unknown peak 
reduces the quality of the error prediction of the adaptive filter. The precision 
for the overlap-free signal is constant irrespective of the peak position in this 
spectroscopic situation (see the chromatographic situation shown in Fig. 4). 
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Fig. 6. Influence of overlap on precision of adap­
tive Kalman filter in the situation of spectroscopy. 
The abscissa denotes the position of the known 
peak and the unknown peak is fixed at 600 run. 
Solid lines (from Monte Carlo simulation): up­
per, the RSD for the unknown peak; lower, the 
RSD for the known peak. Dotted lines are theo­
retically obtained. The area ratio of the unknown 
and known peaks is 1/10. The moving known 
peak has the same shape irrespective of its posi­
tion 

Information Theory of Measurement 

Until now, we have paid attention only to a single peak. Now, a criterion for the 
precision of multi peaks is defined based on information theory. The combination 
with Shannon's theory might only seem to imply the mathematical transforma­
tion of formalism. On the contrary, the information theory of signal processing 
lends itself materially to chemical analysis, e.g., optimization of HPLC analysis 
[12, 14]. 

A major aim in analytical chemistry is to elaborate a method through which 
more information can be effectively transmitted from analytes of interest in a 
given sample. The total amount of information involved originally in the sample, 
however, cannot be elicited from the observed data because of inevitable noise 
contamination, interference, etc. The available information on the analyte con­
centration through measurement and signal processing is formulated as mutual 
information [12, 14]. 

Information, Precision and FUMI 

According to the theory of the Kalman filter, the precision is simply related to 
the mutual information [12]: 

¢(j) = log(l/RSD(j)) (7) 

where RSD(j) denotes the RSD of the estimates for peak j shown in Eq. (5). 
If there are multi peaks in an output of an analytical instrument and if the 

peaks are independent of each other, the total information, tP, can be given as 
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the sum of the individual peak information, </J (j) [12]: 

q 

<P = "L<Pu). (8) 
j=l 

Equations (7 )-( 11) are abbreviated as FUMI (Function of Mutual Information). 
Let the precision be the reciprocal of RSD. FUMI and precision have the 

same tendency against peak overlap and shape as pointed out by properties A-D. 
The mutual information, precision and FUMI are essentially equivalent concepts. 

Calculation of Information 

The Tailor series expansion of Eqs. (5C) or (6) around the peak center leads to 
a useful expression of FUMI [12]: 

</J (j) = t/1 (j) - J¢ (j) C:: O). (9) 

The first term, called intact information, denotes the information indigenous to 
the peak shape itself and free from overlap (see Eq. 6) [12]: 

(10) 

where Aj and O"j denote the entire area and width, respectively, of Gaussian peak 
j. The second term of Eq. (9), called information loss, takes the form [12]: 

(11) 

All the functions, </J (j), t/1 (j) and J </J (j), are non-negative. The cutoff and filter­
off point, Kc (j) and Kr (j), are indicated in Fig.3. The shaded region corresponds, 
though roughly, to the mutual information, </J (j), the white region the information 
loss, J¢ (j), and the entire peak shap1e the intact information, t/J (j). 

Without peak overlap, the information loss, J¢ (j), takes the lowest value 
(zero) and the information, </J (j), relies only on the peak shape (area and width) 
and noise variance, W2• If another peak is interfering with peak j, the loss, J¢ (j), 
begins to increase from zero and spoils the precision with increasing overlap. 
The signal properties A-D can easily be recognized from Eqs. (9 )-( 11 ). 

Attention should be paid to the following restrictions on the information 
loss: I 2: 1/2 + (Kr (j)- Tj)/(n112uj) 2: (2n 112ujL1T W2 )/Af; 1 2: 1/2 + (rj -

Kc (j))/(n 112uj) 2: (2n 112ujL1T W2 )/Af. All these restrictions come from the defini­
tion that FUMI, </J (j), should take the lower and upper limits: t/J (j) 2: </J (j) 2: 0. 
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FUMI and Resolution 

It is mathematically proved that more peak separation (increase in resolution, Rs) 
is equivalent to an increase in FUMI, </> (j), of peak j, only if peak j strongly 
overlaps another peak [12]. 

o<J>(j) _ coRs ---az- az (12) 

where Z denotes a chromatographic variable (e.g., mobile phase composition) 
and coefficient C ( > 0) is a function of Rs. oRs denotes a slight change in 
Rs and o<J> (j) a slight change in FUMI. If the change, oRs, is positive:, then 
the change, o<J> (j), should also be positive because of the positive coefficient 
C (o</>(j) = CoRs) irrespective of the sign of oZ. This means that the more 
separated the peaks (oRs > 0), the more precise (o</> (j) > 0) the analysis in 
the presence of peak overlap. 

Further but excessive separation (oRs > 0) causes peak broadening and spoils 
the precision (o<J>(j) < 0) in the chromatographic situations. Then, the rela­
tionship does not hold true in the case of sufficient peak separation, because 
the signs of the changes, o<J>(j) and oRs, become opposite. Equation (12) is 
the information-theoretical interpretation of the most commonly used separation 
function, Rs. 

Probability Theory of Measurement in Environmental Analysis 

The real RSD on HPLC and capillary electrophoresis is more or less underesti­
mated by FUMI [14]. A major reason for this gap is the existence of some noises 
in the instrumental output other than the white noise included in the FUMI the­
ory. The real RSD, however, can also be predicted with accuracy by regarding 
the baseline drift as the mixed random process of the white noise and Brow­
nian motion (14]. The Kalman filter and information theory described here lay 
the foundations of this probability theory of measurement and its applications in 
quantitative analysis. 

Chemical analysis for many environmental problems can be grouped into trace 
analysis. In a macro analysis on HPLC, however, the major cause of the mea­
surement error is the injection volume errer and any condition will yield nearly 
the same precision as long as the peaks are sharp and sufficiently separated. In 
a micro analysis, the precision varies substantially from peak to peak and from 
condition to condition [14]. Therefore, the precision should be consulted more 
carefully in selecting the optimum from among all the operating conditions exam­
ined. Mobile phase composition, column length, flow rate, detection wavelength, 
amount of internal standard and choice of the optimal internal standard material 
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have been totally optimized in the determination for pesticides and drugs with 
the predicted RSD or FUMI as a criterion [14]. 

Acknowledgement. Hayashi would like to thank Prof. Sarah C. Rutan for her useful suggestions about 
the adaptive Kalman filter. Figure 6 was created as a part pf their work [15] in Richmond, Virginia, 
USA, in 1992. 
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Statistical regression methods in environmental chemistry are of vital importance. Regression tech­
niques provide environmental chemical analysts with the ability to calibrate instruments and model 
large environmental systems. 

It has become apparent that ordinary least-squares regression is not well suited to modeling 
data that contains outliers or strong nonlinearities. In the presence of outlying data robust regression 
methods prove to be a useful tool, while various non-parametric regression models are useful should 
the data possess nonlinearities or high levels of noise. 

Robust techniques have the ability to detect outliers and dampen their effect on the modeling 
procedure. Several robust regression methods have been proposed but this article focuses on the least 
median of squares method and reweighted least squares regression. 

The non-parametric models to be discussed include the ACE model, the PI model and the MARS 
model. Unlike ordinary least squares, these methods have evolved only recently, hence there is only 
limited documentation available on these methods. 
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Introduction 

The application of statistical regression methods in environmental chemistry is 
important in many ways. Applications range from the small scale of calibration 
in environmental analytical chemistry to large scale applications such as modeling 
environmental systems. 

A wide variety of regression models have been developed to cater for dif­
ferent situations. Factors such as outliers, the amount of noise, the presence of 
nonlinearities, correlations among the variables and the observation/variable ratio 
are just a few factors which strongly influence the path along which the regres­
sion analysis should follow. For example, when there is significant evidence ·of 
high correlations among the variables of a regression system, principal component 
regression analysis would be an obvious candidate for the regression process [1]. 

The regression model consists of a systematic component and a residual 
component. The systematic component contains information about the underlying 
dependencies between a set of predictor variables and a response. The aim of 
statistical regression analyses is to model the mechanisms that produce the sys­
tematic component. This model should contain a minimal amount of noise be­
longing to the residual component. Additionally, the same model should contain 
a maximal amount of information contained in the systematic component. 

If the aim of the regression procedure is to predict, it is necessary for the 
model to fit the data closely. Any model which produces a good fit can be used 
to predict new response values from a set of new predictor values. For example 
one may wish to predict ozone concentrations from another set of variables which 
may be easier to measure such as wind speed or temperature. 

If, on the other hand, the aim of the regression procedure is to gain a greater 
understanding about the true mechanisms of the system, a stricter approach is 
required to determine the best model. In this case, the model should have some 
inherent characteristics such as interpretability [2]. 

In some instances the underlying mechanism may be known. That is, the 
functional form of the model involving the relationship among the predictors 
has been established. This usually requires prior knowledge about the system. 
Unfortunately, in practice, this is often not the case and the functional form has 
to be estimated. 

Traditionally, ordinary least-squares (LS) has been used to represent the 
underlying function of a regression system. This fact can be attributed to the 
ease in implementing and interpreting the ordinary least-squares model. Ordinary 
least-squares is best suited to data which can adequately be represented by linear 
or polynomial functions. 

Ordinary least-squares is a parametric regression model but, due to the 
advancement in statistical theory and technology, several non-parametric regres­
sion models have evolved. A distinction between parametric and non-parametric 
regression models can be made. Parameteric models assume a particular func­
tional form to represent the systematic component of the regression model. For 
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example, the LS model has the form 

Y = f3o + /3JXI + · · · + f3mXm + e . (1) 

Here the response (y) consists of the error component e, and the systematic 
component f3o + f3Ixl + · · · + f3mxm. The systematic component is a linear combi­
nation of the m predictor variables XI, .•. , Xm. The parameters f3 1. ... , f3m are the 
regression coefficients and /30 is the y-intercept. The coefficients are solutions to 

n 

minimize L it 
Po •... ,pm i=l 

(2) 

where n is the number of observational units and the estimated residual is 
given by 

Ei = Yi- Yi 

= Yi- Po- P1xli- · · · - PmXmi · 

Parametric models also make assumptions about the distribution of the residuals. 
In the case of LS it is assumed the residuals follow a normal distribution with 
mean equal to zero and a constant variance, that is e "' N ( 0, u2 ). 

Whilst LS is a linear parametric model, nonlinear parametric models also 
exist. Nonlinear parametric models are typically used when the functional form 
of the systematic component is known. Such models often arise in the field 
of chemical kinetics. For instance, the relationship between the concentration 
of available dissolved organic substrate (x) and the rate of uptake (y) of that 
substrate is considered to be nonlinear [3]. 

Non-parametric models make no assumption about the functional form of 
the systematic component. Given a set of data, non-parametric methods estimate 
the systematic component by using smoothing techniques. Smoothing techniques 
provide a flexible approach to data analysis, and, because there is no prespecified 
model, the use of smoothers can detect extra information from a set of data that 
may well have gone undetected had a prespecified model been used. Additionally, 
non-parametric models place no restriction on the distribution of the residuals. Of 
course, one would hope the residuals have a mean equal to zero and are spread 
with constant variance. 

Some examples of non-parametric models include ACE (5-9], PI[lO], MARS 
[2, 11, 12], Additive Models [13-15] and Artificial Neural Networks [16]. These 
methods not only provide a flexible approach to data modeling, but are also 
capable of modeling data that contains nonlinearities mixed with high levels of 
noise. 

Ordinary least-squares does not fare so well with data containing high levels 
of noise, nor does it produce accurate results in the presence of outliers. Robust 
regression methods [ 17, 24] are usually employed when outliers are contained 
in the data. Robust regression methods replace general estimators, namely the 
regression coefficients with robust estimators. In most cases robust regression 
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techniques use a linear function to model the systematic component. Whilst these 
methods assume a particular function for the modeling procedure, no constraints 
are usually placed on the distribution of the regression residuals. 

The prementioned regression techniques are alternatives to the ordinary least­
squares model. Each method may produce varying results depending on the adapt­
ability of the methods across different situations. 

Other alternatives to ordinary least-squares which have not been mentioned 
include biased regression techniques. These methods reduce the number of para­
meters that need to be estimated to overcome the low observation/variable ratio. 
Such methods include partial least-squares [1, 18-21, 23], principal component 
analysis [ l, 18] and ridge regression [ l, 18]. 

Hybrid regression methods can also be produced by combining several 
regression techniques. For example, a biased regression technique such as partial 
least-squares could be modified by making the procedure robust [22]. Another 
hybrid method which combines smoothers and partial least-squares to form a 
nonlinear partial least-squares model is .discussed by Frank [23]. 

In recent years there has been extensive amounts of literature in chemo­
metrics about biased regression techniques, much more than appears about ro­
bust and non-parametric techniques. In order to provide more information about 
these methods, we will focus on robust and non-parametric methods for multiple 
regression analysis. Since many data sets from environmental chemistry have the 
potential to contain significant levels of noise, nonlinearities and outliers, these 
techniques are very important in this discipline. 

Robust Multiple Regression Models 

The LS technique for estimating the unknown regression coefficients in multi­
ple linear regression models is very sensitive to the presence of outlying data 
vectors. However, the occurrence of naturally outlying data (that is data which 
involves no discrepancy) is quite common in data from environmental chemistry. 
For example, when dealing with contaminants, an atypically high concentration 
value in a data set may be an indication of an extreme pollution situation. Conse­
quently, the detection of natural outliers is of major importance in observational 
environmental studies. 

In multivariate data sets the identification of such atypical data vectors 
becomes difficult. This is because it is not easy to detect multivariate influential 
data vectors in two dimensional scatter plots. Consequently, tools are needed to 
identify these outliers through models not influenced by these aberrant data. One 
approach is to use robust regression methods which are able to model the major­
ity of the data and automatically dampen the influence of atypical data vectors. 
Atypical data lying far from the cluster of good data, will have large residuals 
from the robust regression fit. Since robust regression estimates are insensitive to 
outliers, the detection of influential data is simplified. In contrast, the residuals 
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from LS methods are not reliable for outlier detection. Indeed, the atypical data 
vectors may have small residuals since the least-squares fit is pulled too much 
in the direction of these outliers. 

A number of robust regression methods have been proposed for simple and 
multiple linear regression [24-26]. As an example we will concentrate on the 
least median of squares (LMS) method proposed by Rousseeuw and Leroy [26]. 
This method was further introduced by Massart et al. [27] and Rousseeuw [17] 
in analytical chemistry and chemometrics. 

The basic idea behind the method is to use the median as a criterion in the 
least-squares method. The LMS estimator which replaces the least sum of squares 
in Eq. (2) by the least median of squares, is given by 

m!niJl!ize IJ?.edian if , (3) 
flo·····flm t=l, ... ,n 

where the median is the (n/2 + 1 )th ranked squared residual. 
A typical values can occur in the response variable as well as in the predictor 

variables. The worst case is when leverage data vectors are present in the data 
set, that is data vectors for which (xk!. ... ,Xkm) lies far from the cluster of the 
(xi!, . .. , Xim) i E [ 1, n ], i # k data in the measurement space. Rousseeuw [ 17] 
explains this is of major concern because of the following. 

1. LS estimators are vulnerable more to leverage points than to outliers purely 
in the response variable. 

2. Leverage outliers are more likely to occur than data merely aberrant in the 
response variable, as there are m predictor variables compared to one response 
variable. 

3. Due to the higher dimensionality of the predictor variables space, identifying 
leverage outliers can be a difficult task. 

In order to be able to identify several outliers at a time, we need to model 
the main cluster of data vectors regardless, of the presence of multiple outliers. It 
means a high-breakdown estimator such as LMS is required [28]. The breakdown 
point of an estimator is the smallest fraction of observations that have to be 
replaced by corrupted ones to make the estimator unbounded. More formally, the 
notion of the breakdown point [26] in regression can be described as follows. 
Take any sample Z of n data vectors (xll, ... ,XIm.yi), ... ,(Xnl•····Xnm,Yn) and 
a regression estimator T (e.g. T being LS, LMS etc). Applying T to Z yields 
the regression estimate vector {3. Consider all possible corrupted samples Z' that 
are obtained by replacing any t of the original data vectors by arbitrary data 
vectors, such as those that produce outliers. Let bias(t; T,Z); be the supremum 
of II T(Z')-T(Z) II for all corrupted samples Z', then the finite sample breakdown 
point can be defined as 

rn(T,Z) = min{t I n;bias(t; T,Z) is infinite}. 

The finite sample breakdown point for the LMS estimator is 

n/2- m +2 
n 

(4) 

(5) 
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The breakdown point depends little on n. To get a single breakdown point 
value for fixed m, one often prefers to report the infinite sample breakdown point. 
The infinite sample LS breakdown point is 0%, whereas the breakdown point for 
the LMS technique is as high as 50%, the best that can be achieved, as shown 
by Rousseeuw and Leroy [26]. 

For outlier detection in regression, one has to compare each residual from 
robust regression with the spread of all the resulting residuals. When using least­
squares regression the residuals are assumed to have a normal distribution with an 
unknown scale parameter denoted by a. This is the population standard deviation, 
which is estimated by LS as 

( 
1 n ) 1 

aLs = '"""'i n-m-tL... i 
1=1 

For LMS regression, the appropriate scale estimate is 

I 

aLMS = 1.483 (m!dian Ef) 2 

1-l, ... ,n 

(6) 

(7) 

where the EiS are the LMS residuals and 1.483 is the constant to make aLMS a 
consistent estimator of a. The LMS scale estimate has a 50% breakdown point 
whereas aLs has a breakdown point of 0% which is another downfall of LS. 

Rousseeuw and Leroy [26] mention that the standardized residuals, 

(8) 

resulting from a robust fit (in analogy to the standardized residuals in LS regres­
sion diagnostics) can be employed to diagnose outliers. If lzd is larger than 2.5, 
the i-th observation is considered to be a regression outlier. It is not advisable 
to use both the LS residuals and the LS scale estimate in Eq. (8), since leverage 
data tend to have small LS residuals and will not be detected as outliers. More­
over, some large residuals (such as those in the dependent variable) will greatly 
increase and artificially expand the tolerance limits for the residuals. 

Let us now demonstrate the applicability of the robust regression approach in 
a real example using environmental data. 

Example 

The data to be used in this example forms part of a larger observational (survey) 
study. The study involved determining levels of lead and cadmium present in the 
surface enamel of permanent incisors of a cohort of 370 Belgian schoolchildren 
[29, 30]. Samples were taken by means of an acid etch microbiopsy method 
[31]. Two layers of enamel, a few micrometers thick were removed, and the 
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concentration of heavy metals was determined. The cohort consisted of children 
from selected areas in Belgium. The selected areas came from distinct parts of the 
country, and were chosen according to geographic and demographic differences 
corresponding to different kinds and levels of environmental pollution. Both rural 
and coastal areas were included in the study, as were localities in the vicinity 
of industries that caused heavy metal pollution of the environment. The heavy 
metal concentrations in surface enamel was related and decorrelated (calibrated) 
with respect to etched depth and age of the child. It was shown the two layers of 
enamel were a reflection of environmental exposure to lead and cadmium. This 
can be related to different sources of body burden [29, 30]. 

In this example we selected two small data subsets. The first data set consisted 
of 55 children aged from 6.2 to 9.5 years. The children were randomly selected 
from a number of small schools in 11 villages in the southern part of Belgium 
(Ardennes). The villages are situated in the same region of the Ardennes and 
are predominantly rural. The second data set consisted of 27 children aged from 
6.2 to 9.5 years selected from a school in the town of Schelle which lies in the 
northern part of Belgium. The area is moderately urban. 

In the ARDENNES example we examined the first etch biopsy, i.e. the first 
layer of incisor enamel removed and in the SCHELLE data set we analyzed 
the second etch biopsy. Both data sets contain two independent variables and 
one response. One independent variable is etched depth (etchd in micrometers). 
Etched depth is estimated from the amount of calcium removed during the etch 
biopsy. The second independent variable is the age of the child which has been 
transformed to the decimal system from years and months (see above). 

The response variable (lnPb with Pb in ppm) was regressed on age and etchd. 
We used the logarithmic transform of the lead concentrations in the biopsy, as it is 
known the profile of lead levels in the outermost enamel decreases exponentially 
from the surface towards the inner enamel. Additionally the distribution of lead 
in enamel is positively skewed. 

The ARDENNES and SCHELLE data subsets are given in Tables 1 and 2 
respectively. The full data set can be found in [30]. 

The regression analysis in the original study [29, 30] was performed for the 
following reasons. 

1. To remove some of the variation in the lead levels due to non-environmental 
factors such as age and etched depth. 

2. To detect leverage outliers that make least-squares regression models unreliable 
and biased and (positive) outliers of special importance (in response variable 
In Pb) which may indicate an extraordinarily high level of heavy metal in the 
tooth surface of the particular subject. 

3. To use the information in the regression coefficients of age and etched depth 
in the comparison of the regions. 

The 3D scatter plot for the ARDENNES data in Fig. 1 shows the relationship 
between ln Pb, etchd and age is rather weak. Figure 1 also shows that most 
variation in lead levels is not due to differences in age and etchd. This means, 
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Table I. ARDENNES data set. 

id etchd (xi) age (xz) Pb In Pb (y) 

I 3.82 7.67 387 5.96 
2 3.10 7.67 1236 7.12 
3 2.88 8.42 1339 7.20 
4 2.52 7.33 584 6.37 
5 2.37 6.67 320 5.77 
6 1.80 9.00 1199 7.09 
7 3.53 8.50 473 6.16 
8 3.31 8.50 589 6.38 
9 2.38 8.50 2864 7.96 

10 2.73 9.33 692 6.54 
II 3.02 7.42 595 6.39 
12 2.66 7.17 788 6.67 
13 2.64 7.83 507 6.23 
14 2.55 8.00 1141 7.04 
15 3.15 8.25 1012 6.92 
16 2.86 8.92 2164 7.68 
17 2.86 9.08 1669 7.42 
18 2.42 8.42 1152 7.05 
19 2.28 8.17 1919 7.56 
20 3.02 7.67 1074 6.98 
21 3.34 8.75 897 6.80 
22 2.49 7.83 1236 7.12 
23 3.52 7.00 1510 7.32 
24 2.94 8.42 1299 7.17 
25 2.59 8.75 1808 7.50 
26 2.94 9.08 1510 7.32 
27 2.59 8.67 1394 7.24 
28 2.59 9.17 788 6.67 
29 1.90 7.08 982 6.89 
30 2.25 9.25 2275 7.73 
31 2.59 8.42 1754 7.47 
32 2.83 8.42 1495 7.31 
33 2.77 7.17 915 6.82 
34 2.77 8.67 1130 7.03 
35 2.59 7.42 1043 6.95 
36 2.94 8.67 1211 7.10 
37 2.08 8.92 1436 7.27 
38 3.06 7.08 720 6.58 
39 4.17 8.92 699 6.55 
40 3.03 9.00 720 6.58 
41 3.81 8.50 607 6.41 
42 3.58 8.25 566 6.34 
43 4.03 7.83 550 6.31 
44 2.82 8.00 720 6.58 
45 2.82 7.67 735 6.60 
46 2.99 7.92 1394 7.24 
47 3.34 7.83 584 6.37 
48 2.80 7.33 3165 8.06 
49 3.03 8.25 1339 7.20 
50 2.57 7.83 1571 7.36 
51 2.68 7.67 1495 7.31 
52 3.03 7.67 2617 7.87 
53 3.15 8.17 1737 7.46 
54 2.75 8.83 1380 7.23 
55 2.85 8.75 1274 7.15 
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Table 2. SCHELLE data set. 

id etchd (xi) age (x2) 

I 2.67 7.67 
2 2.89 8.17 
3 2.96 8.50 
4 3.75 8.00 
5 2.38 7.58 
6 2.59 8.08 
7 2.59 7.50 
8 2.96 8.17 
9 2.45 7.67 
10 2.74 8.17 
II 3.10 7.33 
12 2.81 7.33 
13 2.81 7.33 
14 3.10 7.75 
15 2.74 8.08 
16 2.96 7.67 
17 3.32 7.83 
18 2.67 7.92 
19 3.10 7.92 
20 2.89 8.17 
21 2.71 7.92 
22 2.71 7.67 
23 3.31 8.58 
24 2.64 8.58 
25 3.39 8.00 
26 3.10 8.25 
27 2.96 7.83 

Ph 

353 
100 
287 
231 
388 
146 
377 
304 
195 
441 

52 
180 
235 
318 
332 
351 
268 
211 
349 
268 
479 
164 
468 
117 
218 
318 
227 
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In Ph (y) 

5.87 
4.61 
5.66 
5.44 
5.96 
4.98 
5.93 
5.72 
5.27 
6.09 
3.95 
5.19 
5.46 
5.76 
5.81 
5.86 
5.59 
5.35 
5.86 
5.59 
6.17 
5.10 
6.15 
4.76 
5.38 
5.76 
5.42 

Fig. 1. ARDENNES data set. A 3D plot 
of the regression variables 
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from a calibration point of view, we are dealing with a noisy data set. Moreover, 
it is clear there are three points (23, 48, and 52) which lie slightly further from 
the main data cluster. These points do not seem to be severe outliers given 
the large amount of variation in the data set. The data points 23, 48 and 52 
represent children with high lead levels in enamel (outlying in the dependent 
variable ln Pb) and thus a high past body burden. They don't have extreme 
values in the independent variables. It is important to detect these cases from a 
toxicological point of view. Moreover, these cases may affect the LS regression 
model, although they do not have extreme values in the independent variables 
and we do not expect them to be strong leverage points. The cases 5 and 10 
deviate in a different way, namely Somewhat extreme in the independent variables 
with a rather negative deviation in ln Pb, 

The LS regression function for this data set is 

y = 6.65- (0.407)xl + (0.183)x2 

whereas the LMS model gives 

y = 5.42- (0.58l)xl + (0.395)x2. 

(9) 

(10) 

Although there is no dramatic change in the regression coefficients when going 
from LS to LMS, it is clear in this case that LMS gives steeper slopes. The 
reason for this is LMS detects four outliers and LS detects only one. The three 
outliers in the response, ln Pb which were obvious from the 3D plot in Fig. 1 
were all detected by LMS but only one was detected by LS. The unstandard­
ised and standardized residuals are given in Table 3. One can see both LS and 
LMS identify case five as borderline within the tolerance region of the regression 
residuals ( lzi I < 2.5) and LMS detects case ten as an outlier but LS does not. 

In a further step, after the LMS model was developed, a least-squares multiple 
regression analysis was performed with the weights of the outliers detected by 
LMS reduced to zero. This means we are making use of the following weights, 

{ 1 for lzil ~ 2.5 
Wi = 0 for lzil > 2.5. 

(11) 

This simply means case i will be retained in the weighted LS if its LMS resid­
ual is small to moderate, but disregarded if it is an outlier. The bound 2.5 is 

Table 3. ARDENNES data set. Regression residuals of selected cases. 

LS LMS RLS 

Index (i) i; z; i; z; i; Z; 

5 -1.31 -2.45 -0.915 -2.40 -0.857 -2.32 
10 -0.701 -1.52 -0.987 -2.59 -0.856 -2.31 
23 0.827 1.79 1.173 3.07 1.125 3.04 
48 1.213 2.63 1.364 3.58 1.405 3.80 
52 1.055 2.29 1.173 3.08 1.205 3.26 
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arbitrary, but quite reasonable, since in the case where the residuals follow a 
normal distribution there will be very few residuals larger than 2.5. This way the 
destabilizing influence of outliers on the LS model is eliminated. This procedure 
is called reweighted least-squares regression (RLS ). The estimator can be written 

n 

minimize L Wi if . 
Po •... ,pm i=l 

(12) 

This estimator still possesses the high breakdown point, but it is more efficient 
in a statistical sense under the Gaussian assumptions. An additional advantage of 
using RLS instead of LMS for the final model is it yields the classical output such 
as the parametric coefficient of determination (see section entitled Model Selection 
Criteria), confidence intervals on the regression parameters and hypothesis tests. 
This result, despite the distribution theory valid for LS, is no longer exact for 
the RLS regression. 

Table 4 summarizes the regression models LS, LMS and RLS of the 
ARDENNES data. The value ln Ph is the estimated ln Ph value for the reference 
etched depth of 3 J..Lm and age equal to 7 years. The LMS and RLS estimates 
are very similar. The associated standard error is an estimate of the scale of the 
ln Ph residuals after regression. The standard error is smaller for LMS and RLS 
when compared to LS. The coefficient of determination (R2 ) is also displayed 
in Table 4. This value gives an idea of the strength of the linear relationship 
between the response variable and the predictor variables. Additionally it mea­
sures the proportion of total variability explained by the regression model. For LS 

Table 4. ARDENNES data set. Regression estimates and model fitting statistics. 

LS LMS RLS 

No of children 55 55 51 
No of outliers 1 4 4 

In PB; E(yixJ = 3,x2 = 7) 6.710 6.448 6.443 
a 0.462 0.395 0.370 
R2 0.208 0.542 0.435 
p-value 0.0023 0.0000 

intercept (Po) 6.65 5.42 5.40 
standard error 0.87 0.74 
t-value 7.65 7.36 

p-value 0.0000 0.0000 
etch depth (p 1 ) -0.407 -0.581 -0.478 
standard error 0.131 0.107 
t-value -3.11 -4.45 
p-value 0.0030 0.00005 

age <P2) 0.183 0.395 0.354 
standard error 0.094 0.082 
t-value 1.94 4.29 
p-value 0.058 0.00009 
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regression, one can test the hypothesis that R2 equals zero, as R2 under the null 
hypothesis can be related to an F-distribution if the iis are normally distributed. 
The null hypothesis is accepted if the calculated F -statistic for R2 is less than 
the (1 - 1X)th quantile of the associated F-distribution, that is, if the p-value is 
the larger than IX (say IX= 0.05). The R2 for the RLS is defined in an analogous 
way to LS, except all the observations are now multiplied by their corresponding 
weight Wj. 

As for the LMS model, the RLS model explains a larger proportion of the 
variability in the ARDENNES data than LS. The result is a more significant R2 

for RLS (p-value for RLS is much smaller). For LMS the measure R2 is defined 
in a robust way (see Model Selection Criteria section). No simple parametric test 
for R2 can be formulated here. Nevertheless, the R2 values indicate that the LMS 
and RLS models linearly fit the ARDENNES data better than LS. This is not 
necessarily the case for other examples, where the LMS and RLS models may 
result in substantially smaller R2 values and less significant values for RLS. The 
reason is that the R2 for LS is very sensitive to outliers and leverage outliers may 
cause R2 to be artificially high. It all depends on the particular characteristics of 
the contaminated data set whether the R2 of LS will be smaller or larger than 
the R2 for LMS or RLS. In the ARDENNES example the leverage effect of the 
outliers is not consistent and strong enough to increase the LS R2 value greatly. 

Table 4 also reveals that a steeper slope of etched depth and age (i.e. larger 
modulus of the regression coefficients) after outlier deletion (RLS) in conjunction 
with smaller standard errors of the coefficients gives rise to higher significance 
(i.e smaller p-values) for the t-test on the regression coefficients than the original 
LS model. This indicates a better fit of the model. 

The 3-D scatter plot for the SCHELLE data in Fig. 2 shows a small cluster 
ofpoints {2,6,9,18,22,24} below the main cluster and an isolated outlier {11}. 
The proportion of outliers present here is rather large (7/27). It was found these 
outliers were not natural ones in the sense that they do not indicate abnormally 
high heavy metal body burden levels. We discovered these children had a high 
caries status and very poor oral hygiene which may have resulted in deeper 
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Fig. 2. SCHELLE data set. A 3D plot of 
the regression variables 
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etching and a post eruptive dissolution of lead into saliva. The SCHELLE data 
were collected very early in the survey and after this finding it was decided to 
enrol only children with a reasonable caries status into the study. 

LS was unable to detect the outliers since no very large standardized residuals 
were found (see Table 5). On the contrary, LMS identified all the outliers and 
labeled them as strong (lzil > 3.0). RLS confirmed the LMS results. 

As can be seen from Table 6, the R2 was severely affected by the presence of 
outliers. The deletion of the outliers had a strong effect on the regression coeffi­
cient of etchd, on the standard errors of the coefficients and on the significance 
of the associated t-test. 

Table S. SCHELLE data set. Regression residuals of selected cases. 

LS LMS RLS 

lndex(i) €; z; ii Z; i; z; 

2 -0.893 -1.83 -1.87 -6.73 -1.32 -7.26 
6 -0.611 -1.25 -0.946 -5.37 -0.866 -5.56 
9 -0.462 -0.95 -0.883 -5.00 -7.51 -4.81 

11 -1.253 -2.56 -1.490 -8.44 01.474 -9.46 
18 -0.344 -0.70 -0.732 -4.15 -0.619 -3.97 
22 -0.415 -0.85 -0.751 -4.26 -0.672 -4.31 
24 -0.924 -1.89 -1.260 -7.14 -1.177 -7.55 

Table 6. SCHELLE data set. Regression estimates and model fitting statistics. 

LS LMS RLS 

No of children 27 27 20 
No of outliers I 7 (7) 

In PB; E(y lx1 = 3,x2 = 7) 4.997 4.500 5.198 
a 0.489 0.176 0.156 
R2 0.145 0.819 0.697 
p-value 0.152 0.00004 

intercept ([J0 ) 4.39 4.84 4.72 
standard error 2.19 0.83 
t-value 2.01 5.65 
p-value 0.056 0.00003 

etch depth ([J1) -0.528 -0.736 -0.606 
standard error 0.292 0.104 
t-value -1.81 -5.81 
p-value 0.082 0.00002 

age ([J2 ) 0.313 0.364 0.328 
standard error 0.276 0.105 
t-value 1.15 3.14 
p-value 0.263 0.0060 
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Transformations 

Sometimes in regression analysis it may be useful to transform the data. Transfor­
mations can be as simple as converting data from some unit such as centimeters 
to meters or, as in the previous section, converting years and months into a 
decimal system. These sorts of manipulations should have no effect on the data 
analysis. Other transformations exist which can result in a regression model pro­
ducing better fits or improved predictions. 

An infinite number of transformations exist, and the reader should refer to 
[33-35] for more information. Some common transformations involve taking the 
logarithm, power or square root of a variable(s). 

Because there are so many transformations available it is necessary for the 
analyst to determine which transformation would be appropriate. By examining 
scatterplots of the response vs the predictors, or of the residuals vs the regression 
variables, suitable transformations can be suggested. 

Besides improving fits and predictions, transformations can also be used to 
get the data variables to follow a certain distribution, since in some regression 
procedures it is assumed the data is sampled from a particular distribution. For 
example, should the data be required to follow a normal distribution, it could be 
worthwhile to perform a Box-Cox transformation [32]. 

Sometimes the type of transformation needed may not be obvious by simply 
viewing scatterplots. Large amounts of noise, for instance, can distract the naked 
eye from perceiving a suitable transformation. Should this be the case, smoothing 
techniques can prove to be a useful modeling method to apply. 

Since smoothing techniques are often incorporated in algorithms of non­
parametric models, a selection of smoothing techniques will be briefly mentioned 
in the next section. 

Smoothing Techniques 

Smoothers enhance visual aid by discovering trends in the data that may have 
gone undetected if the use of a smoother were not employed. Besides being 
a visual aid, smoothers also provide estimative information about the trend of one 
or more predictors. Smoothers are non-parametric since there is no assumption 
involving the form of the dependence of the response on its predictors. 

For notational purposes, only smoothing techniques involving one predictor 
will be desc~bed; the notation for multiple predictors is simply an extension of 
the univariate case. 

Smoothing Notation and Definitions 

Given one has a data set with n response measurements Yi. i = 1, ... , n and 
n predictor values Xj, i = 1, ... , n such that x1 < · · · < Xn, the scatterplot smoother 
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is defined as 
s = S(yix). (13) 

The functions has the same domain as x. The scatterplot smooth estimate of some 
value xo E {xJ, ... ,xn} is s(xo) which is calculated by evaluating the function 
S(yix) at xo. If xo is not an element of x1, ••• , Xn then some interpolation strategy 
is required. 

Bin Smoother 

The bin smoother groups the independent variable into disjoint clusters each hav­
ing the same number of elements. Usually about five groups are formed and the 
response in each region is averaged. The bin smoother has jump discontinuities 
at the cut points and is therefore not very smooth. 

A set of indices defining the cut points c 0, c1, •.• , cK is 

Provided 0 E Rk, 

Running Mean Smoother 

s(xo) = mean Yi . 
iERk 

The running mean is similar to the bin smoother in that the response variable 
is averaged. The main differ-ence between the two is that for the bin smoother 
an average is taken for every group, while with the running mean an average is 
taken for every measurement in x. 

A neighborhood { 17(x0 )} for each target value x0 , is specified by selecting 
a number of points on each side of x0 . For example a neighborhood of some 
point Xi could be 

IJ(Xi) = {i- 2,i- l,i,i + l,i + 2}. 

For each target value, average the response values whose corresponding predictor 
values lie in the neighborhood of the target. Formally, define the running mean 
smoother as 

s (xi)= mean Yi . 
jE~(Xj) 

The running mean is often referred to as the moving average. It is popular for 
equispaced time series data but tends to be too variable and can be very biased 
since the running mean smoother tends to flatten out trends near the endpoints. 

Running Line Smoother 

Instead of averaging in the neighborhood of some point x0 , the running line 
smoother performs a least-squares regression so that 

s(xo) =Po+ P1 Xo 
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where Po and p1 are least-squares coefficients calculated from the data points in 
the neighborhood of xo. 

Unlike the running mean smoother, the running line smoother captures the 
trend at the endpoints and therefore reduces the bias. Cleveland [36] proposed 
a locally weighted running line smoother which performs a weighted least-squares 
regression to calculate Po and P 1• 

Kernel Smoothers 

Kernel smoothers use a sequence of weights, Soj, to estimate each target value. 
Soj is the weight given to Yi in producing an estimate for x0 . An expression for 
these weights is given by Hastie and Tibshirani [13] as 

where a is a constant, appropriately chosen so the weights sum to unity, A is the 
bandwidth and d(·) is an even function that decreases with I · 1. The sequence 
of weights forms a weight function whose shape is called a kernel. An example 
of a kernel is the Gaussian density function. The weight sequence for a kernel 
decreases the further you move from the target value, i.e., for a point Xj that is 
a large distance from x0, Soj will be small. Computationally, s(xo) is calculated 
as 

"'n d (:D) . L..j=l A YJ 
s ( x0 ) = ------'....,.----'-.,--"'n d (:D) UJ=l A 

Kernel smoothers have a tendency to show biased behavior at the end points 
[13]. Incidentally, a smoother is said to be linear if it can be represented in the 
form s(xo) = ~j= 1 SojYi· 

Supersmoother 

The supersmoother is a very advanced running line smoother developed by 
Friedman [37]. The supersmoother uses a symmetric k-nearest neighborhood 
where k is estimated by a cross-validation routine (see Model Selection Criteria). 

For each Xi a linear least-squares fit is constructed as done for the running 
line smoother. This is done three times, producing three smooths s1(x), s2(x) and 
s3(x). For s 1., k = k1 = 0.5n; for s2, k = k2 = 0.2n; and for s3, k = k3 = 0.02n. 
A cross-validated residual for each point Xi is computed. Denote the cross­
validated residuals for Xi by r!i(xi),r2i(xi) and r3i(xi) where 

r-i(xi) = Yi - s-i(xi) 

and s-i is the smooth fitted when the point Xi has been removed. 
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Fig. 3. A supersmoother applied to the 
scatterplot of y vs x 

Next, take the absolute values for each of the elements in the cross-validated 
residual components, and smooth lr!il, lr2il and lr:Jil with k = k2. Here r = 
lr-il. This produces three local error estimates ~ 1 (xi), ~2(xi) and ~3(xi) for each 
Xi. Here, ~j(xi) = s(rj(xi)). 

An initial span "* for each Xi is chosen as the one that produces the minimum 
~1 (xi), ~2(xi) or ~3 (xi). For instance, if for the point xo, ~3(xo) was smaller than 
both ~ 1 (xo) and ~2(xo), the span of xo would be Kj = 0.02n. 

The spans "* are then smoothed against Xi which produces an estimated span 
R* for each Xi. The final smooth is constructed by interpolating between two 
of the three smooths SJ. s2 and s3. For example if K*(xo) E (KJ. K2) then the 
supersmooth s(xo) is an interpolation of s1 (xo) and s2 (xo). 

The supersmoother can be computed very quickly, hence the prefix super. 
Supersmoothers are also highly adaptable to changes in the curvature of the 
underlying function, more so than ordinary running lines and locally weighted 
smoothers. Figure 3 displays an example of data being smoothed using a super­
smoother. 

Splines 

Splines are non-parametric functions that can be used to explore the relationship 
between some response and its predictor( s ). Splines, and in particular piecewise 
polynomial splines, have many advantages compared to polynomial regression. 
A major attraction of splines is the local nature to their fit. This is achieved by 
fitting several piecewise polynomials to the data. The polynomials are separated 
by a set of breakpoints t1, . .. , tK commonly called knots. The polynomials are 
usually constrained to join smoothly at the knots. 

Several choices need to be made when dealing with splines. Such choices 
include: 

1. number and positioning of knots; 
2. type of basis functions; and 
3. degree of the spline function. 
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Fig. 4. A graph showing the di­
vision of the univariate scatterplot 
into two regions separated by a 
knot at t 

The MARS model (see section entitled The MARS Model) has an elaborate 
approach to choose the number of knots and their locations. The basis functions 
MARS employs are the truncated power functions: 

g~>(xlt) = +(x- t)l , 

g~>(xlt) = -(x- t)l . 

(14) 

(15) 

The power q is the degree of the spline which controls the amount of smoothness 
of the approximated function. For the MARS procedure q = 1. Generally for 
q = 1 the univariate spline basis functions do not have continuous derivatives, 
but Friedman [2] actually makes a modification to the basis functions so they 
can have continuous derivatives and still resemble q = 1 splines. 

The + sign on the right-hand side of the parenthesis in Eqs. (14) and (15) 
indicates the non-negative part. For example +(x- t )+ will be positive for x > t 
and similarly, -(x- t)+ will be positive for x < t. Thus, Eqs. (14) and (15) 
split a scatterplot into two regions by a knot located at t. Figure 4 demonstrates 
this subdivision. 

The PI model (see section entitled The PI Model) uses the cubic spline basis 
functions 1, x and (x - t )t to represent some response. In choosing the number 
of knots the reader is referred to that section. Breiman [ 15] explains how the 
position of the knots is chosen. 

Non-parametric Multiple Regression Models 

The ACE Model 

As mentioned in the section entitled Transformations, transformations can be very 
effective in enhancing model fitting and predicting performances. By examining 
scatterplots and residual plots, suitable transformations can be suggested. In many 
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instances however, such transformations are not so clear and this is where ACE 
can be very useful. The ACE algorithm proposed by Breiman and Friedman 
[4] essentially estimates optimal transformations for a set of predictors and 
a response. Sometimes these transformations can suggest a closed expression 
for a transformation such as the logarithm or square root. 

ACE can be used on both continuous and categorical data, and can be very 
useful when applied in conjunction with LS. Unfortunately, ACE can sometimes 
produce misleading results. This can occur if there are sharp changes in the trans­
formations [4]. 

The ACE model represents the transformed response O(y) as a sum of trans­
formed predictors g(x) 

m 

O(y) = L gi (xi) + e . (16) 
i=l 

The transformed functions O(y) and gt(Xt), ... ,gm(xm) are smooth functions that 
are not required to have any particular form [5]. The error component, e, is 
assumed to follow a normal distribution with mean zero and constant variance 
and, additionally, e is to be independent of Xt, ... ,Xm [6]. 

Defining e2 to be the fraction of unexplained variance obtained by regressing 
O(y) on gt(xt), ... ,gm(Xm), a data-driven expression for e2 is 

(17) 

For convenience, it is useful if the mean value of the response and predic­
tor variables is zero and, additionally, if the variance of the response equals 
one. The optimal transformations O*(y) and gj(xt), ... ,g;;;(xm) are determined by 
a procedure which minimizes e2 • This is equivalent to maximizing the correlation 
between O(y) and gt(Xt), ... ,gm(Xm)-

Initial guesses lm: 0 and gi are to be e<o> = y/11 y II and g<0> = 0. These 
guesses are continually updated (until e2 fails to decrease) by the expressions 

and 

gf+''(XJ) ~ s ( 8(y) - ~ uf''(x,) I x;) . (19) 

(The smoothing operator S is discussed in the section entitled Smoothing Tech­
niques.) 
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The following example provides an application of the ACE algorithm, which 
demonstrates ACE's ability to suggest possible transformations. 

Example 

An artificial data set 
2 

Yi = e<x; +e;) i = I, .. . , 200 (20) 

is constructed so that we have some idea about the form of the transformations. 
Here Xi and €i are drawn independently from the standard normal distribution 
N(O, I). 

Figure 5 displays the original data and the transformed data resulting from the 
ACE procedure. In the first frame it is clearly seen that the relationship between 
the original variables is by no means linear. The plot of g(x) vs x suggests the 
transformation g(x) = x2 and the plot of B(y) vs y suggests the transformation 
B(y) = ln(y). 

The bottom right comer of Fig. 5 indicates that the relationship between the 
transformed variables is somewhat more linear than the relationship between the 
original variables. 
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Fig. 5. Original data and transformations produced from the ACE algorithm 
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ACE and Ordinary Least-Squares 

ACE can provide assistance to the least-squares procedure in two ways. 

1. The transformations suggested by the ACE algorithm can be performed on the 
original variables. The transformed variables can then be used as the regression 
variables in LS. Sometimes ACE does not suggest a simple transformation to 
be made on a variable(s). Should this be the case, the ACE algorithm can 
force the appropriate transformations to be linear, and the original variables 
can form part of the LS model. 

2. The ACE procedure can be used to assess the choice of a least-squares model. 
It is hoped, for a suitable least-squares model, the ACE transformations will 
be linear. 

The PI Model 

The PI model proposed by Breiman [10] approximates the response y by a sum 
of products: 

Y = IT+ · · · + IT +e · (21) 

Each TI consists of a product of univariate functions of the predictor variables, 
m 

IT = IT c/Jj,(X,) . (22) 
j 1'=1 

The univariate functions cP are cubic spline basis functions (see section entitled 
Smoothing Techniques) having the representation 

(23) 

The subscript j ranging from 1 to J is a product label, indicating the product 
to which each univariate function belongs. The subscript t is simply a variable 
label. The subscript k ranging from 1 to K indicates the number of knots in each 
univariate function cjJ. 

The PI model assumes the underlying function is smooth and the error compo­
nent has a zero mean. The PI model can produce superior results when modeling 
data consisting of a few terms involving high order interactions [10]. It is also 
claimed by Breiman [10] that the PI model is more than capable of performing 
well in situations when the ratio of the standard deviation of the function to the 
standard deviation of the noise is quite low. 

The development of the model consists of two main algorithms. The first can 
be called a forward algorithm and the second a backward algorithm. During the 
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forward algorithm the number of products J, and the number of basis elements 
(K +2) are determined. From this model the backward algorithm begins to remove 
basis elements that do not contribute to the fit, irrespective of what product they 
belong to. 

In the PI model, Breiman [I 0] uses a score involving the residual sum of 
squares to determine the number of products and knots in the fit. The score 
is called a generalized cross-validation estimate of the prediction error (PEgcv ). 
A lower PEgcv score is preferred to a higher PEgcv score (see section entitled 
Model Selection Criteria). 

Initially, the forward algorithm fixes the number of knots (K) in each of the 
products and attempts to fit one product, two products, three products and so 
on. If the PEgcv score for three products were greater than the PEgcv score for 
two products, then, for that particular K, two products would be used in the fit. 
Generalizing the problem for K fixed, if PEgcv(J) 5 PEgcv(J + 1 ), J products 
would be used in modeling the dependent variable. For the optimal number of 
products J* with K fixed denote the generalized cross validation estimate of the 
prediction error as PEgcv(K,J*). 

In applying the algorithm, initially no knots are used in the fit, so each <P is 
linear. Then in each <P the forward search uses two knots up to the maximum 
number of knots (specified by the user). This means that during the forward 
algorithm the minimum number of knots in each factor <P is two. A sequence of 
PEgcv scores PEgcv(2,J*), ... ,PEgcv(K,J*) is formed. Let PEgcv(k*) denote the 
minimum of these scores. 

The backward algorithm then begins operating on the model that produced 
PEgcv(k* ). Basis elements causing a minor increase in the residual sum of squares 
are gradually removed from the model. This will cause a decrease in degrees of 
freedom in the model. Again, a sequence of PEgcv scores are formed. 

The final model is not necessarily the model with the smallest PEgcv score as 
seen in the application of the OZONE data (see section entitled PI Model, under 
Applications). The reasoning for this is explained by Breiman [10]. 

Let us now present an example, which illustrates the ability the PI algorithm 
possesses, to reproduce an original function from a noisy function. 

Example 

Simulated data will be used to compare an underlying function with the func­
tion produced by the PI model. The simulated data consists of two independent 
variables which were sampled from the uniform distribution U(0,4n:). Noise was 
drawn from the normal distribution N(O, 10) and added to the function, 

Yi = Xj) cos (Xi2) + €j i = 1, ... ,200. (24) 

The upper frames in Fig. 6 shows plots of the response vs the predictor 
variables. It is clear that the relationship between the predictors and the response 
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F"tg. 6. The upper frame shows scatterplots of the response y vs x, and x2. The lower frames display 
a surface plot of the original model (no noise) and the model produced by the PI algorithm (with 
noise) .. There is only one minor difference between the two surface plots - the foreground in the 
middle section of the PI plot is slightly lifted 

contains an extreme level of noise. The lower frames display the surface of the 
original function x1 cos(x2) in the absence of noise and the surface plot produced 
by the PI model. Despite the addition of noise, the plot produced by the PI model 
is nearly identical to the original function. 

The MARS Model 

As in the case of the PI algorithm, the MARS algorithm developed by Friedman 
{2] consists of a forward and backward algorithm. The forward algorithm develops 
the full model and the backward algorithm removes terms that do not contribute 



Robust and Non-parametric Methods 187 

significantly to the model. The MARS model is very similar to the PI model but 
the algorithms differ mainly in their forward searches. One could perhaps say 
that the forward algorithm for MARS is slightly more elaborate than that of the 
PI model. 

The forward algorithm builds the MARS model by gradually incorporating 
subregions of the predictor variables that contribute to the fit. To explain the idea 
of subregions in context to the MARS algorithm consider the development of a 
MARS model, in representing some response y, by two independent variables­
x and w. The MARS algorithm will initially incorporate one of the predictors 
into the model. The algorithm will try entering both x and w into the MARS 
model. The predictor variable that minimizes a score, called the lack-of-fit (/of) 
criterion (see Model Selection Criteria), will enter the modeL As each term is 
being entered into the model all the data points in that term will be tested as 
possible knot locations. At this stage there can only be one knot in each variable. 
The knot position is also chosen by the lack-of-fit criterion. 

Let us say the /of score is minimized when w enters the model with a knot 
placed at t1• An estimate of the response is now expressed as a sum of two 
domains of w: 

(25) 

The algorithm now has the choice of entering x into the model (either additively 
or interactively) or adding another knot to w in which case one of the existing 
regions of w would be split. If the next greatest contribution is achieved when x 
enters the model additively, with a knot placed at t2, the estimate of the response 
becomes 

.Y =Po+ P1[+(w- tJ)+] + P2[-(w- tJ)+] 

+ P3[+(x- tz)+] + P4[-(x- tz)+]. (26) 

The algorithm can now test for further splitting of the specified regions in Eq. 
(26) by adding another knot to either x or w or search for interactions. If the 
region defined by [ +( w - t1 )+] is found to interact with x, the estimate of the 
response becomes 

Y =Po+ P1 [ +(w- tJ)+] + P2[ -(w- t1 )+] 

+ P3[+(x- tz)+] + P4[-(x- t2)+] 

+ P5[+(w- tJ)+] [+(x- tz)+] + P6[+(w- t1)+] [-(x- tz)+J. 

In summary, when updating the MARS model, the algorithm has the choice of 
the following. 

1. Introducing a new variable to the model. 
2. Splitting an existing region by placing an additional knot in a variable already 

present in the model. 
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3. Introducing an interaction term in the model. (This can only be done if one 
of the interaction terms has previously been defined.) 

The operator has the option of specifying the level of interaction (mi) that may 
occur in the model. If mi = I the MARS model would be additive, if mi = 2 
the maximum level of interaction would be of first order and so on. 

Once the forward model has been established, elements such as [ +(x - t2 )+] 
may be deleted by the backward algorithm. The elements that cause the smallest 
increase in the /of score or degrade the fit the least are subject to deletion. 

Formally, the MARS model used to estimate a response y from m independent 
variables XJ, ... ,Xm is written, 

where 

and 

p 

Y = L Pp.Bp(x~, ... ,Xm) 
p=O 

kp 

Bp(XJ, ... ,Xm) =II e(xv(k,p) I tkp) 
k=l 

(27) 

(28) 

(29) 

The subscript p in Eq. (27) is an index ranging from I to P (the number of 
regions in the model). The Bp are called multivariate spline basis functions which 
contain products of univariate spline basis functions, with a predictor Xv(k,p) and 
associated knot tkp· The functions used as a basis for the univariate splines are 
the truncated power functions (see Splines). The symbol kp specifies the number 
of products in each Bp, while the subscript v(k, p) simply labels the predictors 
in the k-th univariate spline basis function of the p-th multivariate spline basis 
function. 

Another way of expressing the multivariate spline basis function in Eq. (28) 
could be, 

(30) 

where r E [l,p- 1]. The variable Xv cannot appear in the selected B,. 
A simpler representation of the MARS model exists called the ANOVA 

decomposition. This model groups the terms having the same level of inter­
action. As Friedman [2] explains, the first sum in the ANOV A decomposition 
(Eq. (31)) contains the functions gi(Xi) that consist purely of additive terms, i.e., 
the terms which are not involved in interactions. The second sum contains the 
functions 9ij(Xi, Xj) involving first order interactions. The third summation con­
tains the functions 9ijk{Xi, Xj, Xk) that consist of second order interactions and so 
on. Thus, 

.Y =Po+ L 9i(Xi) + L 9ij(Xi. Xj) + L 9ijk{Xi,Xj,xk) + · · · (31) 
kp=l kp=2 kp=3 

The following example provides an application of MARS. 
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Example 

The MARS algorithm was applied to a simulated data set consisting of three 
independent variables, x1, x2 and x3, each drawn from the uniform distribution 
U(O, 10). Residuals were drawn from the standard normal distribution N(O, 1) 
and were added to the model, 

Yi = -2(Xil - 5)2 + 2Xi2Xi3 + €j i = 1, ... ' 100. (32) 

For illustrative purposes the data in this example were not standardized, but 
for stability purposes it is good practice to standardize the data before running 
MARS [2]. 

The model MARS constructed to represent the response consisted of linear 
terms in x1 and first order interactions between x2 and x 3. The ANOV A decom­
position for this example can be written 
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Fig. 7. Scatterplots of the simulated data (above) and the ANOVA functions (below) produced by 
MARS 
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In addition to scatterplots of the original response vs the predictors, Fig. 7 
also displays the ANOV A functions of Eq. (33 ). The lower left frame is simply 
the additive contribution of g1 (x1) and the lower right frame is a perspective 
mesh plot of the bivariate function g23 (x2 , x3 ). The surface plot represents the 
joint contribution of x2 and x3 to a smooth of y on the variables Xt. x2 and x3• 

The symbol '0' designates on the axes smaller values of the variables. From this 
plot y is seen to be monotonically increasing for increasing x2 and x3. 

Model Selection Criteria 

In the previous examples, each of the non-parametric models was applied to sim­
ulated data. Whilst noise was added to the data, the original function was known. 
This knowledge allows one to assess subjectively how well the regression pro­
cedure modeled the data. When the underlying function is unknown, the quality 
of the model must be measured using some other criteria. Some of these criteria 
only measure how well the model fits the data, while other criteria can measure 
the accuracy of a model to predict future observations. 

Model Fitting Criteria 

The residual sum of squares (RSS) and the multiple coefficient of determination 
(R2 ) both measure how well the model fits the data. Here 

n 

RSS = L(Yi - .YY (34) 
i=l 

where y is the estimated response. The coefficient of determination is defined as 

R2 = 1 - Lr=' (Yi = ~)~ . (35) 
Li=t (y, y) 

R2 is the squared correlation between y and y. The symbol y is the mean average 
of the response values. R2 E [0, 1]. An R2 value equal to 1 indicates a perfect 
fit of the estimated function and the data, while an R2 value close to 0 indicates 
a poor fit. It is important to note that a high R2 value could simply be a reflection 
of overfitting, since unnecessary terms incorporated into a model capture a larger 
portion of the error component. 

The coefficient of determination, R2, can also be determined in a robust way 
when dealing with robust regression. For LMS (Rousseeuw and Leroy [26]) it is 
defined as follows (in the case of regression with a constant term): 

R2 = 1 _(median lid) 2 
• ( 36) 

mad (yi) 
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The abbreviation "mad" stands for median absolute deviation, 

(37) 

Whilst the RSS and R2 measure the quality of fit, they cannot be used to 
compare fits produced by different models of differing degrees of freedom. Other 
criteria exist which can be used to compare how well models of different degrees 
of freedom fit the data. Such measures include the mean square error (MSE), 
adjusted R2 (R~j), Akaike's information criterion (A/C) and Mallow's Cp. 

Model Predicting Criteria 

The cross-validating ( CV) score provides a measure that reflects how well a 
model can predict. In determining the CV score for assessing the quality of future 
predictions of some function ](x) used to model a response y, the observations 
are randomly divided into V distinct groups (usually of the same size) G,, ... , G v. 
The number of groups will vary depending on the number of observational units 
in the data set and the accuracy the data analyst desires. One approach is to 
have ten groups with each group containing 1 0% of the data. Each group is then 
removed from the data set one at a time and the model ](x) is constructed in 
the absence of a particular group. Denote the model constructed in absence of 
the v-th group as f-v (x ). The observations in the group removed from the data 

set are then predicted using j -v (x ). The predicted values are compared to the 
observed values and a measure of the squared difference is taken. Once each of 
the groups has been removed, V models will have been created and n squared 
differences will have been measured. The CV score as displayed in Eq. (38) is 
simply the average of all the squared distances. This equation has been taken 
from Breiman [15]; 

v 
CV = ! L L (Yi- j-v(Xi)i . 

n 
v=l (xi,Yi)EGv 

(38) 

This kind of cross-validation is usually referred to as V -fold cross-validation. If 
the number of groups equals the number of observations then this form of cross­
validation is called the leave-out-one method. Frank [18] converts the CV score 
to a cross-validated R2 score (R~v ). 

Cross-validating is very time consuming. This has led to the introduction 
of generalized cross-validating methods which are computationally quicker to 
calculate. Generalized cross-validation (GCV) scores provide only an estimate of 
the prediction error. 

A general form of the GCV estimate is 

GCV =! ( RSS )
2 

(39) 
n 1-NP/n 
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where NP is the number of parameters that need to be estimated. Equation (39) 
is of the same form that Friedman [2] used to estimate a lack-of-fit score for the 
MARS model (see The MARS Model). 

Breiman [10] removes the 1/n in Eq. (39) to produce what he calls the gen­
eralized cross-validation estimate of the prediction error (see The PI Model), 

( RSS ) 2 

GCV= 1-NP/n . (40) 

Applications 

The regression models discussed so far will be applied to two data sets. Firstly, 
the WATER QUALITY data set will be used, followed by the OZONE data set. 
Both data sets have been standardized. 

WATER QUALITY Data 

The WATER QUALITY data [38] is a chemical data set consisting of 76 ob­
servational units. There are five independent variables- sal, din, tip, chi, ss and 
one response-pha. The variables are abbreviated to represent salinity, dissolved 
inorganic nitrogen, total inorganic phosphorus, chlorophyll, suspended solids and 
phytoplankton, respectively. Samples were taken from eight reefs located off 
the east coast of Australia. Figure 8 is a matrix plot showing the relationships 
between each combination of variables belonging to the WATER QUALITY 
data. Some plots between the variables reflect some degree of linearity. For in­
stance, some linearity is evident between pha and ss, pha and chi, and chi and ss. 
Grouping of the data can be seen in plots involving tip, especially between tip 
and din. 

ACE Model 

The ACE model was applied to the WATER QUALITY data and gave the fol­
lowing equation: 

()(pha) = g(sal) + g(din) + g(tip) + g(chl) + g(ss). (41) 

Each of the transformations () ( ·) and g ( ·) is simply a transformation of the orig­
inal variable. So, like the original variables, the transformed variables contain 
n = 76 data points. Figure 9 shows plots of the transformed variables vs the 
original variables. The transformations of sal and din seem peculiar since they 
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Fig. 8. WATER QUALITY data set. A matrix of scatterplots showing the relationship between each 
pair of variables 
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Fig. 9. WATER QUALITY data set. 
Optimal transformations produced by ,.,.. ACE 

ss ph a 

possess sharp changes in direction. This could possibly be attributed to the orig­
. inal data being clustered. When the transformations have a strange appearance it 
could be worthwhile to force these transformations to be linear, or alternatively 
remove them from the ACE analysis. 

The transformation of tip possesses more structure than the transformations 
of sal and din. While some roughness is present in the beginning stages of the 
transformation, it does seem to possess a quadratic trend. The transformation of 
chi could be seen to have a very slight curvature. The transformation of ss in­
creases linearly for larger values of ss; for smaller values of ss the transformation 
possesses hints of curvature. From an overall perspective the transformation could 
reflect a cubic. The transformation of the response is mostly linear. 

The ACE procedure was re-run forcing the transformations of sal and din to 
be linear. This increased the R2 score from 0.947 to 0.952. Figure 10 shows the 
transformations produced from the second ACE procedure. With the restriction 
being placed on sal and din , the transformations of tip and ss have changed 
slightly. If the two points in the upper left comer of the transformation of tip 
are ignored, the plot again seems to possess some quadratic nature; alternatively 
this could be represented by two piecewise linear functions. The transformation 
of ss now tends to have a quadratic appearance. The transformations of chi and 
the response pha remain virtually unchanged from that in Fig. 9. 
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Fig. 10. WATER QUALITY data set. 
Optimal transformations produced by 
ACE with sal and din forced to be 
linear 

LS was performed taking into consideration the transformations suggested by 
ACE. The LS model, 

pha =- 0.0272 + (0.229) sal- (0.112) din- (0.141) tip2 

+ (0.551) chi+ (0.169)ss2 , ( 42) 

produced an R2 score of 0.848. When each of the predictors appear linearly in 
the LS model, the coefficient of determination is 0.792, approximately 5% lower 
than the R2 produced with the aid of the ACE transformations. 

PI Model 

Two tables summarize the development of the PI model. Table 7 shows results of 
the forward stepwise strategy. This table consists of three columns indicating the 
optimal number of products J*, for a fixed number of knots K. The final column 
shows the associated estimate of the generalized cross-validation estimate of the 
prediction error PEgcv(K,J* ). Table 8 shows results of the backward elimination 
process. The two columns shown in this table identifies the degrees of freedom 
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Table 7. WATER QUALITY data set. Results of the forward 
stepwise procedure of the PI model. 

No. Knots K No. Prods. J* 

2 2 
3 2 
4 2 
5 2 

Table 8. WATER QUALITY data set. Re­
sults of the backward stepwise procedure of 
the PI model. 
No. of initial knots = 3; No. of products = 
2; Final Df = 29 

Df PEgcv 

32 7.36 
30 6.51 
29 6.26 
28 6.24 
27 6.28 

PEgcv(K,J*) 

9.58 
7.36 
8.30 

14.49 

Yvette L. Mallet et al. 

and the PEgcv score of the corresponding model. The decrease in degrees of 
freedom reflects the deletion of basis elements from the regression model. 

By examining Table 7, it is seen that when there are two, three, four and five 
knots in each factor, the optimal number of products is two. Upon completion 
of the forward algorithm a model consisting of three knots in each of the five 
( = number of predictors) factors, for both products, gave the minimum gener­
alized estimate of the prediction error PEgcv(k*) = 7.36. It is this model that 
undergoes backward deletion of the basis elements. 

Table 8 displays the results of sequential deletion of basis elements, which in 
turn reduces the degrees of freedom in the model. The PI model with 29 degrees 
of freedom, 

pha =cP!sa!(sal) cP!din(din) cP!tip(tip) cP!ch!(chl) cP!ss(ss) 

+ cP2sal(sa/) cP2din(din) cP2tip(tip) cP2ch!(ch/) cP2ss(ss), (43) 

was produced to represent pha. The R2 value for this model is 0.968. Each factor 
in each of the products need not have the same amount of knots, since a different 
number of basis elements have been deleted from different factors. 

Plots of the functions representing each of the factors for the two products are 
displayed in Fig. 11. The first column of graphs are the functions belonging to 
the first product, while the second column of graphs are the functions belonging 
to the second product. 
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~/ \ I ~ \ I 
sal sal 

~-!_ " I ~ / I 
din din 

~/ ,_/I ( L l 
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~/ I ~A ~I 
chi chi 

ss ss 

Fig. 11. WATER QUALITY data set. Graphical presentation of the univariate functions in the first 
(left) and second (right) products of the PI model 

MARS Model 

Two tables summarize the development of the MARS model. Table 9 consists of 
four columns and shows the forward development of the MARS model. The first 
column simply shows the iteration level of the MARS algorithm. The second 
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Table 9. WATER QUALITY data set. Results of the forward 
stepwise procedure of the MARS model. 

Iteration Basis Function Variable Parent 

0 0 
I I 2 ss 0 
2 3 4 chi 0 
3 5 6 sal 0 
4 7 8 din 6 
5 9 10 tip 5 
6 11 12 din 6 
7 13 14 tip 0 
8 15 chi 14 
9 16 17 ss 5 

10 18 19 sal 14 
11 20 din 2 

Table 10. WATER .3fALITY data set. Results of the backward stepwise 
procedure of the M S model. 

Basis Fn. 0 1 2 3 4 5 6 7 8 9 10 
..; ..; X X ..; X X ..; X ..; ..; 

Basis Fn. 11 12 13 14 15 16 17 18 19 20 
X X X X ..; X X X X X 

column shows which basis functions have entered the model. The third column 
identifies the variable that belongs to its corresponding basis function(s). The 
final column shows the parent basis function. This is the basis function which 
the latest basis functions at the current iteration are multiplied with. For example 
during the fourth iteration basis functions B1 and Bs are multiplied with basis 
function B6, producing an interaction term between sal and din. The zeroth basis 
function is unity. 

Table 10 identifies which basis elements have been deleted during the back­
ward stepwise deletion process. If the basis function has been deleted from the 
model a cross appears while a tick appears if the basis function remains. From 
Table 10 the second and third basis elements have been deleted, along with the 
fifth, sixth and eighth, eleventh to fourteenth and all the basis elements after and 
including the sixteenth. 

The MARS model for the WATER QUALITY data had the following 
ANOV A decomposition: 

pha = g(ss) + g(chl) + g(din,sal) + g(sa/,tip) + g(tip,ch/). (44) 

This model with an R2 = 0.968 consists of one univariate function and three 
bivariate functions. Figure 12 displays plots of these ANOVA functions. The 
dependence of pha on ss is mostly linear, while the joint dependence of pha 
on sal and din is quite strong. The dependence of pha on sal and tip increases 
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Fig. 12. WATER QUALITY data set. Graphical presentation of the AN OVA functions of the MARS 
model 

sharply for increasing values of sal and decreasing values of tip. In the final 
frame, pha monotonically increases as chi and tip become larger. 

OZONE Data 

The OZONE data [ 6] is an environmental data set cons1stmg of Ill observa­
tional units and four variables. Data was sampled from New York City between 
May 1 and September 30, 1973. The independent variables are rad, temp and 
wind each abbreviated to represent radiation, temperature and wind speeds. The 
dependent variable is oz which represents ozone levels. Figure 13 shows a matrix 
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Fig. 13. OZONE data set. A matrix of scatterplots showing the relationship between each pair of 
variables 
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plot for the OZONE data. Negative correlations are seen to exist between temp 
and wind, and also between wind and oz. A strong positive correlation is evident 
between the variables temp and oz. Less structure appears in the remaining plots. 

ACE Model 

ACE was applied to the OZONE data, producing the regression model 

O(oz) = g(rad) + g(temp) + g(wind). (45) 

Equation 45 has an R2 score equal to 0.890. The transformations in Eq. 45 can 
be seen in Fig. 14. The transformation of rad looks to consists of two piecewise 
linear fits. The plot of g(temp) against temp has an overall increasing trend, with 
high temperatures corresponding to increased ozone levels. This transformation is 
not very smooth so it may be worthwhile to force this transformation to be linear. 
The transformation of wind is not completely smooth either with some roughriess 
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0 0 0 Fig. 14. OZONE data set. Optimal 
0 Q9 0 transformations produced by ACE 

wind oz 
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occurring for the mid-ranged values of wind speed. Generally, however, this 
transformation has mostly a negative trend. The transformation of the response 
is initially increasing but then reaches a plateau for larger ozone levels. 

PI Model 

Tables 11 and 12 summarize the development of the PI model for the OZONE 
data. As seen in Table 11, upon completion of the forward PI algorithm the 
model chosen to undergo backward stepwise deletion consisted of two products 
with each factor in the products containing four knots. This model is expressed 
as follows: 

oz =c/>Jrad(rad)cf>Itemp(temp)cf>Jwind(wind) 

+ cf>zrad(rad)cf>ztemp(temp)cf>zwind(wind). 

Initially the PEgcv score for this model was 27.77, but was lowered to 22.62 after 
some knots were removed during the backward stepwise deletion strategy. These 
results can be seen in Table 12. The final model has R2 = 0.850. 

Figure 15 displays the univariate functions in the first and second products. 
In the third frame of the first column the function involving wind is constant 
giving the resulting PI model the following representation: 

oz = cPJrad(rad)cf>Jtemp(temp) + cf>zrad(rad)cf>ztemp(temp)cf>zwind(wind). (46) 

Table 11. OZONE data set. Results of the forward stepwise 
procedure of the PI model. 

No. Knots K 

2 
3 
4 
5 
6 

No. Prods. J* 

2 
2 
2 
2 
2 

Table 12. OZONE data set. Results of the 
backward stepwise procedure of the PI 
model. 
No. of initial knots = 4; No. of products = 
2; Final Df = 16 

Df PEgcv 

26 27.77 
22 24.68 
21 24.34 
19 23.80 
16 22.62 
14 23.46 

PEgcv(K,J*) 

35.69 
33.37 
27.77 
30.09 
30.84 
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=g 
-~--------& 

wind 

Fig. 15. OZONE data set. Graphical presentation of the univariate function in the first (left) and 
second (right) products of the PI model 

MARS Model 

Tables 13 and 14 show the forward and backward development of the MARS 
model for the OZONE data. The model chosen to represent oz is written 

oz = g(temp) + g(wind) + g(rad, temp)+ g(temp, wind). (47) 

This model consists of two bivariate functions and has R2 = 0.954. 
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Table 13. OZONE data set. Results of the forward stepwise procedure 
of the MARS model. 

Iteration Basis Function Variable Parent 

0 0 
I I 2 temp 0 
2 3 4 wind 0 
3 5 6 rad 0 
4 7 8 wind I 
5 9 10 temp 6 

Table 14. OZONE data set. Results of the backward stepwise procedure of 
the MARS model. 

Basis Fn. 0 I 2 
V V X 

3 4 5 
X ,j X 

6 
X 

7 8 9 
X V V 

10 
,; 

Yvette L. Mallet et al. 

Table 13 shows the first variable to enter the model was temp followed by 
wind and rad. During the fourth iteration an interaction term involving wind 
and temp entered the MARS model followed by another interaction between 
the variables temp and rad during the fifth iteration. Upon completion of the 
backward stepwise procedure the basis functions to remain in the model were 
Bo, 81, 84, Bs, 89 and Bw, as displayed in Table 14. 

0 wind 

0 temp 

Fig. 16. OZONE data set. Graphical presentation of the ANOV A functions of the MARS model 
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Perspective plots in Fig. 16 display the joint bivariate contributions of rad 
and temp and of temp and wind. The perspective plot involving temp and wind 
is almost symmetrical. It seems that higher values of temp and lower values of 
wind have a monotonically increasing effect on ozone levels. The joint depen­
dence of oz on rad and temp is reasonable with larger values of each variable 
corresponding to a rise in ozone levels. 

Concluding Remarks on Non-parametric Regression Models 

Equations ( 41 )-( 44) display the models resulting for each non-parametric ap­
plication on the WATER QUALITY data. The equations produced to model the 
OZONE data are seen in Eqs. ( 45 )-( 4 7 ). Each of the models are seen to be quite 
different from each other. 

It is important to remember there is no justification for comparing these 
models based on the R2 value since each of the models has been constructed 
using a different number of degrees of freedom. Additionally, each of the models 
presented so far are not necessarily the best to represent each set of data, since 
each model was proposed purely to help gain a better understanding in the 
selected non-parametric methods. 

In conclusion there is no non-parametric regression model which is preferable 
across all situations, since each of the methods have special characteristics that 
enhance performance given suitable circumstances. As a final word of caution, 
each of the methods have evolved fairly recently especially when compared to 
LS, so all results should be interpreted with care. 

Software 

The program PROGRESS [26) was used to present applications of robust regres­
sion methods on the ARDENNES and SCHELLE data sets. The 3D scatterplots of 
the ARDENNES and SCHELLE data were produced using the statistical program 
SPSS forMS-Windows, release 6.00 [39]. ACE was applied using the statistical 
packageS-plus forMS-Windows version 3.1 [6]. The plots presented in the ACE 
examples were also produced using the same package. The applications of the 
PI model were accomplished using the FORTRAN code developed by Breiman 
[10]. The surface plots seen in the PI examples were produced using MATLAB 
version 4.1. A FORTRAN code developed by Friedman [2] was implemented to 
present the MARS model. The illustrations presented in the MARS applications 
were produced using MA TLAB. All remaining plots were created in S-plus. 
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Summary 

Univariate "figures of merit" (i.e. sensitivity, selectivity, limit of detection, etc.) are common bench­
marks employed in univariate calibration and instrument comparison. It is shown that the univariate 
figures of merit are easily transferable to multivariate calibration. Like their univariate brethren, the 
multivariate figures of merit and useful not only to compare and contrast calibration and instrumental 
performance, but to better understand and optimize multivariate calibration. 
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210 

List of Symbols and Abbreviations 

llll2 Euclidean norm 
IIIIF Frobenius norm 
ALS alternating least squares 
AT transpose of A 
A+ generalized inverse of A 
a* part of a that is unique to the analyte 
ti mean of a 
b regression vector 
c analyte concentration in one sample 
c vector of analyte concentrations 
C matrix of component concentrations 
CI confidence interval 
CLS classical least squares 
EBP eigenvalue based problem 
er univariate random instrumental errors 
er vector of random instrumental errors 
E matrix of random instrumental errors 
h leverage of sample 
I identity matrix 
I number of rows in a tensor (e.g. number of samples with 

first order data) 
row index 

ILS inverse least squares 
J number of columns in a tensor (e.g. number of digitized 

wavelengths) 
j column index 
K number of slices in a tensor (e.g. number of samples with second 

order data) 
k slice index or arbitrary number of standard deviations 
LOD limit of determination 
M number of replicate unknown samples 
m univariate regression vector (slope) 
N number of calibration samples 
N second order instrument response of a pure analyte 
NAR net analyte rank 
NAS net analyte signal 
r a first order tensor (a 1 x I column vector) 
R a second order tensor (a I x J matrix) 
IR a third order tensor (a I x J x K cube) 
ri the i-th row (sample) of R 
Rk the slice (sample) of IR 
CTc estimated prediction error 
CTr estimated error about the regression line 
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S matrix of component sensitivities 
SEL selectivity 
SEN sensitivity 
SIN signal to noise ratio 
var variance 
X estimated intrinsic profiles from the first instrument of the 

hyphenated pair 

2ll 

Xa estimated intrinsic profile of the analyte from the first instrument of 
the hyphenated pair 

Y estimated intrinsic profiles from the second instrument of the 
hyphenated pair 

Ya estimated intrinsic profile of the analyte from the second instrument 
of the hyphenated pair 

Z estimated relative concentrations of all components from second order 
analysis 

Za estimated relative concentrations of the analyte from second order 
analysis 
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Introduction 

In the broad field of multivariate calibration there are many vital and interesting 
subjects. An experienced practitioner of multivariate methods must be well versed 
in the areas on experimental design [1, 2], data pretreatment [3], sample and 
variable selection [4, 5], model selection and validation [6--8], outlier detection 
[9], and statistical interpretation and validation of the results [10]. These topics 
are covered in many chemometric textbooks [3, 1 0-12] and tutorials [ 13-17] and 
are used successfully by most application oriented analysts. 

The above topics provide an excellent framework for creating and assessing 
multivariate calibration models and comparing the applicability of two or more 
different models to a particular calibration problem. However, this framework is 
not well suited for facilitating a comparison of different multivariate instrumental 
techniques. For univariate data, "figures of merit" such as the "limit of deter­
mination", "sensitivity", and "signal to noise ratio" are almost universally used 
to compare and contrast rapidly the applicability of two or more instrumental 
techniques to a particular problem. Univariate analytic methods are further char­
acterized by the explicit propagation of instrumental errors through calibration 
and into the predicted analyte concentration. The figures of merit and error prop­
agation also serve as a concise set of guiding principals to aid the analyst in the 
optimal implementation of the univariate analytical methods 

Although the notions of figures of merit and calculation of prediction errors 
exist for multivariate analytic methods, these ideas have not been embraced by 
practicing analysts to the same degree as their univariate brethren have been 
embraced. Like the univariate figures of merit and error propagation equations 
these notions, when derived for multivariate data, serve to compare multivariate 
analytic methods and act as a guide for optimal implementation of multivariate 
methods. 

Nomenclature 

In this discussion the nomenclature of Sanchez and Kowalski will be used [18]. 
Instrumentation that produces a zero order tensor, a scalar, per sample is dubbed 
a "zero order instrument." The associated algorithms to calibrate this type of 
instrument are "zero order calibration" methods. Equivalently, "first order instru­
ments" and "second order instruments" produce first order tensors, vectors, and 
second order tensors, matrices, per sample, respectively. 

Zero order instrumentation, e.g. an electrode, generates a single datum, e.g. 
one voltage, for each sample analyzed. In mathematical tensor notation a single 
datum is a zero order tensor, a scalar, and represented by an italic, lower case 
letter, r. Analysis of multiple samples produces one scalar per sample. These 
measurements are distinguished by including a subscript, e.g. ri is the measured 
voltage of the i-th sample. These I measurements can be collected into a I 
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dimensional column vector, r, where the i-th entry is the signal associated with 
the i-th sample. 

First order instrumentation collects multiple measurements per sample. These 
measurements can be highly correlated, e.g. digitized wavelengths on a multichan­
nel spectrometer, or largely independent, e.g. an array of ion selective electrodes. 
The instrument response for each sample is dimensioned one sample by J vari­
ables, rT. A collection of I samples forms the I xJ matrix, R, where ri represents 
the i-th row of R and Rij is the signal of at the j-th sensors for the i-th sample. 

Second order instrumentation produces a second order tensor, a matrix, of 
data per sample, for example, GC-MS in combination, are becoming increasingly 
common. The response from these hyphenated instruments is an I x J matrix, R, 
where I is the number of discrete measurements taken at J variables. A collection 
of K samples forms the I x J x K third order tensor, IR, where Rk represents 
the instrument response from the k-th sample and Rijk is the signal at the i-th 
measurement, j-th variable for the k-th sample. 

First Order Calibration 

First order, multivariate calibration has four major advantages over zero order, 
univariate calibration. With first order data, analysis can be accurately performed 
in the presence of spectral interferents [18, 19]. Multiple analytes can be quan­
titated simultaneously. Signal averaging with multiple highly correlated channels 
significantly reduces prediction errors in many applications. And more sophisti­
cated outlier detection is possible [20]. 

First Order Calibration Models 

First order calibration is encountered in two separate forms. In classical least 
squares ( CLS) the instrument response is considered to be a function of the 
concentrations of the compounds in the sample [21-23]. Hence, the CLS model 
is 

R=CST (1) 

where the I rows of R are the instrument responses of the I samples, the I 
rows of C are the concentrations of each of the K compound present in the I 
samples, and the K columns of S are the sensitivities of the J sensors to the K 
compounds. The matrix of sensitivities is found by least squares regression of C 
on R by calculating the generalized inverse of C, C( cT C)- 1 

(2) 
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and the concentrations of all K compounds in the unknown sample is also esti­
mated by least squares 

• T""T"-1 
Cun = run S(S S) (3) 

where the superscripc 1 is the inverse of the matrix. As can be inferred from the 
model, the concentration of all compounds is required for regression and analysis. 

The disadvantage of requiring that the concentration of every compound in 
each calibration sample be known is circumvented by employing the inverse least 
squares (ILS) model [24]. The ILS model assumes the concentration is a function 
of the instrument response, 

c=Rb (4) 

where c is the column of C from Eq. ( 1) that corresponds to the analyte of 
interest, and b is the regression vector for the analyte of interest. The regression 
vector, b, is found by least squares regression of R against c, 

(5) 

and the analyte concentration in an unknown sample is directly estimated as 

(6) 

Inversion of the matrix RT R is required to estimate the ILS regression vector, b. 
For a matrix to be invertable it must be square and full rank. This, however, is 
usually not the case in chemical applications. Here, RT R is often a nearly singular 
matrix dimensioned 1024 digitized channels by 1 024 digitized channels. Problems 
associated with the inversion of a singular nonsquare matrix can be avoided 
by calculating the pseudo inverse, of R (designated R+) instead the generalized 
inverse of R. Here, 

(7) 

provides a least squares solution for b in Eq. ( 4 ). 
Calibration and analysis is usually performed by multiple linear regression, 

(MLR) [25, 26], principal component regression (PCR) or partial least squares 
(PLS) [27-29], although other algorithms exist [30-32]. These algorithms differ 
only in the manner in which they estimate the pseudoinverse of R. With data 
void of all instrumental errors each algorithm will perform identically. However, 
results from the disparate algorithms will differ in the presence of model and 
instrumental errors. 

The ILS regression vector from Eq. ( 4 ), b, is intimately related to the matrix 
of sensitivities in Eq. ( 1 ), S. The regression vector, b, is proportional to the 
part of the vector of analyte sensitivities that is orthogonal to the vectors of 
sensitivities of all other compounds present in the calibration set. That is 

(8) 

where I is the J x J identity matrix, sa is the vector of sensitivities for the 
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analyte, and Sa is the matrix of sensitivities for all other compounds present in 
the calibration set. It is important to note that the vectors of sensitivities for each 
compound is, in fact, the pure spectrum of each compound at unit concentration. 

This leads to the well known fact that the ILS regression vector is correlated 
to the spectrum of the analyte of interest and orthogonal to the spectrum of the 
other compounds present in the calibration set [ 18, 19]. That is 

(9) 

where si is the spectrum of any interferent in the calibration set. The orthogonal 
property of the regression vector is illustrated in Fig. 1 for a two variable, binary 
system. The black and light gray lines represent the spectra of the analyte and 
interferent in the two variable spaces. The dark gray line is the projection of the 
analyte signal that is orthogonal to the interferent's signal. This is termed the 
"net analyte signal" (NAS) and the length of the NAS is inversely proportional 
to the squared length of the regression vector [ 19]. That is, 

(10) 

and 
Jlbllz = 1/ IINASIIz (ll) 

where II • liz is the Euclidean norm of the vector. 
Figure 2 shows the absorbance spectra of trichloroethylene (TCE ), chloroform 

(CHCh) and 1,1,1 trichloroethane (TCA), three common chlorinated hydrocar­
bons mandated for environmental monitoring by the EPA. There is complete 
spectral overlap of TCE by both CHC13 and TCA. The NAS of TCE in the 
presence of CHCh and TCA (black), just CHCh (dark gray), and just TCA 
(light gray) are given in Fig. 3. Note that the NAS depends on the interferents 
present. When both interferents are present in the calibration set the JINASII 2 of 
TCE is 0.084 Absorbance units, while when only CHC13 or TCA is present as 
an interferent, the IINASIIz is 0.16 or 0.28 Absorbance units, respectively. Also 

Wavelength 2 

Fig. 1. Two wavelength analyte (black), and 
interferent (light gray), spectra with NAS for 
the analyte orthagonal to the interferent spec­

Wavelength 1 trum (dark gray) 
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Fig. 2. Abosrbance spectra of pure 
trichloroethylene (black), chloro­
form (dark gray), and I, I, I tri­
chloroethane (light gray) 

Fig. 3. Net analyte signal for 
TCE in the presence of TCA 
and CHCI3 (black), TCE in the 
presence of CHCI3 (dark gray), 
and TCE in the presence of TCA 
(light gray) 

note that the form of the NAS changes with the presence of different spectral 
interferents. The NAS tends to be positively correlated with the spectral features 
of the analyte and negatively correlated with spectral features of the interferents. 
However, even in cases of complete spectral overlap, the NAS exists as long as 
the spectrum of the analyte is different from the spectra of the interferents. 

Figures of Merit 

Four figures of merit can be defined for first order data not by the total signal, as 
in zero order calibration, but by the NAS. Intuitively, it makes more sense to define 
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figures of merit such as the selectivity, sensitivity, signal to noise ratio, and limit 
of detection by the part of the total signal that is used for calibration, the NAS, 
and not the total signal. On the surface, this appears to be a daunting task, and not 
very useful in practice, since calculation of the NAS requires measurement of the 
pure spectra of each interferent (Eq. 10). Fortunately, however, the calculation of 
the figures of merit require only the Euclidean norm of the NAS, IINASib which 
can be calculated by Eq. ( 11) from the ILS regression vector. These figures of 
merit then, in turn, provide useful insights about optimizing the implementation 
of multivariate methods. 

Any discussion about the relative merits of univariate methods begins with 
mentioning each methods selectivity, 

r* 
SEL =- (12) 

r 

The selectivity is the fraction of the total signal, r, that is unique to the analyte, 
r*. This dimensionless number varies from zero (cannot detect the analyte) to 
unity (complete selectivity to the analyte ). For univariate calibration it is assumed 
that the selectivity is unity, else the estimated analyte concentration will be biased. 

By the same logic, for first order analysis, the selectivity is defined as 

SEL = IINASII2 = 1 
lisa ll2 llbll2llsall2 

(13) 

recalling that sa is the pure analyte spectrum at unit concentration. The selectivity 
varies from 0 to 1 where a SEL of zero means that analysis is impossible from 
the analyte spectrum, and a SEL of 1 implies that there is no spectral overlap of 
the analyte and interferents (for positive spectra). Two points must be stressed. 
A selectivity of less than 1 does not mean that analysis will result in a biased 
concentration estimate as in zero order data. Estimation is accurate as long as 
SEL is greater that 0. That the SEL is proportional to the NAS implies that the 
selectivity changes, depending on the interferents in the calibration set. If an ad­
ditional interferent is added the selectivity will usually decrease, while removing 
an interferent from the calibration set improves the selectivity. Therefore, the 
selectivity must be specified for each particular calibration problem. For example, 
the selectivity of spectroscopic calibration for TCE in the presence of TCA and 
CHCh is less than the SEL when only TCA of CHCh is present {Table 1 ). 

Table 1. First order figures of merit for analysis of TCE 

0.49 pM TCE w/ 0.49 pTCE w/ 
TCA & CHCl3 CHCl3 

SEL 0.1869 0.3628 
SEN 0.1723 A/pM 0.3344A/pM 
SIN 84 164 
LOD 0.017 pM 0.0052pM 

0.49 pM TCE w/ 
TCA 

0.6283 
0.5791 A/pM 

284 
0.0030 JlM 



218 KarlS. Booksh and Ziyi Wang 

The definitions of selectivity for univariate calibration (Eq. 12) and for multi­
variate calibration (Eq. 13) do differ in one very important respect. For uni­
variate calibration, the selectivity of analysis changes with the concentration of 
interferents present. Increase the concentration of a detectable interferent, and 
the univariate selectivity decreases. For multivariate calibration, the selectivity is 
independent of the interferent concentration. Regardless of the interferents' con­
centration, the NAS is the part of the analyte signal that is orthogonal to the 
interferents' spectra. Therefore, the magnitude of the univariate SEL is related to 
the magnitude of the bias associated with analysis, while the multivariate SEL 
means accurate calibration is impossible when the SEL is zero. It is assumed 
that unless the analysis is unbiased, the estimated concentration is worthless (i.e., 
what is the use of calculating the wrong answer! ). 

For univariate calibration, the sensitivity of a method is defined by the slope 
of the calibration line in the CLS model where the signal, r, regresses against 
the concentration, c. That is 

/).r 
SEN=- =m 

/).c 
(14) 

where m is the univariate regression vector and defined as the change in the 
instrument response with respect to a change in the analyte concentration. For 
first order analysis, 

1 
SEN = llbll 2 = I!NAS!! 2 • (15) 

As with univariate calibration, the SEN is given in units of signal/concentration 
(e.g. Absorbance units/Molarity). 

Note that where the univariate sensitivity is proportional to the length of 
the regression vector, the first order sensitivity is inversely proportional to the 
length of the regression vector. This occurs because univariate calibration employs 
the CLS model where first order calibration methods employ the ILS model. 
Also, the SEN is proportional to the NAS. Therefore the SEN is a function of 
both the signal intensity at unit concentration and the uniqueness of the signal. 
For example, a spectroscopic technique would not be very sensitive to a highly 
absorbing species if the spectrum of the analyte is very similar to the spectrum 
of an interferent. 

Also, like the SEL, the SEN must be defined for each calibration problem. 
This is evident in Table 1. The SEN of the spectroscopic method for TCE depends 
upon whether TCA, CHCh, or both are included in the calibration model. 

The signal to noise ratio is an indication of the measurement precision of any 
instrumental technique. For univariate data this is defined as 

S(N =!:... (16) 
8r 

where 8r is the standard deviation of repeated measurements of r. The SIN for 
first order measurements can be equivalently defined as 

(17) 
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where r is either the pure analyte spectrum or an analyte/interferent spectrum. 
Equation (17) does provide a statistic to compare the measurement precision. 
However, this definition of SIN is does not provide any insight to how the mea­
surement precision affects the analysis (estimation) precision. A better definition, 
therefore, is 

(18) 

where c!INASII2 is the part of the total signal that is useful for quantitation. 
The IINASII2 is multiplied by the concentration since NAS is defined at unit 
concentration. Note that the first order NAS is a function of the magnitude of 
the analyte signal on the instrument, the similarity between the spectrum of the 
analyte and the interferents, and the reproducibility of the measurement. Analysis 
for TCE in only TCA has the greatest SIN of the three examples shown (Table 
1). This is due to TCA and TCE spectra being less similar that TCE and CHCh. 

The limit of determination (LOD) is a measure of the analysis (estimation) 
precision. The International Union of Pure and Applied Chemists define the LOD 
for univariate analysis as 

LOD = ker (19) 
m 

where k .is an integer that defines the number of standard deviations of mea­
surement error that constitutes "different" [19]. Usually k equals three which is 
nearly the 99% confidence level that two measurements are different. 

This definition for the LOD can easily be translated for first order calibration. 
As with the SEN, IINASib or ~ can be substituted form, such that 

(20) 

As with the other first order figures of merit, the LOD differs between specific 
applications as the interferents in the calibration set change (Table 1 ). 

Estimating Prediction Error 

Although there is an exact translation of the figures of merit from univariate and 
multivariate calibration, no such exact translation exists for translating the estima­
tion of prediction error from univariate to multivariate calibration. For univariate 
calibration the prediction error can ·be estimated directly by statistical propagation 
of errors through CLS [33, 34]. The estimated prediction error is 

Ur 
Uc =- * m 

(21) 
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where m is the slope of the calibration curve, fc is the mean of the M replicate 
unknown samples, c is the mean of the N calibration samples, and CTr is the 
estimated error about the regression line. The error about the regression line is 

N N 
I::(ri - f)2 - m2 I::(ci - c)2 

j,. J i= l 

N-2 
(22) 

Equations (21) and (22) provide insights to univariate calibration. The prediction 
error can be reduced by increasing the number of calibration samples, N , the 
number of replicates for each unknown, M , or the sensitivity of the measurement, 
m. The rate of improvement in the prediction error will be, at best, linear with 
improvements in the sensitivity and proportional to the square root of the increase 
in the number of calibration samples and replicates. Prediction error can also be 
improved by decreasing the magnitude of the last term under the radical in Eq. 
(21 ). This term decreases as the spread of the concentrations in the calibration 
set increases. Ideally half of the calibration samples would be at each extreme 
of the linear dynamic range of the instrument. 

Unfortunately, no such exact equations can be derived for first order calibra­
tion. Malinowski provides an excellent foundation on the effects of instrumental 
errors on the decomposition and calculation of the pseudo inverse of the in­
strument response matrix, R [35]. However, it is impossible to propagate errors 
explicitly through the calculation of the pseudoinverse in Eq. (7). Nonetheless, 
many useful insights can still be derived based on the propagation of instrumental 
errors in first order calibration. 

Lorber and Kowalski [8] derived an empirical equation to predict the confi­
dence interval on estimation in multivariate analysis: 

j I 

Clcunk = a2 L bJvar(rj) + P2 L hi 2var( c) (23) 
j=l 1=1 

where r is the unknown's instrument response, h = rT R+ is the leverage of the 
unknown sample relative to the calibration set, and IX and p are the tabulated 
t-statistics with J-K and 1-K (where K is the number of latent variables in the 
model) degrees of freedom, respectively. The variance of the unknown sample, 
var(r ), and the variance of the calibration set var(c) can, be estimated as 

var(r) = rT(l- R + R)r 
J-K 

(24) 

and, assuming the variance in the calibration is constant at all concentrations of 
analyte, 

(25) 

Equations (23)--(25) can be used to show that many of the insights for opti­
mizing zero order data gained from scrutinizing Eqs. (21) and (22) hold for first 
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Table 2. 95% confidence levels for prediction of TCE in different regions of the calibration model 

TCE CHCL3 TCA 95% Cl (±) First Term Second Term 
(units) (units) (units) (Equation 23) (Equation 23) 

2 2 2 0.0236 0.0230 0.0053 
3 3 3 0.0244 0.0230 0.0080 
2 4 0 0.0303 0.0230 0.0197 
4 2 2 0.0264 0.0230 0.0129 
4 4 0 0.0326 0.0230 0.0230 

order calibration. Obviously the prediction error can be reduced by minimizing 
the variance of the errors in the unknown sample, var(r), and the calibration set, 
var( c). The confidence interval of prediction can also be reduced by increasing 
the NAS, equivalent to reducing llbll2· This implies that the more unique the 
spectrum of the analyte is from the interfering species, the better the expected 
results are from analysis. The leverage, h, is a measure of the distance from the 
unknown sample to the center of the calibration set [10]. Therefore, prediction 
is best for samples in the center of the calibration set. Note that not all mea­
surements and samples have the same effect on the prediction error. Variables 
with large weights on the regression vector and unique samples (high leverages) 
have a much greater effect on the calibration precision than measurements with 
small weights on the regression vector and samples close to the center of the 
calibration set. As with the figures of merit, the confidence interval on prediction 
is a function of the interferents in the calibration set. Change the interferents, 
and the prediction error changes. 

Table 2 shows the estimated prediction error for five samples in the analysis 
of TCE in the presence of TCA and CHCh . The error estimate is based on 
27 samples in a 33 experimental design where the component concentrations 
vary between 1, 2, and 3 units. Note that the error estimate is lowest when the 
unknown sample is at the center of the calibration set (2 units each of TCE, TCA, 
and CHCh ). The estimated confidence limits increase when the sample is at the 
extreme of the calibration set (3 units each). The largest confidence intervals 
occur when both the analyte and interferent are outside of the calibration set. 
Note that the first term in Eq. (23) is independent of the sample position in the 
calibration set of the analyzed sample. The differences in the prediction error are 
only a function of the placement of the unknown relative to the calibration set. 
The 95% confidence intervals are much greater than the LOD. The LOD is a best 
case scenario that assumes an infinite calibration set centered around the sample. 

Second Order Calibration 

Second order calibration permits analysis in the presence of any unaccounted, 
uncalibrated species in the unknown sample. This is particularly applicable for 
environmental problems where is impossible or impractical to include every pos­
sible interferent in the calibration set. 
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Second order calibration can be viewed as a three step problem. In the first 
step the collection of standard and calibration samples, IR, is decomposed into 
sets of three intrinsic profiles, X, Y, and Z. The second step entails determining 
which of the sets of profiles pertain to the analyte of interest, Xa, Ya• Za· One 
of the intrinsic profiles- that correspond to the analyte is uniquely related to the 
analyte concentration in each sample, Za· Therefore, the third step is constructing 
an univariate calibration curve from the values of Za that correspond standards 
and estimating the concentrations of the unknown samples on this curve. 

Second Order Calibration Models 

For the decomposition of IR into sets of three intrinsic factors, the model 

N 

Rijk = 2:: Xin lJnZkn (26) 
n=l 

where N is the number of factors, latent variables, required to describe IR suffi­
ciently. The number of factors in the model is the "rank" of the model. Wang et 
al. define the number of factors that uniquely pertain to the analyte as the "net 
analyte rank" (NAR) [36]. Formally, 

NAR = rank(M) - rank(MIN) (27) 

where rank ( M) is the number of factors required to model a mixture of an 
analyte and a number of interferents and rank (MIN) is the number of factors 
required to model the mixture without the analyte. For second order calibration 
to be successful, an analyte must have a NAR of at least one. 

The third order tensor IR can be decomposed by many different algorithms. 
Usually an alternating least square (ALS) [37] or eigenvalue based problem 
(EBP) [38, 39] is employed. For chemical species that have a spectrum that 
can be completely modeled by one factor, .the decomposition of IR is unique to 
a scalar multiple [40]. In this instance, the data is said to be "bilinear" and the 
columns of X and Y that correspond to the bilinear species are, in actuality, the 
estimates of the normalized instrumental profiles in the two orders (i.e. x is the 
chromatographic and y is the spectroscopic profile of the species if analyzed by 
LC-UVVis ). If a species requires more than one factor to model the second order 
spectra, the decomposition of IR is not unique. The true intrinsic profiles of these 
"nonbilinear" species can be formed from linear combinations of the columns of 
X and Y. However, the proper linear combinations cannot be determined without 
a priori knowledge (e.g. unimodal or nonnegative spectral profiles). 

Fortunately, whether the data is bilinear or nonbilinear, a number of columns 
of X, Y, and Z equal to the NAR are unique to the analyte. The respective 
columns of Z are uniquely related to the relative concentration of analyte in the 
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sample. That is, if Zin (where Zn is unique to the analyte of interest) was the 
instrumental response of a univariate sensor, the SEL would be unity. Therefore, 
univariate calibration can be performed on the Zn without fear of obtaining biased 
results. 

The difficulty arises in determining which columns of Z are unique to the 
analyte. If the data is bilinear, positive identification can be obtained by observing 
the columns of X and Y (the chromatographic and spectroscopic profiles). If the 
n-th column of X and Y corresponds to the analyte of interest, the n-th column of 
Z would also. If the data is nonbilinear, a second order spectrum of pure analyte 
is needed for positive identification [36]. Mathematically doubling the intensity 
of the pure analyte spectrum decreases the relative concentration of analyte by a 
factor of two only in the column of Z that corresponds uniquely to the analyte. 

Figures of Merit 

The figures of merit for second order data are logical extensions of the figures of 
merit for zero and first order data. The zero and first order figures of merit are 
based on the part of the signal that is useful for calibration (i.e. the NAS). This 
is also the case for second order data. However, the definition of NAS niffers 
from first to second order. For first order data, the NAS is orthogonal to all 
other spectra (see Eq. 10). In the second order, this orthogonality constraint is 
relaxed. As in the first order, the NAS is the part of the signal that is unique 
to the analyte. However, second order calibration does not require an orthogonal 
decomposition of IR. The NAS is instead the part of the signal that is related to 
theNAR. That is, 

NAR 

NASijk = L Xin YjnZkn (28) 
n=l 

where the first NAR factors are unique to the analyte. The second order NAS for 
the k-th sample is a matrix, not a vector. It is important to note that the second 
order NAS, like its first order counterpart, changes in intensity but not form from 
sample to sample in IR. 

Hence, the second order figures of merit can be defined by the NAS: 

SEL= 
IINASIIF 

(29) 
IINIIF 

SEN = IINASIIF (30) 

S/N = IINASIIFIIEIIF (31) 

LOD = 3IIEIIF 
IINASIIF 

(32) 

where II · IIF is the Frobenius norm, the square root of the sum of the squared 
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elements in the matrix. The matrix E is the measurement errors. Malinowski 
details many schemes for accurately determining IIEIIF [35]. 

For bilinear data the selectivity is one. As with first order calibration, ana­
lysis is unbiased whenever the selectivity is greater that zero. Furthermore, the 
selectivity will only be zero if there is no NAR (no NAR uniquely implies no 
NAS for second order calibration). 

The advantages associated with second order calibration become evident when 
comparing the first and second analysis of Pb(II) in groundwater. Figure 4 
shows the second order spectrum of 3.5 JlM Pb(II) when analyzed by a dialysis­
spectroscopic sensor developed by Lin and Burgess [41]. The dialysis mem­
brane provides partial temporal separation of the Pb(II) from the Co(II), Ni(II), 
Mn(II), and Zn(II) interferents. The spectroscopic order simultaneously provides 
partial spectral discrimination between the Pb(II) and the four interferents. At no 
time or wavelength is the Pb(II) ever completely resolved from the other heavy 
metals. First order analysis can be performed by either the chromatographic or 
the spectroscopic method. The instrumental response for pure 3.5 JlM Pb(II) and 
a 2.5 JlM Pb(II) mixture along with the first order NAS is shown in Fig. 5 for the 
chromatographic technique and in Fig. 6 for the spectroscopic method. Note that 
the first order NAS for both methods is quite small compared to the pure Pb(II) 
signal. For second order analysis, the second order NAS is identical, except for 
noise reduction, to the pure 3.5 JlM Pb(II) signal. Therefore the selectivity is, by 
definition, unity while the selectivity for the first order methods is much lower 
(Table 3 ). Similarly the SEN for the second order method is greater than the 
sensitivity of the first order methods due to the increased NAS. 

The second order analysis also shows a small improvement in the SIN and 
LOD. These second order figures of merit could be further improved by elimi­
nating some rows and columns of R that do not contain significant analyte infor-
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mation. These rows and columns contribute noise without supplying additional 
signal related to the analyte. 

Note that the second order figures of merit are not defined by a regression 
vector, only by the NAS. This is a function of the fact that, by nature, a regres­
sion vector is orthogonal to the interferent spectra. Second order calibration does 
not determine a space orthogonal to the interferents yet correlated to the ana­
lyte of interest; therefore, no regression vector, per say, exists for second order 
calibration. 

Estimating Prediction Errors 

Analysis of the effects of random instrumental errors is an active and relatively 
virgin area of research. To date no holistic set of equations has been postulated 
to predict the errors associated with analysis as Eqs. (21 )-(23) do for zero and 
first order analysis. However a number of theoretical and empirical studies lead 
to important insights for second order calibration. The ALS and EBP algorithms 
are all converge to the correct unbiased estimate of analyte concentration in 
the absence of random instrumental errors or model errors. Model errors have a 
greater effect on the precision concentration of the estimates than on the precision 
of the estimated intrinsic profiles [42]. Random instrumental errors primarily affect 
the precision of the intrinsic profiles [42] but also result in biased concentration 
estimates [43]. This bias increases with the distance of the unknown sample from 
the center of the calibration set [43]. 

Studying the effects of error propagation helps chemists to optimize the ana­
lyzability of second order data. To achieve maximum quantitative precision, the 
first instrument in the hyphenated pair should be made as stable as possible to 
minimize model errors. The degree of discrimination between the analyte and 
interferent in either order is not essential as long as the first order NAS for both 
instruments is greater than the instrumental noise. Otherwise, the analyte is indis­
tinguishable from the interferent in one order. The data could not be aecurately 
analyzed by second order methods if the first order NAS in one domain was 
essentially zero. However first order analysis by the profile in the other order 
is possible. Also, as with zero and first order calibration, the prediction error is 
lowest when the unknown sample is centered in the calibration set. 
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Classical and robust/resistant procedures for the estimation of population parameters and the identi­
fication of multiple outliers in univariate and multivariate populations are reviewed. The successful 
identification of anomalous observations depends on the statistical procedures employed. Commer­
cial industries, local communities, and government agencies such as the United States Environmental 
Protection Agency (U.S. EPA), often need to assess the extent of contamination at polluted sites. 
Identification of these contaminants having potentially adverse effects on human health is especially 
important in various ecological and environmental applications. An environmental scientist typically 
generates and analyzes large amounts of multidimensional data. These practioners often need to iden­
tify experimental conditions and results which look suspicious and are significantly different from the 
rest of the data. The classical Mahalanobis distance (MD) and its variants (e.g., multivariate kurtosis) 
are routinely used to identify these anomalies. These test statistics depend upon the estimates of pop­
ulation location and scale. The presence of anomalous observations usually results in distorted and 
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unreliable maximum likelihood estimates (MLEs) and ordinary least-squares (OLS) estimates of the 
population parameters. These in tum result in deflated and distorted classical MDs and lead to mask­
ing effects. This means that the results from statistical tests and inference based upon these classical 
estimates may be misleading. For example, in an environmental monitoring application, it is possi­
ble that the classification procedure based upon the distorted estimates may classifY a contaminated 
sample as coming from the clean population and a clean sample as coming from the contaminated 
part of the site. This in tum can lead to incorrect remediation decisions. 

It is well established among practioners that, for the identification of multiple outliers, one should 
use robust procedures with a high breakdown point. The estimates obtained using the robust proce­
dures should be in close agreement with the corresponding classical OLS and MLEs when no discor­
dant observations (from different population( s)) are present. Robust procedures for the identification 
of outliers and the estimation of population parameters of location and scale typically use an influence 
function. The robust procedure based upon a recently developed "proposed" influence function, called 
the PROP function, works quite effectively in estimating population parameters accurately, and cor­
rectly identifYing multiple outliers in univariate and multivariate populations. The control-chart-type 
quantile-quantile (Q-Q) graphical display of multivariate data combines the effect of a formal test 
procedure and an informal graphical display into one powerful multiple outlier identification proce­
dure. The scatter plot of the robustified square root leverage distances vs the residuals identifies all 
regression outliers and distinguishes between significant and insignificant leverage points. The pro­
cedures discussed here unmask multiple anomalies and ·provide reliable estimates of the population 
parameters in several areas of interest, including linear regression models, discriminant and principal 
component analyses, and variogram modeling in geostatistical applications. The U.S. EPA, through 
the Office of Research and Development (ORD), has research interests in optimizing its quality 
assurance program by developing statistical procedures that are insensitive to outliers (resistant) and 
the underlying assumptions (robust). 
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Introduction 

Outliers are almost inevitable in most applied and scientific disciplines. In a manu­
facturing process, outliers typically represent some mechanical disorder of the sys­
tem, unexpected experimental conditions and results, raw material of an inferior 
quality, and misrecorded values. In biological dose-response applications, outlying 
observations may indicate an entirely different type of reaction (an unusual re­
sponse) to a newly developed drug. In this case, outliers may be more informative 
than the rest of the data. In environmental and ecological applications, outliers 
could be indicative of highly contaminated areas, sections of a forest in poor 
or degraded states, inconsistent analytical results in a typical quality assurance 
and quality control (QA/QC) program, or gross typing errors. Several univariate 
classical, as well as robust, outlier identification procedures exist in the literature. 

In environmental chemistry, since multiple compounds are analyzed simulta­
neously, use of multivariate outlier detection procedures is recommended. The 
estimation of population parameters and the identification of anomalous obser­
vations are closely related problems. The successful identification of outliers 
depends upon the accurate estimates of the population parameters of concern. 
The classical MLEs and the OLS estimates are distorted by the presence of out­
lying observations. The use of robust and resistant estimation procedures has been 
recommended in the literature to identify outliers. Here we present robust statis­
tical theory for the identification of outliers and the estimation of parameters of 
p-dimensional multivariate populations. Univariate procedures can be derived as 
special cases by choosing p equal to unity. Some univariate examples have been 
discussed for the sake of completeness and for interested readers. 

Grubbs [1] and Dixon-type [2] classical univariate test statistics are fairly 
popular among analytical chemists [3, 4). For higher dimensional data sets, 
Mahalanobis generalized distances (MDs) and their functions, such as Max(MDs) 
[5] and Mardia's multivariate kurtosis [6] are used to identify outliers. Stapanian 
et al. [7, 8] used a sequential procedure based upon these two test statistics to 
identify multivariate anomalies in samples from multinormal populations. These 
statistics depend upon the classical MLEs [9] of population location (mean vector) 
and scale (dispersion matrix). These classical estimates have a "zero" breakdown 
point and are vulnerable to severe masking effects in the presence of multiple 
outliers. Masking means that the outliers are hidden and the procedure used can­
not find them. For example, when outliers arise in clusters, the regression model 
gets attracted toward these outliers resulting in misleading normal-looking residu­
als, leading to masking (Example 5, below). Even the sequential use of classical 
outlier identification procedures cannot help unmask these multiple outliers. 

"Zero" breakdown point means that the presence of even a single discordant 
value (large or small) can completely distort the classical estimates obtained using 
the OLS and MLE procedures. This means that the resulting estimates may not 
be reliable. Thus, all other related classical statistics, including interval estimates 
of the population means, variances, discriminant functions, principal components, 
and regression parameters, may also be grossly distorted by these anomalies. 
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Moreover, due to masking, sometimes large MDs do not necessarily corre­
spond to the outlying observations. This can happen for example: a) when the 
data set has multiple outliers, or b) when one is dealing with a mixture sample 
from two or more component populations, or c) when one is dealing with many 
dimensional data sets of small or moderate sizes. The use of approximate distribu­
tions of the MDs, such as chi-square [10-12] or normal [13], can also lead to the 
incorrect ordering of the MDs (or equivalently can lead to the misidentification 
of discordant observations). The use of the exact c* beta distribution ( c being the 
probability density constant) of the MDs and an initial robust start (e.g., median, 
MAD pair) in the iterative procedure of deriving robust M-estimates of location 
and scale overcomes this problem effectively. 

The M-estimators are robust generalizations of the maximum likelihood esti­
mators [14]. It is desirable for these robust estimates-of location and scale and 
of regression parameters in linear models- and the MDs, with or without the 
outliers, to be in close agreement with the corresponding classical MLEs, OLS 
estimates, and the MDs when no outlying observations are present (or after all of 
the outlying observations have been correctly identified and removed). Estimates 
with this property will relieve the user from the burden of performing the data 
analysis twice: once using the whole data set and once without the discordant 
observations after their correct identification. 

The breakdown point of an estimator [15, 16] is the smallest possible fraction 
of observations that have to be replaced to distort the estimator over all bounds. 
Robust statistics deal with developing statistical procedures that are insensitive 
to violations of the assumptions under which they were developed. A resistant 
measure of any aspect (e.g., mean, sd) of a distribution is relatively unaffected by 
changes in the numerical values of some of the observations, no matter how large 
these changes are. Robust procedures with high breakdown points (the maximum 
possible is 50%) are desirable. 

Several researchers, including Rousseeuw and van Zomeren [11, 12], Campbell 
[13], Huber [14], Hampel et al. [16], Tukey [17], Andrews [18], Maronna [19], 
Hawkins. et al. [20], Rousseeuw and Leroy [21], Singh [22], and Singh ana 
Nocerino [23, 24] have researched developing robust/resistant procedures for the 
estimation of population parameters and the identification of multiple outliers and 
leverage points in univariate and multivariate populations. These efforts resulted 
in several robust procedures and influence functions, including: Biweight [17, 25], 
Huber [14, 26], Hampel [15, 16], univariate and Multivariate Trimming (MVT) 
[10], Minimum Volume Ellipsoid (MVE) [11], and the recently "proposed" PROP 
influence function [22]. 

Here, robust procedures based upon the PROP function are used to locate 
outliers in several applications, including interval estimation, regression models, 
principal component and discriminant analyses. The procedure based upon the 
PROP influence function works quite effectively at identifying multiple outliers 
in univariate as well as multivariate data sets of all sizes. Small sample cor­
rection factors are not required to provide appropriate coverage as suggested by 
Rousseeuw and van Zomeren [11, 12]. Also, no tuning constants [16, 25], except 
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for an appropriate choice of an oc-value, are needed in the definition of the influ­
ence function (often the choice of different tuning constants leads to significantly 
different results). Most practitioners are familiar with choosing an oc-value in their 
statistical applications. 

In layman's terminology, outliers are observations that are "well separated" 
from the main stream of data points. These observations could inflate the vari­
ances and covariances inappropriately or might not comply with the correlation 
structure imposed by the majority of data. It can be challenging to locate these 
anomalies in data sets of dimensionality larger than two. In higher dimensions it 
is difficult to visualize lhis main stream of data points and the points which lie 
far away from the main stream. 

We provide a systematic statistical definition of this separation. A control­
chart-type graphical display of the multivariate data combines the effect of a 
formal test procedure and an intuitive graphical display into one multiple outlier 
identification procedure. This procedure provides a natural operational tool for 
unmasking multiple anomalies in several areas of interest, including quality con­
trol, multiple linear regression models, discriminant and principal component anal­
yses, and variogram modeling in geostatistical applications. The robust regression 
procedure based upon the PROP influence function identifies all regression out­
liers and effectively distinguishes between significant and insignificant leverage 
points. 

In an effort to keep the environment clean, government agencies such as the 
U.S. EPA need to assess the extent of contamination at polluted sites. This site 
characterization is then sometimes used to determine remediation and monitor­
ing activities and also to set up cleanup standards. The presence of discordant 
observations in samples obtained from these environmental applications may dis­
tort the entire estimation process. Thus the use of robust procedures is preferable 
in the estimation phase. For example, the use of robust variogram models is 
desirable to obtain more precise and accurate kriging estimates. Suppose a sam­
ple of n observations (soil samples) is available from a polluted site. In this case, 
outliers may indicate the presence of a highly contaminated area. The sample may 
also represent a mixture of several populations with a varying degree of contam­
ination requiring different levels of remediation activities. The robust procedure 
presented by Singh et al. [27] works effectively in breaking down a univariate 
mixture sample into component populations (e.g., separating the background from 
the polluted areas). 

Site characterization is, in part, based upon the chemical analyses of envi­
ronmental samples taken from the site. Those samples are routinely analyzed by 
commercial and research laboratories who participate in the various programs 
(e.g., the Superfund Contract Laboratory Program (CLP)) of the U.S. EPA. The 
performance of those laboratories is typically monitored through QA/QC tech­
niques. The performance of a population of laboratories may be evaluated through 
the estimates of population parameters, such as the mean, standard deviation, 
coefficient of variation, and the range. However, laboratories giving QA/QC 
results discordant with the dominant population may greatly influence the estima-
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tion process and may result in inappropriate statistical regions within which the 
majority of the laboratories are expected to report their analytical results. The 
robust procedure presented by Singh and Nocerino [23] assigns reduced weights 
to the outlying observations, resulting in more precise and accurate statistical 
intervals. 

The robust statistical methods are becoming more popular among practicing 
scientists with the increasing availability of personal computers and computer 
software packages. Most robust procedures are iterative and require substantial 
computations and several passes through the same data set. This of course would 
be impossible (too tedious and time consuming) to do without available sta­
tistical software and current computing power. Some statistical software pack­
ages, such as PROGRESS [21] and Scout [8, 24, 28, 29], are available to perform 
robust statistical analysis. All computations presented here are performed using 
the ROBUST module of the Scout software package. The robust regression rou­
tine, REGRESS [24], based on the PROP influence function, has been used in 
all regression examples. 

The structure of this discussion is as follows. We start with the simple one­
step univariate robust (median, MAD) estimators of population mean, Jl., and 
standard deviation (sd), a. Then we briefly present the multivariate mathemat­
ical formulation for more sophisticated robust generalized maximum likelihood 
estimators called the M-estimators. Following this we summarize the PROP pro­
cedure. Various robust confidence intervals useful in environmental applications 
are then described, followed by robust multiple linear regression models. Robust 
procedures for multivariate chemometric applications such as principal component 
and discriminant analyses are then discussed and the scope of robust statistical 
methods in environmental and chemometric applications are summarized, giving 
some general recommendations. Several well known examples from the literature 
have been used. 

Outliers in Univariate and Multivariate Populations 

Experimentalists, especially environmental scientists, generate and analyze large 
amounts of data. Most of these practitioners, therefore, are familiar with the sit­
uations when some of their experimental results look suspicious or significantly 
different from the rest of the data. These observations are known as discordant 
observations (outliers, anomalies, extremes). In data sets of large dimensionality, 
it becomes tedious to identify these anomalies. Appropriate multivariate proce­
dures should be used to identify multivariate anomalies. Some of these procedures 
are discussed later. Before proceeding any further, we first discuss the simple uni­
variate cases. 

In statistical terminology, the univariate experimental data can be represented 
as follows. Let x~.x2 , ••• ,x0 represent a sample of size n from a population 
with mean, Jl., and standard deviation ( sd ), a. The sample mean and sd are 
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i = Exi/n, and s = J(Exf- ni2)/(n -1), respectively. The use of Grubbs [1], 
Dixon-type [2] test-statistics, and Rosner's [30] test for finding "Many-Univariate­
Outliers" are fairly common among practicing scientists [3, 31 ]. Grubbs test­
statistic depends upon the sample mean and sd. The sample mean and sd have 
a zero breakdown point. This means that even the presence of a single discor­
dant value can completely distort these sample statistics. Dixon [2] knew that the 
correct identification of outliers can suffer from masking. He recommended the 
use of multiple hypotheses testing to identify upper and lower outliers separately. 
Several Dixon-type test-statistics for finding upper and lower outliers are listed 
by Barnett and Lewis [32]. In practice, the user does not know the number of 
discordant values that might be present in a data set. It can become quite tedious 
to test multiple hypotheses, Hk: k outliers are present, k being a finite positive 
integer. Moreover, separate critical values are typically required for each test. 
For example, selected critical values of Rosner's [30] test for finding up to ten 
outliers are listed by Gilbert [31]. The robust procedure based upon the PROP 
function can identify these multiple anomalies in a single execution. 

Alternatively, simple one-step robust statistics [4]., such as the sample median 
(M) and cTMAo, are used to estimate J.l and a, respectively. The computations of 
M and cTMAD are described as follows. First arrange the data in ascending order, 
X( I) ~ X(2) ~ ••. ~ X(n)· Find the median value, M, and compute the absolute 
deviations, 

l(x(i)- M)l; i = l,2, ... ,n. 

The median absolute deviation from the median (MAD) is the median of these 
deviations. For data sets from Gaussian populations, cTMAD = MAD/0.6745 is 
an unbiased estimator of the population sd, a. Both of these estimates suffer 
from masking in the presence of multiple outliers. Moreover, these two estimates 
are based on the ranks of the sample observations and do not utilize most of 
the information contained in a given data set. The use of M and cTMAo as the 
initial start estimators in the iterative process of obtaining more precise robust 
M -estimators of location and scale have been recommended in the literature 
[10, 17, 22]. The following example explains these ideas. 

Example 1. Consider a simulated small data set with seven observations generated 
from a normal population, N(O, 1 ). Next, three discordant observations from a 
different normal N(5, 1) population are included in this data set. The generated 
data are: 1.0927,0.9309,-0.4867,0.1471, 1.3154,-0.8546, and -0.3176 from the 
N(O, 1), and 5.3566, 4.4920, 5.08 from the N(5, 1). The classical mean and sd 
based upon the first seven observations (without the outliers) are 0.26 and 0.857, 
respectively. The classical mean and sd using all ten observations get distorted 
and are given by 1.68 and 2.39. In order to obtain the simple robust estimates, 
arrange the data in ascending order: -0.8546,-0.4867,-0.3176,0.1471,0.9309, 
1.0927, 1.3154,4.4920,5.08,5.3566. The median, M, the mean of the two middle 
values, is 1.012. The absolute deviations from M are: 1.87, 1.50, 1.33, 0.86, 0.08, 
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0.08, 0.303, 3.48, 4.068, 4.34. The MAD is 1.415, obtained by taking the mean 
of the middle two values 1.33 and 1.50. Thus an estimate of population spread 
is given by aMAD = MAD/0.6745 = 2.096. Notice that both M and aMAD are 
influenced by the presence of the three discordant values. 

Due to masking, Dixon-type tests for upper outliers [32] also failed to iden­
tify these discordant values. Dixon's test-statistics to identify a single upper 
outlier and two upper outliers are given by Q1 = (X(n) - X(n-1))/((x(n) - xo>) 
and Qz = (X(n) - X(n-2))/((x(n) -X(!)), respectively. For the above data set, 
these test-statistics are Q1 = (5.3566 - 5.08)/(5.35 + 0.8546) = 0.0445, and 
Qz = (5.3566- 4.4920)/(5.35 + 0.8546) = 0.139, respectively. The critical values 
of Q1 and Qz for various values of n and oc are listed by Barnett and Lewis [32]. 
For an oc = 0.05 level of significance, and n = 10, the critical values for Q1 and 
Qz are 0.412 and 0.531, respectively. Since the test-statistics are smaller than the 
corresponding critical values, we are led to the wrong conclusion that all of the 
observations come from a single population and no discordant values are present. 
This is a simple example of univariate data masking. The problem gets quite com­
plicated for data sets of higher dimensions. We will continue with this example 
after formally defining the generalized maximum likelihood M -estimators. 

Robust M-Estimators of Location and Scale 

Wilks [5] introduced classical procedures to test for k (k ;:::: 1) outliers in sam­
ples from multinormal populations. For k = 1, this test is equivalent to the 
well-documented classical test [7, 8, 33, 34] based upon the largest Mahalanobis 
distance, Max(MDs ), for the identification of a single outlier. Observations with 
MDs greater than the oclOO% critical value of the Max(MDs) are potential out­
liers. For the univariate case, this test is equivalent to the Grubbs test [1]. Exten­
sive simulation studies have been performed [7, 34] to obtain the critical values 
of the test-statistics Max(MDs) and multivariate kurtosis [6]. The simulated crit­
ical values of Max(MDs) and multivariate kurtosis have been incorporated in 
the Scout [29] software package for sequential identification of outliers based on 
classical test-statistics Max(MDs) and multivariate kurtosis [6, 7]. Under multi­
normality, Schwager and Margolin [35] discussed some optimal properties of 
classical multivariate kurtosis. Their study proved that the test based upon kur­
tosis is less susceptible to masking by multiple outliers than the test based upon 
the Max(MDs ). It should be noted that, just like the statistic Max(MDs ), sample 
kurtosis, being a .function of sample mean vector and dispersion matrix, can get 
distorted by the presence of anomalies. 

Singh [22] pointed out that the critical values for the distribution of Max(MDs) 
can be computed directly using the Bonferroni inequality. Using Wilks' procedure 
as a model for the identification of outliers, one should be using the critical val­
ues of the distribution of Max(MDs) rather than the exact or approximate critical 
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values from the distribution of individual MDs, df. Several authors [10-13, 
22, 36] have used robustified MDs based upon the robust estimators of location 
and scale to identify multiple multivariate outliers. The robust procedures based 
upon Multivariate Trimming (MVT), the Huber, and the PROP influence func­
tions have been incorporated in the ROBUST module of the Scout software 
package. 

It is a well known fact that the individual classical MDs, d[, under multinor­
mality, follow a (n - I i p(p/2, (n - p - I )/2)/n distribution [33]. However, in 
order to obtain robust estimators of location and scale, either a normal approxi­
mation [13] or a chi-square, x2, approximation [10-12] is routinely used to obtain 
the critical values for the distribution of the individual distances, d[, which are 
needed to define the influence functions and minimum volume ellipsoids (MVEs ). 
The MVEs [11] use a chi-square correction factor to provide appropriate cover­
age for the sample observations, especially for small data sets. Singh [22] noted 
that the calculations based upon the approximate and the exact distributions of 
the MDs differ significantly. For example, for a IS-dimensional sample of size 
30, the 5% critical value of the exact distribution of the individual MDs is 20.33 
(based upon the beta distribution), whereas the approximate xis value is 25.0, 
which is already larger than the 5% critical value, 23.837, of the test-statistic 
Max(MDs). 

In the presence of multiple outliers, the generalized distances get distorted 
(even the robust MDs) to such an extent that the cases with large MDs may 
not correspond to the outlying observations. This multivariate data masking can 
completely distort the estimates of the population parameters and the correct 
ordering of the MDs and often leads to the misidentification of outliers. 
A robust start, such as that of the M and aMAD pair in the iterative process of 
obtaining the M -estimators, helps to overcome this problem by producing 
estimates which are resistant to masking effects. This is especially true for the 
M -estimators obtained using the PROP influence function. The mathematical 
derivation of the M -estimators based upon the PROP influence function is briefly 
given as follows. 

The PROP Robust Procedure 

Let x1.x2, ... ,xn represent a random sample from a p-variate population having a 
density function, f(x) = IEI-112h[(x- Jl)'E- 1(x- Jl)], which is elliptically sym­
metric about the mean vector, Jl. Here, E is the variance-covariance (dispersion) 
matrix, and h represents a spherically symmetric density in p-dimensional space 
[19]. The MDs are given by d[ =(xi- Jl*)'E*- 1(xi- Jl*); i = 1,2, ... ,n, where 
Jl* and E* represent the M -estimators (classical or robust) of Jl and E, respec­
tively. The robust M -estimators of location and scale are obtained by solving the 
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following system of equations iteratively: 

n n 

(1) 
i=l i=l 

The PROP Redescending Influence Function 

The PROP redescending influence function is given by 

(3) 

Here, d6 is the odOO% critical value obtained from the distribution, (n-1 f p(p/2, 
( n - p - l )/2 )/n, of the individual MDs, df. The weight functions are given by 
WJ(di) = 1/J(di)/di and w2(di) = wy(di). The weights in Eqs. (1) and (2) are 
obtained using these weight functions. 

The PROP M-estimators and the MDs, with or without outliers, and the 
corresponding classical MLEs and the MDs for multinormal populations free of 
discordant observations (after removal of discordant values) are usually in close 
or complete agreement. 

In this iterative process of obtaining J.l* and 1:*, all observations are assigned 
some weights, which can be used to characterize the extremeness of the various 
observations. Extreme observations too far from the center of the data are assigned 
reduced-to-negligible weights, whereas the observations coming from the central 
part of the data (with similar PROP and classical MDs) receive full weight. Singh 
[22], and Singh and Nocerino [23,24] used these weights to obtain more accurate 
estimates of degrees of freedom associated with the various robust statistics. 
Robust distances corresponding to these inlying observations roughly follow a 
(wsum2- 1)2 p(p/2, (wsum2- p- 1)/2)/wsum2 distribution, where wsum2 = 
2:: w2(di)· 

Construction of the Q-Q Plot of the MDs 

The control-chart-type quantile-quantile (Q-Q) plot of the MDs given as follows 
provides a single graphical display of the underlying multivariate data set, which 
identifies these well-separated observations effectively. This graph also provides 
a useful tool for assessing the multinormality of the underlying population. The 



242 Anita Singh and John M. Nocerino 

Q-Q plot of the MDs can be constructed as follows. 
2 -1 

(a) Compute the MDs, di =(xi- f.J.*)'E* (xi- f.J.*) fori= 1,2, ... , n, where 
f.l.* and E* are the M -estimators obtained using an appropriate classical or 
robust procedure. 

(b) Order df : d~l) :::; d~2 > :::; ... :::; dfn>. 
(c) Compute the expected beta quantiles, b(i)• using the following equation: 

b(i) 

J r( rx. + /3) a-1 ~-~ _ . I p 
r(rx.)F(fJ)x (1- x) dx- (z- rx.) (n- rx.- + 1) (4) 

0 

where rx. =(a- 1)j2a, f3 = (b- l)/2b, a= p/2, and b = (n- p- 1)/2. 
This choice of parameters gives fairly good estimates of the expected beta 
quantiles. Compute the theoretical quantiles, C(i)• for the distribution of the 
MDs using the equation C(i) = (n- 1? b(i)/n. 

(d) Finally, plot the pairs, (c(i),d~i)): i =I, 2, ... , n. 

For multinormal data, this plot resembles a straight line. Systematic curved 
patterns suggest a lack of normality. On this graphical display of multivariate 
data, points well-separated from the bulk of the data represent potential outliers. 
A systematic procedure defining this separation statistically is given in the fol­
lowing section. It should be noticed that the presence of outliers also destroys 
the linearity of the Q-Q plot of the MDs. This graphical display of the multivari­
ate data is much more enlightening in identifying the cause for the rejection of 
the hypotheses (multinormality of the underlying population, or no outliers are 
present) than any other formal or informal test. A formal test statistic, Rp, n. and 
its critical values for assessing multinormality are given by Singh [22]. Multiple 
outliers, when present, typically represent observations from a different popu­
lation( s ), which should be treated appropriately. For example, Rp, n should be 
obtained using an appropriate robust regression procedure. 

Operational Guideline for the Identification of Multiple Outliers 

The three-step procedure (TSP) to identify anomalous observations is described 
as follows. 

(i) Construct the Q-Q plot of the MDs as described above. The initial robust 
start (e.g., M, aMAo) is recommended, especially for small data sets of large 
dimensionality. 

( ii) Draw a horizontal line at the rx.l 00% critical value (or at the ( 1 - rx.) 1 00% 
confidence coefficient ( CC) level), d~, of the distribution of the Max (MDs) 
satisfying the simultaneous probability statement, P(dt:::; d~,i: = 1, 2, ... , n) 
= 1 - rx.. Points lying above this horizontal line are potential outliers. The 
critical values, d~, are computed using the Bonferroni inequality as described 
by Singh [22]. 
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(iii) Draw a horizontal line at the IX100% critical value, d~d• obtained from 
the distribution, (n- 1i p(p/2,(n- p- 1)/2)/n, of the individual d[. 
These distances satisfy the probability statement, P(d[ :::; dfnd) = I - IX; 
i: = I, 2, ... , n. Note that the critical values in steps (ii) and (iii) come 
from two different distributions. 

It is important to emphasize here that in practice, probably due to computational 
ease, many authors [10-12,36] use a chi-square, or even a normal [13] approxi­
mation to obtain the critical value, dfnd. Individual MDs, d[, are then compared 
to this value. The probability statement in (iii), above, represents the confidence 
ellipsoid for individual distances, df. This ellipsoid is expected to cover the bulk 
of the data simultaneously. A more appropriate comparison is obtained by using 
the simultaneous confidence ellipsoid given in (ii), above. This statement has the 
built-in outlier detection criterion and provides appropriate simultaneous coverage 
for all of the sample observations. This also eliminates the need to assign small 
sample correction factors to provide the desired coverage (e.g., 90%, 95%) for 
the sample MDs, as suggested in the literature [12]. Moreover, the use of the 
simultaneous confidence ellipsoid provides a well-defined cutoff point for poten­
tial anomalies. This of course is further enhanced by the formal control-chart­
type Q-Q plot using the robustified MDs. Formally, points above the horizontal 
line in (ii) (i.e., for which df > d~) are obvious outliers. These points are well­
separated from the main stream of data. The points falling between the horizontal 
lines in (ii) and (iii) (i.e., for which dfnd < df < d~) could be discordant and 
need further investigation (border-line cases). All other observations for which 
df :::; dfnd form the main stream of inlying observations. 

Example 1 (continued). We continue with the small data set of Example 1 to 
further explain how the classical procedures suffer from masking. The ROBUST 
module of the Scout software has been used in all subsequent calculations. The 
classical as well as the robust M -estimators (PROP) of J1. and a using the seven 
observations from N(O, 1) are 0.26 and 0.857, respectively. Recall that the clas­
sical estimates of J1. and a obtained using all of the ten observations are 1.68 
and 2.39, respectively. The PROP estimates (with IX = 0.1) based upon all the 
observations are 0.27 and 0.857. These are in close agreement with the classical/ 
PROP estimates without the three added discordant values. The PROP robust 
estimates are not influenced by the outlying observations. The classical Q-Q plot 
of the MDs is given in Fig. 1a. Since all of the distances are smaller than the 5% 
critical value, 5.24, of the test-statistic, Max(MDs ), it can be wrongly concluded 
that no discordant observations are present. The sequential classical test (Fig. Ia) 
based upon the Max (MDs) failed to identify the three discordant values present. 
Figure Ia suggests that all the observations come from a single population and 
no outliers are present, which is not the case. The robust Q-Q plot (Fig. I b) of 
the PROP MDs identified the three discordant values in a single execution. No 
sequential outlier testing process or multiple hypotheses testing are needed here. 
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Fig. 1. a Classical Q-Q plot of MDs. b Robust (PROP, alpha=O.l) Q-Q plot of MDs 
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Contour Ellipse Plots 

The contour probability plots of the MDs based upon the classical and robust 
estimators of location and scale can be used to enhance further the identification 
of outlying observations in bivariate data sets. Contour plots of the MDs have 
been displayed at the same two levels as the horizontal lines in the Q-Q plot 
of the MDs. The warning-point corresponds to a confidence ellipsoid given by 
the probability statement, p( df :::; dfnd) = ( 1 - a); i = 1, 2, ... , n, and the 
maximum-point corresponds to an ellipsoid given by the probability statement, 
p(df :::; d~, i = 1, 2, ... , n) = 1 - a. The plots based upon the classical MDs 
accommodate outliers as part of the same population and hence may not present 
the true picture of all of the discordant observations present in the data set. The 
outlying observations are more prominent in the contour plots obtained using the 
robustified estimates. Observations falling outside the outer contour (maximum­
point) are anomalous whereas the observations lying between the inner (warning­
point) and the outer contours may be discordant. On this graph, the elliptical 
scatter suggests bivariate normality. 

Example 2. This bivariate data set represents the ages and salaries of electrical 
engineers in the United Kingdom and is selected from Barnett and Lewis [32]. 
Using the standard classical procedures, they pointed out that observation 20 is an 
outlier and that the status of observation 19 is questionable. Figure 2a, b shows the 
Q-Q plots for the classical and the PROP MDs, respectively. Using the classical 
outlier test based on the Max(MDs) given in Fig. 2a, one concurs with Barnett 
and Lewis. From this Fig it is also noticed that observations 8, 26, and 37 are 
separated from the rest of the data set. The robust Q-Q plot of the PROP MDs, 
shown in Fig. 2b, identified observations 8, 19, 20, and 37 as outliers. The 95% 
classical and the robust contour plots are given in Fig. 2c, d, respectively. In 
Fig. 2d, the four outliers, observations 8, 19,20, and 37, lie outside the outer 
ellipse. The outer and the inner ellipses are drawn at the 5% critical levels, 
12.52, and 5.77, of the Max(MDs) and df, respectively. Observation 54 is right 
on the outer ellipse (compare it with Fig. 2b) and observations 4, 45, and 52 
fall between the inner and the outer ellipses. Also notice that observation 26 
is not discordant as implied from the classical presentations given in Fig. 2a, c. 
This example illustrates how the classical MDs and their correct ordering can get 
distorted by discordant observations. 

Outliers in Interval Estimation 

Several types of interval estimates exist in the literature [23, 37]. Here, we review 
three univariate interval estimates, namely: a) the confidence interval (LCL, UCL) 
for the population mean, p., where LCL and UCL represent the lower and the 
upper confidence limits; b) the simultaneous confidence interval (LSL, USL) to 
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contain all of the sample observations, Xi, i: = 1, 2, ... , n, simultaneously, where 
LSL and USL are the lower and the upper simultaneous limits, respectively; 
and c) the prediction interval (LPL, UPL) for a future observation, x0, from the 
underlying population, where LPL and UPL represent the lower and the upper 
prediction limits, respectively. 

These intervals are significantly different from each other and care must be 
exercised to use them appropriately. For example, at a polluted site it is important 
to obtain a threshold value estimating the background level contamination at that 
site prior to any industrial activity that might have polluted the site. Here, the 
USL given by (b), and not the upper limit UCL for the mean (a), should be 
used. It is inappropriate to compare (as is sometimes done in practice) individual 
observations, Xi, with the UCL for the population mean, J.l, and expect adequate 
coverage for Xi. A prediction interval given by (c) should be used when the 
coverage for a future and/or delayed observation, x0 , is needed. For simultaneous 
coverage of the results reported by the participants in a typical performance 
evaluation (PE) study of the U.S. EPA, the intervals given by (b) are more 
appropriate, by definition. These differences are illustrated later in Example 4. 

The presence of a few anomalous observations can contaminate the underlying 
population and result in distorted classical estimates, i and s2, of the population 
mean, J.l, and variance, u2 • This in turn leads to inflated and imprecise estimates of 
the above-mentioned intervals. Therefore, robust estimators, which assign reduced 
weights to these outliers, should be used. Robust interval estimation of the pop­
ulation mean has been studied by several authors [23, 25, 38, 39]. Student's t-like 
statistics with over-estimated numbers of degrees of freedom (DF) (n- 1) have 
been used to obtain the robust confidence interval (CI) for J.l [25, 39]. The classi­
cal CI for Jl is i ± tc s I y'ii, where tc is the critical value of Student's t distribution 
with (n- l)DF. Using this as a model, the robust CI for J.l has been defined 
[25, 39] as i* ± tr s* I y'ii, where i* and s* are a pair of robust estimators of 
location, J.l, and scale, u, tr is a critical t-value appropriately obtained. 

The number of DF to be associated with tr is not well established in the 
literature [26]. Kafadar [25], using a Monte Carlo simulation, tried to estimate 
a relationship between the classical Student's t-values, tc, and the robustified 
t-values, tbi. based upon the Biweight influence function. Iglewicz [40] suggested 
using an approximate relationship given by fbi = to.7(n-t) to obtain the critical 
t-values to be used with the Biweight function. However, the Biweight function 
does not perform well enough in small samples ( n :::; 20) when multiple outliers 
are present. The robust interval estimates based upon the PROP influence, on the 
other hand, seem to perform very well for samples of all sizes. Each observation 
is assigned some weight according to its extremeness. These weights have been 
used effectively to obtain more accurate estimates of the degrees of freedom 
associated with the underlying test-statistics. This results in more precise interval 
estimates. This has been demonstrated by using simulated and real data sets [23]. 
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Mathematical Formulation of Robust Interval Estimates 

Robust M -estimators of J1. and r1 using the PROP function (Eq. 3) are given by 

(5) 

where w,(di) = t/J(di)ldi. w2(di) = [wt(di)]2; i: = 1, 2, ... , n, and wsum1 = 
:L:w,(di), wsum2 = :L:w2(di). The DF are given by v = wsum2- 1. The 
univariate robustified distances, dj2 = (Xi - x* )2 I s*2, follow a v2 p ( 1 I 2, ( wsum2 -
2)12} lwsum2 distribution. Tukey's Biweight estimator, ibi• or Huber's estimator, 
i~, of location, Jl., are solutions of the equation, :L: t/J(ui) = 0, where t/J(ui) is 
an influence function chosen accordingly. The Biweight and the Huber influence 
functions are given as follows: 

t/lbi(u) = {~(I - u2f 

t/IH(u)={ks;nu 

JuJ:::; I 
JuJ >I 

JuJ:::; k 
JuJ > k 

where Ui =[xi -i*]lcs*, cis a tuning constant chosen appropriately, k is a cutoff 
constant obtained from the Gaussian distribution, and sgn stands for the signum 
function. The details of the computational process to obtain the simultaneous 
M -estimators of location and scale are given by Kafadar [25] and Huber [26]. 

Robust estimates based on the PROP function for the above-mentioned inter­
vals are given by the following probability statements. 

(a) (1 - 1X)100% confidence interval (LCL, UCL) for Jl.: 

P(x*- lv,a.f2s* lv'wsum2 ::=; Jl. ::=; x* + lv,a.f2s* 1Vwsum2) = 1 -IX (6) 

where tv,a./2 represents an appropriate critical value obtained from the Stu­
dent's !-distribution. 

(b) (I - IX) 100% simultaneous confidence interval (LSL, USL) for all Xi; i = 
1, 2, ... , n. Let d~.a. represent the IX( I 00%) critical value for the distribution 
of the Max ( df ). The simultaneous interval is given by P(Max ( df) :::; d~.a.) = 
I - IX, which is equivalent to 

P(x* -s*dm,a. ::=;Xi::=; x* +s*dm,a.; i =I, 2, ... , n) = 1-IX. (7) 

This simultaneous confidence interval has the built-in outlier detection test. 
An observation outside this interval is a potential outlier. The critical values, 
dm,a.. are obtained using the Bonferroni inequality and are listed in Table I 
for selected values of n and IX. Finally, the prediction interval is given by: 

(c) (1- 1X)100% prediction interval (LPL, UPL) for a future observation, x0: 

P(x* - lv,a.f2s* J[IIwsum2 + 1] ::=; Xo ::=; x* 

+ lv,a.f2s* J[IIwsum2 + I])= (1 -IX). (8) 
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Table 1. Critical values of dij and i;,,. for selected values of sample size n and significance level ex 

d2 
0 d~ •• 

n\cx 0.1 0.05 0.01 0.1 0.05 0.01 

4 1.822 2.031 2.205 2.139 2.194 2.239 
5 2.076 2.469 2.941 2.794 2.941 3.111 
6 2.216 2.743 3.505 3.320 3.561 3.892 
7 2.305 2.928 3.933 3.756 4.080 4.576 
8 2.366 3.059 4.264 4.128 4.523 5.173 
9 2.410 3.158 4.525 4.450 4.906 5.697 

10 2.445 3.234 4.735 4.735 5.244 6.161 
11 2.471 3.295 4.908 4.990 5.545 6.575 
12 2.493 3.345 5.053 5.221 5.816 6.947 
13 2.511 3.387 5.175 5.431 6.062 7.284 
14 2.527 3.422 5.280 5.625 6.287 7.592 
15 2.540 3.452 5.371 5.803 6.494 7.874 
16 2.551 3.478 5.451 5.970 6.686 8.134 
17 2.561 3.501 5.521 6.125 6.864 8.375 
18 2.569 3.521 5.584 6.270 7.031 8.599 
19 2.577 3.539 5.639 6.407 7.187 8.809 
20 2.584 3.555 5.690 6.536 7.335 9.005 
25 2.609 3.614 5.880 7.091 7.962 9.830 
30 2.626 3.653 6.007 7.536 8.459 10.472 
40 2.646 3.702 6.165 8.223 9.218 11.429 
50 2.658 3.730 6.259 8.744 9.786 12.128 
60 2.666 3.749 6.322 9.162 10.238 12.673 
70 2.672 3.762 6.367 9.511 10.612 13.117 
80 2.676 3.772 6.400 9.809 10.930 13.490 
90 2.680 3.780 6.427 10.070 11.207 13.811 

100 2.682 3.786 6.447 10.301 11.452 14.093 
120 2.686 3.796 6.479 10.697 11.869 14.567 
140 2.689 3.802 6.501 11.028 12.216 14.956 
160 2.691 3.807 6.518 11.312 12.512 15.286 
180 2.693 3.811 6.531 11.561 12.771 15.571 
200 2.694 3.814 6.541 11.781 13.000 15.822 
250 2.696 3.820 6.560 12.245 13.479 16.342 
300 2.698 3.823 6.573 12.620 13.865 16.757 

Example 3. This example uses an historical data set consisting of 66 experi­
mental results measured in millionths of a second for the speed of light (y ), 
collected by Simon Newcomb in 1882. The transformed values, x, given by the 
equation, y = 10-3x + 24.8, are listed by Stigler [41]. The data consists of 
two gross outliers. The classical and robust normal probability plots are given in 
Fig. 3a, b, respectively. The horizontal lines on these graphs are obtained using the 
simultaneous probability statement given by Eq. (7) above. The classical, Huber 
(rx = 0.05), and PROP (rx = 0.05) interval estimates for the population mean 
are summarized in Table 2. A systematic bias apparently existed in Newcomb's 
measurements. The currently assumed "true value" of the speed of light has been 
shown to be 33.02 decameters per millionth of a second. The discrepancy between 
the estimates presented here and the assumed "true value" of 33.02 relates to the 
calibration and the design of the measurement instrument rather than the esti­
mation procedure employed. This should not obscure the fact that the classical 
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Fig. 3. a Classical probability plot of Newcomb's data. b Robust probability plot of Newcomb's data 
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Table 2. Simon Newcomb's speed of light data (n=66), used in 
Example 3 

Classical Huber, IX = 0.05 PROP, IX = 0.05 

mean 26.21 27.41 27.61 
sd 10.745 5.23 4.04 
LCL 23.57 26.11 26.57 
UCL 28.85 28.71 28.64 

estimates are distorted by the presence of discordant values. As can be seen, 
the PROP procedure resulted in the narrowest and most precise 95% confidence 
interval for the population mean for Newcomb's data. 

Example 1 (continued). Using the small data set of Example 1, the robust inter­
val estimates for Jl. using the four different methods are summarized in Table 3. 
Robust interval estimates for Jl. with CC = 0.95 based upon the PROP influence 
function alone are in close agreement for the contaminated and the uncontami­
nated populations. Due to the masking effect, the classical, the Huber, and the 
Biweight procedures could not identify the three discordant values. This resulted 
in inflated and unreliable estimates of the population mean, Jl., and the sd, u. The 
estimate of u (using these three approaches) was distorted to such an extent that 
the resulting interval estimates are wider even though no adjustment has been 
made in the estimate of DF. Interval estimates obtained using the Huber, the 
Biweight, and the classical approaches are based on the same (n - 1) = 9 DF. 
The PROP procedure, on the other hand, uses the adjusted number of DF given 
by wsum2 - 1 = 6. 

Table 3. Interval estimates with CC = 0.95 for the simulated data set of Example 1 

N(O.l)- (n = 7) 7~N(0,1)&3~N(5, 1)-(n=10) 

Classical Huber Biweight(0 ) PROP Classical Huber Biweight(O) PROP 

mean .26 .26 .26 .26 1.68 1.68 1.53 .27 
sd .857 .857 .97 .857 2.39 2.39 2.81 .857 
LCL -.531 -.531 -.635 -.531 -.035 -.035 -.48 -.517 
UCL 1.053 1.053 1.155 1.053 3.387 3.387 3.54 1.064 

0 No adjustment in the degrees of freedom have been made while computing these statis­
tics which in tum will only inflate these intervals 

Example 4. Analytical laboratories participating in some programs of the U.S. 
EPA requiring QA/QC monitoring receive performance evaluation (PE) samples 
periodically. These samples contain known amounts of various organic or inor­
ganic compounds. Laboratories are expected to achieve analytical results that are 
relatively close to the known values. However, in practice, the recoveries reported 
by the laboratories are lower (especially for volatile and semi-volatile compounds) 
than the known spiked amount. One of the objectives of the PE studies is to obtain 
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Table 4. Interval estimates with CC = 0.95 using the performance evaluation data 
discussed in Example 4 

v mean sd LCL UCL LPL UPL LSL USL 

MLE 42.00 27.56 5.38 26.18 28.94 18.40 36.72 11.97 43.15 
Huber 40.49 27.83 4.62 26.63 29.02 19.95 35.70 14.5 41.15 
PROP 34.39 29.01 2.78 28.23 29.79 24.25 33.77 21.18 36.83 
Bi-wt 42.00 28.40 4.21 27.32 29.47 21.00 40.00 N/A N/A 

N/A =not available 

rigorous statistical regions within which most of the participants are expected to 
report their recoveries simultaneously. Hom et al. [38] used the Biweight function 
to obtain a prediction interval for a single future observation from a possibly noisy 
sample. The robust (PROP) simultaneous confidence intervals given by Eq. (7) 
provide precise and accurate estimates of those acceptance regions within which 
the participants are expected to perform. Computations for the various intervals 
described here are summarized in Table 4 using the analytical results reported by 
43 laboratories for the semi-volatile chemical, 4-methylphenol, in one such PE 
study. Note the smaller and more precise estimate of the DF, v = 34.4, for the 
PROP method; this is to be expected because of the reduced weights assigned 
to the outlying observations. Using Iglewicz's [40] recommendation, one might 
use a substantially smaller number of DF, (0.7)(42) ~ 29. Also notice that the 
PROP sd is much smaller, again due to the negligible contribution of the out­
liers; this is a more precise estimate of the sd of the dominant population of 
this data set. The graphical displays of the classical and the PROP simultaneous 
confidence intervals are given in Fig. 4a, b, respectively. Figure 4c, d presents the 
graphs of the corresponding prediction intervals. These graphs suggest that it is 
inappropriate to use prediction intervals when the simultaneous coverage for all 
of the participants is desired. 

Outliers in Linear Regression Models 

Robust regression has been studied by several researchers, including: Rousseeuw 
and van Zomeren [II], Andrews [I8], Hawkins et al. [20], Rousseeuw and Leroy 
[21], Singh and Nocerino [24], Ruppert and Carroll [42], Carroll and Ruppert 
[43], and Jongh et al. [44]. 

The multiple linear regression model with p explanatory variables is given 
by 

(9) 

where ei is assumed to be normally distributed as N(O, u2); i = I, 2, ... , n. Let 
x{ = (xi!,Xi2 .... ,XJp), P' =(PI. P2 .... , Pp). The objective here is to obtain a robust 
and resistant estimate, p, of P using the data set, (yi.x{); i = I, 2, ... , n. The 
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ordinary least squares (OLS) estimate, PoLs [45], of P is obtained by minimizing 

the residual sum of squares, namely, L:~=I r[, where ri = Yi - x[ PoLs· Like the 
sample classical mean, :X, the estimator, PoLs• of P has a "zero" breakdown point. 
This means that the estimator, PoLs• can take an arbitrarily aberrant value even 
through the presence of a single outlier or leverage point, leading to a distorted 
regression model (9). The use of robust procedures that eliminate and/or dampen 
the influence of discordant observations on the estimates of regression parameters 
is desirable. 

In regression applications, anomalies arising in the p-dimensional space of 
the design variables, x' = (xi, x2, ... , Xp) (e.g., due to unexpected experimental 
conditions), are called leverage points. Outliers in the response variable, y (e.g., 
due to unexpected outcomes such as unusual reactions to a drug), are called 
regression or vertical outliers. The leverage points are typically divided into two 
categories: significant leverages ("bad" or inconsistent) and insignificant leverage 
("good" and consistent) points. Insignificant leverage points either a) do not dis­
tort the underlying regression model when present in a typical regression data set, 
and/or b) extend the domain of the explanatory variables with the corresponding 
y-values to be consistent with the regression model displayed by the bulk of 
the data. 

These consistent leverage points given above by (b) generally increase the 
coefficient of determination, R2 [45], and improve the precision by decreasing the 
standard deviations of the estimates of the regression parameters, thus enhancing 
the underlying regression model. The leverage points described in (a) may arise 
when a subset of q ( 1 :::; q :::; p) explanatory variables is insignificantly correlated 
with the response variable y, but the position of these q-variables in the x-space 
causes the corresponding p-dimensional vector, x, to be discordant. Significant 
leverage points and regression outliers, on the other hand, do notably distort the 
regression model. Thus, the significant leverages are outliers in the x-space with 
the corresponding y-values being inconsistent with the regression model displayed 
by the bulk of the data. These anomalies generally cause a decrease in the value 
of R2, as well as distort and deflate the resulting residuals. All of these regression 
outliers and multiple leverage points can be easily identified by using the TSP 
outlined earlier. 

In robust regression, the objective is twofold: 1) identification of vertical 
(y) outliers and distinction between significant and insignificant leverage points, 
and 2) estimation of regression parameters that are not influenced by the presence 
of these anomalies. Moreover, these estimates should also be in close agreement 
with the corresponding classical OLS estimates when no outlying observations are 
present. Singh and Nocerino [24] presented a formal graphical approach based 
upon the square root distances vs standardized residuals scatter plot for the iden­
tification of regression outliers and significant leverages. This graphical approach 
identifies all regression outliers and distinguishes between significant and insignif­
icant leverages effectively. This is briefly described in the sequel. 

Hawkins et aL [20] used the notion of elemental sets for locating multi­
ple outliers in multiple linear regression models. Rousseeuw and van Zomeren 
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[11, 12] used the least median square (LMS) estimator, fiLMS• of /3, obtained by 
minimizing the median of the residual sum of squares (rr ); i: = 1, 2, ... , n. They 
mentioned that the estimates based on the LMS procedure are very robust and 
resistant with respect to regression outliers as well as leverage points. Both of 
these techniques require a massive amount of computation to obtain the robust 
estimator, fiR, of /3. It has been noticed that the robust estimator, fiLMS• usu­
ally does not agree with its classical counterpart after the removal of discordant 
observations (see Example 5). 

Mathematical Formulation of Robust Regression 

The robust estimator, fiPROP• of /3, IS obtained by using the following PROP 
influence function: 

t/J(yi- x[f3) = di if di :::; do 

=do exp[ -(di -do)] if di > do 
(10) 

where di = I(Yi- x[/3)/81 = lri/81, with a being a scale estimate appropriately 
obtained, and d5 is the 100 * a% critical value obtained from the distribution 
of (n- 1)2 f3(i/2,(n- 2)/2)/n. The corresponding regression weight function, 
w(di) = t/J(di)/di, is given by 

w(yi - x[f3) = 1 if di :::; do 

=do exp[-(di- do)]/di if di >do. 
(11) 

This influence function works well in identifying multiple regression outliers. 
The TSP given earlier identifies all leverage- points ("good" and "bad") using 

the robustified distances, Ldf, corresponding to the p-explanatory variables. All 
distances, Ldf, exceeding Ld~ are leverage points. These leverage points can 
be conveniently accommodated in a robust regression procedure by using the 
following function of the leverage distances, Ldf, at the initial iteration: 

t/J(xi, Yi - x[f3) = di 

=do exp [-(di-do)] 

if di :::; d0, Ldf :::; Ld~ 

if di >do 

= di exp [ -(Ldi - jLif)] if di :::; do,Ld[ > Ld~ 
(12) 

where Ld~ is the 100 *C(% critical value from the distribution of Max(Ldf). The 
corresponding weight function is given by w(xi,di) = t/J(xi,di)/di. 

Here, the function at Eq. (12) and the associated weights are used only in 
the first iteration to accommodate all pre-identified leverage points in the regres­
sion model. The influence function, Eq. (10), should be used in all subsequent 
iterations. The function obtained using the combination of Eq. ( 12) at the initial 
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iteration and Eq. (10) in all subsequent iterations is referred to as the "modified 
PROP influence function". This procedure starts with reduced weights assigned to 
all pre-identified leverage points. The iteratively re-weighted least squares {IRLS) 
[26] procedure using this modified PROP function works effectively in separating 
significant leverage points from insignificant leverage points. All significant lever­
ages are also identified as regression outliers. Convergence is generally achieved 
in less than ten iterations. In all of the examples discussed here, twenty iterations 
have been used. The graphical procedure is briefly described in the following 
section. 

Identification of Leverage Points and Regression Outliers 

The graphical display of robust leverage distances vs the robust standardized 
residuals can be used to identify the regression outliers and to distinguish between 
significant and insignificant leverage points. In this graphical display, the square 
root of the leverage distances, Ld i, corresponding to the p-explanatory x variables 
are plotted along the horizontal axis, and the standardized residuals, ri/8, are plot­
ted along the vertical axis. The two-dimensional graphical display is obtained by 
plotting the pairs, (Ldi, rd 8), i: = 1, 2, ... , n. The square root distances, Ldi, and 
the residuals, ri, are obtained using an appropriate regression procedure ( clas­
sical or robust). The critical values for Ldf and the Max (Ldf) are obtained 
using the procedure presented in the section entitled "The PROP Robust Proce­
dure" above. The (1 - oc)lOO% confidence limits for the standardized residuals, 
rd a, are obtained using the simultaneous confidence interval as described under 
"Outliers in Interval Estimation". 

On this graphical display, points with square root distances, Ldi. greater than 
the critical value, J (Ld~ ), represent leverage points. Observations with stan­
dardized residuals outside the ( 1 - oc) 1 00% simultaneous confidence band are the 
regression outliers. Leverage points with residuals outside this confidence band 
are significant leverages and all other leverages are insignificant leverage points. 

The robust multiple regression procedure based upon the PROP influence 
function has been incorporated into a computer program called REGRESS. 
A copy of the executable version of this program can be obtained by writing 
to the author(s). Some well known data sets from the literature are discussed 
next in Examples 5 and 6. In these examples, the estimators based upon the 
PROP function (Eq. 10) or the modified PROP function (combination of Eqs. 10 
and 12) produce robust regression models consistent with the literature. 

Example 5. This calibration example from astronomy is taken from Rousseeuw 
and Leroy [21]. The data consist of 47 stars in the direction of Cygnus 
(Hertzsprung-Russell Diagram of Star Cluster CYG OBI). This data set is known 
to consist of 43 stars following the main sequence and 4 giant stars from a dif­
ferent population. The objective is to obtain a calibration model that describes 
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the main sequence of stars. For this data set the M -estimators are obtained using 
the modified PROP function. Figure 5a has the OLS (solid line) and the robust 
(dashed line) fits. Due to masking, the classical OLS procedure resulted in normal 
looking residuals as seen in Fig. 5b, giving the impression that all observations 
came from the same sequence of stars. Figure 5c, d shows the scatter plots of the 
OLS and the robust leverage square root distances vs the standardized residuals, 
respectively. Here, also, due to masking, Fig. 5c could not identify the four dis­
cordant observations, leading to the wrong conclusion that all of the stars might 
have come from a single population. The discordant observations, 11, 20, 30, and 
34, are evident in Fig. 5d. From this figure, it can be seen that observations 7 
and 9 are also somewhat different from the rest of the data set. Figure 5e has 
the classical OLS and the robust fits after the removal of the four giant stars 
and Fig. 5f has these fits (both fits are very similar; in fact, they overlap in the 
figure) after the removal of two more discordant observations, 7 and 9. In all 
of these graphs the robust fit of Fig. 5a is in close agreement with all the other 
PROP fits of Fig. 5e, f, and also with the classical fit of Fig. 5f. 

Next, the robust PROP fit is compared with the corresponding LMS robust 
fit of Rousseeuw and Leroy [21]. The LMS fit is given by y = 3.898x- 12.298, 
which is quite different from the robust PROP fit (Fig. 5d-t) and the classical fit 
of Fig. 5f. 

Example 6. This example uses Brownlee's famous stack-loss [46] data set. Sev­
eral authors, Rousseeuw and van Zomeren [11], Andrews [18], Hawkins et al. 
[20], and Ruppert and Carroll [42], have applied robust regression techniques 
on this data set. Here we present the results using the PROP function described 
above. Figure 6a, b represents the classical and the robust Q-Q plot of the MDs 
using all four variables. From Fig. 6b, it is obvious that observations 1-4, 21, and 
possibly 13 are outlying observations, including leverage points and regression 
outliers. Figure 6c, d represents plots of, respectively, the OLS and the robust 
leverage distances vs the standardized residuals. Figure 6d identified all regres­
sion and leverage points correctly as cited in the literature. Using the graphical 
procedure described earlier, we would conclude that observation 2 is an insignif­
icant leverage point, observation 4 is a regression outlier, and observations 1, 3, 
and 21 are significant leverages. Observation 13 is also a mild regression outlier. 
The robust regression model and the relevant ANOV A statistics are given in the 
following. 

PROP Estimates at the 20th Iteration 

a= 1.o29 

R2 = 0.985. 

Regression coefficients are given by /JPROP = [ -36.497, 0.841, 0.456, -0.079], 
and the corresponding beta sds are = [4.012, 0.058, 0.144, 0.052]. 
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Fig. 6. (Continued) 

ANOVA summary statistics (PROP) using IRLS 

Source Weighted SS DF MS F -Statistic 
Regression 795.018 3 265.006 
Residual 12.227 11.545 1.059 250.218 
Total 807.245 14.54574 
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Outliers in Other Chemometric Applications 

Statistics play an important role in several chemometric, environmental, and eco­
logical applications. Canonical correlation [ 4 7], discriminant and classification 
analyses [48,49], principal component analysis (PCA) [50-54], regression, and 
calibration [55] are some of the statistical techniques adopted by researchers in 
these areas. Several researchers are developing new methods, or modifying exist­
ing techniques, to address the various mathematical and statistical issues which 
arise in these applications. 

Chemometricians have found many useful applications of PCA. Some of 
the well known chemometric techniques based upon PCA are supervised and 
unsupervised pattern recognition [50,51,54], partial least-squares (PLS) [52,56], 
PCA regression, and Soft Independent Modeling of Class Analogy (SIMCA) 
[50, 52]. The use of statistical experimental design and optimization (SEDOP) is 
fairly common among practicing scientists and researchers. Metallurgists [57-59] 
and research chemists [60-62] in their quest and need for new improved materials, 
alloys, and chemicals use SEDOP and response surface methodology to obtain 
optimal experimental regions. Discordant observations can arise naturally in 
data sets originating from these applications. These anomalies should be treated 
appropriately in all subsequent statistical analyses. Several researchers have 
applied robust methods [4, 63, 64] in these applications. 

It is often overwhelming and tedious to deal with the raw data generated from 
these applications. PCA is one of the well-recognized data reduction techniques 
in the chemometric literature. It has been well-established that, while the first few 
high-variance principal components (PCs) represent most of the variation in the 
data, the last few low-variance PCs provide useful information about the noise 
present in the experimental results. The classical statistical procedures mentioned 
above may not perform well enough in the presence of anomalous observations. 
In this section, we briefly describe the robust estimation of PCs and discriminant 
functions. 

Graphical displays of the first few PCs are routinely used as pattern recog­
nition and classification techniques (supervised and unsupervised). Gnanadesikan 
and Kettenring [ 65] encouraged the use of normal probability plots and the scatter 
plots of PCs for the detection of multivariate outliers. The robust PCs give more 
precise estimates of the variation in the data by assigning reduced weights to 
the outlying observations. We will compare the classical PCs with the robustified 
PCs based upon the robust estimate of the dispersion matrix given by Eq. (2). 

Outliers in Principal Component Analysis 

Q-Q plots of the principal components can reveal any suspect observations as 
well as provide checks on the assumption of normality. Scatter plots of the first 
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few high-variance PCs detect outliers which may inappropriately inflate variances 
and covariances. Plots of the last few low-variance PCs may be able to pinpoint 
observations that violate the correlation structure imposed by the bulk of the data 
but that are not necessarily discordant with respect to the individual variables. 

Formally, let P = (p1,p2 , ••• , Pp) be the matrix of eigenvectors of the sample 
dispersion (correlation) matrix, };* (classical or robust), where the eigenvector, 
p1, corresponds to the largest eigenvalue and the vector, Pp• corresponds to the 
smallest eigenvalue of };*. The equation, y = P' x, represents the p-principal 
components with Yi = p;x representing the i-th PC ; i = 1, 2, ... , p. A brief 
description of the construction of the probability plots for the PCs is presented 
in the next section. 

Construction of the Q-Q Plot of the PCs 

(i) Order the PC scores: 

YOJi :S: Y(2Ji :S: Y<nli; i = 1,2, ... , p 

(ii) Generate the normal quantiles, q(kl• by solving: 

q(k) 

J 1 k- 3/8 
P[z ::::; q(k)] = r,:; exp ( -z2 /2) dz = / ; 

v2n n + 1 4 
k = 1,2, ... ,k. 

-()() 

(iii) Plot the pairs, (q(k)• Y(kJi); k = 1, 2, ... , n, for the i-th PC. If the data are 
from a normal population, then these pairs will be approximately linearly 
related. Outlying observations are well-separated from the bulk of the data. 

Contour ellipses of constant MDs on the scatter plots of the PCs provide 
another useful graphical representation of multidimensional data in two dimen­
sions. The scatter diagrams for pairs of the first few PCs and the last few PCs 
also identify the discordant observations effectively. This is especially true for the 
PCs based upon the PROP estimate of the dispersion matrix. Next, we present 
an example illustrating these ideas. 

Example 7. The ten-dimensional data set of size 25, used in this example, is 
taken from Jennings and Young [34]. We use this data set to illustrate that 
PCA represents a good data reduction technique. However, since the outlying 
observations can distort the PCs, robust estimation of the PCs is recommended. 
Several graphical displays are presented here. Figure 7a, b shows the classical and 
robust (PROP) Q-Q plots of the MDs, respectively. Figure 7b alone identifies 
all discordant observations. The discordant observations arranged in decreasing 
order of extremeness are 12, 21, 14, 22, 5, 8, and 6. One can also use the scatter 
plots of the PCs to identify the anomalies. The scatter plots of the first two and 
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the last two classical PCs are given in Fig. 7c, d respectively. Figure 7e, f shows 
the corresponding scatter plots of the robust (PROP) PCs. The 95% confidence 
ellipses on these graphs are obtained using the bivariate probability statements 
given by (ii) and (iii) in the section "Contour Ellipse Plots". The extent of 
distortion of the classical PCs by the discordant observations can be seen by 
comparing Fig. 7c, e, and Fig. 7d, f. One can also use the plots of the original 
variables taken two at a time, as is sometimes done in practice. For this data set 
alone, one would have to look at 45 scatter plots of the original 10 variables! 
The two scatter plots of Fig. 7e, f of the robustified PCs alone provide a good 
description of the anomalies present in this data set. 

The point we are making here is that, although PCA provides a useful data 
reduction technique, the PCs may get distorted by discordant observations. There­
fore, it is advisable to use a robust estimator (MVT, Huber, PROP) as well as 
the usual classical MLE of scale to obtain the PCs. If the results obtained using 
the classical and the robust procedures differ significantly, then the PCs based 
on a robust procedure should be used in all subsequent analyses, such as pattern 
recognition, PCA regression, and partial least-squares. 

Outliers in Discriminant and Classification Analysis 

Discriminant and classification analyses are multivariate techniques concerned 
with separating distinct groups (discriminant analysis) of observations and with 
allocating new observations (classification analysis) of previously defined groups 
(populations). 

The separatory procedure is rather exploratory. In practice, the investigator has 
some knowledge about the nature and the number of groups. The study might 
be about k known groups, for example k geographic regions, k treatments, k 
analytical methods, k species, or k laboratories. In these cases the investigator 
knows the origin of each of the objects in a sample of size n obtained from these 
k populations. However, some of these k groups may be similar in nature and can 
be merged together. The objective here is to establish g ::; k significantly different 
groups. Let s = min(g - 1, p ), then s discriminant functions can be computed for 
these g p-dimensional groups [9]. These functions are then used in all subsequent 
classifications. However, if the investigators have no prior information about the 
observations and their origin, then they have to search for natural groupings 
of observations (unsupervised classification). This grouping can be done on the 
basis of similarities or distance measures obtained from the observed variables 
or characteristics ( analytes, defects, etc.). 

Principal component analysis, or cluster analysis techniques, such as com­
plete linkage, single linkage, average linkage, and Wards minimum distance, are 
used to separate observations into various groups [66, 67]. Several clustering tech­
niques should be applied on the same data set. If the outcomes of these clus-
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tering techniques are roughly consistent with one another, then probably there 
are some well-separated groups. This separation process is often performed only 
once, preferably on training sets with known group membership to investigate the 
differences among the various groups. Discriminant functions are then obtained 
using these separated groups. 

Classification procedures are less exploratory. Discriminant functions obtained 
in the separatory process are used to assign current and new observations into 
previously defined groups. The correct classification of the current observations 
with known group membership is the basis for the validity of the discriminant 
functions. This information is typically summarized in an error or "confusion" 
matrix. 

However, discordant observations, when present, can distort the discriminant 
functions and the corresponding discriminant scores significantly. This can result 
in serious misclassification results. For example, in environmental applications, it 
is possible that a distorted discriminant function can classify a reasonably clean 
sample as coming from the contaminated population and a contaminated sample 
as coming from the clean population (the background). 

In this section, we discuss the Fisher's robust classification procedure [9, 68]. 
The robust procedure, based upon the PROP function (Eq. 3) accommodates out­
lying observations by down-weighting them appropriately. This results in resis­
tant discriminant functions which are not distorted by the anomalies. In turn, this 
leads to more accurate classifications of all future observations. This procedure 
has been tested on several well known examples available in the literature [50]. 
Fisher's discriminant analysis is briefly described in the following section. 

Fisher's Robust Method for Discriminating Among k Populations 

Let 1ti represent the i-th population with mean vector, Jli. and dispersion 
matrix, .rioi: = 1,2, ... ,g. One of the key objectives of Fisher's method of dis­
criminant analysis is to separate these g populations. This is done by extracting 
s = min(g - 1, p) discriminant functions. These functions are derived to sepa­
rate the populations as much as possible. Fisher's method also provides a very 
convenient and effective way of graphical separation of the p-dimensional data 
in terms of a few discriminant functions (:::; s). 

The graphical displays of the first few Fisher's discriminant functions reveal 
possible groupings and clustering of the g populations. It should be pointed out 
that the derivation of Fisher's discriminants does not require multinormality of the 
distribution of the underlying g populations. Under normality and equal covari­
ance matrices, Fisher's discriminant functions reduce to the linear discriminant 
functions [9]. The discriminants are extracted by maximizing the between-groups 
variability relative to the within-groups variability, .r. 

The population parameter, J.li, and the common covariance matrix, .r, need 
to be estimated based on training samples of size ni from population, 1ti, 
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i : = 1, 2, 0 0., g. These estimates can be obtained using an appropriate classical or 
robust procedure. In the following, these estimates have been derived using the 
PROP influence function individually for each of the g populations. The relevant 
statistics are given as follows. 

The group mean vectors are given by xi = 2:~~ 1 WiJ Xi! I wsum1h and the dis­
persion matrices are given by~ = L~~ 1 (xi!-xi')(xi!-xi')'(wi!)2 I [wsum2i -1]; 
where wsum1i = LWiJ, wsum2i = l:wrr, i: = 1,2, ... ,g, and Wii is the 
weight associated with the /-th observation, l : = 1, 2, ... , nh of the sample from 
population 1ti. 

The grand mean vector is given by x* = Lf=I wsum1ixi/ Lf=I wsum1i and 
the between-groups matrix is given by il = L wsum1i(xi- x*)(xi- x*)'. 

The within-groups matrix is W* = l:C wsum2i - 1) ~, and the pooled dis­
persion matrix is s;ooled = W* I [L wsum2i- g]. 

Let -1:1 ::::: i2 ::::: ... ::::: is > 0 denote the s=min(g - 1, p) non-zero eigen-
1 "* values of W*- B . Let ei. i = 1, 2, ... , s, be the corresponding eigenvectors, 

scaled such that e'is;ooledei = 1, i = 1, 2, ... , s. This can be done by choos-

ing /i = ei I e:s~oledei. These vectors, 1:, satisfy the equality t:s;ooled/i = 1, 

i = 1, 2, ... , g. 
The linear combinations, Yi = t:x,i = 1,2, ... , s, are called Fisher's discrim­

inant functions. Scatter plots of the pairs, (Yi. Yj ), i =/= j = 1, 2, ... , s, represent 
valuable graphical displays of between-group separation. The constant-distance 
ellipses can also be drawn individually for each of the g groups on the scatter 
plots of the discriminant scores. These plots provide a formal visual separation 
among the various groups. The Fisher's classification rule is: assign an observa­
tion x0 to 7th, h := 1,2, ... ,g, if 

s s 

:~:)~Cxo- xh)]2 = minimum[z)t:(xo- xi)]2 ; l = 1,2, ... , g]. (13) 
i=l i=l 

Graphical displays of the discriminant functions coupled with the contour 
ellipses reveal the group separation (or overlap) very effectively. Moreover, the 
scatter plots of the discriminants vs the original variables can also be used to 
achieve additional insight for graphically identifying those variables that are the 
most significant in discriminating among the g populations under consideration. 
The robust discriminants based upon the PROP function seem to enhance this 
grouping further. Discordant observations apparently have a negligible influence 
on the PROP discriminants. Confusion or error matrices [9] can be computed 
using these discriminant functions. 

Finally, this chapter would not be complete without a discussion of Fisher's 
four dimensional taxonomic data set given in the following example. 

Example 8. Fisher's four-dimensional data set consists of a training set of size 
150, with 50 observations from each of the three species of iris. This data set 
was obtained from the depository of reference data sets established by the Edi-
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tors of Chemometrics and Intelligent Laboratory Systems [50]. The four variables 
are sepal length, sepal width, petal length, and petal width. The data are fairly 
well behaved in the sense that three populations are roughly multinormal with 
equal covariance matrices. There are no significant differences in the classification 
results obtained using Fisher's classical and robust procedures. These are sum­
marized in Table 5. Figure 8a,b shows the classical and robust scatter plots of 
Fisher's first two discriminant scores. These two graphs are in close agreement. 
The 95% confidence ellipses for the first two discriminants on these graphs are 
obtained separately for each of the three populations using the first two discrim­
inant scores and the bivariate probability statement given earlier. 

Next, in order to show the effectiveness of the classification procedure based 
upon the PROP function, 16 discordant observations (given in Table 5) were 
included in the data set. The differences between the classical and the robust 
classification results and the corresponding discriminants are significant in the 
presence of outliers, as can be seen from the results summarized in Table 5. 
However, robust estimates of the eigenvalues and the discriminant function 
coefficients given by vector 1;, with or without the outliers, are in close agreement 
(Table 5). Moreover, in the presence of discordant observations, the classical pro­
cedure misclassified some of the original observations; but for the original 150 

Table 5. Classification results for Fisher's iris data (Example 8) 

16 discordant observations added to the iris data set: 

Obs Grp Sp Sp Pt Pt Obs Grp Sp Sp Pt Pt 
No Id Ln Wd Ln Wd No Id Ln Wd Ln Wd 
151 3 9.0 5.0 2.3 4.5 159 2 9.0 5.8 6.0 3.4 
152 3 9.3 5.5 1.4 5.5 160 1 3.2 2.2 0.1 2.5 
153 1 7.0 2.3 4.8 3.2 161 I 3.0 2.0 0.2 3.0 
154 1 7.0 3.3 4.2 4.2 162 3 5.1 3.6 1.5 0.3 
155 I 6.7 3.6 3.9 3.9 163 3 5.6 4.5 1.5 0.5 
156 2 9.4 5.0 6.1 0.2 164 1 7.0 3.3 5.7 2.2 
157 2 7.8 5.2 5.9 0.1 165 I 7.2 3.4 5.6 2.1 
158 2 9.2 5.4 6.3 4.0 166 1 9.0 4.0 7.0 4.0 

Results using the original 150 observations: 

Classical 
Nonzero Eigenvalues Eigenvectors 
I 32.1920 I -0.8294 -1.5345 2.2012 2.8105 
2 0.2854 2 0.0241 2.1645 -0.9319 2.8392 

Robust (PROP) 
Nonzero Eigenvalues Eigenvectors 
1 38.8440 I -0.7252 -2.1498 2.2875 3.1364 
2 0.2885 2 -0.0746 2.2523 -0.8806 2.8155 

Confusion Matrix (Classical/Robust) Misclassifications (Classical/Robust) 
Predicted 

Actual Popl Pop2 Pop3 Obs. Actual Predict 
Popl 50 0 0 71 2 3 
Pop2 0 48 2 84 2 3 
Pop3 0 1 49 134 2 2 
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Results using the original 150 observations and 16 outliers: 

Classical 
Nonzero Eigenvalues Eigenvectors 
I 2.1591 1 -0.1137 -0.3067 0.9025 0.2483 
2 0.0824 2 -1.3282 1.8052 0.2556 1.2180 

Robust (PROP) 
Nonzero Eigenvalues Eigenvectors 
1 38.8334 1 -0.7249 -2.1483 2.2863 3.1359 
2 0.2887 2 -0.0749 2.2536 -0.8791 2.8133 

Confusion Matrices 
Classical Robust 
Predicted Predicted 

Actual Popl Pop2 Pop3 Actual Pop I Pop2 Pop3 
Pop! 52 0 6 Pop! 50 2 6 
Pop2 0 45 9 Pop2 2 48 4 
Pop3 4 5 45 Pop3 2 I 51 

Misclassifications 
Classical 

Obs. # 57 67 71 84 85 86 120 124 130 134 147 151 
Actual 2 2 2 2 2 2 3 3 3 3 3 3 
Predicted 3 3 3 3 3 3 2 2 2 2 2 1 
Obs. # 152 153 154 155 157 158 159 162 163 164 165 166 
Actual 3 1 1 1 2 2 2 3 3 1 I 1 
Predicted 1 3 3 3 3 3 3 1 1 3 3 3 

Robust 
Obs.# 71 84 134 153 154 155 156 157 158 159 160 161 162 163 164 165 
Actual 2 2 3 1 1 1 2 2 2 2 1 1 3 3 1 1 
Predicted 3 3 2 3 3 3 1 1 3 3 2 2 1 1 3 3 

observations, the robust classification results, with or without the 16 outlying 
observations, are in complete agreement, as can be seen in Table 5. Thus, the 
discordant observations have a negligible influence on the discriminant functions 
obtained using the PROP function. When the 16 discordant observations are 
included in the data set, the classical results are no longer reliable. 

Figure 8c is the classical and Fig. 8d is the robust (PROP) scatter plot of 
the first two discriminant scores for the contaminated data set. Also, Fig. 8e dis­
plays the three populations for the robust (PROP) scatter plot of the first two 
discriminant scores for the contaminated data set. The robust procedure offers 
more accurate and refined group separation and classification. Thus, when the 
data are well-behaved, there are no statistically significant differences between 
the classical and robust classification estimates. However, in the presence of dis­
cordant observations, the classical estimates get distorted, whereas the discordant 
observations have little or no influence on the corresponding robust estimates 
(Fig. 8d). 

166 
1 
3 



I). IS 

7A2 

j j 1.67 

-4.0S 

-9.14 
3.43 S.O:! .... S.JI 9.!1< 

a Oittritnll'IIRII$.;orc2 

13.9:5 

,, ' ,, 
l ~ J ', ' 7.52 ,, •' ' ' '' ' 

j 
,, 

,' '\ n ! ~ z' 
I,' ,, ,, 

2 

J 
1.09 

-S.34 

· ll.~ll------.-.ur-------.-<.n------8-<.18------•. -<8, 
b 

S.71 

3.94 

j 
:)2.16 

iS 

O.ll 

Ducrimirwtl~2 

... (166) 

"' u,. 

*u.sn 

... (1601) 

c 

· l . ~l .+: .. :---'----... ~_,t-:,------1..,.4':1 -"------,-<_,.------,_ ... 27 

Diierimltulnt $(en 2 

Fig. 8. a Classical discriminant scores. b Robust (PROP) discriminant scores. c Classical discriminant 
scores. d Robust (PROP) discriminant scores. e Robust (PROP) discriminant scores 



274 Anita Singh and John M. Nocerino 

IS.72 

• uu) 6 (151} 

'"(161) 

t.. £151) 'tlSl) 
1>.(1~ 

·S.OJ 

·11 .941------+-----+-----+------< 
1.37 

d 

IS.n 

·S.Ol 
" 

14,76 

Di~eriminant Score 'Z 

21 .46 21 . 1~ 

...... +-------+------+-----------< 
1.:37 0.07 

Fig. 8. (Continued) 

14,76 

DiKrimirwM 5«tre.2 

'21 .-46 

Conclusions and Recommendations 

28.1S 

Identification of discordant observations in samples from univariate and multivari­
ate populations have received considerable attention over the past few decades. 
Identification of these anomalies is especially important in populations consisting 
of pollutants which may have potentially adverse effects on human health and 
the environment. 

Robustified MDs are widely used for the identification of multiple outliers 
in multivariate populations. Mahalanobis distances exceeding the al 00% critical 
value from the distribution of the Max(MDs) correspond to potential outliers. 
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The presence of discordant observations distorts these MDs to such an extent that 
the cases with the largest MDs may not necessarily correspond to the outlying 
observations. It is therefore necessary to obtain robust estimators that are resistant 
to multiple outliers with a high break-down point. 

The robust estimators, based on the PROP influence function with an ini­
tial robust start and a suitable value of IX, are shown to achieve a high (50%) 
break-down point in simulated data sets. Moreover, the PROP estimates and the 
MDs, with or without the discordant values, are in close agreement with the cor­
responding classical MLEs and the MDs when no outliers are present (or after 
their removal). The robust initial start in the iterative estimation process yields 
estimates that are resistant to masking effects caused by the presence of groups 
of outliers. This results in the correct ordering of the MDs leading to adequate 
identification of potential outliers. 

The graphical control-chart-type Q-Q plot of the PROP MDs is an indispens­
able outlier identification tool. All kinds of outliers and leverage points can be 
adequately identified by using the formal graphical procedures presented earlier. 
Simultaneous confidence ellipsoids used here provide appropriate coverage to the 
bulk of the data points. No small sample correction factors or approximations 
are needed to provide appropriate coverage for the sample MDs. In addition, the 
PROP procedure answers the often raised question as to which cut-off values 
are to be used to determine which large MDs may correspond to potential 
outliers [12]. 

The robust regression procedure, using the PROP (or modified PROP) influ­
ence function and the associated graphical displays, identifies all of the regression 
outliers and distinguishes between significant and insignificant leverage points 
effectively. The procedure was tried on several simulated and well known data sets 
from the literature, including multiple linear regression models, and resulted in 
the correct identification of outliers and regression fit each time. We have found 
that the use of robust regression in relevant environmental calibration applications 
and in other chemometric applications enhances the understanding of the inherent 
complex chemical structure existing among various characteristics. 

We are currently investigating statistical procedures to obtain robust and 
resistant variogram models used in kriging. Kriging has become a useful tool in 
estimation of various contaminants at polluted sites. However, kriging parameters 
are typically estimated using a suitable variogram model that best fits the data. 
In practice these estimates can be distorted by the presence of a few discordant 
observations. 

The graphical displays presented here are the combination of informal 
exploratory techniques and formal statistical procedures making them appealing 
to inexperienced occasional users as well as to statistically-oriented users 
demanding statistical rigor. Robust procedures described in this article support 
John Tukey's message "THE CLASSICAL METHODS - means, variances, 
covariances and related statistics, and least-squares - ARE UNSAFE"[69]. The 
routine use of robust statistical methods together with the classical procedures 
for the identification of outliers and the estimation of population parameters of 
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concern in various ecological, chemometric, environmental monitoring and QA 
applications is recommended as it provides more accurate and precise estimates 
of the population parameters. 

Notice. The U.S. Environmental Protection Agency (EPA), through its Office 
of Research and Development (ORD), funded and collaborated in the research 
described here. It has been subjected to the Agency's peer review and has been 
approved as an EPA publication. The U.S. Government has a non-exclusive, 
royalty-free license in and to any copyright covering this article. 
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Summary 

Various pattern classification techniques used in the context of environmental chemistry are presented. 
Both parametric and non-parametric Bayesian classifiers are outlined, as well as artificial intelligence­
based techniques such as artificial neural networks and classification trees. A comparative analysis of 
the performance of some of the pattern classification methods is also given and several environmental 
applications are used to illustrate the various classifiers. A brief discussion on the software packages 
that are available is also included. 
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Patterns and Pattern Formation 

Humans can distinguish very effectively between patterns that abound in nature 
(such as eye-like patterns on butterfly wings, etc.) despite the large variety of 
shapes, sizes, colours and so on. In all of these patterns we can identify sub­
patterns which, in turn, are made up of even smaller sub-patterns (which, at 
the lowest lev~l, we call primitives). In natural systems, the low-level semi­
autonomous primitive components are subject to simple interactions with one 
another. More complex patterns will develop over time from all of the local in­
teractions of the primitive components. These emerging complex patterns will also 
evolve in time because they themselves play a role in organising the behaviour of 
the lower-level components and providing a context in which these components 
interact. Patterns can therefore be static as well as dynamic. The nature of the 
pattern components is irrelevant, but it is rather the order of the components, their 
interaction and their structural interrelationship with other components which are 
important. 

It is obvious that each pattern has a special meaning, depending on the con­
text in which it is used. In environmental chemistry, visual patterns may also 
arise from imaging techniques [1]. However, more often the pattern will be a 
collection of measurements (i.e. a data profile) on a given physical sample. As a 
matter of fact, modem analytical chemical and physical measuring methods pro­
vide an ever increasing amount of data and information. Also, spectra obtained 
from spectroscopic techniques can be considered as patterns. An example is the 
use of visible-near infrared (VNIR) to short wave infrared (SWIR) reflectance 
spectra, as measured remotely and by hand-held field spectrometers, in the study 
of weathered soils. Weathering processes are interwoven into the inorganic aspects 
of soil production. In the savannah-style tropics, for instance, a range of unsta­
ble clay minerals are formed under the episotic wetting regimes of this climate 
type. These clays are liable to be expansive and dispersive. Recognition of these 
properties from spectral features is thus of great importance in the delineation 
of areas liable to suffer land degradation. This provides the ability to determine 
which area should be targeted for clearing or re-vegetation. Figure I illustrates 
the difference in digitised reflectance spectra (i.e. patterns) between weathered 
and un-weathered clay minerals in a semi-arid tropical environment. The first 
and third spectra (Kaolonite KGA-la and Dickite API-15) are examples of un­
weathered clay minerals spectra. Both spectra are the result of an active, high 
temperature hydrothermal environment capable of producing the precise condi­
tions of temperature, pressure and host rock composition for the formation of such 
minerals. At high temperatures, highly ordered clay mineral forms are formed [2]. 
The second spectrum (Kaolin KGa-2) is an example of a weathered clay mineral 
resulting from the effects of low temperature surface weathering processes. Such 
low temperature processes commonly produce poorly ordered clay minerals. As 
can be seen, there is a reasonable degree of variability in the spectra between 
the weathered and non-weathered spectra. 
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Fig. 1. Example PIMA reflectance spectra for weathered (first and third spectra) and un-weathered 
(second spectrum) clay minerals 

More formally, we can define a pattern as a vector-like data structure of 
features (also referred to as measurements, variables or attributes) that includes 
information on the name of the feature, the values of the feature, and perhaps 
a measure of certainty or belief in the feature together with any information on 
the relationship between the given feature and any other feature. The number of 
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features defines the dimensionality of the feature space-a large number of features 
gives rise to a high-dimensional pattern. 

For example, the physico-chemical properties of an inter-tidal estuarine sam­
ple can be defined using various sediment features: the depth of the H2S layer, 
the interstitial salinity, the median particle diameter, percentage organics, etc ... 

estuarine-sample =.((depth of the H2S layer) 

(interstitial salinity) 

(median particle diameter) 

( ... )) 

For a given estuarine sample we measure the various physico-chemical pro­
perties and obtain, for example, the values as a set of continuous (real) numbers: 

estuarine-sample = (0.3, 120.5, 434.0, ... ) 

One of the advantages of using a vector-like representation is that we can measure 
the similarity between any two given patterns by introducing the concept of 
distance and, therefore geometry. Example simple measures of distance include 
the Euclidean metric and Hamming distance. 

Unfortunately, we do not always deal with continuous numeric features but 
sometimes with non-numeric (symbolic) features. For example, the "colour" fea­
ture may have various categories such as green, red, black etc. These are called 
categorical features. Some features may also be discrete and ordered, or ordinal 
features (as, for example, very low, low, high, and very high). To quantify sym­
bolic feature, a method must be introduced to convert the feature into a numeric 
value. A discrete, ordered feature may be mapped onto the set of integers and 
then treated as a numerical variable. 

One issue that does arise when we define a pattern and then set out to mea­
sure repeatedly all its values in an experiment is the relative number of features 
defining a pattern compared with the total number of patterns measured. For a 
high-dimensional problem (large number of features), the number of measure­
ments that need to be undertaken is very much larger than the case for a low­
dimensional problem. This is known as the "curse of dimensionality". If this is 
not observed a significant amount of bias is introduced into the recognition sys­
tem i.e. the identification of two quite different patterns as being similar (3, 4, 5]. 
In some cases it may be necessary to choose (feature selection) and extract 
(feature extraction) the relevant features without discarding valuable informa­
tion in order to achieve better recognition and be able to differentiate one class of 
objects from another. More formally, in feature extraction, we look for a function 
fp : 91 Q ~ 91 Q' (where Q' :$ Q) such that when fp is applied to a pattern 
vector x, the new features are the image of x under fp (say, y = fp (x)). In 
feature selection we look to choose subsets of the original pattern features by 
taking f F to be a projection onto some coordinate subspace of 91 Q. 
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Pattern Analysis, Pattern Recognition 
and Pattern Classification 

Pattern analysis attempts to understand the relationships and interactions between 
patterns. For example, we may be interested in identifying the biotic relationship 
between two biomass samples obtained from different ecological sites, or study 
the impact of oil spills on the community structure of sub-tidal macrobenthic 
communities as a function of time, or predict the amount of rainfall in Central 
Australia given the evolution in time of the pressure gradient between Darwin and 
Papeete etc. In each case we are interested in measuring the similarity between 
patterns. 

Pattern recognition involves learning a set of decision-making rules given 
a set of exemplars or training patterns and their associated features. In some 
cases, the outputs of the decision rules for the training set are known and the 
decision rules must not only be able to reproduce the given training set-output 
associations, but they must also be able to accommodate any new (test) pattern. 
In general, pattern recognition is difficult because the patterns themselves are 
subject to noise distortion or there may be some variability among the patterns 
having the same output association. The minerals example in Fig. 1 illustrates 
the variability in weathered and un-weathered clay samples. 

Of particular interest in pattern recognition is the case when the outputs of 
the decision-making rules correspond to a discrete label or class. In this case 
we have pattern classification. For example, we may wish to obtain a decision 
rule to determine if the impact of coral reef mining on the reef-fish species will 
be positive or negative, this being an example of a two-class problem. Pattern 
classification is of considerable importance in many application domains which 
require categories of decisions to be made, e.g. medical diagnosis, automatic 
image analysis, chemometrics, environmetrics etc. Many applications of pattern 
recognition and classification methods to environmental chemistry can be found 
in the literature. Examples include the identification of sources of contamination 
in environmental samples [6], heavy metals in suspended particulates of urban 
air [7], identification of oil spilled at sea [8], mass spectra of toxic compounds 
[9], trace organic pollutants in ambient air from mass spectra [10, 11], multi­
species toxicity tests [12], metal contaminated soils [13], waste water pollution 
[14], neuropsychological effect of low lead exposure [15], etc. 

There exist several paradigms to classify a pattern into one of several cate­
gories or classes. These include the statistical approach (also referred to as the 
geometric or decision-theoretic approach), the syntactic (or structural) approach, 
and the adaptive learning systems approach (e.g. artificial neural networks, clas­
sification or induction trees). 

In the statistical approach each pattern is considered as a single entity ( obser­
vational unit, object, pattern etc.) represented by an observation or data (feature) 
vector. The observational unit and the associated data vector are considered as 
an outcome of a random sampling process applied to a population of observa­
tions. The variability in the population is represented by a random variable vector 
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for which a particular probability structure is assumed in the form of a specific 
probability distribution (parametric approach). Statistical methodology is used to 
estimate the parameters of the underlying theoretical population model from the 
set of measurements made on the patterns (i.e. sample of observational units and 
associated data vectors). More recently, distribution-free and non-parametric sta­
tistical models, which move away from the above parametic assumptions, have 
been developed. In general, however, class-conditioned probabilities and proba­
bility density functions are made use of in the statistical classification process. 
This approach is an integral part of multivariate statistics. 

Rather than considering the underlying values of each single feature as being 
important information in the recognition process, the syntactic approach addresses 
the actual physical structural relationships that exist among the features. Structural 
relationships include the interrelationships or physical interconnections of features. 
Many patterns are best described by such relationships as, for example, musical 
patterns, hand-written characters, speech recognition, and fingerprint identification. 
Pattern representation is made by means of formal grammar rules and pattern 
recognition is undertaken by parsing a pattern's structure. The use of adaptive 
learning systems in pattern recognition is relatively new. Such systems do not 
generally make any assumptions on the functional form of the probability density 
distribution but are able to obtain relationships between the patterns and the 
required decision rules. Some of these techniques are still not widely understood, 
although some relationships between them and the statistical (especially non­
parametric) paradigm have been established. 

Learning 

Environmental scientists are often confronted with the problem of having to make 
complex real-world decisions. To make such decisions, scientists rely almost in­
variably on previous experiences. For example, an environmental scientists must 
decide if a given ecosystem has exceeded a pollution threshold based on previous 
cases determined with attributes or variables such as concentration levels of lead, 
cadmium etc. The process of learning is the ability of a system to make effective 
and efficient decisions based on a history of previously accumulated experience. 

One of the aims of a computational learning system (or machine learning 
system) is to develop a system that imitates the cognitive behaviour of human 
beings. There exist different kinds of learning as evidenced by the variety of 
different human learning paradigms. However, one that is particularly useful for 
decision-making is that of inductive /earning-involving the extraction of general 
decision-making rules or procedures from a collection of samples of solved cases 
[16]. Inductive learning can be one of two types: un-supervised learning and 
supervised learning. In the former, the learning system looks for regularities 
or structures in the patterns or observations whereas, in the latter, learning is 
undertaken with the aid of a teacher who provides example input patterns and 
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associated output "classes" [17]. Supervised learning is sometimes referred to 
as discriminant analysis by statisticians and un-supervised learning is known as 
clustering or numerical taxonomy. We will concentrate on supervised learning. 

More formally, given a set of N input-output, data pairs D = {(xi, Yi) E xxY} 
for i = 1, 2, ... N, belonging to some input feature space X (features are also 
referred to as variables or attributes) and output response space Y and assume 
that there exists a map 

f:x-Y (1) 

with the property that 
(2) 

then learning is the process of estimating (or fitting) the function at points of 
its domain x where data are not currently available. An example of such an 
estimation process involves the observation of the temporal evolution of coral 
growth on the Great Barrier Reef. It is known that the rate of coral growth is 
influenced by factors such as weather patterns, phosphate and nitrate run-offs 
from sugar cane fields etc. Here, we want to be able to predict the state of coral 
growth given the past samples. The predicted output has to be learned from the 
sequence of L = Q input samples, each input time delay sample corresponding 
to a feature. The mapping corresponds to the function f : 9l L --+- 9l . 

There are many different approaches for estimating f. Examples include a 
simple additive model of the form (for continuous Y) 

n 

y = L hi(Xi) for n :::; N 
i=l 

(3) 

for some smooth arbitrary functions of a single variable, or by allowing interac­
tions between the features using linear combinations (projections) [18] 

M n 

y = L hj (L Q(ijXi) 

j=l i=l 

or, by allowing more explicit interactions [19] 

M 

Y = LamBm(XI,X2,···•XN) 
m=O 

(4) 

(5) 

where each of the Bm is a multivariate spline basis function which is a product 
of univariate spline basis functions. Other estimation approaches include using 
kernel functions, nearest-neighbours, or feed-forward neural networks. 

A particular case of this estimation procedure is when Y has finite range and 
assumes only a set C of K discrete values. Then we have 

K 

Yi = LjJIYi=il 
j=l 

(6) 
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where I is the indicator function 

if y; = j; 
otherwise. 
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In case the output does not correspond exactly to one of the discrete values, 
we can choose the class k which is nearest to the observed value. This special 
case is the process of learning a classifier, where the output corresponds to K 
identifiable classes. For example, in the context of water quality monitoring, 
the input variables are the different laboratory tests used to evaluate the water 
quality. In this case, in the simplest form, it would be K = 2 output classes 
(i.e. acceptably good quality and unacceptable quality). The classifier learns by 
estimating the function f, f : 9l ----> C based on a set of measured water quality 
data samples. 

Since data in chemistry are often subject to some amount of random varia­
tion the mapping can, in statistical terminology, be referred to as "regression" and 
the learning phase involves estimating the regression model function(s). Least­
squares or another parameter estimation procedure can be used. It is clear that a 
supervised pattern recognition problem (discrimination) can be formulated as a 
special case of regression with the response variable being a categorical variable. 
The above, however, is only sound for the case of K = 2 or for K > 2 with 
ordered classes (e.g. Yi = { 0, 1, 2, 3} indicating classes "no", "low", "moderate" 
or "high" contamination). It is well known that, for two classes, linear regression 
gives linear discriminant analysis [20]. If we are dealing with the general case of 
K unordered classes then the multi-class problem can be regarded as a multivari­
ate regression problem with K response (or output) variables Yi (i = 1, 2, ... , K): 

{ 1, if Yi = i; 
Yi = 0, otherwise. 

The implication is that any parametric and non-parametric regression method can 
be transformed into a classifier which may lead to a huge arsenal of models. 
In addition, artificial intelligence methods such as neural networks and adaptive 
classification techniques can be considered as adaptive regression methods. Recent 
papers that review and further develop statistical methodologies along these lines 
of thought include [21-23]. 

In the same context the well known multi-class extension of Fisher's linear 
discriminant analysis was an early historical example of the equivalence with 
canonical correlation analysis with the block of y variables defined as class in­
dicator variables [24]. 

Other approaches of statistical learning relate merely to estimating class prob­
ability densities (e.g. Bayesian methods) and to develop independent class models 
(tolerance region methods). 

Learning or training a classifier can be done in the context of two types of 
goals, which may succeed one another. First, in descriptive discriminant analysis, 
one is interested in the representation of the classifier itself, i.e. how a given set 
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of features can be represented (usually spatially) in such a way that the K classes 
are clearly separated. This is done on the basis of the training samples. The spa­
tial representation is called the "discriminant space". The graphical representation 
has an important "descriptive" value in analysing the data. An example is the 
canonical variate approach to linear discriminant analysis where the relevant in­
formation about the separation between classes is represented in a discriminant 
space of at most K- 1 dimensions. For small K, the data can be plotted in the 
reduced space, elucidating graphically the class discrimination [25]. 

Often, only two or three dimensions are needed, even for large K. This aspect 
of analysing data rather than purely classifying has been more the interest of 
statisticians. An environmental example of descriptive discriminant analysis is 
given by Pontasch et al. [12]. 

Second, the classifier is used to classify and estimate the accuracy of classifi­
cation of future unknown observations (test samples). The second case is referred 
to as predictive classification. 

In the predictive classification step, the focus is on correct classification. 
Some measure of correct classification is used to evaluate the performance of the 
classifier. 

Statistical Classifiers 

We present an overview of some of the classifiers that are proposed in the chemo­
metrics literature and also some promising new algorithms. However, we have not 
made any attempt to be complete and we realise that a better classification of the 
methodologies is possible but may lead us too far. A very recent comprehensive 
review of the field of discriminant analysis and statistical pattern recognition is 
given in [26]. Simple introductory tutorials with chemical examples are available 
in textbooks such as [27-29]. We will distinguish the following areas. 

1) Discriminant functions and regression methods. 
2) Tolerance region or class modeling methods. 
3) Parametric and non-parametric Bayesian classification. 

Discriminant Functions and Regression Methods 

Discrimination, strictly speaking, is based on discriminant functions which are 
combinations of the pattern variables with weight coefficients. Most often linear 
discriminant functions are used. They are usually of the form 

(7) 
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where wo is a constant and w is the weight vector. A discriminant score DSi is 
calculated by substituting the vector x with the pattern vector Xi of test pattern 
i in the above equation. That is 

(8) 

There are different ways of determining the weight coefficients. One of the best 
known and earliest methods in non-statistical pattern recognition is the linear 
learning machine which was extensively studied by Nilsson [30). 

Fisher's Linear Discriminant Analysis ( FLDA) 

The statistical approach of the sample linear discriminant function for separating 
two classes (FLDA) was proposed by Fisher [31]. The weights are determined 
as follows: 

(9) 

and 

(10) 

where s-1 is the inverse of S, the pooled sample covariance matrix of the two 
training classes, and x. 1 and x 2 the sample mean vectors indicating the centroids 
of the two classes w1 and w2 , respectively, in the pattern space. The vector w 
determines the direction of the separation plane between the two classes and 
w0 indicates that the plane goes through the point located at half the distance 
between the two centroids x. 1 and x 2 of the classes. FLDA can be implemented 
as a least-squares multiple linear regression problem. Such an implementation 
was done in the chemometrics software ARTHUR [32]. A method related to the 
multiple regression approach of FLDA was the piece-wise least-squares multiple 
regression method also implemented in ARTHUR. It is in fact a combination of 
the k-nearest-neighbour classifier and FLDA. 

Descriptive Linear Discriminant Analysis ( DLDA) 

The constraint of two classes used in FLDA can be relaxed to K classes. This 
is referred to as "descriptive linear discriminant analysis", also called canonical 
discriminant analysis. Here, the discriminant functions describe in a statistical 
optimal way the directions of class differentiation in the pattern space and are 
derived by maximizing the ratio of the between-class variation to within-classes 
variation. The weight vectors are the eigenvectors of the matrix 

A= Jr1B (11) 

where W is the "total within-group sum of squares and cross-products" matrix 
and B is the "between-groups sum of squares and cross-products" matrix. De­
scriptive LDA (DLDA) is often used for preprocessing in the context of feature 
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extraction. Here, the original variables are linearly combined to generate a m:w 
set of variables spanning the discriminant space (discriminant functions, discrim­
inant scores)- also known under the term canonical variables-which can further 
be used as input for another classification technique, usually a Bayesian classi­
fier. The maximum numbet of significant discriminant functions is equal to the 
number of classes minus one (K - I) or the number of original variables, Q, 
if Q < K. With a small number of discriminant axes the presentation of the 
separation between classes can be visualised graphically. 

Water Quality Monitoring. As an illustration, consider the following example 
of the monitoring of dissolved nutrients on the Great Barrier Reef. In recent 
years there has been a growing concern among reef researchers that coral reefs 
worldwide appear to be degrading at an ever increasing rate. Among many dif­
ferent factors, pollution is one of the causes. In 1991 the Australian Institute 
of Marine Science (AIMS), in collaboration with the Great Barrier Reef Marine 
Park Authority, Australia, formally established a long term monitoring program 
of the Great Barrier Reef. Surveys of dissolved and particulate nutrients is one 
of their programmes. The objectives and methods for the above programme is 
fully described in the AIMS document [33]. 

The data is a subset of the water quality monitoring for which the follow­
ing variables are measured: ammonia, nitrite, nitrate, dissolved inorganic nitro­
gen, dissolved organic nitrogen, dissolved inorganic phosphorus, dissolved organic 
phosphorus, and liquid extracted silicates. They are all logarithmic-transformed. 
The 116 observational units (data vectors) represent different monitoring stations. 
There are, however, different ways to classify the units. We will use a cross-reef 
shelf classification, i.e. inner, mid, and outer reef locations. The data analysis 
presented here is purely for illustrative purposes and is not intended to be a fi­
nal analysis as other effects such as temporal and other differences in the data 
need to be taken into ~ccount. The two-dimensional DLDA plot shown in Fig. 2, 
obtained using the SPSS forMS-Windows software package [34], shows a sub­
stantial overlap between the inner, middle and outer reef locations. 

Some separation is revealed between the outer and inner reef positions and 
the centroids on the plot indicate that the separation is in the direction of the 
first discriminant function. This function is the only one that is significant on 
the basis of a Wilk's Lambda test and accounts for 88% of the discrimination 
between the groups, whereas the second function consequently accounts for only 
12%. The middle reef positions tend to overlap more with the outer reef ones 
(the centroid of the middle group is closer to the outer reef centroid) but there 
are many observations that also relate to the inner reef group. It is interesting to 
proceed further with only two training classes (inner and outer reef classes) and 
use the middle one as the test class. It means that we will investigate which (and 
how many) observational units of the middle reef samples have a nutrient profile 
relating to the inner reef or to the outer reef. This is the classification stage of 
linear discriminant analysis and will be dealt with in the Bayesian context later. 
In descriptive LOA the linear discriminant weight coefficients play an important 
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Fig. 2. DLDA plot of the nutrient data for the Great Barrier Reef 

Table 1. Standardized discriminant function co­
efficients 

Function I 

Dissolved inorganic nitrogen 
Dissolved organic nitrogen 
Nitrite 
Nitrate 
Dissolved inorganic phosphorus 
Liquid extracted silicates 
Ammonia 
Dissolved organic phosphorus 

-1.11772 
0.55272 

-0.26815 
0.07391 

-0.26627 
-0.43168 
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0.21750 
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role in interpreting the importance of the variables in the discrimination. We have 
repeated DLDA on the two training classes inner reef (Group I) and outer reef 
positions (Group 3) and the discriminant coefficients for the single discriminant 
function are given in Table I. 

As the centroid of the inner reef class has a higher discriminant score (.37) 
on the discriminant axis than the outer reef class (-. 71 ), it means that, from 
the weight coefficients table, it can be concluded that the discrimination can be 
primarily characterised by a difference in dissolved inorganic nitrogen and am­
monia (high absolute values for the coefficients) and the inner reefs tend to have 
lower dissolved inorganic nitrogen (negative sign) and higher levels of ammonia 
(positive sign). 
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Regression Methods 

It is well documented that discriminant functions can be approached from a re­
gression point of view. Apart from this, another traditional example is "logistic 
regression" [35]. More recently, a theoretical framework for the transformation 
of modem (extending to nonlinear and non-parametric) regression methods into 
multi-class classifiers have been developed by statisticians [21-23, 36]. Because 
of its novelty, applications in chemistry are. scarce, although there is great scope 
for it. Especially, techniques such as penalized discriminant analysis (PDA) [23] 
which is designed to be used in the context of situations with a large number 
(one hundred or more) highly correlated predictor variables, which is typical for 
digitised spectral data such as in the soil example shown in Fig. 1. The scope of 
penalized discriminant analysis is similar to that of regularised discriminant anal­
ysis (see later). On the other hand, linear discriminant analysis can be too rigid in 
situations where the class boundaries in pattern space are complex and nonlinear 
so that a linear discriminant mapping based on linear discriminant functions (with 
Descriptive LDA) does not use sufficient discriminant information in the data. 
Non-parametric regression techniques which can deal with noisy non-linear (en­
vironmental) data include for instance projection pursuit regression [18, 21], ACE 
[36, 37], MARS [19], flexible discriminant analysis [22] and generalised additive 
models [37]. The popular biased multivariate regression method in chemometrics, 
the two-block partial least-squares model and its non-linear extension [38], can 
also be used as a classifier. Also, it can be used to tackle the ill-posed problem 
created by many correlated variables in a small data sets. 

Class Modeling Methods 

So far, the pattern recognition techniques considered allow classification of obser­
vations only in predetermined classes, without the possibility of detecting a class 
not formerly included in the discrimination model (training set). This means that 
an aberrant pattern as such will not be detected by the discrimination model, but 
classified into one of the previously defined classes. It is sometimes important to 
have methods available that not only allow classification, but also the detection 
of aberrant patterns (or "outliers"). Moreover, there exist asymmetric classifica­
tion problems where only one or a few classes are well-defined clusters in the 
pattern space and the rest of the data vectors are scattered without any structure. 
An example is the definition of a class of goad water quality on the basis of 
a profile of analytical tests. The other class of bad water quality is much less 
defined and is a collection of all kind of aberrant test results. From a monitoring 
point of view it might be sufficient to model the good water quality class and 
classify new samples with respect to that class. 

Tolerance region methods are founded on the idea that the territory of a 
training class can be represented by a hyper-volume in the original pattern space, 
confined by a multivariate confidence envelope. The multivariate tolerance region 
of a class WJc is determined as the region in the pattern space enclosed by the 



Pattern Analysis and Classification 295 

class envelope determined on a statistical basis (F or l statistic) by a critical 
distance dk((1.) that is the largest distance allowed from an object belonging to 
that class at IX level of significance. Object i belongs to class WJc: if 

(12) 

otherwise it does not. A significance level of IX = 0.05 defines a 95% tolerance 
region. As in the case of the class modeling techniques, a distance measure 
dik with respect to each training class can be calculated, and they can also be 
employed at the level of discriminant analysis by assigning the test object i to the 
class closest to the object. The class modeling techniques can be distinguished 
by the way they define the distance measure dik and dk((1.)· We now look at two 
of the techniques commonly used in chemometrics: UNEQ and SIMCA. 

UNEQ 

UNEQ is the Mahalonobis distance-based class modeling using separate (unequal) 
class covariance matrices. The squared metric dfk is the Mahalonobis distance to 
class Wk and is given by 

(13) 

where Pk is the estimate of the population mean vector (i.e. the sample mean 
vector x.k, as given previously), and tk is the unbiased estimate of the covariance 
matrix ~k of class WJc: (i.e. the sample covariance matrix S, also given previously). 
From a theoretical point of view a better (less biased) estimate of the Mahalonobis 
distance is given by the following equation [39, 40] 

2 (Nk- Q- 2) T -I 
dik = (Nk _ l) (Xi- X.k) Sk (Xi- X.k) (14) 

where Nk is the number of samples in class Wk. The Mahalonobis distance follows 
a x2 distribution with Q degrees of freedom assuming that the class data are 
multivariate normally distributed. 

The UNEQ method is only reliable when the data have a multivariate normal 
distribution and there are sufficient observations to get stable estimates for the 
parameters of the covariance matrix and mean vector. Therefore, UNEQ is not 
useful in situations of low observation/variable ratios (i.e. in poorly or ill-posed 
problems) or when the variables are highly correlated. In those situations, the 
observations of a class lie in a subspace of the Q-dimensional pattern space and 
any direction orthogonal to that subspace has zero or near zero variance, making 
the covariance matrix singular or near-singular. In that case, the Mahalonobis 
distance is not well defined. A better method for high-dimensional settings and 
ill-posed problems is SIMCA. 
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Soft Independent Modeling of Class Analogy (SIMCA) 

Instead of representing each class by a mean and covariance matrix, a disjoint 
principal components factor model is developed for each class. A class factor 
model translates the information relevant to the characterisation of a training class 
(also known as systematic variation or correlated information) in mathematical 
relationships and separates it from the non-class specific information (known as 
non-systematic or random variation or simply noise) which is filtered away. The 
factor model for each class wk is fitted to the data Zik of the training set according 
to 

(15) 

where Zj is the z-transformed data vector and Bk is the matrix of Q x Ak weight 
coefficients constituting the principal components model of class wk. The latter 
matrix collects Ak eigenvectors determined from the correlation matrix of class 
Wk. The number of significant terms Ak determines the complexity (dimensional­
ity) of the model and is traditionally found by cross-validation [41]. If structured 
information is present in the data of class wk one can expect that 0 < Ak ~ Q. 
The tik is the orthogonal projection of the Zjk data vector on the principal com­
ponents subspace. The residual vector eik quantifies the random part in Zjk and 
determines the deviation of the data vector with respect to the factor model. Note 
here that we use z-transformed data vectors as it is shown that better discrimi­
nating class models are obtained after class-specific z-transformation [ 42]. Based 
on the residual vector eik. a distance with respect to the class factor model can 
be calculated. The squared distance of a test vector Zi to the factor model can 
be written in the following condensed way: 

(16) 

In addition, using Eq. (16) an average critical distance dk(rx) for the Nk training 
class data can be computed: 

(17) 

where Fcrit is the critical F distribution value at a given significance level 11. 

(typical values of 11. are 0.05 and 0.01) with (Q- Ak) and (Nk- Ak- 1) degrees 
of freedom. Figure 3 illustrates the SIMCA method. 

The training classes are described by two separate one-dimensional Ak = 1 
principle components models. The tolerance region (here shown as a cylinder) 
around each principal components model is constructed on the basis of the class 
critical distance (dk(rx)). Test patterns are assigned to a class if they fall inside 
the class cylinder. 



Pattern Analysis and Classification 

* 

o Training sample (class cq ) 

• Training sample (class ~ ) 

* Test sample 

Fig. 3. Illustration of the SIMCA method (see text for further explanation) 

297 

SIMCA is a well established reference method in the chemometrics litera­
ture [43]. A further improvement to SIMCA is the DASCO method developed 
by Frank [44]. Examples of class modeling in environmental chemistry are, for 
example, in the use of SIMCA for the classification of mass spectra of toxic 
compounds [10] and waste water pollution modeling [14]. 

Bayesian Classification 

In classification, input patterns may not always be classified correctly and con­
sequently will give rise to errors. It is therefore an important characteristic of a 
classifier to be able to estimate the accuracy of classification of future unknown 
input samples. That is, we are interested in minimising the overall error rate for 
a given classifier. The problem can be formulated using the Bayesian approach. 

Mathematically, let Xi be the input pattern i to be classified and let wk(k = 

1, 2, ... , K) be the various possible classes of which Xi might be a member. The 
Bayes' decision rule for minimum classification error is given by 

if P(wklxi) > P(wtlxi) then Xi E wk \:lk -=1- l 
else if P(wJ!xi) > P(wklxi) then Xi E WI \:lk -=1- l 

where P ( Wk I xi) is the conditional probability of a given feature vector Xi for 
a specific class wk or, alternatively, the posterior probability of wk given Xi. 

Therefore, by assigning Xi to the class with maximum posterior probability, the 
error is minimised. In general, for any two neighbouring classes in feature space, 
classes w1 and w2 are separated by the following decision boundary; 

(18) 

To calculate or estimate P ( wk I xi) is, however, difficult because we require 
very large sample sizes to cover all possible values of Xj. We can calculate 
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P ( wk I xi) from the prior probability of class wk. P ( Wk ), and the conditional prob­
ability density of class Wk, p (xdwk), using Bayes theorem: 

(19) 

where P (xi) is given by 
K 

P(xi) = LP(xdwk)P(wk) (20) 
k=l 

which is the probability density of Xi. The P(xi) is class-independent and thus 
can be omitted from the decision rule. We can therefore rewrite Bayes decision 
rule as 

if P(xdwk)P(Wk) > P(xdwi)P(wi) then Xi E Wk Vk =f. l 
else if P(xdwi)P(wi) > P(xdwk)P(Wk) then Xi E WI Vk =f. l. 

We now need to compute distributions, P(xdwk) and P(wk), to determine 
the minimum error rate decision rule. It is very difficult to obtain the optimal 
Bayes decision rule for minimum error classification because, in practice, we 
need large sample sizes to estimate the distributions. If we use random sampling 
we can simply estimate P ( wk) to be the frequency of occurrence of each class 
in the sample. The estimation of the class conditional probability P (xdWk) is 
more difficult, and is the subject of many Bayesian classification methods. Each 
method makes some assumptions with respect to a given class wk and then es­
timates the conditional probability such as by assuming a parametric form for 

P (Xi I Wk) or by estimating it locally around each vector Xi. Methods that assume 
a parametric form for probability estimation are known as parametric methods 

while those that estimate the conditional probability locally without any assump­
tions about the underlying distribution are referred to as non-parametric methods. 
Both parametric and non-parametric methods make assumptions about the under­
lying model for estimating the distributions. If the sampled data set fits the model 
well, then the method will work well. 

In some applications such environmental decision-making, we cannot assume 
that a decision has the same consequences when it is applied to all classes equally. 
For example, misclassifying a contaminated sample as uncontaminated has differ­
ent consequences to misclassifying an uncontaminated sample as contaminated. 
Therefore, we have to introduce a "risk" or "cost" factor to each class member­
ship as a linear combination of the posterior probabilities together with a loss 

factor, Lk1, where we define Lkl to be loss incurred if an object is classified as 
belonging to class wk when in reality it belongs to class w1. The risk taken in 
that Xi belongs to wk is given by 

R(wklxi) = LLkiP(wdxi) 
I 

= LkkP(wklxi) + LLkiP(wiixi) 
k,<l 
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where Lkk are the losses connected with the correct classification (normally we as­
sume no loss if we guess correctly, Lkk = 0). For a two-class problem (k = 1, 2) 
we get 

(21) 

and 
(22) 

The decision rule now becomes 

or 

or, using Bayes Theorem, we get the minimum risk decision rule: 

A particular case occurs when Lu = L22 = 0 and L12 = L21 (i.e. same loss either 
way we guess incorrectly) which is the same as the minimum error decision rule. 
Therefore, the choice of boundary that separates two classes is dependent on the 
purpose of the study and on how we define the loss factor Lkl· 

Parametric Bayesian Classifiers 

There exist various kinds of Bayesian classifiers. In particular, we consider 
Linear Discriminant Analysis, Quadratic Discriminant Analysis, and Regularised 
Discriminant Analysis. 

Linear Discriminant Analysis (LDA) 

Define a classification (function) score for class wk as 

(23) 

then, based on Bayes minimum error decision rule, classification is based on 
finding the largest classification (function) score for a given feature vector Xi. We 
rewrite the above equation by taking the logarithm (any monotonica1ly increasing 
function of gk(Xi) is also a valid classification function): 

(24) 
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Let us assume the underlying model for the conditional probability density, 

P(xdwk), is normal (Gaussian): 

where Q is the dimensionality, Ilk and :Ek are the mean vector and covariance 

matrix of class Wk, respectively. In the context of a classification situation, the 

parameters are not generally known and have to be estimated from the Nk training 

samples for each class Wk. Using the maximum likelihood estimate, we get [45] 

l Nk 

{l.k= M I>i 
k i=l 

A l Nk 

:Ek = M L(Xi- {l.k)(Xi- {l.k)T. 
k i=l 

The classification function becomes (neglecting constants) 

Consider the particular case where all classes have identical class covariance 

matrices (alternatively, we could pool all the data from all classes and compute 

a pooled covariance matrix): 

(27) 

then using Bayes minimum error decision rule, for all patterns on the boundary 

between a pair of classes w, and w2 (where G, (xi)- G2(xi) = 0), we obtain 

(28) 

which is a linear discriminant function of Xi. That is, the resulting boundaries 

between the classes are linear (Q - l )-dimensional hyper-planes. Figure 4 il­

lustrates the linear discrimination technique for the case of a three-dimensional 

pattern space with a training set comprising two training classes. The classes are 

separated by a two-dimensional hyper-plane (decision boundary). Test patterns 

(shown as asterisks) are to be classified. The test patterns are always classified 

in one of the two sub-spaces formed by the hyper-plane. 
Since LDA only needs to evaluate a few parameters, it is less likely to over-fit 

the training data (i.e. over-fitting, or over-specification, occurs when the number 

of parameters to estimate is less than the training set size) and, consequently, it 

has often been the preferred method in high-dimensional settings. Over-fitting can 

give rise to unstable parameter estimates (and thus high variance). The decrease 
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in variance accomplished by using the, pooled covariance matrix is one of the 
reasons for the success of LDA. However, LDA has severe limitations in cases 
where the class covariance matrices differ significantly, or when the population 
means coincide, or when the total sample size is less than or comparable to the 
dimensionality [46]. 

Quadratic Discriminant Analysis (QDA) 

In the case when all classes have different class covariance matrices, that is 

(29) 

the quadratic classification functions of Eq. (26) are used. In that case, the bound­
ary between a pair of classes is no longer a hyper-plane, but a quadratic hyper­
surface. If only two features are involved, the boundary surface will be an ellipse, 
parabola or hyperbola. Figure 5b illustrates the boundary defined by a quadratic 
classification function and the corresponding univariate probability density func­
tions (shown for variable x1 only) with different class covariance matrices for 
the two classes (the example shown is for a bivariate case). A comparison is 
made with LDA (see Fig. 5a). 

One disadvantage of QDA is that it can perform appreciably worse than 
LDA for small sample sizes. Since QDA requires many more parameters (i.e. 
reliable estimates of the class covariance matrices, I:k) to be estimated than 
in the case of LDA, a very large number of training samples are required 
[47]. This is particularly so for situations involving a large number of features 
(i.e. high dimensions) [46]. Further, I:k cannot be inverted in ill-posed cases 
(i.e. the number of training samples Nk in each class WI< is less than the dimen­
sionality). QDA also performs poorly under conditions of non-normality [48]. 
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Fig. 5. Schematic representation of the univariate probability density functions (shown for XI only) 

for two classes WI and w2 and the decision boundary in a bi-variate feature space (XI versus x2) for 

the case of a) a linear classification function, b) a quadratic classification function, and c) the kernel 

density method 

As an example, consider the reef classification problem discussed earlier. 
Based on two classification functions (one for inner reef and one for outer reef) 
and using the middle reef as the test class, we obtain (see Table 2) the following 
correct classification rates (one minus the mis-classification rate). Both LDA and 

QDA gave the same results. The reason is that the sample covariance matrices 
were not significantly different as tested by the Box's M test [34]. 
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Table 2. Classification results for water quality monitoring 

Actual Class Number of Cases Predicted Group Membership 

Inner Reef Outer Reef 

Inner reef 44 32 12 
(72.7%) (27.3%) 

Outer reef 23 5 18 
(21.7%) (78.3%) 

Test cases 49 14 35 
(middle reef) (28.6%) (71.4%) 

Percent of "training" cases correctly classified = 74.63% 

Regularised Discriminant Analysis (RDA) 

Regularised discriminant analysis [ 49] is closely related to QDA in that RDA 
also classifies a test object Xi into the class for which the classification score 
given by 

is minimised. The difference is that RDA makes use of a regularised covariance 
matrix :Ek(A, y) instead. :Ek(A, y) is the result of two successive regularisations 
involving the two new parameters A and y. The first regularisation reduces the 
number of parameters to be estimated by replacing :Ek with a linear combination 
:Ek(A) of the class covariance matrix and the pooled sample covariance matrix: 

(31) 

where 
K K Nk 

Qpooled = L Qk = L L(Xi- Pk)(xi- Pk)T · (32) 
k=l k=l i=l 

N is the total number of training objects and Nk is the number of training 
objects in class wk. The degree of regularisation is controlled by the parameter 
A (0 ::; A ::; 1 ). For A = 0, regularisation results in QDA and for A = 1 it is 
LDA. Increased regularisation (increasing ), ) results in decreased variance, which 
can lead to improved classification performance in small training sample size 
settings. 

The second regularisation addresses the biasing that is inherent in sample­
based estimation of eigenvalues of :Ek. It is well known that, for limited training 
samples, the smallest eigenvalues are estimated too small and the largest eigen­
values are estimated too large. This biasing will result in a classification score 
~(xi) that is seen to be weighted by the smallest eigenvalues. To reduce this 
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bias effect, each class covariance matrix is "shrunk" towards the identity matrix 
multiplied by its average eigenvalue (trace (ik/Q)). That is, 

(33) 

Q is the dimensionality (number of variables) and y (0 ~ y ~ 1) is the regulari­
sation parameter. Applying both regularisations and using tk (A., y) instead of t~, 
the classification score to be minimised becomes 

To obtain values for the regularisation parameters A. and y, an estimation 
procedure based on the training samples has to be undertaken. This is achieved 
by evaluating the resulting classifier for a number of A. and y pairs and choosing 
the values that give the best classification performance [49, 50]. 

RDA is often superior to QDA and LDA in a high-dimensional setting with 
a limited number of training samples. LDA is only able to outperform RDA in 
the case of identical class covariance matrices and with many training samples 
[46]. One might also consider the option of initially performing dimensionality 
reduction by using feature extraction methods (such as Fisher's discriminant plane 
(i.e. Descriptive LDA with only two discriminant functions selected to give a 
two-dimensional plot), Fisher radius transform [51] etc.) and then applying LDA 
or QDA. However, [ 46] shows that, for a wide variety of problems, reducing 
the dimensionality of a particular problem leads to inferior classification results 
compared to those achieved by RDA in the full feature space. 

Non-Parametric Classification 

Non-parametric classification in the Bayesian context has concentrated on the 
estimation of class-conditional probability densities P(xilwk) (k = 1, 2, ... ,K) 
for the test vector Xi using the training objects surrounding i in the pattern space. 
This has given rise to methods such as k-nearest neighbours and kernel (also 
called potential) discrimination. Theory and examples in chemistry can be found 
in the monograph by Coomans and Broeckaert [52]. 

The probability density estimation performed by the kernel function methods 
is a direct procedure so that the complete density function P(xiiWk) is not esti­
mated (in contrast to the parametric methods), but only the probability density in 
the position Xi of each test pattern vector to be classified. The probability density 
in Xi for a given training class Wk containing Nk samples is obtained by creating 
individual kernels around each training sample point Xjk and averaging the Nk 
different kernel influences in the position Xi. The influence of the kernel of Xjk 
on Xi. i.e. the contribution of Xjk to the probability density P(xdwk), is given by 
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<f>(xi> Xjk; u), the kernel function. It means that the class WJc probability density 
is given by 

I Nk 

P(xdWJc) = Q L </>(xi. Xjk; u) . 
Nk rr=l Ur j=l 

(35) 

u is the vector of coefficients determining the smoothness of the kernels and 
consequently the smoothness of the probability density. The kernel function is a 
symmetric function with integral one, and usually non-negative, so it is a proba­
bility density function itself. Different types of kernels have been proposed among 
which the Gaussian is the most used. Figure 6 shows the resulting probability 
density P(xdwk) for the case of a Gaussian kernel function. 

All of the kernel functions depend on a smoothing coefficient u which deter­
mines implicitly to what distance a particular training object exerts its influence in 
the pattern space. To obtain good classification results the choice (optimisation) of 
the smoothing values seems to be more critical, followed by the actual functional 
form of the kernel. Kernel discrimination can lead to flexible decision boundaries 
between classes, more flexible than is the case with the Quadratic classifier. How­
ever, their performance seems to deteriorate quickly in high-dimensional settings 
(i.e. with many variables). Figure 5c illustrates the decision boundary defined 
by a quadratic classification function and the corresponding univariate probability 
density functions with different class covariance matrices for two classes. 

A simple but powerful technique is that of the k-nearest neighbours classifier. 
In the !-nearest neighbour method, a test vector (in a scaled pattern space), is 
classified in the class of the nearest training object using one or other distance 
metric. An extension to this is the k-nearest neighbour method (kNN), in which 
the test vector is assigned to a class according to the so-called majority vote, 
i.e. to the class which is most represented in the set of k nearest training points 
in the pattern space. The kNN method is considered as a reference method and 
used extensively in chemical classifications. Although the method performs well 
in many situations, it gives no data analytical information and little about the 
degree of uncertainty in the classification .. of a test vector. However, the kNN 
can be modified to represent a non-parametric density estimator for Bayesian 
classification [53]. 

X 

Fig. 6. An example probabil­
ity density function generated 
from a sum of Gaussian kernel 
functions 
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Recently, attempts have been made to accommodate the modem non-para­
metric regression methods (mentioned before) including adaptive methods such 
as neural networks (see below) in an approximate Bayesian classification rule 
[21, 22]. Another class of non-parametric methods that can be related to Bayesian 
heuristics are the classification trees machine learning methods (see below). 

Machine Learning-Based Classification Methods 

Much of the research work in traditional pattern recognition undertaken in the 
1960s and 1970s concentrated on the mathematical or computer science aspects 
of pattern information processing. There was an emphasis on Bayesian classifiers 
together with a focus on the asymptotic properties (infinite number of training 
samples) of classifiers and on the problem of finding bounds on error rates for 
determining the adequacy of a given classifier. 

More recently, practical classifier systems based on different paradigms have 
been developed in other scientific disciplines. Most of these paradigms fall into 
the class of non-parametric methods as they make no assumptions on the func­
tional forms of the underlying probability density distribution. They are generally 
based on the idea of specifying a decision boundary, such as a hyper-plane with 
unknown coefficients, and then learning the coefficients of the boundary from the 
available training set as opposed to specifying or estimating the class-conditional 
density function. 

Artificial Neural Networks 

Artificial neural networks (ANN) are dense aggregates of interconnected simple 
computational elements. These networks are inspired by our current understand­
ing of biological neural nets and are employed to undertake complex cognitive 
and computational tasks. Like biological neural nets, ANN perform distributed 
processing, are adaptive (can be trained to produce more desirable outputs), and 
are fault-tolerant (damage to a few computational elements does not significantly 
impair overall performance). 

One of the most seminal developments in the early days of ANN (and, in 
fact, of pattern recognition) was the McCulloch and Pitts' simple model of a 
neuron as a binary threshold unit [54]. McCulloch and Pitts showed that such a 
neuron model was capable of realising any finite logical expression and, when 
connected up as a network, could perform any type of computation that a digital 
computer could (albeit not always so conveniently). 
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The Simple Perceptron 

It was with the model of the simple McCulloch-Pitts neural computational unit 
that, in the early 1960s, Frank Rosenblatt introduced the concept of the perceptron 
that is used as a model for learning to recognise and classify patterns [55, 56]. 
Rosenblatt showed how a neural computational unit with modifiable connections 
could be trained to classify certain sets of patterns. 

The neural unit (see Fig. 7) computes a weighted sum of its inputs from other 
units, and outputs a one or a zero (a two-class problem), Oj, according to whether 
this sum is above or below a certain threshold: 

if (T ~ 0; 
otherwise. 

where x = {xi, x2, .. . xQ} is the input vector. The Win are the connection weights 
which represent the positive (excitatory) or negative (inhibitory) strength of the 
synapse connecting any two given neural units, f is the activation or transfer 
function (a linear or nonlinear function; we consider a binary Heaviside function), 
and (Ji is the threshold of unit i. 

In general, the simple perceptron comprises of a single-layer network of iden­
tical neural computational units. The number of output nodes will equal the num­
ber of pattern classes required in the output vector. Fig. 8 shows an example 
simple perceptron. 

f(a) 
x2 _____.. w i2 

0; I 
_______ __j _____________ _ 

cr 

b 

Fig. 7. a Schematic representation of a neural unit, and b graphical illustration of a hard-limiting 
threshold binary unit 

OM Fig. 8. A single-layer simple perceptron with multiple 
outputs 
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The input is propagated through the units in a feed-forward manner and 
immediately produces the output. As a result of differences among the values 
of the connection weights, different inputs can produce different outputs. 

The classification behaviour of the simple perceptron can best be analysed 
geometrically, by plotting a map of the decision regions formed in the multi­
dimensional space spanned by the Q-dimensional input variables. Consider a 
single output simple perceptron. Here, the perceptron creates two decision regions 
(classes) separated by a (Q - 1 )-dimensional hyper-plane. The equation of the 
hyper-plane, for a given unit i, is given by 

Q 

LWnXn =f) (36) 
n=l 

or in vector notation 
W ·X= Wo (37) 

where it is convenient to implement the threshold as just another weight w0 . If 
we can draw a hyper-plane that separates the two regions, then the problem is 
linearly separable. If an input vector lies on one side of the hyper-plane, the 
perceptron will output 1; if it lies on the other side, the output will be a 0. In 
the general case, if there are several output units (i.e. several classes), we must 
be able to find one such hyper-plane for each output. A two-class example for 
N = 2 is shown in Fig. 9. The linear separability result for a simple perceptron 
is very similar to the case of linear discriminant analysis as discussed above. 
However, in the case of the perceptron, the slope and threshold are not known 
but are learned through an iterative procedure. 

The problem of learning is one of locating the hyper-plane to achieve lin­
ear separability by changing the connection weights. To train the perceptron we 
present each example from the training set and use both the output that we want 
the network to produce ( ti) along with output the network actually does produce 
(oi) to generate a difference, ti - Oj. A simple learning rule, based on Hebb's 
physiological learning rule [57], involves changing the connection weights in a 
way that is proportional to the input activation to the neural unit making the con­
nection. Small input values will cause small changes in the connection weight, 

0 0 
0 

Fig. 9. Linear separability of a simple per­
ceptron, for the case of two classes and 
two variables 
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Fig. 10. The exclusive-OR problem is not linearly sepa­
rable 

whereas large input changes will exert large changes in the weight (perhaps 
"overshooting" the solution vector). Geometrically, changes in the weights corre­
spond to changes in the orientation of the hyper-plane. This learning rule, called 
the delta rule, can be formulated as 

Wnew = Wold + Aw m m m (38) 

where the proportionality parameter 11 is called the learning rate. Initially, the 
weights are assigned random values, usually between 0 and 1. The training sam­
ples are sequentially presented to the perceptron indefinitely until some stopping 
criterion is satisfied. For the simple perceptron it can be shown that, if the prob­
lem is linearly separable, the learning rule converges to weights which achieve 
the desired input-output association in a finite number of steps [58, 59]. The 
perceptron training algorithm is non-parametric since no assumptions are made 
about the sample probability density distribution and no means or covariances 
are evaluated. 

At the time of its introduction, the perceptron created much excitement about 
how future intelligent classification systems could be developed. However, such 
excitement was short-lived as Minsky and Papert [59] noticed that perceptron 
convergence procedure could only be guaranteed for linearly separable functions, 
which most real data did not satisfy. When inputs are not separable or when dis­
tributions overlap, the decision boundaries may oscillate continuously and never 
converge to a stable solution. For example, the disjoint exclusive-OR problem 
cannot be separated by a single straight line (see Fig. 10 ). 

Multi-Layer Perceptron 

To overcome the limitations of the simple perceptron, a multi-layer perceptron 
(MLP) network with one or more intermediate or hidden layers of identical neural 
computational units was devised. The input is propagated through the network 
in a feed-forward manner and immediately produces the output. Layers that are 
neither input nor output are termed hidden layers and make up the MLP's internal 
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Fig. 11. a A two-layer feed-forward perceptron, and b a typical nonlinear (sigmoidal) activation 
function 

representation. Figure 11 shows a two-layer perceptron which includes one hidden 
layer. 

Notice that the activation function in each unit must be nonlinear and differ­
entiable, as a multi-layer linear feed-forward network is equivalent to a single­
layer linear network. 

Although the discriminant capabilities of multi-layer perceptrons were realised 
long ago, no effective training algorithms were available. This was only recently 
overcome with the availability of new learning algorithms. The most well-known 
is the error back-propagation (BP) algorithm or generalised delta rule (60, 61]. 

In the back-propagation algorithm, the network adjusts its weights each time 
it sees an input-output pair. Each pair requires two stages a forward pass and 
a backward pass. The forward pass involves presenting a sample input to the 
network and letting activations flow until they reach the output layer. During the 
backward pass, the network's actual output (from the forward pass) is compared 
with the target (or desired) output, lj, and error estimates Ji are computed for 
each output unit j (for a sigmoidal activation function): 

(39) 

The error estimates of the output units can then be used to derive error estimates 
for the units in the hidden layers: 

Ji = Oj(l- Oj) L Wnibn (40) 
n 

where bn is the error contributed by each unit in the layer immediately above. 
This is done until all errors have been propagated back to the input layer. The 
connection weights can be adjusted by 

(41) 

where Awij(t) is the weight change at iteration rand, as before, '1 is the learning 
rate. The choice of '1 affects the convergence rate of the system. The forward­
backward procedure is repeated for each input-output pair presented to the net-
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work. After the network has seen all input-output pairs, one epoch has been 
completed. Training such a network often requires many epochs. 

Normally, during the process of classification, the class of the input pattern 
is determined by the output neuron with the maximum signal level (above a pre­
determined threshold). Also, the output neuron's signal level, normalised over all 
output neurons, is intuitively used as a measure of the degree of confidence in 
the classification. 

The BP algorithm inherently computes an energy function which the algorithm 
attempts to minimise. This energy function, E, represents the amount hy which 
the output of the net differs from the required output, or the mean-square error 
function: 

E = - ~ "'"""' ""<t · - o · )2 2 LL mJ mJ • (42) 
m j 

Note that the energy minimisation is calculated for all patterns of m (where 
m = 1, 2, ... , N). The dynamics of the minimisation process corresponds to a 
series of weight adjustments which can be visualised as a gradient descent in 
the multi-dimensional weight space. The weight space is generally not smooth, 
but very "hilly", and can give rise to the BP algorithm getting "stuck" in local 
minima thereby leading to suboptimal solutions. Various techniques can be used 
to reduce the possibility of such a scenario occurring. One technique frequently 
used is to perturb the weights by adding random noise. Also, the gradient descent 
minimisation process can be very slow, particularly if '1 is small. This problem 
has been addressed by various authors [62, 63]. A simple, but efficient, technique 
involves introducing a momentum term, Jl, to "push" the weight changes over 
local increases in the energy function and increase the convergence along shallow 
gradients. The weight-update equation is modified to include a contribution from 
the previous time step: 

(43) 

Little is known about the convergence behaviour of the BP algorithm, and 
many practitioners stop the iterative process when some minimum mean-square 
error value is obtained or when a certain proportion of training set patterns are 
sufficiently well classified. Training times are typically longer when complex 
decision regions are required and when networks have a larger number of hidden 
layers [64]. 

Some of the important design issues in building an ANN classifier are to find 
an appropriate network topology (number of hidden layers and number of neurons 
in each layer) and to evaluate the influence of dimensionality and training sample 
size. 

As we stated previously, a single-layer (no hidden layers) MLP-BP with 
a hard-limiting activation function gives rise to a linear classification function, 
i.e. the resulting decision surface is a hyper-plane. With multiple layers and soft­
limiting activation functions, arbitrary complex decision surfaces can be realised 
[65]. Lowe and Webb [66] show that the hidden layers perform feature extraction 
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which maximises class separation, whilst the output layer performs an optimum 
mapping on to the targets. This enables MLP-BP networks to combine feature 
extraction and classification simultaneously, this being one possible explanation 
why such networks have demonstrated to produce good classification over a range 
of problems. Cybenko [67] formally shows that one hidden layer and any con­
tinuous sigmoidal activation function is sufficient to compute arbitrary decision 
boundaries for the outputs. Unfortunately, this result does not tell us how many 
units are necessary nor whether it is possible to learn the weights. Furthermore, it 
has been shown that a one hidden-layer MLP with an infinite number of hidden 
units is sufficient to approximate any posterior probability density function to any 
degree of accuracy. Thus, if convergence in a least-squares sense is achieved, the 
outputs of a MLP-BP network are direct estimations of posterior probabilities 
and the network has the same computational power as the Bayes decision rule 
[68,69]. 

The choice of the exact number of hidden nodes in a MLP-BP network is a 
more complex task. A small number of hidden nodes (significantly less than the 
number of patterns in the training sample) reduces the computational time for 
training, but not too small as it may be difficult to obtain convergence during 
training and to create adequate decision surfaces. A MLP-BP with a large number 
of hidden nodes will have more degrees of freedom and will therefore require a 
reduced accuracy in the values of the weights to achieve the desired classification 
accuracy. However, such a large number of parameters (for a limited training set 
size) may result in the network interpolating the data and producing an increased 
true classification error rate attributable to over-fitting, and therefore exhibiting 
poor generalisation capabilities [70]. Very large training set sizes are then required 
to achieve acceptable performance [71]. Learning theory has begun to establish 
what is possible for the MLP. In particular it has been shown that, for a single 
hidden layer fully connected MLP with W weights, one needs in the order Wfe 
patterns in the training set to expect a generalisation error of less than e [72]. 
Empirical results indicate that, for the case of a single hidden layer, the maximum 
number of hidden nodes should be of the order M x (N + I) [73], where N and 
M are the number of input and output units respectively. Also, Widrow [74] 
suggests a rule of thumb that the training sample size should be of the order of 
ten times the number of weights in a network. 

Increasing the number of features never increases the classification error rate 
of the optimal Bayes classifier (infinite number of training samples). However, 
in the context of finite training sample sizes, a peaking in the classification per­
formance is observed. The additional discriminatory information that is conveyed 
by the additional features is outweighed by the increased true classification error 
due to the poor generalisation ability in the higher dimensional space. This is 
also observed in the design of MLP-BP networks [70]. 

We now consider two example applications of MLP-BP: i) an infrared spec­
tral peak verification system and ii) a simulation of the relative contribution of 
various pollution sources to the pollution of a given ecosystem. Much of what 
follows is drawn from the papers by Wythoff et al. [75] and Karayiannis and 
Venetsanopoulos [76]. 
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There have been many reports on the use of neural networks for the inter­
pretation of spectra. For example, Thomsen and Meyer [77] employed a single 
hidden layer MLP to recognise the NMR spectra of sugar alditols; Borggaard 
et al. [78] implemented various MLP meso-architectures to determine the fat con­
tent of pork meat using NIR spectra and compared the results with techniques 
such as partial least-squares and principal components analysis. Of particular 
interest in spectral interpretation is that of peak verification and peak recogni­
tion. Chemical applications include spectroscopic and chromatographic methods, 
as well as flow injection analysis. The feasibility of exploiting neural networks 
to verify and recognise peak-shaped signals in analytical data was undertaken 
[75]. Here data from the 2 cm- 1 resolution IR spectrum of a vapour-phase 
mixture of tetrahydrofuran, 1,1-dichloroethane, benzene, ethyl-benzene, methylene 
chloride and 1, 1, 1-trichloroethane at concentrations of 3 ppm were used as inputs 
to a single hidden layer MLP. The MLP consisted of 14 input layer nodes rep­
resenting the absorbance values and noise magnitude from the spectrum and a 
number of hidden layer nodes varying from one to nine. Peak verification was 
undertaken by using a window of data points obtained from the peak table pro­
duced by the IR spectrum workstation. A total of 132 patterns were used for 
training the MLP, and an independent set of 189 test patterns were presented 
to the MLP for evaluation. The minimum true mean absolute error between the 
desired and actual MLP outputs of 0.13 was observed for the case of two hidden 
layer nodes. 

In the ecosystem simulation application a simplified river ecosystem situated 
in an industrial environment is assumed, where various potential chemical sources 
are responsible for polluting the ecosystem. Each day, a number (np) of chemical 
pollutants exceeding a normal threshold are detected in the ecosystem and a 
number of wastes from pollution sources ( n s) are released into the ecosystem. 
The presence or absence of a total of n P = 10 chemical pollutants, including 
ammonia, chlorine, cyanides etc., and ns = 6 pollution sources such as, domestic 
sewage, a pulp and paper mill, a metal plating plant etc., measured for a period 
of 15 days are used in the single-layer MLP-BP model. An additional source 
waste pattern is included for the case when there are no chemicals detected in a 
certain pollution source of the ecosystem. The inputs to the MLP-BP consist of 
the pollution pattern of the previous day together with the waste pattern of all 
the pollution sources ofthe next day (a total ofnp(ns+1) inputs). The output of 
the network is the resulting pollution pattern (np outputs). A total of np(ns + 1) 
hidden units are employed. After training the network, the appearance of chemical 
pollutants exceeding a normal threshold every day can then be simulated. The 
relative effect of the pollution sources can be evaluated by testing the performance 
of the network when each one of the pollution sources, or any combination of 
sources, is considered to be active. The network was able to identify the relative 
impact of the pollution sources which were the major contributors to the pollution 
of the river. 

In summary, in the context of classification, neural networks seem to work 
well and tend to be more robust in a variety of applications. They are able 
to handle noisy or incomplete inputs and make no statistical assumptions on 
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the behaviour of the data. The ANN approach is not necessarily the best one 
among all approaches covered here, it just performs well quite often. The major 
disadvantages of neural networks are the long training times required and the 
difficulty in interpreting the connection weights in terms of the classification 
performance. 

Classification Trees 

The primary goal of supervised learning systems is to acquire classification 
or decision rules from a set of training samples, each sample belonging to a 
particular class, and then to assign new unseen samples to these classes. So far, 
the classification techniques that we have presented needed some quite elaborate 
and computationally intensive mathematical procedures to produce the decision 
rules. Also, once training has been accomplished, invoking any of these rules to 
classify an unseen sample will also require some sort of computational facility. 
However, such techniques may, in some cases, be incompatible with the human 
user for various reasons. Firstly, the human use and interpretation of the results 
of such techniques can be problematic because the explanation of the results re­
lies on the mathematical understanding of the techniques. Secondly, it is generally 
accepted that the underlying nature of human reasoning is not a numerical process 
but rather a symbolic process. Human beings understand better simple condition­
action rules of the form "If the concentration of cadmium exceeds 10 ppm, then 
conclude H" or, more generally, in disjunctive normal form of the type "If both 
X and Y are true or Z is true". Finally, in some applications, the pattern feature 
values are categorical. For example, the colour of some object can be red, green, 
or blue. We can always invent ways of converting non-numeric feature values 
into some numeric equivalent. However, in some applications, this may not be 
possible due to the lack of knowledge of how best to specify the conversion or 
due to the large number of categorical features. To address these issues, other 
techniques that are more compatible with human reasoning have been developed. 
These are generally referred to as machine learning methods. Comparable tech­
niques have also been developed by the statistics community [79]. 

One of the most popular machine learning algorithms involves learning a 
decision tree (ID3 and its successor C4 and C4.5) [80]-also referred to as a 
classification tree (CART) [79] or discrimination tree [81]. The basis to the 
construction of classification/ decision trees has been approached in many differ­
ent ways [82-84]. A significant advantage of the decision tree is the ability to 
express the tree as a set of rules and thus provide a procedure for inductive infer­
ence and the acquisition of rules, which humans can easily understand. The tree 
can determine the class membership of any pattern from its feature values inde­
pendently of any a priori information about the functional form of the distribution 
of pattern vectors. 
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A decision tree is generated by hierarchically partitioning the feature space 
by using a series of local searches for good partitions or splits. The construction 
of the tree is formulated in a top-down fashion, starting at the root node, and 
recursively splitting the decision region into two half spaces. This creates a binary 
decision tree (two branches per internal node), although more general decision 
trees can be constructed by using multiple partitions at each node. Note that once 
a node is split no backtracking is permitted, i.e. the decision is never revised. A 
node decision function defines the dividing boundary at a given tree node, where 
each decision function uses only a subset of features (usually a single feature) as 
its argument. In general, the decision function is implemented as a simple hard 
threshold function. To improve the overall decision performance of the tree. a 
heuristic measure of the "goodness" of splitting each node is made in terms of a 
"mutual information gain" criterion or "node impurity" measure. This heuristic is 
implemented as an evaluation function (see later). Once a node is designated as 
a terminal node a decision rule is invoked to assign classification labels to each 
terminal node, usually with a class label that is in a majority over the training 
patterns. 

From a geometric point of view, the result of the tree-growing process is a 
partitioning of the feature space by hyper-planes parallel to the axes of the feature 
space so that the feature space is covered with hyper-rectangular regions (for 
univariate splits). The partitioning of the feature space may also be undertaken 
along hyper-surfaces which are not necessarily parallel to the feature axes; by the 
linear [79, 85] or non-linear [86] combinations of features. A simple perceptron 
[87] or MLP [86] can be used in each tree node for implementing the hyper­
surface decision test. How efficiently these regions cover the data will determine 
the classification performance of the decision tree. 

Classification trees are also related to the multi-layer feed-forward percep­
tron [88, 89]. A binary classification tree is initially constructed from the training 
and, if applicable, test sets. The tree is then "mapped" into a MLP with two 
hidden layers and a single output layer- the first hidden layer relating to the 
number t of non-terminal nodes of the classification tree and the second hid­
den layer corresponding to the t + 1 paths from the root of the tree to each 
terminal/leaf node. This enables a decision tree to be simulated with a MLP, 
thereby avoiding the problem o.f specifYing the number of hidden neural units 
in advance and the problem of slow convergence rates obtained with the back­
propagation algorithm. 

Lead/Cadmium Pollution. As an illustration consider the following example data 
set. Lead and cadmium levels are measured in the teeth of young school age 
children in two regions in North-West Belgium, one data set obtained in an 
urban heavy industrial area 2 Km from a non-ferrous smelting plant (Hoboken) 
and another data set in a seaside rural-urban area (De Haan) [90]. A graph 
of the distribution of a subset of the two data sets for the two features lead 
(Pb) and cadmium (Cd) concentrations, in parts per million (ppm), is shown in 
Fig. 12. Also shown is the resulting simple binary decision tree with two classes-
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Fig. 12. a Example feature space, and b the decision tree 

industrial (I) and rural (R). The terminal (leaf) nodes of the tree correspond to 
the classes and all paths leading to a terminal node is a conjunction of the various 
tests along the path. If there are multiple paths for a given class (i.e. a class has 
more than one terminal node), then the paths represent disjunctions. In the above 
example we have acquired the following rules from the data set: 

if [Pb] < 1480 ppm AND [Cd] < 7.5 ppm then "rural area" 

and 
if [Pb] :;::: 1480 ppm OR [Cd] :;::: 7.5 ppm then "industrial area" . 

As mentioned previously, to obtain the best tree an evaluation function is 
required at each stage of the recursive process to measure the "goodness" of 
splitting a given frontier node, t. The evaluation function tries to reduce the 
degree of randomness (or "impurity") in the selection of features in the current 
node and future nodes. There exists a variety of splitting functions; two of the 
most popular ones are the Gini function [79] 

K 

i(t) = LP(wklt)P(wdt) 
k,O l 

and the entropy function (i.e. information content) [80] 

K 

i(t) =- LP(wkit)logP(wklt) 
k 

(44) 

(45) 

where P(wklt) is the probability of class k(k = l,2, ... ,K) estimated from the 
case frequencies at the tree node t to be split. 

To decide on which feature to split at a given tree node, the function evaluates 
the degree of randomness prior to splitting on a given feature and compares it 
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with the randomness after splitting. That is, we calculate (assuming VF values 
for the given feature F) the gain criterion 

VF 
Lli(t; F) i(t)- L P(SvFit)i(tvF) (46) 

VF=i 

where P( SvF It) is the probability distribution of data points for a given feature 
value VF, estimated from the case frequencies for a given VF at the given tree node 
t. This is done for all possible features at node t. The feature which provides, 
for the case of the entropy measure, the maximum gain in information content 
is the feature chosen for splitting. Detailed examples are given in [79-81]. 

We have assumed that the splitting is performed in the case of categorical 
(unordered) features. However, for continuous (ordered) features, splits for all 
values found in the training sample will need to be considered [91]. For ordi­
nal (discrete, ordered) values the discrete values (e.g. very cold, cold etc.) are 
mapped onto integers and then treated as continuous features. 

For a given set of training patterns a tree can grow such that every terminal 
node will contain members of only one class. This will yield a 100% classification 
rate on the training patterns and corresponds to "noise fitting". This 0% apparent 
error rate is not the true error rate, which is most likely to be larger. That is, the 
predictive classification power of the tree is lower than is apparent, corresponding 
to the situation of "over-fitting". Although the more complex (larger) tree reflects 
the true structural relationships that exist in the training data, it will also reflect 
the noisy patterns that may be present in the training data set. Therefore, the 
larger tree will most often perform worse on (new) test data. A smaller tree will 
typically have a larger apparent error rate but a smaller true error rate than a 
larger fully grown tree. Also, the true error rate of the smaller tree is no less than 
half the true error rate of the fully grown tree [16]. It is therefore important to 
decide when to stop splitting any node to avoid over-fitting (see, however, [92] 
for a counter-argument). In general, the problem of growing the smallest decision 
tree that correctly classifies the training data is known to be computationally 
intractable (see, for example, [93]). We therefore rely on heuristic approaches 
to approximate this. There are various ways for determining when node splitting 
is no longer significant and should be stopped, such as, the standard statistical 
x2 test and error reduction. In general, such single node, lookahead threshold­
based tests are not the best techniques to avoid over-fitting because determining 
the optimal threshold is difficult- a threshold that is too low may result in little 
improvement in tree size and a threshold that is too high may terminate splitting 
too early, risking under-fitting, which is potentially worse than over-fitting. 

A superior approach involves pruning the tree given a fully expanded tree 
grown (grown with a given set of training samples) [79]. The tree can be 
selectively pruned upwards from the terminal nodes to find a best sub-tree hav­
ing the lowest true error estimate. There are several methods to determine the 
best pruned sub-tree. One simple technique, called reduced-error pruning [94], 
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involves dividing the samples into a training and test set, growing the full tree on 
the training set (as before), and pruning using the test set. A branch of the tree 
is pruned if the misclassification error rate on the test set is reduced. From all 
the nodes, choose the one with the largest reduction in the misclassification error 
rate as the sub-tree to prune. This process continues until no improvement in the 
error rate is observed (or when the error rate actually increases). The pruning 
process then stops. This works reasonably well if the sample size is large, the 
main problem being that the final pruned tree is designed based on both training 
and test sample sets. Also, it is possible to obtain a number of sub-trees with 
the same reduction in error rate and a heuristic is normally needed to choose the 
most appropriate sub-tree to prune. Another technique, called cost-complexity or 
error-complexity pruning [79], takes into account both the error rate and the 
complexity (size) of the tree. It is based on generating a finite number of sub­
trees with progressively fewer terminal nodes by finding the weakest link in the 
tree. The weakest link in a tree is the node t (in the sub-branch T1 of the fully 
grown tree T0 formed by node t) that can be deleted with the minimum value 
of g(t): 

g(t) = (R(t)- R(Tt))/(ITtl- 1) (47) 

for all nodes t E To, where I T1 I is the number of terminal nodes in T1, and where 
R(t) and R(T1) are the apparent error rates of the node t and sub-branch T1, 

respectively. The weakest link in T0 is pruned and the process is repeated. The 
result is a finite sequence of sub-trees To, T1, T2, ... , rr0 (rr0 is the root of To). 
The final step is to select the best sub-tree. In the case of large samples, the 
best sub-tree can be determined by evaluating the set of trees using a set of 
test samples and choosing the sub-tree with the minimum error rate. For smaller 
sample sets, re-sampling is more appropriate [79]. Mingers [95] presents empirical 
comparisons of several pruning methods. 

In many applications such as environmental sciences, one or more features 
could be missing or unknown in a data set. This could occur in situations where 
specific values were not recorded in a particular measurement, or were not rele­
vant etc. This can be a problem with decision trees as the missing feature may 
be involved in a test in one of the nodes, with the result that a single sample 
can follow multiple branches in the tree. Usually missing feature values can be 
filled in simply by using the most probable or median value. Breiman et al. [79] 
use an additional feature evaluation splitting test at each node in the tree as a 
substitute test, called a surrogate split, which is most similar to the original split 
test. 

Using the two-class Pb/Cd pollution example presented above (with a total of 
39 samples), we applied the C4.5 decision tree method and obtained an overall 
misclassification error rate of 15.8% (based on ten-way cross-validation). The 
rules obtained were as follows. 

If [Pb] > 1429 ppm then "industrial area" 
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and 

If [Pb] ::; 1429 ppm and 

[Cd]::; 12.16 ppm then "rural area" 

[Cd] > 12.16 ppm then "industrial area" . 

As we have seen, decision trees have the advantage of being more compatible 
with human reasoning, have the ability to handle categorical data, are able to 
classify new data efficiently, demonstrate good generalisation capabilities, and 
provide a means of constructing a tree that avoids under-fitting or over-fitting. 
They are also robust in the presence of outliers and misclassified points [79], are 
able to handle multivariate splits (by a linear combination of features), and can 
cope with continuous classes. 

However, one disadvantage includes the difficulty of performing incremental 
updates to the decision tree (at present all training samples must be available 
during the growth/pruning stages of the tree). 

Performance Comparison of Multi-Layer Perceptrons 
and Classification Trees 

A number of works have been published comparing the performance of decision 
trees and other classification methods including, multi-layer perceptrons, linear 
and quadratic classifiers, nearest-neighbour etc. [16, 96-98]. 

Atlas et al. [96] compared empirically the MLP-BP and CART methods using 
three different problems in power systems load forecasting and power system 
security, and in vowel identification. MLP-BPs were found to have a better 
classification performance (using an independent test set) than CART, although 
the differences were not statistically significant except in the case of the power 
security problem. CART's performance improved when multivariate splits (linear 
combinations of features) were used. 

Brown et al. [97] also compared the two methods on three problems in radar 
emitter data (with few features but a large sample size), modem/transceiver data 
(many features but a limited training sample size), and digit recognition data 
with binary features. The MLP-BP performed well on large data sets with a 
selected subset of features, whereas CART effectively handled problems with a 
large number of (possibly not all relevant) features and a small sample size. This 
points to the advantage of CART for variable selection. 

Weiss and Kulikowski [16] provided an extensive comparative classification 
performance analysis of decision trees, MLP-BP and statistical classifiers. A total 
of four data sets (three of which involved medical diagnosis) were used. Two of 
the medical data sets were average-to-high dimensional and consisted of a large 
number of training samples. An optimal number of hidden units based on the 
minimal classification error rate was calculated for the application of the MLP-BP 
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to each data set. Classification error rate was obtained using either independent 
test sets or, in the case of small sample sizes, cross-validation. The decision tree 
methods (CART and C4) performed the best, followed by the MLP-BP method. 
Overall, the quadratic classifier performed the worse. 

In summary, decision tree methods and MLP-BP produce comparable error 
rates. However, decision trees do well with problems that do not have a small 
ratio of the number of features to the training sample size, whereas MLP-BP 
performs well on problems with large amounts of data and a small number of 
features. Both CART and MLP-BP are able to approximate nonlinear decision 
boundaries but CART, with univariate splits, constructs classification regions with 
"ragged" boundaries whereas MLP-BP, owing to the fact that a single point 
in input space can affect all units, constructs smooth boundaries. Both decision 
tree methods and MLP-BP are capable of handling over-fitting/under-fitting by 
pruning (in the case of decision trees) or by cross-validation techniques. Decision 
trees are fast to train, as compared with MLP-BP networks, and are easier to 
interpret (with rule acquisition) than MLP-BP. MLP-BP networks are good for 
generalisation (i.e. high predictive power) [98], are generally less susceptible to 
missing values, and are fault-tolerant. 

Software for Pattern Classification 

Many software packages that run under different operating systems are available 
for the purposes of pattern classification. These include SPSS, S-Plus, SAS, etc. 
Most of these packages run under MS-DOS, Unix and, more recently, under 
MS-Windows. Each package will provide an underlying operating environment 
(menu-driven interface, file input/output, output display etc.), some pre-processing 
functions and a selection of classifiers to choose from. The larger packages tend to 
be generic in nature (i.e. provide a basic functionality which would satisfy many 
applications). Specific software modules can be incorporated as the user requires 
them. Many applications, however, would only use a small subset of the package 
and, in many cases, would not provide all of the application-specific functionality. 
Several packages specifically designed for chemometrics also include one or more 
classifiers e.g. PARVUS [99], ARTHUR [32], SIRIUS [100], SIMCA 4R [101], 
and more recently SCAN [102]. Also, there is often a large variation in the 
quality of packages (here measured in terms of the user-interface, output graphics 
etc.). In many cases, the data display and user-interface can be quite primitive 
(e.g. 2-D and 3-D interactive graphics facilities are rarely provided). Some new 
software packages, offering better user-oriented facilities and making available 
applications-specific software modules are being developed (e.g. PARIS [50]). 
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Conclusions 

Various pattern classification techniques used in the context of environmental 
chemistry have been presented. Both parametric and non-parametric Bayesian 
classifiers have been outlined, as well as artificial intelligence-based techniques 
such as artificial neural networks and classification trees. Environmental appli­
cations were used to illustrate the various classifiers. The implementation of a 
given classifier is very much dependent on the application under consideration­
a classifier may perform well in the context of one application but may give poor 
results in another. Therefore, it is important that the environmental scientist makes 
a judicious selection of classifiers (usually made on the basis of results obtained 
from data pre-processing) for a given application. The choice of a particular 
classifier depends on many factors including the dimensionality, amount of noise, 
class distribution, number of training and test samples, presence of outliers etc. 
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