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CHAPTER 1

INTRODUCTION

A hand is considered as an agent of human brain and is the most intriguing and ver-
satile appendage to the human body. Over the last several years, attempts were made
to build a prosthetic/robotic hand to replace a human hand to fully simulate the var-
ious natural/human-like operations of moving, grasping, lifting, twisting, and so on.
Replicating the human hand in all its various functions is still a challenging task due
to the extreme complexity of a human hand, which has 27 bones, controlled by about
38 muscles to provide the hand with 22 degrees of freedom (DOFs), and incorporates
about 17,000 tactile units of four different types [1, 2]. Parallels between dextrous
robot and human hands were explored by examining sensor motor integration in the
design and control of these robots through bringing together experimental psycholo-
gists, kinesiologists, computer scientists, and electrical and mechanical engineers.

In this chapter, we present introductory material on relevance to military, overview
of control strategies, fusion of hard and soft control strategies, and summary of the
remaining chapters.

Fusion of Hard and Soft Control Strategies for the Robotic Hand, By C.-H. Chen and D. S. Naidu 
© 2017 by the Institute of Electrical and Electronic Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Background

The proposed book is an outgrowth of the interdisciplinary Biomedical Sciences
and Engineering (BMSE) research project exemplifying The Third Revolution: The
Convergence of Life Sciences, Physical Sciences, and Engineering1 [3–6]. It is to
be noted that the book Fusion of Hard and Soft Control Strategies for the Robotic
Hand basically focuses on the robotic hand applicable to prosthetic/robotic and non-
prosthetic applications starting from industrial [7], operation in chemical and nuclear
hazardous environments [8, 9], space station building, repair and maintenance [10,
11], explosive and terrorist situations [12] to robotic surgery [13].

1.1 Relevance to Military

During the recent wars in Afghanistan and Iraq, “at least 251,102 people have been
killed and 532,715 people have been seriously wounded” [14]. Further, in the United
States, the Amputee Coalition of America (ACA) [15] reports that there are approx-
imately 1.9 million people living with limb loss, due to combat operations (such as
con icts and wars), and non-combat operations such as accidents, or birth defects.
According to a study of the 1996 National Health Interview Survey (NHIS) pub-
lished by Vital and Health Statistics [16], it is estimated that one out of every 200
people in the United States has had an amputation. That is, one in every 2,000 new
born babies will have limb de ciency and over 3,000 people lose a limb every week
in America. By the year 2050, the projected number of Americans living with limb
amputation will become 3.6 million [17].

The following documents reveal the intense interest by military in the area of
smart prosthetic/robotic hand.

1. First, according to [18], recognizing that “arm amputees rely on old devices”
and that the existing technology for arm and hand amputees was not changed
signi cantly in the past six decades, the Defense Department is embarking on a
research program to “fund prosthetics research” according to [19] to revolution-
alize upper-body prosthetics and to develop arti cial arms that will “feel, look
and perform” like a real arm guided by the central nervous system.

2. According to [20, 21], Bio-Revolution is one of the eight strategic research
thrusts that DARPA is emphasizing in response to emerging trends and national
security. In particular, the Human Assisted Neural Devices program under Bio-
Revolution will have “immediate bene t to injured veterans, who would be able
to control prosthetics...” A related area of interest in Bio-Revolution is Cell and
Tissue Engineering.

3. Next, according to Defense Science Of ce (DFO) of DARPA [22], emerging
technologies for combat casualties care with dual usage for both military and

1The First Revolution: Molecular and Cellular Biology and The Second Revolution: Genomics
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civilian medical care, focus on programs in Revolutionizing Prosthetics, Hu-
man Assisted Neural Devices, Biologically Inspired Multi-functional Dynamic
Robotics, and so on. In particular, according to [23], “today on of the most dev-
astating battle eld injuries is loss of a limb... at DARPA, the vision of a future
is to ... regain full use of that limb again...”

According to an article that appeared in IEEE Spectrum issue of June 2014, “Fifty
years out, I think we will have largely eliminated disability” — Eliza Strickland [24].
The robotic hand, in addition to using it for prosthetic applications, is highly useful
for performing various operations that a real human hand cannot perform without
reaching a fatigue stage and especially for handling of hazardous waste materials
and conditions.

Finally, an IEEE video on overview of how engineers are solutionists, poses
“What if prosthetics were stronger and more accurate than the human body?” [25]

1.2 Control Strategies

1.2.1 Prosthetic/Robotic Hands

Arti cial hands have been around for several years and have been developed by var-
ious researchers in the eld and some of the prosthetic/robotic devices developed are
given below (in chronological order) [2, 26].

1. Russian arm – [27–29]

2. Waseda hand – [30]

3. Boston arm2 – [31]

4. UNB hand (University of New Brunswick) – [32–34]

5. Hanafusa hand – [35]

6. Crossley hand – [36]

7. Okada hand – [37]

8. Utah/MIT hand (University of Utah/Massachusetts Institute of Technology) –
[38–40]

9. JPL/Stanford hand (Jet Propulsion Laboratory/Stanford University) – [41, 42]

10. Minnesota hand – [43]

11. Manus hand – [44, 45]

2The “Boston Arm,” project involved the Harvard Medical School, Massachusetts General Hospital, the
Liberty Mutual Research and Rehabilitation Centers, and MIT
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12. Kobayashi hand – [46]

13. Rovetta hand – [47]

14. UT/RAL hand – [48]

15. Dextrous gripper – [49]

16. Belgrade/USC hand (University of Belgrade/University of Southern California)
– [50]

17. Southampton hand (University of Southampton, Southampton, UK) – [51]

18. MARCUS hand (Manipulation And Reaction Control under User Supervision)
– [52]

19. Kobe hand (Kobe University, Japan) – [53]

20. Robonaut hand (NASA Johnson Space Center) – [54]

21. NTU hand (National Taiwan University) – [55]

22. Hokkaido hand – [56]

23. DLR hand (Deutschen Zentrums für Luft- und Raumfahrt-German Aerospace
Center) – [57, 58]

24. TUAT/Karlsruhe hand (Tokyo University of Agriculture and Technol-
ogy/University of Karlsruhe) – [59]

25. BUAA hand (Beijing University of Aeronautics and Astronautics) – [60]

26. TBM hand (Toronto/Bloorview MacMillan) – [61]

27. ULRG System (University of Louisiana Robotic Gripper) – [62]

28. Oxford hand – [44]

29. IOWA hand (University of Iowa) – [63]

30. MA-I hand – [64]

31. RCH-1 (ROBO CASA hand 13) – [65]

32. UB hand (University of Bologna) – [66]

33. Ottobock SUVA hand – (www.ottobock.co.uk)

34. Northwestern University system – [67]

35. SKKU Hand II (Sungkyunkwan University, Korea) – [68]

3The Italy–Japan joint laboratory for Research on Humanoid and Personal Robotics

http://www.ottobock.co.uk


CONTROL STRATEGIES 5

36. Applied Physics Laboratory (APL) at Johns Hopkins University (JHU) – [23,
69, 70]

and some of the commercial web sites for prosthetic/robotic devices are

1. Sensor Hand Speed from Ottobock (www.ottobock.co.uk),

2. VASI (Variety Ability Systems Inc.), a company of the
Otto Bock Group (http://www.vasi.on.ca/index.html),

3. Utah Arm from Motion Control (www.utaharm.com),

4. The i-LIMB Hand from Touch Bionics (www.touchbionics.com), and so on.

A very useful comparison table between several hands listed above and human hand,
adapted from [2, 26], is updated and shown in Table 1.1.

However, about 35% of the amputees do not use their prosthetic/robotic hand
regularly according to [71] due to various reasons such as poor functionality of the
presently available prosthetic/robotic hands and psychological problems. To over-
come this problem, one has to design and develop an arti cial hand which “mimics
the human hand as closely as possible” both in functionality and appearance.

There are a number of surveys, and/or state-of-the-art articles that appeared over
the years on the subject of myoelectric prosthetic/robotic hand including the work in
USSR (Russian) given by [28] and some of them are given by references [2, 72–84].

1.2.2 Chronological Overview

An overview of the literature on prosthetic/robotic hand technology, conducted by
the authors [85, 86] is brie y summarized in the next Section 1.2.3. This overview,
focusing on recent developments and continuously being updated, is intended to sup-
plement the already existing excellent survey articles [2, 79, 81, 87, 88]. Further, this
overview is not intended to be an exhaustive survey on this topic, and any omissions
of other works are purely unintentional.

Up to 1970
Electromyographic (EMG) signal is a simple and easily obtainable source of in-

formation about the various movements to be used for arti cial/prosthetic hands. The
EMG extraction using surface electrodes is a very attractive method from the point
of view of the user compared to implants requiring surgery. Research activity in the

eld of prosthetic/robotic limbs was initiated by United States National Academy of
Sciences in response to the needs of a large number of casualties in World War II
[89]. It was rst proposed by [90, 91] the concept of EMG signals for the control
of a prosthetic/robotic hand for amputees. A proportional (open-loop) control sys-
tem, in which the amplitude of the hand motor voltage and hence its speed and force
measured from strain gauges varies in direct proportion (linearly) to the amplitude
of the EMG signal generated by the prosthetic/robotic hand, was rst reported by
[92, 93]. In addition, the system added force and velocity feedback controls, so the

http://www.ottobock.co.uk
http://www.vasi.on.ca/index.html
http://www.utaharm.com
http://www.touchbionics.com
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Table 1.1 Comparison of Human Hand with Arti cial Hands: Robotic and
Prosthetic/Robotic Hands: Force Indicates Power Grasp Speed Indicates the Time Required
for a Full Closing and Opening; E: Stands for External; I: Stands for Internal

Size No. of No. of No. of No. of Weight Force Speed Controls

(Norm) Fingers DOFs Sensors Actuators (gms) (N) (sec)

Human hand 1.0 5 22 17,000 38(I+E) 400 300 0.25 E

Russian arm 5 3 1 147

Waseda hand

UNB hand

Hanafusa hand

Crossley hand

Utah/MIT hand 2.0 4 16 16 32(E) - 31.8 - E

JPL/Stanford hand 1.2 3 9 - 12(E) 1100 45 - E

Minnesota hand

Kobayashi hand

Rovetta hand

UT/RAL hand

Dextrous gripper

Belgrade/USC hand 1.1 4 4 23+4 4(E) - - - E

Southampton hand 1.0 5 6 - 6(E) 400 38 5 E

MARCUS hand 1.1 3 2 3 2(I) - - - I

Kobe hand

Robonaut hand 1.5 5 12+2 43+ 14(E) - - - E

NTU hand 1 5 17 35 17(E) 1570 - - E

Hokkaido hand 1 5 17 35 17(E) 1570 - - E

DLR hand II 1 5 7 - 7(E) 125 - - E

TUAT/Karlsruhe hand 1 5 17 - 17(E) 120 12 0.1 E

BUAA hand 4 2

TBM hand

Oxford hand

IOWA hand

MA-I hand

Robo Casa hand-1 1 5 16 24 6(E+I) 350 40 0.25 E

Ottobock SUVA 1 3 1 2 1(E) 600 - - I

UB hand

Hokkaido hand 1 5 7 - 7(E) 125 - - E

Northwestern

SKKU Hand II 1.1 4 4 - 3 900

APL-JHU System
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users could feel more natural to utilize this device. An adaptive control scheme was
developed by [94] for a Southampton Hand.

1971–1979
The work reported by [32] studied the effect of sensory feedback based on semi-

conductor strain gauges on either edge of thumb of the prosthetic/robotic hand to
adjust the stimulus magnitude to target value and avoid dropping or crushing ob-
jects for control of a prosthesis and found this acceptable for patients. When the
strain gauges received the stimulus, the system ampli ed and transferred the signals
to comparator, and then the comparator modi ed the range of amplitude of stimu-
lus to the level that the users needed. However, the device with feedback is two or
three times larger than the normal hand. A hierarchical method consisting of analyt-
ical control theory such as performance-adaptive self-organizing control algorithm
and arti cial intelligence using fuzzy automaton was presented by [95] to drive a
prosthetic/robotic hand.

1980–1989
In providing a historical perspective, the contribution by [72] presented the sta-

tus of the closed-loop (feedback) control principles for the application of pros-
thetic/robotic devices, three concepts relating to supplemental sensory feedback, ar-
ti cial re exes, and feedback through control interfaces were discussed and it was
concluded that “we have not moved very far in the last 65 years in the clinical appli-
cation of these concepts.” A statistical analysis involving the study of zero crossings,
second to fth moments, and correlation functions and pattern classi cation of EMG
signals was given by [96]. A probabilistic model of the EMG pattern was formulated
in the feature space of integral absolute value (IAV) to provide the relation between
a command, represented by motion and speed variables, and the location and shape
of the pattern for real-time control of a prosthetic/robotic arm as given in [97]. Using
kinematic relationships for dynamic model of ngers, multi-variable feedback con-
trol strategies using pole assignment in frequency domain were employed by [42]
to guarantee local stability for controlling one nger of the JPL/Stanford hand. The
work in [42] produced the dynamic models of three ngers (thumb, index, and mid-
dle) and three joints rst, and then used Laplace transform to work in frequency
domain. To get a guaranteed stability of control system, the roots/poles had to be
located in the left half plane. Hence, they could get a desired steady movement of

ngers by controlling the positions of the roots. The works reported by the group
[98, 99] were one of the rst groups who investigated various aspects such as kine-
matics, prehensility, dynamics, and control of multi- ngered hands manipulating
objects of arbitrary shape in three dimensions.

1990–1999
Design, implementation, and experimental veri cation of an improved cybernetic

elbow prosthesis was presented in [100, 101] that mimics the natural limb to both
internal (voluntary) inputs from the amputee and external inputs from the environ-
ment. The work in [102] considered a dextrous hand employing a systematic ap-
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proach to achieve the object stiffness control by actuator position control, tendon
tension control, joint torque control, joint stiffness control, and Cartesian ngertip
stiffness control. The work by [75] conducted a survey of 33 patients wearing the
proportional myoelectric hand grouped into three categories based on previous ex-
perience with a terminal device: digital (on–off) myoelectric hand, body-powered
terminal device, and no terminal device. The survey resulted in that the group of pa-
tients having experience with digital hand “were most impressed with proportionally
controlled hand,” because it has the advantages: comfortable, cosmetic acceptance,
more natural, superior pinch force (11–25 lb) compared to voluntary opening (7–8
lb), a greater range of function but less energy, sensory feedback, force feedback,
and short below-elbow.

The research work in [103] developed three tests for evaluation of input–output
properties of patient control of neuroprosthetic hand grasp, which compensates or
enriches the function of a damaged peripheral nervous system: rst test for static
input–output properties of the hand grasp, second one for control of hand grasp out-
puts while tracking step and ramp functions, and nally to obtain the input–output
frequency response of the hand grasp system dynamics to estimate the transfer func-
tion using spectral analysis. Each test used visual feedback when the users controlled
the grasp force and grasp position tracking of the hand. It was shown in [104] that the
myoelectric signal (MES) is not random during the initial phase of muscle contrac-
tion thus providing a means of classifying patterns from different contraction types.
The means is to establish the 60 records of an isometric contraction of the subjects
and then produce some anisometric contraction types, like exion and extension.
This information was useful in designing a new multi-function myoelectric control
system using arti cial neural networks (ANNs) for classifying myoelectric patterns.
Additionally, the hidden layer size, segment length, and EMG electrode positions
were studied. See related works in [105–108] on multi-functional myoelectric con-
trol systems using pattern recognition methods for MES extraction and classi cation.
The control philosophy of a multi- ngered robotic hands for possible adaptation and
use in prosthetics and rehabilitation was discussed by [109–111] with respect to the
Belgrade/USC robot hand by [50], called PRESHAPE (Programmable Robotic Ex-
perimental System for Hands and Prosthetics Evaluation), which estimates a system
that translates task commands to motor commands using pressure sensors, force sen-
sors, and pressure feedback which is very useful to detect small contact forces.

Using the dynamic model of the nonlinear neuromuscular (motor servo) control
system of human nger muscles including mechanical properties (such as viscoelas-
ticity) of the muscle and stretch re ex, a surface-based myoelectrically controlled
biomimetic prosthetic/robotic hand (called Kobe hand) with three ngers—thumb,
index, and middle ngers, was developed at Kobe University, Japan, by [53] with
a system consisting of EMG signal processing unit, the dynamic model, positional
control unit, and the prosthetic/robotic device. A survey of four important proper-
ties of dexterity, equilibrium, stability, and dynamic behavior relating to autonomous
multi- ngered robotic hands was presented in [76]. An interesting aspect of this lit-
erature survey is a series of tables relating to existing multi- ngered robotic hands,
force closure, dexterity in kinematically redundant robotic hands, equilibrium, in
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robotic grasp, and stability. As reported in [112], an intelligent prosthesis control
system, developed by Animated Prosthetics, consists of two parts: the animation
control system (ACS) residing in prosthesis and a remote prosthesis con guration
unit (PCU) capable of on/off to variable speed/grip. Dynamic control of two arms
to manipulate cooperatively an object with rolling contacts was addressed by [113]
using a nonlinear feedback control methodology that decouples and linearizes the
system.

A sensory control system based on force-sensing resistor (FSR) was developed
by [114] at The National Institute for Accidents at Work (INAIL), Bologna, Italy, to
control the strength of the grip on objects for a commercial prosthetic/robotic hand
having two main functions: the automatic search for contact with the object and
the detection of the object possibly slipping the grip by involuntary feedback (force
sensors and slipping sensors). Further, automatic tuning of control parameters of
prostheses was investigated by [115] using fuzzy logic (FL) expert systems resulting
in a software package: microprocessor controlled arm auto tuning. The automatic
tuning software works as follows: the client connects the prosthesis hardware, the
program needs both sensor signals as client input, the program combines the above
qualitative and quantitative information stored in the FL database to calculate the
prosthesis parameter values, and the program enables the new parameter values to
be down-loaded into the prosthesis control system memory. Dynamic modeling of
a robotic hand was proposed in [116] using a hybrid approach with discrete event
aspect of grasping and continuous-time part with a variable structure impedance
control algorithm. A novel on-line learning method was reported by [56] for pros-
thetic/robotic hand control based on EMG measurements with a system consisting
of three units: analysis unit for generating feature vectors containing useful informa-
tion for discriminating motions from EMG signals, an adaptation unit for adapting
to the amputee’s individual variation and for discriminating motions from the fea-
ture vector and at the same time generating the necessary control commands to the
prosthetic/robotic hand, and a trainer unit for directing the adaptation unit to learn in
real time based on the amputee’s teaching signal and the feature vector. The work by
[114] built a sensory control system based on the FSR for an upper limb prosthesis
and an optical sensor for detecting movement. The prostheses produced were of the
“all or nothing” (opening or closing) and proportional control type (the relationship
between force and EMG signal is linear). For traditional control, it used voluntary
(visual) feedback, but the users had to pay good attention. This work developed an
involuntary feedback control which uses two kinds of sensors, strength and slipping
sensors. If the prosthesis hand is slipping, the control system automatically orders
the actuator of the prosthesis to increase the grip strength. On receiving the EMG
signal, the hand begins a closing action and goes on closing until the FSRs produce
a signal that is greater than or equal to a “contact threshold” value, and then it stops,
because the object has been grasped with the required strength of grip. The automatic
grip mechanism is very useful in grasping delicate objects.

The investigation by [117] showed that the proposed neuro-fuzzy classi er known
as Abe–Lan network, is able to identify correctly all the EMG signals related to
different movements of human hand. A highly anthropomorphic human hand, called
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Robonaut Hand consisting of ve ngers and 14 independent DOFs, was built at
NASA Johnson Space Center to interface with extra-vehicular activity (EVA) crew
interfaces onboard International Space Station (ISS), as reported by [54].

2000–2007
In [118], estimating muscular contraction levels of exors and extensors using

neural networks (NNs), a new impedance control technique [119] was developed
to control impedance parameters such as the moment of inertia, joint stiffness, and
viscosity of a skeletal muscle model of a prosthetic/robotic hand. An overview of
dextrous manipulation was provided by [78] with an interesting time-line chart for
the development of robotic dextrous manipulation during the period 1960–2000. An
excellent survey appears in [77] summarizing the evolution and state of the art in the
robotic hands focusing mainly on functional requirements of manipulative dexterity,
grasp robustness, and human operability. Also, the work by [120] exploited the non-
holonomic character of a pair of bodies with regular rigid surfaces rolling onto each
other, to study the constructive controllability algorithm for planning rolling motions
for dextrous robot hands. A control system architectures was proposed in [121, 122]
with a feedforward loop based on EMG measurements consisting of a low-pass lter
and NN to provide the actual torque signal and a feedback loop based on desired
angle consisting of a proportional-derivative (PD) controller to provide the desired
torque signal and the error signal between these torques drives the prosthetic/robotic
hand to achieve the desired angle while the NN learns based on feedback error.

This work reported by [123] studied nger extension, external control, overhead
reach, and forearm pronation. For nger extension, they used two electrodes: one
placed between the second and third metacarpals and the other between third and
fourth metacarpals. They could provide full extension of the index, long, and ring

ngers. For external control, a new form of control was developed by using retained
voluntary wrist extension to control grasp opening and closing. Overhead reach is
provided by stimulation of the triceps muscle, so elbow position is controlled by
voluntary activation of biceps as an antagonist. As for forearm pronation, the main
issues are an increased number of stimulus channels to allow stimulation of the n-
ger intrinsic muscles, triceps, and forearm pronator, an implanted control source,
bidirectional communication between sensor and body, reduced size, and reduction
of all external cables. The work by [2] presents a review of the traditional methods
for control of arti cial hands using EMG signal, in both clinical and research areas
and points out future developments in the control strategy of the prosthetics, in par-
ticular advocating neuroprosthesis with biocompatible neural interface for providing
sensory feedback to the user leading to electroneurographic (ENG)-based control
in place of EMG control. Collaboration between University of Southampton and
University of New Brunswick (UNB) by [34] resulted in a hybrid control system
using a multilayer perceptron (MLP) ANN as a classi er of time-domain features
set (zero crossings, mean absolute value, mean absolute slope and trace length) ex-
tracted from MESs and a digital signal processor (DSP) controlling the grip pressure
of the prosthetic/robotic hand without visual feedback (voluntary feedback). Design
and development of an underactuated (the number of actuators less than the DOF)
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mechanism applicable to prosthetic/robotic hand was presented in [124] based on
dynamic model of ngers leading to adaptive grasp (i.e., being able to conform to
the shape of an object held within the hand).

Although an adaptive control scheme was developed by [94] for a Southampton
Hand, further developments were made in the research by [79] and [125] producing
their IP (Intelligent Prosthesis) according to [51]. The investigation [126] provided
an evolution of microprocessor-based control systems for prosthetics with classi-

cation into rst (based on digital systems), second (with low power), and third
generation (based on microprocessors and DSPs). The work in [44] conducted a
comparison of Oxford and Manus hand prostheses with respect to

1. hand mechanisms,

2. control electronics: EMG analog ampli ers, A/D converters, DSPs,

3. sensors: force, position and slip sensors based on Hall effect, and

4. manipulation or control schemes: Oxford hand used Southampton Adaptive
Manipulation Scheme consisting of three-level hierarchical scheme and Manus
used a two-level scheme.

The scheme suggested by [127] consisted of ve modules, including an arti cial
muscoskeletal system, position and force sensors, 3D force sensors, low-level control
loop dedicated to control slipping and grasping, and an EMG control unit. Further,
the scheme used two semiconductor strain gauges as the force sensor and glues the
sensor in SS496B by Honeywell International Inc. as the position sensor, which
is the linear slider and small magnets. Moreover, the control system receives three
signals: activation (EDG, which is used to identify whether there is a movement),
direction (SGN, which decides opening or closing), and amplitude of the movement
(AMP, which controls the seed of the movement in a proportional means). As for the
control scheme, it uses a simple proportional open-loop control.

A cylindrical grasp of a cylindrical object and a parallel force/position control
is studied by [128] to ensure the stability. The work in [129] presented a feedback
control system for hand prosthesis with elbow control. Using a concept of extended
physiological proprioception (EPP) (i.e., using natural physiological sensors), both
the works [129] and the investigation by [130] developed microprocessor-based con-
trollers for upper limb prostheses. A systematic literature review, conducted by
[131], is useful for prosthetic/robotic hand, although the survey was done for lower
limb prosthesis. This work by [128] developed a procedure to obtain maximum load
and contact force distribution for a given grasp task and a parallel force/position con-
trol to ensure stability of the grasp. The goal of this control scheme is to specify a
set of joint torque inputs so that the desired grasping forces along the constrained
directions, and the desired position trajectory along the unconstrained directions are
realized.

It was shown by [82, 132, 133] that sensory feedback signals are obtained for a
multi- ngered robot hands to perform the function of grasping an object and that
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dynamic force/torque closure is constructed without knowing object kinematic pa-
rameters and location of the mass center. Further, the convergence of motion of the
overall ngers-object system was proved using the concepts of “stability and asymp-
totic stability on a manifold.” Mechanical design and manipulation (control) issues
were addressed in [45] for a multi- ngered dextrous hand for upper limb prosthetics
using the underactuated kinematics enhancing the performance and providing four
grasping modes (cylindrical, precision, hook, and lateral) with just two actuators,
one for the thumb and one for the remaining ngers. In particular, the hierarchical
control architecture consists of a host (or master) controller for EMG management
and de nition of grasp set points (for position and torque/force) and three local (or
slave) controllers for low level implementation of stiffness control of the joints. In
[63], design and analysis was presented for a multi- ngered prosthetic/robotic hand
consisting of a thumb with three joints and the rest of the four ngers having two
joints using Haringx and element stiffness models, which enables the location of
actuators far away from the hand to a belt around the waist and further enabling ac-
tuation and control with relatively high DOF. Robotic hand MA-I was designed and
built by [64] at the Institute of Industrial and Control Engineering (IOC) at the Poly-
technic University of Catalonia (UPC) with 16 degrees of freedom and the control
system consisting of 16 position control loops, independently controlling each of the
16 DC motors. Visual hand motion capture is a multiple-dimension and multiple-
objective searching optimization problem and the work reported in [134] used pose
estimation and a motion-tracking scheme with genetic algorithms (GAs) embedded
particle lter (PF) to navigate visual hand gesture, such as virtual environment and
control of a robot arm.

The fabrication of a complaint, under-actuated prosthetic/robotic hand (both palm
and ngers) moulded as a soft polymeric single part for providing adaptive grasp was
reported by [135, 136]. Since the analysis and synthesis are “so complex and only
experimental analysis of the solution adapted validate our works.” It was shown by
[137] that an object with parallel surfaces in a horizontal plane could be controlled by
a pair of robotic ngers to achieve stable grasping, angle, and position control with-
out the need for the object parameters or object sensors such as tactile, force, or visual
sensors. At Northwester University Prosthetics Laboratory (NUPL), the researchers
[138, 139] developed multi-function prosthetic/robotic hand/arm controller system
receiving signals from as many as 16 implantable myoelectric sensors (IMES) and
a heuristic FL approach to EMG signal pattern recognition by [140, 141]. In par-
ticular, FL was explored for discriminating between multiple surface EMG control
signals and classify them to user intention. The multi-functional hand mechanism
consisted of three motor hands (one motor for driving the thumb, one motor drives
index nger, and the third motor drives middle, ring, and little nger) and two motor
wrists (one motor for wrist extension/ exion and the other motor for wrist rotation).
Further, the research by [67] demonstrated that in implementing the EPP control for
a powered prosthesis, the backlash is determined by the stiffness of the control cable
as well as mass located at the distal end of the forearm and that reduction of static
friction and backlash in the system could prevent the limit cycle.
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It was demonstrated by [142] that by implanting electrodes within individual fas-
cicles of peripheral nerve stumps, appropriate, distally referred sensory feedback
about joint position and grip force from an arti cial arm could be provided to an
amputee through stimulation of the severed peripheral nerves which also provide
appropriate signals. It is interesting to note the work of [143] on the mechanism,
design, and control system of a humanoid-type hand with human-like manipulation
capabilities as a part of development of service robots and the comparison (shown
by [144, 145]) of natural and prosthetic/robotic hands. In [146], the EMG motion
pattern classi er was developed using on parametric autoregressive (AR) model and
Levenberg–Marquardt (LM)-based NNs to identify three types of motion of thumb,
index, and middle ngers to control a ve- ngered underactuated prosthetic/robotic
hand.

The work in [147] focussed on the “optimal” delay as the maximum amount of
time, which is from command to hand movement, for a prosthesis controller with
a delay of 200–400 ms as the range which is accepted by users. A bypass pros-
thesis called Prosthetic Hand for Able-Bodied Subjects (PHABS) was developed to
allow able-bodied subjects to operate a prosthetic/robotic terminal device. The con-
troller is a commercially available Myo-pulse control, which combines pulse width
modulation (PWM) and pulse period modulation (PPM) because it provides a linear
relation between motor speed and the pulse width and timing of a digital control sig-
nal. In addition, it also used a mechanical low-pass lter to smooth the pulse train
and movement. If the EMG reaches the threshold, the motor will be turned “on”; oth-
erwise, it will be turned “off.” Furthermore, the experimental controller was created
in Simulink of MATLAB and executed using Simulink Real Time and XPC Target
Toolboxes. Finally, this work summarized seven time-delay sources, including

1. the time from the intent of movement to the development of EMG,

2. the time constant of the analog lters contained in the EMG pre-ampli ers,

3. the analog-to-digital sampling period,

4. the time required to collect the EMG signal for feature extraction,

5. the time required to perform the EMG signal for feature extraction,

6. the time required to execute th pattern recognition on the extracted features, and

7. the time required to actuate the component.

In [81], a review of the traditional methods of control as well as the current state
of new control techniques was provided. A newly developed intelligent exible hand
system with 3 ngers, 10 joints, tted with a small harmonic drive gear and a high
power mini actuator, providing 12 DOFs applied to a catching task was developed by
[148]. The authors [149] developed an EMG-based (using electrodes, torque, and an-
gle sensors) prosthetic/robotic hand control system composed of a human operator,
a ve- ngered under-actuated prosthetic/robotic hand system, the prosthetic/robotic
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hand controller (with analog-to-digital converters and DSP board and stepper mo-
tors), and visual feedback. In particular, the EMG signals undergo feature extraction
and feature classi cation using NNs with parametric autoregressive (AR) model and
wavelet transforms. In an under-actuated system, there is less number of actuators
compared to the number of DOF of the system. Further in [150], a hierarchical con-
trol system was proposed with a high-level supervisory controller for implementing
the EMG signal acquisition and pattern recognition and also providing a set of com-
mands (for operations such as close, open, position, etc.) to a low-level controller. A
sensor-based hybrid control strategy (using normal feedback control based on EMG
signals from sensors and feedback to the user) was presented by [151] where a dig-
ital controller operating from prosthetic signals converts the user grasping intention
(EMG signal) into an order for the control of prosthesis.

The investigation by [68] developed a robot hand with tactile sensors (slip sensor
and force sensor), called SKKU Hand II, having two functional units: a PolyVinyli-
Dene Fluoride (PVDF)-based slip sensor designed to detect slippage and a thin exi-
ble force sensor that read the contact force of and geometrical information on the ob-
ject using a pressure variable resistor ink. A biomechatronic approach to the design
and control of an anthropomorphic arti cial hand was studied by [152] for closing
the hand nger while grasping an object using a reference trajectory and using two
different versions (joint space and slider space) of PD control system. In particular,
the arti cial hand consists of three under-actuated ngers (index, middle, and thumb)
which are actuated by three cable-driven DC motors placed in the lower part of the
arm. The work by [153] studied large controller delays created by multi-functional
prosthesis controllers. A device called PHABS was utilized to test the performance
of 20 able-bodied subjects to the Box and Block Test. To estimate and compare
the performance of prosthetic/robotic hands, a functionality index is proposed by
[147]. An underwater exible robot manipulation (called HEU Hand II) that utilized
Position-Based Neural Network Impedance Control (PBNNIC) for the force tracking
control was studied by [154].

This work from [154] developed dextrous underwater robot hand, called as HEU
Hand II. The sensor system mainly includes 12 strain gauges at different locations.
When the robot hand is under water, the control system is more complicated because
the complete dynamic model is not known exactly. Hence, the control system con-
siders the uncertainty of the robot dynamic model. The controller of the hand force
tracking is designed by PBNNIC scheme. Using biologically inspired principles for
design and control of a bionic robot arm by [155], several control approaches were
presented such as trajectory planning and optimization based on robot dynamics.

An alternate learning control strategy was proposed by [156] based on the work-
ing assumptions that both human motor commands and sensory information are
passed on in a discrete, episodic manner, quantized in time with a learning algo-
rithm called S-learning based on sequences arguing against the traditional control
approaches due to highly nonlinear robot’s dynamics and large number of DOF.

In the works by [157], the rst prototype of a ve- ngered prosthetic/robotic hand
tted with only three motors and achieving 20 DOFs was described using a new

“strings and springs” mechanism and a continuous wavelet transform (CWT) for
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extraction of EMG inputs for a feed-forward, back-propagation NN to recognize the
type of grip.

The work in [158] focuses on the control system of the hand and on the optimiza-
tion of the hand design. It proposes the control action as proportional to the super -
cial EMG signals extracted by surface electrodes applied to a couple of antagonistic
user’s residual muscles. This work rst explains designs of the hand prototype, such
as biomechatronic design approach, under-actuated arti cial hand, 3D CAD model
(by ProEngineer), and dynamic analysis (by ANSYS). Secondly, it builds the model
of control system, including the kinetics and dynamics of hand in PD control in the
joint space and slider space with elastic compensation. Thirdly, it validates and opti-
mizes the hand design in multiple objective problems (four goals). The rst two goals
are related the closed-loop control performance and the remaining two goals are part
of joint trajectories. Besides, it develops the simulation in MATLAB/Simulink. Fi-
nally, it compares the experimental results with the simulation.

The dynamic system of a nonlinear exible robot arm with a tip mass was intro-
duced by [159] and the proposed intelligent optimal controller, in which the fuzzy
neural network controller and robust controller were respectively designed to learn
a nonlinear function and compensate the approximation errors, could control the
coupling of bending vibration and torsional vibration for the periodic motion. To
overcome the traditional FL dif culties, such as large rule bases and long training
times, [160] proposed a self-learning dynamic fuzzy network (DFN) with dynamic
equality constraints to speed up the trajectory calculations for intelligent nonlinear
optimal control. For a ve- nger under-actuated prosthetic/robotic hand with ten-
don transmission, [161] presented a robust controller implemented two subsequent
and different phases, including the pre-shaping of the hand and the involved ngers
rapidly closing around the object.

1.2.3 Overview of Main Control Techniques Since 2007

Hard Computing strategies:

1. PD Controller: Rong et al. [162] presented one kind of PD controller with
feed-forward control based on adaptive theory for two DOFs direct driven robot
with uncertain parameters.

2. Adaptive Controller: Cai et al. [163] developed an observer back-stepping
adaptive control scheme for two-link manipulator under unmeasured velocity
and uncertain environment and the adaptive velocity observer was designed in-
dependently from the state-feedback controller in order to compensate the esti-
mation errors. Seo and Akella [164] derived the novel adaptive control solution
involving a new lter design for the regressor matrix for -DOF robot manipu-
lator systems. By developing the Fourier series expansion from input reference
signals of every joint, Liuzzo and Tomei [165] designed a global, output error
feedback, adaptive learning control for two-DOF planar robot with uncertain
dynamics. To achieve the tracking control objective, Chen et al. [166] proposed
an adaptive sliding-mode dynamic controller for wheeled mobile robots with
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system uncertainties and disturbances to make the real velocity of the wheeled
mobile robot reach the desired velocity command.

3. Robust Controller: Because of the visco-elastic properties of manipulator
links, Torabi and Jahed [167] utilized the loop-shaping method which de-
creases the order of the robust control model of a single-link manipulator ex-
amined in time and frequency domains. To enhance control of powered pros-
thetic/robotic hands, Engeberg and Meek [168–171] proposed robust sliding
mode, back-stepping, and hybrid sliding mode-back-stepping (HSMBS) paral-
lel force–velocity controllers which enabled the humans to more easily control
a ne object by 10 able-bodied test subjects. Ziaei et al. [172] developed the
modeling, system identi cation adopting generalized orthonormal basis func-
tions (GOBFs), and robust position and force controllers for a single exible
link (SFL) manipulators required to operate the contact motion. Jiang and Ge
[173] transformed the nonlinear kinematic models of three-DOF mobile robot
with uncertain disturbance into linear control systems through an approximate
linearization algorithm and then designed a partial feedback robust con-
troller through linear matrix inequality (LMI).

4. Optimal Controller: Vitiello et al. [174] synthesized the position controller
and the Kalman lter to perform the planar movements, such as reaching and
catching, of the NEURARM hydraulic piston actuation with nonlinear springs
connected on the cable. Vrabie et al. [175] designed an online method via a bio-
logical inspired Actor/Critic structure to solve the adaptive optimal continuous-
time control problem by the solution of the algebraic Riccati equation without
using knowledge of the system internal dynamics. To minimize the position-
ing time (traveling between two speci c points) of an under-actuated two-DOF
robot manipulator restricted to the input constraint and the structural parameter
constraint, Cruz-Villar et al. [176] developed a concurrent structure-control re-
design method which combined the structural parameters and a bang–bang con-
trol law. Duchaine et al. [177] derived the position tracking and velocity con-
trol, the dynamic model of the robot, the prediction and control horizons, and
the constraints by a general predictive control law and also derived an analyti-
cal solution for the optimal control by a computationally ef cient model-based
predictive control scheme for a six-DOF cable-driven parallel manipulator.

5. Hierarchical Controller: Fainekos et al. [178] proposed a hierarchical control
law addressing the temporal logic motion planning problem for mobile robots
modeled by second-order dynamics to track a simpler kinematic model with a
globally bounded error and then the new robust temporal logic path planning
problem for the kinematic model using automata theory and simple local vector

elds were solved.

Soft Computing strategies:

1. Fuzzy Logic: According to human anatomy, Arslan et al. [179] developed the
biomechanical model with a tendon con guration of the three-DOF index nger
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of the human hand and the fuzzy sliding mode controller in which a FL unit
tuned the slope of the sliding surface was introduced to generate the required
tendon forces during closing and opening motion.

2. Artificial Neural Networks: Onozato and Maeda [180] utilized two NNs learn-
ing inverse kinematic and inverse dynamic to control the positions of two-DOF
SCARA robot. Aggarwal et al. [181] obtained the neural recordings from rhe-
sus monkeys with three different movements, the exion/extension of each n-
ger, the rotation of wrist and dextrous grasps and designed the separate decod-
ing lters for each movement by using multilayer feed-forward ANN in order to
be implemented in real-time MATLAB/Simulink. An online decentralized NN
control design without deriving the dynamic model for a class of large-scale
uncertain robot manipulator systems was proposed by Tan et al. [182]. Kato
et al. [183] expressed the reaction of brains to the adaptable prosthetic/robotic
system for a 13-DOF EMG signal controlled prosthetic/robotic hand with an
EMG pattern recognition learning by ANNs. In addition, functional magnetic
resonance imaging (f-MRI) was used to analyze the reciprocal adaptation be-
tween the human brain and the prosthetic/robotic hand by the plasticity of the
motor and sensory cortex area in brains based on the variations in the phantom
upper limb.

3. Genetic Algorithm: Marcos et al. [184] proposed the closed-loop pseudo-
inverse method with genetic algorithms (CLGA) to minimize the largest joint
displacement between two adjacent con gurations, the total level of joint veloc-
ities, the joint accelerations, the total joint torque, and the total joint power con-
sumption for the trajectory planning of three-DOF redundant robots. Kamikawa
and Maeno [185] used GA to optimize locations of pivots and grasping force
and designed one ultrasonic motor to move 15 compliant joints for an under-
actuated ve- nger prosthetic/robotic hand.

4. Particle Swarm Optimization: Khushaba et al. [186] developed a PSO-based
method for myoelectrically controlled prosthetic/robotic devices. However, the
arti cial hands had limitation on precision grasping, such as grasping a screw or
needle. To overcome the limitation, the accuracy and effectiveness of ngertip
trajectory and control systems need to be optimized.

Fusion of Soft and Hard Computing strategies:

1. PID Controller and Robust Controller: Dieulot and Colas [187] presented a
case study of the design of robust parametric methods for exible axes and an
heuristic initial tuning of the proportional-integral-derivative (PID) controller
from additional pole placement constraints on the rigid mode.

2. Adaptive Controller and Robust Controller: To implement the trajectory
tracking mission under the in uence of unknown friction and uncertainty, Chen
et al. [188] utilized a composite tracking scheme, including the adaptive friction



18 INTRODUCTION

estimation to determine Coulomb friction, viscous friction, and the Stribeck ef-
fect and a robust controller to enhance the overall stability and robustness, for a
two-DOF planar robot manipulator.

3. Robust Controller and Optimal Controller: Huang et al. [189] designed the
robust control systems with some uncertainties, including the unknown payload
and unknown modeling of objects and the unknown dynamic parameters, as the
performance index that was optimized by the optimal control method for the
space robot to capture unknown objects.

4. Robust Controller and Fuzzy Logic: Tootoonchi et al. [190] combined a
robust quantitative feedback theory (QFT) designed to follow the desired tra-
jectory tracking with the fuzzy logic controller (FLC) designed to reduce the
complexities of the system dynamics for two-DOF arm manipulator. The con-
trol gain of the sliding mode controller tuned according to error states of the
system by a fuzzy controller and a moving sliding surface whose the slope is
dynamically changed by a FL algorithm for a three-DOF spatial robot were
presented by Yagiz and Hacioglu [191].

5. Robust Controller and Artificial Neural Networks: Siqueira and Terra [192]
developed a neural-network-based controller which approximated the un-
certain factors of an actual under-actuated cooperative manipulator and robustly
controlled the position and squeeze force errors between the manipulator end-
effectors and the object, although one joint was not actuated.

6. Sliding Mode Controller and Genetic Algorithm: Chen and Chang [193]
utilized the multiple crossover GA to estimate the unknown system parameters
and the sliding mode control method to overcome the uncertainty for a two-link
robot control, respectively.

7. Sliding Mode Controller and Particle Swarm Optimization: Salehi et al.
[194] used an online particle swarm optimization (PSO) to tune the parameters
of sliding mode control at the contact moments of end-effector and unknown
environments for the two-DOF planar manipulator.

8. Fuzzy Logic and Artificial Neural Networks: Subudhi and Morris [195] pro-
posed a hybrid fuzzy neural control (HFNC) scheme containing a FLC and a
NN controller to balance the coupling effects for the multi-link exible manip-
ulator with both rigid and exible motions.

9. Artificial Neural Networks and PSO: Wen et al. [196] addressed the hybrid
particle swarm optimization neural network (HPSONN) to compute the pseudo-
inverse Jacobian of two-DOF planar manipulator inverse kinematic control.

1.2.4 Revolutionary Prosthesis

In 2009 (see the press releases [23, 69], the Applied Physics Laboratory (APL) of
Johns Hopkins University (JHU), in Baltimore, MD received funding for the Rev-
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Figure 1.1 Schematic Diagram of Prosthetic/Robotic Hand Technology

olutionary Prosthesis 2009 program from DARPA (Defense Advanced Research
Projects Agency), the U.S. Department of Defense, to “develop a next-generation
mechanical arm that mimics the properties and sensory perception of the real thing.”
The APL leads an international team of about 30 organizations from Austria, Canada,
Germany, Italy, Sweden, and USA. The APL team delivered rst DARPA Limb Proto
1 (see [70], which “is a complete limb system that also includes a virtual environ-
ment used for patient training, clinical con guration, and to record limb movements
and control signals during clinical investigations.”

1.3 Fusion of Intelligent Control Strategies

Here we present the recent research activities on fusion control strategies for a smart
prosthetic/robotic hand. The schematic diagram of the work is shown in Figure 1.1
(see the works of [34, 149, 151]). The overall system, in brief, consists of EMG sig-
nal acquisition from user arm for surface or implanted electrodes (in the implanted
case we focus on biocompatibility based on nano-materials research). The EMG
signal is then processed for feature extraction and classi cation or identi cation of
EMG signal to correspond to different motions of the prosthetic/robotic hand. The
classi ed signal is then used to control the prosthetic/robotic hand using actuators
and driving mechanisms. It is to be noted that the EMG signal extraction and identi-

cation and the control algorithm are investigated using the fusion of soft computing
(SC) and hard computing/control (HC) strategies.

1.3.1 Fusion of Hard and Soft Computing/Control Strategies

HC strategies are used at lower-level control for accuracy, precision, stability, and
robustness and comprise PD control [197], PID control [198, 199], optimal control
[199–202], adaptive control [203–206], etc. with speci c applications to robotic
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hand devices. The authors conducted an overview of control strategies for robotic
and prosthetic/robotic hands [85, 86]. However, our previous works [197–199, 207]
for a robotic hand showed that PID controller resulted in undesirable feature of over-
shooting and oscillation, which were also demonstrated by Subudhi and Morris [195]
in a two-link exible robot manipulator and Liu and Chen [208] in a 6-DOF under-
water robot (autonomous underwater vehicle).

The term SC or computational intelligence (CI) has been already used by L. A.
Zadeh in 1994 and he de ned SC as “a collection of methodologies that aim to
exploit the tolerance for imprecision, uncertainty, partial truth, and approximation
to achieve tractability, robustness, low solution cost and better rapport with reality”
[209]. The fundamental concepts of SC have been in uenced by Zadeh’s earlier
publications [210–212]. Since 1994, many researchers and engineers have worked
on different methods using SC.

Unlike HC, SC strategies are meant to adapt to an environment under impreci-
sion, uncertainty, partial truth, and approximation [209]. The review paper of L.
Magdalena has analyzed, compared, and discussed some de nitions of SC found in
the literature [213]. Unlike the lower-level control of HC, SC is used at high-level
control of the overall mission where human involvement and decision making is of
primary importance. SC is an emerging eld based on synergy and seamless inte-
gration of NN, FL, and optimization methods, such as GA and PSO [197, 209, 213–
220]. The previous works on robotic/prosthetic hand used NN by [33, 34, 221],
FL by [140, 141, 222], GA by [223], etc. mostly for EMG signal classi cation for
various movements or functions of the robotic hand.

The brain analogy corresponds to the fusion of HC and SC strategies. We there-
fore propose hybrid intelligent control strategies with the integrated structure by
blending [215, 216] the upper-level control of SC strategies and lower-level con-
trol of conventional HC strategies. Fusion of SC and HC methodologies can solve
problems that cannot be solved satisfactorily by using either HC or SC methodol-
ogy alone and can lead to high performance, robust, autonomous, and cost-effective
missions, such as accuracy and effectiveness of ngertip trajectory and control sys-
tems [215, 216]. The hybrid intelligent control strategies for a robotic hand can be
also applied to robotics for hazardous environments, surgery, etc. and clinical pros-
thetic/robotic hands [224–226].

The integration of SC and HC strategies shown in Figure 1.2 has the following
attractive features [215, 216]:

1. The methodology based on SC is used, in particular with FL, at upper levels
of the overall mission where human involvement and decision making is of pri-
mary importance, whereas the HC is used at lower levels for accuracy, precision,
stability, and robustness.

2. In another situation using hybrid scheme, a NN of the SC is used to supplement
the control provided by a linear, xed gain controller for a missile autopilot.
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Figure 1.2 Fusion of Soft Computing and Hard Control Strategies

3. Further, the SC-based GA is used to tune the parameters of the PID controller
and to achieve good performance and robustness for a wide range of operating
conditions.

4. The SC and HC are potentially complementary methodologies.

5. The fusion could solve problems that cannot be solved satisfactorily by using
either methodology alone.

6. Novel synergetic combinations of SC and HC lead to high performance, robust,
autonomous, and cost-effective missions.

Our research focuses on developing intelligent autonomous strategies for EMG
signal, extraction, analysis, and control of prosthetics by fusion of SC strategies
comprising NN, FL, and GA (see [216, 227]) and HC strategies. The proposal takes
advantage of our in-house research experience with problems in prosthetics as shown
in [228, 229], in particular, and with problems in biomedical engineering as reported
in [230, 231], in general.

An overview of nine papers using the strategies in industrial and engineering ap-
plications was presented by [232]. For the fusion strategies, the work by [233] de-



22 INTRODUCTION

scribed a multidimensional categorization scheme in ve aspects: the degree of inter-
connection of soft and hard computing components (fusion grade), the topology of
fusion skills (fusion structure), the time when fusion happens (fusion time), the layer
of a system architecture (fusion level), and the motivation for the application (fusion
incentive). Further, [234] classi ed the fusion strategies to 12 main categories and 6
supplementary categories.

1.4 Overview of Our Research

A chronological overview of our research is provided below.
A short review by Lai et al. [235] notes the importance of the biological interfaces

that robotic implants and other prosthetic/robotic devices and notes an interdisci-
plinary team of biomedical and tissue engineers, and biomaterial and biomedical
scientists is needed to work together holistically and synergistically.

In addressing the PSO technique, a set of operators for a PSO-based optimization
algorithm is investigated for the purpose of nding optimal values for some of the
classical benchmark problems. Particle swarm algorithms are implemented as math-
ematical operators inspired by the social behaviors of bird ocks and sh schools.
In addition, particle swarm algorithms utilize a small number of relatively less com-
plicated rules in response to complex behaviors, such that they are computationally
inexpensive in terms of memory requirements and processing time. In particle swarm
algorithms, particles in a continuous variable space are linked with neighbors, there-
fore the updated velocity of particles in uences the simulation results. The work
presents a statistical investigation on the velocity update rule for continuous variable
PS algorithm. In particular, the probability density function in uencing the parti-
cle velocity update is investigated along with the components used to construct the
updated velocity vector of each particle within a ock. The simulation results of sev-
eral numerical benchmark examples indicate that small amount of negative velocity
is necessary to obtain good optimal values near global optimality [219].

A chronological overview of the applications of control theory to pros-
thetic/robotic hand is presented focusing on HC strategies such as multi-variable
feedback, optimal, nonlinear, adaptive, and robust and SC strategies such as arti cial
intelligence, NN, FL, GA, PSO, and on the fusion of hard and soft control strate-
gies [85]. The work [197] presents the PSO algorithm for identifying the rupture
force for leukocyte adhesion molecules and the problem of nding the correct con-
trol parameters of a robotic hand. Another work by the group at ISU presents the
fusion of SC technique of GA and HC technique of PID control with application
to prosthetic/robotic hand. In particular, an adaptive neuro-fuzzy inference system
(ANFIS) is used for inverse kinematics of the three-link index nger, and feedback
linearization is used for the dynamics of the hand and the GA is used to nd the
optimal parameters of the PID controller [198]. An adaptive PSO (APSO) approach
based on altering the maximum velocity at each iteration for two 30-dimensional
benchmark problems is used [220].
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A hybrid of a SC technique of ANFIS and a HC technique of adaptive control for
a two-dimensional movement of a prosthetic/robotic hand with a thumb and index

nger is investigated [205]. The dynamics of the prosthetic/robotic hand is derived
and feedback linearization technique is used to obtain linear tracking error dynamics.
Then the adaptive controller was designed to minimize the tracking error. The results
of this hybrid controller show enhanced performance when compared with the PID
controller. The adaptive control strategy is extended for the 14-DOF, ve- ngered
smart prosthetic/robotic hand with unknown mass and inertia of all the ngers [206].
The simulation results show that the ve- ngered prosthetic/robotic hand with the
proposed adaptive controller can grasp an object without overshooting and oscilla-
tion [236].

A novel condensed hybrid optimization (CHO) algorithm using enhanced con-
tinuous tabu search (ECTS) and the PSO was examined [207]. The proposed CHO
algorithm combines the respective strengths of ECTS and the PSO. In particular, the
ECTS is utilized to de ne smaller search spaces, which are used in a second stage
by the basic PSO to nd the respective local optimum. The ECTS covers the global
search space by using a TS concept called diversi cation and then selects the most
promising areas in the search space. Once the promising regions in the search space
are de ned, the proposed CHO algorithm employs another TS concept called in-
tensi cation in order to search the promising area thoroughly. The proposed CHO
algorithm is tested with the multi-dimensional hyperbolic and Rosenbrock problems.
Compared to the other four algorithms, the results indicate that the accuracy and ef-
fectiveness of the proposed CHO algorithm was enhanced. Another hybrid of a SC
technique using the ANFIS and a HC technique using nite-time linear quadratic
optimal control for a two- ngered (thumb and index) prosthetic/robotic hand was
investigated [201, 237, 238]. In particular, the ANFIS is used for inverse kinemat-
ics, and the optimal control is used to minimize tracking error utilizing feedback
linearized dynamics. The simulations of this hybrid controller, when compared with
the PID controller showed enhanced performance. This work was extended to a

ve- ngered, three-dimensional prosthetic/robotic hand [199]. To make the optimal
controller fast acting and improve the accuracy, the performance index is modi ed
by including an exponential term [202, 239]. Simulations show that the proposed
technique provides fast action with high accuracy and 30-fold faster than ANFIS- or
GA-based trajectory planning [201, 239, 240].

1.5 Developments in Neuroprosthetics

It is worth noting some of the developments in neuroprosthesis reported in [241–
244].

An interesting study was made by [245] on implanted neuroprostheses employ-
ing functional electric simulation (FES) to provide grasp and release to individuals
with tetraplegia and comparing three control methods for shoulder position, wrist
position, and myoelectric wrist extensors. To improve the control of grasp strength,
forearm pronation, and elbow extension to the people with spinal cord injury at C5
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and C6, the investigation by [123] developed an advanced neuroprosthesis that in-
cludes implanted components, including 10-channel stimulator, leads and electrodes,
and a joint angle transducer, and external components, such as a control unit and
transmitter–receiver coil.

In particular, it was reported in [246–248] that Jesse Sullivan, who lost both arms
in an electric accident, could move his bionic arm with his brain—basically rewiring
the severed live nerves that control arm and hand movements by redirecting the
nerves to pectoral muscles in his chest. Electrodes attached to the chest muscles pro-
duce an electrical signal which controls the robotic arm depending upon the nature
of muscle movement which in itself is characterized by “thinking” in the brain what
is to be done with arms. However, the demonstrated bionic arm is only a “prototype
and for research only.”

Another interesting news appeared in [249, 250] regarding implantation of an
electronic chip into the brain of a quadripledge man to use a computer to operate a
robotic arm.

An article that appeared in IEEE Spectrum issue of September 2014 [251], de-
scribes about “an epilepsy patient ... controlling the mechanical limb with her brain
waves.”

1.6 Chapter Summary

This book is composed of seven chapters. Chapter 2 presents kinematics and tra-
jectory planning and Chapter 3 presents dynamics for the robotic hand. The SC
strategies such as FL, NN, ANFIS, GA, and PSO are addressed in Chapter 4. Chap-
ters 5 and 6 present the fusion of soft and hard control strategies for each nger of
the robotic hand and all the ve ngers. Finally, conclusions and some thoughts on
future work are given in Chapter 7.
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CHAPTER 2

KINEMATICS AND TRAJECTORY
PLANNING

This chapter addresses human hand anatomy, the problems of forward kinematics,
inverse kinematics, differential kinematics, and trajectory planning. A serial manip-
ulator is de ned as a series of connected joints. One end of the chain is xed in
the base frame while the other end is free and for our purposes, the end-effector is
called the ngertip of ngers. The resulting motion of the serial links is obtained
by composition of the elementary motions of each link with respect to the previous
link. Hence, in order to manipulate an object in space, the ngertip (end-effector)
position of each nger must be described. Section 2.2 shows the derivation the n-
gertip positions by forward kinematics. Using inverse kinematics in Section 2.3, the
joint angles of each nger (joint space) need to be obtained from the known ngertip
positions (Cartesian space). In real life, the joint angle positions of each nger are
constrained in the angular range. In Section 2.3, we generate the workspace of the

ngertip. The linear and angular velocities and accelerations of ngertips are ob-
tained by differential kinematics in Section 2.4. Then the joint angular velocities and
joint angular accelerations of each nger are derived from the linear and angular ve-
locities and accelerations of ngertips by the geometric Jacobian. Finally, before the
robotic hand is controlled to execute a speci c hand motion task, the desired paths
are designed by polynomial and Bézier curve functions in Section 2.5.

Fusion of Hard and Soft Control Strategies for the Robotic Hand, By C.-H. Chen and D. S. Naidu 
© 2017 by the Institute of Electrical and Electronic Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.

47
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2.1 Human Hand Anatomy

Figure 2.1 Human Wrist and Hand: (a) Physical Appearance of Right Hand (Anterior
View): A Human Hand Has Thumb, Index, Middle, Ring, and Little Fingers, Palm, and Wrist.
(b) Bones of Left Hand (Posterior View).

Figure 2.1(a) shows a normal human hand composed of thumb ( ), index ( ),
middle ( ), ring ( ), little ( ) ngers, and palm. The wrist is located between the
forearm and the hand and consists of eight carpal bones organized in two rows of
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proximal (movable) and distal (immovable) carpal bones as shown in Figure 2.1(b)
[1–3]. A human hand has 27 bones, including 5 distal phalanges, 4 middle phalanges,
5 proximal phalanges, 5 metacarpals, and 8 carpals. The proximal row (top) of carpal
bones from lateral to medial is the scaphoid, lunate, triquetrum and pisiform; the
distal row (bottom) of carpal bones from medial to lateral has the hamate, capitate,
trapezoid and trapezium. The hand is composed of ve metacarpals and ve digits.
The metacarpals produce a curve, so the palm is concave in the resting position. The

ve digits contain one thumb ( ) and four ngers, for example, index ( ), middle
( ), ring ( ), and little ( ) ngers, respectively. The thumb has two bones, proximal
phalanx and distal phalanx. Each nger consists of three bones, proximal phalanx,
middle phalanx, and distal phalanx. In this work, we assumed that the palm is xed,
the thumb has two links (proximal phalanx and distal phalanx), and each nger has
three links (proximal phalanx, middle phalanx, and distal phalanx).

Synovial joints are formed at the surface of relative motion between two bones.
The joints of thumb and four ngers contain two saddle-shaped articulating surfaces
between two bones and is4 classi ed as saddle joints. Index, middle, ring, and little

ngers include three revolute joints in order to do the angular movements (Figure 2.1
(b)). Metacarpal-phalangeal (MCP) joint is located between metacarpal and proxi-
mal phalange bones; proximal and distal interphalangeal (PIP and DIP) joints sepa-
rate the phalangeal bones. Thumb contains MCP and interphalangeal (IP) joints [1].
For a human hand, each nger has four DOFs (two at MCP joint, one at PIP joint,
and one at DIP joint), thumb has three DOFs (two at MCP joint and one at IP joint),
wrist has two DOFs and carpometacarpal (CMC) joint has two DOFs. In this work,
we model 14-DOF, ve- ngered robotic hand with two-link thumb and remaining
three-link ngers. , , and ( , , , and ) represent the angular positions
(or joint angles) of the rst joint MCP , the second joint PIP , and the third joint
DIP of index, middle, ring, and little ngers, respectively; and are the angular
positions of the rst joint MCP and the second joint IP of thumb ( ), respectively.

2.2 Forward Kinematics

Kinematics is the study of geometry in motion. It is restricted to a natural geometrical
description of motion, including positions, orientations, and their derivatives (veloci-
ties and accelerations). In other words, forward and inverse kinematics of articulated
systems study the analytical relationship between the angular positions of joints and
the positions and orientations of the end-effector ( ngertip). Differential kinematics
then expresses the analytical relationship between the angular velocities and angu-
lar accelerations of joints and the linear and angular velocities and accelerations of
end-effector ( ngertip) by the geometric Jacobian of the manipulator. For robotic
hand, the kinematic descriptions of manipulators are used to derive the fundamen-
tal equations for dynamics and control purposes. The coming three Sections 2.2–2.4
will introduce forward kinematics, inverse kinematics, and differential kinematics by
means of a serial -link manipulator, two-link thumb, three-link ngers, and three-
dimensional ve- ngered robotic hand, respectively.
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2.2.1 Homogeneous Transformations

Before the forward kinematics is derived, it is necessary to study the rotation ma-
trices, translation vectors, and homogeneous transformations [4]. Figure 2.2 shows

Figure 2.2 Representation of a Point in a Rotation of Frames by an Angle about Axis

two frames - - and - - with the same origin mutually rotated by an angle
about the axis. Let = and = be the vectors of the
coordinates of a point in the two frames - - and - - , respectively. Accord-
ing to the geometry, the relationship between the two vectors of the coordinates of
the point in the two frames is expressed as

(2.2.1)

(2.2.1) is expressed in the matrix form as follows

(2.2.2)

Here, the rotation matrix represents the rotation of the frame - - with
respect to the frame - - by an angle about the axis and is written as

(2.2.3)
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In a similar method, it is demonstrated that the rotation matrices and
are, respectively, the rotation of the frame - - with respect to the frame - -
by angles and about and axes and are derived from

(2.2.4)

(2.2.5)

Figure 2.3 Representation of a Point in Two Different Coordinates

Figure 2.3 shows an arbitrary point in space. The position vectors of this point
in two different coordinate frames - and - are described as

and , respectively. Let and be the vector of the origin of the
frame and matrix of coordinate frame 1 with respect to coordinate frame 0,
respectively. Hence, the position vector of the point with respect to coordinate
frame - is written as

(2.2.6)

(2.2.6) is the coordinate transformation of translation vector and rotation matrix
in two frames. The homogeneous transformation matrix of coordinate

frame 1 with respect to coordinate frame 0 is expressed in terms of the 4 4 matrix
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as

(2.2.7)

Therefore, the homogeneous position vectors of the point with respect to two
different frames 0 and 1 are written in terms of the homogeneous transformation
matrix as

(2.2.8)

Here, = and = . Prime ( ) means the transpose of vectors or
matrices.

Figure 2.4 Homogeneous Transformations , , and of Rotation
Matrices with Rotating Angles , , and about , , and Axes

Figure 2.4 shows homogeneous transformations , , and of
rotation matrices with rotating angles , , and about , , and axes, respectively.

, , and are written as
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(2.2.9)

Figure 2.5 Homogeneous Transformations , , and of Translation
Vectors with Displacements , , and about , , and Axes

Similarly, Figure 2.5 shows homogeneous transformations , , and
of translation vectors with displacements , , and about , , and axes,

respectively. , , and are written as
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(2.2.10)

2.2.2 Serial Link RevoluteJoint Planar Manipulator

Figure 2.6 Homogeneous Transformation Matrix of Coordinate Frame with Respect
to Coordinate Frame 0

As shown in Figure 2.6, homogeneous transformation matrix of coordinate
frame with respect to coordinate frame 0 is considered as the composition of trans-
formations along the serial frames and is derived from

(2.2.11)

Based on the recursive expressions in (2.2.11), a general systematic method needs
to be derived to de ne the relative position and orientation of two consecutive links in
order to calculate the forward kinematic equations for a serial -link revolute-joint
manipulator [5]. Accordingly, we need to compute the coordinate transformation
matrix between the frame attached to the th and th links.

Figure 2.7 shows the illustration of a serial -link revolute-joint planar manipu-
lator. is the length of the link and is the angle of the joint ( = 1, 2, ,

). The – (DH) method [6–10] is used to de ne the position
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Figure 2.7 Illustration of a Serial Link RevoluteJoint Planar Manipulator

of frame with respect to the previous frame. The DH coordinate frame is
identi ed by four parameters: , , , and . is the kinematic length of the
link ; is the twist angle of the link ; means the link offset (or called joint
distance), which is the distance between two joint axes; represents the joint angle.
A convenient zero con guration is to consider all links extended along the axis.
Consequently, according to the DH convention, the coordinate transformation ma-
trix to transform coordinate frame with respect to frame is expressed
as a product of four basic homogeneous transformations , ,

, and .

(2.2.12)

where
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(2.2.13)

Similar to (2.2.8), the transformation equation from coordinate frame =
to its previous coordinate frame = is

(2.2.14)

The transformation matrix from previous coordinate frame =
to coordinate frame = is obtained from the inverse

of .

(2.2.15)

where

(2.2.16)

Table 2.1 is a DH parameter table for an -link revolute-joint planar manipulator
shown in Figure 2.7. Therefore, using these parameters in (2.2.12), the coordinate
transformation matrix to transform coordinate frame to frame is com-
puted by

(2.2.17)
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Table 2.1 DH Parameter Table for an Link Planar Manipulator Shown in Figure 2.7

Link No.

0 0 0 0 0

1 0 0

2 0 0
...

...
...

...
...

0 0
...

...
...

...
...

0 0

Consequently, taking (2.2.17) into (2.2.11), (2.2.12) is rewritten as

(2.2.18)

where

(2.2.19)
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(2.2.20)

Thus, the position ( , ) of the end-effector and the orientation of the
end-effector frame is obtained from

(2.2.21)

2.2.3 TwoLink Thumb

Figure 2.8 Schematic Diagram of Thumb and Index Finger

The links in kinematics are modeled as , so the properties of rigid
body displacement take a central place in kinematics [9]. As shown in Figure 2.8,
thumb ( ) is assumed as two-link nger and the other four ngers, including index

nger ( ), middle nger ( ), ring nger ( ), and little nger ( ), are considered as
three-link ngers (Section 2.1).

Figure 2.9 shows the illustration of two-link thumb. and are the lengths of
the links 1 and 2 of the thumb ( ), respectively; and are the angles of joints 1
and 2 of the thumb [11]. Using DH method [6, 7, 9, 10], the ngertip (end-effector)
coordinate ( , ) of the thumb is obtained by DH transformation matrices.
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Figure 2.9 TwoLink Thumb Illustration

Table 2.2 DH Parameter Table for TwoLink Thumb Shown in Figure 2.9

Link No.

0 0 0 0 0

1 0 0

2 0 0

Table 2.2 is the DH parameter table for two-link thumb shown in Figure 2.9.
According to Table 2.2, the transformation matrices , and are found

(2.2.22)
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Here is the transformation matrix from thumb local frame base (zero) to global
( ) frame. and represent the transformation matrices from frame 1 to
frame base (zero) and from frame 2 to frame 1, respectively. Consequently, the
transformation matrix from thumb local frame 2 to global frame is written as

(2.2.23)

Thus, the ngertip coordinate ( , ) of the thumb ( ) and the orientation of
the ngertip frame are described as

(2.2.24)

2.2.4 ThreeLink Index Finger

Figure 2.10 shows the illustration of three-link index nger. is the distance between

Figure 2.10 ThreeLink Index Finger Illustration

global ( ) frame and index nger ( ) local frame base (zero); , , and are the
lengths of the links 1, 2, and 3 of the index nger ( ), respectively; , , and
are the angles of the joints 1, 2, and 3 of the index nger [12]. Similarly, using DH
method [6, 7, 9, 10], the ngertip (end-effector) coordinate ( , ) of the index

nger is obtained by DH transformation matrices.
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Table 2.3 DH Parameter Table for ThreeLink Index Finger Shown in Figure 2.10

Link No.

0 0 0 0

1 0 0

2 0 0

3 0 0

Table 2.3 is the DH parameter table for three-link index nger shown in Fig-
ure 2.10. Based on Table 2.3, the transformation matrices , , , and
are written as

(2.2.25)

Here, is the transformation matrix from index nger ( ) local frame base 0 to
global ( ) frame; , , and are the transformation matrices from frame 1
to frame base, from frame 2 to frame 1, and from frame 3 to frame 2, respectively.
As a result, the transformation matrix from index nger local frame 3 to global frame
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is written as

(2.2.26)

where, for simplicity, we have utilized the notations , ,
, , , and

. Hence, the ngertip coordinate ( , ) and the orientation
of the index nger ( ) are written as

(2.2.27)

2.2.5 ThreeDimensional FiveFingered Robotic Hand

As shown in Figure 2.11, index nger, middle ner, ring ner, and little nger include
three revolute joints in order to do the angular movements. MCP joint is located
between metacarpal and proximal phalange bone; PIP and DIP joints separate the
phalangeal bones. Thumb contains MCP and IP joints (Section 2.1) [1]. In this
book, , , and represent the angular positions (or joint angles) of the rst joint

, the second joint , and the third joint of index nger ( ),
middle nger ( ), ring nger ( ), and little nger ( ), respectively;
and are the angular positions of the rst joint and the second joint of
thumb ( ).

For a ve- nger robotic hand shown in Figure 2.12, , , and are the
three axes of global coordinate. Local coordinate - - of thumb is reached by
rotating through angles and to and of the global coordinate, subse-
quently. Local coordinate - - of index nger is obtained by rotating through
angle to and then translating a vector of the global coordinate. Similarly,
the local coordinate - - of middle nger ( ), ring nger ( ), and little

nger ( ) is obtained by rotating through angle to and then translating the
vector ( , , and ) of the global coordinate [3].

(2.2.28)
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Figure 2.11 Joints of FiveFinger Robotic Hand Reaching a Rectangular Rod

where

(2.2.29)

Let = and = be the position vectors of an
arbitrary point in the global coordinate - - and the thumb local frame
base - - , respectively. Therefore, = is calculated by the
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Figure 2.12 Relationship between Global Coordinate and Local Coordinates

product of and = .

(2.2.30)

is also computed by the product of and

(2.2.31)

Figure 2.12 also shows that the local frame base - - of index nger ( ) is ob-
tained by rotating through an angle to and then translating the vector to the
global frame - - . Similarly, the local frame base - - of middle nger
( ), ring nger ( ), and little nger ( ) is obtained by rotating through
an angle to and then translating the vector = ( , ,
and ) with respect to the global frame. Therefore, the homogeneous transformation
matrix to transform the three-link nger local coordinate base frames - -
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( , , , and ) to the global frame - - is expressed as a product of
four basic homogeneous transformations , , , and

.

(2.2.32)

where

(2.2.33)

Let = be the position vectors of an arbitrary point in the three-

link nger local frame base - - ( , , , and ). Therefore, is computed
by the product of and = .

(2.2.34)

is also calculated by the product of and

(2.2.35)
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2.3 Inverse Kinematics

A desired trajectory (Section 2.5) is usually speci ed in Cartesian space and the
trajectory controller is easily performed in the joint space. Hence, it is necessary
to convert Cartesian trajectory planning to the joint space [6, 7, 9, 10]. Using in-
verse kinematics, the joint angular positions of each nger need to be obtained from
the known ngertip positions (joint space). Then the angular velocities and angu-
lar accelerations of joints are obtained from the linear and angular velocities and
accelerations of ngertips (end-effectors) by the geometric Jacobian.

2.3.1 TwoLink Thumb

The joint angular positions of each nger is deduced as follows. According to for-
ward kinematics [6, 7, 9, 10] (Section 2.2), the ngertip coordinate ( , ) of
the thumb ( ) (2.2.24) is described as

(2.3.1)

Here and are the lengths of the links 1 and 2 of the thumb, respectively;
and are the angular positions (or called angles) of joints 1 and 2 of the thumb. The
sum of squared (2.3.1) is written as

(2.3.2)

Rearranging (2.3.2), we get the equation below.

(2.3.3)

Choosing the elbow up con guration, the angle of the joint 2 is obtained from

(2.3.4)

Notice that in this book, all positive angles are de ned counterclockwise. When
choosing the elbow up con guration, the angle is clockwise, so the sign of is
negative.

Figure 2.13 is the geometric illustration of two-link thumb (elbow up) [2, 13].
Based on the geometry, we get two triangular relations below.

(2.3.5)
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Figure 2.13 Geometric Illustration of TwoLink Thumb (Elbow up)

Accordingly, the angles and are gained as

(2.3.6)

Then, by the summation of (2.3.6), the angle of the joint 1 is determined as

(2.3.7)

Hence, inverse kinematics gives the expression of the joint angles (2.3.4 and 2.3.7).

2.3.2 ThreeLink Fingers

During grasping tasks, human motor control strategies and joint trajectory generation
were studied by Kamper et al. [14] and Luo et al. [15]. Kamper et al. [14] showed
that the ngertip trajectory generation that best ts the data recorded on the human
index nger is the logarithmic form by 10 subjects (age, 21–32 years) who performed
20 grasping trails. Zollo et al. [16] showed that the polar coordinate ( , ) is indicated
as

(2.3.8)
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Index nger, middle nger, ring nger, and little nger are considered as three-
link ngers (Section 2.1), so the inverse kinematic model of index nger is rep-
resented all three-link ngers. Based on the result of forward kinematics in Sec-
tion 2.2.4, the logarithmic form expressed in the ngertip Cartesian coordinates ( ,

) of the index nger ( ) is described in terms of three joint variables , , and
as

(2.3.9)

Here, based on practical data, the relation is used [14–16] to solve re-
dundancy in the plane - shown in Figure 2.10. Using this relation
into (2.3.9), the resulting equations are expressed as

(2.3.10)

The resulting nonlinear functions (2.3.10) are solved by numerical methods, such as
Newton–Raphson [9], the HPSONN by Wen et al. [17], GA by Chen et al. [12,
18, 19], and ANFIS by Chen et al. [12, 18, 19]. Now, setting up the two functions

and of the two variables and , we get

(2.3.11)

This becomes an optimal (minimization) problem with two objective functions ,
and with two variables and . The optimal variables and

are searched to make the two objective functions and close to
zero using genetic algorithm, then , , and (= 0.7 ) are the solutions of the
joint angles of the ngertip coordinate ( , ). Alternatively, the inverse kinemat-
ics problem is solved using ANFIS method [20], where the input of the fuzzy-neuro
system is the Cartesian space and the output is the joint space. During our simula-
tions [12, 13, 18, 19], we found that the GA method although gives a better solution
(error ), takes more execution time whereas the ANFIS gave a good solution
(error ) with less time compared to GA method. ANFIS and GA will be de-
tailed in Sections 4.3 and 4.5, respectively. Once we found the angular positions as
above, then, all joint angular velocities and angular accelerations of the index nger
are calculated by differential kinematics in Section 2.4. Similarly, all joint angular
velocities and angular accelerations of middle nger, ring nger, and little nger are
also computed.

2.3.3 Fingertip Workspace
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2.3.3.1 TwoLink Thumb and ThreeLink Index Finger When the two-link
thumb and three-link ngers are doing extension/ exion motions, the ranges that
all ngertips can achieve are restricted to the joint angles of MCP, PIP, and DCP.
In other words, when all joints of ngers perform all possible motions, the region
which is achieved by the ngertips is called reachable workspace. The maximum
joint angles of each joint depend on different individuals. Referring to inverse kine-
matics, Figure 2.14 shows the workspace of the two-link thumb. The rst and second

Figure 2.14 Workspace of TwoLink Thumb

joint angular positions (or joint angles) are constrained in the ranges of [0,90] and
[ 80,0] (deg), respectively [21]. The * region represents the workspace of the two-
link thumb (we do not consider the orientation so far).

Similarly, the workspace of the three-link index nger is shown in Figure 2.15.
The rst (MCP), second (PIP), and third (DIP) joint angles of the index nger are
constrained in the ranges of [0,90], [0,110] and [0,80] (deg), respectively [21], and
the ngertip of index nger is only reachable in the * area. In addition, Figure 2.16
combines Figures 2.14 and 2.15 with a square object [12]. Thus, the lower and up-
per regions, respectively, show the reachable ngertip positions of thumb and index

nger. Further, the overlap region represents the space both the thumb and the index
nger can reach. Both the two-link lengths of thumb are given as 0.040 (m) and the

three-link lengths of index nger are selected as 0.040, 0.040, and 0.030 (m) [22].
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Figure 2.15 Workspace of ThreeLink Index Finger

2.3.3.2 FiveFingered Robotic Hand Figure 2.17 shows the workspace of 14-
DOF, ve- ngered robotic hand with a rectangular rod. The rst, second, and third
joint angles of the other three ngers (middle nger, ring nger, and little nger)
are constrained in the ranges of [0,90], [0,110], and [0,80] (deg), respectively [21].
Thus, the gray regions, respectively, show the reachable ngertip positions of thumb,
index nger, middle nger, ring nger, and little nger. Note that the axis is of
different scale to show more clearly the individual three-dimensional regions of reach
[18].

2.4 Differential Kinematics

Sections 2.2 (forward kinematics) and 2.3 (inverse kinematics) derive the relation-
ship between the positions of ngertips and the angular positions of joints. This
section will introduce differential kinematics, which establishes the relationship be-
tween the linear and angular velocities and accelerations of ngertips and the angular
velocities and accelerations of joints by the manipulator geometric Jacobian. Before
calculating the geometric Jacobian, some properties of rotation matrices and rigid
body kinematics need to be reviewed. Then, the geometric Jacobian of a serial -
link revolute-joint planar manipulator, two-link thumb, and three-link index nger
will be computed in the following sections.
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Figure 2.16 Workspace of Thumb and Index Finger with a Square Object

Figure 2.17 Workspace of the FiveFingered Robotic Hand with a Rectangular Rod

2.4.1 Serial Link RevoluteJoint Planar Manipulator

According to the forward kinematics in Section 2.2, (2.2.18) is the forward kinemat-
ics equation of a serial -link revolute-joint planar manipulator.
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(2.4.1)

where = is the angular position vector of joints; is
the homogeneous transformation matrix to transfer the end-effector to frame base;

and are the rotation matrix (orientation) and translation vector (po-
sition) to transfer the end-effector to frame base, respectively. The notations
= and = are used.

The linear velocity and angular velocity of the origin of the end-effector
frame are linear relations to the joint angular velocities . The linear relation repre-
sents the differential kinematics equation and is expressed as

(2.4.2)

Here, = is the ( ) end-effector velocity vector. =
is the ( ) geometric Jacobian matrix of a serial -link revolute-joint pla-

nar manipulator; both position Jacobian and orientation Jacobian are
the ( ) matrices which contribute the joint angular velocities to the linear
velocity and angular velocity of the end-effector, respectively. Before cal-
culating the geometric Jacobian , some properties of rotation matrices and rigid
body kinematics need be reviewed.

2.4.1.1 Some Properties of Rotation Matrices (2.4.1) explains that the end-
effector pose is a function of the joint angular position vector in terms of the
translation vector (position) and the rotation matrix (orientation).
The goal of differential kinematics is to characterize the linear velocity and an-
gular velocity of the end-effector, so it is necessary to consider the derivative
properties of the time-dependent rotation matrices with respect to time.

A time-dependent rotation matrix is an orthogonal matrix, so one has the
property

(2.4.3)

Differentiate (2.4.3) with respect to time and obtain the equation

(2.4.4)
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Set = and (2.4.4) is rewritten as

(2.4.5)

Therefore, is the (3 3) skew-symmetric matrix. Postmultiply on both
sides of (2.4.4) to give

(2.4.6)

Take (2.4.3) and (2.4.5) into the left and right sides of (2.4.6) to give

(2.4.7)

which gives the rst derivative of with respect to time. Consider the vector
= , where is a constant vector. Then, the rst derivative of with

respect to time is expressed as

(2.4.8)

Taking (2.4.7) into (2.4.8), (2.4.8) is rewritten as

(2.4.9)

If the vector represents the angular velocity of frame with respect to the
reference frame at time , then one has the relation

(2.4.10)

Hence, comparing (2.4.9) and (2.4.10), we know is the vector product between
= and . is expressed as

(2.4.11)

Thus, (2.4.7) is rewritten as

(2.4.12)

Besides, the equation below is shown by [10].

(2.4.13)
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2.4.1.2 Rigid Body Kinematics As shown in Figure 2.3, (2.2.6) gives the coor-
dinate transformation of translation vector and rotation matrix from frame
1 to frame 0.

(2.4.14)

Take the rst derivative of (2.4.14) with respect to time and obtain

(2.4.15)

Substituting (2.4.12) into (2.4.15), (2.4.15) is rewritten as

(2.4.16)

where = .

Figure 2.18 Vector Representation of Link

Figure 2.18 shows the vector representation of link , which connects joints and
. Frame is attached to link and has the origin along joint

while frame is attached to link and has the origin along joint . and
represent the position vectors of frames and with respect to frame base,

respectively. According to (2.4.14), the coordinate transformation transferring from
frame to frame is denoted as

(2.4.17)

where is the position vector of the frame origin (right subscript) with
respect to the frame origin (left superscript) expressed in frame (right
superscript). Differentiating (2.4.17) with respect to time gives

(2.4.18)
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which expresses the linear velocity of link as a function of the translational
velocity ( ) and rotational velocity ( ) of link .

Next, the link angular velocity will be derived. The rotation composition is

(2.4.19)

Differentiating (2.4.19) with respect to time gives

(2.4.20)

Substituting (2.4.12) into (2.4.20) gives

(2.4.21)

which leads to the result

(2.4.22)

which expresses the angular velocity of link as a function of the angular veloc-
ity of link and the angular velocity of link with respect to link

.
For revolute joint, the rotation of frame with respect to frame is induced

by the motion of joint . Therefore, the second term on the right side of (2.4.18) can
be written as

(2.4.23)

Substituting (2.4.23) into (2.4.18) gives

(2.4.24)

(2.4.22) is rewritten as

(2.4.25)

where is the unit vector of joint axis.
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Substituting (2.4.24) and (2.4.25) into (2.4.2) gives

...

(2.4.26)

Therefore, the geometric Jacobian matrix is denoted as

(2.4.27)

where ( ) is computed by

(2.4.28)

The unit vector of joint axis is obtained from the third column of the rotation
matrix and is expressed as

(2.4.29)

where = = ( ).
The position vector of the end-effector is obtained from the rst three entries
of the fourth column (translation vector) of the homogeneous transformation matrix

and is expressed as

(2.4.30)

where = and = . Hence, is calculated by

(2.4.31)
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Here, = and = .
Similarly, the position vector of the joint is obtained from the rst three
entries of the fourth column (translation vector) of the homogeneous transformation
matrix and is expressed as

(2.4.32)

where = . Thus, ( ) is computed by

(2.4.33)

Here, = and = .
Substituting (2.4.29), (2.4.31), and (2.4.33) into (2.4.28), the geometric Jacobian

in (2.4.27) is rewritten as

(2.4.34)

The entry ( ) of the geometric Jacobian in (2.4.2) is rewritten as

if ;

if ;

if ;

if
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Then, the angular velocities are written as

(2.4.35)

Similarly, the angular accelerations are obtained as

(2.4.36)

Here, = is the ( ) end-effector acceleration vector, including
linear acceleration and angular acceleration . The differential Jacobian

is also written as [5]

if ;

if ;

if

2.4.2 TwoLink Thumb

If we only consider the linear velocities of the ngertip, then the angular velocities
and angular accelerations of joints are obtained by taking the rst derivative and
second derivative on (2.3.1). The corresponding linear velocities ( , ) =

( , )/ of the ngertip are obtained as

or the matrix form

(2.4.37)

The matrices , , , and are

(2.4.38)

The matrix is called a submatrix of the geometric Jacobian of the thumb. The
complete geometric Jacobian, such as (2.4.34), would be a (6 2) matrix, with the
last three rows that account for the angular velocities of each link. We only consider
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the geometric Jacobian for the planar location ( , ) and not the orientation,
that is, a submatrix of the geometric Jacobian.
The angular velocities and of the joints 1 and 2 are

(2.4.39)

Similarly, the angular accelerations and of the joints 1 and 2 are obtained as

(2.4.40)

where is the linear acceleration vector of the ngertip. , , and
are denoted as

(2.4.41)

(2.4.42)

2.4.3 ThreeLink Index Finger

Similar to two-link thumb, by taking the rst derivative of the ngertip positions, we
get the linear velocities ( , )/ , which are expressed as

(2.4.43)

The matrices , , , and follow as

(2.4.44)

with

(2.4.45)
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Consequently, the angular velocities and of the joints 1 and 2 are solved as

(2.4.46)

Simultaneously, the angular velocity of the joint 3 is obtained as

(2.4.47)

In the similar manner, the angular accelerations and of the joints 1 and 2 are
obtained as

(2.4.48)

where is the linear acceleration vector of the ngertip. , , and
are

(2.4.49)

with

(2.4.50)

Then, the angular acceleration of the joint 3 is also obtained as

(2.4.51)

2.5 Trajectory Planning

It is necessary to know the desired paths before the robotic hand is controlled in order
to execute a speci c hand motion task. Trajectory planning involves the generation
of the desired paths or reference inputs, so trajectory planning is associated with
some situations, such as avoiding barriers and making sure that the desired path does
not exceed the voltage and torque limitations of the actuators. The simplest hand
motion is point to point motion. Sections 2.5.1 and 2.5.2, respectively, explain a
time sequence of cubic polynomial and Bézier curve functions generating a desired
path described by initial and terminal conditions, including positions and velocities.
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2.5.1 Trajectory Planning Using Cubic Polynomial

A polynomial function is a function de ned by evaluating a polynomial and a general
polynomial function ( ) of variable is written as

(2.5.1)

where is a non-negative integer and ( ) are constant coef -
cients.

To generate smooth trajectories, a cubic polynomial function for the ngertip
space is created as shown in Figure 2.19. A time history of desired ( ) ngertip

Figure 2.19 Fingertip Space Trajectory

positions ( ), velocities ( ), and accelerations ( ) is given as [9, 10, 23]

(2.5.2)

Here, – are undetermined constants and the superscript indicates the index of
each nger, for example, , , , , and represent thumb, index nger, middle

nger, ring nger, and little nger, respectively.
Suppose we need to satisfy the following four constraint conditions at and

(2.5.3)
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where and are the initial time and terminal time, respectively; and are the
initial and terminal ngertip positions of the nger . Based on the four constraint
conditions at and , (2.5.2), they are written as

(2.5.4)

In the matrix form, the relations (2.5.4) are rewritten as

(2.5.5)

where the matrices , , and are

(2.5.6)

Therefore, the four unknown constants, – , are computed by

(2.5.7)

2.5.2 Trajectory Planning Using Cubic Bézier Curve

Bézier curves are widely used in computer graphics to model smooth curves. Gen-
eralizations of Bézier curves to higher dimensions are called Bézier surfaces. Bézier
curves were widely publicized in 1962 by the French engineer Pierre Bézier, who
used them to design automobile bodies. The curves were rst developed in 1959
by Paul de Casteljau using de Casteljau’s algorithm, a numerically stable method to
evaluate Bézier curves [24].
A general Bézier curve function ( ) of variable is expressed as

(2.5.8)
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where is a non-negative integer and ( ) are constant coef -
cients; is written as

(2.5.9)

In a similar way, a time history of desired ( ) ngertip positions ( ), velocities ( ),
and accelerations ( ) for a cubic Bézier curve function is given as

(2.5.10)

Here, are undetermined constants and the superscript indicates the index of
each nger, for example, , , , , and represent thumb, index nger, middle

nger, ring nger, and little nger, respectively. The transformed time and its rst

derivative with respect to time are de ned as

(2.5.11)

(2.5.12)

where is the real time; and are the real initial time and real terminal time,
respectively. The following four constraint conditions at real time = and need
to be satis ed.

(2.5.13)

where and are the initial and terminal ngertip positions of the nger ; and

are the initial and terminal ngertip velocities of the nger . Based on the four



84 KINEMATICS AND TRAJECTORY PLANNING

constraint conditions at = and , (2.5.10), they are rewritten as

(2.5.14)

In the matrix form, the relations (2.5.14) are rewritten as

(2.5.15)

where the matrices , , and are

(2.5.16)

Therefore, the four unknown constants, – , are computed by

(2.5.17)

2.5.3 Simulation Results of Trajectory Paths

Figures 2.20, 2.21, and 2.22 show the trajectory position, linear velocity, and linear
acceleration of ngertips of the cubic polynomial and cubic Bézier curve functions,
respectively. The initial position and terminal position are 0.030 and 0.065 (m),
respectively; the tracking time is 20 (sec). There is no obvious difference between the
cubic polynomial and cubic Bézier curve functions based on these results. Therefore,
the polynomial function will be utilized in all studied cases for control strategies. To
interpolate between more than two points, Bézier curve functions are used because
the control points are easily and intuitively moved around in order to adjust the curve
as the user may like.

Figure 2.23 shows the forward kinematics (upper row) in terms of the thumb link
angles and the tip positions and the inverse kinematics (lower row) of the thumb in
terms of the tip positions and the link angles. Figure 2.24 shows forward kinematics
(upper row) in terms of the index nger link angles and the tip positions and inverse
kinematics (lower row) in terms of the tip positions and the link angles of the index
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Figure 2.20 Trajectory Position of Fingertip

nger by using ANFIS (see Section 4.3) and similar results were obtained using GA
(see Section 4.5). During our simulations [12], we found that GA method gives a
better solution (error ), but it takes more execution time whereas the ANFIS
approach gave a good solution (error ) with less time compared to the GA
method.
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Figure 2.21 Trajectory Linear Velocity of Fingertip

Figure 2.22 Trajectory Linear Acceleration of Fingertip
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Figure 2.23 Forward Kinematics and Inverse Kinematics of Thumb
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Figure 2.24 Forward Kinematics and Inverse Kinematics of Index Finger Using ANFIS
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CHAPTER 3

DYNAMIC MODELS

Electric motors are used to actuate the joints of small size manipulators, like robotic
hand. A transmission is the mechanical gear cables that can change the angular
velocity between the electric motors and the actuated joints. Section 3.1 describes
the quantitative effects by deriving the mathematical model of the actuator between
direct current (DC) motor and mechanical gears. The dynamic equations of hand
motion are then derived via Lagrangian approach for a serial -link revolute-joint
manipulator in Section 3.2.

3.1 Actuators

3.1.1 Electric DC Motor

For small load applications such as for a two-link thumb and three-link ngers, it is
normal to use an electric DC motor as an actuator which is shown in Figure 3.1 [1].
It is easy to write the necessary relations for the DC motor circuit as

(3.1.1)

Fusion of Hard and Soft Control Strategies for the Robotic Hand, By C.-H. Chen and D. S. Naidu 
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Figure 3.1 Electric DC Motor

and for the torque/force developed by the motor as

(3.1.2)

where, , , and are DC motor armature resistance, inductance, back electro
motive force (e.m.f.) constants, respectively, and , , and are motor mo-
ment of inertia, damping coef cient, and spring constant, respectively. For two-link
system, we need to have two actuators and, in general, we need actuators for -link
system, in which case, we rewrite (3.1.1) and (3.1.2) in matrix form

(3.1.3)

(3.1.4)

where, is the motor displacement coordinate vector, is a
diagonal and positive de nite, moment-of-inertia matrix of the motors including the
motor gears, and are vectors representing armature voltages
or control inputs and currents, respectively; , and are, respectively, diagonal
matrices representing armature inductances, armature resistances, and motor back
e.m.f. constants.

3.1.2 Mechanical Gear Transmission

Figure 3.2 shows the transmission effects between an electric DC motor and a me-
chanical gear. and represent the inertia moments regarding the rotation axis
for the motor and the loaded joint, respectively; and are viscous friction co-
ef cients of the motor and the loaded joint; and denote the driving torque of
the motor and the coupled torque of the loaded joint; and are, respectively, the
angular positions of the motor and loaded joint axes. If the coupling between the
motor gear and loaded joint gear is the absence of slipping, there is the relation

(3.1.5)
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Figure 3.2 Schematic Representation of a Mechanical Gear Transmission

Here, and are the gear radii of the motor and the loaded joint, respectively.
The gear reduction ratio is de ned as

(3.1.6)

where and are the angular velocities of the motor and loaded joint axes, respec-
tively; and represent the angular accelerations of the motor and loaded joint
axes, respectively. As shown in Figure 3.2, the contact exchanged force between
the motor gear and loaded joint gear would generate a driving torque for the mo-
tor axis and a reaction torque for the loaded joint axis, respectively. Therefore,
the moment balances for the motor axis and loaded joint axis are expressed as

(3.1.7)

(3.1.8)

Substituting (3.1.6) into (3.1.8) gives the relation as

(3.1.9)
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Substituting (3.1.6) and (3.1.9) into (3.1.7) gives the relation as

(3.1.10)

(3.1.10) expresses the relation between the driving torque of the motor axis and
the reaction torque of the loaded joint axis.

3.2 Dynamics

It is necessary to have a mathematical model that describes the dynamic behavior of
robotic hand for the purpose of designing the control system. Hence, in this section
the dynamic equations of hand motion are derived via Lagrangian approach using
kinetic energy and potential energy.

Lagrange’s equations of hand motion [2–4] are given by

(3.2.1)

where is the Lagrangian; and represent the angular velocity and angle vec-
tors of joints, respectively; is the generalized force vector; is the given torque
vector at joints; denotes the diagonal positive de nite matrix of viscous friction
coef cients. As a simpli ed model of static friction torques, one may consider the
Coulomb friction torques , where is a diagonal positive de nite matrix
and is a vector whose components are given by the sign functions of the sin-
gle joint velocities. J is the Jacobian and denotes the vector of external forces
exerted by the end-effector on the environment. The Lagrangian is expressed as

(3.2.2)

where and denote kinetic energy and potential energy, respectively [5].

3.3 TwoLink Thumb

The Lagrangian of thumb is described as

(3.3.1)
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and are written as

(3.3.2)

(3.3.3)

Here, is the number of links of thumb; and represent linear and rota-
tional parts of kinetic energy, respectively; denotes the mass of link ; is the
center of mass velocity vector of link ; is the center of mass position vector of
link ; is the angular velocity vector of link ; represents the moment matrix
of inertia of link ; is potential energy of link . Here , , , , and
are denoted by

(3.3.4)

(3.3.5)

(3.3.6)
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(3.3.7)

(3.3.8)

Here is the distance between the end of previous link and the center of mass of
link ; is the length of link ; is the angle at joint and a function of time;
is the acceleration due to gravity; the diagonal elements , are
called

(3.3.9)

The off-diagonal elements , are called

(3.3.10)

Here, represents the body domain of link .
Therefore, from Lagrangian approach, dynamic equations of thumb are obtained

as below [6].

(3.3.11)

or

(3.3.12)
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Here,

(3.3.13)

(3.3.14)

(3.3.15)

and are the given torques at the joints 1 and 2, respectively; is the inertia
matrix; is the Coriolis/centripetal vector and is the gravity vector;
denotes the diagonal positive de nite matrix of viscous friction coef cients; is
a diagonal positive de nite matrix and is a vector whose components are
given by the sign functions of the single joint velocities; is the Jacobian and
denotes the vector of external forces in each direction. The sign function is
given by

if

if

(3.3.11) is also be written as

(3.3.16)

where represents non-
linear terms in and .

3.4 ThreeLink Index Finger

Similarly, dynamic equations of index nger [6] are obtained (by software MAPLE)
in the same form (3.3.11) as

(3.4.1)
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CHAPTER 4

SOFT COMPUTING/CONTROL
STRATEGIES

The hard control strategies offer fixed (or crisp) solutions to control dynamical sys-
tems. A knowledge-based system is more proper to complete tasks where the nature
of the problems and solutions is not well de ned or not known [1]. This chapter
introduces some soft computing (SC) or computational intelligence (CI) [2] strate-
gies involving fuzzy logic (FL) in Section 4.1, neural network (NN) in Section 4.2,
adaptive neuro-fuzzy inference system (ANFIS) in Section 4.3, tabu search (TS)
in Section 4.4, genetic algorithm (GA) in Section 4.5, particle swarm optimization
(PSO) in Section 4.6, developed adaptive particle swarm optimization (APSO) in
Section 4.7, and condensed hybrid optimization (CHO) in Section 4.8. Then, all
simulation results and discussion are presented in Section 4.9.

4.1 Fuzzy Logic

Humans are exible and can adapt to unfamiliar situations and they can get infor-
mation in an ef cient manner and discard irrelevant details. The information gen-
erated does not need to be complete or precise, but it may be general, qualitative,
approximate, and fuzzy for human beings, so it can reason, infer, and deduce new

Fusion of Hard and Soft Control Strategies for the Robotic Hand, By C.-H. Chen and D. S. Naidu 
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information and knowledge [1]. A classical (crisp) set of real numbers larger than
30 are written as

(4.1.1)

Here, there is a boundary number 30. If is smaller than this number, then belongs
to the set ; otherwise, does not belong to the set . Let and be someone’s
age and young, respectively. If Chen’s age ( ) is 29.99, which is smaller than 30
and belongs to the set , then people may consider Chen is young ( ); however, if
Mario’s age is 30.01, which is larger than 30 and does not belong to the set , in real
life, people do not think Mario is not young. In other words, the difference between
29.99 and 30.01 is not obvious. In contrast to a classical set, a fuzzy set is a set
without a sharp (crisp) boundary or without binary characteristics. In other words,
the identi cation between “belongs to the set” and “does not belong to the set” is
gradual or gradient. As shown in Figures 4.1 and 4.2, such statements as “Chen

Figure 4.1 Membership Functions of “Mario is Young”

is good” and “Mario is young” are simple examples. Fuzzy sets are mathematical
objects modeling this impreciseness and use the concept of degrees of membership
function to give a mathematical de nition of fuzzy sets. If is a collection denoted
by , then a fuzzy set in is de ned as a set of ordered pairs

(4.1.2)

Here, the membership function (MF) represents the grade of possibility that
an element belongs to the fuzzy set . Figures 4.1 and 4.2 utilize three mem-
bership functions: Z-shape , generalized bell curve , and S-shape
to present young/bad, middle, and old/good, respectively. The three membership
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Figure 4.2 Membership Functions of “Chen is Good”

functions are expressed as

if

if

if

if

if

if

if

if .

Here, the parameters , , , , , , and are selected constants.
Furthermore, humans do many things that can be classi ed as control by the rule

“IF..., THEN...”. For example, if the temperature is low, then turn on the heat; if you
are tired, then get some sleep. A fuzzy IF–THEN rule (or named fuzzy rule/fuzzy
implication) describes the form “IF is , THEN is ”.
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4.2 Neural Network

A biological neuron is the foundation of all ANNs, hence forth simply called NNs.
The biological neurons consists of cell body, dendrites, synapses, and axon [3]. The
axon is considered as a long tube that divides into branches. The end branches of
the neuron’s axon terminate in synaptic knobs. Therefore, the axon of a single neu-
ron forms synaptic connections with many other neurons. The synaptic knob of
the rst neuron is separated from the receptor site of another neuron by a micro-
scopic distance. The cell body of the rst neuron produces chemical materials called
neurotransmitters, which are delivered down to the synaptic vesicles. The neuro-
transmitters are stored in the synaptic vesicles until the neuron res and a burst of
neurotransmitters is released by the vesicles. The neurotransmitters then ow across
the synaptic cleft and act on the second neuron. Hence, the neurotransmitters of
the rst neuron may stimulate or inhibit the second neuron activity. Each neuron is
receiving messages from hundreds or thousands of other neurons.

That is to say that the dendrites receive signals (electrical action potential) from
other neurons through synaptic connections and the signals travel to cell body where
they are received, integrated, and transmitted. The cell body of a neuron adds the
incoming signals from dendrites. If the strengths of input signals reach the threshold
level, then a particular neuron will re and send a signal to its axon; if the input
signals do not reach the required threshold level, then the input signals will quickly
decay and will not generate any action on the axon [3].

Inspired by biological nervous systems, NN is typically composed of a set of par-
allel and distributed processing units, called nodes or neurons. These are usually or-
dered into layers, appropriately interconnected by means of unidirectional weighted
signal channels, called connections or synaptic weights [1, 4–6]. All or parts of
nodes are adaptive. In other words, the outputs of the nodes modi es the parameters
related to these nodes. The learning rule of NN updates these parameters to minimize
a prescribed error measure, which is the difference between the network’s actual out-
put and a desired output. Figure 4.3 shows a simple feedforward ANN with input
layer, hidden layer, and output layer.

4.3 Adaptive NeuroFuzzy Inference System

In 1965, L. A. Zadeh rst proposed a fuzzy set, which is characterized by a mem-
bership function [7]. Unlike a crisp set, the fuzzy set de nes a grade of membership
value between zero and one. Using the fussy set, FL provides a mathematical model
to describe the uncertain environment and approximate knowledge reasoning. Fuzzy
logic controller (FLC) is developed by the combination of the fuzzy set and fuzzy
logic. The FLC uses fuzzy “IF-THEN” Rule Base (or named fuzzy rule/fuzzy impli-
cation) to control systems. The “IF” part is known as antecedent and the “THEN”
part is called as consequent [1, 8]. Among the FLC approaches, the two most com-
mon methodologies are Mamdani [9] model and Sugeno (or Takagi–Sugeno–Kang,
TSK) model [10]. The two models use the same approaches to fuzzify crisp inputs
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Figure 4.3 A Simple Feedforward Arti cial Neural Network

and apply fuzzy operator, but the main difference between Mamdani and Sugeno is
that Sugeno type uses either linear or constant (e.g. rst-order or zero-order polyno-
mial functions) for outputs without using membership functions.

A NN is a model structure with an algorithm, which can learn, train, and adjust
weight parameters to t given nonlinear data. Inspired by biological nervous sys-
tems, NN is typically composed of a set of parallel and distributed processing units
(called nodes or neurons). These nodes are usually ordered into layers (including
input, hidden and output layers), which are appropriately interconnected by means
of unidirectional weighted signal channels (named connections or synaptic weights)
[1, 4, 11]. All or partial nodes adjust the weight parameters using learning rules and
algorithms, such as least squared error (LSE, also known as Widrow–Hoff learning
rule) [12], gradient decent algorithm etc. In other words, the outputs of the nodes
adapt the weight parameters relating to these nodes and the learning rules update
these parameters to either minimize a prescribed error measure, which is the differ-
ence between the network’s actual output and a desired/targeted output, or change
a learning rate for the gradient of the prescribed error measure. The NN uses the
adaptive LSE algorithm to t the given data with highly nonlinear systems and the
gradient decent algorithm to control convergent speed.

FL systems implement fuzzy sets to model uncertainty and approximate knowl-
edge reasoning, but FL architecture lacks learning rules. NN systems strengthen
adaptive learning rules for numerical sets to t nonlinear data, but NN feature lacks
knowledge representation. Neuro-fuzzy systems (NFS) include intelligent systems
which combine the main features of both FL and NN systems to solve problems that
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cannot be solved with desired performance by using either FL or NN methodology
alone [13]. The most common NFS is ANFIS [14]. ANFIS is a fuzzy inference
system embedded in the framework of adaptive networks which provides the best
optimization algorithm for nding parameters to t the given data. Based on human
reasoning in the form of fuzzy “IF-THEN” rules, ANFIS develops the mapping of
input and output data pairs using a hybrid learning procedure.

The analytical solutions of inverse kinematics for two-link thumb can be deduced
mathematically. However, with more complex structures (such as increasing DOF
in three-dimensional space), it will become a dif cult problem to solve. Since the
forward kinematics for three-link ngers are formulated [15], the workspace of n-
gertips in Cartesian coordinates is developed by the entire range of rotating angles
of all links. Therefore, the inverse kinematics problems for three-link ngers can
be solved by using ANFIS [4, 14] with the Cartesian space as inputs and the joint
space as outputs. The Cartesian space (inputs) and joint space (outputs) are stored as
training data set and then trained by ANFIS. ANFIS includes premise parameters (or
named antecedent parameters), de ning membership functions, and consequent pa-
rameters, determining the coef cients of each output equation. The hybrid learning
procedure of ANFIS uses the backpropagation gradient descent algorithm in back-
ward pass to tune the premise parameters of membership functions and LSE (also
known as Widrow–Hoff learning rule) [12] method in forward pass to adjust the
consequent parameters of output functions.

J.-S. Jang presented three types of ANFIS [14] and we use type-3 ANFIS,
which uses Takagi–Sugeno’s fuzzy “IF-THEN” rules whose outputs are a linear
combination of input variables and a constant. To simply summarize the type-3
ANFIS architecture, we assume that and are two input variables and
is one output variable. As shown in Figure 4.4(a), for a rst-order Sugeno fuzzy
model, the two Takagi–Sugeno’s fuzzy “IF-THEN” rules are expressed as

Rule 1: IF ( is ) and ( is ), THEN ( = + + ),
Rule 2: IF ( is ) and ( is ), THEN ( = + + ).

Here, and ( = 1, 2) are the linguistic label (like small, medium, and
large) and , , and ( = 1, 2) are the linear consequent parameters. Figure 4.4(b)
depicts the corresponding equivalent ANFIS architecture with ve layers, named as
Fuzzi cation (Layer 1), Product (Layer 2), Normalization (Layer 3), Defuzzi cation
(Layer 4), and Aggregation (Layer 5) [16, 17]. The inverse kinematics problems
for three-link ngers are solved by ANFIS with the Cartesian space as inputs and
the joint space as outputs. The Cartesian space (inputs) and joint space (outputs)
are stored as training data set and then trained by ANFIS. The hybrid learning
procedure of ANFIS uses the backpropagation gradient descent algorithm in
backward pass to tune the premise/antecedent parameters of membership functions
(Layer 1) and the LSE method in forward pass to adjust the consequent parameters
of output functions (Layer 4) [4, 14]. The structure of these layers is described below.

Layer 1: Fuzzification Layer
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Figure 4.4 ANFIS Architecture: (a) A FirstOrder Sugeno Fuzzy Model with Two Input
Variables and and One Output Variable Based on Two Fuzzy “IFTHEN” Rules. (b)
Corresponding Equivalent ANFIS Structure.

We de ne that is the output of the th node in the th layer and square
nodes ( = 1, 4) are adaptive nodes with parameters, while circle nodes ( = 2, 3, 5)
are xed nodes without parameters. Nodes (= 1, 2) in this layer (= 1) are square
(adaptive) nodes with node functions

(4.3.1)
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where the two crisp inputs and to the nodes are fuzzi ed through member-
ship functions and of the linguistic labels correlated to the node func-
tions . The commonly used membership functions are triangular, trapezoid,
Gaussian-shaped, and bell-shaped membership functions . For example, the
bell-shaped membership function is given by

(4.3.2)

where the parameter set includes premise/antecedent parameters.

Layer 2: Product (T-norm Operation) Layer
Nodes (= 1, 2) in this layer (= 2) are circle ( xed) nodes labeled product (or
T-norm ) operator with node functions . The nodes in this layer multiply
all incoming signals and send the product outputs to next layer (Layer 3), which
represent the ring strength of fuzzy antecedent rules (“IF” part). The outputs in
this layer acts as weight functions and is expressed as

(4.3.3)

Layer 3: Normalization Layer
Nodes (= 1, 2) in this layer (= 3) are circle nodes labeled with node functions

. The th node in this layer calculates the ratio of the th rule’s ring strength to
the sum of all rules’ ring strengths. The outputs in this layer normalize the weight
functions that are transmitted from the previous product layer and the normalized
weight functions ( ring strengths) are written as

(4.3.4)

Layer 4: Defuzzification (Consequent) Layer
Nodes (= 1, 2) in this layer (= 4) are square nodes with node functions .
The th node in this layer defuzzi es the fuzzy consequent rule (“THEN” part). The
defuzzi ed outputs in this layer are multiplied by normalized ring strengths based
on the formulation

(4.3.5)

Here, the parameter set consists of consequent parameters.

Layer 5: Aggregation (Summation) Layer
The single node in this layer (= 5) is a circle node labeled with a node function

. The output in this layer calculates the total overall output as the summation of
all incoming signals and is expressed as

(4.3.6)
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4.4 Tabu Search

Several algorithms can be used to nd a global minimum in optimization problems.
Among these methods, tabu search (TS), genetic algorithm (GA), and PSO are very
common evolutionary algorithms. TS, developed by F. Glover, was basically a set
of concepts [18, 19] used to optimize combinatorial optimization problems. These
concepts were extended to solve continuous optimization problems known as con-
tinuous tabu search (CTS), which was introduced by P. Siarry and G. Berthiau [20].
Enhanced continuous tabu search (ECTS) was an algorithm that uses advanced con-
cepts of tabu search such as diversi cation and intensi cation for optimizing func-
tions of continuous variables. ECTS was introduced by R. Chelouh and P. Siarry
[21].

4.4.1 Tabu Concepts

In this section, the de nition and concepts used in TS are explained rst before intro-
ducing ECTS algorithm. Figure 4.5 shows a set of all possible solutions which can

Figure 4.5 Characterization of Search Space for Enhanced Continuous Tabu Search

be visited during the search operation and is called the search space [22]. The dimen-
sion of the search space is equal to the number of variables in the cost function. The
search space is denoted as and any elements in the search space is represented by

. For functions of variables, the ambient search space is and the th element
= ( , , . . . , ).
The cost function or objective function of the element is denoted as . For

a function of variables, is mapping from . The objective of the
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algorithm is to minimize

(4.4.1)

For each point in the search space , one can create a set of neighbors, which
form a subspace in the search space , the neighborhood space, denoted as .
Each element in is denoted as = ( , , . . . , ), where is the number of
variables or the dimension of the search space .

The key ingredient in TS is tabu list. In order to prevent the repetition of move-
ments in the search space (cycling), one uses an array, which is called tabu list
(TL). TL records the most recent movement so that the recorded position will not
be visited in the future. The recorded movement in TL is called “Tabu,” which was
inspired by a taboo, meaning a strong social prohibition/ban against words, objects,
actions, or discussions that are considered undesirable or offensive by a group, cul-
ture, society, or community. The number of iterations of the Tabu is known as tabu
tenure (TT), which depends on the length of the TL ( ). The larger the number ,
the longer the TT. plays an important role in the performance of TS algorithm.
Each element in TL is denoted as = ( , , , ).

4.4.2 Enhanced Continuous Tabu Search

Figure 4.6 shows the owchart of ECTS. ECTS uses the advanced concepts of TS,
namely and . ECTS is composed of four stages:
initialization of parameters, diversi cation, selecting the most promising area, and
intensi cation. In the following, each step is explained in details.

4.4.2.1 Initialization of Parameters The parameters initialized in ECTS include
the length of TL ( ), the length of promising list (PL) ( ), the radius of the neigh-
borhood ( ), the radius of tabu balls ( ), the radius of the promising balls ( ), and
a random point in the search space .

4.4.2.2 Diversification In this stage, the algorithm looks for the most promising
areas in the search space . The step-by-step procedure for this stage is given as
follows:

1. Generation of homogeneous neighbors: As shown in Figure 4.5, to any point
, generates neighbors such that

(4.4.2)

Here , , , ; is the initial radius of the neighborhood and

(4.4.3)

The above method partitions the search space into concentric spheres.
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2. Comparison with the tabu list (TL): Each neighbor ( , , , ) gener-
ated in the previous step is compared with the elements in the TL ( , ,

, ) and if

(4.4.4)

where

(4.4.5)

then the corresponding is rejected as tabu.

3. Comparison with the promising list (PL): Let be the number of neighbors
which are not in the TL and are denoted as ( , , , ). Each of
these elements are compared with the elements in the PL denoted as ( ,

, , ) and if

(4.4.6)

where

(4.4.7)

then the corresponding is rejected as Tabu.

4. Finding the best neighbor: From the neighbors which are not in the TL, one
nds the best neighbor which has the minimum cost function.

5. Updating the tabu list: The best neighbor obtained is updated into the TL in a
rst in rst out (FIFO) fashion.

6. Updating the promising list: If the best neighbor obtained is the overall best,
then it is updated into the PL in a FIFO fashion.

7. Conversion determination: If no improvement occurs for a certain number of
movements, then the diversi cation part is terminated.

4.4.2.3 Selecting the Most Promising Area The most promising area from the
PL is selected by two approaches, constant radius and standard deviation.

1. Constant radius: The upper bound ( ) and lower bound ( ) of the most
promising region is the promising list ( ) the constant radius ( ) divided
by the dimension and are expressed as

(4.4.8)

(4.4.9)
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2. Standard deviation: The upper bound ( ) and lower bound ( ) of the
most promising area care the promising list ( ) the standard deviation ( )
of the xed number simulations divided by the dimension and are expressed
as

(4.4.10)

(4.4.11)

4.4.2.4 Intensification The most promising area from the PL is selected and the
above steps 1 through 7 are repeated in order to intensify the search in the most
promising area.
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Figure 4.6 Flowchart of Enhanced Continuous Tabu Search
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4.5 Genetic Algorithm

In 1859, Charles Darwin (1809–1882) published a famous book “On the origin of
species by means of natural selection,” which is now known as The Origin of Species.
This is called Darwin’s Theory. He suggested that in almost all organisms, there is
a huge potential for the production of offspring, like eggs, but that only a small per-
centage survive to adulthood. To face the randomly variable environment, the living
things have to change their characteristics in order to survive. Therefore, evolution
is as the natural selection of inheritable variations.

Around the same time, Gregor Mendel (1822–1884) investigated the inheritance
of characteristics, or traits, in his experiments with pea plants. These experiments
supported Darwin’s Theory. However, 30 years after Mendel’s death, Walter Sutton
(1877–1916) discovered that the genes of fruit ies were part of chromosomes in
the nucleus. It means that if a characteristic is determined by a single gene, mutation
may have a dramatic effect; if a buck of genes combines to control that characteristic,
mutation in one of them may only have an unimportant effect.

The idea of GA was inspired from the chromosomes of living things which had
to change their characteristics in order to survive in a randomly varying environ-
ment. Therefore, GA is a stochastic search and optimization method based on the
metaphors of natural biological evolution and represented by some operators, such as
selection, crossover, and mutation. GA applied the survival principles of the ttest,
reproduction, and mutation to successively produce the good approximate solutions,
so GA was used to solve combinatorial optimization problems. The concepts of
GA were extended to solve continuous optimization problems, yielding techniques
known as continuous genetic algorithms (CGA) which were developed by P. Siarry
and G. Berthiau [23]. CGA is similar to GA except that the parameters are coded
in terms of continuous numbers whereas in GA parameters are coded in binary for-
mat. The employed CGA uses a linear ranking model for the chromosome selection,
where the probability density function is generated based on the cost values of the
individual candidate chromosomes.

4.5.1 Basic GA Procedures

Figure 4.7 shows the owchart of GA [24]. The procedure is brie y stated below.

1. De ne the CGA parameters: Including initial population (Ipop), population at
the end of the rst generation (pop), number of chromosomes kept for mating
(Keep), mutation rate (Mut), tolerance , and so on.

2. Create a homogeneous population: Generate elements (chromosomes) and
is the Ipop.

3. Evaluate cost ( tness) function of each chromosome: Calculate the tness value
of the th member in the population.

4. Select mate based on the performance of each gene: Create a new population
from the current population based on the ranking of the current tness value,
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for example, determine which parents participate in producing offspring for the
next generation.

5. Reproduce the generation by crossover: Use the single or multiple crossover
points to generate new chromosomes that retain the good feature and discard
the bad feature.

6. Mutate: Utilize the Mut which can randomly mutate the gene to avoid falling
into the local optimal area.

7. Repeat steps 3–6 until it reaches the maximum number of iterations or stopping
condition de ned by is satis ed.
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Figure 4.7 Flowchart of Genetic Algorithm
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4.6 Particle Swarm Optimization

In 1995, J. Kennedy, a social psychologist, and R. Eberhart, developed a new evo-
lutionary algorithm—PSO [25]. They implemented mathematical operators inspired
from the social behaviors of bird ocks and sh schools [26]. The initialization pro-
cess of PSO was similar to GA by utilizing a random population. However, GA used
crossover and mutation to update the chromosomes after each generation. Unlike
GA, PSO adopted the velocities, local best positions, and global best solutions of
particles to renew the solutions [25–30]. Compared with other evolutionary opti-
mization methods, PSO employed only a few simple rules in response to complex
behaviors, so it was computationally inexpensive in terms of memory requirements
and less time consuming than GA. Many researchers have successfully proven the
bene t of PSO in different problem settings [31–45]. We rst provide an overview of
how basic PSO works, including procedures and formulations, and then investigate
the PSO dynamics by ve different techniques and uniform and random distributions
[46].

In 2003, PSO researchers generally classi ed PSO as bridging ve areas: algo-
rithms, topology, parameters, emerging with other evolutionary computational meth-
ods, and applications [47]. Among the categories, parameters are the most impor-
tant. Clerc and Kennedy investigated the explosion, stability, and convergence by
constriction factors [36]. Shi and Eberhart developed an inertia weight method and
compared the two ways: constriction factors and inertia weight method [34]; they
also studied the selection of parameters in PSO [33]. However, utilizing few param-
eters and retaining the numerical stability and accuracy of the algorithm are the most
important objectives. Therefore, the study of PSO dynamics is presented here.

4.6.1 Basic PSO Procedures and Formulations

PSO has the feature of being a simple and easy process as shown in Figure 4.8 [46].
The procedure is stated below.

1. De ne the input parameters of PSO: Including the maximum number of itera-
tions, swarm size, the limiting velocity ( ), and upper bound ( ) and lower
bound ( ) of positions for the search space, and the stopping tolerance .

2. Initialize particle positions: This is done randomly by either the use of a uniform
distribution or a normal distribution [46].

3. Evaluate the quality of tness function (objective function) for the th parti-
cle: If the new particle position can produce the better cost value, then the new
positions replace the old positions, for example, update the local best and global
best cost and position values. Moreover, consider the tolerance and compare
the difference between the current ( ) and previous ( )
best cost values. If , then stop the loop; otherwise, go to
the next step.
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4. As shown in Figure 4.9, updating the velocity and position vectors
is accomplished by the equation of motion:

(4.6.1)

(4.6.2)

where and are the component velocity of the particle in the
time and , respectively; , , and are random values drawn from
a uniform distribution or normal distribution, which will be explained in next
Section 4.6.2; and represent local best and global best positions
in each generation; is the increment time for each iteration, for example,

in each iteration. (4.6.1) and (4.6.2) are expressed in the matrix form:

(4.6.3)

Note, if the velocity values of the particles are too large, they will make the par-
ticles leave the search space too often [26–28]. Hence, to avoid the explosion
of particles, a limiting velocity constrain is necessary [26], for example,
if the velocity values , then ; if ,

. Similarly, the boundary conditions are considered, for ex-
ample, if the updated positions , then ; if the updated
positions , then , where the suf x is the component
of particle dimension, the superscript represents the index of particles, and
means time.

5. Repeat steps 2–4 until it reaches the maximum number of iterations or stopping
condition de ned by is satis ed.
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Figure 4.8 Flowchart of Particle Swarm Optimization
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Figure 4.9 Illustration of Previous and Updated Position of Particles



PARTICLE SWARM OPTIMIZATION 125

4.6.2 Five Different PSO Techniques

According to (4.6.1)–(4.6.3), the updating velocities and positions are based on local
best positions and global best position in each iteration. There are ve techniques to
determine the next velocities and positions by the local best and global best.

1. Swarm’s local best: In this technique, each updating local best cost is expressed
by the swarm’s local best position of each iteration [26], as shown in Fig-
ure 4.10.

Figure 4.10 Illustration of Each Movement of Swarm’s Local Best

2. Particle’s local best: Figures 4.11 and 4.12 compare the two different local best
techniques in terms of tness cost [28].

3. Swarm’s local best without global best cost: This approach is simply using
technique A, but ignoring the global best value.

4. Swarm’s local best with spline weighting function: As shown in Figure 4.9,
is determined by the addition of , ,

and vectors times a random value. However, if the
particle is close to swarm’s local best or global best position, the in uence

of and should be smaller.
Conversely, if the particle is far away to the swarm’s local best or global best, the
in uence of and should be
increased. After considering the continuity and numerical stability of the veloc-
ity, a spline function is selected as the modi ed weighting functions
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Figure 4.11 Illustration of Swarm’s Local Best
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Figure 4.12 Illustration of Particle’s Local Best

and [48], given as follows:

if

if
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and

if

if

where and , respectively;
is the distance between the particle positions and the local best positions

; is the distance between the particle positions and the global
best positions ; is the radius of the support domains, as shown in
Figure 4.13. Therefore, (4.6.1) and (4.6.3) are rewritten as

Figure 4.13 Spline Weighting Function

(4.6.4)

and

(4.6.5)

5. Swarm’s local best with spline weighting function and the gradient of tness
function : The technique of conjugate gradient has the feature of fast conver-
gence in GA [49]. We introduce a modi ed descent method mimicking con-
jugate gradient. The updating positions, (4.6.2), of the modi ed gradient with
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spline weighting technique are rewritten as

(4.6.6)

where is a random variable, which will be explained in details in the next
Section 4.6.3; is the norm of the tness function and is the gradient
of the tness function in the direction. (4.6.3) is also rewritten as

(4.6.7)

4.6.3 Uniform Distribution and Normal Distribution

In (4.6.1)–(4.6.7), , , , and are random variables based on the uni-
form distribution or normal distribution. The variable’s values based on the uniform
distribution, donated as Uni, are . However, the variable’s value based on the
normal distribution is shown as N( , ), where is the mean value and is standard
deviation; the general formula for the probability density function (pdf) with normal
distribution is given as follows:

(4.6.8)

Figure 4.14 shows each normal distribution. Here, N(0,1), N(1,2), N(1,1), N(1,1/2),
and N(1,1/3) are indicated as Nor1, Nor2a, Nor2b, Nor2c, and Nor2d, respectively.
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4.7 Adaptive Particle Swarm Optimization

In Step 4 of the basic PSO procedure in Section 4.6.1, the maximum velocity ( )
is utilized to avoid the explosion of particles. However, for multi-dimensional prob-
lems, the should be adaptive in order to get the better performance. Hence, we
proposed an adaptive PSO (APSO) method to change this [50].

4.7.1 APSO Procedures and Formulations

The proposed APSO rst develops the linear model by selecting points from
the swarm and then calculate the relative error standard deviation by selecting the re-
maining points from the swarm. Eventually, fuzzy logic rules based on the computed
relative error standard deviation and the tilt of the developed linear plane are utilized
to adapt the limited velocity . The procedure is detailed below.

1. Construct a linear model: Figure 4.15 expresses the illustration of swarm’s po-

Figure 4.15 Illustration of Swarm’s Positions and Cost in Dimension

sitions and cost in an -dimensional space. Vectors in are and vectors in
are , so the position vectors and of the th particle are described

as

(4.7.1)

(4.7.2)
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Here, = 1, 2, , ; is the swarm size; = , which is the size of the
multi-dimensional space; represents the cost value of the th particle.

By randomly selecting particles from the swarm size , a plane is
created as

(4.7.3)

which ts these points. Here, = , , , represents the normal
vector of the created plane . , , , are non-zero components of

. Note that and are not uniquely de ned (any multiple of both describes
the same plane), but we must ensure that the linear model’s “plane” never will
be vertical. Therefore, we require that = 1. (4.7.3) is rewritten as

(4.7.4)

for = , , , with = 1. We rearrange (4.7.4) in the matrix
form as

(4.7.5)

where

...
...

... (4.7.6)

...
...

... (4.7.7)

Hence, is solved by = . Now we have the linear equations describing
the cost surface as determined by the choice of , , , and , , .
The cost surface is approximated by
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or

(4.7.8)

Here = ( , , , ) . Then we solve for .

(4.7.9)

is the calculated linear model for the cost ( tness) function , for ex-
ample, .

2. Calculate the relative error standard deviation and the tilt: We use to
compute the errors (deviations in the cost surface to the linear t), and sub-
sequently the standard deviation. Select randomly points ( is selected by =

( )) from the swarm size and compare the vectors as given below.

...

(4.7.10)

Thus, the errors are de ned as

(4.7.11)

for . is the cost value of the particle .
Substitute (4.7.9) into (4.7.11) and obtain the error from

(4.7.12)

Accordingly, the error array is computed as

...
...

...
...

...
(4.7.13)

where

...
...

...
(4.7.14)
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Consequently, the error standard deviation of the sample (the selected
points) is

(4.7.15)

The cost standard deviation of the swarm is denoted as , so the relative error
standard deviation is given as

(4.7.16)

Next, the tilt of the linear plane is computed. The normalized normal vectors
of the plane are calculated as

(4.7.17)

Here, = . “Small” tilt means near 1, while “large” tilt
means near zero.

3. Fuzzy logic rules and membership functions: As shown in Figure 4.16, four
fuzzy logic rules are utilized as stated below.

(1) IF is “small” tilt AND is “large,” THEN “decrease” velocity scale
.

(2) IF is “small” tilt AND is “small,” THEN compare the cost and the
cost of the last “ at” area. IF the current cost is smaller than the cost correspond-
ing to the previous at area, THEN “increase” velocity scale . However, IF
the current cost is larger than the cost corresponding to the previous at area,
THEN “decrease” velocity scale .

(3) IF is “big” tilt AND is “small,” THEN “increase” velocity scale .

(4) IF is “big” tilt AND is “large,” THEN “decrease” velocity scale .

Two membership functions are used in this work: Z-shape and S-shape. The
Z-shaped and S-shaped membership functions and of are respec-
tively described as

if

if

if

if
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Figure 4.16 Fuzzy Logic Rule Surface of the Proposed APSO

and

if

if

if

if .

Here, the parameters , , , and are selected and given in Table 4.1.
and are input variables while is an output variable. Therefore, the

adaptive maximum velocity is computed from

(4.7.18)

4.7.2 Changed/Unchanged Velocity Direction

In Step 4 of the basic PSO procedure (Section 4.6.1), the constrains the up-
dating velocity. However, the updating velocity directions are changed as shown in
Figure 4.17(a). We propose an unchanged updating velocity direction approach. As
shown in Figure 4.17(b), the updating velocity direction is unchanged by the multiple
of the updating velocity unit vector and .

(4.7.19)



ADAPTIVE PARTICLE SWARM OPTIMIZATION 135

Table 4.1 Selection of Membership Function Parameters

Variables Changed Z/S-Shapes / /

Big Z 0 0.5

Small S 0.5 1

Small Z 0 0.5

Large S 0.5 1

Increase Z -4 0

Decrease S 0 4

Figure 4.17 Updating Velocity Approaches by (a) Changed and (b) Unchanged Updating
Velocity Directions
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4.8 Condensed Hybrid Optimization

TS and PSO have some inherent advantages and disadvantages. TS is capable of
searching wide regions in the search space, but is not guaranteed to fall into the
global optimum solutions. However, the experimental results showed that TS did

nd good solutions near global optimum [51]. PSO was inherently slow but gave
better convergence than TS to achieve the optimal solutions. The performance of
PSO could be enhanced by providing some additional information, such as search
space. The disadvantages of TS and PSO could be mitigated by combining them;
such attempts had been done for combinatorial optimization problems [52, 53]. Our
previous works [54, 55] presented the hybrid algorithm which combined ECTS and
CGA to solve two- and three-dimensional continuous optimization problems and
parameter estimation in the presence of colored noise. Nonetheless, the implemen-
tation of the GA operators was complicated, required large amount of memory, and
consumed a lot of CPU time.

The proposed CHO algorithm consists of the diversi cation portion, using an
ECTS algorithm, and an intensi cation portion, which is represented by a PSO in-
stead of an ECTS [22]. In other words, one intensi es the search in the most promis-
ing area of the search space using a PSO. The ow chart of the proposed CHO
algorithm is depicted in Figure 4.18. The diversi cation and the intensi cation are
from ECTS and PSO, respectively.
The diversi cation of CHO contains the six steps below.

1. De ne: Cost function and ECTS parameters

2. Generate: neighbors around the current point to the tabu list nor the
promising list

3. Select: The best neighbor among the neighbors and make it as the new cur-
rent point

4. Update: The tabu list and promising list

5. Stop: The inner loop will stop when it reaches one of the termination criteria,
which is de ned as

(a) Terminate after a xed number of iterations (the maximum iteration )

(b) After a certain number of iterations without any improvement in the cost
function, for example, all decreases are smaller than the tolerance

(c) When the objective function reaches a pre-speci ed value

6. Submit: The selected most promising area from the promising list

The intensi cation of CHO includes another six steps below.

1. De ne: Cost function and PSO parameters

2. Evaluate: Cost function of each particle
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Figure 4.18 Diversi cation and Intensi cation Loops of Proposed CHO Algorithm

3. Update: The local best and global best positions

4. Renew: The velocity and position vectors of each particle

5. Stop: The inner loop will stop when it reaches one of the termination criteria,
which is de ned as

(a) Terminate after a xed number of iterations (the maximum iteration )

(b) After a certain number of iterations without any improvement in the cost
function, e.g. all decreases are smaller than the tolerance

(c) When the objective function reaches a pre-speci ed value

6. End: Complete CHO algorithm

4.9 Simulation Results and Discussion

4.9.1 PSO Dynamics Investigation

4.9.1.1 Benchmark Problems To demonstrate the accuracy of the ve cases in
Section 4.6.2, we simulate two nonlinear problems [46]. As Figure 4.19 shows, it
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Figure 4.19 Distribution of Function in the Range [0,10]

is the distribution of the rst problem = in the range
between 0 and 10. There are several local minimum locations near the point (9.0390,
8.6682) of global minimum value, 18.5547.
Figures 4.20 and 4.21 show the distributions of the second problem (Rosenbrock)
= in the ranges [ 10,10] and [ 1,1], respectively (note
the axes). The global minimum value is zero and locates at (1,1). It is very dif cult
for many optimization methods to nd this point.

4.9.1.2 Selection of Parameters According to Step 1 of the procedure in Sec-
tion 4.6.1, the selection of some initial parameters is very important before the steps
2–5 are performed. Therefore, the three parameters, including maximum number
of iterations, swarm size, the limited maximum velocity ( ), and the radius of
spline’s support domains , should be selected rst before simulating the ve tech-
niques in Section 4.6.1. From our simulation results, the rst parameter, and maxi-
mum number of iterations, are chosen as 50 for both problems; the forth parameter,

, is selected between 8.5 and 15.0 for both problems and we utilize for all
cases.

For the two simulation problems, there are 24 different cases with technique
A or B and different random distribution (Uni, Nor1, Nor2a, Nor2b, Nor2c, or
Nor2d). For example, Figure 4.22 is the distribution of the rst problem tness
value with technique A and uniform distribution under different swarm sizes and
maximum velocities; Figure 4.23 is the distribution of Rosenbrock problem tness
value with technique B and normal distribution N(0,1/3) under different swarm
sizes and maximum velocities. Considering the effect of statistics, each simulation
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Figure 4.20 Distribution of Function in the Range [ 10,10]

results from the average of 30 times. Hence, we obtain 24 gures like Figures 4.22
and 4.23, and Table 4.2 accounts for the selected parameters, maximum velocity
( ) and swarm size, for each case. Then Table 4.3 is the selection of parameters
according to the union of Table 4.2.
Notice that swarm size and maximum velocity are selected as 60 and 3.0 for Nor1;
swarm size and maximum velocity are respectively selected as 40 and 1.0 for the
remaining cases (Uni, Nor2a, Nor2b, Nor2c, and Nor2d). The parameters utilized in
techniques C, D, and E, are the same to those in technique A.

4.9.1.3 Simulations To consider statistics situations, after simulating 30 times,
Tables 4.4 and 4.5 express the results for problem 1 and 2 with ve techniques and
six different random distributions, respectively. , , and are the best solutions
of the rst and second variables and tness value from 30 times, respectively; ,

, and are the averages of the rst and second variables and tness value from 30
times; , , and are the standard variances of the rst and second variables
and tness value after the 30 simulations.

Mendes et al. [56] and Secrest and Lamont [57] used a normal distribution with
the mean value as zero, for example, Nor1 in this work. From (4.6.8), Nor1, Nor2a,
Nor2b, Nor2c, and Nor2d have 50%, 30.85%, 15.87%, 2.28%, and 0.13% negative
weights, respectively, as shown in Figure 4.14.

Observing the data in Tables 4.4 and 4.5, case Nor2c (normal distribution with
particles obtaining 2.28% negative weights) and Nor 2d (normal distribution with
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Figure 4.21 Distribution of Function in the Range [ 1,1]

particles obtaining 0.13% negative weights) produce consistent results in terms of
optimal value and smallest variance in the result. Comparing these two cases to
the Uni case (uniform distribution between zero and one, therefore particles have
strictly positive weighting), we conclude that a small amount of negative velocity
is useful and is producing better results for these two cases. In other words, during
the procedure, most particles are looking for the same searching directions (positive
weights), but a few particles are looking for the different searching spaces (negative
weights).

From the results of the two simulation problems, techniques A–E get agreeable
performance, but it appears that E is the most costly. Considering the relative reli-
ability and effectiveness, we will study these techniques (A–E) on a large range of
problems and CPU time. In addition, after some parameters are selected appropri-
ately, particles using normal distributions with some negative weights can indeed get
better results. Therefore, we will investigate whatever of the “optimal” swarm size
(40) depends on the dimension of the problem and develop an adaptive algorithm
where the parameters are self-tuned as the algorithm proceeds.
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Figure 4.22 Distribution of Function with Technique A and Uni under Different Swarm
Sizes and Maximum Velocities

Figure 4.23 Distribution of Function with TechniqueB and Nor2d under Different Swarm
Sizes and Maximum Velocities
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Table 4.2 Selected and Swarm Size for Each Case

Problem 1 Problem 2

Technique Swarm Size Swarm Size

Uni [3.0,10.0] 35+ [0.5,3.0] 40+

Nor1 [1.0,10.0] 25+ [2.5,4.0] 60+

[0.5,3.0]

A Nor2a or 25+ [0.5,3.0] 40+

[8.5,9.2]

Nor2b [0.5,10.0] 25+ [0.5,3.0] 30+

Nor2c [2.0,10.0] 20+ [0.2,3.5] 20+

Nor2d [2.2,10.0] 20+ [0.2,4.0] 20+

Uni [2.0,10.0] 35+ [0.5,3.5] 30+

Nor1 [0.5,10.0] 20+ [2.5,4.0] 50+

[0.5,3.2]

B Nor2a or 25+ [0.7,2.5] 35+

[8.5,9.2]

Nor2b [0.5,10.0] 25+ [0.4,3.5] 25+

Nor2c [2.0,10.0] 20+ [0.2,4.0] 20+

Nor2d [2.2,10.0] 20+ [0.2,4.0] 15+

Table 4.3 Selection of Parameters for Each Problem

Problem 1 Problem 2

Maximum iteration 50 50

Swarm size 40 40 or 60

Maximum velocity ( ) 3.0 1.0 or 3.0

Spline domain radii 10.0 10.0

Statistics times 30 30

Fitness function

Range [0, 10] [ 10, 10]

Variable optimal value (9.0390, 8.6682) (1, 1)

Fitness optimal value 18.5547 0

*Swarm size and maximum velocity are chosen as 60 and 3.0 only for Nor1.
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Table 4.4 Data from Each Technique and Random Variable for Problem One

9.0390 8.6682 18.5547

Technique

Uni 9.0390 8.7775 0.5236 8.6682 7.6290 3.5648 18.5547 17.1456 4.2550

Nor1 9.0505 8.9656 0.0768 8.6427 8.6764 0.0109 18.5326 18.1607 0.1523

A Nor2a 9.0758 8.9690 0.0954 8.6898 8.6335 0.0232 18.4475 17.8097 0.4676

Nor2b 9.0336 9.0138 0.0013 8.6267 8.6550 0.0080 18.5198 18.2667 0.0560

Nor2c 9.0408 9.0401 0.0005 8.6726 8.6716 0.0018 18.5541 18.4832 0.0048

Nor2d 9.0364 9.0400 0.0003 8.6711 8.6689 0.0019 18.5541 18.4960 0.0048

Uni 9.0390 8.6206 0.8377 8.6682 8.4598 0.6288 18.5547 17.9063 2.1507

Nor1 9.0350 8.9373 0.1639 8.6771 8.6576 0.0051 18.5520 18.1867 0.2571

B Nor2a 9.0295 9.0107 0.0016 8.6392 8.7065 0.0191 18.5322 18.0114 0.3496

Nor2b 9.0490 9.0465 0.0022 8.6741 8.6756 0.0064 18.5467 18.2815 0.1179

Nor2c 9.0408 9.0401 0.0001 8.6659 8.6716 0.0008 18.5544 18.5312 0.0008

Nor2d 9.0410 9.0397 0.0001 8.6689 8.6613 0.0008 18.5544 18.5292 0.0005

Uni 9.0390 8.8299 0.8030 8.6682 8.2515 1.1677 18.5547 17.8859 2.0254

Nor1 9.0340 9.0326 0.0021 8.6829 8.7025 0.0096 18.5488 18.2050 0.1072

C Nor2a 9.0629 8.8659 0.3732 8.6395 8.6902 0.0178 18.4975 17.8964 0.8067

Nor2b 9.0292 9.0258 0.0019 8.6896 8.6782 0.0048 18.5390 18.3223 0.0620

Nor2c 9.0416 9.0499 0.0007 8.6747 8.6671 0.0008 18.5534 18.4793 0.0401

Nor2d 9.0399 8.9372 0.3513 8.6699 8.6965 0.0104 18.5546 18.0386 1.1760

Uni 9.0218 7.6148 4.2615 8.6721 7.9554 1.7334 18.5331 15.8799 5.2799

Nor1 9.0338 8.7265 0.5881 8.6827 8.6631 0.0160 18.5487 17.7020 1.0070

D Nor2a 9.0364 8.9671 0.0827 8.6644 8.6386 0.0083 18.5540 18.2183 0.1292

Nor2b 9.0383 9.0364 0.0002 8.6628 8.6753 0.0010 18.5541 18.5184 0.0014

Nor2c 9.0348 9.0381 0.0003 8.6643 8.6711 0.0016 18.5532 18.5007 0.0260

Nor2d 9.0422 9.0326 0.0007 8.6739 8.6806 0.0011 18.5534 18.4839 0.0170

Uni 9.0151 7.8783 3.0638 8.5734 7.4146 3.2577 18.3432 15.6750 5.2430

Nor1 9.0422 8.8912 0.2280 8.6750 8.5826 0.3560 18.5531 17.9214 0.6917

E Nor2a 9.0340 8.8744 0.2338 8.6697 8.6948 0.0132 18.5529 17.9522 0.3418

Nor2b 9.0410 9.0360 0.0004 8.6747 8.6799 0.0018 18.5536 18.4921 0.0058

Nor2c 9.0405 9.0419 0.0001 8.6704 8.6604 0.0006 18.5545 18.5309 0.0006

Nor2d 9.0387 9.0302 0.0017 8.6664 8.6610 0.0066 18.5547 18.3128 0.2683
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Table 4.5 Data from Each Technique and Random Variable for Problem Two

9.0390 8.6682 18.5547

Technique

Uni 1.0000 1.0500 0.0300 1.0000 1.1316 0.2160 0. 0.0315 0.0140

Nor1 1.0000 0.9461 0.0869 1.0000 0.9833 0.2553 0. 0.1582 0.0626

A Nor2a 1.0000 1.0192 0.0099 1.0000 1.0438 0.0380 0. 0.0263 0.0013

Nor2b 1.0000 1.0113 0.0030 1.0000 1.0267 0.0129 0. 0.0068 0.

Nor2c 1.0000 1.0006 0.0023 1.0000 1.0042 0.0093 0. 0.0035 0.

Nor2d 1.0014 1.0005 0.0015 1.0021 1.0032 0.0058 5.1235E 05 0.0036 0.

Uni 1.0001 1.0169 0.0163 1.0001 1.0498 0.1040 1.0102E 06 0.0161 0.0052

Nor1 1.0415 1.0669 0.0735 1.0849 1.2070 0.4300 1.7254E 03 0.1368 0.0438

B Nor2a 1.0006 0.9890 0.0298 1.0000 1.0059 0.1036 1.4445E 04 0.0579 0.0063

Nor2b 1.0000 1.0014 0.0049 1.0000 1.0091 0.0189 0. 0.0097 0.0002

Nor2c 1.0004 1.0060 0.0029 1.0011 1.0137 0.0109 9.1504E 06 0.0039 0.

Nor2d 1.0040 1.0151 0.0017 1.0080 1.0319 0.0071 1.6026E 05 0.0030 0.

Uni 1.0000 1.1024 0.0578 1.0000 1.2708 0.3871 0. 0.0693 0.0221

Nor1 0.9820 0.9399 0.0891 0.9648 0.9728 0.3503 3.4666E 04 0.1786 0.0403

C Nor2a 1.0000 0.9695 0.0179 1.0000 0.9603 0.0553 0. 0.0554 0.0072

Nor2b 1.0000 1.0055 0.0084 1.0000 1.0221 0.0348 0. 0.0175 0.0006

Nor2c 1.0000 0.9879 0.0045 0.9983 0.9778 0.0172 2.8900E 04 0.0110 0.0002

Nor2d 0.9957 1.0286 0.0113 0.9919 1.0689 0.0535 4.1675E 05 0.0221 0.0013

Uni 0.9762 0.7787 0.2269 0.9509 0.8202 0.1250 9.9346E 04 0.3137 0.7457

Nor1 1.0000 0.9198 0.0282 1.0000 0.8737 0.0757 0. 0.0448 0.0072

D Nor2a 1.0000 0.9515 0.0165 1.0000 0.9216 0.0604 0. 0.0306 0.0009

Nor2b 1.0085 0.9697 0.0053 1.0162 0.9479 0.0186 1.4833E 04 0.0094 0.0002

Nor2c 1.0000 0.9749 0.0059 1.0000 0.9551 0.0188 0. 0.0077 0.0004

Nor2d 0.9998 0.9706 0.0058 0.9996 0.9493 0.0217 4.0000E 08 0.0097 0.0001

Uni 0.9827 0.7758 0.2209 0.9670 0.8142 0.2883 4.6847E 04 0.3126 0.3966

Nor1 0.9993 0.9908 0.0485 0.9975 1.0281 0.2506 1.2160E 04 0.0602 0.0130

E Nor2a 1.0139 1.0049 0.0253 1.0293 1.0387 0.0940 3.6398E 04 0.0471 0.0023

Nor2b 1.0058 0.9973 0.0031 1.0099 0.9967 0.0122 3.3419E 04 0.0061 0.

Nor2c 0.9974 0.9927 0.0027 0.9947 0.9885 0.0105 7.8998E 06 0.0045 0.

Nor2d 1.0020 0.9910 0.0060 1.0023 0.9870 0.0211 2.9436E 04 0.0103 0.0002
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4.9.2 APSO to Multiple Dimensional Problems

Two examples, Sphere and Rosenbrock problems, are utilized to demonstrate the
reliability of the proposed APSO [50]. Table 4.6 expresses the selection of some
parameters for each problem. For APSO, if the velocity values , then

. is the minimum velocity.

Table 4.6 Selection of Parameters for Each Problem

Sphere Rosenbrock

Maximum iteration 200 200

Swarm size 40 40

Distribution Uniform Uniform

Tolerance

Minimum velocity 0.5 0.5

Statistics times 15 15

Fitness function

Search range on [ 10, 10] [ 10, 10]

Figures 4.24, 4.25, and 4.26 show the errors of APSO and PSO with the change
and unchanged updating velocity direction for sphere problem. Figure 4.26 depicts
the errors of APSO and PSO with +/ standard deviation for sphere problem. Sim-
ilarly, Figures 4.27, 4.28, and 4.29 are the simulations for the Rosenbrock problem,
respectively.

Based on these simulation results, the proposed APSO with changed updating
velocity direction obtains improved results than the generic PSO. In addition, to
compare the standard deviation (Figures 4.26 and 4.29), APSO with changed updat-
ing velocity direction also yields more stable results than the generic PSO. Because
the APSO technique is attempting to use secant plane information to help determine
good search directions, and for very smooth problems, possessing nicely de ned
minima, one would expect better performance.

During the exploration stage, a maximum velocity indicates that the particles are
located in an un-interesting area of the search eld. Changing the velocity magnitude
and its direction helps the particles to escape this area faster than changing only
the magnitude of velocity. On the other hand, during the intensi cation stage, a
maximum velocity is less likely to occur and hence the change in direction by using
the velocity component maximum is not employed. A future strategy might be to use
“learning rules” based on what the swarm sees in its progress to weight the in uence
of the adaptive secant information properly. This will be investigated in future work.
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Figure 4.24 Errors of APSO and PSO for Sphere Problem

Figure 4.25 Errors of APSO and PSO for Sphere Problem
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Figure 4.26 Errors of APSO and PSO with Standard Deviation for Sphere Problem

Figure 4.27 Errors of APSO and PSO for Rosenbrock Problem
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Figure 4.28 Errors of APSO and PSO for Rosenbrock Problem

Figure 4.29 Errors of APSO and PSO with Standard Deviation for Rosenbrock Problem
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4.9.3 PSO in Other Biomedical Applications

In ammation is a key process in acute and chronic diseases. When bacteria or viruses
invade the human body, the immune system is activated. One result of this activa-
tion causes leukocytes to leave the blood stream through the endothelial barrier of
blood vessel walls so they can attack the microorganisms [58]. Cell surface adhesion
molecules (CAMs) play a fundamental role in this process. Adhesion molecules on
the surface of eukaryotic cells allow cells to speci cally interact with each other and
with the extracellular matrix. Four families of CAMs mediate the majority of adhe-
sive interactions: integrins, cadherins, immunoglobulin superfamily members, and
selectins [59].

Among CAMs, selectins play a key role in leukocyte extravasation. Selectins are
classi ed by three different subsets: L-selectin (in leukocytes), E-selectin (in vas-
cular endothelium), and P-selectin (in platelets or endothelial cells) [60]. L-selectin
is expressed on most leukocyte subpopulations and is responsible for amplifying
the in ammatory response through leukocyte–leukocyte interactions. E-selectin is
regulated through transcription and induced in response to in ammatory stimuli. P-
selectin is compartmentalized intracellularly, translocates to the cell surface early
after activation, and plays an essential role in the initial recruitment of leukocytes
to the site of injury during in ammation. These selectins do no act independently,
but collectively contribute to in ammation. For example, when a white blood cell
attaches to the wall of a blood vessel, all three of these selectins may play a role in
pulling that cell out of the blood stream. While much is known about the respective
properties of each individual selectin, the integrated response of combinations of se-
lectins on tethering and capturing leukocytes remains unknown. PSO provides an op-
portunity to use what is known about individual rupture properties of selectins (with
their respective ligands) and integrate them into a collective scenario for generating
novel and testable hypotheses concerning the regulation of in ammation. Distinct
kinetic and mechanical properties determine the interactions of selectin–leukocyte
[60–62]. The Bell model parameters, the unstressed off-rate, and the reactive com-
pliance were rst established by a least square approximation to the linear region of
a graph of rupture force against the logarithm of loading rate [63]. Hence, utilizing
ruptured force to capture most molecules is signi cant.

4.9.3.1 Leukocyte Adhesion Molecules Modeling The average rupture forces
increase linearly as a function of the natural logarithm of the loading rate. Bell [63]
proposed this behavior rst. In Bell’s mathematical model [62], the mean rupture
force is expressed as

(4.9.1)

where is Boltzmann constant; is absolute temperature; represents reactive
compliance or mechanical bonding length; means (unstressed) dissociation rate
in the absence of a pulling force; is loading rate. The Bell model parameters,

and , depict the mechanical properties of CAMs interactions. Therefore,
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the corresponding probability density distributions for the failure of a single pair of
CAMs are calculated by

(4.9.2)

Based on (4.9.1) and (4.9.2), rupture force and probability of each pair (i
= 1–9) are calculated. The selection of parameters is that the Boltzmann constant
= 1.38065 (J/K); the absolute temperature = 300 (K); the loading rate
= 2000 (pN/sec); all Bell parameters of receptor–ligand pairs are selected as shown
in Table 4.7. Therefore, the total probability is computed as

(4.9.3)

Table 4.7 Bell Parameters of Each Receptor–Ligand Pairs

# Receptor-Ligand Pairs (Ref.) (Å) Avg. (sec ) Avg.

1 L-selectin-PSGL-1 [64] 0.16 0.835 8.6 4.715

L-selectin-PSGL-1 [60] 1.51 0.83

L-selectin mutant-PSGL-1 [64] 0.15 12.7

2 L-selectin mutant-PSGL-1 [64] 0.12 0.127 17.3 16.1

L-selectin mutant-PSGL-1 [64] 0.11 18.3

3 L-selectin-neutrophil [65] 0.24 0.675 7.0 4.9

L-selectin-neutrophil [66] 1.11 2.8

4 E-selectin-PSGL-1 [60] 1.11 1.11 0.24 0.24

5 E-selectin-neutrophil [66] 0.18 0.245 2.6 1.65

E-selectin-neutrophil [67] 0.31 0.7

6 P-selectin-LS174T [61] 0.9 0.9 2.96 2.96

P-selectin-PSGL-1 [60] 1.35 0.18

7 P-selectin-PSGL-1 [64] 0.29 1.38 1.1 0.434

P-selectin-PSGL-1 [68] 2.5 0.022

P-selectin mutant-PSGL-1 [64] 0.24 1.8

8 P-selectin mutant-PSGL-1 [64] 0.33 0.33 1.7 1.7

P-selectin mutant-PSGL-1 [64] 0.42 1.6

9 P-selectin-neutrophil [66] 0.39 0.395 2.4 1.665

P-selectin-neutrophil [69] 0.40 0.93



SIMULATION RESULTS AND DISCUSSION 151

Figure 4.30 shows the probability of counts of events under rupture force for each
pair. The result of the PSO algorithm displays the optimal rupture force as =
141.2424 (pN) with a maximum probability = 88.4189.

These results demonstrate the utility of PSO in generating predictions about the
integrated effects of multiple selectin–ligand pairs. These predictions are then used
to generate testable hypotheses. Use of this system will speed the advancement of un-
derstanding how expression and regulation of multiple selectins–ligands contributes
to in ammation in vivo [31, 70].

Figure 4.30 Rupture Force versus Counts of Events for Different Pairs

4.9.4 CHO to Multiple Dimensional Problems

Two examples (Hyperbolic and Rosenbrock problems) are utilized to demonstrate
the reliability of the proposed CHO. The parameter selection of TS includes the
length of the tabu list = 6, the length of the promising list = 6, the initial ra-
dius of neighbor = 0.25, the radius of tabu balls = 0.125, the radius of promising
balls = 0.06, and the maximum number of iterations . The param-
eter selection of GA includes the population size of generation = 48, the number
of chromosomes kept for mating = 12, the mutation rate = 0.04, and the maximum
number of iterations = 200. As for PSO, the parameters include the swarm size =
40, the maximum velocity = 2.5, uniform distribution is chosen as random variables,
the tolerance = , and the maximum number of iterations = 200. The proposed
CHO utilizes the same parameter selections for TS and PSO and the constant radius
of the promising area = 0.5 [22].
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The Hyperbolic and Rosenbrock cost functions are, respectively, described as

(4.9.4)

(4.9.5)

Tables 4.8 and 4.9 show the mean and standard deviation errors of ve algorithms
(ECTS, CGA, PSO, ECTS combined with CGA, and CHO) for Hyperbolic and
Rosenbrock problems, respectively, after 30 simulations. The search ranges of both
problems are on [ 10,10]. Based on the simulation results, PSO can obtain an ex-

Table 4.8 Mean and Standard Deviation Errors of Five Algorithms for Hyperbolic Problem

Table 4.9 Mean and Standard Deviation Errors of Five Algorithms for Rosenbrock Problem

ECTS CGA PSO ECTS + CGA CHO

2 0.0137 0.0138 0.5242 0.2789 0.0003 0.0004 0.2703 0.7590 0.0336 0.1327

3 0.0148 0.0151 1.0620 0.3752 0.6215 1.0571 0.1653 0.0796 0.0891 0.1511

5 0.0195 0.0203 2.1632 0.9059 2.2764 0.9663 0.1326 0.0486 0.1561 0.2368

10 0.0373 0.0397 4.2154 2.5281 7.9283 1.8828 0.0619 0.0279 0.5464 1.8083

20 0.0568 0.0568 8.0005 3.1585 16.4347 3.4651 0.0535 0.0209 0.0893 0.0486

30 0.0649 0.0578 12.4630 3.9880 23.0807 3.5200 0.0720 0.0315 2.4114 6.9677

50 0.1233 0.1500 19.8758 4.3163 39.4033 4.3694 0.0984 0.0436 1.7678 8.7988

100 0.2333 0.1938 43.0156 4.9253 88.2320 6.8456 0.1769 0.1233 0.2243 0.0775

300 0.4577 0.4289 145.6715 7.2527 304.8118 15.5815 0.5147 0.4542 3.6957 10.7818

500 1.4962 1.8032 246.2241 8.9461 531.4223 14.6164 0.8567 0.8093 1.0540 0.8991

cellent performance on less than 10-dimensional Hyperbolic problems. However,
PSO cannot nd the global minimum on larger than 50-dimensional Hyperbolic
problems. Similarly, GA can get a good performance on less than 10-dimensional
Hyperbolic problems, but GA does not perform as well as PSO. In addition, GA
cannot achieve the global minimum for larger than 30-dimensional Hyperbolic prob-
lems. TS looks very robust for all dimensional Hyperbolic problems, but PSO is

ECTS CGA PSO ECTS + CGA CHO

2 0.0179 0.0218 0.0002 0.0007 3.1 10 3.8 10 0.0001 3.9 10 1.5 10 1.5 10

3 0.0190 0.0146 0.0028 0.0041 1.2 10 8.0 10 0.0026 0.0061 1.1 10 2.1 10

5 0.0238 0.0261 0.0471 0.0265 0.0001 0.0001 0.0207 0.0260 4.7 10 1.0 10

10 0.0303 0.0327 0.6255 0.3012 0.0011 0.0014 0.0342 0.0285 0.0003 0.0003

20 0.0501 0.0506 3.8993 0.8040 0.2263 0.1611 0.0432 0.0400 0.0297 0.0903

30 0.0649 0.0782 8.1319 1.1536 2.0799 1.0858 0.1035 0.0760 0.2698 0.6996

50 0.1339 0.1240 16.1665 1.4039 10.8841 2.2802 0.1273 0.1276 0.4632 2.0628

100 0.2383 0.2189 38.0997 1.8511 39.8710 3.9074 0.2073 0.2442 1.2373 5.9897

300 0.6314 0.6334 129.7538 3.0646 176.5882 9.2199 0.8907 0.9396 0.4526 0.3736

500 1.1307 1.0052 222.8210 5.9827 318.8833 11.5058 1.0688 0.9051 1.0291 0.9075
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much better than TS on less than 10-dimensional Hyperbolic problems. Both hybrid
algorithms, ECTS+CGA and CHO, combine the bene ts of TS and GA or PSO on
the entire range of Hyperbolic problems. Furthermore, CHO is more robust than
ECTS+GA on less than 20-dimensional Hyperbolic problems.

As for Rosenbrock problems, the simulation results show that the similar results
as on Hyperbolic problems are obtained. However, PSO and GA have more dif culty
in nding the global minimum, especially on the higher-dimensional Rosenbrock
problems. TS still retains robust characteristics. Similarly, both hybrid algorithms,
ECTS+CGA and CHO, combine the bene ts of TS and GA or PSO on all dimen-
sional Rosenbrock problems, except for the 300-dimensional Rosenbrock problem.
On the higher-dimensional Rosenbrock problems, CHO shows a very sensitive de-
pendence on selecting the most promising area from the promising list.

This work shows the comparison of ve algorithms (ECTS, CGA, PSO, ECTS
combined with CGA, and CHO) on multi-dimensional Hyperbolic and Rosenbrock
problems. The simulation results show that the proposed CHO algorithm combines
the advantages of TS and PSO and obtains robust results. However, on the higher-
dimensional problems, CHO shows a sensitive dependence on selecting the most
promising area from the promising list. The constant radius ( ) of the chosen
promising area plays a key role. Therefore, this parameter selection is studied in
future work.
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CHAPTER 5

FUSION OF HARD AND SOFT
CONTROL STRATEGIES I

This chapter is a continuation of Chapter 4 focusing on the fusion (or hybrid or
integration) of hard and soft control strategies to the robotic/prosthetic hand. In
particular, PID, optimal and adaptive hard control techniques are integrated with soft
control technique of ANFIS for trajectory planning. With a brief introduction to
feedback linearization in Section 5.1, we present PID control in Section 5.2, optimal
control in Section 5.3, and adaptive control in Section 5.4. Simulations are given in
Section 5.5.

5.1 Feedback Linearization

If the nonlinear term in (3.3.16) only models the Coriolis/centripetal and
gravity terms, then the dynamic equations of thumb and all ngers are rewritten as
below.

(5.1.1)

where represents nonlinear terms.
The nonlinear dynamics represented by (5.1.1) is to be converted into a linear

state-variable system by nding a transformation using feedback linearization tech-
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nique [1, 2]. Alternative state-space equations of the dynamics [2, 3] are obtained by
de ning the angular position/velocity state of the joints as

(5.1.2)

Let us repeat the dynamical model and rewrite (5.1.1) as

(5.1.3)

5.1.1 State Variable Representation

Form 1: Choosing the state variables (5.1.2), one way of representing the robot hand
dynamics (5.1.3) for a robotic hand nger, in general, in state-space form is

(5.1.4)

which is typical of a nonlinear system of the form

(5.1.5)

where .

Form 2: Alternatively, we can write (3.3.16) in another general state-space
form as

(5.1.6)

On the other hand, from (5.1.2) and (5.1.3), another alternate linear state-variable
equation in Brunovsky canonical form for (3.3.16) is written as

(5.1.7)

with its control input vector given by

(5.1.8)

Let us suppose the robotic hand is required to track the desired trajectory de-
scribed under path generation or tracking. Then, the tracking error is de ned
as

(5.1.9)
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Here, is the desired angle vector of joints and is obtained by (2.5.2), (2.3.4)
and (2.3.7); is the actual angle vector of joints. Differentiating (5.1.9) twice, to
get

(5.1.10)

Substituting (5.1.2) into (5.1.10) yields

(5.1.11)

from which the control function is de ned as

(5.1.12)

This is often called the feedback linearization control law, which is also inverted to
express it as

(5.1.13)

Using the relations (5.1.10) and (5.1.12), and de ning state vector
, the tracking error dynamics is written as

(5.1.14)

Note that this is in the form of a linear system such as

(5.1.15)

with its control input vector given by

(5.1.16)

The required torque of all joints is then calculated by

(5.1.17)

5.2 PD/PI/PID Controllers

Proportional-derivative (PD) controller is the simplest closed-loop controller which
is used to control the robotic manipulators. PD controller uses the feedback combi-
nation of proportional part (position) and derivative part (velocity). However, if the
robotic manipulator dynamics contains the particular vectors of gravitational terms
((3.3.15) and (3.4.5)), then the position control objective cannot be reached by the
simple PD control law [4]. Hence, to satisfy the position control objective, an in-
tegral component is driven into proportional integral (PI) and proportional integral
derivative (PID) controllers. PD, PI and PID controllers are brie y described in this
section [5].
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Figure 5.1 Block Diagram of Fusion PD Controller for Robotic Hand

5.2.1 PD Controller

Figure 5.1 shows the block diagram of a PD controller [2]. The control signal
becomes

(5.2.1)

with the proportional and derivative diagonal gain matrices. Then, the
closed-loop error dynamics and state-space form are written as

(5.2.2)

(5.2.3)

with

(5.2.4)

or

(5.2.5)
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5.2.2 PI Controller

Figure 5.2 shows the block diagram of a PI controller with control signal as

Figure 5.2 Block Diagram of Fusion PI Controller for Robotic Hand

(5.2.6)

with the diagonal integral gain matrix . De ning

(5.2.7)

we arrive at

(5.2.8)

5.2.3 PID Controller

Figure 5.3 shows the block diagram of a PID controller with control signal as
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Figure 5.3 Block Diagram of Fusion PID Controller for Robotic Hand

(5.2.9)

We then rewrite (5.1.13) as

(5.2.10)
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5.3 Optimal Controller

5.3.1 Optimal Regulation

Optimization is a very desirable feature in day-to-day life. The main objective of
optimal control is to determine control signals that will cause a process (plant) to
satisfy some physical constraints and at the same time extremize (maximize and
minimize) a chosen performance criterion (performance index or cost function) [6].

The formulation of optimal control problem requires

1. a mathematical description (or model) of the process to be controlled (generally
in state variable form),

2. a speci cation of the performance index, and

3. a statement of boundary conditions and the physical constraints on the states
and/or controls.

5.3.2 Linear Quadratic Optimal Control with Tracking System

In obtaining the linear system (5.1.14) from the original nonlinear system (3.3.16),
there has been no state-space transformation. Further, the dif cult design of a con-
troller for the original nonlinear system (3.3.16) has been transformed into a simple
design of a controller for the linear system (5.1.15). If we select the control function

to stabilize the linear system (5.1.14) and make the tracking error zero, then
the nonlinear torque-control law given by (5.1.13) will command the robotic
hand (3.3.16) to follow the desired trajectory . With given by (5.1.13), the
original robotic hand system (3.3.16) becomes

that is, (5.3.1)

which is exactly the linear system (5.1.14).
Our objective is to control the linear system (5.1.15) in such a way that the state

variable tracks the desired output as
close as possible during the interval with minimum control energy. For this,
let us de ne the error vector as

(5.3.2)

and choose the performance index [6] as

(5.3.3)
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We assume that and are symmetric, positive semidefinite matrices, and is
symmetric, positive definite matrix. We use Pontryagin minimum principle [6] and
then solve the matrix differential Riccati equation (DRE)

(5.3.4)

with nal condition , and the non-homogeneous vector differential
equation

(5.3.5)

with nal condition . Then the optimal state is solved
from

(5.3.6)

with initial condition and optimal control is calculated by

(5.3.7)

Finally, the optimal required torque is obtained by

(5.3.8)

Summarizing, Figure 5.4 shows the block diagram of a nite-time linear quadratic
optimal controller tracking system for the robotic hand. Use of feedback lineariza-
tion technique converts the nonlinear dynamics to linear. Then the closed-loop

nite-time linear quadratic optimal controller through Pontryagin minimum princi-
ple is implemented to track the desired trajectory planning using cubic polynomial.

and are computed by solving the matrix differential Riccati and the non-
homogeneous vector differential equations with boundary conditions, respectively.
Finally, the optimal state and optimal control are obtained in order to
calculate the required torque .

5.3.3 A Modified Optimal Control with Tracking System

Our previous works [5, 7] showed that the original optimal control can avoid over-
shooting and oscillation problems and get better results than GA-tuned PID control
[5, 8], but this optimal control method takes execution time when applied to the
robotic hand. To improve the performance of the original optimal controller, we
change the performance index [6] to include an exponential term as

(5.3.9)
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Figure 5.4 Block Diagram of Linear Quadratic Optimal Controller Tracking System for
Robotic Hand

where is a positive parameter. We need to nd the optimal control which mini-
mizes the new performance index (5.3.9) under the dynamical constraint (5.1.15).
This problem can be solved by modifying the original system, so the following trans-
formations can be developed as

(5.3.10)

Then, using the transformations (5.3.10), it is easy to see that the new system be-
comes

(5.3.11)
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Considering the minimization of the modi ed system de ned by (5.3.11) and (5.3.9),
the new optimal control , which is similar to (5.3.7), is given by

(5.3.12)

Here, the matrix and the vector are respectively the solutions of DRE

(5.3.13)

with nal condition , and the non-homogeneous vector differential
equation

(5.3.14)

with nal condition . Using the optimal control (5.3.12) in the
new system (5.3.11), we get the optimal closed-loop system as

(5.3.15)

with initial condition .
Hence, applying the transformations (5.3.10) in the new system (5.3.15), the opti-

mal control of the original system (5.1.15) and the associated performance measure
(5.3.9) is given by

(5.3.16)

Interestingly, this desired (original) optimal control has the same matrix DRE solu-
tions as the optimal control of the new system with
compared with (5.3.16) and (5.3.7). We see that the closed-loop optimal control sys-
tem (5.3.15) has eigenvalues with real parts less than . In other words, the state

approaches zero at least as fast as [9].

5.4 Adaptive Controller

Adaptive control involves modifying the control law used by a controller to cope with
the fact that the parameters of the system being controlled are slowly time varying or
uncertain. For example, as an aircraft ies, its mass will slowly decrease as a result
of fuel consumption; a control law that adapts itself to such changing conditions is
needed. Adaptive control is different from robust control in the sense that it does
not need a priori information about the bounds on these uncertain or time-varying
parameters; robust control guarantees that if the changes are within given bounds the
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control law need not be changed, while adaptive control is precisely concerned with
control law changes.

Applying adaptive control to the robotic hand, the response with adaptive con-
troller works well even if the masses of robots are unknown by the controller. After
the initial errors, the actual joint angles closely match the desired joint angles. In
adaptive control, the controller dynamics allows for learning of the unknown param-
eters, so that the performance improves over time [2].

The tracking error and the ltered tracking error are de ned as

(5.4.1)

(5.4.2)

Here, is the desired angle vector of joints; is the actual angle vector
of joints; is the positive de nite diagonal gain matrix.
The ltered error (5.4.2) ensures stability of the overall system so that the tracking
error (5.4.1) is bounded. Figure 5.5 shows the block diagram of the adaptive con-

Figure 5.5 Block Diagram of Adaptive Controller for Robotic Hand

troller: tracking errors are calculated by actual angles and desired angles
, which are based on trajectory planner. Then ltered tracking errors are

computed by error changes and the parameters multiplying errors. The required
torque of the robotic hand nonlinear system is computed by the nonlinear term

and the gain multiplying the ltered tracking errors.
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Differentiating and substituting (5.4.2) into (5.1.1) gives the dynamic equation in
terms of the ltered error as

(5.4.3)

where and the nonlinear term is de ned
as

(5.4.4)

Here, is the unknown disturbance. is a regression matrix of known robot
functions and is a vector of unknown parameters [10]. The regression matrix
and the unknown parameter vector of two-link thumb and three-link index nger
are given in Appendix 5.A [11]. The torque vector is calculated by

(5.4.5)

The unknown parameter rate vector is updated by

(5.4.6)

where is a tuning parameter diagonal matrix.

5.5 Simulation Results and Discussion

This section presents simulations with the PID, optimal and adaptive controllers for
the two-link thumb and three-link index nger of a smart robotic hand. Then, the
simulations with the PID, optimal and adaptive controllers for 14-DOF, ve- ngered
robotic hand will be presented.

5.5.1 TwoLink Thumb

The various parameters [12] relating to desired trajectory and the two-link thumb
selected for the simulations are given in Table 5.1 and the side length of the target
square-shaped object is 0.010 (m) as shown in Figure 2.16. PID diagonal coef -
cients, , , and , are 100. As for optimal control coef cients, ,

, , and of thumb are chosen as

(5.5.1)
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Table 5.1 Parameter Selection of Thumb

Parameters Values

Thumb

Time ( , ) 0, 20 (sec)

Desired initial position ( , ) 0.035, 0.060 (m)

Desired nal position ( , ) 0.0495, 0.060 (m)

Desired initial velocity ( , ) 0, 0 (m/s)

Desired nal velocity ( , ) 0, 0 (m/s)

Length ( , ) 0.040, 0.040 (m)

Mass ( , ) 0.043, 0.031 (kg)

Inertia ( , ) , (kg-m )

Figure 5.6 shows the simulation with PID controller while Figure 5.7 shows the sim-
ulation with the presented nite-time optimal control method. It is clearly seen that
the results using proposed optimal control method overcome the overshoot and os-
cillation problems. Next, we present simulations with a PID controller and adaptive

Figure 5.6 Tracking Errors and Joint Angles of PID Controller for Thumb

controller for the two-link thumb of a smart robotic hand. Figure 5.8 shows the PID
control and adaptive control methods for two-link thumb [13].



174 FUSION OF HARD AND SOFT CONTROL STRATEGIES I

Figure 5.7 Tracking Errors and Joint Angles of Optimal Control for Thumb

Figure 5.8 Tracking Errors and Joint Angles of PID and Adaptive Controllers for Thumb
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5.5.2 ThreeLink Index Finger

Similarly, the various parameters [12] relating to desired trajectory and the three-link
index nger selected for the simulations are given in Table 5.2 and the side length of

Table 5.2 Parameter Selection of Index Finger

Parameters Values

Index Finger

Time ( , ) 0, 20 (sec)

Desired initial position ( , ) 0.065, 0.080 (m)

Desired nal position ( , ) 0.010, 0.060 (m)

Desired initial velocity ( , ) 0, 0 (m/s)

Desired nal velocity ( , ) 0, 0 (m/s)

Length ( , , ) 0.040, 0.040, 0.030

(m)

Mass ( , , ) 0.045, 0.025, 0.017 (kg)

Inertia ( , , ) , ,
(kg-m )

distance ( ) 0.035

the target square-shaped object is 0.010 (m) as shown in Figure 2.16. PID diagonal
coef cients, , , and , are 100 and optimal control coef cients, ,

, , and of index nger are chosen as

Figure 5.9 shows the simulation with PID controller while Figure 5.10 shows the
simulations with the presented nite-time optimal control method. Similar to the
results of the thumb, it is clearly seen that the results using proposed optimal control
method can overcome the overshoot and oscillation problems.

The desired path 2 for three-link index nger is

(5.5.2)

The various parameters [12] relating to desired trajectory and the two-link
thumb/three-link index nger selected for the simulations are given as: =
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Figure 5.9 Tracking Errors and Joint Angles of PID Controller for Index Finger

Figure 5.10 Tracking Errors and Joint Angles of Optimal Control for Index Finger

= 0.1; = 2 (path 2); initial position ( , ) = (0.035, 0.060) and nal position
( , ) = (0.0495, 0.060) (m); initial and nal velocities are zero (path 1); the
lengths of the links 1, 2, and 3 are 0.040, 0.040, and 0.030 (m). PID diagonal coef -
cients, , and , are 100. As for the adaptive diagonal coef cients,

, , and are also chosen as 100. Figures 5.8 and 5.11 show our previous work
[14, 15] with PID controller and the adaptive control method for two-link thumb and
three-link index nger. It is clearly seen that the results using proposed fusion adap-
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Figure 5.11 Tracking Errors and Joint Angles of PID and Adaptive Controllers for Path 2
of Index Finger

tive control strategy overcomes the overshooting and oscillation problems even if the
robotic hand is under disturbances [16].

5.5.3 ThreeDimensional FiveFingered Robotic Hand

Next, we present simulations with a PID controller and a nite-time linear quadratic
optimal controller for the 14-DOF, ve- ngered smart robotic hand.

5.5.3.1 PID Control The parameters of the two-link thumb/three-link index nger
[12] were related to desired trajectory. All parameters of the smart robotic hand se-
lected for the simulations are given in Table 5.3 and the side length and length of the
target rectangular rod are 0.010 and 0.100 (m), respectively, as shown in Figure 2.17.
The relating parameters between the global coordinate and the local coordinates are
de ned in Table 5.4 [11, 17]. In addition, all links are assumed as circular cylinder
with the radius ( ) 0.010 (m), so the inertia of each link of each nger ( =
, , , , and ) is calculated as

(5.5.3)

All initial actual angles are zero and all PID diagonal coef cients, , ,
and , are 100.
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5.5.3.2 Optimal Control Optimal control coef cients, , , , , and
of all ngers are chosen as

Here = , , , and . The rst term of the right side of (5.3.2) can be neglected by
using as the zero matrix. In this example, there is no signi cant difference.

Figures 5.12 – 5.16 show the simulations with fusion PID controller and fusion
optimal controller. It is clearly seen in the superiority of the fusion optimal con-
troller in suppressing the overshoots and transients associated with the fusion PID
controller.

Figure 5.12 Tracking Errors and Joint Angles of PID and Optimal Controllers for Thumb
of FiveFingered Robotic Hand
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Table 5.3 Parameter Selection of the Smart Robotic Hand

Parameters Values

Thumb

Time ( , ) 0, 20 (sec)

Desired initial position ( , ) 0.035, 0.060 (m)

Desired nal position ( , ) 0.0495, 0.060 (m)

Desired initial velocity ( , ) 0, 0 (m/s)

Desired nal velocity ( , ) 0, 0 (m/s)

Length ( , ) 0.040, 0.040 (m)

Mass ( , ) 0.043, 0.031 (kg)

Index Finger

Desired initial position ( , ) 0.065, 0.080 (m)

Desired nal position ( , ) 0.010, 0.060 (m)

Length ( , , ) 0.040, 0.040, 0.030 (m)

Mass ( , , ) 0.045, 0.025, 0.017 (kg)

Middle Finger

Desired initial position ( , ) 0.065, 0.080 (m)

Desired nal position ( , ) 0.005, 0.060 (m)

Length ( , , ) 0.044, 0.044, 0.033 (m)

Mass ( , , ) 0.050, 0.028, 0.017 (kg)

Ring Finger

Desired initial position ( , ) 0.065, 0.080 (m)

Desired nal position ( , ) 0.010, 0.060 (m)

Length ( , , ) 0.040, 0.040, 0.030 (m)

Mass ( , , ) 0.041, 0.023, 0.014 (kg)

Little Finger

Desired initial position ( , ) 0.055, 0.080 (m)

Desired nal position ( , ) 0.020, 0.060 (m)

Length ( , , ) 0.036, 0.036, 0.027 (m)

Mass ( , , ) 0.041, 0.023, 0.014 (kg)

All ngers use the same parameters.

All parameters are in local coordinates.
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Table 5.4 Parameter Selection of the Relation between Global and Local Frames

Parameters Values

90 (deg)

45 (deg)

(0.035, 0, 0) (m)

(0.040, 0, 0.020) (m)

(0.035, 0, 0.040) (m)

(0.025, 0, 0.060) (m)

Figure 5.13 Tracking Errors and Joint Angles of PID and Optimal Controllers for Index
Finger of FiveFingered Robotic Hand



SIMULATION RESULTS AND DISCUSSION 181

Figure 5.14 Tracking Errors and Joint Angles of PID and Optimal Controllers for Middle
Finger of FiveFingered Robotic Hand

Figure 5.15 Tracking Errors and Joint Angles of PID and Optimal Controllers for Ring
Finger of FiveFingered Robotic Hand
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Figure 5.16 Tracking Errors and Joint Angles of PID and Optimal Controllers for Little
Finger of FiveFingered Robotic Hand
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Figures 5.17, 5.19, 5.21, 5.23, and 5.25 show the tracking errors of thumb, index,
middle, ring, and little ngers for the proposed ve- ngered smart robotic hand,
respectively. Figures 5.18, 5.20, 5.22, 5.24, and 5.26 show the desired/actual angles
of thumb, index, middle, ring, and little ngers for the proposed ve- ngered smart
robotic hand, respectively. The observation that all tracking errors dramatically drop
within 1 second and are less than 1 degree after convergence provides the evidence
that the adaptive controller for the 14-DOF robotic hand enhances performance. The
other observation that after convergence, all three-link ngers show more unstable
errors than two-link thumb suggests that the more DOFs increase the dif culty of the
adaptive controller without knowing the mass and inertia of the links of all ngers.

Figure 5.17 Tracking Errors of Adaptive Controller for TwoLink Thumb
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Figure 5.18 Tracking Angles of Adaptive Controller for TwoLink Thumb
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Figure 5.19 Tracking Errors of Adaptive Controller for ThreeLink Index Finger
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Figure 5.20 Tracking Angles of Adaptive Controller for ThreeLink Index Finger
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Figure 5.21 Tracking Errors of Adaptive Controller for ThreeLink Middle Finger
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Figure 5.22 Tracking Angles of Adaptive Controller for ThreeLink Middle Finger
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Figure 5.23 Tracking Errors of Adaptive Controller for ThreeLink Ring Finger
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Figure 5.24 Tracking Angles of Adaptive Controller for ThreeLink Ring Finger
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Figure 5.25 Tracking Errors of Adaptive Controller for ThreeLink Little Finger
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Figure 5.26 Tracking Angles of Adaptive Controller for ThreeLink Little Finger
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To compare the performance of the GA-tuned PID (see Section 6.2) and modi ed
optimal controllers, Figures 5.27 and 5.28 show desired/actual angles and tracking
errors of joints 1 and 2 for two-link thumb, respectively. GA-tuned PID control
shows an overshooting problem. The problem is overcome by the original optimal
control ( = 0), but it takes at least 10 seconds for both joints. The performance is
improved by the proposed optimal controller as the parameter increases from 1
to 10. In other words, the convergence time is reduced to approximate 0.2 second
as is 10. For three-link index nger, the GA-tuned PID control causes not only
overshooting but also oscillation problems as shown in Figures 5.29(a) and 5.30(a).

The optimal control with modi ed performance index ( ) embedded with an ex-
ponential term ( ) also overcomes the overshooting and oscillation problems and
obtains faster convergence speed as increases. Similar simulations are also made
for other three-link ngers. Taken together, these data suggest that the modi ed op-
timal control has higher accuracy and faster convergence speed than GA-tuned PID
control [9].
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5.A Appendix: Regression Matrix

In Section 5.4, the regression matrix and the unknown parameter vector of
two-link thumb is expressed as

where

Similarly, the regression matrix and the unknown parameter vector of
three-link index nger are written as
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Here,
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CHAPTER 6

FUSION OF HARD AND SOFT
CONTROL STRATEGIES II

In this chapter we present the fusion, hybrid or integration of hard control (HC) and
soft control (SC) strategies to enhance the performance in terms of controlling a
robotic/prosthetic hand that could not be achieved by using either HC or SC strategy.
In Section 6.1, we introduce fuzzy-logic-based proportional-derivative (PD) fusion
control strategy and in Section 6.2 we present genetic-algorithm-based proportional-
integral-derivative (PID) fusion control strategy.

6.1 FuzzyLogicBased PD Fusion Control Strategy

Figure 6.1 shows the block diagram of the fusion FL-based PD controller for the
proposed ve- nger robotic hand with control input signal as

(6.1.1)

and the proportional and derivative diagonal gain matrices with time-
varying . We rewrite (5.1.17) as

(6.1.2)

Fusion of Hard and Soft Control Strategies for the Robotic Hand, By C.-H. Chen and D. S. Naidu 
© 2017 by the Institute of Electrical and Electronic Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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Figure 6.1 Block Diagram of the Proposed Fusion FuzzyLogicBased Proportional
Derivative Controller for a FiveFinger Robotic Hand

Then we use Mamdani-type fuzzy inference system to tune the time-varying param-
eters and of the closed-loop PD controller due to its simple min–max
structure [1]. It is noteworthy that S. J. Ovaska compared 12 intelligent fusion sys-
tems with HC and SC in structural fusion categories and gave brief de nitions of the
used fusion grade, which is qualitative measure to describe the strength of a speci c
connection between HC and SC structures: low, moderate, high, and very high [2].
In his structural fusion categories, the fusion grade of the current proposed fusion
FL-based PD controller is classi ed as very high.

Mamdani model was proposed by Mamdani and Assilian to control a steam en-
gine and boiler combination using a set of linguistic control rules obtained from
experienced human operators in 1975 [1]. Since that time, the Mamdani system has
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become the commonly used fuzzy inference approach because of its simple min–max
structure.

Figure 6.2(a) shows the block diagram of Mamdani-type fuzzy logic controller
(FLC). The crisp inputs (errors and error rates ) from the robotic hand are
fuzzi ed by seven triangular membership functions as shown in Figure 6.2(b). The
number of membership functions is determined by trials and errors. If the number is
below seven, the model output will not satisfactorily follow the output of the robotic
hand. Then the fuzzy inputs are parallel processed in fuzzy system by human knowl-
edge reasoning and 7 7 logic “IF-THEN” rules, which are listed in Table 6.1. For
instance, “IF” (the error is negative small, NS) AND (the error rate is pos-
itive medium, PM), “THEN” ( is medium large, ML). The fuzzy output is
then defuzzi ed by another seven triangular membership functions (Figure 6.2(b))
to generate crisp output . Figure 6.2(c) shows the output surface of
this fuzzy inference system. Similarly, the other crisp output is computed
by the same procedure. The adaptive and parameters are used in the
closed-loop PD controller.

Table 6.1 A 7 7 Fuzzy Logic “IFTHEN” Rule Base

NL NM NS ZR PS PM PL

NL ZR ZR ZR ZR VS S SM

NM ZR ZR ZR VS S SM ML

NS ZR ZR VS S SM ML L

ZR ZR VS S SM ML L VL

PS VS S SM ML L VL VL

PM S SM ML L VL VL VL

PL SM ML L VL VL VL VL

N: negative; P: positive; ZR: zero; L: large;

M: medium; S: small; V: very

Summarizing, errors and error changes are calculated by actual angles
and desired angles , which are computed by adaptive neuro-fuzzy infer-

ence system (ANFIS) trajectory planner. Then FLC tunes all time-varying param-
eters and of the closed-loop PD control so that the required torques

of the robotic hand nonlinear system is computed by control input signal .
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Figure 6.2 Structure of Fuzzy Logic Controller (FLC): (a) Block Diagram of MamdaniType
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6.1.1 Simulation Results and Discussion

To compare the precision and energy cost of HC, SC, and the proposed fusion control
strategies, we present simulations with PD and PID controllers and fuzzy inference
system tuned PD controller for a ve- nger robotic hand with 14-DOF to grasp a
rectangular rod as shown in Figure 2.11. The parameters of the two-link thumb/three-
link ngers are related to desired trajectory [3]. All parameters of the robotic hand
selected for the simulations are given in Table 5.3 and the side length and length
of the target rectangular rod are 0.010 and 0.100 (m), respectively. The relating
parameters between the global coordinate and the local coordinates are de ned in
Figure 2.12 and the values are given in Table 5.4. When the thumb and other four

ngers are performing extension/ exion movements, the workspace of ngertips is
restricted to the maximum angles of joints. Referring to inverse kinematics, the rst
and second joint angles of the thumb are constrained within the ranges of and

(deg). The rst, second, and third joint angles of the other four ngers are
constrained in the ranges of , and (deg), respectively [4].

Moreover, each link of all ngers is assumed to be a circular cylinder with a radius
( = 0.010 m), so the inertia of each link (=1–3) of all ngers (= , , , ,
and ) is calculated as

(6.1.3)

All initial values of actual angles are zero and the diagonal coef cients, ,
, and , for the PD and PID controllers alone are arbitrarily chosen as 100.

From the derived dynamic and control models, the control signal and torque
are computed after the parameters ( and ) are selected. Figure 6.3

shows tracking errors and (left column) and desired/actual angles
and (right column) of joints 1 (top row) and 2 (bottom row) for two-link thumb
using PD (dash line), PID (dot line), FL (short dash line), and fusion of FL and
PD (solid line) controllers. The tracking errors for both PD and FL controllers are
convergent to zero within 5 seconds without overshooting, but PID controller takes
longer (approximately 10 seconds) with overshooting and oscillation. The proposed
fusion control of FL and PD using parameters and

provides 5–10-fold faster convergence than PD, PID, and FLC alone. FLC
includes two inputs (errors and error rates) and one output (control input signals).
To further study whether the parameter range in uences tracking errors, we found
that the larger the parameter range, the faster the convergent speed for the range

without additional computational time [5]. These results clearly
demonstrate that fusion of SC and HC is superior to either HC or SC methodology
alone.

The time-varying computed control signals ( and ) and torques (
and ) for two-link thumb are shown in Figure 6.4, suggesting that the presented
fusion FL-PD controller requires more torques (energy cost) than PD, PID, and FL
controllers in order to obtain faster convergent tracking errors.

For the three-link index nger, Figure 6.5 shows tracking errors and desired/actual
angles and Figure 6.6 shows control signals and torques, respectively. Similar results
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5 Tracking Errors and Desired/Actual Angles of Joints 1 (a,b), 2 (c,d), and 3 (e,f)
for ThreeLink Index Finger Using PD (dash line), PID (dot line), FL (short dash line), and
Hybrid/Fusion of FL and PD (solid line) Controllers

of tracking errors for the remaining three-link ngers (middle, ring, and little) are
consistently obtained (data not shown). As increasing DOF, PID control still shows
undesirable features of overshooting and oscillation; both PD and FL controllers
reduce accuracy and convergent speed. As for the fusion FL-based PD control, it
increases required power, but this fusion controller still holds fast convergence and
high accuracy as the DOF increases. These ndings suggest that improving accuracy,
the proposed fusion control strategies are potentially applied to industrial robotic ap-
plications for hazardous environments, surgery, etc., but this fusion approach has the
limitation of clinical applications to robotic devices due to the current battery capac-
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6 Control Signals and Actuated Torques of Joints 1 (a,b), 2 (c,d), and 3 (e,f)
for ThreeLink Index Finger Using PD (dash line), PID (dot line), FL (short dash line), and
Hybrid/Fusion of FL and PD (solid line) Controllers

ity. This limitation may be solved by implementing HC and/or SC methodology to
optimize control inputs embedded in cost function (performance index) [6].
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6.2 GeneticAlgorithmBased PID Fusion Control Strategy

Figure 6.7 shows the block diagram of a fusion GA-based PID controller with control

Figure 6.7 Block Diagram of the Fusion GABased PID Controller for the 14DOF, Five
Finger Robotic Hand

signal as

(6.2.1)

with the proportional , integral , and derivative diagonal gain matrices.
We then rewrite (5.1.17) as

(6.2.2)
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Then we use GA to tune all gain coef cients , , and of PID controller.
From the derived dynamic and control models, after the parameters ( , , and

) are determined, the torque matrix is calculated, and then the squared-tracking
errors of the joint of the nger are obtained. Thus, the total error , a
time-dependent function, is de ned as

(6.2.3)

where and are initial and terminal time, respectively. As shown in Figure 4.7,
the tuned diagonal parameters ( , , and ) and the total error of PID
controller by GA are obtained and listed in Table 6.2 based on our previous study
[7].

Table 6.2 Parameter Selection of GATuned PID Controller and Computed Total Errors

Input Output

Fingers

Case I [976,956] [779,279] [170,236] 0.3107

Case II [988,999] [ 78,848] [ 80,109] 0.1557

Case III [199,198] [127,157] [104,102] 0.8100

Index [794,398,960] [960,918,914] [15,59,242] 0.0465

Middle [794,398,960] [960,918,914] [15,59,242] 0.1003

Ring [794,398,960] [960,918,914] [15,59,242] 0.0465

Little [794,398,960] [960,918,914] [15,59,242] 0.0607

6.2.1 Simulation Results and Discussion

To study whether the tuned parameter range in uences total tracking errors, we de-
sign three different cases with altering lower and upper bounds of tuned parame-
ter ranges for two-link thumb. Cases I, II, and III for the thumb represent that the
PID parameters , , and are constricted in three different bounded ranges
[100,1000], [50,1000], and [100,200], respectively. Figures 6.8 and 6.9 show the
tracking errors and desired/actual angles of joints 1 and 2 of PID and GA-based PID
controllers for thumb. These simulations show that the large ranges [100,1000] (Case
I) and [50,1000] (Case II) provide better results than the PID controller parameters
arbitrarily chosen as 100. However, the small range [100,200] (Case III) gives worse
result than the PID controller alone. These results suggest that the bigger parameter
range, the smaller the total error. Cases I and II explain that GA nds some param-
eter values [100,1000] and [50,100] escaping the local minimum area. Case III
covers the value 100 in lower bound, but both total error and convergent speed are
even worse than PID alone, suggesting that GA performs better for a large range,
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but is poor for searching on the boundary. To further consider the convergent speed,
Case I gives smaller total error, but does not improve its convergent speed when
comparing to PID control alone. Yet, Case II gives good total error and convergent
speed. Case III gives poor total error and convergent speed. Taken together, these
results imply that the global minimum could be located in the ranges [50,100] and
[200,1000] and the parameter ranges play an important role in GA tuning. Based
on these ndings, we use the range [50,1000] for the remaining three-link ngers.
Figures 6.10–6.13 show the simulations of PID and GA-based PID controllers for
the remaining three-link ngers [8].
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This book describes the fusion of hard control strategies such as PID, optimal,
adaptive, and soft control strategies such as adaptive neuro-fuzzy inference sys-
tem (ANFIS), genetic algorithms (GA), particle swarm optimization (PSO), for a
robotic/prosthetic hand.

Chapter 2 addressed the forward kinematics, inverse kinematics, and differential
kinematics models of a serial revolute–joint planar two-link thumb, and three-link
index nger. The ngertip (end-effector) positions of each nger were derived by
forward kinematics. The joint angles of each nger (joint space) were obtained from
the known ngertip positions (Cartesian space) by using inverse kinematics. Then,
the workspaces of the ngertip were successfully generated. The linear and angu-
lar velocities and accelerations of ngertips were obtained by differential kinemat-
ics; the joint angular velocities and joint angular accelerations of each nger were
then derived from the linear and angular velocities and accelerations of ngertips us-
ing the geometric Jacobian. Two trajectory planning, cubic polynomial and Bézier
curve, functions were derived. The results were successfully applied to 14 DOF,

ve- ngered robotic hand model.

Fusion of Hard and Soft Control Strategies for the Robotic Hand, By C.-H. Chen and D. S. Naidu 
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In Chapter 3, using the mathematical model of the actuator by using direct current
(DC) motor and mechanical gears, the dynamic equations of hand motion were suc-
cessfully derived via Lagrangian approach for two-link thumb and three-link ngers.

Chapter 4 successfully developed soft computing (SC) or computational intel-
ligence (CI) techniques, including fuzzy logic (FL), neural network (NN), AN-
FIS, tabu search (TS), GA, PSO, developed adaptive particle swarm optimization
(APSO), and condensed hybrid optimization (CHO) as described below.

1. ANFIS and GA: Using ANFIS and GA methods, we successfully solved the
inverse kinematics problems of three-link ngers. The simulations showed that
the GA method although gave a better solution (error ), took more exe-
cution time whereas the ANFIS gave a good solution (error ) with less
time. Therefore, this work used ANFIS method to nd the inverse kinematics
of three-link ngers.

2. PSO: As for the PSO dynamics investigation, we concluded that a small amount
of negative velocity is useful and produced better results. In other words, dur-
ing the procedure, most particles are looking for the same searching directions
(positive weights), but a few particles are looking for different searching spaces
(negative weights). In addition, techniques A–E produced agreeable perfor-
mance, but it appears that E is the most costly.

3. APSO: The proposed APSO with changed updating velocity direction produced
improved results compared to the generic PSO. To compare the standard devi-
ation, APSO with changed updating velocity direction also yielded more stable
results than the generic PSO. Because the APSO technique is attempting to use
secant plane information to help determine good search directions, and for very
smooth problems, possessing nicely de ned minima, one would expect better
performance.

4. PSO in Inflammatory Applications: The results demonstrated the utility of
PSO in generating predictions about the integrated effects of multiple selectin–
ligand pairs. These predictions can then be used to generate testable hypotheses.
Use of this system will speed up the understanding how expression and regula-
tion of multiple selectins–ligands contributes to in ammation in vivo.

5. CHO: The simulation results showed that the proposed CHO algorithm com-
bines the advantages of TS and PSO and obtains robust results. However, on the
higher-dimensional problems, CHO showed a sensitive dependence on select-
ing the most promising area from the promising list. The constant radius of the
chosen promising area played a key role. Therefore, this parameter selection
can be studied in future work.

In Chapter 5, hard control techniques, including feedback linearization,
PD/PI/PID, optimal, and adaptive controllers, were developed for the robotic hand
described in the previous chapters. The numerical simulation results with a PID
controller and a nite-time linear quadratic optimal controller for the 14 DOF ve-

ngered smart robotic hand with realistic data showed the superiority of the optimal



FUTURE DIRECTIONS 225

controller in suppressing the overshoots and transients associated with the PID con-
troller.

Chapter 6 successfully developed the fusion of HC and SC to produce fusion
of hard and soft control strategies to take advantage of the desired features from
HC and SC. The numerical simulations with realistic data for a robotic hand with
two-link thumb and three-link ngers with hybrid control strategy including fusion
of PD controller and FL and hybrid of PID controller and GA demonstrated that
the integration of SC and HC methodologies is superior to using either HC or SC
technique alone.

7.2 Future Directions

The future directions may focus to develop the models and advanced control strate-
gies for ve- nger hand with 14 and 22 degrees-of-freedom (DOFs) to achieve tasks
such as touching, holding, grasping, as shown in Figure 7.1. Next, the control strate-
gies in real-time environment are proposed.

Figure 7.1 Block Diagram of Hybrid Control Strategies for Future Work

1. Develop an adaptive/robust controller for ve- nger hand with 14 DOFs. The
uncertainty and disturbance are considered in designing adaptive/robust con-
troller including real-time environment.

2. Develop the PD/PI controller and adaptive/robust controller for the ve- nger
hand with 14 DOFs including the uncertainty factors including real-time envi-
ronment.

3. Advanced exploration on soft computing techniques such as PSO, GA, to im-
prove the computational cost including real-time environment.
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4. Develop the optimal controller and adaptive/robust controller for ve- nger
hand with 14 DOFs including real-time environment.

5. Develop the hybrid optimal and adaptive/robust controller for ve- nger hand
with 14 DOFs using soft computing such as GA/PSO, to tune the parameters of
the hybrid controller including real-time environment.

6. Develop the hybrid PD/PI/PID controller and adaptive/robust controller for ve-
nger hand with 14 DOFs using SC like GA/PSO, to tune the parameters of the

hybrid controller including real-time environment.

7. Modify the hybrid control strategies for real-time application for the ve- nger
hand with 22 DOFs.

8. Integrate the hand motion, mechanical design, grasping manipulation planning,
and EMG-based model for embedded hierarchical real-time implementation for

ve- nger hand with 22 DOFs.

During the last three decades, investigations have been carried out on the use of
EMG signals to come up with a robotic hand to perform as many functions as possi-
ble. However, the use of EMG signals is limited in the number of possible human-
like functions with as few electrodes as possible and also nally for the robotic hand
to have a natural “cosmetic” appearance. Further, the EMG signal cannot provide
any kind of feedback to the user [1]. One of the several possible solutions to over-
come the limitations of surface-based EMG approach is neuroprosthesis. Here, we
use an interface between the peripheral nervous system (PNS) and the “natural” neu-
ral interface to extract, record, and simulate the PNS in a selective way. Further,
advanced in biocompatible neural interfaces can provide some sensory feedback to
the user by stimulating the afferent nerves and allowing motor control of prosthesis
leading to a “natural” EMG-based control. Based on this two possible ways of con-
trolling robotic hand are the simple and non-intrusive EMG-based control and the
more complicated, implantable EMG-based control.

As per the National Academies Keck Futures Initiative, “Smart Prosthetics: Ex-
ploring Assistive Devices for Body and Mind,” as reported in [2], it was pointed
out, “We can make smarter prostheses ... integrating engineering, medicine and so-
cial science.” A related news item is on mind-controlled robotic arm (“$120 million
man”) showing the advances in neuroprosthetic technology at Johns Hopkins Uni-
versity [3].

Other interesting/promising ideas are in the area of three-dimensional printing as
seen from [4] relating to “3-D printed prosthetics help kid athletes compete.”
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