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Preface

Somebody once remarked on how unjust it is that chaos has always had such
a bad press. Whenever there is a traffic jam in the morning, when the children
don’t keep their things in order, when politics is turning crazy, it is always
the fault of chaos. And yet, if there was no chaos, things would be pretty
boring. Nothing unexpected would ever happen, and we could predict that
the same dull things would happen today as they did yesterday. That’s if we
could predict anything at all — without chaos it would be quite likely that
our thoughts would be trapped in some limited cycle and our brains would
be quite useless!

The same also applies to extremes. Usually, when one thinks of extremes,
negative connotations come to mind. Extremely hot weather is as unpleasant
as extremely cold weather, and if its rains like crazy it is just as bad as
when it is extremely dry. Extreme stock market fluctuations often result in
large financial losses; earthquakes and floods can kill thousands of people,
and global terrorism is strongly linked to political extremism.

But now try to imagine a world without extremes. Putting grand events
like the Big Bang or the extinction of the dinosaurs — without which we hu-
mans would not exist — to one side, consider a world with constant lukewarm
weather, where no-one ever fell in love, where there was never any deviation
from the average. One can argue that even catastrophes have their positive
sides, since they force us to look beyond our comfortable, well trodden paths.
Although instinctively we would like to minimize their effects, that fact that
we have to deal with them often leads to progress. Without extremes, there
would be no shake-ups leading to novel situations and opportunities. And the
Olympic Games would not be much fun either!

The present collection of articles, all written by well known experts in
their fields, demonstrates these two aspects of extremes perfectly. On the one
hand, we have to cope with their unpleasant sides, by predicting them as
much as possible and by minimizing their effects. Most of the articles are
therefore written from the point of view of the engineer or applied scientist
who has to deal with this. But despite of the diversity of extreme phenom-
ena — ranging from economic and geologic disasters via the breaking of steel
to extreme neural bursts in epileptic seizures — the authors manage to show
that there is a common underlying conceptual frame that links them. Indeed,
as well as being linked by these concepts, various mathematical tools can be



VI Preface

applied to most problems involving extremes. Therefore, this book demon-
strates (without overstressing the point — just by providing the facts) that
there is an emerging unifying and truly interdisciplinary science of extreme
events.

Finally, the authors would not be good scientists if the fascinating and
exciting aspects of the science of extremes did not permeate through every
page. This another positive aspect of extremes: that they have led to this fas-
cinating book, which is a real pleasure to read and which is sure to stimulate
much further research.

Jiilich, June 2005 Peter Grassberger
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1 Extreme Events:
Magic, Mysteries, and Challenges

Volker Jentsch, Holger Kantz, and Sergio Albeverio

Summary. Extreme events (henceforth Xevents) occur in natural, technical and
societal environments. They may be natural or anthropogenic in origin, or they can
arise simply from “chance”. They often entail loss of life and/or materials. They
usually occur “by surprise” and therefore often only become the focus of scientific
attention after their onset. Knowledge of Xevents is often rather fragmentary, and
recorded experience is limited. Indeed, scientists do not really understand what
causes extreme events, how they develop, and when and where they occur. In addi-
tion, we are rarely able to cope with their consequences, due to lack of anticipation
and preparedness. All this has motivated us, the editors of this volume, to bring
together specialists from a variety of fields of expertise, all of whom have a common
background in mathematics and physics. We asked them to write their views about
Xevents. The result is the present book of essays that will (hopefully) enable the
reader to unlock the mysteries surrounding Xevents.

1.1 Why Study Xevents?

There is a long tradition of phenomenological studies of Xevents in human
history. Let’s focus on two examples. The first refers to the water levels of the
Nile, which have been recorded for over 5000 years, providing a remarkable
hydrological chronology of the lowest and highest water levels. The water level
of the Nile has been discussed and analysed from ancient times in relation
to religion, philosophy, and economics and human welfare: hunger when the
water level sank to a minimum and disaster when the Nile was too high.
Moderate flooding of the Nile delta, however, has been known to be beneficial
to agriculture for many millennia.

The second example refers to earthquakes. Here, the chronology is not
reflected in numbers, as in the case of the Nile, but mostly in oral or written
history, poems, or newspaper articles. Records go back 3000 years, beginning
with the Mt. Taishan earthquake in the Shandong Province of China. The
Lisbon earthquake of November 1755 received much attention. It not only
triggered earthquake research in Europe, but also served as the focus for var-
ious publications, ranging from Kant’s essays about the causes of earthquakes
to Voltaire’s Poéme sur le désastre de Lisbonne. What all of these reports
have in common, however, is that they strongly convey the unpredictability
and unimaginability of when and where the earth would tremble.
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Today, Xevents attract both public and scientific interest, for various
reasons. For example, we fear that natural Xevents could increase in fre-
quency and intensity, possibly triggered by human activity. Furthermore, we
are shaken by the sudden and abrupt collapse of structures, such as buildings,
power plants, and traffic and transportation systems, which are almost al-
ways man-made and subject to further complications due to ignorance and/or
negligence. It all boils down to the question of vulnerability — how can pop-
ulations be protected from Xevents, especially in view of the global interde-
pendencies of technology, economy, ecology, and society? Science can make
a significant contribution in this respect, as it aims to understand the dynam-
ics of Xevents (the processes occurring before, during and after the event);
to predict the occurrence of an event and its impact; and to define the limits
of prediction.

1.2 What are Xevents? A First Approach

Before we proceed any further with this discussion, we need to define exactly
what we mean by an “extreme event”. In the context of an extreme event,
an “event” is something that happens within a limited space and time. Its
occurrence can arise by chance or necessity or through a combination of both;
through natural or human-made causes or a combination of both. The inter-
pretation of “extreme” cannot be defined so easily. It encompasses a collection
of attributes, such as rare, exceptional, catastrophic, surprising, and the like.
An insurer would translate “rare” as “low-probability” and “catastrophic”
as “of great consequence”, the latter emphasising the event’s potential for
impact and change. Therefore, a hurricane is an Xevent only if it causes loss
of life and material damage; it is considered to be an ordinary event if it hits
uninhabited areas. An asteroid strike is an extreme event only when it strikes
the earth and changes the course of evolution, which seems to have happened
65 million years ago. The degree of “extremeness” of a Xevent, an important
consideration for insurance companies, politicians and journalists, may thus
be intuitively expressed as the product of the change and the impact caused
by the event divided by the frequency of occurrence.

From a science viewpoint, on the other hand, the impact aspect is not the
most important. What stirs scientific passion are huge deviations in a series of
measurements, the burst-like nature of extremes, their apparent uniqueness:
in short, the unexplainable and unpredictable. This means that the occurance
of an asteroid strike is an extreme event, regardless of its impact on human
life; as are magnetic storms in the magnetosphere, even if there is no record-
able impact on electronic devices on earth. However, society’s need to cope
with the consequences of Xevents is becoming more and more urgent and so
we can no longer afford to leave all Xevent-related considerations solely to
policy- or decision-makers. Powerful simulation tools may help and thus we
will discuss them in this book.
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Xevents can also be individual, such as a first love, the birth of a child,
the death of a spouse, the awarding of a Nobel Prize, to mention only a few
examples. Xevents can also be general, in that they affect people and the
environment: societal disasters (pandemics such as influenza and AIDS);
natural disasters (floods, droughts, cyclones); technical breakdown (power
outages, material ruptures, explosions, chemical contaminations); or market
turbulence (huge losses or gains in the stock market), to mention but a few.
World wars are undoubtedly among the most extreme of extreme events.
We remind the reader of Eric Hobsdawn’s fulminate Age of Exztremes [1],
which describes and analyses the social catastrophes of the twentieth cen-
tury, in particular the two World Wars and the revolutions that followed
each war.

The connection between wars and Xevents raises the question of morality,
which quickly dominates all other issues involved: should a specific Xevent be
judged as positive or negative? The wars of the twentieth century (but not
only these!) are rightly considered as human tragedies unmatched in scale
and consequence. However, tragedies — on whatever scale — almost always
contain the seeds of positive change. The World Wars ultimately led to the
spread of democracy around the globe (especially in Germany), ending the
era of colonialism. The meteorite that is believed to have struck the earth mil-
lions of years ago extinguished the dinosaurs and facilitated the evolution of
mammals; the nuclear disaster in Chernobyl, which killed thousands of peo-
ple, fostered the development and implementation of alternative sustainable
forms of energy; while the unification of West Germany and East Germany —
widely welcomed as a positive Xevent — also gave rise to high unemployment
and social displacement and deprivation. Therefore, rating Xevents as posi-
tive or negative is purely subjective; there are always trade-offs between the
risks from and the benefits of the event.

1.3 What are Xevents? A Second Approach

So it seems that there are many definitions of an Xevent. This indicates that
the issue is multifaceted, intricate, complex, and subject to various inter-
pretations, perceptions, assessments, and even emotions. For science, this is
not a comfortable situation. From a scientific perspective, the aim must be
to free Xevents from their apparent subjectivity so that a more objective
definition can be obtained. Defining a quantity (mathematical, physical, or
whatever), on the other hand, requires adequate knowledge of it. This is not
yet available. All we can do at the moment is to characterise Xevents by
their most important elements: their statistical and dynamic properties, pos-
sible commonalities and analogies, observations, mechanisms, predictability,
prediction, and management. It may be helpful to present a few remarks
on these topics prior to explaining the idea underlying this volume and its
components.
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1.3.1 Statistical Characterisation of Xevents

From a statistical perspective, Xevents occur in the tails of probability dis-
tributions that define the occurrence of events of a given size (in terms of
energy, duration, and so on). In a Gaussian distribution, these tails (situ-
ated to the far left and right of the peak value) are exponentials. For many
Xevents, the tails are “heavy”: for instance (algebraic) power laws with some
fixed power, p(z) x =% a > 0. Power laws fall off much more slowly than
exponential (Gaussian) distributions, indicating an enhanced probability of
occurrence. We note in passing that power laws (not exponentials) possess
scale invariance (corresponding to self-similarity, in terms of geometry), which
is important for many natural phenomena (see below). This property can be
expressed mathematically as p(bx) = b~ %*p(x), meaning that the change of
variable from x to bx results in a “scaling factor” independent of x, while
the shape of p is conserved. So power laws represent “scale-free systems”.
A typical Gaussian distribution is that representing a the heights of a num-
ber of people, with a well-defined mean value and a relatively small variance.
Typical power laws include the distribution of wealth (known as Pareto’s
law, with a fraction of people presumably several times wealthier than the
reader) and the size distributions of earthquakes (Gutenberg-Richter), forest
fires and avalanches, among other examples.

The statistics of Xevents is known as extreme value statistics (this form
of statistics dates back to 1958, when E.J. Gumbel published his seminal
book [2]. The aim is to obtain as much information as possible on their (un-
known) distribution functions. Typical problems include finding the proba-
bility that the size of an event exceeds a given value, or the largest event that
will occur in a given period of time, for a given location. The assumptions
used in common theories are still quite limiting, dealing mostly with indepen-
dently and identically distributed events, which is rarely the case in reality.
However, if the distribution function of Xevents can be estimated with suffi-
cient accuracy, all relevant quantities (including those mentioned above) can
be evaluated.

1.3.2 Dynamic Characterisation of Xevents

From what has been said so far, it appears as though Xevents are generated
randomly, as with throwing dice. This is a wrong assumption. They occur in
systems with complex dynamics, usually far from equilibrium, where the sys-
tem’s variability (not its mean values) and collective effects (not its individual
aspects) are dominant. Consider weather extremes. What we call weather is
the state of the Earth’s atmosphere in the region relevant to us, which is
continually and dynamically evolving according to well-known equations of
motion (such as the Navier-Stokes equations). Therefore, modern weather
prediction performed by running numerical simulations of model equations,
fed by observations (measurements) as initial conditions. In fact, all natural
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Xevents are almost undoubtedly phenomena that occur as manifestations of
the complex dynamics of a certain system. Hence, we search for dynamic
mechanisms that allow a given system to make an excursion far from its nor-
mal state. Several such scenarios are known, among them the concepts called
the theory of large deviations, self-organised criticality (SOC), determinis-
tic chaos, and fully developed turbulence, to mention just a few. SOC, for
instance, suggests that a system reacts to a sequence of perturbations by ma-
noeuvring itself into a critical state (with no external tuning or organisation
required) where huge fluctuations are the rule rather than the exception,
and which cause power law distribution functions for the relevant observ-
ables. For instance, the aforementioned Gutenberg-Richter law of earthquake
magnitude distribution can be reproduced by suitable SOC models. How-
ever, there is a wide range of potential dynamic scenarios for Xevents, some
of them generating precursors, some of them requiring nonlinear positive
feedback loops with evident instabilities. Hence, there is definitely no univer-
sal dynamic mechanism at work; but the number of potential mechanisms
is small. Despite a huge body of knowledge about dynamics, accumulated
mainly over the past three decades, Xevents have only rarely been the focus
of such studies.

1.3.3 Shaping Evolution

During the evolution of the Earth’s surface, state economies, and political
structures, to name three examples, Xevents have obviously had significant
roles to play: they shape the future courses of such systems. Indeed, the worst
earthquakes in California, with a recurrence rate of about once every two
centuries, account for a significant fraction of the region’s total tectonic de-
formation; landscapes are changed by the “millennium” flood, which is more
effective than the concerted action of all other eroding agents; the largest
volcanic eruptions lead to major topographic changes and to severe climatic
disruptions; financial crashes, which in an instant can cause the loss of tril-
lions of dollars, loom and affect the psychological state of investors, society,
and the world economy.

1.3.4 Commonalities, Analogies, Universality

Newton’s law of gravity is universal, as it applies to any particle of matter.
Could a similar statement hold true for Xevents? Certainly not — they are too
complex and too diverse. So let us modify the question: is there some (simple
or complicated) mechanism that produces similarities in behaviour between
different Xevents? Or will the behavior depend crucially on the specifics of
each system or classes of systems, provided that such classes exist and can
be defined and identified? In other words, is there any kind of universality
that expresses the common nature or essence that the members of a class
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(individual events) share with one another? Is this universality purely formal,
or can it be imagined as being dynamic and developing where universality
and individuality merge?

Physicists and mathematicians are used to thinking of universality. We
remind the reader of bifurcations and phase transitions (where phenomena as
diverse as ferromagnetism, superconductivity, and the spread of epidemics —
percolation theory — enjoy a unified theoretical description in which details of
the system become irrelevant). However, as already mentioned above, we can-
not expect universality. The most we can hope to find is the existence of sev-
eral universality classes. Things might be more complicated than this, how-
ever, since the different facets of Xevents (origin, impact, and phenomenol-
ogy) allow us to search for and to discover commonalities on different levels of
description. Therefore systems falling into the same universality class when
considering physical aspects might appear very disparate on the sociological
level.

If there are commonalities in cause, there are many more commonalties
in effect. Indeed, Xevents entail casualties: deaths, heavy financial costs, en-
vironmental destruction, and undermining the fabric of society. These result
from side effects or secondary events deriving from the primary Xevent, such
as the disruption of communication networks, the contamination of water,
and the breakdown of health support, energy supplies, and so on.

1.3.5 Prediction, Anticipation and Management

Xevents call for prediction. In a sense, we believe in “savoir pour prévoir”, as
stated by the French philosopher Auguste Comte. Prediction implies move-
ment from the past through to the present towards the future: a cause or
several causes may lead to an effect — the extreme event — to be predicted.
In a wider sense, prediction may be complemented by a proactive dimension:
how do we cope with a predicted event when we don’t know when it is going
to occur. This requires backward travel from the future — as a possibility — to
the present. Anticipation describes this (nonreactive) perspective. Combining
prediction and anticipation is a prerequisite to managing Xevents.

Predicting may be a dangerous activity, however. There are many reasons
for this. An important one is that forecast models are constructed on mean
quantities. However, a real-world complex system is often better viewed as
a collection of “hot spots” rather than a reasonably homogeneous background
contaminated by small-scale noise. This explains why classical methods often
fail. We select four striking examples from a long list of drastic failures, which
were severely underestimated or not predicted at all: the storms that struck
Western Europe in December 1999; heavy and devastating precipitation in
Northern Italy in autumn 2000; the terrorist attacks in Madrid and Beslan
(Russia) in 2004; and most recently, the Asian apocalypse in which more than
200,000 people were killed and many more made homeless on 26 December
2004 by a tsunami.
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Any quantity that is to be predicted must be predictable. This depends
on the quality and availability of data, existence and type of precursors, and
the amount of determinism involved, such as memory effects or some depen-
dence (in time or space) between the observables. The signal-to-noise ratio
is an important quantity in this context. If it is low, faithful predictions are
impossible. Another important quantity is the time horizon for prediction. In
general, we may distinguish between short-, medium- and long-term predic-
tion. While this holds true for ordinary time series prediction, this concept
must be revised as far as Xevents are concerned. Here our desire is to pre-
dict, among other things, the largest event that will occur in a given period
of time, for a given location.

However, more important than predicting an event (or more correctly, the
probability of occurrence) is the specification of confidence intervals indicat-
ing the upper and lower bounds of probability. As a matter of fact, rather than
trying to predict Xevents, one may define the range of all possible Xevents,
just to provide the information we so desperately seek.

When we discuss consequences, we should bring up management, which
refers to mechanisms used to cope with the impacts of Xevents. The effective-
ness of management depends on understanding, anticipation, preparedness,
and response to these events. There are avoidable (usually human-made) and
unavoidable (usually natural) catastrophes. If an Xevent is avoidable, then
prevention is of great importance. If it is unavoidable, then management
searches for mitigation and adaptation (mathematically, this means some
kind of optimisation); this is known as a vulnerability reduction strategy.

1.3.6 Trends

Regular structures, especially trends, can be superimposed on the irregular
behaviour of a time series. So it is useful to check possible trends in the
extreme values of the time series and to evaluate the extent to which they
depend on technology, behaviour, habits, and so on. Some people claim that,
due to human interaction, climate extremes are becoming more extreme and
temperature swings occur more often. Ultimately, Xevents may become so
frequent that they are no longer extreme, but define a system’s norm. This
conclusion is certainly very speculative, but it seems to have many adherents
among the worldwide climate community.

1.3.7 Building Models

As with other scientific problems, the modelling approach is the most effec-
tive and appropriate one to apply to Xevents. One may roughly differentiate
between diagnostic models, which investigate what has happened, and prog-
nostic models, which investigate what will happen. These (microscopic or
macroscopic, general or specific) models are always some simplification of
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reality, which is usually reduced to some basic physical laws and formalised
in mathematical terms. Computer simulations also play an important role.
Simulations are used to answer question like “Suppose some relevant param-
eter is changed, what is the response of the system if all other factors are
kept constant?” In order to obtain valid answers, the current state of the
system must be properly reproduced by the simulation, which requires the
optimisation of system parameters and functions. This is difficult to achieve
in most cases, which sheds some doubt on simulations in general. Dynamic
models contain nonlinear feedback, and the solutions to these are usually
obtained by numerical methods. Statistical models are data driven; in their
simplest version they try to fit a given set of data using various techniques.
There are hybrids, coupling dynamic and statistical aspects, including de-
terministic and stochastic elements. Simulations are often based on cellular
automata and network formalisms, connecting input and output in nonlinear
ways. These models are calibrated by training the networks, so that the error
between output and given test data is minimised.

1.3.8 Observations

The underlying reality of theories is data. In fact, observations constitute
a firm base from which scientific reasoning can start and to which it must
always return in order to test its validity. So without data — and this is
a possible way of thinking — there is no theory, or at least no verifiable
theory. In our context, this means a sequence of data forming a time series, in
which a measurement point is associated with each time point (often equally
spaced). Collecting data, organising data and drawing conclusions (statistical
inference) is achieved through ordinary data handling. For Xevents, it is
not the mean value that matters, but rather the deviations from this, in
particular the greatest deviations. A distribution function of the extreme
values is required. A special problem arises here which is sometimes called
the “curse of few observations”, meaning that Xevents tend to be rare and
thus impede meaningful statistical inference. The lack of observations is, in
many cases, overcome by using extreme value statistics (see above).

1.3.9 Risk

For an individual, “risk” means the probability of an undesired outcome, such
as disease or death, resulting from bad habits or an unfavourable environ-
ment, among other possible causes. For finance, risk is the uncertainty that
the actual return of an investment will be less than the expected one, due to
inflation or fluctuating currency exchange rates, for example.

Sociologists go beyond the microscopic view of risk. Risk becomes a macro-
scopic or social phenomenon. Ulrich Beck received much attention when he
created his “risk society” [3]. He observed a transition from “old” society —
whose fate was determined by naturally occurring hazards along with socially
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induced hazards, such as wars — to a “modern” one, whose course is governed
by risks, especially those driven by industry and new technology. According to
Beck, risk, rather than social deprivation or inequality, is the constituent ele-
ment of society, causing new conflicts and social formations. A “risk society”
seems to entail an “insurance society”, in which damage is compensated by
money. For insurers and re-insurers, risk is a measure of uncertainty ranging
between 0 (highly uncertain) and 1 (certainty), proportional to the product
of probability of occurrence and damage. Risk can be insured if it is com-
putable and identifiable. However, this is not always possible, since Xevents
are — as has already been stated above — difficult to estimate, both in cause
and in effect; in addition, they can be accompanied by enormous and highly
correlated losses. Other forms of protection, such as prevention or precaution,
must be developed in order to “tame” Xevents.

1.4 How the Book is Organised

1.4.1 Background

The papers presented in this volume draw largely upon complex systems re-
search carried out by a number of eminent researchers who have published
widely (we restrict ourselves to more recent publications, notably [4-14]).
They are also influenced by recent workshops (including the Extreme Events
Workshop held in Boulder, CO, USA, sponsored by the National Science
Foundation,, which tackled the research agenda for the twenty-first cen-
tury; for more information about this visit the website at http://www.
isse.ucar.edu/extremes/index.html). The objective of the workshop was to
reconsider research on Xevents in terms of a more unified perspective. Net-
works have also been formed that document natural hazards and discuss
management possibilities [15,16]. In addition, a collection of the various as-
pects of Xevents, entitled “The Science of Disasters”, has been published [17].

1.4.2 Rationale

The essays in this volume were selected to represent some important speciality
fields of Xevents that have been investigated in great depth over the last ten
years. Often in books such as this one, one aspect — say floods — is explored
in all of its glory. This is a well-proven procedure, but it is not our intention.
We want to explore the individuality of Xevents, but at the same time, we
want to demonstrate that Xevents do not vary as much as they might first
appear, and that it is useful to compare and contrast these phenomena. It is
our conviction that a collective view of Xevents in diverse systems will allow
us to gain insights into what may lie behind them. This is the physicist’s
approach: to try to extract general features and laws that apply to many
phenomena, not just one. The differences and the commonalities, the specific
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and the universal, are reviewed on a more general level above. It is up to the
reader to deepen their understanding of these statements with the help of
the essays presented in this book.

Another reason to bring together these essays on Xevents is a very prag-
matic one. We strongly believe that the cooperation of scientists belonging
to different fields yet aiming at the same goal (describing and explaining
Xevents) yields a better result than the collective efforts of experts work-
ing independently and separately. Admittedly, bringing together scientists is
a difficult endeavour, and one that is seldom successful in practice due to
differences in language, background, and goals. The reader will soon realise
this when comparing the essays written by theoreticians and researchers,
specialists and generalists, philosophers and practitioners. Some write more
technically, others prefer a review-like style. All authors discuss some of their
own as-yet unpublished research.

Another aspect, probably the most important, is the methodological as-
pect. Can the methods we apply to finance also be applied to, say, epilepsy?
Method transfer has been shown to be successful in many cases and contexts.
Xevents is undoubtedly another field where method transfer is of the utmost
importance.

The topics were selected to meet the criteria mentioned above. The open-
ing essay deals with our theme as a whole, describing and discussing the
various aspects, be they philosophical or oriented towards information sci-
ence. The closing essay, although more technical, provides a broad outlook
on how to cope with Xevents. In-between, three articles shed light on the fun-
damental mathematical and physical concepts, while others examine specific
scenarios, combining review and preview, including the mechanisms behind,
the forecasting of, and the management of Xevents. We believe that all of
the essays convey a sense of the methods, accomplishments, and challenges
of contemporary Xevent science.

1.4.3 The Articles

The articles are ordered in three parts: General Considerations contains
a general view in terms of philosophy, mathematics, and physics; Scenar-
ios embraces nature, technology, and society; and Prevention, Precaution,
and Avoidance discusses various management measures.

General Considerations

Mihai Nadin (“Anticipating Extreme Events”) draws a metaphysical picture
of Xevents. He aims to look behind and transcend specialist views. Pierce’s
semiotics serves as the starting point, in which three elements have to be
considered and combined: the representation of the object, the object itself,
and the interpreter (in the form of a computer, a certain method, or — more



1 Extreme Events: Magic, Mysteries, and Challenges 11

demanding — a hybrid system that couples human creativity and ability to
anticipate with machine processing). Nadin states that an adequate repre-
sentation of Xevents includes the prediction of its occurrence and the conse-
quences associated with it. In other words, representing an event means that
we fully capture it, in other words we are able to explain and reproduce it. If
so, we can anticipate it, and this is all that society needs to meet the Xevent.
What is and what is not an Xevent is equivalent to asking how it affects
humanity, in quantity and quality. According to Nadin, the consequences
count, nothing else. Another question raised is the problem of chance and ne-
cessity. Nadin believes in the causa finalis of Xevents, and suggests focussing
on why a particular Xevent occurs. An Xevent creates a new state of equilib-
rium, with the “post” (the state after the event) being more stable than the
“pre”, the state before the event. He states that Xevents cannot be treated
in a reductionist fashion, only in a holistic manner, meaning the inclusion
of heterogeneity and interaction among systems. Thus Nadin’s thinking is in
a sense complementary to our assumption of laws overarching Xevents in the
inanimate and animate worlds.

Sergio Albeverio and Wladimir Piterbarg (“Mathematics of extreme
events”) undertake an excursion into the mathematical world. They assem-
ble extreme value statistics, dynamical systems theory, chaos and catastro-
phe theory, pointing out their specific contributions to the mathematics of
Xevents. Quite naturally, they start with the classical statistical theory of
Xevents (“extreme value theory”), summarising problems like estimation of
Xevent indexes and Xevent prediction, and extending this to include depen-
dent data, multidimensional variables and stochastic processes with continu-
ous time. The other mathematical approaches addressed are extreme fluctu-
ations, in particular in relation to the phase transitions studied in statistical
mechanics, and singularities of maps, as studied in catastrophe theory, which
may provide the ability to formulate certain natural systems in terms of varia-
tional principles. A partial unification of such apparently distinct approaches
to Xevents is seen by connecting large deviations theory with saddle point
methods.

As basic as the article described above, but emphasising the physics per-
spective, is the contribution by Holger Kantz et al. (“Dynamic Interpreta-
tion of Extreme Events: Predictability and Predictions”). Under the remit
of Xevents, the authors discuss the notion of the predictability of a given
dynamic phenomenon as compared to actual predictions. They start from
the assumption of dynamic sources of Xevents (the hypothesis that past,
current, and future states of a system are related by dynamic rules, namely
equations of motion). Their existence implies a certain degree of predictabil-
ity of the future when the current state is known. In this contribution, static
and dynamic aspects of predictability are discussed and contrasted with ac-
tual predictions. A prediction requires an algorithm, a prediction scheme,
whereas predictability sets the benchmark. In a model-free way, predictability
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quantifies how predictable a given phenomenon would be if we knew the op-
timal method. It might seem surprising at first that stochastic systems are
also usually predictable to some extent. Predictions in such cases are prob-
abilistic (a certain event will happen with a given probability), but this is
still highly beneficial compared to no prediction at all. Due to temporal cor-
relations, predictions for stochastic phenomena are time- (and better, state-)
dependent. That is, the actual prediction could, for instance, yield a time-
dependent risk of occurrence of an Xevent. In a specific example (turbulent
wind gusts), the authors elaborate on a purely data-driven (and hence in
some sense universal) prediction scheme, namely data-driven continuous state
Markov chains, and demonstrate its performance in this case. In closing, the
specifics of the prediction of Xevents compared to “ordinary” predictions are
discussed.

Didier Sornette (“Endogenous versus Exogenous Origins of Crises”) pres-
ents a combination of basic understanding and probing into reality. He asks
himself to what extent fluctuations growing to extremes are intrinsic (or
“endogenous”), and to what extent they are responses to externally caused
perturbations (“exogenous”). Complex systems theory likes the idea of self-
organised criticality (see above, “Dynamics” ), which states that systems with
threshold dynamics relax through repetitive fluctuations of all sizes. Ac-
cordingly, Xevents are seen to be endogenous. On the other hand, most
natural and social systems are subject to external shocks of widely vary-
ing amplitudes. Thus it is not clear a priori if a given Xevent is due to
a strong exogenous shock, to the system’s internal dynamics, or to a combi-
nation of both. Dealing with this question is fundamental to our understand-
ing of the relative importance of self-organisation versus external forces in
Xevents.

Sornette discovers that the time evolution of Xevents is different for en-
dogenous and exogenous mechanisms. He illustrates his findings through a va-
riety of examples, including shocks in book sales and in financial markets.
Book sales are an indicator of “commercial growth and success”. Endoge-
nous peaks are followed by a power law relaxation, which is slower than for
exogenous peaks. The slow relaxation in sales implies that the sales dynam-
ics are dominated by (internal) cascades rather than by the direct effects of
news or advertisements. In many cases, however, both effects seem to blend.
Financial markets are checked for distinguishing features during the time
before a crash. Sornette develops a method for identifying shocks and for
distinguishing between two different types. One is characterised by a log-
periodic power law describing the price distribution of market prices, while
for the other this distribution is absent. The log-periodic behaviour repre-
sents precursors characteristic of endogenous crashes (such as the speculative
behaviour of stockholders). The absence of these precursors indicates an ex-
ogenous crash.
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Scenarios

Klaus Lehnertz (“Epilepsy: Extreme Events in the Human Brain”) consid-
ers Xevents related to disease, notably epilepsy. But why not tackle truly
life-threatening events, such as heart attack or stroke, which are also much
more common? First, epileptic seizures are not rare. This implies advantage
and disadvantage. From the viewpoint of statistics, many events are more
significant than single or isolated events (avoidance of the “curse of few ob-
servations” ). However, the disadvantage is more serious. Many events mean
that many persons are affected. Indeed, there is a need to help millions of
people. Second, epileptic seizures are recurrent; in other words, they occur
again and again but leave the patient alive (at least in the vast majority of
cases). This opens up the possibility of collecting EEG data as a function
of time, generating a chronology, which is usually impossible when it comes
death by heart attack. EEG data can be analysed using some well-developed
methodologies. Lehnertz states that the origin of seizures is endogenous (see
the discussion in Sornette’s paper), and that it is essentially nonlinear. Pre-
cursors are of utmost importance, as they may signal an oncoming event.
Here the time difference between detection of precursors and manifestation
of the event is important for anticipation (see Nadin’s contribution). There is
mounting evidence that a deep analysis of rich EEG data (and other relevant
parameters) indeed reveals precursors ranging from minutes to hours. These
can be used to design new therapies, both technical and psychological, in
order to reduce the number of attacks or, in the best case, to prevent them
altogether.

Jiirgen Herget (“Extreme Events in the Geological Past”) reviews natural
events that are really big and rare: those of the geological past. Geological
Xevents are archived in rocks, ice, and various organic and mineral deposits.
They can be a real event (abrupt and well-defined in duration and location),
such as meteorite impacts, earthquakes, floods or volcanic eruptions; or they
can be the end result of a continuously changing environment, such as the
formation of the Earth’s surface by continental drift — implying millions of
years — or the reversal of the Earth’s magnetic field on a timescale of hundreds
of thousands of years. Herget’s own work focuses on the biggest flooding
events known, caused by the repeated outbreaks of water masses from lakes
that were blocked by huge ice masses. Whether or not (necessarily) limited
knowledge about these events can help to assess the recurrence of outbreaks
of stored water masses in the present still has to be ascertained.

Andreas Hense and Petra Friederichs (“Wind and Precipitation Extremes
in the Earth’s Atmosphere”) describe typical spatial-temporal scales in the
atmosphere that are prone to developing Xevents in the form of strong winds
and heavy precipitation. Their interconnectivity is interesting: Xevents with
large spatial dimensions (convective instabilities of the order of 100 km, say)
can trigger small-scale extremes of vertical velocities of the order of 1 km,
which in turn can cause heavy precipitation of a still smaller scale. Wind is
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generated by large vertical and horizontal gradients in atmospheric quanti-
ties, giving rise to instabilities. Extremes occur on all scales, ranging from
100 m to 1000 km, including tornadoes (of the order of 1 km) and trop-
ical cyclones (of the order of 100 km). However, no scaling law seems to
exist, implying that no universal mechanism (for example, in the form of
self-organised criticality, with threshold dynamics included) is at work. In
the case of precipitation, microprocesses of hydrology couple with macro-
processes of atmospheric circulation. It appears that scaling laws that relate
rain extremes to accumulation periods in the form of a power law exist for
convective precipitation, which takes place near the equator.

Eric J. Heller (“Freak Ocean Waves and Refraction of Gaussian Seas”)
focuses on specific Xevents in the oceans, namely isolated gigantic waves
reaching heights of 20-30 m, which occur recurrently and much less rarely
than one might expect. The reason they are not frequently reported lies in the
lack of (surviving) witnesses. Ocean waves, ocean water streams, and wind
eddies, which are the entities that cause these waves, follow well-known phys-
ical laws or empirical distributions. Hence, one deals with a physical system
of moderate complexity here, so a theoretical approach has a good chance of
fully capturing the physics of the phenomenon. Indeed, Heller’s novel theory
seems to be consistent with observations and the basic properties of giant
waves, even if nonlinearities in wave formation and propagation are ignored.
Apart from the sensation of goose-bumps in regard to the awesome power
of ocean waves and the intellectual satisfaction of having this phenomenon
explained, the reader might enjoy this contribution as a case study of how
a dynamic view of Xevents can allow us to completely understand the phe-
nomenon. As a consequence of Heller’s freak index, one might be able to
routinely forecast the frequency of such events in certain parts of the oceans
in the future.

It would be improper to leave out the problem of the material fracture.
Matz Haaoks and Karl Maier have focussed their interest on the breaking of
metals, notably steel. The authors do not develop just another model. Rather,
they present a new experimental technique, suitable for reliably predicting
the material’s lifetime, which is synonymous with the number of loads ex-
erted until the material breaks. This final state defines the Xevent. However,
rupture is not a recurrent phenomenon, so the Xevent associated with ma-
terial failure is in contrast to those considered so far: it marks the point of
no return. The authors contribute not only to the problem of prediction, but
also to the management of Xevents (see the essays below), since ideally, the
metal would never break when following the authors’ prescription to replace
it in due time.

The interesting point is that fracture has something to do with the de-
fects in the lattice. If the number of these rises, breakdown is very likely. So
defects can be considered to be precursors that can be detected und quan-
tified. The way this is done is described in the text. In essence, use is made
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of the well known results of positron physics, stating that if you implant
positrons in solids they are attracted by the electric potential built up by
the lattice defects. Once trapped, they are annihilated by electrons, resulting
in ~-radiation that can be measured and interpreted in terms of progressing
fatigue. How will this be handled in practice? The advantage of the proposed
technique is that a few in situ measurements will suffice to answer the ques-
tion of lifetime. Assume that the density of defects is measured, for example
as a function of the applied load cycles. The resulting diagram will be inter-
preted according to the results obtained from the strain—stress and fatigue
tests of the specific material, which are fully known from many independent
experiments. Of course, the extrapolation employed has to be refined and
verified by statistics. It would be interesting to see a verification of the au-
thors’ results in the near future; moreover, it would be desirable to develop
a mathematical model that would support the extraordinary experimental
work from a theoretical viewpoint.

Santo Fortunato and Dietrich Stauffer (“Computer Simulations of Opin-
ions: Reaction on Extreme Events”) are concerned with computer simulations
of Xevents. As is typical of simulators, they build a model based on certain
heuristics and let it run on the computer. Such models, however simple, al-
low insight into some of the basic mechanisms and their effects if coupled,
which in general cannot be intuited. The hope is that the simulations provide
some hints about what and why something happens. The authors’ topic is
the relation between society and Xevents. Here “relations” are interpreted
as opinions: how do opinions about an Xevent change once it has happened?
In Sornette’s parlance (see above), the Xevent itself is the exogenous shock,
while the response (in terms of opinion change) is due to internally driven
network dynamics. Fortunato and Stauffer present the following scenario.
Before the event, an individual (or a group of persons) trusts its own (sub-
jective) estimation of risks and impacts of the event. After the event, the
individual (or the group) changes its opinion abruptly. What has happened?
Two reasons are conceivable. Reason 1: The (objective) assessment based on
expert’s knowledge and experience was right, while the group’s (subjective)
view turned out to be wrong. This includes under- and overestimation of the
extremeness of the event. Reason 2: Before the event, the group didn’t pay
attention to early warnings, because they were often wrong. So they did not
pay attention to the warning of what turned out to be a true Xevent. Af-
ter the event, they conclude that it would have been better to believe these
warnings. While in the first case the change of opinion is largely academic,
the latter case entails a change in behaviour, which may have a large impact.

By means of a cellular automaton and related models, the authors show
how the assumed change of opinion spreads among the population. The
amount of people influenced is model- and parameter-dependent. The spread
depends on location and time. Obviously, the further one is from the event,
the less likely opinions are to change.
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Philippe Blanchard and Tyll Krueger (“Networks of the extreme: a search
for things exceptional”) consider networks, as Fortunato and Stauffer do.
While the latter used the network as a suitable background for transporting
opinions, here the network itself is the object of research. Xevents come into
play with the emphasis on their rarity as one of the determining factors (the
other one is their event-like character, see above). Rarity is then connected to
attention, and their is an inversely proportional relationship between them:
“The rarer you are, the more attractive you become”. Just as we all believe in
this and behave accordingly, so do the authors. They show that the rare or ex-
ceptional (such as wealth, beauty, or influence) attracts others and gives rise
to new connections (or “edges” in network jargon). The evolving network has
interesting properties, since it does not depend upon the details of the distri-
bution of the rare, but only on a constant shaping of a power law. This implies
scale invariance, as already stated. So here is an (abstract) example in which
Xevents, meaning rare events, seem to determine the evolution of structures
to a large extent. It would be interesting to see if the conclusions drawn by
the authors, such as the spread of epidemics and terrorist attacks on networks
are just speculations or have a real basis that can be further exploited.

Prevention, Precaution, and Avoidance

Michael Lehning and Christian Wilhelm (“Risk Management: Modeling
Mountain Hazards”) are in charge of the Swiss Snow and Avalanche Insti-
tute in Davos. They write about risk management in snow-covered mountain
areas. At times the inhabitants are surprised by avalanches and the like,
representing a certain threat or risk. The problem that Lehning and Wil-
helm tackle is the reduction of risk (up to avoidance of the event), under
the constraint that financial costs must be low. They conclude that the best
prevention is a good forecast, implying a confident description about when
and where the avalanche is likely to occur. If so, low-budget measures can be
taken into consideration, such as road closure in the endangered areas, which
is effective since it saves lives and material and does not cost much compared
to fixed protective constructions of the past. So it all boils down to the basic
question: how do we improve avalanche forecasting?

Zuzana Chladnd, Elena Moltchanova, and Michael Obersteiner (“Preven-
tion of Surprise”) discuss the management of Xevents, focussing mainly on
hazards brought about by human society. The emphasis is on preventing haz-
ards rather than developing protective measures (as insurance companies do).
The authors propose a modified discrete version of a neoclassical macroeco-
nomic model, describing an evolving economy in the presence of a threatening
Xevent, including investment, consumption, and a probabilistic mitigation
component, which can be adjusted so as to avoid the catastrophic event.
Their model can be extended across several interacting societies. The results
are interpreted in terms of mitigation strategies, emphasising collaboration
rather than confrontation within society. This is clearly the most interesting
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point the authors make, and it is this aspect that should be pursued and
explored in more detail in the near future.

Last but not least, Dirk Helbing, Hendrik Ammoser, and Christian
Kihnert (“Disaster Response Management: Analyzing Networks of Events”)
consider the aftermath of Xevents (disasters), and emphasise the common
ground between them in terms of effects. Disasters spread via networks,
which in cities almost always give rise to interruptions in traffic, transporta-
tion and supplies, electrical power blackouts (with additional side-effects),
and a breakdown in the information infrastructure, with a subsequent loss of
quality of information and coordination. These, in turn, give rise to panic in
the population, increased criminal behaviour, looting, and eventually — the
most threatening — disease outbreaks. There are also long-range correlations
implicit in retaining or losing political power, as was the case in Germany
(after the flood in Saxony in 2002) and in Spain (the terrorist attack in 2003).
Helbing et al. propose heuristics-based impact models in order to answer ques-
tions about the dynamics of impacts. These impacts manifest themselves as
sub-events (such as breakdown in traffic systems) related to the occurrence
of the primary event (the Xevent). The interesting question concerns the dy-
namics of such impacts, especially their strengths and timescales. The answer
to this is a model that consists of a system of coupled first-order differential
equations, based on the assumption that the rate of change of the impact (on
a specific constituent of the system) with time is proportional to the impact
multiplied by its spreading rate minus the mitigation rate (which is due to
external management actions). The solutions can be interpreted in two ways:
they give the probability of an impact event, as well as the path and the ve-
locity with which the impact propagates through the system. So the authors
rightly conclude that, provided we know the interaction scheme for impacts
and correctly identify the constituents of the system, we should be in a better
position to manage the event using their modelling results.

1.5 Outlook: Research Programme

What might the publication of this volume achieve? We hope that it fosters
efforts aimed at understanding extreme events in different fields, including
assessments of their degree of predictability, specifications of confidence in-
tervals of prediction, estimates of risk, as well as proactive measures — an-
ticipation and prevention. This volume should illustrate the potential, the
requirement, and the success of such a proposal. Xevents arise in a variety of
physical, life, and social systems in which the concepts of co-operability and
self-organised criticality are universally relevant.

However, problems arising from Xevents are related and therefore must
be approached through concerted actions. Moreover, a variety of methods,
converging into a few models, is needed. As is the case with this book, the
physical-mathematical perspective should be emphasised and expressed in
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the form of models and simulations. We believe that this is the most con-
vincing and most effective approach. Other approaches from social sciences,
economics, and psychology are most interesting and should be included wher-
ever possible. Novel methods should be combined with state-of-the-art meth-
ods, while new models must be compared with models that already exist in
various scientific disciplines.

Even if only a small part of this program is realised, it would not only
influence the course of science and its various applications, but it would also
have tremendous practical impact in that it would decrease vulnerability and
increase resilience to Xevents. It is the combination of social and emotional
aspects, superimposed on top of basic scientific problems, that characterise
Xevents and arouse widespread interest in them.
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General Considerations



2 Anticipating Extreme Events

Mihai Nadin

Summary. The urgency explicit in soliciting scientists to address the prediction
of Xevents is understandable, but not really conducive to a foundational perspec-
tive. In the following methodological considerations, a perspective is submitted
that builds upon the necessary representation of Xevents, either in mathematical
or in computational terms. While only of limited functional nature, the semiotic
methodology suggested is conducive to the basic questions associated with Xevent
prediction: the dynamics of unfolding Xevents; the distinction between Xevents in
the deterministic realm of physics and the nondeterministic realm of the living;
the foundation of anticipation and the possibility of anticipatory computing; the
holistic perspective. As opposed to case studies, this contribution is geared towards
a model-based description that corresponds to the nonrepetitive nature of Xevents.
Therefore, it advances a complementary model of science focused on singularity,
providing a nondeterministic understanding of high-complexity phenomena.

2.1 The Representation of Extreme Events

Let us imagine that somehow we could fully capture an Xevent — an earth-
quake, a stock market crash, a terrorist attack, an epileptic seizure, a tor-
nado, a massive oil spill, a flood, an epidemic or any other occurrence deemed
worthy of the qualifier “extreme” (the kinds of measurements and other ob-
servations that qualify the result as extreme will remain unanswered for the
time being). Based on what we know today — aware more than ever that
everything is in flux (“Panta rhei”, to quote Heraclitus [1]) — and on the
scientific models that presently guide knowledge acquisition, we understand
that to fully capture (represent) an event (extreme or not) involves not only
explaining it, but also ultimately being able to reproduce it. This is another
way of saying that if we could adequately represent an Xevent, we would be
able to predict it and similar events, as well as their consequences. Implicit
in this perspective is the expectation of determinism, a particular form of
causality. More precisely, the representation contains the description of the
cause or of the causal chain. Obviously this is no longer a case of simplis-
tic representation of cause and effect, but one tempered by the realization
that only an acknowledgement of a rich variety of causal mechanisms can
explain the broad dynamics of complex phenomena. After all, the common
denominator of Xevents is their complexity.
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With all this in mind, let us denote the full description of an Xevent as
its representamen, R. (The informed reader will have already noticed that
this unusual word comes from Charles S. Peirce [2].) There are no limitations
upon what R can be. It can be a record of quantities (numbers — the set N
of natural numbers); it can be an event score (similar to a music score or
to a detailed film script). It can be a completed computation — assuming
that the algorithm/s behind the computation is/are tractable, that is, that
they have a polynomial solution in the worst case. It can be a computation in
progress, about to reach a halting stage, or reaching one in several generations
(an evolutionary computation). It can be a combination of some or all of the
above, plus anything else that science might come up with. Regardless of what
R is and how it was obtained, if we could fully capture an event, we could also
understand how the event — henceforth called the object (and denoted O) for
reasons of convenience — and its representation relate to each other (in other
words how a change in R, the representamen, might affect a change in O, the
event reproduced or anticipated). This understanding (by a human being,
a scientific community, a computer program, or a neural network procedure),
called I for interpretant process (according to the same Peircean terminology
already alluded to), is actually all that society expects from us as we dedicate
out inquiry to Xevents. Indeed, we are commissioned (some explicitly, others
implicitly) to conceive of methods for predicting Xevents. Based on such
predictions, society hopes to avoid some of their consequences, or even to
avoid the event (in the case of, say, a terrorist attack or an epileptic seizure).

The three entities introduced so far — R for representamen (the plural
is representamina), O for object (to be defined in more detail), and I for
interpretant — are derived from Peirce’s semiotics. For the scientist wary of
any terminology that does not result from some specialization (such as the
many mathematical branches growing on the trunk of mathema, the various
theories of physics, the biological fields of inquiry such as molecular biology
or genetics, and so on), a word of caution: regard the entities introduced so
far only as conceptual tools, and only in conjunction with the descriptions
given so far. Actually, their relationship can be conveniently illustrated thus:

Fig. 2.1. A sign is something that stands for something to someone in some form
or capacity (see C.S. Peirce, [3-5]). The two diagrams represent two views: on the
left, the sign as a structure S = S(O, R,I), and on the right, the sign as a process
that starts with a representation (R of O) to be interpreted in a sign process



2 Anticipating Extreme Events 23

The diagrams tell a very clear story: “In signs, one sees an advantage for
discovery that is greatest when they express the exact nature of a thing briefly
and, as it were, picture it; then indeed, the labor of thought is wonderfully
diminished” (Leibniz as cited by Schneiderman [6]).

An unusual scientist, grounded in mathematics, astronomy, chemistry,
logic, and geodesic science, Peirce considered natural phenomena, as well as
social events, from a meta perspective. Indeed, semiotics is a metadiscipline,
transcending all those partial representations that are the focus of the object
sciences. This confers upon semiotics an epistemological status different from
that of particular sciences. That is, it is a “science of sciences” as Charles
Morris [7] called it. Its generalizations in semiotic theory are not conducive
to technological innovation as such, but rather guide the effort, such as in
the design of user-computer interfaces, or the conception of languages, such
as those used for programming or those based on the DNA code. However,
semiotic generalizations are extremely effective at helping specialized research
to maintain a reference outside the specialization pursued. They help scien-
tists realize the relation between what is represented — in our case, Xevents
(the representation), in whatever scientific theory and by whichever means,
including mathematical formulae and computer programs — and the interpre-
tation process associated with it. When many disciplinary and societal views
are produced, which is certainly the case for this book and for which my
contribution is conceived, we realize the need for a comprehensive transdisci-
plinary framework that can guide the individuals involved towards realizing
the meaning of all of the specialized views and methods advanced. An effec-
tive framework for further research in Xevents ought to facilitate integration
of knowledge, as well as the conception of new ways of disseminating knowl-
edge, leading to decision-making and action.

The formalisms associated with semiotics are varied. They are of logical
origin. In the late 1970s, I worked on a mathematical formulation of semi-
otic operations [8]. Animated by his interest in Peirce’s sign classes, Robert
Marty [9-11] pursued a similar goal. Joseph Goguen [12] finally worked to-
wards the explicit goal of an algebraic semiotics, facilitating applied work.
Neither of us considered that the study of Xevents might benefit from semi-
otics, formalized or not. But in the final analysis, what brought up the semi-
otic perspective in these introductory lines was the broad motivation of our
effort: how to make semiotics useful beyond the contemplative dimension
of every theory. One avenue, as it now turns out, is the path towards the
foundation of anticipation, the anticipation of Xevents, in particular.

2.2 From Signs to Anticipation

Let me quote from the Introduction to the Report of the workshop entitled
Extreme Events: Developing a Research Agenda for the 21st Century [15]:
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It is no overstatement to suggest that humanity’s future will be
shaped by its capacity to anticipate [italics are mine|, prepare for,
respond to, and, when possible, even prevent Xevents.

The notions of anticipation and of the sign are coextensive. Representa-
tions come into existence as the living — from the simplest level (monocell) to
the most complex known to us (the human being) — act. Vittorio Gallese [14]
brings proof that acting and perceiving cannot be effectively distinguished. He
starts with an obvious example: the difficult task of reducing one’s heartbeat
is made easier once a representation — an electrocardiogram in real time —
is made available to the subject. Indeed, biofeedback provides an efficient
way of controlling a given variable (heart rhythm in the example mentioned,
see [14]).

Representations, which are the subject of semiotics, are relational instru-
ments. Every human action — and for that matter, every action in what is
called the living — is goal driven. Gallese reports on single-neuron recordings
in the premotor cortex of behaving monkeys. What drives the neurons is the
goal of the action. He states:

To observe objects is therefore equivalent to automatically evoking
the most suitable motor program required to interact with them.
Looking at objects means to unconsciously ‘simulate’ a potential ac-
tion. In other words, the object representation is transiently inte-
grated with the action-simulation [14].

Quite some time before Gallese’s experiments, my own elaborations [15]
on what drives the human being — the actions through which they self-
constitute; their pragmatics (we are what we do, no more, no less) — reached
a point that is the fundamental thesis of this article.

Thesis 1. Xevents should be qualified in relation to how they affect human
life and work.

Let me explain: Xevents, regardless of their specific nature, are not simply
acknowledged by virtue of their syntax (the formal characteristics as we read
them on various recordings of seismic activity, brain activity, wind direction
and intensity, and so on). Xevents are not reducible to the semantics defin-
ing them as such; the label applied in the form of a category of hurricane,
or assigned seismic intensity on a standardized scale, or a seizure type, for
example. The defining quantifier regards how they affect human activity: the
pragmatics of existence.

It is the dynamic relation between the event and those experiencing it
(directly or through some form of mediation) that counts. Moreover, the
plurality of relations, corresponding to the various ways in which we interact
with the world in which we constitute our identity, is what interests us. That
we can quantify the effects of Xevents (in the number of lost lives, in the costs
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An aspect of a Complex system
complex system

i We can not achieve
gi ;:tneingﬁ both ﬁ o
nsisten
complete description consistency

Fig. 2.2. Consistency and completeness are complementary. In order to circumvent
the intrinsic characteristics of complex systems, we can focus on partitioned aspects.
The challenge is to perform an adequate partitioning

of preparation, recovery, and damaged infrastructure, in ecological impact,
and so on) does not mean that the numbers represent the impact of the event.
Human life and activity are subject not only to quantity descriptions, but
also to deep quality consequences.

What guides the exposition so far is the realization that while everyone
wants to anticipate, or at least somehow, even in a limited way, to predict
Xevents, we must remind ourselves of Godel’s warning [16], that we can at
best expect partial results: a complex system cannot be described in both
a complete and consistent manner at the same time. As a theorem in formal
logic, it has often been misinterpreted. The reason we bring it up here is the
methodological need to find out the extent to which it predicts the necessary
failure of all attempts to anticipate Xevents, or whether it only suggests
that we need to consider ways to segment or partition the various aspects of
Xevents and concentrate on partial representations (see Fig. 2.2).

2.3 Descartes Rehabilitated

Seen from this perspective, Descartes’ reductionism and determinism — the
foundation of humankind’s enormous scientific and technological progress in
the last 400 years — makes more sense than his critics would like to credit
him with. The question of whether Descartes knew well ahead of Godel that
complex systems are impossible to handle in their entirety, or whether he only
asked himself (obviously in the jargon of the time) how to reduce complexity
without compromising the entire effort of knowing will never be unequiv-
ocally answered. What we do know is that reductionism and determinism
operate in a major section of perceived reality: everything there is (reality)
is reduced to that subset of reality that constitutes the subject of physics.
And everything that functions, including the living — minus the human being,
for religious reasons that had more to do with Descartes’ caution than with
scientific reasoning — is seen as equivalent to a machine. That Descartes’ un-
derstanding of the physical world and our current understanding of physics
are quite different needs no elaboration. Science advanced our understanding
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of determinism and causality in ways that at times appear to be counter-
intuitive. Think of the quantum mechanical description of the microcosm.
Think of the dynamic system models in which self-organization, among other
dynamic characteristics, plays an important role in maintaining the system’s
coherence. Hence, it would be unwise not to distinguish between

1. Xevents in the realm of the physical world, for which the science inspired
by the Cartesian model is, if not entirely adequate, the best we have.

2. Xevents in the living, for which the Cartesian perspective is only partially
relevant.

2.4 Time, Clocks, Rhythms

If the representation of an Xevent as a representamen R were possible, it
would necessarily involve a time dimension. After Descartes, time was as-
sociated with the simplest machine of his age — the pendulum clock — and
reduced to an interval. If not Descartes, then at least some of his contem-
poraries already knew that to associate gravity with rhythm is convenient,
but not unproblematic. At the poles (north or south), time in this embod-
iment is quite different from the time in Paris or in Dallas, Texas. And on
a satellite, depending upon its orbit, it is a different time again. This prob-
lem was addressed by adopting oscillations (mechanical, as in clocks and
watches, or atomic) and resonance as a “time machine”, and then declaring
a standard — that of the cesium atom — which was easy to maintain and to
reference. But with Einstein and relativity theory, we came to realize that
the “atomic clock” is only a good reference as long as it is not subjected to
a trip on a fast-moving carrier. Some physical phenomena take place along
a timeline for which the day-and-night cycle in the western hemisphere, or
the pendulum’s gravity-driven rhythm, is either too fine-grained (think about
cycles of millions of years), or too coarse (fast processes at nanoseconds and
scales below this). Even more dramatic is our realization that many different
clocks operate at the same time within the living, and many synchronization
mechanisms are apparent. If they are affected, the system can undergo ex-
treme changes. It turns out that the linear representation of time, through
an irreversible vector, is a useful procedure so long as the time it describes
is relatively uniform and scale-independent. But time is neither uniform nor
independent of the frame of reference.

Once we ask what it would take for the representamen R of an Xevent
to become a complete, effective description of the event, we implicitly ask
what it would take to anticipate it. Indeed, a complete description can only
be fully predictive if it makes a time difference mechanism possible:

Event (E) as a function of time tg
Prediction (P) as a function of time ¢,
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Evidently, the two times tg and ¢p are not identical: tg # tp. Moreover,
tp must be faster than tg in order to allow for the possibility of prediction
or anticipation.

An anticipatory system is a system whose current state depends not only
on a previous state, but also on future states [17,18]. In contrast to a pre-
dictive mechanism that infers probabilistically from the past, an anticipatory
procedure integrates past experiences, but weighs them against possible fu-
ture realizations. One of the better-known operative definitions of an antici-
patory system is: “An anticipatory system is a system that contains a model
of itself unfolding in faster than real time” [19]. What this description says is
that simulations are the low end of anticipation. What it does not say is that
although we can execute different operations (for instance, computations) in
parallel within physical systems (machines, in particular), and even perform
some operations (computations) faster than others, without a mechanism
for interpreting the meaning of the difference between “real-time” opera-
tions (computation) and “faster than real-time” operations (computations),
we still do not have an effective anticipatory mechanism. Indeed, only an
understanding of the difference in outcome between so-called real-time and
faster-than-real-time operations can afford anticipation. Two conditions must
be fulfilled:

1. The effective model should be complete.
2. An effective mechanism for discrimination between the process and its
model must be implemented.

Some would argue that the model does not have to be complete (or that it
cannot be complete). If this were true, we might as well make the conception
of the incomplete but still useful model the task of predicting, as though
we knew which part of the dynamics of the system is more relevant than
what is left out. Others argue that all it takes is some intelligence in order to
understand the meaning of the difference. From all we know so far in dealing
with anticipation and the human being, intelligence is marginal, if it plays
any role at all. Let us discuss some classical examples.

Anticipation of moving stimuli (see Berry et al. [20]) is recorded in the
form of spike trains of many ganglion cells in the retina. The facial action
coding system (see Ekman and Friesen [21]) is a record of “character” that
we spontaneously “read” as we perceive faces in some unusual situations
(the trusting hand extended when there is need). Proactive understanding of
surprising events is the result of associative cognitive activity (see Fletcher
et al. [22]. More recently, Ishida and Sawada [23] confirmed that the hand
motion precedes the target motion. (Remember when you last caught a falling
object before you “saw” it?) Intelligence is not traceable in the process or in
the quantitative observations. As a matter of fact, high performance anticipa-
tion, such as that seen in skiing, tennis, hockey and soccer, is not associated
with a high IQ or with any other feature of intelligence. What is identifiable
is learning (and implicitly the dimension of training anticipatory attributes)
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although of a precise type. It is not explanatory learning; it is rather proce-
dural, internalized rather than externalized.

In view of this, a representamen R of an Xevent understood as being its
full operational description makes sense only in association with an inter-
pretant process I. This itself can be conceived as a machine that is context-
sensitive and able to learn. As the representamen unfolds in a neverending
prediction sequence, the interpretant not only relates it to the Xevent it cap-
tured, but also to other events as they take place in the world. In order to
achieve this dynamic behavior, it has to be conceived as a distributed compu-
tation; actually, as a grid process that takes as input the knowledge acquired
so far (representamen) as well as the new knowledge resulting from the rep-
resentation of Xevents taking place in real time. And even in this possible
implementation, the interpretant process will not be more than a surrogate
to a living interpretant process.

2.5 The Hybrid Solution

Thesis 2. Since the living is not reducible to a machine, our best chance of
understanding our own knowledge regarding Xevents, and thus provide for
effective anticipation, are hybrid systems that integrate the human being.

I am aware that this thesis runs counter to the dominant expectation of
fully automated anticipation, or at least prediction. Although we deplore the
enormous cost of the consequences of Xevents — often including death and
bodily impairment, disease and suffering — we are, so it seems, not willing to
take on board that the most expensive machinery imaginable today will not
fully replace the interactions of minds (see Nadin [24] as a component of the
interpretant process. Our obsession is still with the interaction (see Fig. 2.3)
of the human — machine interface in particular.

This focus is not unjustified to the extent that we entertain the illusion
that machines will eventually carry out any and every form of human activity.
After all, Minsky [25] was not alone in stating that

In from three to eight years, we will have a machine with the general
intelligence of an average human being. I mean a machine that will be
able to read Shakespeare, grease a car, play office politics, tell a joke,

Creation

<

Processing

Fig. 2.3. Human—Machine interaction. The process is intensely asymmet-
ric/asynchronic
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have a fight. At that point, the machine will begin to educate itself
with fantastic speed. In a few months, it will be at genius level, and
a few months after that, its power will be incalculable.

Despite this reductionist-mechanistic viewpoint, we are now discovering
that, given the continuous diversification of human activity, the machine is
bound to be at least one step behind human discovery: it does not articulate
questions. Expressed in other words, we are discovering new ways through
which we can increase the efficiency of our efforts (physical, mental, emo-
tional). Therefore, the logical alternative is not to transfer human functions
and capabilities to machines, but to provide for an alternative model: the
integration of the human being and the machine. What results is a very com-
plex entity, ultimately characterized by its degree of integration. Instead of
limiting ourselves to the Human—Machine interaction, we should concentrate
on the very complex entity that results from integration (see Fig. 2.4).

Living machine

Fig. 2.4. The “Human—Machine” living machine

Let us contemplate simple examples of implementation:

1. The “mind” driving the machine (see the experiments, so far performed
with monkeys [26]), which avoids the “bottleneck” of current user inter-
faces, which are notoriously asynchronic. We know that a lot comes out
of machines, but very little — mainly interrupt commands — pass from the
user to the machine.

2. The coupling of the nondeterministic “state-of-the-human” informational
space (containing many parameters, with heterogenous data types such as
temperature, color, pressure, thythm, and so on) with the deterministic
machine state, such as in hybrid control mechanisms. The data bus in the
machine part is connected to the “living bus”; rich learning and forgetting
affect interactions between the human and the machine.

These examples reflect the “state of the art” currently reached. If we could
further integrate the living (not only human) and a machine endowed with
pseudo-living properties (such as evolutionary programs), we would be better
positioned to achieve a semiotic machine in the proper sense of the expres-
sion, and thus we might expect anticipatory characteristics augmented by
computation.

Let us revisit the introductory hypothesis: the possibility of achieving
a full record of an Xevent. We denoted the Xevent as object O without
considering its condition. In reality, an Xevent appears to us — as we are part
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of it, experiencing it — as an immediate object: the meteorologist is inundated
with data from trackers, radar readings, and sensor information. (Similar
readings are made by a physician examining a patient who might have an
epileptic seizure; or by seismologists as they consider issuing a warning of
a catastrophic earthquake that would require massive emergency measures.)
The immediate object O;, which can be characterized through rich data, is
only suggestive, but not fully indicative, of the dynamic object. After all,
the tornado might not take place, despite all the readings; the seizure might
not occur, or might take a mild form, indistinguishable from normal brain
activity; or the seismic wave might be ambiguous.

Associated with the immediate object O; is the immediate, although at
times less than precise, understanding of what the description (representa-
men) conveys (the immediate interpretant I;). In what we all we call pre-
diction (including forecasts), most of the time this understanding is based
on previous experience, that is, on probabilities. For example, in the past,
a radar echo and a triple point on a surface chart suggested tornados. The dy-
namic interpretant /4, not unlike a neural network propagation, corresponds
to inferences from what is apparent to what might happen — to the space
of possibilities. This consists of all that can happen (events associated with
meteorology data such as weak shear, moisture, stationary front in vicinity).
Integrating the probabilistic and the possibilistic dimensions of Xevent fore-
cast is the final interpretant It: “If you haven’t thought about it before it
develops, you probably won’t recognize it when it does”. This comes from
a professional in weather forecasting, Charles A. Doswell, III, as reported by
Quoetone and Huckabee [27]. The transcripts of the various conversations
among traffic controllers, airline representatives, and the military personnel
in charge of guarding USA air space during the events surrounding the terror-
ist attacks of what has come to be known as 9/11 clearly reveal that nobody
thought about the possibility of an operation at the scale of and with the
means conceived of by the terrorists. The diagram given below captures the
intricate relation (corresponding to a triadic-trichotomic sign relation) of the
entities under consideration:
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Fig. 2.5. The triadic-trichotomic sign relation
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It is no accident that the infatuation with the sign originates in medicine;
more precisely, in the practical endeavor known as diagnostics. But the
“symptoms” of Xevents (also known as foretelling signals, whether in seis-
mology, meteorology, medicine, terrorist activity, market analysis, and so on)
point to a very complex sign process. The triadic-trichotomic representation
of the sign suggests the need to distinguish between the appearance (immedi-
ate object O;) and the evolving object of our attention (dynamic object Oq)
It also makes us aware that the process of interpretation starts with the per-
ception of appearance (I;) and continues with the formulation of a theory (I¢),
which in turn can be further interpreted (the state of knowledge regarding
an Xevent at some moment in time). Quite often, we examine a represen-
tamen R as a symptom (for instance a seismogram, or some representative
data pertinent to physical events) and infer from symptoms to possibilities,
that is, a quantified record of what can be expected.

Xevents are notorious for casting doubt on forecast verification statistics.
Due to the nonlinearities characteristic of Xevents, random factors lead to
an ever-increasing difference between the statistically driven prediction and
the observed event. Combining probabilistic and possibilistic descriptions al-
lows new modeling perspectives. The fact that probability and possibility are
not independent of each other (nothing can be probable unless it is possi-
ble, and not every possibility can be associated with a probability before an
event) makes the task even more difficult. Since a vast body of literature
on probability is available, I will make only a brief reference to possibility
distributions.

Actually, we know that there is no “generally accepted formula for the
mean of uncertainty or ignorance induced by a possibility distribution” [28].
The best that, to my knowledge, has been proposed so far is an E-possibilistic
entropy measure. If A = a1, ... ay is a set of outcomes (for example the effects
of an earthquake, or of a storm), and II = my,... 7 is a possibility distribu-
tion (with m; = 1,7 = 1,...k), the measure of uncertainty (or ignorance) is
the optimal value of the nonlinear equation:

k
max H(p) = — Zpi log pi (2.1)
i=1
subject to the limitations:
k k
Zpizl, Zm pi>¢e, and pt>0.
i=1 i=1

Indeed, we are always informed, at least partially, about what has al-
ready happened; but we are ignorant in respect to what might happen (the
possible event). The measure of our ignorance is always dependent on how
well defined the possibility space is. The consequences for which «; stands
are hypothetical, and are sometimes (such as in financial crashes) affected
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by the perception of those involved (the investors), but are usually not ob-
viously dependent upon their activities. A house constructed in the vicinity
of a fault-line does not augment the intensity of the earthquake (should one
take place) but it does affect the impact (human, social, economic, and so
on). The possibility distribution is therefore a representation of the various
correlations expressed in the Xevent. Possibilistic entropy does not depend
only on the possibility distribution. Together with probability considerations,
these intricate relations are implicit in the R expression and are indicative of
Xevents both in the physical and in the living.

We ought to note that these entities (R, O, I) are not abstractions, but
a logical guide to constructing an effective system of anticipation. Accord-
ingly, we need to proceed by giving life to this diagram, such as by specifying
the relation between the data and the possibility distribution. We also need to
define all of its components, and furthermore, to proceed with a semiotic cal-
culus that will generate an anticipatory self-mapping system. To give just one
example, let us define an Xevent as an expression of dynamics. (“Expression”
is used here in analogy to gene expression.) If we accumulate data (such as
meteorological, geological, brain activity, financial market transactions; each
associated with a possible Xevent) our goal would be to extract R patterns of
expression (patterns of dynamics, or patterns of change) inherent in the data
from the representamen. Mathematical techniques for identifying underlying
patterns in complex data (in complex representamina) have already been
developed for object recognition by computer-supported vision systems, for
phoneme identification in speech processing, for bandwidth compression in
electrocardiography and sleep research. These are clustering techniques (hier-
archic, Bayesian, possibilistic, and so on). Among these techniques, so-called
self-organizing maps [38] can be defined to correspond to a semiotic self-
mapping. Such maps use visualization techniques to reduce the data space
with the help of self-organizing neural networks. In effect, similarities in the
data are evidenced by grouping similar data items. This involves a high num-
ber of iterations. In the final analysis, an SOM is associated with a grid. The
rectangular grid used is somewhat analogous to an entomologist’s drawer
(adjacent compartments hold similar insects), although I actually prefer the
analogy to a philatelic collection (adjacent pages in the album hold similar
stamps or series). The SOM of a possible Xevent is a representation of all the
“insects” or “stamps” not yet collected, or the “stamps” not yet printed. For
an iteration ¢, the position of a variable V, is denoted f;(Vg). The formula

fir1(Ve) = fi(Ve) + 7(d(Ve, Vep) ) (P — fi(Ve)) (2.2)

describes the next position of the Xevent variable considered. Notice that
the position corresponding to possible data point P (which is a node Vgp in
the grid) and the variable V. are subject to a distance evaluation d(V., Vgp).
Learning is involved in the process (7 is the learning rate); the learning rate
decreases as the distance between V., and Vgp decreases. Indeed, if the differ-
ence tends to zero between the possible value and the observed value, there is
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nothing left to learn. There is randomness, accounted for in order to replace
the living component. In such a procedure, semiotic considerations are no
longer meta-statements, but become operational.

Human beings operate naturally in the semiotic realm. They generate
cognitive maps as they act in relation to the Xevent variable. These mental
maps guide our actions. Even the influence of predictions and forecasts affect
these self-generated maps. We do not process chairs or electrons or thunder in
our minds, but rather their representamina. Accordingly, a semiotic machine
combines the perception of signs with the production of signs (see Fig. 2.6):

Semiotic competence

Semiotic performance

Fig. 2.6. The unity of action and perception

What the diagram suggests is that the human being’s self-constitution
(how we become what we are through what we do) implies the unity of ac-
tion — driving our perception of the world — and reflection. Therefore, to
do something, such as to deal with Xevents — reflect upon them, cope with
their impact, predict them — actually means to anticipate the consequences
of our actions. In effect, this translates neither into an anticipation method
nor into specific means, but rather into the realization that anticipation is
an evolution-immanent characteristic. Should we ever be able to build an
evolutionary machine (to create a living entity), it will have to display antic-
ipatory characteristics. For all it’s worth, the realization that anticipation is
an evolution-immanent characteristic means that anticipation of Xevents is
possible, but not guaranteed. Evolution itself is not a contract with nature
for individual survival or survival of the species. The Xevent that led to the
extinction of the dinosaurs is only one example among many others.

If instead of considering the R of a natural Xevent (an earthquake and the
like) we look at the plans on whose basis the A-bomb was built, or on which
chemical and biological weapons are produced, or the new “smart” weapons
(producing targeted Xevents!), we still remain in the semiotic realm. The Ra
(for atomic bomb), or the R¢ (for some chemical weapon), or the Rp (for
biological weapons), or the Rg (for smart weapons) are an effective description
of a potential Xevent, which we can fully predict within an acceptable margin
of error. Bombing the desert (which used to be called nuclear testing) is quite
different from bombing a populated area. We can also, within other margins
of error, predict what might happen with respect to Rc or Rp, and even Rs.
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The Xevent (O) — the unity between O; and Og, or the appearance and the
dynamic unfolding of the event — contained in the description (R) becomes
subject to a process of interpretation. This extends from scientific analysis
and planning, to engineering and testing, as well as to media reports, fiction,
and movies, not to mention the production of interpretations, true and false,
of secret services intent on confusing the potential users of such devices.
Indeed, Xevents, whether natural or artificial, become part of the political
experience, and thus their prediction also impacts politics. Xevents lead to
a whole bureaucracy (emergency funds set up to meet needs), and to new
laws (including ones intended to prevent market crashes or terrorist attacks).

It has often been remarked that social systems (and for that matter, sys-
tems pertinent to living communities, human or not) display anticipation.
The less constrained a system is, the higher its resiliency. Meaning comes
into existence with hindsight: “What happened to the subway that came to
a screeching halt? What does it mean that an airplane hit a skyscraper?
What does it mean that someone has a seizure?” A logistic map can in-
form us about a direction of change. Market processes exemplify the process.
Feedback and feedforward work together; production, supply, demand, and
all other factors are underlying factors in market dynamics. A crash — an
Xevent — is not dependent upon the anticipatory actions of informed or unin-
formed individuals, but rather upon aggregate behavior. Cellular automata
able to operate on two different timescales (real time vs. faster than real time)
could, in principle, capture the recursive nature of those who make up the
market.

But in real life (whatever that means), we can only act in the present (as
events are triggered). As such, the interpretant process for which a cellular
automaton stands appears as a funnel to us:

Fig. 2.7. An Xevent as a realization in a possibilistic space along a time axis

The immediate object (the Xevent) unfolds in the huge space of possibil-
ities that one can conceive of and pursue systematically. To be successfully
anticipatory means to progressively reduce this space until the convergence
of the open cone-shaped object.
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2.6 Can a Computer Simulate Anticipation?

In effect, to anticipate is to move along the time vector from the event (tor-
nado, flood, seizure . ..) — the neck of the funnel — as it unfolds, to its initial
conditions. In the language of dynamic systems, this means to move from the
strange attractors embodying the Xevent to the conditions feeding the dy-
namics of the system. Nonlinear processes affect the “edges” of the dynamic
distribution (for example: how wide a swing a stock market can take, what
the most extreme temperatures are, what the atmospheric pressure values
are, what the seismic parameters are, the level at which a system’s stabil-
ity is affected). But there is no indication whatsoever that these processes
display any regularity.

Scientists such as Sornette, Helbing, and Lehnertz — to name three among
those published in this volume — are dedicated to this approach. For instance,
Sornette is well respected for considering self-organized criticality and out-
of-equilibrium conditions. He advanced the hypothesis that Xevents are due
to the system’s endogenous self-organization. In contrast to prevailing views,
he covers a very large area of public interest (from geological aspects to the
future of humankind on earth). The abstraction in Helbing’s model of collec-
tive behavior goes back to self-driven many-particle systems. Malfunctions in
the form of abnormal synchronization of a large number of neurons catch the
attention of those (such as Lehnertz) looking for the prediction potential of
apparati (such as multichannel EEC recorders), if an appropriate determina-
tion of the abnormality, detected through statistical evaluation, is performed.

Each time they, and others who follow a similar physics-driven path to
discovery, come upon patterns in the data subject to their examinations,
they pursue the thought of identifying regularities that can ultimately justify
prediction. Some are on record — a very courageous scientific attitude — with
predictions (regarding, say, the economy, financial markets) that the public
can evaluate. Others have commercialized their observations (for example on
crowd behavior). It would be out of character and out of the question for me
to cast doubt on models mentioned here for their elegance and innovation.
But the reader already knows where I stand epistemologically. And given
this stand, I can only suggest that, for the particular aspects on which my
colleagues focus, acceptable predictions are possible. What is not possible is
a good discrimination procedure, one that allows us to compare, ahead of the

dynamic model informational future
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past present future

Fig. 2.8. A model unfolding in faster than real time appears to the observer as an
informational future
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future, between good and bad, appropriate and inappropriate predictions.
For the past, which they assume to be repeated in some form or shape, the
prediction is usually good (or at least acceptable). But once complexities
increase, even within the physical, the Xevent starts to look like a “living”
monster. We cannot afford to ignore this fact.

This journey from the Xevent states to the states leading to it is, for
all practical purposes, a reverse computation (regardless of whether the com-
puter is implemented in silicon, DNA, quantum states, and so on). In Richard
Feynman’s words [29], this is equivalent to asking, “Can a computer simulate
physics exactly?” Reversibility is in fact the characteristic of a computation
in which each step can be executed and unexecuted. Making and unmaking
an omelette is one way of suggesting what we are referring to here. Increase
this to the scale of an earthquake and imagine the weird computation of the
earthquake as output, and its reverse. But even at the scale of an epileptic
seizure or financial crash, the film played in reverse is not easy to conceptu-
alize — and it is not at all clear whether it is feasible.

That physical laws are generally reversible automatically allows for a re-
versible computer (with all of the costs associated with the erasure of in-
formation). But what is not clear is whether an earthquake, a heart attack,
a tornado, or a seizure is the result of a deterministic process, or at least one
of deeper levels of order. If the computation of an earthquake involved the
condition of the process leading to the earthquake — that is, if one could define
an “earthquake machine” — we would probably profit from the reversibility of
the computation. It is very exciting to compute in the medium we examine,
provided that we examine events of a regular nature (no matter how deep the
regularity is hidden). But, not unlike the infinite interpretant process charac-
teristic of semiotics (each interpretation becomes a new sign, ad infinitum),
Xevents seem either unique (irreducible to anything else) or only an instance
of a longer development that goes beyond what we call tractable.

2.7 A New Equilibrium

Thesis 3. Xevents are actually the preliminary phase leading to a necessary
new state of balance leading to the next Xevent (see Fig. 2.9).

What I am saying here is that the epileptic seizure is, in its own way,
a process that preserves life, since it leads to the post-seizure condition that
replaces the endangering state prior to it. Or, that the earthquake — a tremen-
dously energetic peak — ends up in the post-quake condition of relatively en-
ergetic balance, and of infinitely less destructive potential earthquake. Other-
wise, the potential future event would grow and grow until the earthquake’s
resources are exhausted. With this in mind, I suggest here that we are dealing
with what physics has stubbornly rejected for the sake of homogeneity and
determinism: the causa finalis as the necessary path of dynamic unfolding.
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Fig. 2.9. The relevance of the post-extreme event time

Aristotle distinguished among four categories of causation: material cause,
formal cause, efficient cause, and final cause. In contemporary jargon, they
correspond to different kinds of information. If we apply these categories to
a house, it is evident that materials — cement, brick, wood, nails — pertain to
the material cause. Builders (think about the many types of workers involved
in excavating, mixing and pouring concrete, bricklaying, and so on) make the
efficient cause clear through their work, while the plans they go by (blueprints
and various regulations) represent the formal cause. The final cause is clear
and simple: someone needs or wants to live in such an edifice.

Now take a work of art. The materials, the work of an artist, and the
various sketches are well defined. But who needed or wanted the work? (Who
needs or wants an Xevent?) In some cases, there is one person who acted
as commissioner. In the majority of cases, the action (make the artwork) is
driven by the artist dedicated to expressing himself or herself, to ascertaining
a view or perspective, to unveiling an aspect of reality unknown to others or
perceived in a non-artistic way. The final cause is the work itself, as it justifies
itself within a culture and within a social context. The pragmatics of art is
the answer to the “Why?” of a work of art, not to the “How?” (which pertains
to its efficient cause). As science eliminated the legitimacy of anything even
slightly related to causa finalis, it raised the infatuation with “How?” to the
detriment of the question essential to any artistic experience: “Why?” Indeed,
the “Why?” of an Xevent should interest us at least as much as the “How?”
if we want to get closer to the prediction, and to the anticipation of Xevents.

It is less suspicious to affirm such an idea today now that bifurcations and
attractors were introduced into scientific jargon (see Feigenbaum et al. [30]).
The equilibrium following Xevents makes us aware of the variety of ways
in which the physical substratum of everything is preserved through infinite
processes. However — and this goes back to the major distinction I have
advanced so far — Xevents in the physical universe compared to Xevents in
the living are subject to predictive actions only to the extent that a pre- and
a post-phase are identifiable. In this sense, time appears as a component of
life, not just as one of its descriptions.
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This prompts the next thesis of this article.

Thesis 4. The action of anticipation cannot be distinguished from the per-
ception of the anticipated.

This applies in particular to Xevents as episodes in the self-constitution
of the living, of the human being in particular. Testimony from folklore and
anthropological evidence make us aware of the variety of anticipatory be-
haviors of the living (animals, insects, reptiles, plants, bacteria) in relation
to Xevents. This evidence has always been subjected to scientific scrutiny:
can it be that in some cultures important information regarding Xevents
(earthquakes, floods, seizures, epidemics) has been derived through the in-
terpretation of animal behavior and characteristics by the people sharing the
environment with them? And if so, can we derive anything useful for pre-
dictions of Xevents from this information? After all, the living is endowed
with anticipation, and accordingly, the anticipation of Xevents in the natural
realm cannot be excluded. Moreover, there is sufficient anecdotal evidence to
suggest that epileptic seizures in humans are signaled ahead of time by dogs.
Similar anecdotal reports are often mentioned, even in scientific publications.

As non-natural factors — such as anthropogenic forces related to urban
development, land conversion, water diversion, pollutio — increasingly affect
the environment, animals, birds and plants exhibit new patterns of behavior.
Even these changes are indicative of the tight connection between all of the
components of the ecosphere. Ecological consequences of Xevents are rapidly
becoming the focus of many scientists who realize the need for a holistic ap-
proach (such as the British Ecological Society [31]). We are losing important
sources of information as we create artificial circumstances for nonlinearities
that, instead of eliminating the risks associated with Xevents, actually in-
crease their impact, and sometimes their probability and possibility. Numer-
ous dams that only marginally adequately function under extreme weather
conditions have made us aware of the Xevent potential their failure can en-
tail. Buildings of all types, devices we place on mountains or under water,
satellites circling the earth — these have all amplified the possibility space
of Xevents. The possibility of hitting skyscrapers with airplanes did not ex-
ist before we started to fly using “mechanical birds”, and built them high
into the sky. In this context, interestingly enough, we are forcing nature (and
ourselves) towards machine behavior. Farms become food factories; workers
are expected to act like machines; institutions become machines with special-
ized functions (doctors are human body mechanics, hospitals are spare parts
factories, the state is a machine for maintaining the coherence of the social
system, the police are machines for maintaining order). The expectation is
regularity, and all the measures undertaken worldwide following 9/11 are
meant to maximize the predictability of the irregular (including the Xevents
subject to the scrutiny of Homeland Security).

This expectation is fed by a scientific model of prediction and repro-
ducibility corresponding to the world of physics. Indeed, dropping a stone
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Fig. 2.10. Given the same conditions, a stone will fall the same way

from the same position, under the same circumstances (humidity, wind) will
always result in the same measurements (of speed, position at any moment in
time, impact upon landing). It is a predictable experiment; it is reproducible.
Even if we change the topology of the landing surface, the outcome does not
change.

Let a cat fall and derive the pertinent knowledge from the experiment.
This is no longer a reproducible event. The outcome varies a great deal, not
the least from one hour to another, or if the landing topology changes. The
stone will never get tired, annoyed, or excited by the exercise.

Applied differential geometry allows for the approximate description of an
object flipping itself right side up, even though its angular momentum is zero.
In order to accomplish this, it changes shape (no stone changes shape in the
air). In terms of gauge theory, the shape-space of a principal SO(3)-bundle,
and the statement “angular momentum equals zero” defines a connection on
this bundle [32]. The particular movement of paws and tail conserves the
zero angular momentum. The final upright state has the same value. This is
the “geometric phase effect”, or monodrony. Heisenberg’s [33] mathematics
suggests that, although such descriptions are particularly accurate, we are,
in observing the falling of a cat, not isolated viewers, but coproducers of the
event. The coherence of the process, not unlike the coherence of the appar-
ently incoherent class of events we call extreme, is the major characteristic.

Fig. 2.11. The cat never falls the same way

This is where the need to consider the living as different from the inan-
imate physical becomes more obvious. In order to address this, I will make
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reference to the work of an established physicist, Walter Elsasser, who worked
in quantum mechanics (with Niels Bohr) and was very familiar with Heisen-
berg. He dedicated the second part of his academic career to a scientific
foundation of biology. These considerations are appropriate in this context
if the fundamental distinction between Xevents that are physical in nature
and Xevents that are peculiar to the living are to be pursued effectively.
They can guide us further if we realize that there is more than a one-way
interaction between Xevents, as they emerge, and our perception. We are not
just spectators at a performance (sometimes scary), but also, in many ways,
coproducers.

2.8 A Holistic View

A physicist of distinguished reputation, Walter Elsasser [34] became very
interested in the living from an epistemological perspective. As in Rosen’s
case — Rosen being the mathematician most dedicated to the attempt to un-
derstand what life is — it would be an illusion at best to think that we could
satisfactorily summarize Elsasser’s attempt to reconcile physics with what he
correctly perceived as a necessary theory of organisms. Rosen and Elsasser
had a focus on complexity in common. But in contrast to Rosen, Elsasser
was willing to pay his dues to the scientific matrix within which he found his
own way: “The successful modern advance of reductionism rests on certain
presuppositions which at this time are no longer questioned by any serious
scientist”. Moreover, and here I quote again, “There is no evidence whatever
that the laws of quantum mechanics are ever wrong or stand in need of mod-
ification when applied to living organisms”. All this sounds quite dogmatic
and, for those versed in science theory, almost trivial given the fact that
theories are ultimately coherent cognitive constructs, not continents waiting
to be discovered. Physics, in its succeeding expressions, is no exception. For
the reader not willing to delve into the depths of the argument, the position
mentioned is not really inspiring. Opportunistically, and as Rosen did too, he
refutes vitalism, “the idea that the laws of nature [that is, physics] need to be
modified in organisms as compared to inanimate nature”. Serious scientists
in all fields and of all orientations have discarded vitalism, just as alchemy
was discarded centuries before. After all these preliminaries, Elsasser finally
articulated a clear point of departure for his own scientific journey, which
justifies continued interest in his work: “Close reasoning indicates the exis-
tence of an alternative to reductionism. This is so despite the fact that the
laws of quantum mechanics are never violated”.

From this point on, we have quite an exciting journey ahead of us. Indeed,
biology is a “non-Cartesian science”. The “master concept” in describing the
holistic properties of the living is complexity [34]; more precisely, what he
describes as unfathomable complexity. This concept dominates the entire en-
deavor; therefore an extended quotation is probably justified. Unfathomable
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complexity “implies that there is no series of actual experiments, and not even
a set of suitably realistic thought-experiments such that it would be possible
to demonstrate the way which all the properties of an organism ...can be
reduced to consequences of molecular structure and dynamics ...”. Further-
more, he defines properties those that remain unaccounted for by physics
and chemistry as morphological. Four principles and a “basic assumption”
stand at the foundation of his biology. The assumption refers to the holistic
view adopted — the living cannot be understood and described other than
as a whole: “the organism is a source (or sometimes a sink) of causal chains
which cannot be traced beyond a terminal point”; that is, they are ultimately
expressed in the unfathomable complexity of the organism.

According to this viewpoint, Xevents in the living cannot be meaningfully
addressed on the basis of reductionism (not even at the level of detail of
single neuron functions or genetic expression), but only globally, in a holistic
manner.

The first principle that Elsasser further articulates is known as ordered
heterogeneity. It states that, as opposed to the homogenous nature of physical
and chemical entities (all electrons are the same), the living consists of struc-
turally different cells. There is order at the cellular level, and heterogeneity at
the molecular level. Heterogeneity corresponds to individuality, a term that
has no meaning in the physical world. The principle of creative selection fo-
cuses on the richness of living forms. For homogenous systems, the variation of
structure (if there is such a variation) averages out. For heterogenous systems
(the living), an immense multitude of possible states is open to realization
(selection). The property of selection is attributed to matter alone — a more
refined mathematics of dynamic systems, which to date has not been formu-
lated, would probably define some specific self-organizing action here. The
selection as such is based on the third principle, of holistic memory. The new
morphological pattern actually selected resembles earlier patterns, but is not
the realization of stored information. Elsasser is quite convincing in arguing
for a “memory without storage — the touchstone of the theoretical scheme pro-
posed” [34]. The argument is based on the distinction between two processes:
homogenous replication (the assembly of identical DNA molecules) and het-
erogenous reproduction (self-generation of similar though distinct forms). Al-
ways different, the living practice creativity as a modus vivendi. Replication
is a “dynamic process” [34] resulting in what we perceive as regularities in
the realm of the living. Replication and reproduction need to be conceived
together. What makes this possible is the fourth principle, of operative sym-
bolism. The discrete, genetic message is represented by a symbol that stands
for the integrated reproductive process. Elsasser himself realized that this op-
erative symbolism is merely a tag for all processes through which the living
experiences its own dynamics. He looked for a triggering element, a releaser,
as he called it, that could start a restructuring process. From a piece of ge-
netic code, the releaser will trigger the generation of the complete message
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necessary for the reconstruction of a new organism. We can imagine this re-
leaser — the operative symbol — as able to start a “program” that will result
in a new biological form, as an alternative to storing and transmitting the
form itself. The biological information is stored as data (in the homogenous
replication) and as an immense number of alternate states from which one
will eventually be realized (in the heterogeneous reproduction). This latter
assumption implies that biological phenomena are “in part” autonomous.

Again, when studying Xevents in the living — to which not only epilep-
tic seizures and strokes belong, but also cancer and heart attacks — these
observations are a good guide for prevention and anticipation. That earth-
quakes and hurricanes are always different, as are strokes and financial market
crashes, speaks for the adoption of the over-arching notion of heterogenous
replication.

Instead of searching for laws, Elsasser highlights regularities. Where re-
ductionists would expect that “the gametes contain all the information re-
quired to build a new adult”, a non-reductionist biology would rely on holis-
tic memory and his Rule of repetition: “Holistic information transfer involves
... the reproduction of states or processes that have existed previously in the
individual or species as the case may be” [34]. Of special interest to him is
the re-evaluation of the meaning of the Second Law of Thermodynamics (and
the associated Shannon law of information loss). Elsasser argued that since
paleontology produced data proving the stability of the species (over many
millions of years of existence), and since the Second Law of Thermodynamics
points in the opposite direction, only a different integration of both these
perspectives can allow us to understand the nature of the living. Therefore,
two types of order were introduced, in a way such that they never contradict
each other. This is what he called biological duality: “living things can be
described by a different theory as compared to inanimate ones”. As a con-
sequence, if one attempted to verify holistic properties, a different kind of
experiment from the one conventionally used in physics would be required.
It is worth mentioning here that Wilhelm Windelband [35] made the dis-
tinction between nomothetic and idiographic sciences. The latter focused on
singularity: “der Gegensatz des Immergleichen und des Einmaligen”, (the
contradiction of the invariable/unchanging and the unique).

It is at this juncture that Rosen’s thinking and Elsasser’s meet — I doubt
that they had a chance to study each other’s work on the living and life
in depth. Rosen was “entirely dedicated to the idea that modeling is the
essence of science” [36]; Elsasser realized that no experiment, in the sense
of experiments in physics, could capture the holistic nature of the living.
Moreover, both asked the fundamental question: what does it take to make an
organism? If the representamen R for an organism (such as the stem cell) were
available, we would be able to anticipate Xevents in the living in relation to
the end of life (return to physicality). But Xevents can also be viewed from the
perspective of the same question: what does it take to make an earthquake?
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Or an act of terrorism? Elsasser, not unlike Rosen, concluded: “The synthesis
of life in vitro encounters insuperable difficulties” [34]. It is quite possible that
such a strong statement corresponds to the realization that anticipation, as
the final characteristic of the living, might be very difficult to describe (the
analytic step) but probably impossible to reproduce (the synthesis). So, we
might even be able to say what it takes to create a certain Xevent, but
that does not mean that we could literally make it. Even induced seizures
are not exactly like the ones experienced by individuals who go through
real seizures. Low-scale earthquakes (caused by experiments and tests that
researchers conduct) are by their nature on a different scale and quality than
the ones that people experience on the Islands of Japan, in California, in
China, or in Turkey. It is therefore of particular interest to take a closer look
at the various factors involved in what, from a holistic perspective, appears
to us as anticipatory.

We learn from this that there is no anticipation in the realm of physics. Ac-
cordingly, if we are dedicated to addressing Xevents — whether in the physical
world or in the realm of the living (birth and death are themselves Xevents) —
we need to realize that answers to what preoccupies us will result from un-
derstanding how the living anticipates. (We know why, since this results from
the dynamics of evolution.)

The final thesis of this article is of less significance to prediction of Xevents
and more to our anticipatory condition in the universe.

Thesis 5. The project of extreme scientific ambition, of creating life from
the physical, can succeed only to the extent that a physical substratum can be
endowed with anticipatory characteristics.

This conclusion is not a conjecture; it is strongly related to a better un-
derstanding of Xevents. It ascertains that in addressing questions pertinent
to Xevents, we are bound to address (differently to Rosen) the notion of what
life is. After all, nothing is extreme and nothing is an event unless it pertains
to life.
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3 Mathematical Methods and Concepts
for the Analysis of Extreme Events

Sergio Albeverio and Vladimir Piterbarg

Summary. Mathematical tools for the analysis of Xevents, maxima of processes
and rare events are presented. Methods and concepts of classical statistical extreme
value theory are described, as well as those of large deviation theory. Techniques
from other areas such as statistical mechanics, the theory of dynamical systems and
the theory of singularities are also briefly discussed.

3.1 Introduction

In everyday parlance, Xevents are associated with characteristics such as
seldomness, extremality (in the sense of being “larger” than “usual events”),
as well as having important, often catastrophic consequences. Phenomena
with these characteristics arise in mathematics in several areas. One of these
derives from classical statistics, namely the theory of extreme values. These
are, in their simplest form, described by asymptotic distributions of suitably
normalized maxima of sequences of random variables. We discuss this theory,
which is well developed and has many areas of applications, in Sect. 3.2 below.

In Sect. 3.3 we move on to briefly discuss an extension of this theory
to the case of continuous time, in particular continuous time Markov chains
and processes, as well as to the case of random fields. We also discuss the
relationship between the discrete time and the continuous time cases and
address the question of predicting Xevents.

In Sects. 3.4 and 3.5 we briefly discuss some interpretations of the intuitive
concept of Xevents in terms of statistical mechanics, the related theory of self-
organized criticality and the theory of dynamical systems. Our presentation
here has strong links with other contributions in this book, in particular with
the paper of H. Kantz and coworkers, although we place more emphasis on
mathematical aspects rather than concrete modelling.

In Sect. 3.6 we briefly mention other areas of mathematics where sin-
gularities that cause “extreme behaviour” arise; these include the theory of
singularity of mapping, catastrophe theory, and turbulence theory.
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This article should serve as an introduction to a broad area of mathemat-
ical research, and it should also (hopefully) motivate the reader to learn more
about this research field. We have concentrated on presenting general aspects
rather than concrete case studies, which are covered by other contributions
in this book, and so they are complementary to our presentation.

To avoid referencing a huge number of works, we have mainly cited books
and survey articles rather than original articles. In this respect, when citing
reference X, we implicitly refer to X and references therein.

3.2 Statistical Extreme Value Theory

Any statistical theory is based on a probabilistic model that provides, at the
very least, a plausible description of the data. In this section we will concen-
trate on the probabilistic modelling of Xevents, referring to statistical issues
for each of the models considered. This will involve the following: 1) a brief
description of the classical theory and its sources; 2) an excursion through
models, methods and tools, balancing the interests of readers and authors;
3) mentioning important recent developments and applications; 4) providing
a discussion of important open problems in the statistical analysis of Xevents.

3.2.1 Origins: Classical Univariate Case

Extreme value theory is an established area in probability theory and math-
ematical statistics. It originated from the asymptotic study of maxima and
minima (extremes) of finite time series provided by random variables, as-
sumed to be independent and identically distributed (i.i.d.). The story of the
origin of this theory is itself interesting, interwoven as it is with the practice
of statistics and with strong personalities. Let us mention in particular that
one of the main founders of the theory and the author of the first and most in-
fluential book on extreme value statistics, E.T. Gumbel, was a scientist with
a clear social and political agenda against the Nazi regime and for the pacifist
cause [1]. E. Gumbel was also a pioneer in the application of extreme value
statistical theory, particularly in the fields of climatology and hydrology.

The main tenet of extreme value theory is that if (X, )nen is a se-
quence of i.i.d. real-valued random variables, and if the maximum Y, =
max(X1,...,X,), suitably “standardized”, has a limit distribution as n —
00, then this distribution belongs to one of three standard types (character-
ized by the names Fréchet, Weibull and Gumbel). Extreme value distributions
were initially applied to failure distributions of tensiles [2] and materials [32]
and distributions of floods, droughts, extreme winds, storms and other mete-
orological phenomena. The book of Gumbel, [1], is still one of the best sources
of applications (see also [3], Tirozzi et al., Time series and neural networks.
An application to reconstruction and Xevent analysis of sea time series, in
preparation).
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The problem of evaluating parameters from extreme value distributions
is dealt with in [1] (see also [3] for the connection to order statistics; in
particular, there are results based on studying the m < n largest observations
of a series of n observations, for example in the limit as m — oo with " — 0)

After a long evolution, including contributions from Dodd in 1923, von
Mises in 1923 and 1936, Fréchet in 1927, Fisher and Tippett in 1928, de
Finetti in 1932, Gumbel in 1935 and 1958, Gnedenko in 1943, and de Haan
in 1970, the mazimum limit theorem took the following form:

Theorem 1. The class of limit distributions for the law P™ of a,Y, + bn,
where a, > 0, b, are suitable chosen constants, contains only laws with den-
sities

0 <0
P r - ’ —a B ’ Fré
a) Pr,(x) {e‘z x>0, a>0; (Fréchet)
b) Pou(z) = e ¢, zeR; (Gumbel)
~(-o)
¢) Pyei(z) =4 § , ¢s0, a>0, (Weibull)

1, z>0;

In 1936 Von Mises suggested combining these three extreme value distri-
butions, which we shall call standard extreme value distributions, into a gen-
eralized extreme value distribution. Up to a linear transformation, one can
see that the above three types of extreme value distributions laws can be
rearranged into the common form:

_ -1/~
P,(x) =exp <— <1+7x mx) ) , z€R
. +

where ay = max(0, a), so that v > 0 corresponds to the Fréchet distribution,
v < 0 corresponds to the Weibull distribution, and since (1+0-2)71/0 = e~%,
the value v = 0 corresponds to the Gumbel distribution. The parameter 7
is called the extremum value index, and it provides important information
about the tail of the underlying distribution P.

A necessary and sufficient condition for a general distribution P to be-
long to the Fréchet domain of attraction (v > 0) is the requirement that
1 — P(z) is varying regularly at infinity. Further, P belongs to the Weibull
domain of attraction (v > 0) if and only if P has a finite right endpoint,
x*, and P(z* — 1/x) varies regularly at infinity. For the case of the Gumbel
distribution, the necessary and sufficient conditions are more complicated,
see [9], [28]. It should be clear that there are many distributions which do
not belong to the three mentioned domains of attraction. For example, the
maximum distributions for geometric and Poisson distributions cannot be
well approximated by the standard extreme value distributions. Neverthe-
less, most applied distributions, such as Pareto-like distributions (Cauchy),
normal, beta, and arcsin fall in these domains of attraction [24].
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Rates of convergence have also been discussed [4], as well as convergence
in the sense of moments [3].

At the beginning of the 1970s, A.A. Balkema, L. de Haan and J. Pick-
ands III (and later R. Smith, T. Davidson and M.R. Leadbetter) considered
an alternative approach to extreme value statistical analysis. In this approach,
one prescribes a high critical level u, and then studies each occasion the level
is exceeded by the time series (X,),n € N .

When an underlying distribution P belongs to the domain of max-
attraction of a standard extreme value distribution, the distribution of an
exceed value, that is, the conditional distribution of the height of X — u
given X > u, can be approximated up to a linear transformation by a gen-
eralized Pareto distribution

—1/y
H(x):{1:(1j7$)+ ) 7%07
e, v=0,

(This is the work of A.A. Blakema and L. de Haan in 1974 and J. Pickands
in 1975.) Such an approach allows us to consider not only a single absolute
maximum (extreme) but to look at all “disadvantage” events, and even to
consider them together with their respective heights. It is natural to sup-
pose that, provided the threshold level u is high, the common distribution
of the exceed points, as rare events, can be approximated by a distribution
of a Poisson marked process, [13]. For mathematical background concerning
this approach, see [8] and [9]. The general theory of random measures [7]
closely relates these two approaches. For infinitely divisible point processes
u(+), such as a Poisson process, the probability set { P(u(A4) =0), A € A fully
determines the distribution of the point process provided A is a sufficiently
rich collection of sets, such as all closed intervals and their unions on the real
line.

Another topic of investigation in extreme value analysis is the asymmetric
distribution of linearity (see [10]).

For other references on extreme value theory and its applications see
also [5,6,15-18,21,23,31,44, 45,48, 49, 64].

3.2.2 Dependent Data

In reality the data are very often statistically dependent. This requires a more
elaborate theoretical framework. The first question to answer is to what ex-
tent the above-described approximations of extreme value distributions are
valid for statistically dependent data. One solves this by introducing appro-
priate mixing conditions. The first result was obtained by Volkonski and
Rozanov in 1961, who proved a Poisson limit theorem for high excursions of
a random process with strong (Rosenblatt) mixing conditions. As introduced
by M.R. Leadbetter in 1973, high-level mixing conditions are much weaker
and more suited to the study of high level excursions, because they only in-
volve events generated by the exceedances; see [8] for details and references.
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It may be (see e.g. [8]) that for a stationary time series X;, ¢t € N with
a marginal distribution function P(z) one has

P(Y, < z)~ P (z),

(not P(Y,, < x) ~ P™(z)) as n becomes large, where 6 € (0, 1], 6 is called the
extremal index. The value § = 1 corresponds to the “almost independent”
case. If # < 1, then, under some additional conditions, the large extremes
gather in clusters in the sense that the limit of the point process of height
excursions is not a simple Poisson process, but rather a marked Poisson pro-
cess, where marks indicate sizes of clusters. This key parameter for extend-
ing extreme value theory for i.i.d. random variables to the case of stationary
time series was originated by Loyens in 1965 and O’Brien in 1974. In 1983,
M.R. Leadbetter developed the concept of the extremal index in detail. It
characterized the dependence of the degree of clustering of extremes on the
data. It can be shown that the limit averaging value of a cluster is equal
(under some conditions) to 1/6. This result is a step towards a prediction
theory for extreme values.

The high-level exceedances approach in extreme value analysis of depen-
dent data presents new challenges in the analysis of “moderately high” ex-
tremes, where the Poisson character of their distribution changes towards
a normal distribution. Let { X}, k > 0} be a strongly mixing stationary time
series, ¥, be a set of non-negative functions and w,, be a sequence of high
levels, u, — oo as n — oo. In work published by H. Rootzin, M.R. Lead-
better and L. de Haan in 1998, limit theorems for distributions of the array
sums Y, ¢n(Xi — uy) are given, for high u,, when the limit is a compound
Poisson distribution, and (very relevant to the prediction of extremes) when
u, are moderately high, so that the limit is a normal distribution. Work by
V. Piterbarg and I.I. Rychlik in 1999 proves the central limit theorem for
wave functionals of Gaussian processes.

The following two examples show how Gaussian models may be (and may
not be) used to model processes with predictable extremes.

Ezxample 1. Extremes of Gaussian stationary sequences as extremes of i.i.d.
Gaussian variables.

A Gaussian stationary sequence with a correlation function 7, such that
rplogk — 0 as k — oo (Berman’s condition) obeys the Leadbetter mix-
ing condition. This follows from an extension of Berman’s inequality to the
general algebra of events generated by excursions. Such a sequence is not
necessarily due to strong mixing, because its spectral density may be exactly
zero at intervals, which contradicts the necessary conditions for strong mix-
ing (see [14]). Thus Leadbetter’s condition is weaker than the strong mixing
condition. Furthermore, distributions of high extremes of Gaussian sequences
(even for slowly decreasing correlations) behave like extremes of i.i.d. Gaus-
sian random variables (result from S. Berman in 1964). Notice that when ry,
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slowly tends to zero, rilogk — a > 0 as k — oo for T' — o0, so the limit
distribution of the maximum is no longer an extreme value distribution but
a mix of Gumbel distributions (Y. Mittal in 1974, see [12] for details and
references). As a complete mathematical solution to the problem of finding
necessary and sufficient conditions in the Poisson limit theorem for extremes
of Gaussian stationary sequences, we point to a result from V. Piterbarg, [12]:
The number of extremes of a Gaussian stationary sequence on an interval
tends in distribution to a Poisson random wvariable if and only if the mean
value and the variance of the number tend to the same positive number, as
the interval increases beyond any limit.

Example 2. A storage process with fractional Brownian motion as input.

Let By (t), t > 0, be fractional Brownian motion with a Hurst parameter H €
(0, 1], that is, a Gaussian a.s. continuous zero mean process with stationary
increments, starting at zero, By (0) = 0, and EBg(t)? = t*#. A storage
process is defined, following work by I. Norros in 1975, by:

S’(t):sgfz(BH(s)—BH(t)—c(s—t)) , ¢>0. (3.1)

This process is stationary and continuous. It was introduced to describe over-
loads in teletraffic systems, and can also be used to model any storage or
traffic systems. Consider the storage process in discrete time, Sy = S(hk),
h>0.If H > 1/2, then for any n,

pP ( sup Sk > u) ~ P(S)>u). (3.2)
0<k<n

Here it is not necessary for n to be fixed; the equivalence is still valid when
n — oo but n = O(e**") for a small € > 0 (as shown in work by V. Piter-
barg in 2001). This equivalence indicates a high dependence of extremes.
When Sy, is high, it changes very slowly. It seems that the extremal index
for Sy equals 0. Since S(t) is constructed using the maximum of a Gaussian
field with a “good” correlation function, it is very probable that S obeys
the Leadbetter mixing condition. In 2004 Albin and Samorodnitsky proved
similar properties for storage processes with some self-similar and infinitely
divisible processes as input.

For problems of multivariable extreme value theory, the reader should
refer to [3,9,11,50,53]. We do not consider the issues of statistically estimating
parameters and statistical inferences in relation to extreme value theory here.
For these, see [10,11,15,21,23,24,44,45,48, 54,69, 70].

3.3 Extremes in Continuous Time:
Stochastic Processes, Random Fields

Many models applied to the reliability of mechanical structures, environ-
mental engineering, pollution control engineering, insurance mathematics (to
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quantify probabilities of large claims), and financial risk management describe
the development of observations continuously in time. Statistical extremum
value theory in continuous time can often be reformulated in terms of dis-
crete time. For example, let X (¢) be a stationary continuous time stochastic
process, t € R, and suppose we are interested in the limit behaviour of the
probability

P T X(t)—b(T
(atr) (o X0 - 0i1)) <)
for appropriate normalizing functions a(T") and b(7T').

Set Xy = maxyc(n, (k+1)n] X (t), h > 0. It is natural to expect that

P (a(T) ( max X (t) — b(T)) < ;v) ~ P (a(n) ( max Xj — b(n)) < x) ,
te[0,T] k=1,...,n

as n — oo, where n = [T'/h], (the integer part). Furthermore, it is natural to
expect that high level mixing conditions for X (¢) could be extended to cor-
responding mixing conditions for Xj. Thus, one expects that the limit of the
above probability is an extreme value distribution described by Theorem 1.
However, one very non-trivial problem often encountered is to evaluate the
asymptotic behaviour of the tail probability

P,:=P(X,>u)=P (max X(t) > u) (3.3)
te[0,h]

when u — 00. One needs the exact asymptotic behaviour to determinate

which extreme value domain of max-attraction the distribution of X (¢) be-

longs to and to evaluate the normalizations a(T) and b(T). We give now

a brief review of existing methods for evaluating the asymptotic behaviour
of the probability (3.3).

3.3.1 Probabilities of Large Deviations: Exact Behaviour

The problem of evaluating and estimating the probability (3.3) is, without
any doubt, one of the central problems in the theory of stochastic processes.
First of all we refer the readers to a central component of the theory, the
Stroock—Varadhan large deviation theory, and the (related) Freidlin—Wentzell
minimum action principle, [20], [25], [26]. A direct consequence of this theory
is the ability to evaluate the asymptotic behaviour of the logarithm of P, for
processes besides diffusion processes. By extending the Laplace asymptotic
method to Banach spaces, this method can also be applied to evaluate the
exact asymptotic behaviour of P,, which is desirable for extreme values sta-
tistical analysis. See, [30] for references, and also work by S. Kusuoka and
Y. Tamura in 1991. In 2004, E. Weiman provided a good example of the di-
rect numerical application of the Wentzel-Freidlin theory to the probabilistic
analysis of rare events.
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Method of Differential Equations. The probability P, can be stud-
ied for large u for some diffusion processes by considering the corresponding
boundary problem and/or using well-developed techniques from diffusion pro-
cess theory. A review, new developments and a bibliography are given in the
doctoral thesis of A. Kunz. Many recent works on extreme value analysis
of diffusion processes exploit well developed Gaussian techniques of asymp-
totic analysis (see works by M. Borkovec and C. Kliippelberg in 1998, and
B. Buchmann and C. Kliippelberg).

Methods of evaluating the exact asymptotic behaviour of P, are well
developed not only for diffusion processes but also for processes with “good”
finite-dimensional distribution properties, such as Gaussian, other infinitely
divisible distributions, or processes with smooth trajectories and computable
finite dimensional distributions.

Rice (Moments) Method. This method is based on the Kac—Rice for-
mula for the average value of the number of up-crossings of a level by a ran-
dom process; for history and references see [27]. We denote by N, (0, h) the
number of up-crossings of the level u by the process X that occur in the
interval [0, h]. It can be proved in many cases that

P, ~ EN,(0,h), as u—o00. (3.4)

The physical sense of this approximation formula is that up-crossings of a high
level occur very rarely, so no more that one high level up-crossing is observed
for a fixed interval [0, h]. Using the Kac—Rice formula,

h %)
EN,(0,h) = / / ype(u, y)dydt
0 0

where p; is the joint density distribution of (X (¢), X’(t)). Furthermore, the
formula
P, = EN,(0,h) 4+ P(X(0) > u) (3.5)

is often pretty precise and gives the second term of an asymptotic expan-
sion for P,. One can also give some physical arguments for this approxima-
tion. It can happen (as a rule with smaller probability) that X (0) > u but
N,(0,h) = 0. This, in turn, provides correction terms for the limit theorems
for maxima. This method has been elaborated in detail for Gaussian pro-
cesses. The Kac—Rice formula has been generalized to random fields (work
by Yu. Belyaev), in other words random functions with several arguments.
Moreover, the relations (3.4),(3.5) have multidimensional analogues in the
Gaussian case, [12]. Further development of the Rice method for Gaussian
and close to Gaussian processes and fields is associated with J.M. Azais,
V. Piterbarg, I. Rychlik (including software), and M. Wchebor.

Pickands’ Double Sum Method. The observation in the previous para-
graphs, that up-crossings of high level occur rarely for processes that are very
random, is crucial. In addition, each excursion (which is a part of the trajec-
tory above the level) is typically very short. These observations, applied to
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processes with non-smooth trajectories, lead to a powerful method of eval-
uating the asymptotic behaviour of P, J. Pickands was the first to really
apply this to nondifferentiable processes. Let X () be a Gaussian stationary
zero-mean process with correlation function r;, and assume that

re=1—|t" +o(lt]), t—0. (3.6)
Then, for any A > 0, and h = \u=2/*,
P, ~ Hy,(AM)P(X(0) >u), u— o0,

where H,(\) = Eexp(maxiy y) (V2Bq/2(t) — t)). This “local” result gener-
ated many far-reaching consequences, not just for Gaussian processes. Di-
viding the interval [0, h] into small intervals of length Au~2/* and proving
that two intervals with excursions above u occur with a negligible probability
(say, using the Bonferroni inequality), one obtains P, ~ H,hP(X(0) > u),
where H, = limy_.oo Ho(N\)/X with H, € (0,00). This, known as Pickands’
localization principle, has been substantially developed and extended to wide
classes of random processes. For example, S. Berman extended such results,
to other classes, such as processes with independent increments, in particu-
lar stable processes (see [22]). Further development of Berman’s method has
been mainly performed by J.M.P. Albin. The book given in [12], Chap. 2,
presents an extension of the Double Sum method to a wide class of Gaussian
processes and fields.

Comparison Method. This method has only been developed for the
Gaussian case and has been widely discussed in relation to Gaussian random
fields. The mathematical background of the method is a study of the geo-
metrical properties of the excursion set {t : X (t) >u}. Let Xo(t) and X (t),
t € R?, be two Gaussian zero mean homogeneous fields with smooth trajec-
tories, unit variance, and similar behaviour of their correlation functions r(t)
and 79 (t) at zero,

0%r(t)
0t:0t;

 9%r(t)

,j=1,...,d
8t18tj ) 2] ) ’

t=0 t=0

(any two homogeneous smooth Gaussian fields can be standardized to satisfy
this equality). Then, under some additional nondegeneracy and smoothness
conditions, there exists an a > 1 such that for any finite convex cell complex
M c R? [12],

’P (maxX(t) > u) - P (maxXo(t) > u)‘ =0 (e—‘wz/?) . u— oo,

teM teM
for some a >0 (3.7)

Thus, upon computing the asymptotic behaviour of P, for a “simple” Gaus-
sian field, one also obtains it for other fields with close correlation near zero,
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up to an exponentially smaller order. Notice that log P, ~ —u?/2. Taking
a field with a finite Karunen—Fourier expansion, the level sets of which can be
pretty exactly described, and using Hadwiger expansions for the Minkowski
product of sets, one gets an asymptotic expansion for the probability P, on
degrees of u in terms of Hermite polynomials H, (u) and Minkowski function-
als W, (M) of M,

d—1 (d)
P (gréf]i\}c X(t) > u) = ¢(u) ; (27 d3 (a2 Hi-1-0 (W)W, (M)

+P(X(0) > u)+ O (e*mf/?) . u— 00, (3.8)

where ¢ is the standard Gaussian density and w,, is the corresponding volume
of the v— dimensional unit ball, with @ > 0 being some constant. R. Adler
considered the Euler characteristics of the excursion sets. Like the number
of up-crossings in the one-dimensional case, the expected Euler character-
istics can be represented by integrals of finite dimensional distributions of
the Gaussian field, so that one can make inferences about the number of
excursions connected to parts of the excursion set. Let ¢, (M) be the Euler
characteristics of the excursion set {X(t) > w} N M, then, from the above
comparison arguments it follows that

_ _ —au?/2
’P (iréal\}(X(t>u> Egpu(M)’—O(e ) , U—00. (3.9)

This relation has been proved several times in different cases and by different
methods; for a purely geometrical and elegant proof, see work by A. Takenura
and S. Kuriki in 2002.

3.3.2 Maxima and Excursions of Gaussian
and Related Processes and Fields

As has already been mentioned, if we know the asymptotic behaviour of
P(maxjop X(t) > u) as u — oo, and have the mixing conditions for
the stationary process X(t), we can get a limit theorem for the maxi-
mum of the process X(t). We can also use Pickands’ limit theorem for
the maximum of a Gaussian stationary process and its generalizations to
Gaussian fields, as well as to Gaussian processes and fields with a co-
variance that has a slower decrease at infinity. The comparison method
provides the ability to obtain corrections to this theorem for Gaussian
smooth processes and fields. Here we provide a formulation of a corre-
sponding result from [12], given by H.E. Krogstad from NTNU (a pri-
vate communication, see also http://www.ifremer.fr/web-com/stw2004/rw/
fullpapers/krogstad.pdf). Let X(t) be a Gaussian homogeneous field. We
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standardize it, X(t) = 0~1X (A~1t), so that the variance of X (t) equals 1
and the covariance matrix of its gradient, VX, equals d~'I, where I is the
unit matrix. Then, under some conditions of nondegeneracy, one can use the
approximation

P (gleaj)ﬂd?(t) < u) ~ exp (—(27r)<d_1)/26_“2/2Hd_l(u)|T|) ) (3.10)
where |T'| is the “non-dimensional size” of T, defined by |T'| = (27)~%d—%/?
Vol(T'). The “limit theorem form” of this approximation, stated in [12], ap-
plies when T' T R in a regular way (see details in [12], Definition 14.1) and
u — 00 in such a way that the expression under the exponent tends to a con-
stant and the covariance function r(t) of X decreases at infinity faster than
the degree of |t|. In such a situation, the approximation error is O(|T|~%)
for some a > 0. As discussed in the manuscript cited above, this formula
gives good approximations for Gaussian fields with ocean-like spectra. This
formula, likes any other limit theorem for a maximum, can be transformed
into a Poisson limit theorem for the number of high crossings, extremes, high
crests, and so on. Using very simple estimations and Kallenberg theorems
about convergence to infinitely divisible point processes, the Poisson limit
theorem follows almost immediately from limit theorems like Pickand’s limit
theorem (or formula (3.10)). This is why formula (3.10) can be called a Pois-
son approximation. If the underlying process is not differentiable, so that one
cannot define up-crossings to count excursions, it is often convenient to con-
sider e-upcrossings; in other words points ¢ such that X (¢) = u and X (s) < u
for all s € [t —e,t). From Pickand’s theorem it immediately follows that the
point process of e-upcrossings converges in distributions to a Poisson point
process.

The Gaussian technique described above for studying the probability of
high extremes can also be applied to non-Gaussian processes. One of most
investigated examples of this is the x? random process, which is the sum of
the squares of independent identically distributed Gaussian processes. Using
the duality |x|? = max|u2=1(u,x), where (.,.) is a scalar product and |x|? =
(x,x), the problem of evaluating the distribution of the maximum of a y-
process, which is non-Gaussian, can be reduced to the problem of evaluating
the maximum distribution of a Gaussian field on a cylinder. This work was
performed for stationary and cycle stationary processes by D. Konstantinidis,
S. Stamatovich and V. Piterbarg in 2004. The above duality works for any
norm in Euclidean space, so that one may consider a wide range of non-
Gaussian stationary processes and apply Gaussian asymptotic extreme value
analysis to them.

One may directly consider a point process consisting of crossings of a large
surface, say a cylinder of large radius, by a random vector process. One can
prove a Poisson limit theorem for this point process. It is also important to
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consider distributions of excursions of trajectories above this large region.
This direction is investigated in connection with many applications, such as
the structure and distribution of sea wave crests, fatigue of materials, and
other problems. Even the crossing rate (the mean value of number of cross-
ings) of a stationary vector process is a valuable tool when studying high
crest distributions and maxima of sea level elevations. It has been shown,
in work by U. Machado and I. Rychlik published in 2003, that the sea el-
evation at a fixed point can be modelled as the sum of a Gaussian process
and a quadratic random correction term. It has also been shown that the
correction term process can be written as a quadratic form of a vector-valued
Gaussian process with an arbitrary mean. See also work done by K. Brei-
tung in 1988, Rychlik and Leadbetter in 2000, and other developments by
K. Breitung, R. Illsley, O. Hagberg, A. Rusakov, and I. Rychlik.

3.3.3 Relationship Between Continuous and Discrete Time:
Prediction of Extremes

The relationship between continuous time and discrete time modelling of ir-
regular and random data is very important in extreme value analysis. First
of all, it is connected with numerical simulations of trajectories of random
processes when high extremes are taken into account. On the other hand,
extreme value analysis works well when one tries to estimate errors in dis-
crete time modelling; see work done by J.M.P. Albin in 2004, and J. Hiisler,
V. Piterbarg and O. Seleznjev in 2003.

This problem has also been extensively discussed in the financial literature
(see the work of D. Duffie, and P. Potter from 1992, and those of D. Brigo and
F. Mercurio in 2000 and Y. Fang in 2000). The advanced development of both
computers and information technology (particularly of internet technologies)
has led to the availability of high-frequency financial data, that is, various
financial time series recorded with very high resolution. This novel feature
suggests more accurate and efficient continuous time models and has thus
provided data analysts with the opportunity to apply powerful mathematical
techniques developed in continuous time theory.

However, modelling of “nearly continuous” data poses new challenges,
since the extent to which both purely continuous and purely discrete methods
are applicable in the high-frequency domain is not apparent and needs to be
explored. In particular, such a problem typical applies when modelling large
extremes, where the quality of the discrete time estimators for values at risk
may depend heavily on the recording frequency chosen (see [10]).

The importance of the above problem goes well beyond the area of fi-
nancial mathematics and extends to many applications where Xevents play
a crucial role. In particular, an important (often vital) problem is that of
efficient forecasting of extremes. In many real-life situations, the times sepa-
rating successive observations may be irregular or even random. Correlations
between high- and low-frequency data are of great practical and theoretical
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interest, and these should be investigated in order to optimize the observa-
tional discipline and the measurement process. Hence, an efficient analytical
comparison of both types of results should be possible in principle, although
a complete solution to this problem has not yet been obtained.

These problems are tackled primarily using the Gaussian framework, since
there are well-developed and powerful analytic tools that can be used to study
the distributions of extremes in both continuous and discrete time settings
for Gaussian and related processes. A complete solution for Gaussian sta-
tionary process is provided in work by V. Piterbarg (2004). Let (3.6) and
Berman’s condition be fulfilled for a Gaussian stationary process X (¢). We
denote the maximum of X (¢) over [0, ] taken over a uniform discrete grid with
the step § > 0, by M;(¢, and the maximum over the interval [0, ¢] by M (¢). If
§(log T)~* — oo with T the limit distribution of the vector (M5 (T), M(T)),
in suitable normalization, tends to a conditional distribution of two inde-
pendent Gumbel random variables given first is at the most the second. It
means that maxima in discrete and continuous time are asymptotically in-
dependent, so that one can say nothing about the location of the absolute
maximum, upon observing the process on the grid. If §(log T)~/® — 0, the
limit distribution concerns two identical Gumbel random variables; that is,
the maxima are asymptotically completely dependent. In the boundary case,
§(logT)~/* — a > 0, the limit distribution is not trivial but it can be ex-
pressed in terms of functionals of fractional Brownian motion, so that one can
locate the point of absolute maximum based on the discrete time observations
using this distribution. The Gaussian technique, used in the proof of this re-
sult (see [12,22]), can also be applied to more general Gaussian processes and
fields. Using these techniques for the storage process with fractional Brown-
ian motion as input, one can get a rather different result. Now let the vector
(Ms(T), M(T)) represent the maxima of the storage process over continuous
time and on a grid with step size 6. Then, if § = o((log T')(2H ~1)/CH1-H))),
where H is the Hurst parameter of the fractional Brownian motion, the max-
ima are asymptotically completely dependent. For H > 1/2, notice that the
value of § may tend to infinity. That is, although one may observe the pro-
cess S(t) only very rarely, it is nevertheless possible to obtain full information
about the location and the value of the maximum! In other words, the latter
model is a model with predictable extremes.

Gaussian processes, although very convenient analytically, are not quite
realistic, as many real-life processes display a long-range dependence (“long
memory”) leading to tails heavier than those of Gaussian distributions. In
an attempt to keep the analytical efficiency of the Gaussian class but to find
models that incorporate these kinds of effects, one is led to consider a fairly
broad class of conditionally Gaussian random processes, whose distribution is
Gaussian given their mean and correlation function. One well-known model
of conditionally Gaussian processes is the sub-Gaussian process, see [29]. In
1993, Adler, Samorodnitsky, and Gadrich evaluated the expected number
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of up-crossings of a fixed level for a sub-Gaussian process and studied the
asymptotic behaviour of this quantity when the level is high. The main re-
sult of their paper, the asymptotic behaviour of the rate of up-crossings of
a high level, can be easily obtained using conditioned Gaussian processes and
Gaussian tools. Such results provide a good starting point for the asymptotic
analysis of a wide class of conditionally Gaussian processes. Following this
direction, one may hope to obtain models with predictable extremes that can
be elaborated with well developed asymptotic techniques for Gaussian pro-
cesses [12]. Processes in random environments could provide a good basis for
models of stochastic processes with predictable extremes. Predictable random
media (such as stochastic volatility) provide a platform to predict extremes
and other rare events. For example, a Gaussian process with a random pre-
dictable variation could be a desirable model for predicting extremes. It is
well known that extremes are more likely to occur in a Gaussian process in
the vicinities of the absolute maxima of its variance. Predicting the positions
of these maxima of the random variance therefore leads to a prediction of the
hazard presented by extremes.

Other models that could be used to develop a extreme prediction theory
can also be considered. It turns out that shock noise models yield an extreme
value analysis; see for example the papers published in 2003 by A.V. Lebe-
dev where extremum value analysis was performed on stationary shock noise
processes with heavy tailed (Pareto-type) marginal distributions.

3.3.4 Other Problems

Physical Extremes. Each excursion of a “typical” stochastic process above
a high level is, as a rule, very short and very low. This is indeed the case, at
least for Gaussian processes. It is wrong, however, for the storage process. Let
us define a positive number v. We wish to estimate the probability that an ex-
cursion above a high level occurs, which supported by a set with a volume at
least v. This is an actual problem in tomography — separating pictures gener-
ated by a noise from real images. This problem is difficult to address, even for
well elaborated Gaussian processes. The simplest formulation may be as fol-
lows. Let X (¢) be a Gaussian process, and look for the asymptotic behaviour
of the probability P, := P(3[a,b] C [0,T]: b—a > v, minyg ) X(t) > u),
as u — oo, which is the probability of a “powerful” or physical extreme. It
seems that

a+v
log P, », ~ log sup sup P (/ ()X (t)dt > vu) ,
c(t)>0:[2FY ¢(t)dt=1 a€[0,T—] a

Using variational analysis it should be possible to get the exact asymptotic
behaviour.

Clusters of Extremes. An excursion in discrete time is simply the event
{X} > u}. In continuous time it looks like a connected part of a trajectory
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situated above a level u. Again, in “typical” cases one can observe, with
dominant probability, at most one excursion above a high level. What about
the probability of two or more excursions? This problem, even for Gaussian
processes, is only beginning to be tackled (see [72]).

3.4 Extremes and Statistical Mechanics

Classical statistical mechanics describes the behaviour of large classical sys-
tems of particles (or, more generally, degrees of freedom, such as classical
ferromagnets in a lattice).

Phase transitions, which are typically observed in the systems studied by
classical statistical mechanics, can easily be related to the somewhat vague
intuitive concept of “extreme events”. For example, at the critical points
seen with phase transitions, large fluctuations of observables can be shown to
exist. These imply large cooperative phenomena in the systems and this may,
under certain circumstances, imply consequences that are “catastrophic” in
the intuitive sense of the word. For example, volcano explosions have been
related to such phenomena.

However, generally, phase transitions only occur for particular values of
parameters, and in this sense they are highly nongeneric. According to ideas
of self-organized criticality (SOC) [51,52,62,63], phase transitions may also
be large systems that are far from equilibrium. This can lead to “catastrophic
events”, which are due not to external influences (like those that would tune
the parameters towards a critical point, where phase transitions occur) but
rather inherent to the system itself.

This hypothesis of SOC seems to apply particularly well to granular
systems, where it has been studied mainly using physics tools and nu-
merical computations, although some mathematical results have been pub-
lished [55,61]. Extreme catastrophic events that the theory has been ap-
plied to include earth slides, the formation of earthquakes, the develop-
ment of avalanches, or catastrophic price fluctuations in financial markets;
see [33,34,63,65].

The phenomenon of large fluctuations in financial markets has also been
investigated via power-law distributions, which have been studied empirically
(see [47,52,59,65,66]).

Dynamical models involving a large number of traders have also been
introduced [59].

A model describing large stock market crashes involving critical points
of statistical mechanical systems has also been developed [65]. In this model
and related ones, the main feature is the presence of log-periodic behaviour
generated endogenously from the system, see [46,60]. This view on financial
crashes is quite different from the one pursued on the basis of extreme value
theory, see [65] versus [10].
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Other approaches to the statistical mechanics of systems far from equilib-
rium have been developed using the theory of dissipative structures, see [67],
and using synergetics, see [73]. The latter theory also has connections with
catastrophe theory, which we shall briefly discuss in Sect. 6. In general, al-
though the systems described by these approaches can develop “large fluctua-
tions” that connect them to the theories of phase transitions, critical phenom-
ena and catastrophic events, these connections are yet to be fully understood
in a mathematical sense.

3.5 Extremes and Dynamical Systems

It is now well known that simple systems, described by classical mechanics,
can exhibit very complex behaviour, due to nonlinearities in their equations
of motion. This behaviour is particularly apparent in chaotic motion, making
predictions of the behaviour of such deterministic systems only really possible
using tools from probability theory, much the same as for systems with an
“external” random input to the dynamics.

As an example, we recall the detailed study of the iterated logistic equa-
tion, and the dependence of its parameter: as the parameter increases, the
asymptotic behaviour is first dictated by the increasing number of point at-
tractors, and finally, after a critical value, it becomes similar to the one ob-
served for coin tossing systems.

In continuous time, examples of such chaotic behaviour can be found for
nonlinear systems with at least three degrees of freedom; Lorentz equations
(a truncation of the Navier—Stokes equations of hydrodynamics) being per-
haps the most well known case here (see, [56,57]).

The asymptotics of such chaotic systems are best studied using tools from
the probabilistic theory of dynamical systems, where concepts like invariant
measures, ergodicity, mixing properties, entropy and fractality play a basic
role.

Such concepts are also at the root of classical statistical mechanics, which
however traditionally handles systems with a large number of degrees of free-
dom.

Because of this, one can try to apply concepts like transience, intermit-
tency, recurrence and concepts of large deviation theory (such as those that
occur in the framework of Markov chain theory) to describe the “extreme”
asymptotic behaviour of nonlinear dynamical systems of the above type. This
is yet to be performed systematically, but see [56,57,67] for some examples
and references.

Another way of looking at extremes in dynamical systems is to study
singularities of the solutions of such systems (including values of the relevant
variables describing the systems that diverge to infinity) This is the case in
certain systems described by hyperbolic partial differential equations; see for
example [Alb-Sh]|. But singularities can also arise in systems governed by
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equations of parabolic type, like those describing the propagation of water
waves; for example, see [36] for a discussion of singularities in classical Navier—
Stokes or Euler-equations, and (Dobrochotov et al., in preparation) for recent
work on deriving singularities related to tsunami waves.

In some deterministic models of population dynamics and ecology, sin-
gularities can arise in relation to species extinctions, which are, of course,
catastrophic events. For recent work on modelling ecological or population
dynamical systems, and a corresponding discussion of catastrophic events,
see [58, 68].

3.6 Mapping Singularities and Catastrophe Theory:
How Can They Be Related to Xevents?

When modelling many phenomena in natural and socioeconomical sciences,
solutions of dynamical systems are often represented by probabilistic or os-
cillatory integrals performed over large dimensions or even infinitely sized
dimensions. Examples are:

— (a) Classical statistical mechanics: here the integrals are of the form
[ e PHO) f(~)dy, where I is the configuration space of particles (for

example R3N for N particles moving in R3, ()" for § degrees of freedom
on a lattice Z? ...), where:
f is an observable of interest,
H is an energy functional, describing the interaction of the particles,
B > 0 is the inverse temperature,
dy is the “flat measure” of I

— (b) Several problems in financial mathematics and macroeconomics can
be tackled in this form; see for example [37,74]. The quantum statistical
mechanics expectation in Gibbs (temperatures) states can be obtained
in the above form, using probabilistic methods (Albeverio et al., book in
preparation), I' being there a space of paths (e.g. C([0, 3];R?*Y) for N
quantum particles in R3).

— (¢) Quantum mechanical systems. For example, here the solutions of
the Schrédinger equations of N particles can be obtained in the form
[ e PHO) f(~)dy, with —3H replaced by | S, where S is the classical ac-
tion of the underlying classical system evolving in the time interval [0, ¢].
Here I' = C([0, ]; R3YN).

Similar oscillatory integrals also arise in electromagnetic theory, partic-
ularly in optics. Other examples can be given, ranging from SPDE theory
to economics and biology. For further discussion and references, we refer
the reader to books about path integrals, such as [38,39], while [40] gives
a more physical approach. It is useful to find the asymptotics of the above
integrals for certain parameters (such as large or small 3, large N, small or
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large t...), since they can be used in various contexts. Powerful methods
have been developed for this, which have their roots in nineteenth century
Laplace methods for deriving the asymptotics of finite dimensional integrals
of the form fF e PHO) f(y)dy, or a stationary phase method for integrals like
those arising in example (c) above (and saddle point methods for where H is
complex).

Extensions of these classical methods to the case where I" is infinitely di-
mensional, which is the most relevant for the above examples, have been de-
veloped in the last 30 years. These include Wentzell-Freidlin theory [25], large
deviation theory [20,26], Donsker-Varadhan asymptotics [39], the method for
a stationary phase in infinite dimensions [38], and the Laplace method [30,43].
The asymptotics are given in terms of developments around points in the crit-
ical manifold I, = (v € I'|dy(y)) = 0}, where ) stands for H in example (a)
or S in (c).

For the examples mentioned above, I, is interesting in itself, since it
depends on the problem at hand. For example, in the study of the 8 — oo
limit, I, is a space of classical minimal configurations, in example (c¢) it
consists of classical orbits, and in the case of example (b) it consists of classical
periodic orbits.

The contributions from each power of the relevant parameter in the ex-
pansion (for example 8~! for 3 — o) depend on the geometric structure
of I,.

For example (c), the structure of T, is related to the degeneracy of the
classical action functional. Morse theory and more generally singularity the-
ory (of which catastrophe theory can be seen as a particular case) describe the
possible forms of I'.. This gives an extremely interesting connection between
catastrophe theory and integrals describing statistical mechanical, optical or
quantum mechanical systems. Catastrophe theory in itself was originally de-
veloped as a pure mathematical theory for investigating I, for certain . The
founder, R. Thom, saw certain particular I'. as interesting in themselves, ex-
pressing certain typical catastrophes (such as caustics in optics). The range
of the method was quickly extended to other contexts and areas (particu-
larly by Zeeman), and it received a lot of attention (and also criticism); see
for example [41]. In the context of the above integrals, catastrophe theory is
related to dynamical systems, and it can indeed aid discussions of extremes
arising in natural and societal systems.

The contributions obtained from the above expansions are classified using
catastrophe theory terms, and should be linked to theories like the statisti-
cal mechanics of systems with a large number of components (see Sects. 3.4
or 3.5).

Mathematically, it is also possible to relate these developments to large
deviation theory and extreme value theory, although we are still far from
a unified presentation; see [30,42,43,74] for some work done in this direc-
tion.
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4 Dynamical Interpretation of Extreme Events:
Predictability and Predictions

Holger Kantz, Eduardo G. Altmann, Sarah Hallerberg, Detlef Holstein
and Anja Riegert

Summary. Due to their great impact on human life, Xevents require prediction.
We discuss scenarios and recent results on predictions and the predictability of
Xevents, focusing on nonlinear stochastic processes since they are assumed to pro-
vide the basis for extremes. These predictions are usually of a probabilistic nature,
so the benefit of this type of uncertain prediction is an additional issue. As a specific
example, we report on the prediction of turbulent wind gusts in surface wind.

4.1 Introduction

In a contribution to a book entitled “Extreme Events” there is no need to
motivate our interest in this issue — ample motivation is supplied by the Intro-
duction and by those other contributions, which address specific phenomena
such as weather, fracture, epilepsy, or gigantic ocean waves. In all types of
phenomena where the event magnitude can assume any value inside some in-
terval, one has to decide beyond which magnitude we call an event “extreme”.
In our everyday understanding, we do this implicitly by thinking of “extreme
impact events” when we say “extreme events”. This means that we consider
an event to have overcome the critical magnitude to be extreme if it causes
damage or harm to us. This implies the rareness of Xevents. Events that hap-
pen frequently call for either counter-measures or for adaptation. In terms of
diseases this means that either our immune system can cope with them, or
we need vaccination, or life on earth is really threatened (as discussed later
in the context of avian flu). If trees were not able to stand “normal” autumn
storms (adaptation), there would be no forests anywhere in northern Europe.
A meteorite hitting the earth could extinguish all life, so this kind of Xevent
must be rare enough to allow evolution to form human life.

Hence, the rareness of extreme impact events is a direct consequence of
their impact and it is implied by their definition. A similar argument may be
used to require some form of irregularity in the occurrence of Xevents. Even
if the event magnitude cannot be reduced by a mere prediction, anticipation
of the event might reduce its impact and hence its extremity. A simple but
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nonetheless characteristic example is the ocean tide. Dams for coastal pro-
tection have a certain height which protects against normal tides, including
spring tides, where the alignment of sun and moon amplify the effect. How-
ever, weather conditions (in particular, storms) can create exceptionally high
water levels. Since humans try to be efficient, a balance is usually obtained
where the cost of protecting against an Xevent does not exceed the cost of
the damage of those events that break through the protection. Since the
latter costs are proportional to the frequency of occurrence of these “above-
threshold events”, these events must be rare (see above). Nonetheless, exactly
this reasoning tells us that above-threshold events (or extreme impact events)
are expected to occur for every phenomenon, since perfect protection is usu-
ally much too ambitious. And this brings us to our point: if there are events
which overcome our normal precautions/protections, then the best approach
we can take (and this approach is also urgently needed) is to attempt to
predict them.

In this article, we will first try to identify the objects of our study, namely
Xevents, in a proper way, which should then form the basis of a general scien-
tific approach. We do not want to focus on particular phenomena but instead
consider Xevents to be large deviations from the average behaviour in tempo-
rally evolving systems. Before this, we will give a physical and mathematical
framework to the class of systems that will be addressed by our reasoning.
For this class of systems we will then discuss predictability from an informa-
tion theory point of view and predictions from an algorithmic point of view.
The prediction method will then be illustrated with a kind of case study. We
will finish the chapter with by comparing the prediction of Xevents to other
prediction tasks.

We are dealing here with a notion that comes from daily life, and so it
has many different facets. Not surprisingly, a precise definition will be either
restrictive or worthless (because it is too general). We will use a restrictive no-
tion, being well aware of the fact that it will exclude many phenomena where
one could well argue that these are Xevents as well. Moreover, it also turns
out that the definition of Xevents and the mathematical/physical concept for
the system that generates such events are closely linked.

In physics, the concept of a state of a system has proven itself to be
very powerful. Hence we restrict here the discussion to systems where this
makes sense. In order to introduce temporal evolution, (dynamics), one needs
equations of motion. Such equations might be purely deterministic (as in
Newtonian equations of motion), they might be stochastic (as in Langevin
equations), and they might even act not on the states themselves but on the
probabilities of finding the system in a given state at a given time (as in
Fokker—Planck equations or Master equations). Even if “real systems” live in
continuous time and continuous space, then in order to simplify (in particular
when modelling) one might discretise time, space, or even the possible states
(in the latter case one arrives at deterministic or stochastic cellular automata
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or lattice gas models). Hence, the assumption in the following will be that
there exists an often unknown abstract representation of our system where
the current state is well defined and where the rules of how all possible future
states emerge from the current state are fixed. Even in cases where this is the
case (say, in hydrodynamic turbulence, where the state is the velocity field in
some volume and the dynamics are given by the Navier—Stokes equations), it
is often impossible to identify the current state of the system by observation
(one cannot measure the velocity of a fluid at the same time at every point
in some container).

The required irregularity in the occurrence of Xevents implies that the
underlying system responsible for the particular events possesses some com-
plex dynamics. Complex means that despite the potential simplicity of the
equations of motion their solutions are highly irregular and seemingly unpre-
dictable. In an idealised physical model, the system might be purely deter-
ministic but chaotic or it might be driven by noise. Of course, uncorrelated
stochastic processes can also generate Xevents. One example of this class is
the lottery, where the sudden gain of a million € is clearly an Xevent in the
life of the gambler. However, since the randomly selected set of numbers that
determines the winner of the lottery is not extreme in the slightest when
viewed as a set of numbers, we exclude this class from our discussion. We
hence require that the property of being extreme is reflected by the fact that
we can define an observable which assumes an extreme value when the Xevent
takes place.

Additional distinctions are useful. In some cases, the extremity of an event
is directly linked to the extremity of a dynamical state of the underlying sys-
tem. In other cases, the extremity of the event is caused by the way the
system is observed; in this case one could define another observable and the
dynamical states that show up as extremes would change (and with them
the temporal sequence of when the system generates an Xevent). To illus-
trate this, let us understand weather as a state of the atmosphere. Both
temperature and precipitation are observables that may be used to study
its dynamics. Evidently, extreme precipitation is not strongly correlated to
extreme temperatures, so it is unclear whether we can say that the atmo-
sphere is in an extreme state when it is exceptionally hot. Many examples
could be a combination of both types. As said before, humans often recognise
Xevents as bringing some potential damage. Hence, there are clear physical
effects that suggest that the system is in an extreme state (such as the release
of energy in an earthquake), but there are also human-made thresholds and
constraints (such as the number of victims or the financial damage due to
the quake). A thirty-day drought would not be considered to be an Xevent
at an airport, but a farmer working on the agricultural fields next to the
airport would lament the loss of his harvest. The issue of whether an Xevent
is also an extreme state of an underlying system or just the extreme value of
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a given observable has implications for its predictability, and we will discuss
this later.

Another issue is whether or not an Xevent appears endogenously, gener-
ated by the system dynamics, or exogenously, being induced by some external
perturbation. We will assume a slightly different point of view to Sornette [1],
since ultimately we will not distinguish between deterministic or stochastic
systems. Hence, small perturbations that act like noise are then considered as
inherent to the system, and only externally controlled changes of system pa-
rameters or macroscopic perturbations that are much stronger than noise will
be considered to be exogenous. The stock market is an example of externally
triggered extremes, although it does contain some complications: a severe ex-
ternal event (political, military, social) can have strong impacts on the stock
market, but this impact should not be taken for granted. Only together with
an appropriate state of the market (intrinsic instability) can a strong exter-
nal perturbation cause a crash. However, it is evidently impossible to predict
such events just from studying the system’s dynamics, since the system it-
self does not contain information about the next strong perturbation from
outside. Therefore, we will restrict ourselves to endogenous events.

Finally, a classification can be made in terms of recurrence. In many
systems, Xevents occur recurrently: after an Xevent, the system continues
with unmodified dynamics and thus it has the potential to generate other
Xevents. Typical non-recurrent Xevents terminate the lifetime of a system
(such as material fracture). Again, there are some intermediate possibilities:
a system might be altered by an Xevent in such a way that after the event the
system has different dynamics, but nonetheless can suffer from new Xevents.
Examples are the evolution and extinction of species (in biology), but also of
political entities (related to revolutions and wars).

To summarise these introductory remarks, we will focus on Xevents that
are generated by systems with complex (deterministic or stochastic) dynam-
ics. They should be generated by the system dynamics itself (being in some
sense endogenous), and they should appear recurrently. In any case, the
events are assumed to occur rarely and with some kind of irregularity in
time. Such events should be forecasted. Some lines of thought might be eas-
ily transferred to Xevents in different settings, but this is beyond the scope
of this article.

4.2 Prediction versus Predictability

What one usually expects from a prediction is that it gives the value of some
observable at some specific time in the future. The prediction error is then
the difference between the predicted value and the observed value. If one
repeatedly performs predictions for a given temporally evolving system, then
the quality of the predictions can be quantified by the average prediction
error, which is usually taken as the root mean square of the individual errors.
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When we wish to predict Xevents, the task is usually somewhat different:
the precise value is less important than whether the value is above or below
a given threshold. Also, timing then plays a role. Consider events that, on
average, occur once a year: if we predict such an Xevent for tomorrow, but
it happens one day later, how can we quantify this rather small error? There
are currently no generally accepted concepts for quantifying the precision of
these kinds of predictions.

However, in many cases such individual predictions are not a realistic
goal. Nevertheless, when Xevents are considered, much weaker predictions
are already very useful, such as the probability of an observable overcom-
ing a given threshold during a certain time interval. In order to include this
more general kind of prediction, we consider in this paper a prediction to
be the forecast of a probability distribution of the future state of the system
or of the future value of a specific observable. If desired and useful, the pre-
dicted probability distribution can be converted into a specific value for the
observable of interest by computing its mean. In this case the prediction is
optimal in the sense of the maximum likelihood principle. It is also clear that
if we are able to resolve the deterministic nature of a deterministic system,
then the predicted probability of the future states is very narrow (ideally a
d-peak). To make predictions, irrespective of its individual or probabilistic
nature, one needs some prediction algorithm which converts our knowledge
of the system into a statement about its future, including possibly knowledge
of the current state of the system (in a deterministic setting, this could cor-
respond to the equations of motion plus the initial conditions). The precision
of our predictions depends not only upon choosing the optimal prediction
algorithm, but also on just how much predictability is present in the sys-
tem.

Predictability is the potential of the system to allow us to perform a pre-
diction, in principle. Predictability can be quantified by how precisely we
could predict the future at a given time interval in the future if we knew
everything that could be known about a system, and if we knew its current
state with a given finite precision (if we assume unrealistically that we know
the present state precisely, then every deterministic system is perfectly pre-
dictable, which is not a useful statement). Under additional assumptions, this
knowledge can be converted into a statement about how far into the future
we could make a prediction with a given precision.

As an example, the best prediction for the outcome of the next lottery
draw is simply to say that every possible number is equally probable. We
will say that in this case there is no dynamical predictability, since the next
drawing is uncorrelated to previous lottery draws, and studying the record
of past draws will not improve our prediction. On the other hand, without
astronomical skills and precise observational facilities, the next total eclipse
of the sun would appear to be unpredictable, whereas its predictability is
perfect.
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In this section, we will first discuss predictability in general and why
it should be present in many complex systems, and then we will introduce
the algorithms that might enable us to extract the relevant knowledge from
a system needed to perform a prediction.

4.2.1 Predictability

In the following we want to quantify the existence of structures that in prin-
ciple enable us to know something about the future of a system (for a similar
and very inspiring discussion see [2]). If such structure exists, we speak about
predictability. This predictability has two components: the static part comes
from the probability distribution of all possible future events, and the dynam-
ical part comes from temporal correlations. The static part will enable us to
make predictions that are always the same, so they are static. The dynamic
part leads to predictions that are time-dependent, and hence dynamic.

Both aspects require stationarity, which means that we can only make
statements about the future learning from the past if we require that the
future will obey exactly the same dynamical laws, with the same parameters,
as the past did. In realistic settings, stationarity is usually violated. Since
there are currently no good theoretical concepts for handling nonstationarity,
violation of stationarity is ignored in practice, but one has to bear in mind
that nonstationarity might lead to a future evolution of a given system that
is very different from the evolution that can be predicted from the past.

The following discussion on predictability applies with only minor modi-
fications to two settings. In the ideal setting, we speak about a state space of
a system, and we can obtain stationary probability distributions or invariant
measures in the state space and on sequences of state vectors. In the time
series setting, we speak about the corresponding distributions of the values of
our observable, and about probabilities of finding certain sequences of values
in successive observations.

Static Part of Predictability

The static part of predictability is related to the probability distribution of
either the state vector or the observable. In terms of predictability, it makes
a big difference whether we have one regular dodecahedral die where eleven
faces are labelled by the numbers from two to twelve (the twelfth face saying
“repeat”), or whether we have two standard dice that are thrown simulta-
neously. In the first case, each number has an equally probable outcome,
whereas in the second case the number seven has a six-fold greater proba-
bility of occurring than two or twelve. Hence, predicting the value of seven
at every trial will on average lead to a much higher hit rate for the two dice
than for the dodecahedron. The precision of such predictions is quantified
by the root mean squared error & = \/((z — #)2), where x is an outcome,
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Z is our prediction for this outcome and (.) denotes the average over very
many trials. In the example of the dice, the optimal prediction minimising é
is & = 7 (static prediction), the mean value of the distribution of the possible
outcomes. The same will hold for the dodecahedron. However, the average
error € is different: It is v/10 for the dodecahedron and v/5.83 for the two dice.
The reason lies in the fact that large deviations from the prediction z = 7,
such as two and twelve, are rare in the case of the two dice, but occur more
frequently in the case of the dodecahedron. This mean error € could be given
as an “error bar” together with the prediction, as a kind of mean uncertainty
about the true outcome.

In information theory, the uncertainty of the outcome, when the distribu-
tion is known, is quantified by the Shannon entropy, Hg = — Zf\[:l pilnp;,
where p; denotes the probability that the event labelled with ¢ will occur. For
a finite number N of possible outcomes, the uniform distribution p; = 1/N
generates the largest entropy, Hg = In N, so it leaves us with the largest
uncertainty about the outcome. Every distribution with nontrivial structure
(where the different outcomes are not equally probable) leads to smaller val-
ues, as we saw in the example above. The properties of the Shannon entropy
and why it quantifies predictability can be found in, for example, [3]. The
Shannon entropy can be generalised in a straightforward way to a continuum
of states, provided a probability density function (pdf) exists.

The probabilities that the different outcomes will occur can also be con-
verted into static temporal information: an event that has a probability p of
occurring within a given time interval will on average take place every 1/p
time intervals. Of particular interest is the largest possible event: no events
larger than this will ever occur, and there is no need to concern ourselves
with them. It is evident that such an upper limit is unknown for many natu-
ral phenomena, and this illustrates that this information, if available, is a real
prediction. In summary, knowing the probability distribution of all possible
outcomes enables us to predict not only what will happen on average, but
also the frequency of occurrence of specific events.

In order to make use of this source of predictability, we usually have to
estimate the probability distribution from data (if model equations exist, one
can try to determine them from these equations). In view of Xevents, there
is a severe complication. We argued before that Xevents are usually rare.
Hence, if we are particularly interested in the prediction of Xevents, we are
referring to the tails of a probability distribution, which are badly resolved
by a given finite sample of observations. Obtaining an accurate estimate is
therefore a highly nontrivial task and the subject of many recent scientific
activities, partly summarised as “extreme value statistics” [4,5]. Sometimes
a suitable model allows one to predict the functional form of the distribution,
so that fitting its parameters in the bulk supplies full knowledge about its
tails [6]. A complication beyond the finite sample effects is given by temporal
correlations: we wish to find correlations in data since they are the second,
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even more relevant, source of predictability. However, they can introduce
some bias when estimating the tails of a probability distribution from a finite
sample, leading to either over- or underestimates of the relative frequencies
of Xevents [7].

Dynamical Part of Predictability

Xevents are not usually generated as if someone were throwing the dice, but
instead the system is governed by equations of motion that propagate the
actual state of the system forward in time. Correlation and other temporal
structures appear in the time series as fingerprints of the hidden dynamics.
In order to fully compute the predictability of the system, the dynamical
constraints upon the values the system may achieve have to be taken into
account. Enhanced predictability may be present even if the whole process is
stochastic, because the probability distribution of future values may depend
upon the past values. In contrast to the static part of predictability, where
prediction can be made without knowing the current state of the system,
the aspect we want to quantify here links successively observed states. It is
called the dynamic part of predictability because the actual predictions will
depend upon the current state of the system and hence on time, and they
make use of what is known about the dynamics of the system. Dynamical
predictability will quantify how uniquely the dynamical laws governing our
system can relate a future state to a present state. However, such knowledge
can only be exploited if we also have some knowledge about the current state.
Hence, the precision of our prediction will depend upon the precision with
which we know the current state. This interpretation leads to a quantitative
concept: we will investigate how the accuracy of the prediction depends on
the accuracy of the knowledge of the current state.

If a system’s dynamics are perfectly periodic, predictability is maximal
since there is no uncertainty about the future. In order to distinguish once
again between predictability and predictions, let us emphasise that even
though the predictability of a periodic process is perfect, an actual predic-
tion is only possible after we have observed the periodicity of the process (so
we need a historical record which covers at least two periods of the process
in order to support the hypothesis of periodicity), and in order to be able
to predict the continuation we need to know the current position along the
periodic cycle. A simple everyday example of this is the phases of the moon:
seeing a half-moon in the sky, and knowing that it has a period of 28 days,
we can only predict whether it will be full moon or new moon in a week’s
time if we are able to interprete whether the moon is crescent or waning. The
generalisation of the Shannon entropy to the characterisation of temporal
structure eventually leads to the concept of Kolmogorov—Sinai (KS) entropy
his (see again [3]). Essentially, the KS entropy is a Shannon entropy based
on the conditional probability of observing an event i after having observed
a sequence of events k, I, m, ... at one, two, three, ...time steps in the past.
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In the case of a periodic phenomenon, the KS entropy is zero, meaning per-
fect predictability. An important rephrasing of this situation is that even if
we are slightly uncertain about the actual state of a system, the error in our
prediction will not grow faster than proportionally to the time into the future
for which we make the prediction.

In a still deterministic but chaotic system, the far future is unpredictable:
every time step ahead magnifies a given error in our current observation by
a certain factor, so that the uncertainty about the future (caused by the
uncertainty about the present) grows exponentially with time. In this case
the KS entropy has a finite nonzero value. Its interpretation is that we have
to add an amount of information quantified by the KS entropy in order to
predict the future with the same accuracy as we have observed the past
(assuming perfect knowledge of the equations of motion). Rephrased, this
means that when we know the current state with a given uncertainty, then
the smallest possible error in our prediction (on average) will be larger than
this uncertainty by a factor exp(t - hxg).

For all nondeterministic, random processes, the KS entropy is infinite and
does not allow us to distinguish them. Evidently, depending on the strength of
the temporal correlations, random processes also differ in their predictability.
However, we have to be more specific and to discuss the level of accuracy to
which we are working. Let us assume that we know the current state with
an uncertainty e (for instance, given by our measurement errors). Let us
assume that we also know the (stochastic or deterministic) time evolution
perfectly, so that, given the state x, we can obtain the exact probability
that another state 2’ will be obtained one time step ahead. Now, since by
assumption we only know the current state with an error €, we could create
an ensemble of initial states that are distributed around the given value with
a standard deviation €, and then consider the probability distribution of all
of the future values that might succeed each initial value from this ensemble.
This distribution might be much broader than e. Hence, in order to reduce
the uncertainty of the future to the same level € to which we assume to
know the current state, we need extra information. This lack of information
is quantified by a KS-like entropy h(e) (called e-entropy; see [8]) for the
scale €. Of course, this extra information is unavailable. So we can invert
the argument and say again that the precision of our prediction is less, by
a factor of exp(t - h(e)), than the precision of the current state. What differs
here from the (chaotic) deterministic case is simply that h(e) depends on the
accuracy €, and it diverges for ¢ — 0 if stochasticity is involved, whereas it
converges to hxg in the perfectly deterministic case. So in order to use this
concept, no knowledge of the true nature of the system is needed. As soon
as some randomness enters the dynamics, then for some range of € it is still
profitable to increase the accuracy of the measurements of the current state,
but below a system specific value, extra accuracy cannot be converted into
extra prediction accuracy.
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Let us illustrate what we have said using two very simple examples. The
first one is a deterministic chaotic system, z,41 = 1— 233%, with 2o € [—1: 1].
Assume that we know the last observation x with an uncertainty (measure-
ment error, computer precision, finite representation of real numbers) of e.
Then the optimal way to use the knowledge of an infinite past sequence of
observations cannot be better than applying the map itself to the last observa-
tion, hence we compute Zn41 = 1—22%.. The uncertainty of the present state
xn translates into the uncertainty of our prediction, which for this particular
system is twice as large on average [3]. This error amplification is exactly the
source of chaos. The KS entropy of this process is hxs = In2, and our esti-
mate about the uncertainty of the prediction from above is € = ee"¥s = 2e.
If € were 2710, then after ten steps the uncertainty would grow to unity and
we would have reached the maximum prediction horizon.

The second example concerns the same system with additive dynamical
noise, rp41 = 1 — Qxi + &,. For technical reasons (the resulting value 41
must always be inside the interval [—1 : 1] in order to stop it escaping to
infinity) the noise terms &, are not independent of x,,, but this dependence
is weak and hence not relevant for our considerations. As before, the optimal
prediction & for the observation N +1 (in the maximum likelihood sense and
assuming (£,) = 0) would be to say #x41 = 1 — 223, taking the standard
deviation of the unknown noise input £y as the inevitable average prediction
error, in other words as the theoretical lower limit of the uncertainty about the
true future. If our knowledge of x is imperfect, its error increases. Hence,
the more precisely we know the current state xy, the closer we come to
this theoretical limit. However, the improvement of the forecast gets less
the better we know z . In other words, from a coarse-grained viewpoint we
see (almost) the deterministic law zy41 = 1 — 22%. If, on the other hand,
we have high-precision measurements, then the noise in the time evolution
prevents us from making an adequately accurate prediction (in contrast to the
previous example, where the measurement error was doubled independently
of its magnitude). This is visualised in Fig. 4.1: We show the probability
distribution of future values zy41 for a sample of given xx which, in the
assumed precision of the measurement, are identical. Whereas reducing the
measurement error from 1/4 to 1/8 reduces the width of the distribution (and
hence the uncertainty of the prediction) by almost 1/2, a further reduction
down to € = 1/32 does not create a similar improvement. So one can argue
that the dynamical predictability, quantified as the precision of knowledge of
the actual state divided by the error in the prediction, goes to zero when the
precision improves.

The concept of entropies hence quantifies predictability on average. As
we emphasised, taking into account the dynamical part of predictability will
lead to time-dependent predictions (we would usually expect a prediction to
be time-dependent). What is masked by these average considerations is the
fact that predictability might vary as a function of the actual state of the
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Fig. 4.1. Ensemble forecasts. Assuming that the last observation zn is known with
uncertainty €, and applying the map zn4+1 = 1—2xny+E&n with randomly chosen &,
yields the shown distributions for zx+1. The widths of these distributions are the
uncertainties of the prediction. Whereas it clearly decreases when reducing € from
1/4 (broadest distribution) to 1/8, a further increase in the precision to 1/16 and
1/32 leads to saturation. The latter is a consequence of the unpredictable stochastic
component in the equation of motion (z = —0.7, the ensemble was created by
randomly selecting points in [z — €,z + €])

system. It is an everyday experience that there are weather conditions (such
as a summer high in central Europe) where the prediction “tomorrow the
weather will be as fine as today” has a very high hit rate, and there are other
seasons in the year where the weather forecast is notoriously unreliable. This
can also be seen in the simple example x,11 = 1 — 2z, if z,, ~ 0, there
is no error amplification; but instead, any inaccuracy in the knowledge of
the current state is translated into reduced uncertainty about the future. An
attempt to resolve this state-dependent predictability has been made in [9].
The fact that individual states might lead to prediction errors that are either
much smaller or much larger than the mean prediction error to be expected
from entropy analysis has clear implications for the prediction of Xevents. It
includes the two possibilities that extremes might be much less or much more
predictable than the “average” states.

To summarise this section, we state that predictability can be quantified
by KS-like entropies. Their values tell us how much greater the uncertainty
(mean error) of the optimal prediction is than the uncertainty about the
current state of the system. The generalisation of the entropy concept to
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stochastic processes through the e-entropies yields the benefit that we know
that more precise knowledge of the current state will pay off when we have
only vague knowledge (large measurement errors), but that there will usually
be some limit €y, below which it does not help any further. Moreover, we
tried to emphasise that predictability is, of course, also present in stochas-
tic processes. There is a distinction between the static part of predictability,
given by the knowledge of the distribution of future values of the observ-
able, and which does not require any knowledge about the current state, and
the dynamical part of predictability, which exploits the possible sequence of
future states based on the present state and on the dynamical rules.

The predictability of a process quantifies how much uncertainty we have
to accept on average when we exploit all existing information about a process
in the optimal way without violating causality. Unfortunately, it does not tell
us how to extract this information from past observations and how to make
use of it. Nevertheless, if we compute these slightly non-intuitive quantities
h(e) from data, we will have a clear benchmark for every prediction algorithm.
In what follows, we discuss prediction schemes that are appropriate for time
series originated from deterministic and from stochastic processes. They are
in some sense optimal, since they exploit exactly the type of information that
enters the definition of predictability.

4.2.2 Prediction Schemes for Deterministic
and Stochastic Time Series

In most real world systems, the underlying equations of motion are only
known to some approximation (if at all; there is, for example, no evident and
generally accepted model for the stock market), and even if they were known
perfectly, in many cases the current state of the system cannot be deter-
mined in an appropriate way. Hence, we will assume a time series approach
here; we will discuss a prediction scheme which starts from a long record of
observations, {s1,...,sn}, where the sampling rate is appropriate, the time
span covered by the observations is long compared to the internal timescale
of the phenomenon, and where the number of observations IV is also large.
In Sect. 4.3 we will discuss predictions of turbulent gusts based on surface
wind time series recordings, where the terms “large, long, appropriate” will
be illustrated.

Deterministic Time Series

Expecting a purely deterministic origin in a real world phenomenon is unreal-
istic. Nonetheless, for didactical reasons, we assume exactly this here. If the
observed quantity represents a deterministic dynamical system with a low
dimensional phase space (so the system has only a few independent variables
which are governed by deterministic equations of motion), then a mathemat-
ical theorem from Takens [10,11] tells us the following: a general observable
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applied to the (unknown) phase space variables of the system can be used to
reconstruct an auxiliary space in which we again find a kind of deterministic
equation of motion. We simply have to combine successive measurements to
delay vectors, s, := (Sn,Sn—1,--+sSn—m+1), where the dimensionality m is
a parameter that has to be larger than twice the number of active degrees
of freedom for the theorem to hold. If so, then every delay vector can be
mapped uniquely and smoothly onto an unobserved state vector of the sys-
tem, so that in particular the future of a delay vector is uniquely determined
by the future of the corresponding state vector. Hence, using this embedding
procedure, the deterministic properties of the underlying unknown dynamical
system are transported into our auxiliary space, the delay embedding space.

Now, since we know that the future syi; of the most recent delay vec-
tor sy is deterministically and uniquely encoded by sy, we “only” have to
extract the information about this future from what we know about the sys-
tem (from the large set of past delay vectors). Here, the additional relevant
assumption to be made is the smooth dependence of the future on the present
state — we have to assume that similar states will have a similar future. Then
one can employ what is called the “Lorenz method of analogues” [12], or the
“locally constant approximation” [13], in other words one searches for all sim-
ilar states in the past (for which |s; —sn| < € holds), and the prediction §x41
is the average over the futures of the neighbours, §y41 = 1/K Z{k} Sk-1,
where K is the number of indices in the set {k} fulfilling the similarity con-
dition. The smaller the tolerance level € the closer each individual sg41 is
to its mean value, but of course ¢ must be chosen to be large enough such
that in the given data set there are still some points that fulfil the similarity
condition. More sophisticated ways to determine the deterministic mapping
sn — 8n41 exist and have been used successfully [9].

In such a deterministic setting, the prediction error, e = sy411 — Sn41, 1S
related to modelling errors and to measurement noise on the data. The latter
reduces our knowledge about the present state sy. If we knew these effects,
we could predict the future value with a given uncertainty in its magnitude. It
is evident that the complete failure of a single prediction with such a scheme
could only happen with very low probability, since it can only be explained
by exceptional measurement errors.

Stochastic Time Series

Typical phenomena of our world, such as weather, climate, the economy, and
daily life, are much too complex for a simple deterministic description to ex-
ist. More precisely, even if there is no doubt about the deterministic evolution
of, say, the atmosphere, the current state (whose knowledge would be needed
for a deterministic prediction) contains too many variables in order to be
measurable with sufficient accuracy. Hence, our knowledge does not usually
suffice for a deterministic model. Instead, very often a stochastic approach is
more suited. Ignoring the unobservable details of a system, we accept a lack
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of knowledge. Depending on the unobserved details, the observable part may
evolve in different ways. However, if we assume a given probability distribu-
tion for the unobserved details, then the different evolutions of the observables
also appear with specific probabilities. Hence, the lack of knowledge about
the system prevents us from deterministic predictions, but allows us to assign
probabilities to the different possible future states, at least in principle. It is
then the task of a time series analysis approach to extract this information
from past data, and we will outline this scheme in next section.

Before describing the Markov chain model for prediction, we want to ar-
guing once more for the benefits of a probabilistic prediction. First of all,
the probability that a certain event will occur will depend on the current
state of the system, so we will explore the dynamical part of predictability.
If this probability varies considerably from state to state, then knowledge of
this probability can be very helpful. We all make use of such information
every day, since under serious considerations the weather forecast is a prob-
abilistic forecast, even if it sounds like it is deterministic. Secondly, we have
to transform the value of the probability of a certain event occurring into
a reaction. This is also something that we are used to: we are all trained
to consider the need for an umbrella when leaving the house when it is not
raining. Although probabilistic predictions are not what we are really after,
they contain much more information than no prediction at all. Of course, in
contrast to the deterministic prediction, the system might evolve into a state
which is extremely improbable according to our prediction without causing
any inconsistency. The formal way to determine the optimal reaction to a pre-
dicted probability is to minimise a cost function. We can, for example, try
to quantify the cost if I carry my umbrella but it does not rain, and the cost
of not having an umbrella and so getting wet or having to wait in a shelter.
Depending on the costs for each case, the result of the minimisation would
define a specific probability p.. If the predicted probability is below p., not
taking the umbrella will be advantageous, and beyond p. one should take the
umbrella. Hence, the optimal reaction to a probabilistic prediction requires
us to think about the costs, and to solve an optimisation problem. These two
issues are widely discussed in the literature and are therefore not the topic
of this contribution. We will restrict it to how to predict the probability of
a certain event occurring.

4.2.3 Predictions Based on Markov Chain Models

The data-driven Markov chain is a nonparametric model that exploits the
information used to compute entropies. In this sense we expect it to be op-
timal, irrespectively of whether the system is stochastic or deterministic. In
fact, in an ideal, low dimensional deterministic setting, it reduces to the
Lorenz method of analogues explained above. Since this model is very data
intensive, parametric models may be superior in practice.
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In Sect. 4.2.2 we outlined how the time delay embedding method enables
one to extract a deterministic relationship between past and future states
from time series data. Determinism means that a time window m exists such
that sy11 = f(sn,SN—1,.-.,SN—m), and the task is to find the function f
from the past data. This is, in principle, very easy, since we have a huge num-
ber of “learn pairs” (Sg+1; Sk, Sk—1,- - -, Sk—m) Which, by assumption, repre-
sent this function f. There are many different ways to extract f from these,
such as simple interpolation schemes, locally linear approximations, kernel
estimators, neural networks as global models, or a representation based on
the linear superposition of nonlinear basis functions. These methods have in
fact proven their usefulness in a wide range of applications.

If a process is intrinsically stochastic, sy1 is not a unique function of
SN,--. SN—m+1- Instead, one can hope that a value m exists such that the
probability that the next measurement sy1 assumes the value s’ is fully
determined by (sn, ..., SN—m+1). If this is true, then the stochastic process is
a continuous state Markov chain of order m, and we have complete knowledge
of it if we know the conditional probabilities p(s’|s), where s is a Takens-like
m-dimensional reconstructed state vector of the system. As discussed in [14],
such a finite value m will not generally exist, but a finite value m usually yields
a very good approximation to the non-Markovian process, so this offers an
efficient prediction method in practice.

The conditional probabilities can be estimated from a long record of ob-
servations, under two assumptions. The first is the standard assumption in
time series analysis, which is stationarity: all probabilities should be con-
stant in time. This corresponds to the requirement that physical parameters
influencing the dynamics of a system must be time-independent, but it also
requires that the process has had enough time to relax into a stationary
state. Despite the fact that stationarity cannot be proven to hold for a finite
data set, and even worse, that almost all data sets are nonstationary to some
extent, let us assume that stationarity holds.

As a second assumption, we require that p(s’|s) is a smooth function
of s, so the conditional probability varies smoothly as the condition s varies.
Then we can generalise the Lorenz method of analogues. In every previous
situation in the recorded time series data where s, ~ sy, the future value
Sk+1 is drawn according to the same probability distribution p(s’|sy) as the
unknown future value sy41 will be drawn. Hence, collecting a larger sample
of such values provides a sample estimate of this probability distribution.

The probability distribution of the values to be measured in the next mea-
surement can now be exploited in different ways. If we insist on making a pre-
diction in terms of a single value, then the mean value of this distribution is
optimal in the sense that it minimises the root mean squared prediction error
V(5841 — sn+1)2), where the average is to be taken over many prediction
trials N, and § denotes the predicted value, whereas s, as before, denotes the
actual measurement. More appropriate for a stochastic process would be the
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extraction of probabilities from the given probability distribution, for exam-
ple the probability that the next observation will lie inside a certain interval
[Smin, Smax], Or that it will overcome a given threshold. Hence, determining
a probability distribution for the future allows us to adapt the prediction to
our needs. Let us repeat here that the assumed stochastic nature of the pro-
cess allows outcomes for the next actual measurement that are in the tails of
the predicted probability and are hence unlikely to happen, without causing
any contradiction.

An evident and severe drawback of this method in terms of Xevents lies,
however, in the fact that by construction it cannot predict anything that has
not been observed in the past. In the best case this method can detect that
the current situation has never been observed in the past and therefore there
are not any sufficiently similar states s to allow any prediction to be made.
In this sense, this method is weaker than the statistics (static part of pre-
dictability), where one can always try to extrapolate from a given histogram
to larger values of the observable.

We should stress that a Markov chain model can be modified in many
ways. We were using the finest possible resolution € and an extended, m-step
memory. One can easily introduce some coarse graining, hence reducing the
number of possible system states to a small finite number. Then the transi-
tion probabilities can be expressed as a transition matrix. This was applied
for wind speed predictions in [15], and it clearly resembles the earthquake
predictions classified as “time-dependent hazards” [16]. A technique that is
very similar to Markov chain prediction was used when modelling in [17].

4.3 An Example: Turbulent Wind Gusts

Surface wind is turbulent even at moderate average wind speeds. This im-
plies that the wind speed measured at a given point above the surface of
the earth fluctuates irregularly, and exhibits strong increases from time to
time. A typical wind speed time series is shown in Fig. 4.2. Humans make
use of the power contained in wind through sailboats, gliders, and through
wind turbines. In such cases, the sudden increase in wind speed can cause
problems. Hence, as an example, we study turbulent gusts as Xevents. Since
a quantitative definition of “turbulent gust” is missing, we consider here the
difference between the average wind speed in two successive time windows of
2 s. If this increment is positive and of g m/s, we talk of a gust of strength g.
In Fig. 4.3 we show empirical distributions of the frequencies of increments
over different days. Evidently, the distributions differ strongly from day to
day: there are days which contain many strong gusts and other days without
strong gusts. What is more relevant is that whatever the day, these distri-
butions can be well approximated by exponentials, p(g) ~ const - e~l9l/90,
where go depends on the particular day (ignoring the slight asymmetry be-
tween positive and negative increments). Hence, Xevents (large ¢) are much
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Fig. 4.2. Typical time series of near-to-surface wind speed measurements

more likely here than in data that are Gaussian-distributed and have the
same variance. Considering the static part of predictability, the hypothesis
of the functional form of the probability distribution p(g) together with an
estimate of the parameter gg would be fully sufficient. If the hypothesis of an
exponential distribution is correct, using the estimate of gg, one can even pre-
dict the probability of occurrence of events which are too rare to be contained
in the finite sample.

In this example, we want to make use of the dynamical part of predictabil-
ity. We hence look for temporal correlations and perform an analysis of en-
tropies along the lines of Sect. 4.2.1. We expect some positive results simply
because wind speed data are persistent: the best prediction for the next ob-
servation is the current observation. In Fig. 4.4 we show the results from
an entropy analysis of wind speed data using the correlation integral [9,18].
A one-step prediction (in our data, one time step corresponds to 1/8 s) based
on the past ten values could, if done in the optimal way, reduce the uncer-
tainty of the future to 1/10 of the width of the distribution of the data, and
even ten steps into the future allows, in principle, for an improvement to 1/3,
if the velocities are measured with a precision of 0.1 m/s. Let us recall that
this result is obtained following the considerations of Sect. 4.2.1, so not a sin-
gle prediction has been made, and at this point of the analysis it is also not
known whether we could find an algorithm that really generates correspond-
ingly accurate predictions for us. Unfortunately, the dynamical part of the
predictability of velocity increments, which are of interest in terms of gust
prediction, is less. But still, the conditioned probability distribution using
a resolution of about € ~ 1-2 m/s? and a memory of about m = 5-10 reduces
the uncertainty of the future velocity increment by half. Here, however, pre-
dictability decays very fast if we consider predictions further into the future
than one time step (1/8 s).
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Some interesting questions are: what is the typical profile of a wind gust,
and can it serve as a precursor? We define a gust as a situation where two
successive 2 s-mean values of the wind speed differ by more than g m/s.
When we superimpose time series segments that fulfil this condition, we also
see clear structure before the actual jump in wind speed (the continuous lines
in Fig. 4.5). It is tempting to interpret this (the downward dip) as precursor.
However, very similar precursors can be found in a simple AR(1) model with
the same correlation time. As one can easily verify, even for uncorrelated
random numbers with zero mean, this procedure will yield a signature that is
different from the mean: through the selection criterion we find that inside the
first 2 s window such a curve assumes the value —g/2, and in the second 2 s
window it assumes the value 4+¢/2, being zero elsewhere. Hence, precursor-
like structures are a natural consequence of the fact that defining an event
and selecting data sequences if they obey the definition of the event means
to form a more or less specific subsample, whose value is evidently nontrivial
due to the conditioning. The proper shape of the precursor depends a great
deal on the way how the data are selected — how the event is defined. If
there are also temporal correlations (as for the AR(1) data and the wind
speed data) then the conditioning also enforces nontrivial structure outside
the time window where it is imposed. Therefore, the existence of precursor-
like structure on its own does not imply the predictability of the specific

1e+06

100000

T

10000 |
1000 |

100

T

number of occurences per day

10 L

1 '\
4 3 2 1 0 1 2 3 4
increment [m/s]

Fig. 4.3. The frequency of occurrence of wind speed increments of different sizes
during a particular day (five different days are shown, 8 Hz data). The distributions
are clearly non-Gaussian, their widths differ strongly from day to day, and they are
slightly asymmetric
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event; for example, by definition no relation between successive states exists
in uncorrelated random data.

We can also explain this latter fact in a different way: finding precursor-
like structure means that once we have observed the event we know that on
average the signal underwent a typical structure before. However, what we
need is the opposite: if the signal undergoes a specific structure, then the event
of interest should follow with a high probability. To make a much stronger
statement like this, more structure is required in the data, the existence of
which can be probed by additional statistical tests. The simplest is to collect
data segments that are similar to the supposed precursor over a time interval
right before the gust, and to study their average future. For brevity, we
call these data segments followers. What can we expect to find? In a solely
deterministic setting we can expect that the mean of the followers again
exhibits the gust structure. In uncorrelated random data, the followers will
not show any structure outside the time interval where we require similarity
to the precursor. But even if we do not see significant structure in the mean
value, there might be useful hidden information: in terms of the conditional
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Fig. 4.4. The gain in predictability due to the dynamical part as compared to the
static part. The continuous curves show the ratio of the width of the distribution
of wind speeds divided by the width of the conditional distribution of the future
wind speed, conditioned to the last ten measurements, and an assumed uncertainty
in these given by €. These curves are computed from the e-entropies mentioned in
Sect. 4.2.1. The curves show the predictability gain for predictions made 1-10 time
steps into the future (from top to bottom), reflecting the trivial observation that
predictions are worse the further into the future they apply to. The dashed curve is
the numerical benchmark obtained for predictions 1000 steps into the future, where
no dynamical predictability can be expected. This benchmark is, however, needed
to confirm the significance of the results, since finite sample effects for small € could
result in a fake prediction gain. Hence, where this curve deviates from unity, the
results for the other curves are doubtful as well
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probabilities of the m-step-memory Markov chain, it is possible that its mean
does not depend too significantly on the temporal pattern represented by
the m-dimensional condition s. For successful prediction of Xevents beyond
the static average risk, it is necessary that the variance of this distribution
depends on the conditioning state s. If this is the case, then we are able to
compute a time-dependent risk for a large increase of the wind occur.
Returning to the wind data, there are two indications that there are real
precursors. One comes from estimating the distribution of wind speed fluctu-
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Fig. 4.5. The continuous curves shown the gust profiles for gusts of strength g =
0.7,1.4,...,3.5. The dashed curves represent the means of all those data segments
which are close to one of the vertically shifted gust profiles during the sample times
[—16 : 0] (grey area), whereas they are unconstrained outside this interval. In other
words, they show the mean history and the mean future of profiles that contain the
precursor of a gust. Since most of them are not gusts, the mean future does not
look like a gust. However, the mean future velocity is systematically larger that the
mean past velocity
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Fig. 4.6. Distributions of fluctuations of wind speeds around a one-minute moving
mean value, as a function of this mean value. In the bottom plane the standard
deviation of these distributions is shown by dashed lines, which increases roughly
as 1/10 of the mean velocity
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ations around a one-minute mean value, as a function of the latter. As one can
see in Fig. 4.6, the standard deviation of these fluctuations increases with the
one-minute mean ¥ approximately as o(9) ~ 0.19. Hence, large fluctuations
are much more likely if the actual wind speed is large. The minimal stochastic
model that can generate such a finding is an AR-like process with multiplica-
tive noise, for example, in the very simplest case, x,+1 = ax, + br,&,, where
0 < a < 1, b is arbitrary, and £ are independently drawn Gaussian random
numbers.

The second indication of the existence of real precursors comes from
Fig. 4.5. There we show the mean wind profiles when averaging over all gusts
of strength ¢ in a one-day data set. Additionally, we test for the specificity of
these profiles: we accumulate all data segments over the 2 s that are similar
to those in the (shifted in v) gust profiles on the 2 s interval right before the
onset of the gust (causality). The sample averages of these are almost shifted
copies of the gust profiles in the last 2 s before the gust (this similarity is
imposed by the way in which the samples have been selected), and they have
the freedom to exhibit any structure outside this window. Of course, they can
do so only within the restrictions imposed by the (nonlinear) correlations in
the data. We observe that the stronger the gust from which the precursor is
taken, the larger the difference between the wind speed 5 s before the gust
and 5 s after it. Also, we see a (very slight) increase in the wind speed at the
sample times 1-3 s after the end of the conditioning window. It is beyond
the scope of this article to discuss the additional investigations that would
be needed to verify that these structures are really due to nonlinearities or
higher order correlations. However, the observed increase in the standard de-
viations of fluctuations in Fig. 4.6 with the mean wind speed and the fact
that the curves in Fig. 4.5 start from initial velocities that are the bigger the
larger the gust increment g fit this idea nicely.

The prediction method described in Sect. 4.3 has been used to predict
turbulent gusts in [19]. It is clear that the presence of precursors is auto-
matically taken into account in this method once they lie inside the m-step
memory (for m ~ 10 [1/8 s]). The conditional probability to be extracted
from the data under the Markov chain hypothesis was the probability that
a gust would follow, and hence it was a slight modification of the above prob-
ability p(s’|s). As a result, at every instance one can predict the probability
that the wind speed in the near future will exceed the current wind speed by
more than g m/s. Verification of the predicted probabilities using a reliability
analysis was successful. In order to test the success of this scheme for actual
gust prediction, we introduced a threshold p. for the predicted gust proba-
bility: if p(s’|s(t)) > p. at time ¢ then a gust warning was issued, whereas for
p(s’|s(t)) < pe no warning was given. Such a scheme should have an optimal
hit rate, giving warnings when a gust is following, and it should have a low
false alarm rate. Evidently, the lower the value of p., the more warnings are
issued, and both the hit rate and the false alarm rate will be large, whereas
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Fig. 4.7. The ROC statistics for the prediction of sudden wind gusts in surface
wind. The plot shows hit rate versus false alarm rate under the variation of the
threshold p. for issuing a warning. Evidently, strong gusts (large g) have a higher
hit rate than weak gusts

for high p. both rates will be low. If warnings are issued randomly without
any correlation to the real state of the system, hit rate and false alarm rate
will be identical (both depending on p.). In order to verify that the scheme
possesses predictive power at all, one therefore studies the receiving operator
characteristic (ROC) statistics [20]. Using p. as a parameter and tuning it
from 0 to 1, one plots the hit rate versus the false alarm rate. The scheme
is only useful if the hit rate is always larger than the false alarm rate. In
Fig. 4.7 we show these statistics for the case of wind speed data, where we
consider different gust classes. Evidently, and this leads us back to the issue
of Xevents, the stronger gusts (large g) possess a better predictability than
the weaker ones.

4.4 Conclusions

The most relevant message we want to convey with this article is that sys-
tems which have to be assumed to contain stochastic components also allow
for some degree of predictability. Although one can still make specific pre-
dictions about the future value of the observable in the sense of the most
probable outcome or the outcome that yields the least average prediction
error, it is much more reasonable to extract probabilistic information. This is
information of the kind “an event of magnitude larger than some threshold
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is expected to occur with a given probability”. We have mentioned that such
a prediction can be verified using the reliability test, and that its usefulness
can be tested using ROC statistics. Finally, in order to convert it into an
action, the threshold for issuing a warning has to be chosen. This is done on
the basis of the ROC curve together with a cost function: if one knows the
costs for a false alarm and the costs of an unpredicted Xevent, then one can
compute the costs corresponding to all points in the ROC curves. The mini-
mum of this cost function then defines the optimal threshold p,. for warning.
Of course, this implies a pragmatic point of view, which in some cases might
appear inhuman: not to generate a warning if a big earthquake is predicted
with some low probability might seem cynical, but when computing the real
costs of an erroneous evacuation of a city with a million inhabitants it would
soon become apparent that false alarms should be minimised.

We want to come back now to Xevents and discuss how their prediction
differs from other prediction tasks. Dynamical predictability of a given phe-
nomenon means that there are temporal correlations in the time series data
which in principle allow us to make predictions with a given accuracy. In
other words, the average prediction error is limited from below by the dy-
namics. An Xevent is usually of very large magnitude. Hence, a prediction
error of a given size, which might be so big that it does not help with the
prediction of “normal” events, might still be small compared to the magni-
tude of an Xevent and hence might not be prohibitive for its prediction. Let
us illustrate this for the case of the wind speed data. If we want to predict
whether the wind speed will increase or decrease (for example, in order to
re-adjust the pitch angle of the rotor blades of a wind turbine), then for
normal changes in wind speed (compare Fig. 4.3: 90% of all changes are by
less than 0.5 m/s) the prediction error is too big to give any indication of the
sign of the change. The predicted value is, even including the uncertainty due
to the prediction error, significantly different from zero only when a really
big change is to be expected. Of course, this reasoning requires that predic-
tion errors are of about the same absolute size for Xevents as for normal
events. Although there are indications that this is the case for wind speed
data, this is not guaranteed, since, in particular, the KS-entropy refers to
the mean prediction error averaged over all events according to their rela-
tive frequency. Since Xevents were assumed to be rare, a much larger than
average prediction error in extreme cases would not affect the KS-entropy
very much.

The dynamical origin of Xevents, which is clearly observed in the wind
speed data (for instance, as the precursors shown in Fig. 4.5), leads also
to a related issue. Xevents are usually characterised by extreme values of
a given observable. The fact that the observable assumes an extreme value
corresponds to a state vector of the system that lies inside a certain region in
phase space. If we study the same system using a different observable, these
“new” Xevents will correspond to a different set of state vectors. An example
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for weather is extreme temperature compared to extreme precipitation events.
One does not imply the other, but both are a consequence of the dynamics
of the atmosphere. Now the crucial question is whether extreme values of the
observable and the corresponding dynamical states are in some abstract sense
extreme states. For those phenomena where this is the case this might imply
enhanced predictability of Xevents. Since the Xevent is usually a consequence
of a great physical impact, we expect to identify an extreme state when the
observable used in the time series is physically relevant and free from human-
made thresholds. We thus see that there are both statistical (smaller relative
error) and dynamical reasons to expect, at least in some systems, a higher
predictability for Xevents when compared to typical events. Indeed we found
an enhanced predictability for the more extreme turbulent gusts than for less
extreme ones (see Fig. 4.7). Similar results have also been suggested in at
least two more papers [21,22]. Right now it is not clear to us how typical
this is, and if it is typical, whether this is a dynamical or a statistical effect.
Further work is needed for clarification.

In our discussion of dynamical structures we focused on nonlinear stochas-
tic processes. Of course, if a phenomenon were perfectly deterministic, much
better predictions would be possible. However, it is unrealistic to expect pure
determinism in too many natural phenomena. In the stochastic setting, pre-
dictions are probabilistic themselves. As we have shown, probabilistic pre-
dictions are also of considerable benefit, since the probability of an Xevent
occurring imminently can fluctuate considerably over the course of time, de-
pending on the actual state of the system. The dynamical part of predictabil-
ity can also be explored by searching for precursors or specific signatures
before Xevents; for example, by searching for log-periodic structures [23].
The main advantage of the Markov chain model presented here is that it is
a nonparametric method (in the sense that the parameters have no physical
meaning) that can be applied to virtually any correlated time series, so we
are not assuming any previous knowledge about the dynamics of the system
or the existence of characteristic structures in the time series.

One might ask why predictability beyond the mere statistical probability
of occurrence (static part) should be present in a real world system. In fact,
we are aware of certain deterministic feedback loops in almost all systems
(for example, in the stock market). The presence of these deterministic com-
ponents enforces correlations in time even in the presence of strong stochastic
components that drive the dynamics. From this point of view, non-zero dy-
namical predictability is the rule rather than the exception.

Acknowledgement. Figure 4.7 is a result of joint work with M. Ragwitz and N.
Vitanov. E.G.A. acknowledges financial support from CAPES (Brazil) and DAAD
(Germany).
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5 Endogenous versus Exogenous Origins
of Crises

Didier Sornette

Summary. Are large biological extinctions such as the Cretaceous/Tertiary KT
boundary due to a meteorite, extreme volcanic activity or self-organized critical ex-
tinction cascades? Are commercial successes due to a progressive reputation cascade
or the result of a well orchestrated advertisement? Determining the chain of causal-
ity for Xevents in complex systems requires disentangling interwoven exogenous and
endogenous contributions with either no clear signature or too many signatures.
Here, I review several efforts carried out with collaborators which suggest a gen-
eral strategy for understanding the organizations of several complex systems under
the dual effect of endogenous and exogenous fluctuations. The studied examples
are: internet download shocks, book sale shocks, social shocks, financial volatility
shocks, and financial crashes. Simple models are offered to quantitatively relate the
endogenous organization to the exogenous response of the system. Suggestions for
applications of these ideas to many other systems are offered.

5.1 Introduction

Xevents are pervasive in all natural and social systems: earthquakes, vol-
canic eruptions, hurricanes and tornadoes, landslides and avalanches, light-
ning strikes, magnetic storms, catastrophic events of environmental degrada-
tion, failure of engineering structures, crashes in the financial stock markets,
social unrests leading to large-scale strikes and upheaval and perhaps to rev-
olutions, economic drawdowns on national and global scales, regional and
national power blackouts, traffic gridlocks, diseases and epidemics, and so
on.

Can we forecast them, manage, mitigate or prevent them? The answer to
these questions requires us to investigate their origin(s).

Self-organized criticality, and more generally, complex system theory con-
tends that out-of-equilibrium slowly driven systems with threshold dynamics
relax through a hierarchy of avalanches of all sizes. Accordingly, Xevents are
seen to be endogenous [1,2], in contrast with previous prevailing views. In
addition, the preparation processes before large avalanches are almost undis-
tinguishable from those before small avalanches, making the prediction of the
former seemingly impossible (see [3] for a discussion). But how can one as-
sert with 100% confidence that a given Xevent is really due to an endogenous
self-organization of the system, rather than to the response to an external
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shock? Most natural and social systems are indeed continuously subjected to
external stimulations, noises, shocks, solicitations, forcing, all of which can
widely vary in amplitude. It is thus not clear a priori whether a given large
event is due to a strong exogenous shock, to the internal dynamics of the
system organizing in response to the continuous flow of small solicitations,
or maybe to a combination of both. Addressing this question is fundamental
to gaining an understanding of the relative importance of self-organization
versus external forcing in complex systems and for the understanding and
prediction of crises.
This leads to two questions:

1. Are there distinguishing properties that characterize endogenous versus
exogenous shocks?
2. What are the relationships between endogenous and exogenous shocks?

Actually, the second question has a long tradition in physics. It is at the
basis of the interrogations that scientists perform on the enormously varied
systems they study. The idea is simple: subject the system to a perturbation,
a “kick” of some sort, and measure its response as a function of time, of
the nature of the solicitations and of the various environmental factors that
can be controlled. In physical systems at thermodynamic equilibrium, the
answer is known as the theorem of fluctuation-dissipation, sometimes also
referred to as the theorem of fluctuation-susceptibility [4]. In a nutshell, this
theorem relates quantitatively, in a very precise way, the response of the
system to an instantaneous kick (exogeneous) to the correlation function of its
spontaneous fluctuations (endogenous). An early example of this relationship
is found in Einstein’s relation between the diffusion coefficient D of a particle
in a fluid subjected to the chaotic collisions of the fluid molecules and the
coefficient 1 of viscosity of the fluid [5,6]. The coefficient n controls the drag;
the response of the particle velocity when subjected to an exogenous force
impulse. The coefficient D can be shown to be a direct measure of the (integral
of the) correlation function of the spontaneous (endogenous) fluctuations of
the particle velocity.

In out-of-equilibrium systems, the existence of a relationship between the
response function to external kicks and spontaneous internal fluctuations has
not been settled [7]. In many complex systems, this question amounts to
distinguishing between endogeneity and exogeneity and is important for un-
derstanding the relative effects of self-organization versus external impacts.
This is difficult in most physical systems because externally imposed per-
turbations may lie outside the complex attractor, which itself may exhibit
bifurcations. Therefore, observable perturbations are often misclassified.

It is thus interesting to study other systems in which the dividing line
between endogenous and exogenous shocks may be clearer in the hope that it
will lead to insights into complex physical systems. The investigations of the
two questions above may also bring a new understanding of these systems.
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The systems to which the endogenous-exogenous question (which we will refer
to as “endo-exo” for short) is relevant include the following:

— Biological extinctions, such as the Cretaceous/Tertiary KT boundary
(meteorite versus extreme volcanic activity (Deccan traps) versus self-
organized critical extinction cascades)

— TImmune system deficiencies (external viral/bacterial infections versus in-
ternal cascades of regulatory breakdowns)

— Cognition and brain learning processes (role of external inputs versus
internal self-organization and reinforcements)

— Discoveries (serendipity versus the outcome of slow endogenous matura-
tion processes)

— Commercial successes (progressive reputation cascade versus the result of
a well orchestrated advertisement)

— Financial crashes (external shocks versus self-organized instability)

— Intermittent bursts of financial volatility (external shocks versus cumula-
tive effects of news in a long-memory system)

— The aviation industry recession (9/11/2001 terrorist attack versus struc-
tural endogenous problems)

— Social unrests (triggering factor or decay of social fabric)

— Recovery after wars (internally generated (civil wars) versus imported
from the outside) and so on

It is interesting to mention that the question of exogenous versus en-
dogenous forcing has been hotly debated in economics for decades. A promi-
nent example is the theory of Schumpeter on the importance of technolog-
ical discontinuities in economic history. Schumpeter argued that “evolution
is lopsided, discontinuous, disharmonious by nature .. .studded with violent
outbursts and catastrophes ... more like a series of explosions than a gentle,
though incessant, transformation” [8]. Endogeneity versus exogeneity is also
paramount in economic growth theory [9]. Our analyses, reviewed below,
suggest a subtle interplay between exogenous and endogenous shocks, which
may cast a new light on this debate.

In the following, we review the works of the author with his collaborators,
in which the endo-exo question is investigated in a variety of systems.

5.2 Exogenous and Endogenous Shocks
in Social Networks

One defining characteristics of humans is their organization in social net-
works. It is probable that our large brains have been shaped by social in-
teractions, and may have co-evolved with the size and complexity of social
groups [10,11]. A single individual may belong to several intertwined social
networks, associated with different activities (work colleagues, college alumni
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societies, friends, family members, and so on). The formation and the evolu-
tion of social networks and their mutual entanglements control the hierarchy
of interactions between humans, from the individual level to society and to
culture. In this section, we review a few original probes of several social net-
works which unearth a remarkable universality: the distribution of human
decision times in social networks seem to be described by a power law 1/t ¢
with 6§ = 0.3£0.1. This constitutes an essential ingredient in models describ-
ing how the cascade of agent decisions leads to the bottom-up organization
of the response of social systems. We first present such a model in terms of
a simple epidemic process of word-of-mouth effects [12-14] and then discuss
the different data sets.

5.2.1 A Simple Epidemic Cascade Model of Social Interactions

Let us consider an observable characterizing the activity of humans within
a given social network of interactions. This activity can be the rate of visits
or downloads on an internet website, the sales of a book or the number of
newpaper articles on a given subject.

We envision that the instantaneous activity results from a combination
of external forces such as news and advertisement, and from social influences
in which each past active individual may prompt other individuals in her
network of acquaintances to act. This impact of an active individual on other
humans is not instantaneous, as people react on a variety of timescales. The
time delays capture the time interval between social encounters, the matu-
ration of the decision process, which can be influenced by mood, sentiments,
and many other factors and the availability and capacity to implement the
decision. We postulate that this latency can be described by a memory kernel
o(t — t;), giving the probability that an action at time ¢; leads to another
action at a later time ¢ by another person in direct contact with the first ac-
tive individual. We consider the memory function ¢(t —¢;) as a fundamental
macroscopic description of how long it takes for a human to be triggered into
action, following the interaction with an already active human.

Then, starting from an initial active individual (the “mother”) who first
acts (either from exogenous news or by chance), she may trigger actions by
first-generation “daughters,” which themselves prompt the actions of their
own friends, who become second-generation active individuals, and so on.
This cascade of generations can be shown to renormalize the memory kernel
¢(t — t;) into a dressed or renormalized memory kernel K (¢t —¢;) [12,13,15],
giving the probability that an action at time t; leads to another action by
another person at a later time ¢ through any possible generation lineage. In
physical terminology, the renormalized memory kernel K (t) is nothing but
the response function of the system to an impulse. This is captured by the
following equations:

t

A(t) = s(t) —|—/ dr A(t) ¢(t —71) = / dr s(t) K(t—7) . (5.1)

— 0o — 00

t
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The meaning of these two equivalent formulations is as follows. The s(t)’s are
the spontaneous exogenous activations. The integral fioo dr A(t) ¢(t — 1)
gives the additional contribution due to past activities A(7), whose influences
on the present are mediated by the direct influence kernel ¢ of the first
generation. The last integral fioo dr s(t) K(t — 1) expresses the fact that
the present activity A(t) can also be seen as resulting from all past exogenous
sources s(7) mediated to the present by the renormalized kernel K, which
takes into account all of the generations of cascades of influences.

The following functional dependence is found to provide an accurate de-
scription, as we shall discuss below:

K({)~1/(t—t.)?, with p=1-6. (5.2)
The dependence (5.2) implies that ( [12,13,15]):
H(t) ~ 1/(t —t)1Ho . (5.3)

We should stress that the renormalization from the usually (but not al-
ways) unobservable “bare” response function ¢(t) with exponent 1 + 6 in
(5.3) to the observable “renormalized” response function K (t) in (5.2) with
exponent 1 — 6 is obtained if the network is close to critical; in other words if
the average branching ratio n is close to 1 (n is defined as the average num-
ber of daughters of the first generation per mother). In other words, there
is on average approximately one triggered daughter per active mother. This
condition of criticality ensures, in the language of branching processes, that
avalanches of active people triggered by a given mother are self-similar (power
law distributed). In contrast, for n < 1, the cascade of triggered actions is
“sub-critical” and avalanches die off more rapidly. It can be shown [12,13,15]
that in this case there is a characteristic timescale

1

AR (5.4)

acting like a correlation time, which separates two regimes:

— for t < t*, the renormalized response function K (¢) is indeed of the form
(5.2);

— for t > t*, the renormalized response function K (t) crosses over to an
asymptotic decay with exponent 1 + 6, of the form of ¢(¢) in (5.3).

For n > 1, the epidemic process is supercritical and has a finite probability of
growing exponentially. We will not be concerned with this last regime, which
does not seem relevant in the data discussed below.

In the absence of strong external influences, a peak in social activity can
occur spontaneously due to the interplay between a continuous stochastic flow
of small external news and the amplifying impact of the epidemic cascade of
social influences. It can then be shown that, for n close to 1 or equivalently
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for |t — t.| < t*, the average growth of the social activity before such an
“endogenous” peak and the relaxation after the peak are proportional to
[13,16]
+oo
K(t—te+u)K (u)du ~ 1/[t — t.|* 7% (5.5)
0

where the right-hand-side of the expression holds for K (¢) of the form (5.2).
The prediction that the relaxation following an exogeneous shock should hap-
pen faster (larger exponent 1 — @) than for an endogeneous shock (with ex-
ponent 1 — 20) agrees with the intuition that an endogeneous shock should
have inpregnated the network much more and should thus have a longer lived
influence. In a nutshell, the mechanism producing the endogenous response
function (5.5) is the constructive interference of accumulated small news cas-
cading through the social influence network. In other words, the presence of
a hierarchy of nested relaxations K(t) given by (5.2), each one associated
with each small news, creates the effective endogenous response (5.5).

Dodds and Watts have recently introduced a general contagion model
which, by explicitly incorporating memories of past exposures to, for example,
an infectious agent, a rumour, or a new product, includes the main features
of existing contagion models and interpolates between them [17].

5.2.2 Internet Download Shocks

In [18], Johansen and Sornette report the following experiment. The authors
were interviewed by a journalist from the leading Danish newspaper Jyllands
Posten on a subject of rather broad interest, namely stock market crashes.
The interview was published on April 14, 1999 in both the paper version of
the newspaper as well as in the electronic version (with access restricted to
subscribers) and included the URLs where the authors’ research papers on
the subject could be retrieved. It was hence possible to monitor the number
of downloads of papers as a function of time since the publication date of the
interview. The rate of downloads of the authors’ papers as a function of time
was found to obey a 1/t? power law, with exponent b = 0.58 +-0.03, as shown
in Fig. 5.1.

Within the model of epidemic word-of-mouth effect summarized in Sect.
5.2.1, the relaxation of the rate of downloads after the publication of the
interview characterizes the response function K (t) given by (5.2) with respect
to an exogenous peak: prior to the publication of the interview, the rate of
downloads was slightly less than one per day; it suddenly jumped to several
tens of downloads per day in the first few days after the publication and then
relaxed slowly according to (5.2). The reported power law with exponent
p =~ 0.6 is compatible with the form of (5.2) with 6 = 0.4, which is within the
range of other values: § = 0.3 £ 0.1.

Johansen [19] has reported another similar observation following another
web interview on stock market crashes, which contained the URL of his arti-
cles on the subject. He again found a power law dependence (5.2), but with
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Fig. 5.1. Cumulative number of downloads N as a function of time ¢ from the
appearance of the interview on Wednesday 14th April 1999. The fit is N(t) =
@ t'7P + ct with b~ 0.58 + 0.03. Reproduced from [18]

1

an exponent p close to 1, leading in the terminology of the model of epidemic
word-of-mouth effect to 8 ~ 0. Two interpretations are possible: (i) the expo-
nent # is non-universal; (ii) the social network is not always close to criticality
(n =~ 1) and the observable response function K(t) is then expected to cross
over smoothly from a power law with exponent 1 — 6 to another asymptotic
power law with exponent 1 4+ 6. According to this second hypothesis, the
exponent p of the relaxation kernel K (¢) may be found in the range 1 — 6 to
1446, depending upon the range of investigated timescales and the proximity
of 1 —n to criticality. We find hypothesis (ii) more attractive as it places the
blame on the non-universal parameter n, which embodies the connectivity
structure, static and dynamic, of social interactions at a given moment. It
does not seem unrealistic to think that n may not always be at its critical
value 1, due to many other possible social influences. In constrast, one could
postulate that the power law (5.3) for the direct influence function ¢(t) be-
tween two directly linked humans may reflect a more universal character.
But, of course, only more empirical investigations will allow us to shed more
light on this issue.

Eckmann, Moses and Sergi [20] also report on an original investigation
probing the temporal dynamics of social networks using email networks in
their universities. They find a distribution of response times for answering
a message that seems to be a power law with an exponent of less than 1 for
rapid response times (one hour) to another power law with an exponent larger
than 1 at slower response times (days), which could be a direct evidence of
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the direct response function ¢(¢) defined in (5.3). The relationship between
their investigation and the previous works using web downloads [18,19] has
been noted by Johansen [21].

5.2.3 Book Sale Shocks

Sornette, Deschatres, Gilbert and Ageon have used a database of sales from
Amazon.com as a proxy for commercial growth and successes [14]. Figure 5.2
shows about 1.5 years of data for two books, Book A (“Strong Women Stay
Young” by Dr. M. Nelson) and Book B (“Heaven and Earth (Three Sisters
Island Trilogy)” by N. Roberts), which are illustrative of the two classes
found in this study. On 5th June 2002, Book A jumped from a sales rank
of over 2,000 to a rank of six in less than 12 hours. On 4th June 2002, the
New York Times published an article crediting the “groundbreaking research
done by Dr. Miriam Nelson” and advising the female reader, interested in
having a youthful postmenopausal body, to buy the book and consult it
directly [22]. This case is the archetype of an “exogenous” shock. In con-
trast, the sales rank of Book B peaked at the end of June 2002 after slow
and continuous growth, with no such newspaper article, followed by a simi-
lar almost symmetrical decay, the entire process taking about four months.
We will show below that the peak for Book B belongs to the class of en-
dogenous shocks. This endogeneous growth is well explained qualitatively
in [23] by taking the example of the book “Divine Secrets of the Ya-Ya
Sisterhood” by R. Wells, which became a bestseller two years after publi-
cation, with no major advertising campaign. After reading this (originally)
small budget book, “Women began forming Ya- Ya Sisterhood groups of their
own [...]. The word about Ya-Ya was spreading [...] from reading group to
reading group, from Ya-Ya group to Ya-Ya group” [23]. Generally, the pop-
ularity of a book is based on whether the information associated with that
book will be able to propagate far enough into the network of potential buy-
ers.

Another dramatic example of exogenous shocks is shown in Fig. 5.3. Here,
the personal trainer of Oprah Winfrey had his book presented seven or eight
times during the Oprah Winfrey Show, leading to dramatic overnight jumps
in sales.

The declines in the sales of about 140 books that reached the top 50 in the
Amazon.com ranking system have been analysed and shown to fall into two
categories: relaxations described by a power law with an exponent close to
0.7 = 1—6, and relaxations described by a power law with an exponent close
to 0.4 = 1—20, for # ~ 0.3. Examples of these fits for the two books shown in
Fig. 5.2 are presented in Fig. 5.4. In addition, Sornette et al. [14] checked that
an overwhelming majority of those sale peaks classified as exogenous from the
value of their exponent ~ 0.7 = 1 — 6 were preceded by an abrupt jump, in
agreement with the epidemic cascade model of social interactions described
in Sect. 5.2.1. In contrast, those sale peaks that fell into the endogenous class
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Fig. 5.2. Time evolution over a year and a half of the sales per day of two books:
Book A (bottom, blue, left scale) is “Strong Women Stay Young” by Dr. M. Nelson
and Book B (top, green, right scale) is “Heaven and Earth (Three Sisters Island
Trilogy)” by N. Roberts. The difference in the patterns is striking, Book A under-
going an exogenous peak on 5th June 2002, and Book B endogenously reaching
a maximum on 29th June 2002. Reproduced from [14]

according to the exponent ~ 0.4 = 1 — 26 of their relaxation after the peak
were found to be preceded by approximately symmetric growth described by
a power law with the same exponent, as predicted by (5.5). An example is
shown also for Book B in Fig. 5.4.

The small values of the exponents (close to 1 — 6§ and 1 — 26) for both
exogenous and endogenous relaxations imply that the sales dynamics are
dominated by cascades involving higher-order generations rather than by in-
teractions that stop after first-generation buy triggering. Indeed, if buys were
initiated mostly due to news or advertisements, and not much by triggering
cascades in the acquaintance network, the cascade model predicts that we
should then measure an exponent 1 4 6 given by the “bare” memory ker-
nel ¢(t), as already said. This implies that the average number n (the aver-
age branching ratio in the language of branching models) of prompted buyers
per initial buyer in the social epidemic model is on average very close to the
critical value 1, because the renormalization from ¢(t) to K (t) given by (5.2)
only operates close to criticality, as characterized by the occurrence of large
cascades of buys. Reciprocally, a value of the exponent p that is larger than 1
suggests that the associated social network is far from critical. Such instances
can actually be observed. Examples of crossovers from the renormalized re-
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Fig. 5.3. Time evolution of the book entitled “Get with the Program.” Each time
the book appeared on the Oprah Winfrey Show (B. Greene was Oprah Winfrey’s
personal trainer), the sales jumped overnight

sponse function K (t) (5.2) to ¢(t) in (5.3) with an asymptotic decay with
exponent 1+ 6 have been documented ( [14], Deschatres, F. and D. Sornette,
in preparation). Note that it is possible to give an analytical description of
this crossover exhibited by K(t) as a function of n [12], thus allowing us, in
principle, to invert for n for a given data set. This opens up the tantalizing
possibility of measuring the dynamical connectivity of the social network,
and possibly of monitoring it as a function of time.

These findings open up other interesting avenues of research. While this
first investigation has emphasised the distinction between exogenous and en-
dogenous peaks, setting the fundamentals for a general study, repeating peaks
as well as peaks that may not be pure members of a single class are also fre-
quent. In a sense, there are no real “endogenous” peaks, one could argue,
because there is always a source or a string of news impacting upon the
network of buyers. What Sornette et al. [14] have done is to distinguish be-
tween two extremes, the very large news impact and the structureless flow
of small news amplified by the cascade effect within the network. One can
imagine and actually observe a continuum between these two extremes, with
feedbacks between the development of endogeneous peaks and the increased
interest of the media as a consequence, feeding back and providing a kind
of exogenous boost, and so on. In those and in more complicated cases, the
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Fig. 5.4. The bottom curve (blue) shows the relaxation in the sales of Book A after
the sales peak at t. = 5th June 2002 as a function of the time ¢ — ¢, from the time
of the peak. A least squares best fit with a power law gives a slope of &~ —0.7. Since
this peak is identified as exogenous with a theoretical slope of 1 — , we obtain the
estimate 6 = 0.3 £ 0.1. The curve in the middle (green, shifted up by a factor 6
compared to the bottom curve) shows the relaxation in sales of Book B after the
peak at t. = 29th June 2002 as a function of the time t — ¢, from the time of the
peak. The least squares fit gives a slope of ~ —0.4, which provides the independent
estimate 0 = 0.3 + 0.1 from the theoretical endogenous exponent 1 — 260. The top
curve (red, shifted up by a factor 25 with respect to the bottom curve) shows the
acceleration in sales of Book B leading to the same peak at t. = 29th June 2002 as
a function of the time t. —t to the time of the peak. The time on the z-axis has been
reversed to compare the precursory acceleration with the aftershock relaxation. The
least squares slope is & —0.3, not far from the predicted 1—26 of the cascade model,
with § = 0.3 £0.1

epidemic model of word-of-mouth effects should provide a starting platform
for predicting the sales dynamics as a function of an arbitrary set of external
sources. By dynamically tracking the connectivity n(t) of each social network
relevant to a given product, it should also be possible to target the most
favourable times, corresponding to the largest n(t), for promoting or sustain-
ing the sales of a given product, with obvious consequences for marketing and
advertisement strategies. An additional extension includes the possible feed-
back of the marketing strategy into the control parameter n(t), which could
be manipulated so as to keep the system critical, an ideal situation from
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the point of view of marketers and firms. Quantifying this effect requires us
to extend the simple epidemic model in the spirit of mechanisms leading to
self-organized criticality by positive feedbacks of the order parameter onto
the control parameter [24,25]. The results of Sornette et al suggest that so-
cial networks have evolved to converge very close to criticality. As Andreas
S. Weigend, chief scientist of Amazon.com (2002-2004) wrote on his web-
page: “Amazon.com might be the world’s largest laboratory to study human
behaviour and decision making.” I share this viewpoint.

Actually, I envision that an extension of the study of Sornette et al to
a broad database of sales from all products sold by e-retailers like Ama-
zon.com could give access to the equivalent of the “social climate” of a coun-
try like the USA and its evolution as a function of time under the various
exogenous and endogenous factors at work. Indeed, Amazon.com categorizes
its products into different (tradable) compartments of possible interest, such
as

— Books, Music, DVD,

— Electronics (audio and video, cameras and photography, software, com-
puters and video games, cell phones...)

—  Office

— Children and Babies

— Home and Garden (which includes pets)

— Gifts, Registries, Jewellery and Watches

— Apparel and Accessories

— Food

— Health, Personal Care, Beauty

— Sports and Outdoors

— Services (movies, restaurants, travel, cars, ...)

— Arts and Hobbies

— Friends and Favourites

with many subcategories. Monitoring and analysing the sales as a function of
time in these different categories is like getting the temperature, wind velocity,
humidity in meteorology in many different locations. The flow of interest of
society at large and of subgroups could in principle tell us how society is
responding in its spending habits to large scale influences. As an illustrative
example, it has been shown that, during bullish periods characterized by
strong stock market gains (bubble regimes), the number of books written
and sold related to financial investments soar [26,27].

Another potentially fruitful application is the music industry and the im-
pact upon sales of internet piracy, the quality of performers (endogenous effect
on the network of potential buyers who can promote a CD by word-of-mouth
in the network of potential buyers), as well as the promotion campaigns of
short-lived performers and their one-hit wonders [28]. Indeed, according to
an internal study performed by one of the big companies that dominate the
production and distribution of music, the drop in sales in America may have
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less to do with internet piracy than with other factors, among them the de-
creasing quality of music itself. The days of watching a band develop slowly
over time with live performances are over, according to some professionals.
Even Wall Street analysts are questioning quality. If CD sales have shrunk,
one reason could be that people are less excited by the industry’s product.
A poll by Rolling Stone magazine found that fans believe that relatively
few “great” albums have been produced in recent years [28]. This is clearly
an endo-exo question that can be analysed with databases available on the
Internet.

5.2.4 Social Shocks

Roehner, Sornette and Andersen [29] have used the concept of exogeneous
shocks to propose a general method for quantifying the response function
in order to advance the social sciences. By using a database of newspaper
articles called Lexis-Nexis, which is available in many departments of political
science or sociology, they have quantified the response to shocks, such as the
following;:

—  On 31st October 1984, the Prime Minister of India, Indira Gandhi, was
assassinated by two of her Sikh bodyguards. This event triggered a wave
of retaliations against Sikh people and Sikh property, not only in India
(particularly in New Delhi), but in many other countries as well.

— In the early hours of 6th December 1992, thousands of Hindus converged
on the holy city of Ayodhya in northern India and began to destroy the
Babri mosque which was said to be built on the birthplace of Lord Rama.
The old brick walls came down fairly easily and soon the three domes of
the mosque crashed to the ground. This event triggered a wave of protes-
tations and retaliations which swept the whole world from Bangladesh to
Pakistan, to England and the Netherlands. In all of these countries, Hindu
people were assaulted and Hindu temples were firebombed, damaged or
destroyed.

— On 11th September 2001, two planes crashed into the twin towers of the
World Trade Center in New York. This event triggered a wave of reactions
against Islamic people and property, not just in the United States.

For these different events, Roehner et al. [29] show that different quan-
titative measures of social responses exhibit an approximately universal be-
haviour, again characterised by a power law, as shown in Fig. 5.5. This figure
gives the time evolution after 11th September 2001 of newspaper articles,
anti-Arab incidents and the Dow Jones Industrial Average, which are ap-
proximated by a power law ~ 1/tP. Due to the coarseness of the measures,
the exponent p is not well-constrained: p = —1.8 & 0.7 (newspaper articles),
p = —14+0.5 (anti-Arab incidents) and p = —2.2 £ 1.6 (DJI). Comparing
the reaction to 11th September 2001 in different countries such as Canada,
Great Britain and the Netherlands, Roehner et al. [29] have suggested that
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Fig. 5.5. Relaxation of three different social variables after the events of 11th
September 2001. The solid line curve is the number of articles reporting on the
destruction of mosques after the event; the broken line (scale on the right-hand
side) shows the number of anti-Arab incidents in California in the three months
after 11th September; the dotted line shows the changes in the level of the Dow
Jones Index with respect to its pre-9/11 level, as given by the difference DJI(pre-
9/11)—DJI(current). Source: California’s Attorney General Office; published in the
San Jose Mercury News, 11th March 2002. Reproduced from [29]

the response function actually expresses information on “cracks” that pre-
existed in the social networks of the corresponding countries. For instance,
the number of attacks on Mosques was larger in the Netherlands, which is in
line with other information on the concern expressed at high political levels
(private communication to the authors) about the integrity of the social fab-
ric of the Netherlands, a fact illustrated more recently on the political scene
by the rapid rise and then assassination of the rightist politician Fortuyn
in May 2002. This line of evidence can be quantified within the epidemic
model of social influence by different values of the connectivity parameter n
in different countries.

Burch, Emery and Fuerst [30] have used also the unique opportunity
offered by the 9/11 terrorist attack to clearly confirm the hypothesis that
closed-end mutual fund discounts from fund net asset values reflect small
investor sentiment. Carter and Simkins [31] investigated the reaction of airline
stock prices to the 9/11 terrorist attack and found that the market was
concerned about the increased likelihood of bankruptcy in the wake of the
attacks and distinguished between airlines based on their ability to cover
short-term obligations (liquidity).
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5.3 Exogenous and Endogenous Shocks
in Financial Markets

5.3.1 Volatility Shocks

Standard economic theory maintains that the complex trajectory of stock
market prices is the faithful reflection of the continuous flow of news that
is interpreted and digested by an army of analysts and traders. Accordingly,
large shocks should result from really bad surprises. It is a fact that exoge-
nous shocks exist, as epitomized by the recent events of 11th September 2001,
and there is no doubt about the existence of utterly exogenous bad news that
moves stock market prices and creates strong bursts of volatility. One case
that cannot be refuted is the market turmoil observed in Japan following
the Kobe earthquake of 17th January 1995, the estimated cost of which was
around $200 billion dollars. Indeed, so longinfancy, destructive earthquakes
cannot be not endogenized in advance in stock market prices by rational
agents ignorant of seismological processes. One may also argue that the inva-
sion of Kuwait by Iraq on 2nd August 1990 and the coup against Gorbachev
on 19th August 1991 were strong exogenous shocks. However, some could
also argue that precursory fingerprints of these events were known to some
insiders, suggesting the possibility that the action of these informed agents
may have been reflected in part in stock markets prices. Even more difficult is
the classification (endogenous versus exogenous) of the hierarchy of volatility
bursts that continuously shake stock markets. While it is a common prac-
tice to associate the large market movements and strong bursts of volatility
with external economic, political or natural events [32], there is no convincing
evidence to support this.

Perhaps the most robust observation in financial stock markets is that
volatility is serially correlated with long-term dependence (approximately
power law-like). Volatility autocorrelation is typically modelled using autore-
gressive conditional heteroskedasticity (ARCH) [33], generalized ARCH [34],
stochastic volatility [35], Markov switching [36, 37], nonparametric [38] and
extensions of these models (see [39] for comparisons). Recent powerful ex-
tensions include the Multifractal Random Walk model (MRW) introduced
by Muzy, Bacri and Delour [40, 41], which belongs to the class of stochas-
tic volatility models. Using the MRW, Sornette, Malevergne and Muzy [42]
have shown that it is possible to distinguish between an endogenous and an
exogenous originated volatility shock. Tests on the October 1987 crash on
a hierarchy of volatility shocks and on a few of the obvious exogenous shocks
have validated the concept. This study shows that the relaxation with time
of a burst of volatility is distinctly different after a strong exogenous shock
compared with the relaxation of volatility after a peak with no identifiable
exogenous sources. This study does not explain the origin of volatility corre-
lation. But it identifies the “natural” response function of the system to an
external shock, from which the stationary long-term dependence structure
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of the volatility and its intermittent bursts derive automatically. In other
words, the study of Sornette et al. leads to the view that the properties of
the volatility can be largely understood from a single characteristic, which
is the response of the agents to a new piece of news. This response function
must ultimately be derived from the behaviour of financial agents, for in-
stance taking into account their sensitivity to changes in wealth, their loss
aversion as well as their finite-time memory of past losses that may impact
their future decisions [44].

The multifractal random walk is an autoregressive process with a long-
range memory decaying as t~!/2, which is defined using the logarithm of the
volatility. Using the MRW model for the dependence structure of the volatil-
ity, Sornette et al. predict that exogenous volatility shocks will be followed

by a universal relaxation
~ MNt? (5.6)

where A is the multifractal parameter, while endogenous volatility shocks
relax according to a power law

~ 1/tPV) - with p(Vp) ~ A2 In(Vp) , (5.7)

with an exponent p(Vy) which is a linear function of the logarithm In(Vp) of
the shock of volatility V. The difference between these behaviours and those
reported above modelled by the epidemic process with long-term memory
stems from the fact that the stock market returns r.(t) at timescale At at
a given time ¢ can be accurately described by the following process [40,41]:

rac(t) = €(t) - oar(t) = e(t) - ewat® | (5.8)

where €(t) is a standardized Gaussian white noise independent of wa.(t), and
wa(t) is a near-Gaussian process with mean and covariance

war = ; ln(O'QAt) — CAt(O) (5.9)

Cat(1) = Cov|wae(t),war(t + 7)) = A2 In <|T| n eT3/2At> . (5.10)
where 02 At is the return variance at scale At and T represents an “integral”
(correlation) timescale. A is called the multifractal parameter: when it van-
ishes, the MRW reduces to a standard Wiener process (standard continuous
random walk). Such a logarithmic decay of the log-volatility covariance at
different timescales has been shown empirically in [40,41]. Typical values for
T and \? are respectively one year and 0.04.

The MRW model can be expressed in a more familiar form, in which the
log-volatility wat(t) obeys an auto-regressive equation whose solution reads

t

wat(t) = pat + / dr n(r) Kat(t — 1), (5.11)

— 0o
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where 7(t) denotes a standardized Gaussian white noise and the memory ker-
nel Kt(-) is a causal function, ensuring that the system is not anticipative.
The process 7(t) can be seen as the information flow. Thus w(t) represents
the response of the market to incoming information up to the date ¢. At
time ¢, the distribution of wat(t) is Gaussian with mean pat and variance

Vat = fooo dr K4t(t) = A\?In (Tejt/z ) Its covariance, which entirely specifies

the random process, is given by
Cat(r) = / dt Kat(t)Kat(t + |7]) . (5.12)
0

Performing a Fourier transform, we obtain

TI sin(t)

L di+O(fAt(fAD)| | (5.13)

Rat(F)? = Cat(f) = 247 [ /
0
which shows, using (5.10), that for a small enough T,

A2T
Kat(r) ~ Ko for At< 7T, (5.14)
T

which is the previously stated exogenous response function (5.6). The slow
power law decay (5.14) of the memory kernel in (5.11) ensures the long-
range dependence and multifractality of the stochastic volatility process
(5.8).

The main difference between the MRW model and the previous class of
epidemic process is that the long-term memory appears in the logarithm of
the variable in the former, as shown from (5.11). As a consequence, the MRW
basically describes a variable which is the exponential of a long-memory pro-
cess. It is the interplay between this strongly nonlinear exponentiation and
the long-memory which gives multifractal properties to the MRW and, as
a consequence, the shock amplitude dependence of the exponents p(r) of the
relaxation of the volatility following endogenous shocks. In contrast, the lin-
ear long-term memory structure (5.1) of the epidemic processes of Sect. 5.2.1
ensures universal exponents that are independent of the shock amplitudes
(but not of the endo-exo nature). In the epidemic process (5.1), the rela-
tionship between exogenous and endogenous relaxations is expressed by the
exponents of the power laws ~ 1/t!7% (exo) versus ~ 1/t!72% (endo). In the
MRW, notice that the relationship between exogenous (5.6) and endogenous
relaxations (5.7) is through the multifractal parameter A: the fact that an
amplitude of the exogenous response function impacts the power law expo-
nent of the endogenous relaxation is again a signature of the exponential
structure of the multifractal model. The MRW extends the realm of possible
relationships between endogenous and exogenous responses discussed until
now.
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5.3.2 Financial Crashes

The endo-exo question also appears to be crucial for understanding financial
crashes. In contrast with the previous examples, the strongest distinction is
not in the relaxation or recovery after the shock but rather in the precursory
behaviour before the crash. An endogenous crash might be expected to end
a period of strong price gains, due to speculative herding for instance. In
contrast, an exogenous crash would be the response of the financial system
to a very strong adverse piece of information.

Indeed, according to standard economic theory, the complex trajectory of
stock market prices is the faithful reflection of the continuous flow of news
that are interpreted and digested by an army of analysts and traders [45].
Accordingly, large market losses should result only from really bad surprises.
It is indeed a fact that exogenous shocks exist, as epitomized by the recent
events of 11th September 2001 and the coup in the Soviet Union on 19th
August 1991, which move stock market prices and create strong bursts of
volatility [42], as discussed above. However, is this always the case? A key
question is whether large losses and gains are indeed slaved to exogenous
shocks, or whether they may result from endogenous origins in the dynam-
ics of that particular stock market. The former possibility requires the risk
manager to closely monitor the world of economics, business, political, social,
environmental news for possible instabilities. This approach is associated with
standard “fundamental” analysis. The latter endogenous scenario requires an
investigation of the signs of instabilities to be found in the market dynamics
itself, and it could, in part, rationalize so-called “technical” analysis (see [43]
and references therein).

Johansen and Sornette [47] have carried out a systematic investigation of
crashes to clarify this question. They have proceeded in several steps:

1. They have developed a methodology to identify crashes as objectively
and unambiguously as possible. Specifically, they have studied the distri-
butions of drawdowns (runs of losses) in several markets: the two leading
exchange markets (US dollar against the Deutsch and against the Yen),
the major world stock markets, the U.S. and Japanese bond market and
the gold market. By introducing and varying a certain degree of fuzzi-
ness in the definition of drawdowns, they have tested the robustness of
the empirical distributions of drawdowns.

2. By carefully analysing these distributions, they have shown that the ex-
treme tail belongs to a different population than the bulk (typically the
top 1% (most extreme) drawdowns occur 10-100 times more often than
would be predicted by an extrapolation of the distribution of the other
99% of the drawdowns).

3. The Xevents which seem to belong to a different population have been
called “outliers” [46,48-50]. Others have referred to such events as “kings”
or “black swans.” Johansen and Sornette [47] have taken these kings to be
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Fig. 5.6. The Hang-Seng composite index of the Hong Kong stock market from
November 1969 to September 1999. Note the logarithmic scale on the vertical axis.
The peaks of the bubbles followed by strong crashes are indicated by the arrows
and correspond to the times Oct. 1971, Feb. 1973, Sept. 1978, Oct. 1980, Oct. 1987,
April 1989, Jan. 1994 and Oct. 1997. This figure shows that the Hang-Sing index
has grown exponentially on average at the rate of =~ 13.6% per year, represented
by the straight line corresponding to the best exponential fit to the data. Eight
large bubbles (five of which are very large) can be observed as upward accelerating
deviations from the average exponential growth, and are characterized by LPPL
signatures ending in a crash, here defined as a drop of more than 15% in less
than two weeks. The eight small panels at the bottom are given to show the LPPL
price trajectory over a period of six months preceding each of these eight crashes.
Constructed from [46] and other papers from the author

the crashes that need to be explained. Note that this procedure ensures
that the definition of a crash is relative to the specific market rather than
obeying such an arbitrary absolute rule.

4. Then, for each identified king, Johansen and Sornette [47] checked
whether a specific market structure, called log-periodic power law (LPPL),
is present in the price trajectory preceding the occurrence of the draw-
down king. The rational for this approach was based on their previous
works [46,51-53], in which they documented the existence of such log-
periodic power law signatures associated with speculative bubbles before
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crashes. The work [47] is in this respect an out-of-sample test of the
LPPL bubble-crash hypothesis applied to a population of financial time
series selected according to a criterion (outlier test in the distribution of
drawdowns) which is unrelated to the LPPL structure itself.

5. In this test, Johansen and Sornette [47] take the existence of a LPPL
as the qualifying signature for an endogenous crash: a drawdown out-
lier is seen as the end of a speculative unsustainable accelerating bubble
generated endogenously.

6. With these criteria fixed, Johansen and Sornette [47] identify two classes
of crashes. Those that are not preceded by a LPPL price trajectory are
classified as exogenous. For those, it was possible to identify what seems
to have been the relevant historical event (a new piece of information of
such magnitude and impact that it is reasonable to attribute the crash to
it, following the standard view of the efficient market hypothesis). Such
drawdown outliers are classified as having an exogenous origin.

7. The second class, characterized by LPPL price trajectories, is called en-
dogenous. Figure 5.6 illustrates a series of endogenous crashes preceded
by LPPL bubble trajectories on the Heng-Seng composite index of the
Hong-Kong stock market, perhaps one of the most speculative markets
in the world. All of the events shown belong to the endogenous class.

8. Globally over all of the markets analysed, Johansen and Sornette [47]
identified 49 outliers, of which 25 were classified as endogenous, 22 as
exogenous and two as associated with the Japanese “anti-bubble” that
started in January 1990. Restricting to the world market indices, they
found 31 outliers, of which 19 are endogenous, ten are exogenous and two
are associated with the Japanese anti-bubble.

The combination of the two proposed detection techniques, one for draw-
down outliers and the second for LPPL signatures, provides a novel and sys-
tematic taxonomy of crashes, further substantiating the importance of LPPL
(see also [54-58] for reviews and extensions).

A more microscopic approach, formulated in terms of agent-based models
has also allowed some mechanisms to be identified with the occurrence of
Xevents, such as excess bias on nodes in the de Bruijn diagram of active
agent strategies [59], or the decoupling of strategies which become transiently
independent from the recent past [60].

5.4 Concluding Remarks

Let us end with a discussion of other domains of applications.

While the idea is not yet well developed, I think that beyond the prod-
ucts sold by e-retailers discussed above, which are proxies of reputation and
commercial successes, the endo-exo question is relevant to understanding the
characteristics of Initial Public Offerings (IPO) [62] and the movie indus-
try [63]. In the latter, the mechanism of information cascade derives from
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the fact that agents can observe box office revenues and communicate via
word-of-mouth about the quality of the movies they have seen.

Earthquakes are now thought to be caused by a mixture of spontaneous
occurrences driven by plate tectonics and triggering by previous earthquakes.
Within such a picture [12], which rationalizes much of the phenomenology of
seismic catalogs, Helmstetter and Sornette have shown that there is a fun-
damental limit to earthquake predictability resulting from the “exogenous”
class of earthquakes that are not triggered by other earthquakes [61]. Further-
more, the rate of foreshocks preceding mainshocks can be understood from
the idea that mainshocks may result from endogenous triggering by previous
events, as developed above in Sect. 5.2.1. The time dependence of the seis-
mic rate of foreshocks is predicted and observed to follow (5.5). The memory
kernels ¢(t) given by (5.3), and K(t) given by (5.2), correspond respectively
in the present case to the bare and renormalized Omori law [64] for triggered
aftershocks [12,15].

The weather and the climate also involve extremely complex processes,
which are often too difficult to disentangle. This leads to major uncertain-
ties about the important mechanisms that need to be taken into account,
for instance, to forecast the future global warming of the earth due to an-
thropogenic activity coupled with natural variability. 9/11 has again offered
a unique window. Travis and Carleton [65] noted the following: “Three days
after suicide airplane hijackers toppled the World Trade Center in New York
and slammed into the Pentagon in Washington, D.C., the station crew noted
an obvious absence of airborne jetliners from their perch 240 miles (384 kilo-
meters) above Earth. “I’ll tell you one thing that’s really strange: Normally
when we go over the U.S., the sky is like a spider web of contrails”, U.S.
astronaut and outpost commander Frank Culbertson told flight controllers
at NASA’s Mission Control Center in Houston. “And now the sky is just
about completely empty. There are no contrails in the sky,” he added. “It’s
very, very weird.” “I hadn’t thought of that perspective,” fellow astronaut
Cady Coleman replied.” Travis and Carleton [65] showed that there was a sig-
nificant elevation of the average diurnal temperature of the US in the three
days following 9/11, when most jetliners were grounded and no contrails were
present. This is the archetype of an exogenous response. It remains to be seen
if the endo-exo viewpoint will offer new fruitful perspectives that will allow
us to make progress in understanding and in forecasting the weather and the
climate.

Finally, from a theoretical viewpoint, another potentially interesting do-
main of research is to extend the concept of the response function to nonlinear
systems [66,67] and to study its relationship with the internal fluctuations [7].
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Scenarios



6 Epilepsy: Extreme Events
in the Human Brain

Klaus Lehnertz

Summary. The analysis of Xevents arising in dynamical systems with many de-
grees of freedom represents a challenge for many scientific fields. This is especially
true for the open, dissipative, and adaptive system known as the human brain.
Due to its complex structure, its immense functionality, and — as in the case of
epilepsy — due to the coexistence of normal and abnormal functions, the brain can
be regarded as one of the most complex and fascinating systems in nature. Data
gathered so far show that the epileptic process exhibits a high spatial and temporal
variability. Small, specific, regions of the brain are responsible for the generation
of focal epileptic seizures, and the amount of time a patient spends actually hav-
ing seizures is only a small fraction of his/her lifetime. In between these Xevents
large parts of the brain exhibit normal functioning. Since the occurrence of seizures
usually can not be explained by exogenous factors, and since the brain recovers
its normal state after a seizure in the majority of cases, this might indicate that
endogenous nonlinear (deterministic and/or stochastic) properties are involved in
the control of these Xevents. In fact, converging evidence now indicates that (par-
ticularly) nonlinear approaches to the analysis of brain activity allow us to define
precursors which, provided sufficient sensitivity and specificity can be obtained,
might lead to the development of patient-specific seizure anticipation and seizure
prevention strategies.

6.1 Introduction

Xevents are critical determinants of the evolution and character of a vul-
nerable system. Xevents are usually considered to be rare and unpredictable
events and/or events that strongly deviate from normality. However, objec-
tive criteria that can be used to define Xevents are yet to be defined. Thus, an
Xevent might not simply be characterized by features such as intensity and
rareness. Rareness demands some characteristic scales or some temporal and
spatial boundaries, while intensity should reflect an event’s potential to cause
a large change. However, both intenseness and rareness are derived from the
human perception of consequences, which in turn reflects the character of the
affected system.

Xevents are inherently contextual and relational. Events with disastrous
natural, social or financial consequences, such as floods, earthquakes, heavy
storms, meltdown of nuclear power plants, or financial crashes are certainly
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extreme. The extremeness of such events commands broad attention and
demands both comprehension and action. In contrast, epileptic seizures might
be considered less extreme, mainly due to limited public awareness. But they
are doubtlessly extreme for those affected.

Epilepsy affects more than 50 million individuals worldwide — approxi-
mately 1% of the world’s population (see [1] for a comprehensive overview).
The disease is characterized by a recurrent and sudden malfunction of the
brain that is termed a seizure. Epileptic seizures are the clinical manifestation
of excessive and hyper-synchronous neuron activity in the brain. Depending
on the extent of involvement of other brain areas during the course of the
seizure, epilepsies can be divided into two main classes. While primary gen-
eralized seizures involve almost the entire brain, focal (or partial) seizures
originate from a circumscribed region of the brain (the epileptic focus) and
remain restricted to this region. Epileptic seizures may be accompanied by an
impairment or loss of consciousness, psychic, autonomic or sensory symptoms
or motor phenomena. With today’s available antiepileptic drugs, seizures can
be controlled satisfactorily in about two thirds of affected individuals; an-
other 8% may profit from epilepsy surgery. The remaining 25% of epilepsy
patients can not be adequately treated by any available therapy.

The fact that seizures strike like a bolt from the blue in the major-
ity of cases is one of the most disabling aspects of epilepsy. The recurrent
and sudden incidence of seizures as well as the disturbance of conscious-
ness and sudden loss of motor control can lead to dangerous and possibly
life-threatening situations. The ability to forecast epileptic seizures would
dramatically change therapeutic possibilities. One might envisage a simple
warning system that could eventually decrease the risk of injury, patients’
anxiety and the feeling of helplessness resulting from the seemingly unpre-
dictable occurrence of seizures. Long-term treatment with antiepileptic drugs,
which can cause cognitive or other neurological deficits, could be diminished
to an on-demand application of a short-acting drug during the pre-seizure pe-
riod. Together with other suitable prevention techniques, this would reduce
morbidity and mortality and would greatly improve the quality of life for
epilepsy patients. In addition, the identification of a pre-seizure period could
aid investigations of the pathophysiological mechanisms causing seizures in
humans.

6.2 Basic Mechanisms

Knowledge about the basic mechanisms leading to seizures is mainly derived
from animal experiments, and must still be regarded as fragmentary. Fo-
cal seizures are assumed to be initiated by abnormally discharging neurons
(so-called bursters; see Fig. 6.1 [2—4]) that recruit and entrain neighboring
neurons into a critical mass.
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Fig. 6.1. Membrane potential changes (paroxysmal depolarization shift, PDS) of
an impaled neuron during focal epileptiform activity. PDS represents a shift of the
resting membrane potential which is accompanied by a rise in intracellular calcium
and a massive burst of action potentials (500-800 per second). PDSs originating
from a larger cortical region are usually associated with steep field potentials (known
as spikes) recorded in the scalp EEG

This process manifests itself as an increasing synchronization of neuronal
activity, accompanied by a loss of inhibition which is usually maintained by
surrounding neural networks. The build-up of such a critical mass might be
mediated by facilitating processes in the sense of nonspecific predisposing
factors that permit seizure emergence by lowering the threshold [5]. In this
context the term critical mass should not be interpreted as a highly localized
mass phenomenon that would be easily accessible for conventional simultane-
ously recorded electroencephalogram analyses, which fail to detect it. Instead,
the interactions between neurons that play a crucial role in seizure generation
probably take place on different spatial and temporal scales and are known
to be nonlinear in nature.

The phase of transition to the seizure state (pre-ictal state) is thought to
be related to a breakdown in local inhibitory mechanisms that are mediated
by different synaptic and non-synaptic processes. Epilepsy involves multiple
neurotransmitter systems, where glutamate/aspartate (especially N-methyl-
D-aspartate) represents the major excitatory and gamma aminobutyric acid
the major inhibitory neurotransmitter. The assumption that an imbalance
of these two substances causes epilepsy, however, is too simplistic and does
not take into account the enormous complexity involved with the biochemical
regulation of paroxysmal activity. Changes in intra-/extracellular ion concen-
trations (sodium, potassium, calcium, and magnesium) are also assumed to
contribute to the depression of inhibitory mechanisms.

The spreading of epileptic activity to remote brain areas is mainly medi-
ated by neuronal transmission, while passive volume conduction plays a less
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significant role. Target regions may be divided into low threshold or high
threshold areas with different propensities for epileptic responses. However,
the locations and spatial extents of these areas may differ from case to case.

The exact mechanisms underlying seizure termination are as uncertain as
the mechanisms underlying seizure initiation and spread. Early hypotheses
suggested that seizure termination was caused by depletion of metabolic sup-
plies and increasing hypoxia. At present, neuronal processes like diminishing
neuronal synchrony or active inhibition are assumed to be responsible. The
significance of the latter is stressed by a transient phase of seizure refractive-
ness that is often observed after a seizure. During this post-ictal state specific
neurological deficits are often accompanied by an electrographical silence in
brain activity that may reflect interference phenomena between inhibitory
processes and the return to physiological neuronal functioning.

6.3 EEG and Epilepsy

In 1875 the British physiologist Richard Caton published his observations
on electrical activity in animal brains, but it was not until 1929 that Hans
Berger, a psychiatrist working in Jena, Germany, first reported on the elec-
troencephalogram (EEG) of humans [6]. EEG signals reflect the dynamics
of electrical activity in populations of neurons. Although it is commonly ac-
cepted that postsynaptic potentials represent the neurophysiological basis of
the EEG [7], the mechanisms underlying the generation of rhythms in the
EEG are not yet fully understood.

In recent years, technical advances such as digital video-EEG monitoring
systems and increased computational performance have led to highly sophis-
ticated clinical epilepsy monitoring systems that allow huge amounts of data
to be processed in real-time. In addition, chronically implanted intracranial
electrodes allow continuous recording of brain electrical activity from the sur-
face of the brain and/or from within specific brain structures at a high spatial
resolution. Due to its high temporal resolution and its close relationship to
physiological and pathological functions of the brain, and particularly since
it directly measures the pathophysiological substrate of the Xevent seizure
(see Fig. 6.2), electroencephalography is regarded as indispensable for clin-
ical practice despite the rapid development of imaging technologies such as
magnetic resonance tomography and positron emission tomography.

The extraction of information from EEG recordings relevant for diag-
nostic purposes may be divided into two classes. Visual EEG evaluation in-
volves measuring the frequencies, amplitudes, and morphologies of waves us-
ing special rulers. More complex patterns and their association with normal
or pathological conditions may also be recognized by visual inspection. How-
ever, it is sometimes extremely difficult to define reliable criteria when rating
transient phenomena as spikes, sharp waves or other patterns associated with
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Fig. 6.2. Intracranial EEG recording of a seizure originating from the left hip-
pocampus of a patient suffering from mesial temporal lobe epilepsy. Seizure activity
involves the right hippocampus after approximately 6 s. Signals were recorded from
intrahippocampal depth electrodes that were implanted stereotaxically along the
longitudinal axis of the hippocampal formation, with the amygdala as the target
for the most anterior electrode. Each catheter-like, 1 mm-thick silastic electrode
contained ten cylindrical contacts of a nickel-chromium alloy (2.5 mm) every 4 mm

pathological states. The limitations of such methods become particularly ob-
vious in clinical problems when large amounts of EEG data must be evaluated
and rather complex questions are being asked. This particularly holds true in
epileptology, where, as Engel pointed out, the clinical interpretation of EEG
recordings and application of EEG findings to the diagnosis and treatment of
epilepsy remains more of an art than a science [5].

The second class comprises a variety of time series analysis techniques,
which are usually applied to long-lasting multichannel recordings in a moving-
window fashion. The time length of the window is chosen in such a way that
it represents a reasonable trade-off between approximate stationarity of the
system but still allows a sufficient number of samples to be recorded to achieve
a statistically reliable estimate. However, most analyses cannot be applied
in a strict mathematical sense because the necessary theoretical conditions
cannot be met in practice — a common problem that applies to any analysis
of finite (and noisy) data segments or non-stationary systems.

Classical linear EEG analysis techniques can be divided into two main
categories (see [8] for a comprehensive overview). Nonparametric methods
comprise analysis techniques such as evaluations of amplitude, interval or
period distributions, estimations of auto- and cross-correlation functions, as
well as analysis in the frequency domain, such as power spectral estimates
and cross-spectral functions. Parametric methods include, among others, AR
(autoregressive) and ARMA (autoregressive moving average) models, inverse
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AR-filtering and segmentation analysis. These main branches are accompa-
nied by pattern recognition methods involving either a mixture of the tech-
niques mentioned above or, more recently, the wavelet transform. The reason
for applying these methods is the classical view that brain rhythms may be
described as linear resonance phenomena of neuronal networks. Despite their
intrinsic limitations, classical EEG analysis techniques have significantly con-
tributed to and are still advancing our understanding of the physiological and
pathophysiological mechanisms of the brain.

Nonlinear time series analysis techniques [9,10] have been developed to
analyze and characterize deterministic nonlinear dynamical systems that ex-
hibit apparently irregular behavior — a distinctive feature also found in the
EEG. The traditional linear time series approaches mentioned above insuffi-
ciently detect or explain a wide range of EEG phenomena such as bursting,
amplitude-dependent frequencies, or frequency doubling, all thought to reflect
nonlinear processes. Thus, during the last 10-15 years a variety of nonlinear
analysis techniques has been applied to EEG recordings during physiological
and pathological conditions and they have been shown to offer new infor-
mation about complex brain dynamics. Usually, the well known nonlinear
behavior of individual neurons (“all-or-none” firing) and synapses, and with
it the expectation that neuronal networks behave in a similar way, is assumed
when applying these methods. This assumption, however, is still matter of
debate [11,12]. The fact that a system contains nonlinear components does
not prove that this nonlinearity is also reflected in a specific signal measured
from that system. Although there is ample evidence for nonlinearity, in par-
ticular, in small assemblies of neurons [13], it is now commonly accepted that
the existence of a low-dimensional deterministic or even chaotic structure in
the EEG is difficult if not impossible to prove. Nevertheless, approaches that
seek to correlate values of operationally defined nonlinear measures with dis-
ease states, in space or time, have generated new, clinically relevant measures
as well as new ways of interpreting brain functioning, particularly with regard
to epileptic brain states [14-17].

6.4 Nonlinear EEG Analysis

There is increasing evidence that a number of key conceptual features of non-
linear dynamical systems have particular relevance to improving our under-
standing of the spatio-temporal dynamics of the seizure generating process.

The basic principle of almost all nonlinear time series analysis techniques
is to reconstruct the system dynamics observed in so-called state space. Al-
though an unknown system may well be dependent on a large (and, for the
EEG, often unknown) number of variables, the theorem of Takens [18] states
that under certain genericity assumptions the system’s behavior in state space
can be approximated using only a single observed variable (such as the EEG).
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If the system is governed by some nonlinear laws, a simple cause-effect
relationship should not be expected. Rather, nonlinear systems are char-
acterized by a rich variety of dynamics including bifurcations that indi-
cate abrupt state transition or intermittent behavior. EEG phenomena like
spike-burst suppression patterns, epileptiform activity such as spikes, or the
interictal-ictal state transition point to nonlinearity. Abrupt state transitions
from highly complex, irregular to less complex, almost periodic dynamics
appear to be a characteristic feature of many dynamical disorders [19] in-
cluding epilepsy, and are one of the most compelling reasons for the no-
tion of complexity loss. Moreover, it is the very occurrence of periodicities
and highly-structured patterns that allows identification and classification of
many pathological phenomena.

Due to the sensitive dependence on initial conditions (the butterfly ef-
fect) of a deterministic chaotic system, its long-term behavior is very difficult
to predict. On the other hand, a nonlinear system has — under certain con-
ditions — an inherent ability to “self-organize” in the sense that it evolves
towards an ordered temporal and spatial structure. This concept might ex-
plain the well-organized, self-sustained oscillations in EEG recordings during
seizure activity. This dualism of chaos and order is the key feature of nonlin-
ear dynamics.

Generally, the initial conditions and the rules that govern a system like
the epileptic brain are unknown. However, a variety of new concepts and
measures have been developed that allow us to characterize the dynamical
behavior of an unknown system: Lyapunov exponents characterize the sys-
tem’s stability under small perturbations and are therefore a measure of how
“chaotic” a system behaves; dimension estimates are closely related to the
number of degrees of freedom of a system; entropies measure the degree of
order/disorder. Dimensions and entropies can thus be regarded as an esti-
mate of the system’s complexity. These univariate nonlinear analysis tech-
niques quantify certain properties of the EEG signal, thus possibly reflecting
the state of a certain region of the brain. Recently, these techniques have
been supplemented by bivariate approaches that quantify the amount of in-
teraction between different areas of the brain and provide information about
spatial synchronization phenomena, which are considered to play a crucial
role in seizure generation. Due to the large number of influencing factors,
however, the limitations of the techniques have to be taken into considera-
tion and results must be interpreted carefully. This has led to the current
point of view that it is advisable to use operationally defined or relative mea-
sures, thereby focusing on the existence of a change and not necessarily on
the nature of this change.

6.4.1 State Space Reconstruction

The time evolution of a dynamical system (such as the brain) in a state space
I' C R can be expressed in discrete time ¢ = nAt (where At is the sampling
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interval of some observable, such as the EEG) by maps of the form

A time series can then be thought of as a sequence of observations v, =
g(xy) (wheren = 1,..., N) performed with some measurement function g(-).
Since the (usually scalar) time series {v,} may not properly represent the
(high-dimensional) state space of the dynamical system, a reconstruction
technique must be employed in order to unfold the high-dimensional structure
using the data available. The most important and widely used state space
reconstruction technique is the method of delays [18]. State space vectors in
an m-dimensional embedding space are formed from time delayed values of
the scalar measurements:

Vi = (Vi ,Vier 5evv Vi (mo1)r) (6.2)

withi=1,... ,M = N —mr. Under certain genericity assumptions [18,20],
the time delay embedding provides a one-to-one image of the original set {x},
provided m is large enough. The optimal choice of the parameters embedding
dimension m and time delay 7 largely depends on the application.

6.4.2 Measures Based on the Correlation Sum

The correlation sum [21] is an estimate of the local probability density in
state space. It counts the number of pairs of vectors in state space that are
closer than a given hypersphere radius e:

9 M M
C’(m,e)z(M_W)(M_W_l)Z Z O(e — |v; — v,) (6.3)

i=1 j=i+W

where @ is the Heaviside step function. The exclusion of pairs closer in time
than the length of the so-called Theiler window W is essential to reduce the
unwanted influence of temporal correlations on C(m,¢€) [22].

The majority of approaches based on the use of measures derived from the
correlation sum to detect precursors of epileptic seizures in the EEG assume
that neuronal networks involved in the seizure generating process exhibit
a decreased level or loss of complexity; in other words, a reduced number of
active degrees of freedom. For deterministic dynamics, the correlation dimen-
sion Dy [21] is related the number of active degrees of freedom. Using the

local slope of the correlation sum d(e) = d;fn(fe()e )| the correlation dimension

is defined as Dy = limpy_ o0 lime—,0 d(€). From the limits it follows that the
calculation of Dy would require an infinite length N and an unlimited ac-
curacy for the time series. However, an estimate for an effective correlation
dimension [23] can be obtained if an almost constant value of d(e) is found
for at least a range of € values, the quasi-scaling region.
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In our investigations [24, 25] we calculate d(e) for embedding dimensions
of m =1 and m = 25 using a fixed time delay (7 = At) and Theiler window
(W = 5At). The range of € is chosen to match the resolution of the analog-
to-digital converter. We define a quasi-scaling region [e;, €,] by

€y = max {€| d(€)},p=1 > 0.975} (6.4)
€] = min {€| d(éu)|m:25 - d(6)|m225 S 0.05 - d(6)|m225 Ne < Eu}

If €, and € exist and the number n. of values in [e, €,] is greater than 4, the
estimate

D= 1S () s (6.5)

€E=€]

is computed. If no quasi-scaling behavior is found for d(e) or if D* > 9.5,
an arbitrary but fixed value of D* = 10 is set (see [26]). We emphasize that
we do not interpret D* as an estimate of the correlation dimension Dy. Our
considerations are aimed solely at maximizing its discriminative power.

A similar approach is based on the correlation density [27]. In order to
limit the use of computational resources, this measure is estimated by com-
puting C(m,¢) for some fixed ¢ = €. It should be noted, however, that
a proper choice of ¢y is mandatory in order to achieve a meaningful estimate
of the correlation density (see [28]).

The correlation entropy ha [29,30] is a lower bound of the Kolmogorov—
Sinai entropy, which describes the level of uncertainty about the future state
of the system, and therefore relates to predictability. Provided a scaling region
exists, ho can be estimated from the correlation sum as

C(e)
Crny1 (6) ’

using an extrapolation to large m. Alternatively, an entropy estimate can be
derived from the sum of the positive Lyapunov exponents [31].

The dynamical similarity index [32] is based on an extension of the (auto—)
correlation sum ( 6.3) to the cross-correlation sum [33]. Rather than measur-
ing the lengths of state space vectors generated from the same EEG time
series, this method computes nonlinear characteristics of a reference EEG
window which is then compared to a similar scanning window that is moved
forward in time towards known seizure onsets.

hs ~ In (6.6)

6.4.3 Lyapunov Exponents

The exponential divergence of nearby trajectories in state space is conceptu-
ally the most basic indicator of deterministic chaos. This exponential insta-
bility is characterized by the spectrum of Lyapunov exponents. The largest
Lyapunov exponent A4, can be determined without the explicit construc-
tion of a model for the time series. In EEG analysis, A4, is used, for example,



132 K. Lehnertz

to characterize phase transitions from order to chaos in the epileptic brain
(see [34,35] and references therein). The algorithm most widely used to com-
pute Apqs from a time series [36] suffers from severe drawbacks that occur
particularly with short and noisy time series, strongly depends on parameters
used for the state space reconstruction, and is highly computationally inten-
sive. In order to avoid these shortcomings we use a combination of improved
algorithms [37,38] according to which Ap,4, can be estimated from

8,(i) = Cjetman At (6.7)

where 0;(i) denotes the average divergence between two trajectory segments
at time ¢;. C; with j = 1,..., M is a constant that is given by the initial
separation of a reference vector z; in state space from its nearest neighbor. In
order to improve statistics we follow [38] and search for all neighbors starting
within a hypersphere of radius e around z; using a box-assisted algorithm [39].
Taking the logarithm of (6.7), Amnaz is then calculated using a least-squares
fit to an average line defined by y(i) = 1, (Ind;(i)) ;. For our analyses, we
estimate A4, using an embedding dimension of m = 7 and a fixed time
delay of 7 = 5+ At. In order to reduce the unwanted influence of temporal
correlations we follow [37] and choose a Theiler window with a length given
by the reciprocal of the mean frequency of the power spectrum.

6.4.4 Synchronization and Interdependencies

In almost all of the theories on seizure generation commonly accepted today,
pathological neuronal synchronization is considered to play a crucial role.
Since synchronization phenomena can manifest themselves in many different
ways, a unifying framework for synchronization in chaotic dynamical systems
is still missing. Instead various concepts for its description have been offered
including, among others, phase synchronization and generalized synchroniza-
tion (see [40] for an overview).

The classical concept of phase synchronization was extended from linear
to nonlinear or even chaotic systems for cases where the definition of a phase
variable is possible for the analyzed systems. Traditionally, phase synchro-
nization is defined as the locking of the phases ¢ of two oscillating systems a
and b:

@a(t) — Pp(t) = const. (6.8)

As a measure to quantify the degree of phase synchronization between two
EEG time series, we have introduced the so-called mean phase coherence
R [41], defined as

K
R [1( Zei[%(jm)fm(jm)] =1-V (6.9)
3=0
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where 1/At is the sampling rate of the discrete time series of length K,
and V denotes the circular variance of an angular distribution obtained by
transforming the differences in phase onto the unit circle in the complex
plane [42]. By definition R is confined to the interval [0,1] where R =1 (V =
0) indicates fully synchronized systems (see [43] for alternative measures of
phase synchronization).

In order to determine the phases ¢, (t) and ¢,(t) of two EEG signals
sa(t) and sp(t), we followed the analytic signal approach, which renders an
unambiguous definition of the so-called instantaneous phase for an arbitrary
signal s(t):

s(t)

@(t) = arctan s(t) (6.10)
where . oo
5(t) = 7Tp.u./_oo :(_T)TdT (6.11)

is the Hilbert Transform of the signal (p.v. denoting the Cauchy principal
value). Alternatively, the phase variable can be obtained from the wavelet
transform [44]:

¢(t) = arctan EI;VWVEB (6.12)

using the wavelet coeflicients

W(t) = /DO W(t—t)s(t)dt (6.13)

of a complex Morlet wavelet.

The nonlinear interdependence S [45] quantifies the degree to which sim-
ilarity of states of one (sub-)system (for example brain region A) implies
similarity of simultaneous states of the other (sub-)system (such as brain
region B) and is closely related to other attempts to detect generalized syn-
chronization. In contrast to commonly used measures like cross-correlation,
coherence and mutual information, S is non-symmetric and provides infor-
mation about the direction of interdependence. Let v; and w; denote state
space trajectories reconstructed from two EEG time series recorded simul-
taneously at different sites. Let «;; and 8;;, j = 1,...,k denote the time
indices of the k nearest neighbors of v; and w;, respectively. For each v;
the mean squared Euclidean distance to its k nearest neighbors is given
by

k
i 1
R¥ (v) = . 3 (Wi —va,,)? (6.14)
j=1

while the w-conditioned mean squared Euclidean distance is constructed
by replacing the nearest neighbors by the equal time partners of the closest



134 K. Lehnertz
neighbors of w;:

Rl (v|w) = —wvg,,)’ (6.15)

HM»

ng)('w) and Rl(k) (w|v) are defined accordingly. The local and global inter-
dependence measures SZ.(k) (v|w) and S®) (v|w) are defined as

(k)
S5 (v|w) = ii) (v) (6.16)
Ry (v]w)
and o o w
1 1 R (v)
SHwlw)= 3" 5H (v]w) = i (6.17)
M i=1 M i=1 Rz(k)('v|w)
Since R ( |lw) > R(k)('v) by construction, we have
0< 8K (vjw)<1. (6.18)

If S (v|w) ~ (k/M)*P <« 1, where D denotes an effective dimension,
then obviously v and w are independent within the limits of accuracy. If,
however, S®) (v|w) > (k/M)?/ P, we say that v depends on w, thereby not
implying any causal relationship. This dependence becomes maximum when
S (v]w) — 1.

The opposite dependences Sflk)(w|'v) and S®) (w|v) are defined in com-
plete analogy. They are in general not equal to S (v|w) and S (v|w). Both
S®) (v|w) and S®) (w|v) may be of the order of 1. Therefore v can depend
on w, and at the same time can w depend on v. If S (v|w) > S (w|v), in
other words if v depends more on w than vice versa, we say that w is more
“active” than v. Again we do not imply this to have any causal meaning,
a priori.

6.4.5 Testing for Nonlinearity

Almost all of the measures mentioned above share a common property. Their
probability distribution on finite data sets is not known analytically. In order
to derive confidence limits or probability distributions of nonlinear statistics,
it is therefore highly preferable to use a Monte Carlo resampling technique.
The method of surrogate time series (see [46] for a comprehensive overview)
allows us to test a specified null hypothesis about the dynamics underlying
a given time series. For this purpose, an ensemble of surrogate time series
is constructed from the original EEG time series in such a way that the
surrogates have all properties included in the null hypothesis in common with
the original, but are otherwise random. Then a certain measure (for example
a dimension), which has to be sensitive to at least one property that is not
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included in the null hypothesis, such as nonlinearity, is calculated for the
original and the surrogates. If the result for the original time series deviates
significantly from the distribution of the surrogates, the null hypothesis can
be rejected. The probability of false rejections (the nominal size of the test)
is adjustable via the number of surrogates. In our investigations we applied
a technique for generating so-called iterative amplitude-adjusted surrogates.
These surrogates allow us to test the null hypothesis that the EEG time series
was measured from a Gaussian linear stochastic and stationary dynamics by
means of a static and invertible but possibly nonlinear measurement function.
Starting from a random permutation of the original amplitudes of the EEG
time series, the surrogates are constructed by an iterative algorithm that
alternately adjusts the power spectrum and the amplitude distribution to the
original values, resulting in a deviation in the other quantity. After a sufficient
number of iterations (typically 20-50), deviations of both quantities from
values of the original EEG time series will be reduced to negligibly small
values.

6.5 Can Epileptic Seizures Be Anticipated?

Seizure prediction or anticipation or forecasting (despite their different mean-
ings these terms are currently used interchangeably), is a field of great interest
to the clinical and basic neuroscience communities, not only due to its po-
tential clinical applications in warning and therapeutic devices, but because
it holds great promise for increasing our understanding of the mechanisms
underlying epilepsy and seizure generation.

In some patients, seizures appear to occur unpredictably, with no dis-
cernible patterns. In others, seizures appear to occur in cycles. In some cases,
the cycling patterns have been attributed to other biological rhythms such
as the menstrual cycle. Clustering patterns, where one seizure appears to
increase or decrease the likelihood of subsequent seizures, are a common clin-
ical observation. Analyses of long-term seizure patterns are usually based on
seizure diaries [47-52]. While some authors have concluded that the timing
of seizure recurrence is random and follows a homogeneous Poisson distribu-
tion, others have observed significant deviations from a homogeneous Poisson
process and hypothesized that seizures occur in a probabilistically nonlinear
fashion.

Because of this inconsistency, the transition to a seizure is generally
believed to be an abrupt phenomenon, occurring without warning. Once
a seizure has occurred, it is trivial to retrospectively postulate the existence
of a transitional pre-seizure phase. Its unequivocal a priori definition and
prospective detection (and with it the possibility to actually forecast an im-
pending seizure) is, however, obviously far from being trivial. Nevertheless,
a variety of clinical observations support the notion that at least some seizures
can be anticipated.
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Several seizure-facilitating factors are known. In the context of his reser-
voir theory, Lennox [53] has defined seizure facilitation as the input of sen-
sory, metabolic, emotional, or other yet unknown factors that fill up some
reservoir until it overflows, which in turn results in a seizure. Among oth-
ers, levels of consciousness, sleep deprivation, tension states, disturbances of
water and acid-base balance, sensory and drug stimulation are regarded as
potential influencing factors [54]. However, apart from the rare exception of
sensory-evoked or reflex epilepsies, these factors are rather unspecific and
highly variant since they depend on the habits and daily activities of the pa-
tient. It is clinically undisputed from many descriptions of close relatives that
long-lasting behavioral and/or prodromal changes in the autonomous nervous
system exist in certain patients prior to seizures [55]. These alterations include
depressive mood changes, irritability, sleep problems, nausea, and headache.
Few reports indicate the possibility of seizure self-abatement [56]. Moreover,
when asked more thoroughly, certain patients declared that they had devel-
oped their own seizure prevention strategies that are used with a varying
degree of success. Although these strategies often appear extremely compli-
cated, they can nevertheless be considered specific in the sense that patients
attempt to prevent neuronal networks from being recruited into the epileptic
process by forcing them into some physiological processing.

In EEG analysis, the search for hidden information that may be used to
predict an impending seizure has a long history. As early as 1975, researchers
considered analysis techniques such as pattern recognition, analytic proce-
dures of spectral data [57], or autoregressive modeling of EEG data [58, 59|
for predicting epileptic seizures. Findings indicated that EEG changes char-
acteristic of pre-seizure states may be detectable, a few seconds before the
actual seizure onset at the most. None of these techniques have been imple-
mented clinically. Apart from applying signal analysis techniques, the rele-
vance of steep, high-amplitude epileptiform potentials (spikes, the hallmark of
the epileptic brain) were investigated in a number of clinical studies [60-63].
While some authors reported a decrease or even total cessation of spikes
before seizures, re-examination in a larger sample did not confirm this phe-
nomenon.

The earliest attempts to use nonlinear time series analysis were performed
in the 1990s using the largest Lyapunov exponent (see Sect. 6.4.3) to describe
changes in brain dynamics [34]. The first studies to describe characteristic
changes in the EEG shortly before an impending seizure in a larger group
of patients used the correlation dimension [21] as an estimate for neuronal
complexity [24,26,64,65] and the correlation density [27] (see Sect. 6.4.2).
These studies were followed by others using measures such as dynamic sim-
ilarity [32,66—-68], entropy [30], predictability [69], or certain signal patterns
(“bursts”) and changes in signal energy [70,71]. More recently, bivariate mea-
sures (see Sect. 6.4.4), such as nonlinear interdependence [45], measures for
phase synchronization and cross-correlation [41,72,73], the difference between
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the largest Lyapunov exponents of two channels [35], as well as a multivari-
ate approach based on a fusion of multiple features with neural networks [70]
and on simulated neuronal cell models [74] have been shown to be capable of
defining a pre-seizure period (see [75-77] for an overview).

Summarizing these studies, pre-ictal states ranging from several minutes
up to hours in duration could be observed (see Fig. 6.3).

inter-ictal pre-ictal
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Fig. 6.3. Representative examples of discrimination between the inter-ictal states
(temporally far away from any seizure) and pre-ictal states in one patient. An esti-
mate of an effective correlation dimension D* (see (6.5)) is shown in the upper row,
and the mean phase coherence R (see (6.9)), a measure of phase synchronization,
is shown in the lower row. Note that changes in D* characteristic of the pre-seizure
state occur about 12 min before seizure onset, whereas those for R occur at least
25 min ahead of the seizure. Gray vertical lines indicate the mean inter-ictal value
for each measure. The gray shaded area indicates the ictal state, from onset to end
of electrical seizure activity

Long-lasting pre-ictal states might possibly reflect non-specific, widespread
changes that decrease the threshold for seizure activity. Short-lasting states
may indicate critical recruitment phenomena within the epileptic focus and
its surroundings, where hypersynchronous behavior is gradually intensified
by the aforementioned generalized changes.

Although these studies have brought the possibility of anticipating epilep-
tic seizures into sharp focus, it is not yet clear whether sensitivity and speci-
ficity of analysis techniques are sufficient [25]. This can mainly be attributed
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to the fact that there are currently no accepted methods for assessing per-
formance and validating the statistical significance of seizure anticipation
algorithms, although recent attempts aim to bridge this gap [78-81]. In ad-
dition, the current impact of this topic is highlighted by recent controversies
about the relevance of nonlinear approaches for the anticipation of epileptic
seizures [28, 73] and by studies raising doubts about the reproducibility of
reported claims [79,82,83].

However, it is worth noting that a study on the predictability of seizures,
in its most promising form, requires large amounts of high quality, continuous
intracranial EEG data, which are very difficult to acquire in a busy, noisy
clinical environment. In addition, despite excellent work in the field, con-
vincing evidence demonstrating unequivocal seizure anticipation in blinded,
prospective, randomized clinical trials has been elusive. There are a number
of reasons for this, in addition to the challenge of developing algorithms to
detect the unknown patterns associated with seizure generation: (1) there has
been no accepted test data set; (2) standardized methods and nomenclature
for marking continuous EEG data are missing; (3) even a clear definition
of exactly what constitutes seizure onset and seizure anticipation is difficult
to obtain. Recent efforts aim at minimizing these shortcomings and try to
move the field forward from “proof of principle” experiments into validated,
well-understood methods that can be applied in basic-science and clinical
applications.

At present, it is hard to judge which seizure anticipation technique is the
best. All methods seem to provide important insights into seizure generation,
and they probably constitute different ways of viewing the same phenomenon.
At present, there appears to be a tendency that bivariate approaches perform
better than univariate ones. The combined use of different techniques along
with appropriate classification schemes will probably be required to carry out
reliable seizure anticipation tailored to individual patients. As a consequence,
real progress requires interdisciplinary research and collaborations.

6.6 Can Epileptic Seizures Be Controlled?

Many patients with epilepsy (~ 30%) remain inadequately controlled de-
spite optimal use of antiepileptic medication. These patients have refractory
epilepsy. The administration of a new antiepileptic drug results in seizure
freedom in only a low percentage of these patients. Epilepsy surgery is the
treatment of choice for medically refractory patients in whom the seizure
onset zone, which is responsible for the generation of habitual seizures, can
be identified and subsequently resected. Epilepsy surgery results in seizure
freedom in 50-85% of cases. At least 50% of the presurgical candidates
will not ultimately undergo resective surgery, because a single seizure on-
set zone could not be identified or because it was located in functional brain
tissue.
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Since no adequate therapy is currently available for these patients, the
possibility of anticipating seizures with a sufficient sensitivity and speci-
ficity in real-time would afford new therapeutic possibilities. One might
consider miniaturized, possibly implantable, seizure anticipation and pre-
vention devices (see Fig. 6.4), similar to cardiac devices such as pacemak-
ers and implantable defibrillators, or to devices already in use in patients
with movement disorders such as Parkinson’s disease. In its most basic
form a prevention device could deliver a warning to take self-protective ac-
tion. One might also consider control of patient-specific prevention strate-
gies such as biofeedback operant conditioning by applying neuropsychologi-
cal or behavioral tools (sensory processing, motor task, or memory process-

ing).

Fig. 6.4. Scheme of a miniaturized device for seizure anticipation and prevention.
The EEG is recorded from electrodes implanted near the epileptic focus and it is
fed to an analysis system. This hypothetical system should be powerful enough to
allow both real-time extraction of features that can be used to predict an impending
seizure and to enforce suitable prevention techniques (such as a simple warning
system (I) or an on-demand infusion of short-acting drugs in the area of the epileptic
focus (II))

Other intervention strategies in the brain aim to arrest or prevent seizures
and these are guided by two major physiological paradigms: (a) modulation
of abnormal cortical activity by exciting or inhibiting central structures (such
as the thalamus and brainstem), and (b) intervening directly in the region of
the epileptic focus.

Research into new implantable devices for treating epilepsy is expanding
rapidly [84,85]. Vagus nerve stimulation is an alternative treatment that has
recently become available that reduces seizure frequency by at least 50% in
one third of patients, with only minor side effects. Deep brain stimulation or
direct electrical stimulation of specific brain areas could be another alterna-
tive neurostimulation modality. In the past, different structures of the central
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nervous system have been chosen as stimulation targets in different types of
epilepsy in humans, resulting in variable seizure control. Other techniques
like focal cooling or localized drug infusion have been demonstrated to stop
seizures where they appear to begin.

Despite the many prevention techniques currently available, convincing
evidence demonstrating improved seizure control through combined use with
seizure anticipation techniques has been elusive. This deficiency can partly
be attributed to the fact that further optimization of analysis techniques and
development of a miniaturized analysis system are necessary. Although the
optimization of algorithms underlying the computation of specific character-
izing measures has already allowed us to continuously track the temporal
behavior of these measures in real-time, at present these applications still re-
quire the use of powerful computer systems. Nevertheless, taking into account
the technologies currently available, miniaturized systems can be expected to
be realized within the next few years.

In addition to these technical requirements, it is important to increase
both the sensitivities and the specificities of seizure anticipation methods. Ad-
justing the parameters of an anticipation method to achieve higher sensitivity
typically results in an increase in the rate of false alarms (decreases speci-
ficity), and vice versa. However, too many false alarms may cause patients
to ignore a warning system or may lead to possible side effects from unnec-
essary interventions, causing physiological impairment. A clinical application
achieving high sensitivity at the expense of low specificity is questionable
with respect to the quality of life of patients. Frequent false anticipations
may even immobilize the patients’ coping processes and contribute to the
patients’ helplessness and depression.

6.7 Conclusions

We are currently witnessing a rapid increase in knowledge concerning the
generation, predictability, and management of epileptic seizures. This can
mainly be attributed to the development of refined mathematical and phys-
ical theories and analysis methods, the development of refined microscopic
models of interconnected individual neurons [86], macroscopic, neurophysio-
logically relevant models of the EEG [87], and most importantly to the in-
creasing willingness and acceptance of interdisciplinary research. For almost
40 years, neuroscientists thought that epileptic seizures began abruptly, just
a few seconds before clinical attacks. There is now mounting evidence that
seizures gradually develop minutes to hours before clinical onset. This change
in thinking is based on the possibility of quantitatively study long-lasting
electroencephalographic (EEG) recordings from patients being evaluated for
epilepsy surgery. Advances in seizure anticipation promise to give rise to im-
plantable devices able to warn of impending seizures and to trigger therapy
to prevent clinical epileptic attacks.
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Doubtlessly, research into Xevents arising in other scientific areas will

fertilize the field of seizure anticipation and prevention and (hopefully) vice
versa.
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7 Extreme Events in the (Geological Past

Jirgen Herget

Summary. Many Xevents in the geological past exceeded the strengths and inten-
sities observed for modern-day natural events. The number of extraordinary events
that occurred in the geological past is of course much larger than the number we
witness today because the geological timescale covers millions of years. This contri-
bution focuses on these Xevents from earth’s geological history, including selected
examples from plate tectonics, earth magnetism, ice age cycles, volcanism, earth-
quakes, meteorite impacts and floods. Events related to these processes occur on
different timescales. For example, drastic modifications of atmospheric and oceanic
circulation due to continental shift (which creates new mountain ranges and re-
shapes land masses and oceans) take millions of years, while meteorite impacts
happen within seconds. However, any these processes can be the trigger for dra-
matic consequences, like mass extinctions of life, or global glaciations. An overview
of a research program that considers historic and prehistoric flood events is given.
Based on the water levels observed during floods, the palaeodischarge can be de-
termined and used to improve the reliability of flood predictions. Investigations of
Pleistocene ice-dammed lake outburst floods (the largest flood events in the Earth’s
history) are useful when developing new methods and techniques that can be ap-
plied to younger events of a smaller scale in other environments.

7.1 Introduction

This contribution focuses on extraordinary events that occurred on the Earth
in prehistoric times. Although this work concentrates on the prehistoric
timescale, extraordinary events have of course occurred in more recent times
and they will continue to occur, as illustrated by other contributions in this
book, such as the one by Hense on the climatic system. Events in modern
times are frequently characterised as being catastrophes due to the impact
on human life and infrastructure. However, as we will see from the selected
examples used in this chapter, even the most extraordinary volcanic erup-
tions, earthquakes or floods observed in recent times were significantly ex-
ceeded in scale many times in the prehistoric past. Therefore, while recent
Xevents might be extraordinarily strong compared with other recent events,
if we consider much longer timescales reaching far back into Earth’s history
these events may not seem so extreme after all. The relatively high number of
Xevents that have occurred over thousands of millions of years (the geological



146 J. Herget

timescale) leads us to the question of the frequencies of various Xevents (see
Table 7.1).

The important issue here is to find out the cause of the event, be it
a unique mechanism based on specific conditions or some other plausible
explanation for the stochastic nature of the individual phenomenon. In the
context of this contribution, Xevents are seen as prehistoric events that were
strong enough to leave evidence of their occurrence that has survived until
today. Recently, mankind has begun to have an influence on the natural
environment, and especially its dynamics [1], that will probably outlast our
civilisation. The word “anthropocene” has been coined, characterising the
period of time that humans have made a dominant impact on the Earth (since
the eighteenth century), so the geology of mankind is now being written [2].

In the following survey, selected Xevents in the geological past are pre-
sented and briefly reviewed along with key references for further reading. We
also touch on the background of any scientific debates about the Xevents.
The order that the examples are presented is roughly based on the durations
of the Xevents. These Xevents may last from millions of years (the folding of
mountain ranges until their final decay by denudation), which might still be
seen as relatively short compared to the age of our planet, down to seconds
(meteoritic impacts). In keeping with the general theme of this book, we close
the chapter by discussing approaches to prognosing and forecasting Xevents
over geological timescales.

7.2 Extreme Events in the Geological Past

7.2.1 Events Driven by Plate Tectonics

The concept of plate tectonics, which explains the gradual creation and ero-
sion of mountain ranges and the slowly changing shapes and locations of the
continents and oceans by invoking continental plate drift, was first mentioned
in the 1920s by Alfred Wegener, a German meteorologist. It became an ac-
cepted theory among geologists in the 1960s, when evidence for it was gained
via ocean drilling projects. The current generally accepted explanation for
continental drift is that circulation cells exist within the liquid part of the
earth’s interior, upon which the Earth’s crust sits. The flow within these cells
drags the relatively thin crust sitting on top of them [3-5]. Typical drift veloc-
ities are on the order of em/a, which is very fast on the geological timescale.

The positions and shapes of the continents and oceans have been changing
continuously since the “supercontinent” Pangea was split apart (Fig. 7.1),
about 200 Ma years ago. At the beginning of the Cretaceous, about 135 Ma
ago, North America and Europe/Asia were still connected, while India and
Antarctica/Australia became separated from the Gondwana supercontinent
and started to move in a north-easterly direction. At the end of this geological
period, North-America and Eurasia began to split, resulting in the formation
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Table 7.1. Generalised geological timescale (compiled from various sources).
The geological timescale is classified into eras, periods and epochs. The given names
are derived from key locations of geological research or separate distinct units of
more or less homogenous fauna and flora. Note that time periods typically extend
for millions of years. Hence, human observations are negligible in the context of
the timescale of the geological past, as the first traces of mankind developed about
1.5 Ma ago (Ma = million years ago) and written history began just a few thousand
years ago. Periods of mountain folding are explained in the context of plate tectonics
in the text, while global glaciations are discussed in the section on ice ages

ERA Millions of years Periods of Global glaciations
Period (since start mountain folding
Epoch of time period)
CENOZOIC
Quaternary
Holocene 0.01
Pleistocene 2.6 numerous
Tertiary
Pliocene 5.3
Miocene 24
Oligocene 37
Eocene 58 Alpine orogenesis
(Alps, Pyrenees,
Himalayas, ...)
Palaeocene 65
MESOZOIC
Cretaceous 135
Jurassic 205
Triassic 250
PALAEOZOIC
Permian 290 several

(350-250 Ma)

Carboniferous 355 Variscan orogenesis
(central and west
European mountain
ranges, Appalachians)

Devonian 405

Silurian 435 Caledonian orogenesis
(Scandinavia,
Scotland, ...)

Ordovician 510

Cambrian 545
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Table 7.1. (continued)

ERA Millions of years Periods of Global glaciations
Period (since start mountain folding
Epoch of time period)
Precambrian > 545 several (800-550 Ma)
3900 Oldest rocks
4450 Cooling of
the liquid Earth
4600 Earth is
formed

of the Atlantic Ocean, while the continental plates of Africa and Eurasia
collided. Parts of the Tethys Ocean closed and the folding of the seafloor
began to generate the Alps. Then the Indian plate collided with the Asian
plate causing the Himalayas to rise in the collision zone. The Australian-
Antarctica plate split into several fragments, while South America linked
with North America, closing the connection between the Atlantic and the
Pacific. Based on modern drift velocities, it has been possible to forecast the
movements and positions of the continents in the future. In about 30 Ma the
African plate will move further to the west and split at its eastern margin at
the so-called Afar Triangle. It is also expected that the Persian Gulf will close
and the land bridges between North and South America and in South-East
Asia will change.

Even though the timescales of events related to continental drift are mea-
sured in millions of years, such changes in alignments of the continental plates
might be classed as events, since the age of our planet in measured in billions
of years (Table 7.1). Sealing oceans from each other has a huge influence on
the currents within the oceans, while the creation of high mountain ranges
changes atmospheric circulation patterns. New land bridges are also highly
relevant to events associated with biological evolution and species distribu-
tion (consider, for example, the species endemic to Australia).

Beyond the effects mentioned above, that occur on the geological timescale,
plate tectonics also produce earthquakes. The movements (and therefore
collisions) of continental plates are not smooth and continuous on shorter
timescales (for example, years). Frictional stress is released abruptly and re-
sults in earthquakes (covered in more depth later).

The movement of continental plates away from each other is accompanied
by the generation of new rock of magmatic origin on the seafloor between
the continental plates. This magmatic rock can be used to derive important
information on the history of the magnetic field of this planet.



7 Extreme Events in the Geological Past 149

+ ¢ca. 30 Ma

Fig. 7.1. Continental drift from prehistory to modern day (and beyond) (modified
from [6])

7.2.2 Changes in the Earth’s Magnetic Field

The fact that the Earth generates a magnetic field was first discovered in
China at around 1000 AD, although magnetism itself was known to the an-
cient Greeks [7]. This magnetic field is generated by the circulation of ma-
terial within the Earth’s liquid metal core [3]. Most people are aware that
the Earth’s magnetic pole is close to but not in exactly the same place as
geographic north, due to the recent movement of the magnetic north pole. In
2004 the magnetic north pole was located around 82.3° N 113.4° W, although
it wanders in a well-defined oval (with a length of about 85 km) each day [8].
Over the last century the magnetic north pole moved about 1100 km towards
its current position from a location further south, and it is expected to con-
tinue its movement across the geographic north pole to northern Siberia over
the next 50 years [8].

On the geological timescale, the Earth’s magnetic field has often changed
its orientation — in other words, the geographic north became the magnetic
south pole and vice versa. The last reversal occurred about 780000 years
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Fig. 7.2. Changes of the orientation of the magnetic field of the Earth over the
last 5 Ma years (modified from [9])

ago (Fig. 7.2). Typically, the timescale between these switches is measured
in millions of years. The long epochs of one orientation (each of which are
named after scientists involved with magnetic research) are interrupted by
“events” where the orientation briefly flips back. Hence, the orientation of
the magnetic field changes roughly every 200000 years, although there is no
obvious periodicity.

Investigations into the prehistoric magnetism of the earth have been made
possible because the orientation of the magnetic field is documented in mag-
matic rocks [10]. As they cool, the magnetic minerals in the liquid lava align
according to the current orientation and strength of the magnetic field. By
measuring this alignment and isotopically dating the rocks, it is possible to
investigate the geomagnetism at the time the rocks cooled. For example,
the magmatic rock between drifting continental plates, provides useful geo-
magnetic information. This is illustrated by the characteristic symmetrical
pattern of magnetism present on the seafloor of the Atlantic Ocean paral-
lel to the central oceanic ridge, which documents the changes in the Earth’s
magnetism since the separation of Europe and North America. For older rock
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samples the time resolution decreases and data must be collected and corre-
lated from different places around the world, and the continental drift and
the rotations of the plates must be considered.

If we consider them on the geological timescale, changes of magnetic epoch
can be regarded as “events”, as can the brief flips in orientation that occur
within epochs.

The magnetic field and the atmosphere of the Earth protect its surface
from the dangers of the solar wind, which produces the aurora borealis (the
“Northern Lights”) seen in polar regions. Changes in geomagnetism (and
solar wind strength) influence radio transmission, flow through pipelines,
electrical power supplies and animal migrations. We should note that the
strength of the magnetic field of the Earth dropped at various times in pre-
history. A statistical analysis of magnetic reversal appears infeasible since this
phenomenon occurs aperiodically. However, extrapolating the current decay
in field strength into the future, the next “flip” could take place in about
1500 years. It is assumed that this flip would take about 5000 years, during
which field strength would drop to about 20% of the current intensity and
the geometry of the pole would fluctuate [11]. This would lead to disruption
of most electric power and radio transmission networks — a serious event in
our modern technology-based civilisation.

7.2.3 Periods and Cycles of Ice Ages

Several periods with extended glaciation, typically covering about 30% of
the surface, have been discovered when investigating the prehistory of the
Earth (Table 7.1). Typical glacial deposits (like moraines) have been found
on almost every continent, providing evidence for various periods of glaciation
that have occurred since Precambrian times [12]. We should bear in mind that
for times this far back, different oceans, continents and especially mountain
ranges were present compared to those around today (due to continental
drift) [13]. This means that it is difficult to compare these older glaciation
periods with more recent (and better understood) glaciations.

The Pleistocene epoch of the Quaternary period is characterised by tem-
porary glaciation periods lasting from 2.6 Ma until the current warm period,
called the Holocene, starting about 10000 years ago (10 ka). Scandinavia,
Northern America and Siberia were all covered with vast ice fields, and ex-
tended valley glaciers in nearly all of the mountain ranges worldwide doc-
ument the temporary global climatic shift that occurred during the Pleis-
tocene [14,15]. Figure 7.3 illustrates the extent of the glaciation in the north-
ern hemisphere 18000 years ago, during the peak of the last ice age.

The Pleistocene epoch is characterised by cyclic warm and cold periods.
Depending on local conditions, glacial deposits and glacigenic landforms usu-
ally derive from the last three or four glaciations, because previous deposits
will have been mantled. Parameters like stable oxygen isotope ratios can be
used to evaluate climate conditions associated with rocks (see [17]). Based on



152 J. Herget

18,000 Years Northern
Before Presen - Hemisphere

lce Coverage

Legend

Fig. 7.3. Ice coverage of the northern hemisphere 18 ka ago and today, indicating
the extent of glaciation during the last ice age (figure from [16], used with the kind
permission of NOAA)

this indirect indicator, 51 warm and 52 cold periods have been found for the
Pleistocene [18]. Considering this timescale, we are currently living in a warm
period. For the last 800000 years, the typical duration of the cold period has
been about 100000 years, while warm periods have typically lasted for about
10000 years. The mechanism of global climatic change resulting in extended
ice coverage seems to be triggered by periodic overlaps between the Earth’s
orbital cycles. These cyclic changes modify the insolation (incoming solar ra-
diation) for different parts of the Earth, which eventually results in global
cooling. It is not fully understood why the glaciations cycle changed around
800000 ka [19], but energy exchange via ocean currents may be a significant
factor [20]. Glaciations in Palacozoic times appear to be more closely related
to the positions of the continents, as the continental plates were located in
polar positions (like Antarctica is today) during glaciations. However, new
analysis tools are increasing our understanding of the connection between
cyclic orbital parameters and the geological climate, even for the earliest
times [21].

Obviously, ice ages can be seen as events on the geological timescale. These
glaciated landscapes were similar to the ice shields of Greenland or Antarctica
today. These climatic changes were naturally driven and much stronger than
any scenario developed for current climate trends. Habitats for animals and
plants were mechanically destroyed by the moving ice flow and glaciers and
species distributions were modified by the changes in climate [19,22]. The
global hydrological cycle changed due to the storage of huge amounts of water
in the ice. This produced a drop in sea levels, which opened land bridges
between islands and continents, resulting in, for example, the migration of
man from eastern Siberia and Alaska to North America.

Based on the evidence left over from the Pleistocene epoch, one might
expect that the next ice age is imminent, especially when viewed against
the background of the geological timescale. The current retreat of moun-
tain glaciers represents a short-term climatic change. Recent modelling has
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revealed that the anthropogenic enrichment of greenhouse gases in the at-
mosphere has even decelerated the natural cooling trend of the global cli-
mate [23]. The so-called Little Ice Age was a recent global climate fluctuation
within the current warm stage of the Holocene that lead to a dramatic in-
crease in mountain glaciation [24], but one should bear in mind that the the
mountain glaciers of the Alps are usually smaller than they are currently [25].
Previous glaciation periods started with intensive climate fluctuations, but
current anthropogenic influences on the climatic system could modify this
pattern [19,26].

7.2.4 Volcanism

Numerous volcanic eruptions and explosions have been documented through-
out history, most of which have had a tremendous influence on local and
regional living conditions. Volcanic eruptions are undoubtedly (small-scale)
Xevents: the landscape is modified due to new layers of solid rock, which
is then weathered intensively over many years until new soil is created that
can be used for plants and cultivation. Eruptions in historic times destroyed
towns and villages, frequently killing thousands of people — the historic
eruptions of Thera/Santorini (around 1500 BC ended the Minoan culture,
Vesuvius/Somma destroyed Pompeii in 79 AD and the events at Tambora
in 1815, Krakatoa in 1887 or Pinatubo in 1991 are well-known examples of
extraordinary volcanic events. These eruptions were obviously strong enough
to influence the global climate [27], even if we do not fully understand the
detailed mechanisms involved [28].

On the geological timescale, volcanic eruptions have been identified that
were much stronger and more intense than any of the events observed in
historic times. Large areas of all of the continents are covered by lava sheets
(plateau basalts) that are related to “hot spots” (Fig. 7.4). Hot spots are
fixed locations where magma from the Earth’s interior has been transported
towards the surface over long geological periods [3]. As the continental plates
drift across these locations, chains of volcanoes are generated on the surface.
The islands of Hawaii are a famous example of this phenomenon: the volca-
noes on the youngest island, Hawaii, are still active, while islands like Oahu
and Kauai further to the west are inactive. The continental drift explains
why the plateau basalts are now located several thousand kilometres away
from their related hot spots (Fig. 7.4).

Some scientists have found a remarkable correlation between the ages of
the extended plateau basalts and periods of mass extinction (Table 7.2) (re-
views by [30,31]). If we take the example of the Deccan Trapp in India, which
were generated at the same time as the lava sheets in the north Atlantic, it has
been argued that these volcanic events triggered the mass extinction at the
end of the Cretaceous Period (resulting in the extinction of dinosaurs) [30].
Originally the Deccan Trap covered an area of more than 2000000 km? and
was largely generated over a period of less than 500000 years (as shown
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Fig. 7.4. Distribution of extended plateau basalts (with their ages in Ma) and
related hot spots (modified from [29])

by dating the lava by isotope methods and performing a detailed analysis
of the orientation of the Earth’s magnetic field). Courtillot argues that the
huge amount of dust that was blown into the atmosphere during the volcanic
eruption significantly reduced insolation, which reduced plant photosynthe-
sis. Food resources were therefore significantly reduced. This final effect was
intensified by acid precipitation caused by gases released from the eruption.
Careful review of the data on the extinction of species 65 Ma ago and re-
lated sediments indicate that it was a fast and abrupt event on the geological
timescale, but lasted several hundreds of thousands of years. This is the main
reason why these types of huge volcanic eruptions could be the trigger for
the extinction of species at various geological times (Table 7.2). However, we
should note that another mechanism has been proposed for mass extinctions:
meteoritic impacts, which we discuss later.

It is worth mentioning, that even modern-day volcanic eruptions are sus-
tainable; typically, single eruptions last for days to weeks and modify the en-
vironment drastically on local and regional scales over very short timescales.
However, we should compare this with the fact that there were volcanic events
on the geological timescale that had a significant global impact.

7.2.5 Earthquakes

Movements of the earth’s crust related to plate tectonics, pressure releases on
continental plates and volcanic eruptions are the main causes of earthquakes.
These dynamics mean that millions of earthquakes occur on an annual basis,
while thousands occur daily, as observed by seismic observation networks
covering the entire planet. Threshold values are applied to separate large
from ordinary events. By magnitude alone, the largest earthquake in history
occurred in 1960 in Chile, with a magnitude of 9.5, while the most destructive
one took place in China in 1556 AD, causing about 830000 deaths [32].
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Table 7.2. Mass extinctions of species, eruptions of plateau basalts, and related
hot spots (after [29])

Mass extinction Eruption of Related hot spot
at (time in Ma) plateau basalts at (Ma)
14+3 Columbia River Yellowstone
(NW USA) 16 + 1
36 +2 Ethiopia 35 4+ 2 Afrar
65+ 1 North Atlantic/Arctic 62 + 2 Iceland
Deccan Trap (India) 66 + 2 Reunion
91 £2 West-Pacific 92 &+ 3 Central Pacific
137+ 7 Parana (Brazil) 130 £+ 5 Tristan da Cunha

(mid-Atlantic)
Namibia 135 £+ 5

191 +3 SE Africa 190 £ 5 South Atlantic Ocean/
SW Indic Ocean

21148 Eastern USA 200 £+ 5 Azores

249 +4 Siberia 250 4+ 10 Jan Mayen (Arctic Ocean)

There seems to be no reason to expect significant changes in the frequency
of earthquakes on a global scale in the geological past. However, the effects of
plate tectonics and the displacements of collision and spreading zones must be
considered. Hence, regions with relatively high earthquake frequencies were
located in different places in geological times. Earthquakes in the prehistoric
past left traces in the sedimentary record. In most depositional environments,
earthquakes cause disturbances in the regular steady accumulation of sedi-
ments. Comparing the disturbances within the deposits with the influences of
modern earthquakes in similar environments has lead to estimations for the
magnitudes of palaeoearthquakes [33] and prehistoric earthquake frequencies
(see [34]).

7.2.6 Meteoritic Impacts

Although meteorites commonly reach the Earth’s atmosphere and surface,
most of them burn up completely on their way through the atmosphere
(producing a “shooting star” in the night sky roughly every ten minutes),
while the vast majority of those that do make it to the surface are relatively
small. Most meteorites consist of rock while a smaller fraction are iron or an
iron/rock mixture. Annually, several thousand tons of meteorites reach the
Earth’s surface [35-37]. Most of the > 20000 meteorites that have been re-
covered were found in Antarctica, due to the limited weathering that occurs
under polar climate conditions and the ease with which they can be spotted
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in the ice. The largest iron-based meteorite found has a weight of 54 tons and
was found in 1920 in Namibia, while the largest rock meteorite (1.8 tons) was
detected in China.

Meteoritic impacts have been noted throughout history. Descriptions of
falling fireballs and strange light phenomena that hit buildings and someimes
even set them alight were handed down [38]. One of the more spectacular
recent events was the impact that occurred on the 30th of June 1908 in the
valley of the River Tunguska, Siberia. An eye-witness who was more than
100 km away from the impact area, observed a flash of light which became
a fireball, and felt a wave of heat before he was knocked by an explosion.
The change in air pressure was also measured thousands of kilometres away
in England using barographs. The earth tremor from the impact was felt
for several hundreds of kilometres around the impact site and was measured
across the world. Clouds of dust rose up to 20 km into the atmosphere and
were later precipitated in rain. Due to the remote location, it took almost
20 years before the impact area was investigated scientifically. All of the forest
was burned out to about 65 km from the impact area, while no impact crater
or remnants of the meteorite itself could be found. Subsequent theoretical
calculations have estimated that the mass of the meteorite was about 1000000
tons, and it is believed that the meteorite exploded in the air before reaching
the surface [39]. Hundreds of impact craters with diameters of 0.015-300 km
have been found that date from prehistoric times, and most of them are still
visible as craters [39]. Figure 7.5 shows the Canyon Diabolo/Barringer Crater
in Arizona, generated by a meteoritic impact that occurred 49 4+ 3 ka ago;
this crater is currently 1200 metres in diameter with a depth of 180 m (note
that erosion has reduced the size of the crater over time).

A large meteoritic impact that occurred during the transition from the
Cretaceous to the Tertiary period has recently received a great deal of at-
tention, since it has been linked to one of the largest mass extinctions to
occur in prehistory: including all f thedinosaurs and half of all species. The
impact occurred north of Yucatan, Mexico [41-43]. The Chicxulub Crater

Fig. 7.5. Aerial photograph of Diabolo Canyon/Barringer meteorite impact crater
in Arizona (photo provided by [40])
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associated with the impact has a diameter of 170-200 km, and was generated
64.98 £ 0.05 Ma ago; it now lies buried beneath 1100 m of limestone on the
seafloor of the Gulf of Mexico. It is assumed that the meteorite involved had
a diameter of about 10 km. During the impact, the meteorite itself, together
with billions of tons of displaced rock, evaporated and generated a global
cloud of dust, causing darkness for between one and six months, stopping
any photosynthesis for about two to twelve months. The darkness seriously
disrupted the food chains of marine and terrestrial life. Evidence for this
cloud of dust is provided by a layer of clay deposited around the world dur-
ing this time, which is enriched in iridium, an element that is rarely found
in rocks on Earth but common in meteorites. While the existence of a catas-
trophic meteorite impact is a fact, its relation to the mass extinction is still
the topic of debate, since it can also be related to a period of intense vol-
canism (see above). The iridium enrichment and the specific structure of the
quartz found around the impact location and within the separation layer be-
tween Cretaceous and Tertiary deposits can also be explained in the context
of volcanism [30]. The scientific debate on the cause of the mass extinction
is therefore still open.

7.2.7 Floods

Floods occur frequently in all climate conditions. Caused by precipitation,
melting snow or ice in spring, exceptional water levels and discharges can be
reached in very short times in rivers. Frequently, the damage that results is
unexpected, even when similar floods have been observed and documented for
the same region throughout history [44,45]. Statistical analysis of water level
measurements have been found to be inadequate for predicting floods, due to
the limited time of observation and the stochastic generation of extrapolated
values. Indirect methods of estimating flood discharges that are documented
in the sedimentary record from prehistoric times have been developed, and an
increasing importance has been placed on them in relation to the prediction of
climatic/hydrologic changes in the future [46,47]. Extreme flood events can
be generated by the failure of dammed natural lakes, like those generated
by subglacial meltwater storage of volcanic eruptions in Iceland or where
landslides have blocked rivers, causing temporary lakes [48].

The largest floods observed in geological times occurred during the last
glaciation period about 20000 years ago in different parts of the world, due
to outburst floods from ice-dammed lakes. Extraordinary large in this con-
text means that these floods were orders of magnitude larger than any flood
caused by precipitation observed in historic times, like that of the River Rhine
(12600 m?/s) in 1926, the River Amazon (370000 m?3/s) in 1953, or even the
flood related to a subglacial volcanic eruption in Iceland (1500000 m?/s) in
1918 [48,49]. Ice-dammed lakes are typically generated by advancing glaciers
and ice sheets that block the course of a river, damming temporary lakes
upstream. Due to the pressure of the stored water or the melting of the ice
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dam by the liquid water behind, sooner or later the ice dams fail and give
way to the dammed water [50,51].

One well investigated example of this is the Glacial Lake Missoula, gen-
erated in the north-western part of the USA. The advanced valley glaciers
of the Rocky Mountains blocked the Clark Fork River and generated Lake
Missoula, with a maximum volume of 2184 km?® and a maximum depth of
635 m [52]. At least 25 outburst floods occurred in this area between 19000
and 13000 years ago [53], with peak discharges of more than 17000000 m? /s.
These outburst floods formed the unique feature of the Channeled Scabland.
Outburst floods within the plateau basalts of the Columbia Plateau in eastern
Washington generated numerous channels which are dry valleys and water-
falls with heights of more than 100 m today. After the lake had drained,
the glacier tongue advanced again, blocked the river and generating the lake
again. This cyclic behaviour explains the repeated outburst floods that were
discovered due to the related deposits that were obviously separated from
each other.

Similar events took place in the Altai Mountains, the source of the River
Ob in southern Siberia, near the border to Mongolia. Again, valley glaciers
blocked the course of the River Chuja, one of the sources of the River Ob,
and generated an extended ice-dammed lake in intra-mountainous basins up-
stream with a volume of 603 km? and a maximum depth of 650 m near the
ice-dam [49]. During repeated outburst floods — evidence for at least three
events has been found in the sedimentary record in the field — the flood (with
peak discharges of 10000000 m?/s) was canalised within the mountain valleys
of the Rivers Chuja and Katun, and left deposits indicating a flow depth of
250-400 m that remain today (Fig. 7.6).

Yy

Run-up sediments
T

Bar surface

Fig. 7.6. Surface deposits related to the ice-dammed lake outburst flood in the
Altai Mountains, Siberia (view downstream). The deposits indicate a depth of flow
of 310 m in this location. Run-up sediments deposited 124 m above the bar surface
in the foreground are visible in front of the valley obstruction beyond the edge of
the bedrock on the right side (photograph by J. Herget)
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Outburst floods from large (continental-scale) ice-dammed lakes have
been found to influence global climate conditions. Lake Agassiz, located in
southern Canada in Pleistocene times, covered an area of about 150, 000 km?
and contained a volume of more than 163,000 km? [54]. Overflow through
spillways influenced discharges of the Mackenzie and Mississippi Rivers, while
subglacial outburst floods were even strong enough to block currents in the
Atlantic Ocean. Outburst floods below the continental ice sheet covering most
parts of northern Canada in these times can be related to global cold events
that occurred during the final stage of the Pleistocene and even during the
early Holocene [55,56].

7.3 Predictions and Forecasts
on the Geological Timescale

The key to predicting and forecasting the events presented here is the
timescale. The events mentioned above require prognosis to protect man from
related catastrophes in the near future, but in terms of the natural dynamics
of the entire planet they are not of much real relevance. Earthquakes and
local volcanic eruptions illustrate this difference in perspective towards the
phenomenon: people might be victims of earthquakes and volcanic eruptions —
thousands might be killed — but those events are not necessarily extreme when
compared with others on the geological timescale from a global perspective.

Different approaches have been applied to predict the previously men-
tioned events:

— Based on the currently observed drift velocities, it has been possible to
forecast the movements of continents and oceans, as shown in Fig. 7.1.
Even though the movement of continental plates is very fast on the geolog-
ical timescale, the opening or closing of ocean connections or the folding
of new mountain ranges happens over periods of millions of years.

— Earthquakes are typically related to shifts of continental plates. They
are observed using global seismic networks. The sedimentary record of
palaeoearthquakes has been investigated in detail in order to increase
our knowledge of the frequency and magnitude of earthquakes in specific
areas.

— The intensity of the magnetic field of the Earth fluctuates with an appar-
ently random frequency. As mentioned above, the current decrease in its
strength cannot be extrapolated into the future with any real assurance,
so the dynamics of the field in the future remain unsure and cannot be
predicted at the current stage of knowledge.

— Global climate changes from warm periods to ice ages have occurred cycli-
cally over the last 800000 years. Based on a statistical approach, the next
cold period should be expected to occur within the next few centuries.
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However, increasing levels of anthropogenic greenhouse gases in the at-
mosphere will probably modify the natural dynamics of this cycle. This
anthropogenic aspect complicates our understanding of natural global cli-
mate changes and prevent reliable forecasts on the longer timescale. This
aside, the analysis of previous climatic changes in prehistory, documented
in various natural archives, provides a unique way to understand the pro-
cesses related to climatic change. Without knowledge of these natural
processes and former modes of change, even the most ambitious quanti-
tative models and simulations will fail due to missing calibration data.

— Active volcanoes are carefully observed if they are located close the in-
habited areas. New periods of activity are usually announced by specific
tremors caused by the magma rising inside and below the volcano. The
periods of increased volcanic activity, especially those lasting thousands
of years, have gained importance in relation to mass extinctions only af-
ter studying them on the geological timescale. Against this background
it is obvious that these events cannot be predicted at the time but noted
afterwards.

— Meteorites frequently reach the Earth’s atmosphere and even its surface.
The environs of our planet is carefully watched by astronomers, who are
yet to find a large meteorite that could collide with our planet in the
future. Statistical analysis of the frequency of meteorite impacts indicates
that events comparable with that which formed the Chicxulub Crater oc-
cur about once every 50-100 million years, although impacts that modify
the global climate are expected to occur every 2-3 million years [39].

— Extrapolating from measured events via statistical methods is a common
approach taken to predicting the magnitudes and frequencies of floods.
Some approaches have extended their datasets by taking into account
both historic and prehistoric events. Ice-dammed lake outburst floods (and
their magnitudes in particular) are difficult to predict due to uncertainties
with the outburst mechanisms. For modern events, a black-box regression
of drained lake volume versus peak discharge is used and found to be of
remarkable accuracy, even if local differences cannot be considered (re-
views in [49,57]). For large events like those that occurred in Pleistocene
times, the database for statistical analysis is too limited [49].

The misinterpretation of events and phenomena is a familiar problem in
the earth sciences [58]. Cause and consequence and the interaction with the
geological system on a suitable spatial and temporal scale must be carefully
considered. The problem of integrating extraordinary Xevents into the con-
cept of the uniformitarianism of the dynamics of the Earth system has been
recognised, and the special term “cataclysmic process” has been given to such
events [59].

Although the Xevents that we have described in the geological past are
very rare and thus might appear of academic relevance only, if we consider
the issue in more depth — for example in relation to radioactive nuclear waste
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repositories [60] — it becomes clear that Xevents that occur on the geological
timescale still require serious attention.

7.4 Research Perspectives

“The past is the key for understanding recent processes in earth sciences —
hence, the fundament for predictions.” This statement expresses the basis
for earth sciences and explains the focus of many working groups in differ-
ent disciplines on the geological past. The idea is to estimate magnitudes
and frequencies of Xevents from the natural archives in order to gauge the
probability of reoccurrence. This approach works quite well over the longer
geological timescale. New methods and techniques are being developed by
specialists in related disciplines to help us to read and understand the in-
formation about Xevents in the geological past documented in rocks and
ice.

For shorter time periods, this attempt at prediction occasionally fails,
which is illustrated by flood predictions based on reoccurrence intervals of
observed flood events in modern times. Measured floods are statistically anal-
ysed by stochastic approaches to predict frequencies of Xevents (such as the
once in hundred or thousand years flood). Modern large floods modify the
stochastic magnitude—frequency relationship in such a way that extraordinary
events become usual: a reoccurrence interval of once in hundred years is re-
duced to once in ten years. Obviously, this approach depends on the range of
events considered, which depends on duration of measurements and station-
ary conditions of flood frequencies. This problem has been recognized [61,62]
and illustrated by case studies in various places (e.g. [63—65]), but conclusions
are yet to be drawn.

One way to approach this problem is to include events that took place
before the era of quantitative observations. It is possible to gauge extreme
flood events from historical documents and flood marks on old buildings.
Using this approach, the frequencies of floods can be determined back to late
mediaeval times in some locations, as illustrated by the flood events observed
at the River Rhine near Bale (Fig. 7.7).

This qualitative information can be converted into quantitative discharge
data for given water levels via hydraulic calculations [46,49]. Hence, ad-
ditional flood magnitudes can be estimated and added to recent measured
data. This approach allows us to include Xevents that took place before the
scientific era, increasing the amount of data, particularly for the prediction of
large flood events. One of these approaches is to estimate the mean flow veloc-
ity using the empirical Manning equation (see [68]). Using this and the given
water level (which limits the cross-sectional area), it is possible to calculate
the discharge.

Q = AR?/35' /21 (7.1)
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Fig. 7.7. Frequency of extreme and strong floods of the River Rhine near Bale
since 1496 (modified after [66]). The key is to derive quantitative discharge data
from qualitative data through the application of hydraulic equations. Data can even
be obtained for prehistoric events documented by fluvial sediments (for a review of
the methods involved, see [49,67])

where

— @: discharge

— A: cross-sectional area (derived from the observed water level and channel
topography)

— R: hydraulic radius R = A/P (P: wetted perimeter, derived from channel
topography and observed water level)

— S: slope of energy line (more or less identical to the slope of the water
surface, derived from observation)

— n: hydraulic roughness (tabulated values, see [68])

One challenge for this kind of research is to estimate values for the hy-
draulic roughness of settled floodplains. Historical flood marks have been
given for specific areas but the related hydraulic roughness has not yet been
systematically investigated. Flume experiments can help to estimate related
data if the density of settlement and other characteristics of the floodplain in
historic times are known from maps and other sources. Extraordinary events,
like the extreme flood of 1342 observed in numerous catchments and loca-
tions in Central Europe (see [69]), can be investigated in more detail and
could provide insights into plausible flood events under slightly modified cli-
mate conditions, which are vital for predicting conditions in the near future.
Palaeohydrological and palaeohydraulic investigations have been carried out
under different conditions in several locations across the world, but have been
less frequently applied in Europe [53,67,70].

Large flood events, like the extraordinary ice-dammed lake outburst floods
in Pleistocene times mentioned above, can help us to understand the specific
hydraulic conditions of other Xevents, and they provide concepts for new
methods like the interpretation of run-up sediments, described for the first
time in relation to the outburst floods in the Altai Mountains [49]. This kind
of sediment is deposited in front of local obstructions, but at higher elevations
than the usual water level due to the energy transfer as the velocity is abruptly
reduced and flow energy is transferred into potential energy. The difference
between the mean water level (indicated by other flood deposits) and the
level of the run-up sediment quantifies the velocity head, which can then
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be easily and successfully converted into a mean flow velocity. According to
the Bernoulli energy equation, the total energy of flow is constant along the
channel. The total energy of flow H consists of three elements:

H=(y+2)+ (p/(pg)) + (v*/(29)) (7.2)

where

— (y+2): potential energy, where y is the depth of flow and z is the elevation
above datum,

— (p/(pg)): pressure energy, where p is the density of water, p is the pressure
and g is the acceleration of gravity,

—~ (v?/(29)): kinetic energy, where v is the velocity of flow and g is the
acceleration under gravity.

Due to the fact that all of these elements are expressed by a unit of
length, they are also called the elevation head, the pressure head and the
velocity head, and the result is called the energy head. For free surface flow,
the pressure energy is zero, which simplifies the equation to

H = (y+z)+ (v*/(29)) (7.3)

This equation illustrates that in the case of a sudden drop of velocity, all
kinetic energy is transferred into potential energy, so the water level rises and
the depth of flow y increases.

Due to the non-uniform distribution of velocities within open channel flow,
an energy coefficient « is introduced to calculate the change of height of the
water level from the total loss of kinetic energy [68]. This coefficient is also
called the velocity head coefficient or the Coriolis coefficient. The equation
of the velocity head vy can therefore be written as

vp = av?/(2g) (7.4)

Values for the energy coefficient « are always larger than unity, except in
the case of uniform flow. For a known velocity distribution within a channel,
a can be calculated, otherwise it can be derived from experience (see [49] for
details).

Assuming that the suspended sediment load is homogenously distributed
throughout the cross-sectional area of the flow, the difference in elevation
between usual water level indicators like bar surfaces and run-up sediments
represents the velocity head vy, of flow. As this value can be measured in the
field, the flow velocity v and finally the discharge (@ = vA) can be calculated
after a simple algebraic transformation:

v = (2gvp/)'/? (7.5)

For mega floods like the ice-dammed lake outburst floods in the Altai Moun-
tains, the application of this approach results in a discharge of comparable
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magnitude to values derived by other attempts [49]. This concept of the run-
up effect should be transferred to other environments like settled floodplains
or narrow bridges, as obstruction by buildings (where the flood marks are
fixed!) may lead to water levels that are too high, resulting in overestima-
tions for the discharges.

Other large-scale flood-related features investigated in the Altai Moun-
tains cannot be interpreted successfully at the current state of knowledge.
Large boulders with diameters of 13 m were displaced by the outburst floods
in the Altai Mountains. Obviously, the size distribution of transported boul-
ders is related to the shear stress resulting from the high energy currents,
indicating what is known as the competence of flow. The problem is that
hydraulic interpretation is only possible for smaller boulders with diameters
of up to 1-2 m. The macroturbulence phenomenon [71] results in a different
vortex system with significant lifting forces beyond a boulder size of 1-2 m.
This threshold system has not yet been thoroughly investigated.

Another challenge is the application of flow simulation software to ex-
treme flood events. While simple one-dimensional models can be applied suc-
cessfully to steady flow conditions [72], unsteady flow modelling results in
the numerical instability of the previously applied model. More sophisticated
two- and three-dimensional models have only occasionally been applied in
palaeohydraulic investigations [73], but, alongwith a user-friendly interface,
are needed for flood investigations.

The example of the run-up sediments illustrates the value and importance
of the investigation of extreme flood events, even if they occurred thousands
of years ago in remote places: unknown phenomenona can be detected and
new methods developed that may help to predict flood magnitudes that could
occur in settled areas in the near future. Those floods might be caused by
intensive precipitation or abrupt snowmelting, but the failure of manmade
dams can result in outburst floods that could be comparable with those that
occurred during the last ice age.
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8 Wind and Precipitation Extremes
in the Earth’s Atmosphere

Andreas Hense and Petra Friederichs

Summary. This chapter presents an overview of some typical meteorological ex-
treme events. For reasons of conciseness we restrict ourselves to wind and precipi-
tation extremes. The major goal is to emphasize the fact that very different types
of wind or precipitation extremes may occur on different scales in space and time.
The main phenomenological presentation is supported by short descriptions of con-
ceptual models, in order to help the reader to grasp some of the underlying physics.
We show that it is debatable as to whether the concept of universality holds for
extremes, even for those involving atmospheric motion alone.

8.1 Introduction

Weather extremes are natural Xevents that can affect anybody at any place
on Earth. The extreme summers suffered in central Europe in 2002 and
2003 revealed the significant socio-economic problems weather extremes may
cause. Furthermore, extreme weather events enter into the public debate on
the “increasing” number of extreme weather events resulting from climate
change.

Very different types of extremes may occur on different scales in space
and time. These types are related to different variables like wind, tempera-
ture and precipitation and different processes involving these variables. On
the smallest scales (1-100 m), meteorological extremes are dominated by
wind extremes like breaking gravity waves downstream of mountain ridges or
tornadoes with the highest windspeeds recorded on Earth. Extreme precipi-
tation events, extreme not only in strength but also in appearance (such as
hailstones), are connected with deep convective structures on scales of kilo-
meters. Even larger wind and precipitation extremes with longer time scales
(hours to days) are found in tropical-subtropical synoptic disturbances like
hurricanes or typhoons. They are intrinsically linked to deep convection that
occurs in the atmosphere whenever the vertical density or entropy distribu-
tion develops into an unstable situation. In contrast, mid-latitude synoptic
disturbances, together with their types of extreme rainfall or wind events,
originate in the baroclinic shear zones over the mid-latitude oceans, which
have strong meridional temperature gradients.

In the following, an overview of some typical meteorological Xevents will
be given. The major goal is to emphasize the fact that different types of
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extremes can occur on different scales in space and time. The phenomeno-
logical presentation of these extremes is supported by short descriptions of
conceptual models, in order to understand some of the physics behind atmo-
spheric extremes in wind and precipitation. The discussion will show that it
is still debatable as to whether the concept of universality holds for extremes,
even just for atmospheric motion alone.

8.2 Atmospheric Scales

The climate system that contains the atmosphere can be defined as that part
of the total Earth system that exchanges energy with outer space and the in-
terior of the Earth by natural processes. Besides the atmosphere, the climate
system can be further separated into subsystems, including the hydrosphere,
the cryosphere, bare land surfaces and the biosphere. These subsystems are
coupled by the exchange of energy, mass and momentum. The subsystems are
defined in terms of their bulk aggregate state, namely gaseous for the atmo-
sphere, liquid water for the hydrosphere, frozen water for the cryosphere, the
bare soil matrix and the (largely) plant-based communities on the land and in
the ocean. The climate system in general and the atmosphere specifically can
be considered to be a high-dimensional, nonlinear physicochemical system [1].
If we assume a minimum spatial scale of 1073 m (in order to resolve viscous
dissipation), the entire atmosphere can be covered by O(10%®) of these unit
volumes. If the state within each volume is furthermore described by O(100)
state variables, such as temperature, pressure, concentrations or densities of
bulk or trace substances, and velocities, the atmosphere has at least 1030
degrees of freedom (DOF). The complete instantaneous state of such a sys-
tem (named m) can be mathematically described by an element (vector) of
a high-dimensional phase space, where the dimensionality dim(m) = a is the
number of DOF. It is not possible to compute the temporal evolution of such
an object, nor is it possible to measure the data required to initialize such
a computation. A description and analysis of such a complex system can only
be achieved through statistical physics, where the state vector m is described
by statistical measures like the probability density function (PDF). The aim
of modern climatalogy is to analyze the temporal evolution of such statistical
measures through internal dynamics or external forcings [2].

The assumption of thermodynamic equilibrium, which is inherent to sta-
tistical physics, allows the PDF of the state vector to be computed from first
principles. However, due to variations in solar insolation, the atmospheric sys-
tem and the other climate subsystems are far from being in thermodynamic
equilibrium. Such thermodynamic systems are subject to large random fluc-
tuations [3] and are therefore prone to develop Xevents. Due to asymmetries
in the land-ocean distribution and orography and/or combinations of the
Earth’s geometry and rotation with the land-sea distribution (among other
factors) high energy fluctuations can be localized to certain regions, while the
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variability in other regions is small. Hence, specific atmospheric Xevents can
be observed with varying probabilities at different locations on Earth. These
structures are called “teleconnections” and present further complications to
the analysis because they do not allow for inherent symmetries in the climate
system, such as translation invariance in the longitudinal direction.

The PDF of the atmospheric state vector m contains the full description
of the statistics of m. Thus it is a mathematical construct or model that can
be used to describe the climate. Since this PDF and its temporal evolution
cannot be specified from first principles or symmetry considerations, they
must be estimated from observations. This introduces uncertainties into the
estimates that have to be specified for further applications.

The dynamics of the atmospheric state vector m are observed to be con-
centrated at particular space and time scales. Figure 8.1 gives an overview of
typical processes in the atmosphere and their related space and time scales.
All of these processes are turbulent, chaotic processes with the ability to
generate extreme values. The turbulent character arises from the nonlinear
interactions of the flow components of velocity, temperature and mass as well
as the step processes of the condensation or evaporation of water.

Extremes at different scales are often connected to each other, for exam-

ple:
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Fig. 8.1. Scale diagram for atmospheric motions
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— Large (extreme) vertical gradients of entropy lead to convective instabil-
ity on spatial scales of O(100 km). The resulting deep convection can lead
to extreme vertical velocities on spatial scales of O(1 km). Heavy precip-
itation (including hailstones) can grow within these vertical circulation
structures, which (depending on their size) can cause extreme damage.

— Large (horizontal) temperature gradients in mid-latitudes can lead to
baroclinic instabilities at spatial scales of O(1000 km). Cyclones, which
represent geophysical turbulence, can result, leading to extreme horizon-
tal velocities along the frontal zones. Friction near the surface leads to
strong vertical shear flow which causes dynamically induced turbulence
with extreme wind bursts or gusts.

In the following we will present an overview of extreme weather events
observed on different space and time scales, based on wind speed and precip-
itation. The aim is to show that different physical processes are responsible
for generating wind extremes. This raises the question as to whether a uni-
versal behavior should be expected for extreme wind velocities. Furthermore,
we will present a short summary of precipitation extremes over a wide range
of accumulation periods ranging from minutes to years. In contrast to wind
extremes, extremes in precipitation do show a scaling law, which is most
probably related to the general space — time scaling of precipitation [4].

8.3 Wind Extremes

8.3.1 Small-Scale Extremes

The most prominent extremes at the smallest scales (a few tens of meters) are
encountered during “clear air turbulence” (CAT). CAT is usually related to
breaking atmospheric gravity waves initiated by airflows across large moun-
tain ridges. CAT is also found in or near strong horizontal shear flows that
develop in regions where there is strong curvature of the “jet stream”. The
jet stream meanders around the Earth at heights of about 10-12 km (see
below). This atmospheric phenomenon provides an aviation hazard known
as “air holes”, which can lead (in extreme cases) to structural damage to
aircraft. Figure 8.2 shows a photo of a DC-8 aircraft that landed in Stapleton
Airport (Denver, CO, USA), after having experienced severe CAT in breaking
mountain waves in the lee of the Rocky Mountains on 9th December 1992.
The DC-8 lost its leftmost engine, including the wing tip. This indicates that
these extreme turbulence elements have a spatial scale of roughly the size of
an aircraft.

At slightly larger scales, atmospheric wind extremes are linked to deep
convection or thunderstorms. If the vertical temperature and moisture struc-
ture is conditionally unstable and the moisture within the parcel condensates,
rising air parcels will accelerate. The latent heat is passed to the parcel and
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Fig. 8.2. The DC-8 aircraft that experienced severe CAT in the lee of the
Rocky Mountains on 9th December 1992 (from http://www.etl.noaa.gov/about/
review/as/ralph/10.html)

its buoyancy increases. The parcel also gains kinetic energy at the expense
of the latent heat. This is called the convective updraft. Its spatial scale is
typically O(1 km) and it may reach upward peak velocities of 10-30 m/s.
Due to the strong drag exerted upon raindrops and hail or graupel, such
large velocities will permit the formation of large quantities of water and ice
in the upward-moving air parcel. Extreme updraft velocities allow extremely
large hailstones to grow, which present hazards to farms, greenhouses and
orchards (Fig. 8.3).

If the water and ice is moved outside the main updraft it will, due to
its weight, fall and the ice and water will melt or evaporate. Thus, inter-
nal energy is extracted from the air and stored as latent heat which creates
and increases the negative buoyancy of the parcel. A “downdraft” develops
which can produce extreme wind gusts of up to 200 km/h when it reaches the
surface. Furthermore, downdraft or downbursts are among the most danger-
ous meteorological hazards for aircraft during take-off or landing. During the
1970s and 1980s, more than 20 US aircraft accidents were related to down-
bursts, causing more than 400 fatalities [5]. Downbursts range in size from
1 km (microburst) to over 50 km (macroburst), and are often accompanied
by specific cloud formations (Fig. 8.4).
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Fig. 8.3. A grapefruit-sized hailstone (from http://www.photolib.noaa.gov /nssl)

Updrafts and downdrafts within a single thunderstorm lead to extreme
horizontal shears in the vertical velocity. If this is combined with a strong
vertical shear in horizontal wind velocity, vorticity is generated in the hori-
zontal plane. This is one way in which a tornado can form, and these provide
the most extreme wind events observed on the Earth. Tornado wind veloci-
ties of up to 600 km/h have been measured using Doppler radar. Tornadoes
(Fig. 8.5) are always associated with strong convection and exhibit spatial
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Fig. 8.4. Sketch of a convective downburst
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Fig. 8.5. A tornado south of Dimmitt, TX on 2nd June 1995. Photographer: Harald
Richter (from http://www.photolib.noaa.gov /nssl)

scales between O(100 m) and O(1 km). According to the Fujita scale, tornado
strength is classified between F1 and F5 (F6) (see Table 8.1).

Tornadoes are frequent phenomena in the midwest of the US (in “Tornado
Alley” in Texas, Oklahoma and Kansas). A careful analysis of observations
made in Germany has shown that they are also present there, although the
frequency of occurrence is about an order of magnitude smaller. More details
can be found at http://www.tordach.org/de/.

8.3.2 Mesoscale Extremes

While the wind extremes described in the previous section are almost unaf-
fected by the Earth’s rotation, atmospheric motions and their extremes seen
at larger scales, the meso- and macroscales, are influenced by the Coriolis
force. This has important consequences. Assuming a stationary and hori-
zontal (tangential to the sphere) flow field vy, the approximate momentum
balance between advective, pressure gradient and Coriolis acceleration then
reads:

1
(vpV)vp = —pVhp — fe, X vy . (8.1)

(e, is the unit vector that is locally perpendicular to the sphere and points
to the local zenith, while f = 2£2sin(¢) is the Coriolis parameter, where (2 is
the Earth’s rotation rate and ¢ is the geographical latitude). The left side can
be modified using a well-known identity, and the momentum balance changes
into

7+ Qe xv ==V (Lot yut) | (2)
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Table 8.1. The Fujita tornado scale

Intensity phrase

Gale tornado

Moderate tornado

Significant tornado

Severe tornado

Wind speed
40-72 mph

73-112 mph

Typical damage

Some damage to chimneys

Breaks branches off trees

Pushes over shallow-rooted trees
Damages signs

Lower limit on hurricanes

Peels off roofs

Mobile homes pushed off
foundations

Moving automobiles pushed off the
roads

Attached garages may be destroyed

113-157 mph Considerable damage

Roofs torn off frame houses
Mobile homes demolished
Boxcars pushed over

Large trees snapped or uprooted
Light object missiles generated

158-206 mph Roof and some walls torn

off well-constructed houses
Trains overturned
Most forest trees uprooted

Devastating tornado 207-260 mph Well-constructed houses leveled

Incredible tornado

Structures with weak foundations
blown some distance

Cars thrown, large

missiles generated

261-318 mph Strong frame houses lifted

off foundations and carried
considerable distances, disintegrating
Automobile-sized missiles fly
through the air in excess of 100 m
Trees debarked

Concrete structures badly damaged

Inconceivable tornado 319-379 mph Winds this strong are very unlikely

Scale of damage they might produce
would probably be difficult

to envisage through the F4 and F5
winds surrounding the F6 winds

where ( is the vertical component of the vorticity vector ¢ = e,(V}, x vp,).
The density p is assumed constant for simplicity. The total vorticity f+ ¢ on
the left hand side, which is the sum of the planetary and flow vorticities, de-
termines the existence of a stationary solution. If the local vorticity is of the
same sign as the planetary vorticity, which results in cyclonic low pressure
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systems with counterclockwise circulation on the northern or clockwise on
the southern hemisphere, any pressure gradient allows for a steady solution.
This means that cyclonic pressure systems can be of any strength on those
spatial scales where the planetary vorticity is important. However, if { is the
opposite sign to the planetary vorticity, which means that the flow is anti-
cyclonic, steady solutions are only possible for weak high pressure systems,
because the total vorticity may become zero. Although processes other than
those discussed here would never allow the full development of the steady
solution, the momentum balance dictates that extreme circulations on the
mesoscale in the atmosphere will be observed for cyclonic circulations only.
Breakdown under anticyclonic conditions is strongly connected to internal
gravity wave generation, which leads to the Xevents discussed in the pre-
ceeding section.

8.3.3 Tropical Cyclones

The most intense cyclonic circulations that occur on spatial scales larger than
100 km are found in tropical cyclones. They occur in all tropical oceanic
regions and are called hurricanes in the Atlantic and eastern Pacific, ty-
phoons on the Asian side of the Pacific, willi-willies around Australia and
simply tropical cyclones in the Indian Ocean basin. They are classified into
five classes depending on strength according to the Saffir-Simpson scale (Ta-
ble 8.2).

To initiate cyclonic rotational flow in the lower part of a tropical cy-
clone (TC) ¢ > 0, a minimum value of planetary vorticity is needed. There-
fore, TC’s are always found at latitudes of about 10° above or below the
equator. Figure 8.6 illustrates this effect. It shows the tracks of all of the
TC’s observed in the year 2002. Tropical cyclones start their life cycle near
+10°, initially move westward, and then gain in intensity as they start to

Table 8.2. The Saffir-Simpson scale for classifying hurricanes

Category  Wind speed Barometric Storm surge Damage potential
(1 min av) pressure in hPa inm
1 120-155 km/h > 980 1.2-1.5 Minimal damage
weak to vegetation
2 155-180 km/h 965-980 1.8-2.4 Moderate damage
moderate to houses
3 180-210 km/h 945-965 2.7-3.7 Extensive damage
strong to small buildings
4 210-250 km/h 920-945 3.9-5.5 Extreme structural
very strong damage
5 > 250 km/h < 920 > 5.5 Catastrophic building

devastating failures possible
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move polewards. At the very end of its life cycle, a TC will often convert
into a mid-latitude low pressure system moving eastward within the westerly
winds zone.

The kinetic energy of a tropical cyclone is generated almost entirely
through the release of latent heat of water vapor. This requires a suffi-
ciently strong supply of water vapor by evaporation from the ocean surface,
which can only be achieved when sea surface temperatures are higher than
26 °C. Once the TC makes land this evaporation is shut off and surface
friction is enhanced, which leads to an almost immediate decrease in inten-
sity.

Tropical cyclones are one of the few natural examples of a system that
can be described rather successfully by a Carnot heat engine [6], [7]. If the
standard Carnot assumptions are broadened by a simple dynamical model,
an estimate for the intensity of a TC can be found using

_ Tsst - Ttpl
Tsst
v3 = 20 Epmaz
Emaa: - Lv(]- - H)qsat (Tsst) (83)

where T,y is the sea surface temperature and Ty, is the temperature at
the tropopause level (approximately 15 km up at the tropics), 7 is the well
known efficiency of a Carnot machine, while E,,,, is the maximum energy
input into a TC through evaporation of the ocean surface. This is determined
by the latent heat of evaporation L,,, the relative humidity of the atmosphere
above the ocean H, and the saturation-specific humidity at the sea surface
temperature ¢sq:(Tsst), obtained through the Clausius—Clapeyron equation.

Inserting this gives an estimate of the maximum wind speed vy attainable in
a TC

Test — T,
v = \/2 tT, ! Lv(]- - H)QSat (Tsst) (84)
sst

LR S RPN IR o N T Feeeeaan PRNRTTEEIE T

20 kt , 85 kt 150 kt . . . . - .
80 120 160 -160 -120 -80 —40 0

Fig. 8.6. All tropical cyclone tracks for the year 2005 (data from
http://www.solar.ifa.hawaii.edu/Tropical /)
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Using typical observed values, one arrives at vy ~ 210-250 km/h, which is
a Category 4 or 5 hurricane according to Table 8.2. The model can be refined
to obtain a potential intensity index that is useful in forecasting.

8.3.4 Extratropical Cyclones

Extratropical low pressure systems (usually termed synoptic disturbances in
meteorology) can be found at a slightly larger scale than tropical cyclones. Be-
sides thunderstorms, these low pressure systems are responsible for extreme
weather events in central Europe. The most prominent recent examples of this
were the winter storms (known as Anatol, Lothar and Martin) of December
1999, or those of February 1990 (Vivian and Wiebke). In contrast to TC’s,
extratropical disturbances do not feed primarily on the latent heat of con-
densation but on the potential energy stored in the atmosphere, which occurs
if a strong horizontal (mainly meridional) temperature gradient is present.
This configuration is known as baroclinic, and it is the baroclinic instability
mechanism that converts the potential energy into the kinetic energy of the
flow. Baroclinic instabilities organize themselves so as to reduce the merid-
ional temperature contrast by transporting heat from low to high latitudes.
Those intense winter storms are characterized by extremely low central pres-
sures and extreme wind velocities and wind gusts, which are related through
the gradient wind balance of (8.2).

Typical examples of such exceptional events include the series of storms in
the late winter of 1990 which led to the cancellation of major processions on
Carnival Monday (26th February 1990) in western Germany, or the Anatol,
Lothar and Martin storms in December 1999 that were associated with dis-
asters in southwestern Germany and northern France. Table 8.3 (taken from
the homepage of SwissRe) summarizes the extreme storm events that have
occurred in central Europe over the past 30 years. It is evident that these
storms typically occur in series, which is because the extreme baroclinicity
of the atmosphere is not released by a single storm. Several storm events
are necessary to transport a significant amount of heat northward to reduce
the extreme temperature gradient between low and high latitudes. This slow
variability is part of the North Atlantic Oscillation (NAO) over the North
Atlantic-European region, which itself was in an extreme state during the
early and late 1990s. The NAO was extremely positive (see Fig. 8.7), which
was related to a deeper than normal Icelandic low and a higher than nor-
mal Azores high, with above-normal (below-normal) temperatures in central
Europe (the East American coast).

8.3.5 Jet Streams

Extreme wind velocities on the largest scales (planetary scales) are found in
the jet streams in the upper troposphere. These jet streams also owe their
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Fig. 8.7. Time series for the NAO index for winter (December to February) between
1880 and 2000; a positive NAO index is associated with above normal temperatures
in Europe, individual winter values are represented by dots, the line shows the 11-
year running mean, indicating the decadal variability [8]

existence to the meridional temperature gradient. The wind balance gradient
on the planetary scale can be relaxed to the geostrophic balance with the
pressure gradient force balancing the Coriolis force:

1
—pVhp—fer xv,=0. (8.5)
Table 8.3. Major historical events, insured losses and estimated return period

for the winter storms that have occurred in central Europe over the past 30 years
(according to http://www.swissre.com/)

Date Event Area affected Insured loss Return period
(in 10° US $)  (in years)
2./3.1.1976 Capella UK, NL, B, D, UK 1.2 >5
16.10.1987 87J UK, F, NL 4.3 5
25.1.1990 Daria Europe, F, D, UK 5.8 8-10
3./4.2.1990 Herta F, D 1.1 <55
26.2.1990 Vivian UK, F, NL, B, D 3.4 <55
28.2.1990 Wiebke D, CH, A, S. Germany 1 <5
21.1./2.2.1995 Div.storms N. Europe, D, F, B, NL 1 <5
3./4.12.1999  Anatol DK, D, UK, SW, DK 1.5 <55
26.12.1999 Lothar F, D, CH 6.2 8-10 (F: 70)

27.12.1999 Martin F, CH 2.6 <5
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For large-scale motion it is more convenient to use the pressure p as an al-
ternative vertical coordinate instead of the height h. The appropriate trans-
formation reads [9]

Vip = gpVyh. (8.6)

Using the definition of the geopotential @ = gh leads to the following formula
for the geostrophic equilibrium:

V,P— fe, xv,=0. (8.7)

Assuming that the atmosphere is an ideal gas at temperature T' with a gas
constant Ry, then, in pressure coordinates, the hydrostatic pressure balance

0
= — 8.8
9P = 9P (8.8)
reads 9 BT
o=-"" 8.9
op » (8.9)
Solving 8.7 for v, and combining it with 8.9 gives
0 R
v,= e x V,T (8.10)

dp fp

which shows that the vertical wind shear 68 v, (called the thermal wind) is
related to the horizontal temperature gradient. If there is a strong poleward
drop in temperature in the lower troposphere, with a less strong or even re-
versed temperature gradient above, the zonal (east-west) velocity forms a jet
that is a local maximum of the wind velocity. In the northern hemisphere,
the most prominent positions of these jets are found south of Japan and on
the east coast of the US, near 35 °N at a height of about 12 km (pressure
p = 200 hPa, see Fig. 8.8), with average maximum values of about 240 km/h.
Note that Fig. 8.8 is a mean picture of the atmosphere and does not signify
any extremes in the statistical sense. Extremes of jet strength are seen in
the time series of observed wind velocities at positions near the average max-
imum (taken to be 35 °N and 130 °E) for two different years, 1983 and
1999 in Fig. 8.9. Extreme velocities in winter are seen to reach values of up
to 350 km/h. Within these regions of strong horizontal as well as vertical
wind shear, dynamical instabilities can develop that lead to the generation
of extreme turbulence by breaking gravity waves (clear air turbulence CAT),
which links back to the first Sect. 8.3.1 on small-scale extremes.

8.4 Precipitation Extremes

Precipitation in the atmosphere is the final result of a large cascade of scale in-
teractions. The cascade begins with the interaction of single water molecules,
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Table 8.4. World record point rainfall values. These were collected by the World
Meteorological Organization and are published in [11]

Dura- Time Rain- Location Date
tion 7 units fall (mm)
1 min 38 Barot, Guadeloupe 26 Nov 1970
8 126 Fissen, Bavaria 25 May 1920
15 198 Plumb Point, Jamaica 12 May 1916
20 206 Curtea-de-Arges, Romania 7 Jul 1889
42 305 Holt, USA 22 Jun 1947
60 401 Shangdi, Nei Monggol, China 3 Jul 1975
2.17  hours 483 Rockport, USA 18 Jul 1889
2.75 559 D’Hanis, USA 31 May 1935
4.5 782 Smethport, USA 18 Jul 1942
6 840 Muduocaidang, China 1 Aug 1977
9 1087 Belouve, La Réunion 28 Feb 1964
10 1400 Muduocaidang, China 1 Aug 1977
18.5 1689 Belouve, La Réunion 28-29 Feb 1964
24 1825 Foc Foc, La Réunion 7-8 Jan 1966
2 days 2467 Aurere, La Réunion 7-9 Apr 1958
3 3130 Aurere, La Réunion 6-9 Apr 1958
4 3721 Cherrapunji, India 12-15 Sep 1974
5 4301 Commerson, La Réunion 23-27 Jan 1980
6 4653 Commerson, La Réunion 22-27 Jan 1980
7 5003 Commerson, La Réunion 21-27 Jan 1980
8 5286 Commerson, La Réunion 20-27 Jan 1980
9 5692 Commerson, La Réunion 19-27 Jan 1980
10 6028 Commerson, La Réunion 18-27 Jan 1980
11 6299 Commerson, La Réunion 17-27 Jan 1980
12 6401 Commerson, La Réunion 16-27 Jan 1980
13 6422 Commerson, La Réunion 15-27 Jan 1980
14 6432 Commerson, La Réunion 15-28 Jan 1980
15 6433 Commerson, La Réunion 14-28 Jan 1980
31 9300 Cherrapunji, India 1-31 Jul 1861
2 months 12767 Cherrapunji, India Jun—Jul 1861
3 16369 Cherrapunji, India May—Jul 1861
4 18738 Cherrapunji, India Apr—Jul 1861
5 20412 Cherrapunji, India Apr—Aug 1861
6 22454 Cherrapunji, India Apr—Sep 1861
11 22990 Cherrapunji, India Jan—Nov 1861
12 26461 Cherrapunji, India Aug 1860-Jul 1861
2 years 40768 Cherrapunji, India 1860-1861
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Fig. 8.8. Time-averaged distribution of zonal wind velocity in January between
1980 and 1999 in km/h at a pressure level of 200 hPa, and a height of about 12 km

continues on scales of cloud droplets and rain drops, and then passes through
small-scale atmospheric turbulence, clouds and mesoscale flow variations em-
bedded into synoptic and planetary circulations. All of these scales determine
whether it rains or not at a specific point in space and time. Precipitation (and
also clouds) therefore have a very complex and rich space-time structure [4].
Part of this structure derives from the fact that one cannot talk about a pre-
cipitation extreme per se. Rather, it is important to state the time interval T'
over which the precipitation is accumulated. From the physical point of view,
precipitation is the vertical mass transfer rate of liquid or frozen water mass
(assuming the discrete nature of the rain drops is ignored). Standard observa-
tion systems can only measure the aggregate mass over a specific time interval
and a specific area. Both the time and the area have to be large enough com-
pared to the droplet size in order to sample enough rain drops to measure
the mass transfer rate accurately. Typical values can be as small as minutes,
with areas of just a few hundred square centimeters. The World Meteorologi-
cal Organization has collected reports on accumulated rainfall extremes over
a wide range of aggregation times 7. These are given in Table 8.4 together
with the location and date of the measurement. A log-log plot (Fig. 8.10) of
these data reveals that the extremes of accumulated precipitation scale like
T95 over several orders of magnitude [12]. This clearly shows that extreme
precipitation events can only be defined with respect to a fixed accumulation
time. The authors of [4] have shown that this remarkable scaling behavior
is related to the general scaling of precipitation over time (similar scaling
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Fig. 8.9. Time series of half-daily observations of jet stream velocity near 35 °N
and 130 °E at a height of about 12 km taken in 1983 (top) and 1999 (bottom) in
km/h, from NCEP reanalysis [10]
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Fig. 8.10. A log-log representation of the extremes in rainfall accumulated over
a time period T; the dots are the data from Table 8.4, and the line is the least
squares fit 6.57°4°

laws hold for space), which can be modeled using a random cascade model.
Assume that the rainfall rate R, over a time 7 scales like ¢,77 where g,
is a conserved random quantity (such as total water mass in the present
case) and H is the Hurst exponent. If E defines the expectation, we have
E(g;) ~ const; in other words the expectation of ¢, is scale-independent.
The random cascade can be understood as a process distributing an initial
rain mass R over a large accumulation period 7 = 1 into one of its subperi-
ods using a random scaling of the initial mass pR. In the simplest case, the
subperiods are obtained by splitting 7 into two identical subperiods. Then
the redistribution is a Bernoulli process with Prob(uR = 777%) = p, = 7¢
when assigning the scaling of the rain mass to one of the subintervals and
Prob(uR = 777-) = 1 — p, for the other.

Generalized scaling with more complex noise processes is developed on
the basis of ¢, with [4]:

Prob(g, > 777) ~ 7¢O (8.11)

where ¢(7y) is the scaling exponent (co-dimension function) of the probability
distribution characterizing the occurrence of rare (small probability) versus
extreme (g, large) events. In [13] an expression is derived for ¢(7) for different
noise processes in the random cascade model:
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’

c(y—H)=Cy (a” + 1>a
1

/01 [0
1
+ =1
(07 «
a#1
C = C(’7 = C1) (8.12)

Here the parameter a characterizes the noise process for the random cas-
cade model, where (for example) o = 2 is the parameter for a Gaussian noise
generator. The cases with 0 < o < 1 are more general noise processes: the
so-called “Levy stable noises”. The scaling for the data in Fig. 8.10 can now
be derived from these results. The data given represent the accumulation
A, = TR, ~ 7'77maz gver the time scale 7. Equation (8.4) can be used to
estimate an upper bound for the scaling exponent g by calculating the max-
imum of the function ¢, which is also an upper bound for ;4. This leads

to
1

1 —

The constants C; and « can be evaluated from daily precipitation mea-
surements (by box counting algorithms or related techniques [14]), giving
C; =04+02and a = 0.5+0.1 ( [4] and citation therein). If H is as-
sumed to be zero, the resulting scaling exponent for maximal accumulation
is 0.2 + 0.2. However, if the C7 = 0.2, « = 0.5 pair for observations made on
the tropical island of La Réunion ( [4], Table 3) are used, which constitute
a major part of the data in Fig. 8.10, the scaling exponent for maximum
accumulation with H = 0 is 0.6 & 0.2, which is much closer to the results in
Fig. 8.10 than the previous estimate.

Ymazx S Yo = a + H (813)

8.5 Discussion

The aim of this contribution was to give an overview of typical atmospheric
extremes and related processes. We took wind and precipitation as examples.
For wind, it was shown that typical wind extremes are the result of very dif-
ferent processes. At the smaller spatial and temporal scales, wind extremes
result from fully developed three-dimensional turbulent eddies resulting from
dynamical (shear zones) and thermodynamical (deep convection) instabili-
ties. At large scales, the effects of the Earth’s rotation become important as
well as the mean vertical density or entropy stratification (this was not dis-
cussed for reasons of brevity), meaning that wind extremes develop in a quasi
two-dimensional flow at these scales. This means that it is debatable as to
whether it will be possible to postulate a universal behavior for atmospheric
wind extremes.

For precipitation, the observational results presented above seem to in-
dicate a different message. Over a wide range of accumulation periods, and
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at different locations on Earth, the maximally accumulated rainfall follows
a straightforward scaling law that can be interpreted as a universal behav-
ior. However, based on the derivations and specific parameter values given
in [4], a quantitative comparison leads to a significant (order of magnitude)
difference between observation and theory (0.240.2 vs. 0.5), except when the
observational values for La Réunion are inserted (0.6 &+ 0.2 vs. 0.5). Taking
a close look at Table (8.4), it appears that the majority of the data points
come from stations in areas and/or seasons where heavy precipitation is pro-
duced by deep convection. Therefore the results of Fig. 8.10 could indicate
that a universal behavior for extreme precipitation does exist for convective
processes, but not in general.

References

1. A.S. Monin: An Introduction to the Theory of Climate, (Reidel Publishing Com-
pany, Dordrecht 1986), pp 261

2. K. Hasselmann: Tellus, 28, 473-493 (1976)

3. 1. Prigogine: From Being to Becoming, Time and Complexity in Physical Sys-
tems,(W.H. Freeman and Company, 1980), pp 272

4. S. Lovejoy, D. Schertzer: Multifractals and Rain. In: New Uncertainty Con-
cepts in Hydrology and Hydrological Applications, ed. by A.W. Kundzewicz,
(Cambridge University Press Cambridge 1995), pp 63-103

5. T.T. Fujita: The Downburst — Microburst and Macroburst. Report of Projects

NIMROD and JAWS (University of Chicago Press, Chicago, IL, 1985) pp 122

K.A. Emanuel: Nature, 401, 665-669 (1999)

A. Fink, P. Speth: Naturwissenschaften, 85, 482-493 (1998)

R. Glowienka: Contrib. Atmos. Phys., 58, 160-170 (1985)

A. Gill: Atmosphere—Ocean Dynamics, (Academic, New York, 1982)

E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deavens, L. Gandin,

M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki,

W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetma,

R. Reynolds, R. Jenne, D. Joseph: Bull. Am. Meteorol. Soc., 77, 437-471 (1996)

11. WMO: Guide to Hydrological Practises, 5th edn, (No. 168, World Meteorological
Organization, Geneva 1994), see http://
www.bom.gov.au/hydro/has/notables.shtml#World record rainfall table

12. J.L.H. Paulhaus: Mon. Weath. Rev., 93, 331-335 (1965)

13. D. Schertzer, S. Lovejoy: J. Geophys. Res., 92, 9693-9714 (1987)

14. H. Kantz, Th. Schreiber: Nonlinear Time Series Analysis, 2nd edn, (Cambridge
University Press, Cambridge, 2003)

R e



9 Freak Ocean Waves
and Refraction of Gaussian Seas

Eric J. Heller

Summary. Rogue or freak waves sink ships at an alarming rate — estimated at
one large ship every few weeks worldwide. It is thought that vulnerable ships (light
cargo ships) simply break in two when they plough into a 60 foot wave preceded
by a 40 foot hole in the sea, as some sailors that have survived such experiences
have called it. Wave refraction due to current eddies (which are ubiquitous in the
oceans) has long been suspected to play a role in concentrating wave energy into
rogue waves. Existing theories have been based on refraction of plane waves, not
the stochastic Gaussian seas one finds in practice. Gaussian seas ruin the dra-
matic focal caustic concentration of energy, and this fact has discouraged further
investigations. Although it was thought that chaos, or the extreme sensitivity to
initial conditions displayed by individual ray trajectories would quickly wipe out
all significant fluctuations, we show that this is incorrect, and the fluctuations are
“structually stable” entities. Significant “lumps” of energy survive the averaging
over wave directions and wavelengths. We furthermore demonstrate that the prob-
ability of freak waves increases dramatically in the presence of these lumps, even
though most parameters, such as the significant wave height, are unchanged. We
show here that a single dimensionless parameter determines the potential for freak
waves; this is the “freak index” of the current eddies — a typical angular deflection
in one focal distance, divided by the initial angular uncertainty of the incoming
waveset. If the freak index is greater than 2 or so, truly spectacular enhancements
of freak index waves can result, even though the caustics are washed out by the
Gaussian nature of the impinging sea.

9.1 Introduction

It is tragically clear from recent events that mankind has not taken oceanic
Xevents seriously enough. In the case of the recent tsunami, the loss of life
could have been greatly diminished by simple instructions given as a part
of one’s schooling: if the water suddenly recedes from an open beach, run
to high ground, immediately. People often believe that Xevents always hap-
pen to somebody else, or worse, that forecasts of Xevents may be rumors
without substantiation. Until very recently, this was the case with extreme
or “freak” waves in the sea. Old salts who (amazingly) survived them had
difficulty convincing people on shore that a wave at least twice as high as
normal, and very steep, came out of “nowhere” and smashed a ship to pieces.
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Giant waves in deep water have now been photographed (see Fig. 9.1), im-
aged by satellite, and sensed via ocean buoys. There is no doubt about their
existence.

How could ten large ships be sunk this way every year and most of us
not hear about it? There are several reasons. First, it has been happening
for a very long time: ships disappear, and this is chalked up to bad weather.
Second, the ship usually sinks immediately, or the electronics are wiped out
immediately, and no distress signal is sent before the ship sinks. The ship is
not missed for some time; the idea of a tragic loss arises slowly and does not
arouse the press. Third, there is no visible wreckage for everyone to see or
photograph.

Cruise ships and military ships are more resilient than container vessels.
They do not break in two so easily, as a huge wave will crash on the deck just
as the hull passes over a deep trough. However, they are not immune from
problems. There were two dangerous events in February, 2005, one in the
Pacific, another in the Mediterranean, involving cruise ships with around 700
people aboard. In both cases the electronics on the bridge were wiped out by
giant waves that smashed the windows. This lead to engine shut down, which
is dangerous, because it results in the ship drifting parallel to the waves,
which soon makes it roll dangerously.

What are your chances of getting hit “out of the blue” by a giant wave on
the high seas? Freak wave lore has it that they can strike even on relatively
calm days with a seemingly benign swell from a nearby storm. Or they can
occur on a stormy day, when a 70 foot wave will suddenly appear when the
higher ones have previously been a much more negotiable 30 feet.

WAHLBERG:

Fig. 9.1. (Left) Photograph of an oncoming freak wave from the bridge of a ship.
(Right) This poster from the movie “Perfect Storm” is probably not much of an
exaggeration
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There are several kinds of freak waves, according to witnesses. Some-
times they take the form of the “three sisters”: three large waves traveling in
a group. They can also be the feared “wall of water preceded by a hole in the
sea”. Other freak waves are said to arrive at a large angle with respect to the
mean direction of the waves, something like 30° or 40°. Tsunamis are rare
and are much more devastating than freak waves, but they arise from earth-
quakes, landslides, meteors, and other nonoceanic causes. Freak waves on
the other hand are wind-generated and recurrent (there are probably several
hundred of them occurring around the world as you read this!). They arise
“naturally”; they are Xevents that arise from fairly routine circumstances.
One would like to know their cause. Models for wave generation and propa-
gation can be established. Statistical reasoning will have to play a role, but
a good theory will give an idea of how high the waves can get, and how often
they reach dangerous heights.

Since the physical laws that govern them are, in principle, well known,
and the conditions leading to an Xevent are not hidden from us as they
are when trying to predict an earthquake, there is hope of predicting their
likelihood. these days we routinely forecast the weather; perhaps one day
soon we will hear the marine forecaster say “...the chance of encountering
a 80 foot or higher breaking freak wave today is 1% in the area 100 nautical
miles southwest of ...”.

Today though there is no widely accepted theory of how freak waves form
in the open ocean. Three categories of models predominate discussions: (1)
Gaussian statistical (“unlucky” constructive addition), (2) refraction leading
to focal caustics, and (3) nonlinear growth and steepening. By combining
aspects of statistical models and refraction we arrive in this chapter at an
attractive hybrid theory that has many superior traits compared to either
parent. It is expected that nonlinear wave evolution, not treated here, will
also play a role, no doubt worsening the large waves that the linear theory
we put forth here creates.

Each of the three models, Gaussian, refraction, and nonlinear, has dif-
ficulties: (1) Xevents appear to be too rare compared to observations in
the Gaussian statistical model [1,2]; (2) although White and Fornberg [3]
showed that a plane ocean wave incident on random current eddies could
yield focal cusps at realistic distance scales, the refraction model [3,4] has
the problem that the caustics, which are the loci of freak wave events, are
smoothed away by realistic averaging over wave directions [5]; (3) nonlinear
models [6,7] can explain the growth of large waves but presumably need a
“seed” event for parasitic nonlinear effects [8] to take hold. Aspects of different
models have been combined before; for example, the interaction of nonlin-
ear effects and focusing has been the subject of much investigation [9, 10].
It seems very likely that a “final theory” of freak waves will be a synthesis
of statistical, refractive, and nonlinear effects. The present work is not so
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ambitious, concentrating instead on a combination of statistical and focusing
effects.

9.2 GGaussian Seas

We begin with a review of the statistical theory of waves described, to a first
approximation, by Gaussian wave height distributions. The first development
in this field came from Longuet-Higgins in connection with water waves [1].
Later, quantum theory encountered very similar problems. Length scales
in quantum mechanics are typically one angstrom to one micron, while in
ocean waves, length scales of meters to a hundred meters or so are appro-
priate, giving a ratio of quantum scales to ocean wave scales of as much
as 102! But quantum waves obey superposition, interference and diffraction
just as classical (for example water) waves do. Their superposition involves
the same mathematics, independent of scale. In quantum theory, the field of
quantum chaos raised questions about the random superposition of different
plane waves. This was taken to be the analog of classical chaotic motion,
which involves classical trajectories or “rays” heading every which way. It
was M. Berry [11] who first postulated that the eigenstates (stationary states
or “standing waves”) of classically chaotic systems would be like random su-
perpositions of plane waves, in the limit of short wavelength. Since the kinetic
energy is locally given by the fixed energy and the local potential, the plane
waves would locally all have the same wavelength, differing in propagation
direction, in amplitude, and in phase. It is clear that such a random linear
combination of plane waves must give Gaussian statistics, by the Central
Limit Theorem (CLT). In the case of a billiard, where the potential is flat
across it, the wave is then given by

o0
Y(x,y) = Z an sin(x cos by, + ysin b, + op,) (9.1)
n=1
with independently random distributions a,,, 8,,, and J,, all independent of
position (z,y). Within limits, it does not matter what the distribution a,, is
drawn from, so long as 6,,, §,, are random and independent. However normal-
ization requires that, for a billiard enclosure of area A,

IRCRES (9.2)
A

which imposes that ¢ = 1/v/A is the central limit Gaussian distribution of
wave heights,
]. 2 2
P(y) = e~V /20, 9.3
@)=, (9.3)
No direction is preferred in such a sum. It is straightforward to show, as
Berry first did, that the autocorrelation function of such a random wave is
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given by
(W(@)Y(z +9)) = Jo(kd)/A; 6 =|é| (9.4)

where k is the wavevector of the plane waves. In quantum chaos theory, the
closed billiard is used so often that the assumption of no preferred direction is
sometimes taken for granted, but it is not obvious and in fact would be mis-
applied if used to describe mixed systems, such as the lemon billiard, which
have a phase space consisting of integrable and nonintegrable regions. The
same can be said for open systems, which is the way we treat the ocean prob-
lem below. Such mixtures or open systems are far more commonplace than
either totally integrable or totally chaotic systems, which have to be care-
fully chosen to adhere to one extreme or the other. Eigenfunctions of mixed
systems tend to live in either the integrable domain with small tails in the
chaotic one, or vice versa, with few exceptions. In describing the chaotic sub-
set of eigenfunctions, the correspondence principle requires that we exclude
the integrable domains and therefore a uniform distribution of directions (mo-
mentum) no longer exists in position space. A moment’s thought reveals that
this does not harm the central limit theorem locally, and the statistics of the
chaotic subdomain eigenstate will still be given by (9.3), with a normalization
(dispersion) chosen locally to reflect the classical density, which varies from
place to place. (In a chaotic two-dimensional system, the classical density is
independent of position.) This was incorporated into the theory of the statis-
tics of such eigenstates by Bécker and Schubert [12]. These eigenstates are
locally Gaussian random by the central limit theorem, but globally they are
not uniformly sampled in space. The dispersion changes from place to place
to reflect the local classical density. We shall return to the consequences of
this below, but such a correction to Gaussian statistics is the key idea from
quantum chaos theory here, which we believe has important consequences for
freak waves.

In oceanography, the standard reference for Gaussian seas is M.S. Lon-
guett-Higgens [1]. Noting that a storm does not produce a plane wave, the
idealization of a random superposition of plane waves with a mean direction
of travel and some dispersion in angle, wavelength, and amplitude was intro-
duced. Once again the CLT applies, and the distribution of amplitudes be-
comes Gaussian. It is well understood that seas “evolve”, even with no wind,
from shorter, steeper “young” waves to a longer wavelength, more rounded
swell. The nonlinear process that causes this was identified by Benjamin and
Feir [8]. Even so, the plane wave approximation may apply locally, with the
wavelength and dispersion parameters varying slowly over tens or hundreds
of kilometers. Assuming a stationary random process, the wave height distri-
bution is again (9.3), with 1 the sea level displacement and ¢ the variance.
The Rayleigh distribution for wave heights can be derived in the limit of
a narrow spectrum of frequencies:

P(h) = M o=h?/20? (9.5)

o2
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To give physical significance to these distributions, some practical definitions
are made. The significant wave height H, is defined as the average height of
the highest third of all of the waves. This is easily shown to be

H, = (3v/2rer fe (\/IogS +24/log 9) o ~ 4.00430) , (9.6)

in other words a trough-to-crest height of almost exactly 4o, or a mean level-
to-crest height of very close to 20. The commonly accepted definition of
a freak or rogue wave is 2.2 times this height, or H,cqr > 8.80 measured
from trough to crest. The probability of a wave being this height or greater
is 6.25 x 1075, according to Gaussian statistics.

The danger a wave poses is not merely a matter of its height. A 40 foot
wave in a sea with Hy = 40 feet is likely to be far less dangerous than a
40 foot wave with Hs = 15 feet. The reason is the steepness. A Hy = 40 foot
sea is likely to have a longer wavelength than a Hy = 15 foot sea, so that
the sudden appearance of a 40 foot wave means a very steep wave. Steep
waves tend to break, which makes them more dangerous to any ship or boat.
For larger vessels, the steep wave (often described as a “wall of water” by
lucky survivors, and indeed nonlinear processes may be at play to make it
more fearsome) poses a problem, because the buoyant bow ploughs into it
(especially if preceded by a large trough, or “hole in the sea”). The support
under the vessel is lessened by the trough, and the final blow is delivered
when the wave breaks on deck, with the result that the ship breaks in two.

9.3 Refraction

The refraction of waves due to random current eddies is an example of scat-
tering in a weakly refracting random medium [13,14]. Similar problems have
been investigated in many contexts, including acoustics [15], light scatter-
ing [13], and mesoscopic electron physics [16] in addition to water waves [3].
However, it appears that less work has been done for the present kind of
Gaussian incident wave, which corresponds to a diffuse source of “radiation”
(waves), and even less has been done concerning the Xevent statistics in this
situation.

When waves move through a medium that is moving uniformly, they are
Doppler-shifted in an obvious way, given by a Newtonian frame transforma-
tion. However, if there are velocity gradients within the medium, then the
resulting phase velocity gradients will lead to the refraction of rays represent-
ing the group velocity. The language just used is essentially semiclassical; the
wavelength must be short compared to significant changes in the velocity.

The refractive effects of current gradients on water waves have been of
interest since Perigrine’s analysis [4,9]. The dispersion relation for deep water

waves with no currents is
w(k) = /glkl| (9.7)
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where g is the acceleration due to gravity. This is very different to quantum
waves, where w o< k2, or the wave equation, where w o k. With currents, one
has for deep water waves

w(k) =/glk| +k-U(x) (9.8)

where U(x) is the velocity field. This equation has the obvious meaning for
U = const., but defines the situation for non-constant U (x), in the eikonal
sense: ik 5
:_w; d:c:&u. 9.9)
dt ox dt 0k

When the wavelength becomes of the order of the depth, the waves begin
to feel the bottom so to speak, and the dispersion relation changes, becoming
for shallow water the usual wave equation with w = ,/gz k for small ampli-
tude shallow water waves, where z is the depth. Therefore, changing depth
contours also refract water waves, and lead to spectacular effects well known
to surfers. However these are coastal effects, and here we are concerned with
freak waves at sea. (Although it is true that continental shelves extend hun-
dreds of kilometers in places, and heavy seas cannot be assumed to be totally
free of the effect of the bottom.) We make one last comment before dropping
the subject of bottom contour refraction: certain coastal or inland sea regions
with known bottom contours might make good laboratories for studying the
effects of refraction on the statistics of the sea state.

The oceans are filled with eddies and currents on various scales [17]. A typ-
ical eddy might have relative velocities of a knot or two and be 20-100 km
across. Two of the most famous currents, the Gulf stream and the Aguhlas
current off the coast of South Africa, are also the site of many freak wave
events and many well known ship losses [18,19], and many well documented
strong eddies. Specific formations exist, like annular currents, spun off from
current streams. These have been investigated for their refractive effects [20].

White and Fornberg [3] showed definitively that for a pure plane wave,
a random eddy field could lead to focal caustics. Their work included a dis-
cussion of the parameters expected in the oceans. It turns out that random
eddies can typically cause focal cusps 100-300 km downstream of the start of
the eddies. In the present work, the deterministic certainty of the focal cusps
is replaced again by probabilities, as in the Gaussian seas model. We show
below that the high formerly caustic regions for rogue waves are smoothed
and raised by typically a factor of 2 or so, to 50 or 150 km. By the “deter-
ministic certainty” of the plane waves we mean that as long as a plane wave
impinges on the refractive zone, large waves appear with the perfect regular-
ity of the wave period, and always in the same place. This in itself is a strong
argument against refraction of such a pure sea as a model for freak waves,
because nobody suspects that rogue waves appear with such regularity in
one spot. (One of the most interesting questions this work raises, however, is
the issue of movement of the “lenses” causing the cusps (the current eddies),
which would cause the cusps to move at an as yet unknown rate.)
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Suppose waves with a mean velocity U are incident on random veloc-
ity fluctuations w(x) arising from eddies. The important parameters are
1) the fluctuation amplitude dug of w(x), which we take as Gaussian,
P(u) = dud exp(—u?/2)/+/(27), 2) the correlation length d of the isotropic
velocity fluctuations, so c(y) = (u(z) - Su(z +y)) = dui exp(—y?/2d?), and
3) the mean distance L “downstream” of the resulting first focal cusps mea-
sured from the beginning of the refraction. The mean distance between the
focal cusps normal to the average flow is on the order of the correlation length
d. The dimensionless ratio d/L, which is essentially the deflection angle in
one focal distance, can be shown to scale as d/L = (duo/U)?/?, where U is
the mean wave velocity.

Figure 9.2 shows the geometrical situation:

Fig. 9.2. Geometry of incidence and refraction in the model. The gray area is the
random refracting medium

The essence of White and Fornberg’s work is shown in Fig. 9.3, left. A ran-
dom velocity field is shown on the right, with higher velocity (in the top-down
direction of propagation) indicated by darker shades. The focusing caused by
the random velocity field is evident; the structures seen in the center are cusp
catastrophes that have developed. A dense set of parallel rays was launched
from the top, all heading straight down; the random potential caused the
cusps to develop. The middle panel reveals the phase space or “surface of
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Fig. 9.3. Ray limit study of wave energy density in a random refracting field for an
initial set of parallel rays corresponding to a single plane wave. Here darker means
a higher density of rays, and the flow is from top to bottom. The right hand panel
is the result of a dense set of trajectories launched uniformly from the upper edge
in the direction straight down. The middle panel repeats this, with the surface of
section phase space slices added

section” structure, obtained by slicing the flow along the transverse lines
shown and plotting x vs. p, on the y = const. slices. The coordinate space
density is the phase space density summed over all momenta p,., so that it is
projected onto the z-axis. Cusps are the result of the development of a kink
in the phase space manifold which folds over on itself. As the central part
becomes vertical (a tangent to the line x = const.), a cusp singularity devel-
ops, followed by two fold singularities which give the cusp its characteristic
V-shape.

9.4 Refraction and Gaussian Seas

As we have seen, the refraction of an initially pure plane wave leads to focal
cusps and other caustic structures where large waves appear with perfect reg-
ularity. (Ray theory suffers infinities at these cusps, but they are smoothed
out by finite wavelengths [21].) The hybrid theory proposed here supposes
a Gaussian sea (consisting of a random superposition of plane waves) im-
pinging on refracting current gradients. When one averages over many plane
waves at once, with different propagation directions, the cusps are smoothed
over even in ray theory, so that a new regime is reached where the wavelength
no longer limits the wave heights. The focus shifts, literally and figuratively,
from a deterministic generator of freak waves at fixed regions to a stochastic
picture, where regions simply have a higher or lower probability of freak wave
formation.

Granted that the caustics are washed out, what does happen when a Gaus-
sian sea is incident on a refracting region? Simple arguments suggest that
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random refraction of a Gaussian sea would have a negligible effect on its
wave statistics. The random nature of the refraction introduces no bias, so
the sea is Gaussian again after refraction with exactly the same wave height
distribution as before. A second argument, made in [5], seems to reinforce
this view. Due to the sensitive dependence of the ray motion on initial con-
ditions, the caustics will move around rapidly as a function of incident ray
angle, washing them out after averaging over even one or two degrees of angle
of incidence.

Surprisingly, both arguments are misleading. While it is true that a per-
fectly Gaussian sea will re-emerge as Gaussian after random refraction, it is
not quite Gaussian during and just after the refracting events, a fact that
is well known in the theory of scattering by random media [13]. Further-
more, although caustics are eliminated by averaging over angle of incidence,
the average stubbornly refuses to yield a uniform energy density in @, the
plane of motion of the waves. Our numerical results show that this holds
true to a surprising extent even after averaging over a significant range of
wavelengths.

We turn now to investigate what actually happens when a Gaussian sea
is substituted for a plane wave. Figure 9.4 compares ray limit and wave stud-
ies of wave energy density in a random refracting zone, with diffuse source
Gaussian waves incident (the left panel shows the limit of no wavelength
or directional dispersion, for comparison). The grayscale gives the local en-
ergy density averaged over a long time. A lumpy wave energy variation has
replaced the caustics. Figure 9.4 also shows that the time-averaged wave en-
ergy « [ |i(x,y,t)|?dt in the right hand panel; the agreement with the ray
density is remarkable, lending confidence to ray calculations of the energy
density.

Increasingly smaller scale density fluctuations arise deeper in the refrac-
tion zone, including high-angle “runners” which form after two or so focal
lengths L; these are streaks in the density traveling at around 30° to the
mean flow direction. V-shaped “roostertails” also form, which are overlaps of
fold catastrophes coming from adjacent cusps. (These superficially resemble
focal cusps, but they are not the same.) It had been argued [5] that even
a one or two degree average would wipe out the energy variations, but this
is clearly not true; here at 5° there is still a roughly 5:1 ratio between the
highest and lowest energy densities.

For the wave propagation we used a linear Schrédinger equation, ensemble-
averaged over five or ten wavesets, each containing 700 randomly chosen plane
waves, and propagated over a region 240 wavelengths in length and 80 in
width for a total distance of 4800 wavelengths (the wave, 6000 wavelengths
long, is incident from a non-refracting zone). A statistical analysis of the wave
is performed at every time step. The Schrodinger equation has the advantage
of being fast and simple to propagate, and our goal is simply to populate
the region with waves in a statistically correct way. We have represented the
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Fig. 9.4. Ray limit (left, middle) and wave (right) studies of wave energy density
in a random refracting field. Left: an initial set of parallel rays corresponding to
a single plane wave is shown. Here darker means a lower density of rays, and the
flow is from top to bottom. The middle panel was given a 20% variation in velocity
and a 5° range of initial directions (a Gaussian distribution of wavevectors with
an uncertainty of 5°). The right panel displays the Schrodinger propagation of an
ensemble of random wavesets each with 700 plane waves, averaged over a long time.
The wavesets are chosen to correspond to the same average velocity, dispersion of
velocity and angle as in the ray simulation. The grayscale gives the local energy
density averaged over a long time. Lumpy wave energy variation has replaced the
caustics

eddies with a potential field; this is a good approximation so long as the di-
rection of propagation is maintained with relatively small dispersion. This is
reinforced by the fact that only the statistical nature of the velocity gradients
matters. There are small differences due to the different dispersion relations
of water waves and matter waves, but these vanish in the limit of a narrow
frequency band incident wave.

One critical dimensionless parameter that affects the energy density fluc-
tuations is the “freak index” v = §6/A0 of the angular separation 66 ~ d/L of
adjacent first focal cusps to the angular spread Af of the incoming waveset
as measured from the start of the refraction. When v ~ 1, the first focal
cusps have been smeared over about one correlation length, and we may ex-
pect the angle averaging to strongly attenuate the energy fluctuations. Using
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White and Fornberg’s [3] parameters, this critical angle Af would typically
be 10-20°.

9.5 Structure of the Density Fluctuations

9.5.1 Phase Space and Real Space

Why do the density variations survive the angle averaging? Dysthe’s argu-
ment had been that trajectories are extremely sensitive to initial conditions,
which is certainly true. He showed a simple calculation demonstrating the
sensitivity of the focal cusp positions to initial angle. However, this does not
guarantee the spatial uniformity of the resulting average. Figure 9.5 demon-
strates the mechanism for the persistence of energy lumps, and shows why
small-scale fluctuations are generated. Defining k, as the transverse wavevec-
tor, we have A0 ~ Ak, /k,. The combined vertical and horizontal shears in
the phase plane (k;,x), which are the result of passing through weakly re-
fracting regions, preferentially pile up density at certain positions (“lumps”)
in z. The fold and cusp singularities are smoothed away. The thinning out of
the initially thick distribution into tendrils due to mixing in the phase plane
generates fine structure in the phase plane and in its projection onto position.
The energy lumps are structurally stable (universal) features of a random re-
fractive region. As the wave progresses the energy contrast decreases slowly,
since the local A8 increases diffusively, decreasing local v and with it the
contrast. See Sect. 9.5.3 below.

The mean and variance of incoming wave directions are shown by the
thick line at the top of section plot 9.5A; a line with a Gaussian profile and
a variance Ak is used to represent a Gaussian distribution of initial angles.
As the first perturbations that speed up or slow down the flow are encoun-
tered, the transverse velocities are affected and the k, wavevector magnitudes
are distorted randomly up and down by an area preserving vertical nonlin-
ear shear by an amount we call §k,. This is seen in the second wavy line
in Fig. 9.5A. Later, the changes to k, cause a drift right or left, depending
on whether k, was increased or decreased. This is a linear shear in the hori-
zontal direction. At all times the position space energy density (ray density)
is found by projecting the distribution onto the position. At the bottom of
Fig. 9.5A the projection of the double sheared line reveals lumps that are
the residual energy concentrations. To see what happens past the region of
the first cusp, which is the domain of Fig. 9.5A, we examine Fig. 9.5B. The
top panel shows a larger slice of coordinate space at about the same stage of
development as the bottom of Fig. 9.5A. Subsequent evolution again shears
vertically and horizontally, building an intricate structure out of the initially
featureless horizontal diffuse line. The finer features show up in coordinate
space as more rapid variations in density; these eventually become much more
rapid than the correlation length d of the random perturbation.
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Fig. 9.5. A Survival of action fluctuations under angular averaging, as seen in
phase space and coordinate space projection. The top line shows that the initial
transverse spread is Ak,; the next line shows that the first focal refraction intro-
duces a variation 0k, ; the third line shows the state after free drift shearing, and the
projection onto coordinate x is shown by the bottom line. B Three sequential snap-
shots of typical evolution in the refractive zone seen in phase space and projected
into in real space. This shows how sharp features develop despite the “averaging”
implied by the initial spread Ak. C Real (z,y) space Gaussian beam simulations of
first focal region averaging for v = Ak, /dk. = 20, 4, and 2. Note that the maximum
moves left as averaging increases

In Fig. 9.5C we see a coordinate space density plot of a focal cusp, for
v = Ak, /dk, = 20,4, and 2. Note how the remnant of the cusp moves left; the
cusp region has been thoroughly averaged by v = 2, but significant density
variation remains further toward the source, here on the left.

The variance of the energy density depends on vy = 0k, /Ak, = 60/A0
(the ratio of the deflection angle in one focal distance L to the incident
angular uncertainty). The contrast ratio R in local wave action near the first
smoothed focal maxima is found numerically to scale as R ~ 1.6y and the
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maximum density at distance F moves closer to the beginning of the gradient
field approximately as F' ~ Fy(1 — 2v) for v > 1.

The fold and cusp singularities are smoothed away by angle averaging.
The thinning out of the initially thick distribution due to mixing in the
phase plane generates fine structure (tendrils) in the phase plane and in its
projection onto position.

The energy lumps remain however, and are structurally stable (universal)
features of a random refractive region. This can be understood by imagining
an ensemble average in which a given random refraction region of size ~ L
in the longitudinal direction and ~ d in the transverse direction is preserved
in the ensemble, while all the “upstream” potentials are ensemble-averaged.
The fixed region will then be simply sampled by an ensemble-averaged phase
space density, such as a smooth Gaussian distribution just like the one we
have initiated our calculations with. But we have seen in those calculations
that lumps survive the destruction of the singular cusps; what we see deeper
into the refracting region in the figures, which are not ensemble-averaged
in the sense just discussed, are snapshots of members of the ensemble. On
average, there are lumps behind the accidentally focusing regions, decorated
by the projections of all the tendrils and “runners” that have developed.

9.5.2 Runners and Rooster Tails

The runners seen in real space plots are the result of phase space tendrils that
have been kicked by chance to the highest and lowest transverse momentum
by the random perturbation. Therefore, they travel at the highest angle with
respect to the mean flow. Sometimes they are not thin and they carry sub-
stantial energy (area), so it is tempting to associate them with high angle
rogue waves. However as yet we have no strong evidence that the runners
might generate or somehow correspond to high angle rogue waves reported
at sea.

For larger «, some of the V-shaped fold caustics remain, not as singu-
larities, but as regions of higher density, and when these collide we get the
“rooster tails” mentioned earlier.

Figure 9.6 shows the specific correlation between the two-dimensional ray
or energy density plots, A, and slices through those plots, B, showing the
density fluctuations quantitatively. The base of each subplot is the location
of the slice. C shows the phase space density corresponding to an alternate
set of slices. Runners can be seen in the density plots and in the phase space
plots , for example at the bottom, as tendrils of high transverse velocity.

Figure 9.7 gives the phase picture for runners and rooster tails. Rooster
tails are most prominent at large v, as in the case seen here. The vertical lines
indicate, in each case, two phase space zones with reasonably high density
overlapping in space (with a third weaker density in the middle), causing
a temporary spike in the coordinate space density as the upper one moves
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Fig. 9.6. The specific correlation between the two-dimensional ray or energy
density plots (A) and slices through those plots (B) showing the density fluctuations
quantitatively. The base of each subplot is the location of the slice. C shows the
phase space density corresponding to an alternate set of slices

right and the lower one left. To the right of the thick black line we see a typical
runner at high wavevector, here also with significant amplitude.

9.5.3 Diffusion and the Freak Index

As the wave progresses, the energy contrast decreases slowly, since the lo-
cal A8 increases diffusively, decreasing local v and with it the contrast. Under
angle averaging sufficient to smooth the caustics over more than a wavelength,
the significant wave height scales as the square root of the ray density, in-
dependent of the wavelength. With little or no averaging, the ray caustics
are still present, and the wave height is instead limited by wavelength [21].
With a some initial smoothing, it is straightforward to show that the variance
Af(y) develops as

Ab(y) ~ A0 1+75~2 (9.10)

where § is measured in units of the focal distance L along the mean flow
direction. Assuming the nature of the perturbation remains the same as y



204 E. J. Heller

a b

/

Fig. 9.7. Rooster tails are most prominent at large 7, as in the case seen here,
left. The wvertical lines indicate, in each case, a and b, two phase space zones with
reasonably high density overlapping in space (with a third weaker density in the
middle), causing a temporary spike in the coordinate space density as the upper
one moves right and the lower one left. To the right of the thick black line we see
a typical runner (c) at high wavevector, here also with significant amplitude

increases, the contrast decreases and with it the freak wave excess, as the
dimensionless parameter that controls the contrast decreases:

ol 1

1+59% VU 511

7(®)
where v(y) is the evolving freak index and + is the initial freak index upon
entering the refractive region. The freak index declines like the inverse square
root of the distance traveled in the eddies. Remarkably, the implication is that
seas with large angular variance tend to be safer (at least from freak waves),
because such seas are more resistant to subsequent refraction (the freak index
will tend to be lower).

9.6 Implications for Wave Statistics

9.6.1 Nonuniform Sampling

We are ready to discuss and compute the combined attributes of initially
Gaussian seas and refraction. We have learned that the energy density
fluctuates on various scales. The variance o2(z,y) of the sampled waves
is proportional to the energy density at (z,y). Our model will general-
ize the Longuet-Higgins picture to include these fluctuations, which corre-
spond to nonuniform sampling over space. In this model, strictly Gaussian
statistics will apply over very small patches of smaller extent than the en-
ergy density lumps. For a narrow band (a small spread in angle and en-
ergy) Gaussian random wave with dispersion o, the Rayleigh distribution [1]
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p(h) = h/o? exp[—h?/20?] describes the statistics of wave heights. The en-
ergy or action lumps correspond to the spatial variation of 02 = o2%(z,y),
which is proportional to the grayscale density in the time average; for exam-
ple in Fig. 9.4, right. Suppose over some region A we measure the probability
density of P(c?) = [, dady 6(c* —o?(x,y)). Then, assuming local Gaussian
statistics adjusted to the local o2, the averaged wave height distribution is

2 2 2
P(h)=h / Pf:; ) 1127 g2 (9.12)

The distribution P(0?) is log-normal, deep enough in the refractive zo-
ne [13-15], for a single incident angle, as in Fig. 9.4, left, but is found to
approach a Gaussian in o2 after two or so focal distances L for angle-averaged
cases. Near the first focus distance a remnant of the log-normal tail is seen
in P(0?). In the numerical studies, P(0?) was determined from the data and
used as in (9.12). For variations in o2 (z,y) that are not too severe, the result
of the integral in (9.12) will appear Gaussian to the eye. Indeed its second
moment is the energy density and by energy conservation (and in calcula-
tions) it does not change. Higher moments will be affected by the averaging
over different energy density regions. However, the fourth moment (or the
Kurtosis) is only very weakly affected for the cases we have studied so far,
~v =1-6. The statistic for water level is

P(y) =/\7/)2(ZZ)26“’2/2”2 do” (9.13)

Since we are interested in 4.40 to 60 events, it is interesting to note that
20 exp[—1)? /20?] peaks around 1 = 4.50, and 936 exp[—1)?/20?] peaks at
60. This gives us some idea about which moments of the distribution might
be most useful to collect. Normally such high moments would be statistically
unreliable, but we generate an enormous amount of data with our simulations
(see the discussion near the end of Sect. 9.4).

From a mathematical point of view, the nonuniform sampling is perfectly
well defined. We can average over domains larger than the lumps if we wish,
and in doing so the overall statistics cannot be strictly Gaussian. However,
we must ask which of the following is physically correct approach to use for
the oceans: to gauge the statistics (SWH) only locally, in which case the
statistics are always Gaussian according to our model, or to use the average
SWH to judge which events are Xevents? Are the statistics properly measured
locally or globally? One extreme is clear: In the White and Fornberg refraction
model [3], using a single plane wave, very high waves occur at the classical
caustics. One would not want to renormalize away the caustic regions by
noting the SWH is larger there! What is dangerous about the caustics is the
sudden accumulation of wave action, leading to steep waves which the sea
has insufficient time or distance to accommodate through slower nonlinear
evolution, increasing the wavelength and lowering the slopes [8]. The energy
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lumps we have shown to exist gather their energy on a scale no larger than
the order of ~ L/3 in the propagation direction near the first focal region,
but much more sudden gatherings occur later, for example in the onset of
a rooster tail. For 50 km eddies, a sudden doubling of the energy density
over 5 km or less is possible. Moreover, it is likely that the lumps are moving
(because the eddies are not stationary), so that even a long sample at one
place would constitute an average over high and low energy regions. Our
point of view, then, is that it is often essential to average as in (9.12).

9.6.2 Freak Wave Events

We have already shown the time-averaged energy density derived from wave
propagation in Fig. 9.4, and now we delve more deeply into the statistics
and occurrence of freak waves in such simulations. We emphasize that the
Schrodinger propagator used does not give realistic space—time “movies”, but
it does populate the energy density (ray tube density) with waves in a statis-
tically satisfactory way. (It is interesting that the oceanography community
uses a nonlinear Schrédinger equation (NLSE) to describe real-time nonlinear
water wave evolution, but the equation is somewhat removed from what is
called the NLSE in quantum mechanics of Bose condensates for example.)

Figure 9.8 is useful in that it probes events and statistics before, during,
and after entering a refractive region, shown in Fig. 9.8A. In panel B, we
notice the smooth average obtained by sampling several wave sets with the
same dispersions in wavelength and angle over a long time. In the middle
refraction zone we see the smoothed lumpiness that is the remnant of the
caustics. The return to a uniform density is nearly complete at the bottom
of B, after it has propagated some distance beyond the last refractions. (This
corresponds to horizontal shearing only in the phase space plots, eventually
wiping out significant fluctuations.) When the density is again uniform, the
sea returns again to the same energy density (the same o02) as it started
with, but a wider angular variance o2 than it started with). Note the rapid
drop in 60 events past the refractive region, in C. In D, the 4.40 events are
much more frequent in the refractive zone (in fact, much more than can be
conveyed by this simple grayscale plot). There are some 4.40 events prior
to the refractive zone, as expected from the Gaussian distribution. After the
refractive zone, we see an enhanced probability of 4.4¢ freak waves compared
to before the zone. In this example, v ~ 2.

9.6.3 Statistical Evidence

Let R, be the ratio of the local probability of an acg event to the probability
of the same event using a Rayleigh distribution with dispersion oy. Then R,
is given by

Ra(2,y) = exp {_2&2 (0_203 - 1)} (9.14)

(z,y
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Fig. 9.8. Freak events before, during, and after interaction with a refracting region.
A Random refraction zone. B Energy density average over a long run. C Loci of 60
waves during the simulation. D Loci of 4.40 waves during the simulation. Clearly
the high-energy areas are the danger zones, with a high probability of freak wave
formation. In this example, v ~ 2

Log[P(h)]

Fig. 9.9. Log of wave height data by region (compared with Rayleigh and theory).
Dashed line: Rayleigh distribution, based on the average SWH, solid: data from
wave propagation, dotted: theory based on (9.12) and measurement of the energy
variation. Each of the three regions (as indicated) were analyzed similarly. The
SWH differs in the three cases by less than 3%. v = 3.4 (see Table 9.1)
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Table 9.1. Average extreme wave enhancement factors. Three cases are shown; the
parameter 7 controlling the angular smearing and dk/k controlling the wavelength
averaging are given; the two regions a and b have different statistics; b is the region
of the smoothed first and second cusps. The 60, 50, and 4.40 enhancement factors
giving the ratio of the predicted extreme wave events (based on (9.12)) higher than
(for example 60 to the expected events based on a Rayleigh distribution fitted over
the region are shown in bold). For example, waves of height 50 or above are 54
times more likely on average over region b in trial 1 than the prediction based on
the Rayleigh distribution fitted to all of the wave heights in zone b

Case v O0k/k pa 6/5/4.40 up  6/5/4.40  Remarks

1 34 016 0.22 101/12/05 0.32 892.54.15 Figs. 1,3
2 2.2 016 0.17 16/ 4/2.5 022 69. 9.4.5
3 1.2 0.18 0.12 6/2.5/1.5 0.15 11. 4.2 y~1

where 02(x,%) is the local action density including the effects of refraction.
Equation (9.14) shows that spot enhancements and suppressions at particular
places are significant, reaching a factor of 25 for a threshold 4.40 wave where
the local energy is 50% above the mean, and 400 for a 60 wave. At the same
time, the low energy zones are remarkably quiescent: 4.40 events are 20 times
less likely in a patch only 25% lower in energy density from the mean. The
unlucky ship that finds herself in one of the bright lumps in Fig. 9.8 will have
approximately 1500 times the probability of encountering a 4.40 rogue wave
there than in a zone with the average energy density. A fearsome 50 event is
12,000 times more likely there than in a zone with average energy density.

9.7 Conclusions

The key point in this paper is that remnant refractive effects cause a lumpy
spatial energy or wave action distribution, skewing the formerly Gaussian
height distribution. Gaussian seas have no lumps. Low-order moments such
as the Kurtosis show little effect, while Xevent tails are sometimes enhanced
by many orders of magnitude. Dangerous seas can result when the angu-
lar deflections of the eddies exceeds the initial angular dispersion (the freak
index v > 1). The freak index is a new concept that can be used to char-
acterize the danger level of the seas. A freak index of 2 or 3 on heavy seas
is a dangerous situation. Seas with large angular variance tend to be safer
from freak waves. We are not speaking here of “cross seas” with two or three
well defined directions from which the waves are arriving; these and other
non-Gaussian incident seas will need their own studies, and will certainly
enhance freak waves compared to Gaussian seas with the same ~. Thus, the
present results should be viewed as the least that can happen when mixed
seas meet a refractive zone.



9 Freak Ocean Waves and Refraction of Gaussian Seas 209

The question of the relation of the lumps to transient wave groups [2,22]
arises. The high energy lumps discussed here are typically much larger than
the extent of a wave group, and are therefore regions where high-amplitude
wave groups are more Common.

A number of other issues suggest themselves but are not addressed here,
such as the experimental detection of energy lumpiness, the rate of movement
of lumps (due to changing eddy positions and velocities), and the nonlinear
evolution of waves through a region with lumpy energy density. It will be
especially important to test the behavior of the nonlinear models [5—-7] under
the conditions of Gaussian seas meeting refractive zones.

It is worth looking at the developments here from a broad perspective. As
mentioned, the Gaussian seas hypothesis, which was proposed in the 1950s,
provides a statistical theory for the occurrence of freak waves. If this was the
whole story we would already have weather forecast-like estimates of the prob-
abilities of freak waves, but it gradually became clear that refraction played
a role in many events, since regions such as the Gulf stream and Aguhlas
current are notorious freak wave areas. This does not contradict the statisti-
cal effects, but rather adds a new mechanism. It is crucial to note that it is
not an independent mechanism; refraction can still apply in connection with
statistics, as we have noted here. For many years now, nonlinear processes
have held the attention of researchers. It is clear they are important: without
them one can’t develop the fearsome breaking shapes that some freak waves
have. An example of a nonlinear wave equation involves terms like [t)]%),
which is cubic in the wave amplitude. Nonlinear processes surely happen and
do not contradict either statistics or refraction, and they therefore represent
another tool for reaching a complete understanding of freak waves. However,
models involving the refraction of “ideal” wave fields like plane waves and
models relying on nonlinear processes have not produced good estimates for
the frequency of freak waves as a function of the state of the sea, and have
tended to lead thinking away from statistical predictions. If energy lumping
and the freak index are important, then a statistical theory is again crucial,
one that might permit forecasts. Whether or not we have identified a typical
scenario for freak wave production (enhancement due to energy lumping), it
seems clear that such effects should be considered more carefully.
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10 Predicting the Lifetime of Steel

Matz Haaks and Karl Maier

Summary. Even today, lifetime predictions of construction parts are still based
on the Wohler method, which is almost 150 years old. To construct a reliable
Wohler diagram, it is necessary to perform alternating load fatigue experiments on
a huge number of equivalent samples for up to 10® or 10° load cycles. The lifetime
under a specific applied load is then deduced from this diagram using statistical
techniques.

Physically, the reason for fatigue and finally fracture is the accumulation of
lattice defects like dislocations, vacancies and vacancy clusters, which are produced
even when the load is significantly below the material’s yield strength. The progress
of fatigue can be observed from its earliest stages — after only a few load cycles — up
to the final state of fracture by employing positrons as extremely sensitive lattice
defect probes. In situ experiments can be performed to study test samples or real
construction parts under realistic conditions. In steels a critical defect density is
reached just before fatigue failure occurs. The point of failure can therefore be
extrapolated from the early stages of fatigue by monitoring the defect density.

Spatially resolved experiments performed on a simple carbon steel and employ-
ing the Bonn Positron Microprobe indicate significant variations in defect densities
over the region under stress even after just a few load cycles. These inhomogenieties
grow from a typical starting size of less than a millimeter to encompass the entire
volume after further fatigue. With more experimental experience and a better the-
oretical understanding of this process, this new prediction method should lead to
much simpler and more reliable predictions of the lifetimes of metallic materials in
the near future.

10.1 Introduction

Failure of construction materials due to fatigue is a phenomenon well known
to the public, since it can lead to serious accidents involving airplanes, trains
and cars, and so it can make the front pages of newspapers. From our own
experiences we know that the lifetimes of metals, alloys and polymers under
repeated loads are finite. Generally, material failure due to fatigue occurs if
the load exceeds 50% of the yield strength, which is within the “reversible”
elastic region (so Hooke’s law applies). Mechanical parts, critical to machine
stability or security, that are affected by fatigue are normally replaced during
expensive maintenance long before the end of the useful lifetimes of the parts
involved. To reduce the need for such a wasteful and expensive procedure,
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precise lifetime prediction is highly desirable. For almost 150 years the life-
times of mechanical parts have been determined via the Wohler test [1]. In
a Wohler diagram, the stress level is plotted against the logarithm of the
number of load cycles that lead to failure by fatigue fracture. It is obvious
that to obtain a sufficiently accurate Wohler diagram, a huge number of iden-
tical samples must be tested in a very time-consuming process. To achieve
realistic conditions of 108 to 10° load cycles, each fatigue tests must be run
for a period of months. New ways to simplify this problem have come from
computational physics. The huge progress in computer power and simulation
algorithms has allowed us to obtain a realistic description of stress and defect
production in a small region — for instance around the tip of a fatigue crack.
But an ab initio lifetime prediction of a rivet in an airplane is still some way
off.

Here we describe new ideas for realistic lifetime prediction. The physical
reason for material fatigue is the production of defects in the lattice, even
under conditions that are fully reversible macroscopically. A crack is caused
when a critical density of defects has accumulated locally. Since the defect
density can be observed, even at the very beginning of deformation, using
positron annihilation spectroscopy (PAS), we can use it as a precursor for
material failure. It is therefore possible to predict the lifetime of a sample
after only a few load cycles in steels. At the moment PAS is a technique with
both unique sensitivity to lattice defects and a large dynamic range. The
method is nondestructive, does not need advanced sample preparation, and
can be applied in situ during tensile or fatigue experiments. Due to its proper-
ties, PAS is well suited to lifetime predictions of mechanically stressed parts.
In comparison, classical experimental methods like transmission electron mi-
croscopy, hardness testing, flow stress measurement or measurement of the
internal stress with X-rays or neutrons are either not sensitive enough or are
far from nondestructive. A fundamental knowledge of the defect spectrum is
not necessary for lifetime prediction. To investigate the level of deformation
it is sufficient to assign the positron signal to defects related to material fa-
tigue. The determination of a complete reliable Wéhler diagram using only
a single sample and 1% of the load cycles until failure may become possible
in the near future.

10.2 The Search for Defects: Positrons in Solids

The positron’s sensitivity to lattice defects has been well known to the sci-
entific community since the 1960s [2, 3]. Vacancy-like defects in the metal’s
lattice constitute an open volume, which acts as an attractive potential for
positively charged particles. This potential trapping can be described by
a temperature-dependent trapping model [4, 5]. Point-like defects in met-
als like monovacancies can be detected at concentrations of 10~7 to 106 per
atom. Hence, the positron acts as a probe on the atomic scale. Due to its
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diffusion (in the range of several hundred nanometers), a volume of about
0.5 um? is scanned for defects by one single positron. There are some com-
prehensive articles about the potential applications of positron annihilation
spectroscopy (PAS) to material research; for example see [6-8]. These days
PAS is an established method in the field of defect analysis and nondestruc-
tive material testing [9-12]. The interaction of positrons with matter can
be divided into four sections: thermalization, diffusion, trapping, and finally,
annihilation.

Implanted in condensed matter, a positron loses all its kinetic energy
within a few picoseconds, which is rather short compared to its lifetime in
matter (from a few 100 ps in metals to several ns in polymers). Its energy loss
is due to bremsstrahlung and scattering processes with electrons, plasmons
and phonons. At the end the positron is in thermal equilibrium with the
lattice (Exin = 3/2kpT =~ 0.04 eV at room temperature (RT)) [13-15]. This is
possible despite the fact that the positron is a fermion because there is only
one positron inside the sample at a time under the experimental conditions.
The implantation profile is determined by the scattering processes during
thermalization. For monoenergetic positrons from a slow positron beam, the
implantation profile reaches its maximum below the surface. The profile and
the position of the maximum can be calculated according to [16-18]. For
transition metals (Fe, Cu, Ni) and a positron energy of 30 keV the maximum
is located 1 um below the surface.

Once thermalized, the positron diffuses through the lattice and behaves
like a free particle. Repelled from the positively charged nuclei, its probability
of occurrence is a maximum in the interstitial regions of the lattice [19], while
its motion can be described as a three-dimensional random walk [20]. The
positron is highly mobile, with a diffusion constant at RT of the order of
10~* m2/s. Hence a positron scans about 10 atomic positions within its
lifetime, which explains the high sensitivity of positrons to lattice defects.

Every open volume in the lattice that causes a local increase in the dis-
tance between atoms acts as an attractive potential for the diffusing positron.
Lattice defects created by plastic deformation (like dislocations, vacancies
and vacancy clusters) form this kind of open volume. For instance, an atomic
vacancy constitutes a deep positron trap with a binding energy of around
1 eV due to the missing repulsion by the nucleus. For a detailed discussion
of positron trapping in open volume defects, see [4,5,21,22]. Once trapped
in a vacancy, a positron cannot escape since its kinetic energy at RT is too
small to overcome the barrier. The lifetime of a positron in solid matter is
reciprocal to the electron density at the site where it annihilates. In open
volume defects the electron density is lower than in the interstitial region,
which results in a higher defect specific lifetime.

Ideal edge dislocations are assumed to be shallow traps with a long range
potential well and a binding energy of around 100meV [24-26]. Due to
the positron’s kinetic energy of 40meV at RT, escape from such a trap is
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probable. Experimentally measured positron lifetimes characteristic of dis-
locations differ significantly from lifetimes obtained for defect-free materi-
als and are almost equal to the characteristic lifetimes measured for vacan-
cies in materials with a high vacancy concentration (caused by irradiation
for instance). Hence, trapping into dislocations obviously produces an in-
termediate state from which the positron is trapped by the deep potential
of the associated vacancy (see Fig. 10.1). The transition rates between the
states depend on the temperature and can be described by a three state
trapping model [24,25,27,28] that is consistent with many experiments (for
example [29]). Additionally, dislocations may act as fast diffusion paths for
positrons, which enhances their sensitivity to vacancy-like defects [29].
When the positron annihilates with an electron, the rest masses of both
particles are transformed into two y-quanta of 511 keV emitted in antiparallel
orientation', when considering the center-of-mass-system. Upon transforma-
tion into the laboratory system, the longitudinal component of the electron
momentum causes a Doppler shift in the y-energy while the transverse com-
ponent produces a perturbation of 180° angular correlation. Here the momen-
tum of the thermalized positron (~ 40 meV) can be neglected in comparison
to the electron’s momentum (1-10eV) [30]. The contribution of electrons with
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Fig. 10.1. Attractive potential formed by an edge-dislocation with an associated
vacancy-like defect (jog). The shallow potential of the dislocation line constitutes
a fast diffusion path for the positron. This is assumed to increase the trapping rate
into the deep potential of the vacancy [23]

1 Other possible decays into 1y or 3y are suppressed by 1/a or 1/a3, respectively
(o =1/137).
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Fig. 10.2. Definition of the S-parameter. The longitudinal component of the elec-
tron momentum causes a Doppler broadening in the 511 keV photopeak. The S-
parameter is defined as the ratio of the inner part of the photopeak, corresponding
to low momentum electrons, to the integral over the whole peak

low momenta to the Doppler broadening is quantified by the shape param-
eter of the momentum distribution, the S-parameter, which is the quotient
of the inner part of the photopeak and the integral over the whole peak (see
Fig. 10.2).

The S-parameter also depends on the arbitrary choice of the borders used
to determine the area Ag and on the energy resolution of the gamma spec-
trometer. To make measurements comparable, the S-parameter must be nor-
malized to an appropriate reference value. For an investigation on plastically
deformed metals, this would be the S-parameter of the well annealed state of
the same material.

Plastic deformation is based on the movement and multiplication of dislo-
cations. The creation of dislocation is always accompanied by the production
of vacancies and interstitial atoms, where the most important processes for
vacancy production due to plastic deformation are jog dragging and the an-
nihilation of edge dislocations [31,32]. Since dislocations are shallow traps for
positrons at room temperature, the signal for plastic deformation obviously
stems from the associated vacancies. Due to the missing core electrons, the
electron momentum density at the vacancy site is lower than in the undis-
turbed lattice, so a higher density of vacancies leads to a higher S-parameter,
since an increasing fraction of positrons annihilates in vacancies.

In summary, employing the positron as a highly mobile probe which pro-
vides information about the electron momentum distribution in the atomic
range, gives the defect density, a mesoscopic parameter. The shape of the
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Fig. 10.3. High momentum distribution of pure Fe and carbon steel C45E nor-
malized to graphite. The right half of the photopeak is given with the left side
mirrored in. The hatched region shows the area used to evaluate the S-parameter.
The spectra for pure Fe and C45E are divided by the spectrum of graphite. The
peak in the iron spectrum seen at 515keV is due to positrons annihilating with
electrons from the 3d orbitals of Fe

wings of the photopeak is determined by annihilation with core electrons
from atoms surrounding the annihilation site. As the momenta of these elec-
trons differ for each element, the chemical environment of a trapping site
can be studied by analyzing the high momentum part of the photopeak.
Due to the low event rate in this momentum range, the spectrum is strongly
disturbed by any background (caused mainly by gammas with an energy
higher than 511keV). Background reduction can be achieved by using two
gamma detectors in coincidence [33] or via an accurate background calcula-
tion [34].

Figure 10.3 shows annihilation spectra for pure iron and carbon steel
C45E, both normalized to the spectrum of pure graphite. In this diagram
the spectra are mirrored at the 511keV axis into the right half of the spec-
trum. The peaks in the data at 515keV are caused by the annihilation of
positrons and electrons from the 3d orbitals of Fe Despite the low concen-
tration of carbon in C45E (0.45%), Fig. 10.3 shows strong evidence for the
presence of carbon in the surroundings of the positron annihilation sites,
since the contribution from 3d electrons is significantly reduced in C45E.
This may be due to trapping into the interfaces between ferrite (x-iron) and
cementite (FegC) in the perlitic phase of the two-phase state of annealed
C45E.
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10.3 The Bonn Positron Microprobe

Most effects of plastic deformation and material fatigue show a strongly inho-
mogeneous defect distribution over the sample volume. Hence, to understand
this processes through positron annihilation, it is crucial to achieve a spatial
resolution in the micron range. Common positron sources with diameters of
0.5 to several millimeters cannot be employed for highly spatially resolving
measurements.

The Bonn Positron Microprobe (BPM) provides a fine focused positron
beam in the micron range with adjustable beam energy and a beam diameter
that can be lowered to a few micrometers (see Fig. 10.4). The BPM [35] is
a combination of a tiny positron sources with a small phase space and a con-
ventional scanning electron microscope (SEM). The positrons are emitted
from a 22Na source and moderated using a tungsten moderator [36] em-
ploying the advantages of both transmission and reflection moderation. The
moderated positrons are then accelerated in two steps up to their working
energy, which is adjustable from 4.5 to 30 keV. The positron and the electron
source are mounted on the opposite sites of a magnetic prism which bends
both beams downward by 90° into the entrance plane of a SEM condenser
zoom. Finally, the objective lens focuses the beams onto the sample, which is
mounted on a motorized table movable laterally with an accuracy of 1 wm.

The positron beam diameter can be adjusted to between 5 and 200 pm.
There is no need for any additional focusing using a strongly inhomoge-
neous magnetic field behind the sample position. This allows the study of
ferromagnetic materials like iron, nickel and ferritic steels. The annihilation
radiation is recorded by a high resolution Ge detector, mounted 10 mm below
the sample position. During measurement, fluctuations of the experimental
setup are minimized by stabilizing the electronics on the decay gamma of
7Be (477.8keV) which is detected simultaneously.

10.4 Detection of Plastic Deformation

In plastic deformation the production of dislocations and vacancies are al-
ways interconnected. Jog-dragging of screw dislocations and annihilation
of edge dislocations are very effective processes for producing vacancies
and vacancy-like defects [31, 32]. During tensile testing or cyclic fatigue
experiments, the dislocation density rises by several orders of magnitude
from the well annealed state until fracture occurs. The binding energy
of positrons to dislocations is below 100meV for most metallic materi-
als at room temperature and hence too low for effective binding [24-26].
The high sensitivity of positron annihilation to changes in the disloca-
tion density can be ascribed to the sensitivity to the associated vacan-
cies. In a tensile test the sample is elongated with a well defined axial
stress.
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The total axial elongation € and the axial stress o, which can be calculated
from the applied force and the cross-sectional area in the waist of the sample,
are recorded in a stress-strain diagram. We performed tensile tests on ferritic
steel C45E (equivalent to AISI 1045), which is a pure carbon steel (0.42-0.50
weight% C) with a low contamination of phosphorus and sulfur.

Even though C45E is a very common tool steel with widespread applica-
tions, its mechanical properties are fortunately based only on iron and carbon,
which makes it an ideal simple system to use to understand the underlying
mechanisms of deformation. Before testing, all samples undergo temperature
treatment for three hours at 860 °C under high vacuum conditions. As shown
by a series of isochronal annealing tests, this treatment anneals out all of
the vacancy-like defects in C45E that can be seen by positrons [11]. When
slowly cooled down to room temperature (I' = 1K/min) C45E appears to
consist of a two-phase mixture composed of 60% ferrite (a-iron) and 40%
perlite. Despite the fact that most of the plastic deformation takes place in
the ferritic phase, the interfaces between o-iron and cementite (FegC) in the
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Fig. 10.4. Design of the Bonn Positron Microprobe. The particle electron and
positron beams, produced by the electron gun and the positron source, respectively,
are projected by condenser lenses into the entrance plane of a magnetic prism. Both
beams are then focused by the condenser zoom and the objective lens onto the
sample, which is mounted on a motorized table
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perlitic phase may be responsible for competitive trapping of positrons. This
leads to a higher S-parameter in the well-annealed state of C45E than for
well-annealed pure iron (see Fig. 10.3).

To demonstrate the correlation of the S-parameter to plastic deformation,
during tensile testing the sample is dismounted at several deformation stages
and an annihilation spectrum is taken (see Fig. 10.5).

Below the yield strength around 350 MPa, the deformation is reversible
and follows Hooke’s law of elasticity o = F ¢, where the proportionality con-
stant is given by the Young’s modulus E. Previous results have shown that
elastic strain has no influence on the S-parameter [23]. In most metallic ma-
terials there is a gradual transition between elastic and plastic behavior, but
in the case of a mild steels such as C45E, there is a discontinuity in the
stress—strain curve (Liiders strain [37]), which is due to the rupture of dislo-
cations from pinning centers formed by carbon atoms, which are aggregated
at the dislocation site by diffusion (Cottrell clouds) [38,39] (see the inset in
Fig. 10.5). Deformation in this region leads to only a small increase in the dis-
location density and, hence, only a slight increase in the S-parameter. Above
this region the deformation proceeds with the multiplication of dislocations
and hence the generation of vacancies. This is reflected in an increase in the
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Fig. 10.5. Stress-strain diagram of the ferritic steel C45E. The stress is given on
the left axis (black line) while the S-parameter relative to the well annealed state
(full circles) is given on the right axis, both in relation to the strain. The inset
zooms in at the region of low deformation [11]
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S-parameter with an applied stress of more than 350 MPa. The S-parameter
reaches saturation at the upper sensitivity limit, corresponding to a disloca-
tion density of o ~ 1 x 10 em~2 [40] until rupture occurs at 13.5% strain.
Similar experiments have been performed on the technically eminent stainless
steel AISI 316L [10] and a variety of pure metals [23].

A more distinct insight into the relevance of the S-parameter can be ob-
tained by performing an in situ measurement of the gamma spectrum during
a tensile test. Here two tubular samples containing a positron source inside
the bore hole are investigated. The spectra are taken when the straining is
interrupted and the stress is released, while the sample stays mounted in
the deformation machine. This avoids incidental sample damage, which is
important especially in the early states of deformation. Figure 10.6 shows
the S-parameter plotted versus the stress amplitude for two different sam-
ple waist diameters. The plot provides evidence of a sensitivity threshold at
280 + 20 MPa. Above this, the dependence of the S-parameter on the stress
amplitude is described well by a linear relation.

Like many other material properties, the surface hardness of a metal de-
pends strongly on the deformation state and hence the dislocation density.
The hardness can be measured by pressing an indenter into the surface when
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Fig. 10.6. In situ measurement of the S-parameter in a tensile test using tubular
shaped samples of C45E. The positron source is mounted inside the borehole of
the sample. After the sensitivity threshold at 280 MPa is reached, the S-parameter
increases almost linearly with the applied stress
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applying a defined static load. Common indenters are hardened steel spheres
(Brinell) or pyramidal diamonds (Vickers). The hardness is given by the ratio
of the applied load to the remaining impression area, which is evaluated using
a calibrated microscope or an image recognition system. The variety of differ-
ent hardness tests are somewhat equivalent and the hardness values can be
interconverted or converted into other material properties such as the tensile
strength [41]. Figure 10.7 shows a comparison between the S-parameter and
the Vickers hardness, both measured in C45E chips produced by high-speed
cutting [42]. As an example, Fig. 10.7a shows a line scan from a heavily de-
formed area (cutting position = 0pum) into the undeformed bulk material,
evaluating the S-parameter and the Vickers hardness at the same positions.

The damage penetration is detectable up to 550 um below the cutting
position with the S-parameter, but a significant increase in hardness is only
evident down to 400 wm. The distributions of both values are similar, but the
S-parameter shows a higher sensitivity to small deformations that cause no
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Fig. 10.7. Comparison between Vickers hardness and S-parameter in C45E. (a)
shows a spatially resolved line scan taken with the BPM on a plastically deformed
area in a chip produced by high-speed cutting. S-parameter (full squares) and hard-
ness (open circles) were measured at the same positions (open circles). (b) Hardness
versus S-parameter from several similar scans. The straight line is just a guide for
the eye
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significant change in the surface hardness. This becomes clearer upon plotting
the hardness versus the S-parameter, as shown in Fig. 10.7b, which plots data
accumulated from several line scans. Areas that underwent minor to medium
deformations exhibit no significant increase in hardness, but they do show
a distinct rise in the S-parameter up to 1.04.

10.5 Damage Prediction

If a material is subjected to repeated or cyclic stress it may fail by fatigue
fracture even though the maximum stress in each single cycle is considerable
less than the yield strength of the material. This is due to microscopically
nonreversible movements of dislocations [43]. The dislocation structure cre-
ated in the phase of elongation does not return to its initial state in the
compressive phase. Thus, a certain amount of the deformation work is not
dissipated into heat but is stored as mechanic energy in the material through
the production of defects like dislocations and vacancies. This energy is re-
leased when the sense of deformation is reversed (Bauschinger effect [44,45]),
resulting in a hysteresis in the stress—strain diagram (see Fig. 10.8b). Since
the deposition of energy and, hence, the production of defects is cumulative,
after a certain number of deformation cycles a macroscopical hardening of
the sample occurs.

Many components are subjected to alternate loading cycles during ser-
vice. A technique to estimate the useful life is therefore highly desirable.
Almost 150 years ago August Wohler conducted the first destructive tests
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Fig. 10.8. (a) A sinusoidal command wave in an alternating load fatigue test with
a controlled strain amplitude typically adjusted to 60-80% of the yield strength in
the sample. (b) Schematic of the mechanical hysteresis curve under strain control.
The area inside the hysteresis loop equals the amount of deformation work wg
deposited per cycle. Due to cyclic hardening, w, increases as the test progresses
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to determine material fatigue and the remaining useful lifetimes of rail vehi-
cle axles [1]. The component was tested under alternating load by applying
a controlled stress or strain amplitude at a frequency of 0.1 to several 100 Hz.
The results are shown in a Wohler diagram (see Fig. 10.9), where the stress
amplitude o is plotted against the number N of cycles before failure. The
probability of failure (lower limit: 10%, upper limit 90%) is estimated statis-
tically from the diagram.

Up to now all of the methods used for lifetime prediction are based on
a similar principle, and a Woéhler diagram must be determined in an extraor-
dinarily time-consuming test series for any industrially manufactured part
important for stability or safety. This effort can be reduced significantly by
assessing the useful life of an individual part via positron annihilation. Since
the defect density rises during fatigue it provides a precursor for failure, which
is accessible in a nondestructive way by measuring the S-parameter.

We performed rotating bending tests on several alloys of industrial impor-
tance. In rotating bending fatigue, a cylinder of the material to be examined
is fixed on one side in a rotating holder and on the other side in a float-
ing bearing, which is charged with an adjustable load. We used cylindrical
samples with a diameter of 10 mm, which were cut spheroidically (radius =
30 mm) reducing the diameter at the waist to 6 mm. The tests were performed
under total stress control, applying several levels of load all of which were

eiastic

stress amplitude o [arb. units]

il L sl L Lol L Lol
5 6 7 8
10 10 10 10
fatigue cycles N

Fig. 10.9. Wohler diagram (schematic). The points of failure at a given stress
amplitude are denoted in a semilogarithmic plot. Samples that had not failed by
the end of the test are marked with an arrow. The upper (lower) line gives the
statistical estimate of a 90% (10%) probability of failure at a given stress amplitude
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significantly below the yield strengths of the analyzed materials. After reach-
ing a particular number of load cycles, the tests were paused and a Doppler
spectrum was taken using a tiny positron source (& = 2mm). The tests were
finally stopped when a fatigue crack appeared on the surface and its visible
length had reached 1/3 of the sample circumference at the waist [11]. Below
100 cycles the machine was rotated by hand, and above a command frequency
of 100 Hz was used. All PAS data were obtained using a ??Na source. Hence
the signal originated from a 30 um thick subsurface layer. The results for
four technically relevant materials are shown in Figs. 10.10 and 10.11. All of
the S-parameters displayed are given relative to the S-parameter of the same
material in the well annealed state.

Figure 10.10a shows the S-parameter versus the cycle number in a semilog-
arithmic plot for several loads applied to a sample of the austenitic steel
X6CrNiTi 18-10 (AISI 321). The applied load is given as the maximum stress
at the surface at the waist. For all loads the S-parameter shows an almost
linear increase with the logarithm of the cycle number, while the slope de-
pends on the load. Finally, before fatigue failure the S-parameter saturates
at a similar value (around 1.08) independent of the applied load. This linear
dependence is also observed for a sample passing the test at 210 MPa up to
a cycle number of 5 x 108 (not displayed in Fig. 10.10a). Figure 10.10b shows
a similar test series for the ferritic steel C45E. The almost linear dependency
is even evident here, despite the first few cycles where the effects of Liiders
strain show up. But compared to the austenitic steel, there is no saturation of
the S-parameter before failure at a well-defined value. Instead, the saturation
level reached before failure depends on the load.

Figure 10.11 shows the results for non-alloyed titanium grade II (Ti2) (a)
and the technically important titanium alloy TiAl4V6 (b). For titanium, the
S-parameter shows a sensitivity threshold where its logarithm is almost lin-
early dependent on the applied load. Beyond that threshold, the S-parameter
shows a linear relation to the fatigue cycle with the same slope independent
of the applied load. The sample loaded with 212 MPa did not break until
the test was stopped at 10% cycles. All of the samples that failed during the
test showed a similar S-parameter of around 1.047, but saturation was not
reached.

For the titanium alloy TiAl4V6 (Fig. 10.11b), no significant relation be-
tween the S-parameter and the number of load cycles was found. Only one
sample showed a slight increase before failure (upward triangles, 730 MPa).
After cracking begins, measurement of the S-parameter on the tip of the crack
provides an inconsistent value of between 1.007 and 1.015.

In the three cases of the iron-based materials X6CrNiTi 18-10, C45E and
Ti2, the S-parameter is a measure of the deformation state and it can be un-
derstood as a precursor for imminent failure. Combined with knowledge of the
structure of these metals and an estimate for the emerging load amplitudes,
the point of failure can be predicted from a short time fatigue experiment
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employing only a small number of fatigue cycles. For the single-phase ma-
terials X6CrNiTi 18-10 and Ti2, a simple linear relationship between the
S-parameter and the logarithm of the cycle number appears. In the two-
phase alloy C45E, the relation is more subtle due to the influence of either

I (a) .
- failure
k _0- “®F
1.08 A 310MPa g E <
O 300MPa ”
= 1.06 | V 290MPa g '
% » 210MPa ' ‘v :
IS
©
5 1.04 |
| 'y
%))
02E e Y » -
............ 5 S
100 L gg=-mT
1/,1‘ 1 12 ““13 ‘ 1 | |
0 10 10 10 - " -
cycle number
- (b) ) —
1.05 -
A 390 MPa /
1.04 + O 350 MPa ) /
. Vv 320 MPa . .
‘g ! T ///W v @ ...
€ .
o .
@ 1.02 | -
& . .
1.01 - .
1.00 - &
[ 7 T | e o - o o

7 1 2

0 10 10 10° 10 10 10

cycle number

Fig. 10.10. The S-parameter versus the cycle number in a rotating bending fatigue
test at various loads for the austenitic steel X6CrNiTi 18-10 (a) and the ferritic steel
C45E (b). (a): There clearly is a linear relation between the S-parameter and the
logarithm of the number of fatigue cycles, while the slope depends on the applied
load. Thus, it should be possible from only a small number of fatigue cycles to
estimate the remaining useful life of the sample. (b): There is also a linear relation
for C45E, but due to the failure of the sample at load-dependent levels of saturation
in the S-parameter, lifetime prediction is more difficult
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Fig. 10.11. The S-parameter versus the cycle number in a rotating bending fatigue
test at various loads for non-alloyed titanium grade II (a) and the titanium alloy
TiAl4V6 (b). (a): Beyond a sensitivity threshold the S-parameter depends linearly
on the logarithm of the fatigue cycles, showing almost the same slope independent of
the applied load. The sensitivity threshold is strongly dependent on the load, which
hinders a straightforward lifetime prediction. (b): In the titanium alloy TiAl4V6
no dependence of the S-parameter on the number of load cycles is observed. An
increase in the S-parameter can only be observed after failure at the tip of the crack

the Liiders strain or the competitive positron signal from interfaces in the
perlitic phase.

This behavior can be explained as follows. Consider amplitudes of stress
globally below the yield strength. The local stress will only be above the
yield strength only in some favorably orientated grains, where the available
slip-systems can be activated. The production of dislocations is only possible
in those grains. During any additional cycle, those grains respond elastically
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(work hardening) up to an increased stress level, meaning that the elastic frac-
tion of the total strain increases while the plastic fraction decreases. Hence,
the dislocation production per cycle decreases with an increasing number of
cycles. Additionally, adjacent grains are plastically deformed due to work
hardening in the previously activated grains. Both the defect density in the
grains involved and the affected volume of the sample increase.

A lifetime prediction is not possible for the titanium alloy TiAl4V6 using
a positron source with a diameter in the range of millimeters. In this case the
plastic deformation is intensely localized in a tiny region of just a few 100 pm?
(see Fig. 10.13). In this type of alloy, the lifetime can only be predicted using
a positron microbeam.

Figures 10.12 and 10.13 show scanning positron images of the plastically
deformed region in front of a fatigue crack (plastic zone) generated in the
compact tension (CT) geometry [46] in X6CrNiTi 18-10 (Fig. 10.12) [47] and
TiAl4V6 (Fig. 10.13). The crack nucleation occurs in the final phase of fa-
tigue, when the stress has locally exceeded the tensile strength at one partic-
ular point in a sample (for a detailed discussion, see any textbook, for exam-
ple [46]). Both fatigue cracks are produced from the well-annealed state under
equivalent conditions in a symmetric fatigue experiment, by applying a load
below the yield strength of the materials. The images are taken after the
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Fig. 10.12. Scanning positron image of the plastically deformed region in front of
a fatigue crack in the austenitic steel X6CrNiTi 18-10 produced in CT geometry.
The coordinate origin is located at the position of the tip of the crack. The S-
parameter is coded in greyscale. The effects of plasticity are evident in a region
extending from the cracktip up to 1.5 mm
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Fig. 10.13. Scanning positron image of the plastically deformed region in front
of a fatigue crack in the titanium alloy TiAl4V6 produced in CT geometry. The
coordinate origin is located at the position of the tip of the crack. The S-parameter
is coded in greyscale. TiAl4V6 produces a very tiny plastic zone with an extension
of only 300 x 500 um?

crack has propagated several millimeters into the sample. The S-parameter
in Figs. 10.12 and 10.13 is coded into greyscale, white meaning the maximum
S-parameter corresponding to a dislocation density above o ~ 1 x 10! cm ™2
and dark grey meaning the reference S-parameter of the well-annealed state
(0 < 2x10%cm™2). In the plastic zone the dislocation density decreases with
the distance from the tip of the crack. Its border can be defined as the area
where the S-parameters become significantly higher than 1.0 (S = 1.007 for
X6CrNiTi 18-10, and S = 1.005 for TiAl4V6). The extension of the plas-
tic zone reveals the ductility of the material and hence the response of an
undeformed region in the sample to a work-hardened region in its vicinity.

A comparison of both images clarifies the difference in ductility between
the two alloys. While the plastic zone in X6CrNiTi 18-10 has an extension of
1.5 x 3.2mm?, the plastic zone in TiAl4V6 appears in a comparatively tiny
region of 0.3 x 0.5 mm?. This has to be taken into account when interpreting
the results of the fatigue tests on TiAl4V6 shown in Fig. 10.11b. Before crack
nucleation occurs, a plastically deformed area (weak spot) will appear on the
sample’s surface. If the extension of this weak spot is too small compared
to the positron source used, the increased dislocation density may not be
observable.
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In the rotating bending fatigue and the CT samples, the location of the
maximum stress concentration was determined by the sample’s geometry.
Upon investigating a geometry where the affected area is loaded by a uni-
form stress field, the location of appearance of a weak spot is seen to be
totally random. Figure 10.14 shows the results from a cyclic fatigue test per-
formed on a flat sample made from C45E with a tapered central part that
has a homogeneous cross-sectional area extending over the scanned 6 mm.
The layout of the geometry is displayed in the top left corner of Fig. 10.14.
The test was performed using a piezo-translator fatigue machine [29] under
total strain control employing a strain ratio of Aec/e = 1.52 x 1073, which
corresponds to a stress amplitude of 330 MPa at the beginning of the test.
The test was paused several times and a positron image of the central part
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Fig. 10.14. Scanning positron images of the plastic deformation in a cyclic fatigue
test performed on C45E. The S-parameter is coded is coded in colors, where. In the
central part of the sample, where the images were taken, the stress amplitude has
an uniform distribution. The formation of a weak spot is evident in a significant
increase of the S-parameter even after the first 30 cycles
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was taken. As an example, Fig. 10.14 shows the results for 30, 350, and 3500
fatigue cycles. Already after 30 deformation cycles the appearance of a weak
spot is evident in a significant increase of the S-parameter to 1.011. As fatigue
progresses, increased dislocation density arises in the weak spot in the sim-
ilar manner to that expected in the rotating bending fatigue test performed
on C45E (see Fig. 10.10b). The defect-rich region increases laterally at the
same time and grows into as-yet unaffected area. As deformation progresses
still further (3500 cycles), this region spreads over the whole sample area,
becoming more structured. This is shown by a more inhomogeneous distri-
bution of the S-parameter, denoting several spots of enhanced dislocation
density.

10.6 Summary

Material fatigue is accompanied by the creation of defects like dislocations,
point defects and small vacancy clusters. These irregularities in the crys-
tal lattice act as trapping centers for positrons. The annihilation radiation of
a positron changes significantly when trapped into a defect, which means that
it is easy to detect the presence of defects, and the defect density is easy to
determine using the S-parameter calculated from the annihilation spectrum.
In fact, the well-known stress—strain diagram can be reproduced if the defect
concentration — detected by positron annihilation — is plotted against the ap-
plied stress. Due to the extreme sensitivity of positrons to defects, a rise in the
defect concentration can be observed even in the very early stages of material
fatigue. Since these defects act as precursors to the final state — failure — it is
possible to detect failure long before any fracture occurs. In industrial ferritic
and austenitic steels, the point of failure can be extrapolated from a small
database using positron annihilation measurements. Hence, material lifetimes
can be reliably predicted by analyzing the defect density at the earliest stages
of fatigue. In the near future, we can expect that it will become possible to
determine a complete and reliable Wohler diagram with just one sample and
using only about 1% of the number of load cycles until failure.
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11 Computer Simulations of Opinions
and their Reactions to Extreme Events

Santo Fortunato and Dietrich Stauffer

Summary. We review the opinion dynamics in the computer models of Deffuant
et al. (D), of Krause and Hegselmann (KH), and of Sznajd (S). All of these models
allow for consensus (one final opinion), polarization (two final opinions), and frag-
mentation (more than two final opinions), depending on how tolerant people are to
different opinions. We then simulate the reactions of people to Xevents, in that we
modify the opinion of an individual and investigate how the dynamics of a consen-
sus model diffuses this perturbation among the other members of a community. It
often happens that the original shock induced by the Xevent influences the opinion
of a large part of society.

11.1 Introduction

Predicting Xevents is very important when we want to avoid losses due to
earthquakes, floods, stock market crashes, and so on. But it is not easy, as
we can see when we read a newspaper. It is much easier to claim that one
has an explanation for this event after it has occurred. One important area of
investigation in this field focuses on the opinions people have after an Xevent.
Do they now take objective risks more seriously than before? Do people tend
to exaggerate the risks and prefer to drive long distances by car instead
of airplane, shortly after a plane crash happened? How do these opinions
change as the time since the event or the geographical distance increases?
It is plausible that people take the risk less seriously as the time since the
last catastrophe increases. Less clear is the influence of geographical distance;
for example whether the probability of dying in a terror attack in a distant
country is comparable with the risk of dying from a traffic accident in this
country.

Geipel, Hérta and Pohl [1] looked at the geography question in a region
of Germany where a volcano erupted 10* years ago and left the Laach lake.
The closer the residents were to that lake, the more seriously they took the
risk. However, their general political orientation was also correlated with
their risk judgment. On the other hand, scientific announcements have led
to some newspaper reactions within Germany that are independent of the
distance, but these died down after a few months. Other examples are the
reactions to nuclear power plants and accidents associated with them. Volker
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Jentsch (private communication) suggested that such reactions to Xevents
could be simulated on computers; such simulations are only possible if we
have a reasonable model of opinion dynamics.

A very recent application of this would be to study the influence of
a deadly tsunami after an earthquake on opinions. Those who live on the
affected coasts after the tsunami Xevent of December 2004 will remember it
as a clear danger. Those who live further inwards, away from the coast, know
that tsunamis do not reach them, but they will still have learned about the
thousands of people killed from the news. Will they judge the danger as being
higher than or lower than those on the affected coast line? And what about
those who live on the coast of a different ocean, where such events are also
possible but last happened long ago? This example shows how the influence
of an Xevent on general opinion can depend on distances in time and space.
This is the question we want to simulate here in generic models.

It would not be desirable to invent a new dynamic model for opinions just
for the purpose of studying reactions to Xevents. Instead, it would be nice if
we could have one generally accepted and well tested model, which then could
be applied to Xevents. No such consensus is evident from the literature. We
thus concentrate here on three models, D, KH and S (Deffuant et al. [2-5],
Krause and Hegselmann [6,7] and Sznajd [8]) which are currently extensively
used to simulate opinion dynamics; we ignore the older voter models [9,10]
or those of Axelrod [11], of Galam [12,13] and of Wu and Huberman [14],
to mention some other examples. We will not claim that we can use these
simulations one may predict public reaction; we merely claim that simulations
like these may be a useful starting point in this research field.

Of course, one may, in general, question whether human beings can be
simulated on computers where only a few numbers are used to describe the
whole person. More than two millenia ago, the Greek philosopher Empedok-
les paved the way to this type of computer simulation by stating (according
to J. Mimkes), that some people are like wine and water, mixing easily, while
others are like oil and water, refusing to mix. Thus he reduced the complexity
of human opinions to two choices, like hydrophilic or hydrophobic in chem-
istry, spin-up or spin-down in physics, and 0 or 1 in computer science. And in
today’s developed countries, we take regular polls on whether people like the
government, allowing only a few choices like: very much, yes, neutral, no, or
not at all. Simplifying Mother Nature like this is also common in sociology,
and has been quite successful in physics.

11.2 General Opinion Dynamics

In this section we review the dynamics of the models D (of Deffuant et al.),
KH (of Krause and Hegselmann), and S (of Sznajd) [2-8]. Their results are
quite similar but they differ in the rules used to change the opinions. An
earlier review of these models was given in [15], with emphasis on the Sznajd
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model. In that model two people who agree in their opinions convince suitable
neighbours to adopt this opinion. In model D, each person selects a suitable
partner and the two opinions converge. In KH, each person looks at all suit-
able partners and takes their average opinion. “Suitable” means that the
original opinions are not too far from each other.

11.2.1 The D Model

In model D [2-5], all N agents have an opinion O that can vary continuously
between zero and one. Each agent selects one of the other agents randomly
and checks whether an exchange of opinions makes sense. If the two opinions
differ by more than e (0 < € < 1), the two refuse to discuss and no opinion is
changed; otherwise each opinion moves partly in the direction of the other,
by an amount pAQO, where AO is the opinion difference and p the conver-
gence parameter (0 < g < 1/2). The parameter € is called the confidence
bound or the confidence interval. For € > 1/2 all opinions converge towards
a centrist one, while for € < 1/2 separate opinions survive; the number of sur-
viving opinions in the latter case varies as 1/¢. Besides simulations, analytical
approximations are also made [16] which agree well with the simulations.

Figure 11.1 shows a consensus formation with the number of simulated
people close to that in the European Union, 450 million, and € = 0.4, p = 0.3.
To plot the results, the opinions were binned into 20 intervals. We show
intervals 1, 2, 10 and 11 only. Initially the number of opinions were the same
in all intervals; soon two centrist opinions began to dominate until finally
one of them swallows the other. Independent of this power struggle, some
extremist opinions survive in the intervals close to zero and close to one.
These extremist wings [17] are a general property for e < 1/2 but are not the
theme of this “extreme” book.

Variants on this standard version have been published. It is numerically
easier to look at integer opinions O = 1,2,3,...,Q instead of continuously
varying O; a precursor of such work was given by Galam and Moscovici 18],
where the discrete opinions (0, 1) and opinions in-between were allowed. If
the opinions O = 1,2,..., @ are integers, one can unambiguously determine
whether two opinions agree or differ. The above expression for pAO then
needs to be rounded to an integer. If two opinions differ by only one unit,
one randomly selected opinion is replaced by the other one, whereas this
other opinion remains unchanged.

The idea of everybody talking to everybody with the same probability is
perhaps realistic for scientific exchanges via the internet, but, in politics, dis-
cussions on city affairs are usually restricted to the residents of that city and
do not extend over the whole world. Putting agents onto a square lattice [2-5]
where interactions are only available between lattice neighbours [19] is one
possibility. In recent years, small-world networks and scale-free networks [20]
have been simulated intensively as models for social networks. In the standard
version of the Barabasi—Albert model, the most popular model of scale-free
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networks, one starts with a small number m of agents all connected to each
other. Then, one by one, more members are added to the population. Each
new member randomly selects m previous members as neighbours such that
the probability of selecting one specific agent is proportional to the number
of neighbours this agent had before. In this way, the well connected people
get even more connections, and the probability of one agent being selected
as a neighbour by k later members is proportional to 1/k. (In contrast, on
the square lattice and on the Bethe lattice, each agent has the same number
of neighbours, and for random graphs the number of neighbours fluctuates
slightly but its distribution has a narrow peak.) In opinion dynamics, only
network neighbours can influence each other.

Putting Deffuant agents [21] onto this Barabdsi-Albert network, then,
with continuous opinions, complete consensus is again found for large confi-
dence intervals €, whereas for small € the number of different surviving opin-
ions varies roughly as 1/e. An opinion cluster is a set of agents sharing the
same opinion in final equilibrium, independent of whether these agents are
connected as neighbours or separated. Varying the total number N of agents
one finds that the number of small opinion clusters with 1, 2, 3, ...agents is
proportional to N, while the number of large opinion clusters comprising an
appreciable fraction of the whole network is of order unity and is independent
of N. This result reminds us of the cluster size distribution for percolation [22]
above the threshold: there is one infinite cluster covering a finite fraction of
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the whole lattice, coexisting with many finite clusters whose number is pro-
portional to the lattice size. One may compare this distribution of opinions
with a dictatorship: the imposed official opinion coexists with a clandestine
opposition fragmented into many groups.

This scale-free network can be studied in either a complicated or a simple
way. In the complicated way, if a new agent Alice selects a previous agent Bob
as a neighbour of Alice, then Alice is also a neighbour of Bob, as in mutual
friendships. This is the undirected case. The directed case is the simpler
way: Bob is a neighbour of Alice but Alice is not a neighbour of Bob; this
situation corresponds more to political leadership: the party head does not
even know all party members, but all party members know the head. Aside
from simplifying the programming, the directed case seems to have the same
properties as the undirected one [21].

Also, changing from continuous to discrete opinions O = 1,2,...,Q does
not change the results much but it does simplify the simulation [23], particu-
larly when only people differing by one opinion unit discuss with each other
(corresponding to € ~ 1/Q)). Again the number of opinion clusters is propor-
tional to N for N — oo at fixed N/Q. A consensus is reached for @ = 2, but
not for @ > 2. A scaling law gives the total number of final opinions as being
equal to N multiplied by a scaling function of N/@. This law has two simple
limits. For ) > N there are so many opinions per person that each agent has
its own opinion, separate from the opinions of other agents by more than one
unit; with no discussion, nobody changes opinion, giving N clusters of size
unity. In the opposite case Q < N, all opinions have lots of followers and thus
most of them survive up to the end. These simple limits also remain valid
if people differing by up to £ opinion units (instead of £ = 1 only) influence
each other; a consensus is then formed if £/Q (which now plays the role of the
above €) is larger than 1/2. (The more general scaling law for arbitrary N/Q
now becomes invalid.) This threshold of e = 1/2, which has emerged so often
in the previous examples, is supposed to be a universal feature of Deffuant
dynamics, so long as the symmetry of the opinion spectrum with respect to
the inversion right < left is not violated [24]. The symmetry means that the
opinions O and 1 — O (Q — O for integer opinions) are equivalent and can be
exchanged at any stage of the dynamics without changing the corresponding
configuration. In this way, at any time the histogram of the opinions is sym-
metric with respect to the central opinion 1/2 (Q/2 for integer opinions). If
we instead let O and 1 — O (@ — O) play different roles, the threshold will in
general be different. As a matter of fact, in [25] one introduced such an asym-
metry in that the “convincing power”, expressed by the parameter y, is no
longer the same for all agents but depends on the opinion of the agent. More
precisely, p increases with the opinion of the individual, and this implies that
those agents with low values of O are less convincing than those with high
values of O. In this case the opinion distribution is no longer symmetric with
respect to O =1/2 (Q/2) and the consensus threshold is larger than 1/2.
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In all of this work, first the scale-free network was constructed, and then
the opinion dynamics were studied on the fixed network. Not much is changed
if opinion dynamics takes place simultaneously with network growth [26], in
agreement with the models of Ising and Sznajd [27].

11.2.2 The KH Model

The KH model [6,7] has been simulated to a lesser degree than the D model
since, until recently, it was only possible to study small systems with KH.
However, for discrete opinions, an efficient algorithm was recently found that
could be used to study millions of agents [28], compared with at most 300,000
for continuous opinions [29]. Again we have a continuous number of opin-
ions O between zero and one, or discrete O = 1,2,...,Q. At each iteration,
each agent looks at all other agents, and averages over the opinions of those
that differ by not more than e (continuous opinions) or ¢ (discrete opinions)
from its own opinion. Then it adopts that average opinion as its own. As in
the D model, the KH model shows a complete consensus above a particular
threshold and many different opinions in the final configuration if € is very
small. However, in this case, there are two possible values for the thresh-
old [30], depending on how many neighbours an agent has on average: if this
number of neighbours, or average degree, grows with the number of agents
in the community, there is consensus for € > ¢j, where ¢y ~ 0.2; if instead
the average degree remains finite when the population diverges, the consen-
sus threshold is 1/2 as in the D model. Various ways of averaging opinion
have been investigated [31]. Hegselmann and Krause [6,7] have also simulated
asymmetric e choices, which may depend on the currently held opinion.

Figure 11.2 shows that the same scaling law as that used for the discrete
D model also holds for the discrete KH model [28] on a scale-free Barabési-
Albert network. For the usual version of the model, in which all individuals
talk to each other, but with discrete opinions and discussions only allowed
between agents differing by one opinion unit, a consensus is reached up to
@) = 7, while several opinions remain for @ > 7. (The role of well-connected
leaders in a similar opinion model on a Barabdsi-Albert network was studied
in [32].)

As we mentioned above, by using discrete opinions it is possible to speed
up the algorithm compared to the continuous case. The implementation of
an algorithm for KH with discrete opinions must be probabilistic, because
the value of the average opinion of compatible neighbours of an agent must
necessarily be rounded to an integer and this would make the dynamics
trivial, as in most cases the agent would keep its own opinion. We start
with a community where everybody talks to everybody else, with opinions
O =1,2,...,Q and a confidence bound of ¢. After assigning opinions to the
agents at random in the initial configuration, we calculate the histogram no
of the opinion distribution, by counting how many agents have opinion O
for any O = 1,2,...,Q. Suppose we want to update the status of agent ¢,
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Fig. 11.2. Scaling law for the number S of surviving opinions in the discrete KH
model, from [28]. The figure looks similar for the D model [23] except that the
downward deviations at the left side of the data sets are weaker

which has opinion k. The agents that are compatible with ¢ are all agents
with opinion ¥k = k — k-0 +1,....kk+1,...;k+ ¢ — 1,k + £. Let
Nge = Ng—g + Nkg—gt1 + ... + Ngyre—1 + ngre be the total number of com-
patible agents. Then we say that agent ¢ takes opinion k£ with probability
P, = Ny /nke, which just amounts to randomly choosing one of the agents
compatible with ¢ and taking its opinion. Let k¢ be the new opinion of agent
i. We simply need to withdraw one agent from the original channel k and
add it to the channel k; to get the new opinion histogram of the system,
and then we can move to the next update. Notice that, in this way, the time
required for a sweep over the whole population goes like (2 + 1) N, where N
is as usual the total number of agents and 2¢ + 1 the number of compatible
opinions. In the original algorithm with continuous opinions, however, the
time to complete an iteration goes as N2, because to update the state of any
agent one needs to make a sweep over the whole population to look for com-
patible individuals and calculate the average of their opinions. The gain in
speed of the algorithm with discrete opinions is then remarkable, especially
when ¢ < N.

We have seen that the presence of the second factor N in the expression of
the iteration time for the continuous model is exclusively due to the fact that
we consider a community where every agent communicates with all others. If
one instead considers social topologies where each agent interacts on average
with just a few individuals, like a lattice, the iteration time will onlygrow
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linearly with N, and the algorithm will compete in speed with that of D. As
a matter of fact, in many such cases the KH algorithm is much faster than
the D algorithm.

11.2.3 The S Model

The S model [8] is the most commonly studied model, and the literature on
it (up to mid-2003) has been reviewed in [15]. Thus we concentrate here on
more recent literature.

The most widespread version uses a square lattice with two opinions,
O = +1. If the two opinions in a randomly selected neighbour pair agree,
then these two agents convince their six lattice neighbours of this opinion;
otherwise none of the eight opinions changes. If less than half of the opinions
initially have the value 1, at the end a consensus is reached with no agent
having opinion 1; if initially the 1’s have the majority, then at the end every-
body follows their opinion. Thus a phase transition is observed, which grows
sharper as the the lattice increases in size. The growth of nearly homogeneous
domains of —1’s and 1’s is very similar to the spinodal decomposition of spin
1/2 Ising magnets.

With @ > 2 possible opinions (O = 1,2,...,Q), a consensus is always
found except when only people with a neighboring opinion O £+ 1 can be
convinced by the central pair of opinion O; then a consensus is usually possible
for @ < 3 but not for @ > 4 in a variety of lattice types and dimensions, see
Fig. 11.3 (from [15]).

The greatest success of the S model is the simulation of political election
results. The number of candidates receiving v votes each varies roughly as
1/v with systematic downward deviations for large and small v. This was
obtained on both a Barabdsi-Albert [33] and a pseudo-fractal model [34]. Of
course, such simulations only give averages, not the winner in one specific
election, just like physics gives the air pressure as a function of density and
temperature, but not the position of one specific air atom one minute from
now.

Schulze [35] simulated a multilayer S model, where the layer number cor-
responds to the biological age of the people in it; the results were similar to
those for the single-layer S model. More interesting was his combination of
global and local interactions on the square lattice: two people of arbitrary
distance who agree in their opinions convince their nearest neighbours of this
opinion. Similar to the mean field theory of Slanina and Lavicka [36], the
times needed to reach consensus are distributed exponentially and are quite
small. Therefore, up to 10° agents could be simulated. The width of the
phase transition (for @) = 2, as a function of initial concentration) vanishes
reciprocally with the linear lattice dimension [35].

If the neighbours do not always follow the opinion of the central pair, and
instead do so with some probability [8], one may describe this probability
through some social temperature 7T': the higher the temperature, the higher
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the probability that opinions will change [37]. In this case T' = 0 means that
nobody changes opinion, and T' = oo means that everybody follows the S
rule. Alternatively, one may also assume that some people permanently stick
with their opinion [37,38]. In this way, a more democratic society is modelled,
even for @) = 2, where not everybody ends up with the same opinion.

In an S model with continuous opinions and a confidence bound € similar
to the D and KH models, a consensus was always found independently of
€ [39].

11.3 Damage Spreading

How is it possible to describe the reaction of people to Xevents in quantitative
terms? From the previous discussion we have learnt that opinions can be
treated as numbers: integer or real. A change of opinion of an arbitrary
agent ¢ is thus simply the difference between the new opinion and the old
one. During the dynamical evolution, as we have seen above, opinions change,
due to the influence of people on their acquaintances. This is, however, the
“normal” dynamics within a community. What we would like to investigate
instead is how much a sudden perturbation (an extreme event) would alter
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the opinion variables of the agents of the system. The concept of perturbation
need not be defined exactly: for us it is whatever causes opinion changes in
one or a few! agents of the system. We have localized events, like strikes,
accidents, decisions involving small areas, and so on, in mind. We assume
that people shape their own opinions only through the interactions with their
acquaintances, without considering the influence of external opinion (sources
like the mass media, which act at once on the whole population).

In order to evaluate the effect of a perturbation on the public opinion
it is necessary to know the opinion distribution of the agents when nothing
anomalous takes place (the “normal state”), and compare it with the distri-
bution determined after the occurrence of an Xevent. From the comparison
between these two replicas of the system we can evaluate, among other things,
the so-called Hamming distance: how many agents have changed their mind,
and how the influence of the perturbation spreads as a function of time and
distance from the place where the Xevent occurred.

This kind of comparative analysis is by no means new in science, and it is
commonly adopted to investigate a large class of phenomena, so-called dam-
age spreading processes. Damage spreading (DS) was originally introduced
in biology by Stuart Kauffman [40], who wanted to estimate the reactions
of gene regulatory networks to external disturbances (“catastrophic muta-
tions”) quantitatively. In physics, the first investigations focused on the Ising
model [41,42]. Here one starts from some arbitrary configuration of spins
and creates a replica by flipping one or more spins; after that one lets both
configurations evolve towards equilibrium according to the chosen dynamics
under the same thermal noise (identical sequences of random numbers). It
turns out that there is a temperature Ty, near the Curie point, which sep-
arates a phase where the damage heals from another phase in which the
perturbation extends to a finite fraction of the spins of the system.

The simplest thing one can do is just to follow the same procedure for
opinion dynamics models. The perturbation consists of changing the opinion
variable of an arbitrarily selected agent in the initial configuration. After
that, the chosen opinion dynamics apply for the two replicas. Preliminary
studies in this direction already exist, and they deal with the Sznajd model
on the square lattice. In [43], one adopted a modified version of Sznajd where
the four agents of a plaquette convince all of their neighbours if they happen
to share the same opinion; here the perturbed configuration is obtained by
changing the opinions of all agents that lie on a line of the lattice. In [44], the
shock consists of the sudden change of opinions of some finite fraction g of the
whole population and the time evolution of the number of perturbed agents
is studied as a function of g. More importantly, the authors of the latter
paper show that in several cases critical shocks in social sciences can be used
as probes to test the cohesion of society. This recalls the strategy of natural

! Here “a few” means that the agents represent a negligible fraction of the total
population, which vanishes in the limit of an infinite number of agents.
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sciences: if we hit an iron bar with a hammer, we can derive its density from
the velocity of the sound in the bar. In Sect. 11.3.2 we will present new results
on damage spreading for Sznajd opinion dynamics [45]. Here we focus on the
other two consensus models, D and KH. We shall first analyse the models
for real-valued opinions, and then we will move on to integer opinions. In
all our simulations we have defined the amount of damage as the number of
agents differing in their opinions in an agent-to-agent comparison of the two
replicas; we ignored the amount by which they differ.

An important issue is the choice of a suitable social topology. A bidimen-
sional lattice lends itself to a geographical description of the damage spread-
ing process: we can assume that the sites represent the spatial positions of the
agents, and that the “acquaintances” of an agent are its spatial neighbours.
In this way the lattice would map the distribution of people in some geo-
graphic area and the distances between pairs of agents on the lattice can be
associated with physical distances between individuals. On the other hand,
the regular structure of the lattice and the prescription of nearest-neighbour
friendship endow the system with features that never occur in real commu-
nities. In fact, in the lattice, each agent has the same number of friends, and
people who are geographically far from each other are never friends. These
unrealistic features can be removed by adopting a different kind of graph
to describe the social relationships between the agents. A Barabasi—Albert
(BA) network [46] could be a good candidate: it is a nonregular graph where
the number of acquaintances of an agent varies within a wide spectrum of
values, with a few individuals having many friends but most people have just
a few. On the other hand, the BA network is a structure with a high degree
of randomness and can hardly be embedded in an Euclidean bidimensional
surface, so a geographical characterization of the damage propagation would
be impossible. In our opinion the ideal solution would be a graph that in-
cludes both the regular structure of the lattice and the disorder of a random
graph. A possibility could be a lattice topology where the connection proba-
bility between the agents decays with some negative power of the Euclidean
distance, being unity for nearest neighbours. In what follows we shall however
consider only the square lattice and the BA network.

11.3.1 Continuous Opinions

If opinions are real numbers, we need a criterion to state when the opinion of
an agent is the same in both replicas or different due to the initial perturba-
tion. Since we use 64-bit real numbers, we decided that two opinions are the
same if they differ by less than 10~°. In order to determine with some pre-
cision the fraction of agents that have changed their opinions, it is necessary
to repeat the damage spreading analysis many times, by starting out from
a new initial configuration each time without changing the set of parameters
that constrain the action of the dynamics; the final result is then calculated
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by averaging over all samples. In most of our simulations we collected 1000
samples, although we increased the statistics to 10,000 in a few cases.

A detailed damage spreading analysis has recently been performed for
KH with continuous opinions [47], for the case in which the agents sit on the
sites of a BA network. The dynamics of the KH model are fixed by a single
parameter, the confidence bound e, which plays the role of temperature in
the Ising model. As in the Ising model, it is interesting to analyze the dam-
age propagation as a function of the control parameter €; it turns out that
there are three phases in the e-space, corresponding to zero, partial and total
damage, respectively. The existence of a phase in which the initial perturba-
tion manages to affect the state (here the opinions) of all agents is new for
damage spreading processes, and is essentially due to the fact that opinions
are real-valued. In this case, in fact, the probability of a “damaged” opinion
recovering its value in the unperturbed configuration is zero; on the other
hand, to perturb the opinion of an agent it suffices that one of its compatible
neighbours is affected, and the probability of having a compatible “disturbed”
neighbour increases with the confidence bound e. The only circumstance that
can stop the propagation of the damage is when the perturbed agents are not
compatible with any of their neighbours. The considerations above allow us
to understand why the critical threshold e, = 1/2 found in [47], above which
damage spreads to all agents of the system, coincides with the threshold for
complete consensus of the model, as in this case all agents share the same
opinion and so they are all compatible with each other, which means that all
agents are affected by each of their neighbours at some stage. Another inter-
esting result from [47] is the fact that the two critical thresholds that separate
the “damage” phases in the € space do not seem to depend on the degree dy
of the first node affected by the shock, although the Hamming distance at
a given € increases with dy. This means that it is irrelevant whether the shock
initially affected somebody who has many social contacts or somebody who
is instead poorly connected: if damage spreads in one case, it will do so in
the other too.

It is also important to study how damage spreads under D opinion dy-
namics. The hope is to be able to identify common features that would allow
us to characterize the spreading process independently of the specific consen-
sus model adopted. In Sect. 11.2.2 we stressed the analogies between the KH
and the D model, so we expected to find similar results. For the D model we
need to fix one more parameter to determine the dynamics: the convergence
parameter p. The value of p only affects the time needed to reach the final
configuration, so it has no influence on our results: we set p = 0.3. Figure 11.4
shows how the Hamming distance varies with the confidence bound ¢ for the
D model on a BA network. The total number of agents is 1000. We remark
that the damage is calculated here when the two replicas of the system have
attained their final stable configurations. We have also plotted the corre-
sponding curve for the KH model, as obtained in [47]. The two curves are
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Fig. 11.4. Fraction of perturbed agents in the final configuration as a function of
€ for the D and the KH model on a Barabasi—-Albert network

quite similar, as we expected, and the thresholds for the damage spreading
transition are very close to each other. Again, for ¢ > ¢, = 1/2, all agents
will be affected by the original perturbation.

As we explained in the Introduction, our main aim is to attempt a spatial
characterization of the damage spreading process, which is impossible on
a BA network. This is why from now on we shall focus on the lattice topology.
Here we start by changing the opinion variable of the agent lying on the
central site of the lattice; if the lattice side L is even, as in our case, the centre
of the lattice is not a site, but the centre of a plaquette, so we “shocked” one
of the four agents of the central plaquette. We refer to the initially shocked
agent as to the origin. We will address the following issues:

— How far from the origin can the perturbation travel?

— What is the probability that an agent at a particular distance from the
origin is affected?

— How does this probability p(d,t) vary with the distance d and with the
time t7

To discuss the first issue, we need to calculate the range r of the damage,
in other words the maximum of the distances from the origin of the agents
reached by the perturbation. The damage probability p(d, t) is the probability
that, at time ¢, a randomly chosen agent at distance d from the origin changed
its mind, due to the initial shock. Here the time is represented, as usual, by
the succession of opinion configurations created by the dynamics. The time
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unit we adopted is one sweep over all agents of the system. To calculate p(d, t)
we proceed as follows: after ¢ iterations of the algorithm, we select all sites
that are at a distance d from the origin, and which lie on-axis with respect
to the origin, as in the scheme below:

X

%

where the black dot in the middle represents the origin and the crosses mark
the agents to be monitored. The damage probability is simply given by the
fraction of those agents whose opinions differ from those of their counter-
parts in the unperturbed configuration (for example, if two of the four agents
changed their mind, the probability is 2/4 = 1/2). Note that by construction
d must be a multiple of the lattice spacing (in our illustrated example d = 4).
At variance with the evaluation of the damage range r, where we review all
lattice sites, for the damage probability we neglect the off-axis sites because
the lattice is not isotropic and the corresponding data would be affected by
strong finite size effects due to the lack of rotational symmetry. To derive
p(d, t) from only four sites is of course difficult and we need to average over
many samples for the data to have statistical meaning; we found that of the
order of 10? samples are enough to obtain stable results. We calculated p(d, t)
for all distances from the centre to the edges of the lattice and for all interme-
diate states of the system from the initial random configuration to the final
stable state.

We will mostly present results relative to the D model. The corresponding
analysis for the KH model leads to essentially the same results. For the pur-
pose of comparison with Fig. 11.4, we plot in Fig. 11.5 the Hamming distance
as a function of ¢, for the D and the KH model. The curves refer to a lat-
tice with 402 agents: the two patterns are again alike. The damage spreading
thresholds are close, but they lie quite a bit higher than the corresponding
values relative to the BA network. This is basically due to the fact that in
a BA network each vertex lies just a few steps away from any other vertex
(small world property), and this makes spreading processes much easier and
faster. Indeed, in the damage spreading phase, the time needed for the per-
turbation to invade the system is much longer for the lattice than for the BA
network.

Since the amount of the damage is a function of ¢, the range r of the
damage is also a function of e. It is interesting to analyze the histograms of
the values of r for different values of the confidence bound. In Fig. 11.6 we
show four such histograms, corresponding to ¢ = 0.10,0.17,0.18,0.35. Note
that the values of r reported on the z-axis are expressed in units of L/2 (half
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of the lattice side), which is the distance of the central site from the edges of
the lattice; since the farthest points from the origin are the four vertices of
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the square, the maximal possible value of r is Lv/2/2 (which corresponds to
V2 ~ 1.414 in the figure). In the top left frame (e = 0.10) damage does not
spread and in fact the histogram is concentrated at low values of r. In the
other two frames, however, we are near the threshold for damage spreading,
and we see that the damage often reaches the edge of the lattice (r = 1 in
the plot) and even the farthest vertices (r = v/2). The step from € = 0.17 to
€ = 0.18, despite the small difference in the value of the confidence bound, is
quite dramatic, and signals the phase transition: in the first case (top right) it
is more likely to have short ranges than long ones, in the other (bottom left)
we have exactly the opposite. In the last frame, the range is almost always
maximal; looking at Fig. 11.5, we can see that more than 90% of the agents
are disturbed for e = 0.35, so it is very likely that the perturbation reaches
one of the four vertices of the square.

The study of the damage probability p(d,t) is more involved, as it is
a function of two variables, the distance d and the time ¢. A good working
strategy is to separately analyse the dependence of p(d,t) on the two vari-
ables. We can fix the distance at some value dy and study how the damage
probability at dy varies with time. We can also fix the time at ¢y and study
how the probability at time ¢y varies with the distance from the origin. On
top of that, we should not forget the dependence on €, which determines the
“damage” state of the system.
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Fig. 11.7. D model, continuous opinions. Time evolution of the damage probability.
Each frame refers to a fixed distance d from the origin, the curves are relative to
different values of €; the lattice size is 40°
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In Fig. 11.7 we explicitly plot the time dependence of the damage prob-
ability at four different distances from the origin, d = 1,2, L /4, L/2. In each
frame we have drawn four curves, corresponding (from bottom to top) to
€ = 0.15,0.17,0.20,0.30. We remark that probability increases with ¢, since
this corresponds to a larger number of affected agents. All curves increase with
time, which shows that the damage does not heal, and they reach a plateau
long before the system attains the final opinion configuration. Note the rapid
rise of the probability at the two largest distances (L/4 and L/2) for the two
values of € which fall in the damage spreading phase (e = 0.20,0.30).

Figure 11.8 shows how the damage probability varies with the distance
from the origin, at the end of the time evolution of the system. The distance
values on the z-axis are renormalized to the maximal distance on-axis from
the origin, L/2, as in Fig. 11.6. We again have four frames, one for each of the
four values of € we have considered in Fig. 11.7. We notice that for e = 0.15,
which is slightly below the threshold, the damage probability at the edge (top
left) is zero, whereas for e = 0.17, which is near the threshold, it is small but
nonzero (top right) and it is about 1/2 for ¢ = 0.20 (bottom left). We tried
to fit the curves with simple exponential functions. We found that the tail
off with distance is stronger than exponential: for low €, p(d, t) (at fixed t) is
well approximated by a exp(—bd)/d.
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Fig. 11.8. D model, continuous opinions. Dependence of the damage probability
on the distance d from the origin, when the system has reached the final stable
configuration; the lattice size is 402
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Note that we have chosen to introduce the shock into the system only at
the beginning of the evolution. If one perturbs the system some time later
instead, the amount of damage and the corresponding probabilities would
decrease; however, the results of the analysis would be qualitatively the same.

11.3.2 Discrete Opinions

There is essentially one main reason for using real-valued opinions: the opin-
ions of any two individuals are never exactly the same, although they can be
arbitrarily close. This is what commonly happens in society, where no two
persons have exactly the same idea or judgement about any issue. In fact,
our opinion about somebody or a special event can fall anywhere between
the two extremes “very bad” and “very good”; a situation analogous to the
spectrum of visible light, where one can pass smoothly from red to violet.

On the other hand, for all practical purposes, this continuous spectrum of
possible choices can be divided into a finite number of “bands” or “channels”,
where each channel represents groups of close opinions. This is actually what
teachers do when they “mark” student essays. Electors also have to choose
between a finite number of parties/candidates. Finally, for the case we are
mostly interested in (the reaction of people to Xevents), the only quantitative
investigation available to sociologists consists of performing polls where those
interviewed must choose between a few options.

These examples show that it is more realistic to use integers rather than
real numbers for the opinion variables of consensus models. Here we will
repeat the damage spreading analysis of the previous section for the D model
with integer opinions on a square lattice. We will see that the results are
quite different to those we found before, due to the phenomenon of damage
healing.

To start with, we must fix the total number @ of possible opinions/choices.
Since we have performed simulations on systems with a few thousands agents,
we decided to allow the number of choices to be of the same order of magni-
tude, so we set Q = 1000. The confidence bound must be an integer ¢, but
for consistency with the notation we have adopted so far, we will still use
a real €, again between 0 and 1, so that ¢ is the closest integer to € Q.

In Fig. 11.9 we show the variation of the Hamming distance with the
confidence bound e, for a lattice with 402 sites. We immediately notice that
it is different from (the analogous) Fig. 11.5 for continuous opinions: after
the rapid variation at threshold, the fraction of damaged sites reaches a peak,
it then decreases and finally forms a plateau at large €. Moving from real to
integer opinions, we don’t get any more overall damage — the perturbation
can affect a fraction f < 1 of the total population (here f ~ 0.6) at the
most — but it has no chance of affecting all agents. If we increase the number
of agents NV but keep @ fixed at the same value, the height of the final plateau
decreases, going to zero when N/Q — oo.
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Fig. 11.9. D model, integer opinions. Fraction of perturbed agents in the final
configuration as a function of € for agents sitting on the sites of a square lattice

Why does this happen? Taking a look at Fig. 11.10 helps to clar-
ify the situation. Here we see histograms of the damage range for € =
0.18,0.25,0.35,0.45. If we compare the frame relative to ¢ = 0.18 (top left)
with its counterpart for continuous opinions (Fig. 11.6, bottom left), we see
that they are basically the same. We are close to the transition so there is
some finite probability of the damage reaching the edges and even the vertices
of the square. We notice that the histogram is continuous, in the sense that
any value of the range between the two extremes is possible. If we now look at
the other three frames, the situation is very different: the range can be either
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Fig. 11.10. D model, integer opinions. Histograms of the damage range corre-
sponding to four values of €; the lattice size is 502
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Fig. 11.11. D model, integer opinions. Time evolution of the damage probability.
Each frame refers to a fixed distance d from the origin; the curves are relative to
different values of ¢; the lattice size is 50?

very short or very long. In particular, when € is very large (bottom right),
the range is zero or maximal. That means that either the damage heals, or it
spreads to all agents. In fact, for large e (> 1/2), there is complete consensus
in the final configuration (see Sect. 11.2.1), so all agents will end up with the
same opinion. The question is then whether or not the final opinion in the
perturbed configuration coincides with that of the unperturbed configuration;
in the first case we have no damage, in the second total damage.

Now, real-valued opinions can be modified by arbitrarily small amounts,
and this would still correspond to damage. On the other hand, the variations
in integer opinions are discontinuous steps, and the latter are much more
unlikely to occur. In this way, it is virtually impossible for a single agent to
trigger a “jump” in the final opinions of all agents of the system to a different
value. So, for large € and many agents, the original perturbation will be healed
by the dynamics? (no damage), whereas for continuous opinions even a small
shock manages to shift the final opinion of the community a little bit (total
damage).

The presence of damage healing is also clearly visible in Fig. 11.11, which
is the counterpart of Fig. 11.7 for integer opinions. The four curves of each
frame refer to € = 0.15 (continuous), 0.18 (dashed), 0.25 (dotted) and 0.35
(dot-dashed). The damage probability no longer increases monotonically as
in Fig. 11.7; instead it displays various patterns depending on the confidence

2 The non-vanishing probability for total damage in Fig. 11.10 is a finite size effect,
as the total number @) of opinions is about the same as the population N.
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bound and the distance from the origin. In particular, observe the behaviour
of the curve for e = 0.35 and d = 1 (top left frame, dot-dashed line): here
the probability is initially close to 1, because we are examining a neighbour
of the shocked agent, but after few iterations it falls to about 0.3, due to
healing. We also note the curious shape of the two upper curves for d = L/4,
which recalls the pattern of the Hamming distance with e¢ of Fig. 11.9: the
damage probability rapidly rises to a maximum and then it decreases to an
approximately constant value.

Figure 11.12 shows the dependence of the damage probability on the dis-
tance in the final opinion configuration, for ¢ = 0.15,0.18,0.25,0.35. The
curves look similar to those in Fig. 11.8. Again, the damage probability de-
creases faster than exponentially.

We conclude with some new results on damage spreading for the S model
with two opinions on a square lattice [45], which complement the analyses
from [43,44]. Figure 11.13 shows the damage probability as a function of
distance at various times. We see that the values of the probability are quite
low; in fact, the system always evolves towards consensus, so the damage will
heal over the long run, as with the D and KH models (with discrete opinions)
when the confidence bound € is above the threshold for complete consensus.

If damage spread like in a diffusion process, the distance covered by the
propagation of the perturbation would scale as the square-root of the time ¢,
and the probability of damaging a site at distance d would follow a scaling

e=0.15 e=0.18

1 T T T T 1 T T T T
> 09 7 = 09 B
£ 08} B = o8 i

o 3 -8 o
g 07 1 % o7} 1
o 06 T S 06} 4
S 05} B [ : o
g 04 B g 05r ]
& o3lo i § 04F o 1
1+ D a 2 = b
0 0 P 00nnmoooononood 0.1 I D?DDDDQDDDDmunnn
0 02 04 06 08 1 0 02 04 06 08 1
Distance from initial perturbation Distance from initial perturbation
e=0.25 €=0.35

0.65 T T T T 0.36 T T T T
2 o > 0355 -
= L B = 0.35 - B
g 06 § o345 (" :
<] <] 0.34 - ~
o 0550 B a 0335 [ b
& ; & omnlo ]
a ) L i
£ 0.5 DDDDDDDDDDDDDDDDDDDDA £ 0.32 g B
o) a 0.315 F 0o8oq00noonPo0of0o0y

045 1 1 1 1 031 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1
Distance from initial perturbation Distance from initial perturbation

Fig. 11.12. D model, integer opinions. Dependence of the damage probability
on the distance d from the origin when the system has reached the final stable
configuration; the lattice size is 50°



254 S. Fortunato, D. Stauffer

0.03 T T T T T T T
L=41 t=10 - - +
t=20 - - x
t=30 - - *
. t=40 --o--
L 4
0.025 “
“
%
0.02 | . A
X +
X .
x "+
S X
g 0015 F**y % g
I} * +
o ©-0 ® XN
Oy XX
o R
N j{
0.01 | % A
R,
kX R
X
g .
0.005 | o ‘X\x%‘%e g
X Tk Qo
o N Fw %QQG_
;+‘+‘+.>< o . * *- g_‘g_—iii’e 9o
0 x x MRER I SIS S S 38 R R EETTTE
0 5 10 15 20 25 30 35 40
distance

Fig. 11.13. S model, two opinions. Dependence of the damage probability on the
distance d from the origin, for various times on a 41 x 41 lattice

function f(d/+/t) over long timescales. Figure 11.14 shows that for ¢t > 1
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this does indeed seem to be the case, even though damage spreading is not
a random diffusion process.

Applications of these techniques to the case where people have opinions
on several different themes are described elsewhere (see [48]; Jacobmeier, in
preparation; Fortunato et al., in preparation).

11.4 Discussion

The three main models D, KH and S discussed in this chapter follow different
rules but give similar results: they end up in a final state where opinions do
not change any further. Depending on the confidence interval e for continuous
opinions, or ¢ for discrete opinions, this final state contains one opinion (con-
sensus), two (polarization) or three and more (fragmentation) opinions. In
the discrete case with @ different opinions, there is a maximum @ (2 for D,
3 for S, 7 for KH) for which a consensus is usually found. These numbers
may correspond to the maximum number of political parties that may form
a stable coalition government. The three rules differ in that S describes mis-
sionaries who don’t care about the previous opinions of those whom they
want to convince; KH describes opportunists who follow the average opinion
of their discussion partners; while D describes negotiators who slowly move
closer to the opinion of their discussion partner. Election results were suc-
cessfully simulated by the model of S but not by those of D and KH, perhaps
simply because nobody has tried to do so with those models yet.

The reaction of people to Xevents was investigated by performing a dam-
age spreading analysis on the three consensus models we have introduced.
The Xevent induces a change of opinion in one (or a few) agent(s); the dy-
namics propagates the shock to other agents. We represented the social re-
lationships between people using a square lattice and a scale-free network,
as for Barabdsi-Albert. In both cases we found that there is quite a wide
range of values of the confidence interval e (or ) for which the original shock
influences the opinions of a non-negligible fraction of the community. For
very tolerant people and continuous opinions, the whole community will be
affected by the event in the long run. By using integer-valued opinions, in-
stead, we found that the perturbation does not affect more than a certain
fraction of the population (which can be sizeable, however). Using the lattice
we also studied how the influence of the Xevent on opinions varies with the
distance in time and space from the event. The damage probability at a fixed
distance from the original shock varies very rapidly with time; it increases up
to a plateau for continuous opinions, and it follows more involved patterns for
integer opinions. Our analysis also shows that the effect of the perturbation
falls faster than exponentially with the distance from the place where the
event took place.

What have we achieved with these simulations? We did not find a way
to predict earthquakes or floods, nor have we provided a way to convince
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people to judge these dangers objectively, instead of being overly influenced
by events that are close in time and space and forgetting the lessons from
distant catastrophes that happened long ago. Our simulations give quanti-
tative data on these space—time correlations of opinions and Xevents. Once
sociology has delivered quality data on real people and their opinions [1], one
can compare these results with the simulations and modify the simulations
until they give a realistic description. Only then can the simulations be used
to predict how danger perception will develop in space and time.

We thank J.S. S& Martins for a critical reading of the manuscript. SF
gratefully acknowledges the financial support of the DFG Forschergruppe
under grant FOR 339/2-1.
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12 Networks of the Extreme:
A Search for the Exceptional

Philippe Blanchard and Tyll Kriiger

Summary. In this chapter, after a short survey of recent developments in the the-
ory of complex networks, we discuss a class of random graph models for complex
networks where the exceptional and Xevents play a crucial role in the formation of
network structures. Indeed, some vertices — the “hubs” — have an extremely high
number of connections to other vertices, whereas most vertices have just a few.
These networks are generally “scale-free”; in other words, they exhibit architec-
tural and statistical stability as the degree distribution grows. We also relate some
extremal properties of the diameters of random graphs to the thresholds of epidemic
processes, and we discuss robustness against system damage.

12.1 Extreme Events in Complex Systems
and Our Perception of Them

Extreme events are the ones that grab our attention when we watch a news
report, since they often are the events we are most afraid of (terrorist bombs
on our doorstep or the bankruptcy of our bank, for example). What makes
them so fascinating that they are the basis for thousands of scientific and
a plethora of nonscientific books (almost every novel contains one or more
Xevents), and how do they fit in to our visible and invisible world? The
reasons for people’s attraction to Xevents are psychological in nature, and
therefore beyond the scope of this chapter, but we will claim (based on com-
mon sense) that the degree of extremality of an event is proportional to the
inverse of its frequency of occurrence. The models we describe in Sect 12.3
are built on this principle, which we call “the Cameo principle”.

What are Xevents? First of all, Xevents are rare (in time or in space); oth-
erwise they wouldn’t be “extreme”. Put into a statistical frame, this means
that the probability of observing them is very small (ignoring the precise
meaning of “very small” for a moment). This is the usual way to characterize
Xevents in natural sciences or mathematics. However, there is another way
of looking at Xevents: they are usually of high relevance to the dynamics or
structure of the system in which they appear. So their impact is somehow
inversely proportional to the frequency of their occurrence. For complex net-
works — the subject of this chapter — we will show that our perception of the
extreme, exceptional or rare means that the exceptional nodes in a network
are also the functionally relevant ones.
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Since extremality, in the sense described above, is the property of an
event that occurs in the tail end of a probability distribution, one natural
question to ask is whether there are typical tail distributions for rare events.
It may seem a bit strange that there should be anything general to say about
the distribution of rare events, except in the independent case (the classical
approach, with characteristic normal or Poisson distributions). But scientific
research — based on the large datasets that have become available over the
last few years in a range of fields from social sciences to biochemistry — has
provided strong evidence that Xevents are much more likely in complex real
life systems than we originally thought. For decades, our thinking about the
exceptional was influenced by the Bernoulli world picture, where the extreme
is exponentially small and governed by laws like the central limit theorem
(CLT) or Sanov’s theorem in large deviation theory.

The some what surprising truth is that, for most (many) real world pro-
cesses, the tail distribution — the statistics of the Xevents or large devia-
tions — is of a power law type, indicating that real processes are far from
independent; see [1,2] for recent reviews. One of the most prominent exam-
ples is the Gutenberg-Richter law for earthquake distribution. Inspired by
earthquake dynamics, a whole theory has emerged over the last 15 years
called self-organized criticality (SOC). SOC mainly attempts to explain the
frequency distributions with time for certain model processes. The basic idea,
pitched by Per Bak ( [3]) in 1990, is that complex systems stabilize themselves
near a phase transition point (without parameter tuning) and so, as known
from statistical physics, distributions are typically power law in nature (an
example is the size distribution of finite clusters at the percolation thresh-
old in lattice percolation). However, it is worth noting that this theory is
largely heuristic and is only supported by results from computer simulations
at present, even for the simplest models of SOC; see [4] and [5] for a more
mathematical approach.

Almost ten years after the invention of SOC, a second class of power
law distribution phenomena gained scientific attention, namely distributions
characterizing the structure of complex networks like the Internet, the World-
WideWeb (WWW), social networks and biochemical networks. Essentially
every complex system has an underlying structure — usually encodable as
a graph — providing an environment for dynamical evolution. Since this struc-
ture is also far from being a lattice in many applications, it is natural to study
its basic graph properties. The simplest local property of a vertex is its de-
gree: the total number of edges attached to a vertex, which is simply the
number of the nearest neighbors of the vertex. Here it is mainly the degree
distribution of the corresponding graph representation of the network that
follows a power law. Since power law distributions have no characteristic size
or “length”, they are often called scale-free distributions (or graphs in the
case of networks). In contrast to the SOC case, there is no clear link to phase
transitions that could explain the emergence of power laws. But there are
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several building rules based on common sense psychology that do the job
pretty well (see Sect. 12.2).

The theory of random graphs began with some studies of Erdos and
Renyi [6] sixty years ago, in which they used probabilistic methods to show
the existence of graphs with apparently contradictory properties. They dis-
covered that there was a “typical” random graph among the random graphs
they introduced: the random graph typically had certain sharply defined
properties. The other great discovery was that all the standard properties
of graphs appear rather suddenly. This phenomenon expresses the fact that
there is a phase transition. The most spectacular example of a phase tran-
sition concerns the size of the largest component of a random graph. From
this point of view, percolation theory is nothing else than the study of ran-
dom subgraphs of different lattices. The classical spaces of random graphs
have degree distributions that are Poissonian and are therefore not a good
basis for embedding the high degree vertices (the hubs) that typically occur
in real networks. One has to go beyond the independence assumptions in the
classical theory.

12.2 A Short Survey of Scale-Free Networks

There is a vast amount of literature about complex networks. The best ref-
erence for an introduction to the subject is still the article by Albert and
Barabdsi [7]. Other very readable specific surveys and books about complex
networks include [8-15].

The first model of scale-free networks (or, more accurately, a random
graph space with an asymptotic power law degree distribution) was also pro-
vided by Albert and Barabasi in a seminal paper [16]. The model they created
is an evolutionary one, where one node is added at each time step, starting
with a connected graph Gy with at least two vertices. The new node added
at time t + 1 “generates” m > 1 independent edges identically distributed
among the existing vertices in Gy such that vertex y is chosen with a prob-

ability p (y,t) = Ez:;iy;t(z) where d; (y) is the degree of y € G;. Multiple

choices are allowed and therefore each node creates at most m edges (since
the probability of multiple edge generation tends to zero, each vertex almost
certainly creates exactly m edges). It can be proved (see Bollobas and Ri-
ordan [17]) that the asymptotic degree distribution is indeed a power law
with an exponent of 3 independent of the choice of m, and that the diameter
scales as 1023{50 fg , for large t. The underlying rule for creating new edges with
a probability proportional to the degree is called “preferential attachment”
or “the richer you are the richer you get”. This mechanism has its root in an
old idea of Price [18]. Many variants of the above rule have been formulated
that also allow for exponents other than 3. Although the rule is very appeal-
ing, it has certain drawbacks that limit its range of applicability. First, it is
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not robust with respect to small changes in the pairing rule — replacing the
preferential term d; (y) by d; (y)° with & # 0 will not give a scale-free graph
(for € < 1 one obtains a Poisson distribution and for € > 1 a star-like graph
emerges). Second, and this is especially true for social networks, the precise
value of the actual degree of a vertex — for instance its number of friends — is
hidden to the others. Motivated by these deficiencies, we searched for another
psychological plausible rule of network formation that is more flexible in ap-
plication and interpretation. Inspired by the view of rare events described
in the Introduction, we believe that the main quantity that drives our view
of rare events is the relative frequency of appearance. Formally speaking, if
a family of discrete or continuous events {w} is distributed with density ¢,
the attention we give to the event w should be proportional to (p(i)a where
« is a positive individual parameter somehow describing a persons affinity
to “sensations” or the “exceptional”. Our personal view of rare events could
therefore be summarized as “the exceptional is attractive”. This is the basis
of a building principle that we call “the Cameo principle” [3]. In the following
section we describe a random graph model based on this principle.

12.3 Cameo Graphs

In this section we analyze some of the structural aspects of graphs built using
the above-mentioned principle in detail. We believe that the Cameo principle
is particularly well suited to the creation of social networks. According to this
approach, the “the richer you are the richer you get” principle is replaced by
“the rarer you are the more attractive you become”. This can be applied
to evolutionary as well as stationary graphs. The basic formal setting is the
following: a positive, real-valued random variable w with density ¢ is i.i.d.
distributed on the vertex set Viy : {1 ;22 ;...;2n5}. The random variable w
is interpreted as the value of a property that has a enough of an attraction
to others to prompt a contact; for instance richness, beauty, social influence,
and so on. The crucial point is that the attraction and hence the probability
of generating an edge is inversely proportional to a power of the frequency of
appearance of the property w:

1
wia>0. (12.1)

Pri{z — w = wp} = const -
{z —ylw(y) =wo} N o) 1O

Here x+ — y symbolizes the event where = generates an edge to y if x is
about to make a new contact. In addition we should mention that the Cameo
principle extends the concept of the random graph introduced by Erdés and
Renyi obtained in the limit @ — 0 [19]. For simplicity, in the following we
fix the number of edges generated by each individual at kg > 1, but most
of the statements will hold for more general situations where this number is
itself a random variable. To avoid unnecessary mathematical complications,
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we first allow for multiple choices and later reduce this to the corresponding
simple graph. Since the process of edge generation is a directional one — from
the choice-making vertex = to the chosen vertex y — there is a natural notion
of an out- and an indegree. Due to the possibility of multiple choices, the
outdegree doyt () < ko, but since the probability of a multiple choice scales
at most like “}5" (double choice probability where o < 1), then as N — oo
we almost certainly have dyy: () = ko. Behind the Cameo rule is the above-
mentioned psychological experience that we are well adapted to recognizing
relative differences but we find it very difficult to estimate absolute values of
measures of rare events.

The interesting result is now the following: under very weak assumptions
for the distribution ¢ (w) (¢ (w) N 0) we obtain a scale-free distribution

for the degree that essentially only depends on the value of a. More precisely,
we have the following theorem [20]:

Theorem 1. i) Let ¢ (w) = wﬁ+10(1) with B> ' >0, € (0,1), then

1

ngnooPr{d(a:) =k|zeVy}= L= g to()

1) Let o (w) € C%([0,00)) and the second derivatives D? (o) have no
zeros for |u| € (0, po) and w > wo (1) (this is just an assumption of mono-
tonicity in the tail of ¢, and it implies that @ decays faster then any power
law distribution); then

1
A}iinooPr{d(ac) =k|lzeVn}= 141 o(1)

The emergence of a power law distribution independent of the choice of ¢
is not as surprising as it might first seem. The situation is best explained by
an example. Let ¢ (w) = e7“;w > 0 and define a new variable w* = [(p(‘i)]a
= e“?. The new variable w* can be seen as the effective parameter to which
the matching process applies. What is the induced distribution of w*? With
F (z) = Pr{w* < z} we obtain

Lln .z
a
1

F(z)= / pWdw=1-za (12.2)
0

and therefore the w*- distribution is given by ¢ (w*) = (DF)(w*) =
; . (w*)ll i1 This is a power law distribution where the exponent depends
only on a. Proving the theorem in this special case is then simple, since the
conditional indegree distribution for vertices x with a given w- value wy is
a Poisson distribution, with expectation const-¢ (wg)®, and the total indegree
distribution is just the superposition of the conditional ones. The result for
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the exponential distribution can be generalized to hold for arbitrary distri-
butions that satisfy the assumptions of Theorem 1. Because of its relevance,
we formulate the main step as a theorem:

Theorem 2. Let ¢ (w) € C?([0,00)) and let the second derivatives D? (oH)
have no zeros for |u| € (0, uo) and w > wo (1); then the distribution ¢ (y) of
y:=[pW)]" :=¢(w)" has density !

y

14 Loy

Proof: Let G (z) := [ ¢ (2) dz be the cumulative distribution function of the
0

random variable w. The distribution function % of the r.v. y = f (w) is then
given by

D(Pr{f ) <y}) = D (Pr{w< [ ()}) (123)
=DI[G(f ()] =DG(f () -Df ' (y) .

For f(w) = ¢(w) * we have f~1(y) = 901( L > With Df~!(y) =
ya

Dyt ( L :i ., and using the relations Do ~' (2) = [(Dy) (97 (2))] -
yo ) ay e
and DG = ¢ we therefore obtain
-1 -1
1 —pop (y « )
¥(y) = : . (12.4)

oy (Dg) (¢ (v2))

The following technical lemma (the proof is given in the Appendiz) states
that the second term in the above formula is, for large values of y, smaller
than any power of y, from which the proof follows.

Lemma 1. Under the above assumptions, one has:
-1 -1
Cpoet ()

Do) (o1 (v))

With this result, it is now easy to prove the results claimed in Theorem 1.

As already said, the conditional indegree distribution of vertices is asymp-

totically Poissonian with a given value of w, with expectation [f(%ﬁa where

o(1) (12.5)

A7 = Jim E N zg‘:/N ¢ (w(x))”"| is the normalization constant in the
basic pairing probabilities of the Cameo principle. By Theorem 2, these ex-
pectation values are themselves distributed in the form of a power law with
an exponent 14 i for fast-decaying ¢ and with an exponent 1+ ; — alﬁ if pis
itself a power law distribution with exponent 3. The normalization constant
is only well defined for o € (0,1) and 8> | * .
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But what happens when « > 17 The model is still well defined for
each N, but there is no longer a uniform N-independent normalization.
This means that, for a fixed (N-independent) w value of a vertex y, the
probability that d;, (y) > 0 goes to zero for N — oco. The indegree d;,(y)
stands for the number of directions ending in y. The reason for this is sim-
ple. Since the normalization constant A = o (1) we almost certainly get
Pr{z —y|w(y) =wo} =o0(,). Further, the total number of edges is about
koN and so E (din (y) |w (y) = wo) = koN-o(n) =0(1) = 0as N — oo.
Therefore, almost all of the edges are linked to a few number of vertices with
extraordinarily large w-values, and the graph becomes star-like. Instead of
showing this result in its full generality, we will explain the situation for the
case where ¢ is the exponential distribution e™, w > 0. First we derive
a simple estimation for the largest w value expected in the system for a > 1.
Since the expected number of vertices with w values larger than wg equals

o0
N- [ e “dw = Ne 0, we get from the condition that this number should be

wo
about 1, giving the following estimation for the most likely maximal w-value:
Wmax (N) ~ (1+0(1))logN , as N — oo . (12.6)

This implies that, with a probability converging to 1, the normalization con-
stant A is of order

log N ( ) log N -1 -1
N -1 / p(w / 1
“ » (w) dw dw + a
v | ] oW N (g N)
[log N -1 1
= / ele=Dwg, 4 yo-1 > 9, as N —oo. (12.7)
L o

Since the probability of an edge between x and y, with w(y) = w, is now

1-1 1-1
a = @ gow(y) (12.8)

Pr{z —ylw(y)} = No - ow@)® ~ No

we only have a positive indegree for vertices y with w (y) > (1 — oll) log N.
Note that when the maximal w value is larger than log NV, the same argument
is still valid with an increased bound on the minimal w value for which the
indegree is still positive. Since the expected number of vertices with w (y) >
(1 — (lx) log N is given by

log N
N - / e “dw~No , as N — oo (12.9)

(1—(11)10gN
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only an asymptotically vanishing fraction of vertices gains all of the (indegree)
edges. Finally, we estimate the indegree expectation for the vertex ymax with
the maximal w value log N. Since Pr{z — Ymax | W (Ymax) ~ log N} =1 — olw
one has E (d (ymax)) ~ (1 = 1) koIN, so a positive fraction of all of the edges
is linked to just one vertex — the superhub. In this sense, typical graphs for
a > 1 are star-like.

What does the resulting, N-dependent, degree distribution look like?

Since Theorem 1 applies for all values of & > 0, we can find out as fol-

1
lows. The random variable k = Ce®¥(®)  the indegree for C' = kojsi—il), is
1
distributed like ; ', for k > 0, which implies that
const
Pr{d,, (z) = k;k > 0} ~ R (12.10)

for the degree distribution. Note that, by what was previously said, we have
Pr{d;, (z) =0} N 1. It remains to say a few words about the degenerate
—00

case a = 1. An analogous computation shows that a typical normalization
constant is of order logl ~ - Therefore E (d (ymax)) ~ lﬁog]}iv, and the smallest w
value that still gets a positive indegree is of order loglog NV, as N — oo.

An immediate consequence of the star-like structure is the finiteness (IN-

independence) of the diameter.

12.4 How Extremists Determine the Structures
of Scale-Free Graphs

In real life, every parameter that would be used in a model would usually
be a random variable varying from individual to individual. It is therefore
natural to study the Cameo graphs of the previous section with a quenched
disorder in the affinity parameter « [21]. As we will see, this generalization of
the Cameo principle will radically alter fundamental features of the random
graphs.

Let « be i.i.d. distributed with g (here we do not require that the distribu-
tion is absolutely continuous) and let auax := sup {a | x(a) > 0}. The first
surprising result is that, in case amax < 1 and ¢ decaying faster than any poly-
nomial, the exponent of the resulting power law degree distribution depends
only on amax. In other words, we have discovered that the vertices with the
highest affinity «, that we call “extremists” for obvious reasons, are responsi-
ble for the exponent ~y of the degree distribution. This result is easy to under-
stand, although the detailed proof is somewhat involved. Therefore, we only
give a short outline here. Assume that p is supported on I = [@min, ¥max],
1 > Qmax > Qmin > 0. For fixed small € = ¢ (L) = *min” *max > (), we consider

covering I with L subintervals {Il(s)} e For large N we almost certainly
1<I<L
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le
have N- [ p(a)da vertices with value v in I;. Since the results from the
(I-1)e
previous section on Cameo graphs rely only on the fact that const - N edges
are created according to the Cameo principle, for a distribution of the condi-
tional indegree dgfll) () :=#{y |y — x Aa(y) € I;} we obtain the following
bounds (in the limit of large N):

1 ) () _ 1
L1k d o) S P (a0 (@) = k) < L) (12.11)

The rest of the argument relies on the dominating distribution principle: given
a finite family of asymptotic power law distributions {;} with exponents {/3;}
then the distribution ) ; is again an asymptotic power law distribution with

3
exponent min {3;}. Applying this principle to the above situation, for each ¢
we get a bound that almost power law in nature, such that

1 1
to(1) <Pr (dm (33) = k) < k1+ L _+o(1)

Amax —&

. (12.12)
Since this holds for any positive €, and the constants involved stay bound as
N — 00, we obtain the results claimed above.

Let us emphasize that the same result emerges if we randomize networks
of the kind that Barabasi and Albert theorized. Let m be the positive integer
describing the number of edges sent out by each new vertex. If m is a random
variable, it is easy to show that the exponent of the power law describing
the degree distribution only depends on myax, the maximum value that the
random variable m can take.

The situation becomes more complicated for amax > 1 (and more inter-
esting). As explained in the previous section, there is no contribution from
the set of vertices  with « () > 1 to the indegree of vertices with fixed

Qmax

w value. Therefore, the ko - N [ p(a)da edges originating from that set
1+e¢

of vertices with a (z) > 14 € almost certainly link only to vertices with w

values bigger than (1 — l}rg) log N and generate a star-like substructure to

the vertex with the biggest w value. As an example, we estimate the expected
indegree of a vertex y with w (y) = Bln N, 8 € (0, 1] arising from vertices x
with o > 1 where p («) = 1/2 for a € [0;2]. One has

2
1 1-1
E (din (y) | w(y) = I N) = -kON/ N PN o (12.13)

1
2
l-k/ o L) prtes-ag, (12.14)
g M0 o B
1
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It is important to note that the indegree depends only on the value of qyax.
Figure 12.1 gives a plot of this value for N = 10° and ko = 2 for 3 € (0.6;1).

On the other side we can apply the result from the beginning of this section
where 11 () was assumed to be supported in (0, 1) to the set of vertices x with
a(z) < (1 —¢). These vertices generate a scale-free indegree distribution
with exponent 1 + 1;' Since € can be taken to be arbitrary small, we get
the following result in the mixed case where the « distribution p has support
in (0,1) as well as in (1, 00). There is still a power law distribution for any

fixed k: )
Pr{d(z) = k} N j2o(D) k fixed (12.15)

but there is a single heavy tail of star-like form with a degree of the order
of the total number of vertices. Let us emphasize that the very high degree
values in Fig. 12.1 are of course out of reach in real social networks due to
various reasons. For instance, capacity limitation causes some cut-off for the
maximal degree. Also, in real life most vertices only have only potential access
to a small fraction of the total population, so the Cameo principle applies
in essence to small size substructure partitions of the society. Indeed, scaling
the values in Fig. 12.1 down to village size populations of order 10% - 104
gives very reasonable contact structures.

We close this section with a numerical result showing that the asymptotic
exponent v = 1 + anl‘ax is achieved in networks of a reasonable size with
N = 10° (Fig. 12.2). The distribution p () is taken to be the uniform one
in [0, max] ;@ < 1. The finite size effect is accounted for by the factor 1.29
in front of the oll term.

300000
250000
200000
150000 | é
100000

50000

otf. - - ) ]
0.6 0.7 0.8 0.9 1

Fig. 12.1. Indegree of vertices with w = Blog 10° as a function of 3 € [0.6; 1]



12 Networks of the Extreme: A Search for the Exceptional 269

25 ¢ T 1

0.5 r .

02 03 04 05 06 07 08 09 1 1.1

max

Fig. 12.2. Dependence of the exponent v — 1 of the cumulative degree distribution
on the upper limit amax of the affinity range. The data points can be fitted by the
simple ansatz 1.29/amax

Summarizing the results of this section, one can say that the exponent of
the power law is determined only by the vertices, which are most sensitive
to the property w. Acting on those vertices is an effective way to control the
structures of evolving networks formed by Cameo-like rules.

12.5 Spreading of Epidemics in Scale-Free Networks
and Robustness Under Random Attack

In this section we will study some aspects of propagation processes in scale-
free graphs and study the influence of a heavy tail degree distribution on
propagation properties. An epidemic is therefore any kind of stochastic trans-
port phenomenon in social, biological or economical networks. Assume we
have given a virus (or any other agent) that can be transmitted along edges
with probability . Starting with a randomly chosen initial infected vertex,
one may ask: what is the probability that a particular positive fraction of
the whole population (vertex set) will eventually be infected (in the limit
of large N)? For classical epidemic models that live on a lattice or a Erdds
and Renyi random graph [19], and assuming that the number of edges is
proportional to the number of vertices, a positive threshold value 7. exists
such that there will be no epidemic outbreak for v < v, but for v > ~.
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a positive fraction of the total vertex set becomes infected. In other words,
only sufficiently virulent diseases will cause epidemics. For scale-free graphs,
the situation can be very different, as was first recognized by Pastor-Satorras
and Vespignani [22] for the Albert and Barabasi model. Due to the presence
of high degree vertices (hubs, the somewhat extreme vertices), the connec-
tivity of a scale-free network can become so strong that a positive fraction
of the total vertex set is within an certain N-independent constant distance.
This happens for exponents less then 3 (in this case the second moment is
no longer bounded) and it means that . — 0. The divergence of the second
moment of the degree distribution is equivalent to the statement that the ex-
pected size of the 2-neighborhood (the size of the set of vertices at a distance
of 2 from a randomly chosen vertex) diverges with N — o0o.It is now easy to
see that the random removal of, say, a fraction « of the edges (o € (0;1))
will not destroy this property, and so a cluster of finite diameter containing
a positive fraction of all vertices still remains. For the above question about
epidemics, this means that limy_. 7./N = 0, since the eventual size of an
epidemic starting in vertex x is just the size of the connected component
containing x after deletion of 1 — 7% of the edges. Therefore, the thresh-
old v, needed to cause a widespread epidemic is 0. In other words, even the
most inefficient infectious agent will spread widely. However, it is not clear
whether this result has anything to say about current plagues in real world
networks.

This result has another interpretation in terms of resistance to random
attacks — the connectivity property of the net, on which its communicational
skill relies, is essentially not affected by the random demolitions of either
connections (edges) or transmission knots (vertices). The story becomes dif-
ferent if the attack is not random but focused on the hubs and/or the edges
pointing to them. In that case it is easier to destroy the connectivity prop-
erties or communication function of a scale-free net than those of a classical
random graph or lattice. This fact is rooted in the inhomogeneous topology
of scale-free graphs. Random eliminations of vertices or edges mainly removes
vertices with small degrees and will not significantly affect the connectivity
properties of the graph. However, a reliance on high-degree vertices has very
serious consequences; see [23,24].

Of course, there are other ways to influence the structure of networks
as was already mentioned at the end of the preceding section. Namely for
evolving networks one could try to act directly on the parameters underly-
ing the formation of the network. As an example let’s take the so called
terrorist networks causing so much attention nowadays. Instead of end-
less hunting the hidden hubs it might be much better to try to reduce
the number of their most enthusiastic sympathizers (lowering so the aumax-
value).
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12.6 Conclusions and Outlook

In this article we have discussed some properties of scale-free random graphs,
and a model where our perception of the rare produces a scale-free degree
distribution irrespective of the distribution of the rare. Furthermore, only
a small fraction of vertices (or individuals in the case of social networks)
determine the overall structure of the network. The results presented are
only a small fraction of what has been obtained for both Cameo graphs and
general scale-free graphs. Many interesting and challenging mathematical,
theoretical and practical questions remain for further research.

It is safe to say that scale-free networks have the potential to be of great
theoretical use, since they could be used to answer a number of unanswered
questions, particularly those associated with graphs that are not locally tree-
like. There is not even a systematic program for characterizing the architec-
ture of complex network. Work in this area has focused mainly on clustering
properties (counting triangles) and the degree sequence, but there are many
other quantities that are important to study.

The widespread presence of power laws has changed our point of view from
regarding such distributions as exceptional to regarding them as the norm
in complex systems. Since the assumptions made in the models that cause
power laws are very weak, their appearance now appears to standard. Never-
theless, it has been difficult to relate these applications to phenomena in real
life, since not every power law supposedly seen in nature is a “real” power
law, and architectures based on different models (growth and preferential
attachment, random graph methods like the Cameo principle, optimization
performance under constraints) can give the same exponent for the degree
distribution. It is therefore unclear as to which of the different processes or
principles is really causing the scale freedom. Finding a compelling mecha-
nism to explain a power law does not mean that there are not other, perhaps
simpler explanations.

From a methodological point of view, we have significant hopes that re-
lations between network architecture and concepts from statistical physics
like phase transitions, criticality and self-organization can be exploited fur-
ther, since they could give a much deeper understanding of many of these
phenomena.
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12.7 Appendix

Here we prove the technical lemma used in the proof of Theorem 2, namely
that the following holds under the assumptions of the theorem:

—1
—pop! (y o )

(D) (@‘1 (y B ))

Since ¢ (w) decays faster then any power law, we have

= 3o (12.16)

1
vw) < ol for any ! and w > wo (1) . (12.17)
Since 1 ( L ) goes to infinity for y — oo we have to show
yC(

(@) _ (o ven()

The last formula states that the negative logarithmic derivative of ¢ should
not become too large or too small compared to ¢ and i respectively. For

the following it is convenient to set ¢ (z) = e 9(*) with g(z) — oo and
rewrite (12.17) as

1
—pg(z) pg(z) f 0 0 d . 12.19
e < g(w)<€ or u€ (0,0 >0) and = > xo (1) ( )

Assume that (12.18) is not true with respect to the right hand side. Then,
for a sequence of values {z;} and open intervals I; around the z; and some
function a (x), we have

1
Dg (x)

Integrating the last equation gives

=M@ (z) and a(z) > 1forz e l; . (12.20)

x

1
eﬂg(r) _ eug(zo) 4 ‘u/ dz . (12.21)
a(z)

Zo
N
Since our assumption that D [(P(lw)} is monotonous for g > 0 and w > wg (1)

implies a (z) > 1, we eventually conclude that
(@) png(zo) 4 w(z —x0) . (12.22)

However, the fast decay condition for ¢ (x) expresses a growth condition for
g (z), namely for all k
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g(x) > klogz; x > o (k) (12.23)

which clearly contradicts (12.21). Finally, we need to show that the left hand
side of (12.18) also holds. Assuming the converse, we get

1 1
= e H9(®@) and a(z) > 1 for x € I; 12.24
Dy (2) a@) ") 1224
and after integration
—h9(®) — o—nglao) _ u/a(Z) dz . (12.25)
o

The monotonicity condition again implies that a () > 1 eventually, so
e @) < emra(@0) (g — 1) (12.26)

which is a clear contradiction since the right hand side becomes negative for
large values of x.
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Part III

Prevention, Precaution, and Avoidance



13 Risk Management and Physical Modelling
for Mountainous Natural Hazards

Michael Lehning and Christian Wilhelm

Summary. Population growth and climate change cause rapid changes in moun-
tainous regions resulting in increased risks of floods, avalanches, debris flows and
other natural hazards. Xevents are of particular concern, since attempts to pro-
tect against them result in exponentially growing costs. In this contribution, we
suggest an integral risk management approach to dealing with natural hazards
that occur in mountainous areas. Using the example of a mountain pass road,
which can be protected from the danger of an avalanche by engineering (galleries)
and/or organisational (road closure) measures, we show the advantage of an opti-
mal combination of both versus the traditional approach, which is to rely solely on
engineering structures. Organisational measures become especially important for
Xevents because engineering structures cannot be designed for those events. How-
ever, organisational measures need a reliable and objective forecast of the hazard.
Therefore, we further suggest that such forecasts should be developed using physical
numerical modelling. We present the status of current approaches to using physical
modelling to predict snow cover stability for avalanche warnings and peak runoff
from mountain catchments for flood warnings. While detailed physical models can
already predict peak runoff reliably, they are only used to support avalanche warn-
ings. With increased process knowledge and computer power, current developments
should lead to a enhanced role for detailed physical models in natural mountain
hazard prediction.

13.1 Introduction

Mountainous areas tend to have an enhanced risk of natural hazards. This
is because, in addition to general risks such as earthquakes and storms, ex-
tra risks are caused by the topography (such as avalanches, mud and debris
flows). Because one cause of such hazards is the local terrain, local hazard
mitigation is also often feasible. However, societies in rich countries have man-
aged to create protection mechanisms for frequent local events. The greatest
risk in this case often comes from extreme and rare events. Reducing these
risks is a great economic challenge because cost — benefit estimations are
based on weak statistics since data on Xevents is inherently scarce.

This contribution discusses risk management strategies using the example
of a road over a mountain pass. The example illustrates that attempting to
protect against Xevents results in exponentially growing costs. In this con-
text, it is shown that organisational measures (road closures) based on a high
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quality forecast can be very cost-effective. In the second part of the contri-
bution, we discuss the forecasting support that is available from physical
modelling. An increased knowledge of the processes leading to slope failures,
as well as improved meteorological forecasts, will also lead to better and more
objective assessments of extreme natural hazards in alpine terrain over the
long-term.

13.2 Risk Management Example for Mountain Roads

13.2.1 Integral Risk Management

Integral risk management for natural hazards means that protection mea-
sures involving forestry operations, land use planning, technical and organ-
isational measures are coordinated and applied in an optimal manner. The
optimal level of security is then reached with minimum cost and an optimal
resource allocation is guaranteed. The combination of protective construc-
tions, avalanche hazard maps, protective forests, systems for early warning,
forecasting and alerting, closing off and securing areas, evacuations and arti-
ficially triggering avalanches is shown in Fig. 13.1. The optimization involves
considering the duration times of the measures as well as the intervention
strategies. Integral risk management in this sense has only recently been prac-
ticed. Integral risk management replaces protection strategies based purely
on engineering structures. It makes use of existing (and new) structures but
adds organisational measures. Increasing land-use, traffic (and thus economic
value) in the mountain regions, together with increasing uncertainty about
climate changes and limited resources available for prevention require a more
flexible strategy [1].

13.2.2 Cost — Benefit Framework for Traffic Protection
against Natural Hazards

When a variety of measures such as protection galleries or road closures need
to be combined, their respective costs and benefits need to be assessed. We
will show how this can be done in the example below. If we consider a traffic
route that is unprotected from mountainous hazards, the society could face
damage costs from material damage, injuries and deaths. The damage costs
Cs can be reduced by protection measures, which in turn result in protection
costs Cp,.

Engineering structures only influence C), and Cy. Organisational mea-
sures, on the other hand, also reduce the total benefit, B, of the road, because
the traffic route will be temporarily closed at times. As a consequence, the
social benefit loss from road closures (—B.) needs to be assessed. Therefore,
for integral risk management, the following minimisation must be made:
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Fig. 13.1. Integral risk management via an optimal combination of various mea-
sures

Cs + Cp — B — minimum (13.1)

The minimisation process must be analysed step-by-step as new measures
are added. For now, let us include the social benefit loss through road closures
(—B.) in the protection costs (Cp). In Fig. 13.2, the cost is shown as a func-
tion of risk reduction. Starting with an initial state, measures can be invoked
and the remaining risk will decrease. The economic optimum is reached when
the marginal costs of protection measures are equal to the marginal costs of
risk reduction. Since measures are chosen in order of their cost-effectiveness,
the protection cost increases exponentially as the risk is reduced still further.
The higher the security attained, the higher the marginal cost for further
risk reduction. Furthermore, as the security attained increases, the value of
a further risk reduction drops (decreasing marginal benefit). The aim of min-
imising the total cost (Cimsn) causes the economic optimum (R,p:) to be
where the marginal cost is equal to the marginal benefit (reduced damage
cost). This point describes the economically optimal level of security. It also
follows from this framework that Xevents are very difficult to deal with, and
prevention of Xevents is only possible at very high cost.
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total costs C,
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Fig. 13.2. Model of total cost minimization for natural hazard reduction

13.2.3 Case Study: Fliiela Pass, Switzerland
System Definition and Introduction of Risk Approach

Until 1971, the Fliela Pass (2305 m ASL), which proceeds from Davos to the
Engadin, was closed in winter for 156 days per year on average. Between 1971
and 1999, the pass road was also kept open during winter time. A protection
plan consisting of temporary road closures and artificial avalanche release
was applied.

Over a distance of 19.3 km, 47 avalanche paths cross the pass road for
a total length of 10.1 km. On average, 38 natural and 27 artificially triggered
avalanches hit the road each winter when the road is open. The maximum
avalanche activity occurred in winter 1991/1992, when 117 events blocked
the road. The average winter daily traffic (WDT) is 1000 vehicles/day. The
cost to keep the pass road open in winter was, on average, 0.5 million CHF.
80% of this was spent on the removal of snow and avalanche deposits. Using
the protection plan, the closure was reduced to 25 days.

In general, risk can be written as the product of probability and amount
of damage [2,3]. Avalanche risk must be assessed by temporally and spatially
overlapping the two independent processes of avalanche danger and land use
of a certain area. The parameters given in Fig. 13.3 are important when
recording risk situations [4].

The probability of occurrence of an avalanche can be calculated as the
reciprocal of the mean return period T'. The possible amount of damage is
determined by the probability that objects (characterised by their monetary
value) or people are present in the avalanche track. The probability of the
presence of vehicles is given by the average winter daily traffic WDT, the
mean width of the avalanche in the area of the road, g, and the speed of
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avalanche track
avalanche

transport route

Fig. 13.3. Model used to assess the risk from avalanches along transport routes

the vehicles, v, in the path of the avalanche. The maximum width of the
avalanche path in the area of the road, g4z, is then decisive when estimating
protective measures (such as galleries) and the investment costs permitted.
The probability of extent (the vulnerability), A, is given as the probability
that people are caught in the avalanche provided that the avalanche has
occurred and that a car was in the avalanche track during that time.

The collective risk, R (fatalities/year), is then calculated as:

R=WDTB> ", %ib (deaths per year) (13.2)
(i =1,...,n avalanche paths)

The vulnerability for deaths in a vehicle (v = 0.18) and the mean number
of occupants (8 = 1.61; people/vehicle) are taken from statistical data. If
a transport route is affected by more than one avalanche track, the risk
per avalanche track can be approximated by simply adding the individual
contributions under the assumption of small individual ratios of ginl. Risk
peaks,; such as those following an incident where a queue of vehicles is formed,
require additional model assumptions [5,6] and are therefore not discussed
here.

The outset risk without any safety measures at the Fliiela Pass of 0.7
fatalities per year only applies to moving vehicles. In order to make the pass
road safer, controlled release of avalanches were used in combination with
temporary road blocks between 1971 and 1999. In this way, an annual cost
(K,) of 0.22 million Swiss francs was incurred for artificial release, and on
average 25 days of road closure per winter were necessary. The remaining
risk was 20% of the initial risk. Despite the high number of closure days, this
resulted in a very high (unacceptable) remaining risk of 0.14 deaths per year.
We will show later that closure days are very expensive, so it can be concluded
that this original risk management scheme was far from being optimised.
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An evaluation of a large number of projects with galleries or permanent
retaining structures along transport routes in Switzerland [6] suggested a so-
cial willingness to pay, WTP, an average cost of 10 million CHF and marginal
costs of up to 40 million CHF in order to prevent one statistical fatality. The
results can now be used for a cost-effectiveness analysis. In the following we
try to quantitatively analyse the Fliela Pass situation.

Protection by Technical Measures Only

First we explore the situation where only technical measures of risk reduction
are used. Figure 13.4 shows the curve for marginal costs up to complete risk
reduction (remaining risk = 0) where risk is reduced by constructing galleries
and dams [7]. The analysis is based on statistical avalanche occurrence data,
traffic and current construction costs. Complete risk reduction of 0.7 deaths
per year is reached with yearly costs of 10 million CHF, which translates
into an average cost effectiveness of 14 million CHF per saved life (prevented
fatality). According to Fig. 13.4, marginal costs (Cy,) of less than five million
CHF per saved life are to be expected if five individual measures are used
(gallery constructions at certain locations). If the average accepted C,, value
in Switzerland of 20 million is taken as the reference, 21 galleries need to be
constructed. Employing the three most cost-effective measures alone reduces
the outset risk by 25%.

Protection by Organisational Measures Only

In this section, the risk reduction seen when only organisational measures
are taken is explored. Figure 13.5 presents the expected risk reduction as

average cost effectiveress
CE 14 milions CHF

annual costs Cj [millon CHF]

C m = 20 millions CHF{ "

Co - & millions CHF

W f f . . ,

Q a1 a2 03 04 a5 06 a7

risk reduction Rv [prevented death /year]

Fig. 13.4. Marginal costs and cost effectiveness of technical measures for a complete
reduction of the outset risk in the Fliiela pass example
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a function of the closure days required. In order to achieve a full reduction of
0.7 fatalities per year (analogous to a full reduction by technical measures),
110 closure days per winter are necessary. These days have been arbitrar-
ily combined into 25 closure units of 4.4 days each. A closure unit presents
a unit organisational measure and is motivated by the fact that a danger-
ous avalanche situation usually persists for several days. As can be seen in
Fig. 13.5, using the three most cost-effective closure units together reduces
the outset risk by almost 50%.

Integral Protection by an Optimal Combination of Measures

According to Fig. 13.2, the aim is to find an optimal combination of measures
to minimize the total cost, Cr. In order to do so, one additional difficulty
needs to be overcome, namely to find a monetary representation of closure
days. In this example, we work with the replacement cost approach: at the
point of total risk reduction, 110 closure days correspond to a cost of 10 mil-
lion CHF for technical measures. This results in a cost estimation of 0.09 mil-
lion CHF per closure day. Note that an alternative method is discussed in the
Conclusions and in [8]. The damage cost (Cs) only includes the fatality risk
at a marginal cost of 20 million CHF and it neglects the costs from possible
injuries or infrastructure damage.

Figure 13.6 shows the cost functions when the technical and organisa-
tional measures are combined in an optimal way. Because we now have now
also defined monetary damage costs, we can calculate the optimal protection
solution, which has a total cost Cr of approximately six million CHF per
year and a risk reduction of 90% of the outset risk. This optimal level of

100 +
90 +
80 +
70 +

1 average effectiveness of closure days .

60 SW = 157 closure days / prevented death Lt -

50 +

40 +

annual costs [closure days/year]

30 +

20 +

0 10 20 30 40 50 60 70 80 90 100
risk reduction Rv [%)]

Fig. 13.5. Marginal costs (closure days) and cost effectiveness of organisational
measures for a complete reduction of the outset risk in the Fliiela pass example
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Fig. 13.6. Total cost minimisation with optimal combination of technical and
organisational measures in the Fliiela pass example

security only requires 13 closure days and 13 galleries. The yearly cost of
the measures is 1.6 million CHF, which is significantly higher than the cost
incurred during the years of opening. With the high cost and high impact of
closure days, it is very important to have a reliable and objective method of
invoking organisational methods.

13.3 Physical Modelling of Alpine Surface Processes
to Support Natural Hazard Forecasting

The risk management approach discussed above shows that organisational
measures are a very valuable addition to permanent prevention strategies such
as engineering structures. Because they can be applied in a very flexible way,
they are also the method of choice for Xevents. In the past, the full potential
of organisational measures has not been exploited. This is partly because
they require a reliable forecast of danger. In addition to reliability, objectivity
is required because a potential failure to forecast a dangerous situation will
certainly have legal consequences. Even with hypothetical perfect forecasting,
accidents will happen from time to time since organisational measures work
with an accepted and hopefully acceptable remaining risk.

In the reminder of this contribution we therefore explore the potential
ability of physical modelling to provide an objective and reliable basis for
forecasting natural hazards. This exploration is motivated by the fact that
after many decades of development, numerical weather prediction models are
now in a state that they can provide just such a reliable and objective method
for weather prediction. Forecast models for alpine natural hazards have not
reached that state yet. However, recent improvements in our understanding
of natural hazard generation suggest that this will be possible in the future.
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The primary cause of natural alpine hazards is meteorological forcing, es-
pecially precipitation. Abundant snow precipitation leads to avalanches and
heavy rain leads to mud flows and flooding. However, knowledge of meteoro-
logical forcing alone is not sufficient to determine the danger. Many attempts
to statistically link natural hazards to meteorology alone have shown only
limited success [9]. The current condition of the snow or soil cannot be ne-
glected. For example, an unstable snow cover will only need a small additional
load to produce an avalanche, and soil and snow moisture are important fac-
tors in determining slope stability with respect to mud flows or the runoff
response of creeks and rivers. Figure 13.7 is an impressive illustration that
how deeply a weak layer is buried (and thus how big a potential avalanche
might become) is also very important. Only if the complex interaction pro-
cesses between the atmosphere and the surface are adequately represented
is it possible to use physical modelling to support natural hazard forecast-
ing. The task remains challenging because it requires modelling single snow
grains in order to predict the avalanche danger of a whole area. In terms of
runoff generation for alpine catchments, the complex and small-scale interac-
tion processes between atmospheric forcing, snow cover, glaciers, vegetation
and soil need to be considered. Comparing again to meteorological forecast-
ing, an important observation can be made: while large-scale processes are
now predictable with high accuracy, small-scale convective events are still not
predicted satisfactorily. Forecasting the dangers from avalanches and floods
requires the modelling of even smaller processes than those used in mete-
orology. In the following we will discuss the most important processes and
present results from snow stability estimations and runoff predictions using
a high resolution physical model.

< ‘_‘:..L-» -_'-"'-_ P

Fig. 13.7. Photograph of the fracture line of a massive slab avalanche
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13.3.1 Summary of Alpine Surface Processes

Figure 13.8 schematically shows the complex processes that occur in the
atmosphere—snow—soil system. Precipitation can occur as snow, rain, grau-
pel, hail or rime. With sufficient wind, snow will start to drift. In complex
terrain, this results in irregular snow deposition with maximum snow depths
of up to ten times the average snow depth. The wind will also influence the
snow crystals and might form a hard crust at the snow surface. Vegetation
(if present) will alter the surface water balance considerably through inter-
ception, unloading and evapo-transpiration. As soon as the snow is on the
ground, the snow settles and water vapour fluxes cause the snow crystals to
change. This change is also called metamorphism and is heavily influenced by
the snow energy balance. From the ground, the snow cover receives a small
but constant flux of energy. The exchange of energy with the atmosphere
is much more intense. During daytime, the snow cover absorbs shortwave
radiation. Energy is usually lost to the atmosphere by longwave radiation.
The turbulent fluxes of heat and moisture can bring or remove energy and
mass (latent heat only) from the snow cover. On clear nights, surface hoar
is often formed by moisture sublimation on the snow surface, which then
creates a dangerously weak layer. All of these processes change rapidly in
space and time and interact with the topography. As soon as enough energy
has entered the snow, it starts to melt and produce water. This will lead to
a large change in the structure of the snow and to the possible formation of
wet snow avalanches. A refreezing event will however then produce a stable
snow cover. The melt water is first stored in the snow pores but then starts
to percolate downwards, often along “preferential flow paths”.

The complex processes continue in the soil. Depending on the soil grain
size and soil history, more or less water can be stored in the pores. In spring-
time or after heavy precipitation, the soil may already be saturated and any
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Fig. 13.8. Schematic representation of alpine surface processes as modelled in the
ALPINE3D and SNOWPACK models
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water entering the soil will immediately produce surface runoff. The dynami-
cal water transport and storage behaviour is altered by the layered structure
of soil and bedrock, which may contain impermeable layers such as clay or
very permeable bedrock such as karstic limestone.

These processes are implemented in the alpine surface modelling system
ALPINE3D. The model system uses a meteorological model to create atmo-
spheric forcing fields such as air temperature, humidity, wind, radiation and
precipitation at a very high spatial resolution of (currently) 25 m. The input
is refined by including terrain effects such as shading, surface reflections and
terrain emissions in the surface radiation balance. In a next step, a module
calculates drifting snow and predicts snow redistribution. The combined at-
mospheric input is calculated on a full three-dimensional numerical grid. At
every grid point, vegetation, snow and soil processes are then simulated. The
runoff is processed via a combination of linear reservoirs.

13.3.2 Estimating Snow Cover Development and Snow Stability

The French SAFRAN-CROCUS-MEPRA (SCM) chain [10] led the way to
operational snow cover modelling and combined the results from a snow cover
simulation with the expert system MEPRA [11], giving an interpretation of
the stabilities of the model profiles. MEPRA is based on a classical stability
index approach [12], which is combined with a set of rules to evaluate the
profile in terms of stability classes. Since the simulated snow covers are placed
on hypothetical pyramids for a range of altitudes and expositions [10], this
method has the potential to relate individual snow profiles to the local or
regional danger from avalanches.

We discuss here a more direct approach, in which a stability index is
derived directly from snow cover simulations driven by meteorological data
from automatic stations. Our contribution explores the link between individ-
ual snow profiles and avalanche danger by using stability criteria applied to
modelled snow profiles. The Swiss snow cover model SNOWPACK [13-15] is
successfully used to assess new snow precipitation, drifting snow and snow
cover development at (currently) approximately 100 automatic weather sta-
tions in the high alpine zone of the Swiss Alps. A good prediction of snow
metamorphism and surface hoar formation [15] allows the simulation of weak
layer development with reasonable accuracy. Figure 13.9 shows a comparison
between a modelled and a simulated grain profile for the winter of 1999. The
meteorological data from the Weissfluhjoch Versuchsfeld station has been
used to predict the time development of the snow cover. A colour code is
used for grain types. Many thin layers, which represent potential weak layers
in the snow cover, are present in the simulation as well as in the observed
profile. However, this only suggests that the model can reproduce the local
snow cover development. Another question is whether knowledge of the local
snow cover is useful when predicting the average slope stability in that region.
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Fig. 13.9. Development of SNOWPACK-predicted grain types for the winter of
1999, and comparison with the profile observed on 31st March

To this end, we now try to calculate an estimate for the stability from the
modelled snow profile. More detail on the stability formulations can be found
in [16]. Here we briefly discuss the development of the avalanche danger com-
pared to the development of the stability index for the winter of 2002/2003.
As a first and simple measure of correlation between the stability index and
the regional avalanche danger, we look at the coefficient of determination
(r?) from a linear regression. A first regression of the skier stability index
at the station Klosters Gatschiefer yields an 72 of 20%. This means that
the stability index at a single (well selected) location already explains 20%
of the total variation in estimated avalanche danger during three months of
the winter of 2002/03. In [16] it is further hypothesized that the correlation
between the regional avalanche danger and the SNOWPACK stability index
can be improved by including more than just one location for the simulation.
Therefore, we now consider two locations with automatic stations (Klosters
Gatschiefer and Klosters Madrisa) and simply average the stability indices.
This increases r? significantly and we can already explain 25% of the total
variation in the hazard level. Note that Klosters Madrisa alone yields an 72 of
20%. A slight improvement in 72 to 27% can be obtained by including slope
simulations for the two locations.

Figure 13.10 gives the time series representation of the average skier sta-
bility index for the two Klosters locations. The avalanche danger level valid
for the area is plotted on the same graph. Note that the stability index is
plotted on an inverse axis to allow a better visual comparison to the stability
index. Ideally, changes in the stability index should predict changes in the
hazard level. As discussed above using the linear coefficient of determination,
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Fig. 13.10. Development of SNOWPACK skier stability index and avalanche haz-
ard level. The stability index is the average of the two locations Klosters Gatschiefer
and Klosters Madrisa and explains 27% of the variation in the danger level

this is not always the case. However, the most dangerous situation, on 7th
February, is particularly well represented by the stability index.

13.3.3 Improvement in Extreme Runoff Forecasts
from Alpine Catchments

Runoff forecasts based on simple and highly parameterised models have been
very successful for gauged catchments. The simple models are often based
on day-degree methods (see [17]) for snow-melt dynamics and only pass the
combined input from precipitation and melting snow through a series of lin-
ear reservoirs [18]. The successful reproduction of runoff with those models
is based on extensive calibration. Such a procedure is problematic if real
Xevents need to be forecasted or if such a model is to be used for ungauged
basins, for which no calibration is possible. We compare the performance of
such a well calibrated model (PREVAH, [19]) with an uncalibrated version
of ALPINE3D. Figure 13.11 shows a comparison between October 1990 and
March 1992. The calibrated PREVAH model is better at predicting the base
flow. This is reflected in the higher efficiency coefficient [19] E2 of 0.90 when
compared to ALPINE3D’s 0.82. Since our main interest is in Xevents, we
now focus on the snowmelt month June/July 1991, when the spring runoff
produces the highest runoff peaks. For this situation, Fig. 13.12 again com-
pares PREVAH (Fig. 13.12a) and ALPINE3D (Fig. 13.12b) to the measured
runoff. Since we mainly want to compare the dynamic response of the uncal-
ibrated ALPINE3D model to the calibrated PREVAH model, we now again
use the coeflicient of determination instead of the efficiency coefficient, which
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Fig. 13.11. Dischma seasonal runoff measured and simulated by the calibrated
PREVAH model and the uncalibrated ALPINE3D model

overstates the influence of the base flow. For the critical spring melt situation,
ALPINE3D already represents the runoff dynamics better, as indicated by
the higher 72 value of 90% versus 83%. That this result is really achieved by
including the physical processes in the model in great detail can be shown
by repeating the simulation without some of the process descriptions. If we
switch off the modules for vegetation, radiation balance, interpolation of the
meteorological variables in ALPINE3D and additionally only work with a uni-
form soil representation, the r? value goes down to 46%. The corresponding
runoff curves are presented in Fig. 13.12c. We can see that the highly de-
creased correlation comes from the fact that the relative magnitude of the
three main runoff events is not well represented now. While the first event is
overestimated, the last event is severely underestimated.

13.4 Conclusions

By applying methods of integral risk management, we have shown that, for
a mountain pass road (as an example), organisational measures based on
hazard forecasts can be highly cost-effective when compared to more conven-
tional protection measures. We have further pointed out that organisational
measures are also flexible enough that they should be applied for Xevents. In
this context, we have also defined a practical approach for how to use inte-
gral risk management for natural hazards in alpine surroundings. One reason
why the potential of organisational measures is still not exploited sufficiently
is the fact that organisational measures need accurate and objective hazard
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forecasts. Using the two examples of avalanche danger and runoff predic-
tion, we tried to show that physical modelling has the potential to provide
the basis for such high quality and objective hazard forecasts. While current
forecasts of natural alpine hazards are mainly performed without significant
model support, our increasing understanding of the physical processes in-
volved and increasing computer power should open the door to the increased
use of physical modelling within the framework of integral and sustainable
risk management. It is also important to point out that much more work is
required to reach that goal. The examples discussed above clearly show that,
at present, forecasts of natural alpine hazards cannot be exclusively based
on model simulations. While this may become possible in the future, human
judgement and interpretation will remain crucial for the near future.

The basic approach and underlying principle of integral risk management,
as presented here for the example of a mountain pass road, is compelling.
More discussions are required on the details of the implementation, however.
For example, there are several ways to determine the monetary cost of road
closure days. Probably the most adequate would be to determine the willing-
ness of potential users to pay. In our example we have worked with the re-
placement cost approach, which certainly gives other results. The replacement
cost approach has been easy to implement for our example but suffers from
the fact it is based on a linearisation of the full cost development of technical
measures. In our example, we also had to assume monetary values for saved
human lives or avoided injuries, as suggested by the Swiss PLANAT strategy
(www.planat.ch). As methods of integral risk management become more and
more widespread, broader discussion in society will lead to a broader basis
for these values. The same applies to physical modelling. When the need for
and the benefit of physical models become accepted in this field and more
and more work is done on physical modelling, their contribution to natural
hazard forecasting will increase.
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14 Prevention of Surprise

Zuzana Chladné', Elena Moltchanova?, and Michael Obersteiner?

Summary. Today there is common agreement that human actions are resulting in
increasingly large-scale — even global — risks. Yet there seems to be a universal in-
ability to stop these human, environmental and economic effects. In this chapter we
consider the management of surprise in the framework of a wide spectrum of hazard
levels. For instance, a reduction in greenhouse gases might reduce the probability
of extreme climate changes. We have developed a general model for controlling ex-
treme hazards. We first examine the dynamic behavior of a single global society and
derive various optimal response strategies to counter the hazard. However, in real
life such a global hazard management system does not exist due to a lack of interna-
tional cooperation among nation states. A gaming model is constructed to elaborate
the implications of hazard management when more nations are involved, and when
expectations about the hazard are imperfect. While the models involved in this
analysis are simple, the results from our numerical experiments are instructive and
yield interesting insights into the economics of various institutions governing the
interaction of societies and their capacity to mitigate risks. We discuss the outcome
of the models in terms of its bearing on modern politics as well as what it might
mean to the dangers that await us in the future.

14.1 Introduction

The large-scale disasters of the past few years — such as the recent hurricanes,
unusually extensive flooding, devastating bushfires, violent ice storms in many
parts of the world, as well as the emergence of previously unknown infectious
diseases — have brought home to governments the realization that something
new is happening to our global society. Such mega-risks have the potential
to inflict considerable damage on the vital systems and infrastructures upon
which our societies and economies depend, and create serious difficulties for
traditional risk management and risk-sharing actors, such as the insurance
industry. Preparing to deal effectively, in an anticipative and cooperative
manner, with the hugely complex threats of the twenty-first century is a major
challenge for decision makers in government and the private sector alike. In
today’s world, mankind is confronted with the following questions related to
the disaster management process:

1. How do we deal with the large uncertainties and knowledge gaps about
the hazards we are creating in a globalized world?
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2. What are the best and/or sufficiently robust response strategies to control
the hazards we create?

3. How can we design global institutions to implement these preventive mea-
sures?

However, we can only currently assess the hazard process imperfectly, and
even the evolutions of the basic drivers of global hazards can only be poorly
predicted. Today, we can observe three large-scale processes acting as drivers
of global risks and opportunities: (1) deep global integration of mainly eco-
nomic actor networks and intensification of interaction around the globe; (2)
a transformation in humanity’s relationship with its life-supporting systems
due to new technological capabilities, and (3) the ever-increasing number of
people occupying space and depleting resources due to increased consump-
tion. These processes can be regarded as an exceptional confluence of three
sets of powerful changes that give rise to self-reinforcing mechanisms of eco-
nomic growth and concomitantly increasing hazard levels. It is precisely the
reinforcing relationship of the basic drivers that are present during the An-
thropocene that alters the nature of the risks that we have historically ex-
perienced. Risks can no longer be regarded as exogenous to human actions;
on the contrary, the mega-risks of the twenty-first century are endogenously
“produced” by human action. The central focus of this paper is that most
of the systematic risks of the twenty-first century are new and socially pro-
duced. Yet, we may be unaware of some of these major hazards socially due
to knowledge gaps (ignorance), uncertainty or social discounting of these en-
dogenously produced risks. Discounting arises from the fact that humans do
not communicate with their environment per se, but with a self-created im-
age of that environment. This gives rise to imperfect assessments of risks and
insufficient individual responses to danger.

Navigating and managing under deep uncertainty is the principal chal-
lenge to global governance. Differences in the urgency to react to global haz-
ards as well as differences in the economic actions performed to lower risks
are the main drivers of many international negotiations such as those around
climate change. The question of whether to halt or delay measures to manage
global risks is related to uncertainty management. Uncertainty is, in many
cases, used to postpone actions. Thus, the biggest anxiety for conducting
government operations is anticipating future conditions as perfectly as pos-
sible and raising the awareness of major hazards. It seems remarkable how
infrequently the problem of managing under deep uncertainty is taken up
in daily political discourse. One reason might be that negotiators prefer cer-
tainty in the prediction of outcomes and flexibility in terms of choices of
outcomes. However, in the presence of continuous technological, social and
environmental change, uncertainty about the global mega-risks we create is
a defining feature of the “socially” absent character of most hazards. Our
lack of knowledge about future outcomes is not a failure of due diligence
on our part. Rather, it is an inherent outcome of the biophysical as well
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as social process of global change. Many worldwide exercises in foresight or
forecasting studies, quantitative integrated assessment studies and scenario
exercises either: (1) fail to acknowledge this inherent uncertainty, as the in-
dividual predictions are deterministic, or (2) are believed to be conducted to
explore the uncertainty bounds and therefore are perceived as being exercises
to reduce uncertainty. Investments in future studies seduce decision-makers
with an illusion of control and rationality which undercut the effectiveness
of hazard management under conditions of uncertain large-scale risks. Pre-
diction models are constructed around consistency with historical events and
fail to account for surprises that necessarily arise from systems that were per-
turbed in an unprecedented manner. For example, atmospheric greenhouse
gas concentrations have increased to unprecedented levels at an unprece-
dented speed. Both climatologists and decision makers would be astonished
to see the future actually unfold in the manner forecast by climate mod-
els. Thus, to support good decision-making, the issue is not one of being
able to predict the unpredictable. Rather, the fundamental question is that,
given that we cannot have reliable predictions of future outcomes, how can
we prevent excessive hazard levels today and in the future in a cost-effective
manner? A new decision-making framework is needed to address uncertain
endogenous risks.

One of the prevailing approaches to uncertainty is adaptive manage-
ment [7,8]. Adaptive management is based upon the premise that the man-
aged system is complex and inherently unpredictable. Adaptive management
accepts the uncertainty that exists in the real world rather than ignoring
it. Consequently adaptive management views management actions as exper-
iments rather than solutions. That is, they craft plans through processes
that are less deductive than inductive. Adaptive management is a structured
process that reduces the costs of management experiments while increasing
opportunities for social, technological and scientific learning. It is argued
that in the face of deep uncertainty, policymakers (and humanity in general)
should operate in just such an adaptive manner in order to benefit from the
learning process. The theory advocates postponing actions if, for example,
through technological advances, risk mitigation measures can be employed
more effectively in the future. It is argued that adaptive solutions are likely
to be robust across a wide range of alternative plausible outcomes. That is,
the tactic is often not so much to maximize behavior conditioned for a par-
ticular set of circumstances, but to select one among a set of “good enough”
actions that is most likely to remain good enough across a wide range of plau-
sible outcomes. However, in situations where decision makers are confronted
with mega-risks that result in unpredictable outcomes from perturbed com-
plex systems, adaptive management might turn out to be a losing strategy,
as learning is an endeavor that involves too much risk. In situations where
“you only die once”, a precautionary approach to risk is preferable. Thus, the
approach to risk management crucially depends on the hazard’s properties
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(incremental vs. abrupt, mega- vs. nano-scale, frequent vs. infrequent), our
knowledge about the risk, how efficiently we can mitigate the risk, and how
effectively the mitigation process is socially organized. In this chapter we will
investigate these factors systematically and in more detail with the help of
two related models.

The main point of this chapter is to elaborate on the framework conditions
societies establish to prevent surprise rather than concentrating on the more
technical and technological challenges of protective measures. In the following
sections we will first present a dynamic model of endogenous risk. The model
will help us to identify four strategy categories in a single global society
setting of perfect knowledge about the endogenous risk. Then, using a static
model we investigate the effects of different degrees of cooperation among
societies and imperfect knowledge on optimally managing the endogenous
risk. Finally, in the discussion we will put the two models in perspective and
derive policy conclusions for managing large-scale endogenous risks that we
face in the twenty-first century.

14.2 Dynamic Model

In order to examine the choice of the optimal decision strategy used under
the threat of a catastrophe, we introduce a modified discrete version of the
neoclassical macroeconomic model. Its key variation is not only due to the
presence of an Xevent, but arises mainly from the endogenous probability
that drives the event occurrence.

We consider an economy, which we call a society, solving a problem of op-
timal resource allocation. We assume that the initial value of the capital, Ky,
is known. At the beginning of each period i a social planner has to distribute
the current production Y; between consumption Cj, capital investment I;,
and mitigation investment M;:

Yi=Ci+ M; + I; . (14.1)

Naturally, the consumption, capital investment and mitigation investment
must not be negative.

The choice of these three decision variables determines a state variable —
the amount of capital in the next period, K;. In the case of no Xevent, its
value is only a sum of the capital from the previous period depreciated by the
rate § and the current capital investment. However, if catastrophe occurs in
the given period, the level of the capital is reduced due to the losses caused
by the event.

Consequently, at the end of the period, a new production Y;;; is gen-
erated. Its level is determined by the simplified Cobb-Douglas production
function with parameter v assuming the capital to be the only input fed to
the production process.
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More formally, the amount of capital and the production in period 7 can
be expressed as:

Ki=((1-90)K;-1+1)D;
Yiin =K .

Here D; represents the proportional degradation of wealth: if a catas-
trophic event occurs, its value will be 1 —d, where d is the size of the damage.
If no catastrophic event occurs, its value will be 1. In other words,

D 1 —d with probability p; ,
’ 1 with probability 1 — p; .
We assume that the initial probability of the Xevent pg is known. Future
evolution of the probability is endogenous, namely the probability of the
catastrophe decreases as the mitigation investment M; increases. Moreover,
we assume that the extent of this reduction depends on two further parame-
ters: ¢, w and on the previous probability state p;_;. The parameter ¢ — the
mitigation investment efficiency — determines the extent to which the miti-
gation investment influences the probability of the Xevent. The parameter w

expresses the natural deterioration induced by human activity.!
A social planner maximizes the expected utility over an infinite time hori-

zon:
max E < 3 ! uc ))
0 . i) |-
Ci,M; ; (]. + P)Z
In the above expression, p is the discount factor and F; is the conditional
expectation subject to time 7. For simplicity we employ a logarithmic utility:
U(Cl) =In CZ'.

The model that we have just proposed belongs to the category of dy-
namic programming problems. However, the endogenous probability makes
the problem more complex. In order to keep the computational complexity
at the lowest possible level, we focus on the three periods model only, instead
of dealing with an infinite horizon.

One of the traditional approaches for dealing with a multi-period problem
is to use Bellman’s optimality principle and to solve the model backwards.?
Basically, this means to first consider what the optimal solution for the last
period will be and then work backwards to determine which decision for the
initial period is optimal with respect to the coming periods.

! Here the function p;(M;,p; — 1) = 1+:M~pi_1’ where ¢ > 0, w > 1, has been
used. However, other functions may be considered; see Sect. 14.3 for example.

2 More about Bellman’s principle and the computational methods can be found
in [1].
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Following this recursive algorithm, we solve the proposed three periods
model in two steps. We start by analyzing the last period first and then move
back to the first period.

In our model, in order to find the solution for the last period we need to
solve the following subproblem:

1

max F; (U(Cg) + (14 )

Ca,M;

U(co)
subject to

K] =Cy+ My + I

Ky = ((1—8)K, + I,) Dy

Cs = f3(K2)

Cy>0, My>0, I>0.

The last equation is actually a terminal condition. Such a condition is neces-
sary if we deal with a finite horizon problem. Here we set f3(K3) = K. This
means that in the last period the whole production is consumed. As a result
we obtain the optimum values for Co and M5 as functions of K7 and p;.
Note that because of the boundary conditions, Ca(p1, K1) and Ms(p1, K1)
are piecewise functions,® which increases the computational complexity.

After finding the optimal solution for the second period we proceed with
the first period using the functions Cs(p1, K1) and My (p1, K1). In this way,
we obtain the optimal values for consumption C, the capital investment I;
and the mitigation investment M.

14.2.1 Possible Strategies

We focus on the optimal solution for the first period because the decision for
the second period can be biased by the presence of the terminal condition.

For any set of initial parameters, the optimal strategy belongs to one of
the following classes:

1. Tactical approach: Cy > 0, My > 0, I; > 0. As we have already mentioned
in the Introduction, there are basically two ways in which the society can
deal with catastrophic events:

— A social planner decides to invest in capital in order to increase pro-
duction in the future. Since the damage is proportional to the current
state of the capital, even if a catastrophic event occurs, the rest of
the wealth will still be higher than in the case of no current capital
investment.

— The social planner can decrease the risk of a loss by investing more
in the mitigation (preventing society from suffering by decreasing the
probability of the Xevent).

3 To be more precise, there are five different cases which have to be considered.
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Both ways apply within this approach.

2. Ignorance approach: C; > 0, My = 0, Iy > 0. A society ignores the
presence of a catastrophe entirely. One reason for such an optimal strategy
might be the relatively low mitigation efficiency in comparison with the
higher effect of the capital investment on the overall expected utility.

3. Panic behavior: C1 > 0, M; > 0, I; = 0. Such a behavior arises in the
situation when the catastrophic event occurrence is perceived as highly
probable — mainly because of the high chance of damage and the resulting
high decrease in the consumption level. On the other hand, this strategy
must be supported by the belief that there are enough resources and
facilities to significantly change this unfavorable situation. As a result,
the social planner decides to invest in mitigation at the expense of making
capital investment. However, it is unlikely that this decision will lead to
drastic decay in current consumption.

4. “Enjoy life” approach: Cy = K|, My = 0, I; = 0. A society recognizes
that it does not have enough resources or capabilities to influence the out-
come of its “game with Mother Nature”. Neither capital nor mitigation
investment (as described for the tactical approach) lead to a significant
improvement. Therefore, the social planner decides to surrender and to
“eat, drink and be merry” by spending all available resources today.

14.2.2 Numerical Results

If a doctor told you that there is a 10% probability of you catching flu, how
much would this information bother you? Would your reaction be different if
the doctor spoke of a heart attack instead? Would you change your lifestyle
immediately? How drastic would the change be? We can ask very similar
questions when discussing the field of catastrophic events.

Our main objective is to demonstrate how the anticipation of the catas-
trophic event influences the basic macroeconomic decisions. In this section
we will use several examples to illustrate how and in which direction such
anticipation drives the social planner’s optimal strategy choice.

Parameters

The numerical computation requires us to set up the initial values for Ky, po
and for the model parameters: p, 4, v, ¢, w and d. For the first three param-
eters (the discount, the depreciation and the production factor, respectively)
we employ the usual macroeconomic values.

Recall that our attention is focused on the endogenous probability of the
catastrophic event as a tool for managing the future. How effective the mitiga-
tion investment is depends on the assumed mitigation efficiency parameter ¢
of the society. Here we will consider three representative situations of very
high, high and low mitigation efficiency. Under very high efficiency the society
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has the ability to decrease the probability of the catastrophic event from the
initial level of say 50% to a subsequent level of 30% by investing only 10%
of its current capital into mitigation. Under high mitigation efficiency, we
mean the chance to decrease that probability to a level of 35% by the same
mitigation investment, and finally a low efficiency means that we describe
the assumption that the mitigation investment of 10% of the current capital
will reduce the discussed probability to the level of 45%.

The formulation of the model allows us to deal with a wider class of
catastrophic events; for example, we can consider discrepancies in the scale
of the damage caused by the catastrophe. For the damage size parameter d,
we use a similar categorization to that we used for the mitigation investment
efficiency: very high damage corresponds to capital losses of 90%, high damage
causes 50% losses, and low damage results in 10% of the capital being lost.

As the results show, one of the key determinants of the optimal strategy
is the initial probability value. Usually, we will demonstrate how the distinct
beliefs about the current probability state might lead to completely different
decisions for an entire spectrum of probability values.

The last factor, which we took into account as a controller for the optimal
strategy, is the initial capital value Ky. Mainly, we will deal with a society
that possesses either a high or a low initial capital level.

Structure of the Results

Figure 14.1 illustrates how an optimal strategy might change if different initial
probability values are employed. This particular example depicts a situation
where a society faces very high damage and its expected mitigation efficiency
is low. Two significant points can be observed in this figure: The first one

05
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(a) Mitigation Investment (b) Consumption

Fig. 14.1. Mitigation investment M differs according to different beliefs about the
initial catastrophic event probability (in this figure the initial capital level is “low”,
the damage size is “very high”, and the value of mitigation investment efficiency is
“IOW” )
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(for po close to 25%) corresponds to the shift from “ignorance” to “tactical”
behavior. The second one (near 50%) is induced by the switch from “tactical”
to “panic” behavior.

We can interpret this as follows. In the case of a low disaster probability,
the society ignores the option to mitigate despite the very high potential dam-
age. The low mitigation efficiency naturally enhances this decision. However,
if the initial probability increases, the perception of the potential large-scale
damage becomes stronger, which results in a “tactical” approach. That is,
the society’s mitigation investment becomes positive at the expense of cur-
rent consumption. The last part of the curves represents the response to the
situation where a society faces both of the negative effects mentioned: very
high damage together with high probability of a catastrophe. In this case
panic begins: mitigation investment achieves higher priority than capital in-
vestment. Moreover, the society is willing to cut the current consumption in
order to prevent a really apocalyptic situation.

Mitigation Investment Efficiency

Recall that a society is able to influence the probability of the catastrophic
event by investing in mitigation. How powerful this effect will be depends on
the assumed mitigation investment efficiency of the society. Figure 14.2 shows
how the optimal mitigation investment and consumption vary depending on
the society’s assumed ability to mitigate.

Not surprisingly, when the ability to influence the probability of the event
is small, the optimal strategy leads to “ignorance” behavior unless the oc-
currence of the catastrophe is almost certain. More interesting results can be

Po Po

(a) Mitigation Investment (b) Consumption

Fig. 14.2. Mitigation investment M; and consumption C; as a function of the
initial probability (in this figure the initial capital level is “high” and the damage
size is “high”). The curves differ in the value of the mitigation investment efficiency
used: the dotted line corresponds to a “very high” level, the dashed line stands for
a “high” level, and the solid line for a “low” level
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observed when comparing the curves to each other: if the initial probability
is small, an increase in the mitigation investment efficiency will result in an
increase of the actual mitigation investment M;. However, the situation is
somewhat different if the initial probability is high.

In order to explain this effect, it is necessary to consider the factors that
influence the expected utility. The expected utility can be increased either by
increasing current consumption or by lowering the probability of the catas-
trophic event. However, there is a trade-off between these two effects: the
probability can be decreased only at the expense of current consumption.
Then the problem of finding the optimal strategy is also about finding the
solution to this trade-off. For a very low probability, a society with a low
mitigation efficiency invests less in mitigation. This is probably because re-
ducing the probability is costlier for a society with low efficiency than for
a society with high efficiency. Thus, since the initial probability of the event
is small they do not want to decrease their consumption because of a rather
improbable event.

On the other hand, a society with high mitigation efficiency needs to
invest less in order to produce the same effect. If the initial probability is
high, the social planner may prefer certain consumption today to uncertain
future gains due to mitigation investment.

Scale of the Damage

In this section we discuss the effect of the scale of the damage on the choice
of the optimal strategy. More precisely, we would like to check whether the
proposed model confirms our intuition: the higher the potential scale of the
damage, the more we are willing to spend on prevention.

As Fig. 14.3 suggests, anxiety about a large catastrophic event almost
immediately leads to a positive mitigation investment, irrespective of the
probability of such an event. However, a social planner chooses the opposite
strategy when a society anticipates a catastrophe producing small-scale dam-
age. In this case a society ignores the possibility of mitigation even though
the event is almost certain: society does not worry about such small damage,
it prefers capital investment.

Surprise

The word surprise evokes in our minds the occurrence of an unexpected event
(usually positive). Since we have been mainly discussing catastrophic events,
a surprise in terms of our model is a negative notion and corresponds to the
set-up where the social planner’s beliefs about the probability of the event
are low, but the possible scale of the damage might be high or even very high.
From the viewpoint of the social planner, the occurrence of the catastrophe
in this case appears to be a negative surprise. At the same time, the impact
of the catastrophe is high, as the scale of the damage is high.
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(a) Mitigation Investment (b) Consumption

Fig. 14.3. Mitigation investment M; and consumption C; as a function of the
initial probability (in this figure the initial capital level is “high” and the mitigation
investment efficiency is “low”). The curves differ in the scale of the damage: the
solid line corresponds to very high damage, the dashed line stands for high damage,
and finally the dotted line for low damage

The social planner must be aware of this (improbable) possibility (as far as
her assumptions about damage size of a catastrophe probability are correct)
and take it into account. Therefore, what is the optimal investment strategy
for such a situation?

0.10
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|

my
~

0.00
1

Fig. 14.4. Optimal strategies for an “unexpected” event. The solid line describes
a society with higher initial capital, the dashed line is a society with a low level of
initial capital (in this figure the initial probability is set at 20%, damage is “very
high”)
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A major factor that influences the decision making in this case is the mit-
igation investment efficiency. This parameter describes how each additional
unit of mitigation investment shifts the event probability. Figure 14.4 shows
the impact of it on two societies that have different respective initial capitals.

14.2.3 Conclusions

Based on the above analysis we can claim that the following statements are
true:

— No society invests in mitigation unless its perception of the probability of
a catastrophic event is high; in other words either the damage size or the
belief that the probability of a catastrophe (or both) are high.

— Even when there is evidence of high event probability or the potential for
large-scale damage, some kinds of societies do not invest in mitigation at
all. They either do not have enough resources or they are sceptical of their
ability to improve the current situation by mitigation investment (their
mitigation investment efficiency is small).

— In the case of a low probability event, the higher the mitigation investment
efficiency, the smaller the probability of catastrophe needs to be in order to
begin investing in mitigation. Societies with lower mitigation investment
efficiencies are only willing to spend money on mitigation if they are
almost certain that a catastrophe is going to happen.

— The optimal strategy for an event with large-scale damage and high event
probability is “panic”. On the other hand, the combination of small-scale
damage and low event probability leads to the “ignorance” approach.
However, the optimal strategy in mixed cases — large-scale damage and
low event probability or small-scale damage and high event probability is
not so straightforward. The capital available and the ability to mitigate
are the main factors that determine the optimal strategy in this case.

14.3 Static Model

So far we have concentrated on the one-society world. However, in reality our
world consists of many players, all of which differ widely culturally, scientif-
ically and politically. Since a safe balanced environment is a common good,
various externalities may arise. We now take a look at some situations which
result from both cooperation and independent decision-making in order to
better understand intersocietal interactions.

In order to examine both the behavior of societies in a simple game sit-
uation and the role of erroneous expectations we will now consider a more
simplistic one-period model. Although this model is somewhat different from
the dynamic model presented earlier, it possesses the same qualities and can
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legitimately replace the above model in a nondynamic setting. The main rea-
son for this dual approach lies in the technical difficulties of dealing with the
dynamic model.

14.3.1 Set-Up

Consider a one-period setting where society possesses capital K and may in-
vest M in mitigation if it decides to do so. Also suppose that the catastrophic
event of size d happens with probability p(M). The expected utility function
may then be written as:

UM) = EUM) =p(M)In((K = M)(1 = d)) + (1 = p(M)) In(K — M)
=In(K — M) +p(M)In(1 —d) .

Obviously the two-periods dynamic model may be transformed into this
one by setting 6 =1, C; =0, y=1,and p=1.

The probability of event p(M) may depend on the mitigation invest-
ment M in various ways. The main property of such a dependence func-
tion, however, should be monotonicity: the higher investment should lead to
a lower probability of disaster. A wide family of suitable functions can be
described by two parameters: the null mitigation probability po and the mait-
1gation efficiency. The latter we will often describe by referring to the 10%
mitigation probability p.19, which is the probability of event when 10% of the
capital K is invested in mitigation.

An example of the model’s internal workings is shown in Fig. 14.5. The
four cases displayed correspond to comparatively high and low initial proba-
bilities of an Xevent and to comparatively high and low mitigation efficien-
cies. One important thing to notice is that, for low levels of potential damage,
the optimal mitigation investment is 0. In fact, for each combination of pa-
rameters defining the probability function, a potential damage level exists
at which non-zero investment becomes optimal (see Fig. 14.6). The higher
the null-mitigation probability and the lower the efficiency of mitigation, the
higher the potential damage needs to be to force a social planner to invest in
mitigation.

14.3.2 Two Societies Game

By definition, the Nash equilibrium in a two-player game is a pair of strate-
gies, each of which is a best response to the other. We may thus consider it to
be a natural result of a non-cooperative game. The Pareto optimum is an al-
location where one player cannot be made better off without hurting another
player [3]. In general, Nash equilibria and Pareto optima do not necessarily
coincide.

In the world of two societies, both players influence the common probabil-
ity of disaster through their own mitigation investment. The relative influence
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Fig. 14.5. Optimal mitigation investment (a) and the corresponding expected
utility (b) and the post-mitigation probability (c) as a function of potential damage
for po = .25 and p.10 = .10 (black solid curve), po = .25 and p.10 = .20 (black dotted
curve), po = .10 and p.1o = .04 (gray solid curve), and po = .10 and p.10 = .08
(gray dotted curve)

each society will have on the environment depends not only on the relative
size of this investment but also on the relative effectiveness of the mitigation
of each society.

It should be noted that in this section we use upper indices to distinguish
between societies because we used lower indices in the previous section to
distinguish between time periods.

We assume that the mitigation probability depends upon mitigation in-
vestment through a logistic function:*

logit(p(MM, MP))) = logit(po) + AP MDY + g2 pr2) |

where () and 8 are the mitigation efficiency parameters for societies 1
and 2, respectively. Note that for negative 5! and 32, the above function

* logit(z) = In(, ).

1-x
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Fig. 14.6. Minimum vulnerability required to prompt non-zero mitigation invest-

ment

is a monotonously increasing function of both M and M®. The Nash
equilibrium solution will then require:

ou™ ou?
M =0 and AM® =0

= AW (1 —dM) (K(l) _ MJ(VI)) =A@ (1 - d?) (K(2) _ MJ(VQ)) (14.2)

in the case of a positive optimal mitigation investment for both societies.
Similarly, the Pareto optimum solution will require:

ou™ ou?
oM o T
ou™ ouU?

oM@ T on@ =

= 3 (Ku) _ M<1>) e <K<2> _ Mz(f)) (14.3)

in the case of a positive optimal mitigation investment for both societies.

It should be noted that unlike the case of the Nash equilibrium, the rel-
ative distribution of mitigation investment between the two societies under
Pareto optimality does not depend on the difference in the potential damage
levels. We will return to this peculiarity later.



310 Z. Chladna, E. Moltchanova, M. Obersteiner

We will now examine a special case of two identical societies and then
take a look at the effect that discrepancies in material wealth (K), poten-
tial damage level (d) and mitigation efficiency (3) have on the comparative
mitigation investments of the two societies.

Two Identical Societies

The Pareto optimal and the Nash equilibrium mitigation contributions of the
two identical societies should clearly be identical as well. In this particular
model setting, the Nash equilibrium mitigation investment never exceeds the
Pareto optimal mitigation investment. As a result the post-mitigation proba-
bility at the Nash equilibrium is lower than that at the Pareto optimum. Thus,
in the case where the Pareto optimum mitigation investment is non-zero, the
failure to cooperate not only results in decreased economic prosperity of both
societies, but it also hurts the environment. It may therefore be interpreted
as a strong case for cooperation.

However, societies in the real world are often far from equal. Wide differ-
ences in wealth, vulnerability and scientific facilities exist. Although it would
be impossible to investigate the whole spectrum of possibilities on these pages,
we will now take a look at some special cases.

Wealth Discrepancy

If the only difference between the two societies lies in material wealth (K (1) #
K@), both equations (14.2) and (14.3) become:

MO = @ 4 (K(l) _ K(Q)) ,

in the case of positive optimal mitigation investment for both societies. In
general, therefore, a richer country should invest at least as much as a poorer
one under both the Nash equilibrium and the Pareto optimum conditions.

Mitigation Efficiency Discrepancy

If the two societies differ only in their mitigation efficiency (31" # 3()), then
equations (14.2) and (14.3) become:

o1
B
in the case of positive optimal mitigation investment for both societies. There-
fore, a country more efficient at mitigation will invest more under both the
Nash equilibrium and the Pareto optimum conditions.

MO = M@
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Discrepancy in the Scale of Potential Damage

Different scales of potential damage lead to a more interesting case than the
previous two, since (other things being equal) under the Paretooptimum

M}g) _ MI(D2) ’
whereas under the Nash equilibrium

K-M{ In(1-d®)

K-M@  In(l-db)

in the case of positive optimal mitigation investment for both societies. There-
fore, a society that is potentially more vulnerable will invest more than the
more robust society under the Nash equilibrium, but the two societies should
invest equally under the Pareto optimum. In some cases this leads to indi-
vidual societies being better off in the absence of cooperation. An example is
shown in Fig. 14.7.

Here we examine two societies; the only difference between them lies in
their vulnerability to an abrupt event, di = 50% versus dy = 80%. Fig-
ure 14.3.2 displays the total expected utility function for different levels of
investment, while Figs. 14.3.2 and 14.3.2 display cross-sectional profiles of
this function for each society while the counterpart invests Nash or Pareto
optimally. One can see that, although both societies invest equally under
Pareto optimality, under the Nash equilibrium the more robust society does
not invest at alll Numbers for this numerical example are presented in Ta-
ble 14.1. Thus, although enforced cooperation would be more beneficial for
the environment and for the world as a whole, it might not be the best choice
for the individuals. Therefore, some redistribution of the benefits might be
in order. A discussion of the nature and complexity of such a redistribution
is unfortunately beyond the scope of this text.

Table 14.1. An example of the conflicts of interest seen with cooperation
Nash MY uN Pareto MF Uf

1=1 0.0000 —0.0488 1=1 0.0886 —0.1245
1=2 0.1350 —0.2592 1=2 0.0886 —0.1659
Both 0.1350 —0.3080 Both  0.1772 —0.2904

14.3.3 Erroneous Expectations

So far in our narrative we have implicitly assumed that the values of the
parameters are known perfectly. Although this is reasonable with regard to
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Fig. 14.7. An example of individual societies being better off without cooperation.
The first graph (a) shows the utility surface (K = 1, po = 0.25, p.1op = 0.1) for
various combinations of mitigation investments. The dotted segments intersect at
the Pareto optimum, the black triangle marks the Nash equilibrium. The curves
on the other two graphs show the profiles of the utility function when the other
society invests its Nash optimal (dotted) or Pareto optimal (solid) amount for the
(b) vulnerable and (c) robust society

capital, it is hardly true when we turn to our knowledge of the environment.
We do not really know how likely an abrupt climate event is, nor can we be
sure about the effectiveness of our mitigation measures. Also, if something
should happen, our estimates of the ensuing damage are very unlikely to turn
out to be accurate. Does this mean that the previous discussion, dealing with
an improbably omniscient social planner, has been completely in vain, or can
we learn some useful lessons despite our imperfect knowledge? In this section
we will once again return to a single society and take a look at the world of
erroneous expectations.

First, it can be shown that a higher level of potential damage results in
higher optimal investment. Therefore, higher expectations of potential dam-
age — “a reverent fear of nature” — will lead to over-investment, which will in
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turn result in suboptimal utility. But the resulting post-mitigation probabil-
ity of an abrupt climate event will be lower than the optimal post-mitigation
probability. Underestimation of the danger, on the other hand, will naturally
also lead to suboptimal utility, but will result in a higher than optimal post-
mitigation probability of surprise, bringing the unknown disaster ever closer.
It therefore seems prudent to err on the side of caution in this respect.

This case is not as clear-cut with respect to the initial probability of an
Xevent and the mitigation efficiency. In general, the higher the initial proba-
bility, the higher the mitigation investment will be, but if such a probability
is too high (over 80% in our model), society will prefer to invest less, per-
haps hoarding the resources necessary for survival in the face of imminent
disaster (see Sect. 14.3.3). The effect of erroneous expectations thus depends
upon the actual state of the world and on the magnitude of our error. As
mentioned at the outset, the models serve only to illustrate some aspects of
abrupt climate phenomena and the values of the parameters should not be
interpreted literally. However, it is probably safe to think that our world is
not that close to destruction and, again, it is better to err on the cautious
side.

0.20
L

0.0
L

-0.25

-0.35

(a) (b)

Fig. 14.8. Effect of erroneous expectations on the optimal investment in cases of (a)
low and (b) high null-mitigation probabilities. In the first case, the exaggeration of
risk is good for the environment, while in the second it is bad for both the economic
welfare of the society and the environment

The influence of erroneous expectations regarding the mitigation effect is
uncertain, as it depends on the confluence of other factors, such as the null-
mitigation probability and the potential level of damage. Therefore, perhaps,
theoretical research into this aspect would be most beneficial.

So far, the analysis of erroneous expectations has resulted in some general
rules. It would certainly be beneficial to conduct research into the actual state
of the world, in order to improve our understanding of the parameter values
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for d, pg and 3. However, as has been demonstrated, it would be better to
be cautious: to overestimate the danger and the potential damage and, at
the same time, attempt to make the effect of current mitigation measures on
nature clearer.

14.4 Discussion

Due to the lack of functioning global institutions controlling global risks, the
pace of disaster development is currently undermining social systems (mar-
kets) and the safety nets of many countries, and is reducing their capacity to
provide basic services for their people. It is paramount for the global com-
munity to prevent and manage catastrophic losses of human lives, livelihoods
and natural and economic assets. The global common public good — resulting
in a “less risky world” — is yet to be produced by a multitude of internation-
ally coordinated actions. In this chapter we focused on societial performance
and strategies in managing hazards, mainly focusing on the framework of con-
ditions they establish to shape interactions among various decision-makers,
rather than focusing on the specific prevention measures per se (see [4]). Col-
lective efforts to shelter, protect and safely nourish the group have formed the
backbone of human evolution from prehistoric times to modern civilization.
Today, in a world of global integration, we are in the unique position of facing
mega-risks that are global in nature (the climate change problem, the ozone
hole, AIDS); the group has become the global community. However, nation
states find it increasingly difficult to contribute to the public good due to
political, cultural and scientific differences. Moreover, each nation state faces
the temptation to take advantage of the public good without contributing to
it: a phenomenon commonly referred to as the “Tragedies of the Commons”,
the ““Prisoners Dilemma” or the “moral hazard problem”. The nation states
have differing strategic judgments, differing assessments of risk and different
opinions about the best way to address risk, as well as different methods
of calculating interest, all of which lead to these social dilemmas. From our
modeling efforts, we can predict that in the Kantian Pareto world, global
welfare will increase, income disparities between countries will be minimized,
and the resulting risk level will be low. If a Kantian global institution cannot
be built and we continue to live in a non-cooperative and competitive Hobbe-
sian Nash world, prevention of detrimental surprises is less plausible and the
implementation of a risk management system that guarantees resilience is
jeopardized. Furthermore, in the case of impaired resilience of the underly-
ing system (when mitigation investment becomes ineffective once a threshold
is exceeded) we might run into the danger of incurring irreversible damage.
Thus, the challenge ahead for the global community is to build international
institutions that have enough authority to enforce cooperative “Pareto So-
lutions” internationally. SARS, cybercrime and climate change are examples
of issues that are too big for governments to handle by themselves [2].



14 Prevention of Surprise 315

Although we cannot offer solutions to bridging political and cultural gaps
in global unity, we are able to take a closer look at the science behind dealing
with Xevents and the “free rider problem”.

Currently, there is little theoretical scientific work supporting the avoid-
ance process of the social dilemma of free riding under endogenous mega-
risks. We believe that the one major reason for this lack of theory is the
difficulties involved with formally describing and solving the processes used
to manage global mega-risks, even in highly stylized models. In this chapter
we have made an attempt to work towards a better understanding of the
key hurdles of such a process. The dynamic model allowed us to investigate
investment strategies for mitigation of an endogenous risk using a dynamic
formulation. Given optimality conditions, the resulting strategies range from
panic behavior to ignorance of risks, depending on the initial conditions and
the parametrization of the model. In the static model, we focused on coop-
erative behavior in the case of exogenous risk. The role of erroneous beliefs
was also investigated.

We started our analysis with the global one-society world, possessing per-
fect information on the state of nature and the possible results of its own
actions driving risk exposure. The probability of Xevents was assumed to be
endogenous: to depend on the effort that society was willing to make (the mit-
igation investment). We then identified four different strategies that might be
chosen, subject to the initial state of the world: (1) tactical approach, where
the society still invests into both capital and mitigation, (2) ignorance ap-
proach, where the society invests in capital only, preferring not to deal with
the threat of insignificant disaster, (3) panic behavior, where there is no cap-
ital investment and all resources are directed towards mitigation, and finally
(4) the “eat, drink, and be merry” philosophy, where nothing is invested and
everything is consumed in the last pre-apocalyptic grand party.

We then moved on to the interplay between two differing societies. We
showed that, although cooperation would in principle be beneficial both eco-
nomically and environmentally, the individual rational actors will have no in-
centive to invest or will jointly invest too little in risk mitigation measures. It
is usually the more vulnerable society that is inclined to cooperate. However,
in today’s world, people from developing countries are particularly vulnera-
ble to increasing global hazard levels as they lack insurance schemes and are
usually poorly equipped to respond to large-scale catastrophes after the fact.
These vulnerable countries, which would benefit most from cooperation to
reduce hazard levels, lack the power to bring about a “Pareto solution”. The
challenge for long-term international cooperation is to establish “individual”
responsibility for actions that increase global hazards (such as emission of
greenhouse gases). Actions like the introduction of an international tort law
on major global risks might turn out to be effective solutions in preventing
surprise [5].
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A major reason for the failure to cooperate is the fact that there is dis-
agreement about the state of the world with respect to risk exposure. The
adverse effects of increasing risk exposure are a matter of prognostication
“Doomsday scenarios”, such as global epidemics or a collapse of the Gulf
Stream, and remain only hypotheses based on scientific projection. Inas-
much as they are triggered by unprecedented growth of population, natu-
ral resource exploitation and perturbation, and concentration of assets due
to economic integration, contemporary natural disasters are different from
any that have preceded them. Therefore, at the beginning of this chapter we
turned to the notion of imaginable surprise [6], a situation in which per-
ceived reality departs qualitatively from expectations. We therefore turned
our attention to a world where natural catastrophes or Xevents are expected,
but their probability or the extent of the potential damage is unknown. We
have further assumed that the probability of such an event is endogenous
and monotonously dependent on the mitigation investment, but that the po-
tential damage is fixed. We have thus concentrated exclusively on mitigation
without considering adaptation or vulnerability management. It would be of
interest to consider a model augmented with a potential damage term. In this
way the community would have to make a choice between investing towards
global mitigation and/or local adaptation.

In the face of imaginable surprise, two options are appropriate: (1) reduc-
tion of the uncertainty, which is usually referred to as learning through data
collection and research, and (2) management or integration of uncertainty
directly into the decision-making or policy-making process [6]. Our analysis
of the role of erroneous expectations has shown that while the uncertainty re-
garding the extent of potential damage can safely be integrated into decision
making, the probability function of the event (the pre-mitigation probability
and the mitigation effectiveness) needs to be investigated so that reason-
ably precise estimates can be arrived at. This creates a third possible avenue
of investment, which we have tentatively coined R&D investment. Together
with mitigation and adaptation, they constitute three possible objects of in-
vestment, each of which can be modeled endogenously. Such modeling is one
of the goals of further investigation. A second direction is the extension of
the current model to a multi-period, multi-societal framework. Among other
things, this would allow investigation of the free-riding and redistribution
mechanisms in more detail and to glance behind the potential political scene.

We believe that information management and knowledge building are
necessary preconditions for implementation of the framework conditions,
which allow countries to act jointly and effectively to manage the risks
mankind faces in the twenty-first century. Disaster schemes still treat people
as “clients” in disaster processes, where science and technology do things to
them and for them rather than together with them [9]. In a world where cen-
tralized modes of risk management lose effectiveness, we also see tendencies
towards increased cross-sectional complexity, increased effective participation
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by people, broadening liability on international scales and a move towards
a “claim culture”. In such a world, timely provision of information and ap-
plication of knowledge to reduce exposure are paramount to establish de-
mocratization of the risk management process and to establish liability to
endogenous catastrophic risks in order to guarantee intergenerational fair-
ness. In this way, with the support of the scientific community, mankind
could overcome the institutional obstacles to achieving an effective transition
from nationally driven Pareto solutions to international strategies that are
based on responsibility and liability.
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15 Disasters as Extreme Events
and the Importance of Network Interactions
for Disaster Response Management

Dirk Helbing, Hendrik Ammoser and Christian Kiihnert

Summary. We discuss why disasters occur more frequently and are more serious
than expected according to a normal distribution. Moreover, we investigate the
interaction networks responsible for the cascade-like spreading of disasters. Such
causality networks allow one to estimate the development of disasters with time, to
give hints about when to take certain actions, to assess the suitability of alternative
measures of emergency management, and to anticipate their side effects. Finally, we
identify other fields where network theory could help to improve disaster response
management.

15.1 Disasters as Extreme Events

Natural and man-made systems are usually robust to normal perturbations.
They are constructed to handle them with variations of several standard
deviations. However, preparation for Xevents is costly and often imcompat-
ible with the requirements of everyday use. Therefore, it is often neglected.
Moreover, Xevents [1,2] often do not obey common statistical distributions.
Their distribution is instead characterized by “fat tails” [1-3], which implies
a much higher frequency of occurrence than expected according to a normal
distribution. These fat tails often follow a power law, which is characteristic of
systems that reach a critical point and suffer from avalanche or cascade effects
of a potentially arbitrary size. In some cases, it is even impossible to make
statements about the mean value or the standard deviation of such events,
as power-law distributions are not always normalizable. Typical examples of
systems that exhibit power laws are

— avalanches of sand, debris or snow [4, 5]

— earthquakes (see the Gutenberg-Richter law)
— crashes and bubbles at stock markets

— bankruptcies in banking networks

— disaster scenarios [6]

The detailed impact of rare events on a system is often unknown. Pos-
sible scenarios can, however, be anticipated using models that describe the
interactions between different parts (“sectors”) of the system. These interac-
tions are mostly nonlinear and characterized by feedbacks. As a consequence,
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Table 15.1. The 10 worst catastrophes in terms of victims between 1970 and
2003 [8]

No.  Victims Date (start) Event

1 300,000 11/14/1970 Storm and flood catastrophe, Bangladesh

2 250,000 7/28/1976 Earthquake in Tangshan, China (8.2 on the
Richter scale)

3 >220,000 12/26/2004 Tsunami in the South Asian Sea

4 138,000 4/29/1991 Tropical cyclone Gorky, Bangladesh

6 60,000 5/31/1970 Earthquake in Peru (7.7 on the Richter scale)

7 50,000 6/21/1990 Earthquake in Gilan, Iran

8 41,000 12/26/2003 Earthquake in Bam, Iran (6.5 on the
Richter scale)

9 25,000 9/16/1978 Earthquake in Tabas, Iran (7.7 on the
Richter scale)

10 25,000 12/7/1988 Earthquake in Armenia, former USSR

small changes in the system state can have large effects when a certain critical
threshold is exceeded. Such effects can be described by methods from systems
theory and system dynamics, catastrophe theory [7], the theory of nonequi-
librium phase transitions, nonlinear dynamics and the theory of complex,
self-organizing systems. Insights from chaos theory and percolation theory
are relevant as well. The same applies to the theory of networks.

Despite many reports on disasters [9,10], a scientific investigation of their
general features and ways to fight them is still needed. Each year, about
250 million people are affected by natural disasters worldwide. Three billion

Table 15.2. The 10 greatest insurance losses due to disasters between 1970 and
2003 in millions of US dollars [8]

No.  Loss Victims Date (start) Event

1 21,062 3,025  9/11/2001 Terrorist attack on WTC,
Pentagon ..., USA

220,900 43 8/23/1992 Hurricane Andrew, USA & Bahamas
3 17,312 60 1/17/1994 Northridge earthquake, USA
4 7,598 51  9/27/1991 Typhoon Mireille, Japan
5 6,441 95  1/25/1990 Winterstorm Daria, France & UK et al.
6 6,382 110 12/25/1999 Winterstorm Lothar over Western Europe
7 6,203 71 9/15/1989 Hurricane Hugo, Puerto Rico & USA et al.
8 4,839 22 10/15/1987 Storm/floods in W. Europe, France,
UK et al.
9 4476 64  2/25/1990 Winterstorm Vivian, Western/Central
Europe

10 4,445 26 9/22/1999 Typhoon Bart hits south of Japan
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people live in endangered areas. The economic impact, and also the number
and size of disasters seem to grow, potentially because of overpopulation and
global warming due to CO2 emissions and the greenhouse effect. In 2003,
disasters took 60,000 victims and caused a damage worth 70 billion US dollars
(see Table 15.1), while insurance schemes paid out 18.5 billion US dollars.
Today, a single disaster can easily cost billions (see Table 15.2). For example,
the losses due to the floods in Europe in August 2002 amounted to 21 billion
Euros, the blackout in Northern America in 2003 to 6.7 billion US dollars,
and the SARS outbreak in 2003/2004 to about 60 billion US dollars in China
alone, not to mention the problems caused in Canada and other countries.

15.2 Examples of Causality Chains and Cascade Effects

The spreading of natural and man-made disasters can often be described
by interconnected causality chains — a network reflecting how one factor or
sector of a system affects others. In the following, we will give examples
illustrating some of the complications that originate during disasters. For an
event localized in time and space, it is often these cascade-like chain reactions
that cause large-scale disasters that affect the whole system (in real terms,
people in remote places around the world).

The tendency towards globalization of economic and other systems is
likely to increase the frequency of large-scale disasters, as it reduces the di-
versity required to stop certain chain reactions and to adapt to changing
economic and environmental conditions. Another danger is the ever-growing
population and the trend to push social, economic, technological, and biolog-
ical systems to their limits [11-14].

15.2.1 Earthquakes

Earthquakes (see Fig. 15.1) are caused by the relative movements of tectonic
plates and continents. This builds up strain, which is reduced in sudden
avalanche-like slides, giving rise to earthquakes. An earthquake can liber-
ate energy equivalent to many atomic bombs. This causes strong vibrations,
which are often enhanced by resonance effects. These vibrations can damage
or destroy housing and facilities. Oscillating high-rise buildings can even dam-
age each other, which may produce a domino effect. As a result of the tectonic
activity, (infra)structures like bridges, tunnels, and streets are destroyed over
wide areas. The same applies to electrical facilities, gas and water pipelines
and the sewage disposal network, which causes serious supply and hygiene
problems.

Some big earthquakes include those of San Francisco (1906), Guatemala
City (1976), Mexico City (1985), and Bam (in Iran; 2003). An earthquake
in Georgia (1991) caused a landslide that buried 85% of a village. Another
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earthquake in Southern Asia (2004) caused a tsunami with waves many me-
ters high, which moved at a speed of 700-800 km/h and destroyed dozens
of villages and hotels along the coastlines of India, Indonesia, Vietnam, Sri
Lanka, The Maldives, Sumatra, Thailand, and even Africa. It killed more
than 220,000 people and made approximately five million people hungry and
homeless.

We will illustrate the earthquake-related problems in more detail using
the disaster in Kobe (Japan, 1995). Kobe is not located in an area of major
earthquake activity. Therefore, the earthquake came as a surprise, and so no
particular preparation had been made for earthquakes. It took 1218 hours
for the official authorities to admit that they required international help to
cope with the disaster.

About 6,400 people were killed, but initially, the official numbers were
around 30. Nobody was able to make decisions. For example, Great Britain
offered dog tracking units, but the legal regulations required one week of
quarantine. Since nobody knew how to handle this problem, nobody dared to
take respounsibility. Interestingly, the Japan mafia (the “Yakuza”) was better
organized and it helped to distribute food and provisions, possibly in order
to obtain more influence and to improve its reputation.

Massive destruction was inflicted upon the town and the highways, prob-
ably because Kobe was not constructed to withstand earthquakes. However,
worse still were the hundreds of fires that broke out, which were caused by
broken gas pipes in wooden houses between the skyscrapers. Widespread
chaos was caused by the fact that the firefighters could not reach the fires
because the street infrastructure was shattered and many water pipes were
severed. Another problem came from the power supply lines hanging over
the remaining streets, which seriously obstructed traffic, transport routes
and supplies.

Thousands of people were made homeless, and people panicked during the
aftershocks, which had the potential to cause damaged infrastructures and
buildings to fall down.

Fires triggered by earthquakes can last for several days and can destroy
the trading centers of a town, as in the San Francisco earthquake. There, the
fires could only be stopped by evacuating and destroying a large number of
villas in residential areas to produce a firebreak.

15.2.2 Power Blackouts

In recent years, electrical power outages (“blackouts”) have affected larger
and larger areas. This is because of

— the growing and highly fluctuating demands for power (due to, for exam-
ple, an increased number of air conditioners),

— the increasing size and complexity of electrical power networks (often with
power being exchanged across countries),
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— the deregulation of the electricity market, which encourages profits with
minimum investment

The largest blackout probably occurred in 2003 in north-eastern areas of
North America (USA and Canada), which were followed by other major
blackouts in Great Britain and Northern Italy in the same year.

The blackout in the USA and Canada left 50 million people without elec-
tricity for up to 48 hours. The sudden breakdown of one power station caused
a cascade of shutdowns at other power stations in order to avoid overloading.
The blackout affected the water supply as the water pumps stopped function-
ing so the water pressure dropped and contamination became more likely. The
advice given, to boil water before use, was difficult to follow without electric-
ity. Moreover, traffic systems stopped working, so thousands of people were
imprisoned in elevators and subway trains, and many airports were closed.
Traffic lights switched off, causing widespread traffic chaos. Petrol stations
could not pump fuel due to the lack of electricity for their pumps. Although
radio and TV stations did broadcast, most radios ran off mains power. The
mobile phone network broke down due to overload. Only conventional tele-
phones and laptops with internet connections remained functional so long as
their batteries and accumulators had power. For this reason, the ability to in-
form the public about the situation was extremely limited. As gas pumps did
not function, there was an explosion at one of the oil refineries, which meant
that the population nearby had to be evacuated. Moreover, the use of candles
caused several fires, which were hard to fight because the traffic chaos on the
streets slowed down firefighter response. The blackout also had several long-
term effects, among them reducing economic growth and delaying elections.

15.2.3 Hurricanes, Snowstorms, and Floods

(Thunder-)Storms are the most frequent cause of disasters, particularly in
tropical areas. Hailstorms may produce hailstones of up to 1 kg in weight,
as seen in Rostov (Soviet Union, 1923). However, much smaller hailstones
than this can still injure people, damage cars and structures, trees, fields and
plantations, which can, in turn, cause serious crop shortfalls and famines.

It is common to distinguish different kind of storms due to their geographic
appearance or their meteorological character, such as hurricanes, tornados,
cyclones, typhoons, monsoon rains, and others. In extreme cases, they have
killed 300,000 people (Haiphong, Vietnam, 1881) and made 25 million people
homeless (monsoon rains in Bangladesh, 1988).

Fifty million people may be forced to prepare for an evacuation when
a full-scale hurricane is in sight. Panic-buying (hoarding) in advance of a fore-
casted storm is typical. The destruction caused by storms often interrupts
air, train, and vehicle traffic due to high wind velocities and obstacles lying
on streets and tracks. Strong rainfall may even make the operation of un-
derground traffic impossible. Schools and many public activities are closed
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down. Broken electricity lines cause power blackouts. For example, during
Hurricane Isabel, two million homes were without electricity.

Storms (see Fig. 15.2) often occur together with strong rainfall. This can
cause serious floods, erosion, or landslides [4, 5], which can themselves be
disastrous. Moreover, broken trees are often the source of insect plagues (bark
beetle). During blizzards and snow storms, 60 cm of snow can easily fall per
day.

This can stop public life, even in big cities such as Manhattan (1947) or
Boston (1978), where 100,000 people were forced out of their homes. More-
over, the supply of coal to power stations, steel production and so on can be
seriously endangered and a vast number of animals may die.

The floods in Central Europe in August 2002 [15] originated from extreme
rainfall (up to 300 liters per square meter) and caused more than six billion
Euro’s worth of damage in Saxony (Germany) alone. Small streams had to
cope with 100 times more water than usual, and flotsam reduced their flow
capacity. As a consequence, rivers left their artificial river beds and flooded
15% of the Saxonian metropolis, including the center of Dresden and its
disaster control center. Moreover, most hospitals had to be evacuated just
when they were urgently needed. Tens of thousands of people also had to
be evacuated, but the population often resisted official commands because it
was afraid of plunder. This often necessitated expensive evacuations of single
individuals by helicopters later on.

Evacuation, supply, and disaster response management was very difficult,
as tunnels were full of water, many bridges were lost, and most of the re-
maining bridges could not be used for safety reasons. Electrical power supply
was down in most areas of Dresden, for several weeks even in the center. The
same applied to most telephones and faxes. The mobile phone network was
overloaded and broke down as well. In some cases, information could only be
communicated by messengers. Moreover, the ability to warn the population
was seriously restricted, because church bells and sirens were not available or
they required power.

All train connections to and from Dresden were interrupted for many
months, with a single exception. Seven hundred kilometers of train tracks,
400 km of railroad embarkment, and 100 bridges were damaged or destroyed.
Moreover, many electronic railway control centers stopped working. Water
supply was a problem in some areas, as some waterworks supplying drinking
water were flooded. Some clarification plants were flooded as well, which may
have caused diseases. Additional health problems originated from the many
drowned animals and the thousands of tons of mud and waste that the flood
left behind. This caused one of the worst mosquito/insect plagues for decades.

The floods also endangered some of the most valuable cultural assets of
Germany, affected radio and TV program, and damaged newspaper archives.
Catastrophe tourism obstructed the recovery activities, as they generally ob-
structed many areas of disaster response management. However, it wasn’t just
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public infrastructure and facilities that were endangered. Thousands of cel-
lars were flooded, but in many cases the water could not be removed /pumped
out. Most buildings would not have resisted the high groundwater level.

The rumor of a broken dam almost caused panic in the city center of
Dresden. Dams have broken several times in the past, for example in Fréjus
(France, 1959), in Johnstown (USA, 1889), or along the Mississippi (USA,
1927). Fortunately, the rumor turned out to be false, otherwise tens of thou-
sands people could have died in Saxony’s metropole. However, let us finally
mention that landslides can cause floods as well, as in the case of Vajont
(Ttaly, 1963) [16].

15.2.4 Terrorist Attacks

Terrorist attacks [17,18] have become an increasingly serious concern. In
many cases, terrorists try to gain public awareness for certain religious or
political interests or an ignored problem, for example a suppressed minority.
In many cases, the ultimate goal is maximum damage. This is best illustrated
by the terrorist attacks on 11th September 2001 in New York [19] and on 11th
March 2004 in Madrid.

On 11th September 2001, four aircraft were hijacked. Two of them were
flown into Manhattan’s World Trade Center. Thousands of people had to be
evacuated. According to the emergency plan, airports, tunnels and bridges
in Manhatten were closed down. Together with panicked people, it produced
a massive traffic problem. Even worse, the crashes caused large fires inside
the Twin Towers, which weakened the steel framework of the buildings, so
that the buildings finally collapsed. Many people, including a large number of
fire fighters, were killed. Stock markets suffered; more than 1 trillion dollars
were lost in a week.

As a consequence, many people cancelled their airplane tickets and re-
duced their number of trips. Together with other problems, several airlines
filed a petition for bankruptcy (Swissair), while others had to merge. More-
over, international security laws were tightened and privacy of personal data
has since been considerably restricted. An international fight against terror
was started. This led to the wars on Afghanistan and Iraq, which in turn
triggered many other terrorist attacks worldwide. The worst of them were in
Djerba (Tunisia, 2002), Bali (Indonesia, 2002), Riad (Saudi Arabia, 2003),
Casablanca (Morocco, 2003) and Madrid (Spain, 2004).

The attack in Madrid (Spain) on 11th March 2004, was characterized
by successive explosions in several urban trains close to well-observed train
stations. This strategy challenged the emergency measures in addition to
the high number of injured and dead people. Hospitals were overwhelmed.
There are signs that additional explosions should have killed the task forces
trying to save the people, but these were avoided by jammer transmitters.
As a consequence of this attack, the incumbent government lost the elections
and the new government quickly withdrew Spanish soldiers from Iraq.
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These events illustrate the truly global impact of some disasters. Other
well-known examples of terrorist attacks are the Sarin gas attacks by the
Aum sect in the Tokyo metro. One of the problems encountered in this case
was that the victims were initially treated incorrectly, as the deadly chemical
substance was not correctly identified. A similar problem occurred during
a hostage rescue from a theater in Moscow (Russia, 2002), where the military
used an secret anaesthetic gas.

15.2.5 Epidemics

The disasters capable of taking the most human lives are epidemic diseases
(see Fig. 15.3), as they can easily spread across countries. Between 1500 and
1550, syphilis killed ten million people throughout Europe. Between 1735
and 1740, diptheria killed about 80% of all children under the age of ten.
Malaria has killed several million people in the Soviet Union (1923) and India
(1947). Other deadly epidemics include measles, pox, yellow fever, typhus
and cholera. Some of these diseases occur if the drinking water has been
contaminated, others when the general health of the population is lowered
by hunger or cold. Many of them are transmitted by insects and animals, so
that fighting epidemics often requires to destroying millions of animals (such
as chickens).

Epidemics have sometimes determined the results of wars and the rise or
fall of a nation or culture. One of the worst epidemics ever was the plague
(pestilence), which killed about 75 million people. It reached Europe via
the trade routes from Asia and was transmitted by rat flea, as well as by
cough. Hundreds of people could die in one day in the same town, so much
so that there was a scarcity of wood to burn the bodies. About 30% of
the population of Europe died. Moral values decayed and criminal activity
jumped up. Some social and racial minorities became the victims of pogroms.
Economic activities broke down, as there was a lack of workers.

One of the worst epidemics of the last century was the Spanish influenza
outbreak. It killed 20-40 million people between 1918 and 1920. Economic
and social life was more seriously affected by the epidemic than by World
War 1. Banks, mines, and parliaments closed down. Trade and transport
were interrupted. People tried to avoid infection by sealing their apartment
windows, but many of them then died due to a lack of fresh air.

Influenza is still among the greatest danger of today, as the viruses respon-
sible mutate quickly. A new influenza epidemic is expected every 10-20 years.
It is most important to stop the spread of the disease as quickly as possible.
Therefore, the World Health Organization (WHO) is monitoring the spread
of diseases very carefully. Although the SARS outbreak in 2003 killed less
than 900 people, it spread worldwide by air transport within weeks. Social
cohesion was challenged, and pogroms occurred in some areas. Many pub-
lic places like schools, theaters, restaurants, companies, and administrative
offices temporarily closed down. Tourists avoided the region, and air traffic
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was restricted. The consequence was an overall economic loss of around ten
billion US dollars worldwide. Correspondingly, stock prices went down.

Another serious disease is AIDS. Despite its relatively slow spread, it
resisted effective treatment for many decades since it targets the immune
system itself.

Although treatments are available today, many economies cannot afford
the cost of them. In Africa, social structures have been already destroyed
on a large scale by the high percentage of infections and the fact that many
children have lost their parents. However, the economies in Eastern Europe
and other countries in the world are also seriously affected.

Finally, we would like to mention the spread of computer viruses. For
example, the virus “Slammer” caused an economic loss of 1.25 billion US
dollars worldwide. However, the hazards go far beyond the direct economic
damage due to computer downtimes and additional computer administra-
tion or software costs. Computer viruses seriously endanger the security and
functioning of sensitive data systems and critical infrastructures, including
communication systems.

15.2.6 Other Disasters

There are many other kinds of disasters we have not mentioned here. Among
them are extreme aridity, locust plagues, meteorite impacts, overpopulation,
disasters related to climate change, volcanic eruptions, bush and forest fires
(see Fig. 15.4), inflation and economic crises. Moreover, we have not dis-
cussed man-made technological disasters. These include power plant acci-
dents, such as nuclear radiation accidents of varying severity (including the
level 7 major accident in the Chernobyl power plant, in the former USSR,
1986; the level 6 serious accident in Khystym, former USSR, 1957; and the
level 6 accidents with off-site risk in Sellafield, UK, 1957, and Harrisburg,
USA, 1979), large explosions (Enschede, The Netherlands, 2000; Toulouse,
France, 2001), chemical disasters (Sandoz, Switzerland, 1986), and biological
hazards or ecological disasters (including killer bees; ants endangering the
red crab population of Christmas Island). Mine accidents, major train acci-
dents (Eschede, Germany, 1998 [20]; London, UK, 1999; Hatfield, UK, 2001;
Neishabur, Iran, 2004; Ryongchon, North Korea, 2004), aircraft crashes (New
Dehli 1996; Paris, 2000; Bodensee 2002), and sunken ships (Estonia, Baltic
Sea, 1994; Pallas, North Sea 1998; Tricolor, English Channel, 2002; Prestige,
Atlantic Ocean, 2002) should also be mentioned. For obvious reasons, we
will not discuss the issue of the vulnerability of critical infrastructures here.
However, one can probably assume that the greatest threats in the future
are potentially related to nuclear pollution, epidemic diseases, and disasters
related to global warming (such as the melting of the polar icecaps, floods,
and heavy storms).
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15.2.7 Secondary and Tertiary Disasters
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A disaster does not only spread in space and time and affect various sectors

of a system. It may also trigger another kind of disaster. For example,

an

earthquake may cause power blackouts, a fire disaster, landslides, floods, or an
interruption in the water supply. Thunderstorms may cause blackouts, fires,
landslides, or floods. Floods may cause a lack of drinking water, blackouts,
landslides, or epidemic diseases. Instead of adding more examples, we would

like to refer the reader to Fig. 15.5.
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Fig. 15.5. Causality network illustrating how one kind of disaster may trigger
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15.2.8 Common Elements of Disasters

Despite the different origins of disasters, they share many common elements
(see Fig. 15.6). We will summarize some of them here. Disasters often start
with a large perturbation or disruption of some system component, and they
spread via networks to other system components. Most disasters cause seri-
ous traffic, transportation and supply problems, and regular trade may break
down. In the worst case, the disaster area is isolated from its environment
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and hardly reachable. For example, in 1970 a gigantic landslide on the high-
est mountain of Peru buried many villages and the city of Yungay after an
earthquake. It took 24 hours for the total destruction of these towns to be
recognized. One week later, two people arrived at the coast to inform the pub-
lic that help was yet to arrive in the area. It took two months until NASA
could identify the full scale of the disaster by air photographs, and after four
and a half months, some villages had still not been reached by cars or planes.
Another similar example was the Heta, the cyclone that devastated the South
Pacific island of Niue in 2004.

During a disaster, a blackout of electricity is rather common. Note that
this can have many serious implications (see also Sect. 15.2.2):

— Public transport is interrupted and streets are often congested (as long
as fuel is available)

— Home heating systems stop working

—  Water cannot be boiled, so a scarcity of drinking water may occur.

— Automatic teller machines and cashdesks in supermarkets do not work.

— Hospitals must be evacuated after a certain time period

— Communication breaks down

Even if power is available, information is a problem. There is often a lack
of reliable information, and instead a flood of inconsistent data or rumors,
and not enough time to evaluate them. Nevertheless, decisions must be made
fast, in the right order, with the right priorities and under stress. Therefore,
wrong decisions are likely. Apart from these problems, coordination is also
a problem due to incompatibilities between communication systems, orien-
tation problems in an unknown terrain (many road signs may have disap-
peared), administrative obstacles and legal responsibilities, which can reduce
the flexibility of response when improvisation is needed.

Although the increased solidarity during disasters can be very helpful, it
is hard to coordinate many people and different organizations that have not
collaborated before and do not know each others’ command structures. Such
interaction must be exercised beforehand if fast and reliable actions are to
be performed without the need for much discussion; in other words it should
be based on certain codes and protocols.

When disasters strike, the surviving population tends to panic, partic-
ularly after events that may repeat, such as earthquakes. Moreover, panic
buying (hoarding), if still possible, is typical. There are also people who use
the opportunity to plunder shops and houses, particularly after the pop-
ulation has been evacuated. This often causes a resistance to evacuation
measures from the population, so that expensive individual evacuation, by
helicopter, may be needed later on. In any case, evacuation is a great bur-
den on the population, as many thousands of people may become home-
less. In the worst case, this can cause worldwide streams of migrants and
refugees.
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If resources are scarce, riots may break out, and a black market emerges.
Criminal activity will go up, if the public authorities (police and military)
lose control. Here, it must be considered that the task forces fighting the
disaster will be exhausted after 72 hours at the most, which may cause a lack
of manpower.

Pogroms may occur in the population if certain minorities are believed to
be responsible for the disaster. This is particularly relevant to certain diseases,
religious or racial affairs. Epidemics are a typical problem after disasters,
either because water is contaminated, because the large number of corpses
cannot be buried fast enough, or because the health of the population is poor
anyway (due to hunger or cold). Finally, disasters have serious economic
consequences, sometimes covering many years. Due to this and problems in
disaster response management, the government’s reputation may be tarnished
and it may lose its power.

15.3 Modeling Causality Networks of Disaster Spreading

In this section, we will discuss a semi-quantitative method [21] that will allow
us to:

— estimate the development of disasters over time

— get hints about when to take certain actions

— assess the suitability of alternative measures of emergency management
— anticipate the side effects measures of emergency management

To do this, it is necessary to take into account all of the factors that are
relevant during the disaster and all direct and indirect interactions between
them. This method follows the tradition of system dynamics [22].

We will start with a static analysis of interaction networks. For this, let
us specify the approximate influence of different factors or sectors on each
other. Such factors may, for example, be the energy supply, public transport,
or medical support. In principle it is a long list of variables 7, all of which may
play a role in the problem under consideration. If we represent the influence
of factor j on factor i by A;;, we can summarize these (direct) influences
using a matrix A = (A;;). However, in practical applications, one faces the
following problems:

(i) The number of possible interactions grows quadratically with the num-
ber of variables or factors 4. It is, therefore, difficult to measure or even
estimate all of the influences A;;.

(ii) While it appears feasible to determine the direct influence M;; of one
variable j on another one ¢, it is hard or almost impossible to estimate
indirect influences on various nodes of the graph, which enter into A;;
as well. However, feedback loops may have an important effect and may
neutralize or even overcompensate for the direct influences.
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Problem (i) can be partially resolved by clustering similar variables and se-
lecting a representative for each cluster of variables. The remaining set of
variables should contain the main explanatory variables. Systematic statis-
tical methods for such a procedure are available in principle, but intuition
may be a good guide when the quantitative data required for the clustering
of variables are missing.

Problem (ii) can be addressed by estimating the indirect influences due to
feedback loops via the direct influences M;;, which can be summarized using
the matrix M = (M;;). We can use a formula such as

oo

A=A = iz ZTkMk ZT’@ Mk (15.1)

k=1

but as this only converges for small values of 7, we will instead use the formula
Z k' = eXp(TM) -1], (15.2)

where 1 denotes the unity matrix. The expression MF reflects all influences
over k—1 nodes and k links, so k = 1 corresponds to direct influences, k = 2 to
feedback loops with one intermediate node, k = 3 to feedback loops with two
intermediate nodes, and so on. The prefactor 7% is not only required for con-
vergence, but with 7 < 1, it also allows us to take into account that indirect in-
teractions often become weaker the more edges (nodes) there are in-between.
A further simplification can be achieved by restricting influences to a few
characteristic discrete values. We may, for example, restrict ourselves to

M;j € {—3,-2,-1,0,1,2,3}, (15.3)

where M;; = 3 means an extremely positive or negative influence, M;; = £2
represents a strong influence, M;; = £1 a weak influence, and M;; = 0
a negligible influence. Of course, a finer differentiation is possible wherever
necessary. (For an investigation of stylized relationships, it can also make
sense to choose M;; € {—1,0,1}, where M;; = =1 represents a strongly
positive or negative influence.) The matrix A = (A4;;) will be called the
assessment matrix and it summarizes all direct influences (M) and feedback
effects (A — M) among the investigated factors. It allows conclusions about

— the resulting strengths of desireable and undesireable interactions, when
feedback effects are included

—  the effect of the failure of a specific sector (node)

— the suitability of possible measures for achieving specific goals or improve-
ments

— the side effects of these measures on other factors

This will be illustrated in more detail by the example in Sect. 15.3.1.
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One open problem is the choice of the parameter 7. It controls how strong
the indirect effects are in comparison to the direct effects. A small value of 7
corresponds to neglecting indirect effects, in other words

lim A, = M, (15.4)

while increasing values of 7 reflect the growing influence of indirect ef-
fects. This is often the case for disasters, as these are frequently related
to avalanches or percolation effects. By varying 7, one can study different
scenarios.

Note that 7 may be interpreted as a time coordinate. Defining

X (1) =exp(tM)X (15.5)

for an arbitrary vector X, we find X (0) = X,

X(7) - X0 _ i[eXp(TM) —1]X(0) = A, X(0)
and
From this point of view,
X(r) = (tA; +1)X(0) (15.6)

describes the state of the system at time 7, and M;; the changing rates. X = 0
is a stationary solution and corresponds to the normal (everyday) state. An
initial state X (0) # 0 may be interpreted as a perturbation of the system by
some (catastrophic) event. We should, however, note that the linear system
of equations (15.6) is certainly a rough description of the system dynamics.
It is expected to hold only for small perturbations of the system state, and
it does not consider damping effects due to disaster response management.
These aspects will be considered in Sect. 15.3.2.

15.3.1 Assessment of Disaster Management Methods

One advantage of our semi-quantitative approach to disasters is that it allows
us to estimate the impact of certain actions on the whole range of factors [21].
As we have argued before, all direct and indirect effects are summarized by
the matrix A, which is determined from the matrix M of direct interactions.
Different measures taken are reflected by the use of different matrices M.
As an example, let us consider the spread of a disease. For illustrative
reasons, we will restrict ourselves to a discussion of just five factors:

1. the number of infected persons
2. the quality of medical care
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3. the public transport
4. the economic situation
5. the disposal of waste

These factors are not independent of each other, as illustrated by Fig. 15.7.
The corresponding matrix of the assumed direct influences among the
different factors is
0 —2+2 0 -1
-2 0 +1+2+1
M=|-10 0420 (15.7)
-1 0 +2 0 +1
-1 0 +1+2 0

The correct choice for the sign of the direct influence M;; of factor j on
factor i is obtained as follows. We assume a positive sign if the factor i
increases with an increase in factor j, while we assume a negative sign when
factor ¢ decreases with the growth in factor j. However, any determination
of the absolute value of M;; requires empirical data, expert knowledge, or
experience. We have argued as follows:

— The growing number of infected persons affects all other factors in a neg-
ative way (see first column), as they will not be able to work. That is,
economic problems will occur, as will problems with public transport and
the disposal of waste. Health care is affected twice, since medical per-
sonnel may be infected and a higher number of patients will need to be
treated, and capacities are limited. Therefore, we have chosen a value of
—2 in this case, but —1 for the other factors.

— An effectively operating health system (second column) can reduce the
number of infected persons efficiently, so we have chosen a value of —2
here. The health system was assumed to exert only an indirect effect on
the economic situation and other factors (by reducing the number of ill
persons).

— Public transport (third column) aids the spread of the infection assumed
here (which could be, for example, SARS). Therefore, we have selected

economic | < public
situation - \_transport

Fig. 15.7. Simplified interaction network for the example of the spread of a disease,
as discussed in the text (after [21])
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a value of 2. Transport is also an important factor for economic prosperity
(leading to a value of 2 here), and transport is required to get medical
personnel and workers in the disposal sector to their workplaces (which
is reflected in the value of 1).

— The economic situation (fourth column) has a significant effect on the
quality of the health system, public transport, and disposal, so we have
chosen a value of 2 in each case.

— Waste may contribute to the spread of the disease if it is not properly
removed. Therefore, a good disposal system (fifth column) may reduce
the number of infections (giving a value of —1). It is also required for
a functioning health system and steady economic production. This is why
we have assumed a value of 1 here.

Depending on the respective situation, the concrete values of the direct in-
fluences M;; may be somewhat different. When specifying them, it can be
useful to check the values of A;; for the direct and indirect influences for
their plausibility, and to compare the sizes of the second-order or third-
order interactions. For example, we see that the third-order feedback loop
“number of infected persons—economic situation—quality of the health
system—number of infected persons” is proportional to (—1)-(+2)-(—2) = 4.
The same indirect influence is found for the feedback loop “number of in-
fected persons—economic situation—public transport—number of infected
persons”. Moreover, according to our assumptions, the second-order auto-
catalytic increase in the number of infected persons due to its impact on
the health system is four times as large as the one due to its impact on
the waste disposal system. One surprising observation is that the number
of infected persons drops due to its impact on public transport. In fact,
once the number of buses drops (because the bus drivers are ill), the spread
of the disease is slowed down. This suggests that in the event of a conta-
gious disease, we should interrupt public transport; however, later on we
will see that doing this has some serious side effects.or example Before we
look at that, let us have a look at the resulting overall interaction ma-
trix
0.9 —221.3-0.8-1.6
-34 1.1 1.5 3.5 23
A=(A4;)=|-17 06 05 25 038 (15.8)
—-20 06 2.1 1.5 1.6
—-2.0 06 1.5 29 09

To calculate it, we have chosen the value 7 = 0.4, which will also be used
later on to assess alternative actions for fighting the spread of the disease.
In order to discuss a certain scenario, we will assume that X; reflects the
perturbation of factor j. Because of (15.6), the quantities

Y, = Z(TAZ‘j + 5ij)Xj (15.9)
J
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will be used to characterize the potential response of the system in the specific
scenario described by the perturbations X; (and without the damping effects
resulting from the disaster response management discussed in Sect. 15.3.2).
Here, §;; denotes the Kronecker function, which is 1 for ¢ = j and 0 otherwise.
We will assume X; = 1.0, as the number of infected persons is higher than
normal, and Xo = X3 = Xy = X5 = —0.1, as the other factors are reduced
by the spread of the disease:

(X1, Xa, X3, X4, X5) = (1.0,—0.1,—-0.1,—-0.1,—-0.1) . (15.10)

Moreover, if we attribute a weight of wq; = 0.5 to the number of infected
persons, a weight of wy = 0.3 to the economic situation, and weights of
wy = w3 = 0.1 to the quality of medical care and public transport, and
ignore the issue of waste in our evaluation (so ws = 0), the resulting value

of
1/2
F=F, = (Z wY2> (15.11)

will be used to assess the overall state of the system. In the stationary (nor-
mal) system state, F' would be zero. Therefore, we want to find a strategy
which brings F' close to zero. For our basic scenario, we find

(Y1,Ya,Ys, Yy, Ys) = (1.5,—-1.8,-1.0,—1.1,-1.1) and F=14. (15.12)

These reference values will be compared with the values obtained for al-
ternative scenarios which correspond to different actions taken to fight the
disaster.

For example, let us assume that there are limited stocks of vaccine for
immunization. Should we use these to immunize 1) the transport workers, 2)
the medical staff, or 3) the disposal workers? In the first case, we have the
modified matrix

0 -2+42 0 -1
-2 0 +1+2+1
M=] 0 0 0+20 , (15.13)
-1 0 42 0 +1
-1 0 4142 0

which implies
1.2 —2314-08 —-1.7
-3.2 1.1 1.5 35 22
A=1]-05 0108 24 0.5 , (15.14)
—-1.6 0.5 22 1.5 1.5
—-1.7 0.6 1.6 2.9 0.9

(Y1,Ya,Ys, Yy, Ys) = (1.6, —1.7,—-0.5,—-1.0,—-1.0), and F =14. (15.15)
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In the second case, when we immunize the medical staff, we find

0 —242 0 —1
~10 +1+4+2+1

M=|-10 0+20 |, (15.16)
~10 +2 0 +1
~10 4142 0

which implies
0.5 —2.11.3-0.7—-1.5
—-23 0.7 1.8 34 2.0
A=|-17 06 05 25 0.8 , (15.17)
—-19 06 2.1 1.5 1.6
—-1.9 06 1.6 29 0.9

(Y1,Ys,Ys, Yy, Ys) = (1.3,—-1.3,-0.9, —1.1,—1.1), and F=12. (15.18)

In the third case, when the disposal workers are immunized, we expect

0 —242 0 —1
—2 0 +1+2+1

M=|-10 0420 |, (15.19)
~10 42 0 +1
0 0 4142 0

which implies
06 —2.11.3-0.7-1.6
-3.1 1.1 1.6 3.5 22
A=]-16 06 0.5 2.5 0.8 , (15.20)
—-1.7 0.6 2.1 1.5 1.5
—-0.8 0.2 1.9 2.8 0.6

(Y1,Ya,Ys, Yy, Ys) = (1.4, —1.7,-0.9,-1.0,—0.7), and F=13. (15.21)

While the immunization of the public transport staff has almost no effect
on the overall state of the system, the last two measures can improve it. We
see that it is more effective to immunize the medical staff than the disposal
workers, although the best approach would be to immunize both groups. This



342 D. Helbing, H. Ammoser, C. Kiithnert

corresponds to
0 —242 0 -1
-1 0 +142+41
M=]-10 0+20 , (15.22)
-1 0 +2 0 +1
0 0 +1+4+2 0

and we obtain
0.2 —-2.01.2-0.7-1.5

—-19 06 19 34 1.9
A=]-16 05 05 25 0.8
—-1.7 06 21 15 1.5
—-0.8 0.2 19 2.8 0.6

W1,Ys,Ys,Y,,Y5) =(1.2,-1.2,-0.9,—-1.0,—0.6), and F=1.1.
(15.24)
Other measures do not change the interactions in the system, but corre-
spond to a change in the effective impact X of the disaster. For example, we
may consider reducing public transport. With (15.8) and

, (15.23)

(X4, Xo, X3, X4, X5)=(1.0,-0.1,-1.0,-0.1,—-0.1) , (15.25)
we find
(1,Y5,Y5,Y,,Y5) =(1.0,—2.4,-2.0,—1.9,—1.7) and F=16. (15.26)

We see that the number of infections can, in fact, be reduced. However, the
overall situation of the system has deteriorated, as the economic situation and
all of the other sectors were negatively affected by the reduction in public
transport, because many people could not reach their workplace. Therefore,
let us consider the option to increase the number of disposal workers. With
(15.8) and

(X1, Xo, X3, X4, X5) =(1.0,-0.1,-0.1,-0.1,0.5) , (15.27)
we find
(W1,Y,,Y5,Y,,Y5) =(1.1,-1.3,-0.8,-0.8,-0.3) and F =1.0. (15.28)
In conclusion, increasing the level of hygiene can be surprisingly effective.

Finally, let us assume that waste disposal is improved and that the medical
staff and the disposal workers are both immunized. In that case, the interac-
tions of the relevant factors are characterized by matrix (15.22), whereas the
starting vector is again (15.27). The resulting response is

(Y1,Ys,Y3,Yy,Vs) = (0.8,—0.7,—0.7,—0.6,0.1) and F =0.75. (15.29)
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This is the only combination of measures that actually manages to reduce the
number of infections compared to the initial state (Y7 < X;). However, we can
also see that a negative impact on the economic situation and other factors
is unavoidable. In any case, we can assess which measures are reasonable to
use, what impact they will have on the system, and which of the measures
need to be combined in order to control the spread of the disease (or other
problems in different scenarios).

15.3.2 System Dynamics Treatment of the Spread of a Disaster

Before, we predominantly used the interaction network for a static assess-
ment of the influence of different factors on each other. We will now try to
extend this method in a way that allows us to perform a semi-quantitative
analysis of the time-dependence of disasters for the purpose of anticipation,
which helps to prepare for the next step in disaster response management
or prevention [21]. We are especially interested in the domino or avalanche
effects of particular events such as the failure of a particular factor or sector
in the interaction network. We will assume that this failure spreads along,
in the order of, the direct connections in the interaction network (causality
graph). In terms of the example in Sect. 15.3.1, a failure of medical care would
first affect the number of infected persons, and then the economic situation,
public transport, and the disposal of waste.

For a description of the dynamics of the disaster, let us assume that P;(7)
denotes the impact on factor 7 at time 7 and Wj; the rate at which this impact
spreads to factor j, while D; is a damping rate describing the mitigation of
the catastrophic impact on factor ¢ by disaster response management. In this
case, it is reasonable to assume the dynamics

dP

dr
with D = (5ijDi)a L = (Lij) = (WU - 5ijDi)a and P(T) = (_PZ(T)) The
symbol J;; again represents the Kronecker function, (1 for ¢ = j and 0 oth-
erwise). When no better information is available, we may assume that the
spreading rate W;; is proportional to the strength |M;;| of the direct influence
of factor j on factor . With a constant proportionality factor ¢, this means

= (W —D)P(r) = LP(7) (15.30)

The formal solution of (15.30) for a time-independent matrix L is given by
P(r) = exp(L7)P(0) = >, L*P(0) = B(r)P(0) (15.32)
k=0 "

That is, B(7) describes the spread of an event in the causality network (in-
teraction network) over the course of time 7, while P(0) reflects the initial
impact of a catastrophic event.
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When we assume
Di=> W, (15.33)

(15.30) is related to the Liouville representation of the discrete master equa-
tion. In this case, we can apply all of the solution methods developed for
it. This includes the so-called path integral solution [23], which allows one
to calculate the probability of occurrence of specific spread paths. This has
some interesting implications. For example, the danger that the impact on
sector iy affects the sectors i1,149,...,7, in the indicated order is quantified
by

o ) P, (0)] " Wi P, N
Plig = i1 — -+ —ip) = |Pig D, 0)] H Hl o | 10 | H Zl+1ﬂl
n o 1—0 l in

(15.34)
Moreover, the average time at which this series of events occurs can be cal-
culated using

|
T(ig — i1 — - — ip) = Z D (15.35)
=0
and the variance of this time is determined by
G|
Q(ioﬁil_’"‘_’in):Z(D,)z . (15.36)
]

l

Il
o

That is, (15.30) not only allows us to assess the likelihood of a certain series of
events, but it also gives their approximate appearance times. In other words,
we have a detailed picture of potential catastrophic scenarios and of their
time evolutions, which facilitates specific preparation and disaster response
management.

In the following, we do not want to restrict ourselves to case (15.33). If

for all 4, the damping is weak and the solutions P;(7) are expected to grow
more or less exponentially over the course of time, which describes a scenario
where control is lost and the disaster spreads all over the system. In many
cases, we will have

Dy > Wy (15.38)

for all 7; in other words, the impact of the disaster on the system decays over
the course of time, and lim,_ P;(7) — 0. This determines how strong the
damping effects need to be (or, in other words, the method of counteracting
the disaster).
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Finally, it may also happen that D; > Zj W;; for some factors 7, but
D, <> Wi for others. In such situations, everything depends on the initial
impact P(0) and on the matrix B(7). However, in all of these cases, (15.34)
to (15.36) remain valid.

15.4 Summary and Conclusions

In this contribution, we have discussed disasters as important examples of
Xevents. They are often characterized by power laws, which is partly related
to the tendency to drive a system to its critical threshold in order to increase
its efficiency. Unfortunately, self-organized criticality is known to produce
avalanche effects of a potentially arbitrary size. Such cascade effects can be
observed in many different kinds of disasters.

Our modeling approach is based on identifying interactive causality
chains, as has been illustrated for many different kinds of disasters. More-
over, we have suggested a semi-quantitative treatment that quantifies the
strength of direct interactions in order to assess the relevance of indirect
effects and feedback loops. This causality network approach allows one
to assess not only the effectiveness of alternative measures of disaster re-
sponse management and their side effects, but it also makes it possible to
estimate the time at which certain events could happen via the spread-
ing of perturbations within a causality network. We hope that this will
help encourage anticipative rather than reactive disaster response manage-
ment [24-32].

Network theory could certainly make further contributions to disaster
response management. As disaster response management can be viewed as
a problem of material, personal, and information logistics, models of supply
networks [33] will be highly relevant. This includes issues of dynamic stability
of disaster response management measures [21], as well as error and attack
tolerances of networks [34,35]. The problem can be even viewed as a network
of networks [36]. That is, it will not only be important to optimize the so-
cial, information, material, transportation and other networks involved [37],
but also their mutual interactions. This means that both supply and coor-
dination [38,39] are crucial issues. In this respect, we hope to learn from
biological systems, which have optimized network interactions over millions
of years in an evolutionary way. Another promising issue is the development
of new principles of disaster response management based on self-organization.
It is potentially more effective to have autonomous units (task forces) with
predefined interaction possibilities [34]. This could increase adaptiveness and
flexibility [40-42] based on principles of decentralized control and collective
intelligence.
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