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Preface 

Although statistical analysis was first applied to agricultural, business, and 
architectural data as well as to astronomical problems at least thirty to forty 
centuries ago, astronomers have largely been estranged from statistics throughout 

ers, the majority have paid little 
attention to the advances made in statistical theory and application since the work 
of Laplace and Gauss in the late 18th and early 19th centuries. Descriptive 
statistical analysis, of course, has continued to be used throughout this period, but 
inferential methods were largely ignored. It was not until the last decades of the 
20th century that computing speed and memory allowed the development of 
statistical software that was rigorous enough to entice astronomers to again 
become interested in inferential statistics. During this time small groups of 
astronomers and statisticians joined together developing both collaborations and 
conferences to discuss statistical methodology as it applies to astronomical data. 
There are a variety of reasons for this regained interest, as well as for the two-
century breach. The initial monograph in the text addresses the reasons for the 
separation, and for the renewed interest. 

Newly developed instruments are - and will be - gathering truly huge amounts 
astronomical data which will need to be statistically evaluated and modeled. Much 
of the data being generated appears to be complex, and not amenable to 
straightforward traditional methods of analysis. Many astrostatisticians -- 
astronomers, statisticians and computation theorists having an interest in the 
statistical analysis of astronomical/cosmological data -- have recognized the 
inherent multifarious nature of astronomical events, and have recently turned to 
Bayesian methods for analyzing astronomical data, abandoning at least in part the 
traditional frequentist methods that characterized the discipline during the 19th 
and 20th centuries. However, frequentist-based analyses still have an important 
role in astrostatistics, as will be learned from this volume.  

Except for the first two introductory chapters, the collection of monographs in 
this volume present an  overview of how leading astrostatisticians are currently 
dealing with astronomical data. The initial article is by the editor, providing a brief 
history of astrostatistics, and an overview of its current state of development. It is 
an adaptation of a presentation delivered at Los Alamos National Laboratory in 
October, 2011 as a seminar in the Information Science and Technology Center 

v

the past two centuries. Except for a few astronom



seminar series. The second contribution is by Thomas Loredo of Cornell 
University who presents an overview of both frequentist and Bayesian 
methodologies and details how each has been misunderstood. He then outlines 
considerations for future astrostatistical analyses. Prof Loredo's contribution is an 
adaptation of a presentation he made on this topic at the Statistical Challenges in 
Modern Astronomy V conference held at Pennsylvania State University in June, 
2011. The other monographs describe ongoing state-of-the-art astrostatistical 
research. Contributions to this volume are largely adaptations of selected invited 
and special topics session presentations given by the authors at the 2011 ISI World 
Statistics Congress in Dublin, Ireland. Several monographs have been completely 
re-written from their original form for this volume, and some are entirely new. 
Nearly all of the contributors as well as co-authors are recognized as leading -- if 
not the leading -- astrostatisticians in the area of their research and contribution to 
this book.  

The value of a volume such as this rests in the fact that readers get the 
opportunity to review the work of top astrostatisticians. Each selection employs a 
different manner of applying statistical methods to the data being evaluated.  
Articles using traditional methods utilize techniques that are common among 
statisticians who model astronomical data. Together with a history and overview 
of astrostatistics as a discipline, the research shared in this volume will provide 
readers with a good sense of the current state of astrostatistics. The articles may 
also encourage readers themselves to contribute to this new area of statistics. The 
challenges are great, and may involve developing new methods of statistical 
analysis. The answers that may be gained, though, address questions that are 
central to astronomy and cosmology. In fact, substantial statistical work has 
already been done in such astrophysical areas as high-energy astronomy (e.g., X-
ray, gamma, and cosmic ray astronomy),  neutrino astrophysics, image analysis, 
and both extra-solar and early galaxy formation. Even elusive areas such as 
understanding dark matter and dark energy, and if a multiverse exists, are queries 
that may ultimately be answered using novel applications of current statistical 
functions, or they may require the application of new and innovative 
astrostatistical methods yet to be developed.  It will be clear on reviewing the 
monographs in this text that astrostatistics is a discipline coming to its own. It is 
involved with evaluating problems of cosmic concern, and as it advances it will 
demand the most of both computational and statistical resources.  

I wish to thank Marc Strauss, Springer statistics editor, for suggesting the 
initiation of a Springer Series in Astrostatistics, and for his support for this text. 
Without his assistance this book would never have been constructed. I also must 
acknowledge Rajiv Monsurate for his fine work in setting up the book for 
publication, and Hannah Bracken, for her editorial support. Their efforts were also 
essential for this book's completion. Finally I dedicate this book to my late father, 
Rader J Hilbe, who fostered my interest in both mathematics and astronomy.  
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initial officers of the IAA were also approved.  Membership includes researchers 
from astronomy/astrophysics, physics, statistics, the computer-information sciences
and others who are interested in the statistical analysis of astronomical data. 
The IAA has three classes of membership, with no difference in benefits: regular, 
Post Doc, and student. As the professional association for the discipline, the IAA 
fosters the creation of astrostatistics committees and working groups within both 
international and national astronomical and statistical organizations. During the 
same week that the IAA was created, the International Astronomical Union 
approved an IAU Astrostatistics Working Group. The IAA, IAU Astrostatistics 
WG, ISI astrostatistics committee,  and LSST share a common  
AstroInformatics Portal web site: https://asaip.psu.edu 

The IAA and ISI are co-sponsors of the Springer Series in Astrostatistics.  
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ISI Astrostatistics Network
approved its being re-organized as the International Astrostatistics Association 
(IAA), the first professional association for the discipline of astrostatistics. The 

Update: 
On August 30, 2012 the Executive Board of the 

Astrostatistics and
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Chapter 1
Astrostatistics: A Brief History
and View to the Future

Joseph M. Hilbe

1.1 A Brief History of Astrostatisics

Humans have long sought to understand astronomical events through the use of
mathematical relationships. Ancient monuments were constructed to be aligned with
stellar positions at given times of the year, and eclipses were assiduously recorded
and predicted for a variety of reasons. In pre-scientific times priests and astrologers
attempted to predict astronomical relationships for the purpose of understanding
the minds of the gods. It was not until the 5th century BCE that a small group
of philosophers living in the area of the Aegean Sea began to value understanding
nature for its own sake. Many historians argue that science in fact began during this
period. The event that some signal as the beginning of science was the prediction
of a total solar eclipse by Thales of Miletus in 585 BCE. By using his knowledge
of past eclipses and their locations, Thales predicted that the eclipse would occur in
central Lydia close to May 28th of that year. As it happened, the Lydians were in
battle against the Medes. The celestial event resulted in a cessation of the war, and
a widespread recognition of Thales as a Sage.

Thales’s successes inspired later philosophers and mathematicians to investi-
gate the natural world by compiling records of past observations related to celestial
events with the aim of predicting future eclipses, lunar and solar positions, and the
like. Aristarchus of Samos (ca. 310 – ca. 230 BCE, Eratosthenes (276–197 BCE),
Apollonius of Perga (ca. 262 – ca. 190 BCE), and Hipparchus (190–120 BCE) were
the most noteworthy astronomers of this period. However, it was Hipparchus, liv-
ing in various cities along the present-day western Turkish shore, who first clearly
applied statistical methods to astronomical data.

Hipparchus is generally acclaimed as one of the leading astronomers and math-
ematicians of antiquity. He is credited as being the first to develop trigonometry,

Joseph M. Hilbe
Jet Propulsion Laboratory, Pasedena, CA 91109, U.S.A.
Arizona State University, Tempe, AZ 85287, U.S.A.
e-mail: hilbe@asu.edu
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2 Joseph M. Hilbe

spherical trigonometry, and trigonometric tables, applying these to the relative mo-
tions of both the Sun and Moon. With respect to statistics, however, it is sometimes
overlooked to what extent Hipparchus employed statistical measures of central ten-
dency in reconciling observations. Using median reported values for the percent of
the sun covered by the Earth’s shadow at various sites in the Greek and Roman
world at the time, and from the size of the moon’s parallax, he calculated the dis-
tance from the Earth to both the moon and sun in terms of Earth radii, as well as
their comparative volumes. Hipparchus realized however, that the distance varies as
the Moon circles the spherical Earth, so preferred giving its median value, plus the
minimum and maximum ranges. Hipparchus is said to have calculated the median
value as 60.5 Earth radii. The true value is 60.3.

Hipparchus is also well known for calculating the precession of the equinoxes,
and for calculating the length of the tropical year. Based on his calculations, Hip-
parchus argued that the tropical year is 365 days, 5 hours, 55.2 minutes, and 12 sec-
onds in length. Current technology puts the figure at 365 days, 5 hours, 49 minutes,
and 19 seconds. The difference is less than 6 minutes per year.

Problems related to the variability and errors of measurement concerned later
astronomers as well; e.g. Ptolemy and Galileo. Galileo is perhaps most well known
in astronomy for the use of a telescope in discovering the four major moons of
Jupiter and the phases of Venus. He also contributed to the understanding of gravity,
determining that objects of differing weights fall to the Earth at an equal rate in a
vacuum.

With respect to statistics, however, Galileo argued that all measurements come
with error, including observations of astronomical bodies. He proposed that mea-
surement errors are symmetrically distributed about the mean of the calculated mea-
surements, and that the mean of this error distribution is zero. In addition, he was
aware that smaller errors in measurement occur less frequently than larger errors.
Galileo thus came close to discovering the normal distribution, and I suspect that
had his interests been more purely mathematical he would have discovered it.

Isaac Newton (1642–1727) of Cambridge University was a truly seminal figure in
science, finalizing the break with the Aristotelian worldview that pervaded Western
science from the age of Constantine to the beginning of the 18th century. Newton’s
Principia Mathematica was the foundation of modern mechanics, and was the basis
of a new form of mathematics called The Calculus, which he co-invented separately
with the German Gottfried Leibniz (1646–1716). His mechanics lead to the notion
of universal gravitation and of his 3 laws of motion. Of central importance to as-
tronomy was his argument that the motions of astronomical objects were governed
by same set of laws as are terrestrial objects.

Newtonian mechanics led to the later discovery of the planets Uranus and Nep-
tune – particularly Neptune. Newton’s theories of gravitation and of motion com-
bined to provide a deterministic view of astronomical events. If there were a varia-
tion from what was expected of a body moving about the Sun under the Newtonian
framework, then there must be a cause. Measuring the disturbance in Uranus’s orbit
led astronomers in the mid-nineteenth century to conclude that there was another
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planet external to Uranus in the Solar System, and to predict with near exactness
where in the sky the planet could be located.

Actually, Galileo observed Neptune in 1612 and 1613, believing it to be a star.
He knew that it had moved relative to other fixed stars, but did not follow up on
his discovery. In 1821 Alexis Bouvard published tables of Uranus’s orbit based on
Newtonian principles. He noticed that its actual orbit varied from what was pre-
dicted based on the tables. The conclusion – another planet influencing Uranus’s or-
bit. Several noted astronomers of the time tried to define a position for the “missing”
planet. John Adams (1819–1892), a Cambridge University mathematician, actually
identified the location and mass of the new planet in 1845, when only 26 years of
age, passing along this information to James Challis (1803–1882), director of the
Cambridge University observatory, to look for it. Challis saw the planet in 1846, but
failed to clearly identify it as such. French mathematician Urbain LeVerrier (1811–
1877) finally predicted the location of Neptune, and requested his friend, Johann
Galle (1812–1910) of the Berlin Observatory to search where he indicated. Galle
was the first to view Neptune, knowing what he was looking at. Adams and LeVer-
rier appropriately received the actual credit for the discovery.

It is commonly accepted that German mathematician Carl Gauss (1777–1855)
first developed the statistical technique of least squares regression when he was but
eighteen years of age in 1794. The method was used for the first time by Hungarian
astronomer Franz Xaver von Zach (1754–1832) in 1801 for determining the position
of Ceres as it came into view from its orbit behind the Sun. This inaugural inferen-
tial statistical routine successfully predicted its actual location. However, although
Adrien-Marie Legendre (1752–1833) described Gauss’s least squares methodology
in a 1804 publication, Gauss himself did not fully describe its use until 1809 in a
text on Celestial Mechanics.

Mention should be made of Pierre-Simon Laplace (1749–1827) who was clearly
one of the leading mathematicians of his age. Like many of his mathematically
inclined contemporaries, he was also interested in understanding astronomical ob-
servations. In fact, he stated that astronomy was his foremost love. His primary
statistical contributions, however, have proved to be of considerable importance to
both statistics and astronomy today. Laplace is credited with formulating the central
limit theorem, and of independently devising a theory of inverse probability, upon
which Bayesian analysis is based. He was also the first mathematician who was in-
terested in dealing with large amounts of complex data as well as being the first
statistician to present a formal proof of least squares regression. Laplace also con-
structed what is known as the Laplace transform, which is used to assist in solving
differential equations by converting them to algebraic equations. This method has
been of considerable use to astronomers and astrophysicists. His contributions to
astrostatistics are substantial.

Laplace’s manner of presenting inverse probability and of formulating Bayes
Rule is fundamental to how current Bayesian statisticians view the methodology.
Bayes Theorem or Rule was in fact formulated by Laplace, together with its theo-
retical justification. He stimulated the later widespread use of the method throughout
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Europe for nearly a century. Although Laplace had successfully applied the method
to astronomical events, others later applied it to areas other than astronomy.

What is many times not realized however is that after Laplace formulated the
Central Limit Theorem in 1810, he returned to using frequentist-based statistics
until his death in 1827. The reason was due to his realization that when dealing with
large amounts of data the two methodologies frequently gave the same results. He
used Bayesian analysis, or what he termed the probability of causes approach, when
dealing with uncertain data, or with singular event situations. But he in practice
all but abandoned the method he formulated. On the other hand, his discovery of
the Central Limit Theorem and its consequences in evaluating data led to major
advances in frequency-based statistics. It should be noted, however, that Laplace’s
proof of the Central Limit Theorem entailed various flaws that were later corrected
by Simeon Poisson (1781–1840) and Fredrick Bessell (1784–1846). Bessel was the
first astronomer to actually use parallax for calculating the distance to a star. In 1838
he determined that 61 Cygni was 10.4 light years distant. Today’s calculations give
a distance of 11.4 light years.

Many have considered Laplace to be the true founder of Bayesian statistics, but
Laplace himself acknowledged Bayes’ prior development of the approach, even
though Laplace gave it its modern format, including the formula we know and use.
It would be more accurate I suspect to refer to Bayes–Laplace analysis rather than
simply to Bayes analysis, or to the Laplace–Bayes Rule instead of Bayes Rule, but
the latter appellation now seems firmly established in statistical nomenclature. Per-
haps the foremost reason for this overlook is due to the highly negative charges
made against Laplace by a few of the world’s leading statisticians from the mid
1900s until a full century later. The charges have since been proved false, but they
nevertheless affected Laplace’s reputation, and may well have been a reason that
Bayesian analysis, which was largely thought of as Laplace Analysis from the eigh-
teenth through the mid-twentieth centuries, found so little support during much of
the twentieth century. See [1] for a well researched discussion of this situation. In
any case, it is unfortunate that Laplace does not get the credit he deserves, and that
his name is not attached to what is now known as Bayesian analysis. Laplacean–
Bayesian methodology is currently becoming the foremost statistical method used
by astrostatisticians, even though traditional frequentist methods still appear to be
favored by a number of statistically erudite astronomers. Loredo examines these
trends in Chapter 2 of this volume.

Gauss continued to develop least squares methodology after the publication of his
1809 work. Together with von Zach’s early success in implementing least squares
regression and Laplace’s later formal justification of it, it would appear that the
method would have been widely used in subsequent astronomical analysis. How-
ever, the majority of astronomers showed relatively little interest in applying it to
astronomical data. Certainly there were exceptions, as we shall later discuss, and
advances occurred in describing astronomical events by employing underlying prob-
ability distributions; but astronomers in general turned to non-statistical quantitative
methods including spectroscopy and differential equations for the understanding
of astronomical data throughout the majority of the 19th and 20th centuries. As-
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tronomers who did employ inferential statistical methods to their data typically re-
lied on some form of least squares algorithm. In large part this was a result of astron-
omy, and later astrophysics, moving ahead faster in discoveries than statistics. Dur-
ing this period statisticians were predominantly interested in the analysis of tables,
of fit statistics, correlation analysis, and the analysis of probability distributions.

Regression analysis failed to substantially advance during the 19th century until
the work of Francis Galton (1822–1911).Galton developed the statistical methods of
correlation analysis, standard deviation, regression to the mean, the regression least-
squares line, histograms, and other now well known statistical techniques. Although
he applied his methods to such diverse fields as psychology, agriculture, heredity,
linguistics, and even fingerprint analysis, he is likely most known for his work in
eugenics. The statistical methods he advanced have become commonplace in the
discipline, but they were rarely applied to astronomical analysis.

Karl Pearson (1857–1936) was another leading statistician during this period,
who also had an overriding interest in eugenics. His contributions to statistics en-
tailed developing the method of moments, constructing the now well-regarded Pear-
son correlation coefficient and Pearson Chi2 test. He also advanced the theory of
hypothesis testing, which later served as a key statistical operation in frequentist
methodology Pearson’s statistical methods became quite influential in social statis-
tics and early econometrics. However, early in the twentieth century he also applied
correlation analysis to various properties of stars. Unfortunately, he did not continue
with this research, but several astronomers followed in his footsteps.

Least squares regression also had some well known advocates within the astro-
nomical community during first part of the twentieth century. Edwin Hubble (1889–
1953), for example, used least squares regression when analyzing the relationship
of galactic distance and redshift, leading to the notion of an expanding universe.

Major advances in statistics occurred with the work of British statistician and
evolutionary biologist Ronald Fisher (1890–1962). Fisher is foremost responsible
for the development of maximum likelihood estimation, likelihood theory in gen-
eral, design of experiments and ANOVA, exact tests, and of the modern theory of
hypothesis testing. His contributions to statistics have left him regarded as the father
of modern statistics as well as the founder of modern quantitative genetics.

Fisher’s interests were in agriculture and biology, as were many of the statisti-
cians of the early/mid 20th century. Probability theory was also advanced by various
statisticians from the insurance industry. Application of these new methods simply
did not find their way into mainstream astronomy.

Fisher’s view of statistics was based on a frequency interpretation of statistical
inference in which probability is thought of in terms of the long range frequency of
events. To the frequentist, the mean of a large population has a true value. However,
we can typically only obtain a sample from this distribution, which may exist as both
past and future events as well as present events. Statistical methods are designed
to obtain a sample from a population in order to abstract an unbiased estimate of
the true mean, together with a confidence interval. This view of statistics has been
predominant in the discipline until recent years.
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Frequentist statistics took various turns during the early-mid part of the twentieth

Karl’s son, advanced an alternative view to Fisher’s notion of evaluating hypothe-
sis, which is now referred to as the Neyman–Pearson theory of hypothesis testing.
Egon and Fisher later developed their own feud, albeit a different one from the feud
between Karl Pearson and Fisher, as did Neyman and Fisher. But all three joined
in a vigorous opposition to the views of Cambridge geophysicist and mathemati-
cian, Harold Jeffreys (1891–1989), who was perhaps the foremost proponent of the
Bayes–Laplacean theory of statistics during the majority of the twentieth century.
Several other statisticians had advocated Bayesian–Laplacean views before him; e.g.
Italian actuary Bruno de Finetti (1906–1985) and Cambridge University mathemat-
ics professor Frank Ramsey (1903–1929). Even Egon Pearson had experimented
with Bayesian methods during the 1920s before turning to a strict frequentist ap-
proach. Interestingly Bayesian methods were employed in cryptology during World
War II, but the practitioners were generally careful not to characterize the methods
as Bayesian.

Jeffreys attempted to develop a full-fledged Bayesian theory of probability, pub-
lishing articles and a book on the subject, Theory of Probability (1939). His efforts
were largely ignored, but now they are classics in the field, and serve as the basis of
the contemporary revival of Bayes–Laplace statistics.

It is important to note that a growing number of current astrostatisticians em-
ploy a Bayesian approach to the analysis of astronomical data. Prior to the begin-
ning of this new millennium most astronomers used the more traditional frequentist
approach when engaged in inferential statistical analysis – the approach founded
in large part with the efforts of Fisher and Neyman-Pearson. The majority of as-
tronomers, as well as statisticians having an interest in astronomy, model astro-
nomical data using maximum likelihood, by some variety of EM algorithm, or by
employing quadrature techniques. I believe that the use of finite mixture models
and non-parametric quantile count models can be of considerable use in astronom-
ical analysis, but have thus far not observed their implementation in astrostatistical
modeling.

In 1996 Jogesh Babu and Eric Feigelson of Pennslyvania State University and
the Penn State Center for Astrostatistics authored a brief text titled Astrostatistics
[2], the first text specifically devoted to the discipline. All of the statistical proce-
dures discussed in the text were based on traditional statistical methods. However,
the use of Bayesian methods for the analysis of astronomical data was already in
its infancy. In 1990, Thomas Loredo, then a graduate student at the University of
Chicago, appears to have been the first researcher to employ Bayesian methods for
the analysis of astronomical observations in his 1990 PhD dissertation. His disser-
tation was based on observing 18 neutrinos from Supernova 1987A and using that
information to discern the inner structure of the star’s interior. As a single event,
frequentist methods were inappropriate. The success of his study stimulated other
astronomers to use Bayesian methods when evaluating astronomical events. Now,
as reflected in the monographs in this text, many leading astrostatisticians are im-
plementing Bayesian techniques for the analysis of astronomical data.

century. For example Jerzy Neyman (1894–1981) and Egon Pearson (1895–1980),
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It is sometimes forgotten that there is a symbiotic relationship between statistics
and computer technology [3]. For example, in 1949 Columbia economist Wassily
Leontief sought to analyze a problem related to the material and services sectors
of the U.S economy. It was determined that he needed to invert a 24x24 matrix
in order to determine the estimates of the related model parameters. With the help
of Jerome Cornford, a young researcher with the Bureau of Labor Statistics, who
had spent a week inverting a 12x12 matrix by hand for a preliminary version of
the model, it was determined that such an inversion would take a minimum of over
one hundred years, working 12 hours a day – not counting time to correct errors.
Leontief and Cornford instead turned to Harvard’s Mark II computer, the state of the
art machine at the time, to invert the matrix. It took only three days of processing to
invert the matrix and estimate the maximum likelihood parameters rather than the
hundred plus years needed to invert it by hand. The effort led to Leontief receiving
the Noble Prize in economics in 1973 [1]. It was also one of the first uses of a
computer to solve a problem in statistical modeling. Now a 24x24 matrix can be
inverted in microseconds by any laptop home computer. Much of the advances made
in statistics during the twentieth century has been constrained, if not defined, by
the available computing power required to execute a procedure. It was simply not
possible to perform the highly iterative simulations needed in Bayesian analysis
twenty years ago unless one had access to a sizeable mainframe system. A history
of the relationship of logistic-based and count model-based regression, software
availability, and computing power is given in [4] and [5], respectively.

As mentioned above, astronomers in general paid comparatively little attention
to inferential statistical methods throughout most of the twentieth century. The rea-
son for this is likely due to the fact that the computing power required to perform
meaningful statistical analysis of astronomical data was not in general available. A
brief overview of the relationship of computers and statistics in astronomy follows.

Statistical analyses were executed by hand and on primitive punch-card ma-
chines, first developed in 1911, until the development of the Harvard-IBM Mark 1 in
1944, which has been held as the first true computer. In 1952 the IBM 701 was de-
veloped, which was the first production computer, and which used a magnetic drum
to store memory. Nineteen 701 computers were constructed, only three of which
went to research agencies. They were not available for astronomical use. However,
the 701 spurred the creation of FORTRAN which was later used by scientists as
its favored programming language. IBM switched back to card punch technology
two years later when it began mass producing the 650 series of mainframes, which
were marketed to universities and research institutes as well as business organiza-
tions. In 1955 floating point arithmetic instructions were introduced, which greatly
assisted the accuracy of mathematical operations, such as matrix inversion. A few
astronomers took advantage of these computers, which steadily grew in power and
speed throughout the series, which ended in 1962.

The IBM 360 series of mainframe computers were released in 1964. This was the
first series of computers with compatible hardware and software. The use of virtual
memory came in 1970 with the 370 series. Speech recognition was developed in
1971 and networking in 1974. Finally, a Reduced Instruction Set Computer (RISC)



8 Joseph M. Hilbe

was created in 1981 which greatly enhanced computer speed. Astronomers working
for the government and larger universities and observatories generally had access to
mainframe technology from the mid 1950s, but usage cost was high and interactive
capabilities were simply not available. Cards or instructions were submitted at a ter-
minal, sent to the university’s or agency’s computing center, with results returned the
following day. Given that statisticians had not yet developed reliable multivariable
nonlinear regression software or other inferential procedures that could be helpful
to astronomers, the latter generally employed only descriptive statistics and rather
simple inferential methods when describing astronomical data. Except for basic sta-
tistical methods, astronomers had little use for statistics.

Since needed computing power was not available to most astronomers, even in
the first three decades of the second half of the twentieth century, statistical soft-
ware was not developed to meet the requirements of the discipline. Except for as-
tronomers who created their own statistical routines in FORTRAN and in a few al-
ternative languages, commercial statistical software was not available to the general
astronomical community until the late 1960s and early 1970s. Applications such as
SAS, SPSS, Systat, GLIM, and some other less known statistical applications were
not developed until that period. Recall that the first personal computers had little
power compared to their mainframe counterparts, and it was not until August 1981
that the first 4.77MHz 8088 processor IBM personal computer (PC) was released.
Like the Apple, Commodore, Adam, and other similar machines of the period, the
PC had no hard drive. The IBM XT was released in March 1983, coming with a
10MB hard drive, 128K of RAM, and ran on a 8088 processor. The IBM AT was
the second generation PC, released in late 1984 with a 20MB hard drive, a new
6MHz 80286 processor, and 512K RAM. A user could update the RAM up to 640K
maximum by installing it themselves. However, the AT was not inexpensive. The
list price for the basic machine was over US$8,000. Academics could purchase the
machine for half price through their University, but $4,000 was nevertheless a sub-
stantial sum at the time for a personal computer. Most computer work resided with

Enhancements to the IBM PC and the many clones which came into the market
became available to the user on a regular basis. A 80386 processor came out in
October 1985, the 80486 in 1989, and a 32-bit 80586 computer called the Pentium
in 1993. Pentiums contained 3.3 million transistors, nearly three times the power
of the 80486 machines. The Pentium II computer (1997) later provided users with
7.5 million transistors and 333MHz speed. A Pentium III (1999) with 1000MHz or
1GHz speed was introduced in May 2000. The Pentium 4 came out later that same
year, with a full 2GHz version sold in August of 2001, exactly twenty years after
the 4.77K 8088 machine was introduced to the world. Fortunately prices dropped as
fast as computer speed and memory increased, so computers with sufficient memory
to use for astronomical research were becoming more and more feasible.

The Intel Core architecture of microprocessors were released in 2006. It is the
current state of PC operation. In 2010 the Core i7 computer was released. As of this
writing a 2GHz 64-bit laptop having 6Ghz of RAM and running on a Windows 7 op-

department mini computers and observatory main frames. I shall focus on PC 
and PC software development though since this appears to had more impact on the 
subsequent relationship of astronomers and statisticians.
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time has grown from the earliest computers to the point that astronomers can engage
in serious statistical and mathematical analysis on a laptop computer. The turning
point when astronomers determined, albeit rather slowly, that meaningful inferential
statistical analysis of astronomical data was a viable enterprise occurred in the late
1980s and early 1990s. It was at this time that conferences between astronomers
and statisticians began to be held at various sites. Now nearly all astronomers see a

1.2 Recent Developments in Astrostatistics

Beginning in the mid 1980s, astronomers began to organize small conferences de-
voted to what we may now call astrostatistics. One of the first was the “Statisti-
cal Methods in Astronomy” conference held in Strasbourg in 1983. A number of
other conferences and series of conferences began at that time, but only one has
maintained a regular timetable over a decade or more – the “Statistical Challenges
in Modern Astronomy” conference, which has been held every 5 years since its
inception in 1991. Under the direction of Jogesh Babu and Eric Feigelson of the
Pennsylvania State University Center for Astrostatistics, the conference has brought
together both astronomers and statisticians from around the world for week-long
series of discussions.

During the 1990s several groups were organized consisting of astronomers
and statisticians having a common interest in developing new statistical tools for
understanding astronomical data. Two of the foremost groups are the Califor-
nia/Boston/Smithsonian Astrostatistics Collaboration (CHASC), headed by David
van Dyk of the University of California, Irvine, and the International Computa-
tional Astrostatistics (InCA) Group, which is primarily comprised of researchers
from Carnegie Mellon University and the University of Pittsburgh. CHASC, InCA,
and the Pennsylvania State University all belong to Large Synoptic Survey Tele-
scope (LSST) Project, which will provide huge amounts of data for analysis. The
8.4 meter LSST is currently scheduled to begin surveying activities in 2014.

Several sites in various parts of the world are presently engaged in develop-
ing astrostatistics programs and collaborations. An astrostatistics program is be-
ing developed by the joint efforts of the departments of Statistics and Astron-
omy/Astrophysics at Imperial College in London. Conferences on astrostatistics and
specializations in the discipline are also being developed at the University of Cal-
cutta, and at Pennsylvania State University, the University of Pittsburgh, Carnegie
Mellon, Harvard University, University of Florida, University of Birmingham, and
at other sites.

history of astrostatistics can be found in Feigelson & Babu, 2012.

erating system can be purchased for under a thousand dollars. The speed with which
operations may be calculated, and the amount of data that can be analyzed at one

value in astrostatistics. We shall look at this conversion in more detail in the follow-
ing section. An excellent overview of the modern and contemporary eras of the
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were based. That is, they did not fully appreciate the statistical theory underlying
their analyses. It was certainly not that astronomers lacked mathematical expertise
to understand these assumptions; rather it was that many had no special training
in statistical estimation. Moreover, many astronomers tended to use only a limited
number of statistical procedures. They had not become aware of the vast range of
statistical capabilities that had become available to professional statisticians and
other researchers [6]. Of course, there were noted exceptions, but it became readily
apparent in the late twentieth and during the first decade of the twenty-first cen-
turies that astronomers in general needed to enhance their statistical knowledge.
Those astronomers who took up this challenge believed that the best way to address
the problem was to conduct conferences and organize collaborative research groups
consisting of both astronomers and statisticians. I earlier mentioned some of these
groups and conferences.

As of 2009, a relative handful of astronomers and statisticians with an interest in
the statistical analysis of astronomical data were associated with collaborative or-
ganizations such as CHASC and InCa. Perhaps 40 to 50 attended the quint-annual
Statistical Challenges conference at Pennsylvania State University. Other confer-
ences have also been ongoing in Europe; e.g. Cosmostat. The remaining astrostatis-
ticians have established collaborative associations within their own universities, or
within a small group of universities. Some excellent work was being done in the
area of astrostatistics, but communication between astrostatisticians on a global ba-
sis has been rather haphazard. Until recently there has been no overall organization
or association for the discipline as a whole.

A requisite of my association with NASA’s Jet Propulsion Laboratory entails
that I participate on conference calls with the directors of various NASA and JPL
projects and missions. Since 2007 I repeatedly heard from principal investigators
that statistical issues were going to be a problem in the analysis of their data. This
in turn encouraged me to explore the possibility of forming an association of astro-
statisticians that would foster a global collaboration of statisticians and astronomers
with the aim of effecting better statistical research. In early 2008 I formed an ex-
ploratory astrostatistics interest group within the fold of the International Statis-
tical Institute (ISI), the world association of statisticians, with headquarters in The
Netherlands. A meeting of the interest group, comprised of both statisticians and as-
tronomers, was held in conjunction with the biannual ISI World Statistics Congress
held in Durban, South Africa in August 2009. The members of the interest group
agreed to propose that an ISI astrostatistics committee be formed and recognized as
part of the Institute. By this time there were some fifty members in the interest group.

In December 2009 the ISI Council approved the existence of astrostatistics as a
full standing committee of the ISI. However, ISI committees consist of no more than
twelve to fifteen members. In order to extend the committee to incorporate anyone

When astronomers again began to utilize inferential statistical methods into their
published research, many of the articles employed inappropriate statistical analy-
ses, or if correct methodology was employed, the analyses generally failed to ac-
count for possible violations of the assumptions upon which the research models

having an interest in the statistical analysis of astronomical data, I formed what is
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board. Membership has grown to over 200 members from some 30 nations and all
populated continents.

After two years of existence, the Network has established solid relationships with
both the ISI and International Astronomical Union (IAU) whose leadership has sup-
ported the Network and its goals. Network members were awarded an invited pa-
pers session and two special topics sessions at the 2011 World Statistics Congress
in Dublin, Ireland. In addition, discussions have been underway with several pub-
lishing houses regarding a Journal of Astrostatistics. The Network will only proceed
with such a venture if it is assured that there will be a rather steady long-term stream
of quality submissions made to the journal’s editorial board. As of this time we are
not convinced that this will be the case in the immediate future, but do plan for such
a journal in the future.

As a consequence of the initial successes of the Network, in December 2010
Springer Science and Business Media begun a Springer Series on Astrostatistics,
on which Network members hold the editorial board positions. The series will pub-
lish texts and monographs on a wide variety of astrostatistical and astrophysical
subjects. The Series will also publish Proceedings papers. Series books will be pub-
lished in both print and e-book format. The first two books in the new Series include
Astrostatistics and Data Mining (2012) [7] and this volume.

It is clear that many in the astrostatistics community believe that the existence of
a global association of astrostatisticians is a worthwhile body to support. However,
the Network is not aimed to be a governing organization, but rather an association
that seeks to augment and support the ongoing efforts of established astrostatistics
groups and conferences. It is an association of researchers with a common interest
and a resource to help disseminate information regarding astrostatistically related
literature, conferences, and research. Most importantly, it can also serve as the pro-
fessional society for those identifying themselves as astrostatisticians. Astrostatis-
tics as a profession is but in its infancy at this time, but it is hoped that a viable
profession will be established within the next twenty years.

Astrostatistics faces some formidable challenges. The National Virtual Obser-
vatory (NVO) is now being constructed which will link archival astronomical
databases and catalogues from the many ongoing surveys now being maintained,
including LSST. The goal is to make all gathered astronomical data available to
astronomers and astrostatisticians for analysis. However, this will involve many
petabytes of information. In a relatively short time the amount of data may exceed
an Exabyte, or a thousand petabytes. This is a truly huge amount of data. Even when
dealing with terabytes, current statistical software is not capable of handling such
an amount of information. A regression of a billion observations with 10 predictors
results in a matrix inversion that far exceeds current and realistically foreseeable
capabilities. New methods of statistical analysis will need to be developed to deal
with these large datasets. And new statistical methods will need to be created that
can evaluate such large amounts of data. There are a host of statistical and data min-
ing problems related to evaluating huge masses of data in the attempt to determine
the probability of some proposed outcome or event.

now known as the ISI International Astrostatistics Network as a separate body of
researchers, with the ISI astrostatistics committee serving as the Network executive
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Another major step in the advance of the discipline of astrostatistics oc-
curred in March of 2012. The Astrostatistics and Astroinformatics Portal
asaip.psu.edu> hosted by Pennsylvania State University, was established, provid-
ing astrostatisticians and others in related areas with an interactive web site in-
cluding discussion pages or forums, a component where selected journal articles
and pre-publication manuscripts can be downloaded, conferences announced, and
so forth. Members of the Network automatically became Portal members. Others
apply through application.

<http://

   
I believe that astrostatistics will only develop into a mature discipline, capable of

handing the looming data and analytic problems, by becoming a profession. This can
be done by developing joint programs in the discipline, sponsored and maintained
by the mutual efforts of the departments of statistics and astronomy/astrophysics at
leading universities. Graduates will be awarded MS and PhD degrees in astrostatis-
tics, and be trained in statistical analysis, astrophysics, and computer and compu-
tational logic. With a new generation of astrostatisticians engaged in handling the
problems I have previously mentioned, there is more likelihood that the foremost
questions we have of the early universe, as well a host of other queries, can be
answered. Astrostatistics has a deep heritage within the disciplines of both statis-
tics and astronomy, reaching back to their very beginnings, but its value rests in
the future. With continually increased computer computation speed and enhanced
memory available to astrostatisticians in the future, it is likely that answers may
be found to many of the fundamental questions that are of concern to present-day
astronomy and cosmology. I also suspect that many of the methods of analysis dis-
covered and used by astrostatisticians will be of considerable value to researchers in
other disciplines as well.

References

1. McGrayne, S.B.: The theory that would not die. Yale University Press, New Haven, CT (2011)
2. Babu, G.J., Feigelson, E.D.: Astrostatistics. Chapman & Hall, Baton Rouge, FL (1996)
3. Hilbe, J.M.: The Co-evolution of Statistics and Hz. In: Sawilowsky, S. (ed.), Real Data Analysis,

pp 3–20, Information Age Publishing, Charlotte, NC (2007)
4. Hilbe, J.M.: Logistic Regression Models. Chapman & Hall/CRC, Boca Raton, FL (2009)
5. Hilbe, J.M.: Negative Binomial Regression, 2nd edn. Cambridge University Press, Cambridge,

UK (2011)

On August 28, 2012 the ISI astrostatistics Network approved becoming an 
independent professional organization for astronomers, statisticians and information 
scientists having an interest in the statistical analysis of astronomical data. It is 
named the International Astrostatistics Association (IAA), with the Portal as its host 
website. Soon following the creation of the IAA, both the IAU and American 
Astronomical Society (AAS) approved Astrostatistics Working Groups, the first 
time for any astronomical organization. The Portal was amended to have three 
components: the IAA, other international, national and astrostatistical specialty area 
organizations, and the LSST project. The Portal has in effect become the web site for 
the discipline.  



6. Babu, G.J., Feigelson, E.D.: Statistical Challenges in Modern Astronomy, arXiv:astro-ph/
0401404v1, Cornell University Library Astrophysical Archives (2004)

7. Baro, L.M.S, Eyer, L., O’Mullane, W., de Ridder, J. (eds.): Astrostatistics and Data Mining,
New York: Springer (2004)

8. Feigelson, E.D. and Babu, G.J.: Modern Statistical Methods for Astronomy, Cambidge
University Press, Cambridge, UK (2012)

1 Astrostatistics: A Brief History and View to the Future 13



Chapter 2
Bayesian Astrostatistics: A Backward Look to
the Future

Thomas J. Loredo

Abstract This “perspective” chapter briefly surveys (1) past growth in the use of
Bayesian methods in astrophysics; (2) current misconceptions about both frequen-
tist and Bayesian statistical inference that hinder wider adoption of Bayesian meth-
ods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major
future direction for research in Bayesian astrostatistics.

This volume contains presentations from the first invited session on astro-
statistics to be held at an International Statistical Institute (ISI) World Statistics
Congress. This session was a major milestone for astrostatistics as an emerging
cross-disciplinary research area. It was the first such session organized by the ISI
Astrostatistics Committee, whose formation in 2010 marked formal international
recognition of the importance and potential of astrostatistics by one of its infor-
mation science parent disciplines. It was also a significant milestone for Bayesian
astrostatistics, as this research area was chosen as a (non-exclusive) focus for the
session.

As an early (and elder!) proponent of Bayesian methods in astronomy, I have
been asked to provide a “perspective piece” on the history and status of Bayesian
astrostatistics. I begin by briefly documenting the rapid rise in use of the Bayesian
approach by astrostatistics researchers over the past two decades. Next, I describe
three misconceptions about both frequentist and Bayesian methods that hinder wider
adoption of the Bayesian approach across the broader community of astronomer
data analysts. Then I highlight the emerging role of multilevel (hierarchical)
Bayesian modeling in astrostatistics as a major future direction for research in
Bayesian astrostatistics. I end with a provocative recommendation for survey data
reporting, motivated by the multilevel Bayesian perspective on modeling cosmic
populations.
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2.1 Looking back

Bayesian ideas entered modern astronomical data analysis in the late 1970s, when
Gull and Daniell [1, 2] framed astronomical image deconvolution in Bayesian
terms.1 Motivated by Harold Jeffreys’ Bayesian Theory of Probability [4], and
Edwin Jaynes’s introduction of Bayesian and information theory methods into sta-
tistical mechanics and experimental physics [5], they addressed image estimation
by writing down Bayes’s theorem for the posterior probability for candidate images,
adopting an entropy-based prior distribution for images. They focused on finding a
single “best” image estimate based on the posterior: the maximum entropy (Max-
Ent) image (maximizing the entropic prior probability subject to a somewhat ad
hoc likelihood-based constraint expressing goodness of fit to the data). Such esti-
mates could also be found using frequentist penalized likelihood or regulariza-
tion approaches. The Bayesian underpinnings of MaxEnt image deconvolution thus
seemed more of a curiosity than the mark of a major methodological shift.

By about 1990, genuinely Bayesian data analysis — in the sense of reporting
Bayesian probabilities for statistical hypotheses, or samples from Bayesian posterior
distributions — began appearing in astronomy. The Cambridge MaxEnt group of
astronomers and physicists, led by Steve Gull and John Skilling, began developing
“quantified MaxEnt” methods to quantify uncertainty in image deconvolution (and
other inverse problems), rather than merely reporting a single best-fit image. On
the statistics side, Brian Ripley’s group began using Gibbs sampling to sample from
posterior distributions for astronomical images based on Markov random field priors
[6]. My PhD thesis (defended in 1990) introduced parametric Bayesian modeling
of Poisson counting and point processes (including processes with truncation or
thinning, and measurement error) to high-energy astrophysics (X-ray and gamma-
ray astronomy) and to particle astrophysics (neutrino astronomy). Bayesian methods
were just beginning to be used for parametric modeling of ground- and space-based
cosmic microwave background (CMB) data [e.g., 7].

It was in this context that the first session on Bayesian methods to be held at an
astronomy conference (to my knowledge) took place, at the first Statistical Chal-
lenges in Modern Astronomy conference (SCMA I), hosted by statistician G. Jogesh
Babu and astronomer Eric Feigelson at Pennsylvania State University in August
1991. Bayesian methods were not only new, but also controversial in astronomy
at that time. Of the 22 papers published in the SCMA I proceedings volume [8],
only two were devoted to Bayesian methods ([6] and [9]; see also the unabridged
version of the latter, [10]).2 Both papers had a strong pedagogical component (and
a bit of polemic). Of the 131 SCMA I participants (about 60% astronomers and

1 Notably, Sturrock [3] earlier introduced astronomers to the use of Bayesian probabilities for
“bookkeeping” of subjective beliefs about astrophysical hypotheses, but he did not discuss statisti-
cal modeling of measurements per se.
2 A third paper [11] had some Bayesian content but focused on frequentist evaluation criteria, even
for the one Bayesian procedure considered; these three presentations, with discussion, comprised
the Bayesian session.
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40% statisticians), only two were astronomers whose research prominently featured
Bayesian methods (Steve Gull and me).

Twenty years later, the role of Bayesian methods in astrostatistics research is
dramatically different. The 2008 Joint Statistical Meetings included two sessions
on astrostatistics predominantly devoted to Bayesian research. At SCMA V, held in
June 2011, two sessions were devoted entirely to Bayesian methods in astronomy:
“Bayesian analysis across astronomy” (BAA), with eight papers and two commen-
taries, and “Bayesian cosmology,” including three papers with individual commen-
taries. Overall, 14 of 32 invited presentations (not counting commentaries) featured
Bayesian methods, and the focus was on calculations and results rather than on ped-
agogy and polemic. About two months later, the ISI World Congress session on
astrostatistics commemorated in this volume was held; as already noted, its focus
was Bayesian astrostatistics.

On the face of it, these events seem to indicate that Bayesian methods are not
only no longer controversial, but are in fact now widely used, even favored for some
applications (most notably for parametric modeling in cosmology). But how repre-
sentative are the conference presentations of broader astrostatistical practice?

Fig. 2.1 shows my amateur attempt at bibliometric measurement of the growing
adoption of Bayesian methods in both astronomy and physics, based on queries of
publication data in the NASA Astrophysics Data System (ADS). Publication counts
indicate significant and rapidly growing use of Bayesian methods in both astron-
omy and physics.3 Cursory examination of the publications reveals that Bayesian
methods are being developed across a wide range of astronomical subdisciplines.

It is tempting to conclude from the conference and bibliometric indicators that
Bayesian methods are now well-established and well-understood across astronomy.
But the conference metrics reflect the role of Bayesian methods in the astrostatis-
tics research community, not in bread-and-butter astronomical data analysis. And as
impressive as the trends in the bibliometric metrics may be, the absolute numbers
remain small in comparison to all astronomy and physics publications, even limit-
ing consideration to data-based studies. Although their impact is growing, Bayesian
methods are not yet in wide use by astronomers.

My interactions with colleagues indicate that significant misconceptions persist
about fundamental aspects of both frequentist and Bayesian statistical inference,
clouding understanding of how these rival approaches to data analysis differ and
relate to one another. I believe these misconceptions play no small role in hinder-
ing broader adoption of Bayesian methods in routine data analysis. In the follow-
ing section I highlight a few misconceptions I frequently encounter. I present them
here as a challenge to the Bayesian astrostatistics community; addressing them may
accelerate the penetration of sound Bayesian analysis into routine astronomical data
analysis.

3 Roberto Trotta and Martin Hendry have shown similar plots in various venues, helpfully noting
that the recent rate of growth apparent in Fig. 2.1 is much greater than the rate of growth in the
number of all publications; i.e., not just the amount but also the prevalence of Bayesian work is
rapidly rising.

2 Bayesian Astrostatistics
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Fig. 2.1 Simple bibliometrics measuring the growing use of Bayesian methods in astronomy and
physics, based on queries of the NASA ADS database in October 2011. Thick (blue) curves
(against the left axis) are from queries of the astronomy database; thin (red) curves (against the
right axis) are from joint queries of the astronomy and physics databases. For each case the dashed
lower curve indicates the number of papers each year that include “Bayes” or “Bayesian” in the
title or abstract. The upper curve is based on the same query, but also counting papers that use
characteristically Bayesian terminology in the abstract (e.g., the phrase “posterior distribution” or
the acronym “MCMC”); it is meant to capture Bayesian usage in areas where the methods are
well-established, with the “Bayesian” appellation no longer deemed necessary or notable.

2.2 Misconceptions

For brevity, I will focus on just three important misconceptions I repeatedly
encounter about Bayesian and frequentist methods, posed as (incorrect!) “concep-
tual equations.” They are:

� Variability D Uncertainty: This is a misconception about frequentist statistics
that leads analysts to think that good frequentist statistics is easier to do than it
really is.

� Bayesian computation D Hard: This is a misconception about Bayesian meth-
ods that leads analysts to think that implementing them is harder than it really
is, in particular, that it is harder than implementing a frequentist analysis with
comparable capability.

� Bayesian = Frequentist C Priors: This is a misconception about the role of
prior probabilities in Bayesian methods that distracts analysts from more essen-
tial features of Bayesian inference.

I will elaborate on these faulty equations in turn.
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Variability D Uncertainty: Frequentist statistics gets its name from its reliance on
the long-term frequency conception of probability: frequentist probabilities describe
the long-run variability of outcomes in repeated experimentation. Astronomers who
work with data learn early in their careers how to quantify the variability of data
analysis procedures in quite complicated settings using Monte Carlo methods that
simulate data. How to get from quantification of variability in the outcome of a
procedure applied to an ensemble of simulated data, to a meaningful and useful
statement about the uncertainty in the conclusions found by applying the procedure
to the one actually observed data set, is a subtle problem that has occupied the minds
of statisticians for over a century. My impression is that many astronomers fail to
recognize the distinction between variability and uncertainty, and thus fail to appre-
ciate the achievements of frequentist statistics and their relevance to data analysis
practice in astronomy. The result can be reliance on overly simplistic “home-brew”
analyses that at best may be suboptimal, but that sometimes can be downright mis-
leading. A further consequence is a failure to recognize fundamental differences
between frequentist and Bayesian approaches to quantification of uncertainty (e.g.,
that Bayesian probabilities for hypotheses are not statements about variability of
results in repeated experiments).

To illustrate the issue, consider estimation of the parameters of a model being fit
to astronomical data, say, the parameters of a spectral model. It is often straightfor-
ward to find best-fit parameters with an optimization algorithm, e.g., minimizing a
�2 measure of misfit, or maximizing a likelihood function. A harder but arguably
more important task is quantifying uncertainty in the parameters. For abundant data,
an asymptotic Gaussian approximation may be valid, justifying use of the Hessian
matrix returned by many optimization codes to calculate an approximate covariance
matrix for defining confidence regions. But when uncertainties are significant and
models are nonlinear, we must use more complicated procedures to find accurate
confidence regions.

Bootstrap resampling is a powerful framework statisticians use to develop meth-
ods to accomplish this. There is a vast literature on applying the bootstrap idea in
various settings; much of it is devoted to the nontrivial problem of devising algo-
rithms that enable useful and accurate uncertainty statements to be derived from sim-
ple bootstrap variability calculations. Unfortunately, this literature is little-known
in the astronomical community, and too often astronomers misuse bootstrap ideas.
The variability-equals-uncertainty misconception appears to be at the root of the
problem.

As a cartoon example, suppose we have spectral data from a source that we
wish to fit with a simple thermal spectral model with two parameters, an amplitude,
A (e.g., proportional to the source area and inversely proportional to its distance
squared), and a temperature, T (determining the shape of the spectrum as a function
of energy or wavelength); we denote the parameters jointly by P D .A; T /. Fig. 2.2
depicts the two-dimensional .A; T / parameter space, with the best-fit parameters,
OP.Dobs/, indicated by the blue four-pointed star. We can use simulated data to find

the variability of the estimator (i.e., of the function OP.D/ defined by the optimizer).
But how should we simulate data when we do not know the true nature of the signal

2 Bayesian Astrostatistics
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Fig. 2.2 Illustration of the nontrivial relationship between variability of an estimator, and uncer-
tainty of an estimate as quantified by a frequentist confidence region. Shown is a two-dimensional
parameter space with a best-fit estimate to the observed data (blue 4-pointed star), best-fit estimates
to boostrapped data (black dots) showing variability of the estimator, and a contour bounding a
parametric bootstrap confidence region quantifying uncertainty in the estimate.

(and perhaps of noise and instrumental distortions)? And how should the variabil-
ity of simulation results be used to quantify the uncertainty in results based on the
observed data?

The underlying idea of the bootstrap is to use the observed data set to define the
ensemble of hypothetical data to use in variability calculations, and to find func-
tions of the data (statistics) whose variability can be simply used to quantify uncer-
tainty (e.g., via moments or a histogram). Normally using the observed data to define
the ensemble for simulations would be cheating and would invalidate one’s infer-
ences; all frequentist probabilities formally must be “pre-observation” calculations.
A major achievement of the bootstrap literature is showing how to use the observed
data in a way that gives approximately valid results (hopefully with a rate of conver-
gence better than the O.1=

p
N/ rate achieved by simple Gaussian approximations,

for sample size N ).
One way to proceed is to use the full model we are fitting (both the signal model

and the instrument and noise model) to simulate data, with the parameters fixed
at OP.Dobs/ as a surrogate for the true values. Statisticians call this the parametric
bootstrap; it was popularized to astronomers in a well-known paper by Lampton,
Margon and Bowyer ([12], hereafter LMB76; statisticians introduced the “para-
metric bootstrap” terminology later). Alternatively, if some probabilistic aspects of
the model are not trusted (e.g., the error distribution is considered unrealistic), an
alternative approach is the nonparametric bootstrap, which “recycles” the observed
data to generate simulated data (in some simple cases, this may be done by sam-
pling from the observed data with replacement to generate each simulated data set).
Whichever approach we adopt, we will generate a set of simulated data, fDig, to
which we can apply our fitting procedure to generate a set of best-fit parameter
points f OP.Di /g that together quantify the variability of our estimator. The black
dots in Fig. 2.2 show a scatterplot or “point cloud” of such parameter estimates.
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What does the point cloud tell us about the uncertainty we should associate with
the estimate from the observed data (the blue star)? The practice I have seen in too
many papers is to interpret the points as samples from a probability distribution
in parameter space.4 The cloud itself might be shown, with a contour enclosing a
specified fraction of the points offered as a joint confidence region. One-dimensional
histograms may be used to find “1�” (i.e., 68.3%) confidence regions for particular
parameters of interest. Such procedures naively equate variability with uncertainty:
the uncertainty of the estimate is identified with the variability of the estimator.
Regions created this way are wrong, plainly and simply. They will not cover the true
parameters with the claimed probability, and they are skewed in the wrong direction.
This is apparent from the figure; the black points are skewed down and to the right
from the parameter values used to produce the simulated data; the parameters that
produced the observed data are thus likely to be up and to the left of the star.

In a correct parametric bootstrapping calculation (i.e., with a trusted model), one
can use simulated data to calibrate �2 or likelihood contours for defining confidence
regions. The procedure is not very complicated, and produces regions like the one
shown by the contour in Fig. 2.2, skewed in just the right way; LMB76 described the
construction. But frequently investigators are attempting a nonparametric bootstrap,
corresponding to a trusted signal model but an untrusted noise model (often this is
done without explicit justification, as if nonparametric bootstrapping is the only type
of bootstrapping). In this case devising a sound bootstrap confidence interval algo-
rithm is not so simple. Indeed, there is a large statistics literature on nonparametric
bootstrap confidence intervals, its size speaking to nontrivial challenges in making
the bootstrap idea work. In particular, no simple procedure is currently known for
finding accurate joint confidence regions for multiple parameters in nonlinear mod-
els using the nonparametric bootstrap; yet results purporting to come from such
a procedure appear in a number of astronomical publications. Strangely, the most
cited reference on bootstrap confidence regions in the astronomical literature is a
book on numerical methods, authored by astronomers, with an extremely brief and
misleadingly simplistic discussion of the nonparametric bootstrap (and no explicit
discussion of parametric bootstrapping). Sadly, this is not the only area where our
community appears content disregarding a large body of relevant statistics research
(frequentist or otherwise).

What explains such disregard of relevant and nontrivial expertise? I am sure there
are multiple factors, but I suspect an important one is the misconception that vari-
ability may be generically identified with uncertainty. If one believes this, then doing
(frequentist) statistics appears to be a simple matter of simulating data to quantify
the variability of procedures. For linear models with normally-distributed errors, the
identification is practically harmless; it is conceptually flawed but leads to correct

4 I am not providing references to publications exhibiting the problem for diplomatic reasons and
for a more pragmatic and frustrating reason: In the field where I have repeatedly encountered
the problem—analysis of infrared exoplanet transit data—authors routinely fail to describe their
analysis methods with sufficient detail to know what was done, let alone to enable readers to verify
or duplicate the analysis. While there are clear signs of statistical impropriety in many of the papers,
I only know the details from personal communications with exoplanet transit scientists.
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results by accident. But more generally, determining how to use variability to quan-
tify uncertainty can be subtle and challenging. Statisticians have worked for a cen-
tury to establish how to map variability to uncertainty; when we seek frequentist
quantifications of uncertainty in nontrivial settings, we need to mine their expertise.

Why devote so much space to a misconception about frequentist statistics in a
commentary on Bayesian methods? The variability-equals-uncertainty misconcep-
tion leads data analysts to think that frequentist statistics is easier than it really
is, in fact, to think that they already know what they need to know about it. If
astronomers realize that sound statistical practice is nontrivial and requires study,
they may be more likely to study Bayesian methods, and more likely to come to
understand the differences between the frequentist and Bayesian approaches. Also,
for the example just described, the way some astronomers misuse the bootstrap is
to try to use it to define a probability distribution over parameter space. Frequentist
statistics denies such a concept is meaningful, but it is exactly what Bayesian meth-
ods aim to provide, e.g., with point clouds produced via Markov chain Monte Carlo
(MCMC) posterior sampling algorithms. This brings us to the topic of Bayesian
computation.

Bayesian computation D Hard: A too-common (and largely unjustified) com-
plaint about Bayesian methods is that their computational implementation is dif-
ficult, or more to the point, that Bayesian computation is harder than frequentist
computation. Analysts wanting a quick and usable result are thus dissuaded from
considering a Bayesian approach. It is certainly true that posterior sampling via
MCMC—generating pseudo-random parameter values distributed according to the
posterior—is harder to do well than is generating pseudo-random data sets from
a best-fit model. (In fact, I would argue that our community may not appreciate
how hard it can be to do MCMC well.) But this is an apples-to-oranges compari-
son between methods making very different types of approximations. Fair compar-
isons, between Bayesian and frequentist methods with comparable capabilities and
approximations, tell a different story. Advocates of Bayesian methods need to give
this complaint a proper and public burial.

Consider first basic “textbook” problems that are analytically accessible. Exam-
ples include estimating the mean of a normal distribution, estimating the coefficients
of a linear model (for data with additive Gaussian noise), similar estimation when
the noise variance is unknown (leading to Student’s t distribution), estimating the
intensity of a Poisson counting process, etc.. In such problems, the Bayesian calcu-
lation is typically easier than its frequentist counterpart, sometimes significantly so.
Nowhere is this more dramatically demonstrated than in Jeffreys’s classic text, The-
ory of Probability [4]. In chapter after chapter, Jeffreys solves well-known statistics
problems with arguments significantly more straightforward and mathematics sig-
nificantly more accessible than are used in the corresponding frequentist treatments.
The analytical tractability of such foundational problems is an aid to developing
sound statistical intuition, so this is not a trivial virtue of the Bayesian approach.
(Of course, ease of use is no virtue at all if you reject an approach—Bayesian, fre-
quentist, or otherwise—on philosophical grounds.)
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Turn now to problems of more realistic complexity, where approximate numer-
ical methods are necessary. The main computational challenge for both frequen-
tist and Bayesian inference is multidimensional integration, over the sample space
for frequentist methods, and over parameter space for Bayesian methods. In high
dimensions, both approaches tend to rely on Monte Carlo methods for their com-
putational implementation. The most celebrated approach to Bayesian computation
is MCMC, which builds a multivariate pseudo-random number generator producing
dependent samples from a posterior distribution. Frequentist calculation instead uses
Monte Carlo methods to simulate data (i.e., draw samples from the sampling distri-
bution). Building an MCMC posterior sampler, and properly analyzing its output,
is certainly more challenging than simulating data from a model, largely because
data are usually independently distributed; nonparametric bootstrap resampling of
data may sometimes be simpler still. But the comparison is not fair. In typical fre-
quentist Monte Carlo calculations, one simulates data from the best-fit model (or
a bootstrap surrogate), not from the true model (or other plausible models). The
resulting frequentist quantities are approximate, not just because of Monte Carlo
error, but because the integrand (or family of integrands) that would appear in an
exact frequentist calculation is being approximated (asymptotically). In some cases,
an exact finite-sample formulation of the problem may not even be known. In con-
trast, MCMC posterior sampling makes no approximation of integrands; results are
approximate only due to Monte Carlo sampling error. No large-sample asymptotic
approximations need be invoked.

This point deserves amplification. Although the main computational challenge
for frequentist statistics is integration over sample space, there are additionally seri-
ous theoretical challenges for finite-sample inference in many realistically complex
settings. Such challenges do not typically arise for Bayesian inference. These the-
oretical challenges, and the analytical approximations that are adopted to address
them, are ignored in comparisons that pit simple Monte Carlo simulation of data or
bootstrapping against MCMC or other nontrivial Bayesian computation techniques.
Arguably, accurate finite-sample parametric inference is often computationally sim-
pler for Bayesian methods, because an accurate frequentist calculation is simply
impossible, and an approximate calculation can quantify only the rate of conver-
gence of the approximation, not the actual accuracy of the specific calculation being
performed.

If one is content with asymptotic approximations, the fairer comparison is
between asymptotic frequentist and asymptotic Bayesian methods. At the lowest
order, asymptotic Bayesian computation using the Laplace approximation is not
significantly harder than asymptotic frequentist calculation. It uses the same basic
numerical quantities—point estimates and Hessian matrices from an optimizer—
but in different ways. It provides users with nontrivial new capabilities, such as the
ability to marginalize over nuisance parameters, or to compare models using Bayes
factors that include an “Ockham’s razor” penalty not present in frequentist signif-
icance tests, and that enable straightforward comparison of rival models that need
not be nested (with one being a special case of the other). And the results are some-
times accurate to one order higher (in 1=

p
N ) than corresponding frequentist results

2 Bayesian Astrostatistics



24 Thomas J. Loredo

(making them potentially competitive with some bootstrap methods seeking similar
asymptotic approximation rates).

Some elaboration of these issues is in [13], including references to literature on
Bayesian computation up to that time. A more recent discussion of this misconcep-
tion about Bayesian methods (and other misconceptions) is in an insightful essay
by the Bayesian economist Christopher Sims, winner of the 2011 Nobel Prize in
economics [14].

Bayesian = Frequentist C Priors: I recently helped organize and present two days
of tutorial lectures on Bayesian computation, as a prelude to the SCMA V confer-
ence mentioned above. As I was photocopying lecture notes for the tutorials, a col-
league walked into the copy room and had a look at the table of contents for the
tutorials. “Why aren’t all of the talks about priors?” he asked. In response to my
puzzled look, he continued, “Isn’t that what Bayesian statistics is about, accounting
for prior probabilities?”

Bayesian statistics gets its name from Bayes’s theorem, establishing that the pos-
terior probability for a hypothesis is proportional to the product of its prior proba-
bility, and the probability for the data given the hypothesis (i.e., the sampling distri-
bution for the data). The latter factor is the likelihood function when considered as
a function of the hypotheses being considered (with the data fixed to their observed
values). Frequentist methods that directly use the likelihood function, and their least-
squares cousins (e.g.,�2 minimization), are intuitively appealing to astronomers and
widely used. On the face of it, Bayes’s theorem appears merely to add modulation
by a prior to likelihood methods. By name, Bayesian statistics is evidently about
using Bayes’s theorem, so it would seem it must be about how frequentist results
should be altered to account for prior probabilities.

It would be hard to overstate how wrong this conception of Bayesian statistics is.
The name is unfortunate; Bayesian statistics uses all of probability theory, not

just Bayes’s theorem, and not even primarily Bayes’s theorem. What most funda-
mentally distinguishes Bayesian calculations from frequentist calculations is not
modulation by priors, but the key role of probability distributions over parame-
ter (hypothesis) space in the former, and the complete absence of such distribu-
tions in the latter. Via Bayes’s theorem, a prior enables one to use the likelihood
function—describing a family of measures over the sample space—to build the
posterior distribution—a measure over the parameter (hypothesis) space (where by
“measure” I mean an additive function over sets in the specified space). This con-
struction is just one step in inference. Once it happens, the rest of probability theory
kicks in, enabling one to assess scientific arguments directly by calculating probabil-
ities quantifying the strengths of those arguments, rather than indirectly, by having
to devise a way that variability of a cleverly chosen statistic across hypothetical data
might quantify uncertainty across possible choices of parameters or models for the
observed data.

Perhaps the most important theorem for doing Bayesian calculations is the law
of total probability (LTP) that relates marginal probabilities to joint and conditional
probabilities. To describe its role, suppose we are analyzing some observed data,



25

Dobs, using a parametric model with parameters � . Let M denote all the modeling
assumptions—definitions of the sample and parameter spaces, description of the
connection between the model and the data, and summaries of any relevant prior
information (parameter constraints or results of other measurements). Now consider
some of the common uses of LTP in Bayesian analysis:

� Calculating the probability in a credible region, R, for � :

p.� 2 RjDobs/ D
Z
R

d� p.� 2 Rj�/ p.� jDobs/ k M: (2.1)

Here I have introduced a convenient shorthand due to John Skilling: “kM ” indi-
cates that M is conditioning information common to all displayed probabilities.

� Calculating a marginal posterior distribution when a vector parameter � has both
an interesting subset of parameters,  , and nuisance parameters, �:

p. jDobs/ D
Z
d�p. ; �jDobs/ k M: (2.2)

� Comparing rival parametric models Mi (each with parameters �i ) via posterior
odds or Bayes factors, which requires computation of the marginal likelihood for
each model given by

p.DobsjMi / D
Z
d�i p.�i jMi / p.Dobsj�i ;Mi / k M1 _M2 : : : : (2.3)

In words, this says that the likelihood for a model is the average of the likelihood
function for that model’s parameters.

� Predicting future data, D0, with the posterior predictive distribution,

p.D0jDobs/ D
Z
d� p.D0j�/ p.� jDobs/ k M: (2.4)

Arguably, if this approach to inference is to be named for a theorem, “total probabil-
ity inference” would be a more appropriate appellation than “Bayesian statistics.” It
is probably too late to change the name. But it is not too late to change the emphasis.

In axiomatic developments of Bayesian inference, priors play no fundamental
role; rather, they emerge as a required ingredient when one seeks a consistent or
coherent calculus for the strengths of arguments that reason from data to hypothe-
ses. Sometimes priors are eminently useful, as when one wants to account for a
positivity constraint on a physical parameter, or to combine information from dif-
ferent experiments or observations. Other times they are frankly a nuisance, but alas
still a necessity.

A physical analogy I find helpful for elucidating the role of priors in Bayesian
inference appeals to the distinction between intensive and extensive quantities in
thermodynamics. Temperature is an intensive property; in a volume of space it is
meaningful to talk about the temperature T .x/ at a point x, but not about the “total
temperature” of the volume; temperature does not add or integrate across space. In
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contrast, heat is an extensive property, an additive property of volumes; in mathe-
matical parlance, it may be described by a measure (a mapping from regions, rather
than points, to a real number). Temperature and heat are related; the heat in a vol-
ume V is given by Q D R

V
dx Œ�.x/c.x/�T .x/, where �.x/ is the density and c.x/

is the specific heat capacity. The product �c is extensive, and serves to convert the
intensive temperature to its extensive relative, heat. In Bayesian inference, the prior
plays an analogous role, not just “modulating” likelihood, but converting intensive
likelihood to extensive probability. In thermodynamics, a region with a high temper-
ature may have a small amount of heat if its volume is small, or if, despite having a
large volume, the value of �c is small. In Bayesian statistics, a region of parameter
space with high likelihood may have a small probability if its volume is small, or if
the prior assigns low probability to the region.

This accounting for volume in parameter space is a key feature of Bayesian
methods. What makes it possible is having a measure over parameter space. Pri-
ors are important, not so much as modulators of likelihoods, but as converters
from intensities (likelihoods) to measures (probabilities). With poetic license, one
might say that frequentist statistics focuses on the “hottest” (highest likelihood)
hypotheses, while Bayesian inference focuses on hypotheses with the most “heat”
(probability).

Incommensurability: The growth in the use of Bayesian methods in recent
decades has sometimes been described as a “revolution,” presumably alluding
to Thomas Kuhn’s concept of scientific revolutions [15]. Although adoption of
Bayesian methods in many disciplines has been growing steadily and sometimes
dramatically, Bayesian methods have yet to completely or even substantially replace
frequentist methods in any broad discipline I am aware of (although this has hap-
pened in some subdisciplines). I doubt the pace and extent of change qualifies for
a Kuhnian revolution. Also, the Bayesian and frequentist approaches are not rival
scientific theories, but rather rival paradigms for a part of the scientific method itself
(how to build and assess arguments from data to scientific hypotheses). Neverthe-
less, the competition between Bayesian and frequentist approaches to inference does
bear one hallmark of a Kuhnian revolution: incommensurability. I believe Bayesian-
frequentist incommensurability is not well-appreciated, and that it underlies multi-
ple misconceptions about the approaches.

Kuhn insisted that there could be no neutral or objective measure allowing com-
parison of competing paradigms in a budding scientific revolution. He based this
claim on several features he found common to scientific revolutions, including
the following: (1) Competing paradigms often adopt different meanings for the
same term or statement, making it very difficult to effectively communicate across
paradigms (a standard illustration is the term “mass,” which takes on different mean-
ings in Newtonian and relativistic physics). (2) Competing paradigms adopt differ-
ent standards of evaluation; each paradigm typically “works” when judged by its
own standards, but the standards themselves are of limited use in comparing across
paradigms.
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These aspects of Kuhnian incommensurability are evident in the frequentist and
Bayesian approaches to statistical inference. (1) The term “probability” takes dif-
ferent meanings in frequentist and Bayesian approaches to uncertainty quantifica-
tion, inviting misunderstanding when comparing frequentist and Bayesian answers
to a particular inference problem. (2) Long-run performance is the gold standard
for frequentist statistics; frequentist methods aim for specified performance across
repeated experiments by construction, but make no probabilistic claims about the
result of application of a procedure to a particular observed dataset. Bayesian meth-
ods adopt more abstract standards, such as coherence or internal consistency, that
apply to inference for the case-at-hand, with no fundamental role for frequency-
based long-run performance. A frequentist method with good long-run perfor-
mance can violate Bayesian coherence or consistency requirements so strongly as
to be obviously unacceptable for inference in particular cases.5 On the other hand,
Bayesian algorithms do not have guaranteed frequentist performance; if it is of inter-
est, it must be separately evaluated, and priors may need adjustment to improve
frequentist performance.6

Kuhn considered rival paradigms to be so “incommensurable” that “proponents
of competing paradigms practice their trades in different worlds.” He argued that
incommensurability is often so stark that for an individual scientist to adopt a new
paradigm requires a psychological shift that could be termed a “conversion experi-
ence.” Following Kuhn, philosophers of science have debated how extreme incom-
mensurability really is between rival paradigms, but the concept is widely consid-
ered important for understanding significant changes in science. In this context, it
is notable that statisticians, and scientists more generally, often adopt a particular
almost-religious terminology in frequentist vs. Bayesian discussions: rather than a
method being described as frequentist or Bayesian, the investigator is so described.
This seems to me to be an unfortunate tradition that should be abandoned. Never-
theless, it does highlight the fundamental incommensurability between these rival
paradigms for uncertainty quantification. Advocates of one approach or the other
(or of a nuanced combination) need to more explicitly note and discuss this incom-
mensurability, especially with non experts seeking to choose between approaches.

The fact that both paradigms remain in broad use suggests that ideas from both
approaches may be relevant to inference; perhaps they are each suited to addressing
different types of scientific questions. For example, my discussion of misconcep-
tions has been largely from the perspective of parametric modeling (parameter esti-
mation and model comparison). Nonparametric inference raises more subtle issues

5 Efron [16] describes some such cases by saying the frequentist result can be accurate but not
correct. Put another way, the performance claim is valid, but the long-run performance can be
irrelevant to the case-at-hand, e.g., due to the existence of so-called recognizable subsets in the
sample space (see [9] and [16] for elaboration of this notion). This is a further example of how
nontrivial the relationship between variability and uncertainty can be.
6 There are theorems linking single-case Bayesian probabilities and long-run performance in some
general settings, e.g., establishing that, for fixed-dimension parametric inference, Bayesian cred-
ible regions with probability P have frequentist coverage close to P (the rate of convergence is
O.1=

p
N/ for flat priors, and faster for so-called reference priors). But the theorems do not apply

in some interesting classes of problems, e.g., nonparametric problems.
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regarding both computation and the role of long-term performance in Bayesian
inference; see [17] and [14] for insightful discussions of some of these issues. Also,
Bayesian model checking (assessing the adequacy of a parametric model without
an explicitly specified class of alternatives) typically invokes criteria based on pre-
dictive frequencies [17, 49, 19]. A virtue of the Bayesian approach is that one may
predict or estimate frequencies when they are deemed relevant; explicitly distin-
guishing probability (as degree of strength of an argument) from frequency (in finite
or hypothetical infinite samples) enables this. This suggests some kind of unifica-
tion of approaches may be easier to achieve from the Bayesian direction. This is a
worthwhile task for research; see [20] for a brief overview of some recent work on
the Bayesian/frequentist interface.

No one would claim that the Bayesian approach is a data analysis panacea, pro-
viding the best way to address all data analysis questions. But among astronomers
outside of the community of astrostatistics researchers, Bayesian methods are sig-
nificantly underutilized. Clearing up misconceptions should go a long way toward
helping astronomers appreciate what both frequentist and Bayesian methods have
to offer for both routine and research-level data analysis tasks.

2.3 Looking forward

Having looked at the past growth of interest in Bayesian methods and present mis-
conceptions, I will now turn to the future. As inspiration, I cite Mike West’s com-
mentary on my SCMA I paper [21]. In his closing remarks he pointed to an espe-
cially promising direction for future Bayesian work in astrostatistics:

On possible future directions, it is clear that Bayesian developments during recent years
have much to offer—I would identify prior modeling developments in hierarchical mod-
els as particularly noteworthy. Applications of such models have grown tremendously in
biomedical and social sciences, but this has yet to be paralleled in the physical sciences.
Investigations involving repeat experimentation on similar, related systems provide the
archetype logical structure for hierarchical modeling. . . There are clear opportunities for
exploitation of these (and other) developments by astronomical investigators. . . .

However clear the opportunities may have appeared to West, for over a decade
following SCMA I, few astronomers pursued hierarchical Bayesian modeling. A
particularly promising application area is modeling of populations of astronomical
sources, where hierarchical models can naturally account for measurement error,
selection effects, and “scatter” of properties across a population. I discussed this at
some length at SCMA IV in 2006 [22], but even as of that time there was relatively
little work in astronomy using hierarchical Bayesian methods, and for the most part
only the simplest such models were used.

The last few years mark a change-point in this respect, and evidence of the
change is apparent in the contributions to the summer 2011 Bayesian sessions at
both SCMA V and the ISI World Congress. Several presentations in both forums
described recent and ongoing research developing sophisticated hierarchical models
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for complex astronomical data. Other papers raised issues that may be addressed
with hierarchical models. Together, these papers point to hierarchical Bayesian mod-
eling as an important emerging research direction for astrostatistics.

To illustrate the notion of a hierarchical model—also known as a multilevel model
(MLM) — we start with a simple parametric density estimation problem, and then
promote it to a MLM by adding measurement error.

Suppose we would like to estimate parameters � defining a probability density
function f .xI �/ for an observable x. A concrete example might be estimation of
a galaxy luminosity function, where x would be two-dimensional, x D .L; ´/

for luminosity L and redshift ´, and f .xI �/ would be the normalized luminos-
ity function (i.e., a probability density rather than a galaxy number density). Con-
sider first the case where we have a set of precise measurements of the observ-
ables, fxig (and no selection effects). Panel (a) in Fig. 2.3 depicts this simple
setting. The likelihood function for � is L.�/ � p.fxi gj�;M/ D Q

i f .xi I �/.
Bayesian estimation of � requires a prior density, �.�/, leading to a posterior den-
sity p.� jfxig;M / / �.�/L.�/.

An alternative way to write Bayes’s theorem expresses the posterior in terms of
the joint distribution for parameters and data:

p.� jfxi g;M / D p.�; fxi gjM/

p.fxi gjM/
: (2.5)

θ

x1 x2 xN

DND1 D2

θ

x1 x2 xN

Fig. 2.3 Illustration of multilevel model approach to handling measurement error. (a) and (b) (top
row): Measurements of a two-dimensional observable and its probability distribution (contours); in
(a) the measurements are precise (points); in (b) they are noisy (filled circles depict uncertainties).
(c) and (d): Graphical models corresponding to Bayesian estimation of the density in (a) and (b),
respectively.
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This “probability for everything” version of Bayes’s theorem changes the process of
modeling from separate specification of a prior and likelihood, to specification of the
joint distribution for everything; this proves helpful for building models with com-
plex dependencies. Panel (c) depicts the dependencies in the joint distribution with
a graph—a collection of nodes connected by edges—where each node represents
a probability distribution for the indicated variable, and the directed edges indicate
dependences between variables. Shaded nodes indicate variables whose values are
known (here, the data); we may manipulate the joint to condition on these quantities.
The graph structure visually displays how the joint distribution may be factored as
a sequence of independent and conditional distributions: the � node represents the
prior, and the xi nodes represent f .xi I �/ factors, dependent on � but independent
of other xi values when � is given (i.e., conditionally independent). The joint dis-
tribution is thus p.�; fxi gjM/ D �.�/

Q
i f .xi I �/. In a sense, the most important

edges in the graph are the missing edges; they indicate independence that makes
factors simpler than they might otherwise be.

Now suppose that, instead of precise xi measurements, for each observation
we get noisy data, Di , producing a measurement likelihood function `i .xi / �
p.Di jxi ;M / describing the uncertainties in xi (we might summarize it with the
mean and standard deviation of a Gaussian). Panel (b) depicts the situation; instead
of points in x space, we now have likelihood functions (depicted as “1�” error cir-
cles). Panel (d) shows a graph describing this measurement error problem, which
adds a fDi g level to the previous graph; we now have a multilevel model.7 The xi
nodes are now unshaded; they are no longer known, and have become latent param-
eters. From the graph we can read off the form of the joint distribution:

p.�; fxi g; fDigjM/ D �.�/
Y
i

f .xi I �/`i .xi /: (2.6)

From this joint distribution we can make inferences about any quantity of interest.
To estimate � , we use the joint to calculate p.�; fxi gjfDig;M / (i.e., we condition
on the known data using Bayes’s theorem), and then we marginalize over all xi
variables. We can estimate all the xi values jointly by instead marginalizing over � .
Note that this produces a joint marginal distribution for fxig that is not a product
of independent factors; although the xi values are conditionally independent given
� , they are marginally dependent. If we do not know � , each xi tells us something
about all the others through what it tells us about � . Statisticians use the phrase
“borrowing strength” to describe this effect, from John Tukey’s evocative descrip-
tion of “mustering and borrowing strength” from related data in multiple stages of
data analysis (see [23] for a tutorial discussion of this effect and the related concept
of shrinkage estimators). Note the prominent role of LTP in inference with MLMs,
where inference at one level requires marginalization over unknowns at other levels.

7 The convention is to reserve the term for models with three or more levels of nodes, i.e., two or
more levels of edges, or two or more levels of nodes for uncertain variables (i.e., unshaded nodes).
The model depicted in panel (d) would be called a two-level model.
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The few Bayesian MLMs used by astronomers through the 1990s and early
2000s did not go much beyond this simplest hierarchical structure. For example,
unbeknownst to West, at the time of his writing my thesis work had already devel-
oped a MLM for analyzing the arrival times and energies of neutrinos detected from
SN 1987A; the multilevel structure was needed to handle measurement error in the
energies (an expanded version of this work appears in [24]). Panel (a) of Fig. 2.4
shows a graph describing the model. The rectangles are “plates” indicating sub-
structures that are repeated; the integer variable in the corner indicates the num-
ber of repeats. There are two plates because neutrino detectors have a limited (and
energy-dependent) detection efficiency. The plate with a known repeat count, N ,
corresponds to the N detected neutrinos with times t and energies 	; the plate with
an unknown repeat count, N , corresponds to undetected neutrinos, which must be
considered in order to constrain the total signal rate; D denotes the nondetection
data, i.e., reports of zero events in time intervals between detections.

Other problems tackled by astronomers with two-level MLMs include: model-
ing of number-size distributions (“logN–logS” or “number counts”) of gamma-ray
bursts and trans-Neptunian objects [e.g., 25, 26]; performing linear regression with
measurement error along both axes, e.g., for correlating quasar hardness and lumi-
nosity ([27]; see Kelly’s contribution in [28] for an introduction to MLMs for mea-
surement error); accounting for Eddington and Malmquist biases in cosmology [23];
statistical assessment of directional coincidences with gamma-ray bursts [29, 30]

θ

D

t, ε

N

t, ε

D

N

Fig. 2.4 Graphs describing multilevel models used in astronomy, as described in the text.
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and cross-matching catalogs produced by large star and galaxy surveys ([31]; see
[32] for discussion of the underlying MLM); and handling multivariate measure-
ment error when estimating stellar velocity distributions from proper motion survey
data [33].

Beginning around 2000, interdisciplinary teams of astronomers and informa-
tion scientists began developing significantly more sophisticated MLMs for astro-
nomical data. The most advanced such work has come from a collaboration of
astronomers and statisticians associated with the Harvard-Smithsonian Center for
Astrophysics (CfA). Much of their work has been motivated by analysis of data
from the Chandra X-ray observatory satellite, whose science operations are man-
aged by CfA. van Dyk et al. [34] developed a many-level MLM for fitting Chan-
dra X-ray spectral data; a host of latent parameters enable accurate accounting for
uncertain backgrounds and instrumental effects such as pulse pile-up. Esch et al.
[35] developed a Bayesian image reconstruction algorithm for Chandra imaging
data that uses a multiscale hierarchical prior to build spatially-adaptive smoothing
into image estimation and uncertainty quantification. van Dyk et al. [36] showed
how to analyze stellar cluster color-magnitude diagrams (CMDs) using finite mix-
ture models (FMMs) to account for contamination of the data from stars not lying
in the targeted cluster. In FMMs, categorical class membership variables appear as
latent parameters; the mixture model effectively averages over many possible graphs
(corresponding to different partitions of the data into classes). FMMs have long
been used to handle outliers and contamination in Bayesian regression and density
estimation. This work showed how to implement it with computationally expen-
sive models and informative class membership priors. In the area of time series,
the astronomer-engineer collaboration of Dobigeon, Tourneret, and Scargle [37]
developed a three-level MLM to tackle joint segmentation of astronomical arrival
time series (a multivariate extension of Scargle’s well-known Bayesian Blocks algo-
rithm).

Cosmology is a natural arena for multilevel modeling, because of the indirect
link between theory and observables. For example, in modeling both the cosmic
microwave background (CMB) and the large scale structure (LSS) of the galaxy
distribution, theory does not predict a specific temperature map or set of galaxy loca-
tions (these depend on unknowable initial conditions), but instead predicts statistical
quantities, such as angular or spatial power spectra. Modeling observables given the-
oretical parameters typically requires introducing these quantities as latent param-
eters. In [38] I described a highly simplified hierarchical treatment of CMB data,
with noisy CMB temperature difference time series data at the lowest level, l D 2

spherical harmonic coefficients in the middle, and a single physical parameter of
interest, the cosmological quadrupole momentQ, at the top. While a useful illustra-
tion of the MLM approach, I noted there were enormous computational challenges
facing a more realistic implementation. It took a decade for such an implementation
to be developed, in the pioneering work of Wandelt et al. [39]. And only recently
have explicit hierarchical models been implemented for LSS modeling [e.g., 40].

This brings us to the present. Contributions in this volume and in the SCMA V
proceedings [28] document burgeoning interest in Bayesian MLMs among
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astrostatisticians. I discuss the role of MLMs in the SCMA V contributions else-
where [41]. Four of the contributions in this volume rely on MLMs. Two address
complex problems and help mark an era of new complexity and sophistication in
astrophysical MLMs. Two highlight the potential of basic MLMs for addressing
common astronomical data analysis problems that defy accurate analysis with con-
ventional methods taught to astronomers. I will highlight the MLM aspects of these
contributions in turn.

Some of the most impressive new Bayesian multilevel modeling in astronomy
addresses the analysis of measurements of multicolor light curves (brightness vs.
time in various wavebands) from Type Ia supernovae (SNe Ia). In the late 1990s,
astronomers discovered that these enormous stellar thermonuclear explosions are
“standardizable candles;” the shapes of their light curves are strongly correlated
with their luminosities (the intrinsic amplitudes of the light curves). This enables
use of SNe Ia to measure cosmic distances (via a generalized inverse-square law)
and to trace the history of cosmic expansion. The 2011 Nobel Prize in physics went
to three astronomers who used this capability to show that the expansion rate of
the universe is growing with time (“cosmic acceleration”), indicating the presence
of “dark energy” that somehow prevents the deceleration one would expect from
gravitational attraction.

A high-water mark in astronomical Bayesian multilevel modeling was set by
Mandel et al. [42], who address the problem of estimating supernova luminosi-
ties from light curve data. Their model has three levels, complex connections
between latent variables (some of them random functions—light curves—rather
than scalars), and jointly describes three different types of data (light curves, spectra,
and host galaxy spectroscopic redshifts). Panel (b) of Fig. 2.4 shows the graph for
their MLM (the reader will have to consult [42], or Mandel’s more tutorial overview
in [28], for a description of the variables and the model). In this volume, March et
al. tackle a subsequent SNe Ia problem: how to use the output of light curve models
to estimate cosmological parameters, including the density of dark energy, and an
“equation of state” parameter aiming to capture how the dark energy density may
be evolving. Their framework can fuse information from SN Ia with information
from other sources, such as the power spectrum of CMB fluctuations, and charac-
terization of the baryon acoustic oscillation (BAO) seen in the large scale spatial
distribution of galaxies. Panel (c) of Fig. 2.4 shows the graph for their model, also
impressive for its complexity (see their contribution in this volume for an explana-
tion of this graph). I display the graphs (without much explanation) to show how
much emerging MLM research in astronomy is leapfrogging the simple models of
the recent past, exemplified by Panel (a) in the figure.

Equally impressive is Wandelt’s contribution, describing a hierarchical Bayes
approach (albeit without explicit MLM language) for reconstructing the galaxy den-
sity field from noisy photometric redshift data measuring the line-of-sight velocities
of galaxies (which includes a component from cosmic expansion and a “peculiar
velocity” component from gravitational attraction of nearby galaxies and dark mat-
ter). His team’s framework (described in detail by [43]) includes nonparametric esti-
mation of the density field at an upper level, which adaptively influences estimation
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of galaxy distances and peculiar velocities at a lower level, borrowing strength in
the manner described above. The nonparametric upper level, and the size of the
calculation, make this work groundbreaking.

The contributions by Andreon and by Kunz et al. describe simpler MLMs, but
with potentially broad applicability. Andreon describes regression with measure-
ment error (fitting lines and curves using data with errors in both the abscissa and
ordinate) using basic MLMs, including testing model adequacy with a relatively
simple predictive distribution test resembling the tail-area p-value tests familiar
to astronomers. Such problems are common in astronomy. Kelly ([27]; see also
Kelly’s more introductory treatment in [28]) provided a more formal account of
the Bayesian treatment of such problems, drawing on the statistics literature on
measurement error problems [e.g., 44]. The complementary emphasis of Andreon’s
account is on how straightforward—indeed, almost automatic—implementation can
be using modern software packages such as BUGS and JAGS.8 Kunz et al. further
develop the Bayesian estimation applied to multiple species (BEAMS) framework
first described by [45]. BEAMS aims to improve parameter estimation in nonlin-
ear regression when the data may come from different types of sources (“species”
or classes), with different error or population distributions, but with uncertainty in
the type of each datum. The classification labels for the data become discrete latent
parameters in a MLM; marginalizing over them (and possibly estimating parame-
ters in the various error distributions) can greatly improve inferences. They apply
the approach to estimating cosmological parameters using SNe Ia data, and show
that accounting for uncertainty in supernova classification has the potential to sig-
nificantly improve the precision and accuracy of estimates. In the context of this
volume, one cannot help but wonder what would come of integrating something
like BEAMS into the MLM framework of March et al.

In Section 2 I noted how the “variability D uncertainty” misconception leads
many astronomers to ignore relevant frequentist statistics literature; it gives the ana-
lyst the impression that the ability to quantify variability is all that is needed to
devise a sound frequentist procedure. There is a similar danger for Bayesian infer-
ence. Once one has specified a model for the data (embodied in the likelihood func-
tion), Bayesian inference appears to be automatic in principle; one just follows the
rules of probability theory to calculate probabilities for hypotheses of interest (after
assigning priors). But despite the apparent simplicity of the sum and product rules,
probability theory can exhibit a sophisticated subtlety, with apparently innocuous
assumptions and calculations sometimes producing surprising results. The huge lit-
erature on Bayesian methods is more than mere crank turning; it amasses signif-
icant experience with this sophisticated subtlety that astronomers should mine to
guide development of new Bayesian methods, or refine existing ones. For this non-
statistician reader, it is the simpler of the contributions in this volume that point to
opportunities for such “borrowing and mustering of strength” from earlier work by
statisticians.

8 http://www.mrc-bsu.cam.ac.uk/bugs/

http://www.mrc-bsu.cam.ac.uk/bugs/
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Andreon’s “de-TeXing” approach to Bayesian modeling (i.e., transcribing model
equations to BUGS or JAGS code, and assigning simple default priors) is both
appealing and relatively safe for simple models, such as standard regression (para-
metric curve fitting with errors only in the ordinate) or density estimation from
precise point measurements in low dimensions. But the implications of modeling
assumptions become increasingly subtle as model complexity grows, particularly
when one starts increasing the number of levels or the dimensions of model com-
ponents (or both). This makes me a little wary of an automated style of Bayesian
modeling. Let us focus here on some MLM subtlety.

Information gain from the data tends to weaken as one considers parameters
at increasingly high levels in a multilevel model [46]. On the one hand, if one is
interested in quantities at lower levels, this weakens dependence on assumptions
made at high levels. On the other hand, if one is interested in high-level quanti-
ties, sensitivity to the prior becomes an issue. The weakened impact of data on
high levels has the effect that improper (i.e., non-normalized) priors that are safe
to use in simple models (because the likelihood makes the posterior proper) can be
dangerous in MLMs; nearly improper “vague” default priors may hide the prob-
lem without ameliorating it [47, 18]. Paradoxically, in some settings one may need
to assign very informative upper-level priors to allow lower level distributions to
adapt to the data (see [35] for an astronomical example). Also, the impact of the
graph structure on a model’s predictive ability becomes less intuitively accessible
as complexity grows, making predictive tests of MLMs important, but also nontriv-
ial; simple posterior predictive tests may be insensitive to significant discrepancies
[48, 49, 50]. An exemplary feature of the SNe Ia MLM work of Mandel et al. is
the use of careful predictive checks, implemented via a frequentist cross-validation
procedure, to quantitatively assess the adequacy of various aspects of the model
(notably, Mandel audited graduate-level statistics courses to learn the ins and outs
of MLMs for this work, comprising his PhD thesis). In the context of nonlinear
regression with measurement error, Carroll et al. [44] provides a useful entry point
to both Bayesian and frequentist literature, incidentally also describing a number
of frequentist approaches to such problems that would be more fair competitors
to Bayesian MLMs than the “�2” approach that serves as Andreon’s straw man
competitor.

The problem addressed by the BEAMS framework—essentially the problem
of data contamination, or mixed data—is not unique to astronomy, and there is
significant statistics literature addressing similar problems with lessons to offer
astronomers. BEAMS is a form of Bayesian regression using FMM error distri-
butions. Statisticians first developed such models a few decades ago, to treat out-
liers (points evidently not obeying the assumed error distribution) using simple
two-component mixtures (e.g., normal distributions with two different variances).
More sophisticated versions have since been developed for diverse applications. An
astronomical example building on some of this expertise is the finite mixture mod-
eling of stellar populations by [36], mentioned above. The most immediate lessons
astronomers may draw from this literature are probably computational; for exam-
ple, algorithms using data augmentation (which involves a kind of guided, iterative
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Monte Carlo sampling of the class labels and weights) may be more effective for
implementing BEAMS than the weight-stepping approach currently used.

2.4 Provocation

I will close this commentary with a provocative recommendation I have offered at
meetings since 2005 but not yet in print, born of my experience using multilevel
models for astronomical populations. It is that astronomers cease producing cata-
logs of estimated fluxes and other source properties from surveys. This warrants
explanation and elaboration.

As noted above, a consequence of the hierarchical structure of MLMs is that the
values of latent parameters at low levels cannot be estimated independently of each
other. In a survey context, this means that the flux (and potentially other properties)
of a source cannot be accurately or optimally estimated considering only the data
for that source. This may initially seem surprising, but at some level astronomers
already know this to be true. We know — from Eddington, Malmquist, and Lutz and
Kelker — that simple estimates of source properties will be misleading if we do not
take into account information besides the measurements and selection effects, i.e.,
specification of the population distribution of the property. The standard Malmquist
and Lutz-Kelker corrections adopt an a priori fixed (e.g., spatially homogeneous)
population distribution, and produce an independent corrected estimate for each
object. What the fully Bayesian MLM approach adds to the picture is the ability
to handle uncertainty in the population distribution. After all, a prime reason for
performing surveys is to learn about populations. When the population distribution
is not well-known a priori, each source property measurement bears on estimation
of the population distribution, and thus indirectly, each measurement bears on the
estimation of the properties of every other source, via a kind of adaptive bias cor-
rection.9 This is Tukey’s “mustering and borrowing of strength” at work again.

To enable this mustering and borrowing, we have to stop thinking of a catalog
entry as providing all the information needed to infer a particular source’s proper-
ties (even in the absence of auxiliary information from outside a particular survey).
Such a complete summary of information is provided by the marginal posterior
distribution for that source, which depends on the data from all sources—and on
population-level modeling assumptions. However, in the MLM structure (e.g., panel
(d) of Fig. 2.3), the likelihood function for the properties of a particular source may
be independent of information about other sources. The simplest output of a survey
that would enable accurate and optimal subsequent analysis is thus a catalog of like-
lihood functions (or possibly marginal likelihood functions when there are uncertain

9 It is worth pointing out that this is not a uniquely Bayesian insight. Eddington, Malmquist, and
Lutz and Kelker used frequentist arguments to justify their corrections; Eddington even offered
adaptive corrections. The large and influential statistics literature on shrinkage estimators leads to
similar conclusions; see [22] for further discussion and references.
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survey-specific backgrounds or other “nuisance” effects the surveyor must account
for).

For a well-measured source, the likelihood function may be well-approximated
by a Gaussian that can be easily summarized with a mean and standard deviation.
But these should not be presented as point estimates and uncertainties.10 For sources
near the “detection limit,” more complicated summaries may be justified. Coun-
terpart surveys should cease reporting upper limits when a known source is not
securely detected; instead they should report a more informative non-Gaussian like-
lihood summary. Discovery surveys (aiming to detect new sources rather than coun-
terparts) could potentially devise likelihood summaries that communicate informa-
tion about sources with fluxes below a nominal detection limit, and about uncertain
source multiplicty in crowded fields. Recent work on maximum-likelihood fitting
of “pixel histograms” (also known as “probability of deflection” or P.D/ distri-
butions), which contain information about undetected sources, hints at the science
such summaries might enable in a MLM setting [e.g., 51].

In this approach to survey reporting, the notion of a detection limit as a decision
boundary identifying sources disappears. In its place there will be decision bound-
aries, driven by both computational and scientific considerations, that determine
what type of likelihood summary is associated with each possible candidate source
location.

Coming at this issue from another direction, Hogg and Lang [52] have recently
made similar suggestions, including some specific ideas for how likelihoods may be
summarized. Multilevel models provide a principled framework, both for motivat-
ing such a thoroughgoing revision of current practice, and for guiding its detailed
development. Perhaps by the 2015 ISI World Congress in Brazil we will hear reports
of analyses of the first survey catalogs providing such more optimal, MLM-ready
summaries.

But even in the absence of so revolutionary a development, I think one can
place high odds in favor of a bet that Bayesian multilevel modeling will become
increasingly prevalent (and well-understood) in forthcoming astrostatistics research.
Whether Bayesian methods (multilevel and otherwise) will start flourishing out-
side the astrostatistics research community is another matter, dependent on how
effectively astrostatisticians can rise to the challenge of correcting misconceptions
about both frequentist and Bayesian statistics, such as those outlined above. The
abundance of young astronomers with enthusiasm for astrostatistics makes me opti-
mistic.

Acknowledgements I gratefully acknowledge NSF and NASA for support of current research
underlying this commentary, via grants AST-0908439, NNX09AK60G and NNX09AD03G. I
thank Martin Weinberg for helpful discussions on information propagation within multilevel mod-
els. Students of Ed Jaynes’s writings on probability theory in physics may recognize the last part of
my title, borrowed from a commentary by Jaynes on the history of Bayesian and maximum entropy

10 I am tempted to recommend that, even in this regime, the likelihood summary be chosen so as
to deter misuse as an estimate, say by tabulating the C1� and �2� points rather than means and
standard deviations. I am only partly facetious about this!
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ideas in the physical sciences [53]. This bit of plagiarism is intended as a homage to Jaynes’s influ-
ence on this area — and on my own research and thinking.
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31. Budavári, T., Szalay, A.S.: Probabilistic Cross-Identification of Astronomical Sources. Astro-
physical Journal 679, 301–309 (2008). DOI 10.1086/587156

32. Loredo, T.J.: Commentary on Bayesian coincidence assessment (cross-matching). In: Feigel-
son, E. D., Babu, G. J. (eds.) Statistical Challenges in Modern Astronomy, p. 6pp. Springer
(2012) (in press)

33. Bovy, J., Hogg, D.W., Roweis, S.T.: Extreme deconvolution: Inferring complete distribution
functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Stat. 5(2B),
1657–1677 (2011)

34. van Dyk, D.A., Connors, A., Kashyap, V.L., Siemiginowska, A.: Analysis of Energy Spectra
with Low Photon Counts via Bayesian Posterior Simulation. Astrophysical Journal 548, 224–
243 (2001). DOI 10.1086/318656

35. Esch, D.N., Connors, A., Karovska, M., van Dyk, D.A.: An Image Restoration Technique with
Error Estimates. Astrophysical Journal 610, 1213–1227 (2004). DOI 10.1086/421761

36. van Dyk, D.A., DeGennaro, S., Stein, N., Jefferys, W.H., von Hippel, T.: Statistical analysis of
stellar evolution. Ann. Appl. Stat. 3(1), 117–143 (2009). DOI 10.1214/08-AOAS219. URL
http://dx.doi.org/10.1214/08-AOAS219

37. Dobigeon, N., Tourneret, J.Y., Scargle, J.D.: Joint segmentation of multivariate astronomical
time series: Bayesian sampling with a hierarchical model. IEEE Trans. Signal Process. 55(2),
414–423 (2007). DOI 10.1109/TSP.2006.885768.

38. Loredo, T.J.: The return of the prodigal: Bayesian inference For astrophysics. In: Bernardo,
J. M. Berger, J. O., Dawid, A. P., Smith, A. F. M. (eds.) Bayesian Statistics 5 Preliminary
Proceedings, volume distributed to participants of the 5th Valencia Meeting on Bayesian

DOI 10.1063/1.51706

vol. 371, p. 121 (2007)

2 Bayesian Astrostatistics

http://dx.doi.org/10.1214/08-AOAS219


Thomas J. Loredo

Statistics (1995). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3616. CiteSeer
DOI 10.1.1.55.3616

39. Wandelt, B.D., Larson, D.L., Lakshminarayanan, A.: Global, exact cosmic microwave back-
ground data analysis using Gibbs sampling. Physical Review D 70(8), 083511 (2004). DOI
10.1103/PhysRevD.70.083511

40. Kitaura, F.S., Enßlin, T.A.: Bayesian reconstruction of the cosmological large-scale structure:
methodology, inverse algorithms and numerical optimization. Mon. Not. Roy. Astron. Soc.
389, 497–544 (2008). DOI 10.1111/j.1365-2966.2008.13341.x

41. Loredo, T.J.: Commentary on Bayesian analysis across astronomy. In: Feigelson, E. D., Babu,
G. J. (eds.) Statistical Challenges in Modern Astronomy, p. 12pp. Springer (2012) (in press)

42. Mandel, K.S., Narayan, G., Kirshner, R.P.: Type Ia Supernova Light Curve Inference: Hier-
archical Models in the Optical and Near-infrared. Astrophysical Journal 731, 120 (2011).
DOI 10.1088/0004-637X/731/2/120

43. Jasche, J., Wandelt, B.D.: Bayesian inference from photometric redshift surveys.
ArXiv/1106.2757 (2011)

44. Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement error in nonlinear
models, Monographs on Statistics and Applied Probability, vol. 105, second edn. Chapman
and Hall/CRC, Boca Raton, FL (2006). DOI 10.1201/9781420010138. URL http://dx.doi.
org/10.1201/9781420010138. A modern perspective

45. Kunz, M., Bassett, B.A., Hlozek, R.A.: Bayesian estimation applied to multiple species. Phys-
ical Review D 75(10), 103508 (2007). DOI 10.1103/PhysRevD.75.103508

46. Goel, P.K., DeGroot, M.H.: Information about hyperparameters in hierarchical models. J.
Amer. Statist. Assoc. 76(373), 140–147 (1981).

47. Hadjicostas, P., Berry, S.M.: Improper and proper posteriors with improper priors in a Poisson-
gamma hierarchical model. Test 8(1), 147–166 (1999). DOI 10.1007/BF02595867.

48. Sinharay, S., Stern, H.S.: Posterior predictive model checking in hierarchical models. J. Statist.
Plann. Inference 111(1-2), 209–221 (2003). DOI 10.1016/S0378-3758(02)00303-8.

50. Bayarri, M.J., Castellanos, M.E.: Bayesian checking of the second levels of hierarchical mod-
els. Statist. Sci. 22(3), 322–343 (2007). DOI 10.1214/07-STS235.

51. Patanchon, G., et al.: Submillimeter Number Counts from Statistical Analysis of BLAST
Maps. Astrophysical Journal 707, 1750–1765 (2009). DOI 10.1088/0004-637X/707/2/1750

52. Hogg, D.W., Lang, D.: Telescopes don’t make catalogues! In: EAS Publications Series, EAS
Publications Series, EDP Sciences, Les Ulis vol. 45, pp. 351–358 (2011).DOI 10.1051/

53. Jaynes, E.T.: A Backward Look to the Future. In: Grandy, W. T., Jr., Milonni, P. W. (eds.)
Physics and Probability, Cambridge University Press, Cambridge pp. 261–276 (1993)

article by Browne and Draper). Bayesian Anal. 1(3), 515–533 (electronic) (2006)
49. Gelman, A.: Prior distributions for variance parameters in hierarchical models (comment on

eas/1045059

40

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3616
http://dx.doi.org/10.1201/9781420010138
http://dx.doi.org/10.1201/9781420010138


Chapter 3
Understanding Better (Some) Astronomical
Data Using Bayesian Methods

S. Andreon

Abstract Current analysis of astronomical data is confronted with the daunting
task of modelling the awkward features of astronomical data, among which are het-
eroscedastic (point-dependent) errors, intrinsic scatter, non-ignorable data collection
(selection effects), data structure, non-uniform populations (often called Malmquist
bias), non-Gaussian data, and upper/lower limits. This chapter shows, by examples,
how to model  all these  features using Bayesian methods. In short , one just needs
to formalise, using maths, the logical link between the involved quantities, how the
data arise and what we already know on the quantities we want to study. The pos-
terior probability distribution summarises what we know on the studied quantities
after analysing the data, and numerical computation is left to (special) Monte Carlo
programs such as JAGS. As examples,  
disposing of a calibrating sample,  how to constraint comological parameters from  

if the fitted data are in tension with the adopted

3.1 Introduction

Astronomical data present a number of quite common awkward features (see [1] for
a review):

� : Error sizes vary from point to point.

S. Andreon
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we show to predict the mass of a new object

supernovae data and how to check
fitting model. Examples are given with their coding. These examples can be
easily used as template for completely different analysis, on totally unrelated astro-
nomical objects, requiring to model the same awkward data features.

Heteroscedastic errors
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� non-Gaussian data: the likelihood is asymmetric and thus errors are, e.g.
3:4C2:5

�1:2 . Upper/lower limits, as 2.3 at 90% probability, are (perhaps extreme)
examples of asymmetric likelihood.

� non uniform populations or data structure: the number of objects per unit
parameter(s) is non-uniform. This is the source of the Malmquist- or Eddington-
like bias that affect most astronomical quantities, as parallaxes, star and galaxy
counts, mass and luminosity, galaxy cluster velocity dispersions, supernovae
luminosity corrections, etc.

� intrinsic scatter: data often scatter more than allowed by the errors. The extra-
scatter can be due to unidentified sources of errors, often called systematic errors,
or indicates an intrinsic spread of the population under study, i.e. the fact that
astronomical objects are not identically equal.

� noisy estimates of the errors: as every measurement, errors are known with a
finite degree of precision. This is even more true when one is measuring complex,
and somewhat model dependent, quantities like mass.

� non-random sampling: in simple terms, the objects in the sample are not a ran-
dom sampling of those in the Universe. In some rare occasions in astronomy,
sampling is planned to be non-random on purpose, but most of the times non-
random sampling is due to selection effects: harder-to-observe objects are very
often missed in samples.

� mixtures: very often, large samples include the population under interest, but
also contaminating objects. Mixtures also arise when one measure the flux of a
source in presence of a background (i.e. always).

� prior: we often known from past data or from theory that some values of the
parameters are more likely than other. In order terms, we have prior knowledge
about the parameter being investigated. If we known anything, not even the order
of magnitude, about a parameter, it is difficult even to choose which instrument,
or sample, should be used to measure the parameter.

� non-linear: laws of Nature can be more complicated than y D ax C b.

Bayesian methods allow to deal with these features (and also other ones), even all
at the same time, as we illustrate in Section 3.3 and 3.4 with two research examples,
it is just matter of stating in mathematical terms our wordy statements about the
nature of the measurement and of the objects being measured. The probabilistic
(Bayesian) approach returns the whole (posterior) probability distribution of the
parameters, very often in form of a Monte Carlo sampling of it.

In this paper we make an attempt to be clear at the cost of being non-rigorous.
We defer the reader looking for rigour to general textbooks, as [2], and, to [3] for
our first research example.

3.2 Parameter Estimation in Bayesian Inference

Before addressing a research example, let’s consider an idealised applied problem
to explain the basics of the Bayesian approach.
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Suppose one is interested in estimating the (log) mass of a galaxy cluster, lgM.

about the values of lgM. In fact, these thoughts are often used in deciding which
instrument will be used to gather data and how this instrument may be configured.
For example, if we plan to measure the mass of a poor cluster via the virial theorem,
we will select a spectroscopic set-up with adequate resolution, in order to avoid velo-
city errors that are comparable to, or larger than, the likely low velocity dispersion of
poor clusters. Crystallising these thoughts in the form of a probability distribution
for lgM provides the prior p.lgM/, on which relies the feasibility section of the
telescope time proposal, where instrument, configuration and exposure time are set.

For instance, one may believe (e.g. from the cluster being somewhat poor) that
the log of the cluster mass is probably not far from 13, plus or minus 1; this might
be modelled by saying that the (prior) probability distribution of the log mass, here
denoted lgM 13 and with � , the standard deviation, equal
to 0:5, i.e. lgM � N .13; 0:52/.

Once the appropriate instrument and its set-up have been selected, data can be
collected. In our example, this means we record a measurement of log mass, say
obslgM200, via, for example, a virial theorem analysis, i.e. measuring distances
and velocities.

The likelihood describes how the noisy observation obslgM200 arises given a
value of lgM. For example, we may find that the measurement technique allows us
to measure masses in an unbiased way but with a standard error of 0.1 and that the
error structure is Gaussian, i.e. obslgM200 � N .lgM; 0:12/, where the tilde symbol
reads “is drawn from” or “is distributed as”. If we observe obslgM200 D 13:3

usually summarise the above by writing lgM D 13:3˙ 0:1.
How do we update our beliefs about the unobserved log mass lgM in light of

the observed measurement 200? Expressing this probabilistically, what is
the posterior distribution of lgM given obslgM200, i.e. p.lgMjobslgM200/? Bayes
Theorem [4, 5] tells us that

p.lgMjobslgM200/ / p.obslgM200 lgM/p.lgM/

i.e. the posterior (the left-hand side) is equal to the product of likelihood and prior
(the right-hand side) times a proportionality constant of no importance in parameter
estimation.

Simple algebra shows that in our example the posterior distribution of
lgMjobslgM200 is Gaussian, with mean


 D 13:0=0:52 C 13:3=0:12

1=0:52 C 1=0:12
D 13:29

and
�2 D 1

1=0:52 C 1=0:12
D 0:0096:

Before collecting any data, we may have certain beliefs and expectations

, is a Gaussian centred on

, we

 obslgM

j
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 is just the usual weighted average of two “input” values, the prior and the obser-
vation, with weights given by prior and observation �’s.

From a computational point of view, only simple examples such as the one
described above can generally be tackled analytically, realistic analysis should be
instead tacked numerically by special (Markov Chain) Monte Carlo methods. These
are included in BUGS-like programs [6] such as JAGS [7], allowing scientists to
focus on formalising in mathematical terms our wordy statements about the quan-
tities under investigation without worrying about the numerical implementation. In
the idealised example, we just need to write in an ASCII file the symbolic expression
of the prior, lgM � N .13; 0:52/, and of likelihood, obslgM200 � N .lgM; 0:12/ to
get the posterior in form of samplings. From the Monte Carlo sampling one may
directly derive mean values, standard deviations, and confidence regions. For exam-
ple, for a 90% interval it is sufficient to peak up the interval that contain 90% of the
samplings.

3.3 First Example: Predicting Mass from a Mass Proxy

Mass estimates are one of the holy grails of astronomy. Since these are obser-
vationally expensive to measure, or even unmeasurable with existing facilities,
astronomers use mass proxies, far less expensive to acquire: from a (usually small)
sample of objects, the researcher measures masses, y and the mass proxy, x. Then,
he regress x vs y and infer y for those objects having only x. This is the way most of
the times galaxy cluster masses are estimated, for example using the X-ray luminos-
ity, X-ray temperature, YX , YSZ , the cluster richness or the total optical luminosity.
Here we use the cluster richness, i.e. the number of member galaxies, but with minor
changes this example can be adapted for other cases.

Andreon and Hurn [1] show that predicted y using the Bayesian approach illus-
trated here are more precise than any other method and that the Bayesian approach
does not show the large systematics of other approaches. This means, in the case of
masses, that more precise masses can be derived for the same input data, i.e. at the
same telescope time cost.

3.3.1 Step 1: Put in Formulae What You Know

3.3.1.1 Heteroscedasticity

Clusters have widely different richnesses, and thus widely different errors. Some
clusters have better determined masses than other. Heteroscedasticity means that
errors have an index i , because they differ from point to point.
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3.3.1.2 Contamination (Mixtures), Non-Gaussian Data and Upper Limits

Galaxies in the cluster direction are both cluster members and galaxies on the line
of sight (fore/background). The contamination may be estimated by observing a
reference line of sight (fore/background), perhaps with a Ci times larger solid angle
(to improve the quality of the determination).

The mathematical translation of our words, when counts are modelled as Poisson,
is:

obsbkgi � P.nbkgi / # Poisson with intensity nbkgi (3.1)
obstoti � P.nbkgi=Ci C n200i/ # Poisson with intensity .nbkgi=Ci C n200i /

(3.2)

The variables n200i and nbkgi represent the true richness and the true background
galaxy counts in the studied solid angles, whereas we add a prefix “obs” to indicate
the observed values.

Upper limits are automatically accounted for. Suppose, for exposing simplicity,
that we observed five galaxies, obstoti D 5, in the cluster direction and that in the
control field direction (with Ci D 1 for exposing simplicity) we observe four back-
ground galaxies, obsbkg D 4. With one net galaxy and Poisson fluctuations of a few,
n200i is poorly determined at best, and the conscientious researcher would probably
report upper limits of a few. To use the information contained in the upper limit
in our regression analysis, we only need to list in the data file the raw measurements
(Ci D 1, obstoti D 5, obsbkgi D 4), as for the other clusters. These data will be
treated independently on whether an astronomer decides to report a measurement or
an upper limit, because Nature does not care about astronomer decisions.

3.3.1.3 Non-linearity and Extra-Scatter

The relation between mass, M200, and proxy, n200, (richness) is usually
parametrised as a power-law:

M200i / n200
ˇ
i

Allowing for a Gaussian intrinsic scatter �scat (clusters of galaxies of a given rich-
ness may not all have the very same mass) and taking the log, the previous equation
becomes:

lgM200i � N .˛ C ˇ log.n200i /; �2scat/

# Gaussian scatter around.M200i / n200
ˇ
i /

(3.3)

where the intercept is ˛ and the slope is ˇ.
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3.3.1.4 Noisy Errors

Once logged, mass has Gaussian errors. In formulae:

obslgM200i � N .lgM200i ; �2i / # Gauss errors on lg mass (3.4)

However, errors (as everything) is measured with a finite degree of precision. We
assume that the measured error, obserrlgM200i , is not biased (i.e. it is not systemat-
ically larger or smaller that the true error, �i ) but somewhat noisy. If a �2 distribution
is adopted, it satisfies both our request of unbiasedness and noisiness. In formulae:

obserrlgM2002i � �2i �
2
�=� # Unbiased errors (3.5)

where the parameter � regulates the width of the distribution, i.e. how precise mea-
sured errors are. Since we are 95% confident that quoted errors are correct up to a
factor of 2,

� D 6 # 95% confident within a factor 2 (3.6)

3.3.1.5 Prior Knowledge and Population Structure

The data used in this investigation are of quality good enough to determine all
parameters, but one, to a sufficient degree of accuracy that we should not care about
priors and we can safely take weak (almost uniform) priors, zeroed for un-physical
values of parameters (to avoid, for example, negative richnesses). The exception is
given by the prior on the errors (i.e. �i ), for which there is only one measurement per
datum. The adopted prior (eq. 3.11) is supported by statistical considerations (see
[3] for details). The same prior is also used for the intrinsic scatter term, although
any weak prior would return the same result, because this term is well determined
by the data.

˛ � N .0:0; 104/ # Almost uniform prior on intercept (3.7)
ˇ � t1 # Uniform prior on angle (3.8)

n200i � U.0;1/ # Uniform, but positive, cluster richness (3.9)
nbkgi � U.0;1/ # Uniform, but positive, background rate (3.10)

1=�2i � � .	; 	/ # Weak prior on error (3.11)
1=�2scat � � .	; 	/ # Weak prior on intrinsic scatter (3.12)

Richer clusters are rarer. Therefore, the prior on the cluster richness is, for sure, not
uniform, contrary to our assumption (eq. 3.9). Modelling the population structure is
un-necessary for the data used in [3] and here, but is essential if noisier richnesses
were used. Indeed, [3] shows that a previous published richness-mass calibration,
which uses richnesses as low as obsn200 D 3 and neglects the n200 structure,
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shows a slope biased by five times the quoted uncertainty. Therefore, the population
structure cannot be overlooked in general.

3.3.2 Step 2: Remove TeXing, Perform Stochastic Computations
and Publish

At this point, we have described, using mathematical symbols, the link between the
quantities that matter for our problem, and we only need to compute the posterior
probability distribution of the parameters by some sort of sampling (the readers with
exquisite mathematical skills may instead attempt an analytical computation).

Just Another Gibb Sampler (JAGS 1

TeXing Eqs. 3.1 to 3.12 (compare them to the JAGS code below). Poisson, nor-
mal and uniform distributions become dpois, dnorm dunif, respectively.
JAGS, following BUGS [6], uses precisions, prec D 1=�2, in place of variances �2.
Furthermore, it uses neperian logarithms, instead of decimal ones. Equation 3.5 has

rewritten using the property that the �2 is a particular form of the Gamma dis-

“take the value of”. obsvarlgM200 is the square of obserrlgM200.
advantages, log.n200/ is centred at an average value of 1.5 and ˛

�14:5. Finally, we replaced infinity with a large number.
The model above, when inserted in JAGS, reads:

model
{
for (i in 1:length(obstot)) {

obsbkg[i] ˜ dpois(nbkg[i]) # eq 3.1
obstot[i] ˜ dpois(nbkg[i]/C[i]+n200[i]) # eq 3.2
n200[i] ˜ dunif(0,3000) # eq 3.9
nbkg[i] ˜ dunif(0,3000) # eq 3.10

precy[i] ˜ dgamma(1.0E-5,1.0E-5) # eq 3.12
obslgM200[i] ˜ dnorm(lgM200[i],precy[i]) # eq 3.4
obsvarlgM200[i] ˜ dgamma(0.5*nu,0.5*nu*precy[i]) # eq 3.5

z[i] <- alpha+14.5+beta*(log(n200[i])/2.30258-1.5) # eq 3.3
lgM200[i] ˜ dnorm(z[i], prec.intrscat) # eq 3.3
}

intrscat <- 1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E-5,1.0E-5) # eq 3.11
alpha ˜ dnorm(0.0,1.0E-4) # eq 3.7
beta ˜ dt(0,1,1) # eq 3.8
nu <-6 # eq 3.6
}

JAGS samples the posterior distribution of all quantity of interests, such as inter-
cept, slope and intrinsic scatter by Gibb sampling (a sort of Monte Carlo). From
1 http://calvin.iarc.fr/�martyn/software/jags/

, [7]) can return it at the minor cost of de-

been
tribution. Equation 3.3 is split in two JAGS lines for a better reading. The arrow
symbol reads 
For computational
is centred at

http://calvin.iarc.fr/~martyn/software/jags/
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these samplings, it is straightforward to compute (posterior) mean and standard
deviations (by computing the average and the standard deviation!), to plot posterior
marginals (by ignoring the values of the other parameters) and confidence contours,
data and mean model, etc. Therefore, our effort is over, we only need to produce
nice plots and summaries of our results.

Figure 3.1 shows the data used in this analysis (see [3] for details), the mean
scaling (solid line) and its 68% uncertainty (shaded yellow region) and the mean
intrinsic scatter (dashed lines) around the mean relation. The ˙1 intrinsic scatter
band is not expected to contain 68% of the data points, because of the presence of
measurement errors.

Figure 3.2 shows the posterior marginals for the intercept, slope and intrinsic
scatter �scat. These marginals are reasonably well approximated by Gaussians. The
intrinsic mass scatter at a given richness, �scat D �lgM200j logn200, is small, 0:19˙
0:03. (Unless otherwise stated, results of the statistical computations are quoted
in the form x ˙ y where x is the posterior mean and y is the posterior standard
deviation.)

The found relation is:

lgM200 D .0:96˙ 0:15/ .logn200 � 1:5/C 14:36˙ 0:04 (3.13)

Fig. 3.1: Richness-mass scaling. The solid line marks the mean fitted regression line,
while the dashed line shows this mean plus or minus the intrinsic scatter �scat . The
shaded region marks the 68% highest posterior credible interval for the regression.
Error bars on the data points represent observed errors for both variables. The dis-
tances between the data and the regression line is due in part to the measurement
error and in part to the intrinsic scatter. From [3], reproduced with permission.
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Fig. 3.2
scaling. The black jagged histogram shows the posterior as computed by MCMC,
marginalised over the other parameters. The red curve is a Gauss approximation
of it. The shaded (yellow) range shows the 95% highest posterior credible interval.

3.3.3 Predicting Masses

As mentioned, one of the reasons why astronomers regress a quantity x against
another one, y, is to predict the latter when a direct measurement is missing (usually
because it is observationally expensive to acquire). It is clear that the uncertainty on the
predicted y, called Qy hereafter, should account for: (a) the intrinsic scatter between y
and x (a larger scatter implies a lower quality Qy estimate); (b) the uncertainty of the
x (the larger it is, the noisier will be the Qy; (c) the quality of the calibration between
y and x (better determined relations should return more precise estimates of Qy); and

Qy values corresponding
to x values absent from the calibrator sample (e.g. outside the range sampled by it).
All these requirements are satisfied using the posterior predictive distribution

p.y/ D
Z
p.yj�/p.� jy/d� (3.14)

where � are the regression parameters (intercept, slope intrinsic scatter). This appar-
ently complicated expression is easy to understand: one should combine (multiply)

p.� jy/, to the uncertainty of predicting
new data if the calibrating relation were perfectly known, p.yj�/. Since we are
now interested in predicted values only, we get rid of non-interesting parameters (�)
by marginalisation (integration).

Posterior predictive distributions are very  basic to be introduced at page 8 of the
> 700 pages “Bayesian Data Analysis” book [2] and to be offered as a standard
output of JAGS. Of course, we need to list the x values (richnesses), and errors of
the clusters for which we want to infer Qy (predicted mass) in the data file, listing
e.g.,  in the data file obsbkg D12, obtot D32, CD5 obslgM200D
(“not available”), to indicate that these quantities should be estimated using the
regression computed from the points with available masses and galaxy counts. JAGS

(From [3], reproduced with permission.)

(d) extrapolation errors, i.e. should penalise attempts to infer

Q Q

the uncertainties of the calibrating relation,

 and mass  NA

 Posterior probability distribution for the parameters of the richness-mass

Q
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returns p.ey/ in form of sampling and therefore, as for any other parameter, a point
estimate may be obtained by taking the average and a 68% (credible) interval can
be derived by taking the interval including 68% of the samplings. Returned values
behave as expected, and indeed have large errors when masses are estimated for
clusters with richnesses outside the range where the calibration has been derived [8].

3.4 Second example: Cosmological Parameters from SNIa

Supernovae (SNIa) are very bright objects with very similar luminosities. The lumi-
nosity spread can be made even smaller by accounting for the correlation with colour
and stretch parameter (the latter is a measurement of how slowly SNIa fade), as
illustrated in Figure 3.3 for the sample in [9]. These features make SNIa very use-
ful for cosmology: they can be observed far away and the relation between flux
(basically the rate of photons received) and luminosity (the rate of photons emitted)

Fig. 3.3: Apparent magnitude vs redshift of the SNIa sample (upper panels), and
their residual from a ˝M D 0:3, ˝� D 0:7 cosmological model (bottom pan-
els) before (left panels) or after (right panels) correcting for stretching and colour
parameter.

50
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is modulated by the luminosity distance (to the square), which in turn is a function
of the cosmological parameters. Therefore, measuring SNIa fluxes (and redshift)
allows us to put constraints on cosmological parameters. The only minor complica-
tion is that SNIa luminosities are functio of their colour and stretch parameters,

March et al. [10] show that the Bayesian approach delivers tighter statistical con-
straints on the cosmological parameters over 90% of the times, that it reduces the
statistical bias typically by a factor � 3 and that it has better coverage properties
than the usual chi-squared approach.

In this second example, we can proceed a bit faster in illustrating this non-linear
regression with heteroscedastic errors, non-uniform data structure and intrinsic scat-
ter. In this example, we also briefly discuss the prior sensitivity, i.e. how much the
results are affected by the chosen prior, and we also check the quality of the model
fit.

3.4.1 Step 1: Put in Formulae What You Know

We observe SNIa magnitudes obsmi (D �2:5log.f lux/C c) with Gaussian errors
�m;i , i.e.

obsmi � N .mi ; �
2
m;i / (3.15)

These mi are related to the distance modulus distmodi , via

mi D M C distmodi � ˛ xi C ˇ ci

with a Gaussian intrinsic scatter �scat. More precisely:

mi � N .M C distmodi � ˛ xi C ˇ ci ; �
2
scat/ (3.16)

whereM is the (unknown) mean absolute magnitude of SNIa, and ˛ and ˇ allow to
reduce the SNIa luminosity scatter by accounting for the correlation with the stretch
and colour parameters.

Similarly to [10], the M , ˛, ˇ and log �scat priors are taken uniform in a wide
range:

log10 �scat � U.�3; 0/ (3.17)
˛ � U.�2; 2/ (3.18)
ˇ � U.�4; 4/ (3.19)
M � U.�20:3;�18:3/ (3.20)

xi and ci are the true value of the stretch and colour parameters, of which we observe
(the noisy) obsxi and obsci with errors �x;i and �c;i . In formulae:

ns 
and these parameters have an intrinsic scatter too, which in turn  has to be deter-
mined from the data at the same time as the other parameters.

2–
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Fig. 3.4: Observed values of the stretch parameters, obsxi , and of the colour param-
eter, obsci ranked by error. Points scatter more than the error bars (see the left side
of the figure). The dashed lines indicate the size of the intrinsic scatter as determined
by our analysis.

obsxi � N .xi ; �
2
x;i / (3.21)

obsci � N .ci ; �
2
c;i / (3.22)

The key point of the modelling is that the obsxi and obsci values scatter more than
their errors, but not immensely so, see Figure 3.4. The presence of a non-uniform
distribution induces a Malmquist-like bias if not accounted for (e.g. large obsxi val-
ues are more likely low xi values scattered to large values than vice versa, because
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of the larger abundance of low xi values). Therefore, we model, as [10] do, the indi-
vidual xi and ci as drawn from independent normal distributions centred on xm and
cm with standard deviation Rx and Rc

xi � N .xm;R2x/ (3.23)

ci � N .cm;R2c / (3.24)

We take uniform priors for xm and sc, and uniform priors on logRx and on logRc ,
between the indicated boundaries:

xm � U.�10;C10/ (3.25)
cm � U.�3;C3/ (3.26)

log10Rx � U.�5;C2/ (3.27)
log10Rc � U.�5;C2/ (3.28)

That is almost all: we need to remember the definition of distance modulus:

distmodi D 25C 5 log10 dli (3.29)

where the luminosity distance, dl is a complicate expression, involving integrals,
of the redshift ´i and the cosmological parameters˝�;˝M ; w;H0 (see any recent
cosmology textbook for the mathematical expression).

Redshift, in the considered sample, has heteroscedastic Gaussian errors �´;i :

obszi � N .´i ; �
2
´;i / (3.30)

The redshift prior is assumed to be uniform

´i � U.0; 2/ (3.31)

Supernovae alone do not allow to determine all cosmological parameters, so we
need external prior on them, notably on H0, taken from [11] to be

H0 � N .72; 82/ (3.32)

At this point, we may decide which sets of cosmological models we want to investi-
gate using SNIa, for e.g. a flat universe with a possible w ¤ 0 with the following
ing priors:

˝M � U.0; 1/ (3.33)
˝k D 0 (3.34)
w � U.�4; 0/ (3.35)

or a curved universe with w D �1:

, respectively. In formulae:
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˝M � U.0; 1/ (3.36)
˝k � U.�1; 0/ (3.37)
w D �1 (3.38)

or any other set.
Both considered cosmologies have:

˝k D 1�˝m �˝� (3.39)

Finally, one may want to use some data. As shortly mentioned, we use the com-
pilation of 288 SNIa in [9].

3.4.2 Step 2: remove TeXing, perform stochastic computations and
publish

Most of the distributions above are Normal, and the posterior distribution can be
almost completely analytically computed [10]. However, numerical evaluation of
the stochastic part of the model on an (obsolete) laptop takes about one minute,
therefore there is no need for speed up. Instead, the evaluation of the luminosity
distance is CPU intensive (it takes � 103 more times, unless approximate analytic
formulae for the luminosity distance are used), because an integral has to be eval-
uated a number of times equal to the number of supernovae times the number of
target posterior samplings, i.e. about four millions times in our numerical computa-
tion. The JAGS implementation of the luminosity distance integral is implemented
as a sum over a tightly packed grid on redshift.

As the previous example, eq 3.15 to 3.32 can be de-TeXed and used in JAGS,
adding one of the two set of priors, 3.33–3.35 or 3.36–3.38, depending on which
problem one is interested in.

data {
# JAGS like precisions
precmag <-1/errmag/errmag
precobsc <- 1/errobsc/errobsc
precobsx <- 1/errobsx/errobsx
precz <- 1/errz/errz

# grid for distance modulus integral evaluation
for (k in 1:1500){
grid.z[k] <- (k-0.5)/1000.

}
step.grid.z <-grid.z[2]-grid.z[1]

}
model {
for (i in 1:length(obsz)) {
obsm[i] ˜ dnorm(m[i],precmag[i]) # eq 15
m[i] ˜ dnorm(Mm+distmod[i]- alpha* x[i] + beta*c[i], precM) # eq 16
obsc[i] ˜ dnorm(c[i], precobsc[i]) # eq 22
c[i] ˜ dnorm(cm,precC) # eq 24
obsx[i] ˜ dnorm(x[i], precobsx[i]) # eq 21
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x[i] ˜ dnorm(xm, precx) # eq 3.23
# distmod definition & H0 term
distmod[i] <- 25 + 5/2.3026 * log(dl[i]) -5/2.3026* log(H0/300000)
z[i] ˜ dunif(0,2) # eq 3.31
obsz[i] ˜ dnorm(z[i],precz[i]) # eq 3.30
######### dl computation (slow and tedious)
tmp2[i] <- sum(step(z[i]-grid.z) * (1+w) / (1+grid.z)) * step.grid.z
omegade[i] <- omegal * exp(3 * tmp2[i])
xx[i] <- sum(pow((1+grid.z)ˆ3*omegam + omegade[i] + (1+grid.z)ˆ2*omegak,-0.5)*

*step.grid.z * step(z[i]-grid.z))
# implementing if, to avoid diving by 0 added 1e-7 to omegak
zz[1,i] <- sin(xx[i]*sqrt(abs(omegak))) * (1+z[i])/sqrt(abs(omegak+1e-7))
zz[2,i] <- xx[i] * (1+z[i])
zz[3,i] <- (exp(xx[i]*sqrt(abs(omegak)))-exp(-xx[i]*sqrt(abs(omegak))))/2 *

*(1+z[i])/sqrt(abs(omegak+1e-7))
dl[i] <- zz[b,i]
}
b <- 1 + (omegak==0) + 2*(omegak > 0)
########## end dl computation

# JAGS uses precisions
precM <- 1/ intrscatM /intrscatM
precC <- 1/ intrscatC /intrscatC
precx <- 1/ intrscatx /intrscatx
# priors
Mm˜ dunif(-20.3, -18.3) # eq 3.20
alpha ˜ dunif(-2,2.0) # eq 3.18
beta ˜ dunif(-4,4.0) # eq 3.19
cm ˜ dunif(-3,3) # eq 3.26
xm ˜ dunif(-10,10) # eq 3.25
# uniform prior on logged quantities
intrscatM <- pow(10,lgintrscatM) # eq 3.17
lgintrscatM ˜ dunif(-3,0) # eq 3.17
intrscatx <- pow(10,lgintrscatx) # eq 3.27
lgintrscatx ˜ dunif(-5,2) # eq 3.27
intrscatC <- pow(10,lgintrscatC) # eq 3.28
lgintrscatC ˜ dunif(-5,2) # eq 3.28
#cosmo priors
H0 ˜ dnorm(72,1/8./8.) # eq 3.32
omegal<-1-omegam-omegak # eq 3.39
# cosmo priors 1st set LCDM
#omegam˜dunif(0,1) # eq 3.36
#omegak˜dunif(-1,1) # eq 3.37
#w <- -1 # eq 3.38
# cosmo priors 2nd set: wCDM
omegam˜dunif(0,1) # eq 3.33
omegak <-0 # eq 3.34
w ˜ dunif(-4,0) # eq 3.35
}

Figure 3.5 shows the prior (dashed blue line) and posterior (histogram) proba-
bility distribution for the three intrinsic scatter terms present in the cosmological
parameter estimation: the scatter in absolute luminosity after colour and stretch cor-
rections, (�scat), a nd the intrinsic scatter in the distribution of the colour and stretch terms
(Rc and Rx). This plot shows that the posterior probability at intrinsic scatters near
zero is approximately zero and,  thus, that the three intrinsic scatter terms are neces-
sary parameters for the modelling of SNIa, and not useless complications. The three
posteriors are dominated by the data, being the prior quite flat in the range where the
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Fig. 3.5: Prior and posterior probability distribution for the three intrinsic scatter
terms in the SNIa problem. The black jagged histogram shows the posterior as com-
puted by MCMC, marginalised over the other parameters. The red curve is a Gauss
approximation of it. The shaded (yellow) range shows the 95% highest posterior
credible interval. The adopted priors are indicated by the blue dotted curve.

posterior is appreciably not zero (Figure 3.5). Therefore, any other prior choice, as
long as smooth and shallow over the shown parameter range, would have returned
indistinguishable results.

Not only SNIa have luminosities that depend on colour and stretch terms, but
these in turns have their own probability distribution (taken Gaussian for simplicity)
with a well determined width. Figure 3.6 depicts the Malmquist- like bias one should
incur if the spread of the distribution of colour and stretch parameters is ignored: it
reports the observed values (as in Figure 3.4), obsxi and obsci as well as the true
values xi and ci (posterior means). The effect of equations 3.23 and 3.24 is to pull
values toward the mean, and more so those with large errors, to compensate the
systematic shift (Malmquist-like bias) toward larger observed values.

Figure 3.7 shows the probability distribution of the two the colour and stretch
slopes: ˛ D 0:12 ˙ 0:02 and ˇ D 2:70 ˙ 0:14 respectively. As for the intrinsic
scatter terms, the posterior is dominated by the data and therefore any other prior,
smooth and shallow, would have returned indistinguishable results.

Finally, Figure 3.8 reports perhaps the most wanted result: contours of equal
probability for the cosmological parameters˝M and w.

For one dimensional marginals, we found:˝M D 0:40˙ 0:10 and w D �1:2˙
0:2, but with non-Gaussian probability distributions.

3.4.3 Model Checking

The work of the careful researcher does not end by finding the parameter set that best
describe the data, (s)he also checks whether the adopted model is a good descrip-
tion of the data, or it is misspecified, i.e. in tension with the fitted data. In the non-
Bayesian paradigm this is often achieved by computing a p-value, i.e. the probabil-
ity to obtain data more discrepant than those in hand once parameters are taken at
the best fit value. The Bayesian version of the concept (e.g. [2]) acknowledges that
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Fig. 3.6 Effect of the population structure for the stretch and the colour parameters.
Each tick goes from the observed value to the posterior mean. The population mod-
elling attempt to counterbalance the increased spread (Malmquist-like), especially
those with larger error (on the right, in the figure), pulling values towards the mean.

parameters are not perfectly known, and therefore one should also explore, in addi-
tion to best fit value, other values of the parameters. Therefore, discrepancy becomes
a vector, instead of a scalar, of dimension j , that measures the distance between the
data and j models, one per set of parameters considered. Of course, more prob-
able models should occur more frequently in the list to quantify that discrepancy
from an unlikely model is less detrimental than discrepancy from a likely model.
In practice, if parameters are explored by sampling, it is just a matter of computing
the discrepancy of the data in hand for each set j of parameters stored in the chain,
instead of relying on one single set of parameter (say, those that maximise the like-
lihood). Then, one repeats the computation for fake data generated from the model
and counts how many times fake data are more extreme of real data.
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Fig. 3.7: Prior and posterior probability distribution for the colour and stretch slopes
of the SNIa problem. The black jagged histogram shows the posterior as com-
puted by MCMC, marginalised over the other parameters. The red curve is a Gauss
approximation of it. The shaded (yellow) range shows the 95% highest posterior
credible interval. The adopted (uniform) priors are indicated by the blue dotted
curve.

Fig. 3.8: Constraints on the cosmological parameters˝M and w. The two contours
delimit 68% and 95% constraints.

For example, if we want to test the modelling of the observed spread of magni-
tude (i.e. equation 3.15 and 3.16), let’s define:

mcori D M C distmodi � ˛ xi C ˇ ci (3.40)

We generate fake supernovae mag:

m:fakei � N .mcori ; �2scat/ (3.41)

and fake observed values of them,

obsm:fakei � N .m:fakei ; �2m;i / (3.42)
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Then, we adopt a modified �2 to quantify discrepancy (or its contrary, agreement).
For the real data set,  we have:

�2real;j D
X
i

.obsmi � mcori;j /2

�2m;i C E2.�scat/
(3.43)

where summation is over the data and j refers to the index in the sampling chain.
Apart for the j index, Eq. 3.43 is just the usual �2 , the difference between

observed, obsmi, and true, i, values, weighted by the expected variance, com-
puted as quadrature sum of errors, �m;i , and supernovae mag intrinsic scatter �scat.
The �2 of the j �2fake;j is:

�2fake;j D
X
i

.obsm:fakei;j � mcori;j /2

�2m;i C E2.�scat/
(3.44)

At this point, we only need to compute for which fraction of the simulations
�2fake;j > �2real;j and quote the result. If the modelling is appropriate, then the com-
puted fraction (p-value) is not extreme (far from zero or one). If not, our statistically
modelling needs to be revised, because the data are in disagreement with the model.

We performed 15,000 simulations,2 each one generating 288 fake measurements
of SNIa. In practice, we added the following three JAGS lines:
mcor[i]<-Mm+distmod[i]- alpha* x[i] + beta*c[i] # eq 3.40
m.fake[i] ˜ dnorm(mcor, precM) # eq 3.41
obsm.fake[i] ˜ dnorm(m.fake[i],precmag[i]) # eq 3.42

and we can simplify Eq. 3.16 in
m[i] ˜ dnorm(mcor[i], precM) # eq 3.16

We found a p-value of 45%, i.e. that the discrepancy of the data in hand is quite
typical (similar to the one of the fake data). Therefore, real data are quite common
and the tested part of the model shows no evidence of misspecification. The careful
researcher should then move to the other parts of the model, whose detailed explo-
ration is left as exercise.

In such exploration of possible model misfits, it is very useful to visually inspect
several data summaries to guide the choice of which discrepancy measure one
should adopt (Eq. 3.43 or something different), and, if the adopted model turns

the model. A possible (and common) data summary is the distribution of normalised
residuals, that for obsxi reads

stdresobsxi D obsxi �E.xi /q
�2x;i C E2.Rx/

(3.45)

2 Skilled readers may note that we are dealing, by large, with Gaussian distributions, and may
attempt an analytic computation.

 mcor

th fake data set

out to be unsatisfactory, to guide how to revise the modelling of the tested part of

e.g. 

n
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Fig. 3.9: Standardised residuals (histogram) and their expected distribution (blue
curve).

i.e. observed minus expected value of xi divided by their expected spread (the sum
in quadrature of errors and intrinsic spread). A similar summary may be built for
obsci too. To first order (at least), standardised residuals should be normal dis-
tributed with standard deviation one (by construction). Figure 3.9 shows the dis-
tribution of normalised residuals of both obsxi and obsci , with superposed a Gaus-
sian centred in 0 with standard deviation equal to one (in blue). Both distributions
show a possible hint of asymmetry. At this point, the careful researcher may want
to use a discrepancy measure sensitive to asymmetries, as the skewness index, in
addition to the �2 during model testing. While leaving the actual computation to
the reader, we emphasise that if an extreme Bayesian p-value if found (on obsxi for
exposing simplicity), then one may replace its modelling (eq. (3.23) in the case of
obsxi ) with a distribution allowing a non-zero asymmetry and this can be easily per-
formed in a Bayesian approach, and easily implemented in JAGS, it is just matter
of replacing the adopted Gaussian with an asymmetric distribution. If instead the
data exploration gives an hint of double-bumped distribution (again on obsxi for
exposing simplicity), and an extreme Bayesian p-value is found when a measure
of discrepancy sensitive to double-bumped distributions is adopted, then one may
adopt a mixture of Gaussians, replacing (eq. (3.23) in the case of obsxi ) with

obsxi � 
N .xi ; �
2
x;i /C .1 � 
/N .xxi ; �

2
xx;i / (3.46)

Even more simple is the (hypothetical) case of possible distribution (again of
obsxi for exposing simplicity) with fat tails: one may adopt a Cauchy distribution.
In such case, coding in JAGS is it is just matter of replacing a dnorm with dt in
the JAGS implementation. And so on.

In summary, model checking consists in updating the model until it produces
data similar to those in hand. One should start by carefully and attentively inspect
the data and their summaries. This inspection should suggest a discrepancy measure
to be used to quantify the model misfit and, if one is found, to guide the model

60
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updating. The procedure should be iterated until the model fully reproduces the
data.

3.5 Summary and Conclusions

These two analyses offer a template for modelling the common awkward features of
astronomical data, namely heteroscedastic errors, non-Gaussian likelihood (inclu-
sive of upper/lower limits), non-uniform populations or data structure, intrinsic scat-
ter (either due to unidentified source of errors or population spreads), noisy estimates
of the errors, mixtures and prior knowledge.

In a Bayesian framework, learning from the data and the prior, it is just mat-
ter of formalising in mathematical terms our wordy statements about the quantities
under investigation and how the data arise. The actual numerical computation of the
posterior probability distribution of the parameters is left to (special) Monte Carlo
programs, which  are used to compute the integral of a function.

The great advantage of the Bayesian modelling is its high flexibility: if the data
(or theory) call for a more complex modelling, or call for using distributions dif-
ferent from those initially taken, it is just a matter of replacing them in the model,
because there are no simplifications forced by the need to reach the finishing line,
as, instead, i s the case in other modelling approaches. Furthermore, if one is inter-
ested in constraining another cosmological model, one with a redshift- dependent
dark energy equation of state wDw0Cw1.1C´/=.1C´p/, one should just replace
just replace w in the JAGS code with the above equation. This flexible, hierarchical
modelling is native with Bayesian methods.

In both our examples, the Bayesian approach performs, unsurprisingly, better than
non-Bayesian methods obliged to discard part of the available information in order
to reach the finishing line: Bayesian methods just use all the provided information.

As a final note, we remember that the careful researcher, whether using a
Bayesian modelling or not, before publishing his own result should check that the
numerical computation is adequate for his purpose and that the model is appropri-
ate for the data. Therefore, if you, gentle reader, are using our examples as tem-
plates, remember to include in your work a sensitivity analysis, by checking that
your assumptions (both likelihood and prior) are reasonable. Some prior sensitiv-
ity analysis has been performed in both examples to emphasise the importance of
showing how much conclusions (the posterior) rely on assumptions (prior). For what
concerns the likelihood, i.e. misfitting, the key point consists in updating the model
formulation until it produces data similar to those in hand, as we have shown in
great detail for the second example.

More in general, we hope that the template modelling shown in these two exam-
ples may be useful for any analysis confronted with modelling the awkward features
of astronomical data, among which are heteroscedastic (point-dependent) errors, intrin-
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sic scatter, data structure, non-uniform population (often called Malmquist bias) and
non-Gaussian data, inclusive of upper/lower limits.

Acknowledgements The first part of this chapter is largely based on papers written in collabo-
ration with Merrilee Hurn. It is a pleasure to thank Merrilee for the fruitful collaboration and her
wise suggestions along the years, and for comments on an early draft of this chapter. Errors and
inconsistencies remain my own.

References

1. Andreon, S., Hurn, M. A.: Statistical aspects of regressions and scaling relations in astro-
physics. Statistical Analysis and Data Mining (2011, submitted)

2. Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B.: Bayesian data analysis. Champan and
Hall/CRC (2004)

3. Andreon, S., Hurn, M. A.: The scaling relation between richness and mass of galaxy clusters:
a Bayesian approach. Monthly Notices of the Royal Astronomical Society 404(4), 1922–1937
(2010)

4. Bayes, T.: Essay Towards Solving a Problem in the Doctrine of Chances, in Philosophical
Transactions of the Royal Society of London (1764)
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Chapter 4

BEAMS: Separating the Wheat from the Chaff

in Supernova Analysis

Martin Kunz, Renee Hlozek, Bruce A. Bassett, Ma´ Smith, James Newling, and
Melvin Varughese

Abstract We present Bayesian Estimation Appliedto Multiple Species (BEAMS),
an algorithm designed to deal with parameter estimation when using contaminated
data. We introduce the algorithm and demonstrate how it works with the help of a
Gaussian simulation. We then apply it to supernova data from the Sloan Digital
Sky Survey (SDSS), showing how the resulting confidence contours of the cosmo-
logical parameters shrink significantly.

4.1 Introduction

As demonstrated by the 2011 Nobel prize in physics, supernovae of type Ia (SN-
Ia) are one of the most important tools to study the expansion history of the
universe [1, 2]. Supernovae are exploding stars that can be seen at extremely large
distances. The most distant supernova currently known (designated SN 19941, a
type IIn supernova) is at a distance of 11 billion light years [3]. Due to the finite
speed of light, a signal from a very distant source takes a very long time reach us,
in this case some 11 billion years (the universe itself is about 13.7 billion years old
[4]). During the time that the light of the explosion travels towards us, the universe
expands and the wavelength of the light is redshifted. By looking at spectral lines, it
is possible to measure by how much the frequency changed. In the case of SN 19941
the redshift is ´ D 2:36, i.e. the wavelength of the light was stretched by a factor of
2.36. This also implies that the universe has grown by a factor of .1 C ´/ D 3:36

over the last 11 billion years.
In this way it is possible to map the expansion history of the universe and to

compare it to predictions from General Relativity (GR). But in GR, space-time is
curved, which makes the definition of distances somewhat tricky. One way to do
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this assumes that we know the intrinsic luminosity of an object. Such an object is
called a standard candle, and astrophysical research has shown that SN-Ia are fairly
good standard candles after some data processing. If we have a standard candle, then
the observed brightness can be linked directly to a distance (called luminosity dis-
tance dL): the more distant the standard candle, the dimmer we see it. Astronomers
tend to use not the distance but its logarithm 
 � log10 dL, for historical reasons
(supposedly because the eye uses a roughly logarithmic scale to gauge brightness,
apparently the magnitude system dates back to Greek astronomers). The magnitude-
redshift diagram, a plot of 
 versus ´, can then be used to study the way the universe
has behaved over most of its lifetime.

Unfortunately not all supernovae are standard candles. There are two main
classes that are due to very different mechanisms. Stellar explosions of type Ia are
thought to occur when a small dead star (a white dwarf) exists in a binary sys-
tem with a large, red star and begins to accrete material from that larger star. At
some point this cosmic cannibal begins to over-eat, and its stellar structure becomes
unstable. At this point, reminiscent somewhat of the unforgettable dinner scene
in the Monty Python sketch, the white dwarf explodes in a gigantic conflagra-
tion. Although the exact mechanism is not yet fully understood, it is plausible that
such events always produce supernovae of comparable luminosity, as the instability
always occurs under about the same conditions.

The second class is due to supermassive stars running out of fuel: during most
of the life of gigantic stars, the gravitational force of their own mass that wants to
crush them is balanced by the radiation pressure generated by burning hydrogen,
and later heavier elements. This is possible because it is energetically favorable to
fuse light elements together, but once the fusion process reaches lead, the energetics
reverse and for heavier elements it is actually favorable to split (this is why fusion
plants would use light elements while fission plants use very heavy elements). So
stars will eventually run out of fuel, and thus will lose the radiation pressure. If the
star is heavy enough then the matter itself also cannot support the self-gravity of the
star, and it will collapse under its own weight. The result is called a core-collapse
supernova, and much of the gravitational energy liberated in the collapse is radiated
away in neutrinos and photons. Such supernovae occur unfortunately with a wide
variety of intrinsic luminosities and so are unsuitable for distance measurements.

Luckily the different types can be distinguished with the help of spectral analysis
of the supernova light. But measuring a spectrum requires much more light and
effort than simply measuring the brightness of an object, as we need to split the
light into the different wavelengths. While taking spectra has been feasible for the
hundreds supernovae that have been observed to date, we are now seeing a transition
where large surveys are finding thousands of supernovae (e.g. the supernova data of
the Sloan Digital Sky Survey, SDSS-II SN [5, 6]), which are too many to take all the
spectra. Future astronomical projects like the large synoptic survey telescope (LSST
[7]) will find tens of thousands to hundreds of thousands of supernovae per year. It
is impossible to follow up more than a tiny fraction of this data with spectroscopic
observations. The “normal” observations will still provide light-curves in several
different color bands, of the kind shown in Figure 4.1. Such observations will yield
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Fig. 4.1 Fitting lightcurves
to supernova data: A simu-
lated set of SN-Ia light curves
in different bands from the
Supernova Photometric Clas-
sification Challenge [13],
together with interpolating
curves from [14].
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some idea what kind of supernova we are looking at, but they cannot provide the
near-certainty of spectra. We are then faced with a stark choice: either we throw
away over 99% of the data, or we develop a statistical method that is robust against
mis-identification of supernovae. Here we will make an attempt at providing such a
method. The material presented here is based on several publications [8–10] where
more details can be found (see also [11, 12]).

In the following section, we introduce the BEAMS formalism and discuss in
more detail the role of the probabilities. We then present our choice of likelihood
functions for the different types of supernovae in section 4.3, where we also pro-
vide some tests of the algorithm itself. In section 4.4 we apply the algorithm to the
SDSS-II supernova data. In the final section we summarize the chapter, providing
conclusions and an outlook to future work.

4.2 Basic BEAMS

4.2.1 The BEAMS Formalism

Let us first introduce the mathematical formalism (see also [8] for simple examples
and basic tests). We normally want to know the posterior distribution P.� jD/ for
parameters � given data D. Now assume that there is an additional dependence
on the type of population that the data has been drawn from. For simplicity, let us
assume that there are two kinds of data, type A (corresponding for example to type
Ia supernovae) and type B (all other kinds of supernovae). Introducing a type vector
� of the same length N as the data vector D and with entries �i D A or �i D B , we
can then write

P.� jD/ D
X
�

P.�; � jD/ (4.1)
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where we marginalized over all 2N possible � vectors. It is obviously straightfor-
ward to generalize this to an arbitrary number of different populations. The joint
probability density P.�; � jD/ for a given vector � is probably difficult to determine
directly, so we use Bayes theorem to rewrite it,

P.�; � jD/ D P.Dj�; �/P.�; �/
P.D/

: (4.2)

The “evidence” factor P.D/ is independent of both the parameters and � and is an
overall normalization that can be dropped for parameter estimation. We will fur-
ther assume here that P.�; �/ � P.�/P.�/. This simplification assumes that the
actual parameters describing our universe are not significantly correlated with the
probability of a given supernova to be of type Ia or of some other type. Although
it is possible that there is some influence, we can safely neglect it for current data
as our parameters are describing the large-scale evolution of the universe, while the
type of supernova should mainly depend on local astrophysics. In this case P.�/
is the usual prior parameter probability. We will also assume P.�/ to separate into
independent factors,

P.�/ D
Y
�i DA

Pi
Y
�j DB

.1 � Pj /; (4.3)

for a discussion of this approximation please see [9]. Here the product over “�i D
A” should be interpreted as a product over those indices i in the vector � for which
�i D A. In other words, given a population vector � with entries “A” for SN-Ia and
“B” for other types, the total probability P.�/ is the product over all entries, with a
factor Pj if the j-th entry is “A” and 1 � Pj otherwise (if the j-th entry is “B”). In
this way Pj is always a probability to find an entry �j D A in the vector � before
using the data. Notice that we discuss here only one given vector � , the uncertainty
is taken care of by the outer sum over all possible such vectors. The full expression
is therefore

P.� jD/ / P.�/
X
�

P.Dj�; �/
Y
�i DA

Pi
Y
�j DB

.1 � Pj /: (4.4)

The factor P.Dj�; �/ is the likelihood, but now conditional on the data types. This
means when we write down later on an expression for the likelihood, we can do it
assuming that the type of each data point is known.

The price to pay is that we then have to marginalize over all possible vectors � ,
evaluating a sum composed of 2N terms for N data points. The exponential scaling
with the number of data points means that we can in general not evaluate the full
posterior directly, but have to use a clever approximation. Here we will instead make
an additional assumption that the data points are not correlated,
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P.Dj�; �/ D
NY
iD1

P.Di j�; �/ (4.5)

D
Y
�i DA

P.Di j�; �i D A/
Y
�j DB

P.Dj j�; �j D B/: (4.6)

In the second line we have made the reasonable assumption that the probability
of observation i does not depend on the assumed type of the object j ¤ i . We
have also indicated that the likelihood of each observation naturally splits into two
populations, those which have entry A in � , and those with entry B . In general the
form of these two likelihood classes will be different. In toy model applications, we
will usually know how they look like, but for actual data they may be unknown and
we will have to leave some additional freedom.

The form of Eqs. (4.4) and (4.6) allows for a huge computational simplifica-
tion: the posterior is the sum over all possible products of the type A1A2A3 : : : ;
B1A2A3 : : : ; A1B2A3 : : : ; etc. This sum of 2N terms can be generated simply by
computing the product over N terms

Q
k.Ak CBk/, and the posterior Eq. (4.4) can

be written as

P.� jD/ / P.�/
NY
iD1
fP.Di j�; �i D A/Pi C P.Di j�; �i D B/.1 � Pi /g: (4.7)

This is the form of the BEAMS posterior that we will be using for the rest of this
chapter.

4.2.2 BEAMS Probabilities

The probabilities in BEAMS are of central importance, so it is worth to take a closer
look by studying a simple toy model: we assume that we are dealing with two popu-
lations (let us call them ‘red’ and ‘blue’) drawn from two normal distributions with
means at ˙� and equal variances of �2 D 1, see the top panel of Figure 4.2. In
addition to the basic formalism discussed in section 4.2.1 above, we will introduce
an extra parameter A that can adjust the relative normalization of the probabilities.
As we will see, this parameter allows for automatically adjusting for an unknown
relative rate of the two populations. We introduce the parameter as a change of the
relative probability (the Bayes factor) to be of the red or blue kind:

B D P

1 � P !
QB D BA D A P

1 � P D
QP

1 � QP : (4.8)

The effective, adjusted probability is then

QP D AP

1 � P C AP ; (4.9)

B 
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Fig. 4.2 Posterior probabilities: the top panel provides an illustration of the two toy distributions,
in the case of � D 0:5; 1:0; 2:0 (left to right). The bottom panel shows the probability his-
togram density plots, or number of red points with a given probability, where dN .r/.P / is given
in Eq. (4.14) for � D 0:5 (blue), 1 (red) and 2 (yellow).

and we will in the actual applications always use this probability and allow for a
free A that we will marginalize over.

The equality of the variances of the two populations means that we are measuring
the distance� D 2� between the two mean values in units of the standard deviation.
We also allow for different numbers of points drawn from the red and blue Gaussians
through a ‘rate parameter’ � 2 Œ0; 1� that gives the probability to draw a red point. If
we drawN points in total, we will then have on average �N red points and .1��/N
blue points. The likelihood for a set of points fxj g, with j running from 1 to N , is
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then

P.fxj gj�/ D
NY
jD1

1p
2�

�
Pe� 1

2 .��xj /
2 C .1 � P /e� 1

2 .�Cxj /
2
�

(4.10)

for P D �.
To simplify the analysis we assume that we are dealing with large samples so

that � is determined to high precision, with an error much smaller than � . In this
case (and since this is a toy model) we can take the parameter � fixed. We also note
that if we are running this in BEAMS with a true prior probability P D � then we
would find a normalization parameter A D 1, while for P D 1=2 we would obtain
A D �=.1 � �/, and we again assume that this parameter can be fixed to its true
value. Then it is easy to see that if we leave the probability for point i , Pi , free, we
find a Bayes factor

B D P.fxj gj�; Pi D 1/
P.fxj gj�; Pi D 0/ D

e� 1
2 .��xi /

2

e� 1
2 .�Cxi /

2
D e2�xi : (4.11)

In other words, ln.B/ D xi�, just the value of the data point times the separation
of the means. If the point is exactly in between the two distributions, xi D 0 then
B D 1, i.e. its BEAMS posterior probability to be red or blue is equal. This means
that if we want to think of the BEAMS posterior probability as the probability to
be red or blue, we should update the Bayes factor with A, i.e. use QB D BA, with
an associated probability P D QB=.1 C QB/. We also see that the probability to
be red increases exponentially as xi increases. As we will see below, this reflects
the fact that the number of red points relative to the blue points increases in the
same way. The rapidity of this increase is governed by the separation, �, of the two
distributions.

What is the distribution of the posterior probabilities, i.e. the histogram of prob-
ability values, and what determines how well BEAMS does as a typer in this exam-
ple? The number of red points in an interval Œx; x C dx� is just given by the ‘red’
probability distribution function at this value, times dx. To plot this function in
terms of P we also need

x.P / D ln.B/
�
D ln.P=.1 � P //

�
(4.12)

dP

dx
D �P.1 � P /: (4.13)

The probability histograms for the red (r) and blue (b) points, normalized to � and
1 � � respectively, then are:

,



M. Kunz et al.

dN .r/.P / D �p
2��

dP

P.1 � P / exp

(
�1
2

�
lnŒP=.1 � P /�

�
� �

�2)
(4.14)

dN .b/.P / D 1 � �p
2��

dP

P.1 � P / exp

(
�1
2

�
lnŒP=.1 � P /�

�
C �

�2)
(4.15)

We plot dN .r/=dP=� for � D 0:5, 1 and 2 in the lower panel of Figure 4.2. We see
how the values become more concentrated aroundP D 1 for larger separation of the
distributions, i.e. BEAMS becomes a “better” typer. But for very large separations
there are also suddenly more supernovae at low P (yellow curve). The reason is that
BEAMS does not try to be the best possible typer, instead it respects the condition
that the probabilities have to be unbiased, in the sense that

dN .r/

dN .b/
D
�

P

1 � P
��

�

1 � �
�
D BA D QB: (4.16)

Since BEAMS only uses the information coming from the distribution of the val-
ues, its power, as reflected in the distribution of probability values dN.P /, is given
by how strongly the distributions are separated. If they are identical (� D 0) then
BEAMS can only return P D 1=2 while for larger � there is a stronger preference
for one type over another. But given the two populations, we can in principle derive
the probability histogram by just looking at the ratio of data points of either type at
each point in data space, there is nothing else BEAMS can do. Also, in order for
the probabilities to be unbiased (up to the rates which are taken into account by A)
if there are, say, 200 red points in the P D 0:9 bin and only 10 in the P D 0:8

bin, then we need to find about two blue points in the P D 0:8 bin, but 20 in the
P D 0:9 bin. Although this looks like a significant misclassification problem, it is
just a reflection of Eq. (4.16) and is actually the desired behavior: BEAMS is not
a classification algorithm (see e.g. [13–15] for efforts in that direction) but instead
a way to compute the posterior pdf of the parameters � . The property of unbiased
probabilities is required to get unbiased parameter constraints, and indeed for that
purpose we never classify any data points. Instead we leave them in a superposi-
tion of different types, weighted by the associated probabilities as encoded in the
marginalization over � in Eq. (4.1).

4.3 Application of BEAMS to Supernova Observations

In this section we will complete first our discussion of the posterior (4.7) by provid-
ing explicit expressions for the two likelihood functions. We will say a few words
on the numerical strategy used to explore the posterior parameter distribution and
check the performance of the algorithm with a range of tests. This section and the
next is based on the results obtained in [10].

:

;

70
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Before entering the likelihood discussion, we would like to remind the reader
that supernova data is given in the form of a distance modulus 
 as a function of
redshift ´. In addition, the distance modulus depends on a set of cosmological and
nuisance parameters � . The cosmological parameters fH0; ˝m; ˝�g are the true
quantities of interest for us. HereH0 is the expansion rate of the universe today (the
Hubble constant), and the ˝j are the relative energy densities in matter m and a
cosmological constant �. See for example the book by Scott Dodelson [16] for a
good introduction to cosmology.

The distance modulus is related to the cosmological model via:


.´; �/ D 5 log dL.´; �/C 25; (4.17)

where

dL.´; �/ D c.1C ´/p
˝kH0

sinh
�p

˝k

Z ´

0

d´

E.´/

�
(4.18)

is the luminosity distance measured in Megaparsec (Mpc), and the normalized
expansion rate is given by

E.´/ � H.´/

H0
D
p
˝m.1C ´/3 C˝k.1C ´/2 C˝�: (4.19)

The relative energy densities of matter (˝m), curvature (˝k) and the cosmological
constant (˝�) obey the relation ˝m C ˝k C ˝� D 1, which we use to express
˝k in terms of the other ˝’s. Notice that ˝k < 0 is possible, in which case

p
˝k

in Eq. (4.18) becomes imaginary and the hyperbolic sine becomes a normal sine
function instead – the limit ˝k D 0 is also well defined. The distance modulus
is defined as the difference between the absolute and apparent magnitudes of the
supernova, 
 D m�M;with additional corrections made to the apparent magnitude
for the correlations between brightness, color and stretch and a K-correction term
related to the difference between the observer and rest-frame filters, for example.
The corrections are typically made within the model employed in a light-curve fitter,
such as that for MLCS2k2.

In this application of BEAMS we have assumed that the distance modulus 
 is
obtained directly from the light-curve fitter (such as is the case for fitters which
use the MLCS2k2 light-curve model), however this is not an implicit assumption.
In the case of the SALT light-curve fitter, the distance modulus would be recon-
structed using a framework such as that outlined in [17] before including in the
BEAMS algorithm. We will also always assume that the distance modulus has been
obtained under the assumption that all supernovae are of type Ia. This means that it
is straightforward to write down the likelihood for type-Ia supernovae, but that we
need to do extra work for the non-Ia supernovae. It would of course be preferable
to have distance moduli for all possible supernova types, but this is still an active
research topic in astronomy.
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4.3.1 Choice of Likelihood

4.3.1.1 Likelihood of Type-Ia Supernovae

Following the standard astronomical literature, the Ia likelihood is modeled as a
Gaussian probability distribution function (pdf) for the observed distance modulus

i centered around the theoretical value 
.´; �/ with a variance �2tot;i :

P.
i j�; �i D 1/ D 1p
2��tot;i

exp

 
� .
i � 
.´i ; �//

2

2�2tot;i

!
: (4.20)

Again following standard practice, we model the error on the distance modulus
of each supernova as a sum in quadrature of several independent contributions,

�2tot;i D �2�;i C �2� C �2�;´; (4.21)

where ��;i is the error obtained from fits to the SN light-curve, �� is the character-
istic intrinsic dispersion of the supernova population, which we add as an additional
global parameter to the vector � with Jeffreys’ prior. The constraints do not depend
strongly on the prior used for the intrinsic dispersion. The error term ��;´ converts
the uncertainty in redshift due to measurement errors and peculiar velocities into an
error in the distance of the supernova as:

��;´ D 5

ln.10/
1C ´

´.1C ´=2/
q
�2´ C .vpec=c/2; (4.22)

with �´ as redshift error, and vpec as the typical amplitude of the peculiar velocity
of the supernova, which we take as 300 kms�1 [6, 18].

4.3.1.2 Likelihood of All Other Supernovae

The general form of the non-SNIa likelihood will be complicated since there are
several sub-populations. Given the limited number of non-SNIa in the SDSS-II SN
data set however, (see Figure 4.8) we will model it with a single mean and a dis-
persion. If one chooses to describe a population using only a mean and a variance,
statistically the least-informative (maximum entropy) choice of pdf in this case is
also a Gaussian [19],

P.
i j�; �i D 0/ D 1p
2�stot;i

exp

 
� .
i � �.´i ; �//

2

2s2tot;i

!
: (4.23)

As we do not know the mean � and variance s2tot;i of the non-Ia population, we
describe them with additional parameters. We will keep the parametrization of the
mean very general (see below) but for the variance we restrict ourselves to the same
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form as for the Type Ia supernovae, Eq. (4.21), but with a potentially different intrin-
sic dispersion s2� described by an independent parameter (again with a Jeffreys’
prior). We assume that the measurement errors and the contribution from the pecu-
liar velocities enter in the same way for Type Ia and other supernovae and so keep
these terms identical.

We do not know what to expect for the mean of the non-Ia pdf and so we allow for
a range of possibilities. As the brightness is linked to the luminosity distance through
Eq. (4.17), we describe the expected non-Ia distance modulus (as provided by the
light-curve fitter which assumes actually a type-Ia supernova) as a deviation from
the theoretical value, �.´; �/ D 
.´; �/C � .´/, where we consider the following
Taylor expansions of the difference as a function of redshift:

� .´/ D �.´; �/ � 
.´; �/ /
3X
iD0
.ai´

i /=.1C d´/: (4.24)

We consider the cases where we set different combinations of the parameters .ai ; d /,
to zero, and employ a criterion based on model probability to decide which of these
functions to use. We note that the explicit link of �.´; �/ to 
.´; �/ carries a risk
that the non-Ia likelihood can influence the posterior estimation of the cosmolog-
ical parameters. For this reason we verify that the contours do not shift when we
set directly �.´; �/ D � .´/, although we will need a higher-order expansion in
general (and of course the recovered parameters of the function � .´/ will change).
In general, as long as the basis assumed has enough freedom to fit the deviation
in the distance modulus of the non-Ia population from the Ia model, the inferred
cosmology will not be biased.

For a cosmological analysis we just marginalize over the values of the parameters
in � .´/, but these parameters contain information on the distribution of non-Ia type
SN and thus their posterior is of interest as well, allowing us to gain insight into the
distribution characteristics on the non-Ia population at no additional ‘cost’.

The simple binomial case considered here, where the non-Ia population consists
of all types of core-collapse SNe, is probably too simplistic to accurately describe
the distribution of non-Ia supernovae. In general one could include multiple popu-
lations, one for each supernova type, which would yield a sum of Gaussian terms
in the full posterior. In addition, the forms describing the distance modulus of the
non-Ia population are chosen to minimize the cosmological information from the
non-Ia’s (we always test for a deviation from the cosmological distance modulus),
however, the parameterization of the non-Ia distance modulus could be improved by
investigating the distance modulus residuals from simulations, as the major contri-
butions to the distance modulus residuals appear to be the core-collapse luminosity
functions, along with the specific survey selection criteria and limiting magnitude,
see [20]. While current SN samples do not include a large enough sample of non-Ia

allow for a detailed analysis of the number (and form) of distributions describing
the contaminant population.

data to test for this, larger data sets (such as the data from the BOSS SN survey) will
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4.3.2 Numerical Methodology

In this work, the BEAMS algorithm is implemented within a Markov Chain Monte
Carlo (MCMC) framework, and the Metropolis-Hastings [21] acceptance criterion
was used. We use the cosmological parameters f˝m; ˝�;H0g in the case of the
�2 approach on the spectro and cut samples described below, and add additional
parameters fA; �� ; s� ; Eag in the case of the BEAMS application. The parameters
Ea D fa0; a1; a2gI d D a3 D 0 are for the quadratic model, in the other models
for � .´/ we adjust the parameters accordingly. The chains were in general run for
around 100,000 steps per model; this was sufficient to ensure convergence. We test
for convergence using the techniques described in [22]. We impose positivity priors
on the energy densities of matter and dark energy, and impose a flat prior on the
Hubble parameter between 20 < H0 < 100 kms�1Mpc�1. The Hubble parameter
is marginalized over given that we do not know the intrinsic brightness of the super-
novae, but through the distance modulus are only sensitive to the relative bright-
ness of the supernovae. We impose broad Gaussian priors on the parameters of the
non-Ia likelihood function, and step logarithmically in the probability normalization
parameter A, as well as the intrinsic dispersion parameters of both the Ia and non-Ia
distributions.

4.3.3 Comparison to Standard �2 Methods

The primary difference between BEAMS and current methods is that the latter either
require that all data are spectroscopically confirmed, or apply a range of quality cuts
based on selection criteria. Here we will compare the performance of BEAMS to
these two approaches, by processing the data that pass the required selection criteria
using the Ia likelihood, Eq. (4.20). We will hereafter refer to this as the �2 approach.

We use the following samples1:

� spectro sample:
The sample containing only spectroscopically confirmed supernovae. In addi-
tion to spectroscopic confirmation we will also apply a cut on the goodness-
of-fit probability from the light-curve templates within the MLCS2k2 model,
Pfit > 0:01, and a cut on the light-curve fitter parameter � > �0:4, where � is
a parameter in the MLCS2k2 model describing the light-curve width-luminosity
correlation. MLCS2k2 was trained using the range �0:4 < � < 1:7 [23], hence
we restrict the sample to� > �0:4, which is a cut typical in current SN surveys,
and so we introduce the cut to provide comparison between datasets. We process
this spectro sample using the �2 approach.

� cut sample:
This larger sample is selected both by removing 5� outliers from a moving

1 We apologize for the use of technical jargon in the description of the samples.
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average fit to the Hubble diagram including both photometric and spectroscopi-
cally confirmed data and applying a cut to the sample, including only data with
a high enough probability, Ptyper > 0:9 (where the probability comes from a
general supernova typing procedure, such as PSNID, described in [24, 25]). We
choose to use the PSNID probabilities to make the probability cut on the sample
(Ptyper > 0:9); if the MLCS2k2 probabilities had themselves been used to make a
cut sample, then objects would only be included if they had probabilities greater
than, for example, Pfit > 0:9 In addition, we impose a cut on the goodness-of-fit
of the light-curve data to the Type Ia typer, �2

lc
< 1:8, a cut on the goodness-

of-fit probability from the light-curve templates within the MLCS2k2 model,
Pfit > 0:01, and a cut on� > �0:4. In this cut sample case we then use standard
the �2 cosmological fitting procedure on the sample, and so set the Ia probability
of all points to one.

� photo sample:
This sample is the one to which BEAMS will be applied, and will include all
the photometric data with host galaxy redshifts. As in the previous two cases, we
include only data which have Pfit > 0:01;� > �0:4.

Note that the spectro sample will be included in all the three samples described
above. While the spectro and cut samples have by definition PIa D 1 (as they are
analyzed in the �2 approach), we do not set the probabilities to unity when apply-
ing BEAMS to the full sample – the spectro subsample within the larger photo
sample will be treated ‘blindly’ by BEAMS. The spectro sample is the one most
similar to current cosmological samples, and will be used to check for consistency
in the derived parameters between BEAMS applied to the photo sample and the �2

approach on the spectro sample.

4.3.4 Tests on Simulated Data

To test the BEAMS algorithm explicitly we need a completely controlled sam-
ple, where all variables (such as the non-Ia model and the SN-Ia probabilities) are
directly known and where we can verify that the algorithm is able to recover them
correctly. In addition, we use this data set to check that we recover the correct shape
of the non-Ia distance modulus �.´/ since the true �.´; E�/ is known for this sample
only. We simulate a population of 50,000 SNe, with redshifts drawn from a Gaussian
distribution, ´ � N .0:3; 0:15/; and distance moduli drawn from a flat �CDM uni-
verse with .˝m; ˝�;H0/ D .0:3; 0:7; 70/. The non-Ia population includes a con-
tribution to the distance modulus, �.´; E�/ D 
.´; E�/ C a0 C a1´ C a2´2, where

choose .a0; a1; a2/ D .1:5; 1; �3/. We assign PIa probabilities from a model
dN=dPIaD . We then assign the types
from the two samples (of Ia’s and non-Ia’s), i.e. we choose a random number t and
if t < PIa (i.e. the type also follows the same linear relationship as the probability)
we take the data point to be a Ia, and if t > PIa we assign it as a non-Ia, until we

A1PIa A2P
2
Ia; with A1 −0.9; A2 1.9  

we
D DC
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Fig. 4.3 Gaussian data: 37529 points simulated according to a Gaussian distributions around a
distance modulus in a flat�CDM model for the Ia population (25000 points) and with extra terms
up to quadratic order in redshift for the non-Ia population. The points are colored according to their
simulated probabilities from blue (low probability) to dark brown (high probability).

We assign a ‘measurement error’ to each distance modulus of �� D 0:1I add
an intrinsic error �� D 0:16 and a peculiar velocity error based on Eq. (4.21), with
vpec D 300kms�1. We then randomly scatter the data points based on the total
errorbar. To mimic what happens in a light-curve fitter, only the measurement error
is recorded, however. When performing parameter estimation on the points we either
add this measurement error in quadrature to the other terms whose amplitudes are
fixed (in the case of the �2 approach), or we estimate the magnitudes of the intrinsic
dispersion when we apply the BEAMS algorithm. We randomly choose 10% of
the Ia data and assign spectro status; this represents the data that are followed up
by large telescopes on the ground. This spectro sample is drawn so that we can
compare the BEAMS-estimated result to the �2 approach on a smaller sample. The
data are shown in Figure 4.3. In the BEAMS analysis we checked on a small number
of simulated samples that the results obtained were unbiased – a full Monte Carlo
simulation of bias is beyond the scope of this work.

4.3.4.1 Performance on Cosmological Parameters

We show in Figure 4.4 the 2� confidence contours in the ˝m; ˝� plane when ana-
lyzing the Gaussian simulation with BEAMS (filled contours), the ‘spectroscopic’
sample (dashed contours) and the ‘cut’ sample (solid contours). We see that both
BEAMS and the spectroscopic sample are consistent with the input cosmology

run out of data points from either sample. This procedure reduces the sample size
from 50,000 to 37,529, but guarantees unbiased probabilities.
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Fig. 4.4 Analysis of Gaussian simulation: We show the 2� contours in the ˝m;˝� plane for
the simulated Gaussian data. The BEAMS constraints (filled contours with best fit indicated by
the black open square) are consistent with the input cosmology (brown square), as is the ‘spec-
troscopic’ sample (dashed contours, best-fit indicated by brown cross). The ‘cut’ sample on the
other hand is biased by over 2� in spite of a relatively stringent cut on probability of Pcut D 0:9;
stronger cuts will recover the true cosmology at the cost of sample size.

(filled brown square at ˝m D 0:3, ˝� D 0:7
information in the data and is able to provide much tighter constraints. The cut sam-
ple has also smaller contours than the spectroscopic sample (although larger than
BEAMS) but is biased with respect to the input cosmology.

As discussed in [8] for the one-dimensional case, the effective number of SNe
that result when applying BEAMS scales as the number of spectroscopic SNe and
the average probability of the dataset multiplied by the remainder of the photometric
sample, � ! �=

p
Nspec C hPIaiNphoto: In the two-dimensional case, the square root

would be removed as the area of the ellipse scales with the increase in the effective
number of supernovae. In our applications we have, however, not used the fact that
we know that some points are confirmed as Type Ia. In other words, the probability
of each data point was taken from the light-curve fitter and was not adjusted to one
or zero depending on the known type. Hence we expect the size of the contours in
the i � j plane to scale as

C
1=2
ij ! C

1=2
ij

hPIaiNphoto
(4.25)

We compute the size of the error ellipse for various Gaussian simulations as a func-
tion of the size of the simulation, shown in Figure 4.5, for one particular model of
the probabilities, and hence one value of hP i. We impose a prior on the densities,
and hence the ellipses are not closed for smaller samples. For large enough sam-
ple sizes the ellipse is closed and we observe that the error ellipses scale in area
as / 1=hPIaiN; which is consistent with earlier results [8]. In general then, one

), but BEAMS can use the additional
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Fig. 4.5 Errors scale with
number of SNe: the size
of the error ellipse, approx-
imated by the square root
of the determinant of the
two-dimensional chain of
˝m;˝� shows the reduc-
tion in size with increasing
the number of SNe in the
simulation.

104

Number of SNe

10−3√
|C
|

16N−1

would obtain a different constant factor hP i in Figure 4.5 for different simulated
probability distributions.

4.3.4.2 Constraining � .´/ Forms for the Non-Ia Population

The Gaussian simulation described in this section uses a quadratic model for the
differences between the standard �CDM 
.´/ and the non-Ia distance modulus.
We test here that assuming a different functional form while performing parameter
estimation does not significantly bias the inferred cosmology. We define the effec-
tive �2 as �2 lnL; where the posterior L is given by Equation (4.7), and we provide
values relative to the simplest linear model for � .´/. The goodness-of-fit of the
distributions to the data is summarized in Table 4.1.

In Figure 4.6 we show that BEAMS is reasonably insensitive to the assumed
form of the non-Ia likelihood, provided it is allowed enough freedom to capture the
underlying model. A linear model fails to recover the correct cosmology, as it does
not have enough freedom to recover the difference between the Ia and non-Ia distri-
bution. It correspondingly has a very high �2 relative to the other approaches. The
higher-order functions recover consistent cosmologies, and the �2 of these models
improves by ��2 < 0:5; even though the models have increased the number of
parameters by one.

4.3.4.3 Dependence on Probability

The BEAMS algorithm naturally uses some indication of the probability of a
data point to belong to the Ia population, whether it is some measure of the
goodness-of-fit of the data to a type Ia light-curve template, or something more
robust such as the relative probability that the point is a Ia compared to the probabil-
ity of being of a different type. By including a normalization factor, we can correct
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Table 4.1 Comparison of non-Ia likelihood models for Gaussian simulation: �2 values for
the fits using various forms of the non-Ia likelihood for the Gaussian simulations, where the true
underlying model is quadratic. The constraints on ˝m ; ˝� are shown in Figure 4.6. 	�2

eff
is difference in the effective �2 between a given model and the linear case, which has �2

eff D
42526:2.

Model 	�2
eff Parameters


 .´/ D a´C c 0 2

 .´/ D a´C b´2 C c -192.9 3


 .´/ D a´C b´2 C c´3 C d -193.3 4

 .´/ D .a´C b´2 C c/=.1C d´/ -193.4 4

Fig. 4.6 Different 
 .´/ for
the non-Ia likelihoods: 2�
constraints in the ˝m;˝�

plane for different versions of
the non-Ia distance modulus
function, for the Gaussian
simulation. We simulated
a quadratic model, and ran
BEAMS assuming a lin-
ear, quadratic, cubic and
Padé form for 
 .´/, as
described in Section 4.3.1.2.
As expected, the linear model
does not have enough free-
dom to capture the non-Ia
distribution.
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for general biases in the probabilities of the Ia points. One might still question, how-
ever, how sensitive BEAMS is to the input probability of the objects.

For the Gaussian simulation, where we assign the probabilities, PIa, we can
directly change the relationship between the true underlying distribution of the types
(i.e. the ratio of Ias to non-Ias in the sample) and the input probability value (the
number we input into the BEAMS algorithm as the PIa). If the probabilities are
unbiased then the distribution of types should follow the probability distribution of
the data, in other words 60% of the points with PIa D 0:6 should be Type Ia SNe.
This is the standard case. We then modify the probabilities by assigning a proba-
bility of PIa D 0:3 to all points (which we know will be biased since the mean
probability of the sample is 0.667).

We compare the constraints in the two cases in Figure 4.7. If we ignore all prob-
ability information and set it to a (biased) value of PIa D 0:3; the probability infor-
mation is essentially controlled by the normalization parameter. A tends to a value
of 4.7, which, when inserted into Equation (4.9) yields a ‘normalized’ probability
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Fig. 4.7 BEAMS corrects for biased input probability: the marginalized one-dimensional like-
lihood for the normalization parameter A (top panel) and estimated contours (bottom panel) for
Level I Gaussian simulation under two forms of the probability distribution. The pink curve and
contours correspond to the nominal case, where the probabilities are generated in a linear model,
and the types are assigned according to the probabilities. The purple dashed contours correspond
to assigning a probability of PIa D 0:3 to all points. The dashed vertical lines show the expected
value of the parameter A such that the true input mean probability of PIa D 0:667 is recov-
ered. Note that the x-axis in the top panel has been shortened to allow for comparison of the two
distributions.

of PIa D 0:668. Hence BEAMS uses the normalization parameter to remap the
mean of the given probabilities to ones that have a mean that fits the true unbiased
probabilities. In correcting for this effect, BEAMS manages to recover cosmological
parameters consistent with the unbiased case.

4.4 Results from the SDSS-II SN data

The Sloan Digital Sky Survey Supernova Search operated for three, three-month
long seasons during 2005 to 2007. We use the photometric supernovae from all three
seasons of the SDSS-II SN survey which also had host galaxy redshifts from the
SDSS survey. The analysis and cosmological interpretation of the first season of data
(hereafter Fall 2005) are described in [6, 18, 26] and [27]. The SDSS CCD camera
is located on a 2.5 m telescope at the Apache Point Observatory in New Mexico.
The camera operated in the five Sloan optical bands ugriz [28]. The telescope made
repeated drift scans of Stripe 82, a roughly 300 square degree region centered on the
celestial equator in the Southern Galactic hemisphere, with a cadence of roughly
four to five days, accounting for problems with weather and instrumentation.

The images were scanned and objects were flagged as candidate supernovae [24].
Candidate light-curves were compared to a set of supernova light-curve templates in
the g; r; i bands (consisting of both core-collapse and Type Ia supernovae) as a func-
tion of redshift, intrinsic luminosity and extinction. Likely SNIa candidates were

80
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Fig. 4.8 SDSS-II SN data: the photometric sample of the full three seasons of SDSS-II SN survey.
The 792 points are all those with host galaxy spectroscopic redshifts. The sample includes 297
spectroscopically confirmed SNe, and are color coded using probabilities from

preferentially followed up with spectroscopic observations of both the candidates
and their host galaxies (where possible) on various larger telescopes (see [24]).

In addition to the spectroscopically confirmed SNeIa discovered in the SDSS-
II SN, many high-quality candidates without spectroscopic confirmation (i.e. only
photometric observations were made of the SNe) but which, by chance, have a host
galaxy spectroscopic redshift, are present in the SDSS sample2.

We include these SNe in both the cut sample and the full photo sample, but do
not set the probabilities of the spectroscopically confirmed spectro sample points to
unity in the latter. These supernovae are fit with the MLCS2k2 model [23] to obtain
a distance modulus for each supernova, assuming the supernova is a type Ia.

As outlined in Section 4.3.3, we impose the standard selection cuts on the proba-
bility of the fit to the MLCS2k2 light-curve templatePfit > 0:01 and� > �0:4 to all
data, and require that the data used have spectroscopic host galaxy redshift informa-
tion. Applying these cuts to the full three year data yields a photometric sample of
792 SNe, with a spectroscopic subsample of 297 SNe. The spectro sample consists
of the objects which have been spectroscopically confirmed by other ground-based
telescopes, while the cut sample consists of the data points which have a typer prob-
ability of Ptyper > 0:9 and a goodness-of-fit to the light-curve templates within the
PSNID typer [24, 25], �2

lc
< 1:8:

2 The BOSS survey recently obtained host galaxy redshifts of all high-quality SN candidates from
all three seasons of the SDSS-II Supernova Search. This work does not use the additional BOSS
information and only uses the host galaxy redshifts obtained during the running of the SDSS-II
survey.

the data points 
the PSNID typer [24, 25] from low (blue) to high (dark brown).
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Fig. 4.9 Analysis of the SDSS-II SN data: We show the 2� contours in the ˝m;˝� plane for
the SDSS-II SN data. All the constraints – BEAMS (filled contours with best fit indicated by black
open square), the ‘spectroscopic’ sample (dashed contours, best-fit indicated by brown cross) and
the ‘cut’ sample – are consistent with the concordance cosmology (filled brown square). The best-
fit BEAMS point is given by the black square, while the best-fit cosmology from the spectroscopic
data is indicated by the brown cross. BEAMS provides the smallest contours on the SDSS-II data
set, while still being consistent with the constraints from the spectroscopic subsample.

As is shown in Figure 4.9, BEAMS estimates parameters consistent with the
spectro sample as well as the concordance cosmology in the case of the SDSS-II
SN data. Moreover, the BEAMS contours are three times smaller than when using
the spectro sample alone. In the Gaussian simulations (see Figure 4.4), the BEAMS
contours using all the points are ' 16% of the size of the spectro sample. This
highlights the potential of photometric supernova cosmology to drastically reduce
the size of error contours with larger samples while remaining unbiased relative to
the ‘known’ spectroscopic case.

4.5 Conclusions and Outlook

Bayesian Estimation Applied to Multiple Species (BEAMS) is a statistically robust
method for parameter estimation in the presence of contamination. The key power
of BEAMS is in the fact that it makes use of all available data, hence reducing the
statistical error of the measurement, whether or not the purity of the sample can
be guaranteed. Rather than discarding data, the probability that the data are “pure”
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is used as a weight in the full Bayesian posterior, reducing potential bias from the
interloper distribution.

Here we have presented the algorithm, and discussed in some detail the role
of the probabilities. We have tested BEAMS on an ideal Gaussian simulation of
two populations and demonstrated that it recovers the input parameters. We have
also shown that the BEAMS errors scale as expected with sample size, and that it
provides smaller errors than some of the traditional approaches. Using the Gaussian
simulation we have further verified that we can detect the correct form of the non-Ia
likelihood and correct for a bias in the probabilities.

We have then applied BEAMS to the SDSS-II SN data set of 792 SNe, using
photometric data points with host galaxy spectroscopic redshifts, and showed that
the BEAMS contours are three times smaller than those obtained when using only
the spectroscopically confirmed sample of 297 SNe Ia.

We have restricted ourselves to the binomial case of a SN-Ia population and one
general core-collapse, or non-Ia, population. While this assumption is valid for the
SDSS-II SN data, we expect that for larger samples a more complicated model with
at least two separate non-Ia Gaussians is more appropriate. On the other hand, large
supernova surveys will not only increase the total number of type Ia SNe candidates,
but will also allow to investigate systematics about the SNe populations directly. The
BEAMS algorithm is designed to include and adapt to information about the non-
Ia population easily. By adapting the form of the non-Ia population, and including
more than one population group, one could use BEAMS to gain insight into the
contaminant distribution.

As we move into the era of huge astronomical surveys that will provide data on
thousands of supernovae, BEAMS provides a platform to learn more about the SN
populations while at the same time tackling the fundamental questions about the
constituents of the universe.
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Leloudas, G., Lin, H., Long, D.C., Lucey, J., Lupton, R.H., Malanushenko, E., Malanushenko,
V., McMillan, R.J., Mendez, J., Morgan, C.W., Morokuma, T., Nitta, A., Ostman, L., Pan,
K., Rockosi, C.M., Romer, A.K., Ruiz-Lapuente, P., Saurage, G., Schlesinger, K., Snedden,
S.A., Sollerman, J., Stoughton, C., Stritzinger, M., Subba Rao, M., Tucker, D., Vaisanen,
P., Watson, L.C., Watters, S., Wheeler, J.C., Yanny, B., York, D.: The Sloan Digital Sky
Survey-II Supernova Survey: Technical Summary. Astron. J. 135, 338–347 (2008). DOI
10.1088/0004-6256/135/1/338. ArXiv:0708.2749
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Chapter 5

Gaussian Random Fields in Cosmostatistics�

Benjamin D. Wandelt

Abstract A gentle and pedagogical introduction to Gaussian random fields and their
applications in cosmological statistics.

5.1 Motivation

Gaussian random fields (GRFs) are ubiquitous in cosmological statistics. There are
good physical reasons for this. Calculations of quantum fluctuations produced dur-
ing the epoch of inflation predict very nearly Gaussian primordial perturbations.
Even for models which are said to produce “large” non-Gaussianity, deviations from
Gaussianity are limited by observational tests to less than fractions of a percent. To
very high accuracy the cosmic microwave background is a linear map of the pri-
mordial perturbations. We will see below that linear maps preserve Gaussianity—so
to the extent that the primordial perturbations are Gaussian, the Cosmic Microwave
Background (CMB) is a Gaussian field on the sphere. Even the large scale distribu-
tion of galaxies (“large scale structure” or LSS) can be approximately modeled as
a Gaussian random field, at least on very large scales, where gravitational evolution
is still well-described in the linear approximation. The goal of comostatistics is to
extract cosmological information from observations of these stochastic fluctuations
across all scales, illustrated in Figure 5.1.
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Fig. 5.1 The goal of cosmostatistics is to infer cosmological information from observables of
stochastic fields such as the cosmic microwave background or the large scale distribution of matter
in the Universe.

5.2 What is a Gaussian Random Field?

Defining GRFs is the easy part, at least if you allow me to talk about finite-
dimensional GRFs. If you are faced with a continuous GRF (which is infinite-
dimensional), simply discretize it. If you choose your discretization scale to be small
enough you will not lose any information. In practice, any observation you might
want to model as a GRF will already be discretized.

An n-dimensional vector x is a GRF (I will often say “is Gaussian”) with mean

 and covariance C if it has the following probability density function (pdf)

p.xj
;C / D e
1
2 .x��/TC�1.x��/pj2�C j : (5.1)

It is easy to check that the mean is really 
 and the covariance is really C : just do
the Gaussian integrals. You just show that

hxi D
Z
x

xp.xj
;C /dx D 
 (5.2)

h.x � 
/.x � 
/T i D
Z
x

.x � 
/.x � 
/Tp.xj
;C /dx D C (5.3)

by doing the integrals (dx is the n-dimensional volume element). In fact I will not
do this here, though you are welcome to train your mathematical muscle doing this
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(Exercise!), because there is a much more powerful way to do Gaussian integrals
like this. I will show you two tricks that make working with GRFs much easier than
with other random fields, namely what I like to call integration by differentiation.

5.2.1 Trick for Doing Gaussian Integrals: Integration by
Differentiation

First, consider Eq. (5.2). Since the Gaussian pdf has only one global maximum, and
it is symmetric about the mean, we can find the mean by finding the maximum (often
called the mode of the distribution). Since the exponential is a monotonic function,
and the denominator of the pdf does not depend on x, we can just find the maximum
of the exponent.

@x

�
1

2
.xmax � 
/TC�1.xmax � 
/

�
D 0 (5.4)

C�1.xmax � 
// D 0 (5.5)

So as long as C�1 does not have any zero eigenvalues (what would that mean?
(Exercise!)) we find xmax D hxi D 
. No integration required!

Once you have proven to yourself the long way round that Eq. (5.3) is correct you
can use an even easier short cut to find the covariance of any complicated Gaussian
pdf you might come across without doing any integration. Looking at the pdf what
would you do to extract C from it? It is easy to verify that

@x@xT .lnp.xj
;C // D �C�1 (5.6)

So the recipe for finding the covariance of any quantity is to look at the exponent,
select the coefficient matrix of all quadratic terms in that quantity, invert and multi-
ply by �1.

5.3 Generating GRFs with a Given Mean and Covariance

If you would actually like to simulate a model universe you need some way to
generate a realization of the initial perturbations. In other applications, e.g., when
actually working with data from large surveys of the CMB or LSS, generating fake
data sets with known inputs gives a way to test whether these inputs are recovered
by the data analysis, or to calibrate the analysis.

There are any number of software packages that allow generating single Gaussian
random variates with mean 0 and variance 1, i.e., normal variates, e.g., using the
well-known Box-Müller method. Using an n-vector � of such normal variates we
can generate random realizations of a GRF with covariance C and mean
 by simply



taking any matrix
p
C that satisfies

p
C
p
C
T D C and computing

x D pC� C 
: (5.7)

One general way to generate
p
C under the condition that C has only positive def-

inite eigenvalues is to use the so-called Cholesky decomposition, implemented in
many numerical packages. It is easy to verify that x has the right mean and covari-
ance using that h��T i D 1.

5.3.1 Higher Order Moments of Gaussian Random Fields

So we can calculate hxi and hxxT i. What about higher order moments? Let us focus
on central moments, e.g., h.x �
/.x �
/T i, since it is always easy to put back the
mean back in. Equivalently, we look at the moments for 
 D 0, which we will
assume until further notice:


 D 0 from now on. (5.8)

I will also put back the explicit indices on the vectors.
Any odd (central) moments, e.g., the third (hxixjxki), fifth (hxixjxkxlxmi), etc.,

are obviously zero by symmetry.
The higher even ones (e.g., the fourth, sixth, etc.) can be evaluated through brute

force calculation or through the application of Wick’s theorem. Simply connect up
all pairs of xs and write down the covariance matrix for each pair. Example:

hxixjxkxli D hxixj ihxkxli C hxixkihxjxli C hxixlihxjxki
D CijCkl C CikCjl C CilCjk

(5.9)

5.4 Marginals and Conditionals for GRFs

Let us say you model some physical system as a Gaussian random field and your
model predicts its mean and covariance. Possible examples are many: inflation as a
model of the large scale perturbations in the Universe, with zero mean and homo-
geneous and isotropic covariance (one of the main subjects of this chapter); the gas
velocities in a molecular cloud (quite plausible); hourly prices of your favorite stock
this week (I would like to see your model!).

In any probabilistic model of this type one can ask and answer questions regard-
ing the marginals and conditionals of the random field. Let us take a simple example
and model the current temperature in Paris TP and in London TL as random field
with n D 2 at any given time with pdf p.TP ; TL/.

90 Benjamin D. Wandelt
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You already know from probability theory that

p.TP ; TL/ D p.TP jTL/p.TL/ D p.TLjTP /p.TP /: (5.10)

This identity is nothing other than the decomposition of the joint pdf into products
of conditional and marginal densities, which we will define now.

Let us say I am interested in the temperature in Paris but I know nothing of
the temperature in London. Then the model predicts the marginal pdf p.TP / DR
dTLp.TP ; TL/.
Now I measure TP very precisely and would like to guess TL. What does my

model tell me? I am interested in the pdf of TL “given” TP , so the conditional den-
sity p.TLjTP / which we can easily calculate from the identity above. The Mathe-
matica notebook in Figure 5.2 gives examples of all these cases.

mu = 821, 24<
covar = N@884, 1.8<, 81.8, 1<<D821, 24<884., 1.8<, 81.8, 1.<<
pdf@x_, y_D :=

Exp@-1 ê 2 H8x, y< - muL.Inverse@covarD.H8x, y< - muLD ê Sqrt@Det@2 Pi covarDD
Plot3D@pdf@x, yD, 8x, 14, 28<, 8y, 20, 28<,
PlotRange Ø All, PlotPoints Ø 850, 50<, AxesLabel Ø 8x, y<D

MarginalX@x_D := NIntegrate@pdf@x, yD, 8y, -Infinity, Infinity<D
MarginalY@y_D := NIntegrate@pdf@x, yD, 8x, -Infinity, Infinity<D
ConditionalXgivenY@x_, y_D := pdf@x, yD ê MarginalY@yD
ConditionalYgivenX@y_, x_D := pdf@x, yD ê MarginalX@xD

Fig. 5.2 A short Mathematica notebook illustrating the notions of 1-D marginal and conditional
densities of a 2-D joint density.
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Easy computation of marginal and conditional pdfs is a very convenient property
of GRFs. First of all, all marginal and conditional densities of GRFs are Gaussian.
So all we need to calculate are their means and covariances. Let us the split the GRF
up into two parts x and y, so that


 D
�

x

y

�
(5.11)

and

C D
�
Cxx Cxy
Cyx Cyy :

�
(5.12)

Cxy D Cyx by symmetry.
First for the marginal pdfs,


x D 
x (5.13)
Cxx D Cxx (5.14)

y D 
y (5.15)
Cyy D Cyy : (5.16)

I know these expressions are entirely tautological, but the point is obvious: the
marginal mean and marginal covariances are just the corresponding parts of the
joint mean and covariance.

Less trivially, for the conditional means


xjy D 
x C CxyC�1
yy .y � 
y/ (5.17)

Cxjy D Cxx � CxyC�1
yy Cyx (5.18)


yjx D 
y C CyxC�1
xx .x � 
x/ (5.19)

Cyjx D Cyy � CyxC�1
xx Cxy : (5.20)

From these expressions it is easy to see that for GRFs lack of covariance implies
independence, i.e., P.x; y/ D P.x/P.y/ (Exercise!). This is most certainly not the
case for general random fields. Can you construct a counterexample? (Exercise!)

These innocuous equations are at the basis of a large set of very powerful meth-
ods. But just like you do not know electromagnetism once you have memorized
Maxwell’s equations, these equations will not yield up their power until you have
become intimately acquainted with them. It may come as a surprise that having
understood these equations you in fact now understand all forms of optimal filtering
(in the least square sense) and the entire Bayesian linear model. After some medita-
tion over these formulas and with just a little additional reading you can figure out
the ideas behind 90% of scientific data compression, interpolation, extrapolation,
and many surprisingly powerful data analysis tools.
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5.5 Transformations of Random Processes

In case you are interested in exploring beyond Gaussian random fields, or to under-
stand better the range of applicability of GRFs it is useful to be able to compute the
pdfs for transformations of Gaussian random fields. For me, the easiest way to think
about transformations of a random field in general is to write down a delta function
that deterministically links the transformed field to the original field

ın.´ � f .x// (5.21)

and then to explicitly compute the integral

p.´/ D
Z
dxın.´ � f .x//p.x/: (5.22)

You can read integrals like this in a very intuitive fashion as follows. The p.x/-
weighted integral describes the Monte Carlo simulation that you would have to per-
form to generate a histogram of ´ from p.´/. You draw stochastically from p.x/

and the delta function tells you to transform deterministically from x to ´.
The bad news is that this integral can only be done analytically in a very limited

number of special cases (though it is always worth trying, just in case).
For the special case of a linear transformation ´ D Lx this integral can be done.

Use this fact to show that any linear combination of the elements of a GRF is
Gaussian, by showing that the transformed density is still of right form to define
a GRF (Exercise!).

5.6 GRFs with Special Symmetries

Standard inflation produces a homogeneous and isotropic space on all scales acces-
sible to observation, so we would like to be able to model GRFs that respect these
symmetries. It follows that the parameters 
 and C of the Gaussian random field
modeling inflationary perturbations have to respect these symmetries.

What does homogeneity mean? Homogeneity is invariance under translations.
It is easy to see that this implies 
 D const. Since we are modeling fluctuations,

 D 0.

For the covariance between the fluctuations at pairs of space points ri and rj ,
the translational symmetry means that C.ri ; rj / D C.ri C s; rj C s/ for any dis-
placement s (here we think of C as a function of two variables). The symmetry
allows reducing the number of variables from two to one, since Cij D C.ri ; rj / D
C.ri � rj / D C.rj � ri / D C.�rij / satisfies this requirement.

Matrices with this property are quite special and so they have a special name:
Toeplitz matrices. Since our covariance matrix is also symmetric they are fully
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specified by specifying the elements of the first row. (Write down the Toeplitz matrix
for a 1-dimensional space with first row .3; 2; 1/ (Exercise!)).

If we impose periodic boundary conditions on �ij (think of space points on a
ring, or d -torus in d dimensions) then the elements are further constrained. Such
matrices are called circulant. (Write down the circulant matrix for a periodic 1-
dimensional space, also known as a circle (!), with first row (3,2,1) (Exercise!).1)

It turns out that circulant matrices are intimately connected with the Fourier
basis, which should not be surprising since you have probably encountered Fourier
bases in the context of periodic functions.

Explicitly, for a 1-D circle with n elements, where 0 � � < n is an integer
measuring the angle between two elements in units of 2�=n we can expand

C.�/ D
n�1X
kD0

Pke
2�ik	=n: (5.23)

Note that the reality of C implies Pn�k D P �
k

(Exercise!). Symmetry of the covari-
ance together with the periodic boundary conditions implies that C.n��/ D C.�/
and hence Pk D Pn�k (Exercise!). These two conditions together imply that P.k/
is real and that only bn=2c C 1 of the Pk are independent (where bxc denotes the
largest integer less than x).

The Pk have an important physical interpretation. Define the forward Fourier
transformation as

Qfk D 1

n

n�1X
jD0

fj e
�2�ikj=n (5.24)

and the inverse transformation as in Eq. (5.23),

fj D
n�1X
kD0

Qfke2�ikj=n: (5.25)

Orthonormality of the Fourier modes gives QQfi D fi .
Then it easy to prove (by transforming the two indices of Cij ) that the covariance

matrix for the Fourier coefficients of a homogeneous (periodic) Gaussian random
field is diagonal with diagonal elements Pk (Exercise!). This fact is often referred
to by the fancy name of Wiener-Khinchin theorem. If you find the analytic proofs
tedious you can verify this empirically, along the lines shown in the Mathematica
notebook in Figure 5.3 which does this transform for an example of a 4-element
circle.

In other words, the k modes are not correlated, because there is no co-variance,
only variance. In that sense it is easy to see that the variance, or fluctuation power, of

1 If you get stuck doing this, then good! You should run into trouble since there is no solution.
You are only free to chose 2 different values, not three due to the additional periodic boundary
conditions.
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5.6.2 Isotropy

Going back to more than 1-dimensional space, if we impose isotropy this implies
that �ij cannot depend on the orientation of the separation between space points i
and j . This further reduces the independent elements of the covariance matrix and
enforces an additional constraint on the Pk , namely that Pk D Pjkj. This means the
power spectrum is constant on .d � 1/–spheres in k-space, i.e., on circles for 2-D
and on spherical shells in 3-D.

5.7 Isotropic GRFs on the Sphere

An analogous argument on the sphere singles out spherical harmonics as a special
basis for the covariance of the CMB anisotropies on the sphere. Again, isotropy
requires
 D const which we can always absorb into the background and use
 D 0.

Let us look at the covariance. For isotropy to hold, the covariance has to be
invariant (symmetric) under rotations, Cij � C.ni ; nj / D C.R.�/ �ni ; R.�/ �nj /,
where ni is a unit vector pointing to the 2-sphere in 3D and R.�/ is the rotation
specified by the Euler angles � .

the entire GRF can be thought of as being partitioned amongst the different Fourier
modes in a mutually exclusive and collectively exhaustive way. For this reason Pk
is referred to as the power spectrum. Since there are no off-diagonal elements in the
Fourier space covariance matrix we can see that the field is very easy to describe in
Fourier space. Each Fourier k-mode fluctuates completely independently.

5.6.1 Summary

Let us briefly review what we have done. We started with imposing translation sym-
metry on the statistical properties of the fluctuations and obtained the conditions the
covariance matrix have to satisfy. Then it turned out that all covariance matrices sat-
isfying these properties simplify dramatically when expressed in the Fourier basis.
All the coefficients in the expansion decouple.

The reason for this is that Fourier modes provide a systematic and unique way to
expand a function on .S1/n orRn into terms which break the translational symmetry
more and more strongly. Think about it: that is exactly what sines and cosines do
as function of increasing frequency. For zero frequency the translational symmetry
is not broken. The fundamental mode (n D 1) breaks the symmetry at the lowest
order consistent with the boundary condition and higher frequencies break it more
and more.
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T .n/ D
X
lm

almYlm.n/: (5.29)

A convenient notation for the sums over l andm which I have used in the preceding
equation and will use in all that follow is to sum over all terms which are non-zero.
Since the Ylm are zero for jmj > l there is no need explicitly to write the limits on
the sums. In principle, all sums run over all l s.t. 0 � l < 1, but in all practical
cases we will consider the field to be smooth below some scale �smooth which implies
that at any desired level of accuracy there is some c such that we can neglect the alm
for all l > lmax D c=�smooth.

The spherical harmonics are orthonormal on the sphereZ
S2

d2nYlm.n/Y
�
l 0m0.n/ D ıl l 0ımm0 (5.30)

and so we can invert Eq. (5.29) to get

alm D
Z
d2nT .n/Y �

lm.n/: (5.31)

C.´/ D
lmaxX
lD0

2l C 1
4�

ClPl .´/: (5.26)

Owing to the orthogonality of Legendre polynomials

Z ´D1

´D�1
Pl .´/Pl 0.´/ D 2

2l C 1ıl l 0 (5.27)

we can invert this relationship to express the expansion coefficients in terms of the
covariance function for two points an angle � apart C.´.�// and obtain

Cl D 2�
Z
d´C.´/Pl .´/: (5.28)

On the sphere (S2), what are the analogous quantities to Fourier modes? Can we
similarly find modes that break isotropy systematically, order by order?

It turns out the Spherical Harmonics Ylm.n/ are exactly that set of functions. We
can expand the CMB temperature anisotropy T .n/ in

It is easy to verify using the orthogonality of rotations that Cij D C.ni � nj / D
C.cos ^.i; j // is the form of covariance matrix that fits the bill (Exercise!).

Again, symmetry has reduced the covariance matrix from 2-dimensional to and
effectively 1-dimensional object. As a function of ´ D cos � we can expand the
covariance in terms of Legendre polynomials
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In other words, let us calculate

halma�
l 0m0i D‹ (5.35)

The Cl are therefore the analogue quantities for isotropic random fields on the
sphere to the power spectrum coefficients Pk we found for homogeneous random
fields with periodic boundary conditions. Knowing what we now know about GRFs,
we understand the claim, often heard in talks on this subject, or seen in the relevant
literature, that for isotropic GRFs on the sphere, the power spectrum contains all of
the information.

This is why inferring the power spectrum from CMB data forms such a cen-
tral part of the analysis of CMB data sets. A quantitative description of what we
know about the power spectrum (a few thousand numbers) of data from the Planck
[2] mission (Terabytes of data) contains all of the information about cosmological
parameters from Planck, if the primordial perturbation is Gaussian and isotropic.

They are linked to the Legendre Polynomials through the addition theorem for
spherical harmonics

X
m

Ylm.n1/Y
�
lm.n2/ D

.2l C 1/
4�

Pl .n1:n2/: (5.32)

Only the m D 0 spherical harmonics have support at the pole (it does not make
sense for a (scalar) function to have a variation as a function of angle on a single
point!). So, if n1 D n2 D Ó , we get

jYl0. Ó/j2 D 2l C 1
4�

(5.33)

since the Legendre polynomials are normalized Pl .1/ D 1. Choosing one direction
not to be Ó , we get

Yl0.�/ D
r
.2l C 1/
4�

Pl .cos �/: (5.34)

With just these formulas we can already do some interesting calculations.
Let us try the following (Exercise!): verify that the Cl are the diagonal elements

of the covariance matrix of the alm. There are a couple of ways of doing this, either
starting with the covariance matrix in pixel space (Eq. (5.26)) or by directly calcu-
lating the covariance between two alm.

This operation is implemented numerically in the HEALPIX [1] code anafast,
while synthesizing a map T .n/ from a set of alm can be done easily using
synfast.
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At this point it becomes very useful to be able to expand exponentials in terms
of spherical harmonics—luckily there is a well-known formula for that:

eik:x D 4�
X
lm

i ljl .jkjjxj/Ylm. Ox/Y �
lm.
Ok/; (5.38)

where the jl .x/ are the spherical Bessel functions. This is the crucial link between
the 3-D perturbations and the anisotropies on the sphere.

An example application of this formula is to derive the useful alternative to
Eq. (5.36) in terms of an explicit radial integral over the light cone

alm D
Z
drr2�lm.r/˛l .r/ (5.39)

where
˛l .r/ D 2

�

Z
dkk2gl .k/jl .jkjjr j/: (5.40)

5.8 The Cosmic Microwave Background and Primordial

Perturbations

Linearizing gravity to first order in the Newtonian potential, which is accurate to
about 1 part in 105 up to the time of recombination, the CMB is a linear map of
the primordial perturbation. Let us write the perturbation in terms of its Fourier
mode amplitudes, �k because they have the simple property of having diagonal
covariance, as we have shown,

alm D
Z
d3k�kglmk : (5.36)

Owing to homogeneity and isotropy, the linear transfer may only depend on l and 
on the modulus (the length) of 
(also sometimes referred to as  in the literature) encode all of the complicated 
physics, such as the baryon acoustic oscillations of the photon-baryon plasma, the 
growth of dark matter perturbations, the impact of the geometry of the Universe 
on the CMB, the impact of anisotropies of the cosmic neutrino background on the 
CMB, etc. These transfer functions are the objects that cosmological Boltzmann 
codes computer. Examples of such codes are CAMB [3] or CMBFAST [4] and 
you can extract these quantities from these codes. Equation 5.36 separates out 
nicely the dynamics and the initial conditions. The observed CMB constrains both 
of these together. 

glmk

So, to predict the CMB power spectrum we need to work out the Cl from
Eq. (5.36). It is an easy but instructive exercise to show that this results in (Exercise!)

Cl D
Z
k2dk gl .k/

2P.k/: (5.37)

gl i lY �
lm.
Ok/jkjD . /

�.l; k/

. These transfer functions 



This is a slightly more challenging calculation, which I will leave as an (Exercise!).
To a rough approximation, which is quite good on large scales, the CMB shows

you a spherical slice of the primordial perturbations at the time of last scattering
tCMB . This is known as the Sachs–Wolfe effect (derived in a pedagogical way in
[5])

T .n/ D �1
3
�.n; rCMB/ (5.41)

Starting from this result we can predict the alm and hence the Cl of the CMB tem-
perature anisotropies if it were purely due to the Sachs–Wolfe effect. The result is

Cl /
Z
k2dkP.k/jl .jkjjrCMBj/2: (5.42)

Comparing this with the general equation, we can see that jl .jkjjr j/ takes the role
of a transfer function. We set up the problem in a purely geometric way. So we
learn that the set of spherical Bessel functions play the role of a geometric transfer
function, which corresponds to just taking a spherical slice through a 3-D field at a
distance r .

As a bonus, it turns out that this integral can actually be done analytically for
P.k/ / 1=k3 and the answer is that

Cl / 1

l.l C 1/ ; (5.43)

to a good approximation for l larger than a few.

5.8.1 Example Inference Problem: Reconstructing the Primordial
Perturbations from the CMB

All this may appear elementary to you, but let me show you that you now have all the
tools to solve the problem we solved in [6], published only a few years ago (see [7, 8]
for the extension to polarization). In this paper we derived the optimal reconstruction
for the primordial perturbations � on any spherical slice from the cosmic microwave
background anisotropy in the limit of small non-Gaussianity. You know how to build
optimal filters because we understand the conditional densities of Gaussian random
fields. Remember that the optimal estimate for y given x is the conditional mean
of p.yjx/, Eq. (5.17), with the width (or covariance) of this distribution describing
the uncertainty of this estimate. From the perspective of GRFs introduced in these
lectures, the entire problem can be solved immediately by considering the joint GRF
for ´ D .T; �.r// including the CMB and a slices of � at the radius r� where we
would like to reconstruct it (Exercise!).
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at first, which considers only the perturbations in the cold dark matter. This approx-
imation ignores the effects of baryons and neutrinos on the dark matter perturba-
tions. Both of these give important effects, which I will describe qualitatively but
not derive. For further details, a good and accessible textbook reference is Lyth and
Liddle [9].

I have discussed the primordial perturbations in terms of �, a variable which
has a well-defined meaning in relativistic perturbation theory and has the virtue of
reducing to the gravitational potential on small scales.

Standard inflation produces primordial perturbations with a nearly scale-invariant
power spectrum of P�.k/ D A

k3C.1�n/ where n is the scalar spectral index. You can
check (Exercise!) that for n D 1, the variance of � at a space-point can be divided up
in to equal amounts from each decade (or constant logarithmic interval) in k-space.

In particular, it is related to the density perturbation ı D ı




by the relativistic
generalization of Poisson’s equation at linear order

k2

a2
�k D 4�G�ık : (5.44)

We can read off the fact that inflation predicts Pı.k/ / kn for the density perturba-
tions.

The density perturbation grows differently in the radiation dominated epoch and
in the matter dominated epoch, so we have to distinguish between these two regimes.

5.9 Large Scale Structure and the Primordial Perturbations

Now let us see how the large scale density perturbations we observe in galaxy sur-
veys are related to the primordial perturbations. I will present a simplified treatment

Remember small scale modes enter the Hubble scale first. For small enough
modes, this occurs during radiation domination. During that time the growth of per-
turbations was severely damped, which caused the cold dark matter perturbations
merely to grow logarithmically in time.

Modes with k < keq , the wave number corresponding to the size of the Hubble
scale matter-radiation equality, entered the Hubble scale during the epoch of matter
domination, with growth proportional to the scale factor a / t 2

3 .
So the smallest scales modes had to wait the longest to start growing more than

logarithmically. Large scale modes entering now start growing without delay. This
means that the largest scale density perturbations track the inflationary prediction
but scales smaller than keq are suppressed by a factor

T .k/ D k2eq

k2
ln

k

keq
; k 	 keq (5.45)

and T .k/ D 1 for k 
 keq .
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Since all of this is linear theory we can again write the observed perturbations as
a transfer function in terms of the primordial fluctuations

ılin; k.´/ D D.´/T .k/k2�k (5.46)

where D.´/ is the growth function.
From this it is easy to derive the large and small scale behaviors of the power

spectrum of density perturbations today (Exercise!) which come out as P.k/ / k

on larger scales (small k) and P.k/ / .ln k/=k3.
This treatment neglected the fact that even though baryons and cold dark matter

only interact weakly, i.e., negligibly, baryons do have mass. Since the universe is
dark energy dominated, baryons actually make up a less negligible fraction of the
matter density than it would in a Universe without dark energy. This means that
when the baryons can finally cluster after recombination, since photon pressure has
suddenly disappeared, the dark matter does react to the baryon perturbations and
the baryon oscillation features imprint on the dark matter perturbations. So while
posing to us the puzzle of “what is dark energy?” Nature kindly provided us with a
means to probe it, namely the baryon acoustic oscillation (BAO) features in Pı.k/,
which measure Hubble scale at recombination and thus represent a fixed angular
scale which we measure at different redshifts in galaxy redshift surveys. In fact,
BAO are just one of many observational probe of dark energy but that discussion
would take us outside the scope of these notes.

5.9.1 CMB versus Density Perturbations

What are the relative merits of probing the CMB and density perturbations in terms
of learning about the primordial perturbations? We have seen that the CMB is a
fairly direct probe of the potential whereas the large scale structure probes density.
These two quantities are related by a factor k2 which suppresses the density pertur-
bations on large scales. This suggests that the CMB has important information on
very large scales (very small k), which is true.

On small scales the CMB sourced by the primary anisotropy becomes exceed-
ingly smooth because effect called “Silk damping” smooths out the CMB beyond
l � 2000, which corresponds to perturbations on angular scales of� 4 arc minutes,
or about 10 Mpc co-moving. This roughly sets the minimum scale we can usefully
probe in the CMB2.

Density perturbations on the other hand have been processed by non-linear gravi-
tational effects below the non-linearity scale lnl . We can estimate this by calculating
the expected rms overdensity fluctuation of the linear density field when averaged

2 Note that measurements of the CMB on even smaller scales are ongoing in several experiments.
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Here is one way to do this calculation: due to homogeneity, the average fluctu-
ation will be the same wherever we center our sphere, so we can just calculate the
average fluctuation within a sphere of radius l centered at the origin

ı.l; r D 0/ D 1

C

Z
jr 0j<l

ı.r 0/d3r 0: (5.47)

C normalizes the average. We can extend the range of integration if we introduce a
radial window function W.jr j=l/ which is 1 if r=l < 1 and 0 otherwise. Squaring
and taking the expectation value gives a double integral over the covariance. We can
Fourier expand this in terms of the the power spectrum

�2l D C 2
“

W.r 0l/W.r 00l/
Z
P.jkj/eik:.r 0�r 00/d3kd3r 0d3r 00: (5.48)

We notice that the r-integrals factorize and we obtain the modulus square of the
Fourier space window function,

�2l D C 24�k2
Z kD1

kD0
P.jkj/jW.kl/j2dk: (5.49)

Nothing in the derivation used the fact that we chose the sharp spherical top hat
window so W.r=l/ can be anything as long as we set C D 4�

R
r2W.r=l/ D

W.kl D 0/. The scale where this quantity becomes 1 is � 15 Mpc today which
is larger than the 10 Mpc we found as the cutoff for the CMB. So at first glance it
looks as if the CMB would win across the scale spectrum.

over spherical regions of radius l (Exercise!). We then set lnl to be the scale on
which we get fluctuations of order 1. Information on scales smaller than that will
have been modified in non-linear ways and partially erased. So let us check whether
the large scale structure provides us with useful information (modes that are still in
the linear regime) on smaller scales than the CMB.

But we should not forgot the effect of the relative number of independent modes
we can measure. Since the CMB is a two-dimensional object on the sphere, there
are about l2 modes to be measured in total (Exercise!).

The large scale structure is a 3-D object so in principle we have access to a total
of � .kmax=kmin/

3 D .lmax=lmin/
3 modes, where lmax is the largest scale observable

and lmin is the smallest scale. Therefore, in principle, large scale structure is much
more informative on small scales than the CMB. The largest scale is limited by
causality and the smallest scale the non-linearity scale, the scale where our linear
transfer function analysis breaks down.

But remember that we actually observe on the light-cone. So the largest scale
accessible to observation and the non-linearity scale vary as a function of the cos-
mological redshift that we look back to. The co-moving scale of the onset of non-
linearity is larger today than it was at any point in the past and scales that are non-
linear today were less non-linear in the past.



104 Benjamin D. Wandelt

So, in summary we expect the CMB to have much more signal on very large
scales, whereas probes of density should win on intermediate scales just due to the
much larger number of modes accessible in a 3-D field. In addition, it is possible in
principle to access smaller scales at higher redshift, where non-linearities play less
of a role.

5.10 Conclusion

Gaussian random fields are physically motivated tools to model the primordial per-
turbations, probed through observations of the CMB and large scale galaxy distri-
bution. GRFs in cosmology respect certain symmetries, such as those expected of
the galaxy distribution and the temperature anisotropies of the CMB and I explained
how to construct and model GRFs with these symmetries. Starting from these basic
concepts I showed examples of how to compute correlations and how to set up infer-
ence problems.

I have added a short appendix containing a brief discussion of three of the most
common and confusing misstatements about (or unnecessarily restrictive defini-
tions of) GRFs in the literature, which often arise from conflating homogeneity and
isotropy with Gaussianity.

These notes provide a point of departure for further investigations into, for exam-
ple

� signal reconstruction and the inference of the correlation properties from incom-
plete and noisy observations of a GRF;

� the computation of cross-correlations between different tracers of the (processed)
primordial perturbations;

� extracting 3-D information from the combination of measurements of a set of 2-
D shells at different redshifts as would result from a photometric redshift survey;

and many other possible applications.

Appendix: Common misconceptions about GRFs

� Gaussian fields have independent Fourier (or momentum) modes
No—the authors confuse homogeneity and Gaussianity.

� Gaussian random fields are those with “random phases”
No. Besides being wrong, the statement is imprecise because it does not define
what exactly is meant by “random” without specifying the pdf. The phases that
are being referred to are the angles of the complex Fourier amplitudes. If the real
and imaginary parts are independent, which is true for a homogeneous Gaussian
field, then it is true that the phases are also independently drawn from a uni-
form distribution between 0 and 2� . This is indeed something that follows only
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for a Gaussian field. However, the argument does not work the other way. It is
trivial to construct examples with independent (between different k), uniformly
distributed phases where the real and imaginary parts are not independent and
drawn to give a non-Gaussian field.

� Histograms of Gaussian Random Fields are Gaussian
This is not true in general. The histogram of a Gaussian random field with dif-
ferent variances in different pixels will be a sample from a density which is a
mixture of Gaussians with the marginal means and variances,

hist 1

n

nX
iD1

g.xi j
i ; Ci i /: (5.50)

So depending on the GRF one can obtain any pdf that can be represented in this
form. Note that this is only Gaussian if all the marginal means and variances are
the same, but not in any other case.
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Chapter 6
Recent Advances in Bayesian Inference in
Cosmology and Astroparticle Physics
Thanks to the MultiNest Algorithm

Roberto Trotta, Farhan Feroz, Mike Hobson, and Roberto Ruiz de Austri

6.1 Introduction

Cosmology (the study of the large-scale properties of the Universe) and astroparticle
physics (the intersection of particle physics and astrophysics, studying high-energy
particles emitted by astrophysical bodies) present many interesting inference chal-
lenges for statisticians and physicists alike. Both disciplines have seen a great surge

Roberto Trotta
Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK
e-mail: r.trotta@imperial.ac.uk

in the quality and quantity of data in the last decade, and this has in turn spurred
the development of more sophisticated statistical modelling and analysis methods.
The launch of the ISI Astrostatistics Section, which is present for the first time at

 We present a new algorithm, called MultiNest, which is a highly 
efficient alternative to traditional Markov Chain Monte Carlo (MCMC) sampling 
of posterior distributions. MultiNest is more efficient than MCMC, can deal with 
highly multi-modal likelihoods and returns the Bayesian evidence (or model 
likelihood, the prime quantity for Bayesian model comparison) together with 
posterior samples. It can thus be used as an all-around Bayesian inference engine. 
When appropriately tuned, it also provides an exploration of the profile likelihood 
that is competitive with what can be obtained with dedicated algorithms.  

We demonstrate the power and flexibility of MultiNest for Bayesian inference 
for Bayesian model selection and 
l, multi-scale likelihoods. Applica-

presented, including gravitational 
comparison and supersymmetric 
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lensing image? Does this star have one or several exo-planets orbiting it?). This
requires a reliable and efficient algorithm to compute the Bayesian evidence (or
model likelihood).

3. Profile likelihood evaluation for multi-modal likelihoods. An alternative to
posterior-based inference is represented by the (frequentist) construction of con-
fidence regions based on the profile likelihood ratio. For highly non-Gaussian,
multi-modal problems, Bayesian credible regions can differ very considerably
from confidence regions (especially in problems in high dimensions and/or when
the prior is informative). Evaluation of the profile likelihood is in general a much
more challenging task than exploring the posterior distribution, and the question
of the accuracy of the recovered credible intervals is a relevant one in domains
such as supersymmetry phenomenology (i.e., the reconstruction of properties of
particles beyond the Standard Model from data from accelerators, cosmology
and other astrophysical probes).

In this paper, we present the MULTINEST algorithm (section 6.2), an implemen-
tation of nested sampling, and we give examples of its successfull application to
problems in cosmology and astroparticle physics in the above three classes (sec-
tion 6.3).

6.2 Nested Sampling and the MULTINEST Algorithm

Bayesian inference is often the statistical framework of choice in cosmology
(see e.g. [1, 2]), and, increasingly so, in astroparticle physics. The posterior pdf
p.�jd;M/ for the n-dimensional parameters vector� of a model M is given by

p.�jd;M/ D p.d j�;M/p.�jM/

p.d jM/
: (6.1)

1. Bayesian inference for multi-dimensional, multi-modal likelihoods. Problems in
as disparate fields as Supersymmetry phenomenology and gravitational wave
detection have likelihood functions that are multi-modal, with modes presenting
widely different characteristic scales. Numerical exploration of the full posterior
distribution is a challenging problem for traditional Markov Chain Monte Carlo
(MCMC) methods in this context, which risk getting stuck in local modes.

2. Bayesian model selection aimed at model building or object detection. Bayesian
model selection is used to decide whether one or several extra parameters are
needed in a model to explain the data. This has applications to questions such
as deciding whether the Universe is flat, whether dark energy is a cosmological
constant, and astronomical object detection (is there a galaxy cluster in a weak

this ISI World Congress, is a testament to the growing importance of astrostatistics,
the application of advanced statistical techniques to astrophysical and cosmological
problems.

Among the many different statistical challenges that large and complex astro-
physical data sets pose, three classes of problems arise often in very disparate con-
texts. They can be broadly described as follows:
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where p.M/ is the prior probability assigned to the model itself. Usually this is
taken to be non-committal and equal to 1=Nm if one considersNm different models.
When comparing two models, M0 versus M1, one is interested in the ratio of the
posterior probabilities, or posterior odds, given by

p.M0jd/
p.M1jd/ D B01

p.M0/

p.M1/
(6.4)

and the Bayes factor B01 (see e.g. [3] for details) is the ratio of the models’ evi-
dences:

B01 � p.d jM0/

p.d jM1/
.Bayes factor/: (6.5)

A value B01 > .</ 1 represents an increase (decrease) of the support in favour of
model 0 versus model 1 given the observed data. From Eq. (6.4) it follows that the
Bayes factor gives the factor by which the relative odds between the two models
have changed after the arrival of the data, regardless of what we thought of the rela-
tive plausibility of the models before the data, given by the ratio of the prior models’
probabilities. Bayes factors are usually interpreted against the Jeffreys’ scale [4] for
the strength of evidence. This is an empirically calibrated scale, with thresholds at
values of the odds of about 3W1, 12W1 and 150W1, representing weak, moderate and
strong evidence, respectively.

Nested sampling [5, 6] is a Monte Carlo technique aimed at an efficient evalu-
ation of the Bayesian evidence, which also produces posterior inferences as a by-
product. It calculates the evidence by transforming the multi-dimensional evidence
integral of Eq. (6.2) into a one-dimensional integral that is easy to evaluate numeri-
cally. This is accomplished by defining the prior volume X as dX D p.�/dn�, so
that

X.
/ D
Z
L.�/>�

p.�/dn�; (6.6)

where L.�/ � p.d j�/ is the likelihood function and the integral extends over the
region(s) of parameter space contained within the iso-likelihood contour L.�/ D 


(in this section we drop the explicit conditioning on modelM, as this is understood).
Assuming that L.X/, i.e. the inverse of (6.6), is a monotonically decreasing function
ofX (which is trivially satisfied for most posteriors), the evidence integral (6.2) can
then be written as

Thus the Bayesian evidence is the average of the likelihood under the prior for a
specific model choice. From the evidence, the model posterior probability given the
data is obtained by using Bayes’ Theorem to invert the order of conditioning:

p.Mjd/ / p.M/p.d jM/; (6.3)

Here, p.�jM/ is the prior, p.d j�;M/ the likelihood and p.d jM/ the model like-
lihood, or marginal likelihood (usually called “Bayesian evidence” by physicists).
The Bayesian evaluation of a model’s performance in the light of the data is based on
the Bayesian evidence, the normalization integral on the right-hand-side of Bayes’
theorem, Eq. (6.1):

p.d jM/ �
Z
p.d j�;M/p.�jM/dn�: (6.2)
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(a) (b)

Fig. 6.1 Cartoon illustrating (a) the likelihood of a two-dimensional problem; and (b) the trans-
formed L.X/ function where the prior volumes Xi are associated with each likelihood Li .

as shown schematically in Fig. 6.1, the evidence can be approximated numerically
using standard quadrature methods as a weighted sum

Z D
MX
iD1

Liwi : (6.9)

If one uses a simple trapezium rule, the weights are given bywi D 1
2
.Xi�1�XiC1/.

An example of a posterior in two dimensions and its associated function L.X/ is
shown in Fig. 6.1.

6.2.1 Evaluation of the Bayesian Evidence

The nested sampling algorithm performs the summation (6.9) as follows. To begin,
the iteration counter is set to i D 0 and N “live” (or “active”) samples are drawn
from the full prior p.�/ (which is often simply the uniform distribution over the
prior range), so the initial prior volume is X0 D 1. The samples are then sorted
in order of their likelihood and the smallest (with likelihood L0) is removed from
the live set and replaced by a point drawn from the prior subject to the constraint
that the point has a likelihood L > L0. The corresponding prior volume contained
within this iso-likelihood contour will be a random variable given by X1 D t1X0,
where t1 follows the distribution p.t/ D NtN�1 (i.e. the probability distribution
for the largest of N samples drawn uniformly from the interval Œ0; 1�). At each

Z � p.d/ D
Z 1

0

L.X/dX; (6.7)

Thus, if one can evaluate the likelihoods Lj D L.Xj /, where Xj is a sequence of
decreasing values,

0 < XM < � � � < X2 < X1 < X0 D 1; (6.8)
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The expectation value and standard deviation of log t , which dominates the geo-
metrical exploration, are:

EŒlog t � D � 1

N
; �Œlog t � D 1

N
: (6.10)

Since each value of log t is independent, after i iterations the prior volume will
shrink down such that logXi � �.i ˙ p

i/=N . Thus, one takes Xi D exp.�i=N /.
The nested sampling algorithm is terminated on determining the evidence to

some specified precision. An adequate and robust condition [5] is given by the upper
limit on the evidence that can be determined from the remaining set of current active
points. By selecting the maximum-likelihood value Lmax in the set of active points,
one can safely assume that an upper bound to the evidence contribution from the
remaining portion of the posterior is �Zi D LmaxXi, i.e. the product of the remain-
ing prior volume and maximum likelihood value. We choose to stop when this quan-
tity would no longer change the final evidence estimate by some user-defined value,
described by a tolerance parameter, tol. As described in section 6.3.3 below, it is
important to adjust this tolerance value appropriately if one wants to use MULTI-
NEST for profile likelihood evaluation.

6.2.2 Posterior Inferences

Once the evidence Z is found, posterior inferences are obtained from the full
sequence of discarded samples from the nested sampling process, as well as the
live set at termination. Each such samples is assigned the probability weight

pi D Liwi

Z
: (6.11)

These samples can then be used to calculate inferences of posterior parameters such
as means, standard deviations, covariances and so on, or to construct marginalised
posterior distributions. The use of the posterior sample to approximate the profile
likelihood is further discussed below.

6.2.3 The MULTINEST Algorithm

The most challenging task in implementing the nested sampling algorithm is draw-
ing samples from the prior within the hard constraint L > Li at each iteration i .
Employing a naive approach that draws blindly from the prior would result in a
steady decrease in the acceptance rate of new samples with decreasing prior volume

subsequent iteration i , the discarding of the lowest likelihood pointLi in the live set,
the drawing of a replacement with L > Li and the reduction of the corresponding
prior volume Xi D tiXi�1 are repeated, until the entire prior volume has been
traversed. The algorithm thus travels through nested shells of likelihood as the prior
volume is reduced.



112 Roberto Trotta et al.

an n-dimensional ellipsoid determined from the covariance matrix of the current set
of live points. New points are then selected from the prior within this (enlarged)
ellipsoidal bound until one is obtained that has a likelihood exceeding that of the
discarded lowest-likelihood point. In the limit that the ellipsoid coincides with the
true iso-likelihood contour, the acceptance rate tends to unity.

Ellipsoidal nested sampling is efficient for simple uni-modal posterior distribu-
tions without pronounced degeneracies, but is not well suited to multi-modal dis-
tributions. As advocated by [8–10] and shown in Fig. 6.2, the sampling efficiency
can be substantially improved by identifying distinct clusters of live points that are
well separated and constructing an individual ellipsoid for each cluster. In some
problems, however, some modes of the posterior might possess very pronounced
curving degeneracies, which are problematic to explore efficiently. To sample with
maximum efficiency from such distributions, the MULTINEST algorithm of [10]
divides the live point set into sub-clusters which are then enclosed in ellipsoids and
a new point is then drawn uniformly from the region enclosed by these ‘overlap-
ping’ ellipsoids, see Fig. 6.3. The number of points in an individual sub-cluster and
the total number of sub-clusters is decided by a an ‘expectation-maximization’ algo-
rithm so that the total sampling volume, which is equal to the sum of volumes of the
ellipsoids enclosing the sub-clusters, is minimized. This allows maximum flexibility
and efficiency by breaking up a mode resembling a Gaussian into relatively fewer
number of sub-clusters, while using a larger number of small overlapping ellipsoid
in the presence of severe, curving degeneracies.

(a) (b) (c) (d) (e)

Fig. 6.2 Cartoon of ellipsoidal nested sampling from a simple bimodal distribution. In (a), the red
ellipsoid represents a good bound to the active region. From (a) to (d), as we nest inward we can see
that the acceptance rate will rapidly decrease as the bound steadily worsens. Figure (e) illustrates
the increase in efficiency obtained by sampling from each clustered region separately. From [10].

(a) (b)

Fig. 6.3 Illustration of the ellipsoidal decompositions used by MULTINEST to deal with degenera-
cies in the posterior distribution: the points given as input are overlaid on the resulting ellipsoids.
1000 points were sampled uniformly from: (a) two non-intersecting ellipsoids; and (b) a torus.
From [10].

(and increasing likelihood). Ellipsoidal nested sampling [7] tries to overcome this
problem by approximating the iso-likelihood contour of the point to be replaced by
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6.3 Applications of MULTINEST

The MULTINEST algorithm sketched above has been successfully applied to a broad
range of challenging inference problems, including cosmological model selec-
tion [12], exo-planets detection and characterization [13], astronomical object detec-
tion [14], inference on Supersymmetric parameters [11, 15, 16], gravitational waves
analysis [17], cosmic ray propagation models [18], and others. As an illustration,
we briefly present one example for each of the three classes of problems mentioned
in the Introduction.

6.3.1 Sampling of Multi-modal Posteriors in Gravitational Waves
Astronomy

The proposed space-based gravitational wave detector, the Laser Interferometer
Space Antenna (LISA) is expected to observe thousands of gravitational wave sig-
nals from many different types of sources, including galactic compact binaries,
inspiral and mergers of supermassive black holes (SMBH) and extreme mass ratio
inspirals. Detecting and characterizing this many sources presents a significant data
analysis challenge. In order to encourage the research in this area, a program of
Mock LISA Data Challenges (MLDC) (e.g., [19]) has been taking place, with each
round consisting of one or more datasets containing simulated instrumental noise
and gravitational waves from sources with undisclosed parameters. Several of the
LISA sources exhibit degeneracies in their parameter space resulting in multiple
modes in the posterior pdf, which proved to be a very challenging problem for tradi-
tional MCMC methods. With its ability to explore highly multi-modal distributions
efficiently, MULTINEST is well poised to tackle data analysis problems in gravita-
tional wave astronomy, as demonstrated in [17].

MULTINEST was used for the detection and characterisation of cosmic string
burst sources in mock LISA data of increasing realism (including for example
instrumental noise and partially subtracted galactic background). As a search tool,
the algorithm was successful in finding the three cosmic string bursts that were
present in the MLDC challenge data set. These sources, and the five sources in the
MLDC training data, were correctly identified in the sense that the full signal-to-
noise ratio of the injected source was recovered, and a posterior distribution for the
parameters obtained. The maximum likelihood and maximum a-posteriori parame-
ters were not particularly close to the true parameters of the injected signals, but this
was a consequence of the intrinsic degeneracies in the cosmic string model param-
eter space (shown in Fig. 6.4) and in all cases the true parameters were consistent
with the recovered posterior distributions.
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Fig. 6.4 2D and 1D marginalised posteriors as recovered by MULTINEST in the search for the
second of the cosmic string bursts in the LISA gravitational wave detector training data set. The
parameters, from top-to-bottom and left-to-right, are colatitude, longitude, burst time, burst ampli-
tude, burst break frequency and waveform polarization. From [17].

6.3.2 Inflationary Bayesian Model Comparison

A second example is the inflationary model comparison carried out in Ref. [12].
Although the technical details are fairly involved, the underlying idea can be
sketched as follows.

The term “inflation” describes a period of exponential expansion of the Universe
in the very first instants of its life, some 10�32 seconds after the Big Bang, during
which the size of the Universe increased by at least 25 orders of magnitude. This
huge and extremely fast expansion is required to explain the observed isotropy of
the cosmic microwave background on large scales. It is believed that inflation was
powered by one or more “scalar fields”. The behaviour of the scalar field during
inflation is determined by the shape of its potential, which is a real-valued func-
tion V.�/ (where � denotes the value of the scalar field). The detailed shape of
V.�/ controls the duration of inflation, but also the spatial distribution of inhomo-
geneities (perturbations) in the distribution of matter and radiation which emerge
from inflation. It is from those perturbations that galaxies and cluster form out of
gravitational collapse. Hence the shape of the scalar field can be constrained by
observations of the large scale structures of the Universe and of cosmic microwave
background anisotropies.
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Theories of physics beyond the Standard Model motivate certain functional
forms of V.�/, which however typically have a number of free parameters,�. The
fundamental model selection question is to use cosmological observations to dis-
criminate between alternative models for V.�/ (and hence alternative fundamental
theories). The major obstacle to this programme is that very little if anything at all
is known a priori about the free parameters� describing the inflationary potential.
What is worse, such parameters can assume values across several orders of magni-
tude, according to the theory. Hence the Occam’s razor effect of Bayesian model
comparison can vary in a very significant way depending on the prior choices for
�. Furthermore, a non-linear reparameterization of the problem (which leaves the
physics invariant) does in general change the Occam’s razor factor, and hence the
model comparison result.

In Ref. [12] a first attempt was made to tackle inflationary model selection from a
principled point of view. The main result of the analysis is shown in Fig. 6.5, which
presents the Bayes factors between models, obtained using MULTINEST (suitably
normalized w.r.t. a reference model, here the so-called LFI2 model). Two classes
of models for V.�/ have been considered, namely so-called Small Field Inflation
(SFI) models and Large Field Inflation (LFI) models. The two classes of model dif-
fer in the parameterized form of V.�/, and have different sets of parameters, differ-
ing in dimensionality, as well. Within each class of models, sub-classes are defined
(denoted by subscripts in Fig. 6.5) based on theoretical considerations, e.g. by fix-
ing some of the parameters to certain values. The priors on the models’ parameters
have been chosen based on theoretical considerations of possible values achievable
under each class of models. Typical priors are uniform on the log of the parameter

Fig. 6.5 Results of Bayesian model comparison between 9 inflationary models (vertical axis),
subdivided in two categories (SFI models and LFI models), from Ref. [12]. Errorbars reflect the
68% uncertainty on the value of the Bayes factor from the numerical evaluation performed with
MULTINEST.
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(to reflect indifference w.r.t. the characteristic scale of the quantity), within a range
chosen as a reflection of physical model building. The models’ priors are chosen
in such a way to lead to non-committal priors for the two classes as a whole, i.e.
p.SFI/ D p.LFI/ D 1=2.

Fig. 6.5 shows that some models in the LFI class are fairly strongly disfavoured
by the data (e.g., LFI3 and LFI4), while the model comparison is inconclusive in
most other cases. One finds that the posterior probability for the SFI model class
evaluates to p.SFIjd/ � 0:77. Therefore, the probability of the SFI class has
increased from 50% in the prior to about 77% in the posterior, signalling a weak
preference for this type of models in the light of the data.

6.3.3 Challenges of Profile Likelihood Evaluation

For highly non-Gaussian problems like supersymmetric (SUSY) parameter determi-
nation, inference can depend strongly on whether one chooses to work with the pos-
terior distribution (Bayesian) or profile likelihood (frequentist) [11, 20, 21]. There
is a growing consensus that both the posterior and the profile likelihood ought to be
explored in order to obtain a fuller picture of the statistical constraints from present-
day and future data. This begs the question of the algorithmic solutions available to
reliably explore both the posterior and the profile likelihood in the context of SUSY
phenomenology.

When � is composed of parameters of interest, � , and nuisance parameters,  ,
the profile likelihood ratio is defined as


.�/ � L.�;
OO /

L. O�; O /
: (6.12)

where OO is the conditional maximum likelihood estimate (MLE) of  with �

fixed and O�; O are the unconditional MLEs. The profile likelihood ratio defined
in Eq. (6.12) is an attractive choice as a test statistics, for under certain regular-
ity conditions, Wilks [22] showed that the distribution of �2 ln
.�/ converges to
a chi-square distribution with a number of degrees of freedom given by the dimen-
sionality of � . Clearly, for any given value of � , evaluation of the profile likelihood
requires solving a maximization problem in many dimensions to determine the con-
ditional MLE OO . While posterior samples obtained with MULTINEST have been
used to estimate the profile likelihood, the accuracy of such an estimate has been
questioned [23]. As mentioned above, evaluating profile likelihoods is much more
challenging than evaluating posterior distributions. Therefore, one should not expect
that a vanilla setup for MULTINEST (which is adequate for an accurate exploration
of the posterior distribution) will automatically be optimal for profile likelihoods
evaluation. In Ref. [24] the question of the accuracy of profile likelihood evaluation
from MULTINEST was investigated in detail. We report below the main results.
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The two most important parameters that control the parameter space exploration
in MULTINEST are the number of live points N – which determines the resolution
at which the parameter space is explored – and a tolerance parameter tol, which
defines the termination criterion based on the accuracy of the evidence. Generally,
a larger number of live points is necessary to explore profile likelihoods accurately.
Moreover, setting tol to a smaller value results in MULTINEST gathering a larger
number of samples in the high likelihood regions (as termination is delayed). This
is usually not necessary for the posterior distributions, as the prior volume occupied
by high likelihood regions is usually very small and therefore these regions have
relatively small probability mass. For profile likelihoods, however, getting as close
as possible to the true global maximum is crucial and therefore one should set tol
to a relatively smaller value. In Ref. [24] it was found that N D 20;000 and tol D
1 � 10�4 produce a sufficiently accurate exploration of the profile likelihood in
toy models that reproduce the most important features of the parameter space of a
popular supersymmetric scenario.

In principle, the profile likelihood does not depend on the choice of priors. How-
ever, in order to explore the parameter space using any Monte Carlo technique, a
set of priors needs to be defined. Different choices of priors will generally lead to
different regions of the parameter space to be explored in greater or lesser detail,
according to their posterior density. As a consequence, the resulting profile likeli-
hoods might be slightly different, purely on numerical grounds. We can obtain more
robust profile likelihoods by simply merging samples obtained from scans with dif-
ferent choices of Bayesian priors. This does not come at a greater computational
cost, given that a responsible Bayesian analysis would estimate sensitivity to the
choice of prior as well. The results of such a scan are shown in Fig. 6.6, which was
obtained by tuning MULTINEST with the above configuration, appropriate for an
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Fig. 6.6 1-D profile likelihoods from present-day data for the parameters of interest of a Super-
symmetric model (so-called CMSSM), normalized to the global best-fit point. The red solid and
blue dotted vertical lines represent the global best-fit point (�2 D 9:26, located in the focus
point region) and the best-fit point found in the stau co-annihilation region (�2 D 11:38) respec-
tively. The upper and lower panel show the profile likelihood and	�2 values, respectively. Green
(magenta) horizontal lines represent the 1� (2� ) approximate confidence intervals. MULTINEST
was run with 20,000 live points and tol D 1�10�4 (a configuration deemed appropriate for profile
likelihood estimation), requiring approximately 11 million likelihood evaluations. From [24].
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accurate profile likelihood exploration, and by merging the posterior samples from
two different choices of priors (see [24] for details). This high-resolution profile
likelihood scan using MULTINEST compares favourably with the results obtained
by adopting a dedicated Genetic Algorithm technique [23], although at a slightly
higher computational cost (a factor of � 4). In general, an accurate profile likeli-
hood evaluation was about an order of magnitude more computationally expensive
than mapping out the Bayesian posterior.

6.4 Conclusions

We have given a short overview of the capabilities of the MULTINEST algorithm,
which has been used very successfully in a variety of problems to (a) reconstruct
multi-modal posterior distributions; (b) evaluate the model likelihood for Bayesian
model comparison and (c) approximate the profile likelihood in the challenging case
of multi-modal likelihoods in many dimensions. Current statistical challenges in
cosmology and astroparticle physics still present many open questions, and no doubt
this will provide fertile ground for an increased collaboration between physicists and
statisticians in the burgeoning field of astrostatistics.
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Chapter 7
Extra-solar Planets via Bayesian Fusion MCMC

Philip C. Gregory

Abstract A Bayesian multi-planet Kepler periodogram has been developed based
on a fusion Markov chain Monte Carlo algorithm (FMCMC). FMCMC is a new
general purpose tool for nonlinear model fitting. It incorporates parallel temper-
ing, simulated annealing and genetic crossover operations. Each of these features
facilitate the detection of a global minimum in chi-squared in a highly multi-modal
environment. By combining all three, the algorithm greatly increases the probability
of realizing this goal.

The FMCMC is controlled by a unique adaptive control system that automates
the tuning of the proposal distributions for efficient exploration of the model param-
eter space even when the parameters are highly correlated. This controlled statisti-
cal fusion approach has the potential to integrate other relevant statistical tools as
desired. The FMCMC algorithm is implemented in Mathematica using parallelized
code and runs on an 8 core PC. The performance of the algorithm is illustrated with
some recent successes in the exoplanet field where it has facilitated the detection of

7.1 Introduction

A remarkable array of new ground based and space based astronomical tools are
providing astronomers access to other solar systems. Over 700 planets have been
discovered to date, starting from the pioneering work of [1–4]. One example of the
fruits of this work is the detection of a super earth in the habitable zone surrounding
Gliese 581 [5]. Fig. 7.1 illustrates the pace of discovery up to Dec. 2011.

Because a typical star is approximately a billion times brighter than a planet, only
a small fraction of the planets have been detected by direct imaging. The majority
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Fig. 7.1 The pace of exoplanet discoveries.

of planets have been detected by studying the reflex motion of the star caused by the
gravitational tug of unseen planets, using precision radial velocity (RV) measure-
ments. There are currently 84 known multiple planet systems, the largest of which
has seven planets [6]. Recently the Kepler space mission has detected 2326 plane-
tary candidates using the transit detection method. These are awaiting confirmation
using the RV method or transit timing variation analysis. More than thirty of these
candidates have a radius smaller than or equal to the radius of the earth.

These successes on the part of the observers has spurred a significant effort to
improve the statistical tools for analyzing data in this field (e.g., [7–16]). Much of
this work has highlighted a Bayesian MCMC approach as a way to better under-
stand parameter uncertainties and degeneracies and to compute model probabilities.
MCMC algorithms provide a powerful means for efficiently computing the required
Bayesian integrals in many dimensions (e.g., an 8 planet model has 41 unknown
parameters). The output at each iteration of the MCMC is a vector of the model
parameters. After an initial burn-in period, the MCMC produces an equilibrium dis-
tribution of samples in model parameter space such that the density of samples is
proportional to the joint posterior probability distribution of the parameters. The
marginal posterior probability density function (PDF) for any single parameter is
given by a histogram of that component of the vector for all post burn-in iterations.

Frequently, MCMC algorithms have been augmented with an additional tool such
as parallel tempering, simulated annealing or differential evolution depending on the
complexity of the problem. My approach [17] has been to fuse together the advan-
tages of all of the above tools together with a genetic crossover operation in a sin-
gle MCMC algorithm to facilitate the detection of a global minimum in �2 (max-
imum posterior probability in the Bayesian context). The FMCMC is controlled
by a unique multi-stage adaptive control system that automates the tuning of the
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proposal distributions for efficient exploration of the model parameter space even
when the parameters are highly correlated. The FMCMC algorithm is implemented
in Mathematica using parallelized code and run on an 8 core PC. It is designed to
be a very general tool for nonlinear model fitting. When implemented with a multi-
planet Kepler model1, it is able to identify any significant periodic signal component
in the data that satisfies Kepler’s laws and is able to function as a multi-planet Kepler
periodogram2.

The different components of Fusion MCMC are described in Section 7.2. In Sec-
tion 7.3, the performance of the algorithm is illustrated with some recent successes
in the exoplanet field where it has facilitated the detection of a number of new plan-
ets. Section 7.4 deals with the challenges of Bayesian model selection in this arena.

7.2 Adaptive Fusion MCMC

The adaptive fusion MCMC (FMCMC) is a very general Bayesian nonlinear model
fitting program. After specifying the model, Mi , the data, D, and priors, I , Bayes’
theorem dictates the target joint probability distribution for the model parameters
which is given by

p. EX jD;Mi ; I / D C p. EX jMi ; I / � p.DjMi ; EX; I /: (7.1)

where C is the normalization constant which is not required for parameter esti-
mation purposes and EX represent the vector of model parameters. The term,
p. EX jMi ; I /, is the prior probability distribution of EX , prior to the consideration
of the current data D. The term, p.Dj EX;Mi ; I /, is called the likelihood and it is
the probability that we would have obtained the measured data D for this particu-
lar choice of parameter vector EX , model Mi , and prior information I . At the very
least, the prior information, I , must specify the class of alternative models being
considered (hypothesis space of interest) and the relationship between the models
and the data (how to compute the likelihood). In some simple cases the log of the
likelihood is simply proportional to the familiar �2 statistic. For further details of
the likelihood function for this type of problem see Gregory [11].

An important feature that prevents the fusion MCMC from becoming stuck in
a local probability maximum is parallel tempering [20] (and re-invented under the
name exchange Monte Carlo [21]). Multiple MCMC chains are run in parallel. The
joint distribution for the parameters of modelMi , for a particular chain, is given by

�. EX jD;Mi ; I; ˇ/ / p. EX jMi ; I / � p.Dj EX;Mi ; I /
ˇ : (7.2)

1 For multiple planet models, there is no analytic expression for the exact radial velocity perturba-
tion. In many cases, the radial velocity perturbation can be well modeled as the sum of multiple
independent Keplerian orbits which is what has been assumed in this paper.
2 Following on from the pioneering work on Bayesian periodograms by [18, 19]
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Each MCMC chain corresponding to a different ˇ, with the value of ˇ ranging from
zero to 1. When the exponent ˇ D 1, the term on the LHS of the equation is the
target joint probability distribution for the model parameters, p. EX jD;Mi ; I /. For
ˇ � 1, the distribution is much flatter.

In equation 7.2, an exponent ˇ D 0 yields a joint distribution equal to the
prior. The reciprocal of ˇ is analogous to a temperature, the higher the tempera-
ture the broader the distribution. For parameter estimation purposes 8 chains were
employed. A representative set of ˇ values is shown in Fig. 7.2. At an interval of

dom and a proposal made to swap their parameter states. A Monte Carlo acceptance
rule determines the probability for the proposed swap to occur (e.g., Gregory [10],
equation 12.12). This swap allows for an exchange of information across the popu-
lation of parallel simulations. In low ˇ (higher temperature) simulations, radically
different configurations can arise, whereas in higher ˇ (lower temperature) states, a
configuration is given the chance to refine itself. The lower ˇ chains can be likened
to a series of scouts that explore the parameter terrain on different scales. The final
samples are drawn from the ˇ D 1 chain, which corresponds to the desired target
probability distribution. The choice of ˇ values can be checked by computing the
swap acceptance rate. When they are too far apart the swap rate drops to very low
values. In this work a typical swap acceptance rate of �30% was employed but rates
in a broad range from 0.15 to 0.5 were deemed acceptable as they did not exhibit
any clear differences in performance. For a swap acceptance rate of 30%, jumps
to adjacent chains will occur at an interval of �230 iterations while inform-

[22] have shown that under certain conditions, the optimal swap acceptance rate is

Fig. 7.2 Parallel tempering schematic.

10 to 40 iterations, a pair of adjacent chains on the tempering ladder are chosen at ran-

to 920
ation from more distant chains will diffuse much more slowly. Recently, Atchade et al.
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0:234. A future goal for fusion MCMC is to extend the control system to automate
the selection of an optimal set of ˇ values as well.

At each iteration, a single joint proposal to jump to a new location in the param-
eter space is generated from independent Gaussian proposal distributions (centered
on the current parameter location), one for each parameter. In general, the values
of � for these Gaussian proposal distributions are different because the parameters
can be very different entities. If the values of � are chosen too small, successive
samples will be highly correlated and will require many iterations to obtain an equi-
librium set of samples. If the values of � are too large, then proposed samples will
very rarely be accepted. The process of choosing a set of useful proposal values
of � when dealing with a large number of different parameters can be very time
consuming. In parallel tempering MCMC, this problem is compounded because of
the need for a separate set of Gaussian proposal distributions for each tempering
chain. This process is automated by an innovative statistical control system [23, 24]
in which the error signal is proportional to the difference between the current joint
parameter acceptance rate and a target acceptance rate [25], 
 (typically 
 � 0:25).
A schematic of the first two stages of the adaptive control system (CS) is shown3

in Fig. 7.3. Further details on the operation of the control system can be found in
Gregory [17] and references therein. A third stage that handles highly correlated
parameters is described in Section 7.2.2.

The adaptive capability of the control system can be appreciated from an exami-
nation of Fig. 7.4. The upper left portion of the figure depicts the FMCMC iterations
from the 8 parallel chains, each corresponding to a different tempering level ˇ as

Fig. 7.3 First two stages of the adaptive control system.

3 The interval between tempering swap operations is typically much smaller than is suggested by
this schematic.



126 Philip C. Gregory

Fig. 7.4 Schematic illustrating how the second stage of the control system is restarted if a signifi-
cantly more probable parameter set is detected.

indicated on the extreme left. One of the outputs obtained from each chain at every
iteration (shown at the far right) is the log prior C log likelihood. This information
is continuously fed to the CS which constantly updates the most probable parameter
combination regardless of which chain the parameter set occurred in. This is passed
to the ‘Peak parameter set’ block of the CS. Its job is to decide if a significantly more
probable parameter set has emerged since the last execution of the second stage CS.
If so, the second stage CS is re-run using the new more probable parameter set which
is the basic adaptive feature of the existing CS4. Fig. 7.4 illustrates how the second
stage of the control system is restarted if a significantly more probable parameter
set is detected regardless of which chain it occurs in. This also causes the burn-in
phase to be extended.

The control system also includes a genetic algorithm block which is shown in the
bottom right of Fig. 7.5. The current parameter set can be treated as a set of genes. In
the present version, one gene consists of the parameter set that specify one orbit. On
this basis, a three planet model has three genes. At any iteration there exist within
the CS the most probable parameter set to date EXmax, and the current most prob-
able parameter set of the 8 chains, EXcur. At regular intervals (user specified) each
gene from EXcur is swapped for the corresponding gene in EXmax. If either substitution
leads to a higher probability it is retained and EXmax updated. The effectiveness of

4 Mathematica code that implements the version of fusion MCMC shown in Fig. 7.4 is available
on the Cambridge University Press web site for my textbook [10], ‘Bayesian Logical data Analysis
for the Physical Sciences’. See the ‘Additional book examples with Mathematica 8 tutorial’ in the
resource material. There you will find an example entitled, ‘Markov chain Monte Carlo powered
Kepler periodogram’. Non Mathematica users can download a free Wolfram CDF Player to view
the resource material.
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Fig. 7.5 This schematic shows how the genetic crossover operation is integrated into the adaptive
control system.

this operation can be tested by comparing the number of times the gene crossover
operation gives rise to a new value of EXmax compared to the number of new EXmax
arising from the normal parallel tempering MCMC iterations. The gene crossover
operations prove to be very effective, and give rise to new EXmax values �3 times
more often than MCMC operations. Of course, most of these swaps lead to very
minor changes in probability but occasionally big jumps are created. It turns out
that individual gene swaps from EXcur to EXmax are much more effective (in one test
by a factor of 17) than the other way around (reverse swaps). Since it costs just as
much time to compute the probability for a swap either way we no longer carry out
the reverse swaps. Instead, we have extended this operation to swaps from EXcur2,
the parameters of the second most probable current chain, to EXmax. This gives rise
to new values of EXmax at a rate approximately half that of swaps from EXcur to EXmax.
Crossover operations at a random point in the entire parameter set did not prove as
effective except in the single planet case where there is only one gene.

7.2.1 Automatic Simulated Annealing and Noise Model

The annealing of the proposal
significant peaks in the target probability distribution. Concurrent with this, another
aspect of the annealing operation takes place whenever the Markov chain is started
from a location in parameter space that is far from the best fit values. This auto-
matically arises because all the models considered incorporate an extra additive

sigma values occurs while the MCMC is homing in on any
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Fig. 7.6 A simulated toy posterior probability distribution (PDF) for a single parameter model
with (dashed) and without (solid) an extra noise term s.

noise [11], whose probability distribution is Gaussian with zero mean and with an
unknown standard deviation s. When the �2 of the fit is very large, the Bayesian
Markov chain automatically inflates s to include anything in the data that cannot
be accounted for by the model with the current set of parameters and the known
measurement errors. This results in a smoothing out of the detailed structure in the
�2 surface and, as pointed out by [13], allows the Markov chain to explore the large
scale structure in parameter space more quickly. This is illustrated in Figure 7.6
which shows a simulated toy posterior probability distribution (PDF) for a single
parameter model with (dashed) and without (solid) an extra noise term s. Figure 7.7
shows the behavior of Log10[Prior � Likelihood] and s versus MCMC iteration for
a some real data. In the early stages s is inflated to around 38 m s�1 and then decays
to a value of �4 m s�1 over the first 9,000 iterations as Log10[Prior � Likelihood]
reaches a maximum. This is similar to simulated annealing, but does not require
choosing a cooling scheme.

7.2.2 Highly Correlated Parameters

For some models the data is such that the resulting estimates of the model param-
eters are highly correlated and the MCMC exploration of the parameter space can
be very inefficient. Fig. 7.8 shows an example of two highly correlated parame-
ters and possible ways of dealing with this issue which includes a transformation
to more orthogonal parameter set. It would be highly desirable to employ a method
that automatically samples correlated parameters efficiently. One potential solution
in the literature is Differential Evolution Markov Chain (DE-MC) [26]. DE-MC is
a population MCMC algorithm, in which multiple chains are run in parallel, typi-
cally from 15 to 40. DE-MC solves an important problem in MCMC, namely that
of choosing an appropriate scale and orientation for the jumping distribution.
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Fig. 7.7 The upper panel is a plot of the Log10[Prior � Likelihood] versus MCMC iteration. The
lower panel is a similar plot for the extra noise term s. Initially s is inflated and then rapidly decays
to a much lower level as the best fit parameter values are approached.

For the fusion MCMC algorithm, I developed and tested a new method [27], in
the spirit of DE, that automatically achieves efficient MCMC sampling in highly
correlated parameter spaces without the need for additional chains. The block in the
lower left panel of Fig. 7.9 automates the selection of efficient proposal distribu-
tions when working with model parameters that are independent or transformed to
new independent parameters. New parameter values are jointly proposed based on
independent Gaussian proposal distributions (‘I’ scheme), one for each parameter.
Initially, only this ‘I’ proposal system is used and it is clear that if there are strong
correlations between any parameters the � values of the independent Gaussian pro-
posals will need to be very small for any proposal to be accepted and consequently
convergence will be very slow. However, the accepted ‘I’ proposals will generally
cluster along the correlation path. In the optional third stage of the control system
every second5 accepted ‘I’ proposal is appended to a correlated sample buffer. There
is a separate buffer for each parallel tempering level. Only the 300 most recent addi-
tions to the buffer are retained. A ‘C’ proposal is generated from the difference
between a pair of randomly selected samples drawn from the correlated sample
buffer for that tempering level, after multiplication by a constant. The value of this
constant (for each tempering level) is computed automatically [27] by another con-
trol system module which ensures that the ‘C’ proposal acceptance rate is close to

5 Thinning by a factor of 10 has already occurred meaning only every tenth iteration is recorded.
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Fig. 7.8 An example of two highly correlated parameters and possible ways of dealing with this
issue which includes a transformation to more orthogonal parameter set.

Fig. 7.9 This schematic illustrates the automatic proposal scheme for handling correlated (’C’)
parameters.
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25%. With very little computational overhead, the ‘C’ proposals provide the scale
and direction for efficient jumps in a correlated parameter space.

The final proposal distribution is a random selection of ‘I’ and ‘C’ proposals
such that each is employed 50% of the time. The combination ensures that the
whole parameter space can be reached and that the FMCMC chain is aperiodic.
The parallel tempering feature operates as before to avoid becoming trapped in a
local probability maximum.

Because the ‘C’ proposals reflect the parameter correlations, large jumps are pos-
sible allowing for much more efficient movement in parameter space than can be
achieved by the ‘I’ proposals alone. Once the first two stages of the control system
have been turned off, the third stage continues until a minimum of an additional 300
accepted ‘I’ proposals have been added to the buffer and the ‘C’ proposal accep-
tance rate is within the range 	 0:22 and 
 0:28. At this point further additions to
the buffer are terminated and this sets a lower bound on the burn-in period.

7.2.2.1 Tests of the ‘C’ Proposal Scheme

Gregory [27] carried out two tests of the ‘C’ proposal scheme using (a) simulated
exoplanet astrometry data, and (b) a sample of real radial velocity data. In the latter
test we analyzed a sample of seventeen HD 88133 precision radial velocity mea-
surements [28] using a single planet model in three different ways. Fig. 7.10 shows
a comparison of the resulting post burn-in marginal distributions for two correlated
parameters� and! together with a comparison of the autocorrelation functions. The
black trace corresponds to a search in � and! using only ‘I’ proposals. The red trace
corresponds to a search in � and ! with ‘C’ proposals turned on. The green trace
corresponds to a search in the transformed orthogonal coordinates  D 2�� C !

and � D 2�� � ! using only ‘I’ proposals. It is clear that a search in � and !
with ‘C’ proposals turned on achieves the same excellent results as a search in the
transformed orthogonal coordinates  and � using only ‘I’ proposals.

7.3 Exoplanet Applications

As previously mentioned the FMCMC algorithm is designed to be a very gen-
eral tool for nonlinear model fitting. When implemented with a multi-planet Kepler
model it is able to identify any significant periodic signal component in the data that
satisfies Kepler’s laws and is able to function as a multi-planet Kepler periodogram.

In this section we describe the model fitting equations and the selection of priors
for the model parameters. For a one planet model the predicted radial velocity is
given by

v.ti / D V CKŒcosf�.ti C �P/C !g C e cos!�; (7.3)
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Fig. 7.10 The two panels on the left show a comparison of the post burn-in marginal distributions
for � and !. The two panels on the right show a comparison of their MCMC autocorrelation
functions. The black trace corresponds to a search in � and ! using only ‘I’ proposals. The red
trace corresponds to a search in � and ! with ‘C’ proposals turned on. The green trace corresponds
to a search in the transformed orthogonal coordinates  D 2��C ! and � D 2��� ! using
only ‘I’ proposals.

and involves the 6 unknown parameters

V D a constant velocity.
K D velocity semi-amplitude.
P D the orbital period.
e D the orbital eccentricity.
! D the longitude of periastron.
� D the fraction of an orbit, prior to the start of data taking, that periastron
occurred at. Thus, �P D the number of days prior to ti D 0 that the star was at
periastron, for an orbital period of P days.
�.ti C �P/ D the true anomaly, the angle of the star in its orbit relative to peri-
astron at time ti .

We utilize this form of the equation because we obtain the dependence of � on ti
by solving the conservation of angular momentum equation

d�

dt
� 2�Œ1C e cos �.ti C � P/�2

P.1 � e2/3=2
D 0: (7.4)

Our algorithm is implemented in Mathematica and it proves faster for Mathematica
to solve this differential equation than solve the equations relating the true anomaly
to the mean anomaly via the eccentric anomaly. Mathematica generates an accurate
interpolating function between t and � so the differential equation does not need to
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be solved separately for each ti . Evaluating the interpolating function for each ti is
very fast compared to solving the differential equation. Details on how equation 7.4
is implemented are given in the Appendix of [17].

We employed a re-parameterization of � and ! to improve the MCMC con-
vergence speed motivated by the work of Ford [13]. The two new parameters are
 D 2��C! and � D 2���!. Parameter is well determined for all eccentrici-
ties. Although � is not well determined for low eccentricities, it is at least orthogonal
to the parameter. We use a uniform prior for in the interval 0 to 4� and uniform
prior for � in the interval �2� to C2� . This insures that a prior that is wraparound
continuous in .�; !/ maps into a wraparound continuous distribution in . ; �/. To
account for the Jacobian of this re-parameterization it is necessary to multiply the
Bayesian integrals by a factor of .4�/�nplan, where nplan is the number of planets in
the model. Also, by utilizing the orthogonal combination . ; �/ it was not necessary
to make use of the ’C’ proposal scheme outlined in Section 7.2.2 which typically
saves about 25% in execution time.

In a Bayesian analysis we need to specify a suitable prior for each parame-
ter. These are tabulated in Table 7.1. For the current problem, the prior given in
equation 7.2 is the product of the individual parameter priors. Detailed arguments
for the choice of each prior were given in [24, 29].

Table 7.1 Prior parameter probability distributions.
Parameter Prior Lower bound Upper bound
Orbital frequency p.lnf1; lnf2; � � � lnfnjMn; I / 1/1.1 d 1/1000 yr

D nŠ
Œln.fH =fL/�n

(n D number of planets)

VelocityKi

(m s�1)
Modified Jeffreysi 0 (K0 D 1/ Kmax

�
Pmin
Pi

�1=3
1p

1�e2
i

.KCK0/�1

ln

2
41C

Kmax
K0

�
Pmin
Pi

�1=3
1p

1�e2
i

3
5

Kmax D 2129

V (m s�1) Uniform �Kmax Kmax
ei Eccentricity a) Uniform 0 1

b) Ecc. noise bias correction filter 0 0.99
� orbit fraction Uniform 0 1
!i Longitude of Uniform 0 2�

periastron
s Extra noise (m s�1) .sCs0/�1

ln
�
1C

smax
s0

� 0 (s0 D 1) Kmax

iSince the prior lower limits for K and s include zero, we used a modified scale invariant prior of
the form

p.X jM;I/ D 1

X CX0

1

ln
�
1C Xmax

X0

� (7.5)

For X � X0, p.X jM;I/ behaves like a uniform prior and for X � X0 it behaves like a scale
invariant prior.
The ln

�
1C Xmax

X0

�
term in the denominator ensures that the prior is normalized in the interval 0

toXmax.
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As mentioned in Section 7.2.1, all of the models considered in this paper incor-
porate an extra noise parameter, s, that can allow for any additional noise beyond the
known measurement uncertainties6. We assume the noise variance is finite and adopt
a Gaussian distribution with a variance s2. Thus, the combination of the known
errors and extra noise has a Gaussian distribution with variance �2i C s2, where
�i is the standard deviation of the known noise for i th data point. For example,
suppose that the star actually has two planets, and the model assumes only one is
present. In regard to the single planet model, the velocity variations induced by the
unknown second planet acts like an additional unknown noise term. Other factors
like star spots and chromospheric activity can also contribute to this extra veloc-
ity noise term which is often referred to as stellar jitter. In general, nature is more
complicated than our model and known noise terms. Marginalizing s has the desir-
able effect of treating anything in the data that can’t be explained by the model and
known measurement errors as noise, leading to conservative estimates of orbital
parameters. See Sections 9.2.3 and 9.2.4 of [10] for a tutorial demonstration of this
point. If there is no extra noise then the posterior probability distribution for s will
peak at s D 0. The upper limit on s was set equal toKmax. We employed a modified
Jeffrey’s (scale invariant) prior for s with a knee, s0 D 1m s�1.

Fig. 7.11 shows sample MCMC traces for a two planet fit [29] to a set of
HD 208487 radial velocity data [31].

Fig. 7.11 Sample FMCMC traces for a two planet fit to HD 208487 radial velocity data.

6 In the absence of detailed knowledge of the sampling distribution for the extra noise, we pick a
Gaussian because for any given finite noise variance it is the distribution with the largest uncer-
tainty as measured by the entropy, i.e., the maximum entropy distribution [30] and [10] (section
8.7.4.)
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7.3.1 47 Ursae Majoris

47 Ursae Majoris (47 UMa) is a solar twin at a distance of 46 light years. A brief
history of the analysis of the radial velocity data together with the recent 3 planet
FMCMC fit of the Lick Observatory data [24] is shown in Fig. 7.12.

Five different models assuming 0, 1, 2, 3, & 4 planets were explored. Our
Bayesian model selection analysis indicates that the 3 planet model is signifi-
cantly [24] more probable than the others. Fig. 7.13 shows some of the FMCMC
results for the preferred 3 planet model. The upper left graph shows the trace of the
Log10[Prior � Likelihood] versus iteration for the Lick telescope data. The lower
left graph shows the corresponding trace of the three period parameters. The starting
parameter values are indicated by the three arrows. The top right graph shows a plot
of eccentricity versus period for the same run. There is clear evidence for three sig-
nals including one with a period of �2400d. The longest period of �10000d is not
as well defined mainly because it corresponds to periods longer than the data dura-
tion of 7907d. Previous experience with the FMCMC periodogram indicates that it
is capable of finding a global peak in a blind search of parameter space for a three
planet model. The lower right graph shows the trace of the three period parameters
for a second run with very different starting parameter periods of 5, 20, 100d. The
algorithm readily finds the same set of final periods in both cases.

To test the evidence for three planets the analysis was repeated with the Lick data
combined with the data [32] from the 9.2 m Hobby-Eberly Telescope (HET) and 2.7
m Harlam J. Smith (HJS) telescopes of the McDonald Observatory. Figure 7.14
shows a plot of eccentricity versus period for our 3 planet FMCMC fit to the

Fig. 7.12 Brief history of 47 UMa radial velocity fits.
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Fig. 7.13 The upper left graph shows the trace of the Log10[Prior � Likelihood] versus iteration
for the 3 planet FMCMC Kepler periodogram of the Lick telescope data for 47 UMa. The lower
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Fig. 7.14 A plot of eccentricity versus period for a 3 planet FMCMC fit [24] of the combined Lick,
Hobby-Eberly, and Harlam J. Smith telescope data set for 47 UMa.

combined data set. The same three periods appear as before but with the extra data
the results now favor low eccentricity orbits for all three periods. This is a particu-
larly pleasing result as low eccentricity orbits are more likely to exhibit long term
stability than high eccentricity orbits.

left graph shows the corresponding trace of the three period parameters. The starting parameter
values are indicated by the three arrows. The top right graph shows a plot of eccentricity versus period for
the same run. The lower right graph shows the trace of the three period parameters for a second
run with very different starting parameter values.
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Figure 7.15 shows the final marginal distributions for the parameters for the three
telescope combined analysis. One of the advantages of the Bayesian approach is
the ability to deal with nuisance parameters such as unknown systematic residual
velocity offsets when combining data from different observatories, and different
detector dewars on the same telescope. The marginal distributions for these nuisance

1075. 1080.
0.00
0.05
0.10
0.15
0.20

P1 �d�

PD
F

0.02 0.065
0
5
10
15
20
25
30
35

e1

PD
F

46.5 50.5
0.0
0.1
0.2
0.3
0.4
0.5

K1 �m s
�1
�

PD
F

2200. 2600.
0.000
0.001
0.002
0.003
0.004

P2 �d�

PD
F

0.15 0.5
0
1
2
3
4
5
6

e2

PD
F

5. 15.
0.0
0.1
0.2
0.3
0.4

K2 �m s
�1
�

PD
F

20000. 45000.
0.0000
0.00002
0.00004
0.00006
0.00008
0.0001

P3 �d�

PD
F

0.2 0.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

e3

PD
F

20. 55.
0.00

0.05

0.10

0.15

K3 �m s
�1
�

PD
F

�5. 5.
0.00

0.05

0.10

0.15

V6 �m s
�1
�

PD
F

�5. 5.
0.00

0.05

0.10

0.15

V8 �m s
�1
�

PD
F

�10. 0
0.00

0.05

0.10

0.15

V39 �m s
�1
�

PD
F

�10. 0
0.00
0.05
0.10
0.15
0.20
0.25

V18 �m s
�1
�

PD
F

�0.5 3.5
0.0
0.1
0.2
0.3
0.4

VHET �m s
�1
�

PD
F

�2. 2.
0.0
0.1
0.2
0.3
0.4

VHJS �m s
�1
�

PD
F

5.5 6.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

s �m s
�1
�

PD
F

Fig. 7.15 A plot of parameter marginal distributions for a 3 planet FMCMC of the combined Lick, HET, 
and HJS telescope data set for 47 UMa. In addition to the extra noise parameter s distributions are also
shown for 6 additional nuisance parameters. They are systematic residual offset velocity parameters
relative to the Lick dewar 24. They are designated Vj , where j D 6; 8; 39; 18 correspond to the
other Lick dewars and subscripts HET and HJS refer to the Hobby-Eberly Telescope and Harlam
J. Smith telescopes.
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parameters are included in Figure 7.15 together with the distribution of the extra
noise parameter s. The systematic residual offset velocity parameters, relative to the
Lick dewar number 24, are designated Vj , where j D 6; 8; 39; 18 correspond to the
other Lick dewars and subscripts HET and HJS refer to the Hobby-Eberly Telescope
and Harlam J. Smith telescopes.

7.3.2 Gliese 581

Gliese 581 (Gl 581) is an M dwarf with a mass of 0.31 times the mass of the sun
at a distance of 20 light years which has received a lot of attention because of the
possibility of two super-earths in the habitable zone where liquid water could exist.
A brief history of the analysis of the radial velocity data together with our   recent [17]
5 planet FMCMC fit of the HARPS [33] data is shown in Fig. 7.16.

We carried out a Bayesian re-analysis of the HARPS [33] and HIRES data [34].
Our analysis of the HARPS data found significant evidence for 5 planets, the four
reported by [33] and a 399C14

�16d period (6:6C2:0
�2:7M˚) planet similar to the 433˙13d

period reported by Vogt et al. [34]. Fig. 7.17 shows the 5 planet Kepler periodogram
results for the HARPS data. The best set of parameters from the 4 planet fit were
used as start parameters. The starting period for the fifth period was set D 300d
and the most probable period found to be �400d. As illustrated in this example, the
parallel tempering feature identifies not only the strongest peak but other potential
interesting ones as well. The fifth period parameter (orange points) shows 3 peaks
but the 400d period has a maximum value of prior � likelihood that is almost 1000
times larger than the next strongest which is a second harmonic at 200d. A much

Fig. 7.16 Brief history of Gliese 581 radial velocity fits.
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Fig. 7.17 A plot of the 5 period parameter values versus a normalized value of Log10[Prior �
Likelihood] for the 5 planet FMCMC Kepler periodogram of the HARPS data

weaker peak shows up with a 34.4d period. In a Bayesian analysis the relative impor-
tance of the three peaks is in proportion to the number of MCMC samples in each
peak which is in the ratio of 1.0:0.35:0.04 for the 400, 200, and 34.4d peaks, respec-
tively.

Fig. 7.18 shows a plot of a subset of the FMCMC parameter marginal distri-
butions for the 5 planet fit of the HARPS data after filtering out the post burn-in
FMCMC iterations that correspond to the 5 dominant period peaks at 3.15, 5.37,
12.9, 66.9, and 400d. The median value of the extra noise parameter s D 1:16m s�1.

A six planet model fit found multiple periods for a sixth planet candidate, the
strongest of which had a period of 34:4˙ 0:1d but our Bayesian false alarm prob-
ability (discussed in Section 7.4) was much too high to consider it significant. Vogt
et al. found a period of 36:562˙ 0:052d for Gl 581g.

The analysis of the HIRES data set yielded a reliable detection of only the
strongest 5.37 and 12.9 day periods. For a two planet fit the value of the extra noise
term s (stellar jitter) was higher for the HIRES data than for the HARPS data sug-
gesting the possibility the HIRES measurement uncertainties were underestimated.
The analysis of the combined HIRES/HARPS data again only reliably detected the
5.37 and 12.9d periods. Detection of 4 planetary signals with periods of 3.15, 5.37,
12.9, and 66.9d was only achieved by including an additional unknown but param-
eterized Gaussian error term added in quadrature to the HIRES quoted errors. The
marginal probability density of the sigma for this additional HIRES Gaussian noise
term has a well defined peak at 1:84C0:35

�0:33m s�1.
The two conclusions of our GL 581 analysis are: (1) The current evidence is

insufficient to warrant a claim for Gl 581g. (2) The quoted errors for the HIRES data

for Gli
period parameter points are shown in orange.

ese 581. The fifth
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Fig. 7.18 A plot of a subset of the FMCMC parameter marginal distributions for a 5 planet fit of
the HARPS data for Gliese 581.

are significantly underestimated equivalent to an effective 1:80:350:33 ms�1 Gaussian
error added in quadrature with the quoted uncertainties.

7.4 Model Selection

One of the great strengths of Bayesian analysis is the built-in Occam’s razor. More
complicated models contain larger numbers of parameters and thus incur a larger
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Occam penalty, which is automatically incorporated in a Bayesian model selection
analysis in a quantitative fashion (see for example, Gregory [10], p. 45). The analysis
yields the relative probability of each of the models explored.

To compare the posterior probability of the i th planet model to the four planet
model we need to evaluate the odds ratio, Oi4 D p.Mi jD; I/=p.M4jD; I/, the
ratio of the posterior probability of model Mi to model M4. Application of Bayes’
theorem leads to,

Oi4 D p.Mi jI /
p.M4jI /

p.DjMi ; I /

p.DjM4; I /
� p.Mi jI /
p.M4jI /

Bi4 (7.6)

where the first factor is the prior odds ratio, and the second factor is called the Bayes
factor, Bi4. The Bayes factor is the ratio of the marginal (global) likelihoods of the
models. The marginal likelihood for modelMi is given by

p.DjMi ; I / D
Z
d EXp. EX jMi ; I / � p.Dj EX;Mi ; I /: (7.7)

Thus Bayesian model selection relies on the ratio of marginal likelihoods, not maxi-
mum likelihoods. The marginal likelihood is the weighted average of the conditional
likelihood, weighted by the prior probability distribution of the model parameters
and s. This procedure is referred to as marginalization.

The marginal likelihood can be expressed as the product of the maximum like-
lihood and the Occam penalty (e.g., see Gregory [10], page 48). The Bayes factor
will favor the more complicated model only if the maximum likelihood ratio is large
enough to overcome this penalty. In the simple case of a single parameter with a
uniform prior of width�X , and a centrally peaked likelihood function with charac-
teristic width ıX , the Occam factor is �ıX=�X . If the data is useful then generally
ıX � �X . For a model with m parameters, each parameter will contribute a term
to the overall Occam penalty. The Occam penalty depends not only on the number
of parameters but also on the prior range of each parameter (prior to the current
data set,D), as symbolized in this simplified discussion by�X . If two models have
some parameters in common then the prior ranges for these parameters will cancel
in the calculation of the Bayes factor. To make good use of Bayesian model selec-
tion, we need to fully specify priors that are independent of the current data D.
The sensitivity of the marginal likelihood to the prior range depends on the shape of
the prior and is much greater for a uniform prior than a scale invariant prior (e.g.,

Occam factor itself, but only in the relative probabilities of the competing models
as expressed by the Bayes factors. Because the Occam factor arises automatically in
the marginalization procedure, its effect will be present in any model selection cal-
culation. Note: no Occam factors arise in parameter estimation problems. Parameter
estimation can be viewed as model selection where the competing models have the
same complexity so the Occam penalties are identical and cancel out.

The MCMC algorithm produces samples which are in proportion to the poste-
rior probability distribution which is fine for parameter estimation but one needs

see Gregory [10], page 61). In most instances we are not particularly interested in the

the proportionality constant for estimating the model marginal likelihood. Clyde
et al. [35] reviewed the state of techniques for model selection from a statistical
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perspective and Ford and Gregory [14] have evaluated the performance of a vari-
ety of marginal likelihood estimators in the exoplanet context. Other techniques
that have recently been proposed include: Nested Restricted Monte Carlo (NRMC)
[24], MultiNest [36], Annealing Adaptive Importance Sampling (AAIS) [37], and
Reversible Jump Monte Carlo using a kD-tree [38]. For one planet models with 7
parameters, a wide range of techniques perform satisfactorily. The challenge is to
find techniques that handle high dimensions. A six planet model has 32 parameters
and one needs to develop and test methods of handling at least 8 planets with 42
parameters. At present there is no widely accepted method to deal with this chal-
lenge.

For the 47UMa and Gliese 581 data discussed in Sections 7.3.1 and 7.3.2 the
author employed Nested Restricted Monte Carlo (NRMC) to estimate the marginal
likelihoods. Monte Carlo (MC) integration can be very inefficient in exploring the
whole prior parameter range because it randomly samples the whole volume. The
fraction of the prior volume of parameter space containing significant probability
rapidly declines as the number of dimensions increase. For example, if the frac-
tional volume with significant probability is 0.1 in one dimension then in 32 dimen-
sions the fraction might be of order 10�32. In restricted MC integration (RMC)
this problem is reduced because the volume of parameter space sampled is greatly
restricted to a region delineated by the outer borders of the marginal distributions of
the parameters for the particular model. However, in high dimensions most of the
MC samples will fall near the outer boundaries of that volume and so the sampling
could easily under sample interior regions of high probability.

In NRMC integration, multiple boundaries are constructed based on credible
regions ranging from 30% to 	99%, as needed. We are then able to compute the
contribution to the total integral from each nested interval and sum these contribu-
tions. For example, for the interval between the 30% and 60% credible regions, we
generate random parameter samples within the 60% region and reject any sample
that falls within the 30% region. Using the remaining samples we can compute the
contribution to the NRMC integral from that interval.

The left panel of Fig. 7.19 shows the NRMC contributions to the marginal like-
lihood from the individual intervals for five repeats of a 3 planet fit to the HARPS
data [33]. The right panel shows the summation of the individual contributions ver-
sus the volume of the credible region. The credible region listed as 9995% is defined
as follows. LetXU99 andXL99 correspond to the upper and lower boundaries of the
99% credible region, respectively, for any of the parameters. Similarly, XU95 and
XL95 are the upper and lower boundaries of the 95% credible region for the parame-
ter. ThenXU9995 D XU99C.XU99�XU95/ andXL9995 D XL99C.XL99�XL95/.
Similarly , XU9984 D XU99 C .XU99 � XU84/. For the 3 planet fit the spread in
results is within ˙23% of the mean. For each credible region interval approximately
320,000 MC samples were used. The mean value of the prior � likelihood within
the 30% credible region is a factor of 2 � 105 larger than the mean in the shell
between the 97 and 99% credible regions. However, the volume of parameter space

Test that the extended credible region (like 9930) for the period parameter does not overlap the
credible region of an adjacent period parameter in a multiple planet fit.
7

7
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Fig. 7.19 Left panel shows the contribution of the individual nested intervals to the NRMC
marginal likelihood for the 3 planet model for five repeats. The right panel shows the sum of
these contributions versus the parameter volume of the credible region.

�

�

�

�

�

�

�
� � � � �

�

�

�

�

�

�

�

�

�

�
�
�
�

�

�
�
�

�

�

�

�

�

�

�

�
� � � �

� �

�

�

�

�

�

�

�

�

�
� � �

�

�

�

�

�

�

�

�

�

�

�

�
� � � �

�

�

�

�

3
0
�

4
0
�

5
0
�

6
0
�

6
8
�

7
6
�

8
4
�

9
0
�

9
5
�

9
7
�

9
9
�

9
9

9
5
�

9
9

8
4
�

9
9

6
8
�

9
9

3
0
�

�35 �30 �25 �20 �15 �10
�148

�146

�144

�142

�140

�138

�136

Log10�Restricted Monte Carlo parameter volume�

Lo
g 1
0�


M
ar
gi
na
lL
ik
el
ih
oo
d�

�

�

�

�

�

�

�
�
� �

� � �� �

�

�

�

�

�

�

�
�
� �

� � ���

�

�

�

�

�

�

�
� � � � � ���

�

�

�

�

�

�

�
�
� � � � �� �

�

�

�

�

�

�

�

�
� � � � ���

3
0
�

4
0
�

5
0
�

6
0
�

6
8
�

7
6
�

8
4
�

9
0
�

9
5
�

9
7
�

9
9
�

9
9

9
5
�

9
9

8
4
�

9
9

6
8
�

9
9

3
0
�

�35 �30 �25 �20 �15 �10
�148

�146

�144

�142

�140

�138

�136

Log10�Restricted Monte Carlo parameter volume�

Lo
g 1
0�
M
ar
gi
na
lL
ik
el
ih
oo
d�

Fig. 7.20 Left panel shows the contribution of the individual nested intervals to the NRMC
marginal likelihood for the 5 planet model for five repeats. The right panel shows the integral
of these contributions versus the parameter volume of the credible region.

in the shell between the 97 and 99% credible regions is a factor of 8 � 1011 larger

The left panel of Fig. 7.20 shows the contributions from the individual credible
region intervals for five repeats of the NRMC marginal likelihood estimate for a
5 planet fit to the HARPS data [33]. The right panel shows the summation of the
individual contributions versus the volume of the credible region. In this case the
spread in five NRMC marginal likelihood estimates extends from 2:1� the mean to
0:65� the mean.

The biggest contribution to the spread in NRMC marginal likelihood estimates
for the 5 planet fit comes from the outer credible region intervals starting around
99%. The reason for the increased scatter in the Log10[� Marginal Likelihood] is
apparent when we examine the MC samples for one of the five repeats. Fig 7.21
shows plots of the maximum and mean values (Left) and maximum, mean, and
minimum values (Right) of the MC samples of the Log10[prior � likelihood]
for each interval of credible region, versus the parameter volume. The range of
Log10[prior � likelihood] values increase rapidly with increasing parameter vol-
ume starting around the 99% credible region boundary. This makes the Monte Carlo

than the volume within the 30% credible region so the contribution from the latter to
the marginal likelihood is negligible.
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Fig. 7.21 Left panel shows the maximum and mean values of the Log10[prior � likelihood] for
each interval of credible region versus parameter volume for the 5 planet fit. The right panel shows
the maximum, mean, and minimum values of the Log10[prior � likelihood] versus the parameter
volume.

evaluation of the mean value more difficult in these outer intervals. We can compute
the fraction of our total marginal likelihood estimate that arises for the intervals
beyond the 99% credible region. Averaging over the 5 repeats the mean fraction is
6:6˙ 3:4%. This mean fraction increases to 36˙ 12% for all intervals beyond the
97% credible region and to 56 ˙ 9% for the all intervals beyond the 95% credible
region.

The NRMC method is expected to underestimate the marginal likelihood in
higher dimensions and this underestimate is expected to become worse the larger
the number of model parameters, i.e., increasing number of planets [39]. When we
conclude, as we do, that the NRMC computed odds in favor of a five planet model
for Gliese 581 compared to the four planet model is �102 (see Table 7.2), we mean
that the true odds is 	102. Thus the NRMC method is conservative. One indica-
tion of the break down of the NRMC method is the increased spread in the results
for repeated evaluations that was discussed above. A recent comparison by Gre-
gory [40] of the NRMC method with a second method, the Ratio Estimator (RE),
described in Ford and Gregory [14], indicates the two methods agree within 25%
for a 3 planet model fit (17 parameters) to three different exoplanet data sets includ-
ing Gliese 581. However, the agreement between the two methods breaks down at
the 4 planet fit level (22 parameters) with the value of the RE estimate 62 times the
NRMC estimate for the Gliese 581 HARPS data. Unlike the NRMC method, the RE
method has the potential to pay too much attention to the mode and is expected to
overestimate the marginal likelihood [41] at sufficiently high dimensions.

We can readily convert the Bayes factors to a Bayesian False Alarm Probability
(FAP) which we define in equation 7.8. For example, in the context of claiming the
detection ofm planets the FAPm is the probability that there are actually fewer than
m planets, i.e., m � 1 or less.

FAPm D
m�1X
iD0

.prob:of i planets/ (7.8)
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Table 7.2 Marginal likelihood estimates [17], Bayes factors relative to model 4, and false alarm
probabilities.
Model Periods Marginal Bayes factor False Alarm

(d) Likelihood nominal Probability
M0 6:10� 10�197 2:0� 10�59

M1 .5:37/ .4:221˙ 0:003/ � 10�155 1:4� 10�17 1:4� 10�42

M2 .5:37; 12:9/ .1:94˙ 0:01/ � 10�145 6:5� 10�8 2:2� 10�10

M3 .5:37; 12:9; 66:9/ .3:0
C0:7
�0:5 / � 10�142 10�4 6:5� 10�4

M4 .3:15; 5:37; 12:9;
66:9/

.3:0
C1:1
�0:6 / � 10�138 1:0 10�4

M5 .3:15; 5:37; 12:9;
66:9; 399/

.3:0�2:1
�0:65/ � 10�136 102 0:01

M6 .3:15; 5:37; 12:9;
34:4; 66:9; 399/

.6:7�2:4
�1=3/ � 10�141 2:2� 10�3 0:999978

If we assume a priori (absence of the data) that all models under consideration
are equally likely, then the probability of each model is related to the Bayes factors
by

p.Mi j D; I/ D Bi4PN
jD0 Bj4

(7.9)

whereN is the maximum number of planets in the hypothesis space under consider-
ation, and of course B44 D 1. For the purpose of computing FAPm we set N D m.
Substituting Bayes factors, given in Table 7.2, into equation 7.8 gives

FAP5 D .B04 C B14 C B24 CB34 C B44/P5
jD0Bj4

� 10�2 (7.10)

For the 5 planet model we obtain a low FAP �10�2.
Table 7.2 gives the NRMC marginal likelihood estimates , Bayes factors and

false alarm probabilities for 0, 1, 2, 3, 4, 5 and 6 planet models which are designated
M0; � � � ;M6. For each model the NRMC calculation was repeated 5 times and the
quoted errors give the spread in the results, not the standard deviation. The Bayes
factors that appear in the third column are all calculated relative to model 4. Based
on the HARPS [33] data, the Bayes factor favors a 5 planet model.

7.5 Conclusions

The main focus of this chapter has been on a new fusion MCMC approach to
Bayesian nonlinear model fitting. In fusion MCMC the goal has been to develop an

Table 7.1 gives two different choices of prior for the eccentricity parameter. The marginal like-
lihoods listed in the Table 7.2 correspond to the eccentricity noise bias prior. Marginal likelihood
values assuming a uniform eccentricity prior were systematically lower. For example, for a 3 planet
fit using the uniform eccentricity prior the marginal likelihood was a factor of 3 smaller.

8

8
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automated MCMC algorithm which is well suited to exploring multi-modal proba-
bility distributions such as those that occur in the arena of exoplanet research. This
has been accomplished by the fusion of a number of different statistical tools. At
the heart of this development is a sophisticated control system that automates the
selection of efficient MCMC proposal distributions (including for highly correlated
parameters) in a parallel tempering environment. It also adapts to any new signifi-
cant parameter set that is detected in any of the parallel chains or is bred by a genetic
crossover operation. This controlled statistical fusion approach has the potential to
integrate other relevant statistical tools as required. A future goal is to automate the
selection of an efficient set of ˇ values used in the parallel tempering.

For some special applications it is possible to develop a faster more special-
ized MCMC algorithm, perhaps for dealing with real time analysis situations. In
the development of fusion MCMC, the primary concern has not been speed but
rather to see how powerful a general purpose MCMC algorithm we could develop
and automate. In real life applications to challenging multi-modal exoplanet data
fusion MCMC is proving to be a powerful tool. One can anticipate that this approach
might also allow for the joint analysis of different types of data (e.g., radial velocity,
astrometry, and transit information) giving rise to statistical fusion and data fusion
algorithms.

On the Bayesian model selection front, a wide variety of marginal likelihood
estimators perform satisfactorily for models with �7 parameters and the author has
achieved satisfactory agreement between two different Bayesian estimators at the

Acknowledgements The author would like to thank Wolfram Research for providing a comple-
mentary license to run gridMathematica.
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Chapter 8
Classification and Anomaly Detection for
Astronomical Survey Data

Marc Henrion, Daniel J. Mortlock, David J. Hand, and Axel Gandy

Abstract We present two statistical techniques for astronomical problems: a star-
galaxy separator for the UKIRT Infrared Deep Sky Survey (UKIDSS) and a novel
anomaly detection method for cross-matched astronomical datasets. The star-galaxy
separator is a statistical classification method which outputs class membership prob-
abilities rather than class labels and allows the use of prior knowledge about the
source populations. Deep Sloan Digital Sky Survey (SDSS) data from the multiply
imaged Stripe 82 region are used to check the results from our classifier, which com-
pares favourably with the UKIDSS pipeline classification algorithm. The anomaly
detection method addresses the problem posed by objects having different sets of
recorded variables in cross-matched datasets. This prevents the use of methods
unable to handle missing values and makes direct comparison between objects dif-
ficult. For each source, our method computes anomaly scores in subspaces of the
observed feature space and combines them to an overall anomaly score. The pro-
posed technique is very general and can easily be used in applications other than
astronomy. The properties and performance of our method are investigated using
both real and simulated datasets.

8.1 Introduction

Astronomy has greatly profited from recent advances in telescope and detector tech-
nologies and data storage capabilities. The situation is now such that astronomers
are facing a veritable “data avalanche” [1]. The generated datasets are incredibly
rich and their analysis requires automated and efficient methods.

In this chapter we will present two tools developed for two types of analysis: a
star-galaxy classification method and an algorithm for detecting anomalous sources.
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The former is a common task, preliminary to many analyses of astronomical data.
The particular classifier that we will describe is a parameterised model that can
incorporate prior information about source populations. Though the classifier has
been developed for a particular survey, its basic principles can be easily applied
to other surveys. Anomaly detection is a more specialised and exploratory task,
facilitating the discovery of novel types of objects, though follow-up observations
of any set of candidate anomalies must be made. The anomaly detection algorithm
that we will describe is, unlike the star-galaxy separator, totally data-driven.

We will summarise the two surveys that we will use throughout this chapter
in Sect. 8.2. The star-galaxy separation method is presented in Sect. 8.3 and the
anomaly detection algorithm is described in Sect. 8.4.

8.2 The Sloan Digital Sky Survey (SDSS) and the UKIRT
Infrared Deep Sky Survey (UKIDSS)

8.2.1 The Sloan Digital Sky Survey (SDSS)

Operations on SDSS [2] started in 1998 and have been continuously ongoing until
the present day. So far, there have been 3 phases to SDSS: SDSS-I (2000-2005),
SDSS-II (2005-2008) and SDSS-III (2008-ongoing). SDSS-III is currently sched-
uled to run until 2014.

Observations are made with a dedicated 2.5m telescope [3] at Apache Point
Observatory in New Mexico, USA. Sources are observed in 5 optical filters (u, g,
r , i , ´; [4]) and, for a subset of sources, full spectra are measured using a pair of
spectrographs. The SDSS magnitudes are on the AB system.

SDSS uses asinh magnitudes, rather than logarithmic magnitudes. For sources
with signal-to-noise ratios exceeding 5, these are essentially identical to logarithmic
magnitudes [5]. The advantage of such magnitudes is that it is possible to compute
magnitudes for objects with negative background-subtractedflux values. This allows
SDSS to include the measured fluxes of undetected sources in their database. How-
ever, the additional magnitudes obtained in this way will have low signal-to-noise
ratios.

SDSS-I and II have surveyed �1:16�104 deg2 with single observations, to depths
of u ' 22:0, g ' 22:2, r ' 22:2, i ' 21:3 and ´ ' 20:5. Spectra have been
obtained for �1:6 � 106 sources.

The SDSS has also taken repeat measurements in an area along the celestial
equator (covering the right ascension (ra) range ˛ 
 59 deg and ˛ 	 300 deg and
declinations (dec) of jıj 
 1:25 deg), known as Stripe 82. This data was released
along with DR7 and reaches depths of u ' 23:6, g ' 24:5, r ' 24:2, i ' 23:8 and
´ ' 22:1.
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8.2.2 The UKIRT Infrared Deep Sky Survey (UKIDSS)

UKIDSS [6] is a suite of five separate near-infrared surveys. A detailed technical
description of the survey is given by [7], although there have been several improve-
ments in the time since [8]. Observations began in May 2005 and are scheduled
to continue until 2012. UKIDSS aims to survey �7500 deg2 of the Northern Sky.
Observations are made using the Wide Field Camera (WFCAM; [9]) on the 3.8m
United Kingdom Infrared Telescope (UKIRT) on Mouna Kea, Hawaii.

The UKIDSS surveys include imaging in five near-infrared bands, Z, Y , J , H
andK (defined in [10]). One of the surveys, the Large Area Survey (LAS), includes
imaging in only four of these bands (Y , J ,H andK). The UKIDSS magnitudes are
on the Vega system, with the offsets to the AB system provided in [10].

The five UKIDSS surveys are: the Large Area Survey (LAS); the Galactic Plane
Survey (GPS); the Galactic Clusters Survey (GCS); the Deep Extragalactic Sur-
vey (DXS) and the Ultra Deep Survey (UDS). LAS, DXS and UDS are extra-
Galactic surveys, whereas GPS and GCS are Galactic surveys. LAS surveys the
widest (�4; 000 deg2) and shallowest (up to K ' 18:2) area, whereas UDS sur-
veys the smallest area (�0:77 deg2), but this to a far greater depth (K ' 23:0). The
UKIDSS LAS survey has also observed the SDSS Stripe 82 region.

For the remainder of this chapter, all photometry is given in the native system of
the telescope in question. Thus SDSS u, g, r , i , ´ photometry is on the AB system,
whereas UKIDSS Y , J , H andK photometry is Vega-based.

8.3 A Bayesian Approach to Star-Galaxy classification

Astronomical surveys now gather data on huge numbers of astronomical objects:
the 2 Micron All Sky Survey (2MASS; [11]), SDSS and the UKIDSS have all iden-
tified hundreds of millions of distinct sources. The scale of these projects immedi-
ately necessitates an automated approach to data analysis (although an intriguing
alternative is The Galaxy Zoo project described by [12]). Considerable effort has
been put into developing algorithms which can decompose an image into a smooth
background and a catalogue of discrete objects, the properties of which must be
characterised as well. Source positions, fluxes and shapes can all be estimated reli-
ably by using fairly simple moment-based approaches (e.g. [13, 14]), but the separa-
tion of point-like stars from more extended galaxies generally requires at least some
external astrophysical information be included. As such, the problem of star-galaxy
classification is well suited to methods which, by use if Bayes’s theorem, combine

populations of which the source might be a member. Here, we will develop a practical
formalism for one such method.

The star-galaxy separation method we present below has been published previ-
ously in [15]. We will not repeat the contents of that article here, but we will give
a more statistical formulation of this particular classification method. We will also

the measurements of a given source with prior knowledge of the astro-physical
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make a few additional points, in particular regarding other commonly used methods
to separate stars and galaxies.

In Sect. 8.3.1 we will make a few general remarks about existing star-galaxy clas-
sification techniques. The general formalism of our star-galaxy separation method
is developed in Sect. 8.3.2.1, and specialised to UKIDSS in Sect. 8.3.2.3. Real
UKIDSS data are analysed – and the results compared to the classifications from
deeper SDSS data – in Sect. 8.3.3. The relative merits of the formalism we have
chosen are summarised in Sect. 8.3.3.4.

8.3.1 Star-galaxy Separation Methods in Use

8.3.1.1 Morphology vs. Spectral/Colour Information

Deciding on whether to use morphology, colour or spectral variables to separate
stars and galaxies appears to be mainly a feature selection problem. However, dif-
ferent sets of variables correspond to making use of different physical properties of
sources to differentiate between stars and galaxies.

The starting point for all morphology-based methods of star-galaxy classification
is that stars and galaxies appear differently, the latter being more extended (at a given
flux level) and also exhibiting more variety. For bright sources these differences are
easily distinguished by the human eye (as demonstrated so well by the Galaxy Zoo
project; [12]), but for faint sources this visual classification is much more difficult
– and time-consuming. Further, the challenge is to develop automatic algorithms
that can perform the same task from measured image properties. To characterise an
object’s morphology, astronomers typically use areal profiles (i.e. the area of the
source’s image above certain light intensity thresholds), or curves of growth (i.e. the
amount of light contained within certain radii around the object centre). Sometimes,
however, the (calibrated) pixel intensities are used directly to assess object types
[16, 17].

Galaxies and stars are physically different objects and this difference is reflected
in their spectral profiles: they emit different amounts of light at different parts of
the electromagnetic spectrum, cf. Fig. 1 from [18]. A spectral approach can usually
differentiate more easily between stars and other sources which appear point-like
(e.g. quasars). Spectral classification usually proceeds by determining a best-fit tem-
plate for each source and assigning the source to the class of the template, e.g. [19].
However, measuring spectra is time-consuming and expensive. As a result most sur-
veys do not measure full spectra, but only measure the light emitted by sources over
broad ranges of wavelengths, called filter passbands. For this reason we will not
consider spectral source classification further in this work.

It is possible to use colour information (i.e. the difference in light emitted in dif-
ferent filters) to classify stars and galaxies. As galaxies typically emit more light
at the longer wavelengths, such a classification is equivalent to classifying sources
into red (typically galaxies) and blue (typically stars) objects. This approach is often
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preferred for quasar selection [20, 21], but can also be used for star-galaxy separa-
tion [18, 22].

8.3.1.2 Multi-band Surveys: Single-band and Global Classifications; Missing
Detections

The vast majority of surveys nowadays obtain data in multiple filter passbands. As
far as star-galaxy separation is concerned, this raises two issues: first there is the
problem of whether classifications should be computed in individual bands or glob-
ally, in a multi-band approach and, secondly, there is the problem of what should be
done with sources with missing detections in one or several bands.

Multi-dimensional methods making use of the full multi-band data can be used
to compute global object classifications ([18, 20–25]). In these articles only a global
classification is computed and single-band classifications are not made available.
However, for some science uses, it might be more useful to have a band-specific
classification, rather than a multi-band one.

One approach to obtaining both single-band classifications and a global classifi-
cation consists in classifying sources in each band and then combining these band-
specific classifications to obtain a global, multi-band, classification. The UKIDSS
pipeline classifier [26] obtains a global classification in two different ways (one
yielding a class label, the other a posterior class membership probability). By thresh-
olding on a morphology statistic, the classifier assigns class labels to objects in each
individual band. A multi-band class label is obtained by combining the band-specific
morphology statistics to a multi-band morphology statistic and applying the same
thresholding rule to this combined statistic. To obtain multi-band posterior class
probabilities, each band-specific class label is assigned approximate probabilities
that objects assigned to this class are truly of that type or one of the other types
(e.g. for a given band, an object assigned the class label “star”, “probable star”,
“probable galaxy” or “galaxy” is considered to actually be a star with probability
0:9, 0:7, 0:25 and 0:05 respectively in that band). These approximate probabilities
are then used to compute a global classification. While this scheme has the flexibil-
ity of providing both single-band and multi-band classifications, its heuristic nature
is unsatisfactory.

Missing detections in multi-band surveys constitute another problem: for various
reasons (emission profiles of sources, sensitivities of the different filters, . . . ) some
objects are not observed in all the bands of the survey. Ideally sources with missing
detections in some bands should also be classified using the data from the bands
they have been observed in.

In [21, 23, 25], the authors discard objects with missing detections or non-
physical values in some bands as their classification methods require data with no
missing values. [27] compute classifications in each of three bands and then use a
system of priority to select a global classification from these. The three bands are
ranked according to the classifier’s performance on test data and, if an object has
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been observed in more than one band, the classification from the best performing
band is used, otherwise the classification from the only available band is used.

One way around the problem posed by non-detections is given by the SDSS sur-
vey: rather than use logarithmic magnitudes, SDSS uses asinh magnitudes [5]. This
allows SDSS to measure magnitudes in all bands even for objects which have not
been detected in some bands. The classification methods from [20, 23, 24] thus avoid
the non-detection problem. However, the data from objects with missing values will
have low signal-to-noise ratios in the missing bands and the measured colours of
such objects can be affected by the magnitude measurements in the missing bands,
which will be close to the zero flux magnitude in those bands. This in turn can affect
the quality of the classifications.

8.3.1.3 Classifier Training and Testing: Labelled Data

To train or test a given classifier we need labelled data. However, we do not know
the true type of most objects in the sky. In particular, faint sources are key to testing
a classifier as classifying bright sources is usually straightforward. However, getting
good quality labelled data of faint sources can be problematic.

Classification by visual inspection is usually reliable, but is not perfect, partic-
ularly for faint sources, and suffers from the subjective bias due to the expert. It is
also very time-consuming and thus visually classified training / testing datasets tend
to be small in size.

Taking a survey and cross-matching its sources with those from a deeper or high-
resolution spectroscopic survey is one way of getting labelled data. The assumption
here is that any classifier, however simple, used on the deeper or spectroscopic sur-
vey will be able to classify sources correctly, as these data will be of higher resolu-
tion. However, a deeper and overlapping survey does not always exist.

Some authors (e.g. [14]) choose to use simulated training data. Another strat-
egy consists in using hybrid real/simulated training data by taking medium bright
objects, which are easy to classify, and simulating their appearance at fainter magni-
tudes or simply adding noise (e.g. [28] test the effect of noisy data on their classifier
performance by degrading labelled images). However, simulated data will always
reflect the authors’ understanding of the processes affecting the visual appearance
of sources.

While the problem of testing the classifier remains, training / fitting the classifier
can be done with un- or only partially labelled data. For instance, one can develop
a more robust classifier, able to deal with unlabelled and even misclassified data, as
long as correctly classified data form the vast majority of the training data. [29], for
instance, propose a semi-supervised clustering technique, which also allows defin-
ing classes of unknown object types if some clusters contain only unlabelled data.
Another approach consists in using prior knowledge about source populations and
extrapolating the classification rules from brighter sources to fainter regimes. Cut-
based techniques, such as [26] and [30], use this approach, as do more sophisticated
techniques, e.g. [31].
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Having made these general remarks, we will now develop a general formalism
for star-galaxy separation in UKIDSS. For a more thorough review of commonly
used source classification techniques, see [15].

8.3.2 The Model

Before developing our model, we should note that, in the astronomy literature the
term “Bayesian” is taken to include any method which uses both information on the
source populations (to obtain prior probabilities) and the observed data (to form the
likelihood terms) to compute posterior class membership probabilities. Referring
to such methods, of which our classifier is an example, simply as Bayes classifiers
might be more correct, but here we will adopt the convention used in the astronom-
ical community.

Let T be a random variable giving the object type of an astronomical source
and let X be the random vector giving the available data. Throughout this chapter,
for notational ease, we have replaced the more formal Pr.T D t jX D x/ with
the less cumbersome, if occasionally ambiguous, p.t jx/. Also, again for notational
ease, we will not differentiate between probabilities, probability mass functions and
probability density functions: we will write p.:/ for each of these. Thus, when we
write p.x/, we could mean the probability p.X D x/ or the probability density
function of the random variable X (or even the density of a random variable Y )
evaluated at the point x. What we mean in each case, however, will always be clear
from the context.

8.3.2.1 General Formalism for Classifying Astronomical Sources

Suppose a noisy, seeing-smeared and pixelated image of a source has been mea-
sured. We want to express our confidence that the source is of a given type. Suppose
there are Nt different types of astronomical objects: ft1; t2; : : : ; tNt

g. Given data
x D .x1; x2; : : : ; xNx

/, where Nx is the number of measured variables, we wish to
calculate the posterior class membership probabilities, p.t jx/, for each object type
t . This is achieved by using Bayes’ theorem:

p.t jx/ D p.t/p.xjt/PNt

t 0D1 p.t
0/p.xjt 0/

; (8.1)

where p.t/ is the prior probability that the source is of type t and p.xjt/ is the
probability density of getting the observed data under the hypothesis that the source
is of type t .
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8.3.2.2 Star-galaxy Classification

At this point we will start making simplifying assumptions, notably:

� Every object is either a star or a galaxy, i.e. we assume, for this work, that
T can take one of two values: s for stars and g for galaxies. While there are
many other populations of astronomical objects, the vast majority of sources
will either be Galactic stars or galaxies. The next most common type of objects
are quasars, but as their name suggest, they appear as point-sources in the opti-
cal and near-infrared bands, and hence can be included with the stars in the
context of morphological classification.

� The morphological information contained in an image of a source can be com-
pressed into a single statistic. The potentially large parameter space is greatly
reduced by the use of a single morphology statistic, c. c simply encodes the
degree to which a given source is not point-like. There is great freedom in
specifying c and, even, what the null distribution of c for stars should be. For
UKIDSS, this assumption is motivated by the existence of an excellent mor-
phology statistic: ClassStat, see Sect. 8.3.2.3.

� The source flux is sufficiently well measured so that the uncertainty in the pho-
tometry can be ignored.

The first of these assumptions simplifies Bayes’ theorem, Eq. (8.1):

Ps D p.sjx/ D p.s/p.xjs/
p.s/p.xjs/C p.g/p.xjg/ : (8.2)

Thus we need to compute a single number: Ps.
The second assumption means that we assume that the intrinsic properties of

a given source can be summarised by the parameter vector fm1; m2; : : : ; mNb
; cg,

where mi is the true apparent magnitude of the source in band i , c is its intrinsic
morphology statistic and Nb is the number of bands of the survey. The notion of a
true morphology statistic is somewhat artificial, given that c is generally defined in
terms of image properties such as pixel values; however it is taken to be the value of
the morphology statistic that would have been measured if the source was observed
without photometric noise, but with the smearing of the observational point-spread
function (PSF). As such c is not actually an intrinsic property of the source.

The data consist of the measured magnitudes, f Om1; Om2; : : : ; OmNb
g, and the mea-

sured morphology statistics, f Oc1; Oc2; : : : ; OcNb
g, in each of the Nb bands. Ideally, our

model should encode both the photometric and morphology measurement uncer-
tainties as well as correlations between measurements in different bands. However,
for the particular task at hand, we will, not unreasonably, assume that inter-band
photometric noise correlations are negligible and that the photometric part of the
model likelihood is Gaussian in magnitude units. This latter approximation will
break down for faint sources [32], but here all sources are unambiguously detected.

We need, however, to include the survey incompleteness, expressed here as the
probability that a source is detected in at least one band (or, more specifically, in a
reference band). The detection probability is assumed to drop from unity to zero
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over a magnitude range �mb around the nominal detection limit of the survey,
mlim;b . The specific form adopted for the incompleteness is

p.detjmb/ D 1

2
erfc

�
mb �mlim;b

�mb

�
; (8.3)

where erfc.x/ D 2
R 1p

2x
'.x0I 0; 1/ dx0 is the complementary error function, and

where '.xI
; �/ D expf�1=2Œ.x � 
/=��2g=Œ.2�/1=2�� is the unit-normalised
Gaussian probability density with mean 
 and variance �2. By convention, the
fainter an object is, the higher its corresponding magnitude measurement will be;
hence the detection probability decreases with increasing magnitude.

Note that p.detjmb/ depends only on the true magnitude mb and not the mea-
sured Omb . Since the tail of the detection limit distribution is significantly longer for
stars (as, being more centrally concentrated, there is a greater chance of faint stars
meeting the detection criteria of most surveys). Hence we condition this probability
on t as well: p.detjmb; t/. A somewhat subtle result of this is that the majority of
the very faintest sources in a sample generated in this way are stars, even for surveys
that are sufficiently deep that galaxies are intrinsically much more numerous at such
faint fluxes.

Finally, for computing multi-band posterior probabilities, we will assume that the
true morphology, c, depends only on the object type and on the apparent brightness
of the source in a reference band,m.

Taken together, the above assumptions allow us to reduce the data vector for each
source in the survey to x D .Oc; Om/ D . Oc1; Oc2; : : : ; OcNb

; Om1; Om2; : : : ; OmNb
/.

8.3.2.3 Star-galaxy Separation in UKIDSS

The classifier which we will develop is geared towards the UKIDSS LAS survey.
We will use deep SDSS Stripe 82 data to verify our classifications. Hence we will
quickly review the morphology statistics that are recorded, respectively that can be
derived from other measurements, in each survey.

8.3.2.4 Morphology Statistic in UKIDSS

Aside from basic image parameters (e.g. positions, counts, . . . ) the UKIDSS cata-
logues include a number of derived statistics, including an “extendedness” statistic
in each band. The data variables we use are the magnitude variables in all four
UKIDSS LAS bands (Y , J ,H , K) and the above mentioned extendedness statistic,
ClassStat, in each band.

Thus, for our classifier, the measured data vector will be x D .Oc; Om/ D
. OcY ; OcJ ; OcH ; OcK ; OmY ; OmJ ; OmH ; OmK/.

The extendedness statistic c, as defined in [26], is based on the fact that all the
unsaturated stars in each field have the same average curve of growth (i.e. fraction
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of their total flux as a function of angular radius). This average can be measured
empirically, and a mismatch statistic calculated for each source. In a given mag-
nitude range the statistic is scaled so that, for stars, it has zero mean, unit vari-
ance and is approximately Gaussian distributed; this scaled mismatch statistic is
referred to as ClassStat in the WSA. Extended galaxies (and blended pairs of
sources) have positive ClassStat values, whereas most noise sources (e.g. cos-
mic rays), being more compact than the PSF, have negative ClassStat values.
ClassStat encodes much of the important morphological information, even in
faint images, and is a superb morphology statistic. However because it is a statis-
tic based solely on the image data (i.e. it does not include prior information about
a source’s nature) it cannot encode all the information about a source (as distinct
from the image of it). Moreover, there is no well-motivated method of combin-
ing the ClassStat values obtained from multiple measurements of a source. (In
UKIDSS, combined source probabilities and ClassStat values are reported, but
these are heuristic in nature, and do not retain all the information present in the
band-specific ClassStat values.)

8.3.2.5 Morphology Statistic in SDSS

The SDSS approach to star-galaxy classification is based on the use of model mag-
nitudes, each detected source being fit as both a point-source (i.e. the measured
point-spread function) and a galaxy (i.e. a pro with one of two different
exponents). The difference between the two different magnitudes, termed the con-
centration, c, is then used as a morphology statistic [34]. The basic classification is
done by designating sources with measured concentration Oc 
 0:145 as stars and
sources with Oc > 0:145 as galaxies. Whilst this scheme is very effective, it is also
important to note that the classifications of up to a third of sources contradict in
different bands [34].

The Stripe 82 data are significantly deeper than the UKIDSS LAS (in the
sense that all but the reddest sources are detected with a greater signal-to-noise
ratio in Stripe 82 than in the LAS, and an average UKIDSS-selected source has
�r ' 0:1 �Y ). Even though the SDSS optical imaging has a significantly larger see-
ing (�1:2 arsec) than the UKIDSS NIR data (�0:8 arcsec), the SDSS Stripe 82 data
of the morphologically ambiguous sources near the LAS detection limit is able to
separate point and extended sources reliably (for more information, cf. [15]).

By limiting ourselves to sources with 16 
 r 
 20:5 (thus avoiding both satu-
rated and very faint sources) we assume the SDSS class labels to be correct. In par-
ticular, for Y ' 20, the SDSS r-band class labels misclassify only �4% of sources
(this number is obtained by fitting a Gaussian distribution to the star population and
a log-normal to the galaxy population for the SDSS concentration data). This is a
very good result when compared to the UKIDSS ClassStat data which, at this
faintness regime, no longer allow a separation into two populations of sources [15].

Hence, for the purpose of star-galaxy separation, we treat the SDSS Stripe 82
data as definitive classifications against which our LAS classifications can be tested.

 S rsic 33]é file [
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8.3.2.6 Test Sample

Our starting point is a sample of 121;902 UKIDSS sources in a 14:38 deg2 area
defined by right ascensions of either ˛ 
 60 deg or ˛ 	 300 deg and declinations
of jıj 
 0:1. This area is entirely within the SDSS Stripe 82 region, and has been
covered by UKIDSS in the Y , J , H and K bands. Our main aim is to classify
these sources and compare the results to the SDSS Stripe 82 classifications. But
to do so requires the preliminary task of generating the magnitude-dependent prior
distributions of ClassStat, along with the star and galaxy number counts. This
is not part of the actual classification process (i.e. it is independent of any single
source), and so is considered separately from the results.

8.3.2.7 Model Specification

We have noted above that we assume the ClassStat statistic c to depend only
on object type and the apparent magnitude in a reference band. For UKIDSS
LAS, we have chosen the Y -band as the reference band. As not all sources have
been observed in all four UKIDSS bands, we choose Om to be the average of the
measured magnitudes Omb in which a given source has been observed. To convert all
of these magnitudes onto the scale of the reference band, we have added the average
colours Y � J , Y � H and Y � K to the respective magnitudes OmJ , OmH , OmK .
Provided that the typical value of c for an object of type t does not vary rapidly with
its magnitude, the average colour relationship for each population is a reasonable
approximation.

So, finally, we have reduced the data vector to x D .Oc; Om/ D . OcY ; OcJ ; OcH ; OcK ;
Om/. Together with the assumption that there are only two object types, s and g, and

keeping conditioning on Om, Eq. (8.1) becomes

p.t j Oc; Om/ D p.t j Om/p.Ocjt; Om/
p.sj Om/p.Ocjs; Om/C p.gj Om/p.Ocjg; Om/: (8.4)

For given Om, we assume that the random variable T follows a Bernoulli distribu-
tion with parameter p.sj Om/:

T j Om � BernoulliŒp.sj Om/�; (8.5)

i.e. given Om,

T D
(
s with probability p.sj Om/
g with probability p.gj Om/ D 1 � p.sj Om/ ; (8.6)

where p.sj Om/ incorporates both prior knowledge or belief about population num-
bers and the incompleteness model discussed above in Eq. (8.3).

The observed Y -band counts of stars and galaxies (identified here by using
our model with number counts obtained by binning the data by magnitude and
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Fig. 8.1 Differential number
counts of all sources (black),
stars (blue) and galaxies (red)
from UKIDSS observations.
Classifications are obtained
by using our model with num-
ber counts obtained by bin-
ning the data into equal-sized
magnitude bins and fitting
simple mixture models to the
cY data in each bin. Also
shown as dashed lines are the
model fits (see Eq. (8.7)), both
with and without a correction
for incompleteness. The latter
are those used as priors in our
model. (Reproduced from [15],
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interpolating the parameters) from the test sample described above are shown in
Fig. 8.1. Both exhibit exponential counts down to Y ' 19, beyond which the sur-
vey incompleteness dominates (as expected, given the average UKIDSS LAS limit
of Y ' 20:2). For both stars and galaxies the intrinsic number counts are taken to
be of the form

dNt
dY

D ˛t ln.10/10˛t.Y�ˇt /; (8.7)

where ˛t is the type-dependent logarithmic slope and ˇt is a scale parameter.
In order to fit these parameters, however, it is necessary to account for the

incompleteness in each band, denoted here as p.detjY /, which was introduced in
equation (8.3). The magnitude limit mlim;b and incompleteness range �mb are fit-
ted in the Y , J , H and K bands for both stars and galaxies. Although there are
some discrepancies, the key point is that the relative numbers of stars and galaxies
at a given magnitude will give far more accurate prior probabilities than, say, an
uninformative prior (i.e. p.s/ D p.g/ D 0:5 for all sources).

As we have remarked above, due to the difference in detection distribution for
point and extended sources, near the detection limit of a given survey, the majority
of sources will be stars. For this reason we will account for the incompleteness in
the magnitude dependent prior star probabilityp.sj Om/. Thus, with the above models
for number counts, Eq. (8.7), and incompleteness, Eq. (8.3), p.sj Om/ can be written
as

p.sj Om/ D
10˛s. Om�ˇs/ 1

2
erfc

�
Om�mlim;Y;t

	mY;t

�
10˛s. Om�ˇs/ 1

2
erfc

�
Om�mlim;Y;t

	mY;t

�
C 10˛g. Om�ˇg/ 1

2
erfc

�
Om�mlim;Y;t

	mY;t

� : (8.8)

ClassStat is constructed so that, on average, c D 0 for stars and c > 0

for extended sources. We observe Oc however, the distribution of which, for isolated

with permission.)
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stars, should be normal, with zero mean and unit variance, again by construction.
For galaxies, the distribution of c is more complicated: galaxies are intrinsically
more varied, and the definition of the morphology statistic is essentially indepen-
dent of galaxies’ properties. For the UKIDSS sample an empirical function was
sought which could represent the distribution of galaxies’ c values as a function of
magnitude. Particular care was taken to ensure a good fit close to the survey’s limit,
for which there is minimal morphological information and c ! 0, even for galax-
ies. We found a log-normal distribution to be a good choice for the ClassStat
distribution of galaxies. Therefore the distribution of the variables representing the
true ClassStat value is assumed to be

C jt; Om �
(
ı0 if t D s
˚log Œ
. Om/; �. Om/� if t D g

; (8.9)

where ı0 is the Dirac delta and˚log.
; �/ a log-normal distribution with parameters

 and � . The probability density function 'log.xI
; �/ of the log-normal distribu-
tion is given by

'log.xI
; �/ D 1

x
p
2��2

exp
�
� Œln.x/ � 
�2

2�2

�
: (8.10)

As we have already stated, we will ignore inter-band noise correlations. We will
also assume that the random variables representing the measured ClassStat val-
ues, OCb , are identically distributed for stars and galaxies, with OCb given by

OCb D C C 	b; b D Y; J;H;K; (8.11)

where the 	b are independently and identically distributed random variables.
By construction, the distribution of 	b should be a zero mean, unit variance nor-

mal. However the observed ClassStat distribution of bright stars appears to be
significantly non-Gaussian, [15]. Therefore, for the observed ClassStat distribu-
tion we have instead adopted a Gaussian mixture model of the form

p. Ocbjc/ D a'. Ocb � cI
1; 1/C .1 � a/'. Ocb � cI
2; �2/; (8.12)

where, for stars, c D 0, and 
1, 
2 and �2 are free parameters to be fit. These were
fit using a simple maximum likelihood (ML) approach in each of the four UKIDSS
bands.

Rather than specifying the functions 
.m/ and �.m/ of the standard parameter-
isation of the log-normal distribution, as given in Eq. (8.10), we model the mean

0.m/ and standard deviation � 0.m/ of the log-normal distribution by the empirical
functions below,


0.m/ D
�
1 � m

mmax

�
� ˚
Œ�1m

2 C �2mC �3�
�4 C �5

�
; (8.13)

� 02.m/ D 10�1.m��2/; (8.14)
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where mmax is the upper detection limit in the reference band and �1; �2; �3; �4; �5;
�1 and �2 are free parameters fitted by a simple least-squares (LS) procedure.

Note that if 
0 and � 0 are the mean and standard deviation of a random vari-
able the logarithm of which is normally distributed with mean 
 and standard
deviation � , then these parameters are related via a standard distributional result:

0 D e�C�2=2 and � 02 D .e�

2 � 1/ e2�C�2 .
The stellar and galactic densities implied by our models are shown as contours in

Fig. 8.2, along with the sample from which the fit was derived. (TheH -band, rather
than the Y -band, was chosen as it has the highest number of saturated sources,
thus emphasising an aspect of the data that is not included in the model.) The fit
is not perfect (e.g. the true density is underestimated at the bright end and slightly
overestimated in two regions near the faint end), but is very good. Also, the bright
UKIDSS stars (with H . 12:5) have significantly positive ClassStat values, as
they are saturated; we do not attempt to include this phenomenon as essentially all
sources bright enough to be saturated in UKIDSS images can be classified as stars
on the basis of prior information.

Hence p.Ocjt; Om/ is given by,

p.Ocjt; Om/ D
Z 1

�1
p.cjt; Om/

Y
bDY;J;H;K

p. Ocbjc/dc (8.15)

D
(Q

bDY;J;H;K p. OcbjC D 0/ if t D sR 1
�1 'log ŒcI
. Om/; �. Om/�QbDY;J;H;K p.cb jc/dc if t D g

;

(8.16)

where p.cbjc/ is given by Eq. (8.12).
All the terms in Bayes’s Theorem, Eq. (8.4), are now completely specified.

Fig. 8.2 The distribution
of UKIDSS sources (black
points) and the model (con-
tours) in the H band. The
case for theH band is plotted
as the saturation of bright
sources is not as apparent in
the Y -band.
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with permission.)
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8.3.3 Results

In this presentation the goal was to give an alternative, more statistical, formulation
of the star-galaxy classification method from [15], and to make a few additional
points regarding existing star-galaxy separation methods. The performance of the
particular classifier that we have described is evaluated to great detail in [15], and
below we limit ourselves to summarise some of the main results.

8.3.3.1 Importance of Prior Knowledge

Figure 8.3 (right) shows the posterior stellar probabilities in the cY vs. Y plane (the
choice of band is unimportant, as the J , H andK band plots are similar). It is clear
that for the overwhelming majority of objects, in particular those with either Y . 18

or cY & 5, the Bayesian (in the sense defined earlier in the text) classifier gives very
definite classifications (i.e. values close to either 0 or 1). Unsurprisingly, the region
where the classifier is most often confounded (i.e. where Ps ' 0:5) is where the
star and galaxy loci merge. Indeed, as the two loci overlap completely at the faint
end, there is very little information regarding object class to be extracted from the
measured ClassStat values, and the prior knowledge drives the classification.

8.3.3.2 Single- and Multi-band Classifications

Our classifier can compute both single-band classifications and combined, multi-
band posterior star probabilities. Figure 8.3 shows both the Y -band-only probabili-
ties and the joint, multi-band posterior star probabilities from our model.
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Fig. 8.3 Single- (left) and multi-band (right) star probabilities derived from our Bayesian method
as a function of the measured Y -band ClassStat and magnitude. The dotted box indicates the
selection region for bright stars, used to fit the parameters from Eq. (8.12). (Reproduced from [15],
with permission.)
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The most notable difference is that for the latter there are fewer sources which
confound the classifier. In fact, compared to the single-band model, there is a
decrease of at least 50% in the number of classifier-confounding sources for the
combined model [15]. While a reduction in the classifier-confounding region is not
always desirable, here this decrease translates the fact that the classifier will be at a
loss only when the data from different bands are contradictory, or when a source’s
type is unclear in all the bands in which it was detected.

8.3.3.3 Comparison to SDSS Stripe 82 and UKIDSS Pipeline Classifications

Figure 8.4 shows the posterior star probabilities from our model as a function of
SDSS concentration and r-band magnitude. The dotted line indicates the thresh-
old concentration value (0:145) for SDSS star/galaxy labels. Overall there is good
agreement with most sources with low Ps lying to the left of the line and sources
with high Ps lying to the right.

Comparing our classifier and the UKIDSS pipeline to the Stripe 82 data, Fig. 8.5
shows the mismatch rates of both classifiers, taking the SDSS r-band classifications
as a reference. To do this we have converted the posterior probabilities into class
labels; an object is labelled as a star if Ps 	 0:5, otherwise as a galaxy. We have
limited the sources to those with 16 < r < 20:5 so as to avoid saturated sources
(r . 16) and sources for which the uncertainty of the SDSS labels is non-negligible
(r & 20:5). It is clear that our classifier is more accurate than the UKIDSS pipeline
classifier; even though the difference in performance decreases for fainter magni-
tudes. For sources with 16:6 
 Y < 17:4, our classifier achieves a mismatch rate of
0:0154, compared to 0:0314 for the UKIDSS pipeline. At the faint end (Y > 20),
the mismatch rates are 0:0679 (our classifier) and 0:0751 (UKIDSS pipeline). For all

Fig. 8.4 UKIDSS posterior
star probabilities shown as
a function of the measured
SDSS Stripe 82 concentra-
tion vs. r-band magnitude.
Sources to the left/right
of the dotted line (with
concentration D 0.145) are
classified as stars/galaxies in
SDSS. (Reproduced from [15],

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

24
22

20
18

16

r−band concentration, cr

r

0.0

0.2

0.4

0.6

0.8

1.0

with permission.)

Marc Henrion et al.



8 Classification and Anomaly Detection for Astronomical Survey Data 165

Fig. 8.5 Mismatch rates
between the SDSS r-band
class labels and labels based
on our classifier (red) and
the UKIDSS pipeline (blue).
Mismatch rates are shown
both for all sources (with
16 < r < 20:5; solid lines)
and for those sources for
which our classifier outputs
very definite classifications
(Ps < 0:1 or Ps > 0:9;
dashed lines). The magnitude
values on the horizontal axis
are the mid-range values of
the bins used to compute
the rates. Also shown are
the standard errors of the
mismatch rates. (Reproduced
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sources with 16 < r < 20:5, the mismatch rate for the UKIDSS pipeline (0:0440)
is more than double that of our classifier (0:0218).

8.3.3.4 Value of our Approach

A practical application of our method would be to look at the amount of telescope
time that would be required to follow-up a morphologically-selected sample of tar-
gets. If one imagines a spectroscopic survey of faint stars, and one was to trust
star-galaxy separators such as the ones used by UKIDSS or SDSS versus select-
ing sources with Ps > 0:9 from our method, then a certain proportion of telescope
time would be spent observing compact/faint galaxies that were misclassified. While
there will certainly also be misclassified sources when selecting objects by basing
the selection on Ps, in [15] we show that their proportion can be greatly reduced.

8.3.4 Conclusion

We have developed a Bayesian formalism for star-galaxy classification in optical
and/or NIR surveys that combines the morphological properties of an object (as
measured in multiple passbands) with prior knowledge of the star and galaxy popu-
lations.

We have demonstrated our method on data from the UKIDSS LAS, combin-
ing morphology statistics measured in the Y , J , H and K bands (or whatever
subset of these a source was detected in). The specific morphology statistic used,
ClassStat [26], represents a powerful means of data compression from the full

ith permissionfrom [15], w .)
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image, and contains almost all the useful information for the faint sources (which are
the main motivation for the development of sophisticated star-galaxy classification
techniques). However, the existing UKIDSS data products include only heuristic
combinations of the band-specific classifications, and the application of the method
developed here makes it possible to extract all the useful UKIDSS information on
a source’s morphology in as self-consistent a manner as is possible without using
colour information as well. In particular, the use of prior information avoids the
overly-confident classification of faint sources, for which the available measure-
ments contain little morphological information.

We summarise some of the key features of our classifier below:

� posterior class membership probabilities: astronomers can select themselves the
thresholds to set on these probabilities to assign class labels, or to decide which
sources are to be rejected as ambiguous, respectively flagged for further study;
this essentially allows astronomers to set the levels of contamination and com-
pleteness required for their specific needs

� through the use of Bayes’ theorem, prior information can be fed into the model
� probabilistic, parametric model: the classification of any object can be easily

interpreted; the model is also less prone to overfitting than unparametric, purely
data-driven models

� morphological classification: class labels are unresolved (primarily stars) and
resolved sources (primarily galaxies)

� based on the ClassStat statistic [26], which very efficiently describes the
shape of an object

� ability to produce single- and multi-band classifications
� sources can be classified independently of the number of bands they have been

detected in

Our test sample of UKIDSS LAS sources was chosen to lie in the multiply-
scanned SDSS Stripe 82 region, giving us independent and almost totally reliable
classifications of all our sources. (This is a rare situation outside simulations, and an
opportunity that could be used for a number of similar testing schemes.) Converting
the posterior probabilities into class labels, the Bayesian classifier achieves an error
rate of 0:068 at the UKIDSS detection limit, compared to 0:075 for the UKIDSS
pipeline. For all non-saturated sources, the error rate for our model lies at 0:022,
compared to 0:044 for the UKIDSS pipeline.

The Bayesian model used to separate stars and galaxies described here can be
very easily applied to other surveys with similar statistics measuring the extended-
ness of sources. The multiple advantages of such a classifier (posterior probabil-
ities, use of prior knowledge, rigorous computation of multi-band classifications,
ability to cope with missing detections) and its good performance exhibited for the
UKIDSS data provide a strong argument in favour of a wider use of this method-
ology. In particular the use of our method can improve the efficiency of telescope
time.
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8 Classification and Anomaly Detection for Astronomical Survey Data 167

8.4 CASOS: a Subspace Method for Anomaly Detection in High
Dimensional Astronomical Databases

In this section we describe a tool for detecting anomalies in cross-matched survey
data. This work will be published in [35]. Here we will, once again, focus on the
reasons behind developing such an anomaly technique, with less emphasis on the
empirical evaluation of the particular method that is presented.

8.4.1 Introduction

Depending on the purpose of a given astronomical survey, it can be designed to
record flux in Gamma-ray, X-ray, ultraviolet, optical, infrared, microwave or radio
passbands. The number of completed or ongoing surveys is very large, and the
surveys differ widely in regions of the sky that are mapped, the filter passbands
used, the detection limits (survey depth), etc. This is due to different scientific aims
of the different surveys and, maybe more fundamentally, technological limitations.
But many surveys overlap, i.e. a given source can be observed in different surveys,
depending on which region in the sky it lies in, how bright it is and in which parts
of the light spectrum it radiates.

This overlap can be exploited for data analysis purposes by cross-matching sur-
veys: identical sources in multiple surveys are identified (i.e. matched) and their
data aggregated.

8.4.1.1 Problem description and motivation

In this work, using cross-matched survey data, we want to detect astronomical
objects with strange physical properties. Finding such objects (and then studying
them more closely with follow-up observations) is one of the main aims of astro-
nomical surveys. As such sources (e.g. quasars, brown dwarfs,. . . , but also poten-
tially unknown types of objects) are typically rare, the task of finding them can be
formulated as an anomaly detection problem.

For detecting interesting unusual objects, automatic outlier detection methods
are only the first step, to be followed by human examination. In the case of astron-
omy, anomaly detection methods can be used to select a set of candidate objects,
with potentially highly unusual measured properties, for which detailed follow-up
observations will be made.

Different methods are effective for detecting different kinds of anomalies in dif-
ferent situations, and it would be naive to expect a single method always to be best.
Our approach is intended to be complementary to other methods, with properties
described in the sections below.
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Surveys in themselves can be large and high-dimensional (thousands to hun-
dreds of millions of objects; a handful to hundreds of variables). Hence a database
compiled by cross-matching surveys can be large and high-dimensional. While the
gain of information about source populations achieved by cross-matching surveys is
highly desirable, the resulting, potentially massive, datasets can pose various com-
putational and methodological problems (e.g. sparsity of high-dimensional feature
spaces, feasibility problems of algorithms scaling non-linearly with sample size
and/or the number of variables, etc.).

Another property of cross-matched catalogues is that they contain many missing
values. Different objects will be observed in different surveys: a given object might
have been observed in surveys A, B and C, but not in surveys D and E, while another
source is observed in C and E but not A, B and D. Further, within each survey there
can be missing values as the different bands have different sensitivities and thus not
all bands will detect a faint source.

The method we propose below essentially reduces the problem of working in a
high-dimensional space to working in many lower-dimensional subspaces. While
the reasons for taking this approach are given by the problem above, the specific
reasons for working in lower-dimensional data subspaces are five-fold:

� Data in high-dimensional spaces are sparse [36]. A first consequence of this
fact is that the local density around every object is low. Since anomalies are
typically defined as objects that lie in low-density regions of the data-space,
the very concept of an anomaly makes less sense in higher dimensions. A sec-
ond consequence is that the notion of distance becomes less meaningful in
high-dimensional spaces. [37] show that the discrimination between the nearest
and furthest neighbour of any given point becomes poor in high-dimensional
datasets. This particularly affects nearest neighbour based anomaly detection
techniques.

� In Fig. 8.6 there is one anomaly only apparent when all three dimensions are
considered jointly: the red triangle, sitting inside a sphere around which other
points are lying. This illustrates that unless there is a relationship between all
the variables in a dataset, anomalies are apparent in subspaces of the data. The
more variables there are, the more complex such a relationship will be. Also,
the more variables are collected, the higher the chances of some being inde-
pendent of each other. For these two reasons, we think, such a complex rela-
tionship is increasingly unlikely as the dimensionality increases and that lower-
dimensional approaches can be successful.

� Figure 8.6 also illustrates that anomalies can be anomalous in only a subset of
variables: three anomalies are anomalous in only two of three variables, and
two anomalies are outlying in one variable only. In a full-dimensional approach
the combined anomaly scores of such objects will be less extreme because of
the contributions from the variables they are not anomalous in, and thus these
anomalies can go undetected. For example, in a 100-dimensional data space,
suppose there is an object which is anomalous in three variables only. When the
anomaly score is computed, the three exceptional contributions are averaged out
by the other 97.
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Fig. 8.6 Two- and one-dimensional plots of a dataset that will serve as a motivating example. There
are two groups of ordinary objects: a first group lying (subject to additional noise) on a sphere with
radius 1 and centre .1:5; 1:5; 1:5/ and those lying (again subject to additional noise) on a cylinder
with radius 1, height 2 and centre at the origin .0; 0; 0/. There are three types of anomalies: those
that can be discerned in either one- (blue diamonds), two- (green circles) or three-dimensional
(red triangle) subsets of the original data variables. Note that the three-dimensional anomaly (red
triangle) is overprinted by a two-dimensional anomaly (green circle) on some of the graphs.

� The need for imputing missing data, or discarding objects with missing values
can be eliminated by restricting oneself to the variables in which a particular
object has been observed in. Thus, a lower-dimensional approach will allow a
more efficient and rigorous use of the available data.

� Understanding why a given object has been declared anomalous will be eas-
ier the less variables have been used to declare it anomalous. Thus, lower-
dimensional approaches can result in increased interpretability.

8.4.1.2 Existing and Similar Work

A comprehensive review of anomaly detection methods similar to the method pre-
sented here can be found in [35]. We will however review methods which have been
used specifically for astronomical datasets.

Our method reduces the problem of detecting anomalies over a multi-
dimensional feature space to one of detecting anomalies in many lower-dimensional
subspaces. Further, our method will use a local density, nearest neighbour based
anomaly score calculation algorithm (but this could be replaced by any algorithm
computing a numerical anomaly score). In particular we will use the Local Outlier
Factor (LOF; [38]). LOF generalises distance-based outliers (DB-outliers), intro-
duced by [39]. The DB-outliers technique computes the number of neighbours
within a certain radius of a given object. If that number is less than a threshold,
the object is flagged as anomalous. Alternatively the inverse of the number of
neighbours within a chosen radius of an object can be used as anomaly score. LOF
looks at the local density around an object. The LOF score is essentially the average
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of the ratios of the average distance to the k nearest neighbours of the k nearest
neighbours of a given object and the average distance to the k nearest neighbours
of this object (though there is some smoothing for small distances involved as
well).

To find anomalies in astronomical datasets, object-specific search strategies are
usually adopted, e.g. searching for high redshift quasars [32] or finding outlying
light curves of periodic variable stars [40].

Another common approach consists in finding outliers as a by-product of object
classification [18, 29].

There have been more general outlier detection approaches, however. In [41],
the outlier detection method of the data mining system Distributed Exploration of
Massive Astronomy Catalogs (DEMACS) is described. As the name suggests this
is an anomaly detection method tailored to the need of virtual observatories where
datasets from different surveys can be located at different sites.

Like many methods that reduce the dimensionality before checking for anoma-
lies, the DEMACS anomaly detector uses principal component analysis (PCA;
[42]). PCA projects the data onto directions of decreasing variance so that the
first principal component corresponds to the direction of maximum variance. The
DEMACS method defines anomalies as the objects for which the projections onto
the last principal component deviate most (i.e. the objects with largest residuals,
given the overall correlation structure of the dataset).

[43] take a similar approach: they also describe an anomaly detection method
for distributed astronomical datasets and their method is also PCA based. They take
however a slightly different view than [41] and restrict the search for anomalies to
the top few principal components.

However, PCA cannot be performed if the data contain missing values. As we
wish to analyse datasets containing missing values, PCA based techniques are not
applicable.

8.4.2 Combining Anomaly Scores from Observed Subspaces
(CASOS)

The proposed method to address the anomaly detection problem in datasets obtained
by cross-matching astronomical surveys can be summarised in a few easy steps. Our
main idea consists in looking for anomalies not over the full-dimensional dataset,
but in lower-dimensional subspaces of the data. We could, in theory, compute any
lower-dimensional projection of the data. But, computing projections of data with
missing values will introduce further missing values. Also, we would need to deter-
mine a set of subspaces that are ‘best’ for anomaly detection; if there are different
types of anomalies, such a ‘best’ set of subspaces might not exist (but see [44]).
Therefore, we will limit ourselves to the subspaces that are given by subsets of the
original data variables.

Marc Henrion et al.
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1. for i in 1 W D
2. for j in 1 W 	

Nx

i



3. compute ASs for objects with no MVs in jth

i-dimensional subspace
4. store the AS vector for this subspace
5. end for j
6. combine the AS vectors for all i-dimensional subspaces
7. end for i
8. output D AS vectors or D lists of anomaly candidates

Algorithm 1. Proposed approach; if only D-dimensional subspaces are of interest,
then the loop on i needs only to run once for i D D and only one AS vector is
output.

Our approach is summarised by Algorithm 1, but let us first define some notation:

n - the number of objects (rows) in the dataset
Nx - the number of variables (columns) of the dataset
D - the maximum dimensionality of the subspaces.1 
 D 
 Nx/

AS - anomaly score (we assume the more anomalous an object is, the higher its
AS)

MV - missing value

Our method is not a novel AS computation algorithm, but attempts to use an
AS calculator designed for low-dimensional data on high-dimensional data whilst
avoiding the curse of dimensionality. In practice, any AS computation algorithm
can be used with our approach. For this work we have used the Local Outlier Factor
(LOF; [38]).

8.4.2.1 Combination Functions and Required Properties

The key step in our approach is step 6 in Algorithm 1 above. It is by – sensibly –
combining, for each object, the ASs of the subspaces the object has been observed
in, that we can directly compare the anomalousness of objects with different sets of
observed variables. While one could use any function to combine the different ASs,
there are a few obvious choices, such as averaging the observed ASs. As we have
stated, our key aim is to be able to directly compare the resulting combined ASs of
different objects – regardless of which variables these objects have been observed in.
Not all candidate combination functions that come to mind will allow us to do this.
If one were to, say, sum all the ASs from the observed subspaces for each object,
then objects with many observed variables are more likely to have higher ASs than
objects with few observed variables and objects are not directly comparable. Hence
restrictions on what constitutes a valid combination function need to be imposed.

In [35] we give mathematical of properties needed to guarantee

- the encoding of a missing value in the dataNA

descriptions
the comparability of ASs. Below we state, in words, the two properties that any
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combination function needs to satisfy. In [35] we list three additional properties
that characterise the behaviour of combination functions.

8.4.2.2 Property 1

Objects with different numbers of MVs have ASs on the same scale.

8.4.2.3 Property 2

Objects with at least one non-missing AS, have a non-missing combined AS.

8.4.3 Examples of Combination Functions

We will use the following notation:

ND D 	
Nx

D



; the number of distinct subspaces of dimension D in an Nx-

dimensional dataset
X D .ASi;j / 1�i�n

1�j�ND

; a matrix of ASs, with ASij 2 R [ fNAg,Xi the i th row of
X

G D fX jX an n �ND AS matrixg; the set of all n �ND AS matrices

We define a combination function to be a function � W G ! .R [ fNAg/n
which satisfies Props. 1 and 2 above. If, in addition, a combination function sat-
isfies Props. 3-5 from [35], it is termed well-behaved.

Let Si D fXi;j jj 2 f1; : : : ; NDg and Xi;j ¤ NAg; i D 1; : : : ; n.

� Selecting the highest AS:

�.ext/
i .X/ D max Si 8i 2 f1; : : : ; ng:

� Averaging the ASs:

�.avg/
i .X/ D 1

jSi j
X
X2Si

X 8i 2 f1; : : : ; ng:

� Averaging the top N ASs:

�.topN/i .X/ D 1

N

N�1X
jD0

Xi;.jSi j�j / 8i 2 f1; : : : ; ng;

where Xi;.j / is the j th order statistic of the ASs of object i . (N.B. if an object
has less than N ASs, the combined AS is the average of all the available ASs.)

Marc Henrion et al.
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� Sum of the excess above a certain quantile:
For each j 2 1; : : : ; ND let q.1�˛/

j be the .1 � ˛/ quantile of the ASs recorded
for subspace j . For all j , we subtract q.1�˛/

j from the AS for that subspace.
Finally, for each object, we sum the non-negative values.

�.topquant/
i .X/ D

X
X2Si

�
X � q

.1�˛/
j

�C
8i 2 f1; : : : ; ng;

where .X/C � max.X; 0/.
� Sum of the excess above a certain quantile and below another one:

We choose 0 
 ˛2 < ˛1 
 1 and compute, for each j , q.1�˛1/
j and q.1�˛2/

j . For
all j , we set all those ASs exceeding q.1�˛2/

j equal to q.1�˛2/
j and then subtract

the amount by which they exceed q.1�˛2/
j , i.e. for all i so thatXi;j > q.1�˛2/

j we
set Xi;j D q

.1�˛2/
j � .Xi;j � q.1�˛2/

j /. Then, for all j , we subtract q.1�˛/
j from

all the ASs for that subspace. Finally, for each object, we sum the non-negative
values.

�.midquant/
i .X/ D

X
X2Si

��
X � q.1�˛1/

j

�C
� 2

�
X � q

.1�˛2/
j

�C�C

All of the above are valid combination functions. The first four are also well-
behaved (for details see [35]).

8.4.4 Properties of CASOS

Having defined CASOS in Sect. 8.4.2, we can now look at further properties of our
approach. For an evaluation of the computational complexity of CASOS, the reader
is referred to [35].

8.4.4.1 Flexibility

Through the choice of combination function, our method can very easily be adapted
to specific needs. For instance �.avg/ will find objects which either have very large
ASs in some subspaces, or which have consistently high ASs. However, �.avg/ can
be affected by the masking effect from irrelevant features since it averages ASs
over all available subspaces. �.ext/ will be less affected by irrelevant features, as
it is enough for an object to have a high AS in a single subspace to have a high
combined AS. However, if a dataset contains both noise objects (e.g. cosmic rays in
astronomical datasets) and objects which are physically anomalous, both �.ext/ and
�.avg/ will result in high combined ASs for noise sources, as their measured values
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are often highly outlying. This can, in turn, affect the detection of true, non-noise
anomalies. �.midquant/ can adjust for this, as it essentially ignores too extreme ASs
during the combination step. Thus one can design a combination function which will
suit whatever beliefs one might hold about a particular datasets. All combination
functions should be checked, however, to see that they satisfy Props. 1 and 2.

8.4.4.2 Transition Between One-variable-at-a-time and Full-dimensional
Approach

The case when D D 1 corresponds to a one-variable-at-a-time approach, whereas
D D Nx is equivalent to the full-dimensional approach. Thus our approach can be
regarded as a generalisation of these two, including them as special cases.

In the astronomy setting, if we only use magnitude variables (i.e. measures of
brightness), then the one-dimensional AS vectors will be of little use as they will
merely flag up very bright and/or very faint objects. Indeed, the individual magni-
tude variables have low-density regions only at the upper and lower ends of their
range. CASOS can be used with D D 1 to check the dataset for objects with phys-
ically impossible values, but such a quality-control step should, ideally, have been
performed prior to the actual data analysis.

8.4.4.3 Analysis of the Motivating Example

We can now return to the motivating example from Fig. 8.6. This dataset features
different kinds of outliers and it also contains missing values. The anomalies are
o1; o2; o3; o4; o5 and o6. o1 appears anomalous only when all three data variables
are considered jointly. o2; o3 and o4 are two-dimensional anomalies, but o3 has
a missing value in one of the data variables. Finally o5 and o6 can be seen to be
anomalous by considering only one variable, but for o5 only two attributes have
been recorded.

We apply CASOS with D D 1; 2; 3, the latter being equivalent to the full-
dimensional LOF approach [38], Local Density Factor (LDF, [45]), Local Outlier
Correlation Integral (LOCI, [46]), the method described in [44] and Angle-Based
Outlier Detection (ABOD and fastABOD, [47]) to this dataset and list the results
in Table 8.1. For CASOS we have used �.avg/ as combination function. ABOD was
too slow even for this small, low-dimensional dataset, hence why we have used
fastABOD instead.

Note that CASOS and the method from [44] have been applied to the full dataset,
whereas LDF, LOCI and fastABOD have only been applied to the reduced dataset
of 373 objects with no missing values.

A full description of the results from this experiment can be found in [35], here
we only give the overall result, summarised in Table 8.1. We note that of the six
methods compared in Table 8.1, CASOS with D D 2 works best, which shows that
lower-dimensional approaches can outperform their full-dimensional counterparts.

Marc Henrion et al.
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Table 8.1 Various anomaly detection methods applied to the
dataset from Fig. 8.6. Checkmarks indicate successful detec-
tion.

anomaly o1 o2 o3 o4 o5 o6
type 3D 2D 2D + MV 2D 1D + MV 1D
a CASOS,D D 1 X X
a CASOS,D D 2 X X X X X
b CASOS,D D 3 / LOF X X X
b LDF X
c LOCI X X X
c [44] X X X X
b fastABOD X X X X

a objects with the 6 highest ASs have been flagged as anomalies
b objects with the 4 highest ASs (resp. smallest ASs, for fastABOD) have

been flagged as anomalies
c for binary anomaly / non-anomaly labels, we report those objects
flagged as anomalies; note that LOCI gave 1 false-positive result
whereas the method from [44] gave 41 false-positives

We conclude that this example shows the advantages (ability to handle data with
missing values, ability – for some datasets at least – to outperform full-dimensional
approaches, ability to avoid the masking effect from irrelevant features) and limita-
tions (inability to detect full-dimensional anomalies) of our approach.

8.4.5 Empirical Evaluation

Here we present the empirical evaluation of CASOS on two real, astronomical
datasets. For a more thorough evaluation of CASOS, in particular on simulated
datasets where the distribution of anomalies can be controlled, the reader is referred
to [35].

8.4.5.1 Cross-matched SDSS-UKIDSS Data

The cross-matched SDSS-UKIDSS data that we will use contain seventeen mea-
sured variables: eight colour variables (u � g, g � r , r � i , i � ´, ´ � Y , Y � J ,
J � H and H � K) and nine morphology statistics (concentrations in five SDSS
bands and ClassStat statistics in four UKIDSS bands). As in Sect. 8.3, we use
data from the SDSS Stripe 82 region (more specifically we have selected sources
with 0 < ra < 10 and 0 < dec < 1), for which there is a good overlap between
SDSS and UKIDSS, and for which SDSS made multiple observations, thus provid-
ing much more information on the detected sources.

The extracted data contained 170;413 sources. However, an initial run of our
algorithm on the data returned many noisy sources and artifacts (e.g. cosmic rays,
saturated sources, sources affected by bad sky background estimation). We have
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used the UKIDSS data flags to remove such sources and, after applying these various
data quality filters, our final dataset consists of 109;368 sources.

In UKIDSS, if a source is too faint in a given band to be detected, it will have
missing values for the variables from that band. In SDSS however, if a source is
detected in any of the band, the SDSS data processing pipeline will re-extract the
measurements for any band in which the source has not been detected. Thus the
SDSS data contain no missing values. However we wish to test CASOS in

introduced missing values in the SDSS data by setting those detections to missing
for which the signal-to-noise ratio is less than 5.

Due to the missing values contained in this dataset it has not been possible to
apply full-dimensional approaches such as LOF, LDF or fastABOD to this dataset.
All results are for CASOS (with k D 100,D D 2 and �.avg/).

We have flagged the 109 sources with highest combined ASs (i.e. top 1% of
sources) as potential anomalies. Looking at these sources we can identify several
types of objects. A first type consists of sources for which the SDSS pipeline has re-
extracted photometry, despite these objects having negative (after sky background
subtraction) measured fluxes. Some of the SDSS magnitudes for these sources are
extremely faint compared to the other measured magnitudes. These are in fact the re-
extracted measurements whenever a source was too faint to be detected in a given
band. While we have tried to re-instate the original missing values, we have not
been able to do so for all sources. The physical properties of the majority of such
sources will not exhibit any true anomalousness. However any anomaly detection
method should flag sources with such measured data, as they are anomalous in the
feature space that has been analysed. Fig. 8.7 shows low-resolution spectra (obtained
by using the measured SDSS and UKIDSS magnitudes) of two such sources. The
right-hand-side source has a measured i -band magnitude clearly fainter than the
SDSS detection limit (i ' 24:36), and the left-hand-side source has a measured
u-band magnitude much fainter than the u-band limit (u ' 24:64).

30
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Fig. 8.7 Low-resolution spectra, obtained by using the measured SDSS and UKIDSS magnitudes,
for sources for which one of the SDSS bands has been re-extracted despite the measured flux
not being above the detection limit. Note that bright sources have low magnitude values and faint
sources have large values. The error bars represent the errors reported by the SDSS and UKIDSS
data processing pipelines.

the more usual setting where such non-detections result in missing values. F urther ,
the re-extracted measurements contain little useful information. We have therefore re-
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Fig. 8.8 Sources which are either noise artifacts or the photometry of which has been affected by
nearby bright sources as they appear in the four UKIDSS bands and in SDSS. UKIDSS images
have been obtained from the WFCAM Science Archive ([48]; http://surveys.roe.ac.uk/wsa/) and
SDSS images have been obtained using the SDSS Image List Tool from the SDSS SkyServer
(http://cas.sdss.org/dr7/en/tools/chart/list.asp).

Another type of anomaly candidate consists of sources which are either noise
artifacts or the photometry of which has been affected by nearby bright sources.
Again, the inherent physical properties of such sources are unlikely to be anoma-
lous, but we would expect an anomaly detection technique to detect them as anoma-
lies due to their unusual measured values. Figure 8.8 shows images in each of the
four UKIDSS bands (Y , J , H , K; the four leftmost columns) as well as inverted
false-colour images from SDSS (the far-right column). Each row corresponds to
one source. For the top row object, the SDSS photometry is clearly bad. However,
there are also some artifacts to be seen on the H - and K-band UKIDSS images.
The source in the second row is near a very bright star and, in SDSS, a diffrac-
tion spike from this bright star affects the photometry. For the source in the third
row, some artifacts can be seen in the Y -band UKIDSS image, which have probably
affected the photometry in that band. Finally, the bottom row source can be seen to
be just noise in the UKIDSS Y -band, whereas it is not detected in the remaining
three UKIDSS band. In SDSS the object has been detected.

http://surveys.roe.ac.uk/wsa/
http://cas.sdss.org/dr7/en/tools/chart/list.asp
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Fig. 8.9 Low-resolution spectra (made up from the original SDSS and UKIDSS survey data) for
six of the top 109 anomaly candidates from the cross-matched SDSS-UKIDSS data. The error bars
represent the errors reported by the SDSS and UKIDSS data processing pipelines.

More interesting sources are shown in Fig. 8.9. The three sources in the top row
have strange colours: the source on the left has an i -band magnitude much fainter
than the other optical SDSS bands, the middle source is similar, but with a faint
g-band magnitude, finally, the source on the right is very bright in the J -band,
resulting in an extreme Y � J colour. The two left-most sources in the bottom row
have apparently contradictory SDSS and UKIDSS measurements: the first source is
bright in the SDSS bands, but much fainter in the UKIDSS band, whereas the second
source is very bright in the UKIDSS Y -band, when compared to its measurements in
the SDSS r and i bands. Finally, the bottom-right corner source has an odd spectrum
in the SDSS bands, alternating widely in brightness in the different bands.

One type of source for which it is relatively straightforward to establish why
their data appear to be contradictory are sources which lie very close to each other
on the sky. For these sources there is the possibility that they can be detected as
two, or three separate sources in one survey, but as one blended source in the other
survey. Since SDSS has observed Stripe 82 multiple times, it is usually in SDSS
that such sources can be clearly separated, whereas in UKIDSS they appear as one
blended source. Figure 8.10 shows UKIDSS and SDSS images of three such blended
sources. In fact some UKIDSS sources have been cross-matched to multiple sources.

We conclude that CASOS does show some potential on cross-matched survey
data, as evidenced by the properties of the top 1% anomaly candidates flagged by
CASOS. But, as we stated in Sect. 8.4.1, any sources flagged by CASOS would
need to be observed to greater detail with follow-up observations. It will require
much more focused input from astronomers to get meaningful anomaly candidate
lists, as otherwise CASOS will flag up noisy sources, or sources with weird, but
uninteresting measurements (such as, e.g. the artificially low SDSS magnitudes).
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Fig. 8.10 Sources close to each other on the sky, which appear as one blended source in UKIDSS,
but as several, distinct sources in SDSS. Each row corresponds to one source, the first four columns
are the four UKIDSS band images and the last column are SDSS inverted false-colour images.
UKIDSS images have been obtained from the WFCAM Science Archive ([48]; http://surveys.roe.
ac.uk/wsa/) and SDSS images have been obtained using the SDSS Image List Tool from the SDSS
SkyServer (http://cas.sdss.org/dr7/en/tools/chart/list.asp).

8.4.5.2 Quasar Candidates Datasets

We have also applied CASOS to a set of 12;074 pre-selected high-redshift quasar
candidates. This dataset is described in greater detail in [32]. The dataset contains
5 colour variables: i � ´; ´ � Y; Y � J; J � H and H � K . Objects have been
pre-selected to lie in a certain region in i �Y vs. Y �J space (shown on Fig. 8.11).

The dataset contains 7 confirmed high-redshift quasars. The aim was to see if
CASOS would be able to detect these. We have used CASOS with D D 2 and
�.avg/. Figure 8.11 shows the top 120 anomaly candidates from CASOS.

Flagging the top 1% of sources as anomalous (121 sources), CASOS detects one
of the seven high-redshift quasars. The probability of flagging one or more of the
seven sources by chance is

P7
iD1

	
7
i


 � 0:01i � 0:997�i D 0:0679. However when the
top 10% of sources (1;207 sources) are flagged as anomalous, then CASOS is able
to detect five of the seven quasars. Now the probability of flagging five or more of
the seven sources by chance is

P7
iD5

	
7
i


 � 0:1i � 0:97�i D 1:765 � 10�4.
So this shows that there is some potential in CASOS. However, again, more

guided input from astronomers will be needed, as the efficiencies (1/121, respec-
tively 5/1207) are very low. Still, without using any additional information, CASOS
managed to reduce the problem of finding 7 high-redshift quasars in 12;074 sources
to finding 5 quasars in 1;207 sources. Comparing this to the result from [32], which

http://surveys.roe.ac.uk/wsa/
http://cas.sdss.org/dr7/en/tools/chart/list.asp
http://surveys.roe.ac.uk/wsa/
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Fig. 8.11 12;074 pre-
selected quasar candidates
(compare to Fig. 1 from [32]).
Red crosses indicate the top
120 anomaly candidates, with
the size of the red crosses
proportional to the combined
anomaly score.
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was obtained by using Bayesian model comparison, CASOS is impressively com-
petitive.

8.4.6 Conclusion

We have introduced a novel algorithm, CASOS, which performs anomaly detection
in lower-dimensional subspaces of the data. The advantages of this algorithm are
multiple:

� ability to directly use data with missing values
� addresses some of the problems of high-dimensional data spaces (such as the

breakdown of the notion of anomaly and distance)
� less susceptible to the masking effect from irrelevant features
� the choice of combination function adds flexibility to adapt the method to the

requirements of a particular dataset
� better interpretability

We should, however, also note that CASOS has the disadvantage that it will not
be able to detect outliers which are only apparent in multivariate spaces with sig-
nificant numbers of variables. But we believe such situations are rare, and normally
outliers will be apparent in lower-dimensional spaces.

CASOS is not intended to be a universal solution to anomaly detection problems,
but rather is a new method with complementary properties to other techniques, so
that it provides a useful addition to the armoury of anomaly detection methods.

We have applied CASOS to three real datasets, in particular a set of cross-
matched SDSS-UKIDSS data. While the results for the astronomy datasets look
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promising, CASOS needs to be supervised more closely by astronomers in order to
get meaningful results, which would justify the costs of follow-up observations.

We have implemented CASOS in R, a freely available software environment for
statistical programming (http://www.r-project.org/).

Full source code for CASOS and for generating the various datasets described in
this chapter is available from MH (marc.henrion03@imperial.ac.uk).

8.5 Conclusion

In this chapter we have described two new statistical tools for astronomical datasets:
a probabilistic star-galaxy separation method for the UKIDSS LAS survey and a
novel anomaly detection algorithm for cross-matched survey data. In addition to
describing the details of each technique, we have also presented our reasoning for
developing them and have reviewed similar work. We have evaluated both methods
on real datasets.

While the star-galaxy separation work is targeted for morphological classifica-
tion of astronomical sources, and in particular for the UKIDSS survey, the anomaly
detection algorithm has a wide applicability and can be used on any dataset with
numerical attributes.

Both tools are designed to be a first data analysis step: the star-galaxy separa-
tor allows astronomers to collect samples of sources according to desired levels of
completeness or purity and CASOS can be used to pre-select strange astronomical
sources for deeper follow-up observations. As such, both are designed to facilitate
the work of astronomers.
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Chapter 9
Independent Component Analysis for
Dimension Reduction Classification:
Hough Transform and CASH Algorithm

Asis Kumar Chattopadhyay , Tanuka Chattyopadhyay , Tuli De , and
Saptarshi Mondal

Abstract Classification of galaxies has been carried out by using two recently devel-
oped methods, viz., Independent Component Analysis (ICA) with K-means cluster-
ing and Clustering in Arbitrary Subspace based on Hough Transform (CASH) for
different data sets. The first two sets are consisting of dwarf galaxies and their glob-
ular clusters whose distributions are non Gaussian in nature. The third one is a larger
one containing a wider range of galaxies consisting of dwarfs to giants in 56 clus-
ters of galaxies. Morphological classification of galaxies are subjective in nature
and as a result can not properly explain the formation mechanism and other related
issues under the influence of different correlated variables through a proper scien-
tific approach. Hence objective classification by using the above mentioned methods
are preferred to overcome the loopholes.

9.1 Introduction

In Statistics, very often we face empirical and large datasets to analyze. One of the
most recent powerful statistical techniques for analyzing such datasets is Indepen-
dent Component Analysis (ICA). Such datasets are generally multivariate in nature.
The common problem is to find a suitable representation of the multivariate data. For
the sake of computational and conceptual simplicity such representation is sought
as a linear transformation of the original data. Principal Component Analysis, Fac-
tor Analysis, Projection Pursuit are some popular methods for linear transformation.
But ICA is different from other methods, because it looks for the components in the
representation that are both statistically independent and non Gaussian. In essence,
ICA separates statistically independent component data, which is the original source
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Independent Component Analysis extracts and reveals useful hidden factors from
the whole datasets. ICA defines a generative model for the observed multivariate
data, which is typically given as a large database of samples. ICA can be applied in
various fields like speech processing, brain imaging, stock predictions, signal sepa-
ration, telecommunications, econometrics, etc.

Clustering is a technique used to place data elements into related groups without
advance knowledge of the group definitions. Clustering algorithms are attractive for
the task of identification in coherent groups for existing data sets under considera-
tion. However, clustering algorithm needs the following requirements when applied
to large data sets:

1. Minimal requirements of domain knowledge to determine the input parameters.
2. Discovery of clusters with arbitrary shape and good efficiency on large

databases.
3. Automatic determination of the optimum number of homogeneous classes.

Popular clustering techniques such as the K-Means Clustering and Expectation
Maximization (EM) Clustering fail to give solution to the combination of these
requirements. Thus keeping in view the above considerations some new approaches
have been developed known as Density Based Clustering Techniques and Subspace
Clustering Techniques.

In the Density based approach the main reason why a cluster is recognized is
that within each cluster there is a typical density of points which is considerably
higher than outside the cluster. Furthermore, the density within the areas of noise
is lower than the density in any of the clusters. In other words, the clusters and
consequently the classes are easily and readily identifiable because they have an
increased density with respect to the points they possess. The single points scattered
around the database are outliers, which means they do not belong to any clusters as
a result of being in an area with relatively low concentration. Here discussions have
been focused on Subspace Clustering Techniques which is a data mining task.

Clustering seeks to find groups of similar objects based on the values of their
attributes. Traditional clustering algorithms, i.e., the Full Space algorithms use dis-
tance on the whole dataspace to measure similarity between objects. As the number
of dimensions in a dataset increases, distance measures become increasingly mean-
ingless. For very high dimensional datasets, the objects are almost equidistant from
each other. This is known as the curse of high dimensionality.

The concept of subspace clustering has been proposed to cope with this problem
by discovering clusters embedded in the subspaces of high dimensional datasets.
Subspace Clustering is the task of detecting all clusters in all subspaces. This means
that a point might be a member of multiple clusters, each existing in a different
subspace.

Subspaces can either be axis parallel or arbitrarily oriented affine subspaces.
The two approaches towards clustering differ in how they interpret the overall goal,
which is finding clusters in data sets with high dimensionality.

data, from an observed set of data mixtures. All information in the multivariate
datasets are not equally important. We need to extract the most useful information.
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is perpendicular to the subspace of the cluster (called the perpendicular space plane).
The objects may form a completely arbitrary shape with a high variance when pro-
jected onto the hyperplane of the subspace in which the cluster resides (called the
cluster subspace plane). This means that the objects of the subspace cluster are all
close to the cluster subspace plane. The knowledge that all data objects of a cluster
are close to the cluster subspace plane is valuable for many applications.

If the plane is axis-parallel, this means that the values of some of the attributes
are more or less constant for all cluster members. The whole group is character-
ized by this constant attribute value, an item of information which can definitely
be important for the interpretation of the cluster. This property may also be used to
perform a dedicated dimensionality reduction for the objects of the cluster and may
be useful for data compression (because only the higher-variance attributes must be
stored at high precision individually for each cluster member) and similarity search
(because only the high-variance attributes need to be individually considered for the
search) and an index needs only to be constructed for the high-variance attributes.

If the cluster subspace plane is arbitrarily oriented, the knowledge is even more
valuable. In this case, it is known that the attributes which define the cluster subspace
plane have a complex dependency among each other. This dependency defines a
rule, which again characterizes the cluster and which is potentially useful for cluster
interpretation.

Many subspace clustering algorithms use a grid based approach to find dense
regions. They partition the data space into non-overlapping rectangular cells by
discretizing each dimension into a number of bins. A cell is dense if the fraction
of total objects contained in the cell is greater than a threshold. Dense cells in all
subspaces are identified using a bottom-up strategy and connected dense cells are
merged together to form clusters. In the grid based approach, objects around the
boundaries of the bins have similar values, but they are put into different bins. As a
result, a cluster may be divided into several small clusters.

These methods are popular due to two main reasons. Firstly, conventional (full
space) clustering algorithms often fail to find useful clusters when applied to data
sets of higher dimensionality, because typically many of the attributes are noisy,
some attributes may exhibit high correlations with others and only few of the
attributes really contribute to the cluster structure. Secondly, the knowledge gained
from a subspace clustering algorithm is much richer than that of a conventional
clustering algorithm because it can be used for interpretation, data compression,
similarity search, etc.

Arbitrarily Oriented Clustering assumes that the cluster structure is significantly
dense in the local neighborhood of the cluster centers or other points that participate
in the cluster.

In the context of high-dimensional data, this “locality assumption” is rather opti-
mistic. Theoretical considerations show that concepts like “local neighbourhood”
are not meaningful in high-dimensional spaces because distances can no longer be
used to differentiate between points. This is a consequence of the well-known curse
of dimensionality.

In both cases, the data objects which are grouped into a common subspace cluster,
are very dense (i.e., the variance is small) when projected onto the hyperplane which
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In the present work the concept of a arbitrarily oriented subspace clustering tech-
nique developed by [1] has been applied.

9.2 Data Sets for ICA

To demonstrate Independent Component Analysis with subsequent K-means clus-
tering we have used two data sets of dwarf galaxies and their globular clusters (GCs)
in the Local Volume(LV).

9.2.1 Data set 1

This consists of 60 dwarf galaxies taken from a data set of 104 dwarf galaxies [2].
The reduced set has been constructed such that its members have most of their
parameters without missing values. The parameters considered from [2] are dis-
tance modulus (
0, in mag), morphological index (T), mean metallicity of the Red
Giant Branches (ŒFe=H�, in dex), effective color (.V � I/e, in mag), logarithm of
projected major axis (log.Diam/, in Kpc) from [3], logarithm of limiting diame-
ter (log.Dlim/, in Kpc), limiting V and I magnitudes (MV; MI, in mag) within the
diameter Dlim, limiting V and I surface brightness (SBVL, SBIL, in mag arcsec�2)
taken at the distance Dlim/2 from centre of the host galaxy, effective surface bright-
ness in V band (SBVe, in mag arcsec�2), logarithm of effective radius (log.Re/ in
Kpc), logarithm of model exponential scale length (logh, in Kpc), best exponential
fitting central surface brightness in V and I bands (SBVC, SBIC in mag arcsec�2)
respectively. Among these T and
0 are not directly used in the analysis. The param-
eters used from [3] are HI rotational velocity (Vm in Km s�1), HI mass to luminosity
ratio (MHI=L in solar units) and tidal index (�). The scaling parameters used from
[4] are total stellar mass (M�;V in 107Mˇ) and HI mass of the host galaxy (MHI

in 107Mˇ) respectively. Among all these parameters only 13 parameters from [2]
(excluding T and 
0) together with (�) are directly used for ICA with K-means
clustering as the sample is complete without any missing values with respect to
these 14 parameters. The remaining parameters are used to study the properties of
the groups found as a result of the final classification as these parameters have miss-
ing values more than 5% of the sample size.

9.2.2 Data set 2

This consists of 103 GCs in the Local Volume dwarf galaxies [5]. The parameter
set consists of logarithm of half light radius (log.rh/ in parsec), apparent axial ratio
(e), integrated absolute magnitude (V0, in mag) corrected for extinction, integrated
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absolute .V � I /0 color (corrected for Galactic extinction, in mag), projected dis-
tance from the host galaxy (dproj, in Kpc), central surface brightness in V and I bands
(
V 0, 
I0 in mag arsec�2), logarithm of King core radius and tidal radius (log.rc/,
log.rt / in parsec).The values of the parameters Age (in Gyr), Z=H (in dex) and
˛=H (in dex) are taken from [6].

9.2.3 Test for Normality

Before applying ICA we have tested Gaussianity of the data sets. Here the null
hypothesis was that the entire data set follows multivariate normal distribution. For
testing this we performed multivariate Shapiro-Wilk test. We found that the p-value
for data set 1 is 0.001456 whereas for data set 2 it is 6:462 � 10�7, which are too
small. Thus the null hypotheses have been rejected and we could conclude that the
data sets do not follow multivariate normal distribution.

9.3 Independent Component Analysis

Independent Component Analysis (ICA) was most clearly stated by [7]. Formally,
the classical ICA model is of the form:

X D AS; (9.1)

where X D ŒX1; : : : ; Xm�
0 is a random vector of observations, S D ŒS1; : : : ; Sm�

0

is a random vector of hidden sources whose components are mutually independent
and A is nonsingular mixing matrix. So A�1 is the unmixing matrix. Let us have
n independently and identically distributed (i.i.d.) samples of X , say fX.j / W 1 

j 
 ng. The main goal of ICA is to estimate the unmixing matrix A�1 and thus to
recover hidden source using Sk D A�1

k
X , where A�1

k
is the kth row of A�1.

In the model, it is assumed that the data variables are linear or non-linear mix-
tures of some latent variables and the mixing system is also unknown. The latent
variables are assumed non-Gaussian and mutually independent and they are called
the independent components of the observed data.

Suppose n random variablesX1; : : : ; Xn are expressed as linear combinations of
n random variables S1; : : : ; Sn. Equation (9.1) can be written as:

Xi D ai1S1 C ai2S2 C � � � C ainSn; i D 1; 2; : : : ; n (9.2)

The Si ’s are statistically mutually independent, where aij ’s are the entries of the
nonsingular matrix A. All we observe are the random variables Xi , and we have to
estimate both the mixing coefficients aij and the independent components Si , using
the Xi .
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There are many computer algorithms for performing ICA. A first step in those
algorithms is to whiten (sphere) the data. This means that any correlations in the data
are removed, i.e., the data are forced to be uncorrelated. Mathematically speaking,
we need a linear transformation V such that Z D VX , where E.ZZ0/ D I . This
can be easily accomplished by choosing V D C�1=2, where C D E.XX 0/.

After sphering, the separated data can be found by an orthogonal transformation
on the whitened data Z.

9.4 ICA by Maximization of Non-Gaussianity

In ICA estimation, non-Gaussianity is very important. Without non-Gaussianity the
estimation is not possible. Non-Gaussianity is motivated by the central limit theo-
rem. Under certain conditions, the statistical distribution of a sum of independent
random variables tends toward a Gaussian distribution. A sum of two independent
random variables usually has a distribution that is closer to Gaussian than any of the
two original random variables. Here,

X D AS; VX D VAS

) Z D .VA/S;
(9.3)

which implies that Zi is closer to Gaussian than Si . Si is estimated by Zi through
maximization of non-Gaussianity. From Eq. (9.3) we can write

S D WZ; (9.4)

where W D .VA/�1.
We can measure non-Gaussianity by Negentropy [8]. The entropy of a discrete

variable is defined as the sum of the products of probability of each observation
and the log of those probabilities. On the other hand, for a continuous function the
entropy is called differential entropy which is given by the integral of the function
times the log of the function. Negentropy is the difference between the differential
entropy of a source S from the differential entropy of a Gaussian source with the
same covariance of S . It is denoted by J.S/ and defined as follows:

J.S/ D H.SGauss/�H.S/; (9.5)

where
H.S/ D �

Z
ps.�/ logps.�/d�; (9.6)

ps.�/ is the density function of S . Negentropy is always non-negative, and it is zero
if and only if S has a Gaussian distribution. Negentropy has an interesting property
that it is invariant for invertible linear transformation. It is also a robust measure
of non-Gaussianity. Here we estimate S by maximizing the distance of its entropy
from Gaussian entropy as the noises are assumed to be Gaussian and if the signals
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are non-Gaussian only then can they be separated from the noise. If the signals are
Gaussian, then ICA will not work.

9.5 Approximation of Negentropy

One drawback of negentropy is that it is very difficult to compute. That is why it
needs to be approximated [8]. The approximation is given by:

J.S/ / .EŒG.S/� � EŒG.SGauss/�/
2; (9.7)

where SGauss is a Gaussian random variable, G is a non-quadratic function. In par-
ticular, G should be so chosen that it does not grow too fast. Two popular choices
of G are:

G1.S/ D 1

a
log cosh aS

G2.S/ D �e�S2=2;

(9.8)

where 1 
 a 
 2 is some suitable constant, which is often taken equal to 1.

9.6 The FastICA Algorithm

In this method the independent components are estimated one by one. This algo-
rithm converges very fast and is very reliable. This algorithm is also very easy to
use. We follow the following steps to perform the algorithm:

1. We center the data such that its mean becomes zero.
2. We whiten the data and denote it by Z.
3. We choose the number of Independent Components to be estimated and set
k D 1.

4. We take an initial value of unit norm for Wk randomly, i.e., we initialize Wk ,
where Wk is the kth row of W.

5. We set Wk D EfZg.W 0
k
Z/g � Efg0.W 0

k
Z/gWk , where g is derivative of G

and G is defined as in (9.8).
6. We orthogonalize as:

Wk D Wk �
k�1X
jD1

.W 0
kWj /Wj :

7. We set Wk D Wk=kWkk.
8. If Wk does not converge, then we go back to step 5.
9. We set k D kC 1. If k does not exceed the number of independent components

to be estimated, we go back to step 4.

Thus we find the estimated independent components.
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9.7 Properties of the Groups of Data Set 1

Two groups, G1 and G2 of dwarf galaxies in the local volume have been found
by using ICA along with K-means clustering on the basis independent components
irrespective of their morphological classification (viz., T). In order to find the the
optimum value of K (viz., 2) we have used the method developed by [9] which is
discussed under section 9.13. In G1, 71% are dwarf irregulars, 20% are dwarf spirals
and 3% are of transition type whereas in G2, 80% are dwarf irregulars, 15% are
dwarf spirals and 5% are of transition type. G1 contains brighter galaxies having
larger sizes and high degree of rotation whereas G2 consists of fainter galaxies of
smaller sizes having insignificant rotation. A luminosity-metallicity (Fig. 9.1) rela-
tion shows a significant correlation for the galaxies in G2 (r D 0:44; p D :024)
and for a part of G1. This indicates that formation of dwarf galaxies is primarily
governed by self enrichment though partial processes also take place during the
evolution of stars and interaction of interstellar gas pervading the dwarf galaxies
with intergalactic medium [10, 11]. Galactic winds,supernovae explosions, tidal or
ram pressure etc are responsible for significant loss of metals from dwarf galaxies
[12]. Multiple bursts of of star formation [13, 14] also counts for complex behaviour
of luminosity-metallicity relation in G1 and G2. Also, shift in almost two orders
of magnitudes from G1 to G2 at the same metallicity and same scale length (see
Fig. 9.2) suggests that galaxies of G2 evolved from some galaxies of G1 due to
depletion of gas outflows produced by supernovae explosion, ram pressure and tidal
striping. Fig. 9.3 shows the scatter plot of tidal index [15] versus logarithm of scale
length for the sample galaxies. It is seen that galaxies having tidal indices greater
than �0:5, scale length increases with tidal index. This shows that neighbours influ-
ence the thickening of the galactic disks (r.logh; �/ D 0:559, p D 0:001) irrespec-
tive of morphological types.

9.8 Properties of the Groups of Data Set 2

Four groups of Globular clusters (GCs), GC1, GC2, GC3, and GC4 are found as a
result of K-means clustering through independent components. The optimum vale of
K (viz., 4) has been found by the same method. Among the four clusters GCs of GC2
and GC4 are younger, metal rich and dynamically less evolved as is evident from
their mean log.rt=rc/ values as well as highest eccentricity (viz., e D 0:16 from
GC4). On the other hand GCs of GC1 and GC3 are older, metal poor, dynamically
evolved (hence rounder) and GCs of GC1 are almost round. The metal deficiency
shows a tidal depletion due to external origin. So, G1 galaxies might be the forma-
tion sites for GC2, GC4 globular clusters whereas G2 galaxies can be considered as
the sites for GC1 and GC3 globular clusters.
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Fig. 9.1 Luminosity (MV 0) metallicity (ŒFe=H�) diagram for the two groups G1 and G2 of dwarf
galaxies found as a result of CA in the LV. The black open circles are for group G1 and the green
solid circles are for G2.
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Fig. 9.2 The logarithm of scale length (logh) versus Luminosity (MV 0) of two groups G1 and
G2. The black open circles are for group G1 and the green solid circles are for G2.
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Fig. 9.3 The logarithm of scale length (logh) versus tidal index (ˇ) for the groups G1 and G2.
The black open circles are for group G1 and the green solid circles are for G2.

Table 9.1 Mean values of the significant parameters of the two
groups G1 and G2 with standard errors.

Parameters G1 G2

Number 34 26
� 0:129˙ 0:285 �0:173˙ 0:241
ŒFe=H� �1:5806˙ 0:0430 �2:0127˙ 0:0658
MV 0 �13:555˙ 0:275 �12:491˙ 0:244
SBVe0 23:321˙ 0:212 23:277˙ 0:145
.V � I /e0 0:8813˙ 0:0343 0:7675˙ 0:0405
logRe �0:2366˙ 0:0322 �0:4407˙ 0:0261
Vm 28:27˙ 4:46 17:0˙ 2:85
MH1 4:07˙ 1:89 6:42˙ 5:07
M

�V 5:08˙ 2:41 0:640˙ 0:340

9.9 CASH: Clustering in Arbitrary Subspace based on Hough
Transform

The locality assumption that the clustering structure is dense in the entire feature
space and that the Euclidean neighborhood of points in the cluster, or of cluster
centers, does not contain noise is a very strict limitation for high-dimensional real-
world datasets. In high-dimensional spaces, the distance to the nearest neighbor and
the distance to the farthest neighbour converge. As a consequence, distances can no
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Table 9.2 Mean values of the significant parameters for the
four groups of globular clusters in the Local Volume.

Parameters GC1 GC2 GC3 GC4

Number 34 36 9 21
V0 �7.253 �7.298 �6.619 �6.353
�V 0 19.488 20.579 20.406 19.629
log.rh/ 0.8524 1.0616 0.8886 0.7147
log.rt / 1.6004 1.6802 2.253 1.3405
log.rc/ 0.4562 0.7319 0.4891 0.3530
log.rt=rc/ 1.1443 0.9484 1.7638 0.9875
e 0.0971 0.1278 1.1556 0.1619
.V � I /0 1.0959 0.8158 0.872 0.5824
dproj 0.897 1.280 1.118 0.650
Age(Gyr) 8.25 2.25 6 4
Z=H �1.5 �1.425 �1.8 �1.4
˛=H 0.2 0.25 0.1 0.1

longer be used to differentiate between points in high dimensional spaces and con-
cepts like the neighborhood of points become meaningless. Usually, although many
points share a common hyperplane, they are not close to each other in the original
feature space. In those cases, existing approaches will fail to detect meaningful pat-
terns because they cannot learn the correct subspaces of the clusters. In addition,
as long as the correct subspaces of the clusters cannot be determined, obviously
outliers and noise cannot be removed in a preprocessing step.

In this method, development of an original principle to characterize the subspace
holding a cluster is based on the idea of the Hough Transform. This transform charts
out the points from a 2-dimensional data space (also known as picture space) of
Euclidean co-ordinates (eg., pixel of an image) into a parameter space. It is the
parameter space that stands for all possible 1-dimensional lines in the original 2-
dimensional data space. In principle, each point of the data space is mapped into an
infinite number of points in the parameter space which is, however, not an infinite set
but actually a trigonometric function relating to the parameter space. Each function
in the parameter space represents all lines in the picture space crossing the corre-
sponding point in data space. The intersection of the dual curves in the parameter
space points to a line through the corresponding points alike in the picture space.

The objective of a clustering algorithm is to find intersections of many curves
in the parameter space representing lines through many database objects. The key
feature of the Hough transform is that the distance of the points in the original data
space is not considered any more. Objects can be identified as associated to a com-
mon line even if they are far apart in the original feature space. As a consequence,
the Hough transform is a promising candidate for developing a principle for sub-
space analysis that does not require the locality assumption and, thus, enables a
global subspace clustering approach.
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9.10 Input Parameters

CASH requires the user to specify two input parameters. The first parameter m
specifies the minimum number of sinusoidal curves (minpts) that need to intersect
a hypercuboid in the parameter space such that this hypercuboid is regarded as a
dense area. Obviously, this parameter represents the minimum number of points in
a cluster and thus is very intuitive. The second parameter s specifies the maximal
number of splits along a search path (split level). CASH is robust with respect to
the choice of s. Since CASH does not require parameters that are hard to guess like
the number of clusters, the average dimensionality of the subspace clusters, or the
size of the Euclidean neighborhood based on which the similarity of the subspace
clusters is learned, it is much more usable.

9.11 Data Set 3

In order to evaluate the efficiency of the algorithm CASH, the method has been
applied to a data compiled and standardized by [16] for a sample of 56 low-redshift
galaxy clusters containing 699 early-type galaxies. After eliminating the missing
observations the sample size has been reduced to 528 and the CASH method has
been performed using four parameters (variables), viz., the logarithm of the effective
Radius(logRe in Kpc),the surface brightness averaged over half light radius(
e in
mag arcsec�2), central velocity dispersion(� in km s�1) and magnesium index (Mg2

index).

9.11.1 Experimental Evaluation

9.11.1.1 Initial choice of constraints:

Since CASH only needs two constraints, viz.,m the minpts and s the number of split
levels, the constants have been selected by trial and error method. The jitter has been
fixed to a preassigned small value 0.15. The value of m has been taken from 100 to
40 and values of s have been varied from 1 to 3. It is expected that the value for m
should not be larger than 100 for a sample of size 528 because it is the minimum
number of points to be included per cluster. Also the number of split levels should
be moderate for a data set of moderate size.

It is seen that the stability has been achieved by taking m D 60 and s D 2. After
that even a decrease in the value of m has not contributed in the result. With the
above mentioned combination of s and m, the number of cluster has been found to
be seven.
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9.12 Properties of the Groups of Data Set 3

The efficiency of CASH has been checked by several properties.
The average properties of the seven groups are shown in Table 9.3 where Ngal

represents the size of each clusters and Mdyn represents the dynamical mass which
can be obtained from the relation

Mdyn � A�2Re=G; where A and G are constants.

It is well known that Fundamental Plane (FP) is a relationship between the effec-
tive radius, average surface brightness and central velocity dispersion of normal
elliptical galaxies and Virial Plane (VP) is the parametric plane constituted by effec-
tive radius, surface brightness averaged over effective radius and velocity dispersion
when a galaxy is in dynamical equilibrium.

The slopes for logRe with respect to logMdyn are shown in Table 9.4 for seven
clusters.

From Table 9.4 it is clear that all the slopes are greater than 0.38. So the galaxies
are not formed as a result of pure disk mergers [17]. Since the slope of C4 is more
or less close to 0.38, it might be formed due to pure disk merger. For the remaining
ones, the slopes are steeper which might be due to merger of non-disky objects or
the result of repeated merging of small systems [18].

The Mg2 index more or less increases chronologically. So accordingly, higher
Mg2 indicates that the galaxies are dynamically more evolved and lower Mg2 value
signifies that the galaxies are dynamically less evolved (see Table 9.3, column 6).

Table 9.3 Average properties of the seven groups of galaxies obtained by CASH Method:

clusters Ngal log� �e logRe Mg2 logMdyn

C1 21 2:2345˙ 0:021 19:382˙ 0:119 2:7791˙ 0:017 0:26286˙ 0:0052 10:179˙ 0:012

C2 60 2:2575˙ 0:236 20:414˙ 0:231 2:8638˙ 0:016 0:28143˙ 0:0035 10:310˙ 0:021

C3 75 2:2526˙ 0:025 19:461˙ 0:172 2:8694˙ 0:027 0:28239˙ 0:0043 10:306˙ 0:013

C4 167 2:2537˙ 0:071 19:437˙ 0:261 2:8257˙ 0:035 0:28837˙ 0:0036 10:264˙ 0:014

C5 82 2:2895˙ 0:013 20:487˙ 0:266 2:8032˙ 0:013 0:26951˙ 0:0023 10:313˙ 0:035

C6 63 2:2752˙ 0:014 19:667˙ 0:143 2:9244˙ 0:029 0:29371˙ 0:0014 10:406˙ 0:023

C7 60 2:3450˙ 0:023 19:346˙ 0:235 2:9127˙ 0:013 0:30400˙ 0:0028 10:534˙ 0:034

Table 9.4 Slopes of seven different clusters.

clusters Ngal slope

C1 21 0.447
C2 82 0.443
C3 60 0.587
C4 75 0.417
C5 167 0.471
C6 63 0.663
C7 60 0.662
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Table 9.5 The Values of the Mg2 index,
Tilt and Slope of seven clusters.

clusters Ngal Mg2 Tilt Slope

C1 21 0.26286 0.3487 0.447
C2 82 0.28143 0.744 0.443
C3 60 0.28239 0.645 0.587
C4 75 0.28837 0.649 0.417
C5 167 0.26951 0.728 0.471
C6 63 0.29371 0.749 0.663
C7 60 0.30400 0.732 0.662

The Fundamental Plane (FP) is expressed by the relationship,

log10Re D a log � C b
e C c

Where a, b and c are constants to be determined.
The virial Plane (VP) is expressed by the relationship,

log10Re D 2 log � C 0:4
e

The ratio of the slopes of the FP with VP is defined as the tilt. Hence a small value
of tilt indicates that the FP is farther from the corresponding VP. The tilt values for
the seven groups are shown in Table 9.5.

It is also clear from Table 9.5 that the tilts are almost increasing in parity with the
Mg2 index and also the tilts are approximately increasing from C1 to C7 indicat-
ing that the galaxies in the later groups are more dynamically evolved (hence closer
to their corresponding virial planes). This is also consistent with the fact that the
magnesium indices are also increasing for the groups indicating that in a dynami-
cally evolved galaxy the metal content is higher. Since none of the tilt values are
close to 1, it can be concluded that these galaxies have been formed by dissipational
Mergers [17]. So the groups can be considered as evolutionary tree with respect to
FP, VP andMg2 indices as

C1 �! C2 �! C3 �! C4 �! C7 �! C6 (excluding C5)

which is irrespective of the scatter of the FP giving rise to several controversial
arguments so far.

9.13 Comparison with the K-means Clustering

In order to study the efficiency of CASH, cluster analysis have also been carried out
using K-Means [19] method. It is seen that the optimum number of clusters is k D 7
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which is similar with CASH results. The optimality of K-Means method has been
checked by the criteria developed by [9] described as follows,

Let the data set be modeled as a p-dimensional random variable, X , consisting
of a mixture distribution of G components with common covariance, � . If we let
c1; : : : ; cK be a set ofK cluster centers, with cX the closest center to a given sample
ofX , then the minimum average distortion per dimension when fitting theK centers
to the data is given by

dK D 1

p
min

c1;c2;:::;ck

EŒ.X � CX /T .X � CX /�

Then the jump is calculated as follows

jK D d
� p

2

K � d
� p

2

K�1

Then a graph of jK versus K (the number of clusters) is plotted. Then the value of
K for the maximum jK is obtained is chosen to be the optimum number of clusters.

In the present data set, p D 4, so that jK is taken as:

jK D d�2
K � d�2

K�1

After calculating the jumps it is seen that the optimum number of clusters is
K D 7,since the highest jump is achieved atK D 7. Figs. 9.4 and 9.5 correspond to
the distortion curve (dK versus K) and the Jump Curve (jK versusK) respectively.
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Fig. 9.4 The Distortion Curve.
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Fig. 9.5 The Jump Curve.

Table 9.6 Average properties of the seven groups of galaxies obtained by K-Means Method

clusters Ngal log� �e logRe Mg2 logMdyn

C1 110 2:1571˙ 0:006 19:215˙ 0:033 2:6391˙ 0:012 0:26655˙ 0:002 9:8846˙ 0:021

C2 133 2:3663˙ 0:005 19:315˙ 0:027 2:8450˙ 0:009 0:30395˙ 0:001 10:509˙ 0:015

C3 83 2:4090˙ 0:007 19:990˙ 0:037 3:2030˙ 0:012 0:31200˙ 0:002 10:925˙ 0:024

C4 36 2:0105˙ 0:017 20:024˙ 0:101 2:7641˙ 0:028 0:21617˙ 0:004 9:7162˙ 0:047

C5 21 2:3493˙ 0:018 21:305˙ 0:116 3:5794˙ 0:042 0:31076˙ 0:005 11:209˙ 0:061

C6 84 2:2362˙ 0:003 19:924˙ 0:038 2:9729˙ 0:013 0:27133˙ 0:002 10:376˙ 0:027

C7 60 2:2625˙ 0:009 18:314˙ 0:066 2:4214˙ 0:021 0:28669˙ 0:002 9:8776˙ 0:032

Like CASH results, for K-means clustering the average properties are shown in
Table 9.6 while magnesium indices (Mg2), tilts and slopes are listed in Table 9.7
for the seven groups. It is clear from Tables 9.6 and 9.7, unlike CASH results, the
Mg2 indices,Mdyn, tilts and slopes do not increase along the sequence of the groups
continuously as in the previous case. Here the trend is to form two sequences of
groups of galaxies of which one is

C1 �! C2 �! C3

and the other is
C4 �! C7 �! C6 (excluding C5):

The above two sequences correspond to dynamically less and more evolved
galaxies respectively. Numerical values of slopes indicates that C6 galaxies can
be formed as a result of pure disk merger whereas galaxies of remaining groups
might be formed due to repeated merger of small systems. So from the above two
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Table 9.7 The values of theMg2 index, Tilt
and Slope of seven clusters

clusters Ngal Mg2 Tilt Slope

C1 21 0.26655 0.415 0.444
C2 82 0.30395 0.501 0.453
C3 60 0.31200 0.606 0.444
C4 75 0.21617 0.461 0.435
C5 167 0.31076 0.736 0.559
C6 63 0.27133 0.553 0.418
C7 60 0.28669 0.554 0.528

analyses it is clear that CASH results are physically more interpretable compared to
K-means. From the point of view of an unique evolutionary path with respect to FP,
CASH gives a stronger footing on the explanation of different degrees of scatter of
the respective FP for the seven clusters which is not very clear for the evolutionary
path found through K-means clustering. This also indicates that CASH method is
more appropriate for a larger data set to extract the hidden features of the objects
therein.
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Chapter 10

Improved Cosmological Constraints from a
Bayesian Hierarchical Model of Supernova
Type Ia Data

Marisa Cristina March, Roberto Trotta, Pietro Berkes, Glenn Starkman, and
Pascal Vaudrevange

Abstract We present a Bayesian hierarchical model for inferring the cosmological
parameters from the supernovae type Ia fitted with the SALT-II lightcurve fitter.
We demonstrate with simulated data sets that our method delivers tighter statistical
constraints on the cosmological parameters over 90% of the time, that it reduces
statistical bias typically by a factor �2–3 and that it has better coverage proper-
ties than the usual �2 approach. As a further benefit, a full posterior probability
distribution for the dispersion of the intrinsic magnitude of SNe is obtained. We
apply this method to recent SNIa data, and by combining them with CMB and BAO
data we obtain ˝m D 0:28 ˙ 0:02, ˝� D 0:73 ˙ 0:01 (assuming w D �1) and
˝m D 0:28˙ 0:01, w D �0:90˙ 0:05 (assuming flatness; statistical uncertainties
only). We constrain the intrinsic dispersion of the B-band magnitude of the SNIa
population, obtaining � int

� D 0:13˙ 0:01 [mag].

10.1 Supernovae Type Ia and the Accelerating Universe

Observations of the supernovae type Ia played the leading role in the discovery of
the the apparent late time acceleration of our Universe, [1, 2], the importance of
supernovae Ia as standardizable candles with which to probe the expansion history
of the Universe, has not diminished since. There are several possible models to
explain the apparent late time acceleration including dark energy, modified gravity,
the backreaction and void models. Identifying which of these modes is the best given
the observed data is one of the key questions in modern cosmology. One statistical
approach to evaluating the relative merits of the various models would be to use
Bayesian model selection, but whilst reviewing the suitability of supernovae type Ia
(SNe Ia) data for use in Bayesian model selection, two problems became apparent:
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1. The SNe Ia data are affected by an unknown intrinsic dispersion in the SNe Ia
absolute magnitudes, increasing the number of SNe Ia observed will not reduce
this error.

2. The common method for doing cosmological parameter inference from the
SALT-II light curve fitted SNe Ia data uses a procedure which precludes the
subsequent use of this data in Bayesian model selection.

In this chapter we describe a different method for Bayesian analysis of SNe Ia data
fitted with the SALT-II light curve fitter. This chapter is a review of work first
presented in [3] and follows that publication closely. The Bayesian Hierarchical
method replaces the second step (parameter inference step) of the SALT-II method.
The aims of this new methodology are twofold:

1. To provide a rigorous statistical framework for assessing and understanding the
unknown intrinsic dispersion.

2. To provide a fully Bayesian method for cosmological parameter inference from
the SNe Ia data in order that the SNe Ia data can be used in Bayesian model
selection, and exploited with the full suite of Bayesian methods.

This chapter describes how the new Bayesian method for cosmological parameter
inference has been developed and tested, and also describes the beginnings and plans
for applications of this method to investigations of evolution of SNe Ia with redshift.
Use of this new method in problems of Bayesian model selection is not covered in
this work, but will be implemented in future papers.

10.2 Lightcurve Fitting and a Description of the Problem

Several methods are available to fit SNe lightcurves, including the MLCS method,
the�m15 method, CMAGIC, [4, 5] SALT, SALT-II and others. Recently, a sophis-
ticated Bayesian hierarchical method to fit optical and infrared lightcurve data has
been proposed by [6, 7]. MLCS fits the cosmological parameters at the same time
as the parameters controlling the lightcurve fits. The SALT and SALT-II methods,
are a two step process, The first step is to fit to the SNe lightcurves three parameters
controlling the SN magnitude, the stretch and colour corrections. From those fits, the
cosmological parameters are then fitted in a second, separate step. In this chapter we
will consider the SALT-II method (although our discussion is equally applicable to
SALT), and focus on the second step in the procedure, namely the extraction of cos-
mological parameters from the fitted lightcurves. We briefly summarize below the
lightcurve fitting step, on which our method builds.
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The rest-frame flux at wavelength 
 and time t is fitted with the expression

dFrest

d

.t; 
/ D x0ŒM0.t; 
/C x1M1.t; 
/� exp.c � CL.
//; (10.1)

where M0, M1, CL are functions determined from a training process, while the
fitted parameters are x0 (which controls the overall flux normalization), x1 (the
stretch parameter) and c (the colour correction parameter). The B-band apparent
magnitude m�

B is related to x0 by the expression

m�
B D �2:5 log

�
x0

Z
d
M0.t D 0; 
/T B.
/

�
; (10.2)

where T B.
/ is the transmission curve for the observer’s B-band, and t D 0 is
by convention the time of peak luminosity. After fitting the SNIa lightcurve data
with SALT-II algorithm, e.g. [8] report the best-fit values form�

B ; x1, c, the best-fit
redshift ´, and the covariance matrix.

The objective of the parameter inference step of the SALT-II light curve fitting
process is to constrain the cosmological parameters˝m,˝�,˝� , w using the fitted
parameters Om�

Bi , Ox1i , Oci resulting from the first step of the process. In this chapter,
quantities which are measured are denoted by a circumflex, and we label the set of
measured values as

Di D fÓ i ; Om�
Bi ; Ox1i ; Oci ; OCig: (10.3)

where index i labels each of the N SNe Ia in the dataset and OCi is the covariance
matrix for the measured values

OCi D

0
B@

�2
m�

B
i
�m�

B
i;x1i

�m�

B
i;ci

�m�

B
i;x1i

�2x1i
�x1i;ci

�m�

B
i;ci �x1i;ci �2ci

1
CA : (10.4)

The distance modulus 
i for each SN (i.e. the difference between its apparent B-
band magnitude and its absolute magnitude) is modelled by the SALT-II relation
as:


i D m�
Bi �Mi C ˛ � x1i � ˇ � ci (10.5)

where Mi is the (unknown) B-band absolute magnitude of the SN, while ˛, ˇ are
global nuisance parameters controlling the stretch and colour correction.

Since dark energy can mimic curvature and vice versa, we conduct this work
either in a �CDM model of the Universe with w fixed w � �1 but allowing
non zero curvature, or alternatively in a flat wCDM model of the Universe with
˝� � 0 but allowing w ¤ 1 but constant with redshift. We denote the complete set
of cosmological parameters as

C D f˝m; ˝� or w; hg (10.6)

5



h is defined as H0 D 100hkm/s/Mpc, where H0 is the value of the Hubble rate
today.H0 is degenerate with the absolute magnitude of the supernovaeM0 and can-
not be determined from the SNe Ia data alone,H0 is effectively a nuisance parameter
in this work.

In a Friedman–Robertson–Walker cosmology defined by the parameters C, the
theoretical distance modulus to a SN at redshift ´i is given by


i D 
.´i ;C/ D 5 log
�
DL.´i ;C/

Mpc

�
C 25; (10.7)

where DL denotes the luminosity distance to the SN. We have defined the dimen-
sionless luminosity distance (with DL D c=H0dL, where c is the speed of light)

dL.´;˝m; ˝�; w/ D .1C ´/pj˝� j
sinn

�p
j˝� j

Z ´

0

d´0 �.1C ´0/3˝m C˝de.´
0/C

.1C ´0/2˝�
��1=2o

(10.8)

with the dark energy density parameter

˝de.´/ D ˝� exp
�
3

Z ´

0

1C w.x/

1C x
dx
�
: (10.9)

In the above equation, we have been completely general about the functional form
of the dark energy equation of state, w.´/. In the rest of this work, however, we will
make the further assumption that w is constant with redshift, i.e. w.´/ D w. We
have defined the function sinn.x/ D x; sin.x/; sinh.x/ for a flat Universe (˝� D 0),
a closed Universe (˝� < 0) or an open Universe, respectively.

The problem now is how to infer the cosmological parameters C given the mea-
sured values D. We shall describe the standard �2 method for solving this problem
in section 10.3 before going on to describe our new Bayesian method in 10.4.

10.3 The Standard �2 Method

The most common method found in the literature for estimating the cosmological
parameters from SNe Ia data fitted using SALT-II involves some variation of the �2

method outlined in this section (e.g. [8–10]). The exact �2 method varies between
consortia, but the essential elements are common to all, and are outlined below.

The �2 statistic is defined as

�2� D
NX
iD1

.
i � 
obs
i /2

�2�i
; (10.10)
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where 
i is the theoretical distance modulus and is a function of redshift and the
cosmological parameters C. The ‘observed’ distance modulus 
obs

i is given by the
following equation with the estimated values from step 1 of the light curve fitting
process for Om�

Bi , Ox1i ; Oci

obs
i D Om�

Bi �M0 C ˛ � Ox1i � ˇ � Oci (10.11)

The total error on the distance modulus �2�i is the sum of several errors added in
quadrature

�2�i D .�fit
�i /

2 C .�´�i /
2 C .� int

� /
2; (10.12)

The three components of the error are:

1. Fitting error �fit
�i which is given by

	
�fit
�i


2 D �T OCi� (10.13)

where � D .1; ˛;�ˇ/ and OCi is the covariance matrix given in Eq. (10.4). Here
we see that the global fit parameters ˛, ˇ enter into the denominator as well as
the numerator of the �2� expression.

2. Redshift error �´�i , error in the redshift measurement (given by host galaxy
redshift) due to uncertainties in the peculiar velocity of the host galaxy and
uncertainties in the spectroscopic measurements.

3. The intrinsic dispersion of the SNe Ia absolute magnitudes, � int
� an unknown

quantity which must be estimated from the data and parameter estimation pro-
cess. This number describes the variation in the SNe Ia absolute magnitudes
which remain after correction for stretch and colour, the variation may be due
to physical differences in the SNe Ia population or differences in the survey and
data reduction technique.

Additional errors due to lensing, Milky Way dust extinction, etc. can also be added
in at this stage, but we do not consider those errors in this work.

The �2� statistic of Eq. (10.10) is minimized by sampling over parameter space
and simultaneously fitting for both the cosmological parameters ˝m, ˝�, ˝� , w
and the SNeIa global fit parameters ˛, ˇ, M0. Variations on this include using an
iterative process to update the ˛, ˇ values in the denominator, e.g. Astier and Guy
[9] who point out that Tripp [11] realized that minimizing over ˛, ˇ directly could
result in artificially inflated values of ˛, ˇ so as to reduce the �2� value. The problem
with the unknown intrinsic dispersion � int

� is dealt with by using an iterative process
in which �2� is minimized, then � int

� is adjusted between minimizations in such a
way as to give �2� per degree of freedom to be unity, i.e. �2�=d:o:f � 1.

Although the method described above has been fully tested by the consortia that
use this method and has been found to give satisfactory results for cosmological
parameter inference, several problems remain:

1. The use of the �2� expression is not well motivated statistically, but is based on
a heuristic derivation.
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2. The global fit parameters ˛; ˇ act as both range and location parameters, appear-
ing in both the numerator and denominator, hence the errors on these parameters
are not Gaussian. The informal test which states that �2=d:o:f � 1 for a good
fit model only holds in the Gaussian case, and its use cannot be justified here.

3. The total error on the distance modulus �2�i is adjusted in a way which assumes
that the model under consideration (generally either �CDM or flat wCDM) is
a good fit for the data. This means that this method of parameter inference, or
error bars produced using this method cannot be used to investigate problems
of model selection, since the model used to derive � int

� will by construction be
the favoured model.

4. This method obtains a single value for � int
� , giving no indication of the error

on that value. A better approach would be to obtain a probability distribution
function for � int

� so that an indication can be given about the degree of belief
about the value obtained for � int

� .
5. Because the different parameters are not treated in the same way (e.g. some

are updated iteratively, sometimes marginalization is used, other times mini-
mization is used), this method cannot be used with standard MCMC or nested
sampling techniques.

The new method for Bayesian parameter inference from the SNe Ia data which
we will present in this chapter seeks to address some of these problems with the �2�
method and provide a statistically well motivated framework for parameter infer-
ence which can also be used in problems of model selection. This method replaces
the second step in the SALT-II light curve fitting process. We first describe the
Bayesian Hierarchical Model for the system, and then present the details of the cal-
culation.

10.4 Bayesian Hierarchical Model (BHM): Description

The fitted values of stretch and colour resulting from the first stage of the SALT-
II light curve fitting procedure suffer from the particular problem that the errors
on these values are large compared with the range of these values. If not correctly
treated, this particular problem can result in the reconstruction of biassed param-
eters. A simple linear model illustrating this particular problem and its solution is
described by [12].

The method which we present here takes the methodology of [12] and applies it to
the SNe Ia case. We use a similar initial set up to the �2 approach described by [12],
with one important difference. Whereas in the �2 approach M0 appears as a global
fit parameter explicitly in Eq. (10.11), where it is the mean absolute magnitude
of the SNe Ia population, we use Mi to represent the absolute magnitude of each
individual SNe Ia. Mi is different for each SNe Ia because even after correction
for colour and stretch some variation remains in the SNe Ia population. (M0 also
appears explicitly in our method as the mean absolute magnitude of the SNe Ia
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population in Eq. (10.15)). Our version of Eq. (10.5) is:


i D m�
Bi �Mi C ˛ � x1i � ˇ � ci : (10.14)

The graphical representation of the Bayesian hierarchical network in Fig. 10.1
shows the dependencies of the parameters within the problem. One can see that
each SNe Ia has a true (unobserved) redshift ´i , and a true absolute magnitude Mi .
The Mi are drawn from a Gaussian distribution with mean M0 and standard devia-
tion � int

�

Mi � N .M0; .�
int
� /

2/: (10.15)

This � int
� is the intrinsic dispersion of the absolute magnitudes which remains in

the SNe Ia absolute magnitudes even after correction for stretch and colour, � int
�

characterizes the scatter in absolute magnitudes remaining in the stretch corrected
light curves.

The cosmological parameters C D f˝m; ˝� or w; hg are unknown as are the
SNe Ia global fit parameters ˛, ˇ, these are the parameters we would like to infer. If
C and ´i were known, then we could deterministically specify 
i using Eq. (10.7).
Each SNe Ia also has its own stretch parameter x1i and colour parameter ci , drawn
from their parent distributions. In this work, we model the distributions of the true
stretch and colour parameters as Gaussians parametrised each by a mean (c?; x?)
and a variance (R2c ; R

2
x) as

ci � N .c?; R2c /; x1i � N .x?; R2x/: (10.16)

x�, Rx C α, β M0, σ
int
μ c�, Rc

x1i zi μi Mi ci

m∗
Bi

x̂1i ẑi m̂∗
Bi ĉi

Fig. 10.1 Graphical representation of the Bayesian hierarchical network showing the determin-
istic (dashed) and probabilistic (solid) connections between variables in our Bayesian hierarchi-
cal model (BHM). Variables of interest are in red, latent (unobserved) variables are in blue and
observed data (denoted by hats) are in green.
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Fig. 10.2 Histogram of observed stretch parameters Ox1i and observed colour parameters Oci from
the 288 SNIa from [8], compared with a Gaussian fit (red curve).

The choice of a Gaussian distribution for the latent variables c and x1 is justified
by the fact that the observed distribution of Oc and Ox1, shown in Fig. 10.2 for the
actual SNIa sample described in section 10.6 below, is fairly well described by a
Gaussian. As shown in Fig. 10.2, there might be a hint for a heavier tail for positive
values of Oc, but this does not fundamentally invalidate our Gaussian approximation.
It would be easy to expand our method to consider other distributions, for example
mixture models of Gaussians to describe a more complex population or a distribu-
tion with heavier tails, if non-Gaussianities in the observed distribution should make
such modelling necessary. In our work, we consider the simple uni-modal Gaussians
given by Eq. (10.16).

If the true values discussed so far were known, then we could deterministically
specify m�

Bi . But we do not have the latent or true values (blue circles), we only
have the corresponding observed or fitted values Ó i , Oci , Ox1i , Om�

Bi . The true red-
shift ´i of each SNe Ia is subject to a small amount of Gaussian noise giving us a
slightly different observed redshift ´i . Likewise the true stretch, colour and maxi-
mum magnitudes are also subject to uncertainties in the fitting process, giving us the
measured values Oci , Ox1i , Om�

Bi (green circles). The problem of parameter inference
we now have is how to obtain the parameters of interest C, ˛, ˇ given the observed
or measured data Ó i , Oci , Ox1i , Om�

Bi .

10.5 Bayesian Hierarchical Model: Calculation

Having described the Bayesian Hierarchical Model (BHM) up in terms of the graph-
ical representation of the Bayesian hierarchical network, we will now present the
details of the calculation. The purpose of this calculation is to determine the joint
posterior probability of the parameters of interest � D fC; ˛; ˇ; � int

� g given that we
have the measured values D, that is, we wish to determine p.�jD/.
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10.5.1 A Note on Notation

Throughout this work we use the notation:

x � N .m; �2/ (10.17)

to denote a random variable x being drawn from an underlying Gaussian distribution
with meanm and variance �2. In vector notation,m is replaced by a vectorm, while
�2 is replaced by the covariance matrix ˙

x � N .m;˙/; (10.18)

where x has the probability density function

p.x/ � j2�˙ j� 1
2 exp

�
�1
2
.x �m/T˙�1.x �m/

�
: (10.19)

We use the compressed notation to write the probability density function as

Nx.m;˙/ � j2�˙ j� 1
2 exp

�
�1
2
.x �m/T˙�1.x �m/

�
: (10.20)

10.5.2 Calculation Expressed in Matrix Notation

We re-write Eq. (10.15) and (10.16) in matrix notation as:

M � N .M 0; ˙	/; (10.21)

c � N .c? � 1n; diag
	
R2c � 1n



/ (10.22)

x1 � N .x? � 1n; diag
	
R2x � 1n



/ (10.23)

where

M D .M1; : : : ;Mn/ 2 R
n; (10.24)

M 0 D M0 � 1n 2 R
n; (10.25)

˙	 D diag
	
.� int
� /

2 � 1n

 2 R

n�n: (10.26)

Having introduced 3n latent (unobserved) variables (c; x1;M ), where n is the
number of SNe in the sample, the fundamental strategy of our method is to link them
to underlying population parameters via Eqs. (10.15) and (10.16), then to use the
observed noisy estimates to infer constraints on the population parameters of interest
(alongside the cosmological parameters), while marginalizing out the unobserved
latent variables.
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In doing so we are following the methodology of [12] and essentially placing a
prior on the range of the latent (true) quantities c; x1;M .

p.cjc?; Rc/ D Nc.c? � 1n; diag
	
R2c � 1n



/ (10.27)

p.x1jx?; Rx/ D Nx1
.x? � 1n; diag

	
R2x � 1n



/: (10.28)

It is necessary to apply this prior because two conditions are fulfilled (1) there
are errors on both the measured values Oc; Ox1 and (2) the errors on Oc; Ox1 are large
compared with the range of Oc; Ox1. Failure to apply this prior on the range of the
latent quantities when these two conditions are met results in a biassed recovery of
the SNe Ia population parameters ˛; ˇ. For further discussion of this crucial step,
and an example with a linear toy model, see [3].

We chose to model the probability of the true absolute magnitudes M also as a
Gaussian

p.M jM0; �
int
� / D NM

	
M0 � 1n; diag

	
.� int
� /

2 � 1n



: (10.29)

Notice that there are two levels of specification or choice here: (1) The choice of
the underlying distributions, described by Eqs. (10.21), (10.23), (10.22) and (2) The
choice of the priors on those latent parameters. Throughout this work we assume
that (1) are Gaussian, and when trialling the method with simulated data, we choose
Gaussians for (1). We also chose to use Gaussian priors for (2). Of course the natural
choice is to match the shape of prior with the shape of the underlying distribution,
this is possible when using simulated data, but with the real data the precise shape
of the unknown distribution is unknown but assumed Gaussian. An interesting ques-
tion is what happens when a different shaped prior is chosen from the underlying
distribution, e.g. what happens if a uniformly distributed population of c are used
with a Gaussian prior on c – a question which we will investigate in future work.

The absolute magnitudeMi is related to the observedB-band magnitude Om�
B and

the distance modulus 
 by Eq. (10.14), which can be rewritten in vector notation as

m�
B D 
CM � ˛x1 C ˇc: (10.30)

The above relation is exact, i.e. M;x1; c are here the latent variables (not the
observed quantities), while m�

B is the true value of the B-band magnitude (also
unobserved). This is represented by the dotted (deterministic) arrows connecting
the variables in Fig. 10.1.

We seek to determine the posterior pdf for the parameters of interest � D
fC; ˛; ˇ; � int

� g, while marginalizing over the unknown population mean absolute
magnitude, M0. From Bayes theorem, the marginal posterior for � is given by

p.�jD/ D
Z

dM0p.�;M0jD/ D
Z

dM0

p.Dj�;M0/p.�;M0/

p.D/
; (10.31)

Marisa Cristina March et al.



10 Bayesian Hierarchical Model of SNe Ia Data 213

where p.D/ is the Bayesian evidence (a normalizing constant) and the prior
p.�;M0/ can be written as

p.�;M0/ D p.C; ˛; ˇ/p.M0; �
int
� / D p.C; ˛; ˇ/p.M0j� int

� /p.�
int
� /: (10.32)

We take a uniform prior on the variables C; ˛; ˇ (on a sufficiently large range so
as not to truncate likelihood, except in the case of ˝m > 0 which rules out an
unphysical choice of parameter), as well as a Gaussian prior for p.M0j� int

� /, since
M0 is a location parameter of a Gaussian (conditional on � int

� ). Additionally, we
apply a prior which excludes that part of parameter space which is the ‘no Big
Bang’ region in the ˝m; ˝� plane.

The prior on M0 is

p.M0j� int
� / D NM0

.Mm; �
2
M0
/; (10.33)

where the mean of the prior (Mm D �19:3 mag) is taken to be a reasonable value
based on observations of nearby SNe Ia, and the variance (�M0

D 2:0 mag) is
sufficiently large so that the prior is very diffuse and non-informative (the precise
choice of mean and variance for this prior does not impact on our numerical results).
Finally, the appropriate prior for � int

� is a Jeffreys’ prior, i.e. uniform in log � int
� , as

� int
� is a scale parameter.

The likelihood p.Dj�;M0/ D p.Oc; Ox1; Om�
B j�;M0/ can be expanded out an re-

written as:

p.Oc; Ox1; Om�
B j�;M0/

D
Z

dc dx1 dM p.Oc; Ox1; Om�
B jc; x1;M ;�;M0/p.c; x1;M j�;M0/ (10.34)

D
Z

dc dx1 dM p.Oc; Ox1; Om�
B jc; x1;M ;�/

�
Z

dRc dRx dc? dx? p.cjc?; Rc/p.x1jx?; Rx/p.M jM0; �
int
� /

� p.Rc/p.Rx/p.c?/p.x?/ (10.35)

In the first line, we have introduced a set of 3n latent variables, fc; x1;M g, which
describe the true value of the colour, stretch and absolute magnitude for each SNIa.
Since these variables are unobserved, we need to marginalize over them. In the sec-
ond line, we have replaced p.c; x1;M j�;M0/ by the priors on the latent fc; x1;M g
given by Eq. (10.29) and Eqs. (10.27–10.28), (assumed separable) and marginalized
out the population parameters fRc ; Rx ; c?; x?g

p.c; x1;M j�;M0/ D
Z

dRc dRx dc? dx? p.cjc?; Rc/p.x1jx?; Rx/
� p.M jM0; �

int
� /p.Rc/p.Rx/p.c?/p.x?/ (10.36)
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(we have also dropped M0 from the likelihood, as conditioning on M0 is irrelevant
if the latent M are given). If we further marginalize over M0 (as in Eq. (10.31),
including the prior on M0), the expression for the effective likelihood, Eq. (10.35),
then becomes

p.Oc; Ox1; Om�
B j�/ D

Z
dc dx1 dM p.Oc; Ox1; Om�

B jc; x1;M ;�/

�
Z

dRc dRx dc? dx? dM0 p.cjc?; Rc/p.x1jx?; Rx/
� p.M jM0; �

int
� /p.Rc/p.Rx/p.c?/p.x?/p.M0j� int

� /:

(10.37)

The term p.Oc; Ox1; Om�
B jc; x1;M ;�/ is the conditional probability of observing

values fOc; Ox1; Om�
Bg if the latent (true) value of c; x1;M and of the other cosmolog-

ical parameters were known. From Fig. 10.1, m�
B is connected only deterministi-

cally to all other variables and parameters, via Eq. (10.30). Thus we can replace
m�
B D 
CM � ˛ � x1 C ˇ � c and write

p.jc; x1;M ;�/ D
nY
iD1
NŒOc; Ox1; Om�

B �
.
i CMi � ˛ � x1i C ˇ � ci ; OCi / (10.38)

D j2�˙C j� 1
2 exp

�
�1
2
Œ.X �X0/T˙�1

C .X �X0/�
�

(10.39)

where 
i � 
i .´i ; �/ and we have defined

X D fX1; : : : ; Xng 2 R
3n; X0 D fX0;1; : : : ; X0;ng 2 R

3n; (10.40)

Xi D fci ; x1;i ; .Mi � ˛x1;i C ˇci /g 2 R
3; X0;i D fci ; x1;i ; Om�

Bi � 
ig 2 R
3;

(10.41)

as well as the 3n � 3n block covariance matrix1

˙C D

0
BBB@

OC1 0 0 0

0 OC2 0 0

0 0
: : : 0

0 0 0 OCn

1
CCCA : (10.42)

Finally we explicitly include redshift uncertainties in our formalism. The
observed apparent magnitude, Om�

B , on the left-hand-side of Eq. (10.38), is the value
at the observed redshift, Ó . However, 
 in Eq. (10.38) should be evaluated at the true
(unknown) redshift, ´. As above, the redshift uncertainty is included by introducing

1 Notice that we neglect correlations between different SNIa, which is reflected in the fact that˙C

takes a block-diagonal form. It would be however very easy to add arbitrary cross-correlations
to our formalism (e.g. coming from correlated systematic within survey, for example zero point
calibration) by adding such non-block diagonal correlations to Eq. (10.42).
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the latent variables ´ and integrating over them:

p.c; x1;M jc; x1;M ;�/ D
Z

d´ p.c; x1;M jc; x1;M ; ´;�/p.´j Ó/ (10.43)

where we model the redshift errors p.´j Ó/ as Gaussians:

Ó � N .´;˙´/ (10.44)
p.´j Ó/ D N´. Ó ; ˙´/ (10.45)

with a n � n covariance matrix:

˙´ D diag.�2´1
; : : : ; �2´n

/: (10.46)

It is now necessary to integrate out all latent variables and nuisance parameters from
the expression for the likelihood, Eq. (10.37). This can be done analytically, as all
necessary integral are Gaussian.

10.5.3 Integration over Intrinsic Redshifts

In order to perform the multi-dimensional integral over ´, we Taylor expand 

around Ó (as justified by the fact that redshift errors are typically small: the error
from 300 km/s peculiar velocity is �´i

D 0:0012, while the error from spectro-
scopic redshifts from SNe themselves is �´i

D 0:005, see [8]):


j D 
.´j / (10.47)

D 5 log10

�
DL.´j /

Mpc

�
C 25 (10.48)

� 
. Ój /C 5.log10 e/
@´j

DL.´j /

DL.´j /

ˇ̌̌
ˇ

Ój

.´j � Ój /: (10.49)

With this approximation we can now carry out the multi-dimensional integral of
Eq. (10.43), obtaining

p. Om�
B jc; x1;M ;�/

D j2�˙mj� 1
2 exp

�
�1
2
. Om�

B � .
CM � ˛ � x1 C ˇ � c//T˙�1
m

� . Om�
B � .
CM � ˛ � x1 C ˇ � c//

�
(10.50)

5



where from now on, 
 D 
. Ó/ and

�m�

B
i ! � raw data

m�

B
i

C fi�´ifi (10.51)

f D diag.f1; : : : ; fn/ (10.52)

fi D 5 log10.e/
D0
L.´i /

DL.´i /

ˇ̌̌
ˇ

Ói
(10.53)

D 5 log10.e/
DL. Ó i /

�
DL. Ó i /
1C ´i

C c

H0
.1C Ó i /

� cosn

(p
j˝� j

Z Ó

0

d´0 �.1C ´0/3˝m C˝de.´/C .1C ´/2˝�
��1=2)

�..1C ´0/3˝m C˝de.´/C .1C ´/2˝� �
�1=2/

�
: (10.54)

Strictly speaking, one should integrate over redshift in the range 0 � ´i < 1, not
�1 < ´i < 1, which would result in the appearance of Gamma functions in the
final result. However, as long as

�´i

´i
	 1 (as is the case here), this approximation

is expected to be excellent.

10.5.4 Integration over Latent fc ; x; M g

From Eq. (10.35) and using the expression in Eq. (10.38), we wish to integrate out
the latent variables

Y D fY1; : : : ; Yng 2 R
3n; (10.55)

Yi D fci ; x1;i ;Mig 2 R
3; (10.56)

We therefore recast expression (10.38) as

p.Oc; Ox1; Om�
B jc; x1;M ;�/ D j˙C j� 1

2 exp
�

�1
2
Œ.AY �X0/T˙�1

C .AY �X0/�
�

(10.57)

where we have defined the block-diagonal matrix

A D diag.T; T; : : : ; T / 2 R
3n�3n (10.58)

with

T D
2
4 1 0 0

0 1 0

ˇ �˛ 1

3
5
2
4 ci
xi
Mi

3
5 (10.59)
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The prior terms appearing in Eq. (10.37), namely p.cjc?; Rc/p.x1jx?; Rx/
p.M jM0; �

int
� /, may be written as

p.cjc?; Rc/p.x1jx?; Rx/p.M jM0; �
int
� /

D j2�˙P j� 1
2 exp

�
�1
2
Œ.Y � Y�/T˙�1

P .Y � Y�/�
�

(10.60)

where

S�1 D diag
	
R�2
c ; R�2

x ; .� int
� /

�2
 2 R
3�3 (10.61)

˙�1
P D diag

	
S�1; S�1; : : : ; S�1
 2 R

3n�3n (10.62)

Y� D J � b 2 R
3n�1 (10.63)

J D

2
6666666664

1 0 0

0 1 0

0 0 1
:::
:::
:::

1 0 0

0 1 0

0 0 1

3
7777777775

2 R
3n�3; (10.64)

b D
2
4 c�
x�
M0

3
5 2 R

3�1: (10.65)

Now the integral over dY D dc dx1 dM in Eq. (10.37) can be performed, giving:Z
dY p.Oc; Ox1; Om�

B jc; x1;M ;�/p.cjc?; Rc/p.x1jx?; Rx/p.M jM0; �
int
� /

D j2�˙C j� 1
2 j2�˙P j� 1

2 j2�˙Aj 1
2

� exp
�

�1
2
ŒXT0 ˙

�1
C X0 � Y T0 ˙�1

A Y0 C Y T� ˙
�1
P Y��

�
(10.66)

where

˙�1
A D AT˙�1

C AC˙�1
P 2 R

3n�3n; (10.67)

˙�1
A Y0 D AT˙�1

C X0 C˙�1
P Y�; (10.68)

Y0 D ˙A.A
T˙�1

C X0 C˙�1
P Y�/˙A.�C˙�1

P Y�/; (10.69)

� D AT˙�1
C X0 2 R

3n�1: (10.70)

Substituting Eq. (10.66) back into Eq. (10.37) gives:
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p.Oc; Ox1; Om�
B j�/ D

Z
dRc dRx dc? dx? j2�˙C j� 1

2 j2�˙P j� 1
2 j2�˙Aj 1

2

� exp
�

�1
2
ŒXT0 ˙

�1
C X0 � Y T0 ˙�1

A Y0 C Y T� ˙
�1
P Y��

�
� p.Rc/p.Rx/p.c?/p.x?/p.M0j� int

� /: (10.71)

10.5.5 Integration over Population Variables fc?; x?; M0g

The priors on the population variables b D fc?; x?;M0g in Eq. (10.71) can be
written as:

p.b/ D p.c?/p.x?/p.M0j� int
� /

D j2�˙0j� 1
2 exp

�
�1
2
.b � bm/T˙�1

0 .b � bm/
�

(10.72)

where

˙�1
0 D

2
4 1=�2c�

0 0

0 1=�2x�

0

0 0 1=�2M0

3
5 (10.73)

and

bm D
2
4 0

0

Mm

3
5 2 R

3�1 (10.74)

Thus Eq. (10.71) can be written as:

p.Oc; Ox1; Om�
B j�/

D
Z

dRc dRx db j2�˙C j� 1
2 j2�˙P j� 1

2 j2�˙Aj 1
2 j2�˙0j� 1

2p.Rc/p.Rx/

� exp
�

�1
2
ŒXT0 ˙

�1
C X0 � .˙A.�C˙�1

P J � b//T˙�1
A .˙A.�C˙�1

P J � b//

C bT J T˙�1
P Jb C .b � bm/T˙�1

0 .b � bm/�
�

D
Z

dRc dRx j2�˙C j� 1
2 j2�˙P j� 1

2 j2�˙Aj� 1
2 j2�˙0j� 1

2p.Rc/p.Rx/

� exp
�

�1
2
ŒXT0 ˙

�1
C X0 ��T˙A� � kT0 K�1k0 C bTm˙

�1
0 bm�

�

�
Z

db exp
�

�1
2
Œ.b � k0/TK�1.b � k0/�

�
(10.75)
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where

K�1 D �J T˙�1
P ˙A˙

�1
P J C J T˙�1

P J C˙�1
0 2 R

3�3; (10.76)

K�1k0 D J T˙�1
P ˙A�C˙�1

0 bm 2 R
3�1; (10.77)

k0 D K.J T˙�1
P ˙A�C˙�1

0 bm/: (10.78)

We can now carry out the Gaussian integral over b in Eq. (10.71), obtaining our final
expression for the effective likelihood,

p.Oc; Ox1; Om�
B j�/

D
Z

d logRc d logRx j2�˙C j� 1
2 j2�˙P j� 1

2 j2�˙Aj 1
2 j2�˙0j� 1

2 j2�Kj 1
2

� exp
�

�1
2
ŒXT0 ˙

�1
C X0 ��T˙A� � kT0 K�1k0 C bTm˙

�1
0 bm�

�
; (10.79)

where we have chosen an improper Jeffreys’ prior for the scale variables Rc ; Rx :

p.Rc/ / R�1
c ) p.Rc/dRc / d logRc ; (10.80)

and analogously for Rx . These two remaining nuisance parameters cannot be inte-
grated out analytically, so they need to be marginalized numerically. Hence, Rc ; Rx
are added to our parameters of interest and are sampled over numerically, and then
marginalized out from the joint posterior.

The expression for the effective likelihood given by Eq. (10.79) is the major result
presented in this chapter. Having shown how this effective likelihood is motivated
and arrived at, we will now present some numerical trials in which the effective
likelihood is tested using simulated data.

10.6 Numerical Trials with Simulated Data

10.6.1 Description of the Real SNe Ia Data Sets

The simulated data sets used in the numerical trials are modeled on the (then) recent
compilation of 288 SNIa from [8], which presents analysis of new data from SDSS-
II along with publicly available data from four existing surveys. The Kessler et al.
[8] compilation comprises of:


 SDSS: 103 SNe [8]

 ESSENCE: 56 SNe [13, 14]

 SNLS: 62 SNe [9]

 Nearby Sample: 33 SNe [15]

 HST: 34 SNe [16–19]
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The compiled set of 288 SNe Ia were analysed by [8] using both the SALT-II
method and the MLCS method. In the following, we are exclusively employing the
results of their SALT-II fits and use those as the observed data set for the purposes
of our current work, as described in the previous section. More refined procedures
could be adopted, for example by simulating lightcurves from scratch, using e.g. the
publicly available package SNANA [20]. In this work we chose a simpler approach,
which is to simulate the SALT-II fit results in such a way to broadly match the
distributions and characteristics of the real data set used in [8].

10.6.2 Description of the Simulated SNe Ia Data Sets

The numerical values of the parameters used for he simulated data sets are shown
in Table 10.1. We adopt a flat �CDM cosmological model as fiducial cosmology.
The ˛ and ˇ global fit parameters are chosen to match the best-fit values reported
in [8], while the distributional properties of the colour and stretch correction match
the observed distribution of their total SN sample. For each survey, we generate a
number of SNe matching the observed sample, and we model their redshift distri-
bution as a Gaussian, with mean and variance estimated from the observed distri-
bution within each survey. The observational errors of m�

B ; c; x1 are again drawn
from Gaussian distributions whose means and variances have been matched to the
observed ones for each survey. Finally, the simulated data (i.e. the simulated SALT-
II fits results Om�

B ; Oc; Ox1) are generated by drawing from the appropriate distributions

Table 10.1 Input parameter values used for the fiducial model in the generation of the simulated
SNe SALT-II data sets.

Parameter Symbol True Value

Matter energy density parameter ˝m 0.3
Dark energy density parameter ˝� 0.7
Dark energy equation of state w �1
Spatial curvature ˝� 0.0
Hubble expansion rate H0 [km/s/Mpc] 72.0

Mean absolute magnitude of SNe M0 [mag] -19.3
Intrinsic dispersion of SNe magnitude � int

� [mag] 0.1
Stretch correction ˛ 0.13
Colour correction ˇ 2.56

Mean of distribution of x1 x? 0.0
Mean of distribution of c c? 0.0
s.d. of distribution of x1 Rx 1.0
s.d. of distribution of c Rc 0.1
Observational noise onm�

B �m�

Bi
Depending on survey

Observational noise on x1 �x1i Depending on survey
Observational noise on c �ci Depending on survey
Correlation between x1 and c �x1i;ci 0.0
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centered around the latent variables. For simplicity, we have set to 0 the off-diagonal
elements in the correlation matrix (10.42) in our simulated data, and neglected red-
shift errors. None of these assumptions have a significant impact on our results. In
summary, our procedure for simulating data for each survey is as follows:

1. Draw a value for the latent redshift ´i from a normal distribution with mean
and variance matching the observed ones. As we neglect redshift errors in the
simulated data for simplicity (since the uncertainty in ´ is subdominant in the
overall error budget), we set Ó i D ´i .

2. Compute 
i using the fiducial values for the cosmological parameters C and
the above ´i from Eq. (10.7).

3. Draw the latent parameters x1i ; ci ;Mi from their respective distributions (in
particular, including an intrinsic scatter � int

� D 0:1 mag in the generation of
Mi ).

4. Compute m�
Bi using x1i ; ci ;Mi and the SALT-II relation Eq. (10.14).

5. Draw the value of the standard deviations �x1i ; �ci
; �mi

, from the appropriate
normal distributions for each survey type. A small, ´i -dependent stochastic lin-
ear addition is also made to �x1i ; �ci

; �mi
; to mimic the observed correlation

between redshift and error.
6. Draw the SALT-II fit results from Ox1i � N .x1i ; �x1i /, Oci � N .ci ; �ci

/ and
Om�
Bi � N .m�

Bi ; �mi
/.

As shown in Fig. 10.3, the simulated data from our procedure have broadly sim-
ilar distributions to the to real ones. The two notable exceptions are the overall
vertical shift observed in the distance modulus plot, and the fact that our simulated
data cannot reproduce the few outliers with large values of the variances (bottom
panels). The former is a consequence of the different absolute magnitude used in
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Fig. 10.3 An example realization of our simulated data sets (coloured according to survey), super-
imposed on real data (black). Colour code for simulated data survey: nearby sample (cyan),
ESSENCE (green), SDSS (red), SNLS (blue) and HST (magenta).
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our simulated data (as the true one is unknown). However, the absolute magnitude
is marginalized over at the end, so this difference has no impact on our inferences.
The absence of outliers is a consequence of the fact that our simulation is a pure phe-
nomenological description of the data, hence it cannot encapsulate such fine details.
While in principle we could perform outlier detection with dedicated Bayesian pro-
cedures, we do not pursue this issue further in this paper. We stress once more that
the purpose of our simulations is not to obtain realistic SNIa data. Instead, they
should only provide us with useful mock data sets coming from a known model so
that we can test our procedure. More sophisticated tests based on more realistically
generated data (e.g. from SNANA) are left for future work.

10.6.3 Numerical Sampling

After analytical marginalization of the latent variables, we are left with the following
eight parameters entering the effective likelihood of Eq. (10.79):

f˝m; ˝� or w;H0; � int
� ; ˛; ˇ;Rc ; Rxg: (10.81)

As mentioned above, in keeping with the literature we only consider either flat Uni-
verses with a possible w ¤ �1 (the �CDM model), or curved Universes with a
cosmological constant (w D �1, the wCDM model). Of course it is possible to
relax those assumptions and consider more complicated cosmologies with a larger
number of free parameters if one so wishes (notably including evolution in the dark
energy equation of state).

Of the parameters listed in Eq. (10.81), the quantities Rc ; Rx are of no interest
and will be marginalized over. As for the remaining parameters, we are interested in
obtaining their marginal 1 and 2-dimensional posterior distributions. This is done by
inserting the likelihood (10.79) into the posterior of Eq. (10.31), with priors on the
parameters chosen in accordance with Table 10.2. We use a Gaussian prior on the
Hubble parameterH0 D 72˙ 8 km/s/Mpc from local determinations of the Hubble
constant [21]. However, as H0 is degenerate with the intrinsic population absolute
magnitudeM0 (which is marginalized over at the end), replacing this Gaussian prior
with a less informative prior H0[km/s/Mpc] � U.20; 100/ has no influence on our
results.

Numerical sampling of the posterior is carried out via a nested sampling algo-
rithm [22–25]. Although the original motivation for nested sampling was to compute
the Bayesian evidence, the recent development of the MultiNest algorithm [24, 25]
has delivered an extremely powerful and versatile algorithm that has been demon-
strated to be able to deal with extremely complex likelihood surfaces in hundreds of
dimensions exhibiting multiple peaks. As samples from the posterior are generated
as a by-product of the evidence computation, nested sampling can also be used to
obtain parameter constraints in the same run as computing the Bayesian evidence.
In this paper we adopt the publicly available MultiNest algorithm [24] to obtain
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Table 10.2 Priors on our model’s parameters used when evaluating
the posterior distribution. Ranges for the uniform priors have been
chosen so as to generously bracket plausible values of the corre-
sponding quantities.

Parameter �CDM wCDM

˝m Uniform: U.0:0; 1:0/ Uniform: U.0:0; 1:0/
˝� Uniform: U.�1:0; 1:0/ Fixed: 0
w Fixed: �1 Uniform: U.�4; 0/
H0 [km/s/Mpc] N .72; 82/ N .72; 82/

Common priors
� int

� [mag] Uniform on log� int
� : U.�3:0; 0:0/

M0 [mag] Uniform: U.�20:3;�18:3/
˛ Uniform: U.0:0; 1:0/
ˇ Uniform: U.0:0; 4:0/
Rc Uniform on logRc : U.�5:0; 2:0/
Rx Uniform on logRc : U.�5:0; 2:0/

samples from the posterior distribution of Eq. (10.31). We use 4000 live points and
a tolerance parameter 0.1, resulting in about 8 � 105 likelihood evaluations.

We also wish to compare the performance of our BHM with the usually adopted
�2 minimization procedure. To this end, we fit the simulated data using the �2

expression of Eq. (10.10). In order to mimic what is done in the literature as closely
as possible, we chose a value of � int

� then minimize the �2 w.r.t. the fit parameters
# D f˝m; ˝� or w;H0;M0; ˛; ˇg. We update the value of � int

� then repeat the min-
imization process as described below, until a value of �2=dof D 1 is obtained. The
steps in the process can be enumerated as follows:

1. Select a trial value for � int
� .

2. Minimise the �2 given in Eq. (10.10) by simultaneously fitting for the cosmol-
ogy and SNe Ia parameters # D f˝m; ˝� or w;H0;M0; ˛; ˇg.

3. Evaluate �2=dof at minimum (i.e. the best fit point). If �2=dof > 1 select a
higher trial value for � int

� , if �2=dof < 1 select a lower trial value for � int
� , repeat

from the minimization step (ii) onwards.
4. Stop the process of minimization and iterative updating of � int

� when a value of
�2=dof D 1 is obtained.

Once we have obtained the global best fit point, we derive 1- and 2-dimensional
confidence intervals on the parameters by profiling (i.e. maximising over the other
parameters) over the likelihood

L.#/ D exp
�

�1
2
�.#/2

�
; (10.82)

with �2 given by Eq. (10.10). According to Wilks’ theorem, approximate confi-
dence intervals are obtained from the profile likelihood as the regions where the �2



224

Table 10.3 Change in	�2 required in 1D profile like-
lihood for 1� and 2� confidence intervals.

Likelihood content 68:3% .1�/ 95:4% .2�/

	�2 1.00 4.00

increases by ��2 from its minimum value, where ��2 can be computed from the
chi-square distribution with the number of degree of freedoms corresponding to the
number of parameters of interest and is given in standard look-up tables. The appro-
priate��2 values for the 1D likelihoods are shown in Table 10.3. Obtaining reliable
estimates of the profile likelihood using Bayesian algorithms (such as MultiNest) is
a considerably harder numerical task than mapping out the Bayesian posterior. How-
ever, it has been shown that MultiNest can be successfully used for this task even in
highly challenging situations [26], provided the number of live points and tolerance
value used are adjusted appropriately. For our �2 scan, we adopt 104 live points
and a tolerance of 0.1. We have found that those values give accurate estimates of
the profile likelihood more than 2� into the tails of the distribution for an 8 dimen-
sional Gaussian toy model (whose dimensionality matches the case of interest here).
With these MultiNest settings, we gather 1:5 � 105 samples, from which the profile
likelihood is derived.

Our implementation of the �2 method is designed to match the main features of
the fitting procedure usually adopted in the literature (namely, maximisation of the
likelihood rather than marginalization of the posterior, and iterative determination
of the intrinsic dispersion), although we do not expect that it exactly reproduces
the results obtained by any specific implementation. Its main purpose is to offer a
useful benchmark against which to compare the performance of our new Bayesian
methodology.

10.6.4 Parameter Reconstruction

We compare the cosmological parameters reconstructed from the standard �2

method and our Bayesian approach in Fig. 10.4 for a typical data realization. The
left-hand-side panel shows constraints in the˝m�˝� plane for the�CDM model,
both from our Bayesian method (filled regions, marginalized 68.3% and 95.4% pos-
terior) and from the standard �2 method (red contours, 68.3% and 95.4% confi-
dence regions from the profile likelihood). In the right-hand-side panel, constraints
are shown in the w � ˝m plane for a flat wCDM model Universe. In a typical
reconstruction, our Bayesian method produced considerably tighter constraints on
the cosmological parameters of interest than the usual �2 approach. Our constraints
are also less biassed w.r.t. the true value of the parameters, an important advantage
that we further characterize below.
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Fig. 10.5 Marginalised posterior for the stretch correction ˛, colour correction ˇ parameter and
logarithm of the intrinsic dispersion of SNe, log� int

� , from a simulated data set from our Bayesian
method. The vertical, dashed line gives the true value for each quantity.

Our BHM further produces marginalized posterior distributions for all the other
parameters of the fit, including the global SNe Ia parameters ˛ and ˇ and the intrin-
sic dispersion of the SNe. The 1D marginal posteriors for those quantities are shown
in Fig. 10.5. The recovered posterior means lie within 1� of the true values. Notice
that we do not expect the posterior mean to match exactly the true value, because
of realization noise in the simulated data. However, as shown below, our method
delivers less biassed estimates of the parameters, and a reduced mean squared error
compared with the standard �2 approach. The stretch correction ˛ is determined
with 8% accuracy, while the colour correction parameter ˇ is constrained with an
accuracy better than 3%. A new feature of our method is that it produces a posterior
distribution for the SN population intrinsic dispersion, � int

� (right-hand-side panel of
Fig 10.5). This allows to determined the intrinsic dispersion of the SNIa population
to typically about 10% accuracy.

5



10.6.5 Comparison of Performance of the Two Methods Over
100 Trials

As we are dealing with a system subject to Gaussian statistical noise, the results of
one single trial are not sufficient to validate the claim that the BHM method outper-
forms the �2 method. In order to demonstrate further the relative performance of the
two methods we conducted a series of trials using 100 different realizations of the
data, i.e. we generated 100 simulated data sets each with 288 SNe Ia, as detailed in
section 10.6.2. During the numerical sampling phase of the parameter reconstruc-
tion, several trials failed due to computational problems, in these cases the results
for the relevant trials for both the BHM and �2 methods were omitted from the
final analysis. We are interested in comparing the average ability of both methods
to recover parameter values that are precise, accurate and as much as possible unbi-
assed with respect to their true values, as well as to establish the coverage properties
of the credible and confidence intervals.

Coverage is defined as the probability that an interval contains (covers) the true
value of a parameter, in a long series of repeated measurements. The defining prop-
erty of a e.g. 95.4% Frequentist confidence interval is that it should cover the true
value 95.4% of the time; thus, it is reasonable to check if the intervals have the prop-
erties they claim. Coverage is a Frequentist concept: intervals based on Bayesian
techniques are meant to contain a given amount of posterior probability for a sin-
gle measurement (with no reference to repeated measurements) and are referred to
as credible intervals to emphasize the difference in concept. While Bayesian tech-
niques are not designed with coverage as a goal, it is still meaningful to investigate
their coverage properties. To our knowledge, the coverage properties of even the
standard �2 method (which, being a frequentist method would ideally be expected
to exhibit exact coverage) have never been investigated in the SN literature.

We generate 100 realizations of the simulated data from the fiducial model of
Table 10.1 as described in section 10.6.2, and we analyse them using our BHM
method and the standard �2 approach, using the same priors as above, given in
Table 10.2. We quantify the performance of the two methods in two ways: in terms
of the precision (i.e. error bar size) and in terms of accuracy (i.e. distance of recon-
structed parameter value from true parameter value). For each parameter of interest
� , we compare the precision by evaluating the relative size of the posterior 68.3%
range from our BHM method, �BHM

�
, compared with the 68.3% confidence interval

from the �2 method, ��
2

�
, which is summarized by the quantity S� which shows the

percentage change in error bar size with respect to the error bar derived using the
�2 method

S� �
 
�BHM
�

�
�2

�

� 1
!

� 100: (10.83)

A value S� < 1 means that our BHM method delivers tighter error bars on the
parameter � , so is more precise. A histogram of this quantity for the variables of
interest is shown in Fig. 10.6, from which we conclude that our BHM method gives
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Fig. 10.6 Histograms of the quantity defined in Eq. (10.83), comparing of the error bars on each
parameter from our method and from the standard �2 approach for 100 realization, for the�CDM
model (left) and the wCDM model (right). A change in error bar size of �10% indicates BHM
error bars are 10% smaller than �2 error bars. A change in error bar size of C10% indicates BHM
error bars are 10% larger than �2 error bars. Our BHM method generally delivers smaller errors
on the cosmological parameters (top row) so is more precise, but larger errors on the SNe Ia global
fit parameters ˛; ˇ (bottom row) so is less precise.

smaller error bars on˝m; ˝� andw in almost all cases. However the uncertainty on
˛; ˇ is larger from our method than from the �2 approach in most data realizations,
as expected from [12].

Precision and tight error bars are good, but not if they come at the expense of a
less accurate reconstruction. To evaluate the accuracy of each method, we build the
following test statistic for each reconstruction:

T� � j�BHM=�true � 1j � j�bf
�2=�true � 1j; (10.84)

where �BHM is the posterior mean recovered using our BHM method, �bf
�2 is the

best-fit value for the parameter recovered using the standard �2 approach and �true
is the true value for that parameter. T� can be interpreted as follows: for a given
data realization, if the reconstructed posterior mean from our BHM is closer to
the true parameter value than the best-fit �2, then T� < 0, which means that our
method is more accurate than �2. A histogram of the distribution of T� across the
100 realizations, shown in Fig. 10.7, can be used to compare the two methods: a
negative average in the histogram means that the BHM outperforms the usual �2.
For all of the parameters considered, our BHM method is more accurate than the �2

method, outperforming �2 about 2/3 of the time. Furthermore, the reconstruction of
the intrinsic dispersion � int

� is better with our BHM method almost 3 times out of
4. We emphasize once more that our methodology also provides an estimate of the
uncertainty in the intrinsic dispersion, not just a best-fit value as the �2 approach.

We can further quantify the improvement in the statistical reconstruction by look-
ing at the bias, defined as

bias D h O� � �truei (10.85)
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Fig. 10.7 Histograms of the test statistics defined in Eq. (10.84), comparing the long-term perfor-
mance of the two methods for the parameters of interest in the�CDM model (left) and the wCDM
model (right). A predominantly negative value of the test statistics means that our method gives a
parameter reconstruction that is closer to the true value than the usual �2, i.e. less biassed. For the
cosmological parameters (top row), our method outperforms �2 about 2 times out of 3.

and mean squared error (MSE) for each parameter, defined as

MSE D bias2 C Var; (10.86)

respectively, where the expectation is taken by averaging over the observed values
in our 100 simulated trials, O� D �BHM ( O� D �bf

�2/ for the BHM (for the �2 approach)
and Var is the observed parameter variance. The bias is the expectation value of the
difference between estimator and true value, and tells us by how much the estimator
systematically over or under estimates the parameter of interest. The MSE measures
the average of the squares of the errors, i.e. the amount by which the estimator differs
from the true value for each parameter. A smaller bias and a smaller MSE imply a
better performance of the method. The results for the two methods are summarized
in Table 10.4, which shows how our method reduces the bias by a factor �2–3
for most parameters, while reducing the MSE by a factor of �2. The only notable
exception is the bias of the EOS parameter w, which is larger in our method than in
the �2 approach.

Finally, in Fig. 10.8 we plot the coverage of each method for 68.3% and 95.4%
intervals. Error bars give an estimate of the uncertainty of the coverage result, by
giving the binomial sampling error from the finite number of realizations consid-
ered, evaluated from the binomial variance as Np.1 � p/, where N D 100 is the
number of trials and p is the observed fractional coverage. Both method slightly
undercover, i.e. the credible region and confidence intervals are too short, although
the lack of coverage is not dramatic: e.g., the typical coverage of the 1� (2� ) inter-
vals from our method is �60% (90%). Our method shows slightly better coverage
properties than the �2 method, while producing considerably tighter and less biassed
constraints (as demonstrated above). This further proves that the tighter intervals
recovered by our method do not suffer from bias w.r.t the true values.
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Table 10.4 Comparison of the bias and mean squared error for our Bayesian method and the usual
�2 approach. The columns labelled “Improvement” give the factor by which our Bayesian method
reduces the bias and the MSE w.r.t. the �2 approach.

Parameter Bias Mean squared error

Bayesian �2 Improvement Bayesian �2 Improvement
�CDM ˝m �0.0188 �0.0183 1.0 0.0082 0.0147 1.8

˝� �0.0328 �0.0223 0.7 0.0307 0.0458 1.5
˛ 0.0012 0.0032 2.6 0.0001 0.0002 1.4
ˇ 0.0202 0.0482 2.4 0.0118 0.0163 1.4
� int

� �0.0515 �0.1636 3.1 0.0261 0.0678 2.6

wCDM ˝m �0.0177 �0.0494 2.8 0.0072 0.0207 2.9
˝� 0.0177 0.0494 2.8 0.0072 0.0207 2.9
w �0.0852 �0.0111 0.1 0.0884 0.1420 1.6
˛ 0.0013 0.0032 2.5 0.0001 0.0002 1.5
ˇ 0.0198 0.0464 2.3 0.0118 0.0161 1.4
� int

� �0.0514 �0.1632 3.2 0.0262 0.0676 2.6
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Fig. 10.8 Coverage of our method (blue) and standard �2 (red) for 68.3% (solid) and 95.4%
(dashed) intervals, from 100 realizations of simulated data for the �CDM model (left) and the
wCDM model (right). While both methods show significant undercoverage for all parameters, our
method has a comparable coverage to the standard �2, except for w . Coverage values for the
intrinsic dispersion � int

� are not available from the �2 method, as it does not produce an error
estimate for this quantity.

To summarise, the results from our numerical trials with simulated data show
that:

1. In general, our BHM method gives more precise constraints on the cosmological
parameters, but gives less precise constraints on the SNe Ia global fit parameters
˛; ˇ

2. In 60–70% of trials, our BHM method recovers a more accurate value of the
parameter of interest.

3. Our BHM method is less biassed than the �2 method, except in the reconstruc-
tion of the w parameter
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4. Both methods undercover, with our BHM method giving slightly better cover-
age.

10.7 Cosmological Constraints from Current SNIa Data Using

BHM

We now apply our BHM to fitting real SN data. We use the SALT-II fits result for
288 SNIa from [8], which have been derived from five different surveys described
briefly in section 10.6.1. Our method only includes statistical errors according to
the procedure described in section 10.5, coming from redshift uncertainties (aris-
ing from spectroscopic errors and peculiar velocities), intrinsic dispersion (which is
determined from the data) and full error propagation of the SALT-II fit results.
Systematic uncertainties play an important role in SNIa cosmology fitting, and
(although not included in this study) can also be treated in our formalism in a fully
consistent way. We comment on this aspect further below, though we leave a com-
plete exploration of systematics with our BHM to a future, dedicated work.

We show in Fig. 10.9 the constraints on the cosmological parameters ˝m �˝�
(left panel, assuming w D �1) and w � ˝m (right panel, assuming ˝� D 0)
obtained with our method. All other parameters have been marginalized over. In
order to be consistent with the literature, we have taken a non-informative prior on
H0, uniform in the range Œ20; 100� km/s/Mpc. The figure also compares our results
with the statistical contours from [8], obtained using the �2 method. (We com-
pare with the contours including only statistical uncertainties for consistency.) In
Fig. 10.10 we combine our SNIa constraints with Cosmic Microwave Background
(CMB) data from WMAP 5-yrs measurements [27] and Baryonic Acoustic Oscil-
lations (BAO) constraints from the Sloan Digital Sky Survey LRG sample [28],
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Fig. 10.9 Constraints on the cosmological parameters ˝m;˝� (left panel, assuming w D �1)
and w;˝m (right panel, assuming ˝� D 0) from our Bayesian method (light/dark blue regions,
68.3% and 95.4% marginalized posterior), compared with the statistical errors from the usual �2

approach (yellow/red regions, same significance level; from [8]). The yellow star gives the posterior
mean from our analysis.
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Fig. 10.10 Combined constraints on the cosmological parameters˝m;˝� (left panel, assuming
w D �1) and w;˝m (right panel, assuming ˝� D 0) from SNIa, CMB and BAO data. Red
contours give 68.3% and 95.4% regions from CMB alone, green contours from BAO alone, blue
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Fig. 10.11 Marginalised posterior for the stretch correction ˛, colour correction ˇ parameter and
logarithm of the intrinsic dispersion of SNe, log� int

� from current SNIa data.

using the same method as [8]. The combined SNIa, CMB and BAO statistical con-
straints result in ˝m D 0:28 ˙ 0:02;˝� D 0:73 ˙ 0:01 (for the �CDM model)
and ˝m D 0:28 ˙ 0:01; w D �0:90 ˙ 0:05 (68.3% credible intervals) for the
wCDM model. Although the statistical uncertainties are comparable to the results
by [8] from the same sample, our posterior mean values present shifts of up to �2�
compared to the results obtained using the standard �2 approach. This is a fairly
significant shift, which can be attributed to our improved statistical method, which
exhibits a reduced bias w.r.t. the �2 approach.

Fig. 10.11 shows the 1D marginalized posterior distributions for the SNe Ia
global fit parameters ˛; ˇ and for the intrinsic dispersion � int

� . All parameters are
well constrained by the posterior, and we find ˛ D 0:12 ˙ 0:02, ˇ D 2:7 ˙ 0:1

and a value of the intrinsic dispersion (for the whole sample) � int
� D 0:13 ˙ 0:01

mag. Kessler et al. [8] find values for the intrinsic dispersion ranging from 0.08 (for
SDSS-II) to 0.23 (for the HST sample), but their �2 method does not allow them
to derive an error on those determinations. With our method, it would be easy to
derive constraints on the intrinsic dispersion of each survey – all one needs to do is
to replace Eq. (10.15) with a corresponding expression for each survey. This intro-
duces one pair of population parameters .M0; �

int
� / for each survey. In the same way,
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one could study whether the intrinsic dispersion evolves with redshift. A detailed
study of these issues is left for future work.

The value of ˛ found in [8] is in the range 0.10–0.12, depending of the details
of the assumptions made, with a typical statistical uncertainty of order �0:015.
These results are comparable with our own. As for the colour correction parame-
ter ˇ, constraints from [8] vary in the range 2.46–2.66, with a statistical uncertainty
of order 0.1–0.2. This stronger dependence on the details of the analysis seems to
point to a larger impact of systematic uncertainties for ˇ, which is confirmed by evi-
dence of evolution with redshift of the value of ˇ ([8], Fig. 39). Our method can be
employed to carry out a rigorous assessment of the evolution with redshift of colour
corrections. A possible strategy would be to replace ˇ with a vector of parameters
ˇ1; ˇ2; : : : , with each element describing the colour correction in a different redshift
bin. The analysis proceeds then as above, and it produces posterior distributions for
the components of ˇ, which allows to check the hypothesis of evolution. Finally,
in such an analysis the marginalized constraints on all other parameters (includ-
ing the cosmological parameters of interest) would automatically include the full
uncertainty propagation from the colour correction evolution, without the need for
further ad hoc inflation of the error bars. These kind of tests will be pursued in a
forthcoming publication.

10.8 Conclusions

The primary aim of the work presented in this chapter was to address certain defi-
ciencies in the existing methods for extracting the cosmological parameters from
SNe Ia data in conjunction with the SALT-II lightcurve fitter. The two main moti-
vations were the lack of an appropriate framework for assessing the unknown intrin-
sic dispersion � int

� and its uncertainty, and the incompatibility of existing parame-
ter reconstruction methods with methods of Bayesian model selection. In order to
address these dual problems, we have derived a new and fully Bayesian method for
parameter inference based on a Bayesian Hierarchical Model, BHM.

The main novelty of our method is that it produces an effective likelihood that
propagates uncertainties in a fully consistent way. We have introduced an explicit
statistical modelling of the absolute magnitude distribution of the SNIa population,
which for the first time allows one to derive a full posterior distribution of the SNIa
intrinsic dispersion.

We have tested our method using simulated data sets and found that it compares
favourably with the standard �2 approach, both on individual data realizations and
in the long term performance. Statistical constraints on cosmological parameters
are significantly improved, while in a series of 100 simulated data sets our method
outperforms the �2 approach at least 2 times out of 3 for the parameters of interest.
We have also demonstrated that our method is less biassed and has better coverage
properties than the usual approach.

2 Marisa Cristina March et al.
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We applied our methodology to a sample of 288 SNIa from multiple surveys.
We find that the flat �CDM model is still in good agreement with the data, even
under our improved analysis. However, the posterior mean for the cosmological
parameters exhibit up to 2� shifts w.r.t. results obtained with the conventional �2

approach. This is a consequence of our improved statistical analysis, which benefits
from a reduced bias in estimating the parameters.

While in this chapter we have only discussed statistical constraints, our method
offers a new, fully consistent way of including systematic uncertainties in the fit.
As our method is fully Bayesian, it can be used in conjunction with fast and effi-
cient Bayesian sampling algorithms, such as MCMC and nested sampling. This will
allow to enlarge the number of parameters controlling systematic effects that can be
included in the analysis, thus taking SNIa cosmological parameter fitting to a new
level of statistical sophistication. The power of our method as applied to systematic
errors analysis will be presented in a forthcoming, dedicated work.

At a time when SNIa constraints are entering a new level of precision, and with
a tenfold increase in the sample size expected over the next few years, we believe
it is timely to upgrade the cosmological data analysis pipeline in order to extract
the most information from present and upcoming SNIa data. This work represents a
first step in this direction.
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